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Terminology 

 
Lineage or species 

In this thesis the following terms are used to refer to filamentous Bangiales entities: 

lineages, species, entities and taxa. Some researchers prefer the term lineage, as 

distinctions between taxa in this group are largely based on sequence data rather than 

morphological characters. Others prefer to use the term species. For the purposes of this 

thesis both terms are used interchangeably. When naming individual entities this thesis 

follows the convention of Sutherland et al. (2011) i.e., lineage BFK is referred to as 

Bangia sp. BFK. 

 

F ilamentous Bangiales 

The term “filamentous Bangiales” is used throughout this thesis to include both Minerva 

aenigmata and filamentous Bangia spp. At study sites within Wellington where M. 

aenigmata has not been recorded, the term “Bangia spp.” has occasionally been 

substituted.  
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Chapter 1. Introduction 
 
Current research on marine cryptic species, through the use of molecular tools, is 

revealing unexpected diversity and relationships. Species, such as the red alga Bangia 

fuscopupurea, which were once thought to be a single globally distributed entity, are 

being revealed as a suite of species with localized distributions (Sutherland et al. 2011, 

Nelson et al. 2005). The human-mediated transport of species around the world and 

along coastlines, largely via hull-fouling and ballast-water (Ruiz & Carlton 2003), has 

further complicated patterns of distribution: potentially resulting in the coexistence of 

some cryptic species due to unnatural means. 

 

Cryptic Species  
 
There are many different concepts of what constitutes a species. “It may not be an 

exaggeration if I say that there are probably as many species concepts as there are 

thinking systematists and students of speciation” (Mayr 1942). Traditionally species, the 

basic category on which biology is based, were defined using morphological characters, 

such as length of blade or pattern of branching. The discovery, however, that some 

mosquito species of the genus Anopheles (known to vector the disease malaria), are 

actually a complex of morphologically identical species (e.g., Hackett 1934), 

dramatically advanced programmes to control malaria, and also raised the need for a 

new concept in species (Mayr 1942).   

 

In 1942 Mayr developed the ‘Biological Species Concept’, which defines species based 

on the genetic isolation of populations, rather than on morphological characters. Mayr 
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proposed that species are “groups of actually or potentially interbreeding natural 

populations which are reproductively isolated from other such groups” (Mayr 1942).  

 

Mayr’s biological species concept has some limitations as it cannot be applied to asexual 

species or to species which occasionally hybridise. In addition, breeding tests to define 

species limits are not always feasible. An alternative concept, which uses evolutionary 

history as revealed by genetic data, and does not require breeding tests, is the 

Phylogenetic Species Concept. The definition of a species under this concept is that a 

species is a “tip” on a phylogeny: a basal exclusive group of organisms all of whose 

genes coalesce more recently with each other than with those of any organisms outside 

the group, and that contains no exclusive group within it (Baum & Donoghue 1995).  

 

Regardless of which species concept researchers subscribe to, cryptic species are a real 

biological phenomenon, and their existence invites further research. There are two 

scenarios covered by this definition of “morphologically indistinguishable”: either the 

different species all look the same (e.g., cryptic species of the genus Bangia, Farr et al. 

2001;sponges, Nichols & Barnes 2005; marine clams Lasaea australis, Li et al. 2013), 

or, the morphology is variable but does not help in defining species limits (e.g., 

bonefish, Colborn et al. 2001; whalefish, Johnson et al. 2009;sea slugs of the genus 

Pontohedyle, Jörger et al. 2012).  

 

Some authors use the term “pseudo-cryptic” for species for which a morphological 

identifier has been found, so that they can be distinguished from one another (Saez & 

Lozano 2005). The other use of the word “cryptic” or “crypsis” in the scientific 

literature refers to organisms which are hard to detect, such as those which use patterns 
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of colouration or decoration to camouflage themselves. For the purposes of this thesis 

“cryptic” means those species that are hard to distinguish from each other, not those 

which are camouflaged or secretive. 

 
Records of cryptic species have increased dramatically over the last two decades, as 

more surveys of DNA variation are undertaken (see Fig 1.1 from Bickford et al. 2007, 

also Saez & Lozano 2005).  

 
 

F ig 1.1. Study of cryptic species has increased exponentially over the past two decades. 
The percentage of peer-reviewed publications in Zoological Record Plus (CSA) that 
mention ‘cryptic species’ (circles) or ‘sibling species’ (triangles) in the title, abstract, or 
keywords has increased dramatically since the advent of PCR. Similar positive trends 
are observed in absolute number of publications per year, and in publications cited in 
other searchable databases of biological literature. Source: Bickford et al. 2007. 
 
Cryptic species may represent optimal phenotypes, and so strong stabilising selection 

keeps their morphology similar despite the lack of gene flow between groups 

(Williamson 1987). Divergence could still have occurred in some respect (habitat, life 

history, chemical recognition system) but the morphology has been retained (Knowlton 

1993). It is plausible that the nature of the environment itself encourages cryptic species 
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formation. For example, the stresses of the aquatic environment (and particularly the 

marine environment) are known to restrict the potential morphology and physiology of 

many plants, limiting the phenotypic differences between species (Niklas 1997, 

Knowlton 1993).  

 

The simple filaments of the Bangiales, the subject of this thesis, may represent a highly 

successful structure for survival in the upper inter-tidal. Bangia-like organisms have 

persisted with little morphological change for some 1200 Myr (Butterfield 2000; 

Butterfield et al. 1990). In addition, Bangia-like fossils from deposits dated at 425 Myr 

(Campbell 1980) have also been found. The filament width and cell size of extant 

filamentous Bangiales in New Zealand show small variations in filament width and cell 

size between lineages, but the differences are so slight that a practical field method of 

identification is not possible (Bödeker et al. 2008), with one exception: Dione arcuata 

which has distinctly wider filaments (Nelson et al. 2005). 

 

In the marine realm it is also proposed that the increasing discovery of cryptic species 

may be an indication of inadequate study (“pseudo-cryptic species”). Pfenninger & 

Schwenk (2007) reviewed the literature on cryptic species and found that once study 

intensity bias and species richness are accounted for, cryptic species (in animals 

anyway) are evenly distributed among major metazoan taxa and biogeographical 

regions.  

 

Identifying cryptic species is important for conservation and for measures of species 

richness. Knowlton’s review of cryptic species in the sea (1993), reported that cryptic 

species are common in all major marine groups and habitats, and that the number of 
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marine species would increase by an order of magnitude if cryptic species are 

considered. For example, a study of the planktonic groups (coccolithophores, diatoms 

and foraminifers) found 33 genetic species from 9 morpho-species (Thierstein & Young 

2004), and a recent study of the sea slug genus Pontohedyle increased the species 

number from 2 to 12 (Jörger et al. 2012). 

 

Discovery of cryptic species also has significant implications in the management of 

fisheries and monitoring of environmental quality. In fisheries cryptic species have been 

identified in Crassostrea, Nototodarus, Penaeus, Menippe and Sphyrna (e.g., Cordes et 

al. 2005, Quattro et al. 2005, Sekino & Yamashita 2013). Some taxa used to monitor 

environmental quality have been found to consist of several cryptic species: Capitella, 

Montastraea, Mytilus and Baetis rhodani (e.g., Grant et al. 1984, Williams et al. 2006). 

 

Learning more about cryptic species can advance understanding of speciation processes, 

and the relationship between morphology and phylogeny. Their existence challenges an 

intuitively visual (morphological) concept of species, and requires researchers to think 

critically about what species are, why they look the way they do, and what evolutionary 

processes have shaped them. 

 

Coexistence and niche partitioning 

When cryptic species are found living in sympatry, as in the case of the Bangiales 

lineages in Wellington, and indeed throughout New Zealand (see Fig1.2), the question 

arises: how do cryptic species coexist? Hutchinson (1961) called this situation, where 

multiple species coexist and compete for the same resources, the “Paradox of the 

Plankton”.  
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F ig 1.2. Map of New Zealand showing collection sites/putative distribution (gray ovals) 
of the taxa as indicated by numbers. The taxa identif ied from Wellington include those in 
group 2 (BMW, BGA and Minerva) as well as BF K . Single local collection regions of 
Bangia sp. BF K (Wellington) and Dione arcuata (near Kaikoura) are marked with a 
black and a white star, respectively. Thin black lines represent winter isotherms, 
numbers on lines are winter sea surface temperatures (°C) in August lighter arrows 
indicate sub-Antarctic currents, darker arrows subtropical currents. Oceanographic 
data from the National Institute for Water and A tmospheric Research, New Zealand 
(NIWA 2007). Source: Bödeker et al. (2008). 
 

The classical model of competition developed independently by both Lotka (1925) and 

Volterra (1926), predicts that stable coexistence will occur between a pair of species if 

each inhibits its own population growth (through intraspecific competition) more than it 

inhibits that of the other species (through interspecific competition).  Stable coexistence 
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is most likely to be reached if both species occupy separate niches. This is expressed in 

Gause’s (1932) principle, which states that stable coexistence between competing 

species requires them to occupy different niches: if two species were to occupy the same 

niche one would eventually competitively exclude the other, driving it to extinction. 

 

The niche concept was originally conceived by zoologists Joseph Grinnell (1917) and 

Charles Elton (1927), and emphasised differences in diet and foraging patterns to 

explain the coexistence of animals. This “trophic niche” as described for animals is not 

as applicable to the coexistence of plants which all require similar resources such as 

water, nutrients and UV light (Silvertown 2004). However, plants do vary in their 

resource requirements and tolerances e.g., UV levels, nutrients, moisture; and these 

differences can help to explain their coexistence.  

 

Numerous theoretical models have been proposed to progress niche theory and explain 

how plant species coexist. Reviews by Wilson (2011, 1990) identify twelve theories that 

attempt to explain coexistence in plant communities: some depending on factors such as 

disturbance or succession or seed storage effects. Of the twelve theories reviewed, 

environmental fluctuation (including seed storage effects), allogenic disturbance, alpha-

niche differentiation, and pest pressure were considered to be important; however this 

does not discount the other theories as more studies are required (Wilson 2011).The 

competition-colonisation trade-off model, originally proposed by Skellam (1951) and 

further developed by other researchers (e.g., Hastings 1980, Tilman 1994), suggests that 

the ability to colonise recruitment sites may compensate for the lack of interspecific 

competitive ability in some species, although researchers would argue that ultimately 

stable coexistence still requires a level of niche differentiation.  The resource ratio model 
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proposes that spatial or temporal variation in just two resources can enable more than 

two competitors to coexist (Tilman 1985).  

 

Niche theory, as proposed by Hutchinson (1957), distinguishes between a species’ 

fundamental niche, its realised niche and its α niche. A fundamental niche is the region 

of its niche that a species can occupy in the absence of interspecific competition and 

natural enemies. The realised niche is that region it can occupy in the presence of 

interspecific competition and natural enemies. A species’ α niche is community specific: 

in other words it is that region of the realised niche corresponding to species diversity at 

the local community scale at which interactions among species occur. Niche differences 

at the α scale are expected to facilitate coexistence. 

 

Some researchers have called for an increased focus on niche partitioning and 

coexistence theory, arguing that the concept of the niche has been neglected, with few 

studies apparent in the literature (Chase & Leibold 2003, Silvertown 2004). More recent 

reviews have also emphasised the continued importance of the niche concept, and note 

that its application has grown much wider than the original concept, and now extends to 

modelling species distribution over time and adaptation to changing environments 

(Colwell 2009). Holt (2009) proposes that the niche concept is as relevant today as ever 

but needs to be more dynamic: rather than a static mapping of a species’ abiotic and 

biotic tolerances onto an environment, niche theory needs to acknowledge the ability 

species have to influence their environment and moderate their own population growth 

and patterns, and to recognise that niches may be conserved over time or they may 

evolve.  
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There are also calls for an increased focus on positive feedback mechanisms in attempts 

to explain species’ niches, plant community structure and coexistence. Callaway (2007) 

reviews twenty years of research on facilitation and other positive species interactions, 

suggesting they are a significant factor enabling the coexistence of species, and 

increasing performance of members of the same species: not by any altruistic intent but 

merely by the fact of their existence.  

 

So how likely is it that identical species (i.e. cryptic species) could share the same niche 

and continue to coexist? Chesson (1991) reviewed models which propose exactly this 

scenario, and concludes that it would be unlikely to occur in reality, with the possible 

exception of social insects which deposit eggs via ovipositor following behavioural cues 

(Atkinson & Shorrocks 1981), and even then only under restricted conditions.  In the 

case of cryptic species, one explanation for continued coexistence is that there must be 

some level of niche partitioning between species. Studies in niche partitioning look for 

the “niche axis”: a dimension in the niche space along which species show segregated 

distributions. For example, Dudgeon et al. (1999) looked at factors which might explain 

the coexistence of two similar seaweeds Chondrus crispus and Mastocarpus stellatus in 

the lower intertidal of New England. Herbivory and storm damage were not found to be 

significant differentiators, but in the particular environment studied, differences in the 

productivity of each species explained their stable coexistence. Changing levels of 

productivity at tidal depth was found to be the axis along which niche separation occurs 

for these two species. 

 

Silvertown (2004) suggests four tests for niche separation: competition, segregation, 

tradeoff and niche shift. Examples of evidence for niche segregation include rooting 
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depth in desert plants (Briones et al. 1996), nutrient and salinity gradients for mangrove 

trees (Lovelock 2003), salinity gradients in marsh herbs (Kenkel 1991), hydrological 

gradients for meadow herbs (Silvertown et al. 1999), and maximum height and light 

gradients in tropical forest trees (Kohyama et al. 2003). 

 

In the inter-tidal environment, research suggests a number of factors and variables which 

help explain the coexistence of cryptic or similar species:  adaptation to different 

temperatures (in algae: Bödeker et al. 2008, van der Strate et al. 2002; in barnacles: 

Wethey 1984), position in inter-tidal (Dudgeon et al. 1999, Nelson et al. 2005), salinity 

and differential dispersal ability (in marine nematodes: De Meester et al. 2011, De 

Meester et al. 2012), physical factors such as wave action or sand abrasion (Nelson et al. 

2005). Changing climatic conditions and dispersal patterns over time can also explain 

overlaps in the distribution of cryptic species, and consequently their coexistence 

(Zuccarello et al. 2002, Van der Strate et al. 2002).  

 

Upper limits of inter-tidal species’ distributions may be attributed in part to air 

temperature, and partly to desiccation, while lower distribution limits are often 

determined by competitive ability rather than physical factors (Connell 1961). Studies of 

two barnacles Chthamalus fragilis and Semibalanus balanoides in the New England 

intertidal found that temperature tolerance was the major factor separating the niches of 

the two species. When Semibalanus was shaded to reduce the thermal stress, it was able 

to outcompete Chthamalus and overgrow it, but in the field it is limited to areas lower in 

the intertidal (Wethey 1984).   
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In the Bangiales, research has suggested that important factors determining distribution 

and stable coexistence are temperature and photoperiod (Bödeker et al. 2008); and tidal 

height and exposure to sand abrasion (Nelson et al. 2005).Culture experiments utilising 

different temperature and photoperiod regimes, have revealed differences in germination 

rates of spores, growth rates of filaments, timing and amount of spore release, and 

mortality of Bangiales filaments (Table 1.1, from Bödeker et al. 2008). Bödeker’s 

research suggests that Bangia sp. BMW is adapted to cooler temperatures, a fact which 

correlates with its known distribution in New Zealand; whereas Bangia sp. BGA, 

recording highest growth rates at 15oC and spore release only at a relatively warm 15 - 

20°C in culture, is found only in the warmer waters of New Zealand (Fig 1.2). In culture 

Minerva aenigmata (previously known as Bangia sp. BTS) is able to survive a broad 

range of environmental conditions, explaining its wide distribution around New Zealand. 

 

Bangia sp. BFK has only been recorded from one locality in New Zealand (Fig 1.2) yet 

culture experiments indicate it has the physiological capacity for a much wider 

distribution, suggesting that it may be an introduced species (Bödeker et al. 2008). 

Phylogenetic analysis may support this hypothesis, with BFK most closely related to 

lineages from the Northern hemisphere (Sutherland et al. 2011, Broom et al. 2004). 
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Table 1.1. Comparison of the morphology and physiology and inferred adaptation of 
four f ilamentous Bangiales lineages, as revealed by culture experiments. Source: 
selected data from table in Bödeker et al. 2008.  
 
 Bangia sp. BFK Bangia sp. BMW Bangia sp. BGA Minerva 

aenigmata 
Filament 
width 

Broad (25-29 
µm) 

Average (15-20 
µm) 

Average (17-22 
µm) 

Average (17-22 
µm) 

Growth rate Average (low), 
no preference 

High, especially at 
12 and 15°C 

Average (low), 
significantly 
higher at 15°C 

Average (low), 
no preference 

Filaments 
releasing 
spores 

Some at 15 and 
20°C 

Very fast at all 
conditions 

Some at 15 and 
20°C 

Never 

Mortality at 
20°C 

No 100% (10 days) No No 

Inferred 
adaptation 

? generalist Cold adapted Warm adapted ? generalist 

 

Adaptation to varying tidal heights and exposure appears to explain the distribution and 

habitat of some filamentous Bangiales lineages, e.g., unlike most lineages which grow in 

the upper inter-tidal, Dione arcuata grows in the upper sub-tidal (Nelson et al. 2005) 

only on exposed open coasts. Populations of Minerva aenigmata also appear in areas of 

moderate exposure: rapidly colonising bare rock surfaces exposed by the local erosion of 

sand (Nelson et al. 2005).  
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Systematics  
 

Historically the family Bangiaceae has contained two genera distinguished by gross 

morphological differences, with filamentous specimens being classified as Bangia, and 

bladed specimens as Porphyra (Fig 1.3). Initially two species of Bangia were 

recognised: the freshwater species Bangia atropurpurea (Roth) C. Agardh and the 

marine B. fuscopurpurea (Dillwyn) Lynbye. Geesink (1973) proposed that these be 

united into one species; however, this taxonomic treatment was overturned by the advent 

of molecular phylogenetics. 

 

F ig 1.3. An example of two morphologies present in the family Bangiaceae: a bladed or 
foliose form is shown on the left (website: www.botany.hawaii.edu), and a f ilamentous 
form on the right (website: dblab.rutgers.edu). Note that neither image is to scale. 
 

Using molecular phylogenetic methods, researchers revealed that the genera of 

Porphyra and Bangia are not two divergent evolutionary paths, but are actually 

polyphyletic, with the filamentous form being the ancestral condition and the foliose 

form having arisen multiple times (Sutherland et al. 2011, Broom et al. 2004). 

Furthermore, sequence data reveals that, rather than one globally distributed Bangia sp., 

there are at least seven separate genera of filamentous Bangiales (Sutherland et al. 

2011). 
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The Rhodophyta (red algae) are divided into seven classes (Fig 1.4), including the class 

Bangiophyceae (Wettstein 1901) with a single order Bangiales (Nägeli 1847) and single 

family Bangiaceae (Engler 1892). A revision of red algal taxonomy by Yoon et al. 

(2006) identified six genera within the Bangiaceae: Bangia, Bangiadulcis, Dione, 

Minerva, Pseudobangia and Porphyra; however subsequent analysis of the Bangiales by 

Sutherland et al. (2011), based on detailed regional studies and molecular analyses, 

proposes at least fifteen genera: seven filamentous and eight foliose.  

 

 

 

 

 

 

 
 
 
 
 
 
F ig 1.4. Red algal phylogeny of seven classes, proposed by Yoon et al. (2006) following 
analysis of 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding 
regions. Cyanidiophyceae shows the earliest divergence and is distinct from the 
remaining taxa. Source: Yoon et al. 2006. 
 

The seven filamentous genera proposed by Sutherland et al. (2011) consist of four 

named and three unnamed genera (Fig 1.5). The four named genera; Bangia, Dione, 

Minerva and Pseudobangia; are monotypic (with the exception of Bangia which 

contains two species). In contrast the unnamed genera (“Bangia” 1, 2 and 3) each consist 

of multiple species, some with existing names; and the researchers expect that more 

detailed study would be able to identify taxonomically informative characters for each 

Rhodophyta 

Bangiophyceae 

Florideophyceae 

Rhodellophyceae 

Porphyridiophyceae 

Stylonematophyceae 

Compsopogonophyceae 

Cyanidiophyceae 
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new genus (clade); for example differences in cell wall polysaccharide chemistry 

(Hemmingson & Nelson 2002) or life histories (Cole & Conway 1980, Knight & Nelson 

1999, Kikuchi et al. 2010).  

 

Silva & Nelson (2008) propose that the genus Bangia (Lyngb. 1819: 82), once used to 

include all filamentous Bangiales, now be applied only to freshwater species, i.e. B. 

atropurpurea. The other named filamentous Bangiales genera are: Minerva W.A. 

Nelson (in Nelson et al. 2005: 141), endemic to the New Zealand region; Dione W.A. 

Nelson (in Nelson et al. 2005: 142), also endemic to New Zealand; and Pseudobangia 

K. M. Müll. et Sheath (in Müller et al. 2005), recorded from the Virgin Islands. The 

unnamed clades include “Bangia” 1, which may consist of a number of separate species. 

The “Bangia” 1 clade contains samples found in France, Korea, the Atlantic coast of 

North America, Australia and New Zealand (including Bangia sp. BFK, BMW and 

BRM). “Bangia” clade 2 contains at least 13 entities recorded from a number of regions 

including Alaska, the Pacific coast of Canada and the U.S.A, Japan, Taiwan, Korea and 

New Zealand. Bangia sp. BGA is found in “Bangia” clade 2. The third “Bangia” clade 

contains four entities: a northern cold-water species; an epiphytic species recorded in 

Japan, Korea and China; and two species from New Zealand (these are Bangia sp. BHH 

and BJB). 
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F ig 1.5. Bangiales phylogeny of f ifteen genera, proposed by Sutherland et al. (2011) 
following analysis of 157 taxa using the nuclear SSU rRNA gene and the plastid 
RUBISCO LSU (rbcL) gene. Genera are indicated by lines and monotypic genera by 
arrows. Names of filamentous taxa are red and foliose taxa in blue. The phylogeny has 
been truncated from the original. Source: Sutherland et al. 2011. 
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Phylogenetic analyses of the Bangiales have found data from particular genes to be more 

informative than others; for example, a number of researchers have used nuclear small 

subunit (SSU) ribosomal ribonucleic acid (rRNA) 18S data, as the gene shows sequence 

variation between species but little or no variation within a species (e.g., Kunimoto et al. 

1999, Broom et al. 1999). Nelson et al. (2005) used SSU data to support descriptions of 

the two new genera Minerva and Dione, from New Zealand, and identify Minerva 

aenigmata. Sutherland et al. (2011) found that combining data from the ribulose-1,5-

bisphosphate carboxylase oxygenase large subunit (rbcL) gene and nuclear SSU rRNA 

gene produced more strongly supported clades than analysis based on a single gene 

alone.  

 

Biology  
 

Life cycle 

Filamentous members of the Bangiales have a heteromorphic sexual life cycle that 

includes a filamentous gametophyte as well as a microscopic sporophyte (Fig 1.6). The 

sporophyte phase, known as conchocelis, was first thought to be a separate entity and 

was described as Conchocelis rosea Batters, until Drew (1949, 1954) identified C . rosea 

as the alternate life-stage of Porphyra pupurea (Roth) C. Ag. The filamentous form of 

Bangiales is ephemeral whereas the conchocelis phase may be perennial, as has been 

suggested in studies of Porphyra conchocelis phases (Dickson & Waaland 1985). 

 

The filamentous gametophyte can reproduce sexually, releasing male and female 

gametes that fuse to form a zygotospore which then develops into the conchocelis 
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(Nelson et al. 1999) (Fig 1.6). The conchocelis or sporophyte stage produces 

conchosporangia that release conchospores. These conchospores then develop a short 

rhizoidal holdfast (Sommerfeld & Nichols 1973), attach to the substrate and grow into 

the simple unbranched filaments of the gametophyte stage. 

 

 

F ig 1.6. Minerva aenigmata from Nelson et al. 2005, showing the simple unbranched 
f ilamentous life-stage on the left (the gametophyte), and the branching conchocelis stage 
(sporophyte) on the right. Scale bar: 100 micrometres. Source: Nelson et al. 2005. 
 

Both the gametophyte and sporophyte stages can also reproduce asexually by expelling 

the contents of a vegetative cell as a neutral (asexual) spore, also known as an 

archaeospore. The release of neutral spores can occur in large numbers, resulting in the 

rapid establishment of new populations (Sheath & Cole 1980, Sheath et al. 1985). Both 

temperature and photoperiod conditions have been found to trigger stages in the life-
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cycle (Bödeker et al. 2008, Dixon & Richardson 1970, Sommerfeld & Nichols 1973, 

Waaland et al. 1990).  

 

Spores of the red algae are non-flagellate so dispersal is largely passive, however 

settlement may be aided by their ability to glide or make amoeboid-type movements 

(Pickett-Heaps et al. 2001). Spores may also display phototactic or chemoattractive 

behaviours during settlement (Amsler 2008, Steinberg et al. 2002). The polysaccharide 

mucilage surrounding spores then provides the "stick" which enables them to attach to 

the substrate (Boney 1975, 1981; Ngan & Price 1979, Ouriques et al. 2012). Vegetative 

fragments of both filaments and conchocelis, created by wave action or grazers, may 

also be able to disperse and re-establish (Conway & Cole 1977): other small filamentous 

algae, such as filamentous Ulva species and Ectocarpus, are thought to be dispersed in 

this way (Fletcher & Callow 1992, Clokie & Boney 1980). In general, little is known 

about dispersal in the Bangiales, or life-cycle parameters such as which populations or 

lineages are sexual or asexual, and there are few records of conchocelis collected from 

its natural habitat. 

 
Habitat 

Filamentous members of the Bangiales are found in marine and freshwater habitats 

around the world (Lüning 1990). Marine populations are usually found in the upper 

intertidal or splash zone, exposed to direct sunlight and fluctuating salinity and 

temperature, where they produce sun-screen compounds and osmoregulators to survive 

in these habitats (Karsten & West 2000).  The filamentous form grows on rock (Fig 1.7) 

but also manmade surfaces such as wooden palings or concrete slabs (Fig 1.8). The 

conchocelis phase bores into shells, barnacles or calcareous stones (Boney 1978). In 

Porphyra species the conchocelis phase has been recorded from depths of 78 m in the 
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Firth of Clyde, Scotland (Clokie & Boney 1980) and up to 1.4 m above mean lower low 

water at San Juan Island, Washington, USA (Martinez 1990); and in filamentous 

Bangiales one could speculate that a similar range is plausible.  

 

 
 
F ig 1.7. Patches of filamentous Bangiales as they appear on natural rocky substrates. 
 
 

 
 

F ig 1.8. Bangia sp. BF K , a possible invasive species, thrives on the textured concrete at 

Freyberg promontory, Wellington harbour. 
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Filamentous Bangiales populations consist of groups of individuals that appear as 

patches on the substrate, which, in the Wellington region, are generally in the order of a 

few cm2, but range in size from < 1cm2 to > 1000cm2 in extreme cases. A patch of a few 

cm2 contains hundreds of individual Bangiales gametophytes. 

 
Research aims   
 

A number of cryptic filamentous Bangiales have been recorded from Wellington, New 

Zealand; all morphologically indistinguishable and all apparently occupying the same 

niche within the upper inter-tidal. Researchers have reported finding more than one 

member of the filamentous Bangiales coexisting at a single location in Wellington’s 

inner harbour (Farr et al. 2001, Wendy Nelson pers. comm.).  

 

This raises the question: to what extent are these cryptic lineages coexisting? Are there 

differences in their temporal and spatial distribution? Does distribution at a small-scale, 

within sites in the Wellington region, reflect the physiological differences and ecological 

adaption reported from the culture studies of Bödeker et al. 2008?  

 

This research sought to investigate the small-scale distribution of these cryptic lineages 

to test for temporal or spatial variation, and draw conclusions about the nature of their 

coexistence in the Wellington region. To achieve this, samples were taken from six sites 

in Wellington over a period of nine months. Molecular methods, as described in Chapter 

2, were utilised to identify the various taxa. This identification data then provided the 

basis for the ecological analyses presented in Chapter 3. 
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Hypothesis: Filamentous Bangiales lineages in the Wellington region display different 

temporal and spatial distributions, reflecting their ecological adaptations and enabling 

their stable coexistence through a corresponding reduction in inter-specific competition. 
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Chapter 2. Molecular Identification 
 
Introduction  
 

To understand the ecology of a species it is crucial to be able to accurately identify that 

species. One of the challenges of working with cryptic species is that, by definition, they 

are difficult, or impossible, to identify morphologically. Consequently, samples of 

morphologically simple or phenotypically plastic species can only be reliably identified 

by molecular methods. For taxa such as the filamentous Bangiales, where gametophytes 

cluster in patches, each containing hundreds or even thousands of individuals, it is 

impractical to genetically identify every individual. It is therefore necessary to infer the 

identity of individuals from a sub-sample of the population that has been genetically 

identified. Once the identity of populations is ascertained with some confidence, only 

then is it possible to test hypotheses about the nature of spatial co-existence, population 

turnover, recruitment, patchiness and local diversity.  

 

When only a single cryptic taxon is recorded from a particular site over time, subsequent 

population surveys may choose to assume genetic identity of that population. However, 

where a number of different cryptic taxa co-exist in close proximity at a site, more 

intensive sampling is essential for each survey, to establish seasonal patterns of 

abundance of each cryptic taxon. Up to five filamentous Bangiales entities have been 

recorded from a single location in New Zealand (Broom et al. 2004). In the Wellington 

region four entities have previously been recorded: Bangia sp. BGA, BMW, BFK, and 

Minerva aenigmata W.A. Nelson (Bödeker et al. 2008, Nelson et al. 2005, Broom et al. 
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2004); with two of these lineages (BGA and BFK) recorded from a single site (Wendy 

Nelson pers. comm.).  

 

To gain insight into the genetic identity and diversity of filamentous Bangiales in the 

Wellington region, 167 filamentous Bangiales samples from six study sites were 

processed (Appendix A). Restriction digests were used to identify 82 samples, and 

nucleotide sequencing was used for the remaining 85 samples. Nucleotide sequencing of 

biological samples provides absolute confirmation of identity but it is also a relatively 

expensive technique, while restriction digests are much more cost effective.  

 

This chapter (Chapter 2) describes only the molecular methods used and the new 

lineages and sequences discovered. Chapter 3 describes the methods and results relating 

to abundance and temporal and spatial variation, and discusses these findings. 

 
 
Material and Methods 
 
M apping and sampling regime  

Sampling was undertaken in the period Jul 04 to Jul 06 (Table 2.1). Six study sites were 

chosen, using the following criteria: a) that sufficient filamentous Bangiales be present 

for sampling and b) that different environmental conditions be represented, i.e. three of 

the six were inner harbour locations, and three were more exposed to wave action and 

sand abrasion. Samples from 2004 were used to trial the genetic techniques for 

identification; and also enabled assumptions to be tested about the genetic identity of 

Bangiales patches, i.e. whether patches of Bangiales consisted of filaments of the same 

lineage or were made up of different lineages. 
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The most comprehensive sampling dataset is from surveys in Oct 05, Dec 05, Feb 06 

and Jun/Jul 06. Further sampling in Nov 05 and Jan 06 was undertaken.  

 

Sites were surveyed at low tide. Each site was searched for between 5 and 10 minutes to 

identify all visible patches of Bangiales. Bangiales patches and adjacent organisms were 

traced onto A4 transparencies (21 x 29 cm) using a permanent marker. Samples were 

collected using needle-pointed tweezers, and their position marked on the corresponding 

transparency sheet. Each sample contained dozens of individual Bangiales filaments, 

and weighed less than 0.1g. Samples were placed in 1.5mL cryovials containing silica 

gel until genetic analysis was conducted.  

 

The number of patches found at each site varied from zero to 68. All patches of 10mm2 

or greater were sampled, but only when filaments were long enough (>10mm length). 

To test the assumption that each patch contains only individuals of a single Bangiales 

taxon, two or three samples were taken from individual patches that were larger than 

50mm2.  

 

Limitations of the sampling regimen  

Sampling through Mar, Apr and May 06 was restricted to Frank Kitts. This was not 

driven by scientific considerations, but rather by personal ones. This researcher was 

finding that the time to process the volume of samples and molecularly identify each, 

was becoming overwhelming, and balanced against increasing family commitments it 

was perceived as unsustainable. To reduce the processing load the decision was made to 

reduce sampling to one site for a period of 3 months. The site chosen, Frank Kitts 

lagoon, was considered the most promising in terms establishing relationships between 
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the three lineages present. The change in sampling regimen was discussed with this 

researcher’s supervisor, but not with a statistician, and unfortunately it was not 

appreciated that this change would seriously limit the statistical analysis possible. The 

effect on the statistical tests is discussed further in Chapter 3. 
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Table 2.1: Collection dates at the six study sites in the Wellington region, over the period Jul 04 to Jul 06. A “√” indicates a site was visited and 
f ilamentous Bangiales was present and sampled. A “0” indicates that a site was visited but no visible Bangiales was present. A “-” indicates 
that a site was not visited at that time. Columns with two months noted, e.g., Jul/Aug 04, indicate that data has been pooled, either for ease of 
presentation, or for the purposes of analysis.  
 

Site Lat Long Jul / Aug  
04 

Nov 
04 

Dec 04/ 
 Jan 05 

Mar / Apr 
05 

Jul / Aug  
05 

Oct 
05 

Nov 
05 

Dec 
05 

Jan 
06 

Feb 
06 

Mar 
06 

Apr 
06 

May 
06 

Jun / Jul 
06 

Frank Kitts 174.78 -41.2886 - √ - √ - √ - √ √ √ √ √ √ √ 
Freyberg 174.7908 -41.2902 - - √ - - √ 0 √ √ √ - - - √ 

Greta Point 174.8062 -41.3017 - - - √ √ √ √ √ - √ - - - √ 
Owhiro Bay 174.7575 -41.3452 - - √ - - √ √ √ - √ 0 - - 0 

Seatoun  174.8293 -41.3183 √ - - √ √ 0 - - - √ - - - - 
Lyall Bay 174.804 -41.3288 √ √ - - 0 0 - √ - 0 - - - 0 
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G enetic identification  

For genetic identification methods, an 880bp section of the SSU gene was chosen, covering 

the variable region V9 (Neefs et al.1993).  

 

DNA extraction and PCR amplif ication  

DNA was extracted by grinding samples with a 200µL solution of 5% Chelex® 100 sodium-

form (Bio-Rad Laboratories, Hercules, California) in ultrapure H20, boiling for 10 minutes, 

placing on ice, then centrifuging at 10,000g for 10 minutes and removing the supernatant to a 

new tube. The supernatant was stored at -20 C until required for PCR amplification.   

 

The following PCR mix was used: 1X PCR buffer (Biotherm™, Genecraft GmbH, 

Lüdinghausen, Germany), 250nM dNTP, 2.5mM MgCl2, 0.25% BSA, 5 pmoles of the 

primers J04 and G04(Saunders & Kraft 1997), which amplify an approximately 880bp 

section of the SSU gene, 1U of TaqDNA polymerase (Biotherm™) to a final volume of 

30µL. The PCR reactions were performed on a PTC100 Thermocycler (MJ Research) and 

had the following conditions: an initial denaturing step at 94 C for 4 mins, 35 cycles of 94 C 

for 30 secs, 50 C for 1 min, 72 C for 1 min, and a final extension of 72 C for 5 mins, 

samples were then held at 4 C. Successful amplification was checked by electrophoresing 

PCR products in a 1% LE agarose gel at 100V for one hour, staining with ethidium bromide, 

and photographing under UV light. 

 

Method 1: Restriction digest 

Restriction digests enabled the rapid assignment of samples to the lineage level, at low-cost. 

A restriction enzyme that cuts the four lineages in a distinctive manner was found, using the 
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freeware Webcutter program (NEB cutter v2.0, New England Biolabs® Inc., 

http://www.neb.com) and sequence data supplied by Judy Sutherland, University of Otago 

(Genbank Accession numbers: M. aenigmata - AY184347, BFK - AY184338, BMW - 

AY184344, BCP AY184336 and BGA AY184341), and the following two-stage digest 

protocol was developed (Fig 2.1).  

 

 

 

F ig 2.1. The restriction enzymes AvaI, HaeII and HinfI enabled each sample to be identified 

as one of the four lineages known to exist in the Wellington region, by a process of 

deduction. A single pair of scissors indicates a single cut by the enzyme, two pairs of scissors 

indicates two cuts, and an X indicates that the enzyme does not cut that lineage. 

 

The first stage involved using the restriction enzyme AvaI (New England Biolabs® Inc., 

USA) to digest all samples and categorise them into two groups depending on the results: 

AvaI cuts BFK and BMW at position 625/629 of the 876 bp long 18S rDNA fragment, but 

not M. aenigmata or BGA. The second stage required the use of the enzymes HaeII and 

HinfI (both New England Biolabs® Inc., USA) to finally assign a lineage to each sample. 

HaeII will distinguish BFK (cuts at 829/825) from BMW (uncut), and HinfI distinguishes 

BGA (cuts once at 293/296) from M aenigmata (cuts twice at 296/293 and 486).  

 

M. aenigmata 

http://www.neb.com/
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Samples were incubated with the restriction enzyme AvaI (5U) with 2µL of PCR product in a 

10µL reaction at 37°C for 6 hours, then the resultant pattern of DNA fragments was used to 

decide which digest (either HaeII or HinfI) to run next.  For HaeII digests 10U of enzyme 

were added to 5µL PCR product in a 10µL reaction, and for HinfI5U to 5µL PCR product in 

a 10µL reaction. Samples were incubated at 37°C for 6 hours. Digested samples were 

electrophoresed in 1.5% agarose at 120 volts, using 1 µL loading buffer (glucose and 

bromophenol blue) to 4 µL reaction product. Gels were electrophoresed for about one hour 

with a 100bp ladder to measure the size of the resultant DNA fragments. Gels were then 

stained in ethidium bromide for at least 10 minutes, then rinsed in water and photographed 

under UV light (Fig 2.2).  

 
F ig 2.2. A gel with nine samples of Bangiales reaction product after an Ava1 digest and in 
lane 1 a 100bp ladder to enable measurement of DNA fragment lengths. The results show 
that products in wells 1 and 6-9 were not cut by the Ava1 digest, whereas products in wells 
2-5 were cut. To identify the lineage of each product, further digests were run as follows: 
product 1 was digested with HinfI, and was cut once identifying it as Bangia sp. BGA; 
products 2 to 5 were digested with HaeII and did not cut, identifying them as Bangia sp. 
BMW; products 6 to 10 were digested with HinfI and were cut twice, identifying them as M. 
aenigmata (gel not shown). 
 

Method 2: Nucleotide sequencing  

An additional set of 85 samples was sequenced (Appendix A). The amplified products were 

cleaned using ExoSAP-IT (USB Corporation, Ohio, USA) following the manufacturer’s 

protocol. Sequencing was done at Macrogen Inc. (Soeul, Korea). Generated sequences were 
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compared with previous vouchered sequences. 

 

Phylogenetic analysis 

During this study, new sequences were discovered: C8, BRMg, and BHH1. Sequences of C8, 

BHH1 and BRMg were deposited in GenBank and herbarium specimens lodged with Te 

Papa Tongarewa, Museum of New Zealand. Details are as follows: C8 (sample 181), 

GenBank ID HM014311, WELT A023241; BHH1: GenBank ID HM014313, WELT 

A023240; and BRMg: GenBank ID HM014312, WELT A023242. 

 

For maximum-likelihood (ML) analysis the program Modeltest (version 3.7, Posada & 

Crandall 1998) was used to find the model of sequence evolution least rejected for the data 

set by a hierarchical likelihood ratio test (  = 0.01). When the sequence evolution model had 

been determined, a maximum-likelihood analysis was performed in PAUP* (Swofford 2002) 

using the estimated parameters (substitution model, gamma distribution, proportion of 

invariable sites, transition-transversion ratio) (10 random additions). 

 

Support for individual internal branches was determined by bootstrap analysis (Felsenstein 

1985), as implemented in PAUP*. For ML bootstrap analysis, 100 bootstrap data sets were 

generated from resampled data (1 random sequence addition per replicate).A full bootstrap 

analysis was not practicable due to the size of dataset. The bootstrap values in this analysis 

may under-estimate “true” topology of branches, due to the fast method used (Felsenstein 

1985).  
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Results 
 
Molecular identification  

This study found new sequences present in the Wellington region: C8, BHH1 and BRMg 

(Table 2.2). The most genetically distinct sequence was C81 (Appendix A: sample 181, Greta 

Point; GenBank ID HM014311; WELT A023241). Records of BHH1 (BHH1 - Appendix A: 

sample 169, from Owhiro Bay; GenBank ID HM014313; WELT A023240) and BRMg 

(Appendix A: sample 18, and 17 other samples; GenBank ID HM014312; WELT A023242) 

were also captured. This is the first record of these sequences.  

 

A summary of the full sample set for the study, and genetic identity of samples, is presented 

in Table 2.2. Bangia sp. C8 was recorded only once, from Greta Point, in spring 2005. 

Likewise, the BHH1 sequence was recorded only once in spring 2005, this time from Owhiro 

Bay. More detail on the frequency of genotypes is included in Chapter 3 Ecology. Individual 

patches were found to consist of filaments of the same lineage, as tested by taking two 

samples from the same patch on thirteen occasions over the course of the study.  

 

                                                
1 C8 refers to the position of the sample in the 96-well plate used for sequencing.  



 

  37 
 

Table 2.2: Summary of samples taken over the study period and their genetic identif ication. 

The total number of patches present at each site and the number actually sampled are 

included, where this information was recorded.  

 

Location 
Date 
collected 

No of patches 
present 

Patches 
sampled 

Samples 
taken Lineage(s) identified 

Frank Kitts   Nov 04 Not recorded 18 18 13 BGA, 3 BFK, 2 BRMg 
Mar 05 Not recorded 10 10 7 BFK, 3 BGA 
Oct 05 37 7 9 5 BFK, 3 BGA, 1 BRMg 
Dec 05 59 8 8 4 BFK, 4 BRMg 
Jan 06 31 4 6 4 BRMg, 2 BFK 
Feb 06 6 2 2 2 BFK 
Mar 06 16 4 6 6 BFK 
Apr 06 19 5 7 7 BFK 
May 06 4 3 3 3 BFK 
Jun 06 11 3 3 3 BFK  

Freyberg Dec 04 Not recorded 6 6 6 BFK 
Oct 05 68 9 12  10 BFK, 2 BGA 
Dec 05 9 1 1 1 BFK 
Jan 06 30 5 5 5 BFK 
Feb 06 25 3 4 4 BFK 
Jul 06 7 4 5 5 BFK  

Greta Point Mar 05 Not recorded 11 11 9 BFK, 1 BMW, 1 BGA 
Jul 05 Not recorded 4 4 4 BFK 
Oct 05 34 4 4 2 BFK, 2 BRMg 
Nov 05 Not recorded 1 1 1 C8 
Dec 05 25 4 4 3 BRMg, 1 BFK 
Feb 06 30 3 3 2 BRMg, BFK 
Jun 06 20 1 1 1 BFK  

Seatoun 
Boatshed 

Aug 04 Not recorded 4 4 Minerva aenigmata 
Apr 05 Not recorded 2 2 M. aenigmata 
Aug 05 Not recorded 1 1 M. aenigmata 
Feb 06 16 2 2 M. aenigmata 

Lyall Bay Jul 04 24 4 4 4 BMW 
Nov 04 Not recorded 2 2 2 BMW  
Dec 05 54 3 3 2 BMW, 1 BFK 

Owhiro Bay Dec 04 Not recorded 4 4 1 BMW, 3 M. aenigmata 
Jan 05 Not recorded 4 4 1 M. aenigmata 
Nov 05 35 1 1 1 BHH1 
Dec 05 9 2 2 2 BMW 
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Phylogenetic analysis 

The maximum-likelihood (ML) topology identifies Bangia sp. C8 as a distinct taxon, but its 

relationship with other clades is unresolved (Fig 2.3). The entity Bangia sp. BRMg groups 

strongly with the lineages Bangia sp. BRM and CH620 (95% bootstrap support). In the SSU 

sequence data only one base pair change was identified between Bangia sp. BRM and 

BRMg.  

 

The topology also shows entity Bangia sp. BHH1 grouping with Bangia sp. BJB and BHH, 

with some support (76%). The sequence data identifies five base pair changes between 

Bangia sp. BHH and BHH1. 
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F ig 2.3. Maximum-likelihood (ML) topology of Bangiales samples (plus other closely related 
taxa) based on SSU sequence data. Sequences recorded as part of this study (BHH1, BRMg 
and C8) are indicated with arrows. Numbers above branches represent ML bootstrap values 
under the fast bootstrap method.   

Fuscifolium papenfussii 

Bangia 6 (BNS) 
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Discussion 
 

Studies of marine cryptic species generally uncover more diversity than previously realised 

(Knowlton 1993), and in the Bangiales researchers have predicted that intensive regional 

collection will result in the recognition of new taxa or even genera (Sutherland et al. 2011). 

This study was no exception, with new and distinct genetic sequences identified in addition 

to the four taxa already known from the Wellington region. 

 

One new entity, Bangia sp. C8, has a genetic sequence that differs markedly from other 

filamentous bangialean entities. Globally, this is the first known record of this taxon. 

However, the relationship with other Bangia and Porphyra clades remains unresolved (Fig 

2.3). Further analysis, utilising more variable markers, would help to obtain better resolution 

of its phylogenetic position.  

 

To date taxonomic treatments of New Zealand Bangia entities separate each by at least four 

pairwise sequence differences (Broom et al. 2004). However, there is no precedent in the 

literature for distinguishing bangialean taxa on the basis of one or two pairwise sequence 

differences; additional genetic markers and biological data would be required to determine 

whether such differences are simply intraspecific variation, or whether they indicate distinct 

entities.  

 

In the present study new sequence, BHH1, resolves with Bangia sp. BHH and BJB in the 

phylogeny (Fig 2.3). BHH1 presumably falls within clade ‘Bangia’ 3, in the recent taxonomy 

proposed by Sutherland et al. (2011). On the basis that the SSU sequence data of BHH1 

differs from BHH by five base pairs, more than the four sequence differences which separate 
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other bangialean taxa (Broom et al. 2004), it could be argued that the record of BHH1 from 

this study presents another new taxon.  

 

Another new sequence, BRMg, was recorded which differs by only one base pair from the 

previously known bangialean entity: Bangia sp. BRM. A single base pair difference would 

suggest that this entity is not distinct enough to warrant separate taxonomic status; i.e. BRMg 

may be considered the same entity as Bangia sp. BRM. 

 

Historically, Bangia sp. BRM was recorded from elsewhere in New Zealand (Christchurch: 

GenBank Accession No. AY184346), but no records made in the Wellington region (Wendy 

Nelson pers. comm.). From the findings of this research, it is suggested that the known 

distribution of Bangia sp. BRM now include the Wellington region, on the basis that BRM 

and BRMg are the same species. 

 

The new Bangia entity proposed here, Bangia sp. C8, in addition to another possible new 

entity BHH1, and the range extension for Bangia sp. BRM; bring the known diversity of 

filamentous Bangiales in the Wellington region to a possible seven taxa: Bangia sp. BFK, 

BGA, BMW, BRM, BHH1, C8 and Minerva aenigmata.  

 

The findings of this study support high bangialean diversity in New Zealand. It has been 

suggested that high levels of bangialean diversity in New Zealand indicate that Porphyra and 

Bangia originated in the Southern Hemisphere (Broom et al. 2004); however, this may 

reflect the study efforts applied in this part of the world.  

 

Hommersand (2007) suggests a bipolar distribution for the Bangiales, and the recent generic 

revision by Sutherland et al. (2011) supports this, with clades indicating both Northern and 
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Southern hemisphere radiations. It seems likely that further study, and intensive sampling, of 

Bangia populations globally, will not only continue to reveal greater diversity, but also help 

to resolve relationships within this phylogenetically-complex group.  

 

The discovery of at least one new entity in this study may be surprising given the Bangiales 

research already conducted in this region (e.g., Nelson et al. 2005, Broom et al. 2004, 

Bödeker et al. 2008). However, Bangia sp. C8 was identified only once from a single 

sample, out of a total sample set of 167, suggesting that this genotype may be rare. Further 

sampling in the Wellington region would help to identify whether it is truly rare, or whether 

the results are an artifact of the survey methodology. This study confirms that intensive 

sampling and molecular identification are necessary in order to understand the diversity of 

Bangiales taxa in any given region, and supports the application of similarly intensive 

sampling methods for the study of other suites of cryptic species.  

 

Recommendations for future research methods 

The experience of this study was that rapid restriction digest methods should only be used as 

a means of identifying populations of cryptic species, when coupled with sufficient 

nucleotide sequencing of samples at the outset. The sampling design and restriction digest 

protocols for this study were based on the assumption that four filamentous Bangiales taxa 

were present in the region: Bangia sp. BGA, BFK, BMW and Minerva aenigmata (Bödeker 

2003, Wendy Nelson pers. comm.). The discovery that there are at least six taxa present 

reduced the data captured for each entity and constrained statistical analysis of temporal and 

spatial distribution. It also opens up the possibility that some samples in this study have been 

misidentified, since under the digest protocols used, Bangia sp. C8 and BHH1 cut in the 

same pattern predicted for Bangia sp. BGA. For future studies, it is recommended that a 

number of samples from all study sites be molecularly sequenced at the outset, to provide a 
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better indication of the taxa present. Ideally one or two samples from each structure at a site 

(i.e., each rock, wooden paling, concrete slab) should be sequenced, and where possible, this 

effort should be continued over each season to identify rare taxa and seasonal differences. 

This information can then be used to inform sampling design, as well as confirming a 

suitable restriction digest protocol for those on a low budget. 

 

It should be noted that the nucleotide section chosen for this research (an 880bp section of 

the SSU gene, covering the V9 region) may underestimate the diversity present as some 

specimens with identical V9 sequences have been shown to differ in other regions of the 

SSU gene (Jones et al. 2004). In the future, sequencing of other sections of the DNA of the 

filamentous Bangiales, such as the rbcL gene (Sutherland et al. 2011), would help to clarify 

phylogenetic relationships between these taxa. 
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Chapter 3. Ecology 
 
Introduction  
 
Culture studies suggest that filamentous Bangiales have different temperature and 

photoperiod adaptations, and that their distribution throughout New Zealand reflects these 

physiological adaptations (Bödeker et al. 2008). Reported distribution of Bangiales lineages 

in New Zealand also identifies tidal height and exposure to sand abrasion as important 

(Nelson et al. 2005). A number of filamentous Bangiales have been recorded from the 

Wellington region, and are reported as coexisting in some locations (Farr et al. 2001, Wendy 

Nelson pers. comm.). However, little is known about the small-scale distribution of 

Bangiales or which factors might enable coexistence at particular locations.  

 

Having established the genetic identity of filamentous Bangiales in the Wellington region 

(including a level of diversity higher than previously suspected) (Chapter 2), it is possible to 

use this information alongside the distribution data to examine possible environmental 

adaptations between lineages. The present study examined a number of environmental 

variables for effects on filamentous Bangiales in Wellington: 1) abundance over time 

irrespective of lineage, 2) seasonal differences in lineage richness, 3) seasonal abundance of 

individual lineages irrespective of site, 4) the effect of each site on the seasonal abundance of 

lineages, 5) effect of harbour or coastal conditions on seasonal abundance of lineages, 6) the 

use of substrate by each lineage, and 7) differences in vertical distribution of taxa in the 

inter-tidal zone. 
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Methods 

Study sites 

As described in Chapter 2, the intensive study period ran from Oct 05 to Jul 06, and six sites 

were surveyed over this time: two on the South coast (Owhiro Bay and Lyall Bay), one at the 

harbour entrance (Seatoun Boatshed) and three in the inner harbour (Freyberg Promontory, 

Greta Point and Frank Kitts lagoon) (Fig 3.1).  

 
F ig 3.1. Map of the Wellington region, showing the six study sites. Three locations are inside 
the harbour, one close to the harbour entrance, and two on the South Coast. 
 

All of the sites, except Owhiro Bay, are modified habitats (Table 3.1). Exposure varies 

among sites: from the relatively sheltered inner harbour sites of Frank Kitts lagoon, Freyberg 

Promontory and Greta Point; to the strong wave action, sand-scour, and intermittent 

sand/gravel burial experienced at the Seatoun, Owhiro Bay and Lyall Bay sites.  
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Table 3.1. Characteristics of the six study sites in the Wellington region. 
 
 Lat Long Description Exposure Modified 

habitat? 
Substrate Human 

influence 
Frank 
Kitts 

174.78 -41.2886 Artificial lagoon, 
inner harbour 

Enclosed / 
very 
sheltered 

Yes Rock, 
wood, iron 

Heavy foot 
traffic in 
parts 

Freyberg 174.7908 -41.2902 Concrete 
promontory with 
boulder rip-rap. 
Inner harbour 

Moderately 
sheltered 

Yes Rock, 
concrete 

Heavy foot 
traffic in 
parts 

Greta 
Point 

174.8062 -41.3017 Riprap Moderately 
sheltered 

Yes Rock Some foot 
traffic, 
fishing 
spot 

Seatoun 
Boatshed 

174.8293 -41.3183 Near harbour 
entrance, concrete 
boat-ramp, 
naturally 
occurring rock 
projecting from 
sand 

Moderately 
exposed  

Partially Rock, 
concrete 

Cars and 
trailers, 
some foot 
traffic 

Lyall Bay 174.804 -41.3288 Riprap boulders 
constructed on 
sandy beach 

Exposed  Yes Rock  Occasional 
foot traffic 

Owhiro 
Bay 

174.7575 -41.3452 Natural rock 
projecting from 
sand / gravel 

Exposed No Rock Occasional 
foot traffic 

 

 

Each of the six sites differs in its composition of inter-tidal flora and fauna. Frank Kitts 

lagoon shows the clearest example of upper inter-tidal zonation (see Fig 3.2) with the 

crustose black lichen Verrucaria maura, above the filamentous Bangiales zone, and green 

Ulva species below. At other sites, such as Greta Point, Littorina (periwinkles) and barnacles 

co-exist with filamentous Bangiales (see Fig 3.3). Limpets, bladed Bangiales and Mytilus sp. 

(blue mussels) also grow on the same structures at various sites. On occasion, filamentous 

Bangiales grow directly over barnacles and limpets, or interspersed amongst lichen or Ulva 

species, however most frequently Bangiales patches are surrounded by apparently bare rock 

(biofilms may well be present but were not discernible to the naked eye).  
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F ig 3.2. Frank Kitts lagoon: tracing of structure 12 and photo of structures 12, 13 and 14, 
showing lichen (a), f ilamentous Bangiales patches (b) and Ulva species (c). 
 

Sampling methods 

Transects or random sampling methods would not be effective when applied to taxa with 

such small, patchy populations; therefore, a single 5x5m2 quadrat was placed at each site. 

Expocrete™, a rapid-setting two-part concrete designed for marine environments, was used 

to mark site boundaries (Fig 3.3). Sites were surveyed at low tide, and all visible patches of 

Bangiales, and adjacent organisms, were traced onto A4 transparencies 21x29cm (609cm2) 

using a permanent marker (Fig 3.2). The exact location of each Bangiales patch within the 

5x5m2quadrat, and the nature of the substrate (rock, wood, iron or concrete), was recorded.  

 

Molecular identification and calculation of abundance 

Identity of individual patches was confirmed or inferred from genetic analysis, as described 

in Chapter 2 and Appendix B. Abundance of each taxa was calculated retrospectively once 

the results of the molecular analyses were known, using tracings from the field and the 

assistance of a 1cm2 grid. 

 
 
 

 
 

lichen 

Ulva 

 
(a) 
 
 
 
 
 (b)  
 
 
(c) 
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F ig 3.3. Use of Expocrete™, indicated by the white arrow, to mark the boundary of the 5x5m 
study area at each site. The example shown is the Greta Point site. A 30cm ruler is shown for 
scale. The brownish-red f ilamentous Bangiales patches on the right of the photograph were 
identif ied molecularly as Bangia sp. BF K . 
 

Climate data 

Data on climatic conditions during the intensive study period, Oct 05 to Dec06, including 

mean daily air temperatures, sunshine hours and daily rainfall, were sourced from New 

Zealand’s National Climate Database, administered by NIWA (Website: 

http//Cliflo.niwa.co.nz). Data are captured at monitoring stations in Wellington city, Kelburn 

and Wellington airport.  

 

F ie ld sampling limitations on statistical analysis 

As described in Chapter 2, in this study, a decision was made, for personal reasons, to reduce 

data collection in the period March to May 06 to one site only (Frank Kitts lagoon). This 

unfortunately constrained statistical analysis of these data. In the final statistical analyses 

each site was treated as one 5x5m2 quadrat, so the decision to narrow data collection to a 

single site for a period of a few months, meant that site-to-site comparisons could not be 
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made. Possible patterns were observed within the Frank Kitts site, such as apparent seasonal 

changes and substrate preferences of each lineage, but these observations could not be 

statistically tested due to the lack of other sites against which to compare the data. For future 

studies it is recommended that a statistician be consulted early in the design stage of the 

study, so that the sampling design takes into consideration the statistical tests that are likely 

to be applied after the data are collected. 

 

Tests for differences in distribution 

Two way Analysis of Variance (ANOVA) was used to test for differences in abundance of 

Bangiales, irrespective of lineage, over the four sampling periods and also to test for 

differences between the inner harbour (n = 3: Frank Kitts, Freyberg and Greta Point) and the 

south coast sites (n = 2: Lyall Bay, Owhiro Bay). The two factors in the model were: 

location (2 levels; south coast, harbour) and month (4 levels: Oct 05, Dec 05, Feb 06 and Jun 

06). An analysis of deviance was conducted to determine the statistical significance of 

including an interaction between location and time in the model. The interaction did not 

contribute significantly to the model (P = 0.631); therefore the interaction term was removed 

in order to concentrate on the main effects of time and location.  

 

A relaxed variance ANOVA was used to determine if lineage richness of Bangiales varied 

through time. Only months for which two or more sites were visited were included (data for 

Nov 05, Apr 06 and May 06 were excluded).  

 

For six lineages (Bangia sp. BFK, BGA, BRMg, BMW, C8 and BHH1), a relaxed variance 

ANOVA was conducted to determine if abundance varied through time (Minerva aenigmata 

was not included due to insufficient data). Only months for which two or more sites were 

visited were included (data for Nov 05, Apr 06 and May 06 were excluded).  
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For four sites (Freyberg Pool, Frank Kitts, Greta Point, Owhiro Bay), the association 

between Bangiales lineages (Bangia sp. BFK, BGA, BRMg, BMW, C8, BHH1 and  

M. aenigmata) and seasonality was quantified using a Euclidean dissimilarity matrix to 

examine differences in the abundance of Bangiales. Sites and/or seasons with similar 

Bangiales abundances are characterised by small Euclidean distances. For all four sites, data 

from Oct 05, Dec 05, Jan 06 and Jun 06 were included in the analysis. For three sites, 

additional sampling dates were also included as follows: for the Frank Kitts site data from 

Feb, Mar, Apr and May 06; for the Freyberg site data from Feb 06; and for Owhiro Bay data 

collected in Mar 06. From the resulting dissimilarity matrix, a Principle Component plot was 

constructed using the vegan package in R 2.10.1 (R Core Development Team 2009) to 

graphically display the relationships between lineages and seasonality.  

 

To determine the relationship between the abundance of each Bangiales lineage (Bangia sp. 

BFK, BGA, BRMg, BMW, C8, BHH1 and M. aenigmata) and site (Freyberg Pool, Frank 

Kitts, Greta Point, Lyall Bay, Owhiro Bay) for each of three sampling dates (Oct 05, Dec 05 

and Feb 06), the association between lineages and seasonality was quantified using a 

Euclidean dissimilarity matrix. Note that sufficient data was available for site comparisons in 

October, December and February, but the absence of many lineages from the five sites 

visited in June meant that there was insufficient data available for a relationship plot. From 

the resulting dissimilarity matrix, a Principle Component plot was constructed using the 

vegan package in R 2.10.1 to graphically display the relationships between lineages and 

seasonality. An Analysis of Similarity (ANOSIM) was then conducted to determine if south 

coast sites (Lyall Bay and Owhiro Bay) were more similar to one another than they were to 

harbour sites (Freyberg Pool, Frank Kitts and Greta Point). 

 



 

  51 
 

The use of substrate by each lineage was recorded during each site survey; however the data 

set did not contain sufficient replicates to enable a test for habitat use such as a Manly's 

Alpha calculation (Manly 1972, Chesson 1978), as most study sites contained only a single 

substrate: rock. 

 

Vertical distribution of taxa at Frank Kitts lagoon was measured using a spirit level and one 

metre rulers.  
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Results 
 
C limate data  

During the summer months of the study period (Dec 05 - Feb 06), mean daily air temperature 

ranged between 21.1 C and 21.3 C, and in winter between 12.1 C and 12.5  (Jun - Jul 06) 

(Fig 3.4a). Daily sunshine hours ranged between zero and 13.7 hrs in summer, and zero to 

9.1 hrs in winter (Fig 3.4b). In summer daily rainfall varied between zero and 25.4mm, and 

in winter between zero and 40.8mm. July was the wettest month with a daily mean of 

6.96mm, and November the driest month with 1.09mm the daily mean (Fig 3.4c). 

 

Compared to climate data from previous years, as held in the National Climate Database 

(http//Cliflo.niwa.co.nz), the intensive study period (Oct 05 to Jul 06) was characterised by a 

hotter, drier spring than usual, followed by a hot and sunny summer, average autumn and a 

wet but sunny winter. (NIWA 2005-06 Climate Summary www.niwa.co.nz). 

 

Sea surface temperature data were not recorded during this study, however the Greater 

Wellington Regional Council holds data from two years later (Oct 07 – Jul 08), for four of 

the study sites: Freyberg beach, Seatoun beach at the wharf, Owhiro Bay and Lyall Bay (Fig 

3.5). During the period Oct 07 – Jul 08, sea-surface temperatures at all four sites peaked in 

Jan 08: Freyberg 21.5 C, Seatoun 20.5 C, Owhiro Bay 18.6 C and Lyall Bay 19.6 C; whilst 

the lowest temperature at each site was recorded in May: Freyberg 10.6 C, Seatoun 10.4 C, 

Owhiro Bay 10.7 C and Lyall Bay 10.4 C. These data give some indication of the range and 

pattern of sea surface temperatures over the study period (Oct 05 – Jul 06), although it 

should be noted that compared to other years the 07/08 summer experienced more sunlight 

hours, and that May 08 was colder than the same month in previous years (NIWA 2007-08 

Climate Summary www.niwa.co.nz). 

 

http://www.niwa.co.nz/
http://www.niwa.co.nz/
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a)   

 

b)  

 

c) 

 

F ig 3.4. Mean daily air temperatures, sunshine hours and daily rainfall, as recorded by 
monitoring stations in Wellington city, Kelburn and Wellington airport respectively, over the 
intensive study period, Oct 05 to Dec 06. Source for data: New Zealand’s National Climate 
Database, administered by NIWA. Website: http//Clif lo.niwa.co.nz.  
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F ig 3.5. Spot near-surface sea temperatures taken at four of the study sites over the period 
Oct 07 – Jul 08. Note that these data were recorded two years after the study period, as data 
was not collected by the council until this time. Source: Greater Wellington Regional 
Council data collected as part of the bathing water quality monitoring programme.  Note 
that the 07/08 period was characterised by a cold October, warm summer with higher-than-
average sunshine hours for Wellington, and a colder-than-average May. Source: NIWA 2007 
- 8 Climate Summary www.niwa.co.nz. 

 
 

Abundance of Bangiales over time (ir respective of lineage)  

ANOVA analysis showed that abundance of Bangiales (irrespective of lineage) did not vary 

significantly over the four sampling periods of the study (Fig 3.6: F3,135 = 0.826, P = 0.482); 

although there was a marginally significant difference in abundance between sites on the 

south coast and those in the harbour (Fig 3.6: F1, 138 = 2.989, P = 0.086). On average, 

abundance was 18.34 times greater at the harbour sites relative to the south coast sites (Fig 

3.6). 
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F ig 3.6. Average abundance of Bangiales (irrespective of lineage) at inner harbour sites 
(n=3: Frank Kitts, Freyberg and Greta Point) compared to South coast sites (n=2: Lyall 
Bay, Owhiro Bay), between Oct 05 and Jun 06. All f ive sites were visited in the months 
indicated. 
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Lineage richness (number of lineages) of Bangiales through time 
 
Filamentous Bangiales populations were present year-round in the Wellington region (Table 

3.2). Some lineages, e.g., Bangia sp. BGA and BRMg, were recorded only in the warmer 

months (Table 3.2), while others were present year-round (i.e., Bangia sp. BFK, BMW and 

M. aenigmata). Bangia sp. C8 and BHH1, were both recorded only once, in spring.  

 

Table 3.2. Presence of f ilamentous Bangiales in the Wellington region pooled from all study 
sites (Frank Kitts, Freyberg, Greta Point, Seatoun boatshed, Lyall Bay and Owhiro Bay) 
during the period Jul 04 – Jul 06. Note that there is sampling bias, with reduced number of 
surveys during winter, as indicated in Chapter 2, Table 2.1. 
 
 Spring Summer Autumn Winter 
 Sept Oct Nov Dec Jan Feb Mar April May June July Aug 
BFK  •  • • • • • • • •  

BRMg  •  • • •       

BGA  • • • •        

BMW  • • •  •     • • 
M. aenigmata     • •  •    • 
BHH1   •          
C8   •          
 

During the intensive study period, Oct 05 to Jun 06, lineage richness was greatest between 

October and January (Fig 3.7); although richness did not vary significantly through time (F5,5 

= 2.577, P = 0.160). 
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F ig 3.7. Average lineage richness of Bangiales in the Wellington region for six sampling 
periods between Oct 05 and Jun 06. Only months for which two or more sites were visited 
were included. Six sites were visited in October and February (n=6: Frank Kitts, Freyberg, 
Greta Point, Seatoun, Lyall Bay, Owhiro Bay). Seatoun was not visited in December or June 
(n=5 for both months). January data is from Frank Kitts and Freyberg (n=2), March data 
from Frank Kitts and Owhiro Bay (n=2).   
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Lineage richness (number of lineages) of Bangiales at each site 
 

Not all filamentous Bangiales lineages were found at each site (Table 3-3). Greta Point had 

the greatest number of lineages (5), followed by Frank Kitts and Owhiro Bay (both 3), 

Freyberg and Lyall Bay (both 2) and Seatoun Boatshed (1). 

 

Bangia sp. BRMg, BGA and C8 were only found in the inner harbour. BHH1 was only 

found on the south coast. Bangia sp. BFK and BMW were recorded from inner harbour and 

south coast sites. M. aenigmata was recorded from the harbour entrance and the south coast. 

 
Table 3.3. Presence of f ilamentous Bangiales at each study site in the Wellington region 

during the period Jul 04 – Jul 06. 

 
 Inner harbour sites Harbour 

entrance 
South coast sites 

 Frank 
Kitts 

Freyberg Greta 
Point 

Seatoun 
Boatshed 

Lyall Bay Owhiro 
Bay 

BFK • • •  •  

BRMg •  •    

BGA • • •    

BMW   •  • • 
M. aenigmata    •  • 
BHH1      • 
C8   •    
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Abundance of individual Bangiales lineages over time 
 

The abundance of Bangia sp. BFK had bimodal peaks in Jan 06 and Jun 06 (Fig 3.8a), but 

abundance did not vary significantly through time (F5,18 = 2.182, P = 0.108). Bangia sp. 

BGA also showed a bimodal distribution with peaks in Oct 05 and Jan 06 (Fig. 3.8b), but 

again changes in abundance through time were not statistically significant (F5,18 = 1.509, P = 

0.236). Bangia sp. BMW and BRMg both showed a unimodal distribution over time, with 

peaks in Oct 05and Dec 05, respectively (Fig. 3.8d and c). These changes in abundance were 

also not statistically significant (BMW: F5,18 = 0.484, P = 0.784; BRMg:F5,18 = 0.636, P = 

0.675). Bangia sp. C8 and BHH1 were both only recorded in October 2005 (Fig 3.8e and f), 

so changes in abundance could not be statistically tested. 
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a) 

 

b) 

 
c) 
 

 

d) 

 
e) 
 

 

f) 

 
 
F ig 3.8. Mean abundance of six lineages of f ilamentous Bangiales in the Wellington region 
for six sampling periods between Oct 05 and Jun 06. Only months for which two or more 
sites were visited were included. F ive sites were visited in October, December, February and 
June (n=5: Frank Kitts, Freyberg, Greta Point, Lyall Bay, Owhiro Bay). January data is 
from Frank Kitts and Freyberg (n=2), March data from Frank Kitts and Owhiro Bay (n=2).   
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Site-specific effects on seasonal abundance of individual Bangiales lineages  
 

The seasonality of individual Bangiales lineages varied substantially between sites. At the 

Freyberg site, the entity Bangia sp. BFK revealed strong seasonality, with a strong presence 

in January, and a weak relationship with the other sampling dates (Fig 3.9a). The largest two 

patches of filamentous Bangiales recorded for any site during the study period, were those of 

Bangia sp. BFK at Freyberg in January: with patch sizes of 2500cm2 and 900cm2 

respectively. There was no strong seasonal component to the abundance of any of the other 

lineages (as indicated by the clustering of the other lineages about 0). The separation of 

Bangia sp. BFK from the other lineages on PC1 results from its abundance being orders of 

magnitude greater than the other lineages.  

 

At the Franks Kitts site, Bangia sp. BFK was most strongly related with the autumn and 

winter months compared with other sampling dates (Fig 3.9b), indicating higher abundance 

during these seasons. The only other seasonal pattern at Frank Kitts was the strong 

relationship of Bangia sp. BGA with Oct 05. 

 

At Greta Point, the entity BRMg strongly related with Dec 05 and weakly with other 

sampling dates (Fig 3.9c), indicating a strong seasonal component in the abundance of 

BRMg. The data show that it was also the only lineage recorded during that month. Bangia 

sp. BFK was also distinct at this site, and strongly related with Feb and Jun 06. There were 

no strong seasonal components to the abundances of the other lineages. 

 

At Owhiro Bay, two lineages, Bangia sp. BMW and M. aenigmata, showed a seasonal 

component to their abundance (Fig 3.9d), peaking in Oct 05.  
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a) 
 

 

b) 

 
c) 

 

d) 
 
 

 
 
F ig 3.9. PCA plots of the relationship between season and the abundance of f ilamentous 
Bangiales lineages at four sites in the Wellington region over the period Oct 05 to Jun 06. 
Freyberg was surveyed in Oct, Dec, Jan, Feb and Jun; Frank Kitts in Oct, Dec and then 
every month till Jun; Greta Point in Oct, Dec, Jan and Feb; Owhiro Bay in Oct, Dec, Feb, 
Mar and Jun. Note: the data-point BTS refers to M. aenigmata.
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Effect of harbour or coastal conditions on seasonal abundance of individual Bangiales 
lineages  
  

For the month of Oct 05, Freyberg was strongly related with Bangia sp. BFK (Fig 3.10a). 

Greta Point, an inner harbour site, was strongly separated from the other sites, and Franks 

Kitts, Lyall Bay and Owhiro Bay formed a loose group (Fig 3.10a); consequently, results of 

the ANOSIM indicated that the Bangiales flora of the south coast sites were not more similar 

to one another than they were to the harbour sites (R = 0.167, P = 0.302). 

  
For the month of Dec 05, Greta Point strongly related with entity BRMg (Fig 3.10b). Frank 

Kitts and Freyberg grouped together, and Owhiro Bay and Lyall Bay also formed a loose 

group (Fig 3.10b). However, results from the ANOSIM show that the Bangiales flora of the 

south coast sites were not more similar to one another than they were to the harbour sites (R 

= 0.167, P = 0.286). 

  
For the month of Feb 06, there was no strong site to lineage relationship (Fig 3.10c). Lyall 

Bay and Owhiro Bay grouped closely together, but there were not any relationships between 

any of the other sites. Results from the ANOSIM show that the Bangiales flora of the south 

coast sites were not more similar to one another than they were to the harbour sites (R = 0.25, 

P = 0.168). 
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a) 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

F ig 3.10 (this page and the following). PCA plots of the relationship between site and the 
abundance of Bangiales lineages and three sampling dates in the Wellington region. All six 
sites (Freyberg, Frank Kitts, Greta Point, Seatoun, Lyall Bay, Ohwiro Bay) were surveyed in 
Oct 05 and Feb 06. F ive sites were surveyed in February: all except Seatoun. Note: the data-
point BTS refers to M. aenigmata.
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c) 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

F ig 3.10 continued. 

 



 

 66 

Use of subst rate by individual Bangiales lineages 
 

Filamentous Bangiales lineages in the Wellington region were found on five different substrate 

types (Table 3.4). All lineages were recorded from rocky substrate. Only two (Bangia sp. BFK 

and M. aenigmata) were recorded on concrete, two on wood (Bangia sp. BFK and BGA), one on 

iron (Bangia sp. BGA) and one growing on a limpet’s shell (M. aenigmata). Bangia sp. BFK, 

BGA and M. aenigmata were recorded from more substrates than the other lineages: each found 

on three different substrate types. 

 

Table 3.4. Substrate types associated with f ilamentous Bangiales lineages in the Wellington 
region. 
 
 Iron 

palings 
Wooden 
palings 

Concrete Rock Limpet 
shell 

BFK  • • •  
BRMg    •  
BGA • •  •  
BMW    •  
M. aenigmata   • • • 
BHH1    •  
C8    •  

 

Quantification of habitat use relative to habitat availability, e.g., through a Manly’s Alpha 

calculation (Manly 1972, Chesson 1978), was not possible due to the low number of replicates in 

the data set. As there were only two sites that contained both multiple substrates and lineages 

(Frank Kitts and Freyberg), the sample size was too low to conduct a meaningful test. 

 

Anecdotally however, survey results may indicate possible relationships between lineages and 

substrates. Over the nine-month survey period at Frank Kitts lagoon Bangia sp. BFK was 

recorded exclusively from wooden palings, despite the apparent availability of three other 
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substrates (rock, iron and concrete), whereas Bangia sp. BRMg at the same site was found 

exclusively on rock. None of the three lineages recorded from the Frank Kitts site (BFK, BRMg 

and BGA) established on the smooth concrete steps. In contrast, the rough-textured concrete 

slabs of the Freyberg site provided a substrate for the largest discrete patch of filamentous 

Bangiales recorded during this study: a single patch measuring 2500cm2 identified as Bangia sp. 

BFK.  

 
 
Differences in vertical dist ribution of Bangiales lineages in the inter-tidal zone 
 

At Frank Kitts lagoon and Freyberg in Nov 05 populations of Bangia sp. BFK and BRMg grew 

within a vertical range of 0.5m. At Frank Kitts, Bangia sp. BFK was recorded on wooden 

palings, growing in a narrow 0.2m vertical range, with a mean tidal height of 1m (Fig 3.11), 

while BRMg grew on rocks below the palings within a vertical range of 0.3m with a mean tidal 

height of 0.72m (Fig 3.11). At the Freyberg promontory site, Bangia sp. BFK was recorded 

growing within a greater vertical range than the population at Frank Kitts lagoon (0.5 m at 

Freyberg compared to 0.2 at Frank Kitts), with a mean height of 0.87m (Fig 3.11).  
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F ig 3.11. Mean tidal height of Bangia patches at Frank Kitts lagoon as recorded in Nov 05, with 
error bars showing + /- standard error of the mean height. The vertical mid-point of patches 
within each 5x5m2 study site (BF K and BRMg) was recorded (n=6 for each lineage/site 
combination). 
 
 
Small-scale patch dynamics of filamentous Bangiales lineages 
 

Patches of filamentous Bangiales were found, through repeated molecular identification of 

multiple samples, to consist of individual plants of the same lineage. Patches were highly 

ephemeral, with populations present on one sampling date usually absent from the same structure 

(i.e., an individual rock, wooden paling or section of concrete slab) on the following sampling 

date, one month later. 

 

When Bangia was present on the same structure in consecutive sampling dates, it tended to be 

the same entity: 19 times out of 23 (Appendix B). For example, Bangia sp. BFK was identified 

from wooden paling 13 at Freyberg in Oct and Dec 05 and then every month through to Jun 06 

(Appendix B).  
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Occasionally another lineage had replaced the other when the structure was sampled the 

following month, e.g., at Greta Point Bangia sp. C8 was identified on rock 1A in Nov 05 and had 

been replaced by entity BRMg in Dec 05 (Appendix B). 
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Discussion 
 

For the Bangiales, research has suggested that important factors determining distribution and 

stable co-existence are temperature and photoperiod (Bödeker et al. 2008); and tidal height and 

exposure to sand abrasion (Nelson et al. 2005).This study found a marginally significant 

difference in abundance of filamentous Bangiales between the exposed South coast compared to 

the inner harbour, suggesting that sand scour and wave action may be factors limiting 

abundance. Abundance of filamentous Bangiales, whether that of individual lineages or 

collectively, was not shown to differ significantly over time in the Wellington region; however, 

the data do suggest relationships between lineages and sites in some seasons, indicating possible 

seasonal patterns for some lineages. Stochastic events and site-specific conditions also appear to 

influence the abundance of individual lineages over time at each site. The distribution of the 

conchocelis phase of filamentous Bangiales in Wellington may also influence distribution of the 

gametophyte generation, and would make for an interesting future study. 

 

Bangiales populations were found to be highly ephemeral, with gametophytes generally 

persisting a matter of weeks. The abundance of populations at the study sites varied greatly over 

the study period: ranging from zero (at all sites except Frank Kitts and Greta Point which 

recorded continuous populations) up to 3472cm2 for the Freyberg site. The largest individual 

patch recorded was Bangia sp. BFK: 2500cm2, suggesting that intra-specific competition may 

not be a limiting factor. On several occasions one Bangiales lineage would replace another on 

the same rock, and two lineages were recorded from the same rock on more than one occasion 

(Appendix B) indicating that they are in close proximity at times, both temporally and spatially, 

and, if suitable substrate is a limiting factor, it could be that a level of inter-specific competition 

may be occurring. However, at most sites filamentous Bangiales are surrounded by bare rock, 
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suggesting that inter-specific competition is not a key factor determining their distribution. 

Desiccation, wave action and herbivory may limit these populations more than intra- or inter-

specific competition. 

 

Proximity to the conchocelis phase may also be an important determinant of distribution and 

seasonal abundance of filamentous Bangiales taxa. Little is known about the conchocelis phase 

of these taxa, but it could speculated that it is perennial and also growing in very close proximity 

(or in fact directly in the same location) as the filamentous stage. A future study which maps 

conchocelis as well as gametophyte distribution could reveal important information about the 

relationship between the distributions of the two life stages, and determine whether proximity to 

conchocelis is a factor which may explain the consistent re-appearance of the ephemeral 

filamentous stage in similar locations over time. The filamentous stage can also reproduce 

asexually (Dixon & Richardson 1970, Conway & Cole 1977, Nelson et al. 1999, Bödeker et al. 

2008), so is not exclusively dependant on the conchocelis for persistence, but the availability of 

conchospores may nevertheless be an important factor in explaining temporal and spatial 

distribution. 

 

The benefit of the survey technique, using Expocrete permanent markers and detailed tracings, 

enabled observations of small-scale patch distribution over time: these observations revealed that 

between one month’s survey and the next, previously recorded patches were often no longer 

visible and “new” patches had established in close proximity, often without overlapping where 

the previous patches had been. Filaments cut due to grazing pressure or wave action, could be 

invisible to the naked eye; but could then potentially regrow from the remaining cells, through 

intercalary cell divisions (Coomans & Hommersand 1990). Growth rates in culture of most 

lineages have been shown to be in the order of less than 1mm / month (Bödeker 2003), so it 



 

 72 

would take some months before patches were visible again; the exception is the fast-growing 

Bangia sp. BMW which is discussed later.  

 

In some cases “new” patches may actually be regrowth, but they may also be newly established 

filaments generated either from a conchospore released from the sporophyte phase, or from a 

neutral or asexual spore generated directly from another gametophyte filament (Dixon & 

Richardson 1970, Conway & Cole 1977, Nelson et al. 1999, Bödeker et al. 2008). In culture 

investigations, lineages vary in the time recorded to complete an entire life cycle, e.g., 8 weeks 

for M. aenigmata and 16 weeks for Bangia sp. BFK (Bödeker 2003). Presumably regrowth or 

asexual reproduction from the gametophyte would provide a more rapid means of patch 

establishment.  

 

All of the methods of regeneration mentioned above may be occurring in populations in 

Wellington, but it is not known which is the predominant means. Environmental triggers, 

temperature and photoperiod, are known to trigger changes in the life cycle (Sommerfeld & 

Nichols 1973; Waaland et al. 1987), and in the present study a pollution event may have 

triggered a decline followed by an unusual surge in abundance at one site (discussed later). 

Microscopic examination of filaments from the field could have provided information about the 

reproductive state of populations, however this was not conducted as part of this study. 

 

The exception to this pattern of dynamic small-scale distribution, was the apparent persistence 

for at least nine months (Oct 05 to Jun 06) of Bangia sp. BFK patches on wooden palings at 

Frank Kitts lagoon. This persistence of sizable patches (greater than 10cm2) in the exact same 

location over time, was rarely seen for other lineages at any site, or for Bangia sp. BFK 

populations existing on other substrates such as rock. Algae are a food source for many marine 
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species (Levinton 2009, Karleskint et al. 2009, Duarte & Cebrian 1996), and grazers, such as 

limpets, may be less abundant on the vertical wooden palings than on the rocks nearby: where, in 

contrast, small-scale distribution of entities BRMg and BGA changed frequently, possibly as a 

result of herbivory. As the study sites were surveyed at low tide there was little opportunity for 

observation of marine herbivores, but herbivory was observed in the form of sparrows: seen at 

Frank Kitts lagoon with Bangiales filaments in their beaks. Herbivore-exclusion experiments 

would reveal more about the influence of herbivory on filamentous Bangiales distribution.  

 

Another factor in the stable distribution of Bangia sp. BFK at Frank Kitts may be the sheltered, 

shaded environment of the site: reduced wave action and lower UV exposure may enable 

longevity of this taxon. The wood substrate here is weathered, and appears to retain moisture 

after the tide has withdrawn, protecting filaments from desiccation; further, the texture of the 

wood may provide ample catchment for Bangiales spores, facilitating constant regeneration of 

the population. Although not measured and subjected to statistical tests, field observation 

indicated that Bangia sp. BFK filaments may grow to a greater length on these palings than 

populations at other sites. The persistence over time of Bangia sp. BFK on the Frank Kitts 

palings supports the suggestion that it is an introduced species (as proposed by Broom et al. 

2004), as the gametophyte may be able to survive the journey to New Zealand on slow-moving 

wooden vessels such as sea barges. This lineage is known to tolerate high temperatures, and so 

could survive the journey across the equator (Bödeker et al. 2008); and phylogenetic analyses 

reveal Bangia sp. BFK is most closely related to northern hemisphere and Australian Bangiales 

entities, indicating it may be a recent arrival to New Zealand (Broom et al. 2004). 

 

Red algae have been shown experimentally to survive sand-burial in some cases, but they also 

rely on crustose or microscopic forms for regeneration (Anderson et al. 2008). The effects of 
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sand abrasion and wave action may explain why the overall abundance of filamentous Bangiales 

was found to be, on average, 18.34 times greater in the inner harbour compared to the South 

coast; and the size of patches was observed to be generally much smaller on the South Coast. 

Wellington’s South coast experiences greater wave action and changing sand levels than the 

inner harbour, for example, site markers at Lyall Bay (Wellington’s most popular surf beach) 

disappeared repeatedly, most likely due to sand burial, sand scour, or possibly movement of the 

boulders which had been marked.  At Owhiro Bay, a storm on the 2nd of March 2006 caused the 

sand level within the study site to drop by over a metre; and the population of Bangia sp. BMW 

which had been present in February had gone, also possibly due to sand scour.  

 

Five entities were recorded in the inner harbour (Bangia sp. BGA, BFK and BRMg, with single 

records of BMW and C8), while the South coast has only four (Bangia sp. BMW, M. aenigmata, 

and single records of Bangia sp. BFK and BHH1). Bangia sp. BRMg, BGA and C8 and were 

found exclusively in the inner harbour, one (Bangia sp. BHH1) was found only at a South coast 

site, two (Bangia sp. BMW and BFK) were collected from both inner harbour and South coast 

sites, and one (Minerva aenigmata) was found at a South coast site as well as in the harbour 

entrance. The differences in abundance between inner harbour and South coast, and the 

distribution of individual lineages in the Wellington region, support suggestions that exposure to 

sand abrasion is a factor determining distribution of filamentous Bangiales (Nelson et al. 2005).  

 

The only lineage that was found to persist through all seasons on the South coast was Bangia sp. 

BMW. Bangia sp. BMW was recorded in spring, summer and winter at Lyall Bay and Owhiro 

Bay, with one inner harbour presence recorded at Greta Point in autumn. The only other lineages 

recorded on the south coast were M. aenigmata in summer, and one instance of Bangia sp. 

BHH1 in spring, and one of Bangia sp. BFK in summer. Bangia sp. BMW’s ability to persist on 
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the exposed south coast even through the winter months, suggests some unique adaptation to this 

environment; perhaps its ability to grow significantly faster than other lineages, up to 204 m per 

day compared to 7 - 30 m per day for Bangia sp. BFK, BGA and M. aenigmata (Bödeker 2003, 

Table 1.1), is an adaptation to sand-scour. It is not known how quickly Bangia sp. BMW regrew 

after the storm in March 2006, as unfortunately the site was not visited again until July of that 

year.  

 

Distribution records and culture studies suggest that Bangia sp. BMW is a cold-adapted lineage, 

with greatest growth under culture conditions of 12°C, which in the field is the spring sea-

surface temperature on Wellington’s South coast (Fig 3.5), and 100% mortality after 10 days at 

20°C (Bödeker 2003, Table 1.1, Fig 1.2). Sea temperatures in Wellington’s inner harbour and 

even the harbour entrance can climb over 20°C in mid-summer (Fig 3.5), and in Owhiro Bay and 

Lyall Bay fall just short of 20°C (2008 data record temperature peaks of 18.6 C and 19.6 C, 

respectively, Fig 3.5), suggesting that Wellington may be close to the northern limit of Bangia 

sp. BMW’s distribution within New Zealand, as it would be likely to experience high mortality 

at these temperatures. 

 

Although no statistically significant seasonal differences were found for individual lineages, this 

study only recorded the presence of Bangia sp. BGA, BHH1, C8 and BRMg in the warmer 

months (Table 3.2), suggesting they may be adapted to warmer environmental conditions, while 

others (Bangia sp. BFK, BMW and M. aenigmata) were present year-round, suggesting a more 

generalist or cooler adaptation. Although not conclusive, field data from the present study, 

compared with the experimental findings of Bödeker et al. (2008), suggests that both datasets 

support a generalist-adaptation for Bangia sp. BFK and M. aenigmata (Table 3.2 and 1.1). One 

of the strongest site to lineage relationships revealed by this study was that of entity BRMg at 
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Greta Point in December, supporting suggestions that it is warm-adapted. It should be noted that 

Bangia sp. C8 and BHH1 appear to be rare lineages, each only recorded once, in Oct 05, so any 

conclusions about seasonality are only speculative. 

 

For some lineages, the data suggests different patterns of abundance over time at each site, which 

may reflect site-specific local conditions and stochastic events. For example, at Frank Kitts, 

Bangia sp. BFK was most strongly related with the autumn and winter months (Fig 3.9b), 

indicating higher abundance during these seasons; however at the Freyberg site, Bangia sp. BFK 

showed a strong relationship with Jan 06 (Fig 3.9a), and at Greta Point it showed bimodal 

seasonal surges in both February and June. Influencing factors at each site may be the substrate 

available at Frank Kitts (wooden palings), perhaps enabling greater persistence through winter, 

and the possible influence of a pollution event at Freyberg. Both these factors are discussed 

below. 

 

If Wellington has four warm-adapted lineages as well as several generalist lineages, as 

suggested, then lineage richness would be expected to be greater over the warmer months. This 

study found that although lineage richness in the Wellington region was greatest in the warmer 

months: between October and January, there was no statistically significant seasonal variation in 

lineage richness. More data may help to determine patterns of richness over time. In the present 

study there was also a high degree of variability in the data-set: some sites, such as Frank Kitts 

and Greta Point, recorded as many as three taxa each in spring and dropped to one in winter; 

however other sites, such as Freyberg and Owhiro Bay, dropped to one lineage each in early 

summer and again in late summer. Further research would also help to identify any lineages 

potentially missed due to the sampling and identification methodology: e.g., there may be more 

rare lineages, such as Bangia sp. C8 and BHH1. It seems likely that there are further 
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undiscovered lineages present in Wellington, given the number of new entities uncovered by the 

present study. 

 

The lack of statistical significance in the analysis of seasonal patterns may be due partly to the 

small number of study sites, but also to the large natural variance in the abundance of lineages 

between and within sites. Data was also constrained to comparison of abundance for the four 

months (Oct, Dec, Feb and Jun) which had the greatest data-set (5 sites); meaning that some data 

such as the extreme peak of Bangia sp. BFK abundance in January were not included in the 

statistical analyses.  

 

In some cases observed variations in abundance may have been caused by stochastic events, such 

as storms, unusually hot dry weather, or even pollution events, all of which may mask 

underlying seasonal patterns. For example, a pollution event at Freyberg promontory may have 

stressed the Bangia sp. BFK population within the study area, leaving only a mass of white 

(presumably dead) filaments observed in Nov 05. Such an event could have been triggered by 

the unusually hot dry weather that characterised the spring of 05 (Fig 3.4, 

http://cliflo.niwa.co.nz), as Bangia sp. BFK is known to release spores most readily at 

temperatures of 15°C and greater (Bödeker et al. 2008), and the Freyberg site may experience 

more sunlight than other sites as it is the most northerly exposed; however, this whiteness of all 

filaments was not observed at any other time over the study period, even through a hot summer, 

which suggests that possibly the mass shock to the population was a result of human activity, 

i.e., release of chlorinated water from maintenance activities, or detergent or oil from boat traffic. 

Nearby Freyberg pool underwent its 5 year maintenance programme around this time, but 

according to the council management, the chlorinated water is discharged into the wastewater 

system, not directly into the harbour so would not be the cause in this case (Cordwell pers. 

http://cliflo.niwa.co.nz/
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comm., Wellington City Council). Boat ramps close to the site are known to be cleaned with 

chlorine on occasion, which may provide an explanation. 

 

Previous research has found that under conditions of stress, Bangia spp. produce asexual 

spores(Cole & Conway 1980), and it is possible that the white appearance of Bangia sp. BFK in 

November resulted from a mass reproductive event in which all filaments expelled their cell 

contents as spores (Bödeker pers. comm.). Unfortunately the white filaments were not examined 

under the microscope, which might have revealed whether spore release had occurred. Two 

months later, an unusually high spike of Bangia sp. BFK abundance was recorded at Freyberg; 

the two events may or may not be related. In culture experiments Bangia sp. BFK takes 16 

weeks to complete its full life cycle (Bödeker 2003), so it is perhaps too soon for large patches in 

January to have been the result of sexual reproduction in November. Even asexual reproduction 

directly from the filaments would take several months before the filaments would be visible, 

assuming a growth rate of less than 1mm per month as indicated by culture experiments 

(Bödeker 2003).  

 

Substrate may be a limiting factor for some taxa, while for others, such as Bangia sp. BFK, it 

may explain high abundance or continuous persistence at particular sites. All lineages were 

found on rocky substrate, but only two were recorded on concrete and two on wood, and one on 

iron. Bangia sp. BFK and BGA most found to be most versatile: recorded from three different 

substrate types. The high abundance of Bangia sp. BFK on both concrete and wood, supports 

suggestions that it may be an invasive species (Broom et al. 2004). 

 

Quantifying habitat preference was made difficult by the fact that of the six study sites, three 

only have rock substrate, hence only one habitat available for use. The dataset is also constrained 
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by the fact that most entities only occur on one or two sites, making it difficult to calculate 

means for the Manly’s alpha value for habitat preference across the locations. For future research 

into habitat preference in the filamentous Bangiales, it is recommended that researchers identify 

three or four sites at which the same Bangiales entities are present, and which provide a mix of 

the same habitat types. 

 

Texture of concrete may be important, for example, none of the three taxa at Frank Kitts 

established on concrete, compared to abundant Bangia sp. BFK on textured concrete at Freyberg. 

At Frank Kitts Bangia sp. BFK was only found on wooden palings, but not on rock, whereas at 

Freyberg it was found on both substrates. It is possible that the presence of Bangia sp. BGA and 

BRMg on the limited rocky substrates available precludes establishment of Bangia sp. BFK but 

this would not explain winter patterns when Bangia sp. BGA and BRMg are absent. 

 

It is possible that more sampling would find that Bangia sp. BFK is also present on rock at Frank 

Kitts, and that its apparent success on highly textured surfaces (Freyberg’s concrete Fig 3.10a, 

and Frank Kitts wooden palings Fig 3.9b) explain more about its distribution than vertical (tidal) 

height (Fig 3.11) or season, in the Wellington region.  

 
This study did not reveal statistically significant seasonal patterns of abundance in Wellington. 

However, the findings indicate that exposure is an important factor influencing abundance and 

distribution of filamentous Bangiales, supporting suggestions of other researchers (Nelson et al. 

2005). Stochastic factors appeared to play a part in the seasonal abundance of lineages, and may 

be a major factor influencing both abundance and distribution of these algae. 
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Recommendations for future research 

Given the short-lived ephemeral nature of these populations, the occasional brief presence of rare 

taxa (such as Bangia sp. C8 and BHH1), and the assumptions which working with cryptic 

species necessitates (i.e. reliance on molecular identification of a subset of individuals); it is 

suggested that intensive sampling over a number of years would be required to build a suitable 

dataset from which to identify any seasonal patterns in the distribution of filamentous Bangiales 

in the Wellington region. It is also recommended that a larger number of study sites be included, 

to provide a stronger dataset for analysis. However, it should be noted that even with a larger 

dataset, the influence of stochastic processes and the ephemeral nature of these organisms, may 

still provide a level of variation which masks underlying adaptation to particular environmental 

conditions.  

 

Distribution of the conchocelis phase may be an important factor in the distribution of the 

gametophyte generation. Future studies could attempt to collect data on both conchocelis and 

gametophyte distributions, and test whether there is a statistically significant relationship 

between the distributions of the two life stages. A study using settlement plates could also look at 

the seasonal and temporal availability of Bangiales spores in Wellington, and analyse to what 

extent this is a factor in determining patterns of distribution and abundance in the filamentous 

generation.  



 

 81 

 

Chapter 4. Discussion 
 
The coexistence of cryptic species challenges competition theory, yet new records of these 

morphologically indistinguishable entities have increased dramatically over the last two decades 

(Bickford et al. 2007) and studies into marine cryptic species particularly have revealed more 

diversity than previously realised (Knowlton 1993). The more researchers look the more they 

find, and in the case of the red algal order Bangiales it is predicted that intensive sampling will 

reveal not only new taxa but even new genera (Sutherland et al. 2011). 

 

The present study supports such predictions, with a new entity, Bangia sp. C8, recorded, 

characterised by a genetic sequence which differs markedly from other filamentous bangialean 

entities. Another new sequence was also recorded, BHH1, which may represent a second new 

entity. The presence of BRM in Wellington, not previously recorded from this location, brings 

the number of filamentous Bangiales in Wellington to a possible seven taxa: Minerva aenigmata, 

Bangia sp. BFK, BGA, BMW, BRM, BHH1 and C8. Previously only the first four had been 

recorded in Wellington (Bödeker et al. 2008). 

 

Given the work undertaken by previous researchers in the Wellington region it is perhaps 

surprising that so many new records were found in the present study. However, when it is 

considered that of the samples processed for this study (167 in total) only a single sample 

identified as C8 and a single sample as BHH1, it seems that rarity has made it difficult for 

researchers to uncover the true diversity.   
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Is the apparent rarity of two lineages, out of the seven lineages recorded, important? Researchers 

examining the role of rare species in ecosystems have found that often the functionally-important 

species are in fact rare, e.g., in coral reef ecosystems 98% of fish species that are likely to 

support highly vulnerable functions are regionally rare (Mouillot et al. 2013). Filamentous 

Bangiales provide a food source for some marine herbivores, and while the various lineages are 

morphologically very similar and appear to fulfil a similar role in the ecosystem, it is perhaps 

possible that their chemistry and consequential palatability to herbivores may vary, and they are 

fulfilling different functions.  

 

The present study did not sample for distribution of the conchocelis phase of these Bangiales 

taxa, and future studies could test hypotheses about the distribution and persistence of the 

conchocelis phase compared to the ephemeral filamentous phase. Does the niche occupied by the 

conchocelis phase determine the distribution of the filamentous phase? Do filamentous patches 

establish in close proximity to conchocelis? Does conchocelis persist in the same rock on which 

filamentous patches appear, explaining observed patterns of distributions? 

 

Environmental factors are also important in the distribution of filamentous Bangiales, with 

exposure to sand abrasion important for some lineages (Nelson et al. 2005). In this study, wave 

action and sand scour were found to be in factor affecting the abundance of filamentous 

Bangiales, with lower abundance on the exposed South coast compared to the inner harbour. The 

findings also support suggestions that Bangia sp. BMW is a cold-adapted lineage (Bödeker 

2003), being the only lineage which persisted through all seasons on Wellington’s South coast, 

and only one inner harbour presence recorded at Greta Point in autumn. In the laboratory BMW 

has been found to grow up to seven times faster than other lineages (Bödeker 2003), which may 

be an adaptation to sand-scour. 
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Stochastic factors such as storms and pollution events may also be important factors, possibly 

masking underlying seasonal patterns. During this study the filamentous Bangiales population at 

one South coast site disappeared entirely following a storm, and at Freyberg the population was 

reduced to zero following a possible pollution event, with uniformly bleached filaments 

observed, followed by the population’s disappearance. 

 

Neither intra- nor inter-specific competition appears to limit the distribution of filamentous 

Bangiales. Availability of substrate does not appear to be a limiting factor at most sites, where 

patches are surrounded by bare rock or concrete; nor does the population appear to limit itself, 

with patches of 2500cm2 recorded in sheltered conditions.  

 

Further study is needed to examine what effect the distribution of the conchocelis has on the 

temporal and spatial distribution of the filamentous phase. The influence of environmental 

factors should also be more fully tested in future research.
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Appendix A. Collection and Identification Data 
 
 

Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 
2 2 Lyall Bay LB1 - N Rock 12/07/04 Yes   No BMW   
3 3 Lyall Bay LB1 - S Rock 12/07/04 Yes   No BMW   
4 4 Lyall Bay LB2 - W Rock 12/07/04 Yes   No BMW   
5 5 Lyall Bay LB2 - E Rock 12/07/04 Yes   No BMW   

6 6 Seatoun Boatshed SBS1 - N Rock 12/08/04 No Twice   
Minerva 

aenigmata   
7 7 Seatoun Boatshed SBS1 - NW Rock 12/08/04 No Twice   M. aenigmata   
8 8 Seatoun Boatshed SBS2 - NW Rock 12/08/04 No Twice   M. aenigmata   
9 9 Seatoun Boatshed SBS2 - N Rock 12/08/04 No Twice   M. aenigmata   
10 10 Frank Kitts  FK1a (formerly labelled 1- 1) Iron (painted) 12/11/04     BGA 
43 12 BFK entity   Tracey's sample Culture n/a Yes   Yes BFK   
58 15 BFK entity Tracey's sample Culture n/a Yes   Yes BFK   
59 16 BMW entity Tracey's sample Culture n/a Yes   No BMW or BCP   
60 17 BMW entity TAC2289 Tracey's sample Culture n/a Yes   No BMW or BCP   
13 18 Frank Kitts  FK2 - S (formerly labelled FK3) Rock 12/11/04 No Once   BGA   
15 19 Frank Kitts  FK4 - top Rock 12/11/04 No Once   BGA   
16 20 Frank Kitts  FK5 - paling 21 from south Wood 12/11/04 Yes   Yes BFK   
61 21 Frank Kitts  Jo's sample Unknown 15/11/04 No Once   BGA   
62 22 Frank Kitts  Jo's sample unknown 15/11/04 No Once   BGA   
65 23 Frank Kitts  Taranaki Wharf - Jo's sample Unknown 15/11/04 No Once   BGA   
27 24 Freyberg 3 - east Concrete 28/12/04 Yes   Yes BFK   
29 25 Freyberg 4 - north Concrete 28/12/04 Yes   Yes BFK   
66 29 Owhiro Bay Jo's sample Unknown 27/12/04 Yes   No BMW or BCP   
67 30 Owhiro Bay Jo's sample Unknown 27/12/04 No Twice   M. aenigmata   
12 32 Frank Kitts  FK1 - top Rock 12/11/04 No Once   BGA   
14 33 Frank Kitts  FK2 - N top (formerly labelled 3) Rock 12/11/04 No Once   BGA   
17 34 Frank Kitts  FK13 (formerly labelled 5-21) Wood 12/11/04 Yes   Yes BFK   
18 35 Frank Kitts  FK6-W (boulder - N edge of pond) Rock 12/11/04        BRMg 

19 36 Frank Kitts  
FK6-E (boulder next to N end of 
pond) Rock 12/11/04 No       BRMg 
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Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 

20 37 Frank Kitts  
FK7-E (alongside steps on N side of 
pond) Rock 12/11/04 No Once   BGA   

21 38 Frank Kitts  FK8-S (boulder down from anchor) Rock 12/11/04 No Once   BGA   

22 39 Frank Kitts  
FK8 - NE (boulder down from 
anchor) Rock 12/11/04 No Once   BGA   

23 40 Frank Kitts  
FK9 - N (nr anchor, E side of 
opening) Iron (painted) 12/11/04 Yes   Yes BFK   

24 41 Freyberg FB1 - N Concrete 28/12/04 Yes   Yes BFK   
25 42 Freyberg FB1 - E Concrete 28/12/04 Yes   Yes BFK   
26 43 Freyberg FB2-E Concrete 28/12/04 Yes   Yes BFK   
28 44 Freyberg FB3 - E(2) Concrete 28/12/04 Yes   Yes BFK   
45 54 Owhiro Bay OWB1 Rock 25/01/05 No Twice   M. aenigmata   
46 55 Owhiro Bay OWB2 Rock 25/01/05 No Twice   M. aenigmata   
47 56 Owhiro Bay OWB3 Rock 25/01/05 No Twice   M. aenigmata   
48 57 Owhiro Bay OWB4 Rock 25/01/05 No Twice?   M. aenigmata   
50 59 Frank Kitts  FK1a  Iron (painted) 13/03/05 No Once   BGA   
51 60 Frank Kitts  FK 1a (formerly labelled FK 2)  Iron (painted) 13/03/05 No Once   BGA   
52 61 Frank Kitts  FK12  Wood 13/03/05        BFK 
53 62 Frank Kitts  FK11  Wood 13/03/05 Yes   Yes BFK   
54 63 Frank Kitts  FK13  Wood 13/03/05 Yes   Yes BFK   

55 64 Frank Kitts  
FK9 (Nr anchor - formerly labelled 
FK6)  Iron (painted) 13/03/05 Yes   Yes BFK   

56 65 Frank Kitts  
FK10 Taranaki wharf (formerly 
labelled FK7)  Wood 13/03/05 No  Once   BGA   

63 66 Frank Kitts  Jo's sample  Unknown 15/11/04 No Once   BGA   
64 67 Frank Kitts  Jo's sample  Unknown 15/11/04 No Once   BGA   
68 68 Owhiro Bay Jo's sample (1) Unknown 27/12/04 No Twice   M. aenigmata   
71 71 Owhiro Bay Jo's sample (6) Unknown 27/12/04 No Twice   M. aenigmata   
72 72 Lyall Bay Jo's sample (1) Unknown 15/11/04 Yes   No BMW or BCP BMW 
73 73 Lyall Bay Jo's sample (2) Unknown 15/11/04 Yes   No BMW or BCP BMW 
74 74 Greta Point 1-1 Rock 13/03/05 Yes   Yes BFK   
76 76 Greta Point 2-2E Rock 13/03/05 yes   Yes BFK   
77 77 Greta Point 2-2N Rock 13/03/05 yes   Yes BFK   
78 78 Greta Point 3-1N Rock 13/03/05 yes   Yes BFK   
79 79 Greta Point 3-2 Rock 13/03/05 yes   Yes BFK   
80 80 Greta Point 3-3 Rock 13/03/05 Yes   No BMW   
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Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 
81 81 Greta Point 4-1 Rock 13/03/05 Yes   Yes BFK   
82 82 Greta Point 4-2 Rock 13/03/05 Yes   Yes BFK   
83 83 Greta Point 5-1 Rock 13/03/05 Yes   Yes BFK   
84 84 Greta Point 5-2 Rock 13/03/05 No Once   BGA   
85 85 Greta Point 5-3 Rock 13/03/05 Yes   Yes BFK   
86 86 Frank Kitts  Hikitia Lift 1 Iron 14/03/05 Yes   Yes BFK   
87 87 Frank Kitts  Hikitia Lift 2 Iron 14/03/05 Yes   Yes BFK   
88 88 Frank Kitts  Hikitia Lift 3 Iron 14/03/05 Yes   Yes BFK   
96 96 Seatoun Boatshed Ramp nr shed 1 Concrete 22/04/05 No Twice   M. aenigmata   

97 97 Seatoun Boatshed Ramp nr shed 2 Concrete 22/04/05 No       
M. 

aenigmata 
109 109 Greta Point 1-1 Rock 8/07/05         BFK 
111 111 Greta Point 2-1 Rock 8/07/05         BFK 
113 113 Greta Point 3-1 Rock 8/07/05         BFK 
117 117 Greta Point 5-1 Rock 8/07/05         BFK 

124 124 Seatoun Boat Ramp Boat ramp Concrete 10/08/05         
M. 

aenigmata 
125 125 Frank Kitts  FK1a-a  Iron (painted) 24/10/05        BGA 
127 127 Frank Kitts  FK5-a Rock 24/10/05        BRMg 
129 129 Frank Kitts  FK1b (Paling 9) - a Wood 24/10/05         BGA 
130 130 Frank Kitts  FK1b (Paling 9) - b Wood 24/10/05         BGA 
131 131 Frank Kitts  FK11a Wood 24/10/05         BFK 
132 132 Frank Kitts  FK11b Wood 24/10/05         BFK 
133 133 Frank Kitts  FK12a Wood 24/10/05 Yes   Yes BFK   
134 134 Frank Kitts  FK12b Wood 24/10/05 Yes   Yes BFK   
135 135 Frank Kitts  FK13a Wood 24/10/05        BFK 
136 136 Freyberg FB1a Concrete 27/10/05 Yes   Yes BFK   
137 137 Freyberg FB1b Concrete 27/10/05 Yes   Yes BFK   
138 138 Freyberg FB2a Concrete 27/10/05 Yes   Yes BFK   
139 139 Freyberg FB2b Concrete 27/10/05 Yes   Yes BFK   
140 140 Freyberg FB3a Concrete 27/10/05 Yes   Yes BFK   
141 141 Freyberg FB3b Concrete 27/10/05 Yes   Yes BFK   
142 142 Freyberg FB4a Concrete 27/10/05 Yes   Yes BFK   
143 143 Freyberg FB5a Concrete 27/10/05 Yes   Yes BFK   
148 148 Greta Point NIWA2a Rock 29/10/05 Yes       BFK 
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Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 
152 152 Freyberg FB14a Rock 31/10/05 No (?)       BGA 1 
153 153 Freyberg FB12a Rock 31/10/05 No (?)       BGA 2 
161 161 Freyberg FB13b Rock 31/10/05 Yes       BFK 
162 162 Freyberg FB10b Rock 31/10/05 Yes       BFK 
164 164 Greta Point NIWA3a Rock 29/10/05 No       BRMg 
165 165 Greta Point NIWA1b Rock 29/10/05 No       BRMg 
166 166 Greta Point NIWA2b Rock 29/10/05         BFK 
169 169 Owhiro Bay OB1a Rock 1/11/05         BHH1 
181 181 Greta Point 1a-a Rock 15/11/05        C8 
184 184 Freyberg W - nr jetty Rock 15/11/05 Yes   Yes BFK   
185 185 Frank Kitts  1 Rock 18/12/05 No       BRMg 
187 187 Frank Kitts  5a Rock 18/12/05 No      BRMg 
188 188 Frank Kitts  5b Rock 18/12/05 No      BRMg 
189 189 Freyberg 8a Concrete 18/12/05 Yes   Yes BFK   
190 190 Freyberg 13a Rock 18/12/05 Yes   Yes BFK   
191 191 Freyberg Y (W of plot 14) Rock 18/12/05 Yes   Yes BFK   
192 192 Freyberg Q (N of plot 1) Concrete 18/12/05 Yes   Yes BFK   
193 193 Lyall Bay 1a Rock 22/12/05        BMW 
194 194 Lyall Bay 1b Rock 22/12/05        BMW 
195 195 Lyall Bay 2 Rock 22/12/05 Yes   Yes BFK   
201 201 Greta Point 1a Rock 26/12/05         BRMg 
205 205 Greta Point 1 site a (a) Rock 26/12/05         BRMg 
207 207 Greta Point 2a Rock 26/12/05         BFK 
211 211 Greta Point 3a Rock 26/12/05         BRMg 
220 220 Owhiro Bay 5b Rock 26/12/05         BMW 
222 222 Owhiro Bay 6b Rock 26/12/05         BMW 
223 223 Frank Kitts  1 Rock 26/12/05 No       BRMg 
224 224 Frank Kitts  3a Rock 29/01/06 No       BRMg 
225 225 Frank Kitts  3b Rock 29/01/06 No       BRMg 
226 226 Frank Kitts  5a Rock 29/01/06 No       BRMg 
227 227 Frank Kitts  5b Rock 29/01/06 No       BRMg 
228 228 Frank Kitts  11a Wood 29/01/06 Yes   Yes BFK   
230 230 Frank Kitts  13a Wood 29/01/06 Yes   Yes BFK   
232 232 Freyberg 1a Concrete 29/01/06 Yes   Yes BFK   
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Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 
233 233 Freyberg 1b Concrete 29/01/06         BFK 
235 235 Freyberg 2b Concrete 29/01/06         BFK 
240 240 Freyberg X Concrete 29/01/06         BFK 
242 242 Freyberg Z Rock 29/01/06         BFK  

243 243 Seatoun Boatshed 1a (S) Rock 11/02/06         
M. 

aenigmata 

249 249 Seatoun Boatshed 4b (limpet!) Rock 11/02/06         
M. 

aenigmata 
253 253 Greta Point 2b Rock 28/02/06         BFK 
254 254 Greta Point 1 Rock 28/02/06         BRMg 
257 257 Greta Point 3b Rock 28/02/06         BRMg 
258 258 Freyberg 2a Concrete 28/02/06         BFK 
259 259 Freyberg 2b Concrete 28/02/06         BFK 
260 260 Freyberg 15b Concrete 28/02/06         BFK 
261 261 Freyberg 16  Concrete 28/02/06         BFK 
262 262 Frank Kitts  13a Wood 28/02/06         BFK 
263 263 Frank Kitts  13b Wood 28/02/06         BFK 
264 264 Frank Kitts  13c Wood 28/02/06         BFK 
268 268 Frank Kitts  11a Wood 28/03/06         BFK 
270 270 Frank Kitts  12 Wood 28/03/06         BFK 
271 271 Frank Kitts  13a Wood 28/03/06         BFK 
272 272 Frank Kitts  13b Wood 28/03/06         BFK 
273 273 Frank Kitts  13c Wood 28/03/06         BFK 
274 274 Frank Kitts  11a Wood 27/04/06         BFK 
275 275 Frank Kitts  11b Wood 27/04/06         BFK 
276 276 Frank Kitts  11c Wood 27/04/06         BFK 
277 277 Frank Kitts  12a Wood 27/04/06         BFK 
278 278 Frank Kitts  12b Wood 27/04/06         BFK 
279 279 Frank Kitts  13a Wood 27/04/06         BFK 
280 280 Frank Kitts  13b Wood 27/04/06         BFK 
281 281 Frank Kitts  11 Wood 30/05/06         BFK 
282 282 Frank Kitts  12 Wood 30/05/06         BFK 
283 283 Frank Kitts  13 Wood 30/05/06         BFK 
285 285 Frank Kitts  11 Wood 27/06/06         BFK  
286 286 Frank Kitts  12 Wood 27/06/06         BFK  
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Sample 
no. 

DNA / 
PCR no. Location Location details Substrate Date collected Ava (cut?) 

Hinf I 
(cut?) 

HaeII 
(cut?) 

lineage- from 
digests 

lineage - 
from 

sequence 
287 287 Frank Kitts  13 Wood 27/06/06         BFK  
288 288 Greta Point 2a Rock 29/06/06         BFK  
292 292 Freyberg 1 Concrete 1/07/06         BFK  
293 293 Freyberg 2 Concrete 1/07/06         BFK  
294 294 Freyberg 16a Concrete 1/07/06         BFK  
296 296 Freyberg 17 Concrete 1/07/06         BFK  
297 297 Freyberg 18 Concrete 1/07/06         BFK  
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Appendix B. Identification Assumptions 
 
 

To provide useful data for statistical analysis of spatial and temporal distribution data 

(see Chapter 3 Ecology), the genetic identity of as many samples as possible was 

required. However it was impractical to confirm the identity of all individuals 

molecularly, therefore assumptions about the identity of Bangiales patches needed to 

be made. The following table shows where actual genetic identifications were made, 

and also where assumptions about identity were made. 

 

Note that where two or three Bangiales samples were taken from a single structure 

(rock, wooden paling or concrete slab section) at that field visit and each confirmed 

genetically, the entity is marked with a superscript “2” or “3” as appropriate. The 

superscript “p” indicates presumed identity; this is where Bangiales was present at the 

field visit however genetic identity was not confirmed via a sample, and therefore an 

assumption is made about the identity, based on genetic confirmation of other samples 

from the same structure and/or other structures in close proximity. A “√” indicates 

where Bangiales was recorded as present, however the lineage was not genetically 

confirmed, and there was insufficient information to make an assumption about the 

identity of that population.  A “0” indicates no visible Bangiales was present on that 

structure at the time of the field visit. A “-“ indicates that a site was not visited at that 

time.
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 Bangia sp. BMW  Minerva aenigmata (BTS) 
 Bangia sp. BFK  Bangia sp. C8 
 Bangia sp. BRMg  Bangia sp. BHH1 
 Bangia sp. BGA   
 

Site Struct
-ure 

Substrate July/ 
Aug 04 

Nov-04 Dec 
04/ 

Jan 05 

Mar / 
Apr 
05 

July / 
Aug 
05 

Oct- 
05 

Nov- 
05 

Dec- 
05 

Jan- 
06 

Feb- 
06 

Mar-
06 

Apr-
06 

May-
06 

Jun / 
July 
06 

Frank Kitts 1A Iron - BGA - BGA2 - BGA - BGAp BGAp 0 0 0 0 0 
Frank Kitts 1B Wood - 0 - 0 - BGA - BGAp 0 0 0 0 0 0 
Frank Kitts 1 Rock - BGA - - - 0 - BRMg BRMgp 0 0 0 0 0 
Frank Kitts 5 Rock - - - - - BRMg - BRMg BRMg2 0 0 0 0 0 
Frank Kitts 11 Wood - - - BFK - BFK2 - BFKp BFK BFKp BFK BFK3 BFK BFK 
Frank Kitts 12 Wood - - - BFK - BFK2 - BFKp BFKp BFKp BFK BFK2 BFK BFK 
Frank Kitts 13 Wood - BFK - BFK - BFK - BFK BFK BFK3 BFK3 BFK2 BFK BFK 
Freyberg 1 Concrete - - BFK2 - - BFK2 0 0 BFK2 BFKp - - - BFK 
Freyberg 2 Concrete - - BFK - - BFK2 0 0 BFK2 BFK2 - - - BFK 
Freyberg 3 Concrete - - BFK2 - - BFK2 0 0 0 BFKp - - - 0 
Freyberg 4 Concrete - - BFK - - BFK 0 0 0 0 - - - 0 
Freyberg 5 Concrete - - - - - BFK 0 0 0 0 - - - 0 
Freyberg 8 Concrete - - - - - BFKp 0 BFK 0 0 - - - 0 
Freyberg 10 Rock - - - - - BFK 0 0 0 0 - - - 0 
Freyberg 11 Rock - - - - - BFK 0 0 0 0 - - - 0 
Freyberg 13 Rock - - - - - BFK 0 BFK 0 0 - - - 0 
Freyberg 14 Rock - - - - - BGA 0 0 BGAp 0 - - - 0 
Freyberg 15 Concrete - - - - - 0 0 0 0 BFK - - - BFKp 
Freyberg 16 Concrete - - - - - 0 0 0 0 BFK - - - BFK 
Freyberg X Concrete - - - - - 0 0 0 BFK 0 - - - 0 

Greta Point A Rock - - - BFK BFK - - - - - - - - - 
Greta Point B Rock - - - BFK2 BFK - - - - - - - - - 
Greta Point C Rock - 

 
- - BFK2 BFK - - - - - - - - - 

BMW 
Greta Point 1A Rock - - - - - 0 C8 BRMg - BRMgp - - - 0 
Greta Point 1 Rock - - - - - BRMg - BRMg - BRMg - - - 0 
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Site Struct
-ure 

Substrate July/ 
Aug 04 

Nov-04 Dec 
04/ 

Jan 05 

Mar / 
Apr 
05 

July / 
Aug 
05 

Oct- 
05 

Nov- 
05 

Dec- 
05 

Jan- 
06 

Feb- 
06 

Mar-
06 

Apr-
06 

May-
06 

Jun / 
July 
06 

Greta Point 2 Rock - - - - - BFK2 BFKp BFK - BFK - - - BFK 
Greta Point 3 Rock - - - - - BRMg - BRMg - BRMg - - - BFKp 
Greta Point 4 Rock - - - BFK2 - √ - √ - 0 - - - 0 
Greta Point 5 Rock - - - BFK2 BFK 0 - 0 - 0 - - - 0 

BGA 
Owhiro Bay X Rock - - BTS - - - - - - - - - - 0 
Owhiro Bay A Rock - - 0 - - - 0 0 - - - - - 0 
Owhiro Bay 1 Rock - - 0 - - - BHH1 0 - - - - - 0 
Owhiro Bay 2 Rock - - BTS - - - √ 0 - - - - - 0 
Owhiro Bay 3 Rock - - BTS - - - √ 0 - - - - - 0 
Owhiro Bay 4 Rock - - BTS - - - √ 0 - - - - - 0 
Owhiro Bay 5 Rock - - √ - - - √ BMW - - - - - 0 
Owhiro Bay 6 Rock - - 0 - - - BMWp BMW - - - - - 0 

Seatoun  1 Rock BTS2 - - 0 0 - - - - BTS - - - - 
Seatoun 2 Rock BTS2 - - 0 0 - - - - 0 - - - - 
Seatoun Ramp Concrete 0 - - BTS2 BTS - - - - 0 - - - - 
Seatoun 4  Limpet 0 - - 0 0 - - - - BTS - - - - 

Lyall Bay 1 Rock BMW2 - - - 0 0 - - - - - - - - 
Lyall Bay 2 Rock BMW2 - - - 0 0 - - - - - - - - 
Lyall Bay X Rock - BMW - - 0 0 - - - - - - - - 
Lyall Bay 3 Rock - - - - 0 0 - BMW2 - - - - - - 
Lyall Bay 4 Rock - - - - 0 0 - BFK - - - - - - 
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