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Abstract 

In this study the ontogeny of the hapuka (Polyprion oxygeneios) immune system was studied 

during larval development. In teleost fish, the head kidney, thymus, and spleen are generally 

regarded as important immune organs. The head kidney was observed at 4 days post hatch 

(dph), the spleen at 16 dph and lastly the thymus at 20 dph and all 3 lymphoid organs were 

relatively well developed by 45 dph. The immune genes CSF1R, C3, MHCIIα, TCRα, TCRβ, 

RAG1, IgM and IgZ were examined by RT-PCR to investigate the leucocyte development. 

Macrophages appear to be present from hatch with both CSF1R and MHCIIα expression 

from 1 dph, while IgM is expressed at 9 dph. T-cells appear later in hapuka with TCRβ 

expression first detected at 32 dph whereas TCRα was not expressed until after 63 dph. 

Immunostaining using a monoclonal antibody against fish IgM detected IgM in the head 

kidney at 12 dph, the spleen at 32 dph, the intestinal tract at 45 dph and lastly the thymus at 

50 dph. Comparison of the leucocyte populations in juveniles and adults indicated that innate 

cell populations are late to develop, while the adaptive cells mature earlier in hapuka than 

expected. Finnally, the maternal transfer of immunity was examined and while lysozyme and 

IgM appear to be transferred, complement does not. Overall this study provides insight into 

the developmental sequence of immune organs and cells and will be useful in understanding 

the timing of immune competence in juveniles and adult hapuka. 
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Chapter 1 – General introduction 

1.1. Aquaculture 

1.1.1. Overfishing and aquaculture 

Overfishing has become a big problem over the last few decades with many fish stocks over 

exploited. During the early 1990s Atlantic cod stocks collapsed, declining to less than 95% of 

their maximum historical biomass and have yet to recover (Frank et al., 2005). Several other 

important commercial fish populations have decreased to the point where their survival is 

threatened and it is predicted that stocks of all fished species will collapse by mid century. 

Sustainable alternatives to commercial fishing such as aquaculture are continuing to rise as a 

better alternative.  

Aquaculture is the farming of aquatic organisms including fish, molluscs, crustaceans and 

aquatic plants. Aquaculture has become the fastest growing food producing sector in the 

world, with an average annual growth rate of 8.9% since 1970 (Bondad-Reantaso et al., 

2005). Aquaculture in New Zealand started around the late 1960s and is dominated by the 

green-lipped mussel (Perna canaliculus), the pacific oyster (Crassostrea gigas) and the king 

salmon (Onchorhynchus tshawytscha). Recently New Zealand has put forward an ambitious 

goal with a target of increasing its aquaculture industry to be worth an annual one billion NZ 

dollars by the year 2025. With potential for the industry to diversify and the marine finfish 

farming continuously looking for new specices suitable for aquaculture, one such candidate 

of interest is the New Zealand groper or hapuka (Polyprion oxygeneios (Schneider & 

Forester, 1801)). 
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1.1.2. New Zealand groper “hapuka” (Polyprion oxygeneios) 

Hapuka (P. oxygeneios) is a species of wreckfish (Polyprionidae family) found in waters 

around New Zealand, southern Australia, southern Chile and a number of Southern Ocean 

islands. Belonging to the Perciformes order of fish, the wreckfish family includes 6 species of 

fish belonging to 2 genera, Stereolepis and Polyprion. Stereolepis consists of S. doederleini 

and S. gigas, whereas Polyprion consists of P. americanus, P. moeone, P. yanezi and P. 

oxygeneios (hapuka). Hapuka live predominately in temperate mid-shelf to upper slope 

waters in depths ranging from 20 meters (m) to a maximum recorded depth of 854 m and are 

associated strongly with floating objects (Roberts, 1996). Small juvenile hapuka have a 

unique life strategy involving an extended pelagic stage of up to 4 years in oceanic waters, 

obtaining sizes of up to 670 millimeters (mm) total length (Roberts, 1996). At about 500 mm 

in length and an estimated 3-4 years of age, they become demersal in depths of 50-600 m and 

become vulnerable to bottom trawlers (Beentjes and Francis, 1999). Hapuka are large, long-

lived fish with reports of specimens being more than 1700 mm in length and 70 kilograms 

(kg) in weight, and living longer than 60 years (Wakefield et al., 2010). Although hapuka are 

slow growing and long lived, growth in size of 2 kg within 12 months for juveniles is 

considered rapid, making them an ideal candidate for aquaculture. Furthermore hapuka are 

valued highly by recreational and commercial fishers, because of their flesh quality and 

texture (Beentjes and Francis, 1999). Knowledge of larval development and immune system 

ontogeny for wild and captive hapuka will be crucial for the development of an effective 

aquaculture programme. 

1.1.3. Disease control in aquaculture 

Aquaculture operations aim to produce large numbers of healthy fish for consumption under 

intensive conditions by means that are biologically and economically efficient. However, the 

intensive farming practices of aquaculture can have negative effects on the fish, causing 

stress and rendering them more prone to disease. It is becoming increasingly apparent that 

disease outbreaks significantly inhibit aquaculture production and trade, affecting the 

economic development of the sector in many countries (Balcazar et al., 2006). There can be 

many different sources of stress in fish culture conditions and among them crowding is the 

most common, along with handling procedures such as confinement or capture (Rotllant et 

al., 1997). Additionally, studies have shown that high stocking densities may have effects on 
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feeding behaviour (Kentouri et al., 1994), growth rate (Pickering and Stewart, 1984), disease 

resistance (Mazur and Iwama, 1993) and even the skin colour of fish (Van der Salma et al., 

2004). Most importantly, a decreased immune function means that fish become more 

susceptible to disease resulting in mortalities and economic losses (Bakopoulos et al., 1997). 

Furthermore, fish eggs are released and embryos hatch into a pathogenically hostile 

environment, at a time when the embryo’s immunological capacity is still extremely limited 

(Mulero et al, 2007). Because of this limitation, high mortality rates in the early larval stages 

are common in the aquaculture industry for many fish species (Seppola et al., 2009). 

Mortalities have also been recorded in early attempts to rear hapuka due to protozoan 

parasites (personal communication, Salinas, I.). Immunostimulation and vaccination can 

provide fish protection from potential pathogens. However, the effectiveness of 

immunostimulation and vaccination methods used on cultured fish largely depends on the 

level of maturity of their immune system (Mulero et al., 2007b). Yet nothing is known about 

the immune system of hapuka or when their larvae become immunocompetent. For 

successful aquaculture of marine finfish, understanding and knowledge of their immune 

system is essential. 
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1.2. Fish immune system 

1.2.1. Lymphoid organs 

Fish are a very heterogeneous group of animals that include the agnathans (lampreys and 

myxines), chondrichthyes (sharks and rays) and teleosteans “teleosts” (bony fish) (Tort et al., 

2003), to which hapuka belong. Like their mammalian counterparts, the immune system of 

teleost fish is composed of both cellular and humoral components and displays an innate and 

adaptive immune response. Fish possess central or primary lymphoid organs which govern 

the immune response as their main function. In addition to these, fish have a series of 

secondary lymphoid organs, known as the mucosal associated lymphoid tissues (MALT). In 

this section the main components of the adult teleost immune organs will be described.   

1.2.2. Head kidney 

Although fish and mammals share many similarities regarding their immune functions, there 

are obvious differences. Anatomically, major differences include the lack of lymph nodes and 

bone marrow in fish (Whyte, 2007). Instead of bone marrow, fish hematopoiesis occurs in the 

anterior portion of the kidney, called the head kidney and is one of the 3 main lymphoid 

organs along with the spleen and thymus (Fänge, 1986). This portion of the kidney lacks 

excretory tissue such as renal tubules and is predominantly lympho-myeloid in nature. The 

fish kidney is a Y shaped organ located behind the head and spreads along parallel to the 

vertebral column with only the posterior end carrying out renal function. The parenchyma of 

the head kidney is dispersed between large networks of sinusoids (specialised blood vessels) 

supported by the stroma of the kidney. The stroma can be referred to as a reticulo-endothelial 

stroma which is made up of endothelial cells that line the sinusoids, the adventitial cells 

which cover the abluminal surface of the endothelial cells, and lastly the reticular cells which 

are involved in phagocytosis (Meseguer et al., 1995).  

The hematopoietic tissue of the head kidney is supported by the stroma, which also has an 

important role in non specific immunity and the clearance of debris and damaged cells. Thus 

the renal portal system acts like a filtration bed with the sinusoidal macrophages and 

endothelial cells trapping and removing particles from the bloodstream (Dannevig et al., 

1994; Press et al., 1994; Espenes et al., 1995). Unlike higher vertebrates the kidney is the 
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principal immune organ responsible for phagocytosis (Dannevig et al., 1994), antigen 

processing (Brattgjerd and Evensen, 1996) and generation of adaptive immune responses 

(Herraez and Zapata, 1986). The head kidney is a major producer of B cells and thus antibody 

and the melanomacrophage accumulations of the parenchyma are able to retain antigens for 

long periods of time after administration or vaccination (Herraez and Zapata, 1986; Press et 

al., 1996) possibly being involved with immunological memory (Press et al., 1996). The 

melanomacrophage accumulations or centers (MMCs) are are distinctive groupings of 

pigment-containing cells usually found within the hematopoietic tissues (Agius and Roberts, 

2003). Their functions are many but include acting as metabolic dumps for the relocation of 

debris such as red blood cells, while also participating in antigen capture and presentation 

(Agius and Roberts, 2003). The head kidney is also an important endocrine organ, 

homologous to mammalian adrenal glands; releasing various hormones (Tort et al., 2003). 

Thus, the teleost head kidney is an organ with key hematopoietic and regulatory functions, as 

well as being central for immune and endocrine interactions. 

1.2.3. Thymus 

The thymus, another key lymphoid organ in teleosts, is a paired organ situated in the 

dorsolateral region of the gill chamber, near the opercular cavity. The first morphological 

sign of the thymus anlage (initial clustering of cells) is present as early as 24 hours after 

fertilisation in the Tilapia species (Fishelson, 1995) or late in species such as in Atlantic 

halibut (Hippoglossus hippoglossus L.), first detected at 33 dph (Patel et al., 2009). The 

thymus lies on a connective tissue layer and is covered by the modified stratified epithelium 

of the gill chamber. In the thymus, an outer layer (cortex) and an inner layer (medulla) can 

usually be distinguished, and is composed of epithelial cells and thymocytes (Press and 

Evensen, 1999). The cortex usually contains a higher density of thymocytes than the medulla 

and relatively few epithelial cells, which when present are characterised by long and slender 

cellular projections. The medulla is less densely populated with cells but the epithelial cells 

are more prominent and form a supporting meshwork (Press and Evensen, 1999). This 

zonation of the thymus is observed in some species such as turbot (Scophthalmus maximus 

L.), sea bream (Sparus aurata) and Atlantic halibut (Jósefsson and Tatner, 1993; Padros and 

Crespo, 1996; Patel et al., 2009); while in other species such as the salmon (Salmo salar L.) 

and olive flounder (Paralichthys olivaceus) no zonation is observed (Ellis, 1977a; Liu et al., 
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2004). The thymus is primarily responsible for maturation of T lymphocytes, which are 

fundamental mediators of the adaptive immune response and are involved in cellular killing 

of infected cells (Bowden et al., 2005). 

1.2.4 Spleen 

The last major lymphoid organ is the spleen, although the spleen of teleost fish is considered 

a secondary lymphoid organ. The absence of lymph nodes in fish suggests a pivotal role for 

the spleen in antigen presentation and the initiation of adaptive immune responses (Chaves-

Pozo et al., 2005). The spleen has a fibrous capsule with small trabeculae extending into the 

parenchyma, which is usually divided into a red and white pulp. The red pulp consists of a 

reticular cell network supporting blood-filled sinusoids that hold diverse cell populations 

including macrophages and lymphocytes (Press and Evensen, 1999).  

In teleosts, splenic lymphoid tissue (white pulp) is usually poorly developed, but prevalent 

layers of lymphoid tissue may surround arteries, ellipsoids and melanomacrophage centres 

and lymphocytes can be seen scattered throughout the parenchyma (Fänge and Nilsson, 

1985). The ellipsoids are terminations of arterioles and are closely associated with reticular 

cells and macrophages. Ellipsoids have been shown to have a specialised function involving 

the filtration of plasma and trapping blood borne substances such as immune-complexes (Fig. 

1.1) (Espenes et al., 1995). Melanomacrophage centres are special pigment-containing 

nodules that occur in the lymphohemopoietic tissues of most teleostean fishes (Fänge and 

Nilsson, 1985) and are major sites of erythrocyte destruction. Additionally interactions 

observed between melanomacrophage centres and lymphoid tissue indicate that the centres 

are involved in immune responses (Fänge and Nilsson, 1985). Melanomacrophage centres 

have also shown the remarkable ablitiy to retain antigens for long periods of time, possibly in 

the form of immune-complexes, drawing a comparison with the germinal centres in higher 

vertebrates (Ferguson, 1976; Agius, 1980). 
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Fig. 1.1. Immune complexes. 

1.2.5. Mucosal-associated lymphoid tissues (MALT) 

Mucosal surfaces are physical barriers that separate and protect all animals from the 

surrounding environment. In addition to being physical barriers, mucosal surfaces also act as 

active immunological sites prepared with cellular and humoral defences (Press and Evensen, 

1999). The mucosal surfaces are common pathogen entry sites because these surfaces act as 

an interface between animal and environment. Peyer’s patches, IgA and M cells are not 

reported in teleost fish (Rombout et al., 2010). In teleost fish, the presence of 

immunoglobulins in mucosal secretions was first reported in plaice (Pleuronectes platessa) 

(Fletcher and Grant, 1969) and until recently it was believed IgM was the only functional 

immunoglobulin in teleosts, both in systemic and mucosal compartments (Salinas et al., 

2011). However, the recent discovery of new immunoglobulin classes such as IgD (Yuko and 

Flajnik, 2006) and IgT/IgZ in different fish species has proven that paradigm wrong 

(Danilova et al., 2005; Hansen et al., 2005). Additionally a recent study reported that rainbow 

trout IgT specialized in gut mucosal immune responses, while IgM appears to be specialized 

in systemic immunity (Zhang et al., 2010; Zhang et al., 2011).  

There are obvious physiological, anatomical and histological differences between terrestrial 

and aquatic vertebrates and so the presence of MALT in fish is distinct from their mammalian 

counterparts. In teleost fisht there are three main mucosal immune compartments including: 

the gut associated lymphoid tissue (GALT) with the lamina propria (LP) and intraepithelial 

lymphocyte (IEL) compartments; the skin-associated lymphoid tissue (SALT) and the gill-
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associated lymphoid tissue which includes the gills and the interbranchial immune tissue 

(ILT) (Salinas et al., 2011). Herbivorous, detritivorous, omnivorous and carnivorous fish 

species differ from each other in terms of the presence or absence of a stomach, the length of 

the intestine and the presence and number of pyloric caeca, intestinal loops and valves 

(Evans, 1998). Teleosts have a more diffuse GALT, which is morphological and functional 

different from the mammalian GALT, lacking organisation and containing no Peyer’s patches 

or mesenteric lymph nodes. However, the LP and IEL compartments have been identified and 

lymphoid cells are present in a scattered manner along the alimentary canal (Salinas et al., 

2011). The teleost LP houses many types of immune cells such as macrophages, 

granulocytes, lymphocytes and plasma cells, whereas the IEL compartment is mainly 

composed of T cells and few B cells. However, a lack of suitable antibodies makes the 

distinction of subpopulations within the GALT difficult (Rombout et al., 2010).  

Immunological differences also exist along the different segments of the fish gastrointestinal 

tract with different uptake of particles occurring in the anterior gut (foregut) compared to the 

posterior gut (hindgut) (Rombout et al., 2010). Ig+ cells are present in the intestinal mucosa of 

many fish such as salmonids, cyprinids and the sea bass, however, the amount varies between 

species (Rombout et al., 1993; Abelli et al., 1997). In addition to Ig+ cells, T cells have been 

detected in the guts of fish including carp and sea bass, using monoclonal antibodies specific 

for T cells or T cell subpopulations (Rombout et al., 1993; Abelli et al., 1997). In both carp 

and sea bass, T cells were abundant in both the lamina propria and epithelium. Gut 

macrophages have been morphologically described in many teleost species (Rombout et al., 

1986; Inami et al., 2009). These macrophages are strongly Ig+ due to their Ig-binding 

capacity and these characteristics combined with the abundant presence of B and T cells 

strongly suggest that local immune responses can be evoked (Rombout et al., 2010). 
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1.3. Cells of the immune system 

1.3.1. Cellular components of the teleost immune system 

Fish possess both an innate and adaptive immune system which mount non-specific and 

specific immune responses respectively. In general, fish have myeloid and lymphoid lineages, 

however, there are important differences compared to those present in higher vertebrates. The 

nomenclature used to classify leucocytes in human hematology is based on their affinities for 

acid or basic dyes, which may not necessarily reflect functional diversity when applied to the 

granulocytes of teleosts (Ellis, 1977b). Additionally, it should be noted that the erythrocytes 

of fish are nucleated. A broad selection of key cell types are involved in the innate or non-

specific cellular defense responses of teleost fish including the monocytes/macrophages, the 

granulocytes and the non-specific cytotoxic cells (Secombes, 1996). Additionally, fish also 

have functional equivalents of mammalian T and B lymphocytes, involved in their adaptive 

immune response. However the lymphoid system is organised differently, for example the 

lack of lymph nodes, Peyer’s patches and bone marrow (Tort et al., 2003). A number of 

morphological, physical and functional characteristics can be used to distinguish cells 

involved in non-specific immunity. Although many reagents and markers are still lacking, 

over the years some progress has been made towards establishing fish leucocyte cell lines 

(Secombes, 1996). Although other cell types such as dendritic cells and thrombocytes are 

present in teleost fish, they will not be discussed because this study is not concerned with 

their function. 

1.3.2. Monocytes/macrophages 

Macrophages are mononucleated tissue cells derived from circulating monocytes and are 

characterised by their high capacity for phagocytosis, while their ability to adhere to glass 

and plastic makes them easy to isolate (Ellis, 1977b). The primary hematopoietic organ in the 

fish is the kidney, with the spleen providing a site of more specific macrophage/monocyte 

maturation (Hanington et al., 2009b). Macrophages have an important role as scavengers of 

dead and foreign material such as invading pathogens and are regularly recruited to sites of 

imflammation (Mathias et al., 2009). Macrophages have been shown to play a central part in 

host defense, with roles in both the innate and adaptive immune responses (Mosser and 
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Edwards, 2008). Macrophages can engulf bacteria and kill them principally by production of 

reactive oxygen species (ROS) during the so-called respiratory burst. These products include 

the superoxide anion (O2
-), H2O2 and the hydroxyl free radical (OH•) which have potent 

bactericidal activity (Ellis, 1999).  

Morphologically, fish macrophages are characterised by their prominent, eccentric, kidney 

shaped or bilobed nucleus, with their cytoplasm staining light blue-gray with Giemsa stain 

(Lopez-Ruiz et al., 1992; Esteban et al., 2000). Addtionally they have an undulating 

membrane with irregular extending pseudopodia and at high magnifications lysosomes and 

other vesicles can be observed (Lopez-Ruiz et al., 1992). Monocytes/macrophages have been 

reported in many fish (Lopez-Ruiz et al., 1992; Roca et al., 2006; Hanington et al., 2009b; 

Mathias et al., 2009), however, ultrastructural differences exist between species and 

confusion exists among the literature on monocytes, with some reporting their abscence or 

denying their existence in teleost fish (Ellis, 1977b; Lopez-Ruiz et al., 1992). 

1.3.3. Granulocytes 

Generally fish have two granulocyte lineages which in the zoological literature are usually 

called heterophil or neutrophil granulocytes (presumed to be functionally orthologous with 

the mammalian neutrophil) and eosinophil granulocytes (Lieschke et al., 2001). Teleost 

basophil granulocytes are also described in some species (Bielek, 1981). Studies of the 

leucocyte response to tissue damage and/or infection have shown that neutrophils are the first 

to respond (Dale et al., 2008). Although fish neutrophils are generally thought of as being 

highly mobile and phagocytic by the production of reactive oxygen species, their bactericidal 

activity is often relatively poor compared with that of macrophages (Secombes, 1996). 

Never-the-less, neutrophils, like macrophages, engulf and kill bacteria via the production of 

O2
-, H2O2 and OH• (Ellis, 1999). In addition, neutrophils contain myeloperoxidase (MPO) in 

their cytoplasmic granules (Afonso et al., 1997) which, when in the presence of halide ions 

and H2O2, can kill bacteria by halogenations of the bacterial cell walls as well as production 

of bactericidal hypohalite ions (Ellis, 1999).  
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Morphologically teleost neutrophils have a pale cytoplasm to most dyes (hence neutrophilic) 

and present a characteristic multilobulated segmented nucleus (Lopez-Ruiz et al., 1992; 

Esteban et al., 2000; Lieschke et al., 2001). On the other hand, the eosinophilic granulocyte 

cytoplasm is filled with many granules that stain pink/red with Giemsa stain and their nuclei 

appear peripheral and nonsegmented (Lopez-Ruiz et al., 1992; Esteban et al., 2000; Lieschke 

et al., 2001). Although the role of the eosinophil in teleosts varies, in the sea bream they are 

involved in active phagocytosis and these granulocytes are the most numerous type of 

phagocyte detected in all tissues (Lopez-Ruiz et al., 1992). 

1.3.4. B cells 

B lymphocytes (B cells) are essential antibody-producing cells of the adaptive immune 

system. During the development of progenitor B cells to mature B cells, the cells undergo 

selection at several checkpoints, which ensures that a diverse antibody repertoire is generated. 

Once the progenitors have matured they express a membrane-bound antibody, the B cell 

receptor (BCR), which in teleost fish is transmembrane IgM (Martensson et al., 2010). In 

teleost fish, the head kidney is considered the primary lymphoid tissue and a major source of 

B cells (Fänge, 1986). B cells are activated in response to antigenic stimulation and 

interactions with MHC class II molecules signalling them to differentiate into plasma cells, 

capable of secreting large quantities of antibody. Teleost B cells can be differentiated into 

plasmablasts which are characterised as replicating, low antibody secretors that bear minimal 

amounts of the B cell receptor and plasma cells which are characterised as non-replicating, 

terminally differentiated, bearing no B cell receptors (Bromage et al., 2004). Plasma cells can 

be further sorted into two distinct populations; the short-lived plasma cells and the long-lived 

plasma cells (Bromage et al., 2004). These distinct plasma cell populations possess different 

life spans, antigen affinity and life histories in regards to where they originated, and where 

they will eventually reside (regionality).  

IgM is used as a marker for B cells and the appearance of IgM+ cells in fish larvae is an 

indicator of immune system function (Tian et al., 2009b). Because sites such as Peyers 

patches and lymph nodes have not been described, it has been proposed that in fish such as 

trout the kidney and spleen act as sites of B cell differentiation (Bromage et al., 2004). B cell 

differentiation in fish does not involve class switching, however other loci have been 
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identified; IgD in catfish (Bengtén et al., 2006), IgT in trout (Hansen et al., 2005), and IgZ in 

zebrafish (Danilova et al., 2005). To date though only IgM has been shown to be involved in 

protective immunity in fish. Lastly plasma cells located in the head kidney can serve as a 

source of serum IgM antibodies and humoral memory (Bromage et al., 2004).  

1.3.5. T cells 

The T cells are another fundamental mediator of the adaptive immune response and can be 

divided in two major subsets based on the expression of the co-receptors CD4 (helper T cells) 

and CD8 (cytotoxic T cells) (Castro et al., 2010). In humans and mice, CD4+ T cells play a 

central role in initiating and maintaining diverse immune responses by recruitment and 

activation of cellular immunity, including CD8+ T cells, B cells, macrophages, and 

granulocytes, using MHC class II. In contrast CD8+ marks cytotoxic T cells that recognize 

antigenic peptides associated with the MHC class I present on most cells and function 

directly in the killing of target cells (Castro et al., 2010). T cells bind to the MHC complex on 

other cells using the T cell receptor (TCR) a common T cell marker, which is a heterodimer 

made up of an α- and a β-chain (although γδ T-cells also exist).  

The diversity of TCRαβ is generated by the assembly of V, D and, for β-chain, J genes 

(Castro et al., 2010). Recombination signal sequences and recombination activating genes 

(RAGs) are required for rearrangement of the TCR genes (Marchanlonis et al., 2002). The 

TCRβ-chain is rearranged and expressed on thymocytes before the TCRα-chain, which is 

only expressed after thymocytes have gone through a double negative and double positive 

phase expressing CD4 and CD8; before they go through positive and negative selection 

(Øvergård et al., 2011). Similarly fish CD4 receptors have been cloned in many fish 

(Picchietti et al., 2009; Øvergård et al., 2011), however the sequences show differences to 

those of higher vertebrates, but features such as gene organization, splicing pattern, binding 

motifs and key residues are clearly conserved, and gene syntenic relationships are also found 

among vertebrates (Castro et al., 2010). 
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1.4. Humoral immune system 

1.4.1. Components of the humoral immune system 

Like other vertebrates, fish activate their immune system after recognition of pathogen 

associated molecular patterns (PAMPs) through specific receptors. The innate immune 

system, characterised by being fast acting, non-specific and therefore not dependent on 

previous recognition of a pathogen, is considered essential, both in lower and higher 

vertebrates. It seems that lower vertebrates such as teleosts possess a powerful innate 

immunity and rely on their innate immunity even more than their mammalian counterparts 

(Tort et al., 2003). Additionally it is believed that the teleost adaptive immune responses are 

less effective and not as efficient as those of higher vertebrates. Given the very potent innate 

immunity of fish, selective pressure to fine tune the adaptive immune system may not have 

been very high (Trede et al., 2004). The adaptive immune system is relatively new in 

evolution, first appearing only 500 million years ago in a common ancestor to all vertebrates 

(Flajnik and Kasahara, 2010). It is characterised by its slower, later appearance, its specificity 

and its ability to recognise antigens previously encountered. The fish humoral immune 

system is similar to that in mammals and includes lysozyme, agglutinin, precipitins (lectins, 

opsonins), antibacterial lytic enzymes, transferrin (iron binding protein), as well as 

components of the complement system, interferons and immunoglobulins (Swain and Nayak, 

2009). However, discussion will focus on humoral components relative to this study. 

1.4.2. Complement 

The complement system operates through the classical, alternative and lectin pathways and is 

one of the most important components of the innate immune system (Nonaka and Smith, 

2000). Consisting of approximately 35 plasma and membrane bound proteins, the 

complement system acts as one of the first lines of defence against the invading pathogens 

(Wang et al., 2008). The alternative pathway which is antibody independent has very high 

activity in fish serum compared with mammalian serum (Yano, 1996), suggesting this 

pathway is more important in fish than mammals (Ellis, 1999). In teleosts, the complement 

system interacts with the adaptive immune response (Morgan et al., 2005) helping with 

chemotaxis, opsonization, phagocytosis and degradation of pathogens (Boshra et al., 2006). 

Complement factor 3 (C3) is central subsequent to activation of all pathways of the 
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complement system and hepatocytes represent the major source of C3 (Løvoll et al., 2007). 

Unlike the one C3 isoform seen in mammals, fish express several functionally active C3 

isoforms, from three in rainbow trout and medaka (Sunyer et al., 1996; Kuroda et al., 2000), 

to up to five in seabream and carp (Sunyer et al., 1997; Nakao et al., 2000). Teleost C3 shares 

the two-chain structure, yet shows changes in the catalytic residues of the protein; they have 

an altered affinity for several substrates suggesting they are products of several polymorphic 

genes (Slierendecht et al., 1999). Similar in the way that mammals have Ig variability which 

gives more efficiency in binding immunogens, it is possible that fish may have developed 

complement varability in regards to the complement response (Sunyer et al., 1996). 

Additionally these C3 isoforms in fish show higher hemolytic and bacteriolytic activity than 

in mammals, also justifying the preference for the alternative pathway response in fish 

(Sunyer and Tort, 1995).  

1.4.3. Lysozyme 

Lysozyme is another important innate defence parameter and is one of the most studied 

innate responses in fish (Tort et al., 2003). Produced by phagocytic cells such as neutrophils 

and macrophages, lysozyme acts on the peptidoglycan layer of bacterial cell walls resulting in 

the lysis of the bacteria and its functional role in fighting against infectious diseases of fish 

has been recorded (Fänge et al., 1976). The lysozyme response has been found to be variable 

in its potency depending on the species and the tissue location but is present in all species 

studied (Fänge et al., 1976; Murray and Fletcher, 1976). Additionally lysozyme often works 

simultaneously with other mechanisms of the nonspecific immune system, such as 

complement (Glynn, 1969; Wang et al., 2008; Wang and Zhang, 2010) Wang & Zhang, 

2010). It appears that the lysozyme response in fish may be induced very rapidly and may not 

only be related to bacterial presence but also to other alarm situations such as after stress 

(Demers et al., 1988; Demers and Bayne, 1997). 

1.4.4. Immunoglobulins 

The immunoglobulin (Ig) is the primary humoral component of the adaptive immune system 

and acts by recognising and binding to a unique part of the foreign target, termed the antigen 

(Magnadottir et al., 2005). Immunoglobulins are mainly produced by plasmablasts and 

plasma cells, and are found secreted into body fluids (including serum and mucosal 
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secretions) as antibodies (soluble form), or on the surface of B cells in the form of a BCR 

(membrane-bound form) (Martensson et al., 2010). Immunoglobulins operate in three ways; 

neutralising pathogens by binding to them, preventing them from entering or damaging cells, 

opsonising the pathogen promoting phagocytosis by macrophages or other cells and  by 

activating complement which helps with opsonisation and lyses some pathogens (Schroder 

and Cavacini, 2010). Some Igs also act as “natural antibodies” which are produced at tightly 

regulated levels in the complete absence of exogenous antigenic stimulation (Boes, 2000). 

They provide immediate, early and broad protection against pathogens, classifying them as an 

important part of the innate humoral immune system.  

The Ig structure isolated from teleost fishes is a tetrameric IgM of approximately 600 – 800 

kilodaltons (kDa) (Fig. 1.2). The tetramer structure of fish Ig is composed of four monomeric 

units, two identical heavy chains (H) and two light chains (L) of approximately 70 kDa and 

25 kDa respectively. Each subunit is either fully linked by covalent bonding or by a 

combination of covalent and noncovalent attachment (Morrison and Nowak, 2002). 

Additionally there is a carboxyl-terminal constant (C) domain, which together with the H 

chain, define effector functions of the immunoglobulin (Zhang et al., 2011). Based on the 

nature of the C domains of their H chains, immunoglobulins can be classified into different 

isotypes (classes) and subtypes (subclasses) (Zhang et al., 2011). In mammals, five Ig 

isotypes, IgM, IgD, IgG, IgE, and IgA, (Fig. 1.3.) have been identified, each possessing 

specific effector functions in humoral and cellular immune responses (Flajnik and Kasahara, 

2010).  

  



16 

 

Fig. 1.2. Teleost IgM tetramer 

 

Fig. 1.3. Human immunoglobulin isotypes. 

 

IgM is the only isotype functionally conserved in all jawed vertebrates (Zhang et al., 2011) 

and is the chief Ig isotype in fish, as well as being the most studied. The heavy chain locus 

for IgM, known as the IGHM gene, encodes four C domain-coding exons and two 

transmembrane (TM) exons in two physical forms: secreted (soluble) and transmembrane iso-

forms. The IGHM transcript of the secreted form in all teleosts consists of four Cµ domains 

(Cµ1-4), while the membrane form contains three Cµ domains and a TM domain connected 

to the end of Cµ3, with the Cµ4 exon spliced out (Bengtén et al., 1991; Hordvik et al., 1992; 

Wilson and Warr, 1992). A unique feature of teleost IgM is the fact that these molecules are 

not secreted as uniformly disulfide bonded oligomers; but instead various redox forms exist, 

giving rise to multiple IgM isomers (Kaattari et al., 1998). For example in salmonids it has 
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been shown that the basic covalent subunit is a monomer but the final combination for the 

tetramer may be a fully crosslinked tetramer or combinations of monomers, dimers or trimers 

(Evans et al., 1998).  

Untill recently the evaluation of mucosal antibody responses in fish has always been limited 

to IgM (Rombout et al., 2010). However, a new novel Ig molecule was discovered in 

zebrafish and trout in 2005, named IgZ (Danilova et al., 2005) and IgT respectively (Hansen 

et al, 2005). Using antibodies raised against trout IgT the identification and characterisation 

of a new lineage of B cells (IgT+) was achieved (Zhang et al., 2011). These IgT+ cells make 

up only a small portion of the B cells in the systemic lymphoid organs, but are found in 

greater numbers than IgM+ B cells in the gut (over 50% of B cells) (Zhang et al., 2011). From 

recent studies it is now believed that IgT specialises in teleost mucosal immunity (Zhang et 

al., 2010) and IgZ/IgT has been reported in many fish (Danilova et al., 2005; Hansen et al., 

2005; Gambon-Deza et al., 2010; Tadiso et al., 2011). The gene region of IgZ is sandwiched 

between two D and J clusters located upstream of μ region. This variation to the “translocon” 

type of Ig genomic arrangement in fish makes it unique (Ryo et al., 2010). The prototypic 

gene structure of the IgZ gene from trout and zebrafish consists of four constant domains 

similar to the IgM gene (Fig 1.1). In contrast, the fugu homolog has only two constant 

domains bridged with a hinge-like region joining these domains (Savan et al., 2005). Unlike 

the tetrameric IgM, IgZ is predicted to exist as a monomer (Zhang et al., 2011). 
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1.5. Ontogeny of the lymphoid organs 

1.5.1. Light microscopy for studying lymphoid organ ontogeny 

With the exception of zebrafish, studies have exclusively used light and/or electron 

microscopy to investigate the ontogeny of the main lymphoid organs of teleosts; the thymus, 

spleen and head kidney (Mulero et al., 2007b). Although the basic developmental 

mechanisms of teleosts are similar, there are differences in regards to the timing of 

developmental events (Table 1.1). These differences exist partly because of the widely 

varying duration of the embryonic period and larva development between teleost species, but 

also because development is affected by culture conditions, such as temperature, photoperiod 

and salinity (Falk-Petersen, 2005). Marine fish larvae, which typically weigh less than fresh 

water fish at hatch, can be shown to experience high mortality rates, have higher metabolic 

requirements, and have longer larval stage durations than do freshwater fish larvae. The 

difference in body size between typically small marine and typically large freshwater fish 

larvae is an important factor which affects their dynamics and energetics (Houde, 1993). 

Mortalities from starvation are more likely to occur with marine larvae, primarily due to their 

small body size, associated high metabolic demands, and possibly higher ingestion 

requirements (Houde, 1993). The onset of exogenous feeding is a crucial moment in 

developing fish larvae and this stage has been associated with massive mortalities. 

Additionally this stage is the first time larvae will come into contact with many new antigens 

present in the food. This influx of new antigens and possible pathogens has a big impact on 

the development of the gut (Yufera and Darias, 2007) and possibly the immune system.  

1.5.2. Eggs and larvae 

In general the development of fish eggs and larvae follows a similar pattern, however large 

differences exist between species in regards to egg size, yolk composition, developmental 

rates and egg incubation time (Blaxter, 1988; Howell et al., 1998). These contributing factors 

influence differences in regards to size at hatch, developmental status at hatch and thus the 

timing of development and maturity of various organs and organ systems (Blaxter, 1988; 

Kjørsvik et al., 2004). Additionally as mentioned, development is further affected by culture 

conditions, such as temperature, photoperiod and salinity (Falk-Petersen, 2005). Many marine 

fish cultivated in Europe such as Atlantic cod (Gadus morhua), turbot (Scophthalmus 
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maximus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) spawn from small, 

pelagic eggs (0.8 – 3 mm) and have an extended larval stage (Falk-Petersen, 2005); while 

others such as the Atlantic wolffish (Anarhichas lupus) spawn from large demersal eggs (5 – 

6 mm) at a relatively more advanced larval stage (Falk-Petersen and Hansen, 2003). Hapuka 

hatch from small 2 mm pelagic eggs with one or multiple oil droplets and rely on the yolksac 

until 11 dph when yolk sac reabsorption is almost complete. In general, the yolk sac provides 

the growing embryo with nutrition until the onset of exogenous feeding and contains 

maternally transferred factors essential for the protection of the growing fish (Swain and 

Nayak, 2009). 

1.5.3. Ontogeny of the head kidney 

Generally lymphoid organs develop earlier in fresh water species than in marine species 

(Willett et al., 1999). The kidney, thought to be the most important major lymphoid organ, is 

present at 4 days post fertilisation (dpf) in the zebrafish a fresh water species and contains 

hematopoietic cells such as developing erythrocytes and granulocytes. The amount of renal 

hematopoietic tissue increases rapidly; however, lymphocytes are not present until 3 wph 

(Willett et al., 1999). Similarily the head kidney is already observed and lymphoid before 

hatching in the rainbow trout (Razquin et al., 1990). In the marine fish species that have been 

studied, the lymphoid organs usually have not developed at the time of hatching. The kidney 

is present at hatch in some marine fish species such as Atlantic cod and turbot (Morrison, 

1993; Schrøder et al., 1998). In the turbot, the kidney anlage at hatch consisted of two 

rudimentary pronephric ducts running below the notochord with undifferentiated stem cells 

appearing between the pronephric ducts. In the kelp grouper (Epinephelus bruneus) the 

excretory part of the kidney was present at 1 dph consisting of tubules between the yolk sac 

and notochord (Kato et al., 2004) and within 2 days blast like cells appeared between the 

tubules. In Atlantic halibut, the excretory part of the anterior kidney was present at hatching, 

and consisted of two parallel tubuli located dorsally between the intestine anlage and the 

notochord (Patel et al., 2009). However, no hematopoietic cells or tissue were present at 

hatch. Similarly in the common dentex (Dentex dentex), the excretory part of the kidney was 

present at hatch but hematopoietic cells first appeared 2 days later (Santamaria et al., 2004). 

The head kidney of the sea bass first appeared at 10 dph, with the hemopoietic and lymphoid 

components of the tissue merged together, showing no evidence of regionalisation until later 
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juvenile stages (Abelli et al., 1996). Kidney tubules are present at hatch in the sea bream, but 

the first signs of hematopoietic tissue only appeared at 5 dph, in the form of apparent 

hematopoietic stem cells (Jósefsson and Tatner, 1993). 

1.5.4. Ontogeny of the spleen and thymus 

The spleen and thymus appear after the kidney in most marine teleosts; in turbot the spleen is 

seen at the end of the yolk sac stage as a small cluster of mesenchymal cells and blood 

capillaries (Padros and Crespo, 1996). However, in halibut, the spleen could not be observed 

during the yolk sac stage, instead appearing at 59 dph after the thymus, where it consisted of 

a small encapsulated organ consisting of a small cluster of erythrocytes, primitive reticular 

cells and primitive sinusoids (Patel et al., 2009). Lymphoid cells and connective tissue were 

present at 66 dph as the organ started to differentiate into red and white pulp. The kelp 

grouper spleen appears much earlier, at 6 dph appearing close to the gut as a group of blast 

like cells, but rapidly progressing with a distinct capsule and reticular cells at 8dph (Kato et 

al., 2004). The spleen of sea bream first appeared at 12 dph, consisting of a ‘bag’ of 

fibroblasts and fibrocytes next to the pancreas (Jósefsson and Tatner, 1993). The anlage of 

the spleen was first seen in sea bass at 17 dph in the anterior portion of the intestine, with 

only scarce lymphoid elements detected at 44 dph (Abelli et al., 1996). The thymus, the last 

lymphoid organ to appear in marine fish; appears as a paired organ in sea bream at 29 dph, in 

the branchial cavity on each side of the fish (Jósefsson and Tatner, 1993). In sea bass the 

thymic anlage appears lymphoid at 27 dph and starts becoming regionalised soon after, with 

numerous lymphoid cells filling the outer region (Abelli et al., 1996). In zebrafish the thymus 

appears during the embryo stage at 60 hours post fertilisation (hpf) and by 65 hpf it is 

colonised by immature lymphoblasts (Willett et al., 1999). The thymus first appears before 

the spleen in halibut, at 33 dph located near the gill arches at the dorsal part of the pharyngeal 

cavity, consisting of a collection of lymphoblast like cells surrounded by a single epithelial 

layer (Patel et al., 2009). However in the kelp grouper, a distinct thymus was observed at 12 

dph consisting of blast like cells with large pale nuclei (Kato et al., 2004). 
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1.5.5. Ontogeny of the digestive tract 

In most marine teleosts, the oesophagus starts to differentiate soon after hatching, usually just 

before the mouth first opens for the start of exogenous feeding (Zambonio-Infante et al., 

2008). The oesophagus at this stage is a short, narrow duct, lined with stratified or 

pseudostratified epithelium and connects the buccopharyngeal cavity with the intestine or 

stomach anlagen. The first functional goblet cells appear scattered among the epithelial cells 

of the oesophagus and the timing varies amongst species. In the yellow tail flounder 

(Limanda ferruginea) these cells are present at the time of exogenous feeding while in the 

gilhead seabream and European sea bass, they are present during later stages (Sarasquete et 

al., 1995; Garcia-Hernandez et al., 2001). These goblet cells are involved in the transport, 

absorption and protection processes of the gut (Zambonio-Infante et al., 2008).  

In many species a basic stomach is distinguishable soon after hatching between the 

oesophagus and the intestine. The stomach is the last organ of the digestive system to 

differentiate, although, not all types of fish have stomachs (Zambonio-Infante et al., 2008). 

As larvae grow, the mucosa of the stomach develops forming folds and within these folds 

form gastric pits. Gastric glands differentiate within these gastric pits and the stomach is 

considered developed at this stage (Zambonio-Infante et al., 2008). The pancreas is involved 

in producing hormones such as insulin and glucagon as well as screting digestive enzymes 

(Hoehne-Reitan and Kjørsvik, 2004). An anlage is usually present at hatch and the exocrine 

cells differentiate soon after. The appearance of excretory ducts and blood vessels usually 

occur before the opening of the mouth (Zambonio-Infante et al., 2008). The liver which is 

involved in nutrient metabolism, production of bile and lipid storage develops from a ventral 

budding of the gut close to the yolk sac (Hoehne-Reitan and Kjørsvik, 2004). In cold water 

species such as haddock (Hamlin et al., 2000), the liver is already differentiated at hatch, 

whereas in temperate water species such as the common dentex (Santamaria et al., 2004) and 

gilthead seabream (Sarasquete et al., 1995) the liver is absent at hatch. The intestine which is 

the longest portion of the digestive tract is present at hatch in larvae as a rudiment forming an 

intestinal valve at 5 dph in seabass, 4-5 dph in common dentex and 4-6 dph in sea bream 

(Sarasquete et al., 1995; Garcia-Hernandez et al., 2001; Santamaria et al., 2004). During 

larval development, the intestine coils forming loops as it increases in size. As these folds 

increase, the goblet cells begin to differentiate in the epithelium. The pyloric caeca is 
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involved in nutrient digestion and absorption and begins development as the last 

morphological change in intestinal development in some species such as haddock (Hamlin et 

al., 2000). The development of the pyloric caeca in the intestine, together with gastric glands 

in the stomach, shows maturation of the digestive system similar to the adult determining the 

transformation from larva to juvenile (Bisbal and Bengtson, 1995). 
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Table 1.1 Timing in dph and hpf of the major lymphoid organs in several perciformes species including the cyprinid zebrafish. 

Species Family Temperature 
˚C 

Method Head kidney Spleen Thymus Reference 

Atlantic halibut Pleuronectidae 6˚C Light microscopy 
and IHC 

Tubules present at hatch. 
Hematopoietic tissue at 40 

– 45 dph 

59 dph 33 dph (Patel et al., 2009) 

European sea bass Moronidae 16 ˚C Light & electron 
microscopy 

10 dph 17 dph 27 dph (Abelli et al., 1996) 

Gilthead sea bream Sparidae 19-20 ˚C Light microscopy Tubules present at hatch. 
Hematopoietic cells at 5 

dph 

12 dph 29 dph (Jósefsson and 
Tatner, 1993) 

Zebrafish Cyprinidae 28 ˚C Light & electron 
microscopy 

96 hpf N/A 60 hpf (Willett et al., 
1999) 

Common dentex Sparidae 18 ˚C Light microscopy 3 dph 5 dph 16 dph (Santamaria et al., 
2004) 

Kelp grouper Serranidae 
 

25 ˚C Light microscopy Tubules present at 1 dph. 
Hematopoietic cells at 3  

dph 

6 dph 12 dph (Kato et al., 2004) 
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1.6. Ontogeny of the cellular and humoral immune system  

1.6.1. Ontogeny of the cellular immune system using cell markers 

In fish development, embryonic and definitive hematopoiesis are separate and different 

processes, which is similar to what is described in mammals (Galloway and Zon, 2003). In 

teleosts, three models of primitive hematopoiesis have been documented. In species such as 

angelfish, the initial hematopoiesis is limited to the yolk sac blood islands (Al-Adhami and 

Kunz, 1976). But in other species such as zebrafish, during embryogenesis, the first and only 

hematopoietic site is the intraembryonic cell mass (Willett et al., 1999). Further still, in 

species such as the trout, early hematopoiesis occurs at both locations (Iuchi and Yamamoto, 

1983). Unlike mammals, bone marrow is absent in fish and instead the head kidney assumes 

hematopoietic function. Hematopoietic stem cells of the fish head kidney give rise to the 

multipotent myeloid-erythroid progenitors (MMP) and the bipotent lymphoid progenitors 

(BLP). The MMPs are the precursors for the erythrocytes and thrombocytes, as well as the 

innate immune cells such as the granulocytes and monocytes/macrophages (Rombout et al., 

2005). BLPs give rise to the lymphocytes; the B and T cells which are responsible for the 

adaptive immune response. Until recently an absence of cell markers has impaired efforts for 

studying teleost cellular and humoral ontogeny (Mulero et al., 2007b), however, the zebrafish 

has proven to be a powerful vertebrate model for the study of developmental immunity 

(Trede et al., 2004).  Lastly, comparison of data between fish species can be difficult due to 

the different detection techniques used such as flow cytometry, immuno- or in situ histology, 

PCR, ELISA or western blotting of tissue homogenates (Magnadottir et al., 2005). 

1.6.2. Ontogeny of antigen presenting cells 

Macrophages have been shown to play an essential role in host defense, with roles in both the 

innate and adaptive immune responses (Gordon, 2007; Mosser and Edwards, 2008). Colony-

stimulating factor (CSF1) is the principal regulator of the survival, proliferation, and 

differentiation of macrophages and their precursors (Fixe and Praloran, 1997). The 

macrophage CSF1 receptor (CSF1R) has become an accepted marker of macrophages, due to 

its co-expression with L-plastin but not with myeloperoxidase (MPO) (Clay and 

Ramakrishnan, 2005; Meijer et al., 2008). The expression of CSF1R has been used to detect 
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the development of macrophages in fish species (Roca et al., 2006; Hanington et al., 2009a; 

Mathias et al., 2009). Interestingly macrophages can be present at very early stages, seen at 1 

dpf in zebrafish embryo and originating from hematopoietic areas preceeding the head 

kidney. These macrophages were involved with phagocytosis of cell corpses and showed 

antibacterial ability even during the embryonic stage of the fish (Herbomel et al., 1999). 

Other described methods to identify macrophages require phagocytosis of fluorescent 

bacteria or the dye Neutral Red (Clay and Ramakrishnan, 2005; Clay et al., 2007). 

MHC molecules are vital to proper function of the immune system and are involved in both 

innate and adaptive immunity with a chief role in antigen presentation and recognition of 

non-self (Bjorkman et al., 1987; Brown et al., 1993). In mammalian immunology, MHC class 

I molecules are widely expressed on all nucleated cells and present processed peptides from 

endogenously produced antigens to CD8+ T cells. On the other hand, MHC class II molecules 

present peptides from exogenously produced antigens to CD4+ cells, and are almost 

exclusively restricted to professional antigen presenting cells (APC), such as the 

monocyte/macrophage, dendritic and B cell lineages making MHC class II a professional 

APC marker (Margulies and McCluskey, 2003). MHC has been reported in many fish species 

including the channel catfish, sea bass, common carp, rainbow trout, and zebrafish 

(Rodrigues et al., 1995; Fischer et al., 2005; Buonocore et al., 2007; Moulana et al., 2008).  

1.6.3. Ontogeny of T- and B-lymphocytes 

Only a few T cell markers are available for fish and as a result of this there are a limited 

number of studies on T-cell ontogeny (Zapata et al., 2006). Usually morphological evidence 

combined with T cell markers such as TCRα and TCRβ are used to confirm the appearance of 

T cells in the thymus (Willett et al., 1999; Trede et al., 2004). The TCRβ -chain is the first 

chain to be rearranged. It is expressed on the surface of the thymocytes as a part of a pre-TCR 

complex, consisting of TCRβ, a pre-Tα chain, and the CD3 chains followed by the expression 

of the TCRα (Øvergård et al., 2011). However, many researchers only use the TCRα as a 

marker of mature T cells. In zebrafish the TCRα chain expression first begins in the thymus 

at 4 dpf (Danilova et al., 2004), two days after the appearance of the first lymphoid cells in 

the organ. In the sea bass, immunohistochemical detection of assumed T cells (DLT-15 

positive cells) occurs in the thymus 3 days after the first lymphoblasts appeared (Scapigliati 
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et al., 2002). However, it is shown that lymphoid progenitors that colonize the early thymic 

primordium only differentiate into immunocompetent T cells after the thymic stroma has 

matured (Castillo et al., 1990). These progenitors are believed to originate from the head 

kidney which will be discussed later. 

In most teleosts that have been studied, the B-lymphocytes have been suggested to originate 

and differentiate in the kidney (Hansen and Zapata, 1998), although the origin and time of 

appearance of B-lymphocytes in teleosts is a matter of discussion (Zapata et al., 2006). For 

example in one study on zebrafish they were unable to demonstrate RAG1 expression in the 

kidney by whole mount in situ hybridization (WISH), suggesting that the RAG probe was 

either unable to sufficiently penetrate the fish body or that there was a lack of lymphoid 

progenitors in the embryonic kidney. Other authors using the same WISH technique, 

demonstrated RAG1 expression interestingly in the zebrafish pancreas by 4 dpf followed by 

the expression of IgM at 10 dpf (Danilova and Steiner, 2002). On the other hand, IgM has 

been detected as early as 3 dpf by RT-PCR in zebrafish (Lam et al., 2004) and generally in 

zebrafish a few IgH chain positive cells first appear around 1-2 weeks post fertilisation 

(Zapata et al., 2006). In the gadoid haddock (Melanogrammus aeglefinus) using RT-PCR, 

although levels of IgM were detected relatively early between 12-16 dph, a large increase in 

IgM expression was first detected at 40 dph, after a large increase in RAG1 expression at 33 

dph (Corripio-Miyar et al., 2007). 

1.6.4. Ontogeny of C3 

Ontogenic studies of fish complement components are limited and the studies have focused 

on larvae development mostly after hatching. Immunohistochemical techniques have been 

used to study the ontogeny of C3 at various developmental stages in Atlantic cod and Atlantic 

halibut (Lange et al., 2004a; Lange et al., 2004b). In Atlantic halibut, C3 has been detected in 

several tissues and cells at developmental stages from 5 to 99 dph. Five dph C3 was found in 

the skeletal muscle fibres and the yolk sac. By 15 dph C3 was detected in liver hepatocytes 

and endothelial cells. Fifty dph showed C3 being detected for the first time in the myocardial 

cells of the heart as well as the gut and the mucosal cells of the skin. Only by 57 dph was C3 

observed in the lymphomyeloid cells of the kidney (Lange et al., 2004a). Using RT-PCR C3 

products were first detected in the spotted wolffish at 49 dpf, which is still during the 



27 

 

embryonic period in wolffish (Ellingsen et al., 2005). Lastly using RT-PCR in Atlantic 

salmon it was shown that C3 was first expressed at 14 dph (Løvoll et al., 2007). 
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1.7. Maternal immunity and Immunocompetence 

1.7.1. Maternal transfer of Immunity 

Maternal immunity transmission is defined as the transfer of immune factors by an 

immunocompetent female to an immunologically naive neonate transplacentally or through 

colostrum, milk or yolk (Grindstaff et al., 2003). In teleosts both innate and adaptive immune 

factors such as Ig, complement factors, lysozyme, serum amyloid A and other lectins are 

commonly transmitted to offspring (Hanif et al., 2004).  These transferred maternal factors 

provide larvae with a limited period of immunity, which gives young fish a chance to survive 

against deadly pathogens while their own immune system develops (Swain and Nayak, 

2009). Because of the delayed maturation of lymphoid organs and acquisition of an 

autologous immune system in fish, maternal immunity is essential for survival during the 

early life stages. Possibly the most important of factors to be transferred are the maternal 

immunoglobulins, specifically IgM. Like reptiles and birds, IgM is transferred through yolk 

in fish. During the early stage of vitellogenesis, the maternal IgM is transferred through the 

yolk, to the immature ovaries possessing early yolk globule stage oocytes. This is followed 

by its transfer in a sequential manner to reproductively active mature ovaries, eggs and finally 

yolk sac larvae (Kanlis et al., 1995). Although the mechanism of IgM uptake and its storage 

within the eggs is yet to be established, the transport of IgM to eggs is believed to occur by 

transcytosis across the follicle cells (Swain and Nayak, 2009). The transfer process of IgM 

could be from the blood to the follicle which is dependent on the variation of the circulating 

Ig concentration. A significant increase in serum Ig concentration during the reproductive 

period in multiple fishes supports this impression (Kanlis et al., 1995; Picchitti et al., 2001). 

Similarly, mouth bearers can transfer some immunity to larvae through the mucus secreted 

from the mouth cavity (Sin et al., 1994).  

These maternally transferred Ig’s may be of great importance for early defence against 

pathogens in the eggs containing developing embryos and  the growing larvae, especially 

because of the relatively late appearance of autologous humoral IgM in fish juveniles 

(Magnadottir et al., 2005). Because the persistence of maternal Ig in offspring circulation 

depends on body size and metabolic rate, in teleosts maternally derived IgM usually persists 

for limited duration, becoming nearly exhausted within the completion of the yolk absorption 
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process, and completely disappear during larval stages. For the most part maternally derived 

IgM of eggs is tetrameric and structurally and antigenically identical to the maternal serum 

IgM and shows the same total and heavy and light chain sizes (Swain and Nayak, 2009). 

However, the transfer of monomeric and dimeric forms has also been demonstrated (Lobb 

and Clem, 1981; Evans et al., 1998; Kaattari et al., 1998). Studies on many species of fish 

have shown that maternal Ig’s are transferred to the offspring including the sea bream, sea 

bass and tilapia (Takemura and Takano, 1997; Hanif et al., 2004; Picchietti et al., 2004). 

Transfer of not only the Ig protein but also the mRNA transcripts to the oocytes has been 

documented (Picchietti et al., 2006), and is thought to be translated during the early stages of 

development when maternal Ig is slowly depleted. Additionally, antibodies that have been 

raised in the maternal circulation after immunisation can be incorporated into vitellogenic 

oocytes in the ovary and then transferred from the larval yolk sac into the larval circulation. 

These transferred antibodies degrade gradually due to metabolism, but maintain their ability 

to bind antigens and give the larval offspring relatively good survival (Sin et al., 1994; Hanif 

et al., 2005). Although immunisation can provide transferred protection to offspring in some 

species of fish, in other species offspring are not protected. Because of this a different or 

additional role could be attributed to maternal IgM, such as a nutritional yolk protein 

(Magnadottir et al., 2005). Whether IgD and IgT/IgZ have a role in maternal immunity is yet 

to be discovered. 

In addition to antibodies, many complement components such as C3, C4, C5, C7, factor B 

and D have been reported to be transferred to eggs and larvae in rainbow trout (Løvoll et al., 

2006), sea bream (Hanif et al., 2004), zebrafish (Wang et al., 2008; Wang and Zhang, 2010) 

and spotted wolfish (Ellingsen et al., 2005), suggesting a key role for complement in fish 

maternal immunity. The powerful innate antibacterial enzyme lysozyme is also commonly 

transferred and has been found in the ova, embryos and eggs of coho salmon, sea bass and 

zebrafish eggs (Yousif et al., 1991; Cecchini et al., 2000; Wang et al., 2008; Wang and 

Zhang, 2010). Furthermore, it was proved that the purified lysozyme from the eggs of coho 

salmon had antibacterial activity, which played a role to prevent the vertical transmission of 

some bacteria from mother to progeny (Yousif et al., 1991). Similar findings of antibacterial 

activity were seen in the eggs of zebrafish (Wang and Zhang, 2010). However, few functional 

studies concerning lysozymes role in defending the early embryos and larvae against exotic 

pathogens have been carried out thus far. 
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1.7.2. Factors affecting maternal immunity 

In order to create large and healthy yields of fish for aquaculture the health of the brood fish 

needs to be taken into account. The overall health and immunity of brood fish is affected by 

different environmental, seasonal and nutritional conditions (Swain and Nayak, 2009). 

Seasonal cycles can affect certain biological activities such as feeding, behaviour, 

metabolism and reproduction in fishes (Sumpter, 1997; Cerda-Reverter et al., 1998). It is well 

known that the relationship between the fish gonad development and plasma level of gonadal 

steroids is affected by seasonal changes (Lambert et al., 1978). One of the key environmental 

factors is temperature variation, which can disturb the homeostasis of living animals and 

affect the growth and metabolism of fish (Das and Ratha, 1996; Person-Le Ruyet et al., 

2004). In many fishes, decreased immunity is often recorded during cold seasons such as 

autumn and winter; as well as a reduction in immunocompetence (Bly and Clem, 1991). 

Depressed innate immunity and susceptibility to microbial infections have been reported 

more in the winter, due to the lower water temperatures (Swain et al., 2007). Brood fish also 

show seasonal variations of many immune parameters such as the circulation levels of many 

different blood cells including erythrocytes and leucocytes (Akmirza and Tepecik, 2007).  

Likewise, nutrition plays an important role in the growth, immunity, reproduction and overall 

health status of any organism. Maternal nutrition, around the time of conception is very 

crucial for ensuring the birth of full-term viable and healthy offspring (Williams, 1994) and 

the role of nutritions impact on immunity and disease resistance in fish has been reported 

(Blazer, 1992). Poor nutrition during early larval stages can restrict a fishes developmental 

potential and delay the first maturation age (Swain et al., 2007). Additionally, a restricted 

food supply during  oocyte differentiation in females reduces the number of eggs (Swain and 

Nayak, 2009). Generally a good balance of macro and micronutrients such as amino acids, 

vitamins, polyunsaturated fatty acids, trace elements and enzyme co-factors are essential for 

not only normal growth and development of the fish but also for development and function of 

the immune system (Swain and Nayak, 2009).  

1.7.3. Immunocompetence 

Immunostimulation and vaccination can provide fish protection from potential pathogens. 

However, the effectiveness of immunostimulation and vaccination methods used on cultured 
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fish largely depends on the level of maturity of their immune system (Mulero et al., 2007b). 

Emergence of the immune organs followed by their active immune cells such as IgM+ cells 

can be a gauge of immunocompetence, when an organism’s immune system has reached 

maturity. Because vaccination of fish larvae at too young an age can lead to undesired effects 

such as immunosuppression or tolerance (Mulero et al., 2007b), research must be done to 

discover the timing of immunocompetence so vaccination trials can be effective.  For carp 

and gilthead seabream, 2 month old fish appear to be suitable for oral vaccination (Joosten et 

al., 1995). Yet nothing is known about the immune system of hapuka or when their larvae 

become immunocompent. For successful aquaculture of marine fin fish, understanding and 

knowledge of their immune system is essential. 
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1.8. Aims and objectives 

The overall aim of this study is to investigate the development of the hapuka immune system 

from the egg through the larval stage to the adult. Developmental aspects will be compared 

with known data from closely related fish species such as members of the perciform order of 

fish and in particular focusing on species important in the aquaculture industry.  

Specific aims will include: 

Study the ontogeny of the major lymphoid organs in hapuka; the head kidney, spleen and 

thymus. 

Determine when and where IgM+ cells appear during larval development. 

Identify the onset of transcription for immune related genes. 

Determine whether the maternal transfer of immune factors occurs in hapuka eggs. 

Establish the level of maturity of the juvenile leucocyte populations comparing them with 

adults. Describe the morphology and distribution of the hapuka leucocytes. 

Hypothesis: This thesis will address the hypothesis that the development of the hapuka 

immune system will closely resemble other marine dwelling perciform fish. The kidney will 

be the first lymphoid organ to develop followed by the spleen and thymus. Components of 

the innate immune system should develop earlier than the adaptive immune system and cells 

of the innate immune system should be present and mature before cells of the adaptive have 

developed.  
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Chapter 2 – Materials and methods 

2.1. Fish rearing and sampling procedures 

Hapuka were reared at the National Institute of Water and Atmospheric research’s (NIWA) 

Bream Bay Aquaculture Park, Bream Bay, Northland, New Zealand. 

2.1.1. Hapuka brood stock husbandry 

The population of broodstock consisted of 37 hapuka of wild origin (19 females, 17 males 

and 1 unknown sex) with an average weight of 19.5 kg (average fork length 100cm). 

Broodstock were caught from the East Coast of Northern New Zealand between 2003 and 

2006 using hook and line and then transported to NIWA’s Bream Bay Aquaculture Park in 

insulated oxygenated containers. The fish were reared in two 70m³ circular rearing tanks and 

were kept on a naturally simulated photoperiod except from May to November when day 

length was kept constant at 9h 45 min light. Sea water temperature ranged from 11.5 to 21.0 

˚C and during spawning (August to November) was maintained between 12.3 and 14.9˚C. 

Incoming water was sand filtered and ultraviolet light treated. Broodstock were hand fed 

three times a week to satiation on a diet of New Zealand arrow squid (Nototodarus sloanii) 

and pilchards (Sardinops neopilchardus) enriched with vitamins and oils (Nutra-brood 

nutrition supplement). Serum was taken from three random adult hapuka for use as a control. 

2.1.2. Hapuka eggs 

The broodstock in both tanks were allowed to spawn naturally. Eggs from 3 different clutches 

were collected using an external surface egg collector which involved the floating eggs 

passively moving into a net. Egg collectors were checked a minimum of 3 times daily and all 

eggs present were collected. Collected eggs were allowed to settle for 5 minutes to allow the 

negatively buoyant eggs to sink and the total batch volume plus the floating and sinking egg 

volumes were calculated. The negatively buoyant eggs were discarded preceding incubation 

and were also excluded from further sampling. Samples of approximately 200 eggs were 

taken at 0, 1, 2, 3, 4 and 5 dpf from the 3 clutches. 
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2.1.3. Hapuka larvae  

The remaining collected eggs were rinsed and added to a 400L incubator tanks for hatching. 

Upwelling water current was maintained (8 L min-¹) and the incubator tank was oxygenated 

with 2 air stones. Hatched larvae were reared for 11 days in the 400L incubators under  

fluorescent lights set to 10 hours light:14 hours dark photoperiod, at 13-14˚C after which they 

were transferred to a new tank for the remainder of the sampling. This tank was maintained at 

a temperature ranging from 15 - 19˚C with dissolved oxygen (DO) % ranging from 7.6 to 

11.4mg/L. The larvae were fed rotifers from 11 dph to 22 dph (12 days) and then artemia 

from 22 dph to 56 dph (34 days). Dry pellet feed commenced at 40 dph, and continued until 

the end of sampling. Larval samples from the 3 clutches were taken at 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 16, 20, 24, 32, 45, 50, 63, 72, 80 and 90 dph. Five to 10 larvae were collected on 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20 and 24 dph. Three juveniles were collected on 32, 

45, 50, 63, 72, 80 and 90 dph. 
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2.2. Protein detection and measurement of IgM 

2.2.1. Standardising protein samples 

Egg samples for 0, 1, 2, 3, 4 and 5 dpf were prepared for each of the three clutches by pooling 

together 60 hapuka eggs each. Egg samples were homogenised with 350 µl of 10mM 

phosphate-buffered saline (PBS) pH 7.2 containing Complete Protease Inhibitor Cocktail 

(Roche) (according to manufacturers instructions). Larval samples for 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 16, 20, 32, 45 and 50 dph were prepared for each of the three clutches by pooling 

together 3 larvae/juveniles each. Larval samples were homogenised with an approximately 

equal volume of 10mM PBS pH 7.2 containing Complete Protease Inhibitor Cocktail 

(Roche). Each homogenised sample was centrifuged at 14,500 g for 10 min at 4˚C and the 

supernatant collected. Total protein content from the supernatants was measured by Bradford 

reagent (Sigma) protein assay. All protein samples were adjusted to 100 µg/ml total protein in 

PBS, and stored at -80˚C until required. 

2.2.2. Enzyme-linked immunosorbent assays (ELISA) 

Flat-bottom 96 well plates were coated with serial dilutions (ranging from 1:4 to 1:1024) of 

the egg and larval protein samples (previously adjusted to 100 µg/ml total protein) in coating 

buffer (50mM sodium carbonate (Na₂CO₃) pH 9.6), and left overnight at 4˚C. Positive 

controls consisted of serial dilutions (ranging from 1:4 to 1:1024) of adult groper serum. 

Preliminary experiments using the complete series of dilutions indicated the optimal amount 

of sample required to measure IgM levels. Thus, plates were coated with 2.5 µg total protein 

from each sample. Plates were washed three times with 200 µl of PBT (10mM PBS with 

0.05% Tween 20), then blocked with 200 µl of 3% bovine serum albumin (BSA) in PBT for 

1 h at room temperature. The plates were then washed twice with 200 µl PBT and incubated 

with 100 µl of the primary antibody F06 (a mouse anti-giant gourami (Osphronemus goramy) 

IgM monoclonal antibody (Aquatic Diagnostics Ltd, Institute of Aquaculture, University of 

Stirling, Stirling) at 400 ng/ml concentration in 10mM PBS/PBT (1:2)) for 1 h at room 

temperature. The reactivity of primary antibody F06 against groper serum was tested by 

ELISA, dot blots and western blots during preliminary experiments (Irene Salinas, personal 

communication, 2011). Additionally, flow cytometry analysis of adult groper peripheral 
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blood leucocytes (PBLs) revealed that only one population of lymphocytes was stained by 

primary antibody F06 (Irene Salinas, personal communication, 2011). After washing 3x with 

200 μl PBT, 100 µl of a HRP-conjugated goat anti-mouse IgG (Jackson Immunoresearch, 

USA) at 1.5 μg/ml (in 10mM PBS/PBT (1:2)) was added to each well and incubated for 1 h 

at room temperature in the dark. After washing 3x with 200 µl PBT the peroxidase activity 

was measured by adding 100 µl of 3,3’,5,5’-tetramethylbenzidine (TMB) (Sigma-Aldrich) 

solution containing 3% H₂O₂ to each well. The plates were incubated in the dark at room 

temperature for 1-10 minutes and the enzyme reaction was stopped by adding 50 µl sulphuric 

acid solution (2M) to each well. The optical density of each sample was measured at 450nm 

using a Versamax Funable microplate reader (Molecular Devices), to give absorbance/2.5 µg 

of total protein; absorbance/2.5 µg of total protein is directly proportional to IgM 

concentration. 

2.2.3. Dot blot 

A PDVF membrane was activated by placing it in methanol for 10 seconds and then in sterile 

water for 5 minutes. The membrane was then kept in PBT (10mM PBS with 0.15% Tween 

20) until samples were loaded. Four µl samples of eggs from 2 different batches (0, 1, 2, 3, 4 

and 5 dpf) were pipetted onto the membrane and left until the membrane appeared dry. The 

membrane was placed in methanol for 1 second and then back into PBT, before being placed 

into 20 ml of blocking buffer (5% non fat milk powder in PBT) for 1.5 hours on a shaker. 

The milk was drained and the membrane incubated with 7 ml of the primary antibody F06 

(Aquatic Diagnostics Ltd) in PBT, at a concentration of 1 µg/ml for 1.5 hours on a shaker at 

room temperature. The primary antibody was poured out and the membrane washed 5 times 

with PBT for 5 minutes each wash. The membrane was incubated with the seconday antibody 

a goat anti-mouse IgG, Cy3 conjugate (Jackson Immunoresearch) at 1.4 µg/ml for 1 hour on a 

shaker in the dark at room temperature. The secondary antibody was tipped out and the 

membrane washed 5 times with PBT for 5 minutes each wash in the dark. The membrane was 

scanned in a fluorescent image analyser (Fujifilm FIA-5100 (Alphatech Systems)) 
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2.2.4. Western blot 

Twelve µl of the egg protein samples (previously adjusted to 100 µg/ml total protein) and 

adult serum control samples were prepared with 4 µl of 4x Laemmli Buffer to give a final 

concentration of 1x. Samples were heated for 5 min at 97˚C and loaded into a precast 

polyacrylamide gel (Thermo Scientific), then run for approximately 1 h at 120 volts (V). The 

gels were assembled with PVDF membranes (Amersham Hybond, GE Healthcare) that had 

been activated in methanol for 10 s and transferred for 17 hours at 20 V. Membranes were 

incubated in blocking buffer made from 5% non fat milk powder in PBT (10mM PBS with 

0.15% Tween 20) then rinsed briefly with PBT. After rinsing (no wash) the membranes were 

incubated with primary antibody F06 at 400 ng/ml concentration in 10mM PBS/PBT (1:2) for 

1.5 hours at room temperature with gentle shaking. Membranes were washed 5 times with 

PBT for 5 minutes, then incubated with the secondary antibody FITC-donkey anti mouse IgG 

(Jackson Scientific) at a concentration of 700 ng/ml in 10mM PBS/PBT (1:2) for 1.5 hours at 

room temperature with gentle shaking. Membranes were washed 5 times for 5 minutes in 

PBT and then scanned in a fluorescent image analyser (Fujifilm FIA-5100 (Alphatech 

Systems)).  

2.2.5. Complement assay 

A red blood cell suspension was made by adding 12 ml of fresh defibrinated sheep blood to a 

50 ml tube containing 35 ml Hanks buffer (no calcium) with Mg2+ (10 mM) and ethylene 

glycol tetraacetic acid (EGTA) (10 mM). The tube was mixed gently and centrifuged at 400 g 

for 10 min with no brake or rapid deacceleration to avoid cell lysis. The supernatant was 

removed and a wash performed using Hanks buffer. An additional 50 ml of Hanks buffer was 

added to resuspend the pellet. The tube was centrifuged at 400 g for 10 min after which no 

redness was observed in the red blood cell suspension. Into 96 well plates, 40 µl of egg (0, 1, 

2, 3, 4 and 5 dpf) and larval (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 32, 45, 50 and 63 

dph) protein samples (previously adjusted to 100 µg/ml total protein) were pipetted. Forty µl 

of adult hapuka serum was used as a positive control and 40 µl of PBS (10 mM) was used as 

a negative control. Sixty µl of Hanks buffer was added to each well. Seven serial dilutions 

were made for each sample, decreasing in concentration by 50% each time. One hundred µl 

of the red blood cell suspension was added to each well and the plates incubated at room 

temperature for 1 h 30 min with gentle agitation. The plates were centrifuged at 400 g for 10 
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min and the resulting supernatants pipetted into clean 96 well plates. Supernatant absorbances 

were measured at 550 nm in a Versamax microplate reader (Molecular Devices). 

2.2.6. Lysozyme assay 

A series of lysozyme standards from chicken egg white (Sigma) in phosphate/citrate (0.1 M) 

buffer containing 0.09 % NaCl, pH 5.8 were made ranging from 0 to 40 µg/ml; 25 µl of these 

lysozyme standards were pipetted into a 96 well plate. Twentyfive µl of hapuka egg (0 dpf) 

and juvenile larvae (90 dph) protein samples (previously adjusted to 100 µg/ml total protein) 

were pipetted in triplicate into the flat bottom 96 well plate. Twentyfive µl of adult hapuka 

serum was used as a positive control and 25 µl of PBS (10 mM) was used as a negative 

control. To each well, 175 µl of Micrococcus lysodeiketicus (Sigma) at 0.75 mg/ml in 

phosphate/citrate (0.1 M) buffer containing 0.09 % NaCl, pH 5.8 was added. The plate was 

immediately placed in a Versamax microplate reader (Molecular Devices). After 10 seconds 

of initial shaking, the absorbance at 450 nm was read in negative kinetics mode at 15 second 

intervals over 5 minutes. Sample values were calculated using a standard curve of Vmax rate 

(OD/min) from the known standards and the resulting activity was expressed in lysozyme 

units. 
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2.3. Gene expression studies 

2.3.1. Total RNA and cDNA preparation for reverse transcription polymerase chain reaction 

(RT-PCR) 

RT-PCR techniques were carried out in order to obtain larval cDNA for ontogenic mRNA 

expression analysis (IgM, IgZ, CSF1R, C3, Il-12, MHCIIα, TCRα, TCRβ, RAG1 and B-

actin) and hapuka gene sequences (IgM, IgZ and MHCIIα). Larval samples for 1, 2, 3, 6, 9, 

12, 20, 24, 32, 45, 50 and 63 dph were prepared for each of the three clutches by pooling 

together 5 larvae/juveniles each. Larvae sampled for gene expression studies were rinsed with 

sterile 10 mM PBS then placed in RNA Later (Ambion) and stored at -20˚C until use. Total 

RNA was isolated using a High Pure RNA Tissue Kit (Roche) according to manufacturer’s 

instructions. Tissue fragments were homogenised in tubes containing autoclaved glass beads 

and lysed using a ribolyser (Hybaid) under conditions to avoid overheating. Head kidneys 

from adult hapuka were used as controls using the method described. Total RNA was stored 

at -80˚C until use. The concentration of total RNA was assessed with a Qubit Fluorometer 

(Invitrogen). Total cDNA was obtained by reverse transcription using Transcriptor First 

Strand cDNA Synthesis Kit (Roche) according to manufacturer’s instructions. The reaction 

volume was 20 μl and contained 19 ng of total RNA. Non-template control was performed 

for a selection of samples to verify the absence of genomic DNA. The cDNA was stored at -

20˚C until use. 
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 2.3.2. Primer design 

Primers were designed from conserved regions of the gene sequences of related fish species 

that were downloaded from national zcentre for biotechnology information (NCBI) GenBank 

and aligned using Geneious v5.3.6. For the IgM heavy chain gene, available sequences from 

rainbow trout (Onchorhyncus mykiss) (U04615), zebra fish (Danio rerio) (AF281479), fugu 

(Takifugu rubripes) (AB217621) and medaka (Oryzias latipes) (AB274729) were aligned to 

create degenerate primers for hapuka. The degenerate primers used for initial IgM detection 

in hapuka are shown in table 2 and the sequenced hapuka IgM primers are listed in table 1. 

The pair IGMFW1 and IGMRV2 yielded a single band of 920 bp. The PCR product was 

sequenced and the acquired IgM sequence was analyzed and compared using the BLAST 

program (Altschul, 1990), and a phylogenetic tree created using Geneious v5.3.6. For the IgZ 

gene, available sequences from orange-spotted grouper (Epinephelus coioides) 

(GU182366.1), mandarin fish (Siniperca chuatsi) (DQ016660.1), grass carp 

(Ctenopharyngodon idella) (EU243240.1) and zebrafish (AY646282.1, (AY646281.1), were 

aligned to create degenerate primers for hapuka. The degenerate primers used for initial IgZ 

detection in hapuka are shown in table 3. The pair IGZFW2 and IGZRV2 yielded a single 

band of 858 bp. The degenerate primers used for initial IgZ detection in hapuka are shown in 

table 2 and the sequenced hapuka IgZ primers are listed in table 1. 

For MHC class II available sequences from Sea bass (DQ821108.1), Rainbow trout 

(AJ251431.1), zebrafish (L19451.1) and tilapia (AF212855.1) were aligned for primer 

design. The degenerate primers used for initial MHC-II detection in hapuka are shown in 

table 4 and the sequenced hapuka MHC-II primers are listed in table 1. For RAG1 available 

sequences from striped trumpeter (Latris lineata) (FJ864718.1), California sheephead 

(Semicossyphus pulcher) (FJ616726.1), hogfish (Lachnolaimus maximus) (FJ616724.1) and 

bicolor damselfish (Stegastes partitus) (FJ616717.1) were aligned for primer design. For the 

TCRα gene, available sequences from channel catfish (Ictalurus punctatus) (U58505.1), 

zebrafish (AY476726.1), Japanese flounder (AB053406.1), rainbow trout (U50991.1), sea 

bass (AY831387.1), Atlantic cod (AJ133847.1), carp (AB120623.1), and bicolor damselfish 

(AY198370.1) were aligned for primer design. For the TCRβ gene, available sequences from 

Atlantic cod (AJ133850.1), fugu (Takifugu rubripes) (AB222424.1), bicolor damselfish 

(AF324823.1), Japanese flounder (Paralichthys olivaceus) (AB053443.1), rainbow trout 
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(AF329700.1) gilt-head sea bream (Sparus aurata) (AM490437.1) and sea bass 

(AJ493441.1) were aligned for primer design. For CSF-1 available sequences from zebrafish 

(NM_131672), sea bream (AM050293) and rainbow trout (NM_001124738) were aligned for 

primer design.  

2.3.3. PCR  

PCR was performed using larval cDNA samples for ontogenic mRNA expression analysis. 

FastStart Taq DNA Polymerase, dNTPack (Roche) was used according to manufacturer’s 

instructions; each reaction mixture included 2U of FastStart Taq DNA Polymerase. One μl of 

cDNA was used in a 50 μl final volume reaction for each sample. Forward and reverse 

primers were used at a final concentration of 200 nM to amplify the target gene regions: IgM, 

IgZ, CSF1R, C3, Il-12, MHCIIα, TCRα, TCRβ, RAG1 and B-actin (primers given in Table 

2). A 2720 thermal cycler (Applied Biosystems) was used for amplification and the 

conditions were as follows: preliminary denaturation at 95 °C for 4 minutes, followed by 40 

cycles of denaturation at 95 °C for 30 seconds, annealing for 30 seconds and extension at 72 

°C for 1 minute. Annealing temperatures are given for their respective primers in Table 2. 

Final extension was at 72 °C for 7 minutes. An aliquot of each PCR product (4 μl) was 

electrophoresed on a 1 % agarose gel made with 0.5X TBE (Tris/Borate/EDTA) in a buffer of 

0.5X TBE. The gel contained 4 μl of 10 mg/ml ethidium bromide (Bio-Rad) and was viewed 

under ultraviolet light to detect the presence of cDNA products.  

2.3.4. Sequencing 

Additional PCR experiements using the same protocol were carried out to obtain PCR 

products for IgM, IgZ and MHC-II. The PCR products were extracted from their respective 

gels and purified using a QuickClean II PCR Extraction kit according to manufacturer’s 

instructions. Sequencing was carried out by the Massey Genome Service (Massey University, 

New Zealand).  
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Table 2.1. Oligonucleotide primers used for amplification of hapuka cDNA target genes for 

PCR expression studies. 

Gene Primer name Sequence (5’ – 3’) 
Annealing 

temperature ˚C 

B-actin 

BactinFW ATGGAWGAKGAAATCGC 

50 

BactinRV TGCCAGATCTTCTCCAT 

CSF-1 

CSFW CWYGGCGACCTBCTGAACTTCC 

55 

CSFRV CTCTCTGGAGCCATCCACTTCAC 

IgM heavy chain 

IgMFW0 GAGGCTTCCTTCTCCTGCT 

60 

IgMRV0 CCCTTGCTCCATTCGTCAT 

C3 

C3FW2 TTCATCCAGACTGACAAGA 50 

C3RV1 CTCTGCCTYACCATYTCAC  

MHC-II 

MHCFW0 CCTGAAAGTGGATCTCCA 

57 

MHCRV0 GCTGAGTCTTCTCCACAT 

RAG1 

RAG1FW CCAGTTTGAATGGCAGCC 55 

RAG1RV GGCTTACAGGACAGTTCT  

TCRaRV2 CCACAGYCGHAGVGTCA  

TCRbRV2 CCTGAAGCTTCCACRCCA  

TCR-α 

TCRaFW1 CTGCTGCKGTYWCAGACTC 

50 

TCRaRV2 CCACAGYCGHAGVGTCA 
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TCR-β 

TCRbFW GTGCAGTWTATTTCTGTGCTG 

54 

TCRbRV2 CCTGAAGCTTCCACRCCA 

IgZ 

IGZFW0 CTTTCCAGTGGACCGA 

54 

IGZRV0 GGAGCTTTYGAGGCC 
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Table 2.2. Oligonucleotide primers used for amplification of hapuka IgM, IgZ and MHCII 

sequences. 

Gene Primer name Sequence (5’ – 3’) 
Annealing 

temperature ˚C 

IgM heavy chain 

IGMFW1 TGCYTBGCCACMGGCTTCACACC 

60 

IGMFW2 GAYTTYRTRCAGTACCC 

IGMFW3 CTCAAAAGATGTCCAGACCACG 

IGMFW4 GCCATCACATWTCAWGAATGG 

IGMRV1 TCRTCATYRACAAGCC 

IGMRV2 CYAGHGWTAACTGGCCATAAGC 

IGMRV3 AYCTAWTGGGCCTTGC 

IgZ 

IGZFW1 GCTCTGGAGTGGATTGGGT 

54 

IGZFW2 CTYACTTTCCAGTGGACC 

IGZRV1 GGKTCAGTGTCACTGTGA 

IGZRV2 ACACACCAGAGTGACCTC 

MHC-II 

MHCFW GGTGAAGWGWWGTGGTACGC 

57 

MHCRV2 CAGMCCCASAGTCAGACCC 
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 2.4. Histology and immunohistochemistry 

2.4.1. Histology  

Sectioning and processing was carried out by Jane Anderson at the Otago School of Medicine 

in Wellington. Five larvae were sampled at days 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, and 

24 dph. At 32, 45, 50 and 63 dph 4 larvae were sampled. Larvae were fixed in 4% 

paraformaldehyde (PFA) at 4˚C overnight. Next larvae were gently rinsed in 70% ethanol to 

remove PFA residues and transferred to 70% ethanol. Samples were processed through an 

alcohol series of 70%, 90% and 100% before a xylol step according to Sakura Tissue-Tek 

VIP. Samples were embedded in paraffin wax cassettes, and sections 4 µm-thick were cut in 

the transverse and sagittal plane using a Jung Biocut 2035 microtome (Leica) then mounted 

onto slides and left to dry at 37 ˚C overnight. Lastly the samples were stained with 

hematoxylin and eosin (H&E) according to standard procedures. Observations were based on 

multiple samples at each time point. 

2.4.2 Immunohistochemistry (IHC) 

For IHC, 5 whole larvae were sampled at 1, 2, 3, 6, 9, 12, 16, 20, and 24 dph. For 45, 50 and 

63 dph 4 whole larvae were sampled. Larvae samples were fixed over night at 4˚C in BT fix 

(4% PFA and 1.25x fix buffer consisting of Sucrose, CaCl2 and PO4 buffer, pH 7.3) then 

transferred to 30% sucrose solution and left to sink overnight at 4˚C. Samples were placed in 

cryomolds, covered with O.C.T (Tissue-Tek, Sakura) and frozen for 2 min or until O.C.T 

became solid. Freezing was conducted by pre-cooling a metal stage inside a box containing a 

bath of liquid nitrogen. Cryoblocks were immediately stored at -80˚C until being sectioned in 

a cryostat. Five µm-thick longitudinal sections were cut and mounted onto Superfrost Plus 

slides (Menzel-Glaser), then air dried and stored at -80˚C until use. A 2 mm PAP pen (Sigma-

Aldrich) was used to draw a circle around the tissue sample on the slide and the sample kept 

hydrated at all times with 10mM PBS. Samples were incubated in a 0.1M Glycine-HCL 

solution (pH 2.3) for 10 min at room temperature in order to reduce background fluorescence. 

This solution was then removed and the slides rinsed with 10mM PBS twice for 5 min, before 

pipetting a small volume of StartingBlock Blocking Buffer (Thermo Scientific) with 10mM 

PBS onto each slide for 15 min at room temperature. After removal of the protein blocker, 
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slides were incubated with primary antibody F06 at 800 ng/ml concentration in PBT (10mM 

PBS with 0.05% tween 20) overnight in a humid chamber at 4˚C. After incubation with the 

primary antibody, the slides were washed twice with 10mM PBS for 5 minutes, then 

incubated with the secondary antibody, goat anti-mouse IgG, Cy3 conjugate (Jackson 

Immunoresearch) at 5µg/ml concentration for 2 hours in the dark at room temperature. After 

incubation with the secondary antibody, the slides were washed twice with 10mM PBS and 

then placed into tap water. To visualise tissue structure cell nuclei were stained by dipping 

slides for 40 seconds in a 1:10000 concentration Hoechst 33342 solution (Molecular Probes) 

in tap water. Slides were transferred into clean tap water to wash off excess Hoechst and then 

mounted immediately with fluorescent microscopy mounting solution. Negative controls 

included cyrosections incubated with no primary antibody or an isotype control (IgG1). 
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2.5. Flow cytometry, FACS and cell staining 

2.5.1. Flow cytometry and fluorescence-activated cell sorting 

Blood was collected using a syringe from the caudal vein of 4 hapuka juveniles (127 dph) 

into Microcentrifuge Tubes (Eppendorf) containing RPMI medium (Gibco Invitrogen) with 

10 IU/ml heparin. Additonally the head kidneys of the 4 hapuka juveniles were removed with 

forceps after an incision and the tissue crushed through a cell strainer (BD Falcon) into 10 ml 

tubes with approximately 5 ml of RPMI medium containing heparin at 10 IU/ml to acquire 

the blood cells. The size of the spleen was not large enough to produce significant cell 

numbers after Percoll separation so was not included. These blood and head kidney samples 

in media were then carefully pipetted into 10 ml tubes containing a Percoll gradient of 51% 

and 34% then spun in a centrifuge at 400 xg for 30 minutes with no brakes/acceleration at 

4˚C. After centrifugation, the top layer was discarded to avoid red blood cell contamination 

and the white blood cell layer carefully pipetted into new tubes containing 5 ml RPMI 

medium with antibiotics Penicillin-Streptomycin (10,000 U/mL) (Gibco Invitrogen) at 1:100 

dilution. Samples were then centrifuged at 400 xg this time with brakes/acceleration for 10 

minutes at 4 ˚C. The supernatant was discarded and the pellet resuspended in 5 ml of RPMI 

media and Penicillin-Streptomycin (10,000 U/mL) (Gibco Invitrogen) at 1:100 dilution. 

Samples were centrifuged again at 400 xg for 10 minutes at 4 ˚C and the supernatant 

discarded. Samples for leucocyte population FACS analysis were resuspended in 3 ml 10mM 

PBS and kept at 4 ˚C until being read in the FACScan flow cytometer (Becton Dickinson). 

Samples for microscopy were resuspended in 3 ml 10 mM PBS and kept at 4 ˚C until being 

mounted 

Samples for IgM+ (IgM positive) lymphocyte FACS analysis were resuspended in 1 ml 

10mM PBS including 5% hapuka serum (2.5 ml in 50 ml 10mM PBS) and cell counts 

performed. Samples were adjusted to 1x106 cells per 200 μl of 10mM PBS, including 5% 

hapuka serum, and the primary antibody F06 at a final concentration of 400 ng/ml. The 

samples were incubated with F06 for 45 minutes on ice. Samples were washed twice using 3 

ml 10mM PBS including 5% hapuka serum and centrifuged for 8 minutes at 400 xg at 4 ˚C. 

The supernatant was discarded after each wash. The samples were incubated with the 

secondary antibody FITC-donkey anti mouse IgG (Jackson Immunoresearch) at a final 
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concentration of 1.5 μg/ml in 200 μl 10mM PBS including 5% hapuka serum. The incubation 

was performed for 35 minutes on ice in the dark. The samples were washed 3 times using 3 

ml 10mM PBS including 5% hapuka serum and the lymphocyte populations separated using 

the FACS machine with 20000 events. Lymphocyte populations were analysed by flow 

cytometry on the basis of their size (FSC) and granularity (SSC) using Flowjo version 7.6.4. 

2.5.2. Cytochemical cell staining 

Cytospins from head kidneys and blood of adult and juvenile hapuka were mounted on slides. 

Slides were dipped in 100% methanol for 60 seconds at room temperature and left to air dry. 

A 1 in 10 dilution of Giemsa in tap water was used to stain the slides for 30 minutes in the 

dark. Slides were rinsed carefully under tap water, air dried and mounted with DPX mounting 

media (Sigma Aldrich). 

2.5.3. Myeloperoxidase staining 

Cytospins from head kidneys and blood of adults and juveniles were mounted on slides and 

fixed for 60 seconds in 10% paraformaldehyde solution in ethanol. Slides were washed for 30 

seconds in water and incubated for 30 seconds in a staining solution containing 30% ethanol 

with 3 mg/ml benzidine dihydrochloride [B-3383; Sigma], 1.32mM ZnSO4, 0.123M sodium 

acetate, 0.0146M sodium hydroxide and 0.02% H2O2. Slides were briefly washed in water, 

air-dried and mounted. 

2.5.4. Statistical analysis 

For determining significance of head kidney (127 dph) and peripheral blood leucocytes 

(PBL) (134 dph) leucocyte populations between juveniles and adults, 2 tailed T tests were 

performed. Additionally 2 tailed T tests were performed for determining significance between 

IgM+ cell populations between adults and juveniles (117 dph). 
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Chapter 3 – Ontogeny of the lymphoid organs. 

3.1. Introduction 

Studying the appearance and structure of lymphoid organs in developing fish larvae is one 

method of assessing maturation and possible immunocompetence and has been done for 

many fish species, reviewed by Mulero (2007). However, nothing is known about the 

ontogeny of the hapuka lymphoid organs, and to date no immunological studies have been 

carried out on any members for the perciformes family Polyprionidae, to which hapuka 

belongs. This family includes 2 genera Stereolepis and Polyprion and these genera contain a 

total of 6 species, Stereolepis consists of S. doederleini and S. gigas, whereas Polyprion 

consists of P. americanus, P. moeone, P. yanezi and P. oxygeneios (hapuka). Knowledge of 

organ development is necessary for the understanding of both specific and non-specific 

immunocompetence mechanisms in hapuka, and will be useful to design therapeutic and 

immunoprophylactic measures when rearing hapuka. With regards to other species of fish 

important to aquaculture, most studies have exclusively used light and/or electron microscopy 

to investigate the ontogeny of the main lymphoid organs; the thymus, spleen and head kidney 

(Mulero et al., 2007b). This is primarily because of the lack of appropriate markers available 

for specific cell populations. In contrast, the zebrafish (Danio rerio) is an exception, with 

many cell markers available and the entire genome sequenced due to its use as a model 

organism (Willett et al., 1999; Trede et al., 2004). Because there are no available reagents or 

cell markers for hapuka, the study of their lymphoid organs was carried out using light 

microscopy. Finally, although the development of lymphoid organs does not necessarily 

correspond to the maturation of immune functions, learning the timing of organ development 

in hapuka will help improve the understanding in other areas of their immune system and 

provide information for future studies.  

Aims: This chapter aims to describe the development of the lymphoid organs including the 

head kidney, spleen, thymus and digestive tract in hapuka larvae with respect to other fish 

species important to aquaculture. Descriptions will start from the first appearance of each 

respective organ, determining key developmental events. 
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3.2. Results 

3.2.1. Head kidney 

The excretory part of the hapuka kidney was present at 4 dph (Fig 3.1A and B) and consisted 

of two renal tubuli located ventrally to the notochord and anterior to the developing intestine. 

At this stage there was no sign of hematopoietic tissue. At 5 dph (Fig 3.1C and D) cells could 

be seen migrating to this site; possibly erythropoietic cells. During the next 5 days the 

number of tubules and migrating cells increased (Fig 3.1E and F, 3.2A, B and C) as the yolk 

sac was fully absorbed. On the day after first feeding, 12 dph (Fig 3.2D) the organ tissue 

appears hematopoietic and lymphoid progenitor cells are visible with their high nucleus to 

cytoplasm ratio. At 16 dph (Fig 3.2E) the kidney organ appears formed; however the anterior 

kidney is not yet distinct from the posterior kidney. Hematopoietic tissue continues to grow 

and develop (Fig 3.2F) and many lymphoid looking cells are scattered throughout the tissue. 

At 20 dph (Fig 3.3A) the morphology remained similar. Tubules can be seen forming further 

towards the posterior end of the kidney at 24 dph after live artemia feeding had commenced 

(22 dph). At this stage sinusoids are beginning to form within the tissue (Fig 3.3B). The 

kidney continued to increase in size and volume at 32 dph (Fig 3.3C) and many lymphoid 

cells can be seen within the tissue. By 45 dph (Fig 3.3D) the head kidney has formed into a 

distinct organ from the excretory posterior kidney and erythrocytes can be seen in the 

developing sinusoids (Fig 3.3E). It is at this stage that the first melanomacrophage centres 

(MMCs) can be seen. The bi-lobed nature of the head kidney can be seen (Fig 3.3F) at 50 dph 

as it continues to increase in size and complexity. At 63 dph (Fig 3.3G) the head kidney is a 

sea of hematopoietic and lymphoid tissue, with leucocytes spread amongst the parenchyma 

and sinusoids invigorating the tissue (Fig 3.3H).  

3.2.2. Spleen 

In hapuka larvae the spleen anlage was first observed at 16 dph in the peritoneal cavity next 

to the liver and developing pancreas (Fig 3.4A). The characteristic capsule of the spleen was 

still forming and the organ itself consisted mostly of interstitial space and contained small 

clusters of erythrocytes and primitive reticular cells (Fig 3.4B). Later, at 24 dph, the spleens 

capsule consisting of squamous epithelium, appears intact (Fig 3.4C) and its connection to 
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the basement membrane has thickened. Additionally the interstitial space within the organ 

has been replaced with connective tissue (Fig 3.4D). At 32 dph (Fig 3.4E) the spleen has 

increased in size and complexity, and primitive sinusoids can be seen forming amongst the 

developing tissue (Fig 3.4F). By 45 dph the organ has achieved its distinct oval shape (Fig 

3.4G) and appears populated with various leucocytes. Furthermore trabeculae can be seen 

infiltrating the tissue (Fig 3.4H) and MMCs are visible, especially around the sinusoids. At 

this stage the spleen appears mostly differentiated.  

3.2.3. Thymus 

The thymic anlage first appeared in the pharyngeal cavity at 20dph, as a thickening of the 

pharyngeal epithelium next to the gill arches (Fig 3.5A). At this stage the thymus consisted of 

undifferentiated darkly stained cells, seemingly lymphoblasts and thymocytes (Fig 3.5B); 

which were separated from the connective tissue by an epithelial layer. At 32 dph (Fig 3.5C) 

the thymus had increased in size, however the tissue morphology was similar to that at day 20 

and appeared immature in nature (Fig 3.5D). By 50 dph (Fig 3.5E) the number of cells with 

thymocyte morphology had increased greatly and blood sinusoids could be seen invigorating 

the tissue (Fig 3.5F). Later at 63 dph the thymus has achieved its typical wedge shape and 

appears differentiated with trabeculae extending into the parenchyma; now rich in 

thymocytes and lymphocytes. 

3.2.4. Digestive tract 

The gut rudiment was present at hatch (data not shown) and began differentiating soon after. 

At 9 dph (Fig 3.6A) an intestinal lumen is visible but the mucosa appears undifferentiated. At 

10 dph (Fig 3.6B), the lumen has increased in size as the length of the digestive tract 

increases and by 16 dph the gastric folds are beginning to form (Fig 3.6C). Addtionally at this 

stage, goblet cells can be seen appearing within the mucosa. The gut appears more 

differentiated at 32 dph (Fig 3.6D) with many gastric folds and a lamina propria visable. The 

guts surface area increases at days 50 and 63 (Fig 3.6E and F) with the mucosa and serosa 

appearing differentiated. 
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Fig. 3.1. Sagittal cut sections showing morphological development of the kidney of hapuka at 

4-7 dph. 4 μm sections of tissue were stained with H&E. (A) Section at 4 dph showing the 

developing kidneys proximity to the gut anlage and yolk sac. (B) Higher magnification at 4 

dph showing a single visible tubule. (C) Five dph section showing second tubule and (D) 

migrating lymphoid progenitor cells. (E)  6 dph section showing continued cell migration 

(arrow) and expansion. (F) More cells are seen migrating to the posterior region of the kidney 
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at 7 dph. Abbreviations: Renal tuble (RT), Yolk sac (Y), skeletal muscle (M), gut (G), 

notochord (N). 
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Fig. 3.2. Sagittal cut sections showing morphological development of the kidney of hapuka at 

8-16 dph. 4 μm sections of tissue were stained with H&E. (A) 8dph section showing 

increased growth of kidney. (B) Kidney at 9 dph, showing more migrating cells (arrow) 

towards posterior end. (C) Remnants of the yolk sac beside the kidney at 10 dph. (D) 12 dph 

kidney with hematopoietic stem cells forming accumulating. (E) Increased structural 

definition of kidney at 16 dph (F) 16 dph kidney parenchyma. Abbreviations: Renal tubule 
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(RT), skeletal muscle (M), yolk sac (Y), head kidney (HK), liver (L), Hematopoietic cells 

(H). 
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Fig. 3.3. Sagittal cut sections showing morphological development of the kidney of hapuka at 

20-63 dph. 4 μm sections of tissue were stained with H&E. (A) 20 dph. (B) Tubules are seen 

more towards the posterior end of the kidney at 24 dph. (C) Many lymphoid cells seen in the 

HK tissue at 32 dph. (D) Head kidney is distinct from anterior kidney at 45 dph. (E) Sinusoid 

development at 45 dph. (F) Head kidney at 50 dph. (G) Head kidney at 63 dph (H) Head 

kidney at 63 dph with melanomacrophages (arrow) and sinusoids (*). Abbreviations: Head 

kidney (HK), renal tubule (RT), pancreas (P), gut (G), liver (L). 
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Fig. 3.4. Sagittal cut sections showing morphological development of the spleen of hapuka. 4 

μm sections of tissue were stained with H&E.  (A) First appearance of spleen at 16 dph in the 

peritoneal cavity. (B) High magnification of 16 dph spleen, showing capsule formation 

(arrow). (C) 24 dph. (D) High magnification of 24 dph showing finished capsule. (E) 32 dph. 

(F) 32 dph spleen showing sinusoid formation. (G) 45 dph. (H) 45 dph spleen, showing 

MMCs (arrows) and sinusoids (*). Abbreviations: (S) Spleen, (P) pancreas, (PC) pyloric 

caeca, (G) gut, (GL) gill lamellae, (HK) head kidney, (M) skeletal muscle. 
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Fig. 3.5. Sagittal cut sections showing morphological development of the thymus of hapuka. 

4 μm sections of tissue were stained with H&E. (A) Thymus anlage at 20 dph. (B) High 

magnification of early thymus 20 dph. (C) 32 dph thymus relative to the gill lamellae. (D) 

High magnification of 32 dph thymus. (E) 45 dph. (F) High magnification of 45 dph showing 

thymocytes. (G) 63 dph. (H) High magnification of 63 dph thymus showing tissue 

architecture. Abbreviations: branchial cavity (BC), gill lamina (LP), thymus (T). 
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Fig. 3.6. Sagittal cut sections showing morphological development of the gut of hapuka. 4 μm 

sections of tissue were stained with H&E. (A) Developing gut at 9 dph. (B) Increase in size 

of the gut lumen at 10 dph. (C) Goblet cells (arrow) are seen at 16 dph. (D) Gut appears 

differentiated at 32 dph with lamina propria obvious. (E) 50 dph. (F) Lamina propria at 63 

dph showing erythrocytes within. Abbreviations: Lamina propria (LP), intestinal lumen (IL), 

muscle (M), pancreas (P), liver (L).  
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3.3. Discussion 

This chapter aims to describe the appearance of lymphoid organs in hapuka. No immune 

studies to date have been carried out with any member of the Polyprionidae family, including 

hapuka. The appearance of the lymphoid organs were studied using light microscopy, (no 

electron microscopy was used). The results demonstrated that the kidney is the first lymphoid 

organ to develop in hapuka, first appearing at 12 dph. The spleen developed next at 16 dph 

with the thymus a few days later, both after the start of first feeding.  

This sequence resembled the normal order of development seen in most marine fish species 

(Falk-Petersen, 2005). This developmental order is seen in species such as Atlantic cod, 

turbot, sea bream, sea bass and Japanese flounder (Jósefsson and Tatner, 1993; Abelli et al., 

1996; Padros and Crespo, 1996; Schrøder et al., 1998; Liu et al., 2004). However, this is a 

different order of development to species such as Atlantic halibut, where the head kidney 

developed first, followed by the thymus and lastly the spleen (Patel et al., 2009). Differences 

in size at hatch and the length of several developmental stages can explain some of the 

variation observed between lymphoid organ developmental timings in different species. 

However, the reason for the variations seen in the first appearance of multiple organs 

between fish species is not yet explained. Because of variations in the methods employed to 

study development, direct comparison between some species can be difficult.  

Acting as the equivalent of mammalian bone marrow, the teleost head kidney plays an 

important role in immune function, serving as the site for B-cell maturation and antigen 

capturing, while the posterior part of the kidney possesses an excretory role (Zapata, 1979). 

The hapuka kidney appeared at 4 dph and grew only slightly until 12 dph, after which it 

developed rapidly acquiring much hematopoietic tissue and by 16 dph appearing as a distinct 

organ. It should be noted that kidney development accelerated after exogenous feeding had 

begun at 11 dph. This early growth pattern is similar to the kelp groper whose hematopoietic 

tissue growth becomes distinct at around 15 dph, however exogenous feeding in the kelp 

groper starts much earlier at 3 dph (Kato et al., 2004). The head kidney of hapuka becomes 

distinct from the excretory kidney by 45 dph and looks mature in nature, with sinusoids 

invigorating the tissue. In comparison the halibut kidney was slow to develop hematopoietic 

tissue, yet could be divided into an anterior, mid and posterior kidney by 49 dph (Patel et al., 



64 

 

2009). At around 36 dph in common dentex (Dentex dentex) the head kidney had become 

distinct from the excretory tail kidney (Santamaria et al., 2004). 

The teleost spleen is similar in structure to its mammalian counterpart, containing blood 

vessels, ellipsoids, red pulp, lymphoid tissue (white pulp) and macrophages. The spleen’s 

function includes antibody responses and erythrocyte destruction (Fänge and Nilsson, 1985). 

The hapuka spleen first appeared at 16 dph as a capsule forming around an area of mostly 

interstitial space containing small clusters of erythrocytes and primitive reticular cells. The 

hapuka’s spleen develops relatively later than that of other important marine fish species such 

as the turbot (10 dph), Japanese flounder (8 dph), Atlantic cod (5 dph) and sea bream (12 

dph), yet before the sea bass (18 dph) (Jósefsson and Tatner, 1993; Padros and Crespo, 1996; 

Schrøder et al., 1998; Liu et al., 2004; Mulero et al., 2007a). The hapuka has a closer relation 

to the sea bass (family Moronidae) and bream (family Sparidae) than to the other fish 

mentioned, and indeed its spleen appearance coincides with this. The hapuka spleen started 

developing 5 days after exogenous feeding began, a time when the gut receives much antigen 

exposure and may act as a signal for development of this lymphoid organ. This certainly 

could not be the case for fish species where the spleen has already begun development during 

the yolk sac stage and before the mouth has opened. MMCs appeared in hapuka by 45 dph in 

the spleen, when the organs wedge shape became apparent. In the sea bream, MMCs were not 

present even at 77 dph and the the organ was not yet lymphoid; nor had it divided into red 

and white pulp (Jósefsson and Tatner, 1993). Although the spleen’s development in Atlantic 

halibut was very late, appearing only at 59 dph, it quickly matured differentiating into red and 

white pulp by 66 dph with lymphoid cells present at this stage (Patel et al., 2009). The spleen 

in halibut was completely differentiated by 80 dph and melanomacrophages were present 

from 94 dph. 

The thymus first appeared in hapuka at 20 dph, 4 days after the spleen was first seen. This is 

similar when compared with previously mentioned fish species, eg turbot (20-30 dph), 

Japanese flounder (15 dph), Atlantic cod (28 dph), sea bream (29 dph), sea bass (21 dph), 

common dentex (16 dph) and Atlantic halibut (33 dph) (Jósefsson and Tatner, 1993; Padros 

and Crespo, 1996; Schrøder et al., 1998; Liu et al., 2004; Mulero et al., 2007a; Patel et al., 

2009); however very different from the non perciform species such as common carp  (2 dph). 

By 45 dph the thymus was already populated with thymocytes and lymphocytes 25 days after 



65 

 

it had first formed. However, an adequate section containing a thymus at 32 dph was not 

observed. Atlantic halibut took 14 days after the thymus anlage was first formed to become 

populated with thymocytes (Patel et al., 2009) and in the kelp groper lymphocytes were seen 

in the developing thymus at 21 dph, 9 days after it first appeared (Kato et al., 2004). In the 

closer related sea bream, the thymus first appeared at 29 dph and acquired mature 

lymphocytes 18 days later at 47 dph (Jósefsson and Tatner, 1993).  

The increase in hematopoietic tissue of the kidney in hapuka coincided with the initial 

development of the thymus and although the kidney is usually the first lymphoid organ to 

develop in fish, the thymus is usually the first to become lymphoid (Chilmonczyk, 1992). 

However the development and maturation of the thymus varies amongst species and in many 

species it does not differentiate into a medulla and cortex. Additionally, many studies do not 

sample long enough for some maturation processes to be observed, such as the differentiation 

of the cortex and medulla of the thymus. The thymus of Atlantic halibut, turbot and sea 

bream differentiates into a visible medulla and cortex, while the Japanese flounder’s thymus 

does not differentiate into separate regions (Jósefsson and Tatner, 1993; Padros and Crespo, 

1996; Liu et al., 2004; Patel et al., 2009). Because of the thymus’s close proximity to the head 

kidney, it has been thought that lymphoid stem cells in the thymus originate in the growing 

head kidney. Hemopoietic blast cells in the kidney prior to differentiation of lymphocytes in 

the thymus have been observed in many fish and it is believed that the thymus anlage is 

initially populated by stem cells from the head kidney (Ellis, 1998). Cell “bridges” between 

the kidney and thymus have been described in some fish species such as the turbot and sea 

bream (Jósefsson and Tatner, 1993; Padros and Crespo, 1996). 

It is possible different rearing temperatures have an effect on the timing of lymphoid organ 

development. Although studies using zebrafish have examined the effects of temperature on 

embryos (Schirone and Gross, 1968), the effects of temperature on lymphoid organs is 

unknown. The order in which the lymphoid organs developed in hapuka; the kidney, spleen 

and thymus, was the same as is seen in other teleost species. The timing of appearance was 

most similar to the European sea bass and the gilthead sea bream, families Moronidae and 

Sparidae respectively (Table 3.1). Knowledge on the development of the lymphoid organs 

lays down the foundation for future research into the immune system of hapuka. Because 
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arrival of the lymphoid organs does not necessarily correlate with immune function, studies 

into the appearance of specific cell populations within them will be important. 

 

Species and family Method 
Head 

Kidney 
Spleen Thymus Reference 

European sea bass, 

Moronidae  

Light  & electron 

microscopy – 16 

˚C 

10 dph 17 dph 27 dph 
(Abelli et al., 

1996) 

Gilthead sea bream, 

Sparidae  

Light microscopy 

– 19-20 ˚C  
5 dph 12 dph 29 dph 

(Jósefsson and 

Tatner, 1993) 

Zebrafish, 

Cyprinidae  

Light & electron 

microscopy – 28 

˚C 

96 hpf N/A 60 hpf 
(Willett et al., 

1999) 

Common dentex, 

Sparidae  

Light microscopy 

– 18 ˚C 
3 dph 5 dph 16 dph 

(Santamaria et al., 

2004) 

Kelp Groper, 

Serranidae  

Light microscopy 

– 25 ˚C 
1 dph 6 dph 12 dph (Kato et al., 2004) 

Halibut, 

Pleuronectidae 

Light microscopy 

– 6 ˚C 

Excretory at 

hatch 
49 dph 33 dph (Patel et al., 2009) 

Hapuka, 

Polyprionidae 

Light microscopy 

– 13-19 ˚C 
4 dph 16 dph 20 dph (This text) 

Table 3.1. The first appearance of the lymphoid organs in perciform fish, including the 

cyprinid zebrafish. 
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Chapter 4 – Appearance of IgM+ cells in the lymphoid organs. 

4.1. Introduction 

Fish hatch immature and vulnerable to pathogens, with their protective immune organs only 

just starting to develop. The arrival of the lymphoid organs is an important first step in the 

process of developing an autologous immune system. However, the morphological 

maturation of the lymphoid organs, as well as the lymphoid cells in them does not necessarily 

correspond with the presence of immune function in fish (Tian et al., 2009b). For example 

immature B cells are not able to respond to antigenic stimulation or to produce antibodies 

(Martensson et al., 2010). Instead the appearance of Ig-producing cells (IgM+ cells) may 

better indicate the functional maturity of the immune system than lymphoid organ 

development (Tian et al., 2009b) because expression and production of IgM determines the 

time at which larvae or juveniles can mount a specific immune response, at least at the 

systemic level.  

The first appearance of cytoplasmic and surface IgM in lymphocytes varies considerably in 

different fish species. Additionally due to the wide range of methods used to detect IgM, such 

as immuno- or in situ histology, flow cytometry, ELISA or Western blotting of tissue 

homogenates, comparison of published data can be difficult (Magnadottir et al., 2005). In 

general, the first appearance of IgM+ cells is late in marine species compared to fresh water 

species (Chantanachookhin et al., 1991). The head kidney is usually the first lymphoid organ 

to show IgM+ cells, followed by the spleen then thymus (Koumans-Van Diepen et al., 1994; 

Dos Santos et al., 2000; Lam et al., 2004; Patel et al., 2009; Tian et al., 2009b). However, the 

thymus is normally the first organ to become lymphoid (T-cells), although the head kidney 

can contain hematopoietic progenitors earlier but not lymphocytes (Hansen and Zapata, 1998; 

Zapata et al., 2006). Because there are no immunological studies involving members of the 

Polyprionidae family to which hapuka belongs, this study will be the first one to shed light 

onto this important aspect of immunocompetence. Knowledge of IgM+ cell appearance in 

hapuka is needed when considering immunoprophylactic measures for hapuka aquaculture. 

Aims: To determine the first arrival of IgM+ cells in the main lymphoid organs and MALT 

and to describe and compare the patterns of appearance with other fish species. Ultimately 
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knowing when IgM+ cells appear in the tissues will provide insight into the development of 

immunocompentence in hapuka larvae. 
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4.2. Results  

4.2.1. Head kidney 

 The first IgM+ cells appeared in the head kidney. There was no IgM+ cells present in the 

newly hatched larvae or the 6 dph larvae (Fig 4.1A). IgM+ cells first appeared in the head 

kidney at 12 dph (Fig 4.1B) and were spread along the length of the organ. The staining was 

localised to the cell surface or cytoplasm and no exogenous IgM was detected. At 32 dph the 

number of positive cells increased and they formed small clusters mostly in the head kidney 

region (Fig 4.1C). By 45 dph the IgM + cells appeared fewer in number and were scattered 

mainly in the hematopoietic region of the head kidney (Fig 4.1D), however, clusters of IgM+ 

cells were found in the tail region of the head kidney next to the renal tubules (Fig 4.1E). 

Some non specific staining was seen in the renal tubules of these sections and was believed to 

be due to auto-fluorescence. This auto-fluorescence was also present in other areas of the 

larvae such as the gill lamellae and was present in the negative controls. From 63 dph and 

onwards into the juvenile stages, the IgM+ cells were abundant throughout the entire head 

kidney tissue and small clusters of cells were common (Fig 4.1 F, G and H). 

4.2.2. Spleen 

The hapuka spleen began to form at 16 dph in the peritoneal cavity next to the intestine, liver 

and pancreas. No IgM+ cells were found in the spleen before 32 dph (data not shown) and 

only a few positive cells were found in the spleen at 32 dph (Fig 4.2 A and B). Some auto-

fluorescence was found on the edge of the spleen (Fig 4.2B) and was likely due to the 

thickness of the sections. At 45 dph (Fig 4.2C) when the spleen shape was starting to 

elongate, there was an increase in the number of IgM+ cells. At 63 dph (Fig 4.2D), the 

number of IgM+ cells further increased, but the positive cells appeared to be mostly confined 

to the inner zone of the spleen, localised mostly around the sinusoids (Fig 4.2E). By 90 dph 

(Fig 4.2F) during the juvenile stage of hapuka, there were only a moderate number of IgM+ 

cells in the developed tissue of the spleen, but again some clusters existed around sinusoids.  
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4.2.3. Thymus 

The hapuka thymus was located in the branchial cavity, next to the gill lamellae at 40 dph 

(Fig 4.3A). There were no signs of IgM+ cells in the thymus at this stage (Fig 4.3B). The first 

IgM+ cells appeared in the thymus at 50 dph, but were less in number and the signal was not 

as strong as seen in the head kidney or spleen (Fig 4.3C). The number of IgM+ cells remained 

low even at 63 dph (Fig 4.3D), but these cells were now found in clusters within the tissue. 

At 90 dph (Fig 4.3E), the juvenile hapuka thymus contained more IgM+ cells scattered 

throughout the tissue. In contrast, a 63 dph thymus section (Fig 4.3F) stained with the 

monoclonal antibody G7 (isotype control) showed no positive staining indicating specific 

detection of IgM+ cells in the thymus. 

4.2.4. MALT 

In teleosts, the intestinal tract is composed of four layers, namely lamina epithelialis, lamina 

propria, lamina muscularis and serosa. The gut of hapuka showed no IgM+ cells from hatch to 

32 dph (Fig 4.4A). The first IgM+ cells were seen scattered scarcely in the pyloric caeca of 45 

dph hapuka (Fig 4.4B). By 50 dph (Fig 4.4C), a few IgM positive cells were seen in groups in 

the lamina propria of the gut, and this area was increasingly more populated at 63 dph (Fig 

4.4D). Juvenile hapuka at 90 dph showed many IgM+ cells present in the lamina propria of 

the gut (Fig 4.4F). No IgM+ cells were observed intraepithelially. From 45 dph onwards, 

hapuka also showed groups of IgM+ cells in the hepatic vein of the liver, however, these cells 

were not found in the liver tissue (Fig 4.4E). The gill lamellae displayed some auto-

fluorescence and making it difficult to draw any solid conclusions from this MALT. Skin 

harboured no IgM+ cells, including the 90 dph juveniles (data not shown). These results 

indicate that the lamina propria of the gut contains the highest number of IgM+ cells which 

appear starting from 50 dph. 

4.2.5. Other areas 

IgM+ cells were also found in other locations of the hapuka body such as the olfactory organ 

and jaw. A group of IgM+ cells were seen in the olfactory region of 12 dph larvae (Fig. 4.5A), 

the same day that positive cells first appeared in the head kidney. Again at 32 dph IgM+ cells 

were seen in the olfactory organ of larvae, but only a few scattered cells were detected (Fig. 
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4.5B). Additionally at 32 dph a large group of cells were observed in the mouth region, inside 

the epithelium (Fig. 4.5C), and a group of IgM+ cells were also seen in the lower jaw of 50 

dph larvae under the epithelial cell layer (Fig 4.5D). 
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Fig. 4.1. The appearance of IgM+ cells in the head kidney of hapuka larvae. Five μm sections 

of tissue were labled with a primary anti-giant gourami IgM monoclonal antibody (F06) and a 

secondary Mouse IgG conjugated to cy3 and then stained with Hoechst. (A) Kidney at 6 dph 

(circled), with no IgM+ cells present. (B) Kidney at 12 dph with the first appearance of IgM+ 

cells. (C) Increased numbers of IgM+ cells in the head kidney at 32 dph. (D) Kidney at 45 

dph, showing few IgM+ cells located near the renal tubules, but many in the hematopoietic 

head kidney portion of the tissue. (E) Clusters of IgM+ cells located in the tail portion of the 

kidney near the renal tubules at 45 dph (arrows). (F) IgM+ cells scattered throughout the head 

kidney at 63 dph. IgM+ cells in juvenile hapuka at 90 dph scattered throughout the tissue (G) 

and in small clusters (arrows) (H). Abbreviations: Hematopoietic tissue (HT), renal tubules 

(RT),  
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Fig. 4.2. The appearance of IgM+ cells in the spleen of hapuka larvae. Five μm sections of 

tissue were labled with a primary anti-giant gourami IgM monoclonal antibody (F06) and a 

secondary Mouse IgG conjugated to cy3 and then stained with Hoechst. (A) The spleens 

location relative to the stomach at 32 dph. (B) A few IgM+ cells first observed in the spleen at 

32 dph.  (C) Spleen at 45 dph showing many IgM+ cells present in the tissue. (D) Spleen at 63 

dph, with many IgM+ cells, (E) located mostly clustered around the sinusoids (arrows). (F) 
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IgM+ cells in juvenile hapuka at 90 dph, spread through the tissue and clustered around 

sinusoids (arrows). Abbreviations: spleen (S), intestinal lumen (IL), lamina propria (LP). 
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Fig. 4.3. The appearance of IgM+ cells in the thymus of hapuka larvae. Five μm sections of 

tissue were labled with a primary anti-giant gourami IgM monoclonal antibody (F06) and a 

secondary Mouse IgG conjugated to cy3 and then stained with Hoechst. The negative control 

was stained with the monoclonal antibody G7 (A) The thymus’s location at 40 dph next to the 

gill lamellae.(B) no IgM+ cells present at 40 dph. (C) The thymus at 50 dph with some IgM+ 

cells present near the connective tissue layer. (D) Few IgM+ cells, but some small clusters in 

the thymus at 63 dph. (E) IgM+ cells scattered throughout the thymus of juvenile hapuka at 



77 

 

90 dph. (F) Negative control showing G7 stained thymus with no positive cells (square). 

Abbreviations: Thymus (T), branchial cavity (BC), gill lamelle (GL). 
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Fig. 4.4. The appearance of IgM+ cells in the intestine of hapuka larvae. Five μm sections of 

tissue were labled with a primary anti-giant gourami IgM monoclonal antibody (F06) and a 

secondary Mouse IgG conjugated to cy3 and then stained with Hoechst. (A) The hapuka gut 

at 32 dph, with no IgM+ cells present. (B) The pyloric caeca at 45 dph showing the first 

appearance of IgM+ cells in the gut region (arrows). (C) IgM+ cells present in the lamina 

propria at 50 dph (arrow). (D) IgM+ cells in the lamina propria of the gut at 63 dph. (E) The 

liver at 45 dph showing IgM+ cells in the hepatic vein (arrow).  (F) The gut of hapuka 
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juveniles at 90 dph showing IgM+ cells spread throughout the lamina propria. Abbreviations: 

intestinal lumen (IL), lamina propria (LP), pyloric caeca (PC), liver (L). 
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Fig. 4.5. The appearance of IgM+ cells in other areas of hapuka larvae. Five μm sections of 

tissue were labled with primary antibody F06 conjugated to cy3 and then stained with 

Hoechst. (A) The nose of hapuka larvae at 12 dph showing a group of IgM+ cells (arrow). (B) 

A coronal cut of a larval nose region at 32 dph showing scattered IgM+ cells (arrow). (C) A 

large group of IgM+ cells in epithelial tissue of the mouth at 32 dph (arrow). (D) A group of 

IgM+ cells in the jaw of hapuka larvae at 50 dph (arrow). Abbreviations: nose (N), eye (E), 

jaw (J), brain (B), mouth (M). 
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4.3. Discussion 

This chapter investigated for the first time, the appearance of IgM-bearing cells (IgM+) in 

lymphoid-related organs and tissues of the developing hapuka (from hatch to 90dph), 

including the head kidney, spleen, thymus and MALT. Because the primary antibody F06 

used recognises the IgM heavy chain molecule (possibly at the Fc region), surface and 

cytoplasmic as well as reduced and non-reduced forms of the IgM molecule have been 

detected in this study. IgM+ cells were detected in all the examined organs/tissues of hapuka 

and among these organs/tissues, IgM+ cells were first detected in the kidney at 12 dph.   

The first IgM+ lymphocytes were observed in hapuka head kidney at 12 dph. This made sense 

with the head kidney acting as the equivalent to mammalian bone marrow (Razquin et al., 

1990; Meseguer et al., 1995). IgM+ cells were next seen in the spleen at 32 dph, the intestine 

at 45 dph and lastly the thymus at 50 dph. The thymus is generally the first organ to become 

lymphoid in teleosts such as in Atlantic cod, sea bass, zebrafish and carp (Schroder et al, 

1998; Breuil et al, 1997; Willett et al, 1999; Secombes et al, 1983); determined by 

observation of mature lymphocytes (T cells) in the tissue. The head kidney on the other hand 

contains hematopoietic lymphoid progenitors earlier and is the first organ to become 

populated with IgM+ cells (B-cells), as seen in the turbot, mandarin fish, rainbow trout and 

Atlantic halibut (Razquin et al., 1990; Padros and Crespo, 1996; Patel et al., 2009; Tian et al., 

2009b).  

In the mandarin fish, using in situ hybridisation, IgM+ cells appeared early in the head kidney 

at 20 dph. The number of positive cells increased as the fish aged, with many IgM+ cells 

found scattered throughout the hematopoietic tissue and in small clusters by 67 dph. Clusters 

were more commonly found around blood sinusoids. In the spleen IgM+ cells were initially 

detected at 26 dph, with an increase at 102 dph. However, in the thymus numbers of IgM+ 

were very low at the time of first appearance at 39 dph and only increased at 78 dph 

distributed mainly in the outer zone. Additionally IgM+ cells appeared in the lamina propria 

of the intestine at 87 dph, but were not found in groups like in the other organs (Tian et al., 

2009b).  

This pattern of development is very similar to what was seen in hapuka, with the early 

appearance of a few IgM+ cells in the head kidney at 12 dph, followed by an increase of cells 
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as the fish aged. The cells were scattered throughout the organ mostly in the hematopoietic 

tissue with only some found near the renal tubules. A few clusters of IgM+ cells were present 

at 45 dph, but became more common by 63 dph, especially around sinusoids. A similar 

pattern was seen in the hapuka spleen with IgM+ appearing relatively early on at 32 dph, but 

with much lower numbers than the head kidney. The IgM+ cells increased noticeably at 63 

dph and cells were found mostly in the inner zone forming clusters. The thymus was the last 

lymphoid organ in hapuka to acquire IgM+ cells and they first appeared in this organ at 50 

dph, 30 days after the organ had formed. Only a few detectable cells were present at this 

stage and the number of IgM+ cells did not appear to increase until the juvenile stages, where 

the cells were observed scattered throughout the tissue. IgM+ cells were also detected in the 

pyloric caeca and lamina propria of gut at 45 dph and 50 dph respectively, probably having a 

role in mucosal immunity. IgM+ cells were also detected in the olfactory region (nose) and 

jaw; however, we can only speculate to these findings due to the lack of data of IgM in these 

regions. 

Interestingly in species such as the Atlantic halibut, the spleen was the last lymphoid organ to 

develop, but still contained IgM+ cells earlier than the thymus (Patel et al., 2009). In Atlantic 

cod, hematopoietic stem cells seem to be present in the head kidney at hatching, confirming 

that the head kidney is the primary lymphoid organ in this species and that the thymic 

rudiment is colonised by stem cells originating from the head kidney. As previously 

mentioned hemopoietic blast cells in the kidney prior to differentiation of lymphocytes in the 

thymus have been observed in many fish and it is believed that the thymus anlage is initially 

populated by stem cells from the head kidney (Padros and Crespo, 1996; Ellis, 1998). 

However, these authors did not consider the existence of other sites of hematopoiesis earlier 

than the pronephros (Willett et al., 1999). Finally, the distribution of a relatively large amount 

of IgM+ cells in the kidney at the early time points of 12 and 32 dph suggests that the head 

kidney is the earliest and most important source of B lymphocytes in hapuka. The first 

appearance of IgM+ cells in the head kidney (12 dph) coincided with first feeding, which 

began at 11 dph, and thus, it is possible these early IgM+ cells in hapuka were the very first 

signs of lymphopoietic activity in the developing head kidney. Likewise it has been suggested 

that the appearance of autogenous IgM coincides with the onset of feeding in salmonids 

(Ellis, 1977b) and a strong increase in IgM is seen after first feeding in sea bass and Atlantic 

cod (Breuil et al., 1997; Schrøder et al., 1998). 
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However, the first detection of IgM+ cells does not necessarily correlate with the ability to 

develop an antibody response to infection. A delay has been observed between the detection 

of IgM+ cells and functional immunocompetence in both fresh water and marine fish species 

(Petrie-Hanson and Ainsworth, 1999; Dos Santos et al., 2000). For example, in carp it was 

revealed that although surface IgM+ B cells were detectable in 2 week old fish, carp were not 

able to produce plasma cells until 1 month of age (Botham and Manning, 1981). On the other 

hand grafting experiments in carp indicate that lymphocytes are capable of effective allograft 

rejection even at 16 dph (Botham and Manning, 1981) and this coincides with the first 

detection of IgM+ positive cells (Koumans-Van Diepen et al., 1994). In salmon the mixed 

lymphocyte reaction and the presence of IgM on lymphocytes appear simultaneously about 

34 dph (Ellis, 1977b). However in Atlantic cod using in situ hybridization to detect IgH 

transcripts as well as immunostaining to detect protein, plasma cells and B cells appeared 

together at 58 dph (Schrøder et al., 1998). Although it is possible their methods only detected 

plasma cells and not unstimulated IgM+ B cells, which contain a low copy number of IgH 

mRNA. Because detection of IgH in the current study was not carried out, it is difficult to say 

whether some of the IgM+ cells stained were plasma cells or when plasma cells first appear in 

hapuka; indeed no exogenous IgM was detected. As mentioned previously, it has been 

speculated that the relatively late appearance of autologous humoral IgM in teleosts may be 

compensated, to some extent, by maternally-derived immunoglobulins (Swain and Nayak, 

2009). 

The present results show that IgM+ cells first appear at 12 dph and have colonised all the 

immune organs by 50 dph in hapuka larvae. However, at this time none of the organs appear 

fully developed except possibly the head kidney. Because expression and production of IgM 

determines the time at which larvae or juveniles can mount a specific immune response, 

hapuka larvae are probably competent for antibody production around 50 dph, after dry feed 

has commenced. Clinical observations have shown that hapuka larvae are highly sensitive to 

microbial diseases during this period and that vaccination or immunoprophylactic measures 

at this stage could provide protection. Similar studies of other immune cell populations in the 

future will contribute to and expand our understanding of this area of immunity. 
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Chapter 5 – Transcriptional onset of immune genes. 

5.1. Introduction 

Studying the immune system ontogeny of fish species used in aquaculture is useful because it 

will reveal when different components of the immune system begin to develop and thus, 

when fish are able to respond to vaccines or immunoprophylactics. To date, most studies 

have used light and electron microscopy to study the immune system, focusing on the 

development of the lymphoid organs (Jósefsson and Tatner, 1993; Padros and Crespo, 1996; 

Willett et al., 1999; Petrie-Hanson and Ainsworth, 2001). Immunohistochemical techniques 

are also commonly used for detecting specific target proteins and thus identifying a particular 

cell type in a tissue section (Castillo et al., 1993; Breuil et al., 1997; Schrøder et al., 1998; 

Patel et al., 2009). Another method for studying the immune system development is gene 

expression assays and in particular, reverse-trascriptase polymerase chain reaction (RT-PCR). 

RT-PCR involves reverse transcribing mRNA isolated from a location of interest such as the 

head kidney or the entire fish into complementary DNA (cDNA). The expression of specific 

transcripts (now cDNA) are then amplified by PCR and quantified. One of the problems with 

gene expression studies is that the gene sequences must be known in order to design the 

primers, and until relatively recently, known sequences were few in number. However, over 

the past decade many fish species have had their entire genomes sequenced such as the fugu 

(Takifugu rubripes), green spotted puffer (Tetraodon nigroviridis), three-spined stickleback 

(Gasterosteus aculeatus), elephant shark (Callorhinchus milii) and zebrafish,  contributing 

the to growing wealth of genetic information (Aparicio et al., 2002; Jaillon et al., 2004; 

Venkatesh et al., 2007). 

Conserved synteny, which is the occurrence of synteny of orthologous genes between two 

different species, allows the use of datamining techniques to identify conserved motifs within 

genes of interest. These conserved motifs are areas of DNA that are highly similar among 

even distantly related species. Expressed sequence tags (EST) and gene sequences containing 

conserved motifs can be found in gene databases and aligned between different fish species to 

design probes for in situ hybridization and primers for PCR. Additionally sequence 

alignments can also be used for phylogenetic analysis between species and the creation of 

antibodies for experiments. These molecular techniques are being used more and more in fish 
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immunology and the sequencing of entire fish genomes has made database mining and 

genetic studies in fish even easier. The expression of immune relevant genes has been studied 

in many fish species such as the common carp, channel catfish, zebrafish, trout, sea bass and 

sea bream (Rodrigues et al, 1995; Moulana et al, 2008; Danilova et al, 2005; Hansen et al, 

2005; Buonocore et al, 2007; Lopez-Castejon et al, 2007) and the ontogenic expression of 

immune genes in hapuka is of great interest. This study has selected a range of immune genes 

from cell markers for different leucocytes to molecules that are important in innate, adaptive 

and inflammatory responses. These cell markers include TCRα, TCRβ, IgM, IgZ, MHCIIα, 

RAG1, CSF-1 and the complement protein C3. 

Aims: Detect the onset of expression of immune (relevant) genes used as markers for specific 

immune cells and immune maturation processes.  

Detect expression of the immune genes TCRα, TCRβ, IgM, IgZ, MHCIIα, RAG1, CSF-1 and 

C3. 

Compare hapuka gene sequences for IgM, MHCIIα and IgZ phylogenetically. 
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5.2. Results 

5.2.1 Hapuka ESTs and gene sequences. 

Alignments with other fish species were used to generate initial primers for the genes 

MHCIIα, IgM and IgZ. The ESTs obtained from the PCR reactions were sequenced and the 

newly obtained sequences (data not shown) were used to design new hapuka specific primers 

for following gene expression studies. The sequences for MHCIIα, IgM and IgZ were also 

BLAST searched to find comparable sequences in other fish species. Sequences containing 

relatively high maximum identity and query coverage were used to create phylogenetic trees 

for each respective gene (Fig 1-2). Only one entry per unique species was included. IgZ only 

yielded matches within a conserved region, probably due to the lack of IgZ sequences 

available and thus no tree was constructed.  

BLAST results for the sequenced hapuka MHCIIα EST revealed identity matches with the 

sea bass, striped bass (Morone saxatilis), mi-iuy croaker (Miichthys miiuy), large yellow 

croaker (Larimichthys crocea), orange spotted groper (Epinephelus coioides), walleye 

(Sander vitreus) and gilthead sea bream (Sparus aurata) MHCII (Fig 5.1). Alignment and 

phylogenetic analysis of MHCIIα in teleost fish was performed to reveal the relationship of 

hapuka MHCIIα with other fish species with the most closely related MHCIIα. Of the species 

aligned, the tree revealed that the sea bass and striped bass were the two most closely related 

by MHCIIα, while the sea bream appeared the least.  

BLAST results for the sequenced hapuka IgM heavy chain EST revealed identity matches 

with the mandarin fish, striped trumpeter (Latris lineata), thornfish (Bovichtus diacanthus), 

humphead snapper (Lutjanus sanguineus), orange-spotted grouper, longtooth grouper 

(Epinephelus bruneus), spotted wolffish (Anarhichas minor), large yellow croaker and 

snakehead (Channa argus) IgM heavy chains (Fig 5.2). Alignment and phylogenetic analysis 

of the IgM heavy chain in teleost fish was performed to reveal the relationship between the 

hapuka IgM heavy chain and other fish species. The mandarin fish and striped trumpeter had 

the closest matching IgM heavy chains to hapuka while the snakehead had the least. BLAST 

results for the sequenced hapuka IgZ EST revealed little, most likely due to the lack of 

sequenced marine teleost IgZ sequences. Instead the gene was translated and an xBLAST 

carried out revealing conserved sequence identity with trout IgZ (AAW66979.1),  
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5.2.2. Gene expression 

B-actin was used as a loading control (Fig 5.3A). The expression of C3 and CSF1R were 

assessed to investigate the timing of innate immune development. The complement protein 

C3 was present from 1 dph as indicated by the 600 bp band (Fig 5.3C). Similarly CSF1R was 

detected from 1 dph with a 400 bp band (Fig 5.3G) suggesting these innate components are 

active early. 

The expression of genes associated with T and B cell development were also assessed. RAG1 

expression was first found at 50 dph with the appearance of a 390 bp band (Fig 5.3B). TCRα 

expression could not be detected in hapuka larvae at any time point sampled (Fig 5.3D); 

however, the TCRβ was detected from 32 dph onwards with expression of a 500 bp band (Fig 

5.3E). MHCIIα expression was detected as early as 1 dph in hapuka larvae with a band of 370 

bp (Fig 5.3F). The first detection of IgM expression appeared to be 9 dph, showing a 513 bp 

band (Fig 5.3H), while the first IgM+ cells appeared at 12 dph. IgZ expression was variable 

appearing in 1 out of 2 time points from 45 dph onwards with a 480 bp band (Fig 5.3I). 
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Fig. 5.1. Neighbour-joining phylogenetic tree based on MHC class IIa sequences from 

perciformes fish, using the Tamura-Nei model. Bootstrap values are shown for nodes 

supported by >50 % of 100 replicates. Scale bar represents 0.05 substitutions per site. The 

GenBank accession numbers are as follows: EF681861 (large yellow croaker), GU936787 

(mi-iuy croaker), DQ019411 (gilthead seabream), DQ821108 (European seabass), L35062 

(striped seabass), AY158872 (walleye), GU992887 (orange-spotted grouper). 
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Fig. 5.2. Neighbour-joining phylogenetic tree based on IgM heavy chain sequences from 

perciformes fish, using the Tamura-Nei model. Bootstrap values are shown for nodes 

supported by >50 % of 100 replicates. Scale bar represents 0.05 substitutions per site. The 

GenBank accession numbers are as follows: AY885709 (orange spotted grouper), JF430683 

(longtooth grouper), AF138958 (spotted wolffish), AF327364 (mandarin fish), EU884292 
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(thornfish), FJ864717(stripped trumpeter), EU822510 (snakehead), EU627008 (large yellow 

croaker), HQ322494 (humphead snapper). 
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Fig. 5.3. Gene expression profiles for selected immune genes and corresponding β-actin 

amplification in hapuka larvae at various days post hatch. mRNA from whole fish 

homogenates was used for cDNA creation. (A) β-actin. (B) RAG1. (C) C3. (D) TCRα. (E) 

TCRβ. (F) MHCIIα. (G) CSF1R. (H) IgM heavy chain. (I) IgZ. Abbreviations: Adult spleen 

control cDNA (Spl), infected adult control cDNA(*), adult head kidney control cDNA (HK). 
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5.3. Discussion 

Microscopy can reveal a great deal of information about the ontogeny of the lymphoid 

organs. However, observation of the cell populations within them does not necessarily 

correlate with immune function. Instead to study the ontogeny of immune cells, examining 

the expression of genes can accurately detect their presence and help infer important 

information about their maturity. No information was available on the hapuka immune 

system and the expression of immune-related genes was unknown. Thus, this was the first 

study to investigate the expression of the immune-related genes CSF1R, C3, MHCIIα, IgM, 

IgZ, RAG1, TCRα and TCRβ in hapuka larvae starting from 1 dph. This information will 

help distinguish the state of lymphopoiesis and maturation of the immune system during 

larval ontogeny. In this study, RT-PCR of whole fish homogenates was used for detection of 

gene expression. 

The activation of the vertebrate complement system results in the initiation of many 

biological processes, including phagocytosis, lysis, inflammation and regulation of the 

adaptive immune response (Magnadottir, 2006). The innate protein C3 plays a central role in 

the activation of complement system and its activation is required for both classical and 

alternative complement activation pathways (Sunyer and Lambris, 1998). In hapuka, C3 was 

expressed at all developmental stages from 1 dph and showed no specific expression pattern. 

In Atlantic salmon, RT-PCR studies showed C3 expression present in the embryo stage even 

before hatching with mRNA levels steadily increasing throughout the study period (Løvoll et 

al., 2007). In the spotted wolf fish C3 was also detected in the embryo by RT-PCR at 49 dpf, 

with levels increasing towards hatch (Ellingsen et al., 2005). Immunohistochemical 

techniques on Atlantic cod and Atlantic halibut have also been carried out to study the 

ontogeny of C3 in these fish species (Lange et al., 2004b; Lange et al., 2004a). In Atlantic 

cod C3 was present in the yolk sac membrane at 1 dph and in the liver, brain, kidney and 

muscle from 2 dph (Lange et al., 2004b). C3 was first detected in the Atlantic halibut at 5 dph 

in the skeletal muscle fibres and later for the first time in the hepatocytes and the sinus 

endothelial cells of the liver; however, this study did not take samples at earlier time points 

before 5 dph (Lange et al., 2004a). The early expression of C3 in hapuka further suggests the 

importance of complement in this species. 
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Antigen presenting cells (APCs) are important phagocytic cells that present foreign antigens 

to T cells. The ontogeny of APCs in hapuka larvae was examined using the general APC 

marker MHCIIα and the macrophage specific marker CSF1R. MHCIIα and CSF1R were both 

expressed from 1 dph in hapuka larvae, CSF1R showing greater amount of products between 

9 dph and 24 dph and then again after 45 dph. The expression of these APC cell markers 

before the formation of the head kidney, the main site of hematopoiesis in fish (Chaves-Pozo 

et al., 2005), suggests either they originated from a hematopoietic location preceding the head 

kidney, or they were of maternal origin. In zebrafish, cells expressing CSF1R by in situ 

hybridization were able to be recruited to wounds in the tailfins of 2 dpf embryos (Mathias et 

al., 2009), while the head kidney only appears in zebra fish at 4 dpf (Willett et al., 1999). 

These macrophages were distinguished from neutrophils by immunolabeling of L-plastin 

without MPO co-expression (Mathias et al., 2009).  

Another study on zebrafish showed the appearance of macrophages at a very early stage, first 

in the yolksac at 1 dpf and then in the mesenchyme of the head and in the blood. It was found 

that these early macrophages do not arise from the well-known caudal embryonic blood 

island that gives rise to erythroblasts and endothelial cells; instead they arose from the ventro-

lateral mesoderm of the head just anterior to the cardiac field (Herbomel et al., 1999). 

Additionally these early macrophages from the yolksac appeared before any other type of 

leucocyte in the embryo. As well as phagocytosing apoptotic corpses, these macrophages 

showed the ability to engulf and destroy large amounts of bacteria injected intravenously 

(Herbomel et al., 1999). Our data suggests macrophages are present from 1 dph; however, to 

more accurately conclude that the CSF1R/MHCII expressing cells are macrophages, as well 

as attributing any immune function, will require further studies. Although the use of CSF1R 

as a marker for macrophages is generally accepted, it may be somewhat limited due to 

expression in neural crest cells (Parichy et al., 2000). Because of this it is necessary to use 

multiple markers or techniques for accurate detection.  

Studies into the ontogeny of T lymphocytes in teleost fish have been limited due to the 

limited number of markers available (Zapata et al., 2006). Nevertheless morphological 

evidence combined with expression of T cell markers such as TCRα/TCRβ can confirm the 

appearance of T cells in the thymus (Willett et al., 1999; Trede et al., 2004). Generally the 

expression of RAG genes precedes the expression of TCRα/TCRβ because RAG genes are 
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involved in the genetic recombination process. In contrast the first expression of TCRβ in 

hapuka larvae occurred at 32 dph with detectable expression of RAG1 at 50 dph. 

Additionally TCRα expression was not detected in any larval timepoint sampled. In the 

halibut, the expression of TCRα mRNA is delayed occurring after the expression of RAG1 

and TCRβ (Øvergård et al., 2011). In zebrafish the RAG1 expression at 3dpf is followed by 

TCRα chain expression in the thymus at 4 dpf (Danilova et al., 2004), two days after the 

appearance of the first lymphoid cells in the organ, while in the sea bass, 

immunohistochemical detection of assumed T cells (DLT-15 positive cells) occurs in the 

thymus 3 days after the first lymphoblasts appeared (Scapigliati et al., 2002). Additionally 

lymphoid progenitors that colonize the early thymic primordium only differentiate into 

immunocompetent T cells after the thymic stroma has matured (Castillo et al., 1990). 

Interestlingly the thymic stroma of hapuka did appear mature at 63 dph (Chapter 3), with 

many thymocytes visible, although medulla and cortex could not be distinguished; however, 

not all fish species develop zonation of their thymus (Press and Evensen, 1999) and so this 

may not reflect a lack of maturity. In mammals the surface expression of the co-receptors 

CD4 and CD8 should appear at the same time as the TCRα-chain is rearranged replacing the 

pre-Tα chain within the TCR complex and this is precisely what is seen in halibut (Øvergård 

et al., 2011). For further studies in hapuka, examining the expression of CD4/CD8 combined 

with TCRα at later larval timepoints should more accurately identify timing of T lymphocyte 

maturation. 

In most teleosts that have been studied, the B lymphocytes have been suggested to originate 

and differentiate in the kidney (Hansen and Zapata, 1998). The IgM heavy chain gene 

encodes for the isotype determining portion of antibody in fish. Primers targeting the heavy 

chain gene of the IgM molecule were developed. Expression of IgM was first detected at 9 

dph in hapuka larvae with increased expression correlating with the growth and maturation of 

the headkidney. The relatively early expression of IgM in hapuka at 9 dph also coincides with 

the appearance of IgM+ cells in the head kidney 3 days later and suggests that B cells develop 

and mature in the head kidney.  

However, in contrast to this, in a zebrafish study they were unable to demonstrate RAG1 

expression in the head kidney by whole mount in situ hybridization (WISH), suggesting that 

the Rag probe was either unable to sufficiently penetrate the fish body or that there was a lack 
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of lymphoid progenitors in the embryonic  head kidney (Trede et al., 2004). However, other 

authors using the same WISH technique, demonstrated RAG1 expression in the zebrafish 

pancreas by 4 dpf followed by the expression of IgM at 10 dpf (Danilova and Steiner, 2002). 

Never-the-less another study showed weak expression of Ig L isotypes by RT-PCR at 3 dph 

but their expression, which was evaluated by in situ hybridisation on head kidney sections, 

began at 3 weeks post fertilisation (Lam et al., 2004). In the haddock, using RT-PCR 

although levels of IgM were detected relatively early between 12-16 dph, a large increase in 

IgM expression is first detected at 40 dph, after a large increase in RAG1 expression at 33 

dph (Corripio-Miyar et al., 2007).  

The lack of RAG1 expression in hapuka larvae before the onset of IgM expression (and the 

TCRα/TCRβ) could be due to very low level quantities of RAG1 mRNA. It is known that 

RAG expression is down regulated as lymphocytes mature, as seen in the haddock where a 

high peak of RAG1 at 33 dph is followed by decreased RAG1 levels and a large increase in 

IgM expression a few days later (Corripio-Miyar et al., 2007). It is possible the RAG1 levels 

stayed low in hapuka until the head kidney and thymus reached a more mature stage (50 dph) 

when larger amounts cell maturation took place. Overall, the head kidney appears to be the 

first organ that produces B-lymphocytes in hapuka. 

The functional properties of IgZ are still relatively unknown aside from its possible 

involvement in the mucosal immune environment (Zhang et al., 2010). Although it has now 

been reported in many fish species (Danilova et al., 2005; Tian et al., 2009a; Ryo et al., 

2010), ontogenic studies into IgZ (also called IgT) are lacking. In hapuka, IgZ was first 

expressed at 45 dph with a peculiar expression pattern, being present one out of two samples 

tested. In ontogeny studies conducted in fugu and trout, expression of IgZ was first detected 

at 4 dpf, while the secretory form was expressed 1 dpf (Hansen et al., 2005; Savan et al., 

2005). In these studies, IgM and IgZ were expressed during the same stage of development, 

although in zebrafish IgZ was detected first (Danilova et al., 2005). It has been revealed that 

in rainbow trout, IgZ and IgM are mutually exclusive on B-cells (Li et al., 2006).  

The expression of hapuka IgZ appeared at the same time the TCRβ gene first started 

expression and at a time when the lymphoid organs started appearing mature. The expression 

of IgZ in one out of two samples for the time points of 45, 50 and 63 dph is strange, however, 

because this is the first time IgZ has been detected in hapuka, it is hard to speculate why. The 
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late detection of IgZ relative to IgM in hapuka could be accounted for by the technique used. 

Because IgZ has been found at such low levels in the lymphoid organs previously (Danilova 

et al., 2005), RT-PCR may have not been sensitive enough as given that whole larvae were 

homogenized rather than specific organs or tissues. Rapid Amplification of cDNA Ends 

(RACE) experiments were attempted to sequence the hapuka IgZ gene; however, these 

experiments were not successful and so further studies are needed to shed light on hapuka 

IgZ. 

Phylogenetic analysis of MHCIIa revealed that every fish showing a high match with hapuka 

was a member of the perciform order of fish to which hapuka belongs. The closest related 

species to hapuka by MHCIIa was the European sea bass and the striped bass, both marine 

species and members of the Moronidae family of fish, which are considered closely related to 

the wreckfish (Polyprionidae) family to which hapuka belong. Similarly, phylogenetic 

anaylsis of IgM revealed a comparable pattern in that all fish, which showed a relationship 

with hapuka IgM, were members of the Perciformes order. Hapuka IgM appeared most 

closely matched with the mandarin fish followed by the striped trumpeter IgM heavy chains. 

This was interesting because while the mandarin fish belongs to the temperate perch family 

(Percichthyidae), and is closely related to the Moronidae family, it is a freshwater species 

native to China. It should be noted that no relationships were found with other members of 

the Polyprionidae family; however, this is due to the lack of immunologic studies conducted 

on the wreckfish species. Lastly the hapuka IgZ EST sequence only yielded similarity with 

other sequences when translated, and only the conserved Ig domain. A trout sequence showed 

the closest similarity, which would be considered strange, because trout is not a member of 

the perciformes order; however, this is probably due to the lack of teleost IgZ sequences 

available. 

In conclusion, the APC marker MHCIIα and the macrophage specific cell markers CSF1R 

were present from hatch, as was the complement component C3, similar to what has been 

seen in other teleosts (Lieschke et al., 2001; Ellingsen et al., 2005). Interestingly the 

expression of the lymphocyte development marker RAG1 did not appear to correlate with the 

expression of the B and T cell markers IgM and TCRα or TCRβ respectively. IgM was 

expressed relatively early (9 dph) and correlated with the immunohistochemical detection of 

IgM+ cells in the headkidney at 12 dph (Chapter 4). TCRβ gene was expressed at 45 dph 
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before the expression of TCRα as expected. Generally TCRα is expressed soon after the 

TCRβ gene in other teleosts (Øvergård et al., 2011), however, TCRα was not detected in 

larvae sampled. Mechanisms for the absence of this expression remain speculative and 

further studies are needed. IgZ was first expressed at 45 dph and showed a perculiar 

expression pattern being present in one out of two samples tested. The knowledge of these 

immune genes will help establish the ontogeny of the hapuka immunity and give insight into 

the development of immunocompetence. Of further interest is whether some of the important 

immune factors expressed here are also maternally transferred to the eggs of hapuka such as 

C3 or humoral IgM. 

 

 



98 

 

Chapter 6 – Maternal transfer of immunity 

6.1. Introduction 

Fish eggs are released and embryos hatch into a hostile environment, at a time when the 

embryo’s immunological capacity is still extremely limited (Mulero et al., 2007b). Because 

of this limitation, high mortality rates in the early larval stages are common in the aquaculture 

industry for many fish species (Seppola et al., 2009). These mortalities are usually due to 

opportunistic pathogens present naturally in the water such as bacteria, protozoa and viruses 

and can cause serious economic losses (Bakopoulos et al., 1997). Rearing of hapuka has seen 

similar problems, with high mortalities recorded in young larvae (personal communication, 

Salinas, I.). However, it has been reported that the maternal transfer of immunity occurs in 

many fish species (Takemura and Takano, 1997; Hanif et al., 2004; Seppola et al., 2009). 

Maternal immunity transmission is defined as the transfer of immune factors by an 

immunocompetent female to an immunologically naive neonate transplacentally or through 

colostrum, milk or yolk (Grindstaff et al., 2003). Both innate and adaptive immune factors 

can be transferred (Hanif et al., 2004), providing larvae with a limited period of immunity. 

These factors can be in the form of protein, mRNA or both and include complement 

components, immunoglobulins, lysozyme and types of lectins, such as agglutinins and serum 

amyloid A (Anstee et al., 1973; Yousif et al., 1991; Hanif et al., 2004; Huttenhuis et al., 

2006; Løvoll et al., 2006). Currently, it is unknown whether maternal transfer of immunity 

occurs in hapuka and if so, what form it takes. This study was conducted in order to obtain 

evidence on the transfer of maternal humoral immune parameters of hapuka to their offspring 

and will focus on IgM, complement and lysozyme. 

Aims: The overall aim of this chapter is to determine whether maternal immune factors are 

transferred to hapuka eggs/larvae. The maternal transfer of immunity in hapuka is of great 

interest due to the relatively late arrival of immunocompetence in most fish species. 

Additionally, this information may shed light on other areas of the hapuka immune system 

such as the timing of organ ontogeny and onset of immune gene transcription.  

Detect the transfer of complement in the eggs of hapuka by measuring hemolytic activity. 

Determine if lysozyme is transferred to hapuka eggs by measuring lysozyme activity. 
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Detect maternal transfer of the key adaptive immune factor IgM, by immunoblotting and 

ELISA. 
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6.2. Results 

6.2.1. Complement activity  

If complement were present, lysis of the sheep red blood cells would cause a change in 

absorbance. No change in absorbance was detected in wells containing hapuka eggs or larvae 

at any time point with all samples showing values of approximately 0 (data not shown). In 

contrast, adult hapuka serum showed clear lysis of sheep red blood cells compared to egg and 

larval samples (Fig. 6.1) confirming that adult hapuka serum but not egg or larval samples 

contains active complement factors detectable by this assay. The complement plate 

containing larvae (Fig. 6.1) is shown instead of the egg plate because it contained the 

controls.  

6.2.2. Lysozyme activity 

Egg homogenate gave a value of 0.08 lysozyme units (U) (One unit will produce a ΔA450 of 

0.001 per minute at pH 6.24 at 25 °C, using a suspension of Micrococcus lysodeikticus as 

substrate, in a 2.6 mL reaction mixture (1 cm light path) showing that hapuka eggs contain 

lysozyme (Fig. 6.2). Additionally, serum from 90 dph juveniles showed 4 times more 

lysozyme activity per μg of protein (0.32 U) than seen in the eggs (Fig. 6.2). 

6.2.3. IgM detection dot blot and western blot 

To identify whether or not IgM was present in eggs of hapuka, a simple dot blot was 

performed on whole egg homogenates from 0 dpf (Fig. 6.3A). To verify the molecular weight 

of the identified proteins, the IgM+ bands were compared using western blot analysis and 

different sized bands were observed (Fig. 6.3B). In adult hapuka serum under non reducing 

conditions (lane 4) two bands of over 250 KDa were detected but absolute size could not be 

measured using the protein ladder used. Reducing conditions for the adult serum yielded a 

single band on approximately 75 kDa whereas in egg homogenates, under both reducing and 

non reducing conditions a single band of 75 KDa was detected.  
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6.2.4. IgM detection ELISA 

The IgM levels in whole egg and larval homogenates were also measured by ELISA to 

provide a more quantitative assessment. Samples were standardised to 100 μg/ml of protein 

in order to compare the different tissue samples. Because an IgM standard was not used, the 

absolute amount of IgM could not be calculated; the neglection of an IgM standard was due 

to funding restraints. Instead, the absorbance at 450 nm indicated the relative amount of IgM 

present and is presented as absorbance per 2.5 μg of total protein. The results indicated the 

presence of IgM in both the eggs and larvae when compared with PBS controls (Fig. 6.4). An 

initial absorbance value of 0.128 was seen at 0 dpf and the IgM levels appeared to decrease to 

0.05 by 16 dpf in accordance with its possible degradation (Fig. 6.4). The IgM levels then 

increased to 0.067 by 18 dpf. By 56 dpf the IgM levels had increased to an absorbance value 

over 0.148; higher than the initial detection levels in the eggs at 0 dpf.  



102 

 

 

Fig. 6.1. Photograph of a 96 well plate showing no red blood cell lysis by complement 

activity in larval homogenates. No complement activity was detected in any egg or larval 

sample. Lanes are arranged in serial dilutions from top to bottom. (A) 12 dph #1. (B) 12 dph 

#2. (C) 16 dph #1. (D) 16 dph #2. (E) 20 dph #1. (F) 20 dph #2. (G) 24 dph #1. (H) 24 dph 

#2. (I) 32 dph. (J) 10mM PBS. (K) Adult hapuka serum. 
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Fig. 6.2. Lysozyme activity is present in hapuka eggs. One lysozyme unit will produce a 

ΔA450 of 0.001 per min at pH 6.24 at 25 °C, using a suspension of Micrococcus 

lysodeikticus as substrate, in a 2.6 mL reaction mixture (1 cm light path). Lysozyme activity 

in hapuka eggs and juveniles was measured by activity with a chicken egg white lysozyme 

standard. 
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Fig. 6.3. IgM is present in hapuka eggs. (A) Dot blot analysis used for the detection of IgM in 

egg homogenates for two different batches of eggs. (B) Western blot analysis for the 

verification of transferred IgM molecular weight in egg homogenates and adult serum; Lane 

1, Precision Plus Protein dual colour standards (Bio-Rad); lane 2, non-reduced egg 

homogenate; lane 3, reduced egg homogenate (10% 2-ME); lane 4, non-reduced adult serum; 

lane 5, reduced adult serum (10% 2-ME). 
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Fig. 6.4. IgM is present in the eggs and decreases until endogenous production. Figure shows 

the changes in IgM measured by ELISA at 450 nm in hapuku egg and larval homogenates. 

Note that the absorbance only shows the relative IgM level. (H) refers to the time of hatch 

and (Y) refers to the time of yolk sack absorption and the beginning of rotifer feeding. Bars 

represent percentage errors of the means. (N=3). 
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6.3. Discussion 

The teleost immune system is not fully developed during early embryonic stages and the 

immunological capacity is thus assumed to be limited. This study was performed to give 

insight into the maternal transfer of some of the key immune molecules in hapuka including 

complement, lysozyme and IgM. Currently it is not known if these factors are important in 

the maternal transfer of immunity to hapuka eggs or larvae. The results of this study showed 

that IgM and lysozyme were present in the eggs of hapuka, however, complement was not.  

Complement is one of the most important components of the innate immune system, 

especially in fish (Ellis, 1999). Even with no antibody present, the complement system can 

act to lyse foreign cells with a membrane attack complex via the alternative pathway (Nonaka 

and Smith, 2000). To detect the presence of complement, the lysis of sheep red blood cells by 

complement was measured in eggs and larvae. Results showed no complement-mediated lysis 

of red blood cells in any egg sample or even the larval samples up to 63 dph, whereas the 

adult serum showed clear lysis. While this result suggests that no C3 was present in the egg 

and larval samples, it is possible that complement proteins were present but unable to form 

membrane attack complexes and thus lyse cells. The lack of one of the many complement 

proteins required to form the membrane attack complex would prevent lysis in our assay 

(Løvoll et al., 2006) and while the end result of complement activation was assessed, the 

presence of specific complement proteins was not examined.  

The expression of the complement protein C3 was present from hatch in hapuka (Fig. 5.3C) 

which suggests at least some components of complement are present in the early stages. Even 

if a lytic pathway is not active until later stages in hapuka larvae, C3 degradation products 

can still function as opsonins and anaphylatoxins. These opsonins promote phagocytosis and 

thus require the presence of phagocytic cells (Løvoll et al., 2007). On the other hand, the head 

kidney, the main hematopoietic organ in teleosts first appears at 4 dph in hapuka. The transfer 

of complement to eggs has been reported in other fish species. Studies on the spotted wolf 

fish showed that maternal C3 was transferred to the eggs and detected by 

immunohistochemical experiments; however, functional properties such as cell lysis were not 

determined (Ellingsen et al., 2005). Studies on Atlantic salmon showed the presence of the 

C3 protein in the unfertilised eggs, with C3 mRNA not detected in the larvae until 14 dpf 

suggesting the maternal transfer of C3 (Løvoll et al., 2007). It would appear that although 
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hapuka larvae express the complement protein C3 early, any components that are transferred 

from the mother are not able to form a membrane attack complex.  

Lysozyme is another important innate defence parameter and acts on the peptidoglycan layer 

of bacterial cell walls resulting in the lysis of the bacteria. The maternal transfer of lysozyme 

in hapuka was studied by examining the presence of lysozyme in the eggs and juveniles, and 

the results showed that both hapuka eggs and juveniles contained significant lysozyme 

activity. It is believed that lysozyme in eggs may prevent vertical (mother to progeny) 

transmission of some bacterial pathogens (Yousif et al., 1994), however, it remains unknown 

if the lysozymes in hapuka eggs have any direct anti-bacterial activity. Atlantic cod showed 

maternal transfer of lysozyme to the eggs, while during the gastrula period (118 hpf) the 

transcript level of lysozyme increased slightly indicating that from this stage the embryo 

independently produces its own transcripts and the use of maternally derived lysozyme may 

be of less importance (Seppola et al., 2009). Because the gene expression of lysozyme was 

not examined in hapuka, similar conclusions cannot be made.  

In coho salmon (Oncorhynchus kisutch), lysozyme activity has been found in unfertilised 

eggs (Yousif et al., 1991) and this lysozyme, when purified, showed antibacterial activity 

against several fish pathogenic bacteria (Yousif et al., 1994). Lysozyme has also been found 

in the eggs of zebrafish along with complement proteins, both demonstrating antibacterial 

activity (Wang and Zhang, 2010). Additionally it was suggested that the lysozyme-mediated 

bacteriolysis depended on the complement, and the complement-mediated bactericidal 

activity can be stimulated by the lysozyme activity (Wang & Zhang, 2010); showing a 

synergistic role of these maternally-transferred proteins. The presence of lysozyme activity in 

hapuka eggs may indicate a role in the prevention of bacterial entry into the eggs and 

embryos. Thus, transfer of lysozyme to the egg may represent a maternal adaptation to 

increase offspring viability and improve overall egg quality (Seppola et al., 2009). 

As well as innate factors, the transfer of the adaptive immune protein IgM was examined in 

the eggs of hapuka. It has been speculated that the relatively late arrival of autologous 

humoral IgM may at least to some extent, be compensated by maternally derived IgM 

(Zapata et al., 1997). In the present study the presence of IgM in the eggs of hapuka was 

examined using immunoblotting and ELISA assays. The results indicated the presence of an 

immunoglobulin like protein in the fertilised eggs of hapuka. It appears that at 0 dpf IgM is 
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present in the eggs and slowly decreases until hatch when the IgM levels decline even further. 

The IgM levels appear to decline till around the time of first feeding (17 dpf or 11 dph), when 

there appears to be an increase in IgM. IgM levels appear to increase from this point onwards 

with higher levels recorded after 51 dpf (45 dph). The increase in IgM levels correlates with 

when IgM+ cells first appear in the head kidney a day later at 12 dph (Chapter 4) a few days 

after gene transcripts of IgM were first detected (9 dph) (Chapter 5).  However, due to the 

lack of sample size (3), subsequent statistical analysis could not be carried out and the results 

validated. 

The transfer of maternal IgM has been recorded in other fish species such as tilapia, sea 

bream and coho salmon (Yousif et al., 1995; Takemura and Takano, 1997; Picchitti et al., 

2001). In tilapia, low levels of IgM were detected in the circulating blood of larvae, while 

high levels were found in the yolk sac, indicating that most of the IgM which is considered to 

be of maternal origin remained in the yolk sac. Upon complete absorption of the yolk sac 

there was a remarkable increase in IgM in the larval homogenate. Because the larvae had 

already absorbed their yolk, the increase in IgM detected in these larvae did not derive from 

the yolk sac. This result suggests that IgM producing cells must have started to mature and, 

consequently, IgM in the larval circulation increased (Takemura and Takano, 1997). 

Similarly, IgM levels in hapuka larvae decreased until about the time of complete yolk sac 

absoption (11 dph), which also coincided with the onset of exogenous feeding. After the yolk 

sac absorption and beginning of exogenous feeding IgM levels started to increase, which also 

corresponded with the maturing of IgM producing cells which were detected by IHC in the 

head kidney at 12 dph. It is interesting to note that in zebrafish, maternally supplied mRNAs 

are selectively degraded before the activation of embryonic transcription can begin. This 

occurs in order to transfer developmental control to the zygotic genome and a correctly timed 

clearance of maternal transcripts is critical for embryogenesis (Giraldez et al., 2006). 

Although detection of IgM mRNA in hapuka eggs was not carried out, larval transcription of 

IgM began on 9 dph, when levels of transferred maternal IgM appeared at their lowest. It is 

possible that metabolism and degradation of IgM and/or IgM transcripts in hapuka during the 

yolk sac absorption also signals the onset of transcription; however, further studies are 

needed. 
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The teleost IgM tetramer generally has a molecular weight between 600 and 800 kDa 

depending on fish species (Tort et al., 2003; Swain and Nayak, 2009). Western blot analysis 

showed that a low molecular weight Ig molecule of approximately 75 kDa was present in 

hapuka eggs under non reducing conditions. Under reducing conditions the same 75 kDa 

band was seen suggesting that the molecule transferred to the eggs is an already reduced form 

of the adult tetrameric IgM. The molecular weight of the adult IgM molecule under non 

reducing conditions could not be determined with the protein ladder used, although 2 bands 

could be seen suggesting Ig multimers (tetramers and trimers) were present. However, under 

reducing conditions a single molecule of approximately 75 kDa was detected, the same size 

as the molecule seen in the eggs. These results would suggest that a possible halfmeric Ig is 

transferred to the eggs of hapuka, or possibly an already reduced heavy chain because of the 

low kDa.  

Because monomeric isotypes (Clem and Mclean, 1975; Lobb and Clem, 1981) are seldom 

observed, it has long been believed that teleost immunoglobulins lack isotype diversity 

(Kaattari et al., 1998). It has now been discovered that a unique feature of teleost IgM, is the 

fact that these molecules are not secreted as uniformly disulfide bonded oligomers; but 

instead various redox forms exist giving rise to multiple IgM isomers (Kaattari et al., 1998). 

Thus although the tetrameric structure of fish Ig which is composed of four monomeric units, 

two identical H chains (70 kDa) and two light L chains (25 kDa) (Tort et al., 2003), different 

combinations of subunits may be assembled depending on the combinations of disulfide 

bonds and non-covalent interactions. For example, in salmonids it has been shown that the 

basic covalent subunit is a monomer but the final combination for the tetramer may be a fully 

crosslinked tetramer or combinations of monomers, dimers or trimers (Evans et al., 1998). 

Furthermore, the presence of halfmeric IgM forms has been demonstrated in several fish 

(Lobb and Clem, 1983). The approximate 75 kDa heavy chain detected in hapuka is in 

accordance with other teleost fish such as the coho salmon (76 kDa) and sea bream (71 kDa) 

(Yousif et al, 1995; Hanif et al, 2004). Assuming the hapuka light chain has a similar 

molecular weight to what has been reported in other species (approximately 25 kDa) then the 

hapuka IgM tetramer could be expected to weigh approximately 800 kDa. What is interesting 

is the transferred Ig molecule appears to be a single heavy chain molecule, suggesting it has 

been reduced from the light chain prior to transfer, or was reduced after the transfer process; 
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Further studies into the transfer process, or study of the light chain could shed light into this 

area of immunity. 
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Chapter 7 – Leucocyte development 

7.1. Introduction 

The ontogeny of the immune cells and the lymphomyeloid organs that house them has been 

studied in several teleost species (Mulero et al., 2007b). Generally the appearance of 

lymphoid organs and lymphocytes is relatively early, however, the full maturation of 

immunological competence can develop much later (Zapata et al., 2006). Cell-mediated 

immunity develops slightly earlier than the humoral immune response and is very important 

during the larval stages (Zapata et al., 2006). Leucocytes play a role as being the key 

mediators of innate immune responses throughout evolution (Janeway and Medzhitov, 2002). 

These cells provide protection against commonly encountered pathogens through phagocytic 

functions, as well as specific anti-microbial enzymes and peptides (Passantino et al., 2002; 

Sepulcre et al., 2002). 

In order to confirm the identity and likely function of different cell populations, analysis of 

specific characteristics of leucocytes, including enzyme components and morphology is 

essential (Shigdar et al., 2009). The leucocytes of fish are generally less differentiated than 

their mammalian counterparts, making them more difficult to distinguish from each other. 

Cytochemistry is the microscopic study of the chemical constituents within cells and relies on 

either selective binding of a stain to a particular cell component on the basis of its chemical 

properties or detection of enzymatic activity with specific colourimetric reagents (Hine et al., 

1987). In combination with cell morphological studies, cytochemical analyses can often 

definitively distinguish between subsets of cells, as well as providing important functional 

information. This methodology has proven particularly useful to the area of hematology, 

where it is routinely used to delineate specific cell populations in blood samples in humans 

and other species (Shigdar et al., 2009). Combined with a quantitative method such as flow 

cytometry, it is possible to characterise the different cell types and to monitor changes in 

blood cell populations between juveniles and adult fish. Flow cytometry proved to be a rapid 

and reliable method for monitoring cell population dynamics in the blood of different fish 

species (Morgan et al., 1993; Esteban et al., 2000). 

Aim: Due to the lack of knowledge of hapuka leucocytes the current chapter aims to identify 

and describe the main leucocyte populations in juvenile and adult hapuka using cytochemical 
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and flow cytometry techniques. Because it is believed that fish develop their innate immune 

system early, it can be hypothesised that the innate cell populations of juveniles will be 

similar to the populations in adults. 

Specific aims: 

Describe the juvenile groper head kidney leucocyte populations and the peripheral blood 

leucocyte populations and compare them with adult hapuka leucocytes.  

Study the IgM+ B cells in the systemic blood and head kidney of juvenile and adult hapuka 

and determine if any significant differences exist.   

Identify the different types of granulocytes present in hapuka by light microscopy, flow 

cytometry, and myeloperoxidase staining. 
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7.2. Results 

7.2.1 Morphology of adult and juvenile hapuka leucocytes 

Percol gradients allowed the separation of the leucocytes from the head kidney and blood. 

The leucocyte suspensions obtained were devoid of erythrocytes. Hapuka leucocyte 

subpopulations were analysed by flow cytometry on the basis of their size (FSC) and 

granularity (SSC). Flow cytometry allowed comparison of the head kidney leucocyte 

populations between adult and juvenile (127 dph) hapuka (Fig. 7.1C); as well as comparison 

of peripheral blood leucocytes (PBL) populations between adults and juveniles (134 dph) 

(Fig, 7.2C). The following four populations were identified according to FSC and SSC: 

progenitor cells, showing variable granularity, but small size; lymphocytes, which were were 

small in size and showed low granularity; macrophages which showed large size but low 

granularity and granulocytes, which showed large size and high granularity. These results can 

be seen in the respective plots showing adult (Fig 7.1A) and juvenile (Fig 7.1B) head kidney 

populations; as well as adult (Fig 7.2A) and juvenile (Fig 7.2B) PBL populations. The flow 

cytometry results showed that the ratios of the granulocyte, lymphocyte, 

monocyte/macrophage and progenitor cell populations in the head kidney of adults were 

significantly different (p < 0.05) than juvenile populations (Fig 7.1C). In particular, juveniles 

appeared to have a large population of progenitor cells and small population of granulocytes 

while the adults had the oppostite. PBL populations appeared similar (Fig 7.2C). 

7.2.2 Lymphocyte populations 

The isolated leucocytes from 117 dph old juvenile and adult head kidneys and blood were 

labelled with the primary antibody F06 which binds to IgM on B lymphocytes, conjugated to 

the secondary FITC-donkey anti mouse IgG (Fig. 7.3A and B). Results showed no significant 

difference (p > 0.05) between the % of IgM+ cells lymphocytes in juvenile and adult 

populations. 

7.2.3. Morphology of adult and juvenile hapuka leucocytes 

Morphological analyses indicated the adult hapuka appear to have at least 2 types of 

circulating granulocytes (Figure 7.4A). One type had a pale cytoplasm and multilobulated 
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segmented nucleus (Figure 7.4B), typical of the heterophil granulocyte of other teleosts 

(Lieschke et al., 2001). The other type had an eosinophilic cytoplasm with a peripheral 

nonsegmented nucleus (Fig 7.4C), typical of the eosinophil granulocytes seen in other 

teleosts (Esteban et al., 2000). Heterophils were rare in juvenile blood smears and instead 

heterophil-like cells were observed which appeared immature in appearance with non-

segmented nuclei  (Fig 7.5A) similar to the progranulocyte seen in the carp (Kondera, 2010) 

(Fig 7.5A and B), however, eosinophils were virtually absent in juveniles. Additionally 

macrophages were common in both adults and juveniles and were characterised by their large 

size and pale blue cytoplasm (Fig 7.4D and Fig 7.5D). Lymphocytes were also abundant in 

both adults and juveniles, observed as small cells, with a large dark staining nucleus with 

little cytoplasm visible. Progenitor cells were small, with variable levels of granularity and 

were seen in both the juveniles (Fig 7.5B) and adults; however as mentioned, numbers of 

progenitors were higher in juveniles. 

7.2.4. Myeloperoxidase staining of adult and juvenile hapuka leucocytes 

Histochemical staining for myeloperoxidase was performed to determine whether any hapuka 

leucocytes contained granules that stained positive for myeloperoxidase (MPO). Heterophils 

stained positive for MPO while eosinophils, macrophages and lymphocytes did not (Fig 7.5 

G, H, I and J). Histochemical demonstration of MPO granules also facilitated recognition of 

the immature heterophil granulocyte cells in the juveniles which showed lower amounts of 

MPO than adults and a more diffuse staining pattern (Fig. 7.5G and H). However, 

histochemical staining for myeloperoxidase activity was not specific to heterophils as weak 

peroxidase activity was evident in other cell types (Fig 7.4F), lineage unknown. These results 

confirm there are MPO+ leucocytes in both adults and juveniles. 
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Fig. 7.1. Flow cytometric analysis of juvenile and adult head kidney leucocyte populations. 

Graph shows the different proportions of leucocytes amongst leucocyte populations between 

the juvenile and adult hapuka head kidney. Head kidneys from juvenile (127 dph) and adult 

hapuka were mechanically crushed through a cell strainer and the leucocytes separated using 

a percol gradient. (A) Adult fish scatter plot and (B) juvenile fish scatter plot showing the 

gates used to determine progenitors, lymphocytes, monocytes/macrophages and granulocytes. 

Scatter plots represent an individual, not the average. (C) Difference between adult and 

juvenile leucocyte populations in the head kidney shown as a percentage of total leucocytes. 

Adults and juveniles were compared for any significant (*) difference between each relative 

leucocyte population (p < 0.05). Bars represent standard errors of the means. (N=4). 
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Fig. 7.2. Flow cytometric analysis of juvenile and adult peripheral blood leucocyte 

populations. Graph shows the different proportions of leucocytes amongst leucocyte 

populations between the juvenile and adult hapuka blood. Juvenile (134 dph) and adult 

hapuka were bled from the caudal vein using a syringe and the leucocytes separated using a 

percol gradient. (A) Adult fish scatter plot and (B) juvenile fish scatter plot showing the gates 

used to determine progenitors, lymphocytes, monocytes/macrophages and granulocytes. 

Scatter plots represent an individual, not the average. (C) Difference between adult and 

juvenile peripheral blood leucocytes populations shown as a percentage of total leucocytes. 

Adults and juveniles were compared for any significant (*) difference between each relative 

leucocyte population (p < 0.05). Bars represent standard errors of the means. (N=4). 
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Fig. 7.3. Flow cytometric analysis of hapuka lymphocyte populations between adult and 

juveniles after being incubated with an IgM labelling antibody. Juvenile (117 dph) and adult 

hapuka were bled from the caudal vein using a syringe to collect blood, and the head kidneys 

mechanically crushed through a cell strainer to obtain cell suspensions. The leucocytes from 

blood and HK were separated from other cell types using Percoll gradients. IgM+ cells were 

stained using primary antibody F06 and a secondary antibody labelled with FITC. The cell 

suspensions were acquired by flow cytometry with 20000 events and analysed in FlowJo 

version 7.6.4. (A) The mean percentage of IgM+ cells present in HK (A) and blood (B) of 
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juveniles was not significantly different from that found in adult specimens (p > 0.05). Bars 

represent standard errors of the means. (N=4). 
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Fig. 7.4. Morphological and cytochemical appearance of adult hapuka leucocytes by light 

microscopy. (A) Leucocytes isolated from hapuka head kidney cytospins and stained with 

Giemsa-stain. (N) Neutrophil/heterophil, (E) eosinophil, (M) macrophage, (L) lymphocyte. 

(B) Detail of mature heterophil with multiple-lobed nucleus. (C)  Detail of mature eosinophil, 

illustrating characteristic pink cytoplasm and peripheral nucleus. (D) Detail of mature 

macrophage, showing large cell size and characteristic pale blue cytoplasm. (E) Detail of 

mature lymphocyte, illustrating darkly stained large nucleus. (A-E) Giemsa-stained blood 
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smears. (F-J) MPO stained blood smears. (F) Leucocytes isolated from adult hapuka head 

kidney cytospins and stained with MPO. (N) Neutrophil/heterophil, (E) eosinophil, (M) 

macrophage, (L) lymphocyte. (G) Detail of MPO+ mature heterophil showing black-stained 

granules in the cytoplasm. (H) MPO- eosinophil (I) Detail of MPO- macrophage. (J) MPO- 

lymphocyte. 
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Fig. 7.5. Morphological and cytochemical appearance of juvenile hapuka leucocytes by light 

microscopy. (A-E) Giemsa-stained blood smears. (F-J) MPO stained blood smears. (A) 

Leucocytes isolated from hapuka head kidney cytospins and stained with Giemsa-stain. (B) 

Detail of immature heterophil with single lobed nucleus. (C) Detail of progenitor cell, 

showing undifferentiated nucleus and neutrophilic cytoplasm. (D) Detail of macrophage, 

maturity unknown, showing large cell size and characteristic pale blue cytoplasm. (E) Detail 
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of lymphocyte, illustrating darkly stained large nucleus. (F) Leucocytes isolated from 

juvenile hapuka head kidney cytospins and stained with MPO. (G) Detail of MPO+ mature 

heterophil showing black-stained granules in the cytoplasm. (H) MPO- Eosinophil (I) Detail 

of MPO- macrophage. (J) MPO- lymphocyte. Abbreviations: Neutrophil/heterophil (N), 

macrophage (M), eosinophilic granulocyte (EG), lymphocyte (L). 
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7.3. Discussion 

The morphology of hapuka leucocytes has not been described to date and therefore this 

represents the first report of their lineages and cell types. Typically, teleost fish possess two 

leucocyte lineages: the lymphoid and myeloid lineages. In higher vertebrates the red blood 

cells, the white blood cells (granular and agranular) and lymphocytes originate from a 

common progenitor, the stem cell, which gives rise to all the cells of the myeloid and 

lymphoid lineages. Our light microscopy studies found the main immune cell types described 

in other teleosts: granulocytes, monocyte/macrophages, lymphocytes, and plasma cells were 

present in hapuka head kidney and peripheral blood. By light microscopy, we identified two 

different types of granulocytes: heterophils (also known as neutrophilic granulocytes) and 

eosinophils. We have adopted the nomenclature proposed by Lieschke (zebrafish) but it is 

clear that some confusion exists in this field (Lieschke et al., 2001). Additionally it is 

important to note that these names, which refer to the staining reaction of the cells, do not 

infer information about the function of these cells in host defense (Ellis, 1977a). 

The morphology of the hapuka heterophil was similar to that seen in other teleost species 

(Bielek, 1981; Esteban et al., 2000; Lieschke et al., 2001; Abdel-Aziz et al., 2010), with a 

neutrophilic cytoplasm and multi segmented nucleus. In juveniles, mature heterophils were 

uncommon and instead many heterophil-like cells were observed which appeared immature 

in appearance with non-segmented nuclei similar to the progranulocyte seen in the carp 

(Kondera, 2010). In many species, the heterophil is the most abundant granulocyte cell type 

(Esteban et al., 2000; Lieschke et al., 2001), whereas in others the neutrophilic 

progranulocyte was the most frequent granuloid cell (Kondera, 2010). In others still, the 

eosinophilic granulocyte is the most common granulocyte encountered (Cenini, 1984; 

Sepulcre et al., 2002; Abdel-Aziz et al., 2010). Using electron microscopy up to three types 

of granule are recorded in some teleosts such as in the mature neutrophils of sea bass 

(Mesenguer et al., 1991), whilst one or two granular types have been found in other teleosts 

(Cannon et al., 1980; Bielek, 1981). However, because electron microscopy was not 

employed in this study, it was not possible to characterise the nature of the hapuka heterophil 

granules. The hapuka heterophil granulocyte stained positive for MPO, suggesting a function 

analogous to that of the mammalian neutrophil. In adult common carp, heterophils showed 
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respiratory burst and bactericidal activity to Aeromonas salmonicida (Bielek, 1981). Further 

studies may further investigate the functional features of hapuka heterophils. 

In this study we compared the presence of progenitor cells in juveniles and adults by flow 

cytometry to characterise the maturity of juvenile leucocyte populations. In the head kidney 

of tilapia (Oreochromis niloticus) it was observed that granulopoietic series consisted of cells 

with variable shape and size at different stages of maturity from myeloblasts to mature 

granulocytes. Maturation of granulocytes was determined by a reduction in cell and nucleus 

size, with nuclear condensation and the appearance of increased amounts of secondary 

granules denoting mature granulocytes (Abdel-Aziz et al., 2010). Progenitor cells were 

detected in juvenile hapuka, morphologically appearing undifferentiated with large nuclei and 

neutrophilic to basophilic cytoplasm, however their size seemed variable with small and large 

cells observed. A great variability was observed when MPO staining was conducted, with 

some small cells showing several granules, others one or two. Generally speaking, progenitor 

heterophils were identified to be MPO+ but had lower amounts of MPO staining in their 

cytoplasm compared to the mature heterophils seen in adults. Interestingly and in contrast to 

this, zebrafish and common carp mature heterophils from adults show weaker histochemical 

peroxidase activity than immature heterophils (Bielek, 1981; Lieschke et al., 2001). In 

zebrafish, even during the embryonic stage mobilization of these peroxidase-expressing cells 

was demonstrated to a site of acute inflammation within several hours of traumatisation 

(Lieschke et al., 2001). Precursor stages of the eosinophil were not discernible in juveniles or 

adults and no function can be given to the progenitor granulocytes of hapuka. 

Eosinophilic granulocytes have been described as being absent or having not been observed 

in fish blood (Ferguson, 1976; Cannon et al, 1980), but common in the head kidney (Esteban 

et al, 2000). Also, two types of eosinophilic granulocytes have been observed in some fish 

(Morrow & Pulsford, 1980). The eosinophilic granulocytes in hapuka were distinct from 

other cell types with their pink staining cytoplasm and peripheral non segmented nucleus. 

Interestingly eosinophils in adult hapuka appeared abundant in adult cytospins, however, no 

method was employed to distinguish eosinophils from heterophils during flow cytometry and 

thus determine their relative percentage. Eosinophils were abscent in the juvenile cytospins. 

In sea bass and zebrafish the heterophil was the most abundant granulocyte type, with a 5:1 

heterophil to eosinophil ratio found in zebrafish (Lieschke et al, 2001; Esteban et al, 2000). In 
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contrast, in species such as carp and tilapia, eosinophils are the most abundant granulocyte 

type (Cenini, 1984; Abdel-Aziz et al, 2010). Similarly, in the gilthead sea bream a fellow 

perciform, the eosinophils (referred to as acidophil) were the most numerous phagocytic cell 

type in all tissues examined (Sepulcre et al, 2002). Furthermore it has been suggested that 

gilthead sea bream acidophilic granulocytes are the counterpart of mammalian neutrophilic 

granulocytes due to their abundance as a circulating form and the staining and histochemical 

features of their cytoplasmic granules (Sepulcre et al, 2002). It has also been shown that 

infection of adult zebrafish with Pseudocapillaria tomentosa, a natural nematode pathogen of 

teleosts, caused marked increases in eosinophil number within the intestine, suggesting a 

conserved role for eosinophils in the response to helminth infection (Keir et al, 2010). The 

current study identifies a clear eosinophilic granulocyte cell type in hapuka, but gives no 

input into its possible function in the immune system. 

The term monocyte/macrophage is widely used to refer to a fish blood cell type with 

phagocytic activity (Morrow & Pulsford, 1980) or morphological and functional features 

comparable to those of monocytes from higher vertebrates (Esteban et al, 2000). 

Macrophages were present in hapuka juveniles and adults morphologically appearing as large 

cells and a pale blue cytoplasm and an eccentric bilobed nucleus similar to what is seen in 

other teleosts (Lopez-Ruiz et al 1992; Esteban et al, 2000; Lieschke et al, 2001). 

Ultrastrucural differences have been observed between monocytes and macrophages in some 

fish species (Lopez-Ruiz et al 1992; Bielek 1980), however, electron microscopy is needed to 

give a more accurate account. Lymphocytes were also observed in hapuka adult and juvenile 

cryospins appearing as small cells with characteristic large darkly stained nucleui which is 

seen in many species (Esteban et al., 2000; Kondera, 2010). Cells similar to the carp plasma 

cell were also observed but were rare (Kondera, 2010). 

Leucocyte populations (head kidney and PBL) of adult and 127 dph juveniles were compared 

by FACS analysis to determine juvenile maturity. PBL leucocyte populations between adult 

and juveniles appeared similar and were not significantly different (p > 0.05). Interestingly 

comparison of head kidney leucocyte populations between adult and juveniles appeared very 

different. Juveniles contained very low amounts of granulocytes but high numbers of 

granulocyte progenitor cells. While adult populations contained large amounts of 

granulocytes, but small amounts of granulocyte progenitors. Statistical analysis showed that 
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each leucocyte population in the juvenile (progenitor, granulocyte, monocytes/macrophage 

and lymphocyte) was significantly different (p < 0.05) than the respective adult population. 

These results indicate that juveniles as old as 127 dph do not appear to have mature cell 

populations, especially in regards to the granulocytes. The lymphocyte populatations between 

adults and juveniles (134 dph) were also compared with results showing that lymphocyte 

populations appeared to have similar numbers of IgM+ cells, with no significant difference (p 

> 0.05). In PBL populations, it is possible that thrombocytes were indistinguishable from 

lymphocytes in the flow cytometer data, due to both having similar cytochemical features 

with a low degree of granularity and complexity. However, head kidney populations do not 

contain significant numbers of thrombocytes, so are unaffected. 

Over all this study showed the presence of heterophilic and eosinophilic granulocytes, 

lymphocytes, plasma cells, monocytes and monocyte/macrophages in hapuka. Using Giemsa 

stain, morphology was used to distinguish cell types and MPO stain allowed some 

characterisation of mature and immature heterophils. The use of electron microscopy would 

be essential in further characterisation of cell types and give a better overall description. 

Interestingly juvenile hapuka head kidney leucocyte populataions were significantly different 

from the adult hapuka head kidney leucocyte populations. It is generally expected that the 

fish innate immune system is robust and develops early, with the adaptive immune system 

developing relatively late, especially in marine teleosts (Patel et al., 2009). However, large 

populations of progenitors and small populations of granulocytes in hapuka juveniles 

suggests their innate immune system is not mature at this stage (127 dph) and therefore 

contrasts this belief. The results suggest that the adaptive immune system of hapuka is mature 

earlier than the innate immune system, which is in stark contrast to what is generally seen in 

teleost fish (Patel et al., 2009). Additionally, the % of IgM+ lymphocytes in juveniles and 

adults were not significantly different suggesting that the juvenile adaptive immune system is 

mature; the relatively early expression of IgM at 9 dph and appearance of IgM+ cells in the 

head kidney at 12 dph further indicate this. However, T cell populations were not compared 

due to lack of antibody markers and may have offered different conclusions.  
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Chapter 8 – General discussion 

Due to the overfishing of the oceans, aquaculture has become the fastest growing food sector 

in the world and the New Zealand grouper or hapuka has been proposed as a suitable 

candidate for aquaculture. High mortality rates in the early larval stages are common in the 

aquaculture industry for many fish species (Seppola et al., 2009). These mortalities are 

usually due to opportunistic pathogens present naturally in the water such as bacteria, 

protozoa and viruses and can cause serious economic losses (Bakopoulos et al, 1997). 

Immunostimulation and vaccination can provide fish protection from potential pathogens. 

However, the effectiveness of immunostimulation and vaccination methods used on cultured 

fish largely depends on the level of maturity of their immune system (Mulero et al., 2007b). 

Yet no studies have been carried out on the hapuka immune system and so nothing is known 

about the timing of their immunocompetence. Therefore, this study was conducted with the 

main purpose of describing the ontogeny of the hapuka immune system. Additionally it is 

hoped that this study will shed light on several important aspects of hapuka immunity, as well 

as identify when hapuka larvae have achieved immunocompetence. 

The development of the hapuka lymphoid organs followed the same sequence seen in other 

teleosts such as Atlantic cod, turbot, sea bream, sea bass and channel catfish (Jósefsson and 

Tatner, 1993; Padros and Crespo, 1996; Breuil et al., 1997; Schrøder et al., 1998; Petrie-

Hanson and Ainsworth, 2001). The head kidney, the major hematopoietic organ in fish, first 

appeared in hapuka at 4 dph, consisting of two renal tubles, but did not appear hematopoietic 

or lymphopoietic until approximately 12 dph. The teleost spleen, which is thought to have 

roles in antigen presentation and the initiation of adaptive immune responses (Chaves-Pozo et 

al., 2005), was the next lymphoid organ to appear and was first observed at 16 dph. Finally, 

the thymus which is primarily responsible for T cell maturation (Bowden et al., 2005), was 

the last lymphoid organ to appear at 20 dph and was populated by thymocytes by 50 dph. 

Together, information gained from the hapuka lymphoid organ ontogeny suggests the organs 

appear relatively mature as early as 45 dph. 

The morphological maturation of lymphoid organs as well as the lymphoid cells in them 

indicates development and increasing maturity of the larvae, but does not necessarily 

correspond with the maturation of immune function (Tian et al., 2009b). Instead, the 
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appearance of Ig-producing cells (IgM+ cells) may better indicate the functional maturity of 

the immune system. The distribution of of IgM+ cells in the lymphoid tissue of adult fish has 

been studied in many species such as turbot and carp (Koumans-Van Diepen et al., 1994; 

Fournier-Betz et al., 2000). However fewer studies have been concerned with the ontogeny of 

the B lymphocytes and their maturity.  

Nevertheless, the ontogeny of B cells studied has been studied in teleost fish species such as 

Atlantic cod, Atlantic halibut, rainbow trout, sea bass, sea bream and mandarin fish (Breuil et 

al., 1997; Schrøder et al., 1998; Hanif et al., 2004; Patel et al., 2009; Tian et al., 2009b) and 

the timing of first appearance varies considerably between the species. In hapuka IgM+ cells 

first appeared in the head kidney at 12 dph, followed by the spleen at 32 dph and lastly the 

thymus at 50 dph. Interestingly the appearance of IgM+ cells in each organ corresponded with 

a morphological increase in maturation of each organ. The head kidney appeared to have 

hematopoietic elements at 12 dph the same day IgM+ cells appeared, whereas the appearance 

of primitive sinusoids at 32 dph in the spleen could be the mechanism by which IgM+ cells 

populated this organ.  

The IgM heavy chain gene encodes for the isotype determining portion of antibody in fish 

and the RAG1 gene encodes for the main enzyme responsible for antibody and TCR gene 

rearrangements. Expression of IgM was first detected at 9 dph in hapuka larvae with 

increased expression correlating with the growth and maturation of the head kidney. The 

relatively early expression of IgM in hapuka at 9 dph also coincides with the appearance of 

IgM+ cells in the head kidney 3 days later and suggests that B cells develop and mature in the 

head kidney. Interestingly, RAG1 expression was not detected in hapuka larvae before the 

onset of IgM expression (and TCRα/TCRβ expression), which is possibly due to very low 

level quantities of RAG1 mRNA. Similarly, it is also possible the RAG1 levels stayed low in 

hapuka until the head kidney and thymus reached a more mature stage (50 dph) when a 

greater degree of cell maturation took place. 

The first detection of IgM+ cells does not necessarily correlate with the ability to develop an 

antibody response to infection. A delay has been observed between the detection of IgM+ 

cells and functional immunocompetence in both fresh-water and marine fish species (Petrie-

Hanson and Ainsworth, 1999; Dos Santos et al., 2000). For example in carp it was revealed 

that although surface Ig positive B cells were detectable in 2 week old fish, carp were not 
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able to produce plasma cells until 1 month of age (Botham and Manning, 1981). Furthermore 

when fish are immunised or infected prior to their ability to develop a humoral immune 

response, a tolerance is produced, indicated by a lack of response to later stimulation (Zapata 

et al., 1997; Petrie-Hanson and Ainsworth, 1999). Overall the appearance of IgM+ cells in 

each hapuka lymphoid organ coincided with an observed morphological increase in maturity 

of each respective organ.  

Interestingly IgZ expression was detected in hapuka larvae, first appearing 32 dph compared 

to 9 dph for IgM,  and this finding indicates that hapuka possess this newly discovered Ig 

isotype. An IgZ EST was subsequently sequenced; however, further RACE experiments 

conducted to obtain the full IgZ sequence were unsuccessful. Nevertheless, a conserved 

domain of the hapuka IgZ showed close sequence similarity with trout IgT. Although it 

would be expected that the hapuka IgZ sequence would show closer similarity with a fellow 

perciforme, the fact that very few studies on IgZ in other teleosts have been carried out must 

be considered.  

Studies into the ontogeny of the T lymphocytes in teleost fish have been limited due to the 

limited number of markers available (Zapata et al., 2006). Nevertheless morphological 

evidence combined with expression of T cell markers such as TCRα/TCRβ can confirm the 

appearance of T cells in the thymus (Willett et al., 1999; Trede et al., 2004). Generally the 

expression of RAG genes precedes the expression of TCRα/TCRβ because RAG genes are 

involved in the recombination process. The first expression of TCRβ in hapuka larvae 

occurred at 32 dph with detectable expression of RAG1 at 50 dph. Additionally TCRα 

expression was not detected in any larval timepoint sampled. In line with these results, the 

thymic stroma of hapuka appeared mature at 63 dph, with many thymocytes visable, although 

medulla and cortex could not be distinguished; however, not all fish species develop zonation 

of their thymus (Press and Evensen, 1999) and so this may not reflect lack of the organs 

maturity. Overall, despite the different approaches used to assess maturity, the ontogeny of T 

cells remains uncertain. 

The MHCII complex is expressed on professional antigen presenting cells (APCs) such as 

macrophages, B cells and dendritic cells and thus was used as a marker for APCs. 

Additionally CSF1R is an accepted marker of macrophages (Clay and Ramakrishnan, 2005) 

and CSF1R expression was present at 1 dph in hapuka suggesting the presence of one or 
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more types of APCs at this early stage, possibly macrophages. Because the head kidney the 

main hematopoietic organ was not present at this early stage any APCs present arose from a 

hematopoietic location preceeding the head kidney, possibly from a location similar to what 

is seen in zebrafish (Mathias et al., 2009). Macrophages in zebrafish were detected at a very 

early stage (1 dpf) and functioned in eliminating apoptotic corpses, as well as being able to 

phagocytose and destroy injected bacteria even during the embryonic stage (Herbomel et al., 

1999).  

Hapuka appear to have the typical leucocyte populations as seen in other teleosts such as 

heterophilic and eosinophilic granulocytes, lymphocytes, plasma cells, monocytes and 

monocyte/macrophages. Using Giemsa stain, morphology was used to distinguish cell types 

and MPO stain allowed some characterisation of mature and immature heterophils. The use 

of electron microscopy would be essential in further characterisation of cell types and give a 

better overall description. It is generally expected that the fish cellular immune system is 

robust and develops early, with the humoral immune system developing relatively late 

(Zapata et al., 2006). Using flow cytometry, our results contrasted this belief, showing that 

127 dph juvenile hapuka had head kidneys with leucocyte populataions significantly different 

than adults; with the juveniles having a large population of progenitor cells and a small 

population of granulocytes suggesting their cellular immune system is immature at this stage. 

Additionally IgM+ cell populations between adults and 134 dph juveniles closely resembled 

each other suggesting the humoral immune system is mature. However, T cell populations 

were not compared due to lack of antibody markers and thus, may offer different conclusions. 

The maternal transfer of immunity is of key importance in fish, supplying eggs and larvae 

with a limited period of possible immunity, while their own lymphoid oragans develop. 

Especially because fish eggs are released and embryos hatch into a pathogenically hostile 

environment, at a time when the embryo’s immunological capacity is still extremely limited 

(Mulero et al., 2007b). Transfered Ig’s in particular, may be of great importance for early 

defence against pathogens because of the relatively late appearance of autologous humoral 

IgM in fish juveniles (Magnadottir et al., 2005) The transfer of maternal immunity has been 

documented in many fish species (Takemura and Takano, 1997; Hanif et al., 2004; Ellingsen 

et al., 2005; Løvoll et al., 2007; Wang et al., 2008; Seppola et al., 2009; Wang and Zhang, 

2010), however, functional immunity has only been tested in some. In hapuka the maternal 
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transfer of complement, lysozyme and IgM were exaimed. It was found that lysozyme and 

IgM were transferred, while complement did not appear to be. However, only the lytic 

activity of complement was tested and not the presence of complement molecules. Indeed the 

expression of C3 mRNA in hapuka larvae was detected from 1 dph despite the lack of lytic 

activity in hapuka larvae up to 63 dph. Although no lytic activity was detected, C3 

degradation products can still function as opsonins and anaphylatoxins. These opsonins 

promote phagocytosis and the expression of participating in this activity. Additionally studies 

have also suggested that C3 possesses an important function in organogenesis and 

regeneration of different organs (Mastellos and Lambris, 2002; Kimura et al., 2003). 

Lysozyme is an important innate defence parameter and acts on the peptidoglycan layer of 

bacterial cell walls resulting in the lysis of the bacteria. The maternal transfer of lysozyme 

has been shown in many fish species (Yousif et al., 1991; Seppola et al., 2009; Wang and 

Zhang, 2010). Hapuka eggs showed lysozyme activity suggesting its maternal transfer. 

Lysozyme in eggs is believed to prevent vertical (mother to progeny) transmission of some 

bacterial pathogens; however, antibacterial function in the eggs of hapuka was not carried 

out. Purified lysozyme from the eggs of both coho salmon and zebrafish showed antibacterial 

activity against several fish pathogenic bacteria (Yousif et al., 1991; Wang and Zhang, 2010). 

Additionally in zebrafish it was shown that the lysozyme-mediated bacteriolysis depended on 

the complement, and the complement-mediated bactericidal activity can be stimulated by the 

lysozyme activity (Wang and Zhang, 2010); showing a synergistic role of these maternally 

transferred proteins. It may be possible that the lysozyme activity in hapuka was derived from 

the embryos themselves, in order to more accurately confirm the maternal transfer of 

lysozyme, gene expression studies are needed. It has already been suggested that 

macrophages are present early in hapuka by the expression of CSF1R and MHCII and the 

lysozyme activity detected may have derived from these APCs. 

As well as innate factors, the transfer of the adaptive immune protein IgM was examined in 

the eggs of hapuka. It has been speculated that the relatively late arrival of autologous 

humoral IgM may be, at least to some extent be compensated by maternally derived IgM 

(Zapata et al, 1997). The transfer of IgM has been reported in many species (Yousif et al., 

1995; Breuil et al., 1997; Takemura and Takano, 1997; Picchitti et al., 2001). Similiarily the 

present study demonstrated that IgM is transferred to the eggs of hapuka. The levels of IgM 
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slowly decreased until around 12 dph when levels began to increase again, signalling 

autologous production of IgM. Again, this finding agrees with the gene expression studies 

which showed the presence of IgM transcripts at 9 dph amd the IHC studies which found 

IgM+ cells 12 dph in the head kidney.  

Teleost IgM has been found to exist in multiple forms and tetrameric, trimeric, dimeric and 

even halfmeric Ig molecules have been recorded (Clem and Mclean, 1975; Lobb and Clem, 

1981; Lobb and Clem, 1983). This is due to a unique feature of teleost IgM, the fact that 

these molecules are not secreted as uniformly disulfide bonded oligomers; but instead various 

redox forms exist giving rise to multiple IgM isomers (Kaattari et al., 1998). Because the 

reduced adult hapuka tetramer appeared to have a heavy chain size of 75 kDa, we concluded 

that the heavy chain transferred is also reduced. However it is unknown what, if any function 

can be attributed to this halfmeric form of IgM, because the antibody paratope or antigen 

binding site is composed of a variable region from both the heavy and light chain. Studies 

targeting the light chain of hapuka IgM would shed light on this aspect of maternal immunity; 

it is possible a monomer was originally transferred, but was reduced due to an unintended 

mechanism such as experimental method. Overall the transfer of maternal factors is of great 

importance for larval immunity, because fish are born while their immunological capacity is 

still extremely limited (Mulero et al., 2007b). The transfer of immune factors to the egg may 

represent a maternal adaptation to increase offspring viability and improve overall egg quality 

(Seppola et al., 2009). Even so, since no function has been attributed to the transferred factors 

in hapuka, further studies should investigate this important aspect. 

Overall the hapuka lymphoid organs followed a developmental order similar to what is seen 

in other teleosts and these organs appear relatively mature by 45 dph. IgM+ cells were first 

seen in the head kidney, followed by the spleen, MALT and thymus. The leucocytes of 

hapuka appear morphologically similar to those seen in other teleosts; however, no function 

can be attributed to the leucocytes from these studies. B cells appear to differentiate in the 

head kidney and IgM is expressed relatively early (9 dph). Macrophages appear to be present 

even earlier with CSF1R and MHCII expression from 1 dph; on the other, hand T cell 

maturity in hapuka remains uncertain. Maternal transfer of lysozyme and IgM were detected 

in hapuka eggs, but further studies are needed to infer their functional importance. Maturity 

of the lymphoid organs combined with the presence of IgM+ cells within them, suggest 
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hapuka larvae may be immunocompetent around 45 – 50 dph, although this is only 

speculative; Studies into hapuka antibody responses may offer stronger conclusions. 

Interestingly the head kidney leucocyte populations of hapuka juveniles show significant 

immaturity when compared with adults, granulocyte populations in particular. This study has 

uncovered important information about the ontogeny of the hapuka immune system and will 

help contribute to further studies. 
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Table 8.1. Important ontogenic events of the hapuka immune system. 
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9.0 Appendix 

9.1 Sequence alignments 

9.1.1. C3 

FlounderC3      --TCCGGAAGGAGGATGGGTAGGACTCAACTGTGGCTGCTGGCCTCGCTGGCCTTTGCCT 58 

medakaC3-1      AGAGCAACGTGAGGATGAGGAGGGCTCTTCAGCTGCTGCTGGCCTCTCTGGCCTTGGTCT 60 

troutC3         ------------------------------------------------------------ 

                                                                             

 

FlounderC3      CTATCGCCTCACTGGTTGATGGAGCTCCACTGAAGGTGATGTCTGCCCCGAACTTGTTGC 118 

medakaC3-1      CCTTGATGTCTCTCATCGATGCTGGACCGCTCAACCTGATGTCTGCCCCTAACCTGCTGC 120 

troutC3         ------------------------------------------------------------ 

                                                                             

 

FlounderC3      GCGTAGGAACGACAGAAAACATCTTTGTGGAGTGTCAAGACTGCACAGGAGGAGACATTA 178 

medakaC3-1      GAGTGGGAACACCAGAAAACATTTTTGTTGAATGCCAGGACTGTAGCGGGGCGAACCAAC 180 

troutC3         ----------------------CTTTGTGGAATCTCAGGACCATGTAGGAGGTCCCCTGA 38 

                                       ***** ** *  ** ***      ** *    *     

 

FlounderC3      AAGTCGATATCAACGTGATGAACCATCCGACCAAGGTCAATAGGTTGGCAACCACATCTG 238 

medakaC3-1      CGGTCACCATCTCTGTTAAAAACCATCCAACAAAAGCTAAAACACTGGCAACCACACAAG 240 

troutC3         ATGTTAAGATCATGGTGAAGAACCACCCTACACAGAGCAAAGAGCTAGCCTCTAAATCAG 98 

                  **    ***   ** *  ***** ** **  *    **     * **  * * *   * 

 

FlounderC3      TGACGCTTACCAGTGGGCAAAACTTCCAGGCACTTGGACAAATAAGGATCCCTGCTGGAG 298 

medakaC3-1      TAACCCTAACCAATGACAATAACTTTCAAGGCTTTGGACAGATTACTATCCCACCTGGAG 300 

troutC3         TGGTTCTGGATCAAGCAAACAACTTCCAGGCTATGACACAACTGGTCATCCAGAGGGGAC 158 

                *    **       *   * ***** ** *   *   ***  *    ****     ***  
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FlounderC3      GCTTCAGCAAAGACCCCAGACTGAAGCAGTACGTCTACCTACAAGCTCAGTTCCCCGACC 358 

medakaC3-1      ACTTCAGCAAGGATCCATCTGTAAAACAGTATGTCTACCTGGAAGCTGCGTTCCCAGGCC 360 

troutC3         CACTTGTGGATGACCCCAAGCAGAAGCAGTATGTGGTCCTGCAGGCCCAGTTCCCTGACC 218 

                   *     * ** **       ** ***** **   ***  * **   ****** * ** 

 

FlounderC3      GCTTGCTGGAGAAAGTCGTCTTGGTGTCCTTCCAGTCTGGCTTCATCTTCATCCAGACTG 418 

medakaC3-1      GAACACTGGAGAAAGTCGTCATGGTTTCCTTCCAGTCCGGGTACATTTTCATCCAGACTG 420 

troutC3         GCCTCCTGGAGAAGGTTGTCCTGGTCTCCTTCCAGTCTGGATACATCTTCATCCAGACTG 278 

                *    ******** ** *** **** *********** ** * *** ************* 

 

FlounderC3      ACAAGACAATCTACACCCCCAACAGTAAAGTTCTTTACAGGATGTTTGCAGTGACACCCA 478 

medakaC3-1      ACAAGACGTTGTACACCCCCAACAGCAAAGTGTATTACAGAATGTTTGGAGTGACCCCTC 480 

troutC3         ACAAGACCATTTACACTCCGGCCAGCACCGTCCACTACAGAGTGTTCTCTATGACTCCTG 338 

                *******  * ***** **   *** *  **    *****  ****     **** **   

 

FlounderC3      CCATGGAGCC----GGTAGAGAGGGAT-----------GAACAAATTCAAAAC---GAAG 520 

medakaC3-1      GCATGGAGCC----ACTAGAGAGACTT-----------AATGATGCCCAGACT---GACA 522 

troutC3         GCCTGGAGCCTCTGACCAGGGAGATATTTGAGGACCAGGAGGTCGCCAAGAACAAAGAGA 398 

                 * *******       ** ***   *            *        * *     **   

 

FlounderC3      CTTCCATTGCCATTGAGTTTGTGACTCCTGAAGACATCGTTTTACCTCTTGATCCAGTCT 580 

medakaC3-1      CCTCTATCTCCATCGAGATTGTGACCCCTGAAGGCATCATCCTACCATTGGACCCTGTCT 582 

troutC3         TCGCAGTTTCTGTGGAGATCATGACTCCTGAAAACATCACCATCTTCAGGGAGATCGTCA 458 

                   *  *  *  * *** *  **** ******  ****    *       **    ***  

 

FlounderC3      CTCTGAAATCAGGAATCCACTCTGGAGAATACAAACTTGCTGAAATTGTCAGCCCTGGAC 640 

medakaC3-1      CTCTGAAGTCAGGACTGCACTCCGGAGACTACCAGCTGAATGAGATTGTCAGTCCTGGAC 642 
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troutC3         ACCCAGACAAGGGAGTCAAATCTGGACAGTTCAAACTCCCTGACATCGTCAGTTTCGGGA 518 

                  *   *    *** *  * ** *** * * * * **   *** ** *****    **   

 

FlounderC3      TTTGGAAAGTCGTGGCTAAGTTCCACAGCAACCCACAGGAGAGCTTCTCTGCAGAGTTCG 700 

medakaC3-1      TTTGGAAAATTGTGGCAAAGTTCCAGAGCAACCCACAGGAGAGCTTCTCTGCAAATTTCG 702 

troutC3         CATGGCATGTAGTCACAAGGTTCCAGAGCACACCTCAAAAGACCTTCTCATCTGAATTTG 578 

                  *** *  * **  * * ****** ****  ** **  *** ******  *  * ** * 

 

FlounderC3      AGGTCAAAGAATATGTGCTGCCCAGTTTTGAGGTGAAACTGACGTCTACAAGCCCCTTCT 760 

medakaC3-1      AGGTCAAAGAATATGTGCTCCCCAGCTTTGAGGTCAAGCTCTCTTCTCTGAGACCTTTTT 762 

troutC3         AGGTCAAGGAGTATGTTCTGCCCAGCTTCGAGGTTAGTCTGACCCCAGCTAAAGCCTTCT 638 

                ******* ** ***** ** ***** ** ***** *  **  *  *    *   * ** * 

 

FlounderC3      TCTATGTGGAGAGTGAAGATCTCACCATCAACATCAAAGCTACGTATCTGTTTGGTGAAG 820 

medakaC3-1      TCTACGTGGACAGTGAGACTTTGGAGATTGACATTAAAGCCAGGTATCTTTTTGGACAAG 822 

troutC3         TTTACGTCGACGACAATGACCTGACTGTTGACATCACTGCCAGGTATCTATACGGTAAGG 698 

                * ** ** **     *     *     *  **** *  ** * ****** *  **  * * 

 

FlounderC3      AGGTGAGTGGCACAGCATACGTGGTATTTGGGGTTGT---GCTTGAGGGTGAGAAGAAAA 877 

medakaC3-1      AAGTGAATGGAAATGCCTATGTTGTGTTTGGGGTCAT---GGACCAAGGACAGAAGAAGA 879 

troutC3         AAGTGACAGGGACAGGCTATGTGGTGTTTGGTGTCATCACAACAGAGAGCGAGAAAAAGA 758 

                * ****  ** *  *  ** ** ** ***** **  *        *  *  **** ** * 

 

FlounderC3      GCTTCCCCAGCTCTCTTCAGAGAATATCGATCGACAATGGTATCGGGTTGGTCCAACTGA 937 

medakaC3-1      GCTTCCCTGACTCTCTATCTCGAGTGCCGATTGAAAACGGAGAAGGAAAAGTAGTGTTGA 939 

troutC3         GTTTCCCTGCCTCTTTGCAGAGAGTAGAGATCAAAGACGGTAAAGGAGTGGCTTGTCTGA 818 

                * *****   **** *     ** *   ***  *  * **    **    *      *** 
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FlounderC3      AGAGACAGCAAATCACACAGAGCTTCCAGGATATCAATGCCCTGGTGGGGAATTCATTAT 997 

medakaC3-1      AGAGGGAACAGATCACAAAAACCTTTCAGGATATCAATCAGCTTGTGGGCACCTCCATCT 999 

troutC3         AAAAGGAACACATCACACAGACTTTCCCCAAAATCCATGATCTGGTCAAACAGTCCATCT 878 

                * *   * ** ****** * *  ** *   * *** **   ** **       **  * * 

 

FlounderC3      TTGTAGCCGTCAGTGTGCTGACAGAGAGCGGTGGTGAGATGGTGGAGGCAGAGTTGAGAG 1057 

medakaC3-1      TTGTTTCTGTTAGCGTGCTGACAGAAAGCGGGAGTGAGATGGTGGAGGCAGAGCTAAGAG 1059 

troutC3         TCGTATCAGTCAGCGTGTTAACAGAGGGTGGGGGTGAAATGGTAGAGGCAGAGAAGAGAG 938 

                * **  * ** ** *** * *****  * **  **** ***** *********   **** 

 

FlounderC3      GTATCCAGATTGTCAAATCACCCTACACCATCCACTTCAGGAAAACGCCCAAATATTTCA 1117 

medakaC3-1      GCATCCAAATCGTCAAATCTCCTTACACCATCACCTTTAAAAGAACTCCAAAATATTTTA 1119 

troutC3         GGATCCAGATTGTCACTTCGCCATACTCCATCCTCTTCAAGAGAACGCCCAAATACTTCA 998 

                * ***** ** ****  ** ** *** *****  *** *  * *** ** ***** ** * 

 

FlounderC3      AACCGGGAATGACCTTCGATATTGTGGTTGAAGTCACAAATCCAGATGAAACTCCAGCAC 1177 

medakaC3-1      AACCTGGAATGTCCTTTGATGTGGCGGTTGAAGTTTTAAATCCTGATGAAAGTCCAGCAG 1179 

troutC3         AACCTGGCATGCCCTTTGACGTCTCTGTTTACATTACAAATCCTGACAACTCTCCAGCCA 1058 

                **** ** *** **** **  *    *** *  *   ****** **  *   ******   

 

FlounderC3      AAGGTGTTGCAGTGGTGGTGGATCCAGGTGCTGTGAAGGGTTTAACTGCAGCCAATGGCT 1237 

medakaC3-1      GGAACATCCCAGTGGTTGTAACTCCTGGTCCTGTAAGGGGCTTTACTGCAGCCAACGGCA 1239 

troutC3         TTGGAGTGGAGGTTGAGGTGACTCCAGATCATGCTAAAGGGGTGACCAGGGCCAACGGTT 1118 

                      *    ** *  **   *** * *  **  *  **  * **    ***** **   

 

FlounderC3      TTGCAAAGCTTACAGTCAACACAATGGCTGGAGTGGCAAGACTGCCAGTCACTGCTAAGA 1297 

medakaC3-1      TGGCGCGGCTGACCATCAATACAGCAACACAGGATGAAAGGCTGTCAATCTCTGCAAAGA 1299 

troutC3         TTGCAAAAATACCACTTAACACTGTGGCATCAGCCACAGAGCTGGTAATCACAGTGAAGA 1178 
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                * **     *  *  * ** **     *    *    *   ***  * ** * *  **** 

 

FlounderC3      CCAACGATCCTCTTATTCCACT-TGCAAGACAAGCAGAAGCCACCATGACAGCTCTCCCA 1356 

medakaC3-1      CTGATGATCCAGGCATTTCCCT-TAACAGACAAGCCGAAGCCACAATGCAGGCAAACCAG 1358 

troutC3         CCAAGGACCCCGGCGATCCTCGGCAACAGACAGGCGGAGGC-ACCATGAAGGCTCTCCCC 1237 

                *  * ** **      * * *      ***** ** ** ** ** ***   **   **   

 

FlounderC3      TATAACACTAAAAGCAACAACTACATCCACATAGGAGTGGATACAGCAGAGCTGGAATTA 1416 

medakaC3-1      TACTCTACTAACAGCAAGACTTACATCCATATTGGTGTGGACACGCCTGAGGTCAAATTA 1418 

troutC3         TACAGAACTTCCACCAAGAACTTTCTCCATGTCGGGGTTGACTCTAATGAGCTGAAGATA 1297 

                **    ***   * *** *  *   ****  * ** ** **  *    *** *  *  ** 

 

FlounderC3      GGAGATAATCTAAAAGTTAACCTCAACCTAA-AAAAGCAGTCAAATCAAGACACTGACAT 1475 

medakaC3-1      GGTGACAATCTGAAGGTCAACCTGAATCTTA-ACAAGCAACCAGGTGGAAACCAAGACAT 1477 

troutC3         GGAGACCCCATTAAGATTGATCTGAACCTGGGACCCACCACCATACC-AAACCATGACCT 1356 

                ** **     * **  *  * ** ** **   *    *   **     * **   *** * 

 

FlounderC3      CACATACCTGATCCTGAGCAGGGGTCAGTTGATCCAAAGTGGTCGTTACAGGACAAGAGG 1535 

medakaC3-1      CACTTATCTGATCACCAGCAGGGGTCAGCTGGTGAAGTTTGGACGTTACAAAACAAGAGG 1537 

troutC3         TACATACATGTTCCTGAGTAGAGGTCAGCTGGTGAAAGTGGGCCGATTTAAAAGACAGGG 1416 

                 ** **  ** **   ** ** ****** ** *  *    ** ** *  *  * *   ** 

 

FlounderC3      CCAAGTGCTGATTTCCCTGATAATTCCCATCACCAAAGTAATGCTGCCATCATTCCGCAT 1595 

medakaC3-1      CCAAGTGCTGATCTCCCTCATAATTCCCGTTACCCAAGAGATGCTGCCATCTTTCCGGAT 1597 

troutC3         CAACGCGCTGGTAACACTGTCAGTGCCTGTCTCCAAGGAGCTGCTTCCGTCGTTCCGCAT 1476 

                * * * **** *  * **   * * **  *  ** * *   **** ** ** ***** ** 

 

FlounderC3      TGTAGCCTACTACCATCTAGATGACAATGAGGTGGTGTCAGATTCCGTATGGGTGGATGT 1655 
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medakaC3-1      CATTGCTTTCTACCATCCCAGCGATAATGAAGTGGTGTCAGATTCAGTTTGGGTGGATGT 1657 

troutC3         CGTAGCGTACTACCATGTGGGAGCAGCTGACCTGGTGGCAGACTCTGTCTGGGTTGACAT 1536 

                  * ** * *******      *    ***  ***** **** ** ** ***** **  * 

 

FlounderC3      CAAGGACTCCTGCATGGGCACATTGAAGCTGGAATCATCAAGACCTGCTCCGTCCTACGA 1715 

medakaC3-1      TAAAGATTCATGCATGGGCTCGCTGACATTGGAGCCAAAGACCCCTGCTGCTTCCTATGA 1717 

troutC3         CAAGGTATCCTGCATGGGATCACTGAAAGTGACATCCACCAGGCCCAAGGCATCCTATGA 1596 

                 ** *  ** ********  *  ***   **    *    *  **     * ***** ** 

 

FlounderC3      GCCTCGCAAGATGTTTGGTCTGAAAGTCACCGGAGTTCCAGAGGCCATGGTGGGACTGGT 1775 

medakaC3-1      GCCCCGCAAGATGTTTAGTTTAAAGGTCTCTGGAGATCCAGGTGCCACAGTGGGACTGGT 1777 

troutC3         GCCTCGTAGGGCTTTCAGTCTGACCATCACTGGAGACCCGGGAGCGAAAGTAGGACTGGT 1656 

                *** ** * *   **  ** * *   ** * ****  ** *  ** *  ** ******** 

 

FlounderC3      GGCAGTGGACAAAGGTGTCTACGTTCTCAATAACAAGCACCGCATCACCCAGAAAAAGGT 1835 

medakaC3-1      GGCCGTAGACAAAGGTGTTTACGTCCTAAACAGCAAGCACAGACTCACGCAGAAAAAAAT 1837 

troutC3         GGCTGTAGACAAGGGAGTCTACGTTCTGAACAGCAAACACCGTCTCACACAGACCAAGAT 1716 

                *** ** ***** ** ** ***** ** ** * *** *** *  **** ****  **  * 

 

FlounderC3      GTGGGACATTATAGAGAAATACGACACAGGCTGCACACCCGGTGGAGGGAAGAACAGTAT 1895 

medakaC3-1      TTGGGATGAGGTGGAGAAGTTTGACACTGGCTGCACTCCTGGTGGAGGGAAGAATGGCTT 1897 

troutC3         CTGGGACACCATAGAGAAGCATGATACAGGCTGTACAGCTGGAGGGGGAGCAGACAATAT 1776 

                 *****     * *****    ** ** ***** **  * ** ** **     *     * 

 

FlounderC3      GAGTGTGTTCTACGATGCCGGACTGTTGTTCGAGTCCAGTGCTGCCTCTGGGACTCCCTA 1955 

medakaC3-1      GAGTGTGTTCTTTGATGCTGGGCTGTTATTTGAGTCCAGTACTGCATCAGGAACAGTTTA 1957 

troutC3         GGGGGTGTTCTACGATGCTGGTCTGGTATTTGAGACCAACACTGCTAAAGGGACTGGGAT 1836 

                * * *******  ***** ** *** * ** *** ***   ****    ** **       
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FlounderC3      CAGACAAGAATTGAAATGTCCGGTCCCCGCCAGGAGGAAACGAGCTACCACTGTAATGAA 2015 

medakaC3-1      CAGACAAGAAAAGAAATGTGCAGCACCGTCCAGGAGAAGGCGGGCCTCGACCATCATGGA 2017 

troutC3         CAGAACAGACCCCAGCTGTCCTGTTAGTTCTAGGCGGAGACGAGCAGTGACCATCAGTGA 1896 

                ****  ***    *  *** * *      * *** * *  ** **    **  * *   * 

 

FlounderC3      CGTCACGACCACCTTAGTGAATAAGTATAAGAATGAACTGCAGCGAGAGTGTTGTTCAGA 2075 

medakaC3-1      TGTCAGAACCACATTATTGAGTCAGTATAAGGAAGATCTACAGCGGGAATGTTGTTTGGA 2077 

troutC3         TGTCATCACTAGTATGGCCAGTAAGTACC---ATGGTTTGGCCAAGGAGTGTTGTGTGGA 1953 

                 ****  ** *   *    * * ****     * *   *       ** ******   ** 

 

FlounderC3      AGGCATGAAGGAGACCATCCTGTCATACACCTGTGAGGTGCGCAGTGAGTACATCCTGGA 2135 

medakaC3-1      CGGCATGAAGGACTCCCCAGTTTCATACACATGTGAGCGTCGCTCTGAGTACATTATGGA 2137 

troutC3         CGGGATGAGGGACAACACCATGGGATATACCTGTGACAGACGGGCCCAGTACATCTCAGA 2013 

                 ** **** ***   *    *   *** ** *****    **     *******    ** 

 

FlounderC3      CGGTGCAT---CCTGTGTCGATGCCTTCCTGCACTGCTGCAAAGAGATGGAGAACCTGCG 2192 

medakaC3-1      TGGTGGTCAGGCTTGTGTCGATGCTTTTGTCACCTGCTGCAAAGAAATGGAAAAACAACA 2197 

troutC3         TGGGGACG---TCTGTGTCCAAGCCTTCCTTGTCTGCTGCACTGAGATGGCCTCCAAGAA 2070 

                 ** *        ****** * ** **  *   ********  ** ****           

 

FlounderC3      GGGCGAAATGAAGCAGGATCAGCTCGACTTGGCTCGCAGTGAGGAGGACGACAGT----- 2247 

medakaC3-1      GCTTGAAAAGAAAGAGGAGAGCCTGCAGCTGGCCCGAAGTGAGACAGATGACAGC----- 2252 

troutC3         GATAGAATCCAAACAGGATGCACTGCTGCTCTCACGCAGTGAGGAGGATGATGATGATGA 2130 

                *   ***   **  ****    **     *  * ** ******   ** **          

 

FlounderC3      ----TACATGGACAGCAATGAAATTTCTTCTCGCACCAAGTTCCCTGAGAGTTGGCTGTG 2303 

medakaC3-1      ----TACATGGATAGCAATGAAATCGTTACTCGTAGCAATTTCCCGGAAAGCTGGCTCTG 2308 
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troutC3         TGCGTACATGCGGTCTGAAGACATTGTGTCTCGTAGTCAGTTCCCTGAAAGCTGGATGTG 2190 

                    ******       * ** **     **** *   * ***** ** ** *** * ** 

 

FlounderC3      GTCAGACATACAACTGCCTGCTTGCCCT-CAACAAACACCCAACTGTGAGTCCACATCAT 2362 

medakaC3-1      GTCCGATATTATTTTGCCACAATGCCCC-CCAAATACACCCAACTGTGGCTCCACTTCAT 2367 

troutC3         GGAGGACACCAATCTTCCTGAATGCCCTGCCCAAAACAAGCA-CTGTGAGTCCACATCTG 2249 

                *   ** *      * **    *****  *   * ***  ** *****  ***** **   

 

FlounderC3      TTATGAAGCCAGTTCCTTTGCAAGACTCAATAACAACCTGGCAATTCACTGGCATCAGTC 2422 

medakaC3-1      CTGTGAAAAATGTTCCTCTGCAAGATTCCATCACAACCTGGGAGTTCACCGGCATCAGCC 2427 

troutC3         TAATAAGGAACAACTTCTTAAAGGATTCCATCACCACCTGGCAAATAACAGCCATCAGCC 2309 

                   * *            *  * ** ** ** ** ****** *  * ** * ****** * 

 

FlounderC3      TGTCAAGAACCCACGGAATCTGCGTTGGAGAACCATTGGAAGTGATCGTAAGGAAGGACT 2482 

medakaC3-1      TCTCAAGAACTCATGGCATCTGTGTGGGAGAGTCACTGGAGGTGATTGTTCGCAAAGACT 2487 

troutC3         TGTCTAAAACTCATGGCATCTGTGTGGCAGATCCGTTTGAGATGATAGTTCTAAAGGAGT 2369 

                * ** * *** ** ** ***** ** * ***  *  * **  **** **    ** ** * 

 

FlounderC3      TCTTCATCGATCTCAGACTGCCCTACTCTGCTGTCCGGGGAGAGCAGCTAGAAATTAAGG 2542 

medakaC3-1      TCTTCATAGACCTCCGGCTGCCGTACTCAGCTGTCCGCGGAGAGCAGCTGGAAGTGAAAG 2547 

troutC3         TCTTCATCGACCTCAAGCTGCCCTACTCAGCCGTCCGCAATGAACAGCTGGAGGTCAAAG 2429 

                ******* ** ***   ***** ***** ** *****    ** ***** **  * ** * 

 

FlounderC3      CGATCCTCCACAACTACAGCCCTGACGTTATCACAGTGCGTGTGGATCTGATTGAGGAGG 2602 

medakaC3-1      CCATTCTACACAACTACAGGCCAGAGCTCATAACCGTTCGTATAGATCTAGCCGAAGAAA 2607 

troutC3         CAATCCTCCACAACTACAGCGAAGACCCCATCATTGTGCGTGTGGAGCTGATGGAGAACG 2489 

                * ** ** ***********    **    ** *  ** *** * ** **    **  *   
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FlounderC3      AGAATGTGTGCAGCGTGGCTTCTAAACACACAAGGTATCGCCAGGAGGTCAAAGTCGGGC 2662 

medakaC3-1      AGGACACGTGCAGCGCAGCTTCTAAACGTGGGAAATATCGACAAGAGGTGAACGTTGGCG 2667 

troutC3         GTGAGGTGTGCAGCTCGGCAAGCAAGAAGGGTAAGTACAGGCAGGAAGTGAACATGGACC 2549 

                   *   *******   **    **       *  **  * ** ** ** **  * *    

 

FlounderC3      AGCAAACCACACGATCCGTCCCCTTCGTCATCATTCCCATGAAGGAAGGACAATTCAACA 2722 

medakaC3-1      CCATGTCCACAAGATCTGTTCCCTTCATCATTATTCCCATGAAGGAGGGGACTCTTCCCA 2727 

troutC3         CCATGTCCACCCGGGTTGTCCCCTATGTCATCATCCCTATGAAGCTGGGCTTGCACTCCA 2609 

                      ****  *    ** ****   **** ** ** ******   **         ** 

 

FlounderC3      TTGAGGTCAAAGCAGCTGTTAAAGACTCATCACTCAATGATGGAATCGTGAAGGTGCTGC 2782 

medakaC3-1      TCGAGGTCAAAGCTGCTGTCAAAGACTCGTACCTGAGTGATGGAGTGAAGAAAGACCTGC 2787 

troutC3         TTGAGGTCAAGGCATCTGTGAAAAACTCTGGCAGCAATGACGGGGTGAAGAGGGATCTGC 2669 

                * ******** **  **** *** ****       * *** **  *   **  *  **** 

 

FlounderC3      GGGTGGTGCCTGAAGGTGTACTGATTAAACAACCACAGATTATAACACTAGACCCCTCTA 2842 

medakaC3-1      GGGTGGTTCCTCCAGGAGTTCTGGTTAAAGCTATAGAATCTACAATCTTGGATCCAGCTC 2847 

troutC3         GTGTTGTGGCTGAGGGAGTGCTGGTCAAGAAGGAAACCAACGTACTCCTGAACCCAGTTA 2729 

                * ** **  **   ** ** *** * **      *        *    *  * **   *  

 

FlounderC3      AAACAGGA------GGTGAACAGGTGGAAATTCTCAACAGTAGAATCCCCAGGAAAGATA 2896 

medakaC3-1      ATAAGGGGAAAAACGGTGAACAAGTGGAAGTTCTGAACAGCAACATTCCCAAAAGTAATT 2907 

troutC3         AACATGGT------GGTGAGCAGACGTCACACATACCCAGTGGAGTGCCCCGAAACCA-- 2781 

                *    **       ***** **   *  *    *   ***     * ***   *   *   

 

FlounderC3      TGGTTCCAAACACACCTACTACCACACAGATTTCTGTGACAGGGAGGGAAAACGTTGGTC 2956 

medakaC3-1      TTATTCCAAGCTCACCAACAAGCACTCAGATCTCATTGACAGGCCGAGAACAAGTTTCTG 2967 

troutC3         -GGTGCCAAACTCTGATGCTGACACACTGATCAGTGTGACAGCTGGAGAGCAGACCAGTG 2840 
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                   * **** * *     *   *** * ***     ******   * **  *      *  

 

FlounderC3      AACTGGTAGAGAACGCAATTAGTGGGCAATCGATGGGTACCCTGATCTACCAGCCATCAG 3016 

medakaC3-1      GACTGGTGGAAAATGCCATCAGTGGAAAGTCAATGGGTACTCTGATTTATCAGCCCTCTG 3027 

troutC3         TGCTGGTGGAGCAGGCCATCAGTGGAGACTCTCTGGGCAGTCTGATAGTTCAGCCAGTCG 2900 

                  ***** **  * ** ** *****  * **  **** *  *****    *****    * 

 

FlounderC3      GTTGCGGAGAGCAGAACATGATTCACATGACCCTGCCCGTCATTGCAGCCACGTATTTGG 3076 

medakaC3-1      GTTGTGGAGAGCAGAACATGATCCACATGACCCTACCTGTCATTGCAACCATATATTTGG 3087 

troutC3         GGTGTGGGGAACAGAACATGATCTACATGACCCTGCCTGTCATTGCTACACACTACTTGG 2960 

                * ** ** ** ***********  ********** ** ********  *    ** **** 

 

FlounderC3      ACAAAACCAACCAGTGGGAGACTGTGGGCTTTCAGAAACGAAATGAAGCCCTCCAGCATA 3136 

medakaC3-1      ACAAAACCAACCAATGGGAAGCCGTTGGCTTTCAGAAACGGGCTGAGGCCCTTCAGCACA 3147 

troutC3         ACAACACCAAAAAGTGGGAGGATATTGGCCTGGACAAACGGAACACAGCCATCAAGTACA 3020 

                **** *****  * *****     * *** *  * *****       *** *  ** * * 

 

FlounderC3      TCAAGACCGGCTACACGAACGAGCTTGCCTACCGTAAAAAAGATGGATCTTTTAGTGTGT 3196 

medakaC3-1      TAAAAACAGGCTACACCAACGAACTAGCCTACCTAAAAGGCGACGGCTCTTTTGCTGTAT 3207 

troutC3         TCAACATTGGTTACCAACGTCAGCTGGCCTATCGTAAAGAAGATGGCTCCTATGCTGCCT 3080 

                * ** *  ** ***       * ** ***** *  ***   ** ** ** * *  **  * 

 

FlounderC3      GGGCCTCTCACGGAAGCAGCAGCTGGCTGACAGCGTACGTTGCCAAGGTGTTCGCCATGG 3256 

medakaC3-1      GGGCTGATCATGGAAGCAGCTCCTGGTTAACAGCATATGTTATTAAAGTGTTTTCCATGG 3267 

troutC3         GGGTCAGCAGACAGAGCAGCACCTGGCTGACAGCATACGTGGTGAAGGTGTTTGCCATGT 3140 

                ***           ******  **** * ***** ** **    ** *****  *****  

 

FlounderC3      CTAACAGTCTGGTGGCAGTGCAGAACAACGTGATCTGTGACGCTGTTAAGTACCTGATTC 3316 
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medakaC3-1      CCAACAACCTGGTGGCCATCAAAAAGGAACACATTTGTGATGCTGTGAAGTTCCTGATAC 3327 

troutC3         CCAGTACATTAATCAGTGTTCAGGAAAATGTGCTCTGTACTGCTGTCAAGTGGCTGATCC 3200 

                * *  *   *  *     *  *  *  *     * ***   ***** ****  ***** * 

 

FlounderC3      TCAACGCGCAGCAACCCGACGGCGTGTTCAAAGAAGTTGGAAGGGTGGCCCACGGAGAGA 3376 

medakaC3-1      TCAGAGCTCAGCAGCCCGATGGCTTGTTCACAGAAACTGGAAAAATGTACCATGGAGAGA 3387 

troutC3         TGAACACACAACAGCCAGATGGCATCTTCAATGAGTTTGCTCCTGTCATTCATGCAGAGA 3260 

                * *   * ** ** ** ** *** * ****  **   **      *    ** * ***** 

 

FlounderC3      TGATTGGTGATGTGCGCGGCACAGATTCAGAGGCCTCCATGACAGCCTTCTGCCTCATCG 3436 

medakaC3-1      TGATTGGTGATGTCCGTGGCTCTGACTCTGATGCCTCTATGACAGCGTTCTGCCTCATTG 3447 

troutC3         TGACGGGTAACGTGAGGGGATCAGACAATGACGCCTCCATGACAGCTTTTGTTCTCATCG 3320 

                ***  *** * **  * **  * **    ** ***** ******** **    ***** * 

 

FlounderC3      CCATGCAGGAGTCACGGACTCTATGTGCTGCGACTGTTAATAGTCTTCCAGGCAGTGTAG 3496 

medakaC3-1      CCATGCAGGAGTCACGCTCGCTCTGTTCAGCCACTGTCAATACCCTGCCAGGCAGCATTG 3507 

troutC3         CCATGCAGGAAGCAAGCTCAGTGTGTGAGCAGTCTGTCAACAGCCTACCAGGCAGTATGG 3380 

                **********  ** *  *  * ***       **** ** *  ** ********  * * 

 

FlounderC3      AAAAATCGGTGTTATACCTGGAGAGGCGTTTGGAAAGCCTCACCAACCCATATGCTGTTG 3556 

medakaC3-1      ACAAGGCAGTTGCCTACCTGGAGAAACGACTTCCCAGACTTACAAATCCTTACGCTGTTG 3567 

troutC3         CTAAGGCAGTAGCGTACCTCGAGAAGCGTCTGCCCCACCTGACTAACCCTTATGCTGTAG 3440 

                  **  * **    ***** ****  **  *       ** ** ** ** ** ***** * 

 

FlounderC3      CAATAACATCGTACGCCTTGGCCAACGAAGGCAGACTGAACAAAGATGTCCTCTACAAGT 3616 

medakaC3-1      CCATGACATCATATGCTCTGGCTAATGAGGGAAAACTAAACCGCGATATTCTCTACAAGT 3627 

troutC3         CTATGACCTCCTATGCTCTGGCCAATGCAGGGAAACTCAACAAGGAGACCCTACTGAAGT 3500 

                * ** ** ** ** **  **** ** *  ** * *** ***   **    **    **** 
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FlounderC3      TCGCTTCTCCAGAGCTGTCCCACTGGCCTGTACCTAAGGGTCGTGTTTACACACTGGAGG 3676 

medakaC3-1      TTGTTTCTCCAGAGTTGACCCACTGGCCTGTTCCTGGAAAGCACCTCTTTACCCTTGAGG 3687 

troutC3         TCGCCTCTCCACAGCTGGACCACTGGCCAGTCCCTGGTGGTTACCAGTACACGCTGGAGG 3560 

                * *  ****** ** **  ********* ** ***            *  ** ** **** 

 

FlounderC3      CCACAGCTTACGCACTTCTGGCTCTGGTCAAGACCAAGGACTTTGAAAAAGCCCGACCTA 3736 

medakaC3-1      CCACAGCTTATGCTCTTCTGGCTTTGGTCAAGACCAAGTCTTTTGAAGATGCCAGACCTG 3747 

troutC3         CCACGTCGTACGCCCTGCTTGCTCTGGTCAAGGTGAAGGCCTTCGAAGAGGCCGGCCCCA 3620 

                ****  * ** ** ** ** *** ********   ***   ** *** * *** * **   

 

FlounderC3      TTGTGAGATGGTTCAGCCAACAGCAGAAGGTGGGCGGAGGATATGGCTCAACTCAGGCTA 3796 

medakaC3-1      TTGTGAGATGGTTCAACCAGCAGCAGTTTGTTGGTGGGGGTTATGGATCCACCCAGGCTA 3807 

troutC3         TAGTCAGGTGGCTCAACAAGCAGAAGAAGGTGGGAGGGGGATACGGATCCACACAGTCCA 3680 

                * ** ** *** *** * * *** **   ** ** ** ** ** ** ** ** *** * * 

 

FlounderC3      CCATTATAGTGTACCAGGCTGTAGCAGAGTACTGGGCCGCTGCTAAAGAACC---AGAGT 3853 

medakaC3-1      CAATAATTGTGTACCAGGCTGTAGCAGAGTACTGGGCCAATGCTCAAGAACC---AGAGT 3864 

troutC3         CCATCATGGTGTTCCAGGCTGTGGCTGAGTATTGGAGCCACGTGAAGGACCTGAAAGACT 3740 

                * ** ** **** ********* ** ***** ***  *   *   * ** *    *** * 

 

FlounderC3      ACGATCTGAATGTGGACATCTTGTTGCCAGGCAGGTCAAAGCCTGAAAAGATTGTCCTCA 3913 

medakaC3-1      ATGATCTGAAAGTGGATATCTTGTTGCCAGGCAAATCAAAGCCTGACAAATATGAATTCA 3924 

troutC3         TTGACTTGAACATCAACCTAGAGGTGGCCGGCAGGGCATCAGTCACCAAGTGGTCCATCA 3800 

                  **  ****  *  *  *   * ** * ****   **         **        *** 

 

FlounderC3      ACGCGGACAACAGCTATACCACAAGAACATCTAAAATCAATGATATAAACCAGGATGTGA 3973 

medakaC3-1      ACCGTGAAAACAGCTATGCTACAAGAACCTCTAAAATCAAAGACATAAACAAAGATATAA 3984 
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troutC3         ACAACAAGAACCAGTTCCACACTCGTACAGACAAGGTCAACTCCATTGACAAGGACTTGA 3860 

                **    * ***   *     **  * **    **  ****    **  ** * **  * * 

 

FlounderC3      AAGTGACTGCCAAAGGAACAGGAGAAGCAACAGTGACAATGGTGTCGCTGTATTATGCTC 4033 

medakaC3-1      AAGTGAAGGCTACTGGATCGGGAGAAGCTGTTCTCAAAATGGTGTCCTTGTACTATGCTC 4044 

troutC3         CTGTAAAAGCCTCAGGAAATGGTGAGGCGACCTTGTCGGTGGTGACACTGTACTATGCCC 3920 

                  ** *  **    ***   ** ** **     *     ***** *  **** ***** * 

 

FlounderC3      TACCTCAAAAGAAGGAGAGCGACTGTCAGAAGTTCAACATGTCAGTGGAGCTTATCCCAG 4093 

medakaC3-1      TGCCTGAAGAAAAGGAAAGTGACTGCCAGAAGTTTGACGTGTCAGTGCAGCTGCTTCCAG 4104 

troutC3         TGCCAGAGGAAAAGGACAGTGACTGTGAAAGCTTTGACCTCTCTGT-CACCCTCACTAAG 3979 

                * **  *  * ***** ** *****  * *  **  ** * ** **  * *       ** 

 

FlounderC3      AAAGG-------ATTGATGCAGATG---AGAGTATATTTAAGCTGAAAATAGAGGTTTTA 4143 

medakaC3-1      CTAAG-------AATATTGGGAATC---AAAAGGTCTACAAGCTTCAGATAGAGGTTTTA 4154 

troutC3         ATGGACAAAACAAGTCACGAGGACGCCAAGGAGTCATTTATGCTGACTATTGAGGTGTTG 4039 

                            * *   *   *     *       *  * ***    ** ***** **  

 

FlounderC3      TATAAGGACAAGGAGCGTGATGCGACCATGTCGATCTTGGATATCGGTTTGCTGACTGGC 4203 

medakaC3-1      TACAAGGACAGCAATCGTGATGCCACCATGTCTATCTTAGACATCGGTTTGCAGACAGGC 4214 

troutC3         TATAAGAACTCAGAGAGAGATGCGACCATGTCTATTCTGGACATCGGCTTGCTGACCGGC 4099 

                ** *** **    *  * ***** ******** **  * ** ***** **** *** *** 

 

FlounderC3      TTCACCCCCAACACTAATGACTTGAACTTATTGTCTAAAGGACGTGCCAGGACTCTTGCA 4263 

medakaC3-1      TTCACTCCCAACTTAGATGACCTAAAAGCTCTGTCTGGAGGGCGATTTCCCCTCATTAGC 4274 

troutC3         TTCATTGTGGACACAGACGATCTGAATCAGTTGTCCAAGGGGAGGGAGCGCTACATAGAG 4159 

                ****      **    * **  * **     ****    **  *           *     
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FlounderC3      AAATATGAGATGAACACTCTCCTTTCAGAAAAAGGCTCACTGATCATCTACCTGGACAAG 4323 

medakaC3-1      AAGTATGAAATGAATACAGCTCTGTCGGAACGAGGCTCACTCATCATCTACCTGGATAAG 4334 

troutC3         AAGTTTGAGATGGACAAAGTTCTGTCTGAAAGAGGATCTCTCATTCTATATCTGGACAAG 4219 

                ** * *** *** * *     ** ** ***  *** ** ** **  * ** ***** *** 

 

FlounderC3      GTTTCTCACACACGGCCAGAGGAGATCACATTTAGGGTTCACCAGAAGATGAAAGTGGGC 4383 

medakaC3-1      ATTTCTCACACCCGACCAGAGGAGATCAGTTTCAGGGTCCAGCAGACCATGGAGGTGGGC 4394 

troutC3         GTGTCTCATAAGTTAGAAGACAGAATATCCTTTAAGATCCACAGAGTACAGGAAGTGGGA 4279 

                 * ***** *       ***    **    ** * * * **         * * *****  

 

FlounderC3      GTCTTACAGCCAGCGGCCGTTTCTGTCTATGAATATTATGACCAAACACAGTGTGTGCAG 4443 

medakaC3-1      GTTCTTCAGCCTGCAGCAGTGTCTGTCTATGAATATTATGAGCAAACACCTTGTGTGAAG 4454 

troutC3         GTTCTTCAGCCAGCTGCCGTCTCTGTATATGAATACTACAACCAGAAGCGCTGTGTGAAG 4339 

                **  * ***** ** ** ** ***** ******** **  * ** *  *  ****** ** 

 

FlounderC3      TTCTATCACCCACAGAGGAAAGCTGGACAGCTACTGAGGCTCTGCAGAAATGAGGAGTGC 4503 

medakaC3-1      TTTTACCATCCAGAGAGGGAGGGAGGACAGCTGCTGAAGCTCTGCAAAGATGACGAGTGC 4514 

troutC3         TTCTACCACCCACAGAGGGAGGGTGGTACTCTGAGCAGACTGTGTCTTGGAGACGTGTGC 4399 

                ** ** ** *** ***** * *  **    **    *  ** **       ** * **** 

 

FlounderC3      ACATGTGCTGAAGAGAACTGCAGTATGCAGAAGAAGGGCAAGATCAGCAATGATCAGCGC 4563 

medakaC3-1      ACATGTGCAGAAGAGAACTGCAGCATGCAGAAGAATGGTCAAATCAGCAACGATGAGCGA 4574 

troutC3         ACGTGTGCGGAAGAGAGCTGCAGTATGCAGAAGAAAGGTGAG-CCAG--ATGTCCAACGC 4456 

                ** ***** ******* ****** *********** **  *   ***  * *   * **  

 

FlounderC3      ATAGAAAAATCTTGTGAGACTACACCGACCAGTAAAATAGATTTTGTGTACAAAGTGAGA 4623 

medakaC3-1      ACATCTAAAATCTGTGAGAGCACAGAGAGCAGCAAAATTGAATATGCGTACAAAGTTCTG 4634 

troutC3         ATTGACAAAGCTTGCG------------GCGCGGGACTGGATTACGTTTACAAAGCCACG 4504 
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                *     ***   ** *             *     * * ** *  *  *******      

 

FlounderC3      CTGGAGGAATTCACAGACGGTGGGTCTACTGACATTTACACAATGCGGATATTGGAAGGG 4683 

medakaC3-1      GTGGAAGATGTTGTCCAAAAACCGTCTATAGACATCTATGCCATGCGGGTGCAGGACTCC 4694 

troutC3         GTGGTGGACTCGAAGCTGACCACACACACAGATACTTACACCGTGAAGATC---GATTTG 4561 

                 ***  **                   *  ** *  **  *  **  * *    **     

 

FlounderC3      ATCAAAGAAGGAAGTTACGATGTGGCTCCTCAGGGGAAACTGCGCACATTCCTGAGTTAT 4743 

medakaC3-1      ATCAAAGAAGGAAGTACAGATGTTGGCCCCAGGGGAAAACTGCGGCCATTCCTCAGTTAT 4754 

troutC3         GTCATCAAGCCAGGTACTGACGAGGGAGTGGAGGGGAAGAATCGTGACTTCATGGGACTG 4621 

                 ***   *   * **   ** *  *       *** **    **    *** *  *     

 

FlounderC3      CAACACTGCAGGGAGTCTTTAGATCTGGGCAAAGGCAAAATGTACCTCATCATGGGCACA 4803 

medakaC3-1      CCCCATTGCAGAGATGCTTTGAATCTGCAGAAAGGTAAAACATACCTGATCATGGGATCA 4814 

troutC3         GCTTACTGTAGAGAAGCTCTGGGTCTAATGCAGGGGAAAACATACATGATTATGGGGAAG 4681 

                    * ** ** **  ** *   ***     * ** ****  *** * ** *****     

 

FlounderC3      TCAAAAGATATTCACAGAG------ATGACCAAAATGAATCGTATCATTATGTGCTTGGG 4857 

medakaC3-1      TCCAGAGACATTCACAAAG------ATGAAAAACAGCTCACATATCAGTACGTCCTTGGA 4868 

troutC3         TCTGAAGACCTGCACAGAGTGGAGGATAAAGGACTGTTGCAGTACAAGTATGTCCTTGGA 4741 

                **   ***  * **** **      ** *   *         **  * ** ** *****  

 

FlounderC3      GAGAGAACCTGGATCGAGTACTGGCCCACAGAAGCTGAGTGTCAAACCGAGGAGCACAGA 4917 

medakaC3-1      GAGAGAACTTGGATTGAGTATTGGCCAACAGCAGAGGAGTGTCAAGGGGATGAACACAGA 4928 

troutC3         GAACAGACATGGATTGAGTACTGGCCCTCACAACAAGAGTGCACATCCAGAGACTACAGA 4801 

                **    ** ***** ***** *****  **  *   *****   *      **  ***** 

 

FlounderC3      CCAACTTGTTTGGGCTTGCAGCAGATGGTCCAGCAGTACTTGCTCTTTGGATGTCAGCAG 4977 
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medakaC3-1      GCCACATGCCTGGGCTTAGATGAGATGCTAGAGCAGTTCAGAGTGTTTGCATGTCAGCAA 4988 

troutC3         GAAGTCTGTCTGGGCATTGATGAGTTCATCAACCAGATCACAACCTTCGGCTGCCCAGTT 4861 

                      **  ***** *  *  ** *  *  * ***  *      ** *  ** *      

 

FlounderC3      TAGTGTAACTC---GAGAGAAAACTGTCCATTTCAAATTGGTTTTATTTTTTGCATTACC 5034 

medakaC3-1      TAAAGAAA--------GAAAAAACTTCTCCTTT-----TTGTTTTTTCTGGTAAAAGATG 5035 

troutC3         TAGTTTCTCTTCTTGCTTTGTTAATGTACATTTTTG--TAACATTGCAATCCAGGTTGCA 4919 

                **                    * *   * ***     *    **                

 

FlounderC3      TTTGTTAT-GTAAAACTTTCTCTGCTATGAGATGTGAAGGATTTAGAGGTTACTACATGC 5093 

medakaC3-1      TGTGCAGA-ATAAAATGTACCAACCTAAAAAAAAAAAAAAAAAAAAAA------------ 5082 

troutC3         TGCCCTGTCATAACTCATTGTAACCTAT-AGAGATTATGGAGATGAGTTTGCCCACTTGG 4978 

                *         ***    *      ***  * *    *   *                    

 

hippoglC3       --------------------------------------------------CTCATCGCCA 10 

FlounderC3      TTGGTGATGTGCGCGGCACAGATTCAGAGGCCTCCATGACAGCCTTCTGCCTCATCGCCA 3439 

medakaC3-1      TTGGTGATGTCCGTGGCTCTGACTCTGATGCCTCTATGACAGCGTTCTGCCTCATTGCCA 3450 

troutC3         CGGGTAACGTGAGGGGATCAGACAATGACGCCTCCATGACAGCTTTTGTTCTCATCGCCA 3323 

                                                                  ***** **** 

 

hippoglC3       TGCAGGAGTCACGGACTCTATGTGCTGCCACTGTTAGTAGTCTTCCAGGCAGTGTAGACA 70 

FlounderC3      TGCAGGAGTCACGGACTCTATGTGCTGCGACTGTTAATAGTCTTCCAGGCAGTGTAGAAA 3499 

medakaC3-1      TGCAGGAGTCACGCTCGCTCTGTTCAGCCACTGTCAATACCCTGCCAGGCAGCATTGACA 3510 

troutC3         TGCAGGAAGCAAGCTCAGTGTGTGAGCAGTCTGTCAACAGCCTACCAGGCAGTATGGCTA 3383 

                *******  ** *  *  * ***       **** *  *  ** ********  * *  * 

 

hippoglC3       AAGCGGTGCAGTACCTGGAGAGGCGTTTGGACAGCCTCACCAACCCATATGCTGTTGCCA 130 

FlounderC3      AATCGGTGTTATACCTGGAGAGGCGTTTGGAAAGCCTCACCAACCCATATGCTGTTGCAA 3559 
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medakaC3-1      AGGCAGTTGCCTACCTGGAGAAACGACTTCCCAGACTTACAAATCCTTACGCTGTTGCCA 3570 

troutC3         AGGCAGTAGCGTACCTCGAGAAGCGTCTGCCCCACCTGACTAACCCTTATGCTGTAGCTA 3443 

                *  * **    ***** ****  **  *       ** ** ** ** ** ***** ** * 

 

hippoglC3       TGACATCGTACGCCTTGGCCAACGAAGGCAAACTGAACCAAGAAGTCCTCTTCAAGTTCG 190 

FlounderC3      TAACATCGTACGCCTTGGCCAACGAAGGCAGACTGAACAAAGATGTCCTCTACAAGTTCG 3619 

medakaC3-1      TGACATCATATGCTCTGGCTAATGAGGGAAAACTAAACCGCGATATTCTCTACAAGTTTG 3630 

troutC3         TGACCTCCTATGCTCTGGCCAATGCAGGGAAACTCAACAAGGAGACCCTACTGAAGTTCG 3503 

                * ** ** ** **  **** ** *  ** * *** ***   **    **    ***** * 

 

hippoglC3       CTTCTCCAGAGCTGTCCCACTGGCCGTCACCTAAGGGACGTATTTACACACTGGAGGCCA 250 

FlounderC3      CTTCTCCAGAGCTGTCCCACTGGCCTGTACCTAAGGGTCGTGTTTACACACTGGAGGCCA 3679 

medakaC3-1      TTTCTCCAGAGTTGACCCACTGGCCTGTTCCTGGAAAGCACCTCTTTACCCTTGAGGCCA 3690 

troutC3         CCTCTCCACAGCTGGACCACTGGCCAGTCCCTGGTGGTTACCAGTACACGCTGGAGGCCA 3563 

                  ****** ** **  *********    ***            *  ** ** ******* 

 

hippoglC3       CAGCTTACGCTCTTCTGGCTCTGGTCAAGGTCGGGGCCTTCGAAGAAGCCCGACCTATTG 310 

FlounderC3      CAGCTTACGCACTTCTGGCTCTGGTCAAGACCAAGGACTTTGAAAAAGCCCGACCTATTG 3739 

medakaC3-1      CAGCTTATGCTCTTCTGGCTTTGGTCAAGACCAAGTCTTTTGAAGATGCCAGACCTGTTG 3750 

troutC3         CGTCGTACGCCCTGCTTGCTCTGGTCAAGGTGAAGGCCTTCGAAGAGGCCGGCCCCATAG 3623 

                *  * ** ** ** ** *** ********     *   ** *** * *** * **  * * 

 

hippoglC3       TGAGGTGGTTCAACCAACAGCAGAAGGTGGGCGGAGGATTTGGATCAACTCAGGCTACCA 370 

FlounderC3      TGAGATGGTTCAGCCAACAGCAGAAGGTGGGCGGAGGATATGGCTCAACTCAGGCTACCA 3799 

medakaC3-1      TGAGATGGTTCAACCAGCAGCAGTTTGTTGGTGGGGGTTATGGATCCACCCAGGCTACAA 3810 

troutC3         TCAGGTGGCTCAACAAGCAGAAGAAGGTGGGAGGGGGATACGGATCCACACAGTCCACCA 3683 

                * ** *** *** * * *** **   ** ** ** ** *  ** ** ** *** * ** * 
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hippoglC3       TCATAGTGTACCAGGCTGTAGCAGAGTACTGGGCCAGTGCTAAAGAACC---AGAATACG 427 

FlounderC3      TTATAGTGTACCAGGCTGTAGCAGAGTACTGGGCCGCTGCTAAAGAACC---AGAGTACG 3856 

medakaC3-1      TAATTGTGTACCAGGCTGTAGCAGAGTACTGGGCCAATGCTCAAGAACC---AGAGTATG 3867 

troutC3         TCATGGTGTTCCAGGCTGTGGCTGAGTATTGGAGCCACGTGAAGGACCTGAAAGACTTTG 3743 

                * ** **** ********* ** ***** ***  *   *   * ** *    *** *  * 

 

hippoglC3       ATCTGAATGTGGATATCTTGTTGCCGGGCAGGTCAAAGCCTGAAAAGTTTATTCTGAACG 487 

FlounderC3      ATCTGAATGTGGACATCTTGTTGCCAGGCAGGTCAAAGCCTGAAAAGATTGTCCTCAACG 3916 

medakaC3-1      ATCTGAAAGTGGATATCTTGTTGCCAGGCAAATCAAAGCCTGACAAATATGAATTCAACC 3927 

troutC3         ACTTGAACATCAACCTAGAGGTGGCCGGCAGGGCATCAGTCACCAAGTGGTCCATCAACA 3803 

                *  ****  *  *  *   * ** * ****   **         **        * ***  

 

hippoglC3       AGGAAAACGTCTATACCACAAGAACATCTAAAATCAGGGGTTTAAGCCAGGATGTGAAAG 547 

FlounderC3      CGGACAACAGCTATACCACAAGAACATCTAAAATCAATGATATAAACCAGGATGTGAAAG 3976 

medakaC3-1      GTGAAAACAGCTATGCTACAAGAACCTCTAAAATCAAAGACATAAACAAAGATATAAAAG 3987 

troutC3         ACAAGAACCAGTTCCACACTCGTACAGACAAGGTCAACTCCATTGACAAGGACTTGACTG 3863 

                   * ***   *     **  * **    **  ***      *   * * **  * *  * 

 

hippoglC3       TTACTGCCACGGGATCCGGAGAGGCAACAGTGACAATGGTTTCGCTGTATTATGCTCTAC 607 

FlounderC3      TGACTGCCAAAGGAACAGGAGAAGCAACAGTGACAATGGTGTCGCTGTATTATGCTCTAC 4036 

medakaC3-1      TGAAGGCTACTGGATCGGGAGAAGCTGTTCTCAAAATGGTGTCCTTGTACTATGCTCTGC 4047 

troutC3         TAAAAGCCTCAGGAAATGGTGAGGCGACCTTGTCGGTGGTGACACTGTACTATGCCCTGC 3923 

                * *  **    ***   ** ** **     *     ****  *  **** ***** ** * 

 

hippoglC3       CTCAAAAAGAATCTGCAGTATGTCAGAAGTTCAACATGTCAGTGCAGCTCATCC---CAG 664 

FlounderC3      CTCAAAAGAAGGAGAGCGACTGTCAGAAGTTCAACATGTCAGTGGAGCTTATCC---CAG 4093 

medakaC3-1      CTGAAGAAAAGGAAAGTGACTGCCAGAAGTTTGACGTGTCAGTGCAGCTGCTTC---CAG 4104 

troutC3         CAGAGGAAAAGGACAGTGACTGTGAAAGCTTTGACCTCTCTGTCACCCTCACTAAGATGG 3983 
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                *  *  *  *       *  **  * *  **  ** * ** **    **          * 

 

hippoglC3       ACAAAATGGAT---GAAGATG---AGAAAATATACAAGCTGAAAATAGAGGTTTTATATA 718 

FlounderC3      AAAGGATTGAT---GCAGATG---AGAGTATATTTAAGCTGAAAATAGAGGTTTTATATA 4147 

medakaC3-1      CTAAGAATATT---GGGAATC---AAAAGGTCTACAAGCTTCAGATAGAGGTTTTATACA 4158 

troutC3         ACAAAACAAGTCACGAGGACGCCAAGGAGTCATTTATGCTGACTATTGAGGTGTTGTATA 4043 

                  *  *    *   *   *     *       *  * ***    ** ***** ** ** * 

 

hippoglC3       AGGACAGGGAGCAAGATGCAAGCATGTCAATCTTGGATATCGGTTTGCTGACTGGCTTTA 778 

FlounderC3      AGGACAAGGAGCGTGATGCGACCATGTCGATCTTGGATATCGGTTTGCTGACTGGCTTCA 4207 

medakaC3-1      AGGACAGCAATCGTGATGCCACCATGTCTATCTTAGACATCGGTTTGCAGACAGGCTTCA 4218 

troutC3         AGAACTCAGAGAGAGATGCGACCATGTCTATTCTGGACATCGGCTTGCTGACCGGCTTCA 4103 

                ** **    *    ***** * ****** **  * ** ***** **** *** ***** * 

 

hippoglC3       CCGTCAACACTAATGACTTGGACTCATTGTCTAAAGGACATGCCCGCACTATTTCAAAAT 838 

FlounderC3      CCCCCAACACTAATGACTTGAACTTATTGTCTAAAGGACGTGCCAGGACTCTTGCAAAAT 4267 

medakaC3-1      CTCCCAACTTAGATGACCTAAAAGCTCTGTCTGGAGGGCGATTTCCCCTCATTAGCAAGT 4278 

troutC3         TTGTGGACACAGACGATCTGAATCAGTTGTCCAAGGGGAGGGAGCGCTACATAGAGAAGT 4163 

                      **    * **  *  *     ****    **              *    ** * 

 

hippoglC3       ATGAGATGAACACTGCCCTGTCAGAAAGAGGCTCACTGATCATCTACCTGGACAAGGTTT 898 

FlounderC3      ATGAGATGAACACTCTCCTTTCAGAAAAAGGCTCACTGATCATCTACCTGGACAAGGTTT 4327 

medakaC3-1      ATGAAATGAATACAGCTCTGTCGGAACGAGGCTCACTCATCATCTACCTGGATAAGATTT 4338 

troutC3         TTGAGATGGACAAAGTTCTGTCTGAAAGAGGATCTCTCATTCTATATCTGGACAAGGTGT 4223 

                 *** *** * *     ** ** ***  *** ** ** **  * ** ***** *** * * 

 

hippoglC3       CTCACACACGACCAGAGGAGATCACATTTAGGATTCACCAGACGATGAAAGTGGGCGTCT 958 

FlounderC3      CTCACACACGGCCAGAGGAGATCACATTTAGGGTTCACCAGAAGATGAAAGTGGGCGTCT 4387 
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medakaC3-1      CTCACACCCGACCAGAGGAGATCAGTTTCAGGGTCCAGCAGACCATGGAGGTGGGCGTTC 4398 

troutC3         CTCATAAGTTAGAAGACAGAATATCCTTTAAGATCCACAGAGTACAGGAAGTGGGAGTTC 4283 

                **** *       ***    **    ** * * * **         * * ***** **   

 

hippoglC3       TACAGCCAGCCACTGTTTCTGTCTATGAATATTATGACCAGAGACATTGTGTGAAATTCT 1018 

FlounderC3      TACAGCCAGCGGCCGTTTCTGTCTATGAATATTATGACCAAACACAGTGTGTGCAGTTCT 4447 

medakaC3-1      TTCAGCCTGCAGCAGTGTCTGTCTATGAATATTATGAGCAAACACCTTGTGTGAAGTTTT 4458 

troutC3         TTCAGCCAGCTGCCGTCTCTGTATATGAATACTACAACCAGAAGCGCTGTGTGAAGTTCT 4343 

                * ***** **  * ** ***** ******** **  * ** *  *  ****** * ** * 

 

hippoglC3       ATCATCCAGAGAGGAAAGCTGGACAGCTCATGAGGCTCTGCAGAAATGATGAGTGCACAT 1078 

FlounderC3      ATCACCCACAGAGGAAAGCTGGACAGCTACTGAGGCTCTGCAGAAATGAGGAGTGCACAT 4507 

medakaC3-1      ACCATCCAGAGAGGGAGGGAGGACAGCTGCTGAAGCTCTGCAAAGATGACGAGTGCACAT 4518 

troutC3         ACCACCCACAGAGGGAGGGTGGTACTCTGAGCAGACTGTGTCTTGGAGACGTGTGCACGT 4403 

                * ** *** ***** * *  **    **    *  ** **       ** * ****** * 

 

hippoglC3       GTGCCGAAGAGAACTGCAGTATGCAGAAGAAGGGCAAGATCAGCAATGATCTGCGCACAG 1138 

FlounderC3      GTGCTGAAGAGAACTGCAGTATGCAGAAGAAGGGCAAGATCAGCAATGATCAGCGCATAG 4567 

medakaC3-1      GTGCAGAAGAGAACTGCAGCATGCAGAAGAATGGTCAAATCAGCAACGATGAGCGAACAT 4578 

troutC3         GTGCGGAAGAGAGCTGCAGTATGCAGAAGAAAGGTGAG-CCAG--ATGTCCAACGCATTG 4460 

                **** ******* ****** *********** **  *   ***  * *     ** *    

 

hippoglC3       AAAAATCTTGTGAGACTACTCCTACCAGCAAAATTGATTTTGTGTACAAAGTGAGACTGG 1198 

FlounderC3      AAAAATCTTGTGAGACTACACCGACCAGTAAAATAGATTTTGTGTACAAAGTGAGACTGG 4627 

medakaC3-1      CTAAAATCTGTGAGAGCACAGAGAGCAGCAAAATTGAATATGCGTACAAAGTTCTGGTGG 4638 

troutC3         ACAAAGCTTGCGG------------CGCGGGACTGGATTACGTTTACAAAGCCACGGTGG 4508 

                  ***   ** *             *     * * ** *  *  *******      *** 
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hippoglC3       AGGAATTCACAGATGGTTTGTCTACTGACATTTACACAATGAGGATATTGGAAGTGATCA 1258 

FlounderC3      AGGAATTCACAGACGGTGGGTCTACTGACATTTACACAATGCGGATATTGGAAGGGATCA 4687 

medakaC3-1      AAGATGTTGTCCAAAAACCGTCTATAGACATCTATGCCATGCGGGTGCAGGACTCCATCA 4698 

troutC3         TGGACTCGAAGCTGACCACACACACAGATACTTACACCGTGAAGATC---GATTTGGTCA 4565 

                  **                   *  ** *  **  *  **  * *    **     *** 

 

hippoglC3       AAGAAGGAAGTTTCGATGTGGGTCCTCAGGGGAAAAAGCGCACATTCCTGAGTTATCCAC 1318 

FlounderC3      AAGAAGGAAGTTACGATGTGGCTCCTCAGGGGAAACTGCGCACATTCCTGAGTTATCAAC 4747 

medakaC3-1      AAGAAGGAAGTACAGATGTTGGCCCCAGGGGAAAACTGCGGCCATTCCTCAGTTATCCCC 4758 

troutC3         TCAAGCCAGGTACTGACGAGGGAGTGGAGGGGAAGAATCGTGACTTCATGGGACTGGCTT 4625 

                   *   * **   ** *  *       *** **    **    *** *  *         

 

hippoglC3       ACTGCAGGGAGTCTTTAGATCTGGGCGAAGACAGAACGTACCTCATCATGGGCACGTCAA 1378 

FlounderC3      ACTGCAGGGAGTCTTTAGATCTGGGCAAAGGCAAAATGTACCTCATCATGGGCACATCAA 4807 

medakaC3-1      ATTGCAGAGATGCTTTGAATCTGCAGAAAGGTAAAACATACCTGATCATGGGATCATCCA 4818 

troutC3         ACTGTAGAGAAGCTCTGGGTCTAATGCAGGGGAAAACATACATGATTATGGGGAAGTCTG 4685 

                * ** ** **  ** *   ***     * *  * **  *** * ** *****    **   

 

hippoglC3       AAGATATTCACAGAG------ACGAACAACATCAATTGTACCAGTACGTGCTCGGGGAAA 1432 

FlounderC3      AAGATATTCACAGAG------ATGACCAAAATGAATCGTATCATTATGTGCTTGGGGAGA 4861 

medakaC3-1      GAGACATTCACAAAG------ATGAAAAACAGCTCACATATCAGTACGTCCTTGGAGAGA 4872 

troutC3         AAGACCTGCACAGAGTGGAGGATAAAGGACTGTTGCAGTACAAGTATGTCCTTGGAGAAC 4745 

                 ***  * **** **      *  *   *         **  * ** ** ** ** **   

 

hippoglC3       GAACCTGGATCGAGTACTGGCCCAAGGAAGCCGAGTGTCAAATCGAGGAGCACAGACCAA 1492 

FlounderC3      GAACCTGGATCGAGTACTGGCCCACAGAAGCTGAGTGTCAAACCGAGGAGCACAGACCAA 4921 

medakaC3-1      GAACTTGGATTGAGTATTGGCCAACAGCAGAGGAGTGTCAAGGGGATGAACACAGAGCCA 4932 

troutC3         AGACATGGATTGAGTACTGGCCCTCACAACAAGAGTGCACATCCAGAGACTACAGAGAAG 4805 
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                  ** ***** ***** *****      *   *****   *      **  *****     

 

hippoglC3       CGTGTTTGGGCTTGGAGGATATGGTCCAGCAGTACGAGCTCNNNGGATGTCAGCAGTAGC 1552 

FlounderC3      CTTGTTTGGGCTTGCAGCAGATGGTCCAGCAGTACTTGCTCTTTGGATGTCAGCAGTAGT 4981 

medakaC3-1      CATGCCTGGGCTTAGATGAGATGCTAGAGCAGTTCAGAGTGTTTGCATGTCAGCAATAAA 4992 

troutC3         TCTGTCTGGGCATTGATGAGTTCATCAACCAGATCACAACCTTCGGCTGCCCAGTTTAGT 4865 

                  **  ***** *  *  *  *  *  * ***  *         *  ** *     **   

9.1.2. CSF-1 

CSF-1 

Sb              ------------------------------------------------------------ 

Rbt             ATAGGGACAGAAGAGAGACAGGGTTGGAGGAACTTTACTCGCTCCCGGATGGTGAATCCA 60 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             CAGAGCTCTGTGGGATCAGAGGCATACCACTGAGCTGAAGAAATCTACAGACACAATAAC 120 

Zfcfs1R         -------GCTTTCAAGCTGAAATGAGAATCTGTACTGAAGGAGTGAAAGATCAGTCTATA 53 

                                                                             

 

Sb              -----------------------------------------------------ATGCAGT 7 

Rbt             AACACTCCTAGACATACAGACACAC------ATAGATCTGGAGCAGATCCAGGATGGAGC 174 

Zfcfs1R         TTTCCTCTGAGACGCTGAAGACTGCTGAATGGTTAAGCAGGAGCAGCTCTGAGATGTTCT 113 

                                                                     ***     

 

Sb              CCTACCTCACTCTGCTGATGGGGATCGTGGCCTCTGCTGCTTCAGTGGAATGGAGGCGTC 67 

Rbt             TGTACCTGGCCTTCCTTCTGGGGATCCTGCCCACTGCAGCTCAAG---AATGGCGACGTC 231 

Zfcfs1R         TCGCGCTCTTATTCCTCATTGGGATCCTGCTTGGTCAAGTTCAGG---GTTGGTCTGAAC 170 

                     **     * **  * ****** **     *   * *   *     ***      * 
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Sb              CGGTGATCAAGTTCAACTCTAAGGCGGTGGTGAGTGCGGAGGTGGTGGTCAGTCCCGGGA 127 

Rbt             CTGTGATCAAGCTAAACTCAGAGGTCGTGGTTGGGTCTGAAGTAGTACTGAACCCTGGCA 291 

Zfcfs1R         CGCGGATCAGACTGAGCTCTGGTGCTCTAGCCGGCACAGATGTGATCCTGGAATCCGGAT 230 

                *   *****   * * ***    *   * *   *  * ** **  *  *     * **   

 

Sb              CCTCTCTGGATCTTAAGTGCGAGGGCGACAGGCCCGTAAACTGGCAGCCAAGGCTAGCCA 187 

Rbt             CCCCATTGGTCCTGAGGTGTGAGGGGGATGGGCCAGTCAACTGGCTGACCCGGTTGTCCA 351 

Zfcfs1R         CTCCTCTTCAGCTGGTCTGTGAGGGCGACGGTCCAGTGACGTTTCTTCCCCGTCTGGCCA 290 

                *  *  *    **    ** ***** **  * ** ** *  *  *   *  *  *  *** 

 

Sb              AACACAGACGCTTCGTTTCTAAGGCCAACGGGAACGTCCGCACCTTTAAGGTGGAACGTC 247 

Rbt             AACACAAGAGCTTAATCTCCAAGGGCAATGGGAGAGTCAGAACCTTCAAGGTGGACCGCC 411 

Zfcfs1R         AACACAAGCGCTACATTTCCAAAGAAGTGGGGAAAATACGCAGTTTCCGCGTGGAAAAGA 350 

                ******   ***   * ** ** *     ****   *  * *  **    *****      

 

Sb              CCACTGCAGAATTCACTGGAACATACAGATGTTATTACACTGCCATGCCGCAGCAACGTC 307 

Rbt             CCTCTGCAGAACACACTGGGACATATAAATGTGAATATACCAGTGTGA-ACGTCAAGGTT 470 

Zfcfs1R         CAACGGTGGACTTCACAGGAACATACAAGTGCGTCTATATGAATGGAA-------ATGAT 403 

                *  * *  **   *** ** ***** *  **    ** *                * *   

 

Sb              ----AACTGATCTCCTCAGTGCATGTGTATATAAAAGATCCAAACCGTGTGTTCTGGACC 363 

Rbt             CGGGACTTGTTCTCTACGGTGCACGTGTATGTGAAAGACCCAGACAGCCTGTTTTGGACC 530 

Zfcfs1R         TCAAACTTGTCGTCTTCGGTTCATGTGTTTGTCCGGGACTCTCGAGTTCTCTTTGTTTCT 463 

                    *  **   **  * ** ** **** * *    **  *        * **     *  

 

Sb              AGCAGCACGTCCTTGCGTGTGGTGAGGAAGGAAGGTGAGGACTACCTGCTGCCCTGCCTG 423 

Rbt             AGCAGCGCGTCCCTGCGTGTGGTGAGGAAGGAGGGGGAGGACCACCTGCTCCCCTGCCTG 590 
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Zfcfs1R         CCGAGTACGTCTCTGCGATATGTGCGGAAAGAAGGTGAAGATCTGTTGCTCCCGTGTCTT 523 

                   **  ****  ****    *** **** ** ** ** **     **** ** ** **  

 

Sb              CTGACCGACCCAGCAGCCACGGACCTTGGCCTCCGCATGGACAATGGCACCAGCGTGCCG 483 

Rbt             CTGACCGACCCAGAGGCCACAGACTTGGGGCTCCGCATGGACAACTGTACCTTCGTGCCC 650 

Zfcfs1R         CTGACCGACCCGGAGGCCACAGACTTCACATTTCGCATGGACAACGGTTCAGCAGCGCCC 583 

                *********** *  ***** *** *     * ***********  *  *    * ***  

 

Sb              CCGGGGATGAACTTCACAGTTTACCGGCACCGTGGTATTCTCATCCACAGCCTCCACCCG 543 

Rbt             CCAGGGATGAACTACACAGCAGACCCCCGCAGAGGCATTCTCATCCGCAACCTCCATCCC 710 

Zfcfs1R         TACGGCATGAACATCACCTACGACCCCAGAAAAGGTGTCCTGATCCGCAACGTTCATCCT 643 

                   ** ******  ***     ***        **  * ** **** ** * * ** **  

 

Sb              AGCTTCAACGCTGACTACGTCTGCACAGCCAGGGTCAACGGAGTGGAGAAGACGTCCAAG 603 

Rbt             AGCTACAATGCTGACTATGTCTGCAGCGCCAAACTCCACGGGGTGGAGAGGACTTCCAAG 770 

Zfcfs1R         GGATTTAACGCAGACTACATTTGCTGCGCTAGAATCGGAGGTGCAGAGAAAGTGTCAAAG 703 

                 * *  ** ** *****  * ***   ** *   **   ** *  ****     ** *** 

 

Sb              GCCTTTTCCATCAACGTCATTCAGAAGCTTCGCTTCCCTCCATACGTCTTCTTGGAGACA 663 

Rbt             ACTTTCAACCTCAACATCATCCAAAGGCTGCGTTTCCCACCTTATGTATTCCTGGAAAAG 830 

Zfcfs1R         ATATTCTCGATAAACATCATTCAAAGGTTACGTTTTCCACCGTATGTGTACCTGAAGAGG 763 

                   **     * *** **** ** * * * ** ** ** ** ** ** * * ** * *   

 

Sb              GATGAATATGTGCGCATTGTTGGAGAGGAGCTCAAGATTCGCTGCACCACGCACAACCCC 723 

Rbt             GATGAGTATGTTCATATCGTGGGCGAGAAGCTGAGCATCCACTGCACCACACACAACCCC 890 

Zfcfs1R         AACGAGTATGTAAAACTGGTTGGGGAGAGACTTCAGATCAGCTGTACGACAAATAATCCA 823 

                 * ** *****     * ** ** ***   **    **   *** ** **  * ** **  
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Sb              AACTTCAACTACAACGTCACCTGGAAATACACCACCAAGTCGAGAGTGATAGTAGAGGAG 783 

Rbt             AACTTCAACTATAATGTCACGTGGAATTACAGCTCCAAAAAGAGATTTACAATAGAGCAG 950 

Zfcfs1R         AACTTTTACTACAACGTCACATGGACACACTCCTCAAGAATGCTGCCCAAAGCAGAGGAG 883 

                *****  **** ** ***** ****   **  * * *    *      * *  **** ** 

 

Sb              AAGGTTCGCTCCAGTGGAGAGAACCGCCTTGACATAACGAGCATCCTGACCATCTCGGCT 843 

Rbt             AAAGTCCAATCAGTTGACAGTAACCGTCTGGACATTGAAAGCATCCTGACCATCCCTGTA 1010 

Zfcfs1R         AAA--TCAA-CAATGGAGGGCGACCGTTTAGCCATCGAGAGCATCCTGACCATCCCGTCT 940 

                **    *   *    *      ****  * * ***    *************** *     

 

Sb              GTGGAGCTTGCAGACACAGGAAACCTTTCCTGCATTGGCACAAATGAAGCAGGGGTGAAC 903 

Rbt             GTGGACCAGTCAGACACAGGCAACATTACCTGCATCGGCACCAACGAGGCTGGAGTCAAC 1070 

Zfcfs1R         GTCCAGCTGTCGCACACTGGGAACATCACCTGTACGGGTCAGAACGAAGCCGGGGCTAAC 1000 

                **  * *   *  **** ** *** *  **** *  **    ** ** ** ** *  *** 

 

Sb              AGTTCAACGACATACCTGCTGGTTGTAGATAAGCCCTACATCAGGCTGTTGCCCCAGTTG 963 

Rbt             AAATCTACCACCTCCCTGATAGTTGTAGAGGAGGCCTACATCCGTCTTTCTCCCCAGCTG 1130 

Zfcfs1R         AGCTCCACCACACAGCTGCTGGTCGTAGAGGAGCCGTACATTCGACTGTCGCCAAAGCTC 1060 

                *  ** ** **    *** * ** *****  ** * *****  * ** *  **  ** *  

 

Sb              TCCCCTAAACTGGCCCACCAGGGCCTTTCGGTGGAGGTGAACGAGGGAGAAGATCTGGAG 1023 

Rbt             TCCTCCAAGCTGGCTCACCAGGGCCTGTCCATTGACGTGAACGAGGGGGAAGACCTGAAA 1190 

Zfcfs1R         TCTTCTAAACTCACACACCGCGGTCTGTCCATCGAGGTGAGCGAAGGAGACGATGTGGAT 1120 

                **  * ** **  * ****  ** ** **  * ** **** *** ** ** **  ** *  

 

Sb              CTCAGTGTGCTCATCGAAGCGTACCCCCACATCATCGAGCACAGATGGTACACCCCAACA 1083 

Rbt             CTCAGTGTCCTGATCGAGGCGTACCCTCAGATCATAGGCCAGCACTGGGCCACCCCTACA 1250 

Zfcfs1R         CTCGGGGTTTTGATCGAAGCGTATCCTCCTCTGACTTCACACAAGTGGGAGACGCCCACA 1180 
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                *** * **  * ***** ***** ** *   * *     **    ***   ** ** *** 

 

Sb              TCTCCCAACACATCCACACAGGAGCACAAGTTCATCAGATACAACAACAGATACCATGCA 1143 

Rbt             GCCTCC------TCCACGCAGGAACAAACCTTTACACGCTATATCAACAGGTATTCCGCT 1304 

Zfcfs1R         TCCCATAATGCCTCACTTCCAGAGAACAGGTTTTTCAACCATAACGACAGGTACGAGGCG 1240 

                 *          **    *  **  * *  **        * * * **** **    **  

 

Sb              AGTCTGCTGCTGAAGAGAATGAATGCACAGGAGCAGGGGCAGTACACCTTCTTTGCCAGG 1203 

Rbt             ACCCTGCTGCTCAAGAGGATGATTGCACAGGAGCAGGGCCAGTACACCTTCTATGCCAAG 1364 

Zfcfs1R         CTGCTGTTACTCAAGAGACTGAACTTCGAGGAGATCGGCCAATACACGCTTAATGTCAAG 1300 

                   *** * ** *****  ***      *****   ** ** *****  *   ** ** * 

 

Sb              AGTGACTTGGCCAATGCGTCCATCACGTTCCAAGTGCAAATGTATCAGAGACCTGTTGCC 1263 

Rbt             AGTCCCATGGCCAACGCATCCATTACATTCCAAATCCAAATGTATCAGAGGCCGGTTGCC 1424 

Zfcfs1R         AACAGCATGAAAAGTGCCTCCATCACTTTTGATATTAAAATGTACACGAAGCCTGTTGCG 1360 

                *    * **   *  ** ***** ** **  *  *  *******   **  ** *****  

 

Sb              GTGGTGAGATGGGAAAACGTAACCACGCTCACTTGCACCTCATTTGGCTATCCCGCTCCC 1323 

Rbt             GTGGTGAGATGGGAGAACATCACCACCCTCACGTGCACGTCGTTCGGTTACCCTGCTCCC 1484 

Zfcfs1R         AGGGTGAAATGGGAGAACGTCACCACTCTGTCCTGTCGATCTTATGGATATCCAGCTCCC 1420 

                  ***** ****** *** * ***** **  * **    ** *  ** ** ** ****** 

 

Sb              AGAATCATCTGGTACCAGTGCTTTGGGATACGGCCCACGTGCAATGAAAATCACACGGGG 1383 

Rbt             ATAATCCTCTGGTACCAGTGCTCTGGAATCCGAACCACGTGCAATGAGAACGCAACAGGT 1544 

Zfcfs1R         AGCATCCTCTGGTACCAGTGCACAGGAATCAGAACCACCTGTCCCGAAAACACCACAGAT 1480 

                *  *** **************   ** **  *  **** **    ** **    ** *   

 

Sb              CTGCAGATGGCGATCCCTCTCCAGGCTCCCACGGTGGAGGTGCAGAGGGAGGAGTACGGG 1443 
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Rbt             CTCCAGATGCCTGCTCCTCTCTTGGCCCAAACAGTCGAGGTCCAGAGGGAGGAGTATGGA 1604 

Zfcfs1R         CTGCAG---------CCGATCCAGACGCAGACAGTGGAGTTCCAGAAGGAAAGTTTCGGG 1531 

                ** ***         **  **  * * *  ** ** *** * **** ***    *  **  

 

Sb              GCTGTGGAGGTGGAGAGCGTCCTCACCGTCGGGCCGTCCAGCCGGCGGATGACGGTGGAG 1503 

Rbt             GTGGTCGGGGTCCAGAGCGTCCTGACAATGGAACCGTCCAGCCATAGGTTGACCGTGGAG 1664 

Zfcfs1R         GCTGTCGGTGTGGAAAGCGTCCTGACCGTGGGCC---CCAACCGCAGGATGACCGTCGTC 1588 

                *  ** *  **  * ******** **  * *  *   *** **   ** **** ** *   

 

Sb              TGCGTGGCCTTCAACCTCGTCGGAGTCAGCAGCGACACCTTTGCCATGGAGGTTTCCGAC 1563 

Rbt             TGTGTCGCCTTCAACCTAGTCGGAGTCGGTAAAGACACCTTCGCCATGGACGTTTCCAAT 1724 

Zfcfs1R         TGTGTGGCCTTTAACCTGGTCGGTCAAGGCAGTGACACCTTCTCCATGGAGGTCTCTGAT 1648 

                ** ** ***** ***** *****     * *  ********  ******* ** **  *  

 

Sb              AAACTCTTCACTTCTACCTTGACTGGCGCAGCAGGCATTCTGGCCATCCTCCTCGTGCTT 1623 

Rbt             ATAATGTTCACCTCCACTCTATTGGGAGCAGCTGGTGTGCTGGCCCTTCTCCTCCTGCTA 1784 

Zfcfs1R         CAAATCTTCACCAGTGCCATGTGCGGCTCGACGGTGGCGATGGTGGTGCTCGGGCTGCTG 1708 

                  * * *****     *  *    **  *  * *      ***   * ***    ****  

 

Sb              CTGGTTTTCCTGCTTTATAAATATAAACAGAAACCCAGGTATGAGATCCGCTGGAAGATC 1683 

Rbt             CTCATGGTCCTGCTCTACAAGTACAAACAGAAACCGAGATATGAGATCCGGTGGAAGATC 1844 

Zfcfs1R         CTTATCTTCATGATCTACAAGTATAAACAGAAGCCCAGATATGAGATCCGCTGGAAAATC 1768 

                **  *  ** ** * ** ** ** ******** ** ** *********** ***** *** 

 

Sb              ATTGAGGCAAGAGATGGAAACAACTACACGTTCATCGACCCCACTCAGCTGCCCTACAAT 1743 

Rbt             ATCCAGGCCAGTGAAGGAAACAACTACACCTTTATCGACCCAACTCAGATGCCGTACAAT 1904 

Zfcfs1R         ATCGAAGCCACAAATGGAAACAACTACACCTTCATCGACCCCACACAGCTGCCGTACAAC 1828 

                **  * ** *   * ************** ** ******** ** *** **** *****  
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Sb              GAGAAGTGGGAGTTCCCAAGAGACAAGCTGAAGCTAGGAAAGATCCTGGGTGCGGGAGCT 1803 

Rbt             GAGAAGTGGGAGTTTCCCAGGGACAAGCTCAAGCTAGGAAAGATCCTAGGAGCCGGGGCC 1964 

Zfcfs1R         GAGAAATGGGAGTTTCCTCGAGACAAACTCAAACTCGGGAAGACTCTTGGTGCTGGTGCG 1888 

                ***** ******** **  * ***** ** ** ** ** ****  ** ** ** ** **  

 

Sb              TTCGGAAAGGTTGTAGAGGCCACAGCTTATGGTCTGGGAGAGGAGAAGGGAAATGCGATG 1863 

Rbt             TTTGGGAAGGTGGTGGAGGCCACAGCCTATGGTCTGGGGGAGGACGAC---AACGCGATG 2021 

Zfcfs1R         TTTGGGAAGGTGGTGGAGGCCACAGCTTACGGTCTGGGCAAAGAGGAC---AACATCACA 1945 

                ** ** ***** ** *********** ** ********  * **  *    **    *   

 

Sb              CGCGTTGCTGTGAAAATGTTAAAAGCCAGCGCTCATTCAGATGAGAGGGAAGCTCTGATG 1923 

Rbt             CGAGTGGCTGTAAAGATGCTCAAAGCCAGGGCCCACTCAGATGAGAGAGAGGCTTTGATG 2081 

Zfcfs1R         CGAGTGGCTGTGAAAATGCTCAAAGCCAGTGCTCATCCTGATGAACGTGAGGCTCTGATG 2005 

                ** ** ***** ** *** * ******** ** **  * *****  * ** *** ***** 

 

Sb              TCTGAACTGAAGATCCTGAGCCACCTGGGACACCACAAGAACATTGTCAATCTTCTGGGA 1983 

Rbt             TCAGAACTGAAGATTCTGAGTCACCTGGGACAGCACAAGAACATTGTCAACCTCCTGGGA 2141 

Zfcfs1R         TCTGAGCTGAAGATCCTCAGTCACCTCGGCCAGCATAAGAACATCGTCAACCTGCTGGGT 2065 

                ** ** ******** ** ** ***** ** ** ** ******** ***** ** *****  

 

Sb              GCCTGCACCTATGGAGGACCGGTGCTTGTAATCACAGAATACTGCAGCCTCGGCGACCTC 2043 

Rbt             GCCTGCACTCAGGCGGGACCTGTACTGGTGATCACTGAGTACTGTAGTCATGGCGACCTT 2201 

Zfcfs1R         GCCTGCACACATGGAGGGCCTGTGCTGGTCATCACGGAGTACTGTTGTCATGGCGACCTG 2125 

                ********  * *  ** ** ** ** ** ***** ** *****  * *  ********  

 

Sb              CTGAACTTCCTTCGCCAGAAGGCAGAGACCTTTGTGAACTTTGTTATGAACATGCCCGAC 2103 

Rbt             CTGAACTTCCTGCGACACAAGCAGGAGACCTTCCTGAACTTTGTCATGAACATACCAGCG 2261 
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Zfcfs1R         CTGAACTTCCTGCGCAGCAAAGCGGAAAACTTCCTGAACTTCGTCATGACCATACCCAAC 2185 

                *********** **    **    ** * ***  ******* ** **** *** **     

 

Sb              ATTGTGGAGAACTCTAATGACTACAAGAACATCTGCAATCAGAAACACTTCATTAGAAGT 2163 

Rbt             GTACCAGAGGAGACCAGTGACTACAAGAACCTCTGTGAAGGGAAACAGTTCATCAGAAGT 2321 

Zfcfs1R         TTTCCAGAACCCATGACGGATTATAAGAACGTCAGCACCGAGCGAATGTTTGTCAGGAGT 2245 

                 *    **       *  ** ** ****** ** *      *  *   **  * ** *** 

 

Sb              GACAGTGGGATCTCCAGTACGTCCTTGAGCAGCTACTTGGAGATGAGGCCTAGTCAGCTG 2223 

Rbt             GACAGTGGGATCTCCAGTGTGTGTTCTGACAGCTACCTGGAGATGAGGCCTGGTCCCCAG 2381 

Zfcfs1R         GACAGTGGGATTTCCAGCACATGCTCTGATCACTATCTGGACATGAGACCAGTCACATCC 2305 

                *********** *****    *  *       ***  **** ***** **           

 

Sb              CCAAATATAGAATCCTCTCAAGACCCTGTCTGCGAGGAGACTG---CTGACT---GGCCG 2277 

Rbt             CC---TGTCAACTCCTCTCTGGACTCTGTGTGTGAGGATGGTGGGCCGGACTCGTGGCCG 2438 

Zfcfs1R         AGACCAACAAACTCAGCTCTGGATTCTTCGTCGGAGTGTCAGG---AGGACTCGTGGCCG 2362 

                          * **  ***  **  **   *  ***      *     ****   ***** 

 

Sb              CTGGACATCGATGACTTGCTGCGGTTTTCCTTTCAAGTGGCTCAGGGCCTGGACTTTCTG 2337 

Rbt             TTGGACATGGAGGACCTGCTGAGATTCTCCTACCAGGTGGCTCAGGGCCTGGACTTCCTT 2498 

Zfcfs1R         CTGGACATGGATGATTTACTCAGATTCTCCTCTCAGGTGGCGCAGGGACTGGACTTCCTC 2422 

                 ******* ** **  * **  * ** ****  ** ***** ***** ******** **  

 

Sb              GCTGCTAAAAATTGTATTCACAGAGACATCGCTGCCAGGAATGTCCTGTTGACTGATCAC 2397 

Rbt             GCAGCCAAGAACTGTATTCACCGGGACGTGGCAGCTCGGAACGTCCTCCTGACAGACCTC 2558 

Zfcfs1R         GCTGCTAAAAATTGCATCCACCGAGACGTGGCGGCCAGAAACGTTCTGCTCACCAACAGC 2482 

                ** ** ** ** ** ** *** * *** * ** **  * ** ** **  * **  *   * 
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Sb              AGAGTGGCCAAGATTTGTGACTTTGGTCTGGCACGTGACGTCATGAATGACTCCAACTAC 2457 

Rbt             CATGTGGCTAAGATCTGTGACTTCGGCCTGGCACGTGACATCATGAATGACTCCAACTAT 2618 

Zfcfs1R         CGAGTGGCCAAAATCTGTGACTTCGGACTGGCTCGAGACATCATGAACGACTCCAACTAC 2542 

                   ***** ** ** ******** ** ***** ** *** ******* ***********  

 

Sb              GTGGTGAAGGGCAACGCTCGTCTGCCGGTGAAGTGGATGGCTCCAGAGAGCATCTTTGAC 2517 

Rbt             GTGGTGAAGGGCAATGCGCGTCTGCCAGTGAAGTGGATGGCTCCAGAGAGTATCTTTGAC 2678 

Zfcfs1R         GTAGTCAAAGGAAACGCTCGTCTCCCAGTGAAGTGGATGGCTCCAGAGAGCATTTTCGAG 2602 

                ** ** ** ** ** ** ***** ** *********************** ** ** **  

 

Sb              TGTGTCTACACCGTCCAGAGTGACGTCTGGTCCTATGGCATCCTCCTGTGGGAGATCTTC 2577 

Rbt             TGTCTCTACACTGTCCAGAGTGACGTCTGGTCCTATGGGATCCTGCTATGGGAGATCTTC 2738 

Zfcfs1R         TGTGTTTATACGGTTCAGAGTGACGTCTGGTCTTACGGGATCATGCTGTGGGAGATTTTC 2662 

                *** * ** ** ** ***************** ** ** *** * ** ******** *** 

 

Sb              TCTTTAGGCAAGAGCCCGTACCCCAGCATGGCTGTGGACTCCAGGTTCTACAAGATGGTG 2637 

Rbt             TCTCTAGGAAAGAGTCCCTACCCCAGTATCCTGGTGGATACTAAATTCTATAACATGATC 2798 

Zfcfs1R         TCACTGGGAAAGAGTCCGTATCCAAACATCCTGGTGGACTCAAAGTTTTACAAAATGATC 2722 

                **  * ** ***** ** ** ** *  **    *****  * *  ** ** ** *** *  

 

Sb              AAGCGTGGCTACCAGATGTCCCAACCAGACTTTGCTCCCCCCGAGATCTACACGATCATG 2697 

Rbt             AAGTGTGGTTATCAGATGTCTCGGCCAGACTTTGCACCTCCAGAGATGTATACAATCATG 2858 

Zfcfs1R         AAGTGTGGCTATCAGATGTCCAGACCTGACTTCGCTCCTCCAGAGATGTACACGATCATG 2782 

                *** **** ** ********    ** ***** ** ** ** ***** ** ** ****** 

 

Sb              AAGATGTGCTGGAATCTGGAGCCGACAGAGCGGCCGACGTTCAGCAAGATCACTCAGATG 2757 

Rbt             AAAATGTGCTGGAATCTGGAGCCAACAGAGCGACCGACCTTCAGCAAGATCAGCCAGCTG 2918 

Zfcfs1R         AAAATGTGCTGGAACCTGGACGCCGCTGAGAGACCCACATTCAGCAAGATCAGCCAGATG 2842 
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                ** *********** *****  *  * *** * ** ** *************  *** ** 

 

Sb              ATAGAAAGACTGCTCGGGGACCAACCTGAGCA---GGAACAG----CTAATTT------- 2803 

Rbt             ATTGAGAGATTACTGGGTGAGGAGCCAGAACGTCCAGATCAGTGTTCTACTCTCCCGTCC 2978 

Zfcfs1R         ATCCAGAGGATGCTGGGAGAAACATCCGAGCAACAGGA---------CACTCA------- 2886 

                **  * **  * ** ** **     * ** *     **          * *          

 

Sb              -------ACCAGAATGTGGAG-C---AGCAGGTTACGGAGGGTGA--AGTGT-------- 2842 

Rbt             CAGCAGCACCAGAACATCCAG-CTGCAGCAGGACATGATGGTCGA--GGAGTTGGAGCTG 3035 

Zfcfs1R         --GGAGTACAAGAACATCCCGACTGAAGCTGAAGCCGAGCAGCAGCTGGAGTCAT----- 2939 

                       ** ****  *   * *   *** *     *           * **         

 

Sb              ----------GTGACGAGCCCAAGTGCTGCGACGGCCCCTGTGACCAGTCTTGTGACCAC 2892 

Rbt             TGTGATGATAATGATGAGCCTAAGTGTTGTGACGGTTCCTGTGACCAGTCATGTGAGCAC 3095 

Zfcfs1R         ----------GTGACCCCGTGAAGCATGAAGACGAGTCATTCGAGACATCATGTGACCAG 2989 

                           ***       ***      ****   * *  **    ** ***** **  

 

Sb              GAGGAGGAGGAGCAGCCTCTGATGAAGACCAACAACTCCAGTTTCTGA------------ 2940 

Rbt             GAAGAGGAGGAGCAACCACTGGTGAAGACCAATAACTATCAGTTCTGCTGAAAGCATAAT 3155 

Zfcfs1R         GAAGAAGAGGACCAGCCGCTCATGAAGCCCAACAACTACCAGTTCTGTTGAGCGTCTAGA 3049 

                ** ** ***** ** ** **  ***** **** ****     *****              

 

Sb              ------------------------------------------------------------ 

Rbt             TCTATTTCTATGTCTGACAGCTCCGACATCATCAAACTGTCCACATTCTGATCTGGAATT 3215 

Zfcfs1R         ACTAATCAACCAAGTAACTAACAGCACAACAGCTGCAGACACACACGTAAAGCCAGCATT 3109 

                                                                             

 

Sb              ------------------------------------------------------------ 
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Rbt             CGTCCACTTTCTATCTTCTCCTGCTCACTGTAGAATCATTCTGGGAGCACAGAGCCAAAG 3275 

Zfcfs1R         TGTTCTGTCTGTCCTCGTATACACTCACTGGGTGATTTCAC-----ATGCTGGTTCTGGG 3164 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             AAATGGAATTGTGATATTTTGTTAAT-GCATTGAAAATCAGTTTTTAGGCCTGTTTTACA 3334 

Zfcfs1R         TGAT-------TTATATCTCGTAAACAGTCCTGAAGAAGTCTTTTCAACTCTAGTATTCC 3217 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             CTGTATACAGACAGGAGGCTGCGAGAGTCATGTCATGTGACTTGTTATATCCCATGACAA 3394 

Zfcfs1R         TTGTTTTCCAGTACAAATATCTAAATGT--TCTCAAATCAAGAGATATTTACTTTAATGA 3275 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GTTTTGGAAAAACAAAGGCGGGAATGAATCTAATCACAGATAGTGCCTTAGATGTGTAAT 3454 

Zfcfs1R         GTC------AAAGCAATTCATGAAATCTTATTTTAATAGGAAGTATCTTAACATTTTACA 3329 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TAGTATATATAATGCCTTATTTTACATGAATTACTCTTCTTTGTTGTTTTGGAGATT--- 3511 

Zfcfs1R         CAAGAAGTCTCGTCTTTTTTATTTCATGTATTTTCTGACACCATCGGCTTGAATTTTCCA 3389 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             -ATCTTTTAAATCTATGCACCAAAGATGCATCTACCCTGAC-AGAACAGATTGTGTTGCT 3569 

Zfcfs1R         GATTAATTAAGGTAACACTTTCATTAAGTACCAATTTCCACTATTAACTAATGCCTTATT 3449 
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Sb              ------------------------------------------------------------ 

Rbt             CACAGCTTTTTGTAGGCTATTTGTACTTTTAATGTAGATTATATTCTTCTGTAGCCACTA 3629 

Zfcfs1R         GGCAGCTTATTAATGACATATTGGCTGTTTATTAGTACTTATAAAGTATGATCCCAGTCT 3509 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TGGTGAGGATTTATCTATTATTTGAGGGAAATGGGAACGAATGCTGGTGGTGTTTGAATT 3689 

Zfcfs1R         AAACCCAACTTTAATAACTATTAATTGGCAGCAAATAAGGAGTCTATTGAGCTAAGTCTG 3569 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GACATTTGTCGGCGGGTTCACTTTCACATTGTAGCTACCTTTTCTCAACATGCTATGCAG 3749 

Zfcfs1R         AATAGGAAAAAT------------------------------------------------ 3581 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             CAGCAAGGCAGTAGCAAACAATGCAATTGTATAATTTCTGCTACAGTATATTTGAGTTTT 3809 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TTTATTCGTATGATGGCTTAGTTTGATGCTGGACGTAATAACATGAGATGCAATTTAACT 3869 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GGGGACCACATTCCATGTATTGTCCCTCAGCCTAAACATGCTGCATGAAATGCATTGAAA 3929 
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Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TGGATTTTGAGACGCTATTTACATCAATGAAAGCATGTGTATTGTTTAAAAAAAAATCTC 3989 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TAGCCATAGTTGTTTTGTATGACAGTCACAATATGACAGAATCACGCAGCTGTCTAAAAG 4049 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GCACAAGATTTTAGTTGTGCGTTAACCAATATTACTTCAGACTCGGCCAGTCGACATATA 4109 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GCCTATATGCTATATGCTACAGTAGGGAATGAAAGGCAGATAAAACTGTACAAGGAAATC 4169 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             TGTGGATCACAGTATTGACAACACAAAGGCTTTGTTTTTGATTGATTCAATCGATTCTTT 4229 

Zfcfs1R         ------------------------------------------------------------ 
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Sb              ------------------------------------------------------------ 

Rbt             ATTTCTGTAACACTCAATATTTTGATGTTCATTCATTCGTCACTTCATCATTTTTGGGGG 4289 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             GTCAATTATGCTGTAAAAATGTTGATTCATTGTATTGAATGTAGAATTCAGCTAATACTG 4349 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             CCTACTGTAATTATGATGATTGCAGATACAAGCTCTACGTCAAAGTGAAAAGCTATATGT 4409 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             CAGCTGTAAATCAGAATTGTTGTAAGACATTTACTCGAATTGTCAGCAGCTATTCTGAAC 4469 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              ------------------------------------------------------------ 

Rbt             ACTGAGTTGAAAGGAGAGAAAACTATGAGCTTTTTATTAAAGGGAAATTTTAAAAAATAA 4529 

Zfcfs1R         ------------------------------------------------------------ 

                                                                             

 

Sb              --------------- 

Rbt             AAGAAAAAAAAAAAA 4544 

Zfcfs1R         --------------- 
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9.1.3. IgM 

Siniperca       GCCTTGACGGACTTCATTCAGTACCCTCCAGTACAGAAAGGCAACGTTTATACGGGAATC 540 

IgMFW           -----------TTTCATTCAGTACCCACCAGTACAGAAAGGCAACGTTTATACGGGAGTC 49 

                            ************** ****************************** ** 

 

Siniperca       AGTCAAATCCAAGTGAGGAGACAGGACTGGGACGCCAGGGAGTCTTTCCAATGTGCCGTG 600 

IgMFW           AGTCAAATCCGAGTGAGGAGACAGGACTGGGACGCAAGGGAGACTTTCCAATGTGCCGTG 109 

                ********** ************************ ****** ***************** 

 

Siniperca       ACACATCCAGCAGGAAATGAACAGGCTGATTTCATAAAACCAAAGGTGACTTATGTGCTG 660 

IgMFW           ACACATCCAGCGGGAAATGCACAGGGTGATATCATCCCGACAAAGGTGATTTAT--ACCC 167 

                *********** ******* ***** **** ****     ********* ****   *   

 

Siniperca       CCAACTGAACTTAAAGTGTTGGCCTCCTCTGGAGAGGAACAAGAGGCTTCCTTCTCCTGC 720 

IgMFW           CCTACT----CTATAGTGT-GGCCTCCTCTGATGAGGAA-ACCGAGCTTCCTTCTCCTGC 221 

                ** ***     ** ***** ***********  ****** *    *************** 

 

Siniperca       TTTGCCAGAGATTTTTCACCAAAAGATTATGAGATCAAATGGCTGAAAAATGAAGCTGAA 780 

IgMFW           TTTGACATA--TTTTTCCCCAAGAG--TATGAG--TCAATGGATGAAGAGGAA---TGAA 272 

                **** ** *  ****** **** **  ******    ***** **** *   *   **** 

 

Siniperca       ATCCCCAACAAAATATATGAGATCAAAATGCCTCTTGAGCAAAGAAAGGACAAGAAT-GG 839 

IgMFW           ATCCCCAACAAATAACA----ATCCC--CACCTTCTGAG---AAAAAGGACGAAAATTGG 323 

                ************  * *    ***      ***  ****   * ******* * *** ** 

 

Siniperca       AACTACACTGTACAGTGCAGCAAGTTTCCTCACGGTACCGACCAGTGAGTGGACTGTTG- 898 

IgMFW           AACTAAAGC---CAGTG------ATTTCGTTGAGTTAAGGGGAAG-GTGAAAACGGATAC 373 

                ***** *     *****       **** *   * **  *   ** * *   ** * *   
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Siniperca       ACACTAAGTTTACATGTGAGTTTGAGGGGAAAGGTGAAAAAGGTGCAACATTCATGAATT 958 

IgMFW           ATTCTGAATTCTC-TGTGACCTCAACCTTCTGATTGATGA-------------------- 412 

                *  ** * **  * *****  *  *         ***  *                     

 

Siniperca       CATCAGTGACCTACAAACATACAACTCCTGGCAACTGTGAAGTAGATGTGGACATAAAGA 1018 

 

 

Siniperca       ACACATCCAGCAGGAAATGAACAGGCTGATTTCATAAAACCAAAGGTGACTTATGTGCTG 660 

IgMRV           -----------------------------------------------GATTTATAACTTG 13 

                                                               ** ****    ** 

 

Siniperca       CCAACTGAACTTAAAGTGTTGGCCTCCTCTGGAGAGGAACAAGAGGCTTCCTTCTCCTGC 720 

IgMRV           CCTACT---CTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGC 70 

                ** ***   **** *****************  ******   ****************** 

 

Siniperca       TTTGCCAGAGATTTTTCACCAAAAGATTATGAGATCAAATGGCTGAAAAATGAAGCTGAA 780 

IgMRV           TTTGCCAAAGATTTTTCACCAAACGAGTATGAGTTCAAATG-CTGAAGAATGAAGTGGAA 129 

                ******* *************** ** ****** ******* ***** *******  *** 

 

Siniperca       ATCCCCAACAAAATATATGAGATCAAAATGCCTCTTGAGCAAAGAAAGGACAAGAATGGA 840 

IgMRV           ATCCCCAACAAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGACGAGAATGGA 189 

                *************** * **********  ***  **** *********** ******** 

 

Siniperca       ACTACACTGTACAGTGCAGCAAGTTTCCTCACGGTACCGACCAGTGAGTGGACTGTTGAC 900 

IgMRV           ACTAAACTGTACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAAC 249 

                **** ********************* **** ******* **************    ** 
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Siniperca       ACTAAGTTTACATGTGAGTTTGAGGGGAAAGGTGAAAAAGGTGCAACATTCATGAATTCA 960 

IgMRV           ACTAAGTTTACATGTGAGTTTAAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCA 309 

                ********************* ******* ******** ****  ****** ******** 

 

Siniperca       TCAGTGACCTACAAACATACAACTCCTGGCAAC---------TGTGAAGTAGATGTGGAC 1011 

IgMRV           TCTGTGACCTACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCAGATGTG-AC 368 

                ** ********** ** * **  *  **   *            ***** ******* ** 

 

Siniperca       ATAAAGATCACTGGCCCCACGTTGGCGGACATGTTTTTAAACAGAAAAGGAACTATAGTA 1071 

IgMRV           ATAAAGATCACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTA 428 

                *********** ********  *** ************* *** ********  ****** 

 

Siniperca       TGTCAAGTCAAGGTAAACGAGCCATATGTCGGAAGGATTTTGTGGGAGGACGAGAAAGGA 1131 

IgMRV           TGTCGAGTCCAGGTAAAC-AACCATCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGA 487 

                **** **** ******** * **** *****  * ***** ********** ** * *** 

 

Siniperca       AACGAAATGGCTGGTGCCTCGAAGACCTTCAATGA------TAAAGGCACATTTAGCCTT 1185 

IgMRV           AACGAAATGGCTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTCAGCCTT 547 

                ************* ****** * ****  *  * *      *******  *** ****** 

 

Siniperca       CCACTTGAAATCACGTATGACGAATGGAGCAAGGGGATAAAGCGCTACTGCGTTGTTGAA 1245 

IgMRV           CCACTTGAAATCAC-TATGACGAATGGAGCAAGGGGATAAAGC-CTACTGCATTGTTGAA 605 

                ************** **************************** ******* ******** 

 

Siniperca       CATGAAAATTTGATTGAACCACTTAAGGAACTCTATGAAAGGAGTTTCGGAGGACAGACT 1305 

IgMRV           CATGGAGACTGGCTTGAACCACTTAAGAAACAATATGAAAGGAAGATCGGAGAACAGACT 665 

                **** * * * * ************** ***  **********   ****** ******* 
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Siniperca       CAGCGTCCTGCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAACGGTGACC 1365 

IgMRV           CAGCGTCCTTCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGTGACC 725 

                ********* ****************************************** ******* 

 

Siniperca       C-TGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAGGTTTTGGTGACTTGGCTTGTTGA 1424 

IgMRV           CCTGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGA 785 

                * ********************************** ***** *** ************* 

 

Siniperca       TGACGAGGAAGCAGACTCAAAATACAAGTTCTATACCACAAACCCCGTAGAGAGCAATGG 1484 

IgMRV           TGACGAGGAAGCAGACTCAAAATACGAGT-CCATACCACAAACCGAGAAT---------- 834 

                ************************* *** * ************  * *            

 

IgMFW           -----------TTTCATTCAGTACCCACCAGTACAGAAAGGCAACGTTTATACGGGAGTC 49 

                            ************** ****************************** ** 

 

IgMFW           AGTCAAATCCGAGTGAGGAGACAGGACTGGGACGCAAGGGAGACTTTCCAATGTGCCGTG 109 

                ********** ************************ ****** ***************** 

 

IgMFW           ACACATCCAGCGGGAAATGCACAGGGTGATATCATCCCGACAAAGGTGATTTAT--ACCC 167 

                *********** ******* ***** **** ****     ********* ****   *   

 

IgMRV           CCTACT---CTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGC 225 

                ** ***   **** *****************  ******   ****************** 

 

IgMRV           TTTGCCAAAGATTTTTCACCAAACGAGTATGAGTTCAAATG-CTGAAGAATGAAGTGGAA 284 

                ******* *************** ** ****** ******* ***** *******  *** 

 

IgMRV           ATCCCCAACAAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGACGAGAATGGA 344 
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                *************** * **********  ***  **** *********** ******** 

 

IgMRV           ACTAAACTGTACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAAC 404 

                **** ********************* **** ******* **************    ** 

 

IgMRV           ACTAAGTTTACATGTGAGTTTAAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCA 464 

                ********************* ******* ******** ****  ****** ******** 

 

IgMRV           TCTGTGACCTACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCAGATGTG-AC 523 

                ** ********** ** * **  *  **   *            ***** ******* ** 

 

IgMRV           ATAAAGATCACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTA 583 

                *********** ********  *** ************* *** ********  ****** 

 

IgMRV           TGTCGAGTCCAGGTAAAC-AACCATCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGA 642 

                **** **** ******** * **** *****  * ***** ********** ** * *** 

 

IgMRV           AACGAAATGGCTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTCAGCCTT 702 

                ************* ****** * ****  *  * *      *******  *** ****** 

 

IgMRV           CCACTTGAAATCAC-TATGACGAATGGAGCAAGGGGATAAAGC-CTACTGCATTGTTGAA 760 

                ************** **************************** ******* ******** 

 

IgMRV           CATGGAGACTGGCTTGAACCACTTAAGAAACAATATGAAAGGAAGATCGGAGAACAGACT 820 

                **** * * * * ************** ***  **********   ****** ******* 

 

IgMRV           CAGCGTCCTTCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGTGACC 880 

                ********* ****************************************** ******* 
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IgMRV           CCTGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGA 960 

                * ********************************** ***** *** ************* 

 

IgMRV           TGACGAGGAAGCAGACTCAAAATACGAGT-CCATACCACAAACCGAGAAT---------- 1100 

                ************************* *** * ************  * *            

9.1.4. IgM sequenced 

Siniperca       GCCTTGACGGACTTCATTCAGTACCCTCCAGTACAGAAAGGCAACGTTTATACGGGAATC 540 

IgMFW           -----------TTTCATTCAGTACCCACCAGTACAGAAAGGCAACGTTTATACGGGAGTC 49 

                            ************** ****************************** ** 

 

Siniperca       AGTCAAATCCAAGTGAGGAGACAGGACTGGGACGCCAGGGAGTCTTTCCAATGTGCCGTG 600 

IgMFW           AGTCAAATCCGAGTGAGGAGACAGGACTGGGACGCAAGGGAGACTTTCCAATGTGCCGTG 109 

                ********** ************************ ****** ***************** 

 

Siniperca       ACACATCCAGCAGGAAATGAACAGGCTGATTTCATAAAACCAAAGGTGACTTATGTGCTG 660 

IgMFW           ACACATCCAGCGGGAAATGCACAGGGTGATATCATCCCGACAAAGGTGATTTAT--ACCC 167 

                *********** ******* ***** **** ****     ********* ****   *   

 

Siniperca       CCAACTGAACTTAAAGTGTTGGCCTCCTCTGGAGAGGAACAAGAGGCTTCCTTCTCCTGC 720 

IgMFW           CCTACT----CTATAGTGT-GGCCTCCTCTGATGAGGAA-ACCGAGCTTCCTTCTCCTGC 221 

                ** ***     ** ***** ***********  ****** *    *************** 

 

Siniperca       TTTGCCAGAGATTTTTCACCAAAAGATTATGAGATCAAATGGCTGAAAAATGAAGCTGAA 780 

IgMFW           TTTGACATA--TTTTTCCCCAAGAG--TATGAG--TCAATGGATGAAGAGGAA---TGAA 272 

                **** ** *  ****** **** **  ******    ***** **** *   *   **** 

 

Siniperca       ATCCCCAACAAAATATATGAGATCAAAATGCCTCTTGAGCAAAGAAAGGACAAGAAT-GG 839 
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IgMFW           ATCCCCAACAAATAACA----ATCCC--CACCTTCTGAG---AAAAAGGACGAAAATTGG 323 

                ************  * *    ***      ***  ****   * ******* * *** ** 

 

Siniperca       AACTACACTGTACAGTGCAGCAAGTTTCCTCACGGTACCGACCAGTGAGTGGACTGTTG- 898 

IgMFW           AACTAAAGC---CAGTG------ATTTCGTTGAGTTAAGGGGAAG-GTGAAAACGGATAC 373 

                ***** *     *****       **** *   * **  *   ** * *   ** * *   

 

Siniperca       ACACTAAGTTTACATGTGAGTTTGAGGGGAAAGGTGAAAAAGGTGCAACATTCATGAATT 958 

IgMFW           ATTCTGAATTCTC-TGTGACCTCAACCTTCTGATTGATGA-------------------- 412 

                *  ** * **  * *****  *  *         ***  *                     

 

Siniperca       CATCAGTGACCTACAAACATACAACTCCTGGCAACTGTGAAGTAGATGTGGACATAAAGA 1018 

 

Siniperca       ACACATCCAGCAGGAAATGAACAGGCTGATTTCATAAAACCAAAGGTGACTTATGTGCTG 660 

IgMRV           -----------------------------------------------GATTTATAACTTG 13 

                                                               ** ****    ** 

 

Siniperca       CCAACTGAACTTAAAGTGTTGGCCTCCTCTGGAGAGGAACAAGAGGCTTCCTTCTCCTGC 720 

IgMRV           CCTACT---CTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGC 70 

                ** ***   **** *****************  ******   ****************** 

 

Siniperca       TTTGCCAGAGATTTTTCACCAAAAGATTATGAGATCAAATGGCTGAAAAATGAAGCTGAA 780 

IgMRV           TTTGCCAAAGATTTTTCACCAAACGAGTATGAGTTCAAATG-CTGAAGAATGAAGTGGAA 129 

                ******* *************** ** ****** ******* ***** *******  *** 

 

Siniperca       ATCCCCAACAAAATATATGAGATCAAAATGCCTCTTGAGCAAAGAAAGGACAAGAATGGA 840 

IgMRV           ATCCCCAACAAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGACGAGAATGGA 189 

                *************** * **********  ***  **** *********** ******** 
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Siniperca       ACTACACTGTACAGTGCAGCAAGTTTCCTCACGGTACCGACCAGTGAGTGGACTGTTGAC 900 

IgMRV           ACTAAACTGTACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAAC 249 

                **** ********************* **** ******* **************    ** 

 

Siniperca       ACTAAGTTTACATGTGAGTTTGAGGGGAAAGGTGAAAAAGGTGCAACATTCATGAATTCA 960 

IgMRV           ACTAAGTTTACATGTGAGTTTAAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCA 309 

                ********************* ******* ******** ****  ****** ******** 

 

Siniperca       TCAGTGACCTACAAACATACAACTCCTGGCAAC---------TGTGAAGTAGATGTGGAC 1011 

IgMRV           TCTGTGACCTACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCAGATGTG-AC 368 

                ** ********** ** * **  *  **   *            ***** ******* ** 

 

Siniperca       ATAAAGATCACTGGCCCCACGTTGGCGGACATGTTTTTAAACAGAAAAGGAACTATAGTA 1071 

IgMRV           ATAAAGATCACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTA 428 

                *********** ********  *** ************* *** ********  ****** 

 

Siniperca       TGTCAAGTCAAGGTAAACGAGCCATATGTCGGAAGGATTTTGTGGGAGGACGAGAAAGGA 1131 

IgMRV           TGTCGAGTCCAGGTAAAC-AACCATCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGA 487 

                **** **** ******** * **** *****  * ***** ********** ** * *** 

 

Siniperca       AACGAAATGGCTGGTGCCTCGAAGACCTTCAATGA------TAAAGGCACATTTAGCCTT 1185 

IgMRV           AACGAAATGGCTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTCAGCCTT 547 

                ************* ****** * ****  *  * *      *******  *** ****** 

 

Siniperca       CCACTTGAAATCACGTATGACGAATGGAGCAAGGGGATAAAGCGCTACTGCGTTGTTGAA 1245 

IgMRV           CCACTTGAAATCAC-TATGACGAATGGAGCAAGGGGATAAAGC-CTACTGCATTGTTGAA 605 

                ************** **************************** ******* ******** 
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Siniperca       CATGAAAATTTGATTGAACCACTTAAGGAACTCTATGAAAGGAGTTTCGGAGGACAGACT 1305 

IgMRV           CATGGAGACTGGCTTGAACCACTTAAGAAACAATATGAAAGGAAGATCGGAGAACAGACT 665 

                **** * * * * ************** ***  **********   ****** ******* 

 

Siniperca       CAGCGTCCTGCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAACGGTGACC 1365 

IgMRV           CAGCGTCCTTCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGTGACC 725 

                ********* ****************************************** ******* 

 

Siniperca       C-TGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAGGTTTTGGTGACTTGGCTTGTTGA 1424 

IgMRV           CCTGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGA 785 

                * ********************************** ***** *** ************* 

 

Siniperca       TGACGAGGAAGCAGACTCAAAATACAAGTTCTATACCACAAACCCCGTAGAGAGCAATGG 1484 

IgMRV           TGACGAGGAAGCAGACTCAAAATACGAGT-CCATACCACAAACCGAGAAT---------- 834 

                ************************* *** * ************  * *            

IgMFW           -----------TTTCATTCAGTACCCACCAGTACAGAAAGGCAACGTTTATACGGGAGTC 49 

                            ************** ****************************** ** 

 

IgMFW           AGTCAAATCCGAGTGAGGAGACAGGACTGGGACGCAAGGGAGACTTTCCAATGTGCCGTG 109 

                ********** ************************ ****** ***************** 

 

IgMFW           ACACATCCAGCGGGAAATGCACAGGGTGATATCATCCCGACAAAGGTGATTTAT--ACCC 167 

                *********** ******* ***** **** ****     ********* ****   *   

 

IgMRV           CCTACT---CTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGC 225 

                ** ***   **** *****************  ******   ****************** 

IgMRV           TTTGCCAAAGATTTTTCACCAAACGAGTATGAGTTCAAATG-CTGAAGAATGAAGTGGAA 284 
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                ******* *************** ** ****** ******* ***** *******  *** 

 

IgMRV           ATCCCCAACAAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGACGAGAATGGA 344 

                *************** * **********  ***  **** *********** ******** 

 

IgMRV           ACTAAACTGTACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAAC 404 

                **** ********************* **** ******* **************    ** 

 

IgMRV           ACTAAGTTTACATGTGAGTTTAAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCA 464 

                ********************* ******* ******** ****  ****** ******** 

 

IgMRV           TCTGTGACCTACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCAGATGTG-AC 523 

                ** ********** ** * **  *  **   *            ***** ******* ** 

 

IgMRV           ATAAAGATCACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTA 583 

                *********** ********  *** ************* *** ********  ****** 

 

IgMRV           TGTCGAGTCCAGGTAAAC-AACCATCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGA 642 

                **** **** ******** * **** *****  * ***** ********** ** * *** 

 

IgMRV           AACGAAATGGCTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTCAGCCTT 702 

                ************* ****** * ****  *  * *      *******  *** ****** 

 

IgMRV           CCACTTGAAATCAC-TATGACGAATGGAGCAAGGGGATAAAGC-CTACTGCATTGTTGAA 760 

                ************** **************************** ******* ******** 

 

IgMRV           CATGGAGACTGGCTTGAACCACTTAAGAAACAATATGAAAGGAAGATCGGAGAACAGACT 820 

                **** * * * * ************** ***  **********   ****** ******* 
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IgMRV           CAGCGTCCTTCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGTGACC 880 

                ********* ****************************************** ******* 

 

IgMRV           CCTGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGA 960 

                * ********************************** ***** *** ************* 

 

IgMRV           TGACGAGGAAGCAGACTCAAAATACGAGT-CCATACCACAAACCGAGAAT---------- 1100 

                ************************* *** * ************  * *            

 

9.1.5. IgZ – original alignment 

grouperIgZ        TACTATTCATGGAGTTTGGAGTGAGATCAAAC--TGGACCAGTCTTCCTCTGAGGTGAAA 178 

mandarinfish      TACTATTCATGGAGTTTGGAGTGAAATCAAAC--TGGACCAGTCTCCCTCTGAGGTGAAA 169 

grasscarp         TGCT-CTCACAGAATTCTGT-TGGTGTCAGACACTGACTGAGTCTGAGTCAGCGGTCATT 72 

                  * **  ***  ** **  *  **   *** **  **    *****   ** * *** *   

 

grouperIgZ        AGACCTGGAGAGACAGTGAAGATGTCATGTATCATTTCTGGTTTTGACATGACAGACTAC 238 

mandarinfish      AGACCTGGAGAGACGGTGAAGATGTCATGTATCATATCTGGTTATAGCATGACAAGCTAC 229 

grasscarp         AAACCTGGAGGATCTCACAGACTTACCTGTACAGCCTCTGGATTTAGCAG---TGACCAA 129 

                  * ********   *    *   *  * ****     ***** * *  **       * *  

 

grouperIgZ        AATATTCACTGGATACGACAGAGGCCAGGGAATGCTCTGGAGTGGATTGGGTGGATGAAC 298 

mandarinfish      AGTATTCACTGGATACGACAGAGGCCAGGGAGAGCTCTGGAGTGGATTGGGTGGATGAAC 289 

grasscarp         AACTTGGCTTGGATCAGACAGGCTGCAGGAGGAGGTCTGGAGTGGCTGGCATACATCCAA 189 

                  *   *    *****  *****    ****    * ********** * *  *  **  *  

 

grouperIgZ        ACAGGCACAAACTCTGCTAGCTATGGCAGTTCCTTTCAAAGTCGTTTCATCATGACTGAA 358 

mandarinfish      ACAGGCTCAAACTCTGCTAGCTATGCCAGCTCCTTTCAAAGCCGTTTCATCATGACTGAA 349 
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grasscarp         TATGATGGTGGTTATATATCCTACTCTCAGTCTGTTCAGGGACGGTTCACCATCTCCAGA 249 

                     *        * *     ***       **  ****  * ** **** ***  *   * 

 

grouperIgZ        GATG-TGCCCAGCAGCACTCAGTACCTCGAGGTCAAGAGCCTGACAGCAGAAGATTCTGC 417 

mandarinfish      GATG-TGTCCAGCAGCACTCAGTACCTCGAGGTCAAGAGCCTGACAGCAGAAGATTCTGC 408 

grasscarp         GACAACAGCAAGAAACAGAT-GTATCTGCAGATGAATAATATGAAGAATGAAGACACTGC 308 

                  **      * ** * **    *** **  ** * ** *   ***     *****  **** 

 

grouperIgZ        TGTTTACTTCTGTGCTCGGT---------CGGCTGGGCCAGCTTTCGACTACTGGGGCCG 468 

mandarinfish      TGTTTACTTCTGTGCTCGGTATATGGGCTCCGACGGTTTATATTTCGACTACTGGGGTCG 468 

grasscarp         TGTATATTATTGTGCAAGACTGG------GGGCTGGGGCGTACTTCGACTACTGGGGGAA 362 

                  *** ** *  *****  *             *  **       **************    

 

grouperIgZ        GGGGACTGCGGTCACAGTATATTCAC---AAACAACTGCGGCCCCGGCTCTGTTTCCTTT 525 

mandarinfish      TGGGACTGAAGTCACAGTATCTTCAG---TAACAGTTGCATCACCGACTCTGTTCCCTTT 525 

grasscarp         AGGAACCAAAGTCACCGTTTCCTCAGCTGAACCATCTCCGCCGAAGTCAATCTTCGGCCT 422 

                   ** **    ***** ** *  ***     * **  * *  *   * *  * **     * 

 

grouperIgZ        GGTTCAGTGTAAGTCTGGGACTGCAGGTACAGTCACTGTTGGCTGTATTGCACAAGACTT 585 

mandarinfish      GGTTCAGTGCAACTCTGGGCCTGCAGATAAAATCACTGTTGGTTGTCTTGCACGCGACTT 585 

grasscarp         GTCTCAGTGTTCTTCTGATTCTG-AGTTCC--TCACCATCGGCTGCGTGTCAAGAGGTTT 479 

                  *  ******    ****   *** ** *    ****  * ** **  *  **   *  ** 

 

grouperIgZ        CTTCCCAGAGAG---TCTCACTTTCCAGTGGACCGATGCCAGCGGGACCACGCAGACT-- 640 

mandarinfish      CTACCCAAAGAG---TCTTACTTTCCAGTGGACCAATTCCAGTGGGACCGCCCTGACT-- 640 

grasscarp         CTCCCCCGCGGACTTTCTTACTTTCAAATGGACGGATCCCGCTAAGAAAGAGGTGACTGA 539 

                  ** ***   *     *** ****** * *****  ** **     **       ****   
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grouperIgZ        -TTTAAACAATATCCTACGGTTATGAAAGACAACAAATATACAGGAGTCAGTGTGCTAGA 699 

mandarinfish      -TCTGAGAATTATCCTCCAGCTGAGAAAAACAACAAATATACAGGAGTCAGTTTGGTCCA 699 

grasscarp         TTTCGTGCAGTATCCAGCGTTCGGGAGTGAAGGAGACTATACCAAAATCAGCCATCTGCG 599 

                   *      * *****  *      **   *     * *****   * ****     *    

 

grouperIgZ        TGTGTCAAAGTCTGCCTGGGATTCAAGGAGGAGTTTTAGTTGCTCAGTGACTCACCCTGG 759 

mandarinfish      AGTATCCAAATCTGACTGGGATTCAAGGAAGTCTTTCAAATGTTCAGTACATCATAACGG 759 

grasscarp         TGTGAAAAAAAGCGACTGGAATCCTCAAACCTCTTACACATGTGAAGCTTCAAATTCGAA 659 

                   **    **    * **** ** *    *    **  *  **   **      *       

 

grouperIgZ        AGGCTCCGAAAGTGTGACATTGCAAAAGCCTCCTCCACCTCCTAA---------GGTAAC 810 

mandarinfish      ATCTACCCACGATCTACAAGTGCACAAGCCTATTCC---TCCAAA---------AGTGAC 807 

grasscarp         AGACAAAAAAGAAGTTATTATACCTCGACCAGCCTCACCGCCAGATCAGCCTGCAACTGT 719 

                  *       *     *     * *     **     *    **  *                

 

grouperIgZ        CTTGGTAGCAGTGCCAGCAGGAGAC-ACTCAGACCCTGG--------------TGTGTAC 855 

mandarinfish      TTTGGTATCGGTGCCAAGTGAAGAC-TCCCAGGCCCTGG--------------TGTGTAC 852 

grasscarp         CTACTTAACAGTACCTACACAAAAGGATTTAGAAACTGGAACAGCAACCTTCTTGTGTTT 779 

                   *   ** * ** **      * *      **   ****              *****   

 

grouperIgZ        GATTGAGGATCTTCCCT-CAAATCAATTG--TCAGTCAAATGGAAAAAGGATGATAACTC 912 

mandarinfish      GATTGAGGACGGTCGCAGTGGAACACTTGACTCATTTAAGTGGAAAAAGAATGGCGCAGA 912 

grasscarp         AGCCCAGCAGTTTTCACCTAAAACATAT---TCGTTTAAGTGGTTTAAGGATGAAACGCA 836 

                       ** *   *        * **  *   **  * ** ***   *** ***        

 

grouperIgZ        TGTTACTGGCT---------------TCACTGACTGCCCCCCCCAACTCAATGG------ 951 

mandarinfish      GTTGAACGACT---------------ACATTCAAAGTCCCATCCAAAAAACTGG------ 951 

grasscarp         GTTGACAAAGTTGACACATTCGATAAACACCTATGACGCAAGTGAGAAGAATGGCTCAGT 896 
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                    * *     *                **   *     *     *    * ***       

 

grouperIgZ        AGGCGTATATACAGCTGTCAGTATCCTAAAGGTCACGAACTCAGAGTGG--GACAGT--- 1006 

mandarinfish      AGAGTTACATTCAGCTGTCAGTGTCCTGAAGGTCAAAAACACAGACTGG--GACAGT--- 1006 

grasscarp         AACCTTATATAGCGCCACAAGCATTTTGCAAATCAGTGCCGGAGAATGGAAGACAGCCGC 956 

                  *    ** **   **    **  *  *  *  ***    *  *** ***  *****     

 

grouperIgZ        -AAAGC--------TGTTTACACATGCGAGGTGACGAA----CCAAGGAACAACATATCC 1053 

mandarinfish      -AAAGC--------AGTTTATACCTGTGAGGTGACTTA----CAGCGGAACACAATATAA 1053 

grasscarp         CAAAATCAAGTGCGAGTTCGAGCACAAGACGGGAAAAGAAGTCAGAGAGGCCGAATATAC 1016 

                   ***           ***    *    ** * **        *   *   *   ****   

 

grouperIgZ        AAAAAA---GGTCTCTAAAGTTCCTATCACAGTGACACTGACCCAATCAAGTCCCAAAGA 1110 

mandarinfish      AAAGAA---GGCCTCAAAAGCTCCTATCACAGTGACACTGAACCAACCAAGTCCCAAAGA 1110 

grasscarp         AGATAATTTATCCTTAGTAGATAAATTAACACTGACACTGAAGCCACCAATTGAAAAAGA 1076 

                  * * **      **    ** *    * *** *********  * * *** *   ***** 

 

grouperIgZ        AATATTCAGCAACAACCAGGCAAAGTTTGAGTGTGTCATTACTGGAACGGACCAGACCGG 1170 

mandarinfish      AATTTTCAGCAACAAGCAGGCAGAGTTGGAGTGTATCATTACTGGACAGGACGAGACCAT 1170 

grasscarp         ACTATTTCTCAATAATAAAGTTGTCTTGCAAGCTGTTGTTTCTGGAGATGCAAAAAAAGT 1136 

                  * * **   *** **  * *     **  *   * *  ** *****   *   * *     

 

grouperIgZ        ACCAGACT---TTCAGATCATCTGGCAAGTCGATGGACAAAATGTGACCGACAACATTGA 1227 

mandarinfish      TGTAGATGAAATTAAAGTCACTTGGCAAATTGATGGACAAGATGTGAGCGACAACATTAA 1230 

grasscarp         GACAGAAGCT-TCAGTGTCATGCACAGTGAATAATGACCGGGTGGATCCTAGAAGTTTCA 1195 

                     ***     *     ***            *  ***    **    * * **  ** * 

 

grouperIgZ        ------AACAAAACCTG---------GAAGCAAGAAAATCAGCACGATGACTCGTGCTCA 1272 
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mandarinfish      TGAAACAACAAAGTCTGTTGATGGTCAGCGCATCAAAACCAGCACGATGACTCGTAGTCG 1290 

grasscarp         ACGTTTCTCAGGACAATTCA-----CAGAATATTAAAATCCACAAATTCATAGTTGATAC 1250 

                          **                     *  **** *  **   * *    *  *   

 

grouperIgZ        CACTGATTGGCAGAGTATCAACAAAGTGCGGTGTTCTGCCATAAGAGACAATATGACACC 1332 

mandarinfish      CACTGAGTGGCAGAGAGTCAACAAAGTGCGCTGTTCTGCCATTAGAGACGA--TGACACC 1348 

grasscarp         AAATAAATGGTTTGATGGTGAAACTGTCACCTGC---ACCATCAACGACG----GACACA 1303 

                   * * * ***          * *  **    **     **** *  ***     *****  

 

grouperIgZ        AGTTATTCAGGAACTGACCATCCAGAAAGGAGATGGGAGTGATCCAAAAGTGACAGTCCA 1392 

mandarinfish      C-TTATTCAAGATCTGACTGTCCACAAAGGAGATGGGCGTGAGCCAAAAGTGACAGTCCA 1407 

grasscarp         --TCAAGCAGGAAATCCATTGTAATAAAGGAGATGAAAAGACACCCAATGTTACCATTTA 1361 

                    * *  ** **  *        * **********        ** ** ** **  *  * 

 

grouperIgZ        CATTCTCCCATTGGAGGACATCGACAAAGCAGCTCAGGGGTCAGAGGTCACTCTGGTGTG 1452 

mandarinfish      CGTCCTCACAGAGGAGGACATCAACAAAGGAGCT---------GAGGTCACTCTGGTGTG 1458 

grasscarp         CAGACCT------GATAGTAACAACGACACAAATC---------ATGTCTCTCTGGTGTG 1406 

                  *   *        **    * * ** *   *  *          * *** ********** 

 

grouperIgZ        TCTGGTCTCCAGTCGTGCGCAGCAGGATTACTACATCGCCTGGAGAG--------AAG-- 1502 

mandarinfish      TCTGGTCTCCAGTCCTGTGCTGCAGGATTACTACATCGCCTGGTCAG--------AAG-- 1508 

grasscarp         TGAGGTCACAAGCCCTAAACTTGGCGATGTCTATATCATGTGGAAAGTGAGAGAAAAGCC 1466 

                  *  **** * ** * *   *     ***  *** ***   ***  **        ***   

 

grouperIgZ        --ATACTGGACAAAATACCGGCACCTATAGCGATGGCATTAACTTCCCCCCA-----CAG 1555 

mandarinfish      --ATG---------AAACCAACATCTATACTGATGGCATTAACTTCCCCCCA-----CAG 1552 

grasscarp         TTACGAAGAGGCCATAACCAGTCTTCCTATTCATCAAAAGAGCTCCACATCGGTTGTCAG 1526 

                    *             ***        **   **   *  * ** * *  *      *** 
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grouperIgZ        AAGATC--CAAAATAGATACTTAGTTACAAGTATTT--ACATCACCACCAAGGACA-AGT 1610 

mandarinfish      AAGACC--CAACATGGCTACTCAGTTACAAGTGTTT--ACACCACCACCAAGGAAA-AGT 1607 

grasscarp         CATCCTAACAGTGTCAAAACAAGAGTATGAGGACCCCGGAACCACCATCACCTGCGCAGT 1586 

                   *      **   *    **     **  **         * ***** **       *** 

 

grouperIgZ        GGAACACAACCAA---G----TTCTCATGCAACGTCTGGCCAGCTGGTGGG---AACAAG 1660 

mandarinfish      GGAACAAGTTCAACATG----TTCTACTGCAACGTCTGGCCTGCTGGCAGC---AATGAC 1660 

grasscarp         TAAACATGCCAAGAAGGGGAATTTAAGCGCTCCATTACAAGTTTCAACAAGCCAAAGGGA 1646 

                    ****     *    *    **     **  * *                   **     

 

grouperIgZ        TCAATGAAATCCCGAGACGTGTCTTACGCC-ATGAGTAACTCCGTTGAATGTAAGAAATA 1719 

mandarinfish      TCCATGGAACCCCGAGGAGTGTCTAAGTCC-CATGGTAACTCGATTGAATGTAGAAAATA 1719 

grasscarp         TCCACCTGAGCCAGAGAAGGGTTTTGCTCTGAACTGTAATAATGATGT-TCTGGAGGAGG 1705 

                  ** *    * ** ***  * ** *    *      ****      **  * *     *   

 

grouperIgZ        GCAGACTCAGCTTTAAATGTGGCACTCTGTGCTCATGT------CTGTCTCTGTGTGTGC 1773 

mandarinfish      GTAGATTCAGCTTTAAACGTGGTATTGTGTGCTGATGTGTTGCTCTGTCTGTGTGTGTAC 1779 

grasscarp         ATGAGTTCAGAAGTCTCTGGTCCACTGCCACTTCATTCAT----CTTCCTCTTCCTCTTT 1761 

                        ****   *    *    * *      * **        **  ** *   * *   

 

grouperIgZ        TCTCTGCCATGAGAGCCTGT---------------------CTTTGTGATTGTACAATTC 1812 

mandarinfish      TCTCTGCCACGGGAACCTGTGCACTCTGTGATGTCATCAGTCTTTGTGATTGTAAAAATA 1839 

grasscarp         TCTCTGACCTACAGCGCTGTACTCAGCCTC-TTCAATATGAAGCAGTGATGGTTTTTTTC 1820 

                  ****** *        ****                         ***** **     *  

 

grouperIgZ        ACAGTCAACATGTCAGTTTACTTTGGTTTGTCATAATGTTGTGTTT---CAATCTGTCTT 1869 

mandarinfish      ACAGTCAACATGTCAATTTAGTTTTGTTTGTCATCATATTGTGTTC---CAATCCGTCTT 1896 
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grasscarp         A-AAAGAACTTCCGAAGACTCCAAGGTTTCTTGTTATGTTGAATCTACATAATTTGCCTC 1879 

                  * *   *** *   *          **** *  * ** ***  *      ***  * **  

 

grouperIgZ        TGT-----CACACTGTCGAACAGCTTGAGAAGTGT---------GCTG----TTTCTAAT 1911 

mandarinfish      TGT-----CACATTGTCTAACAGCTTGGGAAGTGT---------GCTGACTGTTTCAAAT 1942 

grasscarp         TATATGCACACATTTTTGAAGATATTGACAAATATATACTCAATGTTCACACTCATCAAT 1939 

                  * *     **** * *  ** *  ***  ** * *         * *     *    *** 

 

9.1.6. Obtained IgZ sequence for hapuka 

grouperIgZ        GAACTACAGTGTTTATCACAGAATGGAAAATACAGTTATCTGGAGTTTGTTATTTGTAGT 120 

mandarinfish      GAACTACAGTGTTTATCACAGAATGGAAAATACAGTTATCTGGAGTTTGTTCTTTGTAGT 111 

p.oxy             -----------------------------------------------------TTACGCC 7 

                                                                       **      

 

grouperIgZ        TACTATTCATG-GAGTTTGGAGTGAGATCAAACTGGACCAGTCTTCCTCTGAGGTGAAAA 179 

mandarinfish      TACTATTCATG-GAGTTTGGAGTGAAATCAAACTGGACCAGTCTCCCTCTGAGGTGAAAA 170 

p.oxy             AGCTATTTAGGTGACACTATAGAATACTCAAGCTTGCATGCCTGCAGGTCGACTCTAGAG 67 

                    ***** * * **   *  **     **** ** *              **    * *  

 

grouperIgZ        GACCTGGAGAGACAGTGAAGATGTCATGTATCATTTCTGGTTTTGACATGACAGACTACA 239 

mandarinfish      GACCTGGAGAGACGGTGAAGATGTCATGTATCATATCTGGTTATAGCATGACAAGCTACA 230 

p.oxy             GATCCCCGGGTACCGAGCTCGAATT-CGCCCTATAGTGAGTCGTATTACAATTCACT--G 124 

                  ** *    *  ** * *      *   *    **     **  *   *  *    **    

 

grouperIgZ        ATATTCACTGGATACGACAGAGGCCAGGGAATGCTCTGGAGTGGATTGGGTGGATGAACA 299 

mandarinfish      GTATTCACTGGATACGACAGAGGCCAGGGAGAGCTCTGGAGTGGATTGGGTGGATGAACA 290 

p.oxy             GCCGTCGTTTTACAACGTCGTGACT-GGGAAAACCCTGGCGTTACCCAACTTAATCGCCT 183 

                      **  *  * *     * * *  ****   * **** **        *  **   *  
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grouperIgZ        CA-GGCACAAACTCTGCTAGCTATGGCAGTTCCTTTCAAAGTCGTTTCATCATGACTGAA 358 

mandarinfish      CA-GGCTCAAACTCTGCTAGCTATGCCAGCTCCTTTCAAAGCCGTTTCATCATGACTGAA 349 

p.oxy             TGCAGCACATCCCCCTTTCGCCA-GCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCC 242 

                      ** **  * *   * ** * *   *     *    *   *   *     **  *   

 

grouperIgZ        GATGTGCCCAGCAGCAC--TCAGTACCTCGAGGTCAAGAGCCTGACAGCAGAAGATTCTG 416 

mandarinfish      GATGTGTCCAGCAGCAC--TCAGTACCTCGAGGTCAAGAGCCTGACAGCAGAAGATTCTG 407 

p.oxy             CTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAG 302 

                    *     ***  ** *   * * *   ***    * * ***    *** *   ***  * 

 

grouperIgZ        CTGTTTACTTCTGTGCTCGGT---------CGGCTGGGCCAGCTTTCGACTACTGGGGCC 467 

mandarinfish      CTGTTTACTTCTGTGCTCGGTATATGGGCTCCGACGGTTTATATTTCGACTACTGGGGTC 467 

p.oxy             C--GCGGCGGGTGTGGTGGTTAC----GCGCAGCGTGACCG--CTACACTTGCCAGCGCC 354 

                  *      *   **** * * *         * *   *       * *   * *  * * * 

 

grouperIgZ        GGGG-GACTGCGG-TCACAGTATATTCACAAACAACTGCGGCCCCGGCTCTGTTTCCTTT 525 

mandarinfish      GTGG-GACTGAAG-TCACAGTATCTTCAGTAACAGTTGCATCACCGACTCTGTTCCCTTT 525 

p.oxy             CTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCC 414 

                     * * * *    *  *  * * ***     *     *  * *   * * *         

 

grouperIgZ        GGTTCAG-TGTAAGTCTGGGACTGCAGGTACAGTCACTGTTGGCTGTATTGCACAAGACT 584 

mandarinfish      GGTTCAG-TGCAACTCTGGGCCTGCAGATAAAATCACTGTTGGTTGTCTTGCACGCGACT 584 

p.oxy             CGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT--ACGGCACC 472 

                   **  ** *  ** ** *** ** *   **   *  *  **   **  **  **   **  

 

grouperIgZ        TCTTCCCAGAGAGTCTCACTTTC--CAGTGGACCGATGCCAGCGGGACCACGCAGACTTT 642 

mandarinfish      TCTACCCAAAGAGTCTTACTTTC--CAGTGGACCAATTCCAGTGGGACCGCCCTGACTTC 642 
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p.oxy             TCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGA 532 

                  **  ***  * *  **   **       ***  *       * *  * * * * **     

 

grouperIgZ        TAAACAATATCCTACGGTTATGAAAGACAACAAAT----ATACAGGAGTCAGTGTGCTAG 698 

mandarinfish      TGAGAATTATCCTCCAGCTGAGAAAAACAACAAAT----ATACAGGAGTCAGTTTGGTCC 698 

p.oxy             CGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAA 592 

                         *  **    *       *  * **        ***  *** **    *      

 

grouperIgZ        ATGTGTCAAAGTCTGCCTGGGATTCAAGGAGGAGTTTTAGTTGCTCAGTGACTCACCCTG 758 

mandarinfish      AAGTATCCAAATCTGACTGGGATTCAAGGAAGTCTTTCAAATGTTCAGTACATCATAACG 758 

p.oxy             CTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGAWTWAMAAGGGATTTTTGCCG 652 

                    *   * *       *      **         ***    *    **    *      * 

 

grouperIgZ        GAGGCT-CCGAAAGTGTGACATTGCAAAAGCCTCCTCCACCTCCTAAGGTAACCTTGGTA 817  

mandarinfish      GATCTA-CCCACGATCTACAAGTGCACAAGCCTATTCC---TCCAAAAGTGACTTTGGTA 814 

p.oxy             ATTTCRGCCTAYTGGTTAAAAATGAGCTGATTT--------------------------- 685 

                         ** *     *   * **        *                            

 

grouperIgZ        GCAGTGCCAGCAGGAGACACTCAGACCCTGGTGTGTACGATTGAGGATCTTCCCTCAAAT 877 

mandarinfish      TCGGTGCCAAGTGAAGACTCCCAGGC---------------------------------- 840 

p.oxy             ------------------------------------------------------------ 

                                                                               

 

grouperIgZ        CAATTGTCAGTCAAATGGAAAAAGGATGATAACTCTGTTACTGGCTTCACTGACTGCCCC 937 

mandarinfish      ------------------------------------------------------------ 

p.oxy             ------------------------------------------------------------ 
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grouperIgZ        CCCCAACTCAATGGAGGCGTATA 960 

mandarinfish      ----------------------- 

p.oxy             ----------------------- 

 

9.1.7. IgZ – Third alignment 

IgM             CTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGCTTTGCCAAA 60 

IgZ             ---------------------------------------------TCTTACTTT-CCAGT 14 

                                                             ** *.**** ***.: 

 

IgM             GATTTTTCACCAAACGAGTATGAGTTCAAATG-CTGAAGAATGAAGTGGAAATCCCCAAC 119 

IgZ             GG------ACCGATG---CCAGTG-----------------------GGACCACCCTGAC 42 

                *.      ***.*:     .:*:*                       ***..:*** .** 

 

IgM             AAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGACGAGAATGGAACTAAACTG 179 

IgZ             TTCAG-TACAATATC----CTCCAGCTGAGAAAAACAA----------------CAAATA 81 

                ::.*   **.* ***    *:**: *****.***..**                .**.*. 

 

IgM             TACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAACACTAAGTTT 239 

IgZ             TACAGG--AGTCAGTTTGGTCCAAGTATCAAAATCTGASTG------------------- 120 

                *****   ** .*****  **.:.*** *.:..: ***.**                    

 

IgM             ACATGTGAGTTTAAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCATCTGTGACC 299 

IgZ             ------GGATTCAAGG---------AAGTCTTTTAAATGTTCAGKAACTCATGTCGGATC 165 

                      *..** ****         **.:*  * *:* .***.  ** **** *  ** * 

 

IgM             TACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCAGATGTG-ACATAAAGATC 358 

IgZ             TCCCAAAAATCTGCAAGTG---------------CAAAAGCCTATT-------------- 196 

                *.*..*..:**:*.::***               *:.****. **                
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IgM             ACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTTGTCGAGTCC 418 

IgZ             ------CCTACAAARGTG-ACTT------------------------TGCTATCGGTGCC 225 

                      ** ****: *:* **:*                        :* *.***.  ** 

 

IgM             AGGTAAAC-AACCATCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGAAACGAAATGG 477 

IgZ             AAGTGAAGGCACCCAG-GCCCTGGTGTGTACGATTGAGGACGG--------TCGCAATG- 275 

                *.**.**  .***.:  * * :*.:*: *:**:  ****** .        :**.****  

 

IgM             CTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTCAGCCTTCCACTTGAAA 537 

IgZ             -----GAACACTTGACTCATTTAAGTGGAA--AAAG------------------------ 304 

                     *.. .*:**** *.   :*.:****  ****                         

 

IgM             TCAC-TATGACGAATGGAGCAAGGGGATAAAGC-CTACTGCATTGTTGAACATGGAGACT 595 

IgZ             ------------AATGGCGCAGAG-----TTGAACGACTACATT---------------- 331 

                            *****.***..*     ::*. * ***.****                 

 

IgM             GGCTTGAACCACTTAAGAAACAATATGAAAGGAAGATCGGAGAACAGACTCAGCGTCCTT 655 

IgZ             --CAAAGTCCCAT-------CCAAAAGATTGGAGAGTTACATTCAGCTGTCAGTGTCCTG 382 

                  *::..:**..*       *.*:*:**::***...* . * :... : **** *****  

 

IgM             CAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGTGACCCCTGACTTGC 715 

IgZ             AAGG-------------TCAGCAACACAKACTGGGACASTAAAG-------CTG------ 416 

                .**               *** *..***.***.*.*.*.:**:*       ***       

 

IgM             TATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGATGACGAGGAA 775 

IgZ             ------------TTTATACCTGTG--AG-----GTGATTT------------ACAGAGGA 445 

                            ** :*.*** :*  **     ***: **            **...*.* 
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IgM             GCAGACTCAAAATACGAGT-CCATACCACAAACCGAGAAT 814 

IgZ             ACAWAATATAAWAARAAGG--CCTCRAAAGCTCCRAT--- 480 

                .** *.*.:** :* .**   *.*. .*...:** *     

9.1.8. RAG1 

RAG1Sp           -------TTCCTGGATTTCACCAGTTTGAATGGCAGCCAGCTCTCAAGAATGTGTCTACA 53 

RAG1Lm           GAGCTTCTTCCTGGTTTTCATCAGTTTGAATGGCAGCCAGCTCTAAAGAATGTGTCTACA 88 

RAG1Stegpar      GAGCTTCTCCCCGGCTTCCACCAGTTTGAATGGCAGCCGGCTCTCAAGAAYGTGTCTGCA 88 

RAG1latris       GAGCTTCTCCCCGGCTTTCACCAGTTTGAATGGCAGCCAGCTCTCAAAAATGTGTCTACA 600 

                        * ** ** ** ** ***************** ***** ** ** ****** ** 

 

RAG1Sp           TCTTGCAATGTCGGCATTATTAATGAACTCTCTGGATGGGCTTCCTCTGTGGATGACGCC 113 

RAG1Lm           TCTTGCAATGTCGGCATTATTAATGGGCTCTCTGGATACGCTTCCTCTGTGGATGACTCT 148 

RAG1Stegpar      TCTTGCAACGTCGGCATTATTAACGGGCTCTCTGGATGGGCTTCCTCGGTGGATGACTCC 148 

RAG1latris       TCGTGCAACATTGGCATCATTAATGGGCTCTCTGGACGGGCTCCCTCGGTGGATGACGTT 660 

                 ** *****  * ***** ***** *  *********   *** **** *********    

 

RAG1Sp           CCGGCTGACACCATCACTCGACGGTTTCGCTATGATGTGGCACTGGTGTCAGCATTAAAG 173 

RAG1Lm           CCTGCTGACACCATCACTCGGCGGTATCGCTATGATGTGGCACTGGTGTCAGCATTAAAA 208 

RAG1Stegpar      CYGGCTGACACAATCACTCGGCGCTTTCGCTATGATGTGGCACTGGTGTCGGCGTTAAAG 208 

RAG1latris       CCAGCTGACACCGTCACTCGGCGGTTTCGCTATGATGTGGCACTGGTGTCAGCATTAAAA 720 

                 *  ********  ******* ** * ************************ ** *****  

 

RAG1Sp           GATCTGGAGGAGGACATCATGGAGGGGCTGAGAGAGAGTGGGCTGGAAGACAGTGCTTGC 233 

RAG1Lm           GATCTGGARGAGGACATCATGGAGGGGCTGAGAGAGAGCGGGCTGGAAGACAGTGCTTGC 268 

RAG1Stegpar      GATCTGGAGGAGGACATCATGGACGGGCTGAGAGAGAGTGGGATGGAAGACAGCGCTTGC 268 

RAG1latris       GATCTGGAGGAGGACATCATGGAGGGGCTGAGAGAGAGTGGGATGGAAGACAGCGCTTGC 780 

                 ******** ************** ************** *** ********** ****** 
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RAG1Sp           ACCTCAGGCTTCAATGTCATGATCAAGGAATCTTGTGATGGCATGGGTGATGTCAGCGAA 293 

RAG1Lm           ACCTCAGGCTTCAGTGTCATGATCAAGGAATCTTGTGACGGCATGGGCGATGTCAGCGAA 328 

RAG1Stegpar      ACCTCAGGCTTTAGCGTCATGATCAAGGAATGTTGTGATGGTATGGGCGATGTCAGCGAG 328 

RAG1latris       ACCTCGGGCTTCAGTGTCATGATCAAGGAAGCTTGCGATGGCATGGGCGACGTCAGCGAG 840 

                 ***** ***** *  ***************  *** ** ** ***** ** ********  

 

RAG1Sp           AAGCATGGTGGAGGACCAGTCGTTCCCGAGAAGGCAGTACGTTTCTCTTTCACTGTTATG 353 

RAG1Lm           AAGCATGGTGGCGGACCAGTTGTTCCTGAGAAGGCTGTACGTTTCTCTTTCACTGTTATG 388 

RAG1Stegpar      AAGCACGGCGGAGGACCTGTTGTTCCCGAGAAGGCGGTGCGCTTCTCTTTCACCGTCATG 388 

RAG1latris       AAGCACGGCGGCGGACCAGCTGTTCCTGAGAAGGCTGTACGTTTTTCTTTCACTGTTATG 900 

                 ***** ** ** ***** *  ***** ******** ** ** ** ******** ** *** 

 

RAG1Sp           TCTGTATCTGTCCTGGCAGAAAATGAGGAGGAAGAGGTTACCATTTTCACTGAGCCAAAG 413 

RAG1Lm           TCTGTATCTATTCTGGCAGAAAAGGAAAAGGAAGAGGTTACTATTTTTACCGAGCCAAAG 448 

RAG1Stegpar      TCTGTCTCTGTCCTCGCAGAYGAGGAGGAGGAGGAGGTTACCATYTTCACTGAGCCAAAA 448 

RAG1latris       TCTGTCTCTGTCCAGGCAGACGATGAGGAGGAAGCGGTTACCATCTTCACCGAGCCAAAG 960 

                 ***** *** * *  *****  * **  **** * ****** ** ** ** ********  

 

RAG1Sp           CCAAACTCAGAACTGTCCTGTAAGCCACTTTGCCTGACATTTGTGGATGAGTCAGACCAT 473 

RAG1Lm           CCAAACTCAGAACTGTCCTGTAAGCCTCTTTGCCTGACATTTGTGGACGAGTCAGACCAT 508 

RAG1Stegpar      CCAAACTCAGAGCTGTCCTGCAAGCCCCTCTGCCTGATGTTCGTGGATGAGTCAGACCAY 508 

RAG1latris       CCCAACTCAGAACTGTCCTGTAAGCCCCTGTGCCTGACGTTC------------------ 1002 

                 ** ******** ******** ***** ** *******  **                    

9.1.9. TCRα  

cod             --------TTTGCAGTCGTTGGTATTCTCCTGACTTTGTTTCGACTTCT---GGACTGTG 49 

sb              AGGACACAATAATGATGACAGCTGGTCTGATCACACTCTCTGCAGCTCT---GCTCTGCA 66 

rbt             AACAGTGAGTCAACATGATCAGAATTCTTATCTCCATCACCATGGGTTACAGAGCCTGGG 120 
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                         *     *         ***  *  *  *         *        ***   

 

cod             TGATATTTC-AGCCATCCCATCCCATAATACTT--CAGGAAAACAC---CCAGGCGGAGA 103 

sb              TTATAGGTCTAATCGATGGGAGTGATGTCACT---CAGACTCCCCT---GCTGTGGATGA 120 

rbt             CTGCAGGTT---CCTCTCCGAGTAATCAGGTTCACCAGGGACCTGCAGACCTGTACAAGA 177 

                    *  *     *          **     *   ***            * *     ** 

 

cod             TTAAATGTCAA-----CACGATGA-CGACAATCTCA--------ATGTCATGTTATG--- 146 

sb              TGGAGGGTCAGTCTGCCACGATGAACTGCAGTCACACTAAGGGCACGTCATATTACGAGA 180 

rbt             ACCAGGGAGAGTTGGCTAAGATGG--AGTGTTCACA-TAGTATATCAACCTATAATGTCA 234 

                   *  *  *       * ****        ** **            * * * * *    

 

cod             -GTACCAGCGAAGACCACAG---AGCAACAATTTGAGTCTAATAGGCT--ACAGCTACTA 200 

sb              TGTACTGGTACAGACAGCTGCCTGGACAGAGGATGAAGGAGATAGTTTTCACAACT-CAA 239 

rbt             TCCTCTGGTACAAGCAATCCAACTACAGAGAATTGGTGTTTTTAGGATACAT-GCAATTG 293 

                    *  *   *  *                  **       ***  *  *   *      

 

cod             TGGCAACGACCCCAACTACGAAGAAGTGTTCAAA---GATCAATTTGAGATGACGATGGA 257 

sb              AGTCCCCCACATCAA-TATGAAAGTGGCTTCAGCACTGAGAAATTTCCAGCAACGAAGAA 298 

rbt             AAAACTGGATTTCC----TGAGGTTGGATTTGATATAGAAGGA-----GATGCTAATGCA 344 

                        *   *      **    *  **       **   *            * * * 

 

cod             GAGCAAACTGAAAGGAGCGCTGGTACGTCGAAAGGCAGAGGCA-AACGACTCTGGGGAGT 316 

sb              AGATGCTCTGACTGGATCTTTGACA-GTGGAGAGGCTGCTGCTCAATGACAGTGGAGTAT 357 

rbt             GGTGGTACCAGCA----CCTTAACC-ATCAAACAACTAACTCCAAATAGCAGTGCTGTGT 399 

                       *         *  *      *  *    *     *  **   *  **  *  * 

 

cod             ATTTCTGCGCTGCCCGCACGCCCCTCAGGGGTTCGTCTGGAAACGAGGCCTACTTTGGAA 376 
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sb              ATTTCTGTGCTGT------GACCAGTGGTGGT------AACACAGAAGCTCACTTTGGTG 405 

rbt             ATTACTGTGCTGCTACCGGGACAAAAAACTAT---------AATCCTGCATTCTTTGGAG 450 

                *** *** ****       * *         *         *     **   ******   

 

cod             AAGGGACTAAACTCACGGTCCTGGAACCGGGGTGTATCGTCTCCCCGCCCACGGTGGTGG 436 

sb              GAGGAACAAAGTTAACTGTTTTAGGTAAAGACGATAAAATTACCCCACCAACAGTGAAAG 465 

rbt             CGGGAACCAAACTGACTGTTCTGGATCCAAACATCAAAGTCACTGAACCCACAGTGAAAG 510 

                  ** ** **  * ** **  * *           *   *  *    ** ** ***   * 

 

cod             TCCTGCCGCCCTCTGAGAAGGAGTGCCGGGACCGG------AAGGAGCAGCTGAAGAAGA 490 

sb              TGCTTGAACCGTCAGAAAAGGAGTGCCGAAACAAGGTAGAAAAAGAAAAAAGGAAGAAGA 525 

rbt             TCCTAGCACCCTCCGCTAAGGAGTGTGAAGATAGA------AACAAGAAGAAGAAGAAGA 564 

                * **    ** ** *  ********     *          **  *  *   ******** 

 

cod             CCCTGGTGTGCGTGGCGTCAGGCTTCTACCCGGACCACGTCGGCGTGTCCTGGACTGTGA 550 

sb              CGTTGCTTTGTGTGATCAGCAGATTCTACCCAGACCATGTCAATGTGACCTGGAAGATCA 585 

rbt             CCCTAGTGTGTGTAGCCACCCGCTTCTACCCCGACCACGTCACGGTCTTCTGGCAAGTCA 624 

                *  *  * ** **        * ******** ***** ***   **   ****    * * 

 

cod             ACGGCCAGTCGGTCATTAAGGGCGTGGCCAGTGACCACCCCGCCCTGCGTGTGGACGACA 610 

sb              ATAATGAGGAAATGTCTAAGGGTGTGGCGACGGACAACATGCCCGCACAGCCGAACGATG 645 

rbt             ACAATGTCAACAGAACTGAAGGTGCCGGGACCGACAACAGGGCCTTGTGGGATAAAGATG 684 

                *               * * ** *  *  *  *** **    **          * **   

 

cod             AA------TACCAGATCACCAGCCGGCTCCGGGTGGAGGCCCGGGAGTGGTACACAGAGG 664 

sb              GAAAGTTTTACAAAATCACCAGCAGGCTGAAGGTCGACGCCAACAAATGGTTCGATCCCG 705 

rbt             GT---TTATACAGTATCACCAGCAGACTGAGAGTCCCAGCCAATGAATGGCACAAACCAG 741 

                        ***   ********* * **    **    ***    * ***  *      * 
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cod             GCACCATCTTCACCTGCAATGTCAGCTTCTTCAACGGGAATGACACCATCTACACCTCGG 724 

sb              AGAATGAATTCAAGTGCATTGCCAGCTTCTTCAATGGGACAGGAACGACATACCATGAAA 765 

rbt             AGAACAGATTCACCTGCATTGTCAGCTTTTACGATGGGACTGACAATATAAGAGTGACTA 801 

                  *     ****  **** ** ****** * * * ****  *  *  *             

 

cod             CCGAGGTTTATGGGGGCGGTGATGTCAGATGGATCAAGACGGAACCAGACGGCGAGACCA 784 

sb              ACGGAACT---AGAGGCATAGAAGCTCCA------AAGACAGGACAAAACA-TAACAACA 815 

rbt             ATGACACC---ATTAGTGGAGATCTCCAA--GGTCAAAGTGGGG-GAGAGA-TAACGACA 854 

                  *            *    **      *      **    *    * *     *   ** 

 

cod             GAGAGGAATTCGTTAAGGTCACCCAGACGGCCAAACTGTCCTACATCGTAATGATCGTCA 844 

sb              GAGGCGTATTTG--AAGAGAAGTCAGACCGCCAAGCTCTCCTACGGCGTTTTAATCATCA 873 

rbt             GATTACTATGTG--AAGAGCACCCAGACTGCCAAGCTGGCCTACAGCATCTTCATCGCTA 912 

                **     **  *  ***   *  ***** ***** **  *****  * *  * ***   * 

 

cod             AGAACATCGTCTACGGAGTCTTTGTCACGATACTGGCCTGGAAACT--CGGTCTC---GG 899 

sb              AGGGCTGCGTCTACGGCGCCTTCGTGATGTTTCTGGTGTGGAAGCTTCCGGGTTC---AT 930 

rbt             AGAGTACCTTCTATGGCCTGGTCGTCATGGTTATGATTTGGAAGTTCCAGGGCTCCTCAG 972 

                **     * **** **     * ** * * *  **   *****  *   **  **      

 

9.1.10. TCRβ 

cod             --------TTTGCAGTCGTTGGTATTCTCCTGACTTTGTTTCGACTTCT---GGACTGTG 49 

sb              AGGACACAATAATGATGACAGCTGGTCTGATCACACTCTCTGCAGCTCT---GCTCTGCA 66 

rbt             AACAGTGAGTCAACATGATCAGAATTCTTATCTCCATCACCATGGGTTACAGAGCCTGGG 120 

                         *     *         ***  *  *  *         *        ***   

 

cod             TGATATTTC-AGCCATCCCATCCCATAATACTT--CAGGAAAACAC---CCAGGCGGAGA 103 
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sb              TTATAGGTCTAATCGATGGGAGTGATGTCACT---CAGACTCCCCT---GCTGTGGATGA 120 

rbt             CTGCAGGTT---CCTCTCCGAGTAATCAGGTTCACCAGGGACCTGCAGACCTGTACAAGA 177 

                    *  *     *          **     *   ***            * *     ** 

 

cod             TTAAATGTCAA-----CACGATGA-CGACAATCTCA--------ATGTCATGTTATG--- 146 

sb              TGGAGGGTCAGTCTGCCACGATGAACTGCAGTCACACTAAGGGCACGTCATATTACGAGA 180 

rbt             ACCAGGGAGAGTTGGCTAAGATGG--AGTGTTCACA-TAGTATATCAACCTATAATGTCA 234 

                   *  *  *       * ****        ** **            * * * * *    

 

cod             -GTACCAGCGAAGACCACAG---AGCAACAATTTGAGTCTAATAGGCT--ACAGCTACTA 200 

sb              TGTACTGGTACAGACAGCTGCCTGGACAGAGGATGAAGGAGATAGTTTTCACAACT-CAA 239 

rbt             TCCTCTGGTACAAGCAATCCAACTACAGAGAATTGGTGTTTTTAGGATACAT-GCAATTG 293 

                    *  *   *  *                  **       ***  *  *   *      

 

cod             TGGCAACGACCCCAACTACGAAGAAGTGTTCAAA---GATCAATTTGAGATGACGATGGA 257 

sb              AGTCCCCCACATCAA-TATGAAAGTGGCTTCAGCACTGAGAAATTTCCAGCAACGAAGAA 298 

rbt             AAAACTGGATTTCC----TGAGGTTGGATTTGATATAGAAGGA-----GATGCTAATGCA 344 

                        *   *      **    *  **       **   *            * * * 

 

cod             GAGCAAACTGAAAGGAGCGCTGGTACGTCGAAAGGCAGAGGCA-AACGACTCTGGGGAGT 316 

sb              AGATGCTCTGACTGGATCTTTGACA-GTGGAGAGGCTGCTGCTCAATGACAGTGGAGTAT 357 

rbt             GGTGGTACCAGCA----CCTTAACC-ATCAAACAACTAACTCCAAATAGCAGTGCTGTGT 399 

                       *         *  *      *  *    *     *  **   *  **  *  * 

 

cod             ATTTCTGCGCTGCCCGCACGCCCCTCAGGGGTTCGTCTGGAAACGAGGCCTACTTTGGAA 376 

sb              ATTTCTGTGCTGT------GACCAGTGGTGGT------AACACAGAAGCTCACTTTGGTG 405 
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rbt             ATTACTGTGCTGCTACCGGGACAAAAAACTAT---------AATCCTGCATTCTTTGGAG 450 

                *** *** ****       * *         *         *     **   ******   

 

cod             AAGGGACTAAACTCACGGTCCTGGAACCGGGGTGTATCGTCTCCCCGCCCACGGTGGTGG 436 

sb              GAGGAACAAAGTTAACTGTTTTAGGTAAAGACGATAAAATTACCCCACCAACAGTGAAAG 465 

rbt             CGGGAACCAAACTGACTGTTCTGGATCCAAACATCAAAGTCACTGAACCCACAGTGAAAG 510 

                  ** ** **  * ** **  * *           *   *  *    ** ** ***   * 

 

cod             TCCTGCCGCCCTCTGAGAAGGAGTGCCGGGACCGG------AAGGAGCAGCTGAAGAAGA 490 

sb              TGCTTGAACCGTCAGAAAAGGAGTGCCGAAACAAGGTAGAAAAAGAAAAAAGGAAGAAGA 525 

rbt             TCCTAGCACCCTCCGCTAAGGAGTGTGAAGATAGA------AACAAGAAGAAGAAGAAGA 564 

                * **    ** ** *  ********     *          **  *  *   ******** 

 

cod             CCCTGGTGTGCGTGGCGTCAGGCTTCTACCCGGACCACGTCGGCGTGTCCTGGACTGTGA 550 

sb              CGTTGCTTTGTGTGATCAGCAGATTCTACCCAGACCATGTCAATGTGACCTGGAAGATCA 585 

rbt             CCCTAGTGTGTGTAGCCACCCGCTTCTACCCCGACCACGTCACGGTCTTCTGGCAAGTCA 624 

                *  *  * ** **        * ******** ***** ***   **   ****    * * 

 

cod             ACGGCCAGTCGGTCATTAAGGGCGTGGCCAGTGACCACCCCGCCCTGCGTGTGGACGACA 610 

sb              ATAATGAGGAAATGTCTAAGGGTGTGGCGACGGACAACATGCCCGCACAGCCGAACGATG 645 

rbt             ACAATGTCAACAGAACTGAAGGTGCCGGGACCGACAACAGGGCCTTGTGGGATAAAGATG 684 

                *               * * ** *  *  *  *** **    **          * **   

 

cod             AA------TACCAGATCACCAGCCGGCTCCGGGTGGAGGCCCGGGAGTGGTACACAGAGG 664 

sb              GAAAGTTTTACAAAATCACCAGCAGGCTGAAGGTCGACGCCAACAAATGGTTCGATCCCG 705 

rbt             GT---TTATACAGTATCACCAGCAGACTGAGAGTCCCAGCCAATGAATGGCACAAACCAG 741 



198 

 

                        ***   ********* * **    **    ***    * ***  *      * 

 

cod             GCACCATCTTCACCTGCAATGTCAGCTTCTTCAACGGGAATGACACCATCTACACCTCGG 724 

sb              AGAATGAATTCAAGTGCATTGCCAGCTTCTTCAATGGGACAGGAACGACATACCATGAAA 765 

rbt             AGAACAGATTCACCTGCATTGTCAGCTTTTACGATGGGACTGACAATATAAGAGTGACTA 801 

                  *     ****  **** ** ****** * * * ****  *  *  *             

 

cod             CCGAGGTTTATGGGGGCGGTGATGTCAGATGGATCAAGACGGAACCAGACGGCGAGACCA 784 

sb              ACGGAACT---AGAGGCATAGAAGCTCCA------AAGACAGGACAAAACA-TAACAACA 815 

rbt             ATGACACC---ATTAGTGGAGATCTCCAA--GGTCAAAGTGGGG-GAGAGA-TAACGACA 854 

                  *            *    **      *      **    *    * *     *   ** 

 

cod             GAGAGGAATTCGTTAAGGTCACCCAGACGGCCAAACTGTCCTACATCGTAATGATCGTCA 844 

sb              GAGGCGTATTTG--AAGAGAAGTCAGACCGCCAAGCTCTCCTACGGCGTTTTAATCATCA 873 

rbt             GATTACTATGTG--AAGAGCACCCAGACTGCCAAGCTGGCCTACAGCATCTTCATCGCTA 912 

                **     **  *  ***   *  ***** ***** **  *****  * *  * ***   * 

 

cod             AGAACATCGTCTACGGAGTCTTTGTCACGATACTGGCCTGGAAACT--CGGTCTC---GG 899 

sb              AGGGCTGCGTCTACGGCGCCTTCGTGATGTTTCTGGTGTGGAAGCTTCCGGGTTC---AT 930 

rbt             AGAGTACCTTCTATGGCCTGGTCGTCATGGTTATGATTTGGAAGTTCCAGGGCTCCTCAG 972 

                **     * **** **     * ** * * *  **   *****  *   **  **     

rbt             AACAGTGAGTCAA--CATGATCAGAATTCTTATCTCCATCACCATGGGTTACAGAGCCTG 118 

sebastes        AGTCATGAAACACGTCCTGATCATCACTGGCCTCTGCTTCACCTTTAACATCATA--CTG 69 

sb              AGCTCAGGACACAATAATGATGACAGCTGGTCTGATCACACTCTCTGCAGCTCTGCTCTG 64 

                *     *          **** *    *    *   *     *              *** 
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rbt             GGCTGCAGGTTCCTCTCCGAGTAATCAGGTTCACCAGGGACCTGCAGACCTGTACAAGAA 178 

sebastes        GTCT-CAGGTTCCTCACTCAGTGACAAAGTCGACCAGGCTCCAACTGATATATACGGAAA 128 

sb              CATTATAGGTCTAATCGATGGGAGTGATGTCACTCAGACTCCC-CTGCTGTGGATGATGG 123 

                   *  ****          *     * **    ***   **  * *   *  *       

 

rbt             CCAGGGAGAGTTGGCTAAGATGGAGTGT--TCACATAGTATATCAACC-TATAATGTCAT 235 

sebastes        ACAAGGAGAAACAGCTGAAATCACCTGC--TCACATAAAATAGACAAC-TACAACCGAAT 185 

sb              --AGGGTCAGTCTGCCACGATGAACTGCAGTCACACTAAGGGCACGTCATATTACGAGAT 181 

                  * **  *    **    **    **   *****            * **  *    ** 

 

rbt             CCTCTGGTACAAGCAATCCAACT-ACAGAGAATTGGTGTTTTTAGGATACATGCAATTGA 294 

sebastes        CCTCTGGTACAAGCAATTAA----ACAGAAACCTACAGTTCCTGGGATATCTGAATATAA 241 

sb              GTACTGGTACAGACAGCTGCCTGGACAGAGGA-TGAAGGAGATAGTTTTCACAACTCAAA 240 

                   ********  **         *****    *   *    * *  *           * 

 

rbt             AAACTGGATTTCC---TGAGGTTGGATTTGAT------ATAGAAGGAGATGCTAATGCAG 345 

sebastes        ACAAGGGTTATCC---TGAAGATGGAGTGGATGTGACCATAGACGGGGATGCAAACAAAG 298 

sb              GTCCCCCACATCAATATGAAAGTGGCTTCAGCACTGAGAAATTTCCAGCAACGAAGAAAG 300 

                          **    ***   ***  *          * *      *   * **   ** 

 

rbt             GTGGT---ACCAGCACCTTAACCATCAAACAACTAACTCCAAATAGCAGTGCTGTGTATT 402 

sebastes        GCCGG---AACTGCACATTAACAATTAACAGTCTCAGTGTGAGCAGCAGTGCAGTTTACT 355 

sb              ATGCTCTGACTGGATCTTTGACAGTGGAGAGGCTGCTGCTCAATGACAGTGGAGTATATT 360 

                        *   *  * ** **  *  *    **       *    *****  ** ** * 

 

rbt             ACTGTGCTGCTAC---CGGGACAAAAAACTA------TAATCCTGCATTCTTTGGAGCGG 453 
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sebastes        TCTGTGCTGCTAGTTACGGGACAGGGGGCCCCCAGACTGAACCTGCTTACTTTGGAAAAG 415 

sb              TCTGTGCTGTGAC---CAGTGGTGGTAACAC---------AGAAGCTCACTTTGGTGGAG 408 

                 ********  *    * *         *               **   ******    * 

 

rbt             GAACCAAACTGACTGTTCTGGATCCAAACATCAAAGTCACTGAACCCACA---GTGAAAG 510 

sebastes        GAACCAAACTCACCGTTTTAGAAACAGATCGAACAGTCACCCCACCAACAAAGGTAAAAA 475 

sb              GAACAAAGTTAACTGTTTTAGGTAAAGACGATAAAATTACCCCACCAACA---GTGAAAG 465 

                **** **  * ** *** * *    * *    * * * **   *** ***   ** ***  

 

rbt             TCCTAGCACCCTCCGCTAAGGAGTGTGAAGATAG---AAA---CAAGAAGAAGAAGAAGA 564 

sebastes        TATTTCCACCTTCAGCAAAGGAGTGCAGAAACAA---AAAGGACGATATAAGGAAGAAGA 532 

sb              TGCTTGAACCGTCAGAAAAGGAGTGCCGAAACAAGGTAGAAAAAGAAAAAAGGAAGAAGA 525 

                *  *   *** ** *  ********   * * *    * *     * *  * ******** 

 

rbt             CCCTAGTGTGTGTAGCCACCCGCTTCTACCCCGACCACGTCACGGTCTTCTGGCAAGTCA 624 

sebastes        CCCTCGTCTGTGTGGCTTCCGGTTTCTACCCCGACCATGTTAGCGTCTCCTGGGAAAAAA 592 

sb              CGTTGCTTTGTGTGATCAGCAGATTCTACCCAGACCATGTCAATGTGACCTGGAAGATCA 585 

                *  *  * *****      * * ******** ***** ** *  **   **** *    * 

 

rbt             ACAATGTCAACAGAACTGAAGGTGCCG----GGACCGACAACAG------GGCCTTGTG- 673 

sebastes        ACGGTAAAGTGGTTCCGGATAGCGAGGCAAAGGATAGACAGGAGAAGTATGGCGTGGCGA 652 

sb              ATAATGAGGAAATGTCTAAGGGTGTGGC----GACGGACAACAT------GCCCGCACAG 635 

                *   *          *  *  * *  *     **  ****  *       * *        

 

rbt             -GGATA--------AAGATGGT-------TTATACAGTATCACCAGCAGACTGAGAGTCC 717 

sebastes        CGGACAGCGCTGCCAAGAGGGTCGGGGAGTTCTACAGAATCACCAGCAGACTGAGAGTTC 712 
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sb              CCGA----------ACGATGGA----AAGTTTTACAAAATCACCAGCAGGCTGAAGGTCG 681 

                  **          * ** **        ** ****  *********** ****  **   

 

rbt             CAGCCAATGAATGGCACAAACCAGAGAACAGATTCACCTGCATTGTCAGCTTTTACGATG 777 

sebastes        CTGCTGCACATTACAACACACCCGGCAACACTTTCACATGCATCGTCAGCTTCTATAACG 772 

sb              ACGCCAACAAATGGTTCGATCCCGAGAATGAATTCAAGTGCATTGCCAGCTTCTTCAATG 741 

                  **     * *    *   ** *  **    ****  ***** * ****** *   * * 

 

rbt             GGACTGACAATATAAGAGTGACTAATGACACCATTAGTGGAGATCTCCAAGGTC---AAA 834 

sebastes        GAAC--ACAAAAT----GTCCTTCGTCATGCTTCCATTGATAGTATTAAAGGTG---AAT 823 

sb              GGACAGGAACGAC------ATACCATGAAAACGGAACTAGAGGCATAGAAGCTCCAAAGA 795 

                * **    *  *             * *       * *       *  *** *    *   

 

rbt             GTGGGGGAGAGATAACGACAGATTACTATGTGAAGAGCACCCAGACTGCCAAGCTGGCCT 894 

sebastes        CAGAGGGAGGCATGACCAGAGAGAAGTATTTGAAGCACACACAAAGTGCCAAACTYTCGT 883 

sb              CAGGACAAAACATAACAACAGAGGCGTATTTGAAGAGAAGTCAGACCGCCAAGCTCTCCT 855 

                  *    *   ** ** * ***    *** *****   *  ** *  ***** **  * * 

 

rbt             ACAGCATCTTCATCGCTAAGAGTACCTTCTATGGCCTGGTCGTCATGGTTATGATTTGGA 954 

sebastes        ACGGCGTCCTCATCGTGAAGAGCTGCATCTACGGAGCCTTCATTGGGTTTTTGGTGTGGA 943 

sb              ACGGCGTTTTAATCATCAAGGGCTGCGTCTACGGCGCCTTCGTGATGTTTCTGGTGTGGA 915 

                ** ** *  * ***   *** *   * **** **     ** *   * ** ** * **** 
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seabass         ---------------GAAAAAGACAAAGAGATTACCGGACCATCA---GTGAAAGTGCTT 42 

sebastes        AAACTCACCGTTTTAGAAACAGATCGAACAGTCACCCCACCAACAAAGGTAAAAATATTT 480 

fugu            ----------------AACCAGGTCTCAGCGTCACCGGGCCGACG---GTCACGCTGCTG 41 

                                **  **         * ***   **  *    ** *   *  *  

 

seabass         CAACCTTCGCCAAAGGAGTGCAAAAATGAAAAAGACAAACAAAGGAAGAAGACCTTGGTT 102 

sebastes        CCACCTTCAGCAAAGGAGTGCAGAAACAAAAAGGACGATATAAGGAAGAAGACCCTCGTC 540 

fugu            CCGCCGTCCTCCAGAGAGTGTCGCAACCAAAAACACCAAAAAAGGAAGAAGACCATCGTC 101 

                *  ** **  * *  *****    **  ****  ** *   ************* * **  

 

seabass         TGTGTGGCCAAAGACTTCTACCCAGACCATGTCAGTGTATCCTGGGAGATCAATGGGCAA 162 

sebastes        TGTGTGGCTTCCGGTTTCTACCCCGACCATGTTAGCGTCTCCTGGGAAAAAAACGGTAAA 600 

fugu            TGCGTGGCCAGCGGATTCTACCCGGACCACGTGAGCGTGTCCTGGGAGGTCAACGGGCAA 161 

                ** *****    *  ******** ***** ** ** ** ********    ** **  ** 

 

seabass         AATGTCACTAATGGTGTGGCGACGGAC-----GAAGCTGCCCAGC-TGATGCCGGAAAA- 215 

sebastes        GTGGTTCCGGATAGCGAGGCAAAGGATAGACAGGAGAAGTATGGCGTGGCGACGGACAGC 660 

fugu            AAGGTGACGGACGGCGTGGCGACGGAC-----GGCGCCGCCCTGC----GGCCCGAGGG- 211 

                   **  *  *  * * *** * ***      *  *  *    **     * * **     

 

seabass         -----------------GAAGTTTTACCAAATCACCAGCAGGTTGAGGGTACCTGCCAAA 258 

sebastes        GCTGCCAAGAGGGTCGGGGAGTTCTACAGAATCACCAGCAGACTGAGAGTTCCTGCTGCA 720 

fugu            -----------------GAGGTTCTACAGGATCAGCAGCAGACTGAGGGTCTCTGCTGAG 254 

                                 *  *** ***   **** ******  **** **  ****     
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seabass         GACTGGGAAAACTCAGATAATGAATTCAAGTGCATTGTCAATTTCTTCAATAAAACCCAT 318 

sebastes        CATTACAACACACCCGGCAACACTTTCACATGCATCGTCAGCTTCTATAACGGAACACAA 780 

fugu            GACTGGTTCCGTCCAGACTCCGACTTCACCTGCATTATCAGCTTCTTTAACGGAACCAGC 314 

                 * *         * *        ****  *****  ***  ****  **   ***     

 

seabass         ACTGTCCCTTACACAGATTCAATCTATGGTGAAGCTGTGACAACAGCAAATGTCATGACA 378 

sebastes        AATGTCCTTCGTCATGCTTCCATTGATAGTATTAAAGGTGAATCAGAGGGAGGCATGACC 840 

fugu            ACAGAGCTGTACAGCGCTTCGCTCCAGGGCGAAGCTGCCGCGGCCACAGAGGTGATGAGC 374 

                *  *  *        * ***  *  *  *       *      *       *  ****   

 

seabass         AGAGAGAAATATGTGAAGATCACACAGGCTGCCAAACTCACATACAGTGTTTTCATCGCC 438 

sebastes        AGAGAGAAGTATTTGAAGCACACACAAAGTGCCAAACTYTCGTACGGCGTCCTCATCGTG 900 

fugu            AGAGAGACCTATCTGAGGATCACGCAGGCCGCCAAGCTCTCCTACGGCGTTTTCATCCTC 434 

                *******  *** *** *  *** **    ***** **  * *** * **  *****    

 

seabass         AAGAGCTGCATTTACGGGGCCTTTGTGGTGTTTCTGGTGTGGAAGCTTCAGGGTTCAAAG 498 

sebastes        AAGAGCTGCATCTACGGAGCCTTCATTGGGTTTTTGGTGTGGAAGCTTCAGGGTTCAAGT 960 

fugu            AAGAGCGTCGTCTACGGGGCCTTCGTGATCTTTCTGGCCTGGAAGCTGCAGG---TAGGT 491 

                ******  * * ***** *****  *    *** ***  ******** ****    *    

 

seabass         GGAAAGCAGAACTACTGAGAGCTGAGGCCAAATCTATTCTAGGAGATCTAGAAGAAGATG 558 

sebastes        GGAAAACACAACAACTAGGCGCCGA----------ATCCTGGGAGATG-AGTTCATCTTC 1009 

fugu            TTGGTGTTTCACACCTGGGA-----------------CAGGTGAGCTGCTGGTGCCCTTC 534 

                          **  **  *                       *** *   *       *  

 

seabass         TTGGTTTCTGTAAATA---AAGGCTGAAAACTTTTCACAACTTTGTATATTGAAGTGCAT 615 
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sebastes        TGTAACTCTGTAAATATTATATGATAAAAGAGCTGCGTTAGGTTTCTTCTAAAACTGCAT 1069 

fugu            CTGTGGTCTGACTACTCTCACGGTTCTGGCTGCTCC--TGTTTCTATTGCAGGGTTGGAC 592 

                      ****   *        * *        * *      *    *       ** *  

9.1.11. MHCIIα 

nilet           ------------------------------------------------------------ 

sb              ---------------------GCTGAGGAGGACTGCTGACAGA---GACAGACTGGTTCA 36 

rbt             ------------------------------------------------------------ 

zf              AAGCTTTTGTCAGTAGAAAGAAATTAAAATGCCAAGAAACAGATGTGTCATACTGAGTGG 60 

                                                                             

 

nilet           ---------------------------------------------TCA-GAGAC------ 8 

sb              CAGAGACAGACTGGTTCTGGT----------------TCTGGTCCACA-GAGAG------ 73 

rbt             ----------TCAGTATCGGC-------------------GGTTCTGA-ATGTCT----- 25 

zf              TAAATTCTGATTGGCTGAGGTGATTCTGAGGCAGTTATATGGCTCACAAGAGATAGTTAG 120 

                                                               *   *         

 

nilet           -------------------------------CT-----GCTG--------ATTAAGATGA 24 

sb              -------------------------------CT-----GCTGTTGAAATGATGAAGATGA 97 

rbt             -----------------------------CTCT-----GTTGTC-------TGAACATGA 44 

zf              AGCTAGTAAAACTTAATTTGTAGTGTATGTTCTTCTTGGCTCTCAGAAAGATGGAGGTGT 180 

                                               **     * *          *  *  **  

 

nilet           A-------------------------------------GGAGTTGCT------------- 34 

sb              T-------------------------------------GAAGATGATGAAGATGATGGTG 120 

rbt             A-------------------------------------GACCTCTATGA---------TT 58 

zf              ATGTGTTCATCCTAACTCTTAGTGTGTTTGTTTCTTCAGAGGTTAATGGTAATCGTATTT 240 
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                                                      *       *              

 

nilet           ---------CCTCTTC----------CTCTCC-------------------TGTGTTC-T 55 

sb              GT-------CCTCGTC----------CTCTCC-------------------TGTGTCC-T 143 

rbt             GT-------CCTCATC----------CTCTGC-------------------TGTCAGG-T 81 

zf              TTTTAATTACTTCATCTCTAATTTTACTTTTTGCTGCATTTGTCTTGCAGTTGTGTTCAT 300 

                         * ** **          ** *                     ***     * 

 

nilet           CT--------GTGTCTCT--------------GCTGA---------------TGGTCAAC 78 

sb              CT--------GTGTCTCA--------------GCTGA---------------AGTTCTTC 166 

rbt             GT--------ATGCAGAA--------------GACAA---------------AGTTCTGC 104 

zf              CTCATAGACGATGTCTTTTGACACTTGACATGGATGATATTTTATCTGTTTCAGTTGTAC 360 

                 *         **                   *   *                * *   * 

 

nilet           ATACTGACATCAATATCGTTGGCTGTTCTGACTTTGATGGAGAAGTCATGTATGGACTGG 138 

sb              ATCAGGACATTGCTGTCGTTGGCTGTTCAGCCTCTGATGGAGAGATGGTGTACGGTCTGG 226 

rbt             ATACTGATATATATATTAATGGATGCAGTGATTCAGATGGAGTGGATATGTATGGACTGG 164 

zf              ATGAGGATATTGTTATGGACGGATGCTCAGATACAGAGAAAGAGTATATATCTGTTCTTG 420 

                **   ** **   * *    ** **    *     **   **      * *  *  ** * 

 

nilet           ATGGTGAAGAGAAGTGGTACGCAGACTTTAACAAACACATCGGAGTGTACCCTCAGCCTC 198 

sb              ATGGTGAAGTGATGTGGTACGCAGACTTCAAGAACAAGAAAGGAGTCTACCCTGTTCCTG 286 

rbt             ATGGTGAAGAGTTGTGGTACGCAGACTTCAACAAAAAGGAGGGAGTGGTGGCTCTGCCTC 224 

zf              ATGGAGAGGAAATGTACCATACAGACTTCAGTGGAAAACGGGGAGAGATGACATTGCCTG 480 

                **** ** *    **   *  ******* *      *    ****      *    ***  
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nilet           CTTTTGTTGTTAACCCTTTCCACTACCAGGAAGGAACTTATGAAGGCGCTGTGACAAATG 258 

sb              ACTTTGTAGGGA------TTCGCTACCAGGAAGGAGCTTATCAACAAGCTGAGGCTAATC 340 

rbt             CGTTTGCAGATCAGA--TTTCCTTCCCTGGATA----TTATGAACAGGCTGTAGGTAATC 278 

zf              ACTTTGCAGATC---CTTTTACCTATCCTGGTA---CTTATGAGCAGAGTCTTGCTGATT 534 

                  ****  *         *    *  *  *       **** *      *       **  

 

nilet           TACAGGTCTGCCAAAATGCTCTGAAGATTGTTCGTGAAGCGATGAAG------------- 305 

sb              TACAGATCTGCAAAACAAACCTGGATATAGTTCGTCAAGCCTACAAG------------- 387 

rbt             AGAGGACATGCAAAGGAGACCTTGGCGTAGATATAAAAGCTTACAAG------------- 325 

zf              ATGAAACATGCAAACATAACTTAGATGTTGCCGCCAAGGCCTACAAATCACCTTTAGAGA 594 

                        *** **       *     * *      * **    **               

 

nilet           ----------GACTTC---------------------CCTC----CAAAACACA------ 324 

sb              ----------GACGTC---------------------CCCC----CGGAGAGAG------ 406 

rbt             ----------AAC------------------------CCAC----CAGAGACAA------ 341 

zf              AATTGGGTGAGACTTTATACTTAGTTTTATGGTACTGCTTCTTTACAAAGTGTAAGTATA 654 

                           **                        *  *    *  *            

 

nilet           -----------------------------------------------------------T 325 

sb              -----------------------------------------------------------A 407 

rbt             -----------------------------------------------------------T 342 

zf              TTAAATCGAGTCATATAAATCCAAATGTTTAAGCAAAGGCAGTTATTTTTTGATCTACCT 714 

                                                                             

 

nilet           TGCTCCTTC---------AGCTGTGA----TGATCTACACCAGAGATGAGGTGGAGTTTG 372 

sb              TGCTCCCTC---------CAGTCCGG----TGATCTACCCCAGAGACGAGGTGGAGCTGG 454 
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rbt             AGACCCTCCT--------CACAGCAG----C-ATCTACCCCAGGGATGACGTGGAACTGG 389 

zf              TGCTTCTTTTTTTAGATCCACCTCAGACTTCAATCTATTCAAGGGATGATGTGCAGCCAG 774 

                 *   *                          *****  * ** ** ** *** *    * 

 

nilet           GAGTCCAGAACATTCTGATCTGTCATGTGACTGGTTTCTATCCTGCTCCTGTCAATGTCT 432 

sb              AAGTGAAGAACATCCTGATCTGTCATGTGACTGGTTTCTATCCTGCTCCTGTGAAGTTCT 514 

rbt             GGGTGGAGAACACCCTCATCTGCCACGTCAGTGGGTTCTTCCCTTCACCTGTCAGAGTCA 449 

zf              ATATTGAAAATAAGCTCATCTGTCATGTGACTGGTTTCTTCCCTCCACCTGTCAGAGTCT 834 

                   *  * ** *  ** ***** ** ** * *** ****  *** * ***** *   **  

 

nilet           CCTGGACCAAGAATGGACAGAAAGTCACTGAAGGATCTAGCATCAAT-GTTCCCTACATC 491 

sb              CCTGGACCAAGAACGGAAAGAACGTGACTGAAGGAACCAGCGTCAAC-GTTCCCTACATG 573 

rbt             GGTGGACCAGGAACGATCAGAATGTAACTGAGGGAGGGCGTATCAGC-ACCCCCTACCCC 508 

zf              CCTGGACAAAGAACAACGAGATTGTGACAGAGGGGATGAGTGTAAGCCAGTATCGAC-CA 893 

                  ***** * ***     ***  ** ** ** **     *  * *        * **    

 

nilet           AACAAAGATGGTTCCTTCAAACAGACATCCAGACTGGACTTCACCCCACAGCTGGGAGAC 551 

sb              AATAAAGACGGAACCTACAACCAGTTCTCCAAACTGGACTTCACCCCCCAACAAGGAGAC 633 

rbt             AACACTGATGTCACCTTCAACCAGTTCTCCAGTCTGAGCTTCACCCCAGAGGAGGGAGAC 568 

zf              AATAACGATGGCACATATAACATTTTCTCTACTCTAAGATTCACTCCTGTGGAAGGAGAC 953 

                ** *  ** *   * *  **       ** *  **    ***** **       ****** 

 

nilet           ATGTACAGCTGTACAGTGGAACATGTGTCCCTGACTGAACCACTAACCAAGATCTATGAT 611 

sb              TTCTACAGCTGTTCAGTGTCCCATCCAGCCCTGAAGGACCCACTGACCAGGATCTGGGAT 693 

rbt             ATCTATGGCTGTACTGTGGAGCACAAGGCCCTTACTGAGCCCCTGACACGGATCTGGGAA 628 

zf              ATTTACAGCTGCAGTGTGAACCACAAAACCCTTGAACAGCCTCAAACTAAAGCATGGGGT 1013 
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                 * **  ****    ***   **     ****     * ** *  **       *  *   

 

nilet           GTGGATTCATCTGGTCAGTCTGATCCAAGTGTTGGCCCCGCAGCGTTCTGTGGAGTGGGT 671 

sb              GTGGA-------GAAGACTCTG--CCCGGTGTTGGACCTGCAGTGTTCTGTGGACTGGGT 744 

rbt             CCTGA-------GGTGAGCCAG--CCCAGTGTGGGCCCTGCTGTGTTCTGTGGTGTGGGT 679 

zf              ---GA-------GATTATTTTT------TTGTTG---TTATATTGTTACAT-------AT 1047 

                   **       *   *            *** *          ***   *        * 

 

nilet           CTGACTGTGGGTCTGCTCGGTGTGGCTGCTGGAACCTTCTTCCTCATCAAAGGAAACGAG 731 

sb              CTGACTGTGGGTCTGCTCGGTGTGGCTGCTGGAACCTTCTTCCTCATCAAAGGAAACGAG 804 

rbt             CTGACTCTGG-------------GGCTGCTG----------------------------- 697 

zf              CC--TTGTAATTCTGTACAAAATAATTG-----ACATTGTG----GACAAAGTAAACAAC 1096 

                *    * *                  **                                 

 

nilet           TGCAGCTGATTGGCTTACAATGATGATGTCATCACGGTTCTGT----------------- 774 

sb              TGCAGATGATTGGTCGGGGCTGATGATGTCACCTCTGTTCTCTTTGATAACTTTCCTTCA 864 

rbt             ------------------------------------------------------------ 

zf              TAC-------TGG-------TAACGAAAACAACACCATTT-------------------- 1122 

                                                                             

 

nilet           ---------AATGAACTAATAATCAGTGTG-------------------ACTGT------ 800 

sb              TCTTGTATCAATAAACTCCTGAACACTGTGTTGATCTGATTCCTGCTGAACTGTCACTGA 924 

rbt             ------------------------------------------------------------ 

zf              ----------AAAAATGAATAATC--TGTG----------------------GT------ 1142 
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nilet           --GCT-------------------------------------------GATAT-----TG 810 

sb              ATGCTCTTTTAGCTTTTCTGATTCCAGGTGTAATAAAGTGTTAATCCAGATGTGGACCTG 984 

rbt             ------------------------------------------------------------ 

zf              ------------------------------------------------------------ 

                                                                             

 

nilet           TTAGTGTTTGTGTGCATAGTT------------------------CACCTGTT---AATG 843 

sb              TCAGTGTGTGTGTGTGTGGCCTGTGTTGGACAGTGACATCATCAGCACCTCCTCCAGGTG 1044 

rbt             ------------------------------------------------------------ 

zf              CCATTGCACAT-TACATAATTATAAATG------------------AGCTTTT----ATG 1179 

                                                                             

 

nilet           -AACATC-----------------------AGAGGC-----TGATTC------------- 861 

sb              TAACATCTGGATCTGGTGGAGTTTCTCTGTAGAGACAGAAGTGATTGATGCTGACAGGAT 1104 

rbt             ------------------------------------------------------------ 

zf              ---TTTC-----------------------AGAAGTGGAAGTTGCTA------------- 1200 

                                                                             

 

nilet           ----------TTCTGTTTTA-----------------------GTCTGTT--TCCTG--- 883 

sb              GAGACCATGATCCTGATTTAAAGACGAGGAGACAAAGTCAAGTGTGTGTTGATGCTGAGC 1164 

rbt             ------------------------------------------------------------ 

zf              -------------TGCCCAG--------------------------TGTTGGTCCAG--- 1218 

                                                                             

 

nilet           -------TTTACCTGTTTCACC----TGACCTGCAGA---TCATCACC---TGTATGA-- 924 

sb              CAGCGTCTCTGCAGGCTCCGCCCCTTTTACTTAAACACCTTCATGACCAGATGTGGGAAA 1224 
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rbt             ------------------------------------------------------------ 

zf              ------------CAGTTTT-----------CTGTGGA---------------GTGGGT-- 1238 

                                                                             

 

nilet           ---GCTGTT-CT------GTCTGTGATCA----TACGTTAATAAAGTTTAACTCTGGAAT 970 

sb              CCTGCCGTCACTTATAGAATCCGTCATCAGCCTCATGTGGTTCTGATCCGACTCCTGAAT 1284 

rbt             ------------------------------------------------------------ 

zf              ----CTGTTTCT----GGGGCTGCTGGGAGT----TGCTGCTGGAACGTTTTTCCTCA-- 1284 

                                                                             

 

nilet           TCAAAGCGAACCCAAGCTTCCTG---------------ACCA-------CAGCGTCTGC- 1007 

sb              CAGTAACTGATCTAAACTCCCTGTTAGTTTCTCGTTGCACCAACCGGGTCGACGTCTGCT 1344 

rbt             ------------------------------------------------------------ 

zf              TAAAAGGAAAC---AACTGCA-----------------ATTAAAAAAAATGGCATTAAA- 1323 

                                                                             

 

nilet           ------------------ATGTTTGAT--------CCAGCAGAT---------------- 1025 

sb              CTTAAACTCAGACGGGTCACTTTTCATTCTGCGTCCCAGCTGACACCGGGTCATACCGGG 1404 

rbt             ------------------------------------------------------------ 

zf              ------------------ACCGTAAAT---GCATTACAATTGG----------------- 1345 

                                                                             

 

nilet           TTCCTCT-----GGAC-------------------------------------------- 1036 

sb              TTCTTCTCACTGAGACCGGCAGAAGTTCAGACTGGGTTTAGTTCTGTTGGTGCAACAGGA 1464 

rbt             ------------------------------------------------------------ 

zf              -TCCTTGAA---AAAC-------------------------------------------- 1357 
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nilet           ------------TCTCTTCCTG-------CCA---------------------TAAAAAC 1056 

sb              TCCATTCTATAGTCTTTTCCTAACTCTGACCAGCTGAGCAGTCAGAACCGGTCTAAAGAC 1524 

rbt             ------------------------------------------------------------ 

zf              ----------ATACTTTCTCT--------------------------------TGAAAAC 1375 

                                                                             

 

nilet           -----------AAAGGAG---------------------ATCA---ATTTGAAATC--AT 1079 

sb              CCGTTGTAGCTGATGGAGCGACTGCAGGTTTAATCCTCCATCACTGATCTGACCTCTGAC 1584 

rbt             ------------------------------------------------------------ 

zf              ATGTT-----TAAAAGAG-----------------------------TTT---ATCTTGC 1398 

                                                                             

 

nilet           TT------------------TAACTAAACACCTG---ATTG------------------- 1099 

sb              TTCTGTCTGAACAGAACCAGTGATGAAACATCTGTGAACTGGTCCAGTGAAACTCCCAGA 1644 

rbt             ------------------------------------------------------------ 

zf              TTT----------------AAAATGAAAGAT------ATTG------------------- 1417 

                                                                             

 

nilet           ---TGTTCATGA-----ATGT-CTATAATG----------CGTCCT-------------- 1126 

sb              TGTTGCTGATGATTCTGATGTGCTGTAATGTTTGTGAAGACGTTATGTTGAACATCGTGT 1704 

rbt             ------------------------------------------------------------ 

zf              ----GCATATAA-----AT------TAAA------------------------------- 1431 
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nilet           ------TGTTTATCAAACTATGTTTCAG------ATTT---------------------- 1152 

sb              GTGTGATCTTTGTGAAACAGTGTGTTAGCTCACAGTTTGTTACAGCAGTCTGAATGAAAT 1764 

rbt             ------------------------------------------------------------ 

zf              ---------TCATTGCAC-ATATTGCAA-------------------------------- 1449 

                                                                             

 

nilet           -----TCAT------------ATGTC---------AATAAAA-----ACATCTGAGTAAA 1181 

sb              GTAAGTCATCACTGAGCTTCAGTGTCCACCTCTGGAATAAAACATCCACTTTTCAAAAAA 1824 

rbt             ------------------------------------------------------------ 

zf              -----TCAT---------------------------------------TTTTTCCACAT- 1464 

                                                                             

 

nilet           AAAAAAAAAAA----- 1192 

sb              AAAAAAAAAAAAAAAA 1840 

rbt             ---------------- 

zf              ---------------- 

 

9.2. Sequences 

9.2.1. IgM sequence 

Forward Frame 1: 

 

     1   D  L  -  L  A  Y  S  -  S  V  G  L  L  -  -  G  N  R  G  F  L  L  L  L  C  Q  R  F  F  T  

     1  GATTTATAACTTGCCTACTCTTAGAGTGTTGGCCTCCTCTGATGAGGAAACCGAGGCTTCCTTCTCCTGCTTTGCCAAAGATTTTTCACC 

 

    31   K  R  V  -  V  Q  M  L  K  N  E  V  E  I  P  N  K  I  H  E  I  K  T  P  S  E  E  R  K  D  

    91  AAACGAGTATGAGTTCAAATGCTGAAGAATGAAGTGGAAATCCCCAACAAAATACACGAGATCAAAACACCTTCTGAGGAAAGAAAGGAC 
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    61   E  N  G  T  K  L  Y  S  A  A  S  F  L  M  V  P  S  S  E  W  T  H  N  T  K  F  T  C  E  F  

   181  GAGAATGGAACTAAACTGTACAGTGCAGCAAGTTTTCTCATGGTACCGTCCAGTGAGTGGACTCACAACACTAAGTTTACATGTGAGTTT 

 

    91   K  G  K  G  E  N  G  D  T  F  V  N  S  S  V  T  Y  R  P  S  D  C  D  D  V  G  C  P  E  A  

   271  AAGGGGAAGGGTGAAAACGGTGATACATTCGTGAATTCATCTGTGACCTACAGACCTTCAGATTGTGATGATGTAGGATGTCCTGAAGCA 

 

   121   D  V  T  -  R  S  Q  A  P  Q  W  R  T  C  F  Y  T  K  K  E  R  -  L  S  S  P  G  K  Q  P  

   361  GATGTGACATAAAGATCACAGGCCCCACAATGGAGGACATGTTTTTATACAAAAAAGGAAAGATAGTTGTCGAGTCCAGGTAAACAACCA 

 

   151   S  V  E  K  I  S  W  E  D  Q  H  G  N  E  M  A  D  A  S  M  T  P  P  K  G  S  K  G  Q  F  

   451  TCTGTCGAGAAGATTTCGTGGGAGGACCAGCATGGAAACGAAATGGCTGATGCCTCCATGACCCCCCCTAAAGGAAGTAAAGGCCAATTC 

 

   181   S  L  P  L  E  I  T  M  T  N  G  A  R  G  -  S  L  L  H  C  -  T  W  R  L  A  -  T  T  -  

   541  AGCCTTCCACTTGAAATCACTATGACGAATGGAGCAAGGGGATAAAGCCTACTGCATTGTTGAACATGGAGACTGGCTTGAACCACTTAA 

 

   211   E  T  I  -  K  E  D  R  R  T  D  S  A  S  F  S  V  Y  A  A  S  S  R  T  Y  -  K  R  N  G  

   631  GAAACAATATGAAAGGAAGATCGGAGAACAGACTCAGCGTCCTTCAGTGTTTATGCTGCCTCCAGTAGAACATACTAGAAAAGAAATGGT 

 

   241   D  P  -  L  A  M  -  K  T  S  S  L  R  K  F  L  C  L  G  L  L  M  T  R  K  Q  T  Q  N  T  

   721  GACCCCTGACTTGCTATGTGAAAGACTTCTTCCCTCAGGAAGTTTTTGTGTCTTGGCTTGTTGATGACGAGGAAGCAGACTCAAAATACG 

 

   271   S  P  Y  H  K  P  R  

   811  AGTCCATACCACAAACCGAGAAT 

9.2.2. IgZ sequence 

 
   1   S  Y  F  P  V  D  R  C  Q  W  D  H  P  D  F  S  T  I  S  S  S  -  E  K  Q  Q  I  Y  R  S  

     1  TCTTACTTTCCAGTGGACCGATGCCAGTGGGACCACCCTGACTTCAGTACAATATCCTCCAGCTGAGAAAAACAACAAATATACAGGAGT 

 

    31   Q  F  G  P  S  I  K  I  -  X  G  F  K  E  V  F  -  M  F  X  N  S  C  R  I  S  Q  K  S  A  
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    91  CAGTTTGGTCCAAGTATCAAAATCTGANTGGGATTCAAGGAAGTCTTTTAAATGTTCAGNAACTCATGTCGGATCTCCCAAAAATCTGCA 

 

    61   S  A  K  A  Y  S  Y  K  X  D  F  A  I  G  A  K  -  R  H  P  G  P  G  V  Y  D  -  G  R  S  

   181  AGTGCAAAAGCCTATTCCTACAAANGTGACTTTGCTATCGGTGCCAAGTGAAGGCACCCAGGCCCTGGTGTGTACGATTGAGGACGGTCG 

 

    91   Q  W  N  T  -  L  I  -  V  E  K  E  W  R  R  V  E  R  L  H  S  K  S  H  P  K  D  W  R  V  

   271  CAATGGAACACTTGACTCATTTAAGTGGAAAAAGAATGGCGCAGAGTTGAACGACTACATTCAAAGTCCCATCCAAAAGATTGGAGAGTT 

 

   121   T  F  S  C  Q  C  P  E  G  Q  Q  H  X  L  G  X  -  S  C  L  Y  L  -  G  D  L  Q  R  N  X  

   361  ACATTCAGCTGTCAGTGTCCTGAAGGTCAGCAACACANACTGGGACANTAAAGCTGTTTATACCTGTGAGGTGATTTACAGAGGAACANA 

 

   151   I  -  X  X  G  L  X  S  S  X  

   451  ATATAANAANAAGGCCTCNAAAGCTCCNAT 

9.2.3. MHCIIα  

Forward Frame 1: 

 

     1   N  Q  Q  I  C  K  D  N  L  K  V  D  L  Q  A  Y  K  N  P  P  L  Q  L  D  P  P  S  S  P  M  

     1  AATCAACAGATCTGCAAAGATAACCTGAAAGTGGATCTCCAGGCCTATAAGAACCCTCCTCTACAGCTCGATCCTCCTTCCAGTCCGATG 

 

    31   I  Y  P  R  D  D  V  E  L  E  Q  Q  N  H  L  I  C  H  V  T  G  F  Y  P  A  P  V  K  I  Y  

    91  ATCTACCCCAGAGACGACGTGGAGCTGGAACAGCAGAACCACCTCATCTGTCATGTGACCGGTTTCTATCCTGCTCCTGTAAAGATCTAC 

 

    61   W  T  K  N  G  E  N  V  T  E  G  T  S  I  N  V  P  F  P  N  K  D  G  S  F  S  Q  M  S  R  

   181  TGGACGAAGAACGGAGAGAACGTGACCGAAGGAACCAGCATCAATGTTCCCTTCCCCAACAAAGACGGTTCCTTCAGCCAGATGTCCAGA 

 

    91   L  E  F  T  P  Q  L  G  D  I  Y  S  C  T  V  K  H  L  A  L  K  Q  P  L  T  R  I  W  D  V  

   271  CTGGAGTTCACCCCACAGCTGGGAGACATTTACAGCTGTACAGTGAAACATCTGGCCCTGAAGCAACCACTGACCAGAATCTGGGATGTG 

 

   121   E  K  T  Q  P  S  I  G  P  A  V  F  C  G  L  G  L  

   361  GAGAAGACTCAGCCCAGTATTGGACCTGCAGTGTTTTGTGGACTGGGTCT
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9.3. Complement photos 
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9.4. Leucocyte Statistical data 
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