

Hybrid Control of a Segway

Platform Developed in MRDS

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Master of Engineering

in Electronic and Computer Systems Engineering

at

Victoria University of Wellington

by

Douglas James Ormiston Thomson

2013

Hybrid Control of a Segway Platform Developed in MRDS ii

Abstract iii

Abstract

A Segway RMP200 has been bought by Victoria University for the purpose of making an

autonomous robot. The focus of this project was to create reusable services that use existing

navigation algorithms to control the Segway within an indoor environment.

A SICK LMS100 laser rangefinder was added to detect obstacles and allow localization of the

Segway within a known map. A hybrid navigation algorithm consisting of an A* path planner

with a dynamic window is used for motion planning and obstacle avoidance.

The control system followed a Service Oriented Architecture implemented in Microsoft

Robotics Studio using the C# .NET programming language.

Four services were created during the project to interface with the SICK LMS100 scanner,

control the Segway RMP200, implement the hybrid navigation algorithm and provide a

graphic user interface for the system.

Tests show that the Segway is able to navigate and maintain localisation within the operating

environment by identifying and associating corner and door landmarks within the

environment.

Hybrid Control of a Segway Platform Developed in MRDS iv

Acknowledgements v

Acknowledgements

I would like to acknowledge the following people for their help they have given me over the

course of my masters.

I would firstly like to thank Professor Dale Carnegie for supervising me during this project.

His advice and expertise was invaluable during the project and for the final thesis write up.

I would also like to thank Jason Edwards and Tim Exley for their technical advice during

provided during this project.

Lastly I would like to thank my family for supporting me while completing my masters.

Hybrid Control of a Segway Platform Developed in MRDS vi

Contents vii

Contents

Abstract....... ...iii

Acknowledgements...v

Contents..vii

List of Tables.. .xi

List of Figures...xiii

Chapter 1 Introduction...1

1.1 Objective .. 1

1.2 Mobile Robot Platforms .. 2

1.3 Operating Environment ... 4

1.4 Chapter Summary .. 7

Chapter 2 Background...9

2.1 Introduction ... 9

2.2 Reactive Control Architectures ... 9

2.2.1 Subsumption Architecture .. 10

2.2.2 Motor Schema Architecture ... 11

2.3 Deliberative Control Architectures .. 12

2.4 Hybrid Control Architectures .. 15

2.4.1 Autonomous Robot Architecture (AuRA) ... 15

2.4.2 ATLANTIS .. 17

2.4.3 Dynamic Window Obstacle Avoidance ... 17

2.5 Robotic Development Environments... 19

2.5.1 Overview .. 19

2.5.2 Player/Stage .. 20

2.5.3 Robot Operating System (ROS) ... 21

2.5.4 Microsoft Robotics Developer Studio (MRDS) ... 23

Hybrid Control of a Segway Platform Developed in MRDS viii

2.5.5 Open Robot Control Software (OROCOS) .. 24

2.5.6 Selection ... 25

2.1 Previous Segway Platform Projects ... 25

Chapter 3 System Description..31

3.1 Segway RMP200 ... 32

3.1.1 Introduction .. 32

3.1.2 Segway Sensors .. 34

3.1.3 RMP Interface Theory of Operation .. 35

3.1.4 USB Interface ... 39

3.1.5 RMP Control Message ... 41

3.1.6 Monitoring Messages ... 44

3.1.7 Error Conditions ... 46

3.2 Range finders ... 47

3.2.1 SICK LMS100 .. 47

3.2.2 SICK LMS200 .. 47

3.2.3 Hokuyo URG .. 48

3.2.4 Chosen Sensor .. 49

3.3 SICK LMS100 Laser Scanner ... 50

3.3.1 Overview .. 50

3.3.2 Data Communication using Telegrams .. 51

3.4 Control Laptop ... 52

3.5 Complete System ... 53

Chapter 4 Microsoft Robotic Developer Studio...57

 MRDS ... 57 4.1

4.1.1 Concurrency and Coordination Runtime (CRR) ... 61

4.1.2 Decentralized Software Services (DSS) .. 65

 Programming Environment .. 68 4.2

Contents ix

 Summary .. 69 4.3

Chapter 5 Navigation Architecture...71

5.1 Navigation System Overview .. 71

5.2 Deliberative Component .. 72

5.2.1 Environment Representation .. 73

5.2.2 Path Planning .. 74

5.3 Reactive Control Overview ... 75

5.3.1 Path Tracking ... 76

5.3.2 Direction Sensor ... 76

5.3.3 Dynamic Window .. 78

5.4 Internal Representation .. 85

5.4.1 Odometers .. 85

5.4.2 Position and Orientation ... 86

5.5 Localisation ... 87

5.5.1 Line Extraction ... 88

5.5.2 Landmark Detection and Association .. 93

5.5.3 Landmark Position Error .. 96

5.6 Sensor Fusion .. 98

5.7 Summary .. 99

Chapter 6 Software...101

6.1 Segway Software Architecture .. 101

6.2 Operating Mode ... 102

6.2.1 Manual .. 102

6.2.2 Autonomous ... 103

6.3 SickLRF_Scanner Service ... 103

6.3.1 SickLRF_Scanner Service Class .. 105

6.3.2 TCPIOManager Class and Packet Class .. 108

Hybrid Control of a Segway Platform Developed in MRDS x

6.4 Segway Base Service ... 113

6.4.1 Segway Native Wrapper ... 113

6.4.2 SegwayBase Service .. 116

6.5 SegwayNavigation Service .. 119

6.5.1 SegwayNavigation Class .. 120

6.5.2 SegwayNavigation State Class ... 122

6.5.3 SegwayNavigation Operations Class ... 122

6.6 Segway UI service ... 124

6.7 Summary .. 127

Chapter 7 Results..129

7.1 Sick LRF Characterisation... 129

7.2 Segway Characterisation ... 132

7.2.1 Odometry .. 132

7.2.2 Segway Characterisation .. 137

7.3 Localisation Testing .. 148

7.4 Navigation System Parameters .. 151

7.4.1 Direction Sensor ... 151

7.5 Corridor Environment Tests .. 154

7.5.1 Linear Forward Command ... 154

Chapter 8 Discussion..159

8.1 Objectives Achieved .. 159

8.2 Future Work ... 160

8.2.1 Additional Sensors ... 160

8.2.2 Higher Level Control ... 161

8.2.3 System Improvements .. 162

Bibliography..165

List of Tables xi

List of Tables

Table 3.1 USB to CAN conversion .. 39

Table 3.2 RMP control message format ... 41

Table 3.3 Configuration command and configuration parameter values 42

Table 3.4 Monitoring messages packet format .. 44

Table 3.5 Monitoring messages and conversions ... 45

Table 6.1 Supported telegrams sent to scanner .. 109

Table 6.2 Supported telegrams received from scanner .. 110

Table 6.3 Telegram frame .. 110

Table 6.4 USB_int.cpp important methods and summary ... 114

Table 6.5 SegwayNativeWrapper.cpp important methods and summary 115

Table 6.6 SegwayBase service main operations port messages ... 117

Table 6.7 Segway scale factor values ... 118

Table 6.8 SegwayNavigation operations port messages .. 123

Table 6.9 Segway UI service’s events port .. 125

Table 7.1 Segway configuration parameters .. 148

Table 7.2 Direction sensor parameter values ... 153

Hybrid Control of a Segway Platform Developed in MRDS xii

List of Figures xiii

List of Figures

Figure 1.1 Grandmother robot .. 2

Figure 1.2 Mother robot ... 3

Figure 1.3 MARVIN robotic platform ... 4

Figure 1.4 Overhead view of the operating environment ... 4

Figure 1.5 Images of the operating environment ... 5

Figure 1.6 Alternative environment #1 .. 6

Figure 1.7 Alternative environment #2 .. 6

Figure 1.8 Alternative environment #3 .. 7

Figure 2.1 Robot control system spectrum (Arkin R. C., 1998) .. 9

Figure 2.2 Reactive control (Vorlesungen, 2010) .. 10

Figure 2.3 Subsumption architecture decomposition (Brooks R. , 1985) 11

Figure 2.4 Deliberative control (Vorlesungen, 2010) .. 13

Figure 2.5 Deliberative / Hierarchical control system (Albus, 2002) 13

Figure 2.6 A hierarchical node for a deliberative control system (Albus, 2002) 14

Figure 2.7 AuRA control components (Arkin R. C., 1998) ... 16

Figure 2.8 The ATLANTIS control architecture ... 17

Figure 2.9 Dynamic window (Siegwart, Nourbakhsh, & Scaramuzza, 2004) 18

Figure 2.10 Screenshot of Player/Stage environment (Gerkey, Vaughan, & Howard, 2003) . 21

Figure 2.11 A typical ROS network configuration (Quigley, et al., 2009) 22

Figure 2.12 OROCOS components for controlling robots (Soetens, 2010) 24

Figure 2.13 Robonaut, human assistance robot (Diftler, Ambrose, Tyree, & Goza, 2004) 26

Figure 2.14 CARDEA robot system (Brooks, et al., 2004) ... 27

Figure 2.15 Segway project at the Georgia Institute of Technology (Mc Guire, Henriques,

Nguyen, Jensen, Vinther, & Jespersen, 2009) .. 28

Figure 2.16 Segway Project at the Aalborg University Department of Electronic Systems 29

Figure 3.1 Segway System. Top left: Back view. Top right: Side view. Bottom: Front view. 31

Figure 3.2 Segway RMP200 .. 33

Figure 3.3 Segway RMP control architecture (Segway Inc., 2009) ... 36

Figure 3.4 Segway User Interface buttons ... 37

Figure 3.5 External force displacement (Segway Inc, 2009) ... 37

Figure 3.6 Segway traversing small obstacles (Segway Inc, 2009) ... 38

Hybrid Control of a Segway Platform Developed in MRDS xiv

Figure 3.7 Emergency stop switch and tether (Segway Inc, 2009) .. 38

Figure 3.8 USB message checksum calculation ... 40

Figure 3.9 Payload configurations for the Segway (Segway Inc, 2009) 43

Figure 3.10 The SICK LMS100 laser range finder .. 47

Figure 3.11 SICK LMS 200 laser range finder (SICK Inc., 2003) .. 48

Figure 3.12 Hokuyo URG-04LX laser range finder .. 49

Figure 3.13 Measuring principle of the LMS ... 50

Figure 3.14 Principle of operation for pulse propagation time measurement 51

Figure 3.15 ASCII vs binary telegram example ... 52

Figure 3.16 System overview ... 54

Figure 3.17 Laptop platform .. 55

Figure 3.18 10° tilt of Segway effect on range finder .. 55

Figure 4.1 Dashboard service ... 58

Figure 4.2 MRDS operational schema (Johns & Taylor, 2008) ... 59

Figure 4.3 MRDS 3D Visual Simulation Environment ... 60

Figure 4.4 MRDS Visual Programming Language .. 61

Figure 4.5 CCR architecture (Johns & Taylor, 2008) .. 63

Figure 4.6 A generic service’s operations PortSet ... 64

Figure 4.7 DSS architecture (Johns & Taylor, 2008) ... 67

Figure 4.8 DSS node security configuration file .. 68

Figure 5.1 Hierarchical hybrid navigation system (Chand & Carnegie, 2011) 72

Figure 5.2 Map of Laby corridor .. 73

Figure 5.3 Occupancy grid of the Segway’s operating environment 74

Figure 5.4 Overview of reactive control strategy (Chand, 2011) ... 75

Figure 5.5 Direction sensor representation (Chand & Carnegie, 2011) 77

Figure 5.6 Modified dynamic window method overview (Chand & Carnegie, 2011) 79

Figure 5.7 Optimal velocity pair selection flowchart (Chand & Carnegie, 2011) 84

Figure 5.8 Relationship between Polar and Cartesian Coordinates ... 88

Figure 5.9 Split and Merge pseudo code (Nguyen, Martinelli, Tomatis, & Siegwart, 2005) .. 89

Figure 5.10 Split and Merge algorithm .. 90

Figure 5.11 Pseudo code for RANSAC algorithm (Riisgaard & Blas, 2005) 91

Figure 5.12 Landmarks found in indoor environments .. 94

Figure 5.13 Corner landmark ... 94

Figure 5.14 Left: convex corner. Right: concave corner. ... 95

file:///F:/Report/Final%20Report.docx%23_Toc353402119
file:///F:/Report/Final%20Report.docx%23_Toc353402120
file:///F:/Report/Final%20Report.docx%23_Toc353402121
file:///F:/Report/Final%20Report.docx%23_Toc353402122

List of Figures xv

Figure 5.15 Door landmark .. 96

Figure 5.16 Position error example. Left: corner. Right: doorway. ... 97

Figure 5.17 Heading error example. Left: corner. Right: doorway. ... 98

Figure 6.1 Overview of the software architecture .. 102

Figure 6.2 Flowchart for SickLRF_Scanner service .. 104

Figure 6.3 Start method for the SickLRF_Scanner service .. 105

Figure 6.4 Received packet handler method .. 107

Figure 6.5 Returned image example from a HTTP Get request message 108

Figure 6.6 Connect method within the TCPIO Manager class .. 109

Figure 6.7 sRN LMDscandata telegram structure .. 111

Figure 6.8 Single scan request example ... 111

Figure 6.9 sEN LMDscandata telegram structure .. 112

Figure 6.10 Continuous scan request example ... 112

Figure 6.11 The main operations portset used by the SegwayBase service 116

Figure 6.12 Configure Segway method within the SegwayBase service 118

Figure 6.13 Drive handler method within SegwayBase service .. 119

Figure 6.14 SegwayNavigation timers ... 121

Figure 6.15 User interface tab 1 ... 126

Figure 6.16 User interface tab 2 ... 126

Figure 7.1 Sick LMS100 settling time ... 129

Figure 7.2 Distance measurements to black surface .. 130

Figure 7.3 Distance measurements to white surface .. 131

Figure 7.4 Distance measurements to glass surface ... 132

Figure 7.5 Ratio of actual distance to measured distance vs velocity and distance on vinyl . 134

Figure 7.6 Ratio of actual distance to measured distance vs velocity and distance on carpet 134

Figure 7.7 Ratio of actual rotation to measured rotation vs angular velocity on vinyl 136

Figure 7.8 Ratio of actual rotation to measured rotation vs angular velocity on carpet 136

Figure 7.9 Left and right wheel displacement with 0.3 m/s velocity command 139

Figure 7.10 Left and right wheel velocities with 0.3 m/s velocity command 139

Figure 7.11 Segway pitch angle with 0.3 m/s velocity command .. 139

Figure 7.12 Left and right wheel displacement with 0.5 m/s velocity command 140

Figure 7.13 Left and right wheel velocities with 0.5 m/s velocity command 140

Figure 7.14 Segway pitch angle with 0.5 m/s velocity command .. 140

Figure 7.15 Left and right wheel displacement with 0.75 m/s velocity command 142

Hybrid Control of a Segway Platform Developed in MRDS xvi

Figure 7.16 Left and right wheel velocities with 0.75 m/s velocity command 142

Figure 7.17 Segway pitch angle with 0.75 m/s velocity command .. 142

Figure 7.18 Wheel displacement over 5 m for different velocity targets 143

Figure 7.19 Wheel velocity over 5 m for different velocity targets 143

Figure 7.20 Pitch angle over 5 m for different velocity targets ... 143

Figure 7.21 Stopping distance over 5 m for different velocity targets 144

Figure 7.22 Wheel velocity and pitch angle relationship over 5 m for 0.5 m/s target velocity

 .. 145

Figure 7.23 Wheel velocity and pitch angle relationship over 5 m for 0.75 m/s target velocity

 .. 145

Figure 7.24 Conversion between linear velocity target and velocity command 147

Figure 7.25 Conversion between angular velocity target and required turn command 147

Figure 7.26 Environment map .. 148

Figure 7.27 Landmarks detected at position A. ... 149

Figure 7.28 Landmarks detected at position B. .. 150

Figure 7.29 Landmarks detected at position C. .. 151

Figure 7.30 Obstacle avoidance trajectories with different β values 152

Figure 7.31 Target heading output from the Direction Sensor over time. 153

Figure 7.32 X,Y coordinates of the Segway during 0.3 m/s 6 m trajectory test 154

Figure 7.33 Wheel velocity profiles for 0.3 m/s 6 m trajectory test 154

Figure 7.34 Internal heading during 0.3 m/s test over 6 m .. 155

Figure 7.35 X,Y coordinates of the Segway during 0.5 m/s 6 m trajectory test 156

Figure 7.36 Wheel velocity profiles for 0.5 m/s 6 m trajectory test 156

Figure 7.37 Internal heading during 0.5 m/s test over 6 m .. 157

Figure 7.38 Position errors ... 157

Introduction 1

Chapter 1 Introduction

A Segway RMP200 has been obtained by Victoria University of Wellington to be used as a

platform on which to develop an autonomous robot. The Segway RMP200 platform is a two

wheel differential drive system capable of dynamic stabilisation. Dynamic stabilisation is the

ability to balance a payload above two wheels, similar to an inverted pendulum.

The Segway platform was purchased to extend the mobility of existing at Victoria. The

current platform of the MARVIN robot is limited by its current motors and the small wheels

limit the platform’s operating environment (such as traversing the gap while entering certain

elevators within the university). These restrictions prohibit outdoor operation. The Segway

platform has greater flexibility and ability to move in an indoor and outdoor environment.

An autonomous robot can perform desired tasks in known or unknown environments without

human intervention or guidance. Autonomous robots require the ability to sense and act upon

information acquired while traversing an environment and to navigate while avoiding

obstacles. Autonomous robots employ intelligent navigation systems that are responsible for

maintaining the current position of the robot, where the robot is attempting to head and how

the robot navigates to a goal.

1.1 Objective

The objective of this project is to make a Segway platform intelligently move around an

indoor environment while avoiding obstacles. The operating environment will be mapped so

the navigation system for the Segway can assume knowledge beforehand. The current

position and destination is also known before autonomous behaviour is engaged. A map and

starting position is given as this project does not attempt to solve the Simultaneous

Localisation and Mapping (SLAM) problem. SLAM enables a robot to build a map of an

unknown area while dynamically estimating its own pose in the growing map.

This project must consider the following:

 Selection of an appropriate development environment,

Hybrid Control of a Segway Platform Developed in MRDS 2

 Interfacing with the Segway RMP and control software,

 Choice of sensors to aid localization and detection of obstacles,

 Creation of a service to interface with sensors,

 Use of existing algorithms for positioning the Segway in a known environment,

 Implementing path finding and following algorithms and,

 Design of a user interface to supervise autonomous behaviour.

The software developed has been designed to be extendible and re-usable to minimize the

time taken to apply the system to different robotic platforms.

Balancing algorithms for the Segway RMP and algorithms for robotic navigation are

established and will be utilised for this project.

1.2 Mobile Robot Platforms

Victoria University’s Mechatronic Group has several robotic platforms which have been

developed by previous research projects. Two of these robots, shown in Figure 1.1 and Figure

1.2, make up part of the three tier hierarchal urban search and rescue system being developed

at Victoria.

Figure 1.1 Grandmother robot

Introduction 3

The Grandmother robot displayed in Figure 1.1 is designed to be deployed remotely and

proceed autonomously into a disaster zone. The system is designed for the Grandmother robot

to co-ordinate several smaller Mother robots such as displayed in Figure 1.2. The Mother

robot then deploys smaller disposable Daughter robots that explore the disaster zone to find

and locate surviving humans. The Grandmother robot is currently undergoing a redesign and

the Daughter robots are currently being developed.

Figure 1.2 Mother robot

The control systems for these robots are not developed in conventional Robotic Development

Environments, rather they have developed in Matlab for the Grandmother and in embedded

software for the Mother robot. This project will help to create a standard development

environment that can be used to upgrade these current systems.

Another robotic platform is a differential drive robot called MARVIN (Mobile Autonomous

Robotic Vehicle for Indoor Navigation). MARVIN (seen in Figure 1.3) has been designed as

an autonomous mobile security system that would patrol the corridors of the university

interacting with people.

Hybrid Control of a Segway Platform Developed in MRDS 4

Figure 1.3 MARVIN robotic platform

1.3 Operating Environment

The Segway is intended to operate primarily in the corridors of the third floor of the Laby

building at Victoria University of Wellington. This environment is used for debugging and

testing the hybrid navigation system as well as the localisation algorithm. An overhead view

of the floor map is given in Figure 1.4 with images of the environment given in Figure 1.5

Figure 1.4 Overhead view of the operating environment

Introduction 5

Figure 1.5 Images of the operating environment

The navigation system can be expanded to incorporate other indoor environments assuming a

map of the environment has been made. The control system has been developed and tested

with the expectation that the system will operate in different environments such as those

shown in Figure 1.6, Figure 1.7 and Figure 1.8.

The different environments shown contain wooden and glass walls along with vinyl and

carpet flooring creating a range of surfaces for sensors and wheels to operate on and which

the navigation system is tested and accommodates for.

The localisation system is designed to perform in indoor corridor environments where

landmarks such as corners and doors are commonly found. The control system can still

operate in environments where corners and doors are sparse; however it then relies more on

odometry for localisation and can succumb to cumulative errors.

Hybrid Control of a Segway Platform Developed in MRDS 6

Figure 1.6 Alternative environment #1

Figure 1.7 Alternative environment #2

Introduction 7

Figure 1.8 Alternative environment #3

The objective is therefore to localize the Segway in a predetermined map. This map is

currently of a corridor at Victoria University but a map any environment the Segway is

intended for could be created and used. Having a map also gives the ability to leave out areas

where the Segway should not go such as stairways.

1.4 Chapter Summary

The thesis is organized as presented below:

Chapter 2 – Background. This chapter presents different types of control architectures for

robots, followed by a review of different robotic development environments available to

implement the control architecture. A review of previous robotic projects implemented using

a Segway platform is also presented.

Chapter 3 – System Description. This chapter gives a detailed description of the Segway

platform used in this project followed by a review of different sensors that could be used to

Hybrid Control of a Segway Platform Developed in MRDS 8

aid localisation and the justification of choosing the SICK LMS100 sensor. A detailed

description of the SICK LMS100 sensor is then presented.

Chapter 4 – Software Interfaces. This chapter details the features available in the Robotic

Development Environment, Microsoft Robotic Develop Studio (MRDS), used to interface

with the Segway and the SICK LMS100 laser scanner and to develop the navigation software.

Chapter 5 – Navigation Architecture. This chapter presents the architecture of the hybrid

navigation system used to control the Segway platform. The process of obtaining landmarks

from sensor data and using them for localisation with odometers is also covered.

Chapter 6 – Software Description. This chapter covers the software implemented for

interfacing with the hardware and the navigation architecture. A user interface designed for a

human to interact with the Segway is also discussed.

Chapter 7 – Results. This chapter presents the results obtained during testing of the SICK

LMS100 laser scanner and the Segway platform followed by the results of the navigation

system.

Chapter 8 – Discussion. This chapter concludes the thesis by summarizing and discussing the

work presented. Recommendations for future work are also discussed.

Background 9

Chapter 2 Background

2.1 Introduction

This chapter begins by discussing the topics related to different robotic control architectures,

namely reactive (Section 2.2), deliberative (Section 2.3) and hybrid (Section 2.4), followed by

reviewing literature on previous Segway based projects. Finally, this chapter reviews five of

the more common robotic development environments (RDEs), which aid designers to develop

the control architectures.

A robot’s control architecture provides the framework to enable functionality from different

control algorithms. There are three main categories for robotic control architectures: reactive,

deliberative and hybrid. Figure 2.1 shows the spectrum of deliberative and reactive robot

control strategies. The left side represents methods that employ deliberative reasoning and the

right represents reactive control.

Figure 2.1 Robot control system spectrum (Arkin R. C., 1998)

2.2 Reactive Control Architectures

Reactive control architectures are characterized by a close coupling between sensing and

action. Behaviour based architectures can also be classified under reactive control. Reactive

controls are less dependent on a complete knowledge of the robot’s environment. There are

less computation requirements leading to shorter delays between perception and action

Hybrid Control of a Segway Platform Developed in MRDS 10

allowing reactive control systems to be faster to respond than deliberative systems. Tasks that

require explicit world representations and high level intelligence can be difficult to implement

in reactive systems as there is no planning component. Without this planning component,

reactive architectures are unable to learn. Figure 2.2 shows the generalised makeup of a

reactive control system, noting that planning is not involved.

Figure 2.2 Reactive control (Vorlesungen, 2010)

Two of the most common reactive control architectures include the subsumption architecture

and the motor schema architecture.

2.2.1 Subsumption Architecture

The concept of the subsumption architecture is that each behaviour is implemented

completely independently from any other behaviour. Communication between behaviours is

limited to the absolute minimum. A link between a higher level behaviour and lower level

behaviour is used to subsume the lower level behaviour.

Each level of competence is implemented incrementally by adding a layer of control to the

existing set of levels so that the next highest level of overall control can be achieved. In an

implementation of layers of control systems, a lower layer remains unaware of higher level

behaviours, except for the occasional intervention by higher level behaviours to make

refinements to a lower level behaviour for better performance.

The subsumption architecture shown in Figure 2.3 is one example of an approach to robot

control (Brooks R. , 1985). Brooks’ Subsumption Architecture avoids using a world model

and instead more directly connects sensors to actuators using finite state machines to

implement the appropriate actions. Behaviour-based control generalizes the augmented finite

state machines into a network of behaviours that can have state and can be used to construct

representations. This allows behaviour-based control to support reasoning, planning, and

Background 11

learning. Figure 2.3 gives an example of a behaviour-based decomposition of a mobile robot

control system. In this subsumption architecture, each item in the centre column is a

behaviour.

 Reasons about behaviour of objects

 Plan changes to the world

 Identify objects

Sensors
Monitor changes

Actuators
Build maps

 Explore

 Wander

 Avoid objects

Figure 2.3 Subsumption architecture decomposition (Brooks R. , 1985)

Examples of different robots that have been constructed using the subsumption architecture

include: Toto, the first map constructing subsumption-based robot (Mataric, 1992), Polly, a

robotic tour guide for the MIT AI lab (Horswill, 1993) and Cog, a humanoid robot used to test

human-robot interaction (Brooks & Stein, 1989).

2.2.2 Motor Schema Architecture

The motor schema architecture provides distributed and parallel behaviours that are

coordinated to produce an intelligent robot (Arkin R. C., 1989). A schema is the basic unit of

behaviour from which complex actions can be constructed. It consists of the knowledge of

how to act or perceive as well as the process by which it is enacted. The motor schema

architecture differs from other behavioural approaches in five significant ways (Arkin R. C.,

1998):

 Behavioural responses are all represented in a single uniform format: vectors

generated using a potential fields approach.

 Coordination is achieved through cooperative means by vector addition.

Hybrid Control of a Segway Platform Developed in MRDS 12

 No predefined hierarchy exists for coordination. The structure is more of a

dynamically changing network than a layered architecture.

 Pure arbitration is not used; instead, each behaviour can contribute in varying degrees

to the robot’s overall response. The relative strengths of the behaviours determine the

robot’s overall response.

 Perceptual uncertainty can be reflected in the behaviour’s response by allowing it to

serve as an input within the behavioural computation.

Examples of different robots that have been constructed using the motor schema architecture

include: George, the first robot to exhibit behaviour-based docking (Arkin & Murphy, 1990);

IO, Callisto and Ganymede, three mobile robots for multi agent research (Balch, Boone,

Collins, Forbes, MacKenzie, & Santamaria, 1995); and a MRV-2 mobile manipulator

(Cameron, MacKenzie, Ward, Arkin, & Book, 1993).

The advantage of reactive control architectures is that the system is more efficient compared

to deliberative methods (Nehmzow, 2003). There is no functional hierarchy between layers so

each layer can work on different goals individually. This has the advantage that each layer can

directly respond to changes in the environment as there is no central planning module which

has to take account of all sub-goals. Reactive control systems are easier to design, debug and

extend as the control system is built by implementing the lowest level of competence such as

obstacle avoidance first, then testing before further levels are added. Reactive control systems

are robust as the failure of one behaviour has only a minor influence on the performance of

the whole system.

A limitation of reactive control architectures is the inability for plans to be expressed

(Nehmzow, 2003). A reactive control based robot responds directly to sensory input and has

no internal state memory. Therefore a reactive based control system is unable to follow

externally specified sequences of actions such as: go there, pickup this, come back.

2.3 Deliberative Control Architectures

A robot employing deliberative reasoning requires relatively complete knowledge about its

operating environment, commonly referred to as ‘the world,’ and uses this knowledge to

predict the outcome of its actions (Arkin R. C., 1998). This representation enables

Background 13

deliberative systems to solve certain types of problems better than reactive systems (Brooks

R. , 1985). Before the development of reactive and behaviour-based architectures, deliberative

reasoning methods were comprehensively used in robotic research (Arkin R. C., 1989).

Deliberative control architectures are also classified as hierarchical control architectures due

to their hierarchical model.

Figure 2.4 Deliberative control (Vorlesungen, 2010)

Deliberative control is a three step control method as depicted in Figure 2.4. The robot first

uses data from sensors to construct a local representation of the environment, then plans and

choses the directive which best achieves the current goal of the robot. Finally the robot acts to

achieve the planned directive.

Deliberative architectures are hierarchical in structure with a clearly identifiable subdivision

of functionality as depicted in Figure 2.5. Communication and control occurs in a predictable

and predetermined manner, flowing up and down the hierarchy. Higher levels in the hierarchy

provide sub goals for lower level nodes. The amount of planning decreases with lower nodes

in the hierarchy as lower nodes have shorter time requirements and spatial considerations.

Figure 2.5 Deliberative / Hierarchical control system (Albus, 2002)

Hybrid Control of a Segway Platform Developed in MRDS 14

Nodes depicted in Figure 2.5 are expanded in Figure 2.6. As depicted in Figure 2.6, each node

takes inputs from parent nodes and from child nodes or a sensor. A node contains four

elements that interact with each other to produce the optimal performance relative to its model

of the world. The four elements are sensory perception, value judgement, behaviour

generation and world model. Sensory perception is responsible for receiving sensations from

lower nodes as well as predicted obstacle input from the world model, then processing these

into higher abstractions that update the local state. The sensory perception updates the world

model to include seen obstacles and provides information to the value judgement element.

The value judgement element is responsible for evaluating the updated situation and

evaluating alternative plans to select the optimal solution. The behaviour generation element

is responsible for executing tasks received from superior nodes as well as planning and

issuing tasks for lower nodes. The world model node is the local state that provides a model

for the robot and is continuously updated by higher and lower nodes.

Figure 2.6 A hierarchical node for a deliberative control system (Albus, 2002)

Background 15

Deliberative control methods are well suited for structured and predictable environments

where a complete world model can be supplied (Albus, 2002). The disadvantage of systems

relying solely on deliberative control is that they are generally too slow to cope with real

world dynamic environments. World knowledge maintenance and optimal action planning

have comparatively large computational efforts which are the main causes of latency.

2.4 Hybrid Control Architectures

Both deliberative control systems and purely reactive control systems have limitations when

considered in isolation. Hybrid architectures combine the benefits of reactive control and

deliberative control (Chand, Development of an Artificial Intelligence System for the

Instruction and Control of Co-operating Mobile Robots, 2011). A high degree of flexibility is

needed for successful navigation in known and unknown environments. Hybrid control

architectures combine the use of high level planning and knowledge of deliberate control and

the robustness, flexibility and responsiveness of reactive control. The deliberative and

reactive components need to be coordinated, and different hybrid architectures decide where

and how to implement this function.

2.4.1 Autonomous Robot Architecture (AuRA)

The Autonomous Robot Architecture (AuRA) (Arkin R. C., 1987) was one of the first hybrid

architectures used for control of an autonomous robot. AuRA uses motor schemas for reactive

control and a spatial planner for deliberative control. Figure 2.7 depicts the control

components of AuRA.

Hybrid Control of a Segway Platform Developed in MRDS 16

Figure 2.7 AuRA control components (Arkin R. C., 1998)

AuRA has two major planning and execution components: a hierarchical component

consisting of a mission planner, spatial reasoner, and plan sequencer along with a reactive

component consisting of the schema controller.

The mission planner is concerned with establishing high-level goals for the robot and the

constraints within which it must operate. The spatial reasoner, or navigator system, uses

knowledge about the robot’s environment to construct a navigation path that the robot needs

to follow to execute its mission. The path sequencer translates the navigation path into a set of

motor behaviours to execute to follow the path, and then sends the collection of behaviours to

the schema controller, where deliberative control ends and reactive control takes over.

The schema controller is responsible for controlling and monitoring the behavioural processes

at run time. Each behaviour in the schema controller creates a response vector that gets

processed and transmits the result to the low-level control system for execution.

Once reactive control begins, the deliberative component is not required unless a failure is

detected in the reactive execution of the mission.

Background 17

2.4.2 ATLANTIS

A three level hybrid system, ATLANTIS (A Three Layer Architecture for Navigation

Through Intricate Situations), was designed by Gat at the Jet Propulsion Laboratory (Gat,

1991). The three levels are a deliberator that handles planning and world modelling, a

sequencer that handles initiation and termination of low level activities and watches for

reactive system failures, and a reactive controller as shown in Figure 2.8.

Figure 2.8 The ATLANTIS control architecture

The ATLANTIS architecture is both asynchronous and heterogeneous (Arkin R. C., 1998).

The architecture is not hierarchal as none of the layers are in charge of the others; activity is

spread throughout the architecture. The deliberator and sequencer acknowledge failures and

adapt the reactive controller accordingly. The architecture system has been successful on both

indoor and outdoor robotic systems including being tested on the Mars rover Robby (Gat,

1991), (1992).

2.4.3 Dynamic Window Obstacle Avoidance

The dynamic window obstacle avoidance method is a velocity based control system that

calculates the collision free velocity for a robot to successfully reach a target goal location

(Fox, Burgard, & Thrun, 1997). The kinematics of the robot are taken into account by

searching the velocity space around the current position of the robot. The velocity space is all

Hybrid Control of a Segway Platform Developed in MRDS 18

possible sets of () where is all the possible velocities and is all the possible angular

velocities for the robot during the next control cycle.

Figure 2.9 Dynamic window (Siegwart, Nourbakhsh, & Scaramuzza, 2004)

A dynamic window velocity space is visually depicted in Figure 2.9. A new motion direction

is chosen by applying an objective function to all admissible velocity pairs in the dynamic

window. The objective function prefers forward motion, maintenance of large distances to

obstacles and alignment to the goal target (Siegwart, Nourbakhsh, & Scaramuzza, 2004).

A dynamic window hybrid navigation system has been developed by Lee-Johnson (Lee-

Johnson, 2004) at the University of Waikato. Lee-Johnson’s dynamic window approach

supports differential drive robots and uses an A* path planning algorithm.

Chand further developed Lee-Johnson’s work at Victoria University by creating a hierarchical

hybrid navigation employing a dynamic window (Chand, 2011). Deliberative control was

developed using a modified version of the A* path planning algorithm and a rectangular

occupancy grid while reactive control was developed using a modified dynamic window

approach and a polar histogram technique to avoid obstacles. The hybrid control architecture

designed by Chand has been chosen as the control architecture for implementation on the

Segway platform at Victoria University. The architecture has been chosen as it has been

proven to be a robust navigation system (Chand, 2011) with example code available in

MATLAB and C#.

Background 19

2.5 Robotic Development Environments

2.5.1 Overview

Bill Gates (2007) made this statement towards standardising Robotic Development

Environments:

Robotics companies have no standard operating software that could allow popular

application programs to run in a variety of devices. The standardization of robotic

processors and other hardware is limited, and very little of the programming code used

in one machine can be applied to another. Whenever somebody wants to build a new

robot, they usually have to start from square one.

This section examines robotic control software environments. Without control software a

robot is just sensors and actuators that physically arrange to create a robot but lack the

capacity to interact with the real world in a useful manner.

The field of robotics faces many challenges. One of these challenges is the lack of standards

both in hardware and software. This led to the need for what Kramer & Scheutz (2007) call

Robotic Development Environments (RDE). Robotic development environments provide an

important role for enabling the rapid advancement of the state of robotics.

Robotic development environments are intended to make creating robots easier (Kramer &

Scheutz, 2007) (Pirjanian, 2005) by assisting in design, implementation, debugging and

execution of a robot. An important role for an RDE is to support simulation so

experimentation and debugging of new algorithms can be done without having robotic

hardware available. Also RDEs should have an abstraction mechanism to make it possible to

port software from one type of robot to another.

Comparisons of robotic development environments has been done several times. Kramer &

Scheutz (2007) investigated nine open source RDEs while a paper by Linux Device (2008)

investigates two open source and six commercial RDEs. Michal (2010) does an in depth

comparison between Player/Stage/Gazebo and Microsoft Robotics Developer Studio

(MRDS). Elkady & Sobh (2012) compares 17 different ‘middleware’ frameworks where

Hybrid Control of a Segway Platform Developed in MRDS 20

middleware was defined as “a class of software technologies designed to help manage the

complexity and heterogeneity inherent in distributed systems.”

Comparisons of RDE’s is outside the scope of this project. Rather information from the

comparisons mentioned above is summarised below and used to choose a development

environment for the project.

2.5.2 Player/Stage

The first RDE summarised is Player/Stage. Player/Stage is an open source environment

developed at the University of Southern California (Gerkey, Vaughan, & Howard, 2003). The

Player component of Player/Stage is a robotic device hosting a server component that runs on

the robot and communicates with the client application via TCP sockets. The Stage

component is a 2D robot simulator that was designed to be able to simulate hundreds of

robots simultaneously. A 3D simulator was later added called Gazebo. Player provides client

libraries that support several programming languages including C, C++ and Python. The

Player server communicates with the robot hardware itself using device specific drivers.

The Player client libraries provide generic interfaces for various robotic components that can

be used to build robots. These components include features such as obstacle avoidance, vector

field histogram goal-seeking, a wave front propagation path planner and adaptive Monte-

Carlo localization. Player/Stage is freely available for download and is primarily used on

Linux based systems. The client libraries were also specifically designed to minimize client

program design constraints so that Player clients can be easily integrated with outside

software .

Player refers specifically to the device and server interface. Devices are independent of one

another and register with a Player server to become accessible to clients. Each client uses a

separate socket connection to a server for data transfer, allowing concurrent operation of

devices and ability to service multiple requests. Minimal constraints are placed on devices

leaving the client the freedom of designing and implementing a control architecture.

Background 21

Figure 2.10 Screenshot of Player/Stage environment (Gerkey, Vaughan, & Howard, 2003)

A screenshot of the Player/Stage environment can be seen in Figure 2.10. The figure shows a

Pioneer2AT robot in a simulated environment and the feedback from the attached webcam

and SICKLMS200 laser scanner.

Unlike other RDEs summarised, Player/Stage is not regularly maintained (last updated 26

November 2010) and hence does not support most of the robot hardware available today

(Player, 2010).

2.5.3 Robot Operating System (ROS)

Robot Operating System (ROS) (Quigley, et al., 2009) is an open source robot operating

system produced and maintained by Willow Garage. ROS is not an operating system in the

sense of process management and scheduling; rather, it provides a structured communications

layer above the host operating system of a heterogeneous computer cluster. ROS provides

standard operating system services such as hardware abstraction, low-level device control,

implementation of commonly-used functionality, message-passing between processes and

package management.

Hybrid Control of a Segway Platform Developed in MRDS 22

The primary goal of the ROS project is reusability of code in robotics research and

development, meaning that code written for one robot can easily be transferred and used by

another robotic platform with similar capabilities.

ROS applications consist of a peer-to-peer network of processes, potentially on a number of

different hosts using a loosely coupled communication infrastructure. An example of this

network configuration can be seen in Figure 2.11.

Figure 2.11 A typical ROS network configuration (Quigley, et al., 2009)

There are four main concepts for creating a ROS application: nodes, messages, topics and

services (Quigley, et al., 2009).

A node is a process that preforms computation. A robotic system designed and implemented

with ROS typically comprises multiple nodes. Nodes enable software developers to

modularize ROS applications for re-use of code.

Nodes use messages to communicate with each other. These messages are strictly typed data

structures defined within ROS.

A node sends a message by publishing it to a given topic which is simply a string such as

“odometry” or “map”. A node that is interested in a certain kind of data will subscribe to the

appropriate topic. An example of this is a navigation node subscribing to the “odometry”

topic for updates about the current encoder counts.

A service is defined by a string name and a pair of strictly typed messages, one for request

and one for response messages. A service is analogous to web services, which are defined by

Background 23

Uniform Resource Identifiers (URIs). Only one node can advertise a service of any particular

name, just as there can only be one web service at any given URI.

 “Player is a great fit for simple, non-articulated mobile platforms. It was designed to provide

easy access to sensors and motors on laser-equipped Pioneers. ROS, on the other hand, is

designed around complex mobile manipulation platforms, with actuated sensing”. This

increased functionality comes at price, “I think that it's fair to say that ROS is more powerful

and flexible than Player, but, as usual, greater power and flexibility come at the cost of greater

complexity” (Garage, 2012).

2.5.4 Microsoft Robotics Developer Studio (MRDS)

Microsoft Robotics Developer Studio (MRDS) was released by Microsoft in December 2006.

The fundamental components of MRDS are the Concurrency and Coordination Runtime

(CCR) library that allows services to be coupled together and Decentralized Software

Services (DSS) which allows services to run on networked machines. CCR provides an

abstraction that allows programmers to manage concurrent state updates and message

processing. CCR also allows for coordination between multiple sensors and robot actuators.

MRDS defines generic contracts for robotic devices that provide an abstraction between

clients and robotic hardware. MRDS client programs can also be executed in the 3D visual

simulator based on the DirectX and NVidia physics engine. MRDS also provides a Visual

Programming Language (VPL) that is targeted towards prototyping and novice users. VPL is

integrated with Visual Studio to give the developer the ability to create a program through

drag and drop blocks (activities or services) onto the design surface.

MRDS is based on the .Net framework and is primarily designed for usage with C#. Being

based on the .Net framework, MRDS is only supported in the Windows operating system

environment. MRDS recommends using Visual Studio as the programming environment to

implement MRDS projects. MRDS is freely available for education and hobby purposes but is

not open source.

Hybrid Control of a Segway Platform Developed in MRDS 24

2.5.5 Open Robot Control Software (OROCOS)

OROCOS (Soetens, 2010) works on a free software framework to develop a general-purpose,

modular framework for advanced robot motion control (Bruyninckx, 2001). The OROCOS

system contains a real-time toolkit that provides the components to be able to run on a real-

time operating system.

Figure 2.12 OROCOS components for controlling robots (Soetens, 2010)

OROCOS consists of the following libraries seen in Figure 2.12:

 The OROCOS Components Library (OCL) provides some ready to use control

components such as the real-time toolkit. OCL also emphasises on-line interaction and

component based applications.

 The OROCOS Kinematics and Dynamics Library (KDL) provides real time

calculation of kinematic chains.

 The OROCOS Bayesian Filtering Library (BFL) provides an application independent

framework for inference in Dynamic Bayesian Networks, such as the Kalman filter

and particle filters.

The OROCOS robotic development environment does not contain a simulation environment.

OROCOS uses standards and technologies based on the Common Object Request Broker

architecture (CORBA). CORBA allows inter-process and cross-platform interpretability for

robot control (Henning, 2006).

Background 25

A weakness in the OROCOS architecture is the lack of support for common hardware and the

level of complexity in setting up the development environment.

2.5.6 Selection

As pointed out in previously completed comparisons (Michal, 2010), (Kramer & Scheutz,

2007) and (Elkady & Sobh, 2012), the real competition for a standard RDE is between MRDS

and ROS. Ben Axelrod (2011) compared both MRDS and ROS and found few fundamental

differences: “ROS only runs on Unix based platforms, while MRDS only runs on Windows.

However, once you get past these differences, they are actually quite similar”.

Elkady & Sobh (2012) tabulated attributes of different RDE’s and found the only differences

was that ROS was open source, while MRDS had built in security.

A previous project at Victoria University (Talwatta, 2012) was implemented using MRDS to

create a standard for robotic development at Victoria. As there were few visible differences

between the two RDEs, MRDS was chosen as the robotic development environment for this

project to keep in line with the standard for robotic development at Victoria.

A more in depth review of how MRDS works and its available features is given in Chapter 4.

2.1 Previous Segway Platform Projects

Mobile Segway platforms have been used widely in university research projects and

commercial products around the world.

The first Segway RMP platform was used to mobilise a humanoid robot called Robonaut seen

in Figure 2.13 (Diftler, Ambrose, Tyree, & Goza, 2004). The Robonaut system was created at

the National Aeronautics and Space Administration (NASA) in association with the Defence

Advanced Research Projects Agency (DARPA) to assist human co-workers at the Johnson

Space Centre with tool handling tasks. The system uses stereo vision from enabled by

cameras mounted on the torso of the robot, to locate human team mates and tools, and a

navigation system that uses a laser range finder alongside the vision data to follow humans

while avoiding obstacles. The Robonaut platform employed a hybrid navigation system

Hybrid Control of a Segway Platform Developed in MRDS 26

capable of obstacle avoidance, mapping and human tracking to create a robust system capable

of assisting a human by acquiring a tool from a remote location and following the human

through an indoor environment with the tool for future work.

Figure 2.13 Robonaut, human assistance robot (Diftler, Ambrose, Tyree, & Goza, 2004)

Another example of a successful mobile platform using a Segway RMP is the CARDEA robot

developed at MIT (seen in Figure 2.14) (Brooks, et al., 2004). This platform consists of a

Segway RMP mobile base and a custom-made force controlled manipular. The mobile

platform designed is capable of navigating halls, identifying and opening doors. The platform

has a laptop running Linux which handles all vision processing. The platform has a sensor

array made up of ten sonars, two whiskers, two cameras and a SICK LMS200 laser range

finder. CARDEA uses a behavioural reactive control architecture written in Creal and runs on

a custom embedded architecture called Stack.

Background 27

Figure 2.14 CARDEA robot system (Brooks, et al., 2004)

A Segway RMP platform was used at the Georgia Institute of Technology to mobilise a

lightweight KUKA KR5 manipulator as shown in Figure 2.15 (Anderson, et al., 2008). The

control algorithm used a behaviour based reactive control architecture to locate and deliver a

cup of coffee. It utilizes Player/Stage as the RDE to interface with the platform hardware and

a SICK LMS200 laser scanner. The system uses two laptops running Ubuntu Linux, one to

control the Segway platform and the other to control the manipulator. The localisation for the

system used a Markov localization method. The CARDEA robot can navigate the simple

environment, a table and a human in a chair, and successfully deliver coffee from the table to

a human.

Hybrid Control of a Segway Platform Developed in MRDS 28

Figure 2.15 Segway project at the Georgia Institute of Technology (Mc Guire, Henriques,

Nguyen, Jensen, Vinther, & Jespersen, 2009)

The Aalborg University Department of Electronic Systems acquired a Segway RMP200

platform for the purpose of making an autonomous robot shown in Figure 2.16 (Mc Guire,

Henriques, Nguyen, Jensen, Vinther, & Jespersen, 2009). The project focused on trajectory

planning and control for the Segway platform in an indoor environment. A SICK LMS200

laser range finder was added below the mounting plate to detect obstacles and humans, and

allow localization of the robot. Localization is done with a known map using an Adaptive

Monte Carlo Localization algorithm. A wavefront algorithm is used for path planning and the

Nearness Diagram Plus algorithm for motion planning and obstacle avoidance. A person

detector algorithm is implemented to track humans within the operating area. It uses a hybrid

control architecture implemented in the Player/Stage RDE. The Segway was capable of

navigating indoor human environments but had performance issues when detecting obstacles

and humans.

Background 29

Figure 2.16 Segway Project at the Aalborg University Department of Electronic Systems

This project differs to the above projects by employing a hierarchical hybrid navigation

system using an A* path planner algorithm along with a dynamic window obstacle avoidance

approach. The navigation system is built in the Microsoft Robotics Developer Studio RDE.

This project is similar to all but the Robonaut project in that the expected operating

environment is an indoor controlled environment. The Segway platform does not have on

board cameras like on Robonaut but employs a SICK LMS100 laser range finder, like the

Aalborg University Segway platform, which has advantages for indoor navigation over the

SICKLMS200 laser range finder used in the CARDEA and Georgia Institute’s robots. The

advantages are discussed in Section 3.2.The mounting position of the laser scanner on the

Aalborg Segway unit is less than ideal as it limits the 270° angular range to around 170°. The

SICK LMS100 range finder is mounted on top of the Segway for this project to allow full

range use. All projects employ an autonomous navigation system with Robonaut, Georgia

Institute and Aalborg University Segway projects using different hybrid navigation systems.

This project employs a hierarchical hybrid navigation system using an A* path planner

algorithm along with a dynamic window obstacle avoidance approach. The Georgia Institute

and Aalborg University Segway projects used the Player/Stage RDE whereas the navigation

Hybrid Control of a Segway Platform Developed in MRDS 30

system for this project is built in the Microsoft Robotics Developer Studio RDE. A

comparison between these RDE’s and other common RDE’s has been presented in Section

2.5.

System Description 31

Chapter 3 System Description

This chapter describes the system used for this project. The first section is a description of the

Segway RMP200, its operating principles and main characteristics. The second section is a

description of the SICK LMS100 Laser Range Finder (LRF) used as the primary distance

sensor for this project. The system can be seen in Figure 3.1.

Figure 3.1 Segway System. Top left: Back view. Top right: Side view. Bottom: Front view.

Hybrid Control of a Segway Platform Developed in MRDS 32

3.1 Segway RMP200

3.1.1 Introduction

The Segway Personal Transporter (PT) was invented by Dean Kamen and first came to the

consumer market in 2001 (Segway Inc., 2012). The Segway unit works in a similar manner to

how a person walks, where the centre of gravity of the body is leaned forward and to prevent

falling over, a leg is moved to stabilize the body. The Segway has two wheels instead of legs

and rotates the wheels at a speed so as to prevent the operator from falling when they lean

forwards or backwards. This makes the Segway TP move, and Segway Inc. calls this dynamic

stabilization.

The Defence Advanced Reasearch Projects Agency (DARPA) along with the National

Aeronautics and Space Administration (NASA) commissioned Segway Inc. to develop a

computer controlled version of its personal mobility system capable of balancing large

payloads (Diftler, Ambrose, Tyree, & Goza, 2004). In 2003 This became the Segway Robotic

Mobility Platform (RMP). Segway Inc. created several robotic platforms including the

Segway RMP200 (Segway Inc, 2012), which has been acquired by Victoria University of

Wellington for research purposes.

The Segway is designed to be a stabilised differential drive platform that can be merged into a

system to control the platform (Segway Inc, 2009). The controlling system generates velocity

and steering commands to move the platform. Control commands can be sent to the RMP

platform by using either the CAN bus or USB. This project controls the Segway platform

using a USB interface from a control laptop.

The Segway RMP200 platform consists of a base plate, where two battery packs, engines and

User Interface control box are located. The payload plate located at the top of the Segway is

supported by two side panels. The Segway RMP model is depicted in Figure 3.2.

System Description 33

Figure 3.2 Segway RMP200

The Segway RMP200 has two different modes of operation, tractor mode and balance mode.

In tractor mode the Segway platform becomes a non-stabilized differential drive system. The

wheel velocities may be commanded as either a target linear velocity or target angular

velocity. When tractor mode is active, another additional ground contact must be provided to

prevent the platform from falling. In balance mode the Segway platform becomes a

dynamically stabilized platform. Balance mode must not be used with a third point of ground

contact as this interferes with balancing and causes system instability.

In this project only the balance mode will be used but both features will be available for

selection in software, allowing for modular reuse for future projects.

Like most mobile robots, the Segway RMP is a nonholonomic system: “A system that is

subject to constraints in velocity but not position” (Choset, et al., 2005). This means that

although the Segway can reach any location, there is no singular motion command that allows

it to reach all locations. An example of this is that the Segway RMP cannot move sideways

without turning first.

Hybrid Control of a Segway Platform Developed in MRDS 34

The Segway is only suited for relatively flat terrain and has a limited range of around 19 km,

making it best suited for indoor tasks. For this project the Segway platform is only expected

to work in indoor environments.

The Segway has three batteries, two in the base for the Segway’s control system and motors

and one under the top plate for attached accessories (control laptop and laser scanner).

Segway Inc. recommends the tyres be inflated to between 4 and 8 psi (27.6 kPA to 55.2 kPA).

At the beginning of this project the tyres were checked and inflated to 6 psi (41.4 kPA),

within the recommended pressures.

The Segway uses proprietary technology for which there is little information about the

hardware within the base. Early within the project the Segway platform became inoperable

and due to little information available about the hardware, debugging the issue took longer

than expected. The Segway platform was required to be sent back to Segway Inc. in the USA

for repair.

3.1.2 Segway Sensors

The Segway platform contains sensors that monitor the movement of the platform, enabling

full control over its operation. The sensors that balance the platform are as follows: (Segway

Inc, 2009)

 Five gyroscopic sensors measuring:

o Pitch angle and pitch rate,

o Yaw angle and yaw rate and,

o Roll angle and roll rate.

 Two accelerometers,

 Additional tilt sensors.

System Description 35

With these sensors, the Segway interface also provides output information of:

 Left/right wheel speed,

 Left/right wheel shaft torque,

 Left/right wheel displacement,

 Fore/aft displacement,

 Yaw displacement and,

 Battery status.

3.1.3 RMP Interface Theory of Operation

The Segway RMP200 platform has a control architecture that consists of three distinct

processors. Two processors in the base (CU_A and CU_B) are used to perform the closed

loop control of the motors. These two processors perform all sensing, control and fault

detection functions so that the RMP may continue to operate in the case of a fault. The third

processor is a User Interface (UI) processor that manages communications to a host processor

as well as providing E-stop, watchdog and programming functions for the two powerbase

processors (Segway Inc., 2009).

The main processors in the powerbase of the RMP communicate with the UI processor via

two CAN serial busses, CAN_A and CAN_B. The UI communicates over USB to a host

processor. The control architecture can visually be seen in Figure 3.3.

The power base processors are configured with CU_A as a master and CU_B as a slave.

During normal operation, CU_A computes the appropriate control command and passes the

commands to CU_B on a Serial Communication Interface (SCI) communications channel

inside the powerbase (Segway Inc., 2009).

Hybrid Control of a Segway Platform Developed in MRDS 36

Figure 3.3 Segway RMP control architecture (Segway Inc., 2009)

Messages that control the movement of the Segway RMP may be sent by the host processor

as frequently as every 10 milliseconds (100 Hz). Control messages must be sent by the host

processor at a frequency no slower than 2.5 Hz or else the CU_A processor will slew the

velocity command to zero. This stops the Segway in the event of a failure of the control

system.

The Segway’s control system starts when the green power switch as depicted in the bottom

left of Figure 3.4 on the UI is pressed. The switch illuminates to indicate the UI box is

powered. When the UI box is powered it is able to send and receive USB messages as well as

CAN messages.

The motors are enabled when the yellow start switch as depicted in the top left of Figure 3.4

is pressed. When pressed, the WAKE line is driven high which starts the power supplies on

the Control Units (CU) processor boards. This starts the wake-up procedures for CU A and

CU B. When ready the CU A and CU B processors will send a CAN message to the UI to set

the WAKE line low, indicating that CU A and CU B have assumed control of their own

power supply. The blue tractor mode switch as depicted in the top right of Figure 3.4 will

System Description 37

illuminate to indicate that the Segway has successfully entered tractor mode and is ready to

accept velocity commands.

For the Segway to enter balance mode, it needs to be brought into an upright position to allow

engaging of the balance mode controller. Balance mode cannot be entered unless commanded

by the control laptop or the blue balance mode switch is pressed as depicted in the bottom

right of Figure 3.4 on the UI box. Once the balance mode button on the UI is lit, the Segway

is ready to accept velocity commands.

Figure 3.4 Segway User Interface buttons

If the Segway is displaced from its desired position, it will lean against the displacement

force. The harder the displacement force, the more the Segway will lean. This effect is

depicted in Figure 3.5.

Figure 3.5 External force displacement (Segway Inc, 2009)

Hybrid Control of a Segway Platform Developed in MRDS 38

When the Segway is required to roll over an obstacle, the centre of gravity of the system must

tilt forward over the contact point with the obstacle as depicted in Figure 3.6. Once the centre

of gravity is over the contact point the Segway will roll over the obstacle provided the

obstacle is small. Larger obstacles that require the Segway to tilt more than 45 degrees will

cause an error within the Segway, which will cut motor power and fall over. Error conditions

are explained more in Section 3.1.7.

Figure 3.6 Segway traversing small obstacles (Segway Inc, 2009)

The Segway has an emergency stop switch on the UI box that causes the Segway to turn off

when opened. The switch is attached to a tether as seen in Figure 3.7, that when pulled will

activate the stop switch. The tether was held by the operator during initial testing to stop the

Segway during an emergency.

Figure 3.7 Emergency stop switch and tether (Segway Inc, 2009)

System Description 39

3.1.4 USB Interface

The software included with the RMP installs the USB driver required to communicate with

the Segway over serial USB. USB communication with the UI is carried out using a

FTD245BM chip (Oceanchip, 2009). The installer RMPInstall.msi installs an appropriate

USB driver on the controlling laptop to enable communication with the Segway platform. The

RMP transmits and receives all USB communications in 18 byte packets as shown in Table

3.1.

The RMP operates internally on CAN messages. USB communications between the host

computer and the RMP are essentially CAN messages with the addition of a USB header and

checksum. The UI is responsible for extracting the CAN message and relaying it to CU_A.

The conversion between USB and CAN is shown in Table 3.1.

Table 3.1 USB to CAN conversion

Byte Value Contents

0 0xF0 USB Message Header (Start Byte)

1

0x55

USB Command Identifier

CAN Message

2

0x010x05

Command Type

CANA_DEV

USB CMD_RESET

3 0x00 Ignore on read, send as 0.

4 0x00 Ignore on read, send as 0.

5 0x00 Ignore on read, send as 0.

6 CAN Message Header (high byte)

7 CAN Message Header (low byte)

8 0x00 Ignore on read, send as 0.

9 CAN Message Byte 1

10 CAN Message Byte 2

11 CAN Message Byte 3

12 CAN Message Byte 4

13 CAN Message Byte 5

14 CAN Message Byte 6

15 CAN Message Byte 7

16 CAN Message Byte 8

17 USB Message Checksum

Hybrid Control of a Segway Platform Developed in MRDS 40

Byte 0 is the message header which always has the value 0xF0 indicating the start of a

message. Byte 1 is the command identifier with the value of 0x55 indicating the following is a

CAN message. Byte 2 is the command type where a value of 0x01 Instructs the UI to send the

message contents on CAN channel A to the CU_A controller and a value of 0x05 instructs the

UI processor to do a software reset. There may be more Command Types but no information

is supplied on different valid commands. Bytes 3-5 are set to 0x00 when sending USB

messages and ignored when received. Bytes 6 and 7 are the CAN Message Header high and

low bytes. Table 3.3 contains the commands and valid parameters for configuring the

Segway.

For command messages sent from the Segway, header values can be found in Table 3.5. Byte

8 is set to 0x00 when sending USB messages and ignored when received. Bytes 9-16 contain

the CAN message data. For messages sent to the Segway, typical values can be found in

Table 3.3.

For messages received from the Segway, typical values can be found using Table 3.4 and

Table 3.5. Byte 17 is the USB message checksum. The code snippet in Figure 3.8 shows how

the USB checksum is calculated.

Figure 3.8 USB message checksum calculation

unsigned short checksum;

unsigned short checksum_hi;

checksum = 0;

for(int i = 0; i < 17; i++)

{

checksum += (short)sbytes[i];

}

checksum_hi = (unsigned short)(checksum >> 8);

checksum &= 0xff;

checksum += checksum_hi;

checksum_hi = (unsigned short)(checksum >> 8);

checksum &= 0xff;

checksum += checksum_hi;

checksum = (~checksum + 1) & 0xff;

sbytes[17] = (unsigned char)checksum;

System Description 41

3.1.5 RMP Control Message

An RMP Control Message is used to command the RMP to move or change the platform’s

configuration and is 4the main means of controlling the RMP.

Table 3.2 contains the control message format, with a CAN header value of 0x0413. Bytes 1-

2 contain the velocity command, with a valid range of [-1176, 1176] that maps to a velocity

range of [-8 mph, 8 mph] ([-12.9 km/h, 12.9 km/h]). Bytes 3-4 contain the turning command

with a valid range of [-1024 to 1024] but does not specify the angular velocity values the

range corresponds with. Bytes 5-6 contain the configuration command which allows specific

functions to be performed. If this command is set to zero, the configuration command and

parameter, bytes 7-8, are both ignored. Table 3.3 contains the commands and valid parameters

for configuring the Segway.

Table 3.2 RMP control message format

Hybrid Control of a Segway Platform Developed in MRDS 42

Table 3.3 Configuration command and configuration parameter values

Scale factors are applied to the maximum velocity, maximum acceleration, maximum turn

rate and to the current limit. The scale factors limit the associated value to a fraction of its full

scale value. Each of these scale factors range from 0 to 1.0. Scale factors are changed by

sending a control message (Table 3.2) with the associated command value (Table 3.2). Values

for scale factors used in this project are discussed further in Section 6.4.2.

The acceleration scale factor allows for aggressive stopping and starting. Smaller acceleration

scale factors increase the time the system takes to start moving. Larger acceleration scale

factors allow for quick movement of the Segway, but could cause issues with larger payloads.

The velocity scale factor allows the controlling computer to limit the maximum speed the

Segway can travel at. The scaling factor scales the [-8 mph, 8 mph] ([-12.9 km/h, 12.9 km/h])

maximum velocity linearly between 0 – 1, with a value of 0.5 limiting the maximum velocity

to between [-4 mph, 4 mph] ([-6.4 km/h, 6.4 km/h]).

The turning scale factor is used to limit the maximum turning acceleration of the Segway

platform. This allows the turning acceleration to be scaled down with tall payloads to prevent

the Segway from tipping during turning manoeuvres.

The current limit scale factor limits the maximum motor current limit, thus limiting the

amount of torque the motors can provide. Each wheel is capable of producing 122 Newton-

metres of torque. Setting the current limit scale factor to 1 results in full torque capacity while

System Description 43

setting it to 0 results in no available torque. Dynamic balancing of the Segway requires large

transient torque amounts to accelerate and decelerate. In environments with lower traction

between the Segway's wheels and the ground, reduction of the maximum torque is required to

prevent wheel slippage.

The Segway has three different gain schedules depending on the payload configuration. The

different payload configurations are depicted in Figure 3.9. Selecting the correct gain

schedule for different payloads allows the Segway to improve the handling and dynamics of

the internal control loop, giving better damped responses to velocity and turning commands.

Gain schedule 0 is optimised for light payloads of around 50 lb (22.7 kg) on the top plate,

gain schedule 1 is optimised for tall payloads where a 25 lb (11.3 kg) payload is located at the

top plate and another 25 lb payload is located 75 cm above the top plate, and gain schedule 2

is optimised for heavy payloads of around 100 lb (45.4 kg) on the top plate.

Figure 3.9 Payload configurations for the Segway (Segway Inc, 2009)

The set operational mode parameter enables the control computer software to change between

tractor mode and balance mode as well as allowing the ability to turn off the Segway. Once

the Segway is turned off, it needs to be manually turned on again.

The reset integrators parameter allows the encoder values to be reset. Each encoder can be

individually reset while a bitwise OR function between different values in Table 3.2 can reset

multiple encoders in a single command message.

Hybrid Control of a Segway Platform Developed in MRDS 44

3.1.6 Monitoring Messages

Monitoring messages are sent from Command Unit Processor A to the controlling computer

at 100 Hz. These messages are important as they provide state estimates on the Segway to the

host processor, supplying information such as current wheel speeds and encoder values. Each

message contains four data slots as shown in Table 3.4. Each data slot is 16 bits long (two

bytes).

Table 3.4 Monitoring messages packet format

Seven different monitoring messages are sent from the Segway to the control computer and

can be seen in Table 3.5.

 Message 1 contains the pitch angle, pitch rate, roll angle and roll rate.

 Message 2 contains the left and right wheel velocities, yaw rate and servo frame

counter. The servo frame counter increments from frame to frame. A frame is the set

of 8 messages the Segway sends to the control computer.

 Message 3 contains the left and right encoder values. Both are 32 bits long (four bytes)

so require two data slots per message.

 Message 4 contains the fore/aft and yaw encoder values. Both are 32 bits long so

require two data slots per message.

 Message 5 contains the left and right motor torque values.

System Description 45

 Message 6 contains the current operation mode, current controller gain schedule, the

UI battery voltage level and the powerbase battery voltage level.

 Message 7 echoes the received velocity and turn commands back to the control

computer and is useful for debugging.

Table 3.5 Monitoring messages and conversions

The recommended data conversion factors are also shown in Table 3.5. The pitch angle, pitch

rate, roll angle, roll rate and yaw rate are estimates that come from a pitch state estimator

within the Segway’s control processor. It synthesizes low frequency and high frequency

sensors to arrive at estimates of angles and angular rates. Segway advise that high

acceleration or rough terrain reduces the accuracy of the numbers. The conversion factors for

Hybrid Control of a Segway Platform Developed in MRDS 46

all encoders are based on the nominal rolling diameter of the wheels of 48 cm. As these are

only approximates, more accurate conversion factors are required and shown in Section 7.2.1.

3.1.7 Error Conditions

The Segway RMP can encounter certain environmental conditions that prevent the platform

from maintaining self-balance. When a fault or malfunction is sensed by the power base the

system slews the velocity command to zero but keeps the motors enabled to allow system

stabilisation. When a fault prevents the system from maintaining stabilisation the system will

disable power to the motors, causing the Segway to fall or roll freely. When the Segway

encounters these problems, the Segway disables power to the motors, thus preventing possible

damage to the surrounding environment.

If the pitch angle of the Segway exceeds 45 degrees forwards or backwards, an error has

occurred and the Segway will disable power. This is because the Segway controller has to

travel at an excessive speed to restore balance once the Segway has tilted past this angle. An

excessive roll angel of 60 degrees will also cause an error and cause the Segway to disable

power.

When in balance mode, the Segway balance controller is designed to hold a stationary

position based on several controller error terms, such as wheel displacement from

commanded location. If the Segway moves more than 12 feet (3.66 m) from the original

resting location the Segway will disable balance mode and switch to tractor mode. This error

condition can occur if the wheels are slipping, an external disturbance force pushes the

Segway away from equilibrium position or if a wheel is lifted off the ground.

The Segway is designed with a redundant propulsion system (Segway Inc, 2009). The system

maintains electrical isolation between the frame and control electronics in order to detect the

event of electrical component failure. If an electrical connection is made between two

systems, the Segway performs a safety shutdown. Segway advise that the most common cause

of this fault is connecting the CAN channel ground to the frame of the machine and

recommend an optically isolated cable be used for any CAN based communication. This

project does not require this due to using the USB communications architecture.

System Description 47

3.2 Range finders

Three laser range finders have been identified as being commonly used in robotic

applications. They are the SICK LMS100, SICK LMS200 and the Hokuyo URG. A

description of each sensor is given in the following sections along with the sensor chosen for

this project.

3.2.1 SICK LMS100

The LMS-100 scanner has a maximum measurement range of 20 metres with a programmable

field of view (FOV) up to 270°. The 270° FOV can be measured with an angular resolution of

either 0.25° or 0.5° at a scan frequency of 25 or 50 Hz. The scanner weights 1.1 kg and

consumes 350 mA at 24 V supply voltage. The SICK LMS100 dimensions are 105 x 102 x

152 mm. RS-232, CAN and Ethernet data interfaces are available. The scanner is capable of

TCP/IP communication through its Ethernet port, thus the available bandwidth is sufficient to

transfer 270° FOV measurements with an angular resolution of 0.5° at 50 Hz.

Figure 3.10 The SICK LMS100 laser range finder

3.2.2 SICK LMS200

The SICK LMS200 (Figure 3.11) has been frequently used in robotic applications for obstacle

recognition and avoidance as discussed in a review by Mc Guire, Henriques, Nguyen, Jensen,

Hybrid Control of a Segway Platform Developed in MRDS 48

Vinther & Jepersen (2009). The LMS200 has a maximum measurement range of 80 m, far

greater than the 20 m maximum of the LMS100 scanner. It also has a maximum 180° field of

view, 90° less than the LMS100 counterpart. The angular resolution of the scanner is 0.25°,

0.5° and 1° with an 18.9 Hz, 38.5 Hz and 77 Hz scan rate respectively. The scan rate at 0.25°

and 0.5° is far slower than the 50 Hz that the SICK LMS100 is capable of. The scanner

weighs 4.5 kg, over four times heavier than the LMS100, and consumes 830 mA at a 24 V

supply voltage, more than twice the 350 mA at 24 V for the LMS100. The LMS200

communicates with RS-232 with a maximum communication rate of 500 Kbaud/s. Cang Ye

and J. Borenstein (2002) worked on a detailed characterization on the LMS-200 laser scanner.

Pre-made services have been developed in MRDS (Johns & Taylor, 2008) for the SICK

LMS200.

Figure 3.11 SICK LMS 200 laser range finder (SICK Inc., 2003)

3.2.3 Hokuyo URG

The Hokuyo URG (Figure 3.12) is one of the smallest laser range finders available measuring

50 x 50 x 70 mm. The Hokuyo scanner has a maximum measurement range of 4 m, much less

than the 20 m for the LMS100, with a 240° FOV, slightly less than the 270° FOV for the

LMS100. The angular resolution is 0.36°, comparable to the 0.25° and 0.5° options available

System Description 49

from the LMS100. The scan rate is 10 Hz which is much slower when compared to other

measurement systems. It has RS-232 and USB data interface for communication up to 12

Mbit/s.

Figure 3.12 Hokuyo URG-04LX laser range finder

3.2.4 Chosen Sensor

The SICK LMS100 was chosen for this project. It out-performs the LMS200 in most aspects,

larger FOV, faster scan rates, lighter and less power requirement, except the maximum

measurement range of 80 m compared to 20 m. The increase in maximum measurement range

is not required for this project as a maximum of 20 m is adequate to localise and detect

obstacles within an indoor environment.

The Hokuyo laser range finder has only a slightly worse FOV when compared to the LMS100

as well as a slower scanning rate. With a small form factor, low weight and low power

requirements the Hokuyo could be used as an alternative range finder device, although the

4 m measurement range could make localisation harder as less features would be extracted

each scan.

Hybrid Control of a Segway Platform Developed in MRDS 50

3.3 SICK LMS100 Laser Scanner

3.3.1 Overview

The SICK LMS100 consists of a laser reflected by a rotating mirror. The operation of the

laser is based on an infra-red pulsed laser diode, and the internal firmware includes the ability

to report the intensity of reflection (SICK Inc., 2012). The device can be seen in Figure

3.10.The LMS measures its surrounding in two-dimensional polar coordinates as shown in

Figure 3.13. The distance is measured by the time between emitting and receiving a laser

pulse from the laser scanner, known as pulse propagation time measurement and can be seen

in Figure 3.14. If a laser beam is incident on an object, the position is determined in the form

of distance and direction.

Figure 3.13 Measuring principle of the LMS

The SICK LMS 100 purchased by Victoria University does not have a pre-made service in

MRDS and one needed to be developed. MRDS services are explained in greater detail in

Chapter 4.

The SICK LMS 100 rangefinder is the primary sensor used in this project for localisation and

obstacle avoidance for the Segway platform. It is connected to the controlling laptop using the

10/100 Mbit Ethernet (TCP/IP) interface.

System Description 51

Figure 3.14 Principle of operation for pulse propagation time measurement

3.3.2 Data Communication using Telegrams

The SICK LMS100 uses “telegrams” to communicate between the unit and a host

environment. Telegrams are the packet structure, or framework, used for communication

between devices connected to the scanner. This project only utilises telegrams relating to:

 starting the laser scanner running,

 requesting single or continuous laser measurements, and

 stopping the laser scanner running.

Telegrams relating to configuring the SICK LMS100 (such as changing the scanning

resolution) are not implemented as the laser scanner can be configured using the SOPAS

Engineering Tool (Informer Technologies Inc., 2012) in an easier manner.

The LMS sends telegrams over the interfaces described above to communicate with the

connected host. The following functions can be run using telegrams (SICK Inc., 2012):

1) requests for measured values by the host and subsequent output of the measured

values by the LMS,

2) parameter setting by the host for the configuration of the LMS, and

3) parameters and status log querying by the host.

Hybrid Control of a Segway Platform Developed in MRDS 52

The IP address of the SICK LMS100 was changed to 130.195.162.58 using SOPAS so that it

could network with the University computers on the 130.195.162.xxx domain.

There are two encoding options for telegrams that the laser scanner can interpret: ASCII and

binary. For this project, all telegrams sent to the laser scanner (and subsequently received) use

ASCII encoding. This decision was made because it is visually simpler for a human to see

ASCII encoding rather than binary encoding (Figure 3.15) and that the main programming

language, C#, being a higher level programming language is more suited towards ASCII

support than binary. The disadvantage of using ASCII was that the start and end frame bytes

did not correspond to ASCII characters recognised by the IDE used during the project. This

was overcome by creating start and end frame header bytes and employing byte to string

methods that converted the start and end frame characters at runtime.

Figure 3.15 ASCII vs binary telegram example

Figure 3.15 shows two telegrams requesting the output of measured values of one scan. The

top image is an ASCII telegram while the bottom image is a binary telegram (values

converted to HEX for visualisation). This gives an example of how it is easier to visually see

which telegrams are being sent and received

The telegrams supported by this project are: sRN LMDscandata and sEN LMDscandata and

their response messages. These message types are explained in more detail in Section 6.3.

3.4 Control Laptop

A laptop was chosen to be the main control computer to host high-level software. This is due

to the requirements for running Microsoft Robotics Developer Studio. The requirements,

listed below, rule out using an embedded controller for this project.

System Description 53

The requirements for the Microsoft Robotics Developer Studio 4 runtime environment are:

 a PC or laptop capable of running Windows 7,

 dual-core processor (2 GHz or faster recommended),

 2 GB of memory, and

 directX 9.0c compatible graphic card (for simulation).

The Segway platform requires a USB connection for communication while the SICK

LMS100 requires a TCP/IP Ethernet connection.

The specifications for the laptop used are as follows:

CPU: Intel Core i5-2520M @ 2.50 GHz

RAM: 4.00 GB

Hard Disk: 250 GB, 5400 rpm

OS: Windows 7 Enterprise SP1

I/O Ports: 3 x USB 2.0

Connectivity: Intel Gigabit Ethernet

 Intel Advanced 802.11n WLAN

The chosen laptop easily meets the specifications for running the MRDS runtime

environment.

A car laptop charger adapter (12 V, 90 W) was modified and connected to the 12 V battery

under the top plate on the Segway platform to charge the laptop.

3.5 Complete System

An overview of the complete system can be seen in Figure 3.16. A remote PC is used to

monitor and control the system and runs the UI explained in Section 6.6. The remote

computer uses wireless to communicate with the control computer. The control computer runs

the navigation service (Chapter 5) which controls movement of the Segway. The control

computer also runs two services (explained in Sections 6.3 and 6.4) which communicate over

TCP/IP and USB to control the SICK LMS100 scanner and Segway platform.

Hybrid Control of a Segway Platform Developed in MRDS 54

Figure 3.16 System overview

The SICK LRF scanner is mounted in the centre top of the platform. Mounting the sensor on

the top of the Segway platform allows the full 270° field of view to be un-obstructed by the

Segway itself during normal operation. Some previous projects using Segways and laser

range finders mounted the scanner underneath the top plate, as seen in Figure 2.15 and Figure

2.16, which limited their field of view to 180° directly in front of the Segway, as distance

measurements from larger fields of view returned distances to the vertical mounting plates on

the Segway. Mounting the laser scanner on top of the Segway means that any distance

measurements returned by the laser scanner are distances from centre of the Segway to

obstacles, rather than incorporating any part of the system.

A piece of acrylic sheet was laser cut and mounted above the base of the Segway, between the

two vertical plates, to create a platform for the control laptop to sit on. The lower platform

was cut to be smaller than the top plate of the Segway so the footprint size would not

increase. This addition can be seen in Figure 3.17.

System Description 55

Figure 3.17 Laptop platform

One issue that is predicted to cause problems is the changing pitch angle when the Segway

moves, which also changes the angle of the laser scan relative to the ground the Segway is

traveling on. Figure 3.18 depicts a sketch of the Segway when tilted at a 10 degree angle and

a laser range measurement pointing forward relative to the Segway.

Figure 3.18 10° tilt of Segway effect on range finder

With a placement of the SICK LMS100 in a height of 80 cm, and a pitch angle of 10 degrees

(not unrealistic during acceleration) the laser range will hit the floor in a distance of 4.51 m

from the Segway platform. This could confuse the localization algorithm, since it will look

like a wall. Possible solutions could be to mount the LMS with a motor, hang it freely to

always level it, or use geometry to improve the range readings. However, during testing this

issue did not affect the performance of the localization and landmark detection by a pertinent

amount. As this was not a consideration, fixing the issue is not in the scope for this project.

Hybrid Control of a Segway Platform Developed in MRDS 56

Microsoft Robotic Developer Studio 57

Chapter 4 Microsoft Robotic Developer
Studio

This chapter describes the software development language MRDS, the environment and tools

that were used to develop the control system for the Segway platform. The Segway platform’s

software is written in two programming languages, mostly C# with C used to interface with

the Segway platform. The navigation system has been implemented in C# running in the

MRDS environment. MRDS is designed to execute on any Windows-based PC that meets the

specifications laid out in Section 3.4.

 MRDS 4.1

Microsoft created Microsoft Robotic Developer Studio (MRDS) (first released 2006) for the

purpose of creating an industrial standard in robotics and incorporates a Service-Oriented

Architecture (SOA) into embedded system development (Microsoft, 2012). SOA is

characterized by loosely coupled services, open standard interface, service publication,

dynamic discovery of services and dynamic composition using services discovered (Tsai,

Huang, & Sun, 2008). MRDS provides a software platform and development environment

that enables software written for one robot to also work with another robot with similar

capabilities (Jackson, 2007).

As MRDS is designed to run in the .Net based runtime environment, MRDS applications

require Windows operating systems to run them.

Following the SOA design, application modules interact as a service that subscribes to or

publishes to other services, similar to Web services.

MRDS also defines a set of abstract services specifying APIs that can be used to

communicate with common hardware components. These services allow MRDS to control a

wide range of hardware with minimal programming effort. An example of this is the Generic

Differential Drive (GDD) contract service which provides a framework for differential drive

robots and allows other generic services, such as the dashboard service, to interact with them.

The dashboard service shown in Figure 4.1 can be used to drive any GDD robotic platform

Hybrid Control of a Segway Platform Developed in MRDS 58

with a keyboard or joystick (Johns & Taylor, 2008). The dashboard service also connects to a

SICK LMS200 laser range finder and displays the distance measurements. The dashboard can

find GDD services on remote nodes when given a computer name and port to connect to and

log also provides a logging function.

Figure 4.1 Dashboard service

The basic building block in MRDS is a service. Every MRDS application will contain one or

more services. Services can be combined as partners to create robotic applications. This

process is referred to as orchestration. Figure 4.2 shows an example of how the services

might be orchestrated to control a robot. It is the job of the orchestration service to implement

high-level control behaviours such as path planning and obstacle avoidance.

Microsoft Robotic Developer Studio 59

Figure 4.2 MRDS operational schema (Johns & Taylor, 2008)

The MRDS environment consists of a number of components . The Concurrency and

Coordination Runtime (CCR) and Decentralized Software Services (DSS) shown in Figure

4.2 are covered in more detail in Sections 4.1.1 and 4.1.2.

MRDS also includes utility services which automatically load when a service is started. These

include:

 a control panel service which provides a web interface to the end user displaying all

the running services and current state or web transform for each service. A Web

transform is how the service state is displayed in a web browser,

 a logging service that provides debugging and diagnosis interface, and

 a resource diagnostic service to provide additional information to assist in debugging

and performance evaluation.

In addition, MRDS consists of two visual components, a 3D simulator, Visual Simulation

Environment (VSE) shown in Figure 4.3, and a Visual Programming Language (VPL) shown

in Figure 4.4.

Hybrid Control of a Segway Platform Developed in MRDS 60

Figure 4.3 MRDS 3D Visual Simulation Environment

The Visual Simulation Environment uses 3D graphics to render a virtual world and a physics

engine to approximate interactions between objects within the virtual world. The VSE is

designed to help prototype new algorithms and robots when actual hardware is not available.

Without a simulator, prototyping new robot designs and moving from one design iteration to

the next can take weeks or months due to the physical changes required. Using a simulator

significantly reduces this time period. A simulator also enables easy design and debugging of

software when compared to physical robots. With moving robots it is often difficult to debug

errors but simulations can avoid this problem as they can be paused when required.

Microsoft Robotic Developer Studio 61

Figure 4.4 MRDS Visual Programming Language

Figure 4.4 shows a simple motor control program. The DirectionDialogService, on the

left of the figure, sends one of five button press commands which are processed to set the

motor drive power for a differential two wheel drive service on the right of the figure.

A service is run to control each individual component of a system. In the case of a robot, a

service might control the motors, another service might collect range measurements from an

IR sensor and another service could control the navigation system of the robot. MRDS allows

these services to subscribe to other services to receive updates about the state of a service or

to change the current state of another service.

4.1.1 Concurrency and Coordination Runtime (CRR)

The CCR is a managed library that provides classes and methods to help with concurrency,

coordination and failure handling (Johns & Taylor, 2008). It enables the user to design

Hybrid Control of a Segway Platform Developed in MRDS 62

applications so that the software modules or components can be developed independently,

making minimal assumptions about their runtime environment and other components. CCR

allows sophisticated robots to do real-time processing such as controlling actuators (motors,

arms, pumps) while being able to receive and process sensor data from multiple sensors (IR

sensors, odometers, etc). The CCR eliminates the issues of two threads simultaneously

attempting to update the same variable and removes the need to program using mutexes

(mutual exclusions) which can lead to race conditions that intermittently cause deadlocks.

CCR uses its own threading mechanism to prevent these issues which is more efficient than

the Windows threading model (Johns & Taylor, 2008).

CCR implementation has three main categories of functionality:

 the Port, PortSet and message,

 Receivers, Arbiters and Handle, and

 the Dispatcher, DispatcherQueue and Tasks.

Figure 4.5 shows the relationships between each category. When a message is posted to a

given Port or PortSet, the message triggers receivers that call for arbiters subscribed to the

messaged port to create a task. That task is then queued and dispatched to the threading pool

until assigned a thread to be run. Arbiters are used to evaluate the activation conditions that

are set on receivers. Activation conditions can be set on receivers to create logical

expressions. Two examples of these logical expressions are:

 Join - two messages must arrive on two ports, equivalent of a logical AND.

 Choice - a message can arrive on either of two ports, equivalent of a logical OR.

Ports can be defined as persistent or non- persistent. Persistent ports continuously listen for

messages, while non-persistent ports are designed to listen for a single message then close

down.

Microsoft Robotic Developer Studio 63

The Port is the most common primitive of CCR and is used as the point of interaction to send

messages between two components or services. Messages are posted to ports in an

asynchronous operation and held in a First-In-First-Out (FIFO) queue (Microsoft, 2010) and

remain in the port queue until it is read or de-queued by a receiver. Messages are just objects

of a specified type, so classes can be created and instances of these classes can be sent as

messages between services. If messages are never removed from the Port, then they just keep

accumulating which poses a potential memory leak.

The advantage of Ports is that messages can be posted to them from any thread. Due to the

nature of CCR, posting messages will always be a safe operation. The message will either be

processed successfully or will return an error status indicating that it could not be processed.

Also, if all the receivers are busy, the message waits until it can be processed, the sender of

the message does not have to wait as posting a message does not create a block for the

sending thread.

Figure 4.5 CCR architecture (Johns & Taylor, 2008)

Hybrid Control of a Segway Platform Developed in MRDS 64

PortSet is a generic class that allows the grouping of multiple types of ports. Multiple

messages of different types can be posted to a Portset. Each message type can have a different

handler that executes when a message is received.

The main operations port of a service is usually a PortSet containing all the different ports

that can receive different types of messages. Figure 4.6 shows the definition of the operations

port for a generic service which contains five types of messages: Replace, Subscribe, Get,

DsspDefaultLookup and DsspDefaultDrop. The latter three are the minimum set of message

required for a MRDS service to operate (Johns & Taylor, 2008).

.

When a message has been received by a port, a task is queued to a dispatcher queue and then

passed onto a dispatcher for execution. A task is the name given to the thread that executes

the incoming message handler, which runs in a fully multi-threaded environment. The

dispatcher takes a task from the dispatcher queue and allocates a thread to run the task. When

threads become available, the dispatcher is automatically queried for another task to run.

Iterators are another key tool that CCR uses to allow sequential execution of code but without

blocking the execution thread when it needs to wait for a message. A service controlling a

robotic arm may wait for a response message to say that a movement was successful or a fault

message indicating that there was a problem. When an operation is performed that will take

an unknown about of time to execute, the iterator effectively remembers the current location

in the code and then relinquishes control until a response message is received. When the

response message arrives, the code resumes execution from the point where it left off. This

feature allows another thread to execute during the wait time which would have normally

locked up the thread.

//Portset that accepts items of Replace, Get, Subscribe ,
//DsspDefaultLookup and DsspDefaultDrop

Public class GenericServiceOperations: PostSet<Replace, Subscribe,
Get, DsspDefaultLookup,DsspDefaultDrop>{}

Figure 4.6 A generic service’s operations PortSet

Microsoft Robotic Developer Studio 65

4.1.2 Decentralized Software Services (DSS)

The Decentralized Software Services (DSS) is responsible for starting and stopping services

and managing the flow of messages between services. DSS is composed of several services

that load service configurations, manage security, maintain a directory of running services,

control access to local files and embedded resources, and provide user interfaces that are

accessible using a web browser. DSS uses a protocol called DSS Protocol (DSSP) which is

based on the Representational State Transfer (REST) model often used for web development.

REST is a style of software architecture for distributed systems such as the World Wide Web

and has emerged as the predominant web service design model (Fielding & Taylor, 2005).

A robotic application built with DSS consists of multiple services running independently and

in parallel. DSS in combination with CCR allows these multiple services to run in a real time

environment. Services built with DDS are mainly (but not limited to) hardware components

such as sensors and actuators and software components such as user interfaces and

aggregations referring to sensor-fusion and related tasks (Cepedia, Chaimowicz, & Soto,

2010).

DSS allows services to be operating in the same hosting environment, or DSS Node, or

distributed over a network, giving flexibility for execution of computationally expensive

services in distributed computers (Cepedia, Chaimowicz, & Soto, 2010).

A DSS service consists of seven main components which can be graphically seen in Figure

4.7:

 Service URI. The unique key for each service is the Service URI, which refers to the

dynamic Universal Resource Identifier (URI) assigned to a created DSS service. The

Service URI enables each service to be identified. This is most useful when multiple

instances of the same service are running on the same network.

 Contract Identifier. The Contract Identifier is created within the code of the service

for identifying it from other services, thus creating a globally unique reference. The

Contract Identifier is often also the name of the service. When multiple instances of a

service are running, each instance will contain the same Contract Identifier but

different service URI.

Hybrid Control of a Segway Platform Developed in MRDS 66

 Service State. The Service State carries the current contents of a service. It will

contain different information depending on the role of the service. The state of a

service controlling a laser range finder will contain information such as distance

measurements and angular resolution where as a service controlling a differential

drive system will contain information such as current encoder values and current

wheel speeds.

 Service Partners. Service Partners enable a DSS application to be created by several

services providing higher level functions and create more complex applications. The

Service Partner definitions connect the services that must communicate and share

knowledge about their state.

 Main Port. A service’s Main Port is a CCR Portset where all messages from external

services are received. The Main Port is a private member of a service which can only

receive pre-defined messages (defined at service creation) which creates a well-

organized infrastructure for coupling distributed services.

 Service Handlers. Service Handlers receive messages that arrive on the Main Port,

which can come in the form of requested information about the services state or as a

notification. The Service Handlers develop specific actions in accordance to the type

of message that arrives on the Main Port.

 Event Notifications. Event Notifications occur as the result of changes to a service’s

state. A service that has subscribed to another service and is currently monitoring the

service will receive an update message.

Microsoft Robotic Developer Studio 67

As DSS applications can work in a distributed fashion through a network, there is a special

port called Service Forwarder, which is responsible for the partnering of services running on

remote nodes.

To clarify the differences between the CCR and DSS: the CCR is a programming model for

handling multi-threading and inter-task synchronization, whereas DSS is used for building

applications based on a coupled service model. Services can run anywhere on the network, so

DSS provides a communications infrastructure that enables services to transparently run on

different nodes using all of the same CCR constructs that they would use if they were running

locally.

By default, MRSD’s Security Manager Service does not allow services to be accessed across

networked computers. When a DSS node is started with a security settings file specified, the

security manager is always started. For this project the security settings were disabled so

communication between the host computer and observing computer was not restricted. Figure

Figure 4.7 DSS architecture (Johns & Taylor, 2008)

Hybrid Control of a Segway Platform Developed in MRDS 68

4.8 shows the DSS Node Security Configuration file created which this project starts with

every DSS service to disable the security settings.

 Programming Environment 4.2

The services for this project are built on MRDS 4 version in the .NET 4.0 framework

environment. It is therefore necessary to use a .NET language. Examples of .NET languages

available include C#, C++, Visual Basic, Python and MRDS’s Visual Programming Language

(VPL) (Johns & Taylor, 2008). It was decided to program services using C# based on a

number of considerations:

 documentation and samples available with MRDS are coded in C#,

 recommended by MRDS as the preferred language for the development of DSS

services,

 easy deployment in a distributed environment, and

 efficient memory and processing power requirements.

Microsoft Visual Studio 2010 has been used as the integrated design environment (IDE) to

develop services for this project. Visual Studio allows applications to be designed,

programmed, debugged and deployed.

Microsoft Visual Studio also allows Graphical User Interfaces (GUI) to be developed using

WinForms. WinForms is a mature and simple technology for the purposes of building user

interfaces quickly. WinForms will only be visible on the computer that is running the DSS

node (Johns & Taylor, 2008). Because of this, a SegwayServices DSS service was created to

 <?xml version="1.0" ?>
- <SecuritySettings

xmlns="http://schemas.microsoft.com/robotics/2008/02/security.html">

<AuthenticationRequired>false</AuthenticationRequired>

<OnlySignedAssemblies>false</OnlySignedAssemblies>

<Users />

</SecuritySettings>

Figure 4.8 DSS node security configuration file

file:///C:/Program%20Files/Microsoft%20Robotics%20Developer%20Studio%204/store/SecuritySettings.xml

Microsoft Robotic Developer Studio 69

display a UI WinForm and run on a remote computer to communicate with the main

navigation service.

 Summary 4.3

The runtime libraries of MRDS, CCR and DSS all contribute to developing the software

architecture. CCR provides the ability for segments of code to operate independently within

an application. DSS extends CCR concepts by introducing functionality to develop service-

oriented applications that can run across a network. Microsoft Visual Studio has been chosen

as the IDE for this project and services are written using the C# programming language.

Hybrid Control of a Segway Platform Developed in MRDS 70

Navigation Architecture 71

Chapter 5 Navigation Architecture

5.1 Navigation System Overview

A hybrid navigation system that employs an A* path planner and the dynamic window

method was developed by a previous student Chris Lee-Johnson (Lee-Johnson, 2004). The

system supported differential drive robots with a pre-generated grid map with fixed binary

occupancy data being employed for path planning. The system did not have map updating

capabilities. Praneel Chand (Chand, 2011) improved upon Lee-Johnson’s work creating a

hierarchical hybrid navigation system at Victoria University. Chand’s work formed an

integral part of another thesis created at Victoria University (Talwatta, 2012) which partially

implemented the hierarchical hybrid navigation system on the MARVIN robotic platform

(McClymont, 2011). The hybrid navigation system created by Chand has been selected as the

navigation system for this project.

The localisation section of the navigation algorithm was previously designed for an IR ring

that returned 12 distance measurements in a 360° field of view. This project extends Chand’s

work by using the increased sensor data available with the SICK LMS100 scanner to detect

straight lines and distinguish corner and door landmarks within the environment. The

landmarks are then compared to a database of known landmarks to update the Segways

current position.

Chand’s navigation system, depicted in Figure 5.1, consists of three layers:

 The deliberative layer contains the path planner and environment map components

indicated by the red dashed lines in Figure 5.1.

 The reactive layer contains the path tracker and the reactive control components

indicated by the blue dashed lines in Figure 5.1.

 The third layer contains localisation, information extraction and sensor fusion, and

low level motion control.

The hierarchy of the modules of Figure 5.1 provides an indication of the breakdown of

control. Modules on the left and right represent perception/representation and action/planning

respectively. The indicated update rates have been employed in the respective algorithms on

Hybrid Control of a Segway Platform Developed in MRDS 72

this project but could be adjusted depending on the requirements of different robotic

platforms.

Figure 5.1 Hierarchical hybrid navigation system (Chand & Carnegie, 2011)

5.2 Deliberative Component

The deliberative component of the hierarchical hybrid navigation system bridges the gap

between sensing and acting by introducing a planning step. The deliberative architecture

enables a robot to perform high level tasks that would be too difficult to perform without

planning (Junior, Parikh, & Junior, 2006).

This planning is based on a map of the environment in combination with the environment

information acquired by the sensors. An occupancy grid has been selected for the deliberative

component of the navigation system to represent the Segway’s environment because of its

Navigation Architecture 73

simplicity and usability in a range of environments. An occupancy grid map is generated by

dividing the environment into discreet cells and assigning binary values indicating occupancy.

The Segway operating environment for this project will always be known. Thus, a pre-made

environment map can be used by the Segway’s navigation system for both navigation and

path planning.

5.2.1 Environment Representation

The environment map for this project was constructed from measurements of the third floor

corridor of the Laby building at Victoria University. The environment map consists of point

co-ordinates and the connection between points such that a wall is represented by two ()

coordinates and a connection between point one and point two. The corridor measures

1.75 m × 11.4 m and contains seven doorways and two concave corners for localisation. The

representative environment map is illustrated in Figure 5.2.

Figure 5.2 Map of Laby corridor

In order to be used as part of the navigation system, the map is converted into a two

dimensional array occupancy grid with a “1” depicting a wall and a “0” representing

unoccupied space. Figure 5.3 shows the map implemented after the navigation system has

converted the map into an occupancy grid. The resolution of the occupancy grid is variable

during the conversion from the map points to occupancy grid. For this project, the resolution

is set at 0.2 m giving an occupancy grid resolution of 9 × 57 grids. This resolution is

considered a good trade-off between an accurate representation of the map environment while

keeping computational costs down.

Hybrid Control of a Segway Platform Developed in MRDS 74

Figure 5.3 Occupancy grid of the Segway’s operating environment

5.2.2 Path Planning

A single-tiered modified A* algorithm is used for planning a path through the occupancy grid.

The A* algorithm is a best-first heuristic search algorithm that ranks nodes based on the cost

of traveling through them (Pearl, 1984). Cost is usually represented by node distances where

lower cost values denote a better path to travel. The total cost () of a node is the sum of

two cost values, () and (). () represents the cost of travelling from the start node to

node while () is the heuristic cost of travelling from to the goal node.

 () () () Equation 5.1

The A* algorithm considers binary occupancy values where the nodes are either traversable or

non-traversable. Hence () is dependent on the node distance of the lowest cost path from

the start node to the parent node and the Euclidean distance between and .

Heuristic cost () is an over estimate represented by the Euclidean distance from the current

node to the goal node.

If the path planner cannot find an appropriate path to the goal, path planning flags are set to

stop the navigation system until an appropriate path can be found. This occurs when either the

initial position or target position is located outside of the map or there is no direct path

between the two locations. For an appropriate path to be found either the initial position or

target position needs to be changed to a valid location.

1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

1 1

Navigation Architecture 75

5.3 Reactive Control Overview

An outline of various reactive control methods has been presented in Chapter 2. The reactive

control algorithm selected combines a modified dynamic window (Fox, Burgard, & Thrun,

1997) with a polar histogram technique similar to the vector field histogram method presented

by Ulrigh & Borenstein (1998). A simplified block diagram of the two-stage optimisation

process that can track a path and avoid obstacles is illustrated in Figure 5.4. A target heading

angle is determined from the path tracker which is then used as the input to the direction

sensor that produces a modified target heading as an output. The modified target heading

angle is then used by the dynamic window to produce linear and angular wheel velocities.

Figure 5.4 Overview of reactive control strategy (Chand, 2011)

Hybrid Control of a Segway Platform Developed in MRDS 76

5.3.1 Path Tracking

The path tracking algorithm checks the path planning flags to ensure that an appropriate path

has been found through the map. If no path has been found, the navigation algorithm sets the

angular and linear target velocities to 0 stopping the Segway from moving. The distance from

the current position of the Segway () to each node of the path planner is calculated

to find the closest node position to the Segway ().

When the Segway is following a planned path, () represents the coordinates of a

node that is five nodes ahead of the closest node to the Segway, otherwise, ()

represents the final destination coordinates of the Segway. At a resolution of 0.2 metres for

the occupancy grid, five nodes represents 1 metre along the planned path for the Segway to

head towards. This gives a distance forward of the current Segway position to aim for which

continuously moves forwards as the Segway moves and allows room to travel around any

obstacles encountered.

The target heading is then calculated using Equation 5.2 which is the main input into the

direction sensor algorithm.

 (

)

Equation 5.2

5.3.2 Direction Sensor

The direction sensor maximises the objective function that finds an appropriate balance

between obstacle avoidance and goal directedness.

A circular shape represents the Segway as shown at the centre of Figure 5.5 with radius .

The current position and goal position of the Segway are defined as () and

() respectively. The target heading angle is calculated in the path tracking stage

of the algorithm (Section 5.3.1) and is used as the input to the direction sensor.

Navigation Architecture 77

Figure 5.5 Direction sensor representation (Chand & Carnegie, 2011)

To determine the most appropriate direction of travel, the Segway is represented as a point

and each obstacle is enlarged by the radius of the Segway. The region surrounding the

Segway is then divided into an arbitrary number of lines to represent candidate orientations

 . All orientation angles are converted to the Segway’s reference frame R by subtracting

the current absolute orientation .

An objective function is applied to each candidate orientation which maximises goal

directedness | | and distance to obstacles .

 () (

| |

) (

) Equation 5.3

Equation 5.3 shows the objective function, where higher values denote a better compromise

between goal direction and obstacle avoidance. The maximum obstacle distance, , is

set to the maximum sensing range. and are unit interval weighting for goal directness and

obstacle clearance respectively which are calculated using trial and error to find an

Hybrid Control of a Segway Platform Developed in MRDS 78

appropriate balance. Smaller and larger values translate to large obstacle advoidance

while larger and smaller values put preference on heading towards the goal direction over

obstacle avoidance which can lead to collisions if obstacles are moving. Different values for

and were tested for this project and can be found in Section 7.4.1.

5.3.3 Dynamic Window

In the dynamic window approach (Fox, Burgard, & Thrun, 1997) a portion of the velocity

space that is achievable within the next control cycle is searched for a velocity pair ()

An overview of the dynamic window method employed in this project is shown in Figure 5.6.

The dynamic window approach has seven major inputs:

 A target heading is the output from the direction sensor

 The Euclidean distance to the final goal location

 Current linear and angular velocity ()

 Global maximum linear velocity

 Kinematic constraints

 Dynamic constraints

 Obstacle distances

These inputs limit the maximum and minimum linear and angular velocities used to generate

velocity windows. The velocity windows, target heading and obstacles are evaluated with a

modified dynamic window objective function to select an optimal velocity pair ().

The maximum linear velocity is derived from and varies depending on goal

proximity and obstacle distances . When the Segway is within deceleration and

stopping distances, and , the maximum linear velocity limit is varied

linearly between and zero (Equation 5.4).

Navigation Architecture 79

 {

If

If

otherwise

Equation 5.4

Figure 5.6 Modified dynamic window method overview (Chand & Carnegie, 2011)

The minimum linear velocity for this project is set to zero (Equation 5.5) so that the Segway

stops when reaching the goal location.

Hybrid Control of a Segway Platform Developed in MRDS 80

 Equation 5.5

Linear dynamic constraints (linear acceleration and deceleration) and linear velocity

limits (and) are applied to the current velocity, , to produce a linear velocity

window for the next control cycle. The current linear velocity window is

divided into a number of divisions for evaluation.

Angular dynamic constraints (angular acceleration and deceleration) and angular

velocity limits (and) are applied to the current angular velocity to produce an

angular velocity window for the next control cycle. The current angular

velocity window is also divided into a number of divisions for evaluation.

The angular velocity of the Segway has a global maximum and a global minimum

 representing the Segway turning both clockwise and anti-clockwise. The maximum

and minimum curvature, and respectively, for the next control cycle is derived

from the current angular and linear velocity, and dynamic constraints of the Segway.

Minimum and maximum angular velocities (Equation 5.6 and Equation 5.7) for the next

control cycle are calculated from combinations of , and .

 ()
Equation 5.6

 ()
Equation 5.7

A safety margin is added to the Segway’s perimeter to allow it to stop before colliding

with obstacles. If an obstacle distance is within the safety margin, the velocity window in

that direction is rejected. The safety margin has a minimum value of which increases

based on the current linear velocity of the Segway platform and a growth factor .

Navigation Architecture 81

 Equation 5.8

A flow chart showing the evaluation of each velocity pair () to find the optimal

solution is shown in

Figure 5.7. The linear and angular velocity windows are divided into velocity pairs ()

. The candidate curvature for each velocity pair is calculated and needs to be within

 to satisfy differential drive curvature constraints (Chand & Carnegie, 2011).

After curvature constraints have been tested, the distance to collision if the Segway

travels at the candidate linear and angular velocities are determined. Boolean variables

and represent the ability for the Segway to successfully stop (Equation 5.9 and Equation

5.10)

Two objective functions are used depending on whether the Segway can avoid a collision. A

primary objective function is calculated (Equation 5.11) if the Segway could avoid a collision.

A secondary objective function is calculated (Equation 5.12) for if the Segway could not

stop in time. The secondary objective endeavours to steer the Segway away from the collision

target and simultaneously slows forward velocity.

 {

Equation 5.9

 {

Equation 5.10

Hybrid Control of a Segway Platform Developed in MRDS 82

The values and are weightings for goal directedness and velocity respectively. Smaller

values of result in the Segway only having relatively small changes in direction, which

may not be optimal for goal achievement, while large values of may compromise obstacle

avoidance as the platform may not deviate from the target direction sufficiently to avoid the

obstacle. Smaller values of ensure the Segway moves relatively slowly, while larger values

of may compromise obstacle avoidance due to traveling at too high a velocity. A small

reduces the objective function output when the collision distance is below an allowed

threshold.

All of the velocity pairs are checked against the objective function for the velocity pair with

the maximum primary objective value. When a valid angular and linear velocity pair is found,

they are set as the target angular and linear velocity for the next control cycle. If a valid

velocity pair is not found then the linear velocity target that opposes the current linear

velocity is chosen to avoid collisions in the current direction of movement.

 ()

{

 (

|() |

) (

| |

)

 ((
|() |

) (

| |

))

If and

If and

Otherwise

Equation 5.11

 ()

{

 (

|() |

)

 (
|() |

)

If and () ()

If and and () ()

otherwise

Equation 5.12

Navigation Architecture 83

When both the primary and secondary objective functions return invalid results, the angular

and linear velocity targets are set to oppose the current motion to stop the Segway. This is a

rare case that could occur when dynamic obstacles, such as moving people, crowd the Segway

and no valid direction allows a valid solution. The Segway’s control algorithm would keep

the linear and angular velocities at zero until a valid direction and velocity is found.

Hybrid Control of a Segway Platform Developed in MRDS 84

Figure 5.7 Optimal velocity pair selection flowchart (Chand & Carnegie, 2011)

Navigation Architecture 85

5.4 Internal Representation

For data from range finders and odometers to be combined effectively they first need to be

converted into an internal representation that is shared by all sensors. The position of the

Segway is given as Cartesian coordinates () in metres, while its heading is defined as an

angle in radians.

5.4.1 Odometers

The Segway monitoring messages (Table 3.1) sent from the Segway unit to the host computer

contain four odometer counts: integrated left wheel position, integrated right wheel position,

integrated fore/aft position and integrated turn position. The Segway's position can be

calculated using the measurements from the encoders. Using odometry alone becomes

challenging due to the accumulating errors that are inherent in odometry measurements. The

accuracy of odometry measurements decreases over time due to limiting factors such as wheel

slippage, missed encoder counts and transmission slop (Victorino, Rives, & Borrelly, 2000).

Overtime these factors cause an increase in the difference between the actual distance the

Segway has travelled and the distance readings from the Segway's odometry.

The Segway interface guide (Segway Inc., 2009) contains a data conversion table for data

items contained in monitoring messages (Table 3.5). The table contains estimates which are

based on the nominal rolling diameter of the wheel, 48 cm, and deviations can occur with

changes in tyre pressure, tyre wear and payload. Based on the table, the expected conversion

factors for three of the odometers (integrated left wheel position, integrated right wheel

position and integrated fore/aft position) are 33215 counts per metre and 112644 counts per

revolution for the integrated turn position. As these were only approximates, more accurate

conversion factors were found and are discussed further in Section 7.2.1. The experiment

yielded results of 34337 and 116711 for left, right and fore/aft positions and turn position

respectively, mentioned here for reference.

The integrated fore/aft encoder count and turn position encoder count are not from physical

encoders but rather are calculated by the control software within the Segway. The control

Hybrid Control of a Segway Platform Developed in MRDS 86

software assumes a wheel diameter of 48 cm and wheel separation of 53 cm (Segway Inc,

2012).

5.4.2 Position and Orientation

The Segway is a two wheel differential drive system. Assuming minimal wheel slippage, each

wheel movement results in a change in the Segway’s position and/or heading. If both wheels

rotate the same distance at the same velocity, the Segway travels in a straight line. If both

wheels rotate the same distance but in opposite velocity, a zero radius turn of the Segway

occurs. Any combination of these two motions will result in a moving turn.

Integrated left and right wheel position counts can be used to calculate the arc length travelled

(in metres) of the left and right wheels respectively using Equation 5.13 and Equation 5.14.

The integrated fore/aft position encoder count is used to calculate the arc length travelled (

in metres) by the centre of the Segway using Equation 5.15. The integrated turn position

encoder count can be used to calculate the angle the Segway’s centre has travelled through (

in radians) using Equation 5.16.

 Equation 5.13

 Equation 5.14

 Equation 5.15

 Equation 5.16

where the equates to the relative counts per metre/revolution mentioned

in Section 5.4.1.

Navigation Architecture 87

Using results from Equation 5.15 and Equation 5.16, the linear distance travelled by the

Segway’s centre (in metres) is calculated using Equation 5.17.

 √ (

 Equation 5.17

Finally, the calculated distance travelled and angle turned are converted into a set of

Cartesian co-ordinates representing the change in position () which are added to the

current position and orientation () of the Segway (Equation 5.18, 5.19 and 5.20).

 Equation 5.18

 Equation 5.19

 Equation 5.20

In the coordinate system, X position represents lateral motion with positive values to the right

and negative values to the left. Y position represents forward motion as positive values and

reverse motion as negative values. The heading represents the heading of the Segway in

radians, where zero change results in movement in a straight line, positive values in a

clockwise rotation and negative values in an anti-clockwise direction.

5.5 Localisation

This section addresses the methods used in this project to discover landmarks. The SICK

LMS100 range finder data is used along with odometry data for localisation of the Segway.

Lines are first extracted from the rangefinder dataset. Relationships between the extracted

lines are used to discover the Cartesian coordinate location of landmarks. Discovered

Hybrid Control of a Segway Platform Developed in MRDS 88

landmarks are then compared to landmarks extracted from the map of the environment in

Section 5.2.1.

Landmarks are geometric objects that can be recognized each time they are encountered

again. Some specific properties of landmarks are important: they should be re-observable,

distinguishable from each other and stationary. Furthermore a critical number of landmarks is

required for localisation. (Riisgaard, 2005)

5.5.1 Line Extraction

The SICK LMS100 laser range finder produces a 2D representation of the environment.

Points from a range scan are specified in polar coordinates () whose origin is the current

position of the Segway (). The polar representation of the scan is converted to

Cartesian coordinates () using Equation 5.21 and Equation 5.22. A visual

representation of this relationship is depicted in Figure 5.8.

 () Equation 5.21

 () Equation 5.22

Figure 5.8 Relationship between Polar and Cartesian Coordinates

There are three main problems in line extraction in indoor environments (Forsyth & Ponce,

2002) . They are:

Navigation Architecture 89

 How many lines are there?

 Which points belong to which line?

 Given the points that belong to a line, how to estimate the line model parameters?

Two line extraction methods inspired by Nguygen, Martinelli, Tomastis & Siegwart (2005)

were investigated for the purpose of finding landmarks for localization. The two line

extraction methods were ‘Split and Merge’ (Castellanos & Tadoos, 1996) (Borges & Aldon,

2000) and Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) (Riisgaard &

Blas, 2005). These two methods were chosen based on their performance and popularity in

mobile robotics, particularly for their feature extraction capabilities.

Split and Merge

The Split and Merge, also known as the Ramer-Douglas-Peuker algorithm (Liu, Jin, Cui, &

Wang, 2001), is the first algorithm investigated. Pseudo code for the Split and Merge

algorithm is shown in Figure 5.9.

Figure 5.9 Split and Merge pseudo code (Nguyen, Martinelli, Tomatis, & Siegwart, 2005)

An example of the Split and Merge algorithm is shown in Figure 5.10. The original line

consists of 10 points marked P0 to P9. The first (P0) and last (P9) points are connected with a

straight line and the point with the greatest perpendicular distance to the line is found (P5). If

the selected point (P5) is greater than the allowed distance from the line, the original line is

split into two lines with P5 being the splitting point as shown in Example C in Figure 5.10.

The process is recursively repeated until the greatest perpendicular distance is less than the

allowed distance to the line. P0, P5, P8 and P9 are chained to produce a simplified line as

shown in Example D in Figure 5.10.

Hybrid Control of a Segway Platform Developed in MRDS 90

The Split and Merge algorithm has a complexity of () and is less complex relative to

other line extraction methods (Nguyen, Martinelli, Tomatis, & Siegwart, 2005).

A slight adjustment to the algorithm was made during testing to account for noisy data. The

adjustment required at least two points to be further than the allowed distance to the line

before the data was split. This allowed longer lines to be found when a single data point was

an outlier to a line. Thresholds are set so that at least 7 points are required in order to be

considered as a line and each point must be within 5 cm of the found line. The minimum line

length is 20 cm to avoid many short or false positive lines being found that would not

associate to landmarks. Landmarks are described in Section 5.5.2.

Figure 5.10 Split and Merge algorithm

RANSAC

RANSAC or Random Sample Consensus is another algorithm which can be used to extract

lines from the SICK LMS100 laser scan. RANSAC finds lines by randomly taking a sample

of the laser readings and then uses a least squares approximation to find the best fit line that

runs through the selected readings. Once this is done, RANSAC checks how many laser

Navigation Architecture 91

readings lie close to the best fit line. If the number of close points is above a pre-determined

threshold then a line has been found.

The RANSAC algorithm presented by Riisgaard & Blas (2005) has been selected for testing.

The algorithm assumes that the laser data readings are converted to Cartesian coordinates.

Pseudo code for the algorithm is shown in Figure 5.11.

Figure 5.11 Pseudo code for RANSAC algorithm (Riisgaard & Blas, 2005)

While

 there are still un-associated laser readings,

 and the number of readings is larger than the consensus,

 and we have done less than N trials.

Do

 Select a random laser data reading.
 Randomly sample S data readings
 Using these S samples and the original reading, calculate a

least squares best fit line.
 Determine how many laser data readings lie within X

centimetres of this best fit line.
 If the number of laser data reading on the line is above

some consensus C, do the following:
o Calculate the least squares best fit line based on all

the laser readings determined to lie on the old best
fit line

o Add this best fit line to the lines we have extracted
o Remove the number of readings lying on the line from

the total set of un-associated readings.

N – Max number of times to attempt to find lines.

S – Number of samples to compute initial line.

X – Max distance a reading may be from line to get associated to
line.

C – Number of points that must lie on a line for it to be taken
as a line.

Hybrid Control of a Segway Platform Developed in MRDS 92

For this project the RANSAC parameters were set as follows:

N - 1000

S - 10

X - 5 cm

C - 7

The parameters were chosen based on experimental tuning so that the best performance was

obtained. The RANSAC algorithm has a complexity of where S is the

number of line segments extracted, N is the number of points in the scan and N.Trials is the

number of trials for RANSAC.

The two algorithms were tested and compared for speed, correctness and precision. Both

algorithms were able to correctly identify the major lines within the scanned dataset and had

few false positives once the specific parameters were tuned for the corridor environment. The

major difference between the two algorithms was the completion speed. The time taken

between starting and ending each algorithm was calculated and used to determine the

maximum frequency that each algorithm could be continuously run at. Split and Merge

performed faster than RANSAC with an average continuous running frequency of

approximately 2000 Hz compared to an average continuous running frequency of

approximately 150 Hz. The performance difference is mainly because RANSAC is based on

non-deterministic methods whereas Split and Merge makes use of sequencing characteristics

of the raw data points.

Split and Merge was chosen as the line extraction method for this project as its performance

speed was faster while the correctness and precision was comparable to RANSAC. The

increased complexity of RANSAC did not warrant its use for the desired environment.

When a line is found, the equation of the line between the two end points (in the format of

) is calculated using Equation 5.23 and Equation 5.24. The gradient of the line is

used in the landmark detection algorithm.

Navigation Architecture 93

 Equation 5.23

Equation 5.24

If , then is set to 100,000.

After finding all the lines within the laser data, landmarks are located and associated to known

landmarks to localise the Segway.

5.5.2 Landmark Detection and Association

As mentioned, landmarks are used for updating the position of the Segway and correcting for

any errors that occur over time in the odometry (Bailey, Beckler, Hoglund, & Saxton, 2008).

The landmark detection algorithm locates three different types of landmarks. These landmarks

are door frames, concave corners and convex corners as shown in Figure 5.12. The algorithm

takes an input of an array of lines from the line extraction method and outputs an array of

landmarks. Found landmarks contain the () coordinate position of the extracted landmark,

the two lines which make up the landmark and two Boolean values. The first Boolean denotes

whether the landmark is a door or a corner while the second Boolean denotes if the corner is

convex or concave. The second Boolean is ignored if a door is found.

Corners are found by looking for perpendicular lines with nearby end points as shown in

Figure 5.13. For the purposes of landmark extraction, perpendicular lines are defined by two

lines which gradients differ by 90 ± 10 degrees (Equation 5.24). The ± 10 degrees allows for

inaccuracies for long lines in the line extraction process. To be a corner, the two end points

are required to be within 15 cm of eachother. The landmark coordinates () is the

intersection of the two lines which make up the corner.

Hybrid Control of a Segway Platform Developed in MRDS 94

Figure 5.12 Landmarks found in indoor environments

 |

| Equation 5.25

 Checks are done beforehad so that if , = 90 °.

Figure 5.13 Corner landmark

When a corner feature is found, more analysis is needed to know if the corner is convex or

concave. This is done by calculating three distances: the distances between the landmark’s

corner point and the Segway, and distances between the Segway and each of the endpoints of

Navigation Architecture 95

the two lines that make the landmark. If the distance between the Segway and the corner point

is less than the distance to the line ends then the landmark is a concave corner. If the distance

between the Segway and the corner point is greater than the distance to the line endpoints then

the landmark is a convex corner. Figure 5.14 shows the Segway detecting a corner landmark.

Figure 5.14 Left: convex corner. Right: concave corner.

Door features are found by looking for parallel lines that have nearby endpoints as shown in

Figure 5.15. Parallel lines are defined by two lines whose gradients differ by ± 10 degrees

(Equation 5.24). The ± 10 degrees allows for inaccuracies in the line extraction. To be a door

frame, the two line endpoints are required to be separated by more than 7.5 cm but less than

20 cm. The landmark coordinates () is the centre point between the two line endpoints.

 The landmark detection algorithm is run a single time after the environment map is loaded.

The algorithm is run using the map lines described in Section 5.2.1 to create a database of

known landmarks within the environment. It is assumed that the Segway is positioned in the

centre of the map for convex/concave corner evaluation.

The line extraction and landmark extraction algorithms are run on a 20 Hz sensor timer and

scanned landmarks are compared to the database of known landmarks for association.

Hybrid Control of a Segway Platform Developed in MRDS 96

Figure 5.15 Door landmark

The technique used for association is called the nearest neighbour approach as a scanned

landmark is associated with the nearest landmark in the database. The simplest way to

calculate the nearest landmark is to determine the Euclidean distance. Another method that

could have been used is the Mahalanobis distance (Blanco, Gonzalez, & Fernandez, 2012)

which is superior but more complicated. The Mahalanobis distance differs from the Euclidean

distance in that it takes the correlations of the dataset into account during calculations. The

Euclidean distance was preferred as the landmarks for this project are far enough apart to

make using the Mahalanobis distance an unnecessary complication.

The distance between each scanned landmark from the SICK LMS100 laser scanner and the

database of landmarks is calculated and the closest landmark in the database is found. If the

distance between the closest landmarks in the database is less than 20 cm, the landmarks are

considered to be associated. If a scanned landmark cannot be associated to a landmark in the

database, it is removed from the list of scanned landmarks.

5.5.3 Landmark Position Error

The error in position (θ) of the Segway can be calculated once all scanned landmarks

have been associated to a landmark in the database. The error in position for each scanned

landmark is calculated by comparing the () position of the found landmark to the expected

() position of the landmark in the database as seen in Figure 5.16. This is achieved by

Navigation Architecture 97

using Equation 5.26 and Equation 5.27. Averaging the error in position of each scanned

landmark yields a single average error in the position of the Segway (). This

error is combined with odometry and used to update the position of the Segway.

 Equation 5.26

 Equation 5.27

Figure 5.16 Position error example. Left: corner. Right: doorway.

Figure 5.16 shows an example of an error in the () position of the database landmark

(black lines) and the () position of the scanned landmark (grey lines) for both corner

landmarks (left) and door landmarks (right).

Error in heading of the Segway is determined by calculating the angle between the two lines

that make up the landmark (Equation 5.24). Each landmark in both the map database and

scanned list has two associated lines as seen in Figure 5.17 with two heading errors associated

to them. Averaging the heading errors over all scanned landmarks gives an average heading

error . This error is combined with odometry and used to update the position of the

Segway.

Hybrid Control of a Segway Platform Developed in MRDS 98

Figure 5.17 Heading error example. Left: corner. Right: doorway.

5.6 Sensor Fusion

The Segway's various odometers and sensors and the SICK LMS100 laser range finder

provide useful data, but their individual importance varies with circumstance. For example,

odometers are relatively accurate over short distances, but cumulative errors which are

generated over distance limit their long-term usefulness. Rangefinders can be less accurate but

their error is constant over time. The navigation algorithm for the Segway minimises these

problems by utilising sensor redundancy. This allows multiple sensors to provide the same

information (current position) but with different degrees of accuracy and precision. These two

pieces of overlapping information are fused to take advantage of each sensor’s strengths and

reduce their weaknesses.

Although this Section concentrates on the fusion of overlapping data from different sensors,

the term sensor fusion has a broader meaning that encompasses non-redundant sensor signals

and multiple samples from a single sensor (Sauer, Brugger, Hofer, & Tibken, 2001).

Due to the small number of sensors on the Segway and the simple corridor operating

environment, a Dynamic Weighted Average algorithm (Kapach, Giorini, & Mylopoulos,

2007) was chosen for sensor fusion. Other sensor fusion algorithms investigated for this

project include Bayesian inference (Williams, Wilson, & Hancock, 1997), Dempster-Shafter

Inference (Wu, Seigel, Stiefelhagen, & Yang, 2002), Fuzzy Logic (Godjevac, 1995) and

Neural Network (van Dam, Krose, & Groen, 1996) algorithms. These algorithms would not

Navigation Architecture 99

provide improvement enough to justify the complexity of their implementation and increase

of CPU consumption.

The Dynamic Weighted Average algorithm allows each of the sensors to make a contribution

towards the estimation of the current position of the Segway. The Segway's odometer weights

would be much higher than the SICK LMS100 range finder, given the higher accuracy over

short distances. Lower weightings are given to the range finder measurements to correct

odometer errors over time.

5.7 Summary

This chapter gives a detailed explanation of the hybrid navigation system used for

autonomous indoor navigation for the Segway platform. The hybrid navigation system is

composed of three layers: a deliberative layer, a reactive layer and a third layer containing

localisation, information extraction and sensor fusion. The deliberative component of the

navigation system comprises the environment map and an A* path planner. The reactive

component of the navigation system comprises a path tracker to follow the planned path, a

direction sensor to avoid obstacles not represented in the environment map and a dynamic

window algorithm to select the angular and linear velocity to travel for the next control cycle.

Localisation of the system uses odometry from the Segway and landmark features extracted

from the SICK LMS100 laser range finder. Landmark features extracted include concave and

convex corners as well as doorways which are commonly found within the operating

environment. Lines are used to make up landmarks and are extracted from the laser range

finder data using a split and marge algorithm. Fusion of the odometry and landmark

information is done using a dynamic weighted average algorithm.

Hybrid Control of a Segway Platform Developed in MRDS 100

Software 101

Chapter 6 Software

This chapter covers the software used to implement the hybrid navigation system described in

Chapter 5. An overview of the software architecture is presented as well as the functional

model. The implemented software services and the interaction between each service are then

described. Each service in this section is designed to be modular with reusability a goal for

the software.

6.1 Segway Software Architecture

MRDS uses a SOA as the software framework to implement services. SOA is an event driven

programming approach that is mostly applied to web based applications (Chen Y. , 2008).

SOA have been perceived to be less efficient than the typical Object-Oriented Computing

(OOC) methods because of the extra layer of standard interface which allows SOA

applications to be language and platform independent while still allowing communication

(Chen Y. , 2008). SOA applications are not limited to being implemented over the Web and

remote services can run on any suitable locally networked machine. SOA have benefits in

robotic applications particularly for the following reasons (Chen Y. , 2006):

 Robotic systems can have limited memory capacity to carry programs for all

situations, the SOA allows complex services to run on remote nodes.

 Faults can occur and on-site repair is not always available.

 Users can stop and modify individual services without stopping the whole system.

 SOA applications are independent of devices that the application communicates with

allowing the same application to be applied to different robotic devices.

The services implemented to control the Segway platform using the hybrid navigation

architecture are developed using the SOA model. The hybrid navigation framework consists

of a three tiered system shown in Figure 6.1. The bottom tier is the hardware interfaces which

consists of the SickLRF_Scanner service (Section 6.3) and the SegwayBase service

(Section 6.4). These services send and receive control messages to and from the SICK

Hybrid Control of a Segway Platform Developed in MRDS 102

LMS100 and the Segway platform respectively. The middle tier is the application layer which

consists of the SegwayNavigation service (Section 6.5) which implements the hybrid

navigation algorithm discussed in Chapter 5. The top tier is the user interface layer which

consists of the SegwayServices UI service (Section 6.6) which allows user control of the

system from a remote computer.

User Interface layer

Application layer

Hardware Interface layer

Segway Services

Segway Navigation

Sick LRF scanner
Segway Base

Segway Native Wraper

Figure 6.1 Overview of the software architecture

6.2 Operating Mode

The Segway software has two operating modes: a manual mode where the Segway responds

to inputs from a keyboard or joystick and an autonomous mode where the Segway moves

from one location to another while avoiding obstacles. The Segway software starts in manual

mode and changes to the operating mode can be selected using the user interface.

6.2.1 Manual

Manual mode allows a user to directly control the Segway platform’s movements. The

navigation system starts in manual mode until commanded to go autonomous via the user

interface.

Software 103

In manual mode, the Segway platform has three abilities to move. The first ability is the drive

distance command that is implemented using the generic differential drive contract to drive a

specified distance in a straight line. The second ability is the rotate angle command, also

implemented using the differential drive contract, to rotate the Segway platform by a specified

angle in degrees. The third ability to control the Segway is through the use of a joystick (or

any controller that conforms to the Game Controller contract in MRDS).

Manual mode allows the user to set the motor drive power and thus the speed that the Segway

moves when using the three methods mentioned above. The Segway platform can also be

commanded to change between tractor and balance mode or be turned off from the manual

control options.

6.2.2 Autonomous

Autonomous mode allows the start of the hybrid navigation algorithm. Following the

environment map upload, the user interface sets the initial and target position coordinates. If a

path can be found from the initial position to the target position, the autonomous mode can

start and move along the planned path. Details of the autonomous mode are further covered in

Sections 6.5 and 6.6.

6.3 SickLRF_Scanner Service

The SickLRF_Scanner service is a DSS node service that communicates, controls and

obtains range finder data from the SICK LMS100 laser scanner. This service falls under the

‘Hardware Interface Layer’ in Figure 6.1. There was no existing generic driver service on

MRDS that provided the functionality to interface with the SICK scanner but there was a

generic driver for the similar SICK LMS200 laser scanner. The SICK LMS200 service

communicates over RS-232 while this project communicates with the SICK LMS100 over a

TCP/IP Ethernet connection so communication with the scanner had to be designed from the

ground up.

Hybrid Control of a Segway Platform Developed in MRDS 104

The main tasks of this service are receiving scan data packets from the SICK LMS100

scanner and notifying any subscribing services when its state has been updated. The

SickLRF_Scanner service’s state updates every time a data packet has been received.

A flow chart of tasks the SickLRF_Scanner service carries out is in Figure 6.2. After the

service is started it connects to the SICK LRF100 using a TCP/IP Ethernet connection. If the

connection is successful, receivers are activated to listen for packets from the scanner as well

as commands from any subscribers. There are three commands subscribers can issue to the

SickLRF_Scanner service. They are start continuous read, stop continuous read and start

single read. These three commands send requests to the scanner to send a single measurement

reading, continuously send measurements or stop continuously sending measurements. When

data packets are received, the appropriate state variables are updated and a notification sent to

subscribers.

Service Start

Send continuous

read request

Receive

command from

subscribers

Send single read

request

Start Continuous Read Start Single Read

Send stop

continuous read

request

Stop Continuous Read

Connect to

scanner via

TCP/IP

Activate receivers
Receive packet

from scanner

Update State and

notify subscribers

Wait until another

packet interrupt

Figure 6.2 Flowchart for SickLRF_Scanner service

Software 105

The SickLRF_Scanner scanner service has been designed to be a generic service that can be

re-used by any robot using the MRDS runtime with a SICK LMS100 laser scanner. The

service runs on the local host and found at port 50000.

The SickLRF_scanner service consists of three classes: the SickLRF_ScannerService

class, the TCPIOManager class and the Packet class.

6.3.1 SickLRF_Scanner Service Class

SickLRF_Scanner service controls the SICK LMS100 scanner. When a service is created,

the Start() method (Figure 6.3) is automatically called.

Figure 6.3 Start method for the SickLRF_Scanner service

This class is responsible for creating a new SickLRF_ScannerState. The

SickLRF_ScannerState contains important information about the service such as current

distant measurements, angular resolution and angular range. Next the StartLRF() method

protected override void Start()
{
 _state = new SickLRF_ScannerState();
 _state.IPAddress = "130.195.162.58";
 _state.port = 2111;
 StartLRF(_state.IPAddress, _state.port);

 Activate(Arbiter.Interleave(
 new TeardownReceiverGroup(Arbiter.Receive<DsspDefaultDrop>
(false,_mainPort,DropHandler)),
 new ExclusiveReceiverGroup(
 Arbiter.Receive<ReceivedPacket>
(true,_internalPort,PacketHandler)),
 new ConcurrentReceiverGroup(
 Arbiter.Receive<StartContinousRead>
(true,_mainPort,StartContinousReadHandler),
 Arbiter.Receive<StopContinousRead>
(true,_mainPort,StopContinousReadHandler),
 Arbiter.Receive<StartSingleRead>
(true,_mainPort,StartSingleReadHandler),
 Arbiter.Receive<Get>(true, _mainPort, HttpGetHandler),
 Arbiter.ReceiveWithIterator<Subscribe>
(true,_mainPort,SubscribeHandler))

));
}

Hybrid Control of a Segway Platform Developed in MRDS 106

creates a new TCPIOManager which is responsible for communicating with the SICK

LMS100. The SickLRF_ScannerService class starts the TCPIOManager with an IP

address of 130.195.162.58 on Port 2111 (required to find and connect with the SICK

LMS100). The TCPIOManager is explained in greater detail in Section 6.3.2.

Finally the class sets up seven message handlers using Aribiter.Receive<>() and adds

them to the main threading interleave which control the flow of information throughout the

class. The seven messages the handlers receive are:

 StartContinousRead

 StopContinousRead

 StartSingleRead

 ReceivedPacket

 Get

 Subscribe

 DsspDefaultDrop.

The Arbiter.Receive method format is as follows:

Arbiter.Receive<“Message Type”>(Persistent Receiver Boolean, Port to receive message on,

Handler method to call on message arrival).

The DsspDefaultDrop message handler is created under the TeardownReceiverGroup

which classifies messages that close down the service. This message is the only non-persistant

handler as it is declared with a false Boolean during handler setup.

The ReceivedPacket message is sent internally from the TCPIOManager and is created

under the ExclusiveReceiverGroup while the other six messages, which are sent

externally from subscribing services, are created under the ConcurrentReceiverGroup,

indicating these messages can be handled concurrently with other messages.

The StartContinousRead and StartSingleRead handlers instruct the TCPIOManager

to send telegrams to the SICK LMS100 scanner to start a continuous or single scan of the

environment while the StopContinousRead handler instructs it to send a telegram to stop

continuous scans.

Software 107

The ReceivedPacket handler receives messages from the TCPIOManager when scanned

data telegrams arrive. A snippet of the packet handler can be seen in Figure 6.4. The handler

updates the current state with the new distance measurements received and then posts a

message to subscribed services notifying them of the new distance measurements.

Figure 6.4 Received packet handler method

The Get handler receives requests, from either another service or an http website request, for

an update on the current state. When the Get is requested from another service, a return

message is sent containing the entire current state of the Sick Scanner service. When the Get

is requested from an http website, a JPEG image representation of the environment is returned

to be viewed in a web browser. An example of the returned image is shown in Figure 6.5.

The Subscribe handler receives messages from services requesting to get distance

measurement updates from the SickLRF_Scanner service. The handler adds the subscribing

service to the list of current subscribers and posts a success message to the subscriber

indicating a successful subscription.

The final handler, DsspDefaultDrop, is called when the service is shutdown. The handler

instructs the TCPIOManager to close communication with the SICK scanner and then closes

the SickLRF_Scanner service.

void PacketHandler(ReceivedPacket packet)
 {
 switch (packet.CommandType){

 case "sSN":
 _state.TimeStamp = DateTime.Now;
 _state.NumberOfMeasurements = packet.length;
 _state.DistanceMeasurements = packet.Data;
 _state.AngularRange = 270;
 _state.AngularResolution = 0.5;
 _subMgrPort.Post(new submgr.Submit(_state,
DsspActions.ReplaceRequest));
 return;

 case "sRA":
...

Hybrid Control of a Segway Platform Developed in MRDS 108

Figure 6.5 Returned image example from a HTTP Get request message

6.3.2 TCPIOManager Class and Packet Class

The TCPIOManager (TCP input output manager) class is the communication class

responsible for connecting to the SICK LMS100 using TCP/IP, disconnecting the TCP/IP

connection when the service closes, sending telegrams to the scanner and receiving telegrams

from the scanner.

A TCPIOManager is created by the SickLRF_ScannerService class to manage

communication with the SICK LMS100. When created, the TCPIOManager attempts to

connect to and open a NetworkStream with the SICK scanner. The Connect() method can

be seen in Figure 6.6. If the connection is unsuccessful (scanner is unplugged) the

TCPIOManager will respond with an error message, informing subscribers that the SICK

LMS100 is unavailable. Once connected, the StartRead() method is started which

generates an interrupt when a telegram is available to be read.

Software 109

Figure 6.6 Connect method within the TCPIO Manager class

As mentioned in Section 3.3.2, telegrams are the packet structure used for communicating to

and from the SICK LMS100 laser scanner. The TCPIOManager class supports sending three

types of telegrams to the laser scanner (Table 6.1) and receiving five types of telegrams from

the laser scanner (Table 6.1). Each telegram is framed with a start of frame character (STX)

and end of frame character (EXT) as shown in Table 6.3.

Table 6.1 Supported telegrams sent to scanner

Telegram Message Description

 sRN LMDscandata Start single read

 sEN LMDscandata 1 Start continuous read

 sEN LMDscandata 0 Stop continuous read

public void Connect(String server, Int32 port)
 {
 try
 {
 // Create a TcpClient.
 client = new TcpClient(server, port);
 // Get a client stream for reading and writing.
 stream = client.GetStream();

 //start reading packets
 _internalPort.Post(new StartRead());
 }
 catch (ArgumentNullException e)
 {
 _internalPort.Post(new Error("ArgumentNullException: {0}", e);
 }
 catch (SocketException e)
 {
 _internalPort.Post(new Error("SocketException: {0}", e);
 }
 }

Hybrid Control of a Segway Platform Developed in MRDS 110

Table 6.2 Supported telegrams received from scanner

Telegram Message Description

 sRS LMDscandata Confirm message to start single read

 sEA LMDscandata 1 Confirm message to start continuous read

 sEA LMDscandata 0 Confirm message to stop continuous read

 sRA LMDscandata Single scan data packet

 sSN LMDscandata Continuous scan data packet

Table 6.3 Telegram frame

As the SOPAS Engineering Tool software can be used to configure the scanner, telegrams

relating to setting the scan rate, resolution and range are not implemented in this project’s

control software. This is because once the scanner is configured, the project is not required to

change any settings during normal operation. SOPAS was used to configure the scan rate at

50Hz, angular range to 270° and angular resolution to 0.5°.

The sRN telegram requests a single data scan back from the SICK LMS100. Figure 6.7 shows

the sRN telegram structure as well as the ASCII telegram packet with framing that is sent to

the range finder. The range finder responds with a sRS LMDscandata telegram to confirm

receiving the request, then the range finder sends a sRA LMDscandata telegram containing

the single scan data. Figure 6.8 shows an example of a single scan request and response from

the scanner.

Software 111

Figure 6.7 sRN LMDscandata telegram structure

Figure 6.8 Single scan request example

The next implemented telegram is sEN LMDscandata. The sEN telegram requests the

scanner to continuously scan and send back data until instructed to stop. To start continuous

scanning, the control computer sends an ASCII telegram as shown in Figure 6.9 with the

value of 1. To stop continuous scanning, another ASCII telegram is sent with a value of 0.

The scanner responds with a sEA LMDscandata telegram with a value of 1 to confirm starting

and a value of 0 to confirm stopping. After confirming the start of a continuous scan, the laser

scanner will send sSN LMDscandata telegrams containing the distance measurements. Figure

6.10 shows an example of a continuous scan request and response from scanner until

requested to stop.

Hybrid Control of a Segway Platform Developed in MRDS 112

Figure 6.9 sEN LMDscandata telegram structure

Figure 6.10 Continuous scan request example

The sRA LMDscandata and sSN LMDscandata telegrams contain components separated by

space characters. When one of these telegrams arrive they are sent to the Packet class for

processing.

 The Packet class is responsible for splitting the received packet data into separate

components. Components include the command packet name, packet number, packet length,

angular resolution, angular range and the distance data.

Once the telegrams have been processed the packet is posted to the SickLRF_scanner class

where the service state is updated with the latest distance measurements and subscribers

notified.

Software 113

6.4 Segway Base Service

The Segway interface consists of two services working together to allow the controlling

computer to interface with the Segway RMP200 via USB. The first service is a low level

service, ‘SegwayNativeWrapper’, that handles USB communication to the Segway. The

second service, ‘SegwayBase’, is built on top of MRDS’s Generic Differential Drive (GDD)

service contract that provides a common specification for differential drive mobility

platforms. The service runs on the local host and found at port 50001.

6.4.1 Segway Native Wrapper

Segway Native Wrapper service is written in C++ and is based on the example code provided

by Segway Inc. and modified to allow the functionality required in MRDS. Segway Native

Wrapper service is an interface library to the ftd2xx.dll which opens up USB communication,

reads and writes command packets to and from the Segway platform, and closes the

connection when required. The service is made up of two files, ‘usb_int.cpp’ and

‘SegwayNativeWrapper.cpp’

On service start, the Segway Native Wrapper service loads the Segway’s USB drivers and

connects to the first Segway platform found. Once connected, the service can send control

messages to the Segway and receive monitoring messages from the Segway. Segway control

messages were discussed in Section 3.1.5 and monitoring messages were discussed in Section

3.1.6.

The SegwayNativeWrapper.cpp defines seven structs for the seven messages sent from

the Segway. They are labelled MessageData1-7. The SegwayNativeWrapper is

responsible for reading the received data buffer and putting the received values into the

appropriate MessageData fields. When all seven fields have been updated, an interrupt is set

for the SegwayBase service to read and update its state variables.

The important methods used in the USB_int.cpp file are summarised in Table 6.4. and the

important methods used in the SegwayNativeWrapper.cpp file are summarised in Table

6.5.

Hybrid Control of a Segway Platform Developed in MRDS 114

Table 6.4 USB_int.cpp important methods and summary

Method Summary

Usb_Init() Loads the Segway USB driver and connects to the first Segway

device found.

Usb_Active() Returns true if there is an active USB link to a Segway.

Usb_LoadDLL() Load the DLL and setup the library calls.

Usb_CloseDLL() Close and unload the DLL.

Usb_Write(Tx buffer) Write a buffer to the USB interface.

Usb_Read() Read into a buffer from the USB interface.

Usb_Close() Closes the connection to the Segway.

Usb_message_format Format a message for the USB and calculate the checksum for

the message being sent. Buffer is expected to be exactly 18 bytes

in length.

Usb_can_send(string) Send a CAN formatted message via USB.

Software 115

Table 6.5 SegwayNativeWrapper.cpp important methods and summary

Method Summary

SegwayNativeWrapperClass() Constructor. Calls the Init() method, sets up RX buffer and

sets velocity and turn to zero.

~SegwayNativeWrapperClass() Destructor. Clears the RX buffer and closes the USB DLL

Init() Makes a call to initialise and start a USB connection to the

Segway.

Drive(int,int) Sends a drive command to the Segway. Takes a velocity

and turn integer.

SetMaxVelScale(double) Sends a message to the Segway platform to set the

maximum velocity scale factor.

SetMaxAccScale(double) Sends a message to the Segway platform to set the

maximum acceleration scale factor.

SetMaxTurnScale(double) Sends a message to the Segway platform to set the

maximum turning scale factor.

SetGainSchedule(double) Sends a message to the Segway platform to set the Gain

schedule.

SetCurrentLimitScale(double) Sends a message to the Segway platform to set the current

limit scale factor.

SetOperationMode(int) Sets operation mode for the Segway. 1=tractor,

2=balance,3=off.

Shutdown() Causes the Segway unit to immediately turn off.

Hybrid Control of a Segway Platform Developed in MRDS 116

6.4.2 SegwayBase Service

As previously mentioned, the SegwayBase service implements the GDD contract defined

within MRDS. The Generic Differential Drive service defines how to control a differential

drive robot (Microsoft, 2012). As the service implements the GDD service contract, the

Segway platform can be swapped for a generic differential drive system on any robot without

need to change code. The SegwayBase service is designed to be a generic service that can be

used by any MRDS application wanting to use a Segway platform.

The SegwayBase service starts by creating a new SegwayNativeWrapper class which

connects to the Segway platform. The service then defines the main operating port, sets up

interrupts for update messages from the SegwayNativeWrapper, configures the Segway

and then starts a control timer.

The main operations portset (Figure 6.11) defines seven messages that can be used to change

the current state of the SegwayBase service by external services. Table 6.6 summarises the

seven messages.

Figure 6.11 The main operations portset used by the SegwayBase service

public class SegwayBaseOperations : PortSet<
 Drive,

 SetOperationMode,
 ResetIntegrator,

 Replace,
 Get,

 Subscribe,
 DsspDefaultDrop>{}

Software 117

Table 6.6 SegwayBase service main operations port messages

Message Type Description

Drive Sends a drive command to the Segway platform with a target linear

velocity and target turn rate. Values are saved to the state and sent to

the Segway at the next command timer interrupt.

SetOperationMode Sets operation mode for the Segway. 1=tractor, 2=balance,3=off.

ResetIntegrator Tells the service to reset the odometers on the Segway. The

commands are bit field operations so can be OR’d together to reset

multiple odometers at once.

1 = right wheel displacement

2 = left wheel displacement

4 = yaw displacement

8 = fore/aft displacement

Replace Updates the entire SegwayBase with the received replaced state.

Get Sends the entire SegwayBase to the service whom sent the Get

message.

Subscribe Informs the SegwayBase service that another service wants to

subscribe to this service and receive update messages whenever the

state is changed.

DsspDefaultDrop Informs the SegwayBase service to stop and shutdown the service.

The SegwayBase service is interrupted by the SegwayNativeWrapper when a new set of

Segway messages arrives. The most recent values from the SegwayNativeWrapper update

the SegwayBase’s state and a notification message is sent to all subscribers indicating the

change in state.

Hybrid Control of a Segway Platform Developed in MRDS 118

Figure 6.12 Configure Segway method within the SegwayBase service

The ConfigureSegway method is shown in Figure 6.12 which sets the scale factors, resets

the encoder values and sets up a control timer that sends the current velocity command and

turn command to the Segway at a frequency of 20 Hz. As previously mentioned, if the

Segway platform does not receive control messages at a rate of at least 2.5 Hz the Segway

platform slews its velocity to zero. The control timer is set to 20 Hz, the same speed as the

hybrid navigation system.

The scale factors are sent to the Segway each time it is connected and before any velocity

command is issued to the Segway. Table 6.7 shows the scale factor values used in this project.

Table 6.7 Segway scale factor values

Scale Factor Value

Gain Schedule 0

Max Acceleration Scale 0.5

Max Velocity Scale 0.5

Max Turn Scale 0.5

Current Limit Scale 1.0

Section 3.1.5 describes each scale factor. The Gain schedule is set at 0 for light payloads, the

maximum acceleration, velocity and turn scales are set at 0.5, which limit the Segway to a

maximum linear velocity of 1.7 metres per second maximum and a maximum angular

IEnumerator<ITask> ConfigureSegway()
 {
 _segway.SetGainSchedule(0);
 _segway.SetMaxAccScale(0.5);
 _segway.SetMaxVelScale(0.5);
 _segway.SetMaxTurnScale(0.5);
 _segway.SetCurrentLimitScale(1.0);
 _segway.ResetAllIntegrators();

 //start sending periodic commands
 _timerPort.Post(DateTime.Now);
 Activate(Arbiter.Receive(true, _timerPort, TimerHandler));

 _segway.getUSBData();
 yield break;
 }

Software 119

velocity of 1.7 radians per second. The current limit scale is set at 1.0 which does not limit the

available torque to the motors. The motor torque can be decreased in low friction

environments where high torques cause excessive wheel slippage (which was not observed in

the operating environment).

Figure 6.13 Drive handler method within SegwayBase service

The DriveHandler method is shown in Figure 6.13. It takes the new velocity and turn

targets from the Drive message and updates the state velocity values. The new values are

then sent to the Segway platform.

6.5 SegwayNavigation Service

The SegwayNavigation service implements the components of the hybrid navigation

algorithm discussed in Chapter 5.

The SegwayNavigation service partners and subscribes to the Sick LRF Service and the

SegwayBase service. This allows the service to request and receive updates on range finder

data as well as command and receive the current state of the Segway. The Segway UI service

(Section 6.6) will partner and subscribe to the SegwayNavigation service. The

SegwayNavigation service relies on the Segway UI service for the current operating map,

current position, target position as well as commands to start autonomous path following.

Three timers are used to execute different tasks of the hybrid navigation system. These three

timers, shown in Figure 6.14, are used to update the current position of the Segway, calculate

target angular and linear velocities and command the Segway to move with the target angular

and linear velocities.

[ServiceHandler(ServiceHandlerBehavior.Exclusive)]
public IEnumerator<ITask> DriveHandler(Drive drive)
{
 _state.SetVelocityCommand = drive.Body.Velocity;
 _state.SetTurnCommand = drive.Body.Turn;

 _segway.Drive(_state.SetVelocityCommand, _state.SetTurnCommand);
 drive.ResponsePort.Post(DefaultUpdateResponseType.Instance);
 yield break;
}

Hybrid Control of a Segway Platform Developed in MRDS 120

The Segway navigation service consists of three classes: the SegwayNavigation class

which is responsible for implementing the hybrid navigation algorithm, the

SegwayNavigationState class which is responsible for maintaining the current state of the

SegwayNavigation service, and the SegwayNavigationOperations class which is

responsible defining communications with partnered services as well as the required MRDS

operations. These three classes are discussed further in the following sections. The service

runs on the local host and found at port 50002.

6.5.1 SegwayNavigation Class

The SegwayNavigation class is the main controlling element for navigation system for the

Segway. The service starts by defining two timers: SegwaySubscriptionTimer and

SickSubscriptionTimer. These two timers check for and attempt to subscribe to the

SegwayBase and SickLRF_Scanner services at 10 Hz. When successfully subscribed, the

timers are set to 1 Hz and used as a watchdog to ensure communication with the lower level

services. If either of the lower level services stops responding then the Segway’s navigation

algorithm discontinues and the Segway is brought to a standstill until the subscription can be

established again.

Replace messages from both the SegwayBase and SickLRF_Scanner service are received

each time the respective service updates its current state. The replace message handlers update

the SegwayNavigation’s state with new range finder data or odometry from the Segway.

The service then defines three timers (as mentioned above) to execute different tasks of the

navigation system. The three timers are called SensingTimer, DriveTimer and

AutonomousTimer. All three timers are executed at 20 Hz.

The SensingTimer extracts landmarks from the SICK LRF rangefinder data. The landmarks

extracted and how they are extracted has been explained in Section 5.5. The SensingTimer

is also responsible for calling the SensorFusion method which determines the position and

orientation of the Segway by fusing the odometry information and landmark correction.

Software 121

Drive Timer

Update Odometry

Segway Control

Sensor Timer

Landmark

Extraction

Sensor Fusion

Autonomous

Timer

Path Planner

Reactive Control

Figure 6.14 SegwayNavigation timers

The DriveTimer updates the current coordinate position of the Segway using odometry as

explained in Section 5.4.2. If the Segway is operating in autonomous mode, the DriveTimer

sends the current target angular velocity and target linear velocity from the navigation system

to the SegwayBase service which instructs the Segway to move. The target angular and

linear velocities are given in rad/s and m/s respectively and require conversion to command

values the Segway can interpret. The conversion from target velocities given from the

navigation system to Segway command values is discussed further in Section 7.2.2. If the

Segway is operating in manual mode, the current target angular and linear velocities sent from

the Segway UI service are sent to the SegwayBase service.

The AutonomousTimer checks the current operating mode and path planning flags. If the

Segway is currently running in autonomous mode and a path is found by the path finding

algorithm, the hybrid navigation control algorithm covered in Chapter 5 is run. The

navigation algorithm includes the path tracking algorithm, the direction sensor algorithm and

the dynamic window algorithm.

The SegwayNavigation class also defines handlers for the operation messages described in

Section 6.5.3. These messages can be posted on the main operating port of the service to

Hybrid Control of a Segway Platform Developed in MRDS 122

update the state of the service. A brief overview of each message handler is given in Table

6.8.

6.5.2 SegwayNavigation State Class

The SegwayNavigationState class defines all the variables that make up the current state

of the SegwayNavigation service. A new service state is created when the

SegwayNavigation class is run which sets initial values to some service state variables. The

list below summarises the important state variables for the SegwayNavigation service:

 The Sick LRF data members: distance measurements, angular resolution, angular

range and the last received message from the SickLRF_Scanner service timestamp.

 The recent values for the Segway data members: all values discussed in Section 3.1.6

including the current encoder counts, wheel velocities, pitch angle, distance between

wheels, tyre diameter and the last received message from the SegwayBase service

timestamp.

 The Segway navigation environment map data points and connections.

 Landmark databases: the landmarks extracted from the environment map database and

landmarks extracted from laser scanner database.

 Current and target position coordinates.

 Path planning details: list of nodes along path and error flags.

 Reactive control values: target angular and linear velocity.

 Dynamic window parameters: linear and angular velocity limits.

6.5.3 SegwayNavigation Operations Class

The SegwayNavigationOperations class contains and defines the main operating port for

the SegwayNavigation service. The main operating port defines eight messages which

other services can send to change the state of the SegwayNavigation service. Four of the

messages are required by MRDS while the other four update state parameters. The

SegwayNavigationOperations class defines the messages while the

Software 123

SegwayNavigation class implements the handlers of the messages. The eight messages are

presented in Table 6.8 with a brief description of the contents of each message as well as any

state parameters they change.

Table 6.8 SegwayNavigation operations port messages

Message Type Description

UpdateMapPoints Updates the service with the current operating environment map.

Changes the MapPointCoordinates and MapPointConnectivity

state parameters. Receipt of this message causes landmarks to be

generated from the given map and stored in the

MapLandmarkDatabase state parameter.

UpdateGridResolution Updates the resolution of the operating environment map. Changes the

GridResolution state parameters. Receipt of this message causes the

occupancy grid map to be updated as well as the A* path planning

method to be invoked.

UpdateInitTargetPose Updates the starting coordinates (InitPose) and target coordinates

(TargetPose) of the Segway platform.

UpdateDriveMode Updates the current operating mode of the navigation system. This

messages tells the navigation system to change either manual or

autonomous mode. If autonomous mode is required, the hybrid

navigation system is enabled.

Replace Updates the entire SegwayNavigationState with the received

replaced state.

Get Sends the entire SegwayNavigationState to the service whom sent

the Get message.

Subscribe Informs the SegwayNavigation service that another service wants to

subscribe to this service and receive update messages whenever the state

is changed.

DsspDefaultDrop Informs the SegwayNavigation service to stop and shutdown the

service.

Hybrid Control of a Segway Platform Developed in MRDS 124

6.6 Segway UI service

The Segway UI service class is made up of the Segway UI service and a Graphic User

Interface (GUI) allowing human interaction with the Segway. The GUI is responsible for

creating an interaction between the operator and the Segway while the controlling service

conforms to the MRDS CCR service requirements. The Segway UI service is capable of

running remotely on another computer to control the Segway platform. The GUI is created

using WinForms to create a simple interface to the Segway platform. The Segway UI service

subscribes to the SegwayNavigation service to receive updates about the current navigation

state. The service runs on a networked computer and found at port 50003.

 The service is responsible for the following tasks:

 Displaying the distance measurements from the SICK LMS100 scanner.

 Displaying the current odometer encoder values.

 Displaying the current wheel velocities and pitch/roll angles.

 Displaying the current coordinate position of the Segway.

 Drive distance (metres) and rotate (degrees) commands.

 Control Segway in manual mode with joystick.

 Setting maximum motor power for drive distance, rotate degrees and joystick

commands.

 Reading environment map data from file and sending the data to the

SegwayNavigation service.

 Set occupancy grid resolution and display occupancy grid.

 Set current and target coordinates and heading.

 Display environment map with current and target positions.

 Emergency stop button on GUI and joystick.

 Change between operating modes: balance, tractor and off as well as manual or

autonomous.

A WinForm is a separate module, not a service in its own right. Because it operates as a single

threaded apartment model it cannot wait on CCR ports to receive messages. However, the

main service needs to update information on the Form in response to notification messages

Software 125

such as game controller updates. Sending information from the main service to the Form is

done using FormInvoke method which allows transferring of information to a WinForm.

The form needs to pass back commands to the main service. When the form is interacted with,

events fire inside the Form code. The WinForm events are not related to the CCR in any way,

but the event handlers in the form send CCR messages to the main services by posting

messages to the services EventsPort. Messages received on the events port are listed and

described in Table 6.9.

Table 6.9 Segway UI service’s events port

Message type Description

DriveDistance Instructs the Segway UI service to drive the Segway platform a certain distance

in metres.

RotateDegrees Instructs the Segway UI service to rotate the Segway platform by a certain angle

in degrees.

OnStop Instructs the Segway UI service to send an emergency stop signal to the Segway .

OnModeSet Allows the GUI to set the current operating mode of the Segway, either tractor,

balance or off.

OnDriveMove The GUI sends OnDriveMove request to the UI service when the Segway

navigation system is in manual mode and is currently being commanded to move

using a joystick.

ResetEncoders Instructs the Segway UI service to send a message to the SegwayBase service to

reset all encoder values.

GridMap

PointData

Instructs the Segway UI service to send the map point data and connectivity data

to the SegwayNavigation service.

GridMap

Resolution

Instructs the Segway UI service send the map resolution data to the

SegwayNavigation service.

UpdateInit

TargetPose

Instructs the Segway UI service to send the initial and target position coordinates

to the SegwayNavigation service.

AutoMode

Enabled

Instructs the Segway UI service to send a Boolean value to the

SegwayNavigation service indicating manual control or autonomous mode for

the Segway platform.

Hybrid Control of a Segway Platform Developed in MRDS 126

Figure 6.15 User interface tab 1

Figure 6.16 User interface tab 2

Software 127

The first tab of the user interface can be seen in Figure 6.15 User interface tab 1Figure 6.15.

The first tab focuses on sensor feedback and manual control of the Segway. It shows encoder,

velocity and angle values from the Segway as well as the current position (). The drive

distance and rotate degrees commands for the Generic Differential Drive contract and joystick

commands can also be set from the first tab. An emergency stop button is available to stop the

Segway when required. The first tab also displays a visual representation of the distance

measurements received from the SICK LMS100 laser scanner.

The second tab (Figure 6.16) focuses on the navigation features of the system. It shows the

current environment map as well as the current position (red) and target position (green) and

allows a user to set the two positions. A button allows the operating mode to switch between

manual and autonomous operation.

6.7 Summary

Using the SOA architecture instigated in MRDS, the hybrid navigation system designed by

Chand has been implemented as a software framework to allow the Segway platform to

navigate autonomously. The software is created using a three tiered system where the

hardware composes the lowest tier, the navigation system composes the middle tier and the

user interface composes the top tier. The software implements both manual and autonomous

control of the Segway as desired by the user through the UI service.

The system is made up of four separate services working together: the first service controls

the SICK LMS100 laser scanner, the second service controls the Segway platform, the third

service implements the hybrid navigation algorithm and the fourth service implements the

user interface allowing human interaction with the system.

Hybrid Control of a Segway Platform Developed in MRDS 128

Results 129

Chapter 7 Results

7.1 Sick LRF Characterisation

The parameters of the SICK-LMS100 were tested in an indoor environment. All of the

measurements were taken inside the Laby building at Victoria University of Wellington. An

experimental setup was created that reproduced the main aspects of indoor usage. As the

Segway’s main operating environment is indoors with florescent lighting, the datasets were

collected in a room lit up with florescent lighting at normal light intensity and standard indoor

operating temperature (18-20 °C). The SICK-LMS100 sensor was tested with 270° angular

range, 0.5° angular resolution with a 50 Hz scan rate. The SICK-LMS100 has several built in

data filters implemented in the firmware which improved performance of the sensor in fog as

well as measuring the second reflective beam (used for measuring object distances through

glass). As none of these features are required for the normal operation of the Segway, they

were not tested.

The results of the test can be seen in Figure 7.1. It was found that the settling time (standard

deviation within 0.01 m of steady state) of the sensor is approximately 35000 scans which at a

scan rate of 50 Hz, is about 12 minutes.

Figure 7.1 Sick LMS100 settling time

Hybrid Control of a Segway Platform Developed in MRDS 130

The second measurement was set to determine the time-dependent variation of the SICK

LMS100 scanner in a static setup. The object was positioned 5 m in front of the scanner.

Three reflective surfaces were used for the measurements representing the extremes of the

environment the Segway could be expected to operate in. The first reflective surface tested

was a black coloured segment of wall, chosen because it represented the minimum reflective

object in the operating environment. The results of the experiment on the black reflective

surface can be seen in Figure 7.2. The average measured distance to the black surface was

5.004 metres, with a standard deviation of 0.007 metres.

Figure 7.2 Distance measurements to black surface

Results 131

Figure 7.3 Distance measurements to white surface

The experiment was repeated using a white reflective surface, chosen because it represented

the maximum reflective object in the operating environment. The results of the experiment on

the white reflective surface can be seen in Figure 7.3. The average measured distance to the

white surface was 5.002 metres, with a standard deviation of 0.008 metres.

The experiment was repeated a third time using a glass surface, chosen because there are

many glass surfaces/walls within other corridors that could be new operating environments at

Victoria University. The results of the experiment on the glass surface can be seen in Figure

7.4. The average measured distance to the glass surface was 5.023 metres, with a standard

deviation of 0.008 metres.

From these tests the SICK LMS100 laser scanner produces accurate measurements with a

maximum standard deviation of 0.008 m over 5 m. These accurate measurements are

sufficient for robot navigation and localisation within the desired operating environment.

Hybrid Control of a Segway Platform Developed in MRDS 132

Figure 7.4 Distance measurements to glass surface

7.2 Segway Characterisation

7.2.1 Odometry

The odometry calibration tests were performed in two separate corridors allowing the

odometry calibration tests to be performed on two different surfaces. The first in the Laby

level 3 corridor measuring 1.75 x 11.4 m was chosen as it is the expected operating

environment with a vinyl floor. The second corridor that odometry calibration was performed

in was the Cotton level 2 corridor measuring 2.5 x 17 m and was chosen as it could be an

operating environment for future projects and the floor is covered with carpet.

The two environments were cleared of any obstacles as the initial odometry tests were

conducted before the hybrid navigation algorithm was implemented, meaning the SICK

LRF100 rangefinder was not used for localisation purposes. This left only the odometers for

localisation, which are susceptible to a number of errors including initial misalignment errors

and odometry errors such as wheel slippage and missed encoder counts.

Initial misalignment errors can significantly affect the final position as with only odometry

information, the Segway cannot detect or correct initial heading errors. Initial misalignment

errors were minimised by using floor markings and a custom jig to align the tyres to be

Results 133

parallel with the required trajectory. Odometry errors are both random and systematic.

Systematic errors can be minimised through odometer calibration while random errors occur

due to wheel slippage or missed encoder counts that cannot be avoided, but can be minimised

by limiting the acceleration of the Segway and only operate on surfaces with sufficient

traction.

Before initial testing, the Segway tyre pressures were set at 6 psi as recommended in the user

manual. Straight line tests were conducted over 5 metres in both environments to test initial

drift due to non-symmetric wheel diameters. These tests resulted in an average deviation from

a straight line trajectory by 42 cm to the right. This was due to the right wheel having a

smaller diameter and therefore traveling less distance than the left wheel. This was corrected

by increasing the air pressure in the right wheel, thereby increasing its diameter. The tests and

adjustments were repeated until the Segway had an average offset error of less than 2 cm over

the 5 metres travelled.

An estimated conversion factor of 33215 counts per metre was recommended as the left and

right wheel odometry calibration for a nominal rolling diameter of 48 cm. The actual left and

right encoder conversion factor was found by measuring the ratio of the actual distance

travelled to the distance travelled as calculated by the Segway with a conversion factor of

33215. The test was done over distances of 1 to 5 metres in 1 metre divisions with target

velocities ranging from 0.2 m/s to 0.95 m/s in 0.15 m/s divisions. This was to give the average

odometry conversion factor for different velocities and distances.

Hybrid Control of a Segway Platform Developed in MRDS 134

Figure 7.5 Ratio of actual distance to measured distance vs velocity and distance on vinyl

Figure 7.6 Ratio of actual distance to measured distance vs velocity and distance on carpet

Each trial was done three times with the average result for each distance measurement shown

in Figure 7.5 and Figure 7.6. The average for carpet was 1.03229 while the average ratio for

vinyl was 1.03527. The average ratio for both vinyl and carpet, represented by a solid black

line, is 1.03378. This meant the recommended conversion factor of 33215 was too low by

3.38% and was increased to 34337 counts per metre. The standard deviation of all the wheel

Results 135

odometer errors was 0.11% giving an indication of random error due to wheel slippage over

the distance travelled.

The yaw encoder output is calculated internally by the Segway using the left and right wheel

encoders. It was expected that the yaw encoder would also have an error of 3.38% and require

calibrating.

The actual yaw encoder conversion factor was found by measuring the ratio of the actual

rotation in degrees travelled to the rotation turned as calculated by the Segway with a

conversion factor of 112644. The test was carried out over rotations of 180 to 900 degrees in

180 degree divisions with target angular velocities ranging from 15 deg/s to 40 deg/s in 5

deg/s divisions. This was to give the average odometry conversion factor for different

velocities and distances.

Each trial was done three times with the average result for each rotation measurement shown

in Figure 7.7 and Figure 7.8. The average for each angular velocity is also shown. The

average ratio for both vinyl and carpet, represented by a solid black line, is 1.03611. This

meant the recommended conversion factor of 112644 was too low by 3.61% and was

increased to 116711. The standard deviation of the yaw odometer errors was 0.19% giving an

indication of random error due to wheel slippage over the distance travelled

The measured error in the yaw encoder was higher than the expected error of 3.38% by

0.23%. The average yaw error for carpet was 3.64% while the average yaw error for vinyl was

3.58%. This error difference could be due to greater wheel slippage during turns when

compared to linear movements.

Hybrid Control of a Segway Platform Developed in MRDS 136

Figure 7.7 Ratio of actual rotation to measured rotation vs angular velocity on vinyl

Figure 7.8 Ratio of actual rotation to measured rotation vs angular velocity on carpet

Results 137

7.2.2 Segway Characterisation

Due to the dynamic stabilisation of the Segway platform there is not a one to one relationship

between the velocity of the wheels and velocity of the platform. Tests were carried out in an

open environment to observe the motion of the Segway during operation. Particular attention

is given to the wheel velocities and pitch angle the Segway undergoes during movement.

These tests were carried out without the navigation system to determine the stopping distance

required for different wheel velocities and to investigate the relationship between pitch angle

and velocities during straight line movement. The left and right wheel movements were the

same during testing and only the left wheel data is graphed as results during straight line

trajectories. The pitch angle gives a representation of the centre of gravity of the Segway

relative to the wheel axis.

The Segway platform was commanded to move at 0.25, 0.3, 0.4, 0.5, 0.6 and 0.75 m/s.

Emergency stop commands were sent to the Segway when the odometers had measured a

displacement of 1, 2, 3, 4 and 5 metres. Only the 0.3, 0.5 and 0.75 m/s results are shown in

this section as the other results follow similar trends as presented and do not offer further

discussion.

Figure 7.9 shows the wheel displacement for a 0.3 m/s target velocity for the five distances.

The average stopping distance was 0.47 m, with a maximum stopping distance of 0.55 m

during the 5 m test and minimum stopping distance of 0.27 m during the 2 m test. The reason

for the 0.29 m difference between the 2 m and 5 m tests can be seen in Figure 7.10.

Figure 7.10 shows the wheel velocity for a 0.3 m/s target velocity for the five distances. From

the graph, the Segway’s wheels reverse slightly to tilt the platform, stabilisation then occurs

as the centre of gravity moves forward of the Segway's axis. After the initial backwards

movement, the wheel velocity accelerates up to 0.6 m/s. The wheel velocity then oscillates

between 0.2 m/s and 0.4 m/s to maintain 0.3 m/s velocity of the platform. When given the

stop command, the acceleration spikes high to bring the centre of gravity back behind wheels

axis and then slows. Some undershoot occurs causing a negative velocity during stopping to

maintain stabilisation.

Hybrid Control of a Segway Platform Developed in MRDS 138

The relatively large difference between the 2 m and 5 m stopping distance is due to the

current velocity of the Segway platform when the stop command was issued. The Segway's

velocity was slowing when the 2 m stop command was given while it was accelerating when

the 5 m stop command was given. The two vertical lines indicate when the stopping

commands were issued in the three graphs.

Figure 7.11 shows the pitch angle during the 0.3 m/s velocity test. The pitch angle changes

rapidly during starting and stopping as the Segway platform stabilises. The maximum pitch

angle was 5° during acceleration and -6° during deceleration.

Results 139

Figure 7.9 Left and right wheel displacement with 0.3 m/s velocity command

Figure 7.10 Left and right wheel velocities with 0.3 m/s velocity command

Figure 7.11 Segway pitch angle with 0.3 m/s velocity command

Hybrid Control of a Segway Platform Developed in MRDS 140

Figure 7.12 Left and right wheel displacement with 0.5 m/s velocity command

Figure 7.13 Left and right wheel velocities with 0.5 m/s velocity command

Figure 7.14 Segway pitch angle with 0.5 m/s velocity command

Results 141

Figure 7.12 shows the wheel displacement for a 0.5 m/s target velocity. The average stopping

distance was 0.68 m with a maximum stopping distance of 0.85 m during the 5 m test and

minimum stopping distance of 0.43 m during the 4 m test.

Figure 7.13 shows the wheel velocity for a 0.5 m/s target velocity. The Segway again reverses

slightly to tilt the platform then accelerates to maintain stabilisation with the centre of gravity

slightly in front of the wheel axis. The wheel velocity reaches a maximum at 0.8 m/s and then

oscillates between 0.4 m/s and 0.65 m/s. Again there is a spike when the stop command is

issued to bring the centre of gravity back behind the wheel axis and then slows.

Figure 7.14 shows the pitch angle during the 0.5 m/s velocity test. Again the maximum pitch

angle is reached during acceleration and deceleration, with a maximum pitch angle of 5°

during acceleration and -6° during deceleration.

Figure 7.15 shows the wheel displacement for a 0.75 m/s target velocity. The average

stopping distance was 0.97 m with a maximum stopping distance of 1.16 m during the 5 m

test and minimum stopping distance of 0.53 m during the 3 m test.

Figure 7.16 shows the wheel velocity for a 0.75 m/s target velocity which matches the same

characteristics previously mentioned. The wheel velocity reaches a maximum of 1.08 m/s and

then oscillates between 0.5 m/s and 0.8 m/s with spikes when stop commands are given.

Figure 7.17 shows the pitch angle during the 0.5 m/s velocity test with a maximum pitch

angle of 7° during acceleration and 9° during deceleration.

Hybrid Control of a Segway Platform Developed in MRDS 142

Figure 7.15 Left and right wheel displacement with 0.75 m/s velocity command

Figure 7.16 Left and right wheel velocities with 0.75 m/s velocity command

Figure 7.17 Segway pitch angle with 0.75 m/s velocity command

Results 143

Figure 7.18 Wheel displacement over 5 m for different velocity targets

Figure 7.19 Wheel velocity over 5 m for different velocity targets

Figure 7.20 Pitch angle over 5 m for different velocity targets

Hybrid Control of a Segway Platform Developed in MRDS 144

Figure 7.18, Figure 7.19 and Figure 7.20 combine the wheel displacements, wheel velocities

and pitch angles for velocity commands of 0.25, 0.3, 0.4, 0.5, 0.6 and 0.75 m/s over 5 m.

Figure 7.18 shows that as expected when the velocity increases, the maximum stopping

distance increases as well as the steady state stopping distance. These stopping distances are

used to calculate the safety margin growth gain. The stopping distance vs velocity is shown in

Figure 7.21.

Figure 7.21 Stopping distance over 5 m for different velocity targets

The wheel velocities follow the same profile with an initial negative velocity at 0.5 s followed

by a peak velocity at 3.5 s except the 0.25 m/s velocity profile which lags behind other

profiles by a second. The average wheel acceleration to the first peak varied between 0.11

m/s
2
 for 0.25 m/s velocity target and 0.3 m/s

2
 for 0.75 m/s. Velocity peaks occur at 9, 10, 11

and 13 seconds for 0.75, 0.6, 0.5 and 0.4 m/s velocities respectively when the stop commands

are issued. The velocity decelerated at between -0.11 m/s
2
 for 0.25 m/s velocity target and -

0.46 m/s
-2

 for 0.75 m/s. These maximum linear accelerations are used as an input to the

dynamic window navigation algorithm.

Results 145

Figure 7.22 Wheel velocity and pitch angle relationship over 5 m for 0.5 m/s target velocity

Figure 7.23 Wheel velocity and pitch angle relationship over 5 m for 0.75 m/s target velocity

The relationship between the wheel velocity and pitch angle is plotted for 0.25, 0.5 and 0.75

m/s velocity targets in Figure 7.22 and Figure 7.23. These results show a trend of peaks in the

pitch angle being followed by peaks in wheel velocity as well as troughs in the pitch angle

being followed by troughs in wheel velocity. This relationship is expected with the dynamic

stabilisation occurring. A negative velocity increases the pitch angle shifting the centre of

gravity in front of the wheel axis. The wheel velocity increases to maintain stabilisation

causing a decrease in pitch angle. Although the pitch angle does go negative between the 4-6

Hybrid Control of a Segway Platform Developed in MRDS 146

s marks, the top plate of the Segway has a higher amount of momentum, comparative to the

wheel base, which coupled with a slowing wheel velocity brings the pitch angle positive

while maintaining forward movement of the platform.

The stop command is noticeable at 10.5 s and 9 s, in Figure 7.22 and in Figure 7.23, with a

peak in the wheel velocity followed by a sharp decrease in the current pitch angle. The

negative pitch angle allows the Segway to oppose forward movement. The largest negative

pitch angle occurs at the zero velocity crossing. The velocity continues to go negative and

oscillations occur while the Segway dynamically balances.

The dynamic window navigation algorithm calculates a target linear velocity (in m/s) and

angular velocity (in rad/s) for the Segway to move. The velocity pair is required to be

converted into command values to be sent to the Segway. Table 3.2 shows the relationship

between velocity command and speed as [-1176, 1176] = [-12.9 km/h, 12.9 km/h] and the

linear velocity scale limits this to [-6.4 km/h, 6.4 km/h]. The turning command has a valid

command range of -1024 to 1024 but does not specify the angular velocity values they

correspond with. The relationship between input velocity command and linear velocity was

tested to confirm the values given in the user manual. The Segway was set to tractor mode so

wheel velocities were not affected by the dynamic stabilisation. Velocity commands were sent

to the Segway and the linear velocity measured. The results were inversed to give the velocity

command value required to set the velocity target (m/s) from the navigation system. The

relationship is shown in Figure 7.24 and gives a conversion factor of 666, meaning a target

linear velocity of 1 m/s requires a 666 command value to be sent to the Segway.

The relationship between turn command and angular velocity was not given in the user

manual and thus was investigated. The test was carried out in balance mode as the dynamic

stabilisation does not affect turn capabilities at linear velocity speeds below 1.5 m/s. The

results were also inversed to give the angular velocity command required to travel at the

target angular velocity from the navigation system. The relationship is shown in Figure 7.25

and gives a conversion factor of 670, meaning a target angular velocity of 1 rad/s requires a

670 command value to be sent to the Segway.

Results 147

Figure 7.24 Conversion between linear velocity target and velocity command

Figure 7.25 Conversion between angular velocity target and required turn command

The Segway configuration parameters for this project are summarised in Table 7.1. The gain

schedule is set to 0 indicating the ‘light’ controller setting. The maximum acceleration, linear

velocity and angular velocity scales were set to 0.5 to limit the Segway. As there was minimal

wheel slippage due to acceleration and deceleration the current limiting scale was left at

maximum.

Hybrid Control of a Segway Platform Developed in MRDS 148

Table 7.1 Segway configuration parameters

Parameter Numerical Value

Gain Schedule 0

Max Acceleration Scale 0.5

Max Linear Velocity Scale 0.5

Max Angular Velocity Scale 0.5

Current Limit Scale 1

7.3 Localisation Testing

The navigation system uses landmarks and odometry for localisation within an environment.

Landmarks are fixed locations the Segway can find within the environment. The landmark

detection algorithm was tested by moving the Segway along the corridor from position A to

position C as depicted in Figure 7.26. The seven doors in the environment are labled from 1 to

7 as depicted in Figure 7.26.

Figure 7.26 Environment map

A graphic indicator of extracted lines and landmarks was temporarily added to the laser data

output on the GUI. A blue line is added on top of datapoints that have been associated to a

line. Each line is given a number to show how many lines have been found in an environment.

The coordinates of a found landmark are depicted by a black circle. Each landmark also

displays the type of landmark (door or corner) along with a number indicating how many

landmarks have been found.

Results 149

Figure 7.27 shows landmarks extracted at position A. The The landmark algorithm detected

three Door landmarks. Both landmarks for door 1 are associated and one landmark associated

to door 2. The localisation algorithm was unable to discover the closest landmark for door 2

as the corner of the frame blocked the laser scanner’s view of the complete door. This is not a

large problem for autonomous operation because as the Segway moves past the door frame

the landmark will be discovered.

The doors 5 and 6 were held open to display one limitation of the localisation algorithm.

These doors were unable to be found as the landmark detection algorithm searches for

parallel lines with close end points. All the doors within the opperating environment have

mechanisms that automatically close open doors but if all the doors within the environment

were left open, the navigation system would rely on corner landmarks and odometry alone.

This limitation and possible solutions are discussed further in Section 8.2

Figure 7.27 Landmarks detected at position A.

Hybrid Control of a Segway Platform Developed in MRDS 150

Figure 7.28 Landmarks detected at position B.

At position B four landmarks were found by the landmark algorithm (Figure 7.28). The first

two landmarks associate with door 2 and the last two associate with door 5. Door 5 was shut

while moving between position A and B. This image shows that Door type landmarks are

better associated when the Segway is positioned between the two frames as there is no edge

to block the view of the laser scanner (as was the case for door 5 in Figure 7.27).

At position C Five landmarks were found by the landmark algorithm (Figure 7.29). Two

Convex landmarks are associated with the corners of the corridor, two Door landmarks are

associated with door 4 and one Door landmark associated with door 3. Once again the closest

frame of door 3 blocks the nearest landmark from being found.

These tests show the landmark algorithm is robust enough to find and associate all landmarks

within the operating environment during normal opperation. As the location of landmarks

were always static, the difference between the sensed location and actual location can be

calculated and used by the navigation algorithm to determine the error in the internal

representation of the Segway's location.

Results 151

Figure 7.29 Landmarks detected at position C.

7.4 Navigation System Parameters

7.4.1 Direction Sensor

The direction sensor has two parameters, α and β that determine the desired output heading

target angle as discussed in Section 5.3.2. The α parameter relates to goal directness and the β

parameter relates to obstacle avoidance. As the parameters produce an output dependent on

both the input parameters, the α parameter was held constant at 0.5 while the β parameter was

varied. The results for β values of 0.5, 1 and 2 are shown in Figure 7.30.

Hybrid Control of a Segway Platform Developed in MRDS 152

Figure 7.30 Obstacle avoidance trajectories with different β values

The edge of an obstacle was placed in the way of a straight line heading. Figure 7.30 shows

the path taken by the centre of the Segway and Figure 7.31 shows the target heading output

from the Direction Sensor during the test. The Segway has a radius of 0.35 m. A β value of

0.5 produced a path that missed the obstacle by about 5 cm, a β value of 1 produced a path

that missed the obstacle by 25 cm and a β value of 2 produced a path that missed the obstacle

by 45 cm.

Results 153

Figure 7.31 Target heading output from the Direction Sensor over time.

Figure 7.31 shows the target heading output from the Direction Sensor for different β values.

A β value of 0.5 caused a 20° heading change from a straight line, a β value of 1 caused a 30°

heading change and a β value of 2 caused a 40° heading change. Smaller β values create

closer paths to the obstacle meaning a shorter time to complete the obstacle avoidance

manoeuvre (given a constant velocity). An α value of 0.5 and β value of 1 were chosen as it

gave a good compromise between obstacle avoidance and distance travelled.

The maximum distance to obstacles was set to the maximum range of the SICK

LMS100 of 20 m. The number of candidate orientations for the direction sensor algorithm

to evaluate is set at 45 to balance computational effort and direction resolution. This gave a

direction resolution of 6°. These values are summarised in Table 7.2.

Table 7.2 Direction sensor parameter values

Parameter Numerical Value

α 0.5

β 1

 20 m

 45

Hybrid Control of a Segway Platform Developed in MRDS 154

7.5 Corridor Environment Tests

7.5.1 Linear Forward Command

For the linear forward command testing, the internal representation of the path travelled is

plotted. The actual trajectory the Segway follows is not shown because it is impractical to

externally measure the Segway's position while it was moving.

The Segway was commanded to move autonomously from coordinate location (1.5, 1.3) to

(6.5, 1.3), a distance of 6 m, with maximum linear velocities of 0.3, 0.5 and 0.75 m/s. Each

test was conducted 8 times.

Figure 7.32 X,Y coordinates of the Segway during 0.3 m/s 6 m trajectory test

Figure 7.33 Wheel velocity profiles for 0.3 m/s 6 m trajectory test

Results 155

Figure 7.34 Internal heading during 0.3 m/s test over 6 m

Figure 7.32 shows the internal position representation of the Segway in the corridor during

the 0.3 m/s test. The trajectory shows that an initial alignment error that caused the Segway to

drift towards the left wall. As landmarks are found, this heading error is detected and

corrected with an adjustment towards the centre of the corridor.

Figure 7.33 shows the wheel velocities during the test. The Segway follows the same

acceleration and deceleration profiles as expected from the open environment tests.

Differences in the wheel velocities can be seen as the navigation system corrects for detected

position errors.

Figure 7.34 shows the internal heading of the Segway. The initial starting heading was set to

be ideally 0°. During operation a heading error of -0.4° was discovered when the first

landmark was found. As more landmarks were found during the 3-5 second range, the

heading error increased to -3° and the navigation system attempted to correct the error. This

error can be attributed to the initial alignment of the Segway not being the same as the initial

internal heading. The navigation system set a heading of 1° at 12 s to correct the error in

position and brought the target heading back towards 0° at the end of the test.

For the 0.5 m/s tests (results shown in Figure 7.35 to Figure 7.37) the initial alignment error

was minimal allowing the navigation system to make fewer heading corrections during the

experiment. Again the wheel velocity shows similar acceleration and deceleration profiles,

with a negative velocity to start forward movement and negative velocity towards the end of

the test after deceleration to stabilise the platform. The wheel velocity peaked at 0.55 m/s

Hybrid Control of a Segway Platform Developed in MRDS 156

during acceleration and at 0.7 m/s 10.5 s into the test. The internal heading started at 0 and

decreased to -0.5° as landmarks were associated.

Figure 7.35 X,Y coordinates of the Segway during 0.5 m/s 6 m trajectory test

Figure 7.36 Wheel velocity profiles for 0.5 m/s 6 m trajectory test

Results 157

Figure 7.37 Internal heading during 0.5 m/s test over 6 m

Figure 7.38 shows the resulting position errors between actual position and internal position

for all 8 tests at the different velocities. These results show a better performance at 0.3 m/s

when compared to 0.5 m/s and 0.75 m/s with an average X error of -0.003 m with a standard

deviation of 0.013 m and an average Y error of -0.002 m with a standard deviation of 0.002 m

compared to an average errors of 0.05 m (std. 0.008 m) in the X direction and 0.001 m (std. of

0.023 m) Y direction for the 0.5 m/s tests and 0.001 m (std. 0.008) in X direction and 0.003 m

(std. 0.027 m) in the Y direction.

Figure 7.38 Position errors

Hybrid Control of a Segway Platform Developed in MRDS 158

There is a larger spread in error in the Y direction (7.5 cm) when compared to the X direction

(2.9 cm). Errors in the X direction during straight line tests can be due to distance travelled

errors while errors in the Y direction can occur from heading errors. The systematic Y error

could be caused by inaccuracies in calculating the heading error of the Segway. The heading

error is calculated by calculating the difference in angle of the lines that make a landmark.

The landmarks are found with parallel and perpendicular lines but allow an error of up to 10°

to account for noisy and slightly inaccurate lines being extracted from the laser range finder

data.

Discussion 159

Chapter 8 Discussion

This chapter discusses the objectives achieved by this project and then outlines future

improvements to this project.

8.1 Objectives Achieved

A number of robotic development environments were investigated including Player/Stage,

Robot Operating System (ROS), Open Control Robot Software (OROCOS) and Microsoft

Robotics Developer Studio (MRDS). Microsoft Robotics Developer Studio was chosen as the

development environment.

Different navigation techniques and architectures were discussed and compared. A hybrid

navigation architecture, combining both reactive and deliberative control, developed at

Victoria University was chosen as the navigation architecture. The hybrid navigation

combined an A* path planner with an occupancy grid and used a modified dynamic window

and direction sensor to navigate the Segway's environment.

Three common range finders were compared; the SICK LMS100, SICK LMS200 and the

Hokuyo URG. The SICK LMS100 was chosen as the laser range finder for this project.

A MRDS service was written in C# to start the SICK LMS100 laser range finder and receive

distance measurements. The service is able to post update messages to subscribers when new

distance measurements are received.

The characteristics of the SICK LMS100 range finder were examined and discussed.

Characteristics tested were the settling time and distance measurements to three surfaces with

different reflective properties commonly found in the expected operating environment. Black,

white and glass surfaces were used as surfaces representing the extremes within the operating

environment.

A service was created to control the Segway platform. The service is designed to be a generic

service that could be used for any future projects. It sends control messages at 20 Hz and

receives update messages at 100 Hz.

Hybrid Control of a Segway Platform Developed in MRDS 160

The movement characteristics of the Segway were investigated. The pitch angle/acceleration

relationship and wheel velocity profiles during acceleration and deceleration were obtained.

Distance measurements were obtained from the Segway odometer counts and conversion

factors were calibrated to reduce the errors. Equations were derived to obtain the distance and

heading travelled from the individual displacements measured by each of the Segway’s

wheels.

The hybrid navigation architecture was implemented in the Segway Navigation service which

subscribed to services controlling the SICK LMS100 and Segway platform.

A graphical user interface was also developed as a service which can be run on a remote

computer to monitor and update the navigation system properties.

8.2 Future Work

8.2.1 Additional Sensors

When no landmarks can be found the current sensor error is set to zero, meaning that the

Segway is relying completely on odometry for localisation. This is not desirable as

localisation using odometry alone accumulates error over time due to small wheel slippage or

incorrect calibration being emphasized over long travel periods. Implementation of more

sensors such as those mentioned below could improve localisation and navigation capabilities.

Lower Rangefinder

The Segway platform does not have the ability to sense objects lower than 1.1 m where the

SICK LMS100 has been mounted for this project. This project has assumed all obstacles will

be larger and able to be sensed by the laser rangefinder. The Segway’s control system cannot

tell the difference between an obstacle at wheel level or an external force acting on the

balanced system. This causes the Segway platform to continuously run into and bounce off

lower obstacles and causes system instability at higher speeds. Two Hokuyo URG laser range

finders, discussed in Section 3.2.3, could be mounted at wheel level at the front and back of

Discussion 161

the Segway to detect such low objects. Short range Sharp IR distance sensors or ultrasonic

distance sensors could also be used to detect low objects.

Video camera

A video camera could be added to the Segway platform and connected to the control

computer. A video camera would allow additional object detection and avoidance that a laser

range finder could not detect. Along with obstacle avoidance, a video camera could be used to

implement object tracking and aid in localisation by identifying and associating visual

landmarks.

Compass

A compass would be useful as an absolute heading reference but may suffer from interference

by magnetic fields generated from objects within the operating environment. Alternatively an

inertial measurement unit (IMU) which contains a gyrocompass could be used.

GPS

A global positioning system (GPS) unit could be used to assist with localisation but these tend

not to operate well in many indoor environments without complex external receivers.

8.2.2 Higher Level Control

The current system is capable of moving from one location to another location. A higher level

control service could be created which could intelligently select tasks and goal locations to

move to. This service could implement functions such as roaming the corridors and

automatically returning to a charging point when battery levels become low.

The Segway UI service could be extended to give new goal locations and new maps as the

Segway travels through different corridor environments.

Hybrid Control of a Segway Platform Developed in MRDS 162

8.2.3 System Improvements

Along with additional sensors, the overall system would benefit from a device that could hold

the Segway upright when not powered. The addition of two caster wheels (one front and one

back) or similar bracing devices that the control system could lift off or drop to the ground

when transitioning from between balance and tractor mode. This would allow the Segway

platform to power down without falling over and requiring human assistance. The system

would have to ensure that the additional ground contact points were lifted before balance

mode becomes active.

8.3 Summary

The result of this project is a Segway platform that can execute motion instructions using a

hybrid navigation algorithm implemented in MRDS. In the corridor environment the control

system was capable of identifying door and corner landmarks and guided the Segway to

within 7 cm of the goal location.

Generic services for the SICK LMS100 and Segway platform were made that can be extended

and reused for other robots developed with MRDS. The navigation system was implemented

in a single service that subscribed to the SICK LMS100 and Segway platform services. A user

interface service was also created allowing user interaction with the system.

Overall the project was a success, meeting its objectives and providing a system that can be

expanded upon in future projects.

Appendix: CD Contents 163

Appendix: CD Contents

The attached CD contains the following:

 Soft copy of this thesis

 Software C# MRDS Project services

o Segway Native Wrapper

o Segway Base Service

o SICK LRF Scanner Service

o Segway Navigation Service

o Segway UI Service

Hybrid Control of a Segway Platform Developed in MRDS 164

Bibliography 165

Bibliography

Albus, J. S. (2002). Intelligent Systems: Architecture, Design and Control.

Anderson, C., Axelrod, B., Philip Case, J., Choi, J., Engel, M., Gupta, G., et al. (2008).

Mobile Manipulation - A Challenge In Integration.

Arkin, R. C. (1987). Motor chema based navigation for a mobile robot: An approach to

programming by behavior. IEEE International Conference on Robotics and

Automation, (pp. 264-271).

Arkin, R. C. (1989). Motor Schema-Based Mobile Robot. The International Jurnal of

Robotics Research, 8(4), pp. 92-112.

Arkin, R. C. (1998). Behavior Based Robotics. Cambridge Massachusetts: MIT Press.

Arkin, R. C., & Murphy, R. R. (1990). Autonomous Navigation in a Manufacturing

Environment. IEEE Transactions on Robotics and Automation, (pp. 445-454).

Axelrod, B. (2011, February 16). Service Oriented Architectures - Two Leading Systems,

MRDS and ROS, Point to the Future of Robotics. Retrieved 2012, from Robot

magazine: http://www.botmag.com/index.php/service-oriented-architectures-two-

leading-systems-mrds-and-ros-point-to-the-future-of-robotics

Bailey, P., Beckler, M., Hoglund, R., & Saxton, J. (2008). 2D Simultaneous Localization and

Mapping.

Balch, T., Boone, G., Collins, T., Forbes, H., MacKenzie, D., & Santamaria, J. (1995). "Io,

Ganmede and Calisto" - A Multiagent Robot Trash Collecting Team. AI Magazine,

16(2), pp. 10-16.

Blanco, J. L., Gonzalez, J., & Fernandez, J. A. (2012). An Alternative to the Mahalanobis

Distance for Determining Optimal Correspondences in Data Association. IEEE

transactions on robotics, 28(4), pp. 980-986.

Hybrid Control of a Segway Platform Developed in MRDS 166

Borges, G. A., & Aldon, M. J. (2000). A split-and-merge segmentation algorithm for line

extraction in 2D range images. Proceedings 15th International Conference on Pattern

Recognition, 1, pp. 441-444.

Brooks, R. (1985). A Robust Layered Control System for a Mobile Robot. Cambridge MA:

MIT AI Memo.

Brooks, R. A., & Stein, L. (1989). Building Brains for Bodies. Autonomous Robots, 1(1), pp.

7-25.

Brooks, R., Aryananda, L., Edsinger, A., Fitzpatrick, P., Kemp, C., O'Reilly, U., et al. (2004).

Sensing and manipulating built-for-human environments. International Jurnal of

Humanoid Robotics.

Bruyninckx, H. (2001). Open Robot Control Software: The OROCOS project. Proceedings of

the 2001 International Conference on Robotics and Automation. Seoul, Korea.

Cameron, J., MacKenzie, D., Ward, K., Arkin, R., & Book, W. (1993). Reative Control for

Mobile Manipulation. Processing of the International Conference on Robotics and

Automation, (pp. 228-235). Atlanta,GA.

Castellanos, J., & Tadoos, J. (1996). Laser-based Segmentation and Localization for a Mobile

Robot. In Robotics and Manufacturing: Recent Trends in Research and Applications,

6.

Cepedia, J. S., Chaimowicz, L., & Soto, R. (2010). Exploring Microsoft Robotics Studio as a

Mechanism for Service-Oriented Robotics. 2010 Latin American Robotics Symposium

and Intelligent Robotics Meeting.

Chand, P. (2011). Development of an Artificial Intelligence System for the Instruction and

Control of Co-operating Mobile Robots.

Chand, P., & Carnegie, D. A. (2011). Development of a navigation system for heterogeneous

mobile robots. Int. J. of Intelligent Systems Technologies and Applications, 10(3), pp.

250 - 278.

Bibliography 167

Chen, Y. (2006). Service-Oriented Computing in Recomposable Embedded Systems.

Workshop on Dependabilitys in Robotics and Autonomous Systems, (pp. 15-19).

Tuscon, AZ.

Chen, Y. (2008). On Robotics Applications in Service-Oriented Architecture. 28th

International Conference on Distributed Computing Systems Workshops, (pp. 551-

556).

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., et al.

(2005). Principles of Robot Motion. Boston: MIT Press.

Diftler, M. A., Ambrose, R. O., Tyree, K. S., & Goza, S. M. (2004). A mobile autonomous

humanoid assistant. 4th IEEE/RAS International Conference on Humanoid Robots.

Elkady, A., & Sobh, T. (2012). Robotics Middleware: A comprehensive literature survey and

attribute-based biblography. Journal of Robotics.

Fielding, R. T., & Taylor, R. N. (2005). Principled Design of the Modern Web Architecture.

ACM Transactions on Internet Technology, (pp. 115-150).

Fischler, M. A., & Bolles, R. C. (1981, June). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6), pp. 381 - 395.

Forsyth, D. A., & Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision

avoidance. IEEE Robotics and Automation Magazine, 4(1), pp. 23-33.

Fox, D., Burgard, W., & Thrun, S. (1997). The Dynamic Window Approach to Collision

Avoidance. IEEE Robotics and Automation Magazine, pp. 23-33.

Garage, W. (2012). ROS - Introduction. Retrieved 2012, from

www.ros.org/wiki/ros/introduction

Gat, E. (1991). Relible Goal Directed Reactive Control of Autonomous Mobile Robots.

Hybrid Control of a Segway Platform Developed in MRDS 168

Gat, E. (1992). Integrating Planning and Reaction in a Heterogeneous Asynchronous

Architecture for Controlling Real-World Mobile Robots. Proceedings of the AAAI.

Gates, W. (2007). A Robot in Every Home. Scientific American Magazine.

Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The Player/Stage Project: Tools for

Multi-Robot and Distributed Sensor Systems. Proceedings of the International

Conference on Advanced Robotics. Coimbra, Portugal.

Godjevac, J. (1995). Comparative Study of Fuzzy Control, Neural Network Control and

Neuro-Fuzzy Control.

Henning, M. (2006, June 1). The rise and fall of CORBA. Retrieved 2012, from

http://queue.acm.org/detail.cfm?id=1142044

Horswill, I. (1993). Polly, A Vision-Based Artificial Agent. Proceedings of the AAAI-93, (pp.

824-829). Washington, DC.

Informer Technologies Inc. (2012). SICK SOPAS Engineering Tool. Retrieved May 2012,

from http://sick-sopas-engineering-tool.software.informer.com/

Jackson, J. (2007, Dec.). Microsoft robotics studio: A technical introduction. Robotics &

Automation Magazine, IEEE, 14(4), pp. 82 - 87.

Johns, K., & Taylor, T. (2008). Professional Microsoft Robotics Developer Studio. Wrox

Press Ltd.

Junior, V. G., Parikh, S. P., & Junior, J. O. (2006). Hybrid Deliberative/reactive architecture

for human-robot interaction. ABCM Symposium Series in Mechatronics, 2, pp. 563-

570.

Kapach, K., Giorini, P., & Mylopoulos, J. (2007). Adaptive weighted average sensor fustion

algorithms for mobile robots.

Kramer, J., & Scheutz, M. (2007). Development environments for autonomous mobile robots:

A servey. Autonomous Robots, 22(2), pp. 101-132.

Bibliography 169

Lee-Johnson, C. P. (2004). The Development of a Control System for an Autonomous Mobile

Robot.

Linux Devices. (2008, 07 29). Review of robotic software platforms. Retrieved 2012, from

LinuxForDevices: http://linuxdevices.com/articles/AT9631072539.html

Liu, Z., Jin, Y., Cui, Y., & Wang, Q. (2001). Design and implementation of a line

simplification algorithm for network measurement system. Proceedings of IEEE IC-

BNMT2011, (pp. 412-416).

Mataric, M. (1992, June). Integration of Representation into Goal-Driven Behavior-Based

Robots. IEEE Transactions on Robotics and Automation, 8(3), pp. 304-312.

Mc Guire, A. R., Henriques, B. S., Nguyen, H. C., Jensen, K. F., Vinther, K., & Jespersen, R.

(2009). Trajectory Planning and Control for a Segway RMP. Aalborg.

McClymont, J. (2011). MARVIN User Manual. Victoria University of Wellington.

Michal, D. S. (2010). A comparison of development environments for mobile autonomous

robots: Player/Stage/Gazebo vs. Microsoft robotics developer studio. The Universtiy

of Alabama, Huntsville.

Microsoft. (2010). CCR Ports and PortSets. Retrieved 12 10, 2012, from

http://msdn.microsoft.com/en-us/library/bb648755.aspx

Microsoft. (2012). Generic Differential Drive. Retrieved 2012, from MSDN:

http://msdn.microsoft.com/en-us/library/dd145254.aspx

Microsoft. (2012). Microsoft Robotics Studio. Retrieved 2012, from

http://msdn2.microsoft.com/en-us/robotics/default.aspx

Nehmzow, U. (2003). Mobile Robotics: A Practical Introduction (Second Edition). London.

Nguyen, V., Martinelli, A., Tomatis, N., & Siegwart, R. (2005). A comparison of line

extraction algorithms using 2D laser rangefinder for indoor mobile robotics.

International Conference on Intelligent Robots and Systems, (pp. 1929-1934).

Switzerland.

Hybrid Control of a Segway Platform Developed in MRDS 170

Oceanchip. (2009). FTD245BM Datasheet. Retrieved 2012, from

http://www.oceanchip.com/datasheets/FTD245BM.pdf

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Reading Massachusetts: Addison-Wesley.

Pirjanian, P. (2005). Challenges for standards for consumer robotics. Advanced Robotics and

its Social Impacts, 2005. IEEE Workshop on, (pp. 260-264). Pasadena.

Player. (2010). The Player Project. Retrieved 2012, from http://playerstage.sourceforge.net/

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An

open-source Robot Operating System. Proceedings of the Workshop on Open Source

Software (IRCA '09).

Riisgaard, S. (2005). SLAM for Dummies. A tutorial approach to Simultaneous Localization

and Mapping Personal Comments.

Riisgaard, S., & Blas, M. R. (2005). SLAM for Dummies. A Tutorial Approach to

Simultaneous Localization and Mapping.

Rudan, J., Tuza, Z., & Szederkenyi, G. (2010). Using LMS-100 Laser Rangefinder for Metric

Map Building.

Sauer, C. T., Brugger, H., Hofer, E. P., & Tibken, B. (2001). Odometry Error Correction by

Sensor Fustion for Autonomous Mobile Robot Navigation. IEEE Instrumentation and

Measurement Technology Conference. Budapest, Hungary.

Segway Inc. (2009). Segway Robotic Mobility Platform User Guide.

Segway Inc. (2012). Segway RMP Models. Retrieved Dec 2012, from

http://rmp.segway.com/discontinued-models/

Segway Inc. (2012). Segway® RMP 200/ATV Specifications. Retrieved 2012, from

http://rmp.segway.com/downloads/RMP_200_Specsheet.pdf

Segway Inc. (2009). Segway Robotic Mobility Platform (RMP) Interface Guide.

Bibliography 171

Segway Inc. (2012, Dec). About Segway. Retrieved Dec 2012, from

http://www.segway.com/about-segway/

SICK Inc. (2012). Laser MEasurment Systems - LMS100 Product Family Information.

SICK Inc. (2012). Telegrams for Configuring and Operating the LMS1xx.

SICK Inc. (2003). LMS200 Laser Measurement Systems Technical Description. Retrieved

2012, from http://www.sick-

automation.ru/images/File/pdf/LMS%20Technical%20Description.pdf

SICK Inc. (2012). Laser Measurement Sensors of the LMS1XX Product Family Operating

Instructions.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2004). Introduction to Autonomous

Mobile Robots second edition. Cambridge, Massachusetts: The MIT Press.

Soetens, P. (2010). The Orocos Toolchain. Retrieved 2012, from

http://www.orocos.org/toolchain

Talwatta, B. K. (2012). The Implementation of a Hierarchical Hybrid Navigation System for a

Mobile Robotic Vehicle.

Tsai, W. T., Huang, Q., & Sun, X. (2008). A Collaborative Service-Oriented Simulation

Framework with Microsoft Robotic Studio. Simulation Symposium, 2008. ANSS 2008.

41st Annual, (pp. 263 - 270).

Ulrich, I., & Borenstein, J. (1998). VFH+: reliable obstical avoidance for fast mobile robots.

Proceedings of the IEEE International Conference on Robotis and Automation, pp.

1572-1577.

van Dam, J., Krose, B., & Groen, F. (1996). Neural Network Applications in Sensor Fustion

for an Autonomous Mobile Robot. University of Amsterdam.

Victorino, A. C., Rives, P., & Borrelly, J. J. (2000). Localization and map building using a

sensor-based control strategy. Intelligent robots and systems., 2, pp. 937-942.

Hybrid Control of a Segway Platform Developed in MRDS 172

Vorlesungen. (2010). Deliberative vs Reactive control. Retrieved 2012, from

http://www.informatik.uni-

leipzig.de/~der/Vorlesungen/ROBOTIK/Deliberative%20vs_%20reactive%20control.

htm

Wiliams, H. (2012). Integration of Learning Classifier Systems with Simultaneous

Localisation and Mapping ofr autonomous robotics. IEEE Congress on Evolutionary

Computation, (pp. 1-8). Wellington, New Zealand.

Williams, M. L., Wilson, R. C., & Hancock, E. R. (1997). Multi-sensor fusion with Bayesian

inference. Computer Analysis of Images and Patterns; Lecture Notes in Computer

Science, (pp. 25-32).

Wu, H., Seigel, M., Stiefelhagen, R., & Yang, J. (2002). Sensor Fusion using Dempster-

Shafer Theory. Anchorage, AK, USA.

Ye, C., & Borenstein, J. (2002). Characterization of a 2D laser scanner for mobile robot

obstacle negotiation. IEEE International Conference on Robotics and Automation,

(pp. 2512-2518).

