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Abstract 

A Segway RMP200 has been bought by Victoria University for the purpose of making an 

autonomous robot. The focus of this project was to create reusable services that use existing 

navigation algorithms to control the Segway within an indoor environment.  

A SICK LMS100 laser rangefinder was added to detect obstacles and allow localization of the 

Segway within a known map. A hybrid navigation algorithm consisting of an A* path planner 

with a dynamic window is used for motion planning and obstacle avoidance. 

The control system followed a Service Oriented Architecture implemented in Microsoft 

Robotics Studio using the C# .NET programming language.  

Four services were created during the project to interface with the SICK LMS100 scanner, 

control the Segway RMP200, implement the hybrid navigation algorithm and provide a 

graphic user interface for the system. 

Tests show that the Segway is able to navigate and maintain localisation within the operating 

environment by identifying and associating corner and door landmarks within the 

environment. 
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Chapter 1 Introduction 

A Segway RMP200 has been obtained by Victoria University of Wellington to be used as a 

platform on which to develop an autonomous robot. The Segway RMP200 platform is a two 

wheel differential drive system capable of dynamic stabilisation. Dynamic stabilisation is the 

ability to balance a payload above two wheels, similar to an inverted pendulum. 

The Segway platform was purchased to extend the mobility of existing at Victoria. The 

current platform of the MARVIN robot is limited by its current motors and the small wheels 

limit the platform’s operating environment (such as traversing the gap while entering certain 

elevators within the university). These restrictions prohibit outdoor operation. The Segway 

platform has greater flexibility and ability to move in an indoor and outdoor environment. 

An autonomous robot can perform desired tasks in known or unknown environments without 

human intervention or guidance. Autonomous robots require the ability to sense and act upon 

information acquired while traversing an environment and to navigate while avoiding 

obstacles. Autonomous robots employ intelligent navigation systems that are responsible for 

maintaining the current position of the robot, where the robot is attempting to head and how 

the robot navigates to a goal. 

1.1 Objective 

The objective of this project is to make a Segway platform intelligently move around an 

indoor environment while avoiding obstacles. The operating environment will be mapped so 

the navigation system for the Segway can assume knowledge beforehand. The current 

position and destination is also known before autonomous behaviour is engaged. A map and 

starting position is given as this project does not attempt to solve the Simultaneous 

Localisation and Mapping (SLAM) problem. SLAM enables a robot to build a map of an 

unknown area while dynamically estimating its own pose in the growing map.  

This project must consider the following: 

 Selection of an appropriate development environment, 
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 Interfacing with the Segway RMP and control software, 

 Choice of sensors to aid localization and detection of obstacles, 

 Creation of a service to interface with sensors, 

 Use of existing algorithms for positioning the Segway in a known environment, 

 Implementing path finding and following algorithms and, 

 Design of a user interface to supervise autonomous behaviour.  

The software developed has been designed to be extendible and re-usable to minimize the 

time taken to apply the system to different robotic platforms. 

Balancing algorithms for the Segway RMP and algorithms for robotic navigation are 

established and will be utilised for this project.  

1.2 Mobile Robot Platforms 

Victoria University’s Mechatronic Group has several robotic platforms which have been 

developed by previous research projects. Two of these robots, shown in Figure 1.1 and Figure 

1.2, make up part of the three tier hierarchal urban search and rescue system being developed 

at Victoria. 

 

 

Figure 1.1 Grandmother robot  
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The Grandmother robot displayed in Figure 1.1 is designed to be deployed remotely and 

proceed autonomously into a disaster zone. The system is designed for the Grandmother robot 

to co-ordinate several smaller Mother robots such as displayed in Figure 1.2. The Mother 

robot then deploys smaller disposable Daughter robots that explore the disaster zone to find 

and locate surviving humans. The Grandmother robot is currently undergoing a redesign and 

the Daughter robots are currently being developed.  

  

Figure 1.2 Mother robot 

The control systems for these robots are not developed in conventional Robotic Development 

Environments, rather they have developed in Matlab for the Grandmother and in embedded 

software for the Mother robot. This project will help to create a standard development 

environment that can be used to upgrade these current systems. 

Another robotic platform is a differential drive robot called MARVIN (Mobile Autonomous 

Robotic Vehicle for Indoor Navigation). MARVIN (seen in Figure 1.3) has been designed as 

an autonomous mobile security system that would patrol the corridors of the university 

interacting with people.  
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Figure 1.3 MARVIN robotic platform 

1.3 Operating Environment 

The Segway is intended to operate primarily in the corridors of the third floor of the Laby 

building at Victoria University of Wellington. This environment is used for debugging and 

testing the hybrid navigation system as well as the localisation algorithm. An overhead view 

of the floor map is given in Figure 1.4 with images of the environment given in Figure 1.5 

 

Figure 1.4 Overhead view of the operating environment 
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Figure 1.5 Images of the operating environment 

The navigation system can be expanded to incorporate other indoor environments assuming a 

map of the environment has been made. The control system has been developed and tested 

with the expectation that the system will operate in different environments such as those 

shown in Figure 1.6, Figure 1.7 and Figure 1.8. 

The different environments shown contain wooden and glass walls along with vinyl and 

carpet flooring creating a range of surfaces for sensors and wheels to operate on and which 

the navigation system is tested and accommodates for.  

The localisation system is designed to perform in indoor corridor environments where 

landmarks such as corners and doors are commonly found. The control system can still 

operate in environments where corners and doors are sparse; however it then relies more on 

odometry for localisation and can succumb to cumulative errors. 
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Figure 1.6 Alternative environment #1 

 

Figure 1.7 Alternative environment #2 
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Figure 1.8 Alternative environment #3 

The objective is therefore to localize the Segway in a predetermined map. This map is 

currently of a corridor at Victoria University but a map any environment the Segway is 

intended for could be created and used. Having a map also gives the ability to leave out areas 

where the Segway should not go such as stairways. 

1.4 Chapter Summary 

The thesis is organized as presented below: 

Chapter 2 – Background. This chapter presents different types of control architectures for 

robots, followed by a review of different robotic development environments available to 

implement the control architecture. A review of previous robotic projects implemented using 

a Segway platform is also presented. 

Chapter 3 – System Description. This chapter gives a detailed description of the Segway 

platform used in this project followed by a review of different sensors that could be used to 
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aid localisation and the justification of choosing the SICK LMS100 sensor. A detailed 

description of the SICK LMS100 sensor is then presented. 

Chapter 4 – Software Interfaces. This chapter details the features available in the Robotic 

Development Environment, Microsoft Robotic Develop Studio (MRDS), used to interface 

with the Segway and the SICK LMS100 laser scanner and to develop the navigation software.  

Chapter 5 – Navigation Architecture. This chapter presents the architecture of the hybrid 

navigation system used to control the Segway platform. The process of obtaining landmarks 

from sensor data and using them for localisation with odometers is also covered. 

Chapter 6 – Software Description. This chapter covers the software implemented for 

interfacing with the hardware and the navigation architecture. A user interface designed for a 

human to interact with the Segway is also discussed. 

Chapter 7 – Results. This chapter presents the results obtained during testing of the SICK 

LMS100 laser scanner and the Segway platform followed by the results of the navigation 

system. 

Chapter 8 – Discussion. This chapter concludes the thesis by summarizing and discussing the 

work presented. Recommendations for future work are also discussed. 
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Chapter 2 Background 

2.1 Introduction 

This chapter begins by discussing the topics related to different robotic control architectures, 

namely reactive (Section 2.2), deliberative (Section 2.3) and hybrid (Section 2.4), followed by 

reviewing literature on previous Segway based projects. Finally, this chapter reviews five of 

the more common robotic development environments (RDEs), which aid designers to develop 

the control architectures.  

A robot’s control architecture provides the framework to enable functionality from different 

control algorithms. There are three main categories for robotic control architectures: reactive, 

deliberative and hybrid. Figure 2.1 shows the spectrum of deliberative and reactive robot 

control strategies. The left side represents methods that employ deliberative reasoning and the 

right represents reactive control. 

 

Figure 2.1 Robot control system spectrum (Arkin R. C., 1998) 

2.2 Reactive Control Architectures 

Reactive control architectures are characterized by a close coupling between sensing and 

action. Behaviour based architectures can also be classified under reactive control. Reactive 

controls are less dependent on a complete knowledge of the robot’s environment. There are 

less computation requirements leading to shorter delays between perception and action 
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allowing reactive control systems to be faster to respond than deliberative systems. Tasks that 

require explicit world representations and high level intelligence can be difficult to implement 

in reactive systems as there is no planning component. Without this planning component, 

reactive architectures are unable to learn. Figure 2.2 shows the generalised makeup of a 

reactive control system, noting that planning is not involved. 

 

Figure 2.2 Reactive control (Vorlesungen, 2010) 

Two of the most common reactive control architectures include the subsumption architecture 

and the motor schema architecture. 

2.2.1  Subsumption Architecture 

The concept of the subsumption architecture is that each behaviour is implemented 

completely independently from any other behaviour. Communication between behaviours is 

limited to the absolute minimum. A link between a higher level behaviour and lower level 

behaviour is used to subsume the lower level behaviour. 

Each level of competence is implemented incrementally by adding a layer of control to the 

existing set of levels so that the next highest level of overall control can be achieved. In an 

implementation of layers of control systems, a lower layer remains unaware of higher level 

behaviours, except for the occasional intervention by higher level behaviours to make 

refinements to a lower level behaviour for better performance. 

The subsumption architecture shown in Figure 2.3 is one example of an approach to robot 

control (Brooks R. , 1985). Brooks’ Subsumption Architecture avoids using a world model 

and instead more directly connects sensors to actuators using finite state machines to 

implement the appropriate actions. Behaviour-based control generalizes the augmented finite 

state machines into a network of behaviours that can have state and can be used to construct 

representations. This allows behaviour-based control to support reasoning, planning, and 
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learning. Figure 2.3 gives an example of a behaviour-based decomposition of a mobile robot 

control system. In this subsumption architecture, each item in the centre column is a 

behaviour. 

 Reasons about behaviour of objects  

 Plan changes to the world  

 Identify objects  

Sensors 
Monitor changes 

Actuators 
Build maps 

 Explore  

 Wander  

 Avoid objects  

Figure 2.3 Subsumption architecture decomposition (Brooks R. , 1985) 

Examples of different robots that have been constructed using the subsumption architecture 

include: Toto, the first map constructing subsumption-based robot (Mataric, 1992), Polly, a 

robotic tour guide for the MIT AI lab (Horswill, 1993) and Cog, a humanoid robot used to test 

human-robot interaction (Brooks & Stein, 1989). 

2.2.2  Motor Schema Architecture 

The motor schema architecture provides distributed and parallel behaviours that are 

coordinated to produce an intelligent robot (Arkin R. C., 1989). A schema is the basic unit of 

behaviour from which complex actions can be constructed. It consists of the knowledge of 

how to act or perceive as well as the process by which it is enacted. The motor schema 

architecture differs from other behavioural approaches in five significant ways (Arkin R. C., 

1998): 

 Behavioural responses are all represented in a single uniform format: vectors 

generated using a potential fields approach. 

 Coordination is achieved through cooperative means by vector addition. 
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 No predefined hierarchy exists for coordination. The structure is more of a 

dynamically changing network than a layered architecture. 

 Pure arbitration is not used; instead, each behaviour can contribute in varying degrees 

to the robot’s overall response. The relative strengths of the behaviours determine the 

robot’s overall response. 

 Perceptual uncertainty can be reflected in the behaviour’s response by allowing it to 

serve as an input within the behavioural computation. 

Examples of different robots that have been constructed using the motor schema architecture 

include: George, the first robot to exhibit behaviour-based docking (Arkin & Murphy, 1990); 

IO, Callisto and Ganymede, three mobile robots for multi agent research (Balch, Boone, 

Collins, Forbes, MacKenzie, & Santamaria, 1995); and a MRV-2 mobile manipulator 

(Cameron, MacKenzie, Ward, Arkin, & Book, 1993). 

The advantage of reactive control architectures is that the system is more efficient compared 

to deliberative methods (Nehmzow, 2003). There is no functional hierarchy between layers so 

each layer can work on different goals individually. This has the advantage that each layer can 

directly respond to changes in the environment as there is no central planning module which 

has to take account of all sub-goals. Reactive control systems are easier to design, debug and 

extend as the control system is built by implementing the lowest level of competence such as 

obstacle avoidance first, then testing before further levels are added. Reactive control systems 

are robust as the failure of one behaviour has only a minor influence on the performance of 

the whole system.  

A limitation of reactive control architectures is the inability for plans to be expressed 

(Nehmzow, 2003). A reactive control based robot responds directly to sensory input and has 

no internal state memory. Therefore a reactive based control system is unable to follow 

externally specified sequences of actions such as: go there, pickup this, come back. 

2.3 Deliberative Control Architectures 

A robot employing deliberative reasoning requires relatively complete knowledge about its 

operating environment, commonly referred to as ‘the world,’ and uses this knowledge to 

predict the outcome of its actions (Arkin R. C., 1998). This representation enables 
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deliberative systems to solve certain types of problems better than reactive systems (Brooks 

R. , 1985). Before the development of reactive and behaviour-based architectures, deliberative 

reasoning methods were comprehensively used in robotic research (Arkin R. C., 1989). 

Deliberative control architectures are also classified as hierarchical control architectures due 

to their hierarchical model. 

 

Figure 2.4 Deliberative control (Vorlesungen, 2010) 

Deliberative control is a three step control method as depicted in Figure 2.4. The robot first 

uses data from sensors to construct a local representation of the environment, then plans and 

choses the directive which best achieves the current goal of the robot. Finally the robot acts to 

achieve the planned directive. 

Deliberative architectures are hierarchical in structure with a clearly identifiable subdivision 

of functionality as depicted in Figure 2.5. Communication and control occurs in a predictable 

and predetermined manner, flowing up and down the hierarchy. Higher levels in the hierarchy 

provide sub goals for lower level nodes. The amount of planning decreases with lower nodes 

in the hierarchy as lower nodes have shorter time requirements and spatial considerations. 

 

Figure 2.5 Deliberative / Hierarchical control system (Albus, 2002) 
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Nodes depicted in Figure 2.5 are expanded in Figure 2.6. As depicted in Figure 2.6, each node 

takes inputs from parent nodes and from child nodes or a sensor. A node contains four 

elements that interact with each other to produce the optimal performance relative to its model 

of the world. The four elements are sensory perception, value judgement, behaviour 

generation and world model. Sensory perception is responsible for receiving sensations from 

lower nodes as well as predicted obstacle input from the world model, then processing these 

into higher abstractions that update the local state. The sensory perception updates the world 

model to include seen obstacles and provides information to the value judgement element. 

The value judgement element is responsible for evaluating the updated situation and 

evaluating alternative plans to select the optimal solution. The behaviour generation element 

is responsible for executing tasks received from superior nodes as well as planning and 

issuing tasks for lower nodes. The world model node is the local state that provides a model 

for the robot and is continuously updated by higher and lower nodes. 

 

 

 

Figure 2.6 A hierarchical node for a deliberative control system (Albus, 2002) 
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Deliberative control methods are well suited for structured and predictable environments 

where a complete world model can be supplied (Albus, 2002). The disadvantage of systems 

relying solely on deliberative control is that they are generally too slow to cope with real 

world dynamic environments. World knowledge maintenance and optimal action planning 

have comparatively large computational efforts which are the main causes of latency.  

2.4 Hybrid Control Architectures 

Both deliberative control systems and purely reactive control systems have limitations when 

considered in isolation. Hybrid architectures combine the benefits of reactive control and 

deliberative control (Chand, Development of an Artificial Intelligence System for the 

Instruction and Control of Co-operating Mobile Robots, 2011). A high degree of flexibility is 

needed for successful navigation in known and unknown environments. Hybrid control 

architectures combine the use of high level planning and knowledge of deliberate control and 

the robustness, flexibility and responsiveness of reactive control. The deliberative and 

reactive components need to be coordinated, and different hybrid architectures decide where 

and how to implement this function. 

2.4.1  Autonomous Robot Architecture (AuRA) 

The Autonomous Robot Architecture (AuRA) (Arkin R. C., 1987) was one of the first hybrid 

architectures used for control of an autonomous robot. AuRA uses motor schemas for reactive 

control and a spatial planner for deliberative control. Figure 2.7 depicts the control 

components of AuRA.  
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Figure 2.7 AuRA control components (Arkin R. C., 1998) 

AuRA has two major planning and execution components: a hierarchical component 

consisting of a mission planner, spatial reasoner, and plan sequencer along with a reactive 

component consisting of the schema controller. 

The mission planner is concerned with establishing high-level goals for the robot and the 

constraints within which it must operate. The spatial reasoner, or navigator system, uses 

knowledge about the robot’s environment to construct a navigation path that the robot needs 

to follow to execute its mission. The path sequencer translates the navigation path into a set of 

motor behaviours to execute to follow the path, and then sends the collection of behaviours to 

the schema controller, where deliberative control ends and reactive control takes over. 

The schema controller is responsible for controlling and monitoring the behavioural processes 

at run time. Each behaviour in the schema controller creates a response vector that gets 

processed and transmits the result to the low-level control system for execution. 

Once reactive control begins, the deliberative component is not required unless a failure is 

detected in the reactive execution of the mission.  
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2.4.2  ATLANTIS 

A three level hybrid system, ATLANTIS (A Three Layer Architecture for Navigation 

Through Intricate Situations), was designed by Gat at the Jet Propulsion Laboratory (Gat, 

1991). The three levels are a deliberator that handles planning and world modelling, a 

sequencer that handles initiation and termination of low level activities and watches for 

reactive system failures, and a reactive controller as shown in Figure 2.8. 

 

Figure 2.8 The ATLANTIS control architecture  

The ATLANTIS architecture is both asynchronous and heterogeneous (Arkin R. C., 1998). 

The architecture is not hierarchal as none of the layers are in charge of the others; activity is 

spread throughout the architecture. The deliberator and sequencer acknowledge failures and 

adapt the reactive controller accordingly. The architecture system has been successful on both 

indoor and outdoor robotic systems including being tested on the Mars rover Robby (Gat, 

1991), (1992). 

2.4.3  Dynamic Window Obstacle Avoidance  

The dynamic window obstacle avoidance method is a velocity based control system that 

calculates the collision free velocity for a robot to successfully reach a target goal location 

(Fox, Burgard, & Thrun, 1997). The kinematics of the robot are taken into account by 

searching the velocity space around the current position of the robot. The velocity space is all 
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possible sets of (   ) where   is all the possible velocities and   is all the possible angular 

velocities for the robot during the next control cycle. 

 

 

Figure 2.9 Dynamic window (Siegwart, Nourbakhsh, & Scaramuzza, 2004) 

A dynamic window velocity space is visually depicted in Figure 2.9. A new motion direction 

is chosen by applying an objective function to all admissible velocity pairs in the dynamic 

window. The objective function prefers forward motion, maintenance of large distances to 

obstacles and alignment to the goal target (Siegwart, Nourbakhsh, & Scaramuzza, 2004). 

A dynamic window hybrid navigation system has been developed by Lee-Johnson (Lee-

Johnson, 2004) at the University of Waikato. Lee-Johnson’s dynamic window approach 

supports differential drive robots and uses an A* path planning algorithm. 

Chand further developed Lee-Johnson’s work at Victoria University by creating a hierarchical 

hybrid navigation employing a dynamic window (Chand, 2011). Deliberative control was 

developed using a modified version of the A* path planning algorithm and a rectangular 

occupancy grid while reactive control was developed using a modified dynamic window 

approach and a polar histogram technique to avoid obstacles. The hybrid control architecture 

designed by Chand has been chosen as the control architecture for implementation on the 

Segway platform at Victoria University. The architecture has been chosen as it has been 

proven to be a robust navigation system (Chand, 2011) with example code available in 

MATLAB and C#. 
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2.5 Robotic Development Environments 

2.5.1  Overview 

Bill Gates (2007) made this statement towards standardising Robotic Development 

Environments: 

Robotics companies have no standard operating software that could allow popular 

application programs to run in a variety of devices. The standardization of robotic 

processors and other hardware is limited, and very little of the programming code used 

in one machine can be applied to another. Whenever somebody wants to build a new 

robot, they usually have to start from square one. 

This section examines robotic control software environments. Without control software a 

robot is just sensors and actuators that physically arrange to create a robot but lack the 

capacity to interact with the real world in a useful manner. 

The field of robotics faces many challenges. One of these challenges is the lack of standards 

both in hardware and software. This led to the need for what Kramer & Scheutz (2007) call 

Robotic Development Environments (RDE). Robotic development environments provide an 

important role for enabling the rapid advancement of the state of robotics.   

Robotic development environments are intended to make creating robots easier (Kramer & 

Scheutz, 2007) (Pirjanian, 2005) by assisting in design, implementation, debugging and 

execution of a robot. An important role for an RDE is to support simulation so 

experimentation and debugging of new algorithms can be done without having robotic 

hardware available. Also RDEs should have an abstraction mechanism to make it possible to 

port software from one type of robot to another. 

Comparisons of robotic development environments has been done several times. Kramer & 

Scheutz (2007) investigated nine open source RDEs while a paper by Linux Device (2008) 

investigates two open source and six commercial RDEs. Michal (2010) does an in depth 

comparison between Player/Stage/Gazebo and Microsoft Robotics Developer Studio 

(MRDS). Elkady & Sobh (2012) compares 17 different ‘middleware’ frameworks where 
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middleware was defined as “a class of software technologies designed to help manage the 

complexity and heterogeneity inherent in distributed systems.” 

Comparisons of RDE’s is outside the scope of this project. Rather information from the 

comparisons mentioned above is summarised below and used to choose a development 

environment for the project. 

2.5.2  Player/Stage 

The first RDE summarised is Player/Stage. Player/Stage is an open source environment 

developed at the University of Southern California (Gerkey, Vaughan, & Howard, 2003). The 

Player component of Player/Stage is a robotic device hosting a server component that runs on 

the robot and communicates with the client application via TCP sockets. The Stage 

component is a 2D robot simulator that was designed to be able to simulate hundreds of 

robots simultaneously. A 3D simulator was later added called Gazebo. Player provides client 

libraries that support several programming languages including C, C++ and Python. The 

Player server communicates with the robot hardware itself using device specific drivers. 

The Player client libraries provide generic interfaces for various robotic components that can 

be used to build robots. These components include features such as obstacle avoidance, vector 

field histogram goal-seeking, a wave front propagation path planner and adaptive Monte-

Carlo localization. Player/Stage is freely available for download and is primarily used on 

Linux based systems. The client libraries were also specifically designed to minimize client 

program design constraints so that Player clients can be easily integrated with outside 

software . 

Player refers specifically to the device and server interface. Devices are independent of one 

another and register with a Player server to become accessible to clients. Each client uses a 

separate socket connection to a server for data transfer, allowing concurrent operation of 

devices and ability to service multiple requests. Minimal constraints are placed on devices 

leaving the client the freedom of designing and implementing a control architecture. 
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Figure 2.10 Screenshot of Player/Stage environment (Gerkey, Vaughan, & Howard, 2003) 

A screenshot of the Player/Stage environment can be seen in Figure 2.10. The figure shows a 

Pioneer2AT robot in a simulated environment and the feedback from the attached webcam 

and SICKLMS200 laser scanner. 

Unlike other RDEs summarised, Player/Stage is not regularly maintained (last updated 26 

November 2010) and hence does not support most of the robot hardware available today 

(Player, 2010). 

2.5.3  Robot Operating System (ROS) 

Robot Operating System (ROS) (Quigley, et al., 2009) is an open source robot operating 

system produced and maintained by Willow Garage. ROS is not an operating system in the 

sense of process management and scheduling; rather, it provides a structured communications 

layer above the host operating system of a heterogeneous computer cluster. ROS provides 

standard operating system services such as hardware abstraction, low-level device control, 

implementation of commonly-used functionality, message-passing between processes and 

package management. 
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The primary goal of the ROS project is reusability of code in robotics research and 

development, meaning that code written for one robot can easily be transferred and used by 

another robotic platform with similar capabilities. 

ROS applications consist of a peer-to-peer network of processes, potentially on a number of 

different hosts using a loosely coupled communication infrastructure. An example of this 

network configuration can be seen in Figure 2.11. 

 

Figure 2.11 A typical ROS network configuration (Quigley, et al., 2009) 

There are four main concepts for creating a ROS application:  nodes, messages, topics and 

services (Quigley, et al., 2009). 

A node is a process that preforms computation. A robotic system designed and implemented 

with ROS typically comprises multiple nodes. Nodes enable software developers to 

modularize ROS applications for re-use of code. 

Nodes use messages to communicate with each other. These messages are strictly typed data 

structures defined within ROS. 

A node sends a message by publishing it to a given topic which is simply a string such as 

“odometry” or “map”. A node that is interested in a certain kind of data will subscribe to the 

appropriate topic. An example of this is a navigation node subscribing to the “odometry” 

topic for updates about the current encoder counts. 

A service is defined by a string name and a pair of strictly typed messages, one for request 

and one for response messages. A service is analogous to web services, which are defined by 
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Uniform Resource Identifiers (URIs). Only one node can advertise a service of any particular 

name, just as there can only be one web service at any given URI. 

 “Player is a great fit for simple, non-articulated mobile platforms. It was designed to provide 

easy access to sensors and motors on laser-equipped Pioneers. ROS, on the other hand, is 

designed around complex mobile manipulation platforms, with actuated sensing”. This 

increased functionality comes at price, “I think that it's fair to say that ROS is more powerful 

and flexible than Player, but, as usual, greater power and flexibility come at the cost of greater 

complexity” (Garage, 2012). 

2.5.4  Microsoft Robotics Developer Studio (MRDS) 

Microsoft Robotics Developer Studio (MRDS) was released by Microsoft in December 2006. 

The fundamental components of MRDS are the Concurrency and Coordination Runtime 

(CCR) library that allows services to be coupled together and Decentralized Software 

Services (DSS) which allows services to run on networked machines.  CCR provides an 

abstraction that allows programmers to manage concurrent state updates and message 

processing. CCR also allows for coordination between multiple sensors and robot actuators.  

MRDS defines generic contracts for robotic devices that provide an abstraction between 

clients and robotic hardware. MRDS client programs can also be executed in the 3D visual 

simulator based on the DirectX and NVidia physics engine. MRDS also provides a Visual 

Programming Language (VPL) that is targeted towards prototyping and novice users. VPL is 

integrated with Visual Studio to give the developer the ability to create a program through 

drag and drop blocks (activities or services) onto the design surface. 

MRDS is based on the .Net framework and is primarily designed for usage with C#. Being 

based on the .Net framework, MRDS is only supported in the Windows operating system 

environment. MRDS recommends using Visual Studio as the programming environment to 

implement MRDS projects. MRDS is freely available for education and hobby purposes but is 

not open source.  
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2.5.5  Open Robot Control Software (OROCOS) 

OROCOS (Soetens, 2010) works on a free software framework to develop a general-purpose, 

modular framework for advanced robot motion control (Bruyninckx, 2001). The OROCOS 

system contains a real-time toolkit that provides the components to be able to run on a real-

time operating system.  

 

Figure 2.12 OROCOS components for controlling robots (Soetens, 2010) 

OROCOS consists of the following libraries seen in Figure 2.12: 

 The OROCOS Components Library (OCL) provides some ready to use control 

components such as the real-time toolkit. OCL also emphasises on-line interaction and 

component based applications. 

 The OROCOS Kinematics and Dynamics Library (KDL) provides real time 

calculation of kinematic chains. 

 The OROCOS Bayesian Filtering Library (BFL) provides an application independent 

framework for inference in Dynamic Bayesian Networks, such as the Kalman filter 

and particle filters. 

The OROCOS robotic development environment does not contain a simulation environment. 

OROCOS uses standards and technologies based on the Common Object Request Broker 

architecture (CORBA). CORBA allows inter-process and cross-platform interpretability for 

robot control (Henning, 2006). 
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A weakness in the OROCOS architecture is the lack of support for common hardware and the 

level of complexity in setting up the development environment. 

2.5.6  Selection 

As pointed out in previously completed comparisons (Michal, 2010), (Kramer & Scheutz, 

2007) and (Elkady & Sobh, 2012), the real competition for a standard RDE is between MRDS 

and ROS. Ben Axelrod (2011) compared both MRDS and ROS and found few fundamental 

differences: “ROS only runs on Unix based platforms, while MRDS only runs on Windows. 

However, once you get past these differences, they are actually quite similar”. 

Elkady & Sobh (2012) tabulated attributes of different RDE’s and found the only differences 

was that ROS was open source, while MRDS had built in security. 

A previous project at Victoria University (Talwatta, 2012) was implemented using MRDS to 

create a standard for robotic development at Victoria. As there were few visible differences 

between the two RDEs, MRDS was chosen as the robotic development environment for this 

project to keep in line with the standard for robotic development at Victoria. 

A more in depth review of how MRDS works and its available features is given in Chapter 4. 

2.1 Previous Segway Platform Projects 

Mobile Segway platforms have been used widely in university research projects and 

commercial products around the world. 

The first Segway RMP platform was used to mobilise a humanoid robot called Robonaut seen 

in Figure 2.13 (Diftler, Ambrose, Tyree, & Goza, 2004). The Robonaut system was created at 

the National Aeronautics and Space Administration (NASA) in association with the Defence 

Advanced Research Projects Agency (DARPA) to assist human co-workers at the Johnson 

Space Centre with tool handling tasks. The system uses stereo vision from enabled by 

cameras mounted on the torso of the robot, to locate human team mates and tools, and a 

navigation system that uses a laser range finder alongside the vision data to follow humans 

while avoiding obstacles. The Robonaut platform employed a hybrid navigation system 
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capable of obstacle avoidance, mapping and human tracking to create a robust system capable 

of assisting a human by acquiring a tool from a remote location and following the human 

through an indoor environment with the tool for future work. 

 

Figure 2.13 Robonaut, human assistance robot (Diftler, Ambrose, Tyree, & Goza, 2004) 

Another example of a successful mobile platform using a Segway RMP is the CARDEA robot 

developed at MIT (seen in Figure 2.14) (Brooks, et al., 2004). This platform consists of a 

Segway RMP mobile base and a custom-made force controlled manipular. The mobile 

platform designed is capable of navigating halls, identifying and opening doors. The platform 

has a laptop running Linux which handles all vision processing. The platform has a sensor 

array made up of ten sonars, two whiskers, two cameras and a SICK LMS200 laser range 

finder. CARDEA uses a behavioural reactive control architecture written in Creal and runs on 

a custom embedded architecture called Stack. 
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Figure 2.14 CARDEA robot system (Brooks, et al., 2004) 

A Segway RMP platform was used at the Georgia Institute of Technology to mobilise a 

lightweight KUKA KR5 manipulator as shown in Figure 2.15 (Anderson, et al., 2008). The 

control algorithm used a behaviour based reactive control architecture to locate and deliver a 

cup of coffee. It utilizes Player/Stage as the RDE to interface with the platform hardware and 

a SICK LMS200 laser scanner. The system uses two laptops running Ubuntu Linux, one to 

control the Segway platform and the other to control the manipulator. The localisation for the 

system used a Markov localization method. The CARDEA robot can navigate the simple 

environment, a table and a human in a chair, and successfully deliver coffee from the table to 

a human. 
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Figure 2.15 Segway project at the Georgia Institute of Technology (Mc Guire, Henriques, 

Nguyen, Jensen, Vinther, & Jespersen, 2009) 

The Aalborg University Department of Electronic Systems acquired a Segway RMP200 

platform for the purpose of making an autonomous robot shown in Figure 2.16 (Mc Guire, 

Henriques, Nguyen, Jensen, Vinther, & Jespersen, 2009). The project focused on trajectory 

planning and control for the Segway platform in an indoor environment. A SICK LMS200 

laser range finder was added below the mounting plate to detect obstacles and humans, and 

allow localization of the robot. Localization is done with a known map using an Adaptive 

Monte Carlo Localization algorithm. A wavefront algorithm is used for path planning and the 

Nearness Diagram Plus algorithm for motion planning and obstacle avoidance. A person 

detector algorithm is implemented to track humans within the operating area. It uses a hybrid 

control architecture implemented in the Player/Stage RDE. The Segway was capable of 

navigating indoor human environments but had performance issues when detecting obstacles 

and humans.  
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Figure 2.16 Segway Project at the Aalborg University Department of Electronic Systems 

 

This project differs to the above projects by employing a hierarchical hybrid navigation 

system using an A* path planner algorithm along with a dynamic window obstacle avoidance 

approach. The navigation system is built in the Microsoft Robotics Developer Studio RDE. 

This project is similar to all but the Robonaut project in that the expected operating 

environment is an indoor controlled environment. The Segway platform does not have on 

board cameras like on Robonaut but employs a SICK LMS100 laser range finder, like the 

Aalborg University Segway platform, which has advantages for indoor navigation over the 

SICKLMS200 laser range finder used in the CARDEA and Georgia Institute’s robots. The 

advantages are discussed in Section 3.2.The mounting position of the laser scanner on the 

Aalborg Segway unit is less than ideal as it limits the 270° angular range to around 170°. The 

SICK LMS100 range finder is mounted on top of the Segway for this project to allow full 

range use. All projects employ an autonomous navigation system with Robonaut, Georgia 

Institute and Aalborg University Segway projects using different hybrid navigation systems. 

This project employs a hierarchical hybrid navigation system using an A* path planner 

algorithm along with a dynamic window obstacle avoidance approach. The Georgia Institute 

and Aalborg University Segway projects used the Player/Stage RDE whereas the navigation 
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system for this project is built in the Microsoft Robotics Developer Studio RDE. A 

comparison between these RDE’s and other common RDE’s has been presented in Section 

2.5. 
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Chapter 3 System Description 

This chapter describes the system used for this project.  The first section is a description of the 

Segway RMP200, its operating principles and main characteristics. The second section is a 

description of the SICK LMS100 Laser Range Finder (LRF) used as the primary distance 

sensor for this project. The system can be seen in Figure 3.1. 

 

Figure 3.1 Segway System. Top left: Back view. Top right: Side view. Bottom: Front view. 
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3.1 Segway RMP200 

3.1.1  Introduction 

The Segway Personal Transporter (PT) was invented by Dean Kamen and first came to the 

consumer market in 2001 (Segway Inc., 2012). The Segway unit works in a similar manner to 

how a person walks, where the centre of gravity of the body is leaned forward and to prevent 

falling over, a leg is moved to stabilize the body. The Segway has two wheels instead of legs 

and rotates the wheels at a speed so as to prevent the operator from falling when they lean 

forwards or backwards. This makes the Segway TP move, and Segway Inc. calls this dynamic 

stabilization. 

The Defence Advanced Reasearch Projects Agency (DARPA) along with the National 

Aeronautics and Space Administration (NASA) commissioned Segway Inc. to develop a 

computer controlled version of its personal mobility system capable of balancing large 

payloads (Diftler, Ambrose, Tyree, & Goza, 2004). In 2003 This became the Segway Robotic 

Mobility Platform (RMP). Segway Inc. created several robotic platforms including the 

Segway RMP200 (Segway Inc, 2012), which has been acquired by Victoria University of 

Wellington for research purposes. 

The Segway is designed to be a stabilised differential drive platform that can be merged into a 

system to control the platform (Segway Inc, 2009). The controlling system generates velocity 

and steering commands to move the platform.  Control commands can be sent to the RMP 

platform by using either the CAN bus or USB.  This project controls the Segway platform 

using a USB interface from a control laptop. 

The Segway RMP200 platform consists of a base plate, where two battery packs, engines and 

User Interface control box are located. The payload plate located at the top of the Segway is 

supported by two side panels. The Segway RMP model is depicted in Figure 3.2. 
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Figure 3.2 Segway RMP200 

 

The Segway RMP200 has two different modes of operation, tractor mode and balance mode. 

In tractor mode the Segway platform becomes a non-stabilized differential drive system. The 

wheel velocities may be commanded as either a target linear velocity or target angular 

velocity. When tractor mode is active, another additional ground contact must be provided to 

prevent the platform from falling. In balance mode the Segway platform becomes a 

dynamically stabilized platform. Balance mode must not be used with a third point of ground 

contact as this interferes with balancing and causes system instability. 

In this project only the balance mode will be used but both features will be available for 

selection in software, allowing for modular reuse for future projects. 

Like most mobile robots, the Segway RMP is a nonholonomic system: “A system that is 

subject to constraints in velocity but not position” (Choset, et al., 2005). This means that 

although the Segway can reach any location, there is no singular motion command that allows 

it to reach all locations. An example of this is that the Segway RMP cannot move sideways 

without turning first. 
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The Segway is only suited for relatively flat terrain and has a limited range of around 19 km, 

making it best suited for indoor tasks. For this project the Segway platform is only expected 

to work in indoor environments. 

The Segway has three batteries, two in the base for the Segway’s control system and motors 

and one under the top plate for attached accessories (control laptop and laser scanner).  

Segway Inc. recommends the tyres be inflated to between 4 and 8 psi (27.6 kPA to 55.2 kPA). 

At the beginning of this project the tyres were checked and inflated to 6 psi (41.4 kPA), 

within the recommended pressures. 

The Segway uses proprietary technology for which there is little information about the 

hardware within the base. Early within the project the Segway platform became inoperable 

and due to little information available about the hardware, debugging the issue took longer 

than expected. The Segway platform was required to be sent back to Segway Inc. in the USA 

for repair.  

3.1.2  Segway Sensors 

The Segway platform contains sensors that monitor the movement of the platform, enabling 

full control over its operation. The sensors that balance the platform are as follows: (Segway 

Inc, 2009) 

 Five gyroscopic sensors measuring: 

o Pitch angle and pitch rate, 

o Yaw angle and yaw rate and, 

o Roll angle and roll rate. 

 Two accelerometers, 

 Additional tilt sensors. 
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With these sensors, the Segway interface also provides output information of: 

 Left/right wheel speed, 

 Left/right wheel shaft torque, 

 Left/right wheel displacement, 

 Fore/aft displacement, 

 Yaw displacement and, 

 Battery status. 

3.1.3  RMP Interface Theory of Operation 

The Segway RMP200 platform has a control architecture that consists of three distinct 

processors. Two processors in the base (CU_A and CU_B) are used to perform the closed 

loop control of the motors. These two processors perform all sensing, control and fault 

detection functions so that the RMP may continue to operate in the case of a fault. The third 

processor is a User Interface (UI) processor that manages communications to a host processor 

as well as providing E-stop, watchdog and programming functions for the two powerbase 

processors (Segway Inc., 2009).  

The main processors in the powerbase of the RMP communicate with the UI processor via 

two CAN serial busses, CAN_A and CAN_B. The UI communicates over USB to a host 

processor. The control architecture can visually be seen in Figure 3.3.  

The power base processors are configured with CU_A as a master and CU_B as a slave. 

During normal operation, CU_A computes the appropriate control command and passes the 

commands to CU_B on a Serial Communication Interface (SCI) communications channel 

inside the powerbase (Segway Inc., 2009). 
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Figure 3.3 Segway RMP control architecture (Segway Inc., 2009) 

Messages that control the movement of the Segway RMP may be sent by the host processor 

as frequently as every 10 milliseconds (100 Hz). Control messages must be sent by the host 

processor at a frequency no slower than 2.5 Hz or else the CU_A processor will slew the 

velocity command to zero. This stops the Segway in the event of a failure of the control 

system. 

The Segway’s control system starts when the green power switch as depicted in the bottom 

left of Figure 3.4 on the UI is pressed. The switch illuminates to indicate the UI box is 

powered. When the UI box is powered it is able to send and receive USB messages as well as 

CAN messages. 

The motors are enabled when the yellow start switch as depicted in the top left of Figure 3.4 

is pressed. When pressed, the WAKE line is driven high which starts the power supplies on 

the Control Units (CU) processor boards. This starts the wake-up procedures for CU A and 

CU B. When ready the CU A and CU B processors will send a CAN message to the UI to set 

the WAKE line low, indicating that CU A and CU B have assumed control of their own 

power supply. The blue tractor mode switch as depicted in the top right of Figure 3.4 will 
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illuminate to indicate that the Segway has successfully entered tractor mode and is ready to 

accept velocity commands.  

For the Segway to enter balance mode, it needs to be brought into an upright position to allow 

engaging of the balance mode controller. Balance mode cannot be entered unless commanded 

by the control laptop or the blue balance mode switch is pressed as depicted in the bottom 

right of Figure 3.4 on the UI box. Once the balance mode button on the UI is lit, the Segway 

is ready to accept velocity commands. 

 

 

Figure 3.4 Segway User Interface buttons 

If the Segway is displaced from its desired position, it will lean against the displacement 

force. The harder the displacement force, the more the Segway will lean. This effect is 

depicted in Figure 3.5.  

 

Figure 3.5 External force displacement (Segway Inc, 2009) 
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When the Segway is required to roll over an obstacle, the centre of gravity of the system must 

tilt forward over the contact point with the obstacle as depicted in Figure 3.6. Once the centre 

of gravity is over the contact point the Segway will roll over the obstacle provided the 

obstacle is small. Larger obstacles that require the Segway to tilt more than 45 degrees will 

cause an error within the Segway, which will cut motor power and fall over. Error conditions 

are explained more in Section 3.1.7. 

 

Figure 3.6 Segway traversing small obstacles (Segway Inc, 2009) 

The Segway has an emergency stop switch on the UI box that causes the Segway to turn off 

when opened. The switch is attached to a tether as seen in Figure 3.7, that when pulled will 

activate the stop switch. The tether was held by the operator during initial testing to stop the 

Segway during an emergency.  

 

 

Figure 3.7 Emergency stop switch and tether (Segway Inc, 2009) 
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3.1.4  USB Interface 

The software included with the RMP installs the USB driver required to communicate with 

the Segway over serial USB. USB communication with the UI is carried out using a 

FTD245BM chip  (Oceanchip, 2009).  The installer RMPInstall.msi installs an appropriate 

USB driver on the controlling laptop to enable communication with the Segway platform. The 

RMP transmits and receives all USB communications in 18 byte packets as shown in Table 

3.1.  

The RMP operates internally on CAN messages. USB communications between the host 

computer and the RMP are essentially CAN messages with the addition of a USB header and 

checksum. The UI is responsible for extracting the CAN message and relaying it to CU_A. 

The conversion between USB and CAN is shown in Table 3.1.  

Table 3.1 USB to CAN conversion 

Byte Value Contents 

0 0xF0 USB Message Header (Start Byte) 

1  

0x55 

USB Command Identifier 

CAN Message 

2  

0x010x05 

Command Type 

CANA_DEV 

USB CMD_RESET 

3 0x00 Ignore on read, send as 0. 

4 0x00 Ignore on read, send as 0. 

5 0x00 Ignore on read, send as 0. 

6  CAN Message Header (high byte) 

7  CAN Message Header (low byte) 

8 0x00 Ignore on read, send as 0. 

9  CAN Message Byte 1 

10  CAN Message Byte 2 

11  CAN Message Byte 3 

12  CAN Message Byte 4 

13  CAN Message Byte 5 

14  CAN Message Byte 6  

15  CAN Message Byte 7 

16  CAN Message Byte 8 

17  USB Message Checksum 
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Byte 0 is the message header which always has the value 0xF0 indicating the start of a 

message. Byte 1 is the command identifier with the value of 0x55 indicating the following is a 

CAN message. Byte 2 is the command type where a value of 0x01 Instructs the UI to send the 

message contents on CAN channel A to the CU_A controller and a value of 0x05 instructs the 

UI processor to do a software reset. There may be more Command Types but no information 

is supplied on different valid commands. Bytes 3-5 are set to 0x00 when sending USB 

messages and ignored when received. Bytes 6 and 7 are the CAN Message Header high and 

low bytes. Table 3.3 contains the commands and valid parameters for configuring the 

Segway. 

For command messages sent from the Segway, header values can be found in Table 3.5. Byte 

8 is set to 0x00 when sending USB messages and ignored when received. Bytes 9-16 contain 

the CAN message data. For messages sent to the Segway, typical values can be found in 

Table 3.3.  

For messages received from the Segway, typical values can be found using Table 3.4 and 

Table 3.5. Byte 17 is the USB message checksum. The code snippet in Figure 3.8 shows how 

the USB checksum is calculated. 

 

Figure 3.8 USB message checksum calculation 

 

unsigned short checksum; 

unsigned short checksum_hi; 

checksum = 0; 

for(int i = 0; i < 17; i++) 

{ 

checksum += (short)sbytes[i]; 

} 

checksum_hi = (unsigned short)(checksum >> 8); 

checksum &= 0xff; 

checksum += checksum_hi; 

checksum_hi = (unsigned short)(checksum >> 8); 

checksum &= 0xff; 

checksum += checksum_hi; 

checksum = (~checksum + 1) & 0xff; 

sbytes[17] = (unsigned char)checksum; 
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3.1.5  RMP Control Message 

An RMP Control Message is used to command the RMP to move or change the platform’s 

configuration and is 4the main means of controlling the RMP.   

Table 3.2 contains the control message format, with a CAN header value of 0x0413. Bytes 1-

2 contain the velocity command, with a valid range of [-1176, 1176] that maps to a velocity 

range of [-8 mph, 8 mph] ([-12.9 km/h, 12.9 km/h]). Bytes 3-4 contain the turning command 

with a valid range of [-1024 to 1024] but does not specify the angular velocity values the 

range corresponds with. Bytes 5-6 contain the configuration command which allows specific 

functions to be performed. If this command is set to zero, the configuration command and 

parameter, bytes 7-8, are both ignored. Table 3.3 contains the commands and valid parameters 

for configuring the Segway. 

Table 3.2 RMP control message format 
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Table 3.3 Configuration command and configuration parameter values 

 

Scale factors are applied to the maximum velocity, maximum acceleration, maximum turn 

rate and to the current limit. The scale factors limit the associated value to a fraction of its full 

scale value. Each of these scale factors range from 0 to 1.0. Scale factors are changed by 

sending a control message (Table 3.2) with the associated command value (Table 3.2). Values 

for scale factors used in this project are discussed further in Section 6.4.2. 

The acceleration scale factor allows for aggressive stopping and starting. Smaller acceleration 

scale factors increase the time the system takes to start moving. Larger acceleration scale 

factors allow for quick movement of the Segway, but could cause issues with larger payloads. 

The velocity scale factor allows the controlling computer to limit the maximum speed the 

Segway can travel at. The scaling factor scales the [-8 mph, 8 mph]  ([-12.9 km/h, 12.9 km/h]) 

maximum velocity linearly between 0 – 1, with a value of 0.5 limiting the maximum velocity 

to between [-4 mph, 4 mph]  ([-6.4 km/h, 6.4 km/h]). 

The turning scale factor is used to limit the maximum turning acceleration of the Segway 

platform. This allows the turning acceleration to be scaled down with tall payloads to prevent 

the Segway from tipping during turning manoeuvres. 

The current limit scale factor limits the maximum motor current limit, thus limiting the 

amount of torque the motors can provide. Each wheel is capable of producing 122 Newton-

metres of torque. Setting the current limit scale factor to 1 results in full torque capacity while 
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setting it to 0 results in no available torque. Dynamic balancing of the Segway requires large 

transient torque amounts to accelerate and decelerate. In environments with lower traction 

between the Segway's wheels and the ground, reduction of the maximum torque is required to 

prevent wheel slippage. 

The Segway has three different gain schedules depending on the payload configuration. The 

different payload configurations are depicted in Figure 3.9. Selecting the correct gain 

schedule for different payloads allows the Segway to improve the handling and dynamics of 

the internal control loop, giving better damped responses to velocity and turning commands. 

Gain schedule 0 is optimised for light payloads of around 50 lb (22.7 kg) on the top plate, 

gain schedule 1 is optimised for tall payloads where a 25 lb (11.3 kg) payload is located at the 

top plate and another 25 lb payload is located 75 cm above the top plate, and gain schedule 2 

is optimised for heavy payloads of around 100 lb (45.4 kg) on the top plate. 

 

Figure 3.9 Payload configurations for the Segway (Segway Inc, 2009) 

The set operational mode parameter enables the control computer software to change between 

tractor mode and balance mode as well as allowing the ability to turn off the Segway. Once 

the Segway is turned off, it needs to be manually turned on again. 

The reset integrators parameter allows the encoder values to be reset. Each encoder can be 

individually reset while a bitwise OR function between different values in Table 3.2 can reset 

multiple encoders in a single command message. 
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3.1.6  Monitoring Messages 

Monitoring messages are sent from Command Unit Processor A to the controlling computer 

at 100 Hz. These messages are important as they provide state estimates on the Segway to the 

host processor, supplying information such as current wheel speeds and encoder values. Each 

message contains four data slots as shown in Table 3.4. Each data slot is 16 bits long (two 

bytes). 

Table 3.4 Monitoring messages packet format 

 

 

Seven different monitoring messages are sent from the Segway to the control computer and 

can be seen in Table 3.5.  

 Message 1 contains the pitch angle, pitch rate, roll angle and roll rate. 

 Message 2 contains the left and right wheel velocities, yaw rate and servo frame 

counter. The servo frame counter increments from frame to frame. A frame is the set 

of 8 messages the Segway sends to the control computer.  

 Message 3 contains the left and right encoder values. Both are 32 bits long (four bytes) 

so require two data slots per message.  

 Message 4 contains the fore/aft and yaw encoder values. Both are 32 bits long so 

require two data slots per message. 

 Message 5 contains the left and right motor torque values. 
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 Message 6 contains the current operation mode, current controller gain schedule, the 

UI battery voltage level and the powerbase battery voltage level. 

 Message 7 echoes the received velocity and turn commands back to the control 

computer and is useful for debugging. 

Table 3.5 Monitoring messages and conversions 

 

 

The recommended data conversion factors are also shown in Table 3.5. The pitch angle, pitch 

rate, roll angle, roll rate and yaw rate are estimates that come from a pitch state estimator 

within the Segway’s control processor. It synthesizes low frequency and high frequency 

sensors to arrive at estimates of angles and angular rates. Segway advise that high 

acceleration or rough terrain reduces the accuracy of the numbers. The conversion factors for 
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all encoders are based on the nominal rolling diameter of the wheels of 48 cm. As these are 

only approximates, more accurate conversion factors are required and shown in Section 7.2.1. 

3.1.7  Error Conditions 

The Segway RMP can encounter certain environmental conditions that prevent the platform 

from maintaining self-balance. When a fault or malfunction is sensed by the power base the 

system slews the velocity command to zero but keeps the motors enabled to allow system 

stabilisation. When a fault prevents the system from maintaining stabilisation the system will 

disable power to the motors, causing the Segway to fall or roll freely. When the Segway 

encounters these problems, the Segway disables power to the motors, thus preventing possible 

damage to the surrounding environment. 

If the pitch angle of the Segway exceeds 45 degrees forwards or backwards, an error has 

occurred and the Segway will disable power. This is because the Segway controller has to 

travel at an excessive speed to restore balance once the Segway has tilted past this angle. An 

excessive roll angel of 60 degrees will also cause an error and cause the Segway to disable 

power. 

When in balance mode, the Segway balance controller is designed to hold a stationary 

position based on several controller error terms, such as wheel displacement from 

commanded location. If the Segway moves more than 12 feet (3.66 m) from the original 

resting location the Segway will disable balance mode and switch to tractor mode. This error 

condition can occur if the wheels are slipping, an external disturbance force pushes the 

Segway away from equilibrium position or if a wheel is lifted off the ground. 

The Segway is designed with a redundant propulsion system (Segway Inc, 2009). The system 

maintains electrical isolation between the frame and control electronics in order to detect the 

event of electrical component failure. If an electrical connection is made between two 

systems, the Segway performs a safety shutdown. Segway advise that the most common cause 

of this fault is connecting the CAN channel ground to the frame of the machine and 

recommend an optically isolated cable be used for any CAN based communication. This 

project does not require this due to using the USB communications architecture.  
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3.2 Range finders 

Three laser range finders have been identified as being commonly used in robotic 

applications. They are the SICK LMS100, SICK LMS200 and the Hokuyo URG.  A 

description of each sensor is given in the following sections along with the sensor chosen for 

this project. 

3.2.1  SICK LMS100 

The LMS-100 scanner has a maximum measurement range of 20 metres with a programmable 

field of view (FOV) up to 270°. The 270° FOV can be measured with an angular resolution of 

either 0.25° or 0.5° at a scan frequency of 25 or 50 Hz. The scanner weights 1.1 kg and 

consumes 350 mA at 24 V supply voltage. The SICK LMS100 dimensions are 105 x 102 x 

152 mm. RS-232, CAN and Ethernet data interfaces are available. The scanner is capable of 

TCP/IP communication through its Ethernet port, thus the available bandwidth is sufficient to 

transfer 270° FOV measurements with an angular resolution of 0.5° at 50 Hz.  

 

Figure 3.10 The SICK LMS100 laser range finder 

3.2.2  SICK LMS200 

The SICK LMS200 (Figure 3.11) has been frequently used in robotic applications for obstacle 

recognition and avoidance as discussed in a review by Mc Guire, Henriques, Nguyen, Jensen, 
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Vinther & Jepersen (2009). The LMS200 has a maximum measurement range of 80 m, far 

greater than the 20 m maximum of the LMS100 scanner. It also has a maximum 180° field of 

view, 90° less than the LMS100 counterpart. The angular resolution of the scanner is 0.25°, 

0.5° and 1° with an 18.9 Hz, 38.5 Hz and 77 Hz scan rate respectively. The scan rate at 0.25° 

and 0.5° is far slower than the 50 Hz that the SICK LMS100 is capable of. The scanner 

weighs 4.5 kg, over four times heavier than the LMS100, and consumes 830 mA at a 24 V 

supply voltage, more than twice the 350 mA at 24 V for the LMS100. The LMS200 

communicates with RS-232 with a maximum communication rate of 500 Kbaud/s. Cang Ye 

and J. Borenstein (2002) worked on a detailed characterization on the LMS-200 laser scanner. 

Pre-made services have been developed in MRDS (Johns & Taylor, 2008) for the SICK 

LMS200. 

 

Figure 3.11 SICK LMS 200 laser range finder (SICK Inc., 2003) 

3.2.3  Hokuyo URG 

The Hokuyo URG (Figure 3.12) is one of the smallest laser range finders available measuring   

50 x 50 x 70 mm. The Hokuyo scanner has a maximum measurement range of 4 m, much less 

than the 20 m for the LMS100, with a 240° FOV, slightly less than the 270° FOV for the 

LMS100. The angular resolution is 0.36°, comparable to the 0.25° and 0.5° options available 



System Description 49 

 

from the LMS100. The scan rate is 10 Hz which is much slower when compared to other 

measurement systems. It has RS-232 and USB data interface for communication up to 12 

Mbit/s. 

 

Figure 3.12 Hokuyo URG-04LX laser range finder 

3.2.4  Chosen Sensor 

The SICK LMS100 was chosen for this project. It out-performs the LMS200 in most aspects, 

larger FOV, faster scan rates, lighter and less power requirement, except the maximum 

measurement range of 80 m compared to 20 m. The increase in maximum measurement range 

is not required for this project as a maximum of 20 m is adequate to localise and detect 

obstacles within an indoor environment. 

The Hokuyo laser range finder has only a slightly worse FOV when compared to the LMS100 

as well as a slower scanning rate. With a small form factor, low weight and low power 

requirements the Hokuyo could be used as an alternative range finder device, although the 

4 m measurement range could make localisation harder as less features would be extracted 

each scan.  
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3.3 SICK LMS100 Laser Scanner 

3.3.1  Overview 

The SICK LMS100 consists of a laser reflected by a rotating mirror. The operation of the 

laser is based on an infra-red pulsed laser diode, and the internal firmware includes the ability 

to report the intensity of reflection (SICK Inc., 2012). The device can be seen in Figure 

3.10.The LMS measures its surrounding in two-dimensional polar coordinates as shown in 

Figure 3.13. The distance is measured by the time between emitting and receiving a laser 

pulse from the laser scanner, known as pulse propagation time measurement and can be seen 

in Figure 3.14. If a laser beam is incident on an object, the position is determined in the form 

of distance and direction. 

 

Figure 3.13 Measuring principle of the LMS 

The SICK LMS 100 purchased by Victoria University does not have a pre-made service in  

MRDS and one needed to be developed. MRDS services are explained in greater detail in 

Chapter 4. 

The SICK LMS 100 rangefinder is the primary sensor used in this project for localisation and 

obstacle avoidance for the Segway platform. It is connected to the controlling laptop using the 

10/100 Mbit Ethernet (TCP/IP) interface.  
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Figure 3.14 Principle of operation for pulse propagation time measurement 

3.3.2  Data Communication using Telegrams 

The SICK LMS100 uses “telegrams” to communicate between the unit and a host 

environment. Telegrams are the packet structure, or framework, used for communication 

between devices connected to the scanner. This project only utilises telegrams relating to: 

 starting the laser scanner running,  

 requesting single or continuous laser measurements, and  

 stopping the laser scanner running.  

Telegrams relating to configuring the SICK LMS100 (such as changing the scanning 

resolution) are not implemented as the laser scanner can be configured using the SOPAS 

Engineering Tool (Informer Technologies Inc., 2012) in an easier manner.  

The LMS sends telegrams over the interfaces described above to communicate with the 

connected host. The following functions can be run using telegrams (SICK Inc., 2012): 

1) requests for measured values by the host and subsequent output of the measured 

values by the LMS, 

2) parameter setting by the host for the configuration of the LMS, and 

3) parameters and status log querying by the host. 
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The IP address of the SICK LMS100 was changed to 130.195.162.58 using SOPAS so that it 

could network with the University computers on the 130.195.162.xxx domain. 

There are two encoding options for telegrams that the laser scanner can interpret: ASCII and 

binary. For this project, all telegrams sent to the laser scanner (and subsequently received) use 

ASCII encoding. This decision was made because it is visually simpler for a human to see 

ASCII encoding rather than binary encoding (Figure 3.15) and that the main programming 

language, C#, being a higher level programming language is more suited towards ASCII 

support than binary. The disadvantage of using ASCII was that the start and end frame bytes 

did not correspond to ASCII characters recognised by the IDE used during the project. This 

was overcome by creating start and end frame header bytes and employing byte to string 

methods that converted the start and end frame characters at runtime. 

 

Figure 3.15 ASCII vs binary telegram example 

Figure 3.15 shows two telegrams requesting the output of measured values of one scan. The 

top image is an ASCII telegram while the bottom image is a binary telegram (values 

converted to HEX for visualisation). This gives an example of how it is easier to visually see 

which telegrams are being sent and received 

The telegrams supported by this project are:  sRN LMDscandata and  sEN LMDscandata and 

their response messages. These message types are explained in more detail in Section 6.3.  

3.4 Control Laptop 

A laptop was chosen to be the main control computer to host high-level software. This is due 

to the requirements for running Microsoft Robotics Developer Studio. The requirements, 

listed below, rule out using an embedded controller for this project. 
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The requirements for the Microsoft Robotics Developer Studio 4 runtime environment are: 

 a PC or laptop capable of running Windows 7, 

 dual-core processor (2 GHz or faster recommended), 

 2 GB of memory, and 

 directX 9.0c compatible graphic card (for simulation). 

The Segway platform requires a USB connection for communication while the SICK 

LMS100 requires a TCP/IP Ethernet connection. 

The specifications for the laptop used are as follows: 

CPU:   Intel Core i5-2520M @ 2.50 GHz 

RAM:   4.00 GB 

Hard Disk:  250 GB, 5400 rpm 

OS:   Windows 7 Enterprise SP1 

I/O Ports:  3 x USB 2.0 

Connectivity:  Intel Gigabit Ethernet 

   Intel Advanced 802.11n WLAN 

The chosen laptop easily meets the specifications for running the MRDS runtime 

environment. 

A car laptop charger adapter (12 V, 90 W) was modified and connected to the 12 V battery 

under the top plate on the Segway platform to charge the laptop. 

3.5 Complete System 

An overview of the complete system can be seen in Figure 3.16. A remote PC is used to 

monitor and control the system and runs the UI explained in Section 6.6. The remote 

computer uses wireless to communicate with the control computer. The control computer runs 

the navigation service (Chapter 5) which controls movement of the Segway. The control 

computer also runs two services (explained in Sections 6.3 and 6.4) which communicate over 

TCP/IP and USB to control the SICK LMS100 scanner and Segway platform. 
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Figure 3.16 System overview 

The SICK LRF scanner is mounted in the centre top of the platform. Mounting the sensor on 

the top of the Segway platform allows the full 270° field of view to be un-obstructed by the 

Segway itself during normal operation. Some previous projects using Segways and laser 

range finders mounted the scanner underneath the top plate, as seen in Figure 2.15 and Figure 

2.16, which limited their field of view to 180° directly in front of the Segway, as distance 

measurements from larger fields of view returned distances to the vertical mounting plates on 

the Segway. Mounting the laser scanner on top of the Segway means that any distance 

measurements returned by the laser scanner are distances from centre of the Segway to 

obstacles, rather than incorporating any part of the system. 

A piece of acrylic sheet was laser cut and mounted above the base of the Segway, between the 

two vertical plates, to create a platform for the control laptop to sit on. The lower platform 

was cut to be smaller than the top plate of the Segway so the footprint size would not 

increase. This addition can be seen in Figure 3.17. 
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Figure 3.17 Laptop platform 

One issue that is predicted to cause problems is the changing pitch angle when the Segway 

moves, which also changes the angle of the laser scan relative to the ground the Segway is 

traveling on.  Figure 3.18 depicts a sketch of the Segway when tilted at a 10 degree angle and 

a laser range measurement pointing forward relative to the Segway.  

 

Figure 3.18 10° tilt of Segway effect on range finder 

With a placement of the SICK LMS100 in a height of 80 cm, and a pitch angle of 10 degrees 

(not unrealistic during acceleration) the laser range will hit the floor in a distance of 4.51 m 

from the Segway platform. This could confuse the localization algorithm, since it will look 

like a wall. Possible solutions could be to mount the LMS with a motor, hang it freely to 

always level it, or use geometry to improve the range readings. However, during testing this 

issue did not affect the performance of the localization and landmark detection by a pertinent 

amount. As this was not a consideration, fixing the issue is not in the scope for this project. 
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Chapter 4 Microsoft Robotic Developer 
Studio 

This chapter describes the software development language MRDS, the environment and tools 

that were used to develop the control system for the Segway platform. The Segway platform’s 

software is written in two programming languages, mostly C# with C used to interface with 

the Segway platform. The navigation system has been implemented in C# running in the 

MRDS environment. MRDS is designed to execute on any Windows-based PC that meets the 

specifications laid out in Section 3.4.  

  MRDS 4.1

Microsoft created Microsoft Robotic Developer Studio (MRDS) (first released 2006) for the 

purpose of creating an industrial standard in robotics and incorporates a Service-Oriented 

Architecture (SOA) into embedded system development (Microsoft, 2012). SOA is 

characterized by loosely coupled services, open standard interface, service publication, 

dynamic discovery of services and dynamic composition using services discovered (Tsai, 

Huang, & Sun, 2008). MRDS provides a software platform and development environment 

that enables software written for one robot to also work with another robot with similar 

capabilities (Jackson, 2007). 

As MRDS is designed to run in the .Net based runtime environment, MRDS applications 

require Windows operating systems to run them. 

Following the SOA design, application modules interact as a service that subscribes to or 

publishes to other services, similar to Web services. 

MRDS also defines a set of abstract services specifying APIs that can be used to 

communicate with common hardware components. These services allow MRDS to control a 

wide range of hardware with minimal programming effort. An example of this is the Generic 

Differential Drive (GDD) contract service which provides a framework for differential drive 

robots and allows other generic services, such as the dashboard service, to interact with them. 

The dashboard service shown in Figure 4.1 can be used to drive any GDD robotic platform 
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with a keyboard or joystick (Johns & Taylor, 2008). The dashboard service also connects to a 

SICK LMS200 laser range finder and displays the distance measurements. The dashboard can 

find GDD services on remote nodes when given a computer name and port to connect to and 

log also provides a logging function. 

 

Figure 4.1 Dashboard service  

The basic building block in MRDS is a service. Every MRDS application will contain one or 

more services. Services can be combined as partners to create robotic applications. This 

process is referred to as orchestration. Figure 4.2 shows an example of how the services 

might be orchestrated to control a robot. It is the job of the orchestration service to implement 

high-level control behaviours such as path planning and obstacle avoidance. 
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Figure 4.2 MRDS operational schema (Johns & Taylor, 2008) 

The MRDS environment consists of a number of components . The Concurrency and 

Coordination Runtime (CCR) and Decentralized Software Services (DSS) shown in Figure 

4.2 are covered in more detail in Sections 4.1.1 and 4.1.2.   

MRDS also includes utility services which automatically load when a service is started. These 

include: 

 a control panel service which provides a web interface to the end user displaying all 

the running services and current state or web transform for each service. A Web 

transform is how the service state is displayed in a web browser,  

 a logging service that provides debugging and diagnosis interface, and 

 a resource diagnostic service to provide additional information to assist in debugging 

and performance evaluation. 

In addition, MRDS consists of two visual components, a 3D simulator, Visual Simulation 

Environment (VSE) shown in Figure 4.3, and a Visual Programming Language (VPL) shown 

in Figure 4.4. 
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Figure 4.3 MRDS 3D Visual Simulation Environment  

The Visual Simulation Environment uses 3D graphics to render a virtual world and a physics 

engine to approximate interactions between objects within the virtual world. The VSE is 

designed to help prototype new algorithms and robots when actual hardware is not available. 

Without a simulator, prototyping new robot designs and moving from one design iteration to 

the next can take weeks or months due to the physical changes required. Using a simulator 

significantly reduces this time period. A simulator also enables easy design and debugging of 

software when compared to physical robots. With moving robots it is often difficult to debug 

errors but simulations can avoid this problem as they can be paused when required. 
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Figure 4.4 MRDS Visual Programming Language  

Figure 4.4 shows a simple motor control program. The DirectionDialogService, on the 

left of the figure, sends one of five button press commands which are processed to set the 

motor drive power for a differential two wheel drive service on the right of the figure. 

A service is run to control each individual component of a system. In the case of a robot, a 

service might control the motors, another service might collect range measurements from an 

IR sensor and another service could control the navigation system of the robot. MRDS allows 

these services to subscribe to other services to receive updates about the state of a service or 

to change the current state of another service. 

4.1.1 Concurrency and Coordination Runtime (CRR) 

The CCR is a managed library that provides classes and methods to help with concurrency, 

coordination and failure handling (Johns & Taylor, 2008). It enables the user to design 
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applications so that the software modules or components can be developed independently, 

making minimal assumptions about their runtime environment and other components. CCR 

allows sophisticated robots to do real-time processing such as controlling actuators (motors, 

arms, pumps) while being able to receive and process sensor data from multiple sensors (IR 

sensors, odometers, etc). The CCR eliminates the issues of two threads simultaneously 

attempting to update the same variable and removes the need to program using mutexes 

(mutual exclusions) which can lead to race conditions that intermittently cause deadlocks. 

CCR uses its own threading mechanism to prevent these issues which is more efficient than 

the Windows threading model (Johns & Taylor, 2008). 

CCR implementation has three main categories of functionality: 

 the Port, PortSet and message, 

 Receivers, Arbiters and Handle, and 

 the Dispatcher, DispatcherQueue and Tasks. 

Figure 4.5 shows the relationships between each category. When a message is posted to a 

given Port or PortSet, the message triggers receivers that call for arbiters subscribed to the 

messaged port to create a task. That task is then queued and dispatched to the threading pool 

until assigned a thread to be run. Arbiters are used to evaluate the activation conditions that 

are set on receivers. Activation conditions can be set on receivers to create logical 

expressions. Two examples of these logical expressions are:  

 Join - two messages must arrive on two ports, equivalent of a logical AND. 

 Choice - a message can arrive on either of two ports, equivalent of a logical OR. 

Ports can be defined as persistent or non- persistent. Persistent ports continuously listen for 

messages, while non-persistent ports are designed to listen for a single message then close 

down.  
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The Port is the most common primitive of CCR and is used as the point of interaction to send 

messages between two components or services. Messages are posted to ports in an 

asynchronous operation and held in a First-In-First-Out (FIFO) queue (Microsoft, 2010) and 

remain in the port queue until it is read or de-queued by a receiver. Messages are just objects 

of a specified type, so classes can be created and instances of these classes can be sent as 

messages between services. If messages are never removed from the Port, then they just keep 

accumulating which poses a potential memory leak. 

The advantage of Ports is that messages can be posted to them from any thread. Due to the 

nature of CCR, posting messages will always be a safe operation. The message will either be 

processed successfully or will return an error status indicating that it could not be processed. 

Also, if all the receivers are busy, the message waits until it can be processed, the sender of 

the message does not have to wait as posting a message does not create a block for the 

sending thread. 

Figure 4.5 CCR architecture (Johns & Taylor, 2008) 
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PortSet is a generic class that allows the grouping of multiple types of ports. Multiple 

messages of different types can be posted to a Portset. Each message type can have a different 

handler that executes when a message is received. 

The main operations port of a service is usually a PortSet containing all the different ports 

that can receive different types of messages. Figure 4.6 shows the definition of the operations 

port for a generic service which contains five types of messages: Replace, Subscribe, Get,  

DsspDefaultLookup and DsspDefaultDrop. The latter three are the minimum set of message 

required for a MRDS service to operate (Johns & Taylor, 2008). 

 

 

. 

 

When a message has been received by a port, a task is queued to a dispatcher queue and then 

passed onto a dispatcher for execution. A task is the name given to the thread that executes 

the incoming message handler, which runs in a fully multi-threaded environment. The 

dispatcher takes a task from the dispatcher queue and allocates a thread to run the task. When 

threads become available, the dispatcher is automatically queried for another task to run. 

Iterators are another key tool that CCR uses to allow sequential execution of code but without 

blocking the execution thread when it needs to wait for a message. A service controlling a 

robotic arm may wait for a response message to say that a movement was successful or a fault 

message indicating that there was a problem.  When an operation is performed that will take 

an unknown about of time to execute, the iterator effectively remembers the current location 

in the code and then relinquishes control until a response message is received. When the 

response message arrives, the code resumes execution from the point where it left off. This 

feature allows another thread to execute during the wait time which would have normally 

locked up the thread. 

//Portset that accepts items of Replace, Get, Subscribe , 
//DsspDefaultLookup and DsspDefaultDrop 

Public class GenericServiceOperations: PostSet<Replace, Subscribe, 
Get, DsspDefaultLookup,DsspDefaultDrop>{} 

Figure 4.6 A generic service’s operations PortSet 
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4.1.2 Decentralized Software Services (DSS) 

The Decentralized Software Services (DSS) is responsible for starting and stopping services 

and managing the flow of messages between services. DSS is composed of several services 

that load service configurations, manage security, maintain a directory of running services, 

control access to local files and embedded resources, and provide user interfaces that are 

accessible using a web browser. DSS uses a protocol called DSS Protocol (DSSP) which is 

based on the Representational State Transfer (REST) model often used for web development. 

REST is a style of software architecture for distributed systems such as the World Wide Web 

and has emerged as the predominant web service design model (Fielding & Taylor, 2005). 

A robotic application built with DSS consists of multiple services running independently and 

in parallel. DSS in combination with CCR allows these multiple services to run in a real time 

environment. Services built with DDS are mainly (but not limited to) hardware components 

such as sensors and actuators and software components such as user interfaces and 

aggregations referring to sensor-fusion and related tasks (Cepedia, Chaimowicz, & Soto, 

2010). 

DSS allows services to be operating in the same hosting environment, or DSS Node, or 

distributed over a network, giving flexibility for execution of computationally expensive 

services in distributed computers (Cepedia, Chaimowicz, & Soto, 2010). 

A DSS service consists of seven main components which can be graphically seen in Figure 

4.7: 

 Service URI. The unique key for each service is the Service URI, which refers to the 

dynamic Universal Resource Identifier (URI) assigned to a created DSS service. The 

Service URI enables each service to be identified. This is most useful when multiple 

instances of the same service are running on the same network. 

 Contract Identifier. The Contract Identifier is created within the code of the service 

for identifying it from other services, thus creating a globally unique reference. The 

Contract Identifier is often also the name of the service.  When multiple instances of a 

service are running, each instance will contain the same Contract Identifier but 

different service URI. 
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 Service State. The Service State carries the current contents of a service. It will 

contain different information depending on the role of the service. The state of a 

service controlling a laser range finder will contain information such as distance 

measurements and angular resolution where as a service controlling a differential 

drive system will contain information such as current encoder values and current 

wheel speeds. 

 Service Partners. Service Partners enable a DSS application to be created by several 

services providing higher level functions and create more complex applications. The 

Service Partner definitions connect the services that must communicate and share 

knowledge about their state. 

 Main Port. A service’s Main Port is a CCR Portset where all messages from external 

services are received. The Main Port is a private member of a service which can only 

receive pre-defined messages (defined at service creation) which creates a well-

organized infrastructure for coupling distributed services. 

 Service Handlers. Service Handlers receive messages that arrive on the Main Port, 

which can come in the form of requested information about the services state or as a 

notification. The Service Handlers develop specific actions in accordance to the type 

of message that arrives on the Main Port. 

 Event Notifications. Event Notifications occur as the result of changes to a service’s 

state. A service that has subscribed to another service and is currently monitoring the 

service will receive an update message. 
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As DSS applications can work in a distributed fashion through a network, there is a special 

port called Service Forwarder, which is responsible for the partnering of services running on 

remote nodes. 

To clarify the differences between the CCR and DSS: the CCR is a programming model for 

handling multi-threading and inter-task synchronization, whereas DSS is used for building 

applications based on a coupled service model. Services can run anywhere on the network, so 

DSS provides a communications infrastructure that enables services to transparently run on 

different nodes using all of the same CCR constructs that they would use if they were running 

locally. 

By default, MRSD’s Security Manager Service does not allow services to be accessed across 

networked computers. When a DSS node is started with a security settings file specified, the 

security manager is always started. For this project the security settings were disabled so 

communication between the host computer and observing computer was not restricted. Figure 

Figure 4.7 DSS architecture (Johns & Taylor, 2008) 
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4.8 shows the DSS Node Security Configuration file created which this project starts with 

every DSS service to disable the security settings. 

 

 Programming Environment 4.2

The services for this project are built on MRDS 4 version in the .NET 4.0 framework 

environment. It is therefore necessary to use a .NET language. Examples of .NET languages 

available include C#, C++, Visual Basic, Python and MRDS’s Visual Programming Language 

(VPL) (Johns & Taylor, 2008). It was decided to program services using C# based on a 

number of considerations: 

 documentation and samples available with MRDS are coded in C#, 

 recommended by MRDS as the preferred language for the development of DSS 

services, 

 easy deployment in a distributed environment, and 

 efficient memory and processing power requirements. 

Microsoft Visual Studio 2010 has been used as the integrated design environment (IDE) to 

develop services for this project. Visual Studio allows applications to be designed, 

programmed, debugged and deployed.  

Microsoft Visual Studio also allows Graphical User Interfaces (GUI) to be developed using 

WinForms. WinForms is a mature and simple technology for the purposes of building user 

interfaces quickly. WinForms will only be visible on the computer that is running the DSS 

node (Johns & Taylor, 2008). Because of this, a SegwayServices DSS service was created to 

   <?xml version="1.0" ?>  
- <SecuritySettings 

xmlns="http://schemas.microsoft.com/robotics/2008/02/security.html"> 

<AuthenticationRequired>false</AuthenticationRequired>  

<OnlySignedAssemblies>false</OnlySignedAssemblies>  

<Users />  

</SecuritySettings> 

 

Figure 4.8 DSS node security configuration file 

file:///C:/Program%20Files/Microsoft%20Robotics%20Developer%20Studio%204/store/SecuritySettings.xml
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display a UI WinForm and run on a remote computer to communicate with the main 

navigation service. 

 Summary 4.3

The runtime libraries of MRDS, CCR and DSS all contribute to developing the software 

architecture. CCR provides the ability for segments of code to operate independently within 

an application. DSS extends CCR concepts by introducing functionality to develop service-

oriented applications that can run across a network. Microsoft Visual Studio has been chosen 

as the IDE for this project and services are written using the C# programming language. 
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Chapter 5 Navigation Architecture 

5.1 Navigation System Overview 

A hybrid navigation system that employs an A* path planner and the dynamic window 

method was developed by a previous student Chris Lee-Johnson (Lee-Johnson, 2004). The 

system supported differential drive robots with a pre-generated grid map with fixed binary 

occupancy data being employed for path planning. The system did not have map updating 

capabilities. Praneel Chand (Chand, 2011) improved upon Lee-Johnson’s work creating a 

hierarchical hybrid navigation system at Victoria University. Chand’s work formed an 

integral part of another thesis created at Victoria University (Talwatta, 2012) which partially 

implemented the hierarchical hybrid navigation system on the MARVIN robotic platform 

(McClymont, 2011). The hybrid navigation system created by Chand has been selected as the 

navigation system for this project. 

The localisation section of the navigation algorithm was previously designed for an IR ring 

that returned 12 distance measurements in a 360° field of view. This project extends Chand’s 

work by using the increased sensor data available with the SICK LMS100 scanner to detect 

straight lines and distinguish corner and door landmarks within the environment. The 

landmarks are then compared to a database of known landmarks to update the Segways 

current position. 

Chand’s navigation system, depicted in Figure 5.1, consists of three layers: 

 The deliberative layer contains the path planner and environment map components 

indicated by the red dashed lines in Figure 5.1. 

 The reactive layer contains the path tracker and the reactive control components 

indicated by the blue dashed lines in Figure 5.1. 

 The third layer contains localisation, information extraction and sensor fusion, and 

low level motion control. 

The hierarchy of the modules of Figure 5.1 provides an indication of the breakdown of 

control. Modules on the left and right represent perception/representation and action/planning 

respectively. The indicated update rates have been employed in the respective algorithms on 
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this project but could be adjusted depending on the requirements of different robotic 

platforms. 

 

 

Figure 5.1 Hierarchical hybrid navigation system (Chand & Carnegie, 2011) 

5.2 Deliberative Component 

The deliberative component of the hierarchical hybrid navigation system bridges the gap 

between sensing and acting by introducing a planning step. The deliberative architecture 

enables a robot to perform high level tasks that would be too difficult to perform without 

planning (Junior, Parikh, & Junior, 2006).  

This planning is based on a map of the environment in combination with the environment 

information acquired by the sensors. An occupancy grid has been selected for the deliberative 

component of the navigation system to represent the Segway’s environment because of its 
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simplicity and usability in a range of environments. An occupancy grid map is generated by 

dividing the environment into discreet cells and assigning binary values indicating occupancy. 

The Segway operating environment for this project will always be known. Thus, a pre-made 

environment map can be used by the Segway’s navigation system for both navigation and 

path planning. 

5.2.1  Environment Representation 

The environment map for this project was constructed from measurements of the third floor 

corridor of the Laby building at Victoria University. The environment map consists of point 

co-ordinates and the connection between points such that a wall is represented by two (   ) 

coordinates and a connection between point one and point two. The corridor measures 

1.75 m × 11.4 m and contains seven doorways and two concave corners for localisation. The 

representative environment map is illustrated in Figure 5.2. 

 

Figure 5.2 Map of Laby corridor 

In order to be used as part of the navigation system, the map is converted into a two 

dimensional array occupancy grid with a “1” depicting a wall and a “0” representing 

unoccupied space. Figure 5.3 shows the map implemented after the navigation system has 

converted the map into an occupancy grid. The resolution of the occupancy grid is variable 

during the conversion from the map points to occupancy grid. For this project, the resolution 

is set at 0.2 m giving an occupancy grid resolution of 9 × 57 grids. This resolution is 

considered a good trade-off between an accurate representation of the map environment while 

keeping computational costs down. 
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Figure 5.3 Occupancy grid of the Segway’s operating environment 

5.2.2  Path Planning 

A single-tiered modified A* algorithm is used for planning a path through the occupancy grid. 

The A* algorithm is a best-first heuristic search algorithm that ranks nodes based on the cost 

of traveling through them (Pearl, 1984). Cost is usually represented by node distances where 

lower cost values denote a better path to travel. The total cost  ( ) of a node   is the sum of 

two cost values,  ( ) and  ( ).  ( ) represents the cost of travelling from the start node to 

node   while  ( ) is the heuristic cost of travelling from   to the goal node.  

  ( )   ( )   ( ) Equation 5.1 

The A* algorithm considers binary occupancy values where the nodes are either traversable or 

non-traversable. Hence  ( ) is dependent on the node distance of the lowest cost path from 

the start node to the parent node      and the Euclidean distance between   and     . 

Heuristic cost  ( ) is an over estimate represented by the Euclidean distance from the current 

node   to the goal node. 

If the path planner cannot find an appropriate path to the goal, path planning flags are set to 

stop the navigation system until an appropriate path can be found. This occurs when either the 

initial position or target position is located outside of the map or there is no direct path 

between the two locations. For an appropriate path to be found either the initial position or 

target position needs to be changed to a valid location. 
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5.3 Reactive Control Overview 

An outline of various reactive control methods has been presented in Chapter 2. The reactive 

control algorithm selected combines a modified dynamic window (Fox, Burgard, & Thrun, 

1997) with a polar histogram technique similar to the vector field histogram method presented 

by Ulrigh & Borenstein (1998). A simplified block diagram of the two-stage optimisation 

process that can track a path and avoid obstacles is illustrated in Figure 5.4. A target heading 

angle is determined from the path tracker which is then used as the input to the direction 

sensor that produces a modified target heading as an output. The modified target heading 

angle is then used by the dynamic window to produce linear and angular wheel velocities. 

 

Figure 5.4 Overview of reactive control strategy (Chand, 2011) 
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5.3.1  Path Tracking 

The path tracking algorithm checks the path planning flags to ensure that an appropriate path 

has been found through the map. If no path has been found, the navigation algorithm sets the 

angular and linear target velocities to 0 stopping the Segway from moving. The distance from 

the current position of the Segway  (        ) to each node of the path planner is calculated 

to find the closest node position to the Segway (     ). 

When the Segway is following a planned path, (        ) represents the coordinates of a 

node that is five nodes ahead of the closest node to the Segway, otherwise, (        ) 

represents the final destination coordinates of the Segway. At a resolution of 0.2 metres for 

the occupancy grid, five nodes represents 1 metre along the planned path for the Segway to 

head towards. This gives a distance forward of the current Segway position to aim for which 

continuously moves forwards as the Segway moves and allows room to travel around any 

obstacles encountered. 

The target heading is then calculated using Equation 5.2 which is the main input into the 

direction sensor algorithm. 

          (
     

     
) 

Equation 5.2 

 

5.3.2  Direction Sensor 

The direction sensor maximises the objective function that finds an appropriate balance 

between obstacle avoidance and goal directedness. 

A circular shape represents the Segway as shown at the centre of Figure 5.5 with radius   . 

The current position and goal position of the Segway are defined as (        ) and 

(        ) respectively. The target heading angle    is calculated in the path tracking stage 

of the algorithm (Section 5.3.1) and is used as the input to the direction sensor. 
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Figure 5.5 Direction sensor representation (Chand & Carnegie, 2011) 

To determine the most appropriate direction of travel, the Segway is represented as a point 

and each obstacle is enlarged by the radius of the Segway. The region surrounding the 

Segway is then divided into an arbitrary number of lines to represent candidate orientations 

    . All orientation angles are converted to the Segway’s reference frame R by subtracting 

the current absolute orientation   . 

An objective function is applied to each candidate orientation which maximises goal 

directedness |       | and distance to obstacles    . 

 

 
   (    )    (  

|       |

 
)   (

   

      
)    Equation 5.3 

 

Equation 5.3 shows the objective function, where higher values denote a better compromise 

between goal direction and obstacle avoidance.  The maximum obstacle distance,       , is 

set to the maximum sensing range.   and   are unit interval weighting for goal directness and 

obstacle clearance respectively which are calculated using trial and error to find an 
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appropriate balance. Smaller   and larger   values translate to large obstacle advoidance 

while larger   and smaller   values put preference on heading towards the goal direction over 

obstacle avoidance which can lead to collisions if obstacles are moving. Different values for   

and   were tested for this project and can be found in Section 7.4.1. 

5.3.3  Dynamic Window 

In the dynamic window approach (Fox, Burgard, & Thrun, 1997) a portion of the velocity 

space that is achievable within the next control cycle is searched for a velocity pair (   )   

An overview of the dynamic window method employed in this project is shown in Figure 5.6. 

The dynamic window approach has seven major inputs: 

 A target heading       is the output from the direction sensor 

  The Euclidean distance to the final goal location      

 Current linear and angular velocity (     ) 

 Global maximum linear velocity       

 Kinematic constraints 

 Dynamic constraints 

 Obstacle distances     

These inputs limit the maximum and minimum linear and angular velocities used to generate 

velocity windows. The velocity windows, target heading and obstacles are evaluated with a 

modified dynamic window objective function to select an optimal velocity pair (     ).  

The maximum linear velocity      is derived from        and varies depending on goal 

proximity      and obstacle distances    . When the Segway is within deceleration and 

stopping distances,        and      , the maximum linear velocity limit       is varied 

linearly between       and zero (Equation 5.4). 
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otherwise 

Equation 5.4 

 

 

Figure 5.6 Modified dynamic window method overview (Chand & Carnegie, 2011) 

 

The minimum linear velocity for this project is set to zero (Equation 5.5) so that the Segway 

stops when reaching the goal location. 
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        Equation 5.5 

Linear dynamic constraints (linear acceleration    and deceleration   ) and linear velocity 

limits (     and     ) are applied to the current velocity,   , to produce a linear velocity 

window               for the next control cycle. The current linear velocity window is 

divided into a number of divisions     for evaluation. 

Angular dynamic constraints (angular acceleration    and deceleration   ) and angular 

velocity limits (     and     ) are applied to the current angular velocity to produce an 

angular velocity window               for the next control cycle. The current angular 

velocity window is also divided into a number of divisions     for evaluation. 

The angular velocity of the Segway has a global maximum       and a global minimum 

       representing the Segway turning both clockwise and anti-clockwise. The maximum 

and minimum curvature,      and      respectively, for the next control cycle is derived 

from the current angular and linear velocity, and dynamic constraints of the Segway.  

Minimum and maximum angular velocities (Equation 5.6 and Equation 5.7) for the next 

control cycle are calculated from combinations of          ,      and     . 

 

         (                                       ) 
Equation 5.6 

        (                                       ) 
Equation 5.7 

 
 

A safety margin   is added to the Segway’s perimeter to allow it to stop before colliding 

with obstacles. If an obstacle distance     is within the safety margin, the velocity window in 

that direction is rejected. The safety margin has a minimum value of       which increases 

based on the current linear velocity of the Segway platform and a growth factor    . 
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                  Equation 5.8 

 

A flow chart showing the evaluation of each velocity pair (     ) to find the optimal 

solution is shown in 

Figure 5.7. The linear and angular velocity windows are divided into velocity pairs (       ) 

. The candidate curvature     for each velocity pair is calculated and needs to be within 

            to satisfy differential drive curvature constraints (Chand & Carnegie, 2011). 

After curvature constraints have been tested, the distance to collision      if the Segway 

travels at the candidate linear and angular velocities are determined. Boolean variables     

and     represent the ability for the Segway to successfully stop (Equation 5.9 and Equation 

5.10) 

 

Two objective functions are used depending on whether the Segway can avoid a collision. A 

primary objective function is calculated (Equation 5.11) if the Segway could avoid a collision. 

A secondary objective function is calculated (Equation 5.12) for     if the Segway could not  

stop in time. The secondary objective endeavours to steer the Segway away from the collision 

target and simultaneously slows forward velocity. 

 

 

    {                 
   

 

   

                          

 
Equation 5.9 

   

 

    {              
   

 

     

                          

 
Equation 5.10 
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The values    and   are weightings for goal directedness and velocity respectively. Smaller 

values of    result in the Segway only having relatively small changes in direction, which 

may not be optimal for goal achievement, while large values of    may compromise obstacle 

avoidance as the platform may not deviate from the target direction sufficiently to avoid the 

obstacle. Smaller values of   ensure the Segway moves relatively slowly, while larger values 

of   may compromise obstacle avoidance due to traveling at too high a velocity. A small    

reduces the objective function output when the collision distance is below an allowed 

threshold. 

All of the velocity pairs are checked against the objective function for the velocity pair with 

the maximum primary objective value. When a valid angular and linear velocity pair is found, 

they are set as the target angular and linear velocity for the next control cycle. If a valid 

velocity pair is not found then the linear velocity target that opposes the current linear 

velocity is chosen to avoid collisions in the current direction of movement. 
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When both the primary and secondary objective functions return invalid results, the angular 

and linear velocity targets are set to oppose the current motion to stop the Segway. This is a 

rare case that could occur when dynamic obstacles, such as moving people, crowd the Segway 

and no valid direction allows a valid solution. The Segway’s control algorithm would keep 

the linear and angular velocities at zero until a valid direction and velocity is found. 
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Figure 5.7 Optimal velocity pair selection flowchart (Chand & Carnegie, 2011) 
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5.4 Internal Representation 

For data from range finders and odometers to be combined effectively they first need to be 

converted into an internal representation that is shared by all sensors.  The position of the 

Segway is given as Cartesian coordinates (   ) in metres, while its heading is defined as an 

angle   in radians. 

5.4.1  Odometers 

The Segway monitoring messages (Table 3.1) sent from the Segway unit to the host computer 

contain four odometer counts: integrated left wheel position, integrated right wheel position, 

integrated fore/aft position and integrated turn position. The Segway's position can be 

calculated using the measurements from the encoders. Using odometry alone becomes 

challenging due to the accumulating errors that are inherent in odometry measurements. The 

accuracy of odometry measurements decreases over time due to limiting factors such as wheel 

slippage, missed encoder counts and transmission slop (Victorino, Rives, & Borrelly, 2000). 

Overtime these factors cause an increase in the difference between the actual distance the 

Segway has travelled and the distance readings from the Segway's odometry. 

The Segway interface guide (Segway Inc., 2009) contains a data conversion table for data 

items contained in monitoring messages (Table 3.5). The table contains estimates which are 

based on the nominal rolling diameter of the wheel, 48 cm, and deviations can occur with 

changes in tyre pressure, tyre wear and payload. Based on the table, the expected conversion 

factors for three of the odometers (integrated left wheel position, integrated right wheel 

position and integrated fore/aft position) are 33215 counts per metre and 112644 counts per 

revolution for the integrated turn position. As these were only approximates, more accurate 

conversion factors were found and are discussed further in Section 7.2.1. The experiment 

yielded results of 34337 and 116711 for left, right and fore/aft positions and turn position 

respectively, mentioned here for reference. 

The integrated fore/aft encoder count and turn position encoder count are not from physical 

encoders but rather are calculated by the control software within the Segway. The control 
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software assumes a wheel diameter of 48 cm and wheel separation of 53 cm (Segway Inc, 

2012). 

5.4.2  Position and Orientation 

The Segway is a two wheel differential drive system. Assuming minimal wheel slippage, each 

wheel movement results in a change in the Segway’s position and/or heading. If both wheels 

rotate the same distance at the same velocity, the Segway travels in a straight line. If both 

wheels rotate the same distance but in opposite velocity, a zero radius turn of the Segway 

occurs. Any combination of these two motions will result in a moving turn. 

Integrated left and right wheel position counts can be used to calculate the arc length travelled 

(in metres) of the left and right wheels respectively using Equation 5.13 and Equation 5.14. 

The integrated fore/aft position encoder count is used to calculate the arc length travelled (   

in metres) by the centre of the Segway using Equation 5.15. The integrated turn position 

encoder count can be used to calculate the angle the Segway’s centre has travelled through (  

in radians) using Equation 5.16.  

 
                 

                  

                 
 Equation 5.13 

  

 

 
                  

                   

                 
 Equation 5.14 

  

 

 
   

                      

                 
 Equation 5.15 

  

 

 
  

                  

                 
     Equation 5.16 

where the                   equates to the relative counts per metre/revolution mentioned 

in Section 5.4.1. 
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Using results from Equation 5.15 and Equation 5.16, the linear distance travelled by the 

Segway’s centre (   in metres) is calculated using Equation 5.17. 

 

    
  √ (      

 
 Equation 5.17 

 

Finally, the calculated distance travelled    and angle turned   are converted into a set of 

Cartesian co-ordinates representing the change in position (       ) which are added to the 

current position and orientation (        ) of the Segway (Equation 5.18, 5.19 and 5.20). 

       Equation 5.18 

  

 

             Equation 5.19 

               Equation 5.20 

 

In the coordinate system, X position represents lateral motion with positive values to the right 

and negative values to the left. Y position represents forward motion as positive values and 

reverse motion as negative values. The heading   represents the heading of the Segway in 

radians, where zero change results in movement in a straight line, positive values in a 

clockwise rotation and negative values in an anti-clockwise direction. 

5.5  Localisation 

This section addresses the methods used in this project to discover landmarks. The SICK 

LMS100 range finder data is used along with odometry data for localisation of the Segway. 

Lines are first extracted from the rangefinder dataset. Relationships between the extracted 

lines are used to discover the Cartesian coordinate location of landmarks. Discovered 
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landmarks are then compared to landmarks extracted from the map of the environment in 

Section 5.2.1. 

Landmarks are geometric objects that can be recognized each time they are encountered 

again. Some specific properties of landmarks are important: they should be re-observable, 

distinguishable from each other and stationary. Furthermore a critical number of landmarks  is 

required for localisation. (Riisgaard, 2005) 

5.5.1  Line Extraction 

The SICK LMS100 laser range finder produces a 2D representation of the environment. 

Points from a range scan are specified in polar coordinates (   ) whose origin is the current 

position of the Segway (        ). The polar representation of the scan is converted to 

Cartesian coordinates (             ) using Equation 5.21 and Equation 5.22. A visual 

representation of this relationship is depicted in Figure 5.8. 

                (     ) Equation 5.21 

   
                (     ) Equation 5.22 

 

 

Figure 5.8 Relationship between Polar and Cartesian Coordinates 

There are three main problems in line extraction in indoor environments (Forsyth & Ponce, 

2002) . They are:  
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 How many lines are there? 

 Which points belong to which line? 

 Given the points that belong to a line, how to estimate the line model parameters? 

Two line extraction methods inspired by Nguygen, Martinelli, Tomastis & Siegwart  (2005) 

were investigated for the purpose of finding landmarks for localization. The two line 

extraction methods were ‘Split and Merge’ (Castellanos & Tadoos, 1996) (Borges & Aldon, 

2000) and Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) (Riisgaard & 

Blas, 2005). These two methods were chosen based on their performance and popularity in 

mobile robotics, particularly for their feature extraction capabilities. 

Split and Merge 

The Split and Merge, also known as the Ramer-Douglas-Peuker algorithm (Liu, Jin, Cui, & 

Wang, 2001), is the first algorithm investigated.  Pseudo code for the Split and Merge 

algorithm is shown in Figure 5.9. 

 

Figure 5.9 Split and Merge pseudo code (Nguyen, Martinelli, Tomatis, & Siegwart, 2005) 

An example of the Split and Merge algorithm is shown in Figure 5.10. The original line 

consists of 10 points marked P0 to P9. The first (P0) and last (P9) points  are connected with a 

straight line and the point with the greatest perpendicular distance to the line is found (P5). If 

the selected point (P5) is greater than the allowed distance from the line, the original line is 

split into two lines with P5 being the splitting point as shown in Example C in Figure 5.10. 

The process is recursively repeated until the greatest perpendicular distance is less than the 

allowed distance to the line. P0, P5, P8 and P9 are chained to produce a simplified line as 

shown in Example D in Figure 5.10.  
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The Split and Merge algorithm has a complexity of  (  ) and is less complex relative to 

other line extraction methods (Nguyen, Martinelli, Tomatis, & Siegwart, 2005). 

A slight adjustment to the algorithm was made during testing to account for noisy data. The 

adjustment required at least two points to be further than the allowed distance to the line 

before the data was split. This allowed longer lines to be found when a single data point was 

an outlier to a line. Thresholds are set so that at least 7 points are required in order to be 

considered as a line and each point must be within 5 cm of the found line. The minimum line 

length is 20 cm to avoid many short or false positive lines being found that would not 

associate to landmarks. Landmarks are described in Section 5.5.2. 

 

Figure 5.10 Split and Merge algorithm 

RANSAC 

RANSAC or Random Sample Consensus is another algorithm which can be used to extract 

lines from the SICK LMS100 laser scan. RANSAC finds lines by randomly taking a sample 

of the laser readings and then uses a least squares approximation to find the best fit line that 

runs through the selected readings. Once this is done, RANSAC checks how many laser 
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readings lie close to the best fit line. If the number of close points is above a pre-determined 

threshold then a line has been found.  

The RANSAC algorithm presented by Riisgaard & Blas (2005) has been selected for testing. 

The algorithm assumes that the laser data readings are converted to Cartesian coordinates. 

Pseudo code for the algorithm is shown in Figure 5.11. 

 

Figure 5.11 Pseudo code for RANSAC algorithm (Riisgaard & Blas, 2005) 

While 

 there are still un-associated laser readings, 

 and the number of readings is larger than the consensus, 

 and we have done less than N trials. 

Do 

 Select a random laser data reading. 
 Randomly sample S data readings 
 Using these S samples and the original reading, calculate a 

least squares best fit line. 
 Determine how many laser data readings lie within X 

centimetres of this best fit line. 
 If the number of laser data reading on the line is above 

some consensus C, do the following: 
o Calculate the least squares best fit line based on all 

the laser readings determined to lie on the old best 
fit line 

o Add this best fit line to the lines we have extracted 
o Remove the number of readings lying on the line from 

the total set of un-associated readings. 

N – Max number of times to attempt to find lines. 

S – Number of samples to compute initial line. 

X – Max distance a reading may be from line to get associated to 
line. 

C – Number of points that must lie on a line for it to be taken 
as a line. 
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For this project the RANSAC parameters were set as follows: 

N - 1000 

S - 10 

X - 5 cm 

C - 7 

The parameters were chosen based on experimental tuning so that the best performance was 

obtained. The RANSAC algorithm has a complexity of                where S is the 

number of line segments extracted, N is the number of points in the scan and N.Trials is the 

number of trials for RANSAC. 

The two algorithms were tested and compared for speed, correctness and precision. Both 

algorithms were able to correctly identify the major lines within the scanned dataset and had 

few false positives once the specific parameters were tuned for the corridor environment. The 

major difference between the two algorithms was the completion speed. The time taken 

between starting and ending each algorithm was calculated and used to determine the 

maximum frequency that each algorithm could be continuously run at. Split and Merge 

performed faster than RANSAC with an average continuous running frequency of 

approximately 2000 Hz compared to an average continuous running frequency of 

approximately 150 Hz. The performance difference is mainly because RANSAC is based on 

non-deterministic methods whereas Split and Merge makes use of sequencing characteristics 

of the raw data points. 

Split and Merge was chosen as the line extraction method for this project as its performance 

speed was faster while the correctness and precision was comparable to RANSAC. The 

increased complexity of RANSAC did not warrant its use for the desired environment. 

When a line is found, the equation of the line between the two end points (in the format of 

      ) is calculated using Equation 5.23 and Equation 5.24.  The gradient of the line is 

used in the landmark detection algorithm.  
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 Equation 5.23 

   

           
Equation 5.24 

 

If        , then   is set to 100,000. 

After finding all the lines within the laser data, landmarks are located and associated to known 

landmarks to localise the Segway. 

5.5.2  Landmark Detection and Association 

As mentioned, landmarks are used for updating the position of the Segway and correcting for 

any errors that occur over time in the odometry (Bailey, Beckler, Hoglund, & Saxton, 2008). 

The landmark detection algorithm locates three different types of landmarks. These landmarks 

are door frames, concave corners and convex corners as shown in Figure 5.12. The algorithm 

takes an input of an array of lines from the line extraction method and outputs an array of 

landmarks. Found landmarks contain the (   ) coordinate position of the extracted landmark, 

the two lines which make up the landmark and two Boolean values. The first Boolean denotes 

whether the landmark is a door or a corner while the second Boolean denotes if the corner is 

convex or concave. The second Boolean is ignored if a door is found.  

Corners are found by looking for perpendicular lines with nearby end points as shown in 

Figure 5.13. For the purposes of landmark extraction, perpendicular lines are defined by two 

lines which gradients differ by 90 ± 10 degrees (Equation 5.24). The ± 10 degrees allows for 

inaccuracies for long lines in the line extraction process. To be a corner, the two end points 

are required to be within 15 cm of eachother. The landmark coordinates (   ) is the 

intersection of the two lines which make up the corner. 
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Figure 5.12 Landmarks found in indoor environments 

 

             |
     

      
| Equation 5.25 

   Checks are done beforehad so that if         ,       = 90 °. 

 

 

Figure 5.13 Corner landmark 

When a corner feature is found, more analysis is needed to know if the corner is convex or 

concave. This is done by calculating three distances: the distances between the landmark’s 

corner point and the Segway, and distances between the Segway and each of the endpoints of 
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the two lines that make the landmark. If the distance between the Segway and the corner point 

is less than the distance to the line ends then the landmark is a concave corner. If the distance 

between the Segway and the corner point is greater than the distance to the line endpoints then 

the landmark is a convex corner. Figure 5.14 shows the Segway detecting a corner landmark. 

 

Figure 5.14 Left: convex corner. Right: concave corner. 

Door features are found by looking for parallel lines that have nearby endpoints as shown in 

Figure 5.15. Parallel lines are defined by two lines whose gradients differ by ± 10 degrees 

(Equation 5.24). The ± 10 degrees allows for inaccuracies in the line extraction. To be a door 

frame, the two line endpoints are required to be separated by more than 7.5 cm but less than 

20 cm. The landmark coordinates (   ) is the centre point between the two line endpoints. 

 The landmark detection algorithm is run a single time after the environment map is loaded. 

The algorithm is run using the map lines described in Section 5.2.1 to create a database of 

known landmarks within the environment. It is assumed that the Segway is positioned in the 

centre of the map for convex/concave corner evaluation. 

The line extraction and landmark extraction algorithms are run on a 20 Hz sensor timer and 

scanned landmarks are compared to the database of known landmarks for association. 
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Figure 5.15 Door landmark 

The technique used for association is called the nearest neighbour approach as a scanned 

landmark is associated with the nearest landmark in the database. The simplest way to 

calculate the nearest landmark is to determine the Euclidean distance. Another method that 

could have been used is the Mahalanobis distance (Blanco, Gonzalez, & Fernandez, 2012) 

which is superior but more complicated. The Mahalanobis distance differs from the Euclidean 

distance in that it takes the correlations of the dataset into account during calculations. The 

Euclidean distance was preferred as the landmarks for this project are far enough apart to 

make using the Mahalanobis distance an unnecessary complication. 

The distance between each scanned landmark from the SICK LMS100 laser scanner and the 

database of landmarks is calculated and the closest landmark in the database is found. If the 

distance between the closest landmarks in the database is less than 20 cm, the landmarks are 

considered to be associated. If a scanned landmark cannot be associated to a landmark in the 

database, it is removed from the list of scanned landmarks. 

5.5.3  Landmark Position Error 

The error in position (      θ) of the Segway can be calculated once all scanned landmarks 

have been associated to a landmark in the database. The error in position for each scanned 

landmark is calculated by comparing the (   ) position of the found landmark to the expected 

(   ) position of the landmark in the database as seen in Figure 5.16. This is achieved by 
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using Equation 5.26 and Equation 5.27. Averaging the error in position of each scanned 

landmark yields a single average error in the position of the Segway (                 ). This 

error is combined with odometry and used to update the position of the Segway. 

                        Equation 5.26 

                        Equation 5.27 

 

 

Figure 5.16 Position error example. Left: corner. Right: doorway. 

Figure 5.16 shows an example of an error in the (   ) position of the database landmark 

(black lines) and the (   ) position of the scanned landmark (grey lines) for both corner 

landmarks (left) and door landmarks (right). 

Error in heading of the Segway is determined by calculating the angle between the two lines 

that make up the landmark (Equation 5.24). Each landmark in both the map database and 

scanned list has two associated lines as seen in Figure 5.17 with two heading errors associated 

to them. Averaging the heading errors over all scanned landmarks gives an average heading 

error         . This error is combined with odometry and used to update the position of the 

Segway. 
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Figure 5.17 Heading error example. Left: corner. Right: doorway.  

5.6 Sensor Fusion 

The Segway's various odometers and sensors and the SICK LMS100 laser range finder 

provide useful data, but their individual importance varies with circumstance. For example, 

odometers are relatively accurate over short distances, but cumulative errors which are 

generated over distance limit their long-term usefulness. Rangefinders can be less accurate but 

their error is constant over time. The navigation algorithm for the Segway minimises these 

problems by utilising sensor redundancy. This allows multiple sensors to provide the same 

information (current position) but with different degrees of accuracy and precision. These two 

pieces of overlapping information are fused to take advantage of each sensor’s strengths and 

reduce their weaknesses. 

Although this Section concentrates on the fusion of overlapping data from different sensors, 

the term sensor fusion has a broader meaning that encompasses non-redundant sensor signals 

and multiple samples from a single sensor (Sauer, Brugger, Hofer, & Tibken, 2001).  

Due to the small number of sensors on the Segway and the simple corridor operating 

environment, a Dynamic Weighted Average algorithm (Kapach, Giorini, & Mylopoulos, 

2007) was chosen for sensor fusion. Other sensor fusion algorithms investigated for this 

project include Bayesian inference (Williams, Wilson, & Hancock, 1997), Dempster-Shafter 

Inference (Wu, Seigel, Stiefelhagen, & Yang, 2002), Fuzzy Logic (Godjevac, 1995) and 

Neural Network (van Dam, Krose, & Groen, 1996) algorithms. These algorithms would not 
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provide improvement enough to justify the complexity of their implementation and increase 

of CPU consumption. 

The Dynamic Weighted Average algorithm allows each of the sensors to make a contribution 

towards the estimation of the current position of the Segway. The Segway's odometer weights 

would be much higher than the SICK LMS100 range finder, given the higher accuracy over 

short distances. Lower weightings are given to the range finder measurements to correct 

odometer errors over time. 

5.7 Summary 

This chapter gives a detailed explanation of the hybrid navigation system used for 

autonomous indoor navigation for the Segway platform. The hybrid navigation system is 

composed of three layers: a deliberative layer, a reactive layer and a third layer containing 

localisation, information extraction and sensor fusion.  The deliberative component of the 

navigation system comprises the environment map and an A* path planner. The reactive 

component of the navigation system comprises a path tracker to follow the planned path, a 

direction sensor to avoid obstacles not represented in the environment map and a dynamic 

window algorithm to select the angular and linear velocity to travel for the next control cycle. 

Localisation of the system uses odometry from the Segway and landmark features extracted 

from the SICK LMS100 laser range finder. Landmark features extracted include concave and 

convex corners as well as doorways which are commonly found within the operating 

environment. Lines are used to make up landmarks and are extracted from the laser range 

finder data using a split and marge algorithm. Fusion of the odometry and landmark 

information is done using a dynamic weighted average algorithm. 
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Chapter 6 Software 

 

This chapter covers the software used to implement the hybrid navigation system described in 

Chapter 5. An overview of the software architecture is presented as well as the functional 

model. The implemented software services and the interaction between each service are then 

described. Each service in this section is designed to be modular with reusability a goal for 

the software. 

6.1 Segway Software Architecture 

MRDS uses a SOA as the software framework to implement services. SOA is an event driven 

programming approach that is mostly applied to web based applications (Chen Y. , 2008).  

SOA have been perceived to be less efficient than the typical Object-Oriented Computing 

(OOC) methods because of the extra layer of standard interface which allows SOA 

applications to be language and platform independent while still allowing communication 

(Chen Y. , 2008). SOA applications are not limited to being implemented over the Web and 

remote services can run on any suitable locally networked machine. SOA have benefits in 

robotic applications particularly for the following reasons (Chen Y. , 2006): 

 Robotic systems can have limited memory capacity to carry programs for all 

situations, the SOA allows complex services to run on remote nodes. 

 Faults can occur and on-site repair is not always available. 

 Users can stop and modify individual services without stopping the whole system. 

 SOA applications are independent of devices that the application communicates with 

allowing the same application to be applied to different robotic devices. 

The services implemented to control the Segway platform using the hybrid navigation 

architecture are developed using the SOA model. The hybrid navigation framework consists 

of a three tiered system shown in Figure 6.1.  The bottom tier is the hardware interfaces which 

consists of the SickLRF_Scanner service (Section 6.3) and the SegwayBase service 

(Section 6.4). These services send and receive control messages to and from the SICK 
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LMS100 and the Segway platform respectively. The middle tier is the application layer which 

consists of the SegwayNavigation service (Section 6.5) which implements the hybrid 

navigation algorithm discussed in Chapter 5. The top tier is the user interface layer which 

consists of the SegwayServices UI service (Section 6.6) which allows user control of the 

system from a remote computer. 

User Interface layer

 

Application layer

 

Hardware Interface layer

 

Segway Services 

Segway Navigation

Sick LRF scanner 
Segway Base

Segway Native Wraper

 

Figure 6.1 Overview of the software architecture 

 

6.2 Operating Mode 

The Segway software has two operating modes: a manual mode where the Segway responds 

to inputs from a keyboard or joystick and an autonomous mode where the Segway moves 

from one location to another while avoiding obstacles. The Segway software starts in manual 

mode and changes to the  operating mode can be selected using the user interface. 

6.2.1  Manual  

Manual mode allows a user to directly control the Segway platform’s movements. The 

navigation system starts in manual mode until commanded to go autonomous via the user 

interface. 
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In manual mode, the Segway platform has three abilities to move. The first ability is the drive 

distance command that is implemented using the generic differential drive contract to drive a 

specified distance in a straight line. The second ability is the rotate angle command, also 

implemented using the differential drive contract, to rotate the Segway platform by a specified 

angle in degrees. The third ability to control the Segway is through the use of a joystick (or 

any controller that conforms to the Game Controller contract in MRDS). 

Manual mode allows the user to set the motor drive power and thus the speed that the Segway 

moves when using the three methods mentioned above. The Segway platform can also be 

commanded to change between tractor and balance mode or be turned off from the manual 

control options. 

6.2.2  Autonomous 

Autonomous mode allows the start of the hybrid navigation algorithm. Following the 

environment map upload, the user interface sets the initial and target position coordinates. If a 

path can be found from the initial position to the target position, the autonomous mode can 

start and move along the planned path. Details of the autonomous mode are further covered in 

Sections 6.5 and 6.6. 

6.3 SickLRF_Scanner Service 

The SickLRF_Scanner service is a DSS node service that communicates, controls and 

obtains range finder data from the SICK LMS100 laser scanner. This service falls under the 

‘Hardware Interface Layer’ in Figure 6.1. There was no existing generic driver service on 

MRDS that provided the functionality to interface with the SICK scanner but there was a 

generic driver for the similar SICK LMS200 laser scanner. The SICK LMS200 service 

communicates over RS-232 while this project communicates with the SICK LMS100 over a 

TCP/IP Ethernet connection so communication with the scanner had to be designed from the 

ground up.  
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The main tasks of this service are receiving scan data packets from the SICK LMS100 

scanner and notifying any subscribing services when its state has been updated. The 

SickLRF_Scanner service’s state updates every time a data packet has been received.  

A flow chart of tasks the SickLRF_Scanner service carries out is in Figure 6.2. After the 

service is started it connects to the SICK LRF100 using a TCP/IP Ethernet connection. If the 

connection is successful, receivers are activated to listen for packets from the scanner as well 

as commands from any subscribers. There are three commands subscribers can issue to the 

SickLRF_Scanner service. They are start continuous read, stop continuous read and start 

single read. These three commands send requests to the scanner to send a single measurement 

reading, continuously send measurements or stop continuously sending measurements. When 

data packets are received, the appropriate state variables are updated and a notification sent to 

subscribers. 

Service Start

Send continuous 

read request

Receive 

command from 

subscribers

Send single read 

request

Start Continuous Read Start Single Read

Send stop 

continuous read 

request

Stop Continuous Read

Connect to 

scanner via 

TCP/IP

Activate receivers
Receive packet 

from scanner

Update State and 

notify subscribers

Wait until another 

packet interrupt

 

Figure 6.2 Flowchart for SickLRF_Scanner service 
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The SickLRF_Scanner scanner service has been designed to be a generic service that can be 

re-used by any robot using the MRDS runtime with a SICK LMS100 laser scanner. The 

service runs on the local host and found at port 50000. 

The SickLRF_scanner service consists of three classes: the SickLRF_ScannerService 

class, the TCPIOManager class and the Packet class. 

6.3.1  SickLRF_Scanner Service Class 

SickLRF_Scanner service controls the SICK LMS100 scanner. When a service is created, 

the Start() method (Figure 6.3) is automatically called.  

 

Figure 6.3 Start method for the SickLRF_Scanner service 

This class is responsible for creating a new SickLRF_ScannerState. The 

SickLRF_ScannerState contains important information about the service such as current 

distant measurements, angular resolution and angular range. Next the StartLRF() method 

protected override void Start() 
{ 
       _state = new SickLRF_ScannerState(); 
       _state.IPAddress = "130.195.162.58"; 
       _state.port = 2111; 
       StartLRF( _state.IPAddress, _state.port); 
 
       Activate(Arbiter.Interleave( 
                new TeardownReceiverGroup(Arbiter.Receive<DsspDefaultDrop> 
(false,_mainPort,DropHandler)), 
                new ExclusiveReceiverGroup( 
                    Arbiter.Receive<ReceivedPacket> 
(true,_internalPort,PacketHandler)), 
                new ConcurrentReceiverGroup( 
                    Arbiter.Receive<StartContinousRead> 
(true,_mainPort,StartContinousReadHandler), 
                    Arbiter.Receive<StopContinousRead> 
(true,_mainPort,StopContinousReadHandler), 
                    Arbiter.Receive<StartSingleRead> 
(true,_mainPort,StartSingleReadHandler), 
                    Arbiter.Receive<Get>(true, _mainPort, HttpGetHandler), 
                    Arbiter.ReceiveWithIterator<Subscribe> 
(true,_mainPort,SubscribeHandler)) 

));          
} 
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creates a new TCPIOManager which is responsible for communicating with the SICK 

LMS100. The SickLRF_ScannerService class starts the TCPIOManager with an IP 

address of 130.195.162.58 on Port 2111 (required to find and connect with the SICK 

LMS100). The TCPIOManager is explained in greater detail in Section 6.3.2. 

Finally the class sets up seven message handlers using Aribiter.Receive<>() and adds 

them to the main threading interleave which control the flow of information throughout the 

class. The seven messages the handlers receive are:  

 StartContinousRead 

  StopContinousRead 

  StartSingleRead 

  ReceivedPacket 

  Get 

  Subscribe 

 DsspDefaultDrop.  

The Arbiter.Receive method format is as follows: 

Arbiter.Receive<“Message Type”>(Persistent Receiver Boolean, Port to receive message on, 

Handler method to call on message arrival). 

The DsspDefaultDrop message handler is created under the TeardownReceiverGroup 

which classifies messages that close down the service. This message is the only non-persistant 

handler as it is declared with a false Boolean during handler setup. 

The ReceivedPacket message is sent internally from the TCPIOManager and is created 

under the ExclusiveReceiverGroup while the other six messages, which are sent 

externally from subscribing services, are created under the ConcurrentReceiverGroup, 

indicating these messages can be handled concurrently with other messages. 

The StartContinousRead and StartSingleRead handlers instruct the TCPIOManager 

to send telegrams to the SICK LMS100 scanner to start a continuous or single scan of the 

environment while the StopContinousRead handler instructs it to send a telegram to stop 

continuous scans.  
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The ReceivedPacket handler receives messages from the TCPIOManager when scanned 

data telegrams arrive. A snippet of the packet handler can be seen in Figure 6.4. The handler 

updates the current state with the new distance measurements received and then posts a 

message to subscribed services notifying them of the new distance measurements.  

 

Figure 6.4 Received packet handler method 

The Get handler receives requests, from either another service or an http website request, for 

an update on the current state. When the Get is requested from another service, a return 

message is sent containing the entire current state of the Sick Scanner service. When the Get 

is requested from an http website, a JPEG image representation of the environment is returned 

to be viewed in a web browser. An example of the returned image is shown in Figure 6.5.  

The Subscribe handler receives messages from services requesting to get distance 

measurement updates from the SickLRF_Scanner service. The handler adds the subscribing 

service to the list of current subscribers and posts a success message to the subscriber 

indicating a successful subscription.  

The final handler, DsspDefaultDrop, is called when the service is shutdown. The handler 

instructs the TCPIOManager to close communication with the SICK scanner and then closes 

the SickLRF_Scanner service. 

void PacketHandler(ReceivedPacket packet) 
        { 
            switch (packet.CommandType){ 
 
                case "sSN": 
                    _state.TimeStamp = DateTime.Now; 
                    _state.NumberOfMeasurements = packet.length; 
                    _state.DistanceMeasurements = packet.Data; 
                    _state.AngularRange = 270; 
                    _state.AngularResolution = 0.5; 
                    _subMgrPort.Post(new submgr.Submit(_state, 
DsspActions.ReplaceRequest)); 
                     return; 

   case "sRA": 
... 
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Figure 6.5 Returned image example from a HTTP Get request message 

6.3.2  TCPIOManager Class and Packet Class 

The TCPIOManager (TCP input output manager) class is the communication class 

responsible for connecting to the SICK LMS100 using TCP/IP, disconnecting the TCP/IP 

connection when the service closes, sending telegrams to the scanner and receiving telegrams 

from the scanner.  

A TCPIOManager is created by the SickLRF_ScannerService class to manage 

communication with the SICK LMS100. When created, the TCPIOManager attempts to 

connect to and open a NetworkStream with the SICK scanner. The Connect() method can 

be seen in Figure 6.6.  If the connection is unsuccessful (scanner is unplugged) the 

TCPIOManager will respond with an error message, informing subscribers that the SICK 

LMS100 is unavailable. Once connected, the StartRead() method is started which 

generates an interrupt when a telegram is available to be read. 
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Figure 6.6 Connect method within the TCPIO Manager class 

As mentioned in Section 3.3.2, telegrams are the packet structure used for communicating to 

and from the SICK LMS100 laser scanner. The TCPIOManager class supports sending three 

types of telegrams to the laser scanner (Table 6.1) and receiving five types of telegrams from 

the laser scanner (Table 6.1). Each telegram is framed with a start of frame character (STX) 

and end of frame character (EXT) as shown in Table 6.3.  

Table 6.1 Supported telegrams sent to scanner 

 

 

 

 

Telegram Message Description 

  sRN LMDscandata Start single read 

  sEN LMDscandata 1 Start continuous read 

  sEN LMDscandata 0 Stop continuous read 

public void Connect(String server, Int32 port) 
        { 
            try 
            { 
                // Create a TcpClient. 
                client = new TcpClient(server, port); 
                // Get a client stream for reading and writing. 
                stream = client.GetStream(); 

  //start reading packets 
                _internalPort.Post(new StartRead());  
            } 
            catch (ArgumentNullException e) 
            { 
                _internalPort.Post(new Error("ArgumentNullException: {0}", e); 
            } 
            catch (SocketException e) 
            { 
                _internalPort.Post(new Error("SocketException: {0}", e); 
            } 
        } 



Hybrid Control of a Segway Platform Developed in MRDS  110 

 

 

Table 6.2 Supported telegrams received from scanner 

Telegram Message Description 

  sRS LMDscandata Confirm message to start single read 

  sEA LMDscandata 1 Confirm message to start continuous read 

  sEA LMDscandata 0 Confirm message to stop continuous read 

  sRA LMDscandata Single scan data packet 

  sSN LMDscandata Continuous scan data packet 

 

Table 6.3 Telegram frame 

 

As the SOPAS Engineering Tool software can be used to configure the scanner, telegrams 

relating to setting the scan rate, resolution and range are not implemented in this project’s 

control software. This is because once the scanner is configured, the project is not required to 

change any settings during normal operation. SOPAS was used to configure the scan rate at 

50Hz, angular range to 270° and angular resolution to 0.5°. 

The sRN telegram requests a single data scan back from the SICK LMS100. Figure 6.7 shows 

the sRN telegram structure as well as the ASCII telegram packet with framing that is sent to 

the range finder. The range finder responds with a sRS LMDscandata telegram to confirm 

receiving the request, then the range finder sends a sRA LMDscandata telegram containing 

the single scan data. Figure 6.8 shows an example of a single scan request and response from 

the scanner. 
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Figure 6.7 sRN LMDscandata telegram structure 

 

Figure 6.8 Single scan request example 

The next implemented telegram is sEN LMDscandata.  The sEN telegram requests the 

scanner to continuously scan and send back data until instructed to stop. To start continuous 

scanning, the control computer sends an ASCII telegram as shown in Figure 6.9 with the 

value of 1. To stop continuous scanning, another ASCII telegram is sent with a value of 0. 

The scanner responds with a sEA LMDscandata telegram with a value of 1 to confirm starting 

and a value of 0 to confirm stopping. After confirming the start of a continuous scan, the laser 

scanner will send sSN LMDscandata telegrams containing the distance measurements. Figure 

6.10 shows an example of a continuous scan request and response from scanner until 

requested to stop. 
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Figure 6.9 sEN LMDscandata telegram structure 

 

Figure 6.10 Continuous scan request example 

The sRA LMDscandata and sSN LMDscandata telegrams contain components separated by 

space characters. When one of these telegrams arrive they are sent to the Packet class for 

processing. 

 The Packet class is responsible for splitting the received packet data into separate 

components. Components include the command packet name, packet number, packet length, 

angular resolution, angular range and the distance data. 

Once the telegrams have been processed the packet is posted to the SickLRF_scanner class 

where the service state is updated with the latest distance measurements and subscribers 

notified. 
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6.4 Segway Base Service 

The Segway interface consists of two services working together to allow the controlling 

computer to interface with the Segway RMP200 via USB. The first service is a low level 

service, ‘SegwayNativeWrapper’, that handles USB communication to the Segway. The 

second service, ‘SegwayBase’, is built on top of MRDS’s Generic Differential Drive (GDD) 

service contract that provides a common specification for differential drive mobility 

platforms. The service runs on the local host and found at port 50001. 

6.4.1  Segway Native Wrapper 

Segway Native Wrapper service is written in C++ and is based on the example code provided 

by Segway Inc. and modified to allow the functionality required in MRDS.  Segway Native 

Wrapper service is an interface library to the ftd2xx.dll which opens up USB communication, 

reads and writes command packets to and from the Segway platform, and closes the 

connection when required. The service is made up of two files, ‘usb_int.cpp’ and 

‘SegwayNativeWrapper.cpp’ 

On service start, the Segway Native Wrapper service loads the Segway’s USB drivers and 

connects to the first Segway platform found. Once connected, the service can send control 

messages to the Segway and receive monitoring messages from the Segway. Segway control 

messages were discussed in Section 3.1.5 and monitoring messages were discussed in Section 

3.1.6. 

The SegwayNativeWrapper.cpp defines seven structs for the seven messages sent from 

the Segway. They are labelled MessageData1-7. The SegwayNativeWrapper is 

responsible for reading the received data buffer and putting the received values into the 

appropriate MessageData fields. When all seven fields have been updated, an interrupt is set 

for the SegwayBase service to read and update its state variables. 

The important methods used in the USB_int.cpp file are summarised in Table 6.4. and the 

important methods used in the SegwayNativeWrapper.cpp file are summarised in Table 

6.5. 
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Table 6.4 USB_int.cpp important methods and summary 

Method Summary 

Usb_Init() Loads the Segway USB driver and connects to the first Segway 

device found. 

Usb_Active() Returns true if there is an active USB link to a Segway. 

Usb_LoadDLL() Load the DLL and setup the library calls. 

Usb_CloseDLL() Close and unload the DLL. 

Usb_Write(Tx buffer) Write a buffer to the USB interface. 

Usb_Read() Read into a buffer from the USB interface. 

Usb_Close() Closes the connection to the Segway. 

Usb_message_format Format a message for the USB and calculate the checksum for 

the message being sent. Buffer is expected to be exactly 18 bytes 

in length. 

Usb_can_send(string) Send a CAN formatted message via USB. 
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Table 6.5 SegwayNativeWrapper.cpp important methods and summary 

Method Summary 

SegwayNativeWrapperClass() Constructor. Calls the Init() method, sets up RX buffer and 

sets velocity and turn to zero. 

~SegwayNativeWrapperClass() Destructor. Clears the RX buffer and closes the USB DLL 

Init() Makes a call to initialise and start a USB connection to the 

Segway. 

Drive(int,int) Sends a drive command to the Segway. Takes a velocity 

and turn integer. 

SetMaxVelScale(double) Sends a message to the Segway platform to set the 

maximum velocity scale factor. 

SetMaxAccScale(double) Sends a message to the Segway platform to set the 

maximum acceleration scale factor. 

SetMaxTurnScale(double) Sends a message to the Segway platform to set the 

maximum turning scale factor. 

SetGainSchedule(double) Sends a message to the Segway platform to set the Gain 

schedule. 

SetCurrentLimitScale(double) Sends a message to the Segway platform to set the current 

limit scale factor. 

SetOperationMode(int) Sets operation mode for the Segway. 1=tractor, 

2=balance,3=off. 

Shutdown() Causes the Segway unit to immediately turn off. 
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6.4.2  SegwayBase Service 

As previously mentioned, the SegwayBase service implements the GDD contract defined 

within MRDS. The Generic Differential Drive service defines how to control a differential 

drive robot (Microsoft, 2012). As the service implements the GDD service contract, the 

Segway platform can be swapped for a generic differential drive system on any robot without 

need to change code. The SegwayBase service is designed to be a generic service that can be 

used by any MRDS application wanting to use a Segway platform. 

The SegwayBase service starts by creating a new SegwayNativeWrapper class which 

connects to the Segway platform. The service then defines the main operating port, sets up 

interrupts for update messages from the SegwayNativeWrapper, configures the Segway 

and then starts a control timer. 

The main operations portset (Figure 6.11) defines seven messages that can be used to change 

the current state of the SegwayBase service by external services. Table 6.6 summarises the 

seven messages. 

 

Figure 6.11 The main operations portset used by the SegwayBase service 

public class SegwayBaseOperations : PortSet< 
        Drive,  

 SetOperationMode, 
 ResetIntegrator, 

        Replace, 
 Get, 

        Subscribe, 
        DsspDefaultDrop>{} 
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Table 6.6 SegwayBase service main operations port messages 

Message Type Description 

Drive Sends a drive command to the Segway platform with a target linear 

velocity and target turn rate. Values are saved to the state and sent to 

the Segway at the next command timer interrupt. 

SetOperationMode Sets operation mode for the Segway. 1=tractor, 2=balance,3=off. 

ResetIntegrator Tells the service to reset the odometers on the Segway. The 

commands are bit field operations so can be OR’d together to reset 

multiple odometers at once. 

1 = right wheel displacement 

2 = left wheel displacement 

4 = yaw displacement 

8 = fore/aft displacement 

Replace Updates the entire SegwayBase with the received replaced state. 

Get Sends the entire SegwayBase to the service whom sent the Get 

message. 

Subscribe Informs the SegwayBase service that another service wants to 

subscribe to this service and receive update messages whenever the 

state is changed. 

DsspDefaultDrop Informs the SegwayBase service to stop and shutdown the service. 

 

The SegwayBase service is interrupted by the SegwayNativeWrapper when a new set of 

Segway messages arrives. The most recent values from the SegwayNativeWrapper update 

the SegwayBase’s state and a notification message is sent to all subscribers indicating the 

change in state. 
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Figure 6.12 Configure Segway method within the SegwayBase service 

The ConfigureSegway method is shown in Figure 6.12 which sets the scale factors, resets 

the encoder values and sets up a control timer that sends the current velocity command and 

turn command to the Segway at a frequency of 20 Hz. As previously mentioned, if the 

Segway platform does not receive control messages at a rate of at least 2.5 Hz the Segway 

platform slews its velocity to zero. The control timer is set to 20 Hz, the same speed as the 

hybrid navigation system. 

The scale factors are sent to the Segway each time it is connected and before any velocity 

command is issued to the Segway. Table 6.7 shows the scale factor values used in this project. 

Table 6.7 Segway scale factor values 

Scale Factor Value 

Gain Schedule 0 

Max Acceleration Scale 0.5 

Max Velocity Scale 0.5 

Max Turn Scale 0.5 

Current Limit Scale 1.0 

 

Section 3.1.5 describes each scale factor. The Gain schedule is set at 0 for light payloads, the 

maximum acceleration, velocity and turn scales are set at 0.5, which limit the Segway to a 

maximum linear velocity of 1.7 metres per second maximum and a maximum angular 

IEnumerator<ITask> ConfigureSegway() 
        { 
            _segway.SetGainSchedule(0); 
            _segway.SetMaxAccScale(0.5); 
            _segway.SetMaxVelScale(0.5); 
            _segway.SetMaxTurnScale(0.5); 
            _segway.SetCurrentLimitScale(1.0); 
            _segway.ResetAllIntegrators(); 
 
            //start sending periodic commands 
            _timerPort.Post(DateTime.Now); 
            Activate(Arbiter.Receive(true, _timerPort, TimerHandler)); 
 
            _segway.getUSBData(); 
            yield break;  
        } 
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velocity of 1.7 radians per second. The current limit scale is set at 1.0 which does not limit the 

available torque to the motors. The motor torque can be decreased in low friction 

environments where high torques cause excessive wheel slippage (which was not observed in 

the operating environment). 

 

Figure 6.13 Drive handler method within SegwayBase service 

The DriveHandler method is shown in Figure 6.13. It takes the new velocity and turn 

targets from the Drive message and updates the state velocity values. The new values are 

then sent to the Segway platform. 

6.5 SegwayNavigation Service 

The SegwayNavigation service implements the components of the hybrid navigation 

algorithm discussed in Chapter 5. 

The SegwayNavigation service partners and subscribes to the Sick LRF Service and the 

SegwayBase service. This allows the service to request and receive updates on range finder 

data as well as command and receive the current state of the Segway. The Segway UI service 

(Section 6.6) will partner and subscribe to the SegwayNavigation service. The 

SegwayNavigation service relies on the Segway UI service for the current operating map, 

current position, target position as well as commands to start autonomous path following. 

Three timers are used to execute different tasks of the hybrid navigation system. These three 

timers, shown in Figure 6.14, are used to update the current position of the Segway, calculate 

target angular and linear velocities and command the Segway to move with the target angular 

and linear velocities. 

[ServiceHandler(ServiceHandlerBehavior.Exclusive)] 
public IEnumerator<ITask> DriveHandler(Drive drive) 
{ 
      _state.SetVelocityCommand = drive.Body.Velocity; 
      _state.SetTurnCommand = drive.Body.Turn; 
 
      _segway.Drive(_state.SetVelocityCommand, _state.SetTurnCommand); 
      drive.ResponsePort.Post(DefaultUpdateResponseType.Instance); 
      yield break; 
} 
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The Segway navigation service consists of three classes: the SegwayNavigation class 

which is responsible for implementing the hybrid navigation algorithm, the 

SegwayNavigationState class which is responsible for maintaining the current state of the 

SegwayNavigation service, and the SegwayNavigationOperations class which is 

responsible defining communications with partnered services as well as the required MRDS 

operations. These three classes are discussed further in the following sections. The service 

runs on the local host and found at port 50002. 

6.5.1  SegwayNavigation Class 

The SegwayNavigation class is the main controlling element for navigation system for the 

Segway. The service starts by defining two timers: SegwaySubscriptionTimer and 

SickSubscriptionTimer. These two timers check for and attempt to subscribe to the 

SegwayBase and SickLRF_Scanner services at 10 Hz. When successfully subscribed, the 

timers are set to 1 Hz and used as a watchdog to ensure communication with the lower level 

services. If either of the lower level services stops responding then the Segway’s navigation 

algorithm discontinues and the Segway is brought to a standstill until the subscription can be 

established again. 

Replace messages from both the SegwayBase and SickLRF_Scanner service are received 

each time the respective service updates its current state. The replace message handlers update 

the SegwayNavigation’s state with new range finder data or odometry from the Segway. 

The service then defines three timers (as mentioned above) to execute different tasks of the 

navigation system. The three timers are called SensingTimer, DriveTimer and 

AutonomousTimer. All three timers are executed at 20 Hz. 

The SensingTimer extracts landmarks from the SICK LRF rangefinder data. The landmarks 

extracted and how they are extracted has been explained in Section 5.5.  The SensingTimer 

is also responsible for calling the SensorFusion method which determines the position and 

orientation of the Segway by fusing the odometry information and landmark correction. 
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Figure 6.14 SegwayNavigation timers 

The DriveTimer updates the current coordinate position of the Segway using odometry as 

explained in Section 5.4.2. If the Segway is operating in autonomous mode, the DriveTimer 

sends the current target angular velocity and target linear velocity from the navigation system 

to the SegwayBase service which instructs the Segway to move. The target angular and 

linear velocities are given in rad/s and m/s respectively and require conversion to command 

values the Segway can interpret. The conversion from target velocities given from the 

navigation system to Segway command values is discussed further in Section 7.2.2. If the 

Segway is operating in manual mode, the current target angular and linear velocities sent from 

the Segway UI service are sent to the SegwayBase service. 

The AutonomousTimer checks the current operating mode and path planning flags. If the 

Segway is currently running in autonomous mode and a path is found by the path finding 

algorithm, the hybrid navigation control algorithm covered in Chapter 5 is run. The 

navigation algorithm includes the path tracking algorithm, the direction sensor algorithm and 

the dynamic window algorithm. 

The SegwayNavigation class also defines handlers for the operation messages described in 

Section 6.5.3. These messages can be posted on the main operating port of the service to 
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update the state of the service. A brief overview of each message handler is given in Table 

6.8. 

6.5.2  SegwayNavigation State Class 

The SegwayNavigationState class defines all the variables that make up the current state 

of the SegwayNavigation service. A new service state is created when the 

SegwayNavigation class is run which sets initial values to some service state variables. The 

list below summarises the important state variables for the SegwayNavigation service: 

 The Sick LRF data members: distance measurements, angular resolution, angular 

range and the last received message from the SickLRF_Scanner service timestamp.  

 The recent values for the Segway data members: all values discussed in Section 3.1.6 

including the current encoder counts, wheel velocities, pitch angle, distance between 

wheels, tyre diameter and the last received message from the SegwayBase service 

timestamp. 

 The Segway navigation environment map data points and connections. 

 Landmark databases: the landmarks extracted from the environment map database and 

landmarks extracted from laser scanner database. 

 Current and target position coordinates. 

 Path planning details: list of nodes along path and error flags. 

 Reactive control values:  target angular and linear velocity. 

 Dynamic window parameters:  linear and angular velocity limits. 

6.5.3  SegwayNavigation Operations Class 

The SegwayNavigationOperations class contains and defines the main operating port for 

the SegwayNavigation service. The main operating port defines eight messages which 

other services can send to change the state of the SegwayNavigation service. Four of the 

messages are required by MRDS while the other four update state parameters. The 

SegwayNavigationOperations class defines the messages while the 
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SegwayNavigation class implements the handlers of the messages. The eight messages are 

presented in Table 6.8 with a brief description of the contents of each message as well as any 

state parameters they change. 

Table 6.8 SegwayNavigation operations port messages 

Message Type Description 

UpdateMapPoints Updates the service with the current operating environment map. 

Changes the MapPointCoordinates and MapPointConnectivity 

state parameters. Receipt of this message causes landmarks to be 

generated from the given map and stored in the 

MapLandmarkDatabase state parameter. 

UpdateGridResolution Updates the resolution of the operating environment map. Changes the 

GridResolution state parameters. Receipt of this message causes the 

occupancy grid map to be updated as well as the A* path planning 

method to be invoked. 

UpdateInitTargetPose Updates the starting coordinates (InitPose) and target coordinates 

(TargetPose) of the Segway platform.  

UpdateDriveMode Updates the current operating mode of the navigation system. This 

messages tells the navigation system to change either manual or 

autonomous mode. If autonomous mode is required, the hybrid 

navigation system is enabled. 

Replace Updates the entire SegwayNavigationState with the received 

replaced state. 

Get Sends the entire SegwayNavigationState to the service whom sent 

the Get message. 

Subscribe Informs the SegwayNavigation service that another service wants to 

subscribe to this service and receive update messages whenever the state 

is changed. 

DsspDefaultDrop Informs the SegwayNavigation service to stop and shutdown the 

service. 
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6.6 Segway UI service 

The Segway UI service class is made up of the Segway UI service and a Graphic User 

Interface (GUI) allowing human interaction with the Segway. The GUI is responsible for 

creating an interaction between the operator and the Segway while the controlling service 

conforms to the MRDS CCR service requirements. The Segway UI service is capable of 

running remotely on another computer to control the Segway platform. The GUI is created 

using WinForms to create a simple interface to the Segway platform. The Segway UI service 

subscribes to the SegwayNavigation service to receive updates about the current navigation 

state. The service runs on a networked computer and found at port 50003. 

 The service is responsible for the following tasks: 

 Displaying the distance measurements from the SICK LMS100 scanner. 

 Displaying the current odometer encoder values. 

 Displaying the current wheel velocities and pitch/roll angles. 

 Displaying the current coordinate position of the Segway. 

 Drive distance (metres) and rotate (degrees) commands. 

 Control Segway in manual mode with joystick. 

 Setting maximum motor power for drive distance, rotate degrees and joystick 

commands. 

 Reading environment map data from file and sending the data to the 

SegwayNavigation service. 

 Set occupancy grid resolution and display occupancy grid. 

 Set current and target coordinates and heading. 

 Display environment map with current and target positions. 

 Emergency stop button on GUI and joystick. 

 Change between operating modes: balance, tractor and off as well as manual or 

autonomous. 

A WinForm is a separate module, not a service in its own right. Because it operates as a single 

threaded apartment model it cannot wait on CCR ports to receive messages. However, the 

main service needs to update information on the Form in response to notification messages 
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such as game controller updates. Sending information from the main service to the Form is 

done using FormInvoke method which allows transferring of information to a WinForm. 

The form needs to pass back commands to the main service. When the form is interacted with, 

events fire inside the Form code. The WinForm events are not related to the CCR in any way, 

but the event handlers in the form send CCR messages to the main services by posting 

messages to the services EventsPort. Messages received on the events port are listed and 

described in Table 6.9.  

Table 6.9 Segway UI service’s events port 

Message type Description 

DriveDistance Instructs the Segway UI service to drive the Segway platform a certain distance 

in metres. 

RotateDegrees Instructs the Segway UI service to rotate the Segway platform by a certain angle 

in degrees. 

OnStop Instructs the Segway UI service to send an emergency stop signal to the Segway . 

OnModeSet Allows the GUI to set the current operating mode of the Segway, either tractor, 

balance or off. 

OnDriveMove The GUI sends OnDriveMove request to the UI service when the Segway 

navigation system is in manual mode and is currently being commanded to move 

using a joystick. 

ResetEncoders Instructs the Segway UI service to send a message to the SegwayBase service to 

reset all encoder values. 

GridMap 

PointData 

Instructs the Segway UI service to send the map point data and connectivity data 

to the SegwayNavigation service. 

GridMap 

Resolution 

Instructs the Segway UI service send the map resolution data to the 

SegwayNavigation service. 

UpdateInit 

TargetPose 

Instructs the Segway UI service to send the initial and target position coordinates 

to the SegwayNavigation service. 

AutoMode 

Enabled 

Instructs the Segway UI service to send a Boolean value to the 

SegwayNavigation service indicating manual control or autonomous mode for 

the Segway platform. 
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Figure 6.15 User interface tab 1 

 

Figure 6.16 User interface tab 2 
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The first tab of the user interface can be seen in Figure 6.15 User interface tab 1Figure 6.15. 

The first tab focuses on sensor feedback and manual control of the Segway. It shows encoder, 

velocity and angle values from the Segway as well as the current position (     ). The drive 

distance and rotate degrees commands for the Generic Differential Drive contract and joystick 

commands can also be set from the first tab. An emergency stop button is available to stop the 

Segway when required. The first tab also displays a visual representation of the distance 

measurements received from the SICK LMS100 laser scanner. 

The second tab (Figure 6.16) focuses on the navigation features of the system. It shows the 

current environment map as well as the current position (red) and target position (green) and 

allows a user to set the two positions. A button allows the operating mode to switch between 

manual and autonomous operation. 

6.7 Summary 

Using the SOA architecture instigated in MRDS, the hybrid navigation system designed by 

Chand has been implemented as a software framework to allow the Segway platform to 

navigate autonomously. The software is created using a three tiered system where the 

hardware composes the lowest tier, the navigation system composes the middle tier and the 

user interface composes the top tier. The software implements both manual and autonomous 

control of the Segway as desired by the user through the UI service.  

The system is made up of four separate services working together: the first service controls 

the SICK LMS100 laser scanner, the second service controls the Segway platform, the third 

service implements the hybrid navigation algorithm and the fourth service implements the 

user interface allowing human interaction with the system. 

 

 

  



Hybrid Control of a Segway Platform Developed in MRDS  128 

 

 

 

  



Results 129 

 

Chapter 7 Results 

7.1 Sick LRF Characterisation  

The parameters of the SICK-LMS100 were tested in an indoor environment. All of the 

measurements were taken inside the Laby building at Victoria University of Wellington. An 

experimental setup was created that reproduced the main aspects of indoor usage. As the 

Segway’s main operating environment is indoors with florescent lighting, the datasets were 

collected in a room lit up with florescent lighting at normal light intensity and standard indoor 

operating temperature (18-20 °C). The SICK-LMS100 sensor was tested with 270° angular 

range, 0.5° angular resolution with a 50 Hz scan rate. The SICK-LMS100 has several built in 

data filters implemented in the firmware which improved performance of the sensor in fog as 

well as measuring the second reflective beam (used for measuring object distances through 

glass). As none of these features are required for the normal operation of the Segway, they 

were not tested. 

The results of the test can be seen in Figure 7.1. It was found that the settling time (standard 

deviation within 0.01 m of steady state) of the sensor is approximately 35000 scans which at a 

scan rate of 50 Hz, is about 12 minutes. 

 

Figure 7.1 Sick LMS100 settling time 
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The second measurement was set to determine the time-dependent variation of the SICK 

LMS100 scanner in a static setup. The object was positioned 5 m in front of the scanner. 

Three reflective surfaces were used for the measurements representing the extremes of the 

environment the Segway could be expected to operate in. The first reflective surface tested 

was a black coloured segment of wall, chosen because it represented the minimum reflective 

object in the operating environment. The results of the experiment on the black reflective 

surface can be seen in Figure 7.2. The average measured distance to the black surface was 

5.004 metres, with a standard deviation of 0.007 metres. 

 

Figure 7.2 Distance measurements to black surface 
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Figure 7.3 Distance measurements to white surface 

The experiment was repeated using a white reflective surface, chosen because it represented 

the maximum reflective object in the operating environment. The results of the experiment on 

the white reflective surface can be seen in Figure 7.3. The average measured distance to the 

white surface was 5.002 metres, with a standard deviation of 0.008 metres. 

The experiment was repeated a third time using a glass surface, chosen because there are 

many glass surfaces/walls within other corridors that could be new operating environments at 

Victoria University. The results of the experiment on the glass surface can be seen in Figure 

7.4. The average measured distance to the glass surface was 5.023 metres, with a standard 

deviation of 0.008 metres.  

From these tests the SICK LMS100 laser scanner produces accurate measurements with a 

maximum standard deviation of 0.008 m over 5 m. These accurate measurements are 

sufficient for robot navigation and localisation within the desired operating environment. 
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Figure 7.4 Distance measurements to glass surface 

7.2 Segway Characterisation 

7.2.1  Odometry 

The odometry calibration tests were performed in two separate corridors allowing the 

odometry calibration tests to be performed on two different surfaces. The first in the Laby 

level 3 corridor measuring 1.75 x 11.4 m was chosen as it is the expected operating 

environment with a vinyl floor. The second corridor that odometry calibration was performed 

in was the Cotton level 2 corridor measuring 2.5 x 17 m and was chosen as it could be an 

operating environment for future projects and the floor is covered with carpet.   

The two environments were cleared of any obstacles as the initial odometry tests were 

conducted before the hybrid navigation algorithm was implemented, meaning the SICK 

LRF100 rangefinder was not used for localisation purposes. This left only the odometers for 

localisation, which are susceptible to a number of errors including initial misalignment errors 

and odometry errors such as wheel slippage and missed encoder counts.  

Initial misalignment errors can significantly affect the final position as with only odometry 

information, the Segway cannot detect or correct initial heading errors. Initial misalignment 

errors were minimised by using floor markings and a custom jig to align the tyres to be 
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parallel with the required trajectory. Odometry errors are both random and systematic. 

Systematic errors can be minimised through odometer calibration while random errors occur 

due to wheel slippage or missed encoder counts that cannot be avoided, but can be minimised 

by limiting the acceleration of the Segway and only operate on surfaces with sufficient 

traction. 

Before initial testing, the Segway tyre pressures were set at 6 psi as recommended in the user 

manual. Straight line tests were conducted over 5 metres in both environments to test initial 

drift due to non-symmetric wheel diameters. These tests resulted in an average deviation from 

a straight line trajectory by 42 cm to the right. This was due to the right wheel having a 

smaller diameter and therefore traveling less distance than the left wheel. This was corrected 

by increasing the air pressure in the right wheel, thereby increasing its diameter. The tests and 

adjustments were repeated until the Segway had an average offset error of less than 2 cm over 

the 5 metres travelled. 

An estimated conversion factor of 33215 counts per metre was recommended as the left and 

right wheel odometry calibration for a nominal rolling diameter of 48 cm. The actual left and 

right encoder conversion factor was found by measuring the ratio of the actual distance 

travelled to the distance travelled as calculated by the Segway with a conversion factor of 

33215. The test was done over distances of 1 to 5 metres in 1 metre divisions with target 

velocities ranging from 0.2 m/s to 0.95 m/s in 0.15 m/s divisions. This was to give the average 

odometry conversion factor for different velocities and distances.  
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Figure 7.5 Ratio of actual distance to measured distance vs velocity and distance on vinyl 

 

Figure 7.6 Ratio of actual distance to measured distance vs velocity and distance on carpet 

Each trial was done three times with the average result for each distance measurement shown 

in Figure 7.5 and Figure 7.6. The average for carpet was 1.03229 while the average ratio for 

vinyl was 1.03527. The average ratio for both vinyl and carpet, represented by a solid black 

line, is 1.03378. This meant the recommended conversion factor of 33215 was too low by 

3.38% and was increased to 34337 counts per metre. The standard deviation of all the wheel 
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odometer errors was 0.11% giving an indication of random error due to wheel slippage over 

the distance travelled. 

The yaw encoder output is calculated internally by the Segway using the left and right wheel 

encoders. It was expected that the yaw encoder would also have an error of 3.38% and require 

calibrating.  

The actual yaw encoder conversion factor was found by measuring the ratio of the actual 

rotation in degrees travelled to the rotation turned as calculated by the Segway with a 

conversion factor of 112644. The test was carried out over rotations of 180 to 900 degrees in 

180 degree divisions with target angular velocities ranging from 15 deg/s to 40 deg/s in 5 

deg/s divisions. This was to give the average odometry conversion factor for different 

velocities and distances.  

Each trial was done three times with the average result for each rotation measurement shown 

in Figure 7.7 and Figure 7.8. The average for each angular velocity is also shown. The 

average ratio for both vinyl and carpet, represented by a solid black line, is 1.03611. This 

meant the recommended conversion factor of 112644 was too low by 3.61% and was 

increased to 116711. The standard deviation of the yaw odometer errors was 0.19% giving an 

indication of random error due to wheel slippage over the distance travelled 

The measured error in the yaw encoder was higher than the expected error of 3.38% by 

0.23%. The average yaw error for carpet was 3.64% while the average yaw error for vinyl was 

3.58%. This error difference could be due to greater wheel slippage during turns when 

compared to linear movements. 
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Figure 7.7 Ratio of actual rotation to measured rotation vs angular velocity on vinyl 

 

Figure 7.8 Ratio of actual rotation to measured rotation vs angular velocity on carpet 
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7.2.2  Segway Characterisation 

Due to the dynamic stabilisation of the Segway platform there is not a one to one relationship 

between the velocity of the wheels and velocity of the platform. Tests were carried out in an 

open environment to observe the motion of the Segway during operation. Particular attention 

is given to the wheel velocities and pitch angle the Segway undergoes during movement. 

These tests were carried out without the navigation system to determine the stopping distance 

required for different wheel velocities and to investigate the relationship between pitch angle 

and velocities during straight line movement. The left and right wheel movements were the 

same during testing and only the left wheel data is graphed as results during straight line 

trajectories. The pitch angle gives a representation of the centre of gravity of the Segway 

relative to the wheel axis. 

The Segway platform was commanded to move at 0.25, 0.3, 0.4, 0.5, 0.6 and 0.75 m/s. 

Emergency stop commands were sent to the Segway when the odometers had measured a 

displacement of 1, 2, 3, 4 and 5 metres.  Only the 0.3, 0.5 and 0.75 m/s results are shown in 

this section as the other results follow similar trends as presented and do not offer further 

discussion.  

Figure 7.9 shows the wheel displacement for a 0.3 m/s target velocity for the five distances. 

The average stopping distance was 0.47 m, with a maximum stopping distance of 0.55 m 

during the 5 m test and minimum stopping distance of 0.27 m during the 2 m test. The reason 

for the 0.29 m difference between the 2 m and 5 m tests can be seen in Figure 7.10. 

Figure 7.10 shows the wheel velocity for a 0.3 m/s target velocity for the five distances. From 

the graph, the Segway’s wheels reverse slightly to tilt the platform, stabilisation then occurs 

as the centre of gravity moves forward of the Segway's axis. After the initial backwards 

movement, the wheel velocity accelerates up to 0.6 m/s. The wheel velocity then oscillates 

between 0.2 m/s and 0.4 m/s to maintain 0.3 m/s velocity of the platform. When given the 

stop command, the acceleration spikes high to bring the centre of gravity back behind wheels 

axis and then slows. Some undershoot occurs causing a negative velocity during stopping to 

maintain stabilisation. 
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The relatively large difference between the 2 m and 5 m stopping distance is due to the 

current velocity of the Segway platform when the stop command was issued.  The Segway's 

velocity was slowing when the 2 m stop command was given while it was accelerating when 

the 5 m stop command was given. The two vertical lines indicate when the stopping 

commands were issued in the three graphs. 

Figure 7.11 shows the pitch angle during the 0.3 m/s velocity test. The pitch angle changes 

rapidly during starting and stopping as the Segway platform stabilises. The maximum pitch 

angle was 5° during acceleration and -6° during deceleration.  
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Figure 7.9 Left and right wheel displacement with 0.3 m/s velocity command 

 

Figure 7.10 Left and right wheel velocities with 0.3 m/s velocity command 

 

Figure 7.11 Segway pitch angle with 0.3 m/s velocity command 
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Figure 7.12 Left and right wheel displacement with 0.5 m/s velocity command 

 

Figure 7.13 Left and right wheel velocities with 0.5 m/s velocity command 

 

Figure 7.14 Segway pitch angle with 0.5 m/s velocity command 
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Figure 7.12 shows the wheel displacement for a 0.5 m/s target velocity. The average stopping 

distance was 0.68 m with a maximum stopping distance of 0.85 m during the 5 m test and 

minimum stopping distance of 0.43 m during the 4 m test. 

Figure 7.13 shows the wheel velocity for a 0.5 m/s target velocity. The Segway again reverses 

slightly to tilt the platform then accelerates to maintain stabilisation with the centre of gravity 

slightly in front of the wheel axis. The wheel velocity reaches a maximum at 0.8 m/s and then 

oscillates between 0.4 m/s and 0.65 m/s. Again there is a spike when the stop command is 

issued to bring the centre of gravity back behind the wheel axis and then slows. 

Figure 7.14 shows the pitch angle during the 0.5 m/s velocity test. Again the maximum pitch 

angle is reached during acceleration and deceleration, with a maximum pitch angle of 5° 

during acceleration and -6° during deceleration. 

Figure 7.15 shows the wheel displacement for a 0.75 m/s target velocity. The average 

stopping distance was 0.97 m with a maximum stopping distance of 1.16 m during the 5 m 

test and minimum stopping distance of 0.53 m during the 3 m test. 

Figure 7.16 shows the wheel velocity for a 0.75 m/s target velocity which matches the same 

characteristics previously mentioned. The wheel velocity reaches a maximum of 1.08 m/s and 

then oscillates between 0.5 m/s and 0.8 m/s with spikes when stop commands are given. 

Figure 7.17 shows the pitch angle during the 0.5 m/s velocity test with a maximum pitch 

angle of 7° during acceleration and 9° during deceleration.  
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Figure 7.15 Left and right wheel displacement with 0.75 m/s velocity command 

 

Figure 7.16 Left and right wheel velocities with 0.75 m/s velocity command 

 

Figure 7.17 Segway pitch angle with 0.75 m/s velocity command 
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Figure 7.18 Wheel displacement over 5 m for different velocity targets 

 

Figure 7.19 Wheel velocity over 5 m for different velocity targets 

 

Figure 7.20 Pitch angle over 5 m for different velocity targets 
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Figure 7.18, Figure 7.19 and Figure 7.20 combine the wheel displacements, wheel velocities 

and pitch angles for velocity commands of 0.25, 0.3, 0.4, 0.5, 0.6 and 0.75 m/s over 5 m. 

Figure 7.18 shows that as expected when the velocity increases, the maximum stopping 

distance increases as well as the steady state stopping distance. These stopping distances are 

used to calculate the safety margin growth gain. The stopping distance vs velocity is shown in 

Figure 7.21. 

 

Figure 7.21 Stopping distance over 5 m for different velocity targets 

The wheel velocities follow the same profile with an initial negative velocity at 0.5 s followed 

by a peak velocity at 3.5 s except the 0.25 m/s velocity profile which lags behind other 

profiles by a second. The average wheel acceleration to the first peak varied between 0.11 

m/s
2
  for 0.25 m/s velocity target and 0.3 m/s

2
 for 0.75 m/s. Velocity peaks occur at 9, 10, 11 

and 13 seconds for 0.75, 0.6, 0.5 and 0.4 m/s velocities respectively when the stop commands 

are issued. The velocity decelerated at between -0.11 m/s
2
 for 0.25 m/s velocity target and  -

0.46 m/s
-2

 for 0.75 m/s. These maximum linear accelerations are used as an input to the 

dynamic window navigation algorithm. 
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Figure 7.22 Wheel velocity and pitch angle relationship over 5 m for 0.5 m/s target velocity 

 

Figure 7.23 Wheel velocity and pitch angle relationship over 5 m for 0.75 m/s target velocity 

The relationship between the wheel velocity and pitch angle is plotted for 0.25, 0.5 and 0.75 

m/s velocity targets in Figure 7.22 and Figure 7.23. These results show a trend of peaks in the 

pitch angle being followed by peaks in wheel velocity as well as troughs in the pitch angle 

being followed by troughs in wheel velocity. This relationship is expected with the dynamic 

stabilisation occurring. A negative velocity increases the pitch angle shifting the centre of 

gravity in front of the wheel axis. The wheel velocity increases to maintain stabilisation 

causing a decrease in pitch angle. Although the pitch angle does go negative between the 4-6 
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s marks, the top plate of the Segway has a higher amount of momentum, comparative to the 

wheel base, which coupled with a slowing wheel velocity brings the pitch angle positive 

while maintaining forward movement of the platform. 

The stop command is noticeable at 10.5 s and 9 s, in Figure 7.22 and in Figure 7.23, with a 

peak in the wheel velocity followed by a sharp decrease in the current pitch angle.  The 

negative pitch angle allows the Segway to oppose forward movement. The largest negative 

pitch angle occurs at the zero velocity crossing. The velocity continues to go negative and 

oscillations occur while the Segway dynamically balances. 

The dynamic window navigation algorithm calculates a target linear velocity (in m/s) and 

angular velocity (in rad/s) for the Segway to move. The velocity pair is required to be 

converted into command values to be sent to the Segway. Table 3.2 shows the relationship 

between velocity command and speed as [-1176, 1176] = [-12.9 km/h, 12.9 km/h] and the 

linear velocity scale limits this to [-6.4 km/h, 6.4 km/h]. The turning command has a valid 

command range of -1024 to 1024 but does not specify the angular velocity values they 

correspond with. The relationship between input velocity command and linear velocity was 

tested to confirm the values given in the user manual. The Segway was set to tractor mode so 

wheel velocities were not affected by the dynamic stabilisation. Velocity commands were sent 

to the Segway and the linear velocity measured. The results were inversed to give the velocity 

command value required to set the velocity target (m/s) from the navigation system. The 

relationship is shown in Figure 7.24 and gives a conversion factor of 666, meaning a target 

linear velocity of 1 m/s requires a 666 command value to be sent to the Segway.  

The relationship between turn command and angular velocity was not given in the user 

manual and thus was investigated. The test was carried out in balance mode as the dynamic 

stabilisation does not affect turn capabilities at linear velocity speeds below 1.5 m/s. The 

results were also inversed to give the angular velocity command required to travel at the 

target angular velocity from the navigation system. The relationship is shown in Figure 7.25 

and gives a conversion factor of 670, meaning a target angular velocity of 1 rad/s requires a 

670 command value to be sent to the Segway. 

 



Results 147 

 

 

Figure 7.24 Conversion between linear velocity target and velocity command 

 

Figure 7.25 Conversion between angular velocity target and required turn command 

The Segway configuration parameters for this project are summarised in Table 7.1. The gain 

schedule is set to 0 indicating the ‘light’ controller setting. The maximum acceleration, linear 

velocity and angular velocity scales were set to 0.5 to limit the Segway. As there was minimal 

wheel slippage due to acceleration and deceleration the current limiting scale was left at 

maximum.  
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Table 7.1 Segway configuration parameters 

Parameter Numerical Value 

Gain Schedule 0 

Max Acceleration Scale 0.5 

Max Linear Velocity Scale 0.5 

Max Angular Velocity Scale 0.5 

Current Limit Scale 1 

 

7.3 Localisation Testing 

The navigation system uses landmarks and odometry for localisation within an environment. 

Landmarks are fixed locations the Segway can find within the environment. The landmark 

detection algorithm was tested by moving the Segway along the corridor from position A to 

position C as depicted in Figure 7.26. The seven doors in the environment are labled from 1 to 

7 as depicted in Figure 7.26. 

 

Figure 7.26 Environment map 

A graphic indicator of extracted lines and landmarks was temporarily added to the laser data 

output on the GUI. A blue line is added on top of datapoints that have been associated to a 

line. Each line is given a number to show how many lines have been found in an environment. 

The coordinates of a found landmark are depicted by a black circle. Each landmark also 

displays the type of landmark (door or corner) along with a number indicating how many 

landmarks have been found.  
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Figure 7.27 shows landmarks extracted at position A. The The landmark algorithm detected 

three Door landmarks. Both landmarks for door 1 are associated and one landmark associated 

to door 2. The localisation algorithm was unable to discover the closest landmark for door 2 

as the corner of the frame blocked the laser scanner’s view of the complete door. This is not a 

large problem for autonomous operation because as the Segway moves past the door frame 

the landmark will be discovered. 

The doors 5 and 6 were held open to display one limitation of the localisation algorithm. 

These doors were unable to be found as the landmark detection algorithm searches for  

parallel lines with close end points. All the doors within the opperating environment have 

mechanisms that automatically close open doors but if all the doors within the environment 

were left open, the navigation system would rely on corner landmarks and odometry alone. 

This limitation and possible solutions are discussed further in Section 8.2 

 

Figure 7.27 Landmarks detected at position A. 
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Figure 7.28 Landmarks detected at position B. 

At position B four landmarks were found by the landmark algorithm (Figure 7.28). The first 

two landmarks associate with door 2 and the last two associate with door 5. Door 5 was shut 

while moving between position A and B. This image shows that Door type landmarks are 

better associated when the Segway is positioned between the two frames  as there is no edge 

to block the view of the laser scanner (as was the case for door 5 in Figure 7.27).  

At position C Five landmarks were found by the landmark algorithm (Figure 7.29). Two 

Convex landmarks are associated with the corners of the corridor, two Door landmarks are 

associated with door 4 and one Door landmark associated with door 3. Once again the closest 

frame of door 3 blocks the nearest landmark from being found. 

These tests show the landmark algorithm is robust enough to find and associate all landmarks 

within the operating environment during normal opperation. As the location of landmarks 

were always static, the difference between the sensed location and actual location can be 

calculated and used by the navigation algorithm to determine the error in the internal 

representation of the Segway's location.  
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Figure 7.29 Landmarks detected at position C. 

 

7.4 Navigation System Parameters 

7.4.1  Direction Sensor 

The direction sensor has two parameters, α and β that determine the desired output heading 

target angle as discussed in Section 5.3.2. The α parameter relates to goal directness and the β 

parameter relates to obstacle avoidance. As the parameters produce an output dependent on 

both the input parameters, the α parameter was held constant at 0.5 while the β parameter was 

varied. The results for β values of 0.5, 1 and 2 are shown in Figure 7.30. 
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Figure 7.30 Obstacle avoidance trajectories with different β values 

The edge of an obstacle was placed in the way of a straight line heading. Figure 7.30 shows 

the path taken by the centre of the Segway and Figure 7.31 shows the target heading output 

from the Direction Sensor during the test. The Segway has a radius of 0.35 m. A β value of 

0.5 produced a path that missed the obstacle by about 5 cm, a β value of 1 produced a path 

that missed the obstacle by 25 cm and a β value of 2 produced a path that missed the obstacle 

by 45 cm. 
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Figure 7.31 Target heading output from the Direction Sensor over time. 

Figure 7.31 shows the target heading output from the Direction Sensor for different β values. 

A β value of 0.5 caused a 20° heading change from a straight line, a β value of 1 caused a 30° 

heading change and a β value of 2 caused a 40° heading change. Smaller β values create 

closer paths to the obstacle meaning a shorter time to complete the obstacle avoidance 

manoeuvre (given a constant velocity). An α value of 0.5 and β value of 1 were chosen as it 

gave a good compromise between obstacle avoidance and distance travelled. 

The maximum distance to obstacles        was set to the maximum range of the SICK 

LMS100 of 20 m.  The number of candidate orientations    for the direction sensor algorithm 

to evaluate is set at 45 to balance computational effort and direction resolution. This gave a 

direction resolution of 6°. These values are summarised in Table 7.2. 

Table 7.2 Direction sensor parameter values 

Parameter Numerical Value 

α 0.5 

β 1 

       20 m 

   45 
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7.5  Corridor Environment Tests 

7.5.1  Linear Forward Command 

For the linear forward command testing, the internal representation of the path travelled is 

plotted. The actual trajectory the Segway follows is not shown because it is impractical to 

externally measure the Segway's position while it was moving. 

The Segway was commanded to move autonomously from coordinate location (1.5, 1.3) to 

(6.5, 1.3), a distance of 6 m, with maximum linear velocities of 0.3, 0.5 and 0.75 m/s. Each 

test was conducted 8 times.  

 

Figure 7.32 X,Y coordinates of the Segway during 0.3 m/s 6 m trajectory test 

 

Figure 7.33  Wheel velocity profiles for 0.3 m/s 6 m trajectory test 
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Figure 7.34 Internal heading during 0.3 m/s test over 6 m 

Figure 7.32 shows the internal position representation of the Segway in the corridor during 

the 0.3 m/s test. The trajectory shows that an initial alignment error that caused the Segway to 

drift towards the left wall. As landmarks are found, this heading error is detected and 

corrected with an adjustment towards the centre of the corridor. 

Figure 7.33 shows the wheel velocities during the test. The Segway follows the same 

acceleration and deceleration profiles as expected from the open environment tests. 

Differences in the wheel velocities can be seen as the navigation system corrects for detected 

position errors. 

Figure 7.34 shows the internal heading of the Segway. The initial starting heading was set to 

be ideally 0°. During operation a heading error of -0.4° was discovered when the first 

landmark was found. As more landmarks were found during the 3-5 second range, the 

heading error increased to -3° and the navigation system attempted to correct the error. This 

error can be attributed to the initial alignment of the Segway not being the same as the initial 

internal heading. The navigation system set a heading of 1° at 12 s to correct the error in 

position and brought the target heading back towards 0° at the end of the test. 

For the 0.5 m/s tests (results shown in Figure 7.35 to Figure 7.37) the initial alignment error 

was minimal allowing the navigation system to make fewer heading corrections during the 

experiment. Again the wheel velocity shows similar acceleration and deceleration profiles, 

with a negative velocity to start forward movement and negative velocity towards the end of 

the test after deceleration to stabilise the platform. The wheel velocity peaked at 0.55 m/s 
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during acceleration and at 0.7 m/s 10.5 s into the test. The internal heading started at 0 and 

decreased to -0.5° as landmarks were associated. 

 

Figure 7.35 X,Y coordinates of the Segway during 0.5 m/s 6 m trajectory test 

 

Figure 7.36 Wheel velocity profiles for 0.5 m/s 6 m trajectory test 
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Figure 7.37 Internal heading during 0.5 m/s test over 6 m 

Figure 7.38 shows the resulting position errors between actual position and internal position 

for all 8 tests at the different velocities. These results show a better performance at 0.3 m/s 

when compared to 0.5 m/s and 0.75 m/s with an average X error of -0.003 m with a standard 

deviation of 0.013 m and an average Y error of -0.002 m with a standard deviation of 0.002 m 

compared to an average errors of 0.05 m (std. 0.008 m) in the X direction and 0.001 m (std. of 

0.023 m) Y direction for the 0.5 m/s tests and 0.001 m (std. 0.008) in X direction and 0.003 m 

(std. 0.027 m) in the Y direction. 

 

Figure 7.38 Position errors  
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There is a larger spread in error in the Y direction (7.5 cm) when compared to the X direction 

(2.9 cm). Errors in the X direction during straight line tests can be due to distance travelled 

errors while errors in the Y direction can occur from heading errors. The systematic Y error 

could be caused by inaccuracies in calculating the heading error of the Segway. The heading 

error is calculated by calculating the difference in angle of the lines that make a landmark. 

The landmarks are found with parallel and perpendicular lines but allow an error of up to 10° 

to account for noisy and slightly inaccurate lines being extracted from the laser range finder 

data. 
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Chapter 8 Discussion 

This chapter discusses the objectives achieved by this project and then outlines future 

improvements to this project. 

8.1 Objectives Achieved 

A number of robotic development environments were investigated including Player/Stage, 

Robot Operating System (ROS), Open Control Robot Software (OROCOS) and Microsoft 

Robotics Developer Studio (MRDS). Microsoft Robotics Developer Studio was chosen as the 

development environment. 

Different navigation techniques and architectures were discussed and compared. A hybrid 

navigation architecture, combining both reactive and deliberative control, developed at 

Victoria University was chosen as the navigation architecture. The hybrid navigation 

combined an A* path planner with an occupancy grid and used a modified dynamic window 

and direction sensor to navigate the Segway's environment. 

Three common range finders were compared; the SICK LMS100, SICK LMS200 and the 

Hokuyo URG. The SICK LMS100 was chosen as the laser range finder for this project. 

A MRDS service was written in C# to start the SICK LMS100 laser range finder and receive 

distance measurements. The service is able to post update messages to subscribers when new 

distance measurements are received. 

The characteristics of the SICK LMS100 range finder were examined and discussed. 

Characteristics tested were the settling time and distance measurements to three surfaces with 

different reflective properties commonly found in the expected operating environment. Black, 

white and glass surfaces were used as surfaces representing the extremes within the operating 

environment. 

A service was created to control the Segway platform. The service is designed to be a generic 

service that could be used for any future projects. It sends control messages at 20 Hz and 

receives update messages at 100 Hz. 
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The movement characteristics of the Segway were investigated. The pitch angle/acceleration 

relationship and wheel velocity profiles during acceleration and deceleration were obtained. 

Distance measurements were obtained from the Segway odometer counts and conversion 

factors were calibrated to reduce the errors. Equations were derived to obtain the distance and 

heading travelled from the individual displacements measured by each of the Segway’s 

wheels. 

The hybrid navigation architecture was implemented in the Segway Navigation service which 

subscribed to services controlling the SICK LMS100 and Segway platform. 

A graphical user interface was also developed as a service which can be run on a remote 

computer to monitor and update the navigation system properties. 

8.2 Future Work 

8.2.1  Additional Sensors 

When no landmarks can be found the current sensor error is set to zero, meaning that the 

Segway is relying completely on odometry for localisation. This is not desirable as 

localisation using odometry alone accumulates error over time due to small wheel slippage or 

incorrect calibration being emphasized over long travel periods. Implementation of more 

sensors such as those mentioned below could improve localisation and navigation capabilities. 

Lower Rangefinder 

The Segway platform does not have the ability to sense objects lower than 1.1 m where the 

SICK LMS100 has been mounted for this project. This project has assumed all obstacles will 

be larger and able to be sensed by the laser rangefinder. The Segway’s control system cannot 

tell the difference between an obstacle at wheel level or an external force acting on the 

balanced system. This causes the Segway platform to continuously run into and bounce off 

lower obstacles and causes system instability at higher speeds. Two Hokuyo URG laser range 

finders, discussed in Section 3.2.3, could be mounted at wheel level at the front and back of 
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the Segway to detect such low objects.  Short range Sharp IR distance sensors or ultrasonic 

distance sensors could also be used to detect low objects. 

Video camera  

A video camera could be added to the Segway platform and connected to the control 

computer. A video camera would allow additional object detection and avoidance that a laser 

range finder could not detect. Along with obstacle avoidance, a video camera could be used to 

implement object tracking and aid in localisation by identifying and associating visual 

landmarks. 

Compass 

A compass would be useful as an absolute heading reference but may suffer from interference 

by magnetic fields generated from objects within the operating environment.  Alternatively an 

inertial measurement unit (IMU) which contains a gyrocompass could be used. 

GPS 

A global positioning system (GPS) unit could be used to assist with localisation but these tend 

not to operate well in many indoor environments without complex external receivers. 

8.2.2  Higher Level Control 

The current system is capable of moving from one location to another location. A higher level 

control service could be created which could intelligently select tasks and goal locations to 

move to. This service could implement functions such as roaming the corridors and 

automatically returning to a charging point when battery levels become low. 

The Segway UI service could be extended to give new goal locations and new maps as the 

Segway travels through different corridor environments. 
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8.2.3  System Improvements 

Along with additional sensors, the overall system would benefit from a device that could hold 

the Segway upright when not powered. The addition of two caster wheels (one front and one 

back) or similar bracing devices that the control system could lift off or drop to the ground 

when transitioning from between balance and tractor mode. This would allow the Segway 

platform to power down without falling over and requiring human assistance. The system 

would have to ensure that the additional ground contact points were lifted before balance 

mode becomes active. 

8.3 Summary 

The result of this project is a Segway platform that can execute motion instructions using a 

hybrid navigation algorithm implemented in MRDS. In the corridor environment the control 

system was capable of identifying door and corner landmarks and guided the Segway to 

within 7 cm of the goal location. 

Generic services for the SICK LMS100 and Segway platform were made that can be extended 

and reused for other robots developed with MRDS. The navigation system was implemented 

in a single service that subscribed to the SICK LMS100 and Segway platform services. A user 

interface service was also created allowing user interaction with the system. 

Overall the project was a success, meeting its objectives and providing a system that can be 

expanded upon in future projects. 
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Appendix: CD Contents 

The attached CD contains the following: 

 Soft copy of this thesis 

 Software C# MRDS Project services 

o Segway Native Wrapper  

o Segway Base Service 

o SICK LRF Scanner Service 

o Segway Navigation Service 

o Segway UI Service 
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