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Abstract

Organic light emitting diodes (OLEDs) are an emerging technology based on

electrically conducting polymer films, with great promise for large area light-

ing and flexible ultra-thin displays. However, despite the rapid technological

development, there is still a poor understanding of the degradation and spin-

dependent recombination processes that take place inside an OLED. In this

thesis, Electron Paramagnetic Resonance (EPR) was used to investigate these

processes in blue-emitting OLEDs.

A successful procedure was developed and refined for fabricating OLEDs with

the structure ITO/PEDOT:PSS/emissive layer/Al/Ag, with and without the

PEDOT:PSS hole-transporting layer. The organic emissive layer was either

F8BT, PFO, or PVK:OXD-7:FIrpic (PB). These OLEDs were fabricated in air and

with a geometry optimised for EPR experiments. Critical features for satisfac-

tory devices were found to be a sufficiently thick organic layer and minimal

exposure to the air.

A compact apparatus was developed for simultaneous light output, current,

and voltage measurements on the OLEDs while in an inert glove box envi-

ronment. Electroluminescence and current-voltage parameters measured for

these devices showed predominantly trap-controlled space-charge-limited con-

duction.



iv

OLEDs with PFO as the emissive layer and with a PEDOT:PSS layer were in-

vestigated with conventional, electrically-detected (ED) and optically-detected

(OD) EPR techniques. EDEPR and ODEPR signals were observed at∼9.2 GHz

and in the low (<50 mT) and high (∼330 mT) magnetic field regimes and were

found to change markedly with time during operation as the device degraded.

The low field signals initially showed a composite broad quenching and super-

imposed narrow enhancing response centred around zero field strength. These

signals were attributed to magneto-resistance (MR) and magneto-electrolumi-

nescence (MEL). Following operational ageing, a third, narrow quenching line

was observed in the MR and the ratio of the initial two MR responses changed

substantially. These effects are tentatively attributed to a hyperfine interaction.

For both EDEPR and ODEPR, quenching high field resonances with a g-value

(gyromagnetic ratio) of 2.003±0.001 were observed. The current-quenching

resonance gradually diminished during operation and after 4–5 hours was re-

placed by a current-enhancing resonance. The appearance of this latter res-

onance could be explained by chemical changes in the OLED due to the dif-

fusion of oxygen through the device from the oxygen-plasma-treated ITO. A

working model is proposed which can explain this observed change as spin-

dependent trapping and recombination at free radicals, although the model

requires further experimentation to test its validity.
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Chapter 1

Introduction

Organic Light Emitting Diodes (OLEDs) are a class of electroluminescent de-

vice in which the light-emitting material is an organic thin film sandwiched

between two conducting electrodes. A schematic of OLED operation is pre-

sented in Figure 1.1. When an appropriate voltage is applied across an OLED,

electrons are injected into the Lowest Unoccupied Molecular Orbital (LUMO)

of the organic molecule, analogous to the conduction band in an inorganic

semiconductor LED, and holes1 are injected into the Highest Occupied Molec-

ular Orbital (HOMO), which is analogous to the valence band in an inorganic

semiconductor LED. The process of electron-hole recombination releases the

excess energy as visible light and/or heat.

This thesis is concerned with the application of electron paramagnetic reso-

nance (EPR) measurement techniques to OLEDs. In particular it addresses the

question of whether EPR can reveal any information about the ageing pro-

cesses which result in reduction of the level of light emission in OLEDs.

EPR involves the interaction between the magnetic moment (or ‘spin’) of an

1A hole is defined as the absence of an electron.
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Figure 1.1: A schematic of OLED operation. See text for details.

electron in a magnetic field and incident microwave radiation. The simplest

example is the resonance of a single unpaired spin, as illustrated in Figure 1.2.

In the presence of a static magnetic field B, the electron spin aligns either par-

allel or antiparallel with the field. There is an energy difference ∆U between

these two alignments, which depends on the magnetic field strength. When

the energy of the microwave radiation matches this difference, the electron

may absorb some of the microwave energy and switch between the spin align-

ments, i.e. undergo a ‘spin flip transition’. This occurs when the resonance

condition is satisfied, as follows:

∆U = U↓ − U↑ = gβeBr = hν (1.1)

where g is the gyromagnetic ratio (Zeeman splitting constant or more com-

monly “g-value”) of the unpaired electron, βe = |e|~/2me is the Bohr mag-

neton, Br is the resonant magnetic field, h is Planck’s constant, and ν is the

frequency of microwave radiation. In an EPR experiment, these spin flip tran-

sitions are detected and may be analysed to reveal information about the envi-

ronment surrounding the unpaired electrons.

Conventional EPR measures changes in microwave absorption. This method

of detection requires a minimum of 1011 unpaired electron spins for a 1 Gauss
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Figure 1.2: Energy-level splitting and resonant microwave absorption of a sin-
gle electron in an applied magnetic field. Mathematical symbols are explained
in the text. Adapted from [1]

(100 µT) wide EPR line with a signal to noise ratio of 1:1 [2]. A typical OLED

is made of a thin film of organic material which contains ∼6×1011 molecules2,

some of which contain an unpaired spin. Hence conventional EPR lacks the

sensitivity required for studying OLEDs.

However the particular processes which are of interest, specifically the radia-

tive and non-radiative recombination processes, are spin-dependent. Changes

in these processes due to EPR lead to changes in the current and light emis-

sion, which may be detected electrically and optically. This thesis makes use

of these alternative techniques to study OLEDs and their degradation.

The degradation of blue-emitting OLEDs is of significant scientific and prac-

tical interest, as understanding the processes limiting the OLED lifetime is of

key importance in developing longer-lasting OLEDs. Blue OLEDs have the

shortest lifetime of any of the available colours, and are the limiting factor in

polychromatic displays.

OLED research is leading to increased lifetimes but these are still below the

performance required for general lighting applications, which is 100 lm/W

with 50,000+ hour lifetimes [3,4]. Lifetimes reported by leading OLED dis-

2For a polymer with molecular weight of 106 and density of ∼1–2 g cm−3 in a film with
dimensions 100 nm × 10 mm × 1 mm.
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play companies Cambridge Display Technology (CDT) and Universal Display

Corporation (UDC) are presented in Table 1.1.

Colour CDT (2011) UDC (2012)

Deep Red 352 250
Red 200 900

Green 200 (F), 236 400
Light Blue 34 (N) 20
Deep Blue 21 (N) –

Table 1.1: Operating lifetimes in thousands of hours to half brightness from
1,000 cd/m2. (F) fluorescent emitter, (N) not specified, all others are phospho-
rescent emitters. From [5,6].

The colour of OLED emission is determined by the chemical structure of the

emitting organic molecules. With the great range of organic molecules avail-

able, OLEDs have been fabricated for every colour in the whole visible spectral

range [7]. ‘White’ emission is then possible with the combination of several

molecules, such as blue, green and red emitters, or blue and orange emitters,

either in the same OLED or in neighbouring OLED pixels. However, as il-

lustrated by Table 1.1, the lifetime performance of blue OLEDs is significantly

lower than that of red and green OLEDs. The limited lifetimes are in part due

to the susceptibility of the organic materials to degradation by oxygen and

water. Hence designing effective protective encapsulation layers is an area of

ongoing research, especially for flexible devices [3].

Despite this current limitation, OLEDs are an emerging technology with many

advantages over rival technologies for lighting and display applications. For

example OLED displays have excellent colour resolution, are brighter than the

competing LCD and plasma technologies and have much better on-off con-

trast. This is in part due to the ’true’ black: absolutely no light is emitted

when a pixel is black, giving a deep black and consuming no power. In con-

trast, a backlit LCD display makes use of the imperfect polarisation of liquid
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crystals and cannot block the light completely, limiting the light-dark contrast.

Further, OLED displays require no background illumination, and few (if any)

filters. OLED displays have response times “1,000 times faster than LCD” [8].

They are also thin and light, and have a viewing angle of nearly 180◦ [3,7].

There are two types of OLED which differ in their theoretical efficiency: fluo-

rescent OLEDs can convert up to 25% of the electrical energy into light, whereas

phosphorescent materials have the potential to convert up to 100% (any re-

maining energy is lost as heat in the device) [9]. Compared to other light

sources, OLEDs are power- and cost-efficient3, which makes them ideal for

large-scale lighting and displays [10,11]. OLED displays can consume “sub-

stantially less power” than current LCDs in cellphone and TV applications

[5,12] and are already being used by several companies4. Also, the organic

materials are non-toxic and environmentally-friendly [5].

Two promising features of OLEDs are that they can be made on flexible sub-

strates which can be bent, or even rolled up into a tube, and they can be made

virtually transparent [3,5,12]. In addition, these transparent OLEDs could be

coupled with organic photovoltaic technology to provide a display that har-

vests sunlight during the day, and then provides lighting during the night.

These two technologies are closely related, and easily compatible, as an or-

ganic photovoltaic device is effectively an OLED in reverse.

With these exciting applications of OLEDs, the investigation of degradation

processes is an important and fascinating area of research. This thesis shows

that EPR techniques may be used to study the degradation of blue OLEDs and

3The cost of OLED production is predicted to decrease as the technology matures [5].
4This year (2013) LG is offering a 55” high-definition OLED TV with 100,000,000:1 contrast

ratio and which is 4 mm thick and 3.5 kg in weight [8,12]. This TV is based on a white OLED
backlight with colour filters. In competition, Samsung has promised to release a 55” ‘Real’
OLED TV with red, green and blue OLED pixels. OLED displays are already used in some
mobile phones, for example the 5.5” Samsung Galaxy Note 2 [13].
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provides valuable insight into these degradation processes. The application of

the EPR technique to OLEDs relies on spin-dependent charge transport and

recombination in the OLEDs, which will be discussed in Chapter 2. Chapter

3 provides a more detailed discussion of the electron paramagnetic resonance

technique and a review of the relevant literature. The experimental apparatus

is presented in Chapter 4; details of the development of OLED fabrication, a

task which had not previously been undertaken at VUW, and the subsequent

device characterisation are provided in Chapter 5. Chapter 6 then presents

the results of an EPR study on fluorescent polymer bilayer OLEDs. The thesis

concludes with a summary of the results and suggestions for further work in

Chapter 7.



Chapter 2

Spin-Dependent Charge Transport

in Organic Light Emitting Diodes

This chapter outlines the principles of OLED operation, with a particular focus

on spin-dependent transport. The discussion which follows draws on recent

reviews of OLED operation, for example the “Organic Electronics Primer” [14],

and of spin-dependent charge transport, including reviews and/or books by

Schwoerer and Wolf [7], Lupton, Boehme and McCamey [15,16], Shinar et. al.

[17], and Spaeth and Overhof [18].

2.1 Operating Principle and Charge Transport Mech-

anisms

There are four fundamental processes occurring within the OLED during op-

eration. These are summarised in the energy-level diagram in Figure 2.1 and

discussed further in the text.
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Figure 2.1: The structure and schematic energy diagram of a working (forward
biased) two-layer OLED showing the four processes of 1 charge injection and
2 transport, 3 binding to form excitons, and 4 recombination accompanied by
light emission. This diagram was adapted from [7].

The energies of the HOMO (Highest Occupied Molecular Orbital) and LUMO

(Lowest Unoccupied Molecular Orbital) relative to the vacuum level depend

upon the work functions of the metal electrodes, and the applied electric field,

and so depend upon position within the emissive layer, as shown in Figure

2.1. The example materials are those used for the two-layer fluorescent blue-

emitting OLED fabricated at VUW. Other layers of electron-transporting, elect-

ron-blocking, hole-transporting, and/or hole-blocking materials may also be

included to improve the charge transport, and thus the OLED performance.

2.1.1 Charge Injection and Transport

To inject charge (electrons and holes) into the organic layers, an operating volt-

age sufficient to overcome any potential energy barriers at the organic-metal

interfaces is required. Given this voltage, electrons and holes are then injected
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into1 and driven through the organic polymer layers by the electric field be-

tween anode and cathode. Within a molecule, charges move relatively freely

due to π-conjugation. However the polymer layer is mostly disordered so

the charges must ‘hop’ from one molecule to another. The coupling between

molecules is material-dependent, but generally weak (van der Waals) for poly-

mers, resulting in low hopping mobilities. Electron and hole mobilities are

typically 10−5 to 10−2 cm2 V−1 s−1 [19], which are much smaller than those for

typical inorganic semiconductors (e.g 1500 and 450 cm2 V−1 s−1 for electrons

and holes in silicon respectively [20]).

As the electrons and holes move through the organic polymer material, each

charge forms an electronic polarisation around it which distorts the lattice.

This localisation of the charge causes a local upward shift of the HOMO and

downward shift of the LUMO energy levels corresponding to the elastic en-

ergy of the distortion. Together the charge with its lattice distortion is known

as a ‘polaron’ [7,21].

A pair of like charges and their local lattice distortion may come together to

form a ‘bipolaron’. A bipolaron is thus analogous to the Cooper pair in BCS

theory [21]. Bipolaron formation requires the Coulomb repulsion to be less

than the energy gained by the additional lattice distortion. The combination

of two spin-1/2 particles forms spin-0 and spin-1 bipolarons; spinless (spin-

0) bipolarons have a lower energy so are the dominant form. Note that mi-

crowave radiation can have no effect on a spinless bipolaron.

Electrons or holes may also become trapped in regions where the polarisation

energy is relatively high, for example at defects or impurities such as dopant

molecules. These are known as shallow or deep traps, where the captured

1Electrons and holes are injected at the same rate for steady state conditions, in a fully
bipolar device [7]
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charges can or cannot escape by thermal activation respectively [7]. The en-

ergies of these traps may lie slightly above the HOMO or slightly below the

LUMO energy levels, corresponding to the acceptor and donor levels in inor-

ganic semiconductors.

2.1.2 Exciton Formation

The association of an electron and a hole and the surrounding lattice distortion

form an elementary excitation called an ‘exciton’. The exciton has a binding en-

ergy due to the Coulomb attraction between the electron and hole; the exciton

energy states lie within the HOMO-LUMO gap, as shown in Figure 2.1.

For organic semiconductors the electron and hole tend to be localised on in-

dividual molecules [22], and often at defect or impurity molecules, forming

‘bound’ excitons. These highly localised excitons are known as Frenkel exci-

tons. When the bound charges are delocalised over adjacent molecules this is

known as a charge transfer exciton [19]. The location of exciton formation in

an OLED device depends on the relative electron and hole mobilities and layer

thicknesses, and can be near the cathode (high hole mobility) or near the anode

(high electron mobility) or somewhere in between [7].

In the absence of a magnetic field there are equal populations of spin-up and

spin-down electrons, and likewise for holes. Thus weakly bound excitons are

formed in roughly equal combinations of parallel and antiparallel spins. The

two spin-1/2 polarons of opposite charge may form excitons in the singlet spin-

0 or triplet spin-1 states, so named because there is one spin-0 state and three

spin-1 substates. Hence the population of triplet excitons is typically three

times the singlet exciton population.
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Figure 2.2: A configuration-coordinate diagram showing exciton formation
from two distant charges, then subsequent radiative decays as per the Franck-
Condon principle (see [23] and [24]). Intersystem crossing (ISC) transitions
between triplet and singlet excitonic states are possible in cases of large spin-
orbit coupling.

2.1.3 Exciton Recombination

The key transition for OLEDs is exciton recombination, where the electron re-

combines with the hole and gives off the excess energy as (at least) one photon.

The radiative processes are illustrated in Figure 2.2. There are also many non-

radiative recombination pathways (internal conversion processes) which are

not shown, for example energy loss as heat through vibrational modes in the

organic polymer.

Recombination from the singlet state (solid arrow) is permitted by the Pauli

principle and is known as fluorescence. This process is the main radiative

process for most π-conjugated polymers, such as the polyfluorenes. As fluo-

rescence is spin allowed, this process occurs rapidly, with typical fluorescence

lifetimes of ∼10−9 s [17].

Recombination from the triplet exciton state to the singlet ground state (dashed

arrow) is known as phosphorescence. This radiative pathway is usually forbid-
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den due to spin conservation. However spin-orbit interactions can cause some

mixing of singlet states into the triplet states so that there is a small probability

of a triplet-singlet transition [25]. Phosphorescence is therefore much slower

than fluorescence, with phosphorescent lifetimes of at least ∼10−4 s [7].

The magnitude of spin-orbit coupling increases with increasing nuclear charge,

Z [26]. Hence for some materials with large Z, the spin-orbit coupling is suffi-

ciently large that phosphorescence is partially allowed. An important example

is the heavy metal atom chelates, such as Ir(III) complexes. These chelates have

extremely high (nearly 100%) inter-system crossing (ISC) efficiency from the

singlet excitonic state to the triplet excitonic state, so phosphorescence is the

dominant radiative process [17]. The efficiency of this phosphorescent radia-

tion is the primary reason for the concerted research effort on phosphorescent

OLEDs.

2.2 Spin-dependent Recombination Models

Excitonic recombination is intrinsically spin-dependent and therefore can be

affected by any process such as electron paramagnetic resonance which changes

the relative spin populations prior to recombination. How these processes

cause changes in measurable properties such as the light emission and overall

conductivity of an OLED was first discussed in the context of inorganic semi-

conductors. Hence several models of spin-dependent recombination that were

developed for inorganic semiconductors will be briefly summarised here as

they form the basis for a subsequent discussion of related models for organic

materials.
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2.2.1 Models Developed for Inorganic Semiconductors

The Lépine Model

Lépine 2 proposed a model of spin-dependent recombination in the early 1970’s,

based on a previous Shockley-Read-Hall model [28,29]. His model considers

a recombination centre with an unpaired electron which can first capture a

conduction electron, and then a hole, or vice versa. The initial capture of an

electron (or hole) depends on the relative orientation of the conduction electron

spin and the recombination centre spin, as the final state must be a singlet state,

according to Pauli’s principle. The second capture process is spin-independent

since the result of the first capture is a singlet state. This mechanism is illus-

trated in Figure 2.3. The capture cross section Σ for an electron should then be

of the form Σ = Σ0(1 − pP ) where Σ0 is the spin-independent capture cross-

section, and p and P are the relative spin polarisations3 of the conduction elec-

tron and recombination centre respectively.

Figure 2.3: A schematic of the spin-dependent recombination mechanism pro-
posed by Lépine. Adapted from [18].

2Lépine observed a decrease in the photoconductivity of a pure silicon sample at ∼330 mT
with ≈9.3 GHz microwaves (see [27]).

3The spin polarisation is defined as the difference in (field induced) spin state populations,
divided by the total spin population.
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In the presence of an external magnetic field, most of the conduction and re-

combination centre electrons orient themselves parallel with the field, corre-

sponding to the lowest energy Zeeman levels. In the limiting case of zero

Kelvin, all of the conduction electrons and the recombination centres are par-

allel spin oriented and so the capture cross section is small. Electron paramag-

netic resonance then pumps the populations of one spin or the other, depend-

ing on the resonant field strength, into an antiparallel spin configuration. Thus

the capture cross section increases, which reduces the population of conduc-

tion electrons and so decreases the conductivity, giving rise to an EPR signal

which may be detected by measuring the conductivity.

Detailed analysis shows that Lépine’s model predicts that the relative change

in conductivity will be proportional to (B0/T )2, where B0 is the strength of the

external magnetic field and T is the absolute temperature in Kelvin [18]. How-

ever for organic as well as inorganic materials neither the field dependence nor

the temperature dependence have been experimentally realised, and the rela-

tive changes tend to be one to two orders of magnitude larger than predicted

by this model [30,31].

The Kaplan, Solomon and Mott (KSM) Model

In 1978 Kaplan, Solomon and Mott [31] presented an ‘intermediate pair’ model

that assumes the electrons and holes are captured at recombination centres

independent of their spin orientation to form electron-hole pairs. Recombination

is then only allowed for pairs with antiparallel spins, i.e. pairs in the singlet

configuration, so these pairs will be short-lived and in the steady state most

electron-hole pairs will be in the triplet configuration. These triplet pairs can

only recombine if an external stimulus such as microwave radiation causes a
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Figure 2.4: A schematic of the KSM model of spin-dependent recombination.
The electron and hole at Pair 1 require a spin transition of either the electron
or the hole in order to recombine. Alternatively the electron could move to
another recombination centre, e.g. to form Pair 2 with a hole of antiparallel
spin such that recombination is permitted. Adapted from [30] and [18].

spin flip transition, or if the pair dissociates and finds another electron or hole

with which to recombine. This is illustrated in Figure 2.4.

A key assumption of this model is that the recombination rate is much faster

than the spin lattice relaxation rate, so that the triplet state population is rela-

tively large. The overall recombination rate depends only on the relative pop-

ulations of singlet and triplet electron-hole pairs, and is not dependent on the

polarisation of the electrons or holes. The recombination rate is also field in-

dependent, in agreement with experiment [18]. Indeed, Kaplan, Solomon and

Mott noted that “the relative variation [in conductivity] can be as large as 10%,

and is field independent as confirmed by experiment” [31].

A further investigation of pair formation in this model shows some possible

problems [32]. Spaeth [18] comments that the observation of (ground state)

EDEPR is inconsistent with electron-hole recombination at a single defect, since

this would involve (excited state) excitons. However Solomon later clarified

that the electron would be trapped at a donor and the hole at an acceptor to
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form a close-proximity electron-hole pair, and so this is essentially a donor-

acceptor recombination model [33]. But neither the electron nor the hole can be

at a shallow trap, as emission rates in silicon are much faster than commonly-

observed recombination rates [32]. Rather, the electron and hole must be trap-

ped at a deep donor and acceptor in close proximity with one another in order

for the electron-hole pair to recombine. Depending on the degree of proximity,

this may lead to a large exchange interaction energy separating the singlet and

triplet states, which will typically be larger than that provided by standard

microwave frequencies [32]. However we note that this argument may not

apply to polymeric materials where the spins may be located on neighbour-

ing but distinct molecules with quite different exchange interactions to ‘single

molecule’ silicon.

The Spin-Dependent Shockley-Read-Hall Model

A refined model was later proposed by Rong et. al. in 1991 [32] to avoid some

of the inconsistencies of the KSM model. Like the Lépine model, the Spin-

Dependent Shockley-Read-Hall model involves a recombination centre with

an unpaired spin, and, like the KSM model, spin-independent capture of an

electron and hole occurs at this recombination centre. However, here the elec-

tron is first captured in a spin-independent way into an excited state of the

recombination centre (possibly a charge transfer state). The recombination

with the unpaired spin of the recombination centre is then spin-dependent,

as this process is subject to the Pauli principle. The recombination process is

completed by the subsequent spin-independent capture of a hole. In contrast

to the previous models, Rong et. al. introduce the idea of a ‘re-adjustment

time’, treadjust, which is the time the conduction electron spends in the excited
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Figure 2.5: A schematic of the Spin-Dependent Shockley-Read-Hall model of
spin-dependent recombination. See text for details. Adapted from [32] and
[18].

state of the recombination centre before spin-dependent recombination into

the ground state. This model is shown in Figure 2.5.

Note that the readjustment time depends on the relative spin orientations of

the recombination centre and the captured electron. A captured electron of

parallel spin to the unpaired electron in the recombination centre has a signif-

icantly longer readjustment time than one with antiparallel spin. As for the

triplet electron-hole pair in the KSM model, during this longer readjustment

time the captured electron may undergo a spin flip transition, e.g. due to mi-

crowave absorption, or be released back into the conduction band.

A significant aspect of this model is that both electron and hole capture occur

at the same defect or impurity site without the potential inconsistencies of the

KSM model.

In principle, the trapped conduction electron in the excited state of the recom-

bination centre should have a characteristic spin resonance. However this has

not been observed experimentally. Rong et. al. suggest that this may be due to
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fast spin-lattice relaxation such that the overall resonance would be too broad

for individual resonances to be observed.

2.2.2 Models Proposed for Organic Semiconductors

A key difference between inorganic and organic semiconductors is the forma-

tion of bipolarons in organic semiconductors. This opens up many more re-

combination mechanisms, such as spin-dependent bipolaron formation and

annihilation of triplet and singlet excitons by bipolarons. Many models have

been proposed for spin-dependent recombination in organic semiconductors,

of which two currently favoured models will be presented here. The first

model is similar to the models above for inorganic semiconductors and is

based on polaron pair formation and spin-dependent recombination. The sec-

ond model is more complicated and involves mechanisms such as the forma-

tion of bipolarons and annihilation of singlet and triplet excitons.

Boehme and McCamey’s Model

Boehme and McCamey [15,34] present “a general model for spin-dependent

transitions via exclusive pairs of paramagnetic electron states”. In this model

excitons are formed from polaron pairs (one positive and one negative charge)

in a gradual, multi-step process. Polaron pairs as precursors for exciton forma-

tion were first described by Frankevich et. al. [35] in 1992.

Initially the charges in the polaron pair move slowly towards each other due

to Coulomb attraction. In this well-separated state the spin interaction of the

pair is negligible as both the spin-exchange and spin-dipolar coupling energies

are significantly smaller than the Coulomb energy. As the charges move closer
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Figure 2.6: Binding
energy of electrons
and holes as a function
of separation distance,
showing the charac-
teristic length scales
rc and rx for which
the Coulomb and
exchange interactions
become significant.
Adapted from [15].

together the nature of the pair interaction changes as shown in the binding

energy diagram in Figure 2.6. It is only when the pair has a small separation

distance that a strongly spin-exchange-coupled exciton state is formed, with a

defined singlet or triplet nature.

An important departure from the models for inorganic materials is that in or-

ganic materials these two charges are likely to be on different polymer chains.

The charges move along the chains by Coulomb attraction to the point of min-

imal distance between the chains, to form a ‘charge transfer’ state: exciton for-

mation from this state requires an intermolecular charge transfer. The charge

transfer state is strongly Coulomb-coupled but weakly spin-coupled. In con-

trast the exciton is strongly exchange-coupled, with either singlet or triplet

nature depending on the spin dynamics of the charge transfer state.

A schematic of the polaron pair and exciton formation processes is presented

in Figure 2.7. Transitions are possible between the polaron pair states, e.g. by

intersystem crossing or spin mixing, or by resonant absorption of microwave

energy. From these polaron pair states the corresponding singlet and triplet

exciton states are populated at rates of kS and kT respectively. Dissociation of

the polaron pairs to form free charge carriers is a competing process.

Note that the radiative exciton decay to the singlet ground state is rapid, so
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Figure 2.7: Pairs of oppositely charged polarons may bind to form an exciton or
may dissociate. EPR affects the spin states of polaron pairs and hence changes
the relative rates of singlet and triplet exciton formation. Adapted from [15].

the recombination rate in this model is fully determined by the polaron pair

to exciton transition rates. In the case of constant rate coefficients, the light

emission will then be governed by the relative polaron pair populations, which

may in turn be manipulated by EPR. Similarly the conductivity of a sample is

determined by the free charge carrier density, which may in turn be affected

by the relative populations of polaron pairs through the dissociation rates.

Boehme and McCamey also include another exclusive-pair formation process

in their model, that of spin-dependent bipolaron pair formation (see Sec. 2.1.1).

A pair of like charges has a different hopping mobility, so bipolaron formation

mainly affects the conductivity and contributes to magnetoresistance effects.

Electroluminescence is affected only indirectly, for example if luminescence

rates change due to changes in the overall current density.
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Shinar’s Model

Shinar [17] proposes that non-radiative quenching (destruction) processes of

singlet and triplet excitons may in fact be the most significant bimolecular in-

teractions in operational OLEDs. He presents several quenching processes for

singlet excitons which result in reduced fluorescence, but as these processes

are independent of spin they are of no direct interest here. Ref. [17] may be

consulted for further details.

Shinar also proposes a strongly spin-dependent process, specifically the quench-

ing of triplet excitons by polarons:

TE + p −→ GS + p∗ + phonons (2.1)

where TE is a triplet exciton, p is a negative or positive polaron (typically

trapped), GS is the ground state of the molecule, and p∗ is a high energy po-

laron (e.g. a transport state). Note that the initial triplet and polaron are in one

of six composite spin states: there are four spin sublevels in the S = (1 + 1/2)

= 3/2 quadruplet manifold and two sublevels in the S = (1 − 1/2) = 1/2 doublet

manifold. However the final state has total spin of 1/2 from the polaron, as the

ground state is spinless. Hence quenching can only occur from the two doublet

sublevels due to spin conservation. Shinar claims that this process is

“the central bimolecular interaction in photoexcited luminescent π-

conjugated materials and electrically excited (biased) OLEDs”.

This process is especially important for EDEPR because (under typical operat-

ing conditions for fluorescent OLEDs) the relative steady state populations of

triplet excitons and polarons are roughly 6×105 times the singlet exciton pop-

ulation [17]. With such large triplet and polaron populations a small increase
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in the rate of triplet-polaron quenching leads to a large decrease in the polaron

population, which may be directly observed as a decrease in conduction.

The effect on light emission depends on whether the OLED is fluorescent or

phosphorescent. Quenching of triplet excitons in a phosphorescent OLED di-

rectly affects the light emission whereas in fluorescent OLEDs the decreased

concentrations of triplet excitons and polarons indirectly affect the singlet ex-

citon population and hence the light emission.

Summary

The operation of an OLED involves charge injection, charge transport, exci-

ton formation and recombination. Several models have been developed for

the spin-dependent recombination process in inorganic semiconductors. How-

ever, the interpretation of spin-dependent recombination in organic semicon-

ductors is still a topic of debate and few of the models proposed are supported

by incontrovertible evidence. Of the two models presented here for organic

semiconductors, the former model from Boehme and McCamey is adapted for

the discussion in this thesis.



Chapter 3

Background to Electron

Paramagnetic Resonance (EPR)

The previous chapter presented mechanisms by which the absorption of mi-

crowaves could change the relative electron-hole recombination and dissocia-

tion rates, and hence influence the overall conductivity and/or light emission

of an OLED. This chapter outlines how an electron paramagnetic resonance

(EPR) experiment can detect these changes, and presents some of the tech-

niques available that make use of the EPR effect. A brief discussion of some

of the relevant literature will also be presented, with a focus on EPR studies of

operational degradation in OLEDs.

3.1 Conventional EPR

In a conventional continuous-wave electron paramagnetic resonance (EPR) ex-

periment, a sample is place in a microwave cavity and exposed to continuous,

fixed-frequency microwaves. Some microwave power is absorbed by the sam-
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ple when resonance occurs; this results in changes in the reflected power which

are recorded as the sample is subjected to a slowly sweeping DC magnetic field

strength. To allow detection of very small changes in microwave power, the

magnetic field is modulated and a Lock-In Amplifier (LIA) is used to detect

changes at the modulation frequency. This method produces a first-derivative

spectrum as depicted in Figure 3.1.

Figure 3.1: Comparison between lineshapes of absorbance and first deriva-
tive spectra, for the case of an increase in absorbance (or other relevant pa-
rameter, e.g. current or light intensity). The absorbance spectrum is the inte-
grated first derivative spectrum with respect to the magnetic field. Data from
room temperature EPR measurement of DPPH with microwave frequency ν of
9.10357 GHz.

From this first derivative spectrum the following information of interest can

be extracted:

• The g-value of a resonance may be calculated from the resonant field

(shown by the vertical dashed line) and the resonance condition hν =

gβeBr. For a free electron the g-value is known precisely to be 2.0023 [1];

for typical organic molecules, the g-values are very close to that of the

free electron. The g-value provides information about the environment

surrounding the resonant electron(s); this environment results in a small

anisotropy in the g-value which may be used to infer structural aspects

such as molecular geometry.
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• Although not visible in this spectrum, for some materials a hyperfine

structure may be observed as a splitting of the resonance into two or more

lines. Hyperfine structure arises from the interaction of an unpaired elec-

tron with nuclear dipole moments; an electron interacting with a proton,

for example in the hydrogen atom, gives rise to a pair of lines1. The hy-

perfine structure is broadened by spatial averaging in a solid sample and

is seldom seen at room temperature in amorphous materials. However in

liquid samples electrons in the rapidly tumbling molecules experience an

averaged magnetic environment and so the hyperfine structure is more

easily resolved.

The power absorbed in a resonance transition scales with ω2f(ω)B2/T where

f(ω) is a ‘shape function’ and is normalised by
∫∞
0
f(ω)dω = 1 [2]. Taking

into account the mechanism of detection, this leads to a sensitivity limit of

∼109T spins at temperature T , or ∼1011 spins at room temperature [2,15]. As

mentioned in the Chapter 1, a typical thin film of organic material contains

fewer spins than this, so conventional EPR is unsuitable for studying many

organic semiconductors in thin film form. However, there are other methods

of detection with much greater sensitivity that may be used to study OLEDs,

some of which will be discussed in the following section.

3.2 Electrically- and Optically-Detected EPR

For OLEDs, the EPR may be detected with high sensitivity using electrical

and/or optical detection methods. For electrically-detected electron paramag-

1Each of the two electron spin states are split into two states according to the proton spin
by the hyperfine interaction. However of the four transitions between these states, two require
simultaneous proton spin flips which are much less likely. Hence only the two electronic spin
transitions are observed.
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netic resonance (EDEPR) measurements on an OLED, the microwave-induced

change in the conductivity (σ) of the OLED is measured as the magnetic field

strength is swept. This is also known as σ-detected EPR or conductivity-

detected magnetic resonance (CDMR) [36]. For optically-detected electron para-

magnetic resonance (ODEPR) a photomultiplier is used to detect small changes

in the light output or electroluminescence (EL) of the OLED. This is also re-

ferred to as EL-detected EPR or electroluminescence-detected magnetic reso-

nance (ELDMR). The experimental arrangement for electrically- and optically-

detected EPR, as used here, is illustrated in Figure 3.2.

Figure 3.2: Experimental set-up for electrically-detected (ED) and/or optically-
detected (OD) EPR. A constant voltage is provided by batteries, and the cur-
rent through the diode is measured as a voltage across the 10 kΩ resistor. The
diode is in a microwave cavity (in red) and in a magnetic field created by
an electromagnet (in grey). Light is detected by a photomultiplier tube for
ODEPR via a light guide. The magnetic field is modulated by auxiliary coils
and the frequency of modulation is used as the reference frequency for the
lock-in amplifier.

Some of the advantages of EDEPR and ODEPR over conventional EPR are:

• EDEPR and ODEPR can be observed for small volume samples, for which

the sensitivity of EPR is inadequate.

• Only spins that directly impact spin-dependent recombination rates are

observed.
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• Resonance depends on spin selection rules (not spin polarisation) so res-

onances may be detected in experimental conditions such as low mag-

netic fields or high temperatures, where polarisation is low and so con-

ventional EPR is inapplicable.

It should be noted that spin pairs observed optically may not be observed elec-

trically, and vice versa [15], i.e. the effects may be independent of each other.

As for conventional EPR, these methods generally use magnetic field modula-

tion and a lock-in amplifier to increase the signal-to-noise ratio, and therefore

produce spectra with first-derivative line-shapes. Alternatively the microwave

power may be chopped at a known frequency, e.g. with a PIN diode, but this

method was not used here [17].

3.3 Effects at Low Magnetic Fields

There are also some interesting effects that occur at small magnetic fields that

are independent of the microwave radiation and thus are not true EPR effects.

Two of these effects are magneto-electroluminescence (MEL) and magneto-

resistance (MR). MEL and MR may be defined by the following functions of

the magnetic field B [37]:

MEL =
ELB − ELB=0

ELB=0

MR =
RB −RB=0

RB=0

(3.1)

MEL is significant because it means that a small applied magnetic field can

significantly affect the electroluminescence. Similarly the resistance and hence

the resistive heating of organic devices may be manipulated with the applica-
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tion of a small magnetic field. Many papers on MEL and MR effects may be

found in the literature (see for example [38–40]). Two key studies are discussed

here as a background to low field measurements of the OLEDs in this project.

A particularly insightful study of the MEL was presented by Nguyen and

colleagues [37]. Nguyen’s group synthesised the polymer poly(dioctyloxy)-

phenylenevinylene (DOO-PPV) and a variant where every hydrogen atom at-

tached to a benzene ring or C–C double bond of the polymer backbone was

replaced by a deuterium atom. They found a clear overall enhancement of

the MEL with increasing magnetic field strength, but with a distinct low-field

component of opposite sign. The widths of both components were smaller for

the deuterated polymer, a result which led Nguyen et. al. to conclude that the

MEL effect is mainly due to a hyperfine interaction.

In the second and somewhat controversial study, the MR was measured for a

variety of OLED structures by Hu and Wu [41]. Hu and Wu were able to tune

the MR from negative (current-enhancing) to positive (current-quenching), for

example by increasing the thickness x of a charge-blocking PMMA layer in

OLEDs with the structures ITO/PVK(60 nm)/PMMA(x nm)/Al and ITO/PM-

MA(x nm)/Alq3(60 nm)/Al. Hu and Wu attributed the negative MR to disso-

ciation dominated by singlet electron-hole pairs and the positive MR to an ex-

citon + charge reaction dominated by triplets. These dissociation and charge

reaction processes generate secondary charge carriers that form space charge at

the organic-electrode interfaces. This space charge affects the charge injection

and thus the resistance. Therefore this scenario gives magnetic-field depen-

dent resistance if the singlet and triplet ratios, and hence the dominant charge

reaction and space charge formation process, can be changed by an external

magnetic field.
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However, Hu and Wu’s paper was criticised by Lupton and Boehme (see [42,

43]), and other research by Sheng and Nguyen et. al. [44] discounts an excitonic

pair mechanism model.

Boehme and McCamey state that of the many current models that predict the

MEL and MR effects in organic semiconductors [15], there is general agree-

ment that the effects are related to spin-dependent electronic transitions that

change the relative spin populations and hence the overall conductivity and

electroluminescence. Their hypothesis regarding the specific process is that

the hyperfine interaction influences these spins by changing the spin mixing

rate, depending on the ratio of the external magnetic field to the hyperfine

field.

3.4 Previous Studies using EPR Techniques

Electron paramagnetic resonance studies have been carried out on a wide va-

riety of OLEDs, with the full range of EPR techniques available. Studies using

optical electroluminescence- (EL-), and electrical conductivity- (σ-) detected

EPR have revealed both quenching and enhancing resonances, with a myriad

of interpretations. An excellent review of such studies was published in 2012

by Joseph Shinar [17]. Some of the key results of these and other studies on

polymer OLEDs are discussed in the first part of this section for comparison

with the optically- (EL-) and electrically- (σ-) detected study of PFO presented

in this thesis2.

EL- and σ-detected studies were not found in the literature for the blue-emitting

2Many of the recent studies have focussed on Alq3-based small-molecule OLEDs. These
studies will not be discussed here; for more information the reader is referred to references
[45–50].
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PFO OLED studied with these techniques in this thesis. Hence the second part

of this section presents some studies of these devices with other EPR tech-

niques.

3.4.1 Electrically- and Optically-Detected EPR Studies of Poly-

mer OLEDs

The first EL-detected ODEPR study was reported in 1992, by Swanson and

colleagues (including Joseph Shinar) [36]. The study found quenching EL-

and σ-detected EPR resonances of PPV-based OLEDs at g ≈ 2.0023. They con-

cluded that polaron pair to singlet exciton conversion is responsible for the

electroluminescence itself, while the EL-quenching resonance was attributed

to spin-dependent formation of bipolarons (from two polarons)3. The intensity

of these EL- and σ-detected quenching resonances decreased with increasing

current, which suggested saturation of specific sites which induce and stabilise

bipolaron formation [17].

A subsequent study by Swanson, Shinar and colleagues involved EL- and σ-

detected EPR of PPA derivatives [51]. The g-values and lineshapes were simi-

lar for the g ≈ 2.0023 PPV and PPA resonances, and were attributed to an en-

hancement of singlet exciton generation by polaron-polaron or triplet-triplet

fusion. These two studies were both at low temperature (T ≤ 20 K).

An EDEPR study by Castro and colleagues [52] on MEH-PPV OLEDs in the

temperature range 145–300 K found a σ-quenching resonance with g ≈ 2.0022.

This resonance could be decomposed into two lineshapes: a narrow Lorentzian-

3An alternative mechanism of spin-dependent non-radiative trapping by interface defects
would also give the quenching resonances, but would be expected to also give an EPR or light-
induced EPR signal, neither of which was observed. However this relies on the sensitivity of
EPR to detect these traps.
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like component, assigned to the fusion of two positive polarons to a spinless

bipolaron, and a broader Gaussian-like component, assigned to the fusion of

two negative polarons.

Wang and Yang et. al. [53,54] also studied the g ≈ 2 resonance in MEH-PPV

OLEDs. At 10 K and under forward bias, they found EL-enhancing and σ-

enhancing in-phase signal components at low microwave modulation freq-

uency, which both reversed to quenching signals at some higher frequency.

These resonances were attributed to an increase in current density at resonance

caused by enhanced polaron pair effective recombination in the device. Wang

and Yang et. al. claim that their data are in disagreement with models such as

polaron-electroluminescence quenching and triplet-polaron interaction.

Shinar comments in his review that in all of the small molecule and polymer

OLEDs that his group has studied, the EL- and σ-detected spin-1/2 resonances

have been quenching. Although direct evidence is lacking, he claims that the

“universally accepted” mechanism is as follows: The magnetic resonance en-

hances spin-dependent formation of spinless bipolarons, which have a double

charge and so are likely to cause strong singlet exciton quenching, which re-

duces the electroluminescence. Bipolaron formation also reduces the current

as two charge carriers are now trapped at some lattice site. Recent pulsed

EDEPR results are consistent with this mechanism [55]. Shinar further con-

cludes that the enhancing spin-1/2 resonances are due to the triplet-polaron

quenching mechanism discussed in Section 2.2.2; EPR increases triplet-polaron

quenching, which reduces the polaron and triplet exciton populations, and so

reduces quenching of singlet excitons and increases the electroluminescence.

Overall it appears that there is no consensus on the mechanisms by which

EDEPR and ODEPR effects occur. Superficially similar results have been at-



32 Background to Electron Paramagnetic Resonance (EPR)

tributed to triplet-polaron quenching, polaron-polaron interactions such as bi-

polaron formation and/or triplet-triplet fusion, and it may be that different

mechanisms operate in devices with different materials and structures.

3.4.2 Studies on Blue-Emitting PFO OLEDs

Of particular interest are EPR studies on OLEDs made with the same blue-

emitting polymer, PFO, that was studied with EPR techniques in this thesis.

More information about this material will be provided in Chapter 5. EPR stud-

ies of PFO were found for several techniques not used in this thesis, such

as photoinduced absorption detected EPR, light-induced EPR and electron-

nuclear double-resonance (ENDOR), but not EDEPR or ODEPR. Key results

from two studies are presented here without a discussion of the specifics of

these techniques.

Marumoto and colleagues [56] studied the light-induced EPR and electron-

nuclear double-resonance (ENDOR) of PFO and a PFO-C60 composite, as pow-

der and spin-cast film samples respectively. They found an EPR signal at

g = 2.003 below 60 K which, when combined with the transient response and

excitation spectrum, indicated that the observed spins were photogenerated

polarons on PFO. The spin concentration was evaluated as one spin per 3.5×107

PFO-repeat units, and the peak-to-peak linewidth (∆Hpp) was approximately

0.30 mT. The HOMO-LUMO gap was estimated as 3.55-3.68 eV by x-ray pho-

toelectron spectroscopy (XPS) and cyclic voltammetry. They also used light-

induced ENDOR to determine that the spatial extent of these polarons is ∼3

monomer units of PFO. This measurement was made using the PFO-C60 com-

posite as this technique was not sensitive enough to detect a signal from pure

PFO due to the low spin concentration.
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Photoinduced absorption detected EPR of PFO has been measured by a num-

ber of groups. In particular, Wohlgenannt et. al. [57] attributed absorption-

enhancing (and hence emission-enhancing) resonances to decreases in polaron

and triplet exciton populations. They also found that the ratio of formation

cross-sections for singlet and triplet excitons in PFO was roughly four. They

conclude that the polarons in PFO recombine bimolecularly.

Electrically- and EL-detected EPR on PFO as presented in this thesis thus pro-

vides complementary information about these recombination dynamics.

3.5 Degradation in OLEDs

Degradation in OLEDs may occur due to operation or due to exposure to the

atmosphere. Kondakov and colleagues [58] define operational degradation as

a “monotonic loss of luminance efficiency during operation”, and state that

this is one of the most serious problems hindering widespread application of

OLED technology commercially. Many mechanisms for OLED degradation

have been proposed, for both operational and atmospheric degradation. A

general review of OLED degradation by So and Kondakov [59] presents some

intrinsic degradation mechanisms in polymer OLEDs, such as trap formation,

interface degradation and electrode instability. However the review concludes

that the particular degradation mechanisms involved depend on the materials

used and the device architecture.

Conventional and electrically-detected EPR techniques have been useful tools

for investigating these degradation mechanisms. Two studies of operational

degradation that make use of these techniques are discussed here, followed by

a few specific comments related to PEDOT:PSS degradation.
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Kondakov and colleagues [58] investigated operational degradation in fluores-

cent and phosphorescent OLEDs based on carbazole derivatives, and found

degradation products using analytical techniques, i.e. the chemical composi-

tion changed during operation. They used conventional EPR to determine the

concentration of radical species in the OLEDs, by comparison with a calibrated

standard. The concentration of radicals (relative to the original OLED) grew

to over 0.1% in 20 hours of operation. They proposed a free-radical mech-

anism of operational degradation consisting of excited-state homolytic-bond

dissociation followed by radical additions. OLED operation then leads to ac-

cumulation of long-lived π-radical species (charged or neutral), which act as

non-radiative recombination centres and quench electroluminescence.

Pawlik et. al. [60] undertook a quantitative EPR study of internal charging in

OLED devices and charge transfer at the cathode for a range of OLED struc-

tures, including some devices which they ’deliberately constructed’ with a

short lifetime. They found that the EPR-detected charge rapidly increases

above the turn-on voltage such that it is much greater than expected for space-

charge limited conduction regime, and also greater than the expected total ac-

cumulated charge in the device due to bipolar conduction. They suggest that

trapping of charge due to local disorder might be a cause for the difference,

and present results at negative bias showing that trapped charges were re-

leased below 100 K, indicating a shallow trap state.

In addition, Pawlik et. al. found that annealing increased the formation of rad-

ical ion species, and comment that the electron-injection layer of Li as a metal

salt (e.g. LiF) is actually a radical-generating reagent. Hence they suggested

degradation was due to the migration of Li+ ions into the organic layer, pro-

viding the organic layer is such that Li cations can bind to it (e.g. BPhen).
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However, Pawlik et. al. also comment that there was an order of magnitude

difference in the EPR-detected radical concentration between samples evapo-

rated at 5×10−6 torr and 2×10−7 torr, which suggests possible contamination

of the evaporated surfaces with oxygen and/or water may be contributing to

the formation of radical ion species.

In their review, So and Kondakov [59] present some specific degradation mech-

anisms for PEDOT:PSS, which was used in the devices in this thesis as a hole-

transporting layer. These degradation mechanisms are (a) water could form

H+ and OH− ions upon entering through a pinhole in the cathode, and these

H+ ions can chemically reduce the PEDOT:PSS layer, (b) bombardment of PE-

DOT:PSS with 3 eV electrons releases oxygen and sulphur, which results in

changes in conductivity and work function, and (c) these processes and oth-

ers could form a resistive interfacial layer between the PEDOT:PSS and light-

emitting layer. All of these degradation mechanisms in the PEDOT:PSS layer

lead to a reduction in hole injection and hence an increase in the operating

voltage of the OLED.

In summary, there are a number of degradation mechanisms which have been

proposed, of which this discussion presents only a few. One common theme

is the generation of radicals and charge trapping, and these effects will form

the basis for an interpretation of the results to be presented here. The area

of operational degradation in OLEDs is still an active focus of research, with

commercial as well as theoretical interest, and the EPR techniques discussed in

this chapter provide a useful analytical tool for this research. An investigation

of the operational degradation of blue-emitting PFO OLEDs using electrically

and optically detected EPR techniques is thus a valuable addition to the litera-

ture presented in this chapter.





Chapter 4

Equipment

This chapter describes the instrumentation developed or already available for

this project.

4.1 Light-Current-Voltage Tracer

One of the aims of this project was to develop a measurement system to simul-

taneously measure the voltage, current and light output of the OLEDs. The

data from this system would guide the choice of operating parameters and

circuit arrangements for the EDEPR and ODEPR experiments. Due to the pos-

sible oxygen and water vapour sensitivity of the materials being tested, it was

essential that the OLEDs could be characterised inside a glove box to maximise

the OLED’s lifetime, requiring a compact, battery-powered system. The ‘LIV

Tracer’ (Light-Current-Voltage) discussed in this section was designed to meet

these criteria.

The physical apparatus consists of a National Instruments data acquisition de-

vice (USB-6009) and interface electronics enclosed in a box whose top surface
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features two holders for OLEDs, one for those fabricated at VUW and one for

red and yellow PPV-based OLEDs provided by researchers at TUV Darmstadt.

The finished hardware is shown in Figure 4.1 and designs for the OLED hold-

ers and light collection arrangement are provided in Appendix A.

(a) Top view (b) Inside the LIV Tracer.

Figure 4.1: The LIV Tracer. (a) Top view showing the adjustable photodiode
gain and holders for two types of OLED (Darmstadt upper and VUW lower),
each with a silicon photodiode (Hamamatsu S1223) under the light-emitting
area of the OLED. The USB connection and ON-OFF switch are on the side.
(b) On the left is the National Instruments USB-6009 which is connected to the
battery-powered circuit by several analog input and output pins. Connections
to the OLEDs and photodiodes pass through the box lid.

A detailed description of the circuit is provided in Section 4.1.1. To control

the voltage output and data acquisition, a LabVIEW program was written by

the author. This program allows for precise control and automation of the

data collection and is presented in overview in Section 4.1.2, and in detail in

Appendix A.3.

4.1.1 The Electronic Circuit

The circuit diagram is presented in Figure 4.2, and has three main parts: an I-V

circuit, a photodiode circuit, and a power supply, which will be discussed in

turn in this section. The circuit was designed by Dr A. Edgar, built by Mr R.

Brown and modified by the author.
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Figure 4.2: The electronic circuit used in the LIV tracer. Connection details for
the OLED, photodiode and USB data acquisition device are shown in the table
at top left. Top: the diode voltage and current circuit. Bottom: the photodiode
circuit. Green frame: capacitors across each of the operational amplifiers. Pur-
ple frame: the battery power supply. A block diagram is provided in Appendix
A.2.

The diode voltage and current circuit (upper right) measures the voltage across,

and the current through, the diode. A small, precise voltage difference in the

range−2.5 V to +2.5 V is generated across TP1 and TP2 by fixing one DAC out-

put of the USB-6009 at 2.5 V and allowing the second output to range between

0 and 5 V. The voltage difference VIN is then amplified by U1 in a difference

amplifier circuit configuration, with an output given by VOUT = −R1
R2VIN . The

voltage across the diode (TP3–TP4) is then sufficiently large and may be mea-

sured at TP9 by an analogue input pin of the USB-6009.

The diode current is simultaneously converted to a voltage by using U2 in a

current to voltage converter configuration where VOUT = −R3 IIN . The diode

current is then measured at TP5 by a second analogue input pin of the USB-

6009. The values for the resistors chosen for these operational amplifiers were

based on typical OLED current densities of 1–10 mA mm−2.
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The circuit in the lower right corner of Figure 4.2 measures the OLED light out-

put as detected by a silicon photodiode. Here U3 is used in a current to voltage

converter circuit configuration, where VOUT = −R6 IIN , so that the photodiode

current is measured as a voltage at TP8 by a third analogue input pin of the

USB-6009. A selection of resistors and a multipole switch was added by the

author as an adjustable gain to give better detection of low light intensities.

As shown in the purple frame, two 9 V batteries were used to power the oper-

ational amplifiers in preference to a mains-powered supply unit which would

have consequent 50 Hz noise and other interference. Capacitors in the config-

uration shown in the green frame were included across the supply to each of

the operational amplifiers to further minimise electrical noise. The construc-

tion inside a die-cast box also helps to minimise noise and interference.

4.1.2 LabVIEW Program

Data acquisition was controlled by LabVIEW software. The LabVIEW pro-

gram was written by the author and consists of a ‘front panel’ with which the

user interacts to control a measurement, and a ‘block diagram’ which contains

the program in pictorial form.

The program generates a triangle waveform of the desired range and step size,

so that the measurement will start and finish at 0 V to avoid leaving a bias

voltage across the OLED. A sequence of voltages is then generated by the USB-

6009 analogue outputs, and amplified by the circuit so that the desired voltages

are applied across the OLED. For each of these applied voltages the USB-6009

records voltages corresponding to the OLED current, OLED voltage, and pho-

todiode current. These are then converted into the true current, voltage and

photodiode current values and displayed on real-time graphs.
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Figure 4.3: A screenshot of the ’interactive’ front panel of the LabVIEW pro-
gram. The set-up boxes show the input parameters of a previous measure-
ment, and the corresponding outputs are visible on the graphs.

The front panel, shown in Figure 4.3 consists of boxes for numeric inputs, con-

trol buttons to run the measurement, and graphs displaying the measured sig-

nals. As well as the standard plots of current and light emission against volt-

age, a graph plotting the signals against time was included so that the user can

check that the measurement is progressing as expected and diagnose the cause

of any problems as they occur.

The block diagram contains the program instructions in pictorial form. The

block diagram for the LIV Tracer and a detailed discussion of the LabVIEW

program may be found in Appendix A.3.

4.1.3 Capabilities of the LIV Tracer

The LIV tracer was used to successfully measure simultaneous light emission,

current and voltage data for super-yellow and red PPV OLEDs from TUV

Darmstadt. Samples of data collected from two of these OLEDs are given in
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Figure 4.4: Electroluminescence intensity (top) and current (bottom) as a func-
tion of applied voltage with linear (left) and logarithmic (right) y-axes, for de-
vices fabricated in Darmstadt with 10×1 mm active areas. Measurements at
low applied voltage are limited by the resolution of the USB-6009.

Figure 4.4, with both linear and logarithmic current and light-intensity axes. It

is interesting to note the relative turn-on voltages compared to the light inten-

sity. The red OLED has a higher current for the same voltage, but the reverse

is true for light intensity. The photodiode was not calibrated for spectral sensi-

tivity, which may account for this result.

The turn-on voltages for the blue-emitting OLEDs fabricated at VUW were

significantly higher than anticipated. Hence the maximum output voltage of

9 V, which is ample for the Darmstadt PPV OLEDs, is insufficient to produce

a measurable light output from the VUW PFO and PB OLEDs. However, suf-

ficiently large output voltages could be produced with changes to the battery

arrangement so that the operational amplifier U1 runs off +27 V and −9 V.

Measuring large OLED voltages would require attenuating resistors to bring

the diode voltage into the range of the USB-6009.

The resolution of the LIV tracer is dependent on the measurement range and
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USB-6009 DAQ resolution (n bits) according to Full Scale
2n−1 . For the 12 bit analog

output voltages over the range 0–5 V, the resolution is 5 V
212−1 = 1.2 mV. For the

analog input measurements, the signal input range may be set separately for

each of the three measured parameters and for each measurement (by using a

‘DAQ Assistant’ in the LabVIEW program). For a measurement as shown in

Figure 4.4 with 14 bit differential inputs the following input resolutions could

be obtained:

• Voltage resolution ∼ 3 V
214−1 = 0.18 mV

• Current resolution ∼ 0.1 mA
214−1 = 6.1 nA.

• Photodiode current resolution ∼ 0.2 mA
214−1 = 12 nA

Hence a higher resolution could be obtained for the smaller voltages and cur-

rents by reducing the measurement range, e.g. by measuring up to 1 V only.

(The USB-6009 has internal gain selection from 1–20 which means that the

14 bit resolution is retained over a selection of input voltage ranges.)

The step time is dependent on the settling time and hence the time constant τ =

R8×C8 = 0.068 s of the photodiode circuit (Fig. 4.2), where the noise-reducing

capacitor C8 = 680 nF and current-limiting resistor R8 = 100 kΩ. Allowing five

time constants for settling (to within 1% of stable value) limits the step rate to

one step every 0.34 s, or roughly three steps per second. A shorter time of 3τ

for settling would allow five steps per second with stability to within 5% of the

stable value.
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4.2 Electroluminescence, Current, and Voltage Mea-

surements

Provision was also made for measurements outside the glove box, for example

in combination with EDEPR and ODEPR measurements.

Electroluminescence spectra were measured in air using an Ocean Optics USB-

2000+ spectrometer. The spectrometer was calibrated for wavelength by the

manufacturer to within 1 nm and for intensity using a standard black-body

radiation source(HL-2000-CAL from Ocean Optics).

High-precision current-voltage curves were measured with an Agilent 4156C

Precision Semiconductor Parameter Analyser. Advantages over the LIV Tracer

include the ability to provide bias voltages of at least 40 V, and to measure

currents of order femtoamps. However with this instrument the devices were

measured in air, and the electroluminescence intensity could not be measured

simultaneously.

Hence simultaneous measurements of the luminous intensity, current den-

sity, and voltage were made using a point-by-point method with the set-up

as shown in Figure 4.5. In this set-up the device was under a flow of nitrogen

in the EPR microwave cavity (to be discussed in Section 4.3). Electrolumines-

cence intensity was measured as a voltage from a photomultiplier tube, with

light collected through slits in the microwave cavity. Device current was mea-

sured as a voltage across a 10.0 kΩ resistor.

Changes in luminous intensity and current over time were measured with the

experimental set-up shown in Figure 4.6; again the device was in a flow of

nitrogen during operation. The oscilloscope used as a data logger could record

data on up to four channels which could be saved via USB for later analysis.
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Figure 4.5: Experimental set-up with a high voltage power supply, a photo-
multiplier tube (900 V operating bias), and three 41/2 digit digital voltmeters.

Figure 4.6: Circuit used for time-decay measurements.

4.3 EPR Spectrometer

This section describes the technical details of the custom-built spectrometer

used for electron paramagnetic resonance studies. A photograph of the EPR

spectrometer is provided in Figure 4.7 and the spectrometer operation is dis-

cussed below.

X-band microwaves of approximately 9 GHz1 are excited in a Varian TE102

cavity by a Gunn diode2, with maximum attainable power at the cavity of

1i.e. a wavelength of ∼3.3 cm
2A Gunn diode is an N-doped semiconductor diode that has negative differential resistance

above some threshold bias voltage. This cancels the positive resistance of a load resonator, cre-
ating a circuit with zero differential resistance which produces spontaneous oscillations. The
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Figure 4.7: Photograph of EPR spectrometer.

A. Gunn diode
B. Attenuator and other microwave

components
C. Stacked electronics (top to bot-

tom):
Magnetic field modulation controller
Microwave frequency counter

D. (On platform, from left) OLED
circuit; Microwave power detec-
tor diode; Signal preamplifier

E. Microwave waveguide to cavity
F. Electromagnet with cavity at

centre
G. Low-field coil power supply
H. Equipment rack containing (top

to bottom):
Oscilloscope
Gunn diode bias adjustment
Signal-detecting lock-in amplifier
Lock-in amplifier for microwave au-

tomatic frequency control
Hall probe magnetometer
Magnetic field repeat-sweep con-

trollera

Magnetic field midpoint and range
set control.

J. Nitrogen supply for flow tube
K. Computer with LabVIEW data

acquisition program.

The photomultiplier tube (PMT) is on the bench behind the electromagnet.

aEither this or the LabVIEW control program may be used to control the magnetic field
sweep. This controller is better for rapid repeat scans when all of the data is needed, e.g. dur-
ing OLED aging. The LabVIEW program is better if an average over several scans is desired.
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Figure 4.8: Annotated photograph of EPR cavity showing the semi-transparent
gold grid and the position of the magnetometer probe.

∼80 mW. A variable and calibrated attenuator allows the incident microwave

power to be reduced by up to 30 dB. The cavity frequency is measured pre-

cisely and accurately by an Agilent frequency counter (53181A 12.4 GHz). The

cavity has a side wall with a gold grid which gives optical access into the cavity

without affecting the cavity resonance. A photograph of the cavity is provided

in Figure 4.8.

A double-walled quartz gas flow tube passes through the centre of the cavity,

into which the sample is inserted. The gas flow in the tube is a rising stream

of oxygen-free nitrogen gas which may be cooled to enable low-temperature

measurements. The gas flows around the sample then through a small hole

into the room in an open system so small eddies or back-streaming of air may

resonating cavity controls the frequency of the oscillations, and may be tuned mechanically
(e.g. by inserting a dielectric rod into the cavity) and/or electronically (e.g. with a varac-
tor) [61].
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be present in the top of the flow tube. The position of OLED samples inserted

into this flow tube in the cavity is such that the microwave electric field is at

a minimum and the microwave magnetic field is at a maximum. This reduces

perturbations from the conducting surfaces of the OLED and maximises the

magnetic resonance. Also, the tube is unsilvered to avoid interference with the

cavity microwave resonance, as well as to aid sample positioning and to allow

detection of luminescence from the sample.

Magnetic fields of 5–600 mT are provided with a large water-cooled electro-

magnet. Two smaller coils are used to extend this field range to −6 mT by

powering them from a separate adjustable bipolar power supply. Separate

cavity-mounted coils provide field modulation of up to 1 mT over the range

270 Hz to 51 kHz. The magnetic field is measured by a Hall probe magnetome-

ter located outside the cavity. As the probe cannot be placed within the cavity,

the true field experienced by the sample is slightly different to the probe field.

The magnetometer is calibrated for the field at the sample in the following way.

To determine the true field at the sample location, a sample of 2,2-diphenyl-1-

picrylhydrazyl (DPPH) is used as it has a strong paramagnetic resonance (near

∼320 mT at X-band) with a precisely measured g-value of 2.0036±0.0002 [62].

For zero field, the probe is inserted into a zero Gauss (0 mT) magnetic shield

and the magnetometer is ‘zeroed’ in this condition. A linear interpolation is

assumed for the full range of −6 mT to +0.6 T. The DPPH resonance is mea-

sured as a matter of routine to check the high field calibration, as the sample

field depends on the relative positions of the cavity and the pole pieces of the

electromagnet, which are moved from time to time to permit extraction and

insertion of the cavity.

The OLED is connected in series with a resistor and batteries, as a pseudo-
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constant voltage circuit. Batteries are used in this circuit to minimise electrical

noise; for the same reason all leads are shielded. For electrically-detected EPR

the magnetic field induced modulation of the DC electrical current flowing

through the OLED is detected by a lock-in amplifier as modulation in the re-

sistor voltage. A pre-amplifier (Stanford Model SR552) is required for these

measurements. A computer with a custom-built LabVIEW program is used to

control the acquisition of spectra.

The OLED sample is oriented at right angles to the magnetic field direction

so that electroluminescence from the OLEDs is directed through the cavity’s

semi-transparent grid. This electroluminescence is then guided by a Perspex

(PMMA) light-guide to a photomultiplier tube (EMI 9658QB). No optical fil-

tering has been used in this work but could be easily added. Field-induced

modulation of the electroluminescence and hence the photomultiplier voltage

is detected by the lock-in amplifier. The anode voltage on the photomultiplier

tube is 900 V; a grounded lock-in amplifier input is used to reduce noise from

the power source of the photomultiplier.

Figure 4.9 shows a block diagram of the spectrometer and how it is adapted for

each of the methods of detection. The settings used for each of the detection

methods are given in Table 4.1.

Parameter EPR EDEPR ODEPR

Typical microwave attenuation 6 dB 0 dB 0 dB
Magnetic field modulation frequency 51 kHz 51 kHz 270 Hz
Magnetic field modulation amplitude 4 Vpp 4 Vpp 4 Vpp

Lock-in amplifier phase −160◦ 60◦ −6.1◦

Typical lock-in sensitivity 10 mV 1–5 mV 5 µV
Pre-amplifier Yes Yes No

Table 4.1: Experimental settings for EPR, EDEPR and ODEPR.



50 Equipment

Figure 4.9: A block diagram for the EPR spectrometer. Components of the mi-
crowave system are colour coded red, magnetic field components are coloured
grey, and other components used for all detection methods are colour coded
orange. Components used only for conventional EPR are purple, those for
EDEPR are blue, and those for ODEPR are aqua.

Tuning and Phase Dependence

Once the sample is inserted in the centre of the cavity, the Gunn diode mechan-

ical frequency adjustment and bias may be adjusted so that the microwaves are

of the precise resonant frequency of the sample-containing cavity. This is as-
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sisted by an oscilloscope showing the frequency dependence of the reflected

power, where the resonant frequency appears as a ‘dip’ in the reflected power.

An AFC (automatic frequency control) lock-in system then locks onto this res-

onant frequency as indicated by minimum reflected power.

The amount of reflected power may be controlled with a slide screw tuner,

a screw that moves into or out of the microwave waveguide feed to adjust

the relative phases of the incident and reflected microwaves. For conventional

EPR some microwaves must be reflected, since the detector diode is insensitive

at low power, and it is the changes in this reflected power that are measured

as the EPR signal. The reflected power may be increased by moving the slide

screw tuner either in or out from the position of minimum reflected power.

However, the direction of adjustment affects the relative phase of the incident

and reflected microwaves, and consequently the phase of the EPR signal, so

the EPR signal may be inverted by the direction of detuning.

EDEPR and ODEPR do not require measurement of the reflected microwave

power, as they measure changes in sample properties due to the microwave

power absorbed by the sample. Hence these spectra are independent of the

reflected power, so do not experience the phase dependence described for EPR.

However, as EDEPR measures changes in the resistor voltage, the polarity of

these connections determine the phase of the measured signal.

To determine whether the current and electroluminescence are increasing (‘en-

hancing’) or decreasing (‘quenching’) at resonance, DC measurements must

be made. In practice this is exceedingly difficult as the absolute changes are

less than 1%, with noise and drift to further complicate measurement. For this

determination an encapsulated red PPV OLED from Darmstadt was used, as

the signal-to-noise ratio was excellent and the noise was significantly lower
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Figure 4.10: Top: Electrically- and optically-detected EPR spectra for a red PPV
OLED fabricated in Darmstadt. Bottom: The DC voltages across the current-
limiting resistor and photomultiplier resistor on and off resonance (error bars
are too small to be visible for optical detection). Hence these spectra corre-
spond to decreases at resonance in the OLED current and electroluminescence
respectively, and so are ‘quenching’ resonances.

than the non-encapsulated OLEDs. EDEPR and ODEPR spectra were taken

with standard settings (see Table 4.1), and multiple DC readings were taken

on and off resonance at regular time intervals to counter drift. The results of

these measurements are presented in Figure 4.10 where both spectra are clearly

found to correspond to decreases in the DC voltages at the paramagnetic res-

onance despite a background drift. Hence these are ‘quenching’ resonances.

This ‘calibration’ result was then used to determine whether the current and

light output increased or decreased at resonance with the VUW-made OLEDs,

for which DC measurements were not possible due to the small signal-to-noise

ratio.



Chapter 5

OLED Fabrication and

Characterisation

This chapter presents a brief overview of some of the material and process

considerations before discussing the development of a procedure for fabricat-

ing OLEDs at VUW. Key characteristics of the fabricated devices are then pre-

sented. Appendix B gives a detailed summary of the specific process which

was finally adopted for OLED production.

5.1 A Brief Overview of OLED Fabrication

The first OLEDs were made in the 1960’s using anthracene crystals with sil-

ver paste contacts [63,64]. In 1987, Tang and van Slyke made OLEDs with

thin organic evaporated films [65], a development which was closely followed

by spin-coated thin polymer film OLEDs from Burroughes et. al. [66]. Since

these initial discoveries, many more electroluminescent materials and fabrica-

tion techniques have been developed and used to make OLEDs.
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It is important to note that the method of fabrication of OLEDs is highly de-

pendent on the choice of organic material(s). For example OLEDs made with

small molecules1 are typically vacuum-deposited, which requires a designated

evaporation system. In contrast, some polymers and phosphorescent dopants

may be dissolved in volatile organic solvents which may then be spin-coated

(see Appendix B.1), blade-coated, or even ink-jet printed, to form a continuous

layer or a pixel pattern. These processes occur at room temperature and are

easily scaled-up and applied to large areas, and so are of commercial interest.

Of these fabrication methods, only the spin-coating method was available at

VUW, and the entire fabrication process was open to the air. This required the

emissive layers to be made from air-stable and solution-processable materials.

The solution-processable light-emitting materials may be divided into fluores-

cent and phosphorescent emitters, which may be as light-emitting polymers

or dopant molecules (which require additional molecules as hosts). The spin-

dependent recombination processes differ between fluorescent and phospho-

rescent emitters, so OLEDs of each type were fabricated for this research.

Of the fluorescent emitters, fluorescent polymer OLEDs are much simpler to

fabricate than OLEDs with fluorescent dopants. There are many fluorescent

polymers, with the poly(p-phenylene) (PPP), poly(p-phenylene vinylene) (PPV),

and polyfluorene families as common examples. Of the blue-emitting flu-

orescent polymers, the polyfluorene PFO (also known as F8) is a solution-

processable, commercially available and well-characterised material. There is

also considerable interest in PFO as a host material for white OLEDs due to

its efficient blue emission and high charge mobility [68]. As PFO was already

available from a group within the department this polymer was used to begin

the development of the device fabrication process. A yellow-emitting polymer

1e.g. organometallic chelates, dyes, and conjugated branched molecules (dendrimers) [67].



A Brief Overview of OLED Fabrication 55

Figure 5.1: Chemical structures for the fluorescent polymers PFO and F8BT,
and for FIrpic (phosphorescent dopant), OXD-7 (electron-transporter) and
PVK (hole-transporter) [69–71].

derivative of PFO called F8BT was also used to fabricate some devices. The

structures of these polymers are shown in Figure 5.1.

The phosphorescent emitters are typically small molecules which are vacuum

deposited and/or embedded in a polymer matrix as dopants. An overview

of some of the many blue phosphorescent materials for OLEDs is provided

by Sasabe and Kido [72]. Many of the common blue-emitting phosphores-

cent dopants are sky-blue Ir(III) complexes2. The first Ir(III) complex was

the sky-blue phosphor FIrpic, which was developed in 2001 by Thompson

and coworkers [74]. This complex has since been well characterised and in-

corporated into OLEDs with a variety of host materials, of which many are

solution-processable. It is also commercially available, and so was chosen for

this project.

The host materials must be able to transport both electrons and holes to the

dopant molecules, as well as being chemically compatible with the dopant.

2Most of the ‘blue’ phosphorescent materials in the literature actually fail to meet the crite-
ria for true blue emission [73].
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There are many host molecules available, for example from Sigma Aldrich

[75], and typically an electron transporting molecule and a hole transporting

molecule will be used together as the host. For FIrpic, the hole transporting

polymer PVK (which was used in early OLEDs [65]) and an electron trans-

porting molecule OXD-7 were chosen as these materials are solution process-

able and commercially available, and the combination has been well charac-

terised [69,76,77].

Additional layers that are charge-transporting and/or charge-blocking are of-

ten used to improve charge transport and hence device efficiency [76]. How-

ever these multi-layer OLEDs often involve vacuum-deposition as spin-coating

many layers requires careful consideration of the relative solubilities. Hence

the devices in this project have either one or two spin-coated layers.

5.2 Device Fabrication

This section outlines the development of the fabrication processes that were

used to make organic light-emitting diodes at VUW. This was a significant

challenge since OLEDs had not been fabricated at VUW prior to this project,

and especially so since the usual infrastructure of a glove box with integrated

spin coater and evaporator was not available. This infrastructure is usually

used for OLED fabrication because it allows full device preparation and encap-

sulation in a clean inert atmosphere, permitting the use of low-work function

materials such as calcium for the cathode and significantly increasing the like-

lihood of successful device fabrication. The infrastructure that was available at

VUW was a new clean-room facility, with excellent spin-coaters and thermal

evaporator, although all exposed to air. Hence the cathode materials, as well
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Figure 5.2: Top view of the
device structure. (a) 4 mm ×
25 mm glass substrate with pat-
terned ITO electrode. (b) Spin-
coated hole-transporting layer.
(c) Spin-coated light-emitting
layer. (d) Thermally-evaporated
metal cathode. (e) The final
structure with the 2 mm× 1 mm
active area highlighted by a red
bordered rectangle.

Figure 5.3: A finished OLED
with a patterned ITO anode, PE-
DOT:PSS and PFO layers, and an
Al/Ag cathode.

as the emissive materials, were required to be air-stable. Devices made in this

facility are likely to contain trapped oxygen and water molecules, accelerating

device degradation which could then be studied with EPR in the time frame of

this project.

Another significant design consideration was that the device geometry was

constrained by the dimensions of the EPR microwave cavity. In order to fit into

the 4.2 mm diameter nitrogen flow tube in the EPR cavity, the device must be

no wider than 4 mm, allowing for the glass substrate thickness. Also, the active

area should be centred in the cavity, and the amount of microwave-absorbing

material such as metal and glass should be minimised.

The design that was developed to meet all of the above criteria is shown in

Figures 5.2. Figure 5.3 is a photograph of a finished OLED, where faint inter-

ference patterns are visible from the transparent polymer layers.

Layers are fabricated onto a long narrow glass substrate in a ’bottom-emitting’

structure. The layer structure is shown in Figure 5.4. The first layer is indium

tin oxide (ITO), which is transparent and forms the positive anode. In most de-
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Figure 5.4: Side view
cross section showing
the OLED layer se-
quence.

vices this was covered with a spin-coated hole-

transporting layer (PEDOT:PSS). The next, and most

important, spin-coated layer was one of three organic

light-emitting materials mentioned above: the phos-

phorescent blue mix of PVK, OXD-7, and FIrpic, the

fluorescent blue polymer PFO, or the fluorescent yel-

low polymer F8BT. An air-stable metal electrode (Al

and/or Ag) was then deposited to form the negative cathode; the overlap of

this electrode with the ITO electrode defines the active area of the device.

This section will present the fabrication parameters for each of these layers,

and discuss some of the considerations made in their development. Once a

process was established to fabricate working devices, time constraints limited

further process refinements and so the devices were immediately characterised

and used for EPR studies.

5.2.1 Substrate and Anode Preparation

ITO coated microscope slides were purchased from Sigma-Aldrich. The slides

came as 75 mm × 25 mm × 1 mm sheets with a 15–30 nm ITO layer of resistiv-

ity 70–100 Ω per square. To prepare substrates with a width of 3.8–4 mm, the

slides were protected with a micron-thick layer of photo-resist then cut to size

using a diamond saw. To pattern the ITO electrode, photo-resist was again

used, this time with a photolithography and etch technique as it was essen-

tial that the ITO pattern was reproducible and well-defined. A printed acetate

mask pattern gave excellent edge quality, and the size and shape of the active

area could be readily adjusted and reproduced. The excess ITO was etched

away with 37% HCl.
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The etched substrates were cleaned sequentially in DECON-90 (5% solution

in water), water, acetone, and isopropanol, and were dried with a nitrogen

spray gun between each of the latter three solutions. Finally the substrates

were exposed to an oxygen plasma for 10–20 s to clean and slightly roughen

the surface, improving the adhesion of the subsequent spin-coated layer.

5.2.2 Hole-Transporting Layer

Figure 5.5: Chemical struc-
ture for PEDOT:PSS.

A hole-transporting layer was used to improve

the charge injection from the ITO layer into

the organic layers. Poly(2,3-dihydrothieno-1,4-

dioxin)-poly(styrenesulfonate) (PEDOT:PSS) was

chosen for this layer as it is commonly used and

readily available. However, this material comes as various mixes of two con-

ducting polymers (chemical structures shown in Figure 5.5) and without a

standard ratio, so is highly batch-dependent. Three mixes were tested: high-

and low-conductivity grades from Sigma-Aldrich, and ‘BaytronP’ as given to

us by researchers from the Technical University of Darmstadt. Only BaytronP

produced working devices.

Two grades of PEDOT:PSS from Sigma-Aldrich were tested and found to form

unsatisfactory films. The high conductivity grade (Aldrich 483095) was very

viscous and produced 90–100 nm thick films even on the highest spin speed.

Conversely, the low conductivity grade material (Aldrich 560596) had a low

viscosity and formed very thin films (20–30 nm) even when spun at a slow

speed of 2000 rpm with a small acceleration.

http://www.sigmaaldrich.com/catalog/product/aldrich/483095?lang=en&region=NZ
http://www.sigmaaldrich.com/catalog/product/aldrich/560596?lang=en&region=NZ
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Figure 5.6:
Asymmetric
ridge formed
when spinning
PEDOT:PSS.

Also, an asymmetric ridge of about 800 nm thick formed as

depicted in Figure 5.6. The pattern of this ridge was depen-

dent on the spin direction so could be manipulated to avoid

the active area of the device. However no devices worked

when made with either of these grades of PEDOT:PSS.

All of the working devices were made with BaytronP, which formed smooth

films of 40–50 nm. This solution was filtered with a 0.45 µm PVDF syringe

filter before spin-coating at 3000 rpm for 1 minute. The film was heated for

30 minutes at 120 ◦C and/or kept under house vacuum for at least 2 hours to

remove excess water. The excess PEDOT:PSS layer (in the regions away from

the active area) was then removed with isopropanol to reduce the risk of direct

contact between the PEDOT:PSS layer and the deposited metal electrode.

5.2.3 Emissive Layers

As described in Section 5.1, two blue-emitting materials were used as emissive

layers: a phosphorescent mix of three chemicals known as FIrpic, OXD-7 and

PVK, and a fluorescent polymer, PFO (F8). For convenience the phosphores-

cent blue emitting material is here labelled ‘PB’ for phosphorescent blue. The

fabrication parameters are presented after some remarks about the problems

that needed to be overcome in developing a successful fabrication process.

Initially, most of the devices fabricated were nearly-perfect Ohmic resistors,

or became resistors at voltages below 5 V, and not diodes. The main cause of

this failure-at-birth was thought to be short circuits through the emissive layer,

either from pinholes in the layer or PEDOT:PSS spikes that pierce through the

layer. Hence the quality of this layer was deemed paramount in the fabrication

of a successful device.
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The steps taken to improve the emissive layer and other aspects of the device

fabrication process are summarised in Appendix B.2 (Table B.1). A key step

was reducing the active area from ∼8 mm2 to 1–2 mm2 with photolithogra-

phy of the ITO electrode. This step together with the removal of the excess

PEDOT:PSS regions decreased the likelihood of pinhole contacts between the

metal and ITO electrodes, and led to devices with ‘non-Ohmic behaviour’ in

the voltage range −2 to +5 V. A few of these improved devices showed diode-

like behaviour over this voltage range, and two of these devices emitted short-

lived flashes of blue light with applied voltages of ∼9 V.

After making over 100 devices with only these two short flashes of light, test

devices were made with the yellow-emitting fluorescent polymer, F8BT, to see

if the devices were failing due to poor device fabrication or due to the inher-

ent instability of the blue-emitting materials. These F8BT devices had clear

diode-like current-voltage characteristics and emitted yellow light below 9 V

as expected. The PB and PFO devices, which were ‘non-Ohmic’ below ∼5 V,

showed no light emission with applied voltages of∼9 V, but also did not break

at this voltage like the early devices had done. Crucially, when tested with a

high-voltage power supply these devices emitted blue light from about 12 V

for the PB devices and from about 35 V for the PFO devices.

Phosphorescent Blue

The phosphorescent devices were made using a polymer mix of PVK (poly-

(9-vinylcarbazole), Aldrich 182605), OXD-7 (1,3-bis((4-tert-butyl-phenyl)-1,3,4-

oxidiazolyl)phenylene, LT-N855 from LumTec, Taiwan), and FIrpic (bis-(3,5-

difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)-iridium(III), from LumTec, LT-

E607). PVK forms a hole transporting polymer matrix, OXD-7 is an electron



62 OLED Fabrication and Characterisation

Figure 5.7: The
HOMO and LUMO
energy band diagram
for the phospho-
rescent emitting
OLED [69].

transporter and FIrpic is a blue phosphorescent dopant. The relative HOMO

and LUMO levels of these materials are depicted in a schematic electronic

energy profile in Figure 5.7. The chemical structures of these materials was

shown earlier in Figure 5.1.

These materials were dissolved in anhydrous chlorobenzene using a magnetic

stirrer bar at a total concentration of 25 mg/mL and in a 10:4:1 ratio by weight

of PVK:OXD-7:FIrpic, following Chen et. al. [69], and Li et. al. [76]. Once dis-

solved, the solution was filtered with a 0.45 µm PVDF syringe filter and spin-

coated at 2000 rpm for 30 s to give 140±10 nm films which were dried under

house vacuum. In the literature this layer is annealed at 80 ◦C for 30 minutes

in an inert atmosphere [69,76]. Some short-lived light-emitting devices were

fabricated with annealing under a flow of high-purity nitrogen, but devices

with longer lifetimes were fabricated when the annealing step was omitted.

The concentration and spin parameters were established from the tests of film

thickness shown in Fig. 5.8, where the thickness was measured with a Dektak

profilometer. Solutions with different concentrations of PB were spin-coated

onto circular substrates to gain an understanding of the dependence on spin

speed of the thickness for the different solution concentrations. On rectangular

substrates of the actual OLED dimensions, the layers were slightly thicker and

less uniform than on the circular substrates. For a layer thickness of around



Device Fabrication 63

Figure 5.8: Thicknesses of films for different concentrations of organic solid
dissolved in chlorobenzene as a function of spin speed, on circular substrates
and with some tests on rectangular substrates.

150 nm with a moderate spin speed of 2000 rpm the required concentration

was estimated to be about 25 mg/mL.

Fluorescent Blue and Yellow

The fluorescent materials PFO and F8BT are closely-related polymers (see Fig.

5.1 for the chemical structures), and so devices with these materials were fab-

ricated with the same parameters. The blue-emitting fluorescent polymer PFO

(or F8) has the chemical name poly(9,9-di-n-octylfluorenyl-2,7-diyl), and was

purchased from American Dye Source, Inc. (ADS129BE and Sigma Aldrich

Aldrich 571652). The yellow-emitting fluorescent polymer F8BT has the chemi-

cal name poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-(2,1,3)-thiadiazole)],

and was also purchased from American Dye Source, Inc (ADS133YE). PFO and

F8BT have average molecular weights of 58,200–73,000 and 10,000–30,000 re-

spectively, and relative HOMO and LUMO levels as shown in Figure 5.9.

PFO (or F8BT) was dissolved in anhydrous chloroform at a concentration of

15 mg/mL. The vial of solution was continually rotated on a bed of rollers

http://www.adsdyes.com/products/pdf/homopolymers/ADS129BE_DATA.pdf
http://www.sigmaaldrich.com/catalog/product/aldrich/571652?lang=en&region=NZ
http://www.adsdyes.com/products/pdf/copolymers/ADS133YE_DATA.pdf
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Figure 5.9: The HOMO and
LUMO energy band diagram
for the fluorescent emitting
OLEDs with either PFO or
F8BT emitting layers [70,71].

to aid the dissolving process. Once dissolved, the solution was filtered with

a 0.45 µm PVDF syringe filter and spin-coated at 2000 rpm for 30 s to give

190±10 nm films. The concentration and spin-coating parameters were deter-

mined with the aid of Figure 5.10, such that the PFO (or F8BT) film would

be comparable to the PB film in thickness. The effect of the solvent is evi-

dent here, as chloroform evaporates faster than chlorobenzene which leaves

a thicker PFO (or F8BT) film than for the equivalent PB concentration. The

high volatility of chloroform also led to rapid, uneven drying of the film due

to the rectangular shape of the substrates (see Fig. 5.6). This was overcome by

attaching the substrate to a larger piece of glass for the spin-coating step.

Thin films of PFO and F8BT crystallise at ∼90 ◦C and ∼115 ◦C respectively,

with an intermediate glass transition temperature ∼50 ◦C [78]. To avoid these

transitions and to minimise exposure to oxygen and water molecules, these

films were dried under house vacuum without annealing.

Figure 5.10: Spin-coated thicknesses with different concentrations of PB and
PFO, spun at 2000 rpm for 30 s on clean rectangular substrates.
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5.2.4 Cathode

The cathode was deposited through a shadow mask in an Angstrom Engi-

neering Nexdep thermal evaporator. The shadow mask was designed by the

author to accommodate up to ten devices in each of the two electrode patterns

shown in 5.11. Kapton tape and ITO anode patterning were used to create a

small active area while developing the fabrication procedure; this could be in-

creased up to 10 mm in length with the appropriate ITO pattern. Wires were

attached to the electrodes either with silver conductive paint or with pressed

indium contacts.

Figure 5.11: Top view schematic following Figure 5.2, showing the two differ-
ent cathode patterns. The ITO anode pattern underneath is for an active area
of 2 mm length. Active areas (bordered in red) are of (a) 1 mm width (b) 2 mm
width.

Silver and aluminium were tested for electrode materials, as either 100 nm Ag

or 50 nm Al with a 50 nm capping layer of Ag. Although aluminium can dam-

age the PFO film [79], both the melting temperature and work function of alu-

minium are lower than those of silver, and it is considerably cheaper. As both

options gave working devices it was concluded that Al (50 nm)/Ag (50 nm)

was the preferred option.

Usually an encapsulating layer would be applied over the entire device, for

protection against water and oxygen. As our OLEDs were fabricated in air,

oxygen and water molecules were already trapped in the organic layers so the

encapsulation step was omitted. Instead the completed OLEDs were stored in

a nitrogen glove box with an atmosphere of <0.1 ppm O2 and <0.1 ppm H2O.
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5.2.5 Comments on OLED Fabrication

A summary of the successful fabrication process is provided in Appendix B.

Once the fabrication of working devices was established a batch of 18 devices

(RS160–RS177) was fabricated, of which 16 were light-emitting. These and

some of the existing light-emitting devices (from batches RS137–RS147 and

RS148–RS159) were used for the following characterisation studies.

5.3 OLED Characterisation

This section presents some of the properties of the OLEDs fabricated at VUW,

including the electroluminescence and current-voltage characteristics.

5.3.1 Electroluminescence

Electroluminescence (EL) was observed for devices made with each of the

three emissive materials. Figure 5.12 shows the spectral emission of these

OLEDs, as evidence of successful OLED fabrication and for comparison with

the literature. Peaks in these spectra occur at 500±1 nm for the green-blue

phosphorescent PB OLED, at 440±1 nm and 520±1 nm for the fluorescent

purple-blue PFO OLED, and at 540±1 nm for the greenish-yellow fluorescent

F8BT OLED.

Nakamura et. al. [80] measured the EL spectrum of a device with the structure

ITO/PEDOT:PSS/PVK:OXD-7:FIrpic/Cs/Al. The PB spectrum in Figure 5.12

has the same overall shape as the spectrum observed by Nakamura et. al..

The 500 nm peak observed here is close to the 497 nm peak observed in the

literature which was attributed to FIrpic emission.
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Figure 5.12: Electroluminescence spectra, normalised by the maximum inten-
sity, for three OLEDs fabricated at VUW. These OLEDs were RS148 (PB with
PEDOT:PSS), RS152 (PFO with PEDOT:PSS) and RS159 (F8BT only), and were
from the same fabrication batch.

The EL spectrum was measured for an ITO/PEDOT:PSS/PFO/LiF/Al device

by Oner et. al. [81]. A broad structure with peaks at 437, 463, 500, and 530 nm

was observed, resembling the PFO spectrum in Figure 5.12. The relative inten-

sities of these peaks changed with bias voltage when tested over the range 6–

12 V: for 6 V the high-energy peaks are more intense, whereas the 500–530 nm

peaks begin to dominate from 10 V. The PFO spectrum in Figure 5.12 was mea-

sured at a bias voltage of ∼35 V, so it is possible that the broad peak at 520 nm

is some combination of the 500 and 530 nm peaks, while the 437 nm peak is

observed at 440 nm. Other measurements of the EL spectrum of pristine PFO

show a strong peak around 440 nm, with lower intensity peaks at longer wave-

lengths [82].

Keto defects are known to form in polyfluorenes [83], and these defects have

an unstructured blue-green emission around 500–520 nm [81]. Hence the ob-

served broad emission around 520 nm in Figure 5.12 indicates that there may

be some keto defects present in the PFO OLED. The keto defects could easily

be formed as shown in Figure 5.13 given operation in air and the high applied

bias voltage.
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Figure 5.13:
Possible keto
defect formation.

Morgado et. al. [82] measured the F8BT EL spectrum with a device struc-

ture ITO/PEDOT:PSS/F8BT/Ca/Al; the spectrum is qualitatively similar to

the F8BT spectrum in Figure 5.12.

Photographs showing these emissions are presented in Figures 5.14 and 5.15.

Two brightnesses were photographed for the blue OLEDs to show the colour

and apparent brightness for a given applied voltage. Also, spatial variation

was seen as bright edges in 5.14a and speckling in 5.14c.

(a) PB OLED (RS148) at ∼35 V (b) PB OLED (RS148) at ∼30 V

(c) PFO OLED (RS146) at ∼40 V (d) PFO OLED (RS146) at ∼35 V

Figure 5.14: Photographs of phosphorescent (top) and fluorescent (bottom)
blue-emitting OLEDs at two different voltages showing the relative brightness
and colours.

Figure 5.15: A greenish-yellow
F8BT OLED (RS159) with strong
electroluminescence at 26 V.
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Figure 5.16: Current density as a function of applied voltage for (a) PB de-
vices RS167 and RS175, with and without PEDOT:PSS respectively, with a lin-
ear current density axis, (b) As for (a) but with a logarithmic current density
axis, (c) PFO devices RS164 and RS170, with and without PEDOT:PSS respec-
tively, with a linear current density axis, (d) As for (c) but with a logarithmic
current density axis. These four OLEDs were from the final fabrication batch
(RS160–RS177). Fits to the data, in red, are discussed in the text. Note that
the measured current density in (a) is lower than that predicted by the fit for
voltages above 35 V.

5.3.2 Current-Voltage Characteristics

A standard characteristic of device performance is the current-voltage relation-

ship. Figure 5.16 shows current-voltage data for phosphorescent PB devices

with and without PEDOT:PSS, and for fluorescent PFO devices with or with-

out PEDOT:PSS, taken from the best-performing device for each type of OLED.

Several regimes are observed in Figure 5.16. For small forward biases the con-

duction is Ohmic, which appears on the semi-log plots (b) and (d) as a lnV sec-

tion, before the current rises as a high power of the applied voltage. The latter

effect can be interpreted as the conduction becoming ‘trap-controlled space-

charge-limited’ which may be modelled by a power law term [84]. The expo-
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nent of this power term must be greater than two3 and depends on the density

and energy distribution of the trapping states, which could be for example

an exponential distribution. Typically the exponent increases with increasing

temperature.

When the voltage is sufficiently large, the traps empty and conduction be-

comes effectively ‘trap-free space-charge-limited’ and so follows Child’s law

with an exponent of two. However this regime is not always realised, as the

current may saturate or the device may suffer dielectric breakdown before this

transition voltage is reached. Here Figure 5.16(a) shows a slight tail-off for the

phosphorescent devices above ∼35 V which may be the beginning of a transi-

tion to the trap-free space-charge-limited conduction regime.

Therefore fits to the data in 5.16 are of the form

J = aV + b(V/V0)
n (5.1)

where aV is an Ohmic leakage current as in Figure 5.16. The fitting param-

eters for the power law terms are given in Table 5.1. The PB device without

PEDOT:PSS shows no Ohmic leakage, but rather a fixed current for small volt-

ages. This is significantly different from the other devices and it is not known

why this occurred; both devices showed similar light emission (see Figure

5.12). Here the fit was adjusted empirically by replacing the Ohmic term with

a constant. The data for the PFO device with PEDOT:PSS shows an onset of the

linear regime at 2.5 V, which may be due to a residual bias from the previous

measurement at negative applied voltages. The fit takes this onset into account

empirically by replacing the aV term by a(V − 2.5).

3A power term with an exponent of two is known as Child’s law and corresponds to trap-
free conduction. For more information, see [7].
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PB PFO
OLED Type V0 (V) n V0 (V) n

With PEDOT:PSS 20 6 25 8
Without PEDOT:PSS 25 6 22.5 7.5

Table 5.1: Fitting parameters for Equation (5.3.3) which model the trap-limited
conduction regime in Figure 5.17. The V0 and n parameters have uncertainties
of ±0.5 V and ±0.2 respectively.

Figure 5.16 shows that the phosphorescent PB devices have a higher current

density when compared with the fluorescent PFO devices for the same applied

voltage. Many factors may give rise to this higher current density, including

that of triplet versus singlet recombination. The fact that the PB emissive layer

contains both high mobility electron and hole charge carriers compared to pure

PFO which only has high mobility for one charge carrier may also play a role.

The current densities are also much higher for devices with a base layer of

hole-transporting PEDOT:PSS, for both phosphorescent and fluorescent de-

vices. This base layer was included for this very reason, as PEDOT:PSS is

known to improve charge injection from ITO into the organic layers.

In the literature, Li et. al. [76] made a phosphorescent OLED with the structure

ITO/PEDOT:PSS/PVK:OXD-7:FIrpic(10:4:1)/CsF/Al where a current density

of 20 mA cm−2 was achieved with a bias voltage of 12.4 V. A similar device with

a structure of ITO/PEDOT:PSS/PVK:OXD-7:FIrpic(7:3:1)/CsF/Al, Mathai et.

al. [77] found the same current density at 8.6 V. Both of these devices had emis-

sive layer thicknesses of 75 nm. Here current densities of 20 mA cm−2 were

reached at 25 V and 28.6 V for devices with 140 nm thick PB layers, with and

without PEDOT:PSS respectively.

For the PFO devices, Ma et. al. [85] studied OLEDs with the structure ITO/PE-

DOT:PSS/PFO(70 nm)/Al. A current density of 20 mA cm−2 was reached with
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a voltage of 7 V for these devices. Bradley et. al. [86] found the same current

density at approximately 14 V for another device structure, ITO/BFA/PFO/Ca

where BFA is a hole-transporter and the PFO layer was 200 nm thick. Here

current densities of 20 mA cm−2 were reached at voltages of 32 V and 40 V for

devices with 190 nm thick PFO layers, with and without PEDOT:PSS respec-

tively.

The significantly higher bias voltages required for the VUW devices are most

likely due to the open-air fabrication environment. Other factors include the

cathode material and the emissive layer thickness.

5.3.3 Electroluminescence-Voltage Characteristics

Figure 5.14 clearly shows that the intensity of electroluminescence (EL) in-

creases with increasing applied voltage, as expected. Here simultaneous cur-

rent, voltage and EL intensity point-by-point measurements were made on

OLEDs of each type to characterise this relationship. Plots of the voltage de-

pendence of the EL intensity are shown in Figure 5.17 with both linear and

logarithmic axes. The point-by-point current density measurements are shown

for comparison with the EL measurements and with Figure 5.16.

Fits to the data are of the forms:

EL = Idark + bL(V/VL)nL

J = aV + bJ(V/VJ)nJ

(5.2)

where Idark is the dark current in the photomultiplier, and aV is an Ohmic

leakage current as in Figure 5.16. a, bL and bJ are constants of proportionality.

It is clear from the EL data in Figure 5.17 that the phosphorescent devices are
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Figure 5.17: Electroluminescence intensity (top) and current density (bot-
tom) as a function of applied voltage with linear (left) and logarithmic (right)
current density axes, for each of the four OLED structures: PB with PE-
DOT:PSS (RS166), PB only (RS175), PFO with PEDOT:PSS (RS165), and PFO
only (RS170), all from the final fabrication batch. Fits to the data points are
shown as smooth lines; equations and key parameters are given in the text
and in Table 5.2. Current density data for the PFO-only device is from Fig.
5.16 as simultaneous EL and J measurements were not possible due to the high
resistance of the device. ‘Electroluminescence’ measurements at low applied
voltages are non-zero due to the dark current in the photomultiplier tube.

much brighter than the fluorescent devices for the same applied voltage. This

is expected based on the data for current density, in both Figures 5.16 and

Electroluminescence Current Density
OLED Type VL (V) nL VJ (V) nJ

PB with PEDOT:PSS 27 11 25 9
PB only 25 8.2 25 9
PFO with PEDOT:PSS 30 18 30 15.5
PFO only 20 10 (22.5) (7.5)

Table 5.2: Fitting parameters for Equation (5.3.3) which model the trap-limited
conduction regime in Figure 5.17. Parameters in parentheses correspond to
data taken under different experimental conditions. The V0 and n parameters
have uncertainties of ±1 V and ±2 respectively.
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5.17. The absolute value of the EL intensity could not be determined with the

available equipment, so a comparison with the literature for device efficiency

is not possible.

Figure 5.17(b) shows that there is very little difference in EL intensity between

PB devices with and without PEDOT:PSS, despite the consistently lower cur-

rent density in the PB-only device. As discussed for the J–V data, this may be

due to the presence of both hole- and electron-transporting species and there-

fore more balanced charge transport in these devices. In contrast the PFO de-

vices show a marked increase in EL intensity with a PEDOT:PSS layer.

Also of interest are deviations from the (V/VL)nL fit at high voltages, which

are most apparent in (b) and (d) of Figure 5.17 for the PEDOT:PSS/PB device.

This may be the beginning of trap-free space-charge limited conduction, as

suggested for Figure 5.16(a). However it is more likely due to measurement er-

ror caused by instability in the devices, especially at the higher voltages where

drift was significant during the time taken to record the three measurements.

Hence an automated measurement system would be of great advantage in this

situation. It was noticed that this drift at high voltages had a trend: the current

and EL intensity would rapidly increase and then slowly decrease over time.

This trend was further investigated and the results are presented in the next

section.

5.3.4 Time-dependent Decay

It was found that both the current density and the electroluminescence (EL)

intensity are unstable at high voltages, and decay over time. These decays

were measured for several ON-OFF cycles of a phosphorescent OLED (RS138)

with a PEDOT:PSS layer and an active area of 1 mm × 1 mm. The OLED was
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Figure 5.18: Decays of the current density (left) and electroluminescence (right)
over time, with constant driving voltage, for a PB OLED (RS138). Measure-
ments 1, 3, 6, and 7 are shown; very little change occurs between the final two
measurements so these data appear superimposed. Time points are ‘Total time
ON, elapsed time’ at the start of each measurement.

turned ON for each measurement of 25 s duration and otherwise was OFF. A

constant forward bias voltage of 28.55±0.01 V was applied when the OLED

was ON.

Measurements 1, 3, 6, and 7 are shown in Figure 5.18. The current density and

EL intensity decays are of different scales. In the first 25 s measurement the

current density drops by only 15% whereas the EL intensity drops by over half

its initial value (53%). In the seventh measurement the current density and EL

intensity drop by 18% and 55% respectively over the 25 s measurement.

Also of note is the recovery between measurements. For example the OLED

was OFF for nearly 15 minutes between the sixth and seventh measurements,

which show current densities and EL intensities that differ by at most 2%.

OLEDs with a PFO emissive layer showed similar decays of the current and

luminescence but these decays were not measured quantitatively due to time

and sample constraints.

The significant decay in the EL intensity and smaller decay in the current in-
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dicates that some sort of ageing is occurring during device operation which is

leading to non-radiative recombination. The recovery after an OFF period sug-

gests that charges are being progressively trapped. This supports the model of

trapped space-charge limited current flow that was discussed in Section 5.3.2.

5.4 Chapter Summary

OLEDs were successfully fabricated in air, with a geometry optimised for EPR

experiments. Device structures were as follows, with the PEDOT:PSS layer

omitted in some devices:

1. ITO/PEDOT:PSS/PVK:OXD-7:FIrpic/Al/Ag

2. ITO/PEDOT:PSS/PFO/Al/Ag

3. ITO/PEDOT:PSS/F8BT/Al/Ag

These OLEDs produced electroluminescence with spectra in agreement with

literature results. The spectrum from a PFO OLED showed signs of partial

degradation consistent with the formation of keto defects.

Both the PB and PFO OLEDs showed space-charge-limited conduction with

significant trapping. Emission was visible above ∼12 V and ∼25 V for the best

PB and PFO blue-emitting OLEDs respectively.

The current density and EL intensity were found to decrease during OLED op-

eration, with partial recovery following a period of rest. This behaviour was

recorded for the phosphorescent devices but was observed to be of a similar

nature for the PFO devices. Hence for EPR studies where ageing was not de-

sired, the OLEDs were turned OFF when not being measured.



Chapter 6

Electrically and Optically Detected

Electron Paramagnetic Resonance in

PFO OLEDs

Electron paramagnetic resonance techniques were used to study two new PFO

OLEDs with the structure ITO/PEDOT/PFO/Al/Ag (RS160 and RS164, from

the same fabrication batch). The first part of this chapter outlines the key re-

sults, in three sections. The first section presents the characterisation of a new

OLED (RS160) with three of the techniques described in Chapter 3: conven-

tional, electrically-detected (ED), and optically-detected (OD) electron para-

magnetic resonance (EPR). The second section covers the microwave power

dependence of the two signals found in the first section (again with RS160).

The third section describes an ageing study on the high-field signal using the

second new OLED (RS164). In the second part of this chapter, these results

are discussed in terms of the spin-dependent recombination mechanisms of

Chapters 2 and 3.
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6.1 Results

6.1.1 Comparison of EPR Techniques

Electron paramagnetic resonance spectra using three methods of detection are

presented in Figure 6.1. EPR spectra of the quartz nitrogen flow tube, the clean

glass substrate, and the OLED (RS160, both ON and OFF) are shown in spectra

(a) to (d).

Spectra (a) and (b) were taken to check for any EPR-active species in the flow

tube and in the clean glass substrate. These spectra show similar structure

between 200 and 300 mT; the broad resonance near 300 mT may be from traces

of Cu2+ in the cavity or flow tube, since this is the magnetic field region where

the g ≈ 2.2 resonances characteristic of Cu2+ may be expected [2]. In spectrum

(b) resonances just above 150 mT correspond to a g-value of ∼4, which may be

attributed to Fe3+ impurities in the glass substrate [87].

Spectra (c) and (d) were taken to compare with (b) to see if the polymer film

of the OLED gives a visible EPR signal. In spectrum (b) of the clean glass

substrate, there is a small signal at 325 mT which corresponds to a g-value of

2.0070±0.0004. This signal is not seen in spectra (c) and (d) where instead there

are small signals near 324 mT with g-values of 2.003±0.001. These signals are

close to the free electron g-value and may arise from free radicals in the OLED

film. The comparison of spectra (c) and (d), shown in spectrum (e), shows that

there is very little difference between the EPR spectra with the OLED ON and

OFF. Hence the presence of the charge carriers necessary for light emission

does not result in any new EPR signal.

However for EDEPR and ODEPR, two strong first-derivative resonance signals

are seen in spectra (f) and (g), one near zero field and one just above 300 mT in
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Figure 6.1: Room temperature electron paramagnetic resonance spectra with
each of the three techniques. Conventional EPR spectra of (a) the empty quartz
flow tube with nitrogen flow (b) a clean ITO-coated glass substrate (c) the
OLED (RS160) turned OFF (d) the OLED turned ON (e) the difference between
(c) and (d), showing that there is no detectable EPR signal corresponding to the
OLED emitting light (f) EDEPR spectrum (g) ODEPR spectrum.

each spectrum. Comparison of the phase of the lineshapes in (f) and (g) with

Figure 4.10 shows that both the low and high field signals decrease the OLED

current and electroluminescence. Both the EDEPR and ODEPR high field res-

onances have a g-value of 2.003±0.001, which is consistent with EDEPR and

ODEPR measurements of other polymers (see Sec. 3.4.1, and [17,36,52,53]),

and with measurements on PFO using other EPR techniques (see Sec. 3.4.2,

and [56,57]).

The signal-to-noise ratio of the EDEPR spectrum is extremely high, illustrating

the very high sensitivity that may be achieved with this technique. For ODEPR
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the signal-to-noise ratio is good but is currently limited by the low efficiency

light collection geometry due to the location of the acceptance face of the light

guide outside the cavity. Nevertheless, the spectra in Figure 6.1 show that

EDEPR and ODEPR are both viable methods for studying OLEDs.

6.1.2 Effect of Microwave Power

The strong EDEPR and ODEPR signals were further investigated to see if they

were both due to electron paramagnetic resonance absorption. As discussed

in Chapter 3, the magnitude of a true electron paramagnetic resonance signal

is directly proportional to the microwave power incident on the cavity, at least

until saturation occurs [2].

Figure 6.2: Microwave power dependence of low field (left) and high field
(right) signals with electrical (top) and optical (bottom) detection. An attenua-
tion of 0 dB corresponds to the maximum microwave power of 80 mW; 20 dB
corresponds to 0.8 mW. Spectra were taken at room temperature using the PFO
OLED RS160 with a microwave frequency of 9.106±0.001 GHz.
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Figure 6.3: Microwave power de-
pendence of the peak-to-peak
magnitudes from the high field
EDEPR and ODEPR spectra in
Figure 6.2. The maximum mi-
crowave power was 80 mW.

Figure 6.2 shows the effect of changing the incident microwave power on the

EDEPR and ODEPR signals seen in Figure 6.1. The microwave power depen-

dence was measured for the magnetic field ranges of −6 to 15 mT (low field)

and 320–330 mT (high field). For the low field measurements, auxiliary coils

were used to sweep from negative to positive fields. These coils were not used

for Figure 6.1, which shows only fields greater than +5 mT.

The microwave power has essentially no effect on the low field signals in spec-

tra (a) and (c) of Figure 6.2. Note that for both EDEPR and ODEPR the low field

signal comprises a broad quenching signal and a narrow enhancing signal. The

lack of dependence of the low field signal on the microwave power indicates

that this is not an electron paramagnetic resonance. Instead these signals may

be attributed to magneto-resistance and magneto-electroluminescence (see Sec-

tion 3.3, and [37,41,42]) and arise simply because the light emission and con-

ductivity are particularly field-dependent nearB = 0 and this is being detected

via the effects of field-modulation and lock-in detection.

For the high field spectra (b) and (d), both EDEPR and ODEPR show a sin-

gle quenching signal which increases in intensity with increasing microwave

power. Hence this signal is from a true electron paramagnetic resonance. The

change in peak intensity with microwave power is shown in Figure 6.3, where

the peak-to-peak values are normalised to the full power (0 dB) spectrum. Lin-
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ear fits to the data indicate that no power saturation is occurring.

6.1.3 Effect of Ageing

A pristine PFO OLED (RS164) was turned on in a flow of nitrogen and the

high-field EDEPR spectrum monitored as the OLED degraded. A sequence of

spectra is given in Figure 6.4.

A clear phase reversal of the peak occurs between 4 and 5 hours of OLED

operation, where the resonance changes from current-quenching to current-

enhancing. The g-values for the quenching and enhancing resonances are

2.0034±0.0007 and 2.0033±0.0004 respectively.

Figure 6.4: Representative EDEPR spectra from throughout the 25-hour-long
series of measurements. A switch in phase of the peak occurs between 4 and
5 hours of OLED operation. Spectra were taken at room temperature using
the PFO OLED RS164, with a microwave power of 80 mW and a microwave
frequency of 9.1061±0.0001 GHz.
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Figure 6.5: Changes in the peak-to-peak magnitude ∆ypp and width ∆Bpp and
the integrated area (arbitrary units) of EDEPR spectra of a PFO OLED (RS164)
due to operational ageing. A transition occurs after 4 hours of OLED oper-
ation. Note the different widths of the initial quenching resonance and final
enhancing resonance.

Peak-to-peak magnitudes and widths, and the integrated area were calculated

from these spectra1 and are shown in Figure 6.5.

The integrated area A is calculated using

A = K
∆ypp

2

(
∆Bpp

2

)2

(6.1)

where K is a constant, ∆ypp is the peak-to-peak magnitude, and ∆Bpp is the

peak-to-peak width [88]. The integrated area is proportional to the number of

1These data were obtained using Gaussian fits to the spectra, and for several of the spectra
at least one Gaussian was required for a close fit.
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Figure 6.6: Low field (left) and high field (right) spectra with electrical (top)
and optical (bottom) detection for an aged PFO OLED (RS164) subjected to var-
ious tests. Spectra were taken at room temperature, with a microwave power
of 80 mW and a microwave frequency of 9.1062±0.0001 GHz.

spins undergoing resonance.

Both the integrated area and peak-to-peak magnitudes initially rapidly in-

crease, then decrease more slowly until the initial quenching resonance dies

away and an enhancing resonance appears after ∼250 minutes. The final en-

hancing resonance is broader than the initial quenching resonance, indicating

that the centres associated with the signals have different environments.

After the OLED (RS164) had been ON for 25 hours, high and low field sig-

nals for both EDEPR and ODEPR were measured, and then the OLED was

subjected to a few tests to determine whether the ageing was reversible. The

spectra are shown in Figure 6.6. First the OLED was turned OFF and left for

2 hours, then remeasured, with no significant changes apparent. To see if the

ageing was due to trapped charge polarisation of the OLED, the OLED was
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Figure 6.7: EDEPR and ODEPR spectra of a PFO OLED (RS164) after storage in
a nitrogen glove box for one week post operational ageing. Spectra were taken
at room temperature, with a microwave power of 80 mW and a microwave
frequency of 9.1057±0.0001 GHz. OLED: RS164.

then turned OFF and short-circuited for 40 minutes, again with no apparent

change in the spectra. These experiments suggest that the ageing was irre-

versible on this time scale.

Of note is the comparison of each spectrum in Figure 6.6 with the correspond-

ing spectrum in Figure 6.2. These two sets of data are from two OLEDs, RS164

and RS160 respectively, with the same structure and from the same fabrication

batch. The ODEPR signals in 6.2(c) and in 6.6(c) are very similar, and like-

wise for the plots with label (d). In contrast, the EDEPR low field signals in

6.2(a) and 6.6(a) are markedly different, with two signals superimposed in the

former, and three in the latter. This will be discussed further in Section 6.1.5.

This OLED was then kept in the glove box and remeasured after a week, giv-

ing the spectra shown in Figure 6.7. In the EDEPR spectra the phase reversal
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Figure 6.8: Electroluminescence spectra of new and aged PFO OLEDs.

at high field and the new sharp resonance at low field persist. All four of

these spectra show greatly reduced signal-to-noise ratios (compared with the

spectra in Fig. 6.6 which were taken at the end of a continuous measurement

sequence). This type of signal degradation was also observed for other PFO

OLEDs that had been exposed to the atmosphere. Noise in the ODEPR spectra

would obscure any narrow resonance that may be present at zero field.

6.1.4 Electroluminescence of the Aged OLED

The electroluminescence of the aged OLED (RS164) was measured to see if

there was any change in emission due to ageing. A comparison of the electro-

luminescence of a new PFO OLED (RS152, from Fig. 5.12) and the aged PFO

OLED is presented in Figure 6.8.

The aged PFO OLED electroluminescence exhibits a blue-green emission near

500–520 nm which is characteristic of a keto defect (see Fig. 5.13) [81]. Com-

paring this with the spectrum of the new PFO OLED suggests that the elec-

troluminescence of the new PFO OLED is a composite of electroluminescence

from PFO and from keto defects. Hence either the keto defect is the dominant

recombination centre and/or most of the PFO has been converted to the keto
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Figure 6.9: Fits to low field data for (a) a new PFO OLED (RS160), (b) a PFO
OLED (RS164) after 25 hours of operation, (c) the aged PFO OLED (RS164) after
storage for 1 week. Data are from Figures 6.2(a), 6.6(a), and 6.7(a) respectively.
The final fit is the sum of the Lorentzians of different widths.

defect form during the 25 hour operational degradation experiment.

6.1.5 Analysis of the Low Field Signals

The low field EDEPR signals in Figures 6.2(a), 6.6(a), and 6.7(a) may each be

decomposed into several Lorentzian lines, all centred on zero magnetic field

but with varying width. The widths and amplitudes of Lorentzians forming

the composite signals are shown in Table 6.1, and fits to the data are shown in

Figure 6.9. Completely unconstrained fits were not unique due to the flexibility

afforded by the number of composite lines. Hence the fitting was constrained

by assuming four component lines of fixed linewidth.
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Component Linewidths −→
Description 8 mT 3.3 mT 0.7 mT 0.4 mT Ratio

New OLED Fig. 6.2 17 22 −2.6 0 6.5 : 8.5 : −1 : 0
25 hrs ON Fig. 6.6 0.7 0.35 −0.38 0.26 1.8 : 0.9 : −1 : 0.7
1 wk storage Fig. 6.7 0 0.12 −0.08 0.1 0 : 1.5 : −1 : 1.25

Table 6.1: Amplitudes (arbitrary units) of Lorentzian lineshapes with given
linewidths in the decompositions of the low field signals from the respective
figures. Ratios with the enhancing lineshape amplitude are shown for compar-
ison.

6.1.6 Summary

A high field quenching EDEPR resonance at g = 2.003±0.001 was found for

PFO OLEDs. This resonance increased in intensity in the first few minutes of

operation but then decayed over several hours to a few percent of its initial

value. The linewidth remained the same during this time.

After about 4 hours of operation, an enhancing resonance of opposite sign and

larger linewidth appeared and grew steadily with time. This effect was not

observed in the ODEPR high field resonance.

The low field signal showed a broad quenching resonance with a narrow en-

hancing resonance superimposed, in both the EDEPR and the ODEPR. After

a long period of operation a third signal appeared in the EDEPR which was

even narrower, and quenching. This additional signal was not observed in

the ODEPR. These effects were independent of microwave power and so are

magneto-resistance (MR) and magneto-electroluminescence (MEL) effects rat-

her than EPR.



Discussion 89

6.2 Discussion

6.2.1 The High Field Signal at g = 2

The observation of a signal near g = 2 at room temperature and with conven-

tional EPR as well as EDEPR and ODEPR is consistent with a signal arising

from a free-radical (a molecule with an unpaired electron in a dangling bond).

Free radicals may be involved in polymerisation reactions and have been pre-

viously suggested [58,60] as playing a role in device degradation. A free rad-

ical EPR spectrum would usually be characterised by a fingerprint hyperfine

pattern (reflecting the number and location of hydrogens for which the elec-

tronic wavefunction has a finite value at the hydrogen nucleus). However

for solid polymer films the anisotropic hyperfine pattern is averaged out to

a broad lineshape with little structure, as observed here.

In Figure 6.5 an initial rise in EDEPR signal intensity is observed. This may be

due to an increase in the free radical concentration as energetic electrons and

holes are injected into the organic layers of the OLED.

The J-V characteristics suggest that the current flow is space-charge limited.

This may be determined by a variety of traps of various depths, including

a particular free radical which is affected by oxygen-induced degradation and

chemically converted to some other species. Oxygen may already be present in

the polymer film due to preparation in air. However the ITO layer was cleaned

with an oxygen plasma, which leaves a residual layer of active oxygen within

and between the ITO and the PEDOT:PSS layers. This oxygen may diffuse

through the PEDOT:PSS layer into the PFO layer during operation, decreasing

the concentration of the EDEPR-active free radicals [59].

From Figure 6.5 it is evident that after 4 hours of operation, a new EDEPR spec-
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trum appears, of opposite sign, different linewidth, and similar g-value. This

may coincide with the arrival of the diffusing oxygen near the recombination

zone, which will be close to the Al electrode and a somewhat different chemi-

cal environment. The effect of the diffusing oxygen, and/or the recombination

energy, and/or the different chemical environment, is that a new free radical

species is generated in the recombination zone. This is supported by the dif-

ferent linewidth of the new spectrum, which indicates a different number or

distribution of hydrogen atoms, and the different electroluminescence spec-

tra pre- and post-ageing (Fig. 6.8), which indicates chemical changes in the

recombination zone. The free radical in this case is acting as a non-radiative

recombination centre, which enhances the recombination rate and hence the

current flow, but removes charge carriers which could contribute to radiative

recombination and hence quenches the luminescence.

The changes in the electroluminescence are characteristic of keto defects. How-

ever a keto defect is a luminescent centre and is NOT a free radical, suggesting

that the free radical may instead be a by-product of the keto defect forma-

tion reaction. Indeed, for every keto defect formed there are two hydrocar-

bon chains released from the polymer, which could exist as free radicals in the

emissive layer (see Fig. 5.13). In the absence of clear hyperfine structure, the

specific nature of these free radicals cannot be resolved.

6.2.2 A Possible Spin-Dependent Mechanism

Recalling the models presented in Chapter 2 (Sec. 2.2), a tentative model is

presented here for the spin-dependent trapping by the free radicals discussed

above. A schematic diagram is provided in Figure 6.10.

Before trapping, the free radical R is electrically neutral and inert in the poly-
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Figure 6.10: A possible spin-dependent recombination mechanism involving
free radicals and polaronic holes. The close proximity pair may form a charged
trap (spin-dependent), which may remain as a charged trap or may then trap
an electron to return the neutral trap if conduction electrons are present.

mer matrix. The free radical may attract a polaronic hole to form a molecular

ion R+ representing the filled trap. As a precursor, the free radical R and the

hole may exist as a close-proximity pair. In a magnetic field there are four

possible spin states for this pair, three triplet states and one singlet state:

Triplet



|1, 1〉 = |↑↑〉 E = 1/2(g1 + g2)βB

|1, 0〉 = (1/
√

2) [|↑↓〉+ |↓↑〉] E = 0

|1,−1〉 = |↓↓〉 E = −1/2(g1 + g2)βB

Singlet |0, 0〉 = (1/
√

2) [|↑↓〉 − |↓↑〉] E = 0

Or equivalently the MS = 0 states may be written as mixed singlet and triplet

states:

|↑↓〉 = (1/
√

2) [|1, 0〉+ |0, 0〉]

|↓↑〉 = (1/
√

2) [|1, 0〉 − |0, 0〉]

Of these states, the two MS = ±1 states cannot result in the formation of the

molecular ion due to spin conservation. Therefore these states can only remain

as a close-proximity pair, or dissociate. If each of the four states are generated

at the same rate, the steady-state populations of the MS = 0 pair states should

therefore be less than that of the MS = ±1 states.

In this situation the effect of EPR will be to pump populations from the non-
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combining |1,±1〉 triplet states to the combining MS = 0 states and thus in-

crease the rate of trapping. This will result in an increase in the trapped charge

R+ and a decrease in the free hole current, which is seen as a quenching EDEPR

signal. As this same current results in light output at the recombination zone,

the EPR will also decrease the luminescence and hence give a quenching OD-

EPR signal.

The R+ ion could also act as a recombination centre for electrons, but this is

unlikely as these ions are formed on the positive side of the recombination

zone where there are very few electrons.

The second resonance in Figure 6.5 is thought to arise from an oxygen-gener-

ated free radical RO in the recombination zone. In this case, if EPR leads to

an increase in R+
O, then this can attract an electron, giving rise to additional re-

combination which is non-radiative. This increases the current and hence gives

an enhancing EDEPR signal, but at the same time detracts from the radiative

recombination which decreases the luminescence and is seen as a quenching

ODEPR signal. This mechanism accounts for the high field signals seen in Fig-

ures 6.2, 6.6, and 6.7 but further experiments are required to test the validity of

this model.

6.2.3 The Low Field Signal Near B = 0

The signals at low field in Figures 6.2, 6.6, and 6.7 are not true EPR effects

because they are independent of microwave power. Instead they are magneto-

electroluminescence (MEL) and magneto-resistance (MR) effects.

The current hypothesis for MEL and MR is based on the observation that it

occurs at very low magnetic fields, where the magnetic field is so low that
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the hyperfine interaction is comparable with the Zeeman interaction and so

hyperfine-induced spin mixing is possible. This hypothesis is supported by

the study by Nguyen et. al. [37] discussed in Section 3.3 where a clear dif-

ference in MEL was seen upon replacing H atoms with D atoms in a sample:

hydrogen and deuterium have different hyperfine interaction constants and

nuclear spins (IH = 1/2 and ID = 1). The MEL is of significant practical interest

as the light output may be increased by ∼10% by applying small (5–10 mT)

magnetic fields. For example it may be possible to use very stable OLEDs with

known MEL to map the pattern of surface magnetisation on a hard disk.

In this project the observed MEL was similar to that found by Nguyen, with a

narrow (0.7 mT wide) enhancing signal superimposed upon a broad (>3 mT

wide) quenching signal. The MR signal initially showed the same features

(Fig. 6.2). However after electrical degradation, a third signal appeared (Fig.

6.6) which was intense and quenching, and even narrower (0.4 mT wide). After

storage for one week the ratio of these signals changed, with reduced contri-

bution from the enhancing signal compared with the quenching signals.

These results are unusual, as an explanation consistent with the hyperfine in-

teraction would require the pattern of narrow and broad signals, as observed

and interpreted by Nguyen et. al. [37], to scale up or down together with

degradation as only a single centre is involved. This is contrary to the obser-

vation here. Hence a more complex explanation than that given for the high

field resonances may be required here.





Chapter 7

Conclusions

This chapter presents a summary of the key results and developments in this

project, followed by suggestions for further work to clarify and extend these

results, and a brief outlook to conclude the thesis.

7.1 Summary

A process has been developed and refined for fabricating OLEDs of the form

ITO/PEDOT:PSS/Emissive Layer/Al/Ag, where the PEDOT:PSS layer is op-

tional, with three emissive materials PVK:OXD-7:FIrpic (PB), PFO, and F8BT.

These devices were fabricated in air and with a geometry customised for EPR

measurements. Critical features for satisfactory devices were found to be a

sufficiently thick organic layer, and minimal exposure to the air.

These OLEDs produced electroluminescence with spectra in agreement with

literature results. The spectrum from a PFO OLED showed signs of partial

degradation due to the formation of keto defects. Emission was visible to the

naked eye above 12 V and 25 V for the phosphorescent PB and fluorescent PFO
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blue-emitting OLEDs respectively.

Hardware and software have been developed which permits simultaneous

measurements of I-V and EL-V curves in an inert glove box environment over

a range of ±9 V. The range for positive voltages may be easily extended to

0–27 V. Both PB and PFO OLEDs showed space-charge-limited conduction be-

haviour with significant trapping. A gradual decrease of the EL and current

during operation was noted, with partial recovery following a period of rest.

This behaviour was recorded for a PB OLED and observed to be of a similar

nature for the PFO OLEDs.

Both ODEPR and EDEPR signals were observed for PFO OLEDs at both low

and high fields. The low field signals are independent of microwave power

and so are attributed to magneto-electroluminescence (MEL) and magneto-

resistance (MR) effects. Both of the MEL and MR signals show a composite

broad quenching and narrow enhancing response around B = 0. No change

was observed in the MEL following operational ageing. In contrast, a third,

narrow quenching line was observed in the MR and the ratio of the initial two

MR responses changed substantially with ageing. This changed ratio of broad

and narrow components after ageing is inconsistent with the interpretation of

Nguyen et. al. [37]. Hence these results were unexpected and may require a

more complex explanation than the hyperfine-induced spin mixing explana-

tion found in the literature.

The high field signals increased with increasing microwave power so were

true EPR signals. These quenching resonances were easily observed at room

temperature as a single line with g-value of 2.003±0.001, which is very close

to the free-electron g-value. A very weak line with the same g-value was also

observable in the conventional EPR spectra of the PFO OLED (ON and OFF).
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Operational ageing was observed over a period of ∼24 hours by monitoring

the EDEPR spectrum around g = 2. The initial quenching resonance rapidly

increased and then gradually decreased in intensity. After 4 hours of op-

eration an enhancing resonance appeared and slowly increased in intensity.

The different linewidths of these two resonances indicate that they are indeed

different resonances. The initial quenching EDEPR and ODEPR signals dur-

ing device operation are ascribed to spin-dependent trapping at a free radical

which leaves the free radical as a charged spin-0 molecular ion. This also af-

fects the current flow and light emission through its role as trapped charge,

as confirmed by space-charge limited J-V data. The enhancing EDEPR signal

observed after several hours of operation is attributed to a second free radical,

generated in the recombination zone, which acts as a non-radiative recombi-

nation centre.

The EL spectrum of the aged PFO OLED indicated significant keto defect for-

mation, and the degradation was found to be irreversible. The ageing is at-

tributed to chemical changes in the OLEDs rather than damage solely caused

by the recombination energy. A possible explanation for these effects is the

diffusion of oxygen through the device from the oxygen-plasma-treated ITO.

Measurements of OLEDs with minimal electrical degradation but similar times

in the EPR spectrometer revealed no ageing of this kind. Rather, the EDEPR

signal gradually weakened and eventually disappeared as the OLED became

less electrically stable. Storage in inert atmosphere also reduced the signal-

to-noise ratio of the EDEPR signal in a similar way. This suggests that there

are two different degradation processes occurring; that which occurs during

operation and that which occurs due to residual trapped gas.

A working model has been tentatively proposed which can explain the ob-
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served effect as spin-dependent trapping and recombination at free radicals,

although this model requires further experimentation to test its validity.

7.2 Further Work

Due to time constraints and sample availability, the electrical degradation of

only one PFO sample was studied. Ideally several more PFO OLEDs should be

studied under the same conditions, and with strategic variations. For example

it would be useful to confirm the interpretation of spin-dependent trapping

by constructing devices which are unipolar in operation and free of recom-

bination effects. This would require an appropriate choice of cathode which

is electron blocking (e.g. gold). In this case there would be no observable

ODEPR, but there should still be observable EDEPR. Bipolar and unipolar de-

vices could also be used to test alternative degradation mechanisms such as

light-induced degradation.

The optimisation of the devices would most likely be limited given the fabrica-

tion process in air, and the impracticality of using reactive low work function

cathode materials such as calcium in air. Nevertheless, some improvements to

the device fabrication could include the addition of a thin layer of an electron-

injecting material such as LiF, CsF, or MgO before the Al cathode. For devices

with hole-dominated charge transport this would improve electron injection

and so lower the operating voltage [76,89]. Further reduction in operating

voltage could come from reducing the emissive layer thickness, although this

would also increase the likelihood of pinhole formation.

The hypothesis that oxygen-induced formation of free radicals gives rise to

the enhancing resonance could be tested by a study which varies the length of
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time the OLED is exposed to oxygen, both in the atmosphere and in the oxygen

plasma treatment. If the oxygen is indeed diffusing from the oxygen-plasma-

treated ITO, omitting this step should significantly reduce or even preclude

formation of the second free radical. If possible, measurements of the amount

of adsorbed oxygen and water in the organic layers would provide additional

insight, as would chemical analysis of the aged OLED. Other parameters that

should affect the appearance of the enhancing resonance are the total layer

thickness, and the presence of the PEDOT:PSS layer1.

Also, it may be possible to generate the free radicals by X-ray irradiation, and

then examine them with EDEPR. This would be done most simply in unipo-

lar devices, and may reveal information about the two different free radicals.

Reverse bias measurements may also provide interesting EDEPR and ODEPR

spectra.

Other related experiments are possible, which may provide complementary

information. For example, it was noted that the emission was spatially uneven

across the active area, with brighter edge regions. The optically and electrically

detected EPR effect could be ‘mapped out’ across the active area surface with

a high-resolution camera to see if the effect is location-specific.

For any further time-dependent operational ageing experiments it would be

beneficial to record, as functions of time, the EDEPR and ODEPR spectra at

both high and low field and the spectral output EL(λ) for several fixed volt-

ages, as well as the I-V and EL-V characteristics. This would require consid-

erable redesign of the experimental apparatus but would give a much more

complete picture of the processes occurring during operational degradation. It

would also be useful to extend the voltage range of the LIV Tracer to measure

1This parameter may prove problematic as OLEDs with only a PFO layer had even higher
turn-on voltages so may not be as stable.
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the VUW-made OLEDs as described in Section 4.1.3.

The fixed modulation frequency for each EPR method was chosen during pre-

liminary experiments to give maximal signals. Measuring the modulation

frequency dependence of the signal (e.g. both the in-phase and out-of-phase

components) may provide further information, for example the composite low

field signals may show different phase dependence and hence be able to be

separated in phase [90].

A low-temperature study may be of interest, for three reasons. Firstly it may

reduce line broadening due to spin-lattice relaxation, so may enable hyper-

fine structure to be resolved2. Secondly, the intensity versus temperature data

could be used to test the validity of the proposed recombination models, as

mechanisms such as dissociation have an associated temperature dependence.

Thirdly, there may be completely different EPR effects in short-lived states

such as excitons that could be observed at low temperatures.

A comprehensive study on the phosphorescent OLEDs would be of consider-

able interest, as phosphorescent OLEDs are much more efficient and of current

commercial interest. The triplet emission should have a very different spin-

dependent mechanism (see [91]) and a comparison with PFO may also provide

some clarity regarding the radical species present in PFO. The phosphorescent

OLEDs have a higher electroluminescent intensity (when compared with PFO

OLEDs at the same operating voltage), and so the ODEPR can be measured at

a lower operating voltage which may prolong the life of the device.

2However orientational broadening due to the amorphous polymer film may still prevent
observation of any hyperfine structure.
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7.3 Outlook

This project has shown that it is possible to detect EDEPR and ODEPR signals

from OLEDs made in air, and that the degradation of these devices may be

observed within the time-scale of a day. The process for OLED fabrication

that has been established at VUW can be easily adapted to make use of new

materials, and the home-built EPR spectrometer is also readily customisable,

for example for the further work discussed above. The mechanisms of spin-

dependent recombination are under active debate in the literature, and so it is

anticipated that these techniques and apparatus described here will form the

nucleus of a new activity at VUW which may make a substantial contribution

to OLED research.





Appendix A

LIV Tracer: Design Details

A.1 Sample Holder Design

A sample holder was designed to hold and make contacts to the OLED during

measurements with the LIV Tracer. The design is outlined in Figure A.1 and

a diagram depicting the light collection geometry is provided in Figure A.2.

Photographs of the finished holders are shown in Figure A.3. Two gold-coated

pads which contact the ITO and Al electrodes of the OLED are attached to a

piece of Veroboard and held in place by the two screws on the right-hand side.

These screws connect the contact pads to the circuit inside the box, as well as

securing the holder to the die-cast box. Mini crocodile clip connections were

added to the Veroboard to enable quick connections to OLEDs with existing

wire contacts.

The Darmstadt PPV OLEDs are encapsulated, 5 mm longer than those made

at VUW, and mostly with existing wire contacts. The holder for these OLEDs

needs only crocodile clip connections; the gold-coated contact pad presses on

the encapsulating layer to hold the OLED in place.
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Figure A.1: Holder designed for the OLEDs fabricated at VUW. Diagram ap-
proximately to scale. The sample holder for the Darmstadt diodes is almost
identical except that it is longer by 5 mm to accommodate the 30 mm Darm-
stadt diodes.

Figure A.2: A diagram of the light collection geometry for the LIV Tracer. The
silicon photodiode is located directly under the centre of the light-emitting
region of the OLED.
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(a) Holder for VUW OLEDs, with OLED
included.

(b) Holder for Darmstadt OLEDs, with
OLED included.

Figure A.3: OLED holders for (a) OLEDs fabricated at VUW, and (b) OLEDs
fabricated in Darmstadt.

A.2 Electronic Circuit Block Diagram

The electronic circuit for the LIV Tracer may be represented by a block dia-

gram, as shown in Figure A.4.

Figure A.4: A block diagram for the electronic circuit shown in Figure 4.2.

A.3 LabVIEW Program for the LIV Tracer

The LabVIEW program itself is called a ‘virtual instrument’ (VI), and is viewed

as a pictorial block diagram which is read from left to right. The block diagram

is shown in Figure A.5. A flat sequence structure (the outermost grey film-strip

frames) is used to separate the program into two parts that run sequentially.
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In the first frame a triangle waveform is generated, which is used in the second

frame to apply a series of stepped voltages to the diode. On the far left the

maximum, minimum and step size values of the applied voltage are linked to

user controls, for which numeric inputs are provided by the front panel. The

small grey box is the triangle waveform generator VI, and the rest of the boxes

are formula VIs that convert the numbers from the user inputs into amplitude,

phase, offset and sampling information for the triangle waveform generator.

Here the equations in the formula VIs manipulate the triangle waveform so

that the output voltage across the diode always starts at zero, steps up to the

maximum voltage, down to the minimum voltage, and back to zero, with the

desired voltage step.

There is a subtlety here: As discussed in Section 4.1.1 the voltage across the

diode is the amplified voltage difference across TP1 and TP2, two output pins

of the USB-6009. Two voltage output pins are needed in order to generate

negative voltages because the voltage at each pin is restricted to the range 0 to

5 V. Here we use one varying output of between 0 and 5 V and one constant

output of 2.5 V so that the difference between the two voltages ranges from

−2.5 V to +2.5 V. This voltage difference is then amplified ∼4 times by U1

to give a −10 V to +10 V voltage across the diode. Thus the very first set of

VIs in the first section convert the −10 V to +10 V user input voltages to the

corresponding value between 0 to 5, where 0 V corresponds to 2.5, 10 V to 5,

etc. The triangle waveform is then generated in the range 0 to 5, and the output

converted in the second frame of the program.

The second frame will start running when the Take Measurement button (on

the front panel) is pressed and all of the VIs contained within the second frame

have the information they need. Here the second frame saves measurement
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data to a file, so a file dialogue immediately opens requesting a file name. Once

the program has this vital piece of information, the real measurement begins.

This is a timed, iterative process, which is controlled by a Wait Until Next ms

Multiple VI and another flat sequence structure within a For Loop. For each

iteration, the triangle-shaped Select VI compares the current iteration number

with the total loop count, N. If the iteration has reached N-1, the Select VI will

send the value 2.5 to the first frame of the flat sequence, otherwise it will send

the next data point in the triangle waveform that is waiting at the auto-indexed

tunnel from the triangle waveform generator VI.

In the first frame of the flat sequence, two DAQ Assistant VIs send output

information to the USB-6009 to create a voltage across the two analogue output

pins of the USB-6009, which is then converted to a larger voltage across the

diode by an operational amplifier. One DAQ Assistant has a constant value

of 2.5 to send; the other calls the triangle-shaped Select VI to find out which

output value to send. Also in this frame is a user-friendly VI that converts the

output voltage back into the −10 V to +10 V range for display on the Signals

over Time graph on the front panel and writing to file.

The second frame of this flat sequence controls the measurement of diode volt-

age and current, and light output, using the analogue input pins of the USB-

6009 in differential mode. The measurement is delayed by the Time Delay VI

according to the value from a numerical user input on the front panel. The

three measured signals are split and converted into true values depending on

the amplification from the electronic circuit, then written to a .lvm (LabVIEW

measurement) file and displayed on the front panel graphs.
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OLED Fabrication: Spin Coating,

Problem Solving and Final Process

B.1 Spin-Coating

Figure B.1: SPIN150 spin-
coater from SPS Europe.

In spin-coating, the substrate is secured in

the centre of the spin-coater by vacuum suc-

tion (see Figure B.1). The polymer solution is

pipetted onto the substrate to coat the entire

surface. The spin-coater then spins the sub-

strate, which pushes excess solution off the

substrate and evaporates the solvent to leave

a thin film of polymer. The film thickness is

determined by the rate of revolution and the

solution concentration. The desired combi-

nation of acceleration(s), speed(s) and time(s)

is saved and run as a program.
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B.2 Problem Solving

Table B.1 summarises the main reasons for device failure, and how they were

overcome in order to fabricate working devices.

Problem Proposed Solution(s) Result

Patterning of ITO with
tweezers and cotton buds
leaves a messy edge

Use a printed acetate
mask and lithography to
pattern ITO

ITO pattern neat,
reproducible, and
easily controllable

Polymer not dissolving in
solvent

Increase dissolving time;
Use a magnetic stirrer
bar; Use a different sol-
vent

Solutions dissolve
well

Polymer films too thin,
even with slow spin
speed

Increase concentration of
polymer

Film thickness con-
trollable with spin
speed

Air flow around substrate
causes solvent to evapo-
rate too fast, leaving an
uneven film

Attach substrate to a mi-
croscope slide with car-
bon tape

Reproducibly
smooth and even
films

Short circuits from PE-
DOT:PSS lumps in film or
pinholes in emissive layer

Filter all solutions, make
active area smaller and
emissive layer thicker

High resistance
light-emitting
devices

Short circuits from
punching through to
PEDOT:PSS layer under
electrode

Remove the excess PE-
DOT:PSS film before
spinning the emissive
layer

High resistance
light-emitting
devices

Devices are fabricated
in air which accelerates
degradation of the device

Dry films in desiccator
rather than on a hot plate
and use a glove box for
device storage

Longer-lasting
light-emitting
devices

Table B.1: Device fabrication trouble-shooting

B.3 OLED Fabrication Process

The successful fabrication process is outlined in the following set of steps:
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B.3.1 Substrate Preparation

Cutting of Substrates to Size

1. Spincoat a protective layer of photoresist onto the conductive side

(4000 rpm for 1 minute) and bake for 1 min at 95◦C

2. Attach other side to backing pad with wax; secure on lever arm parallel

with diamond saw blade

3. Cut to size using diamond saw (move 4.183 mm to get 18 strips with

width of just under 4 mm)

4. Unstick, and smooth any sharp edges/corners with silicon carbide paper

5. Clean with acetone, dry with nitrogen gun (repeat if needed)

Etching of ITO Pattern

1. Use ohmmeter to check which side is coated with ITO

2. Spincoat a layer of photoresist onto the conductive side

(4000 rpm for 1 minute) and bake for exactly 1 min at 95◦C

3. Place under acetate mask in mask aligner and expose to UV for 11 s

4. Develop pattern in solution of 3:1 developer:water for 40 s

5. Check pattern has developed properly; if not, clean well with acetone

and repeat photolithography steps

6. Etch with 37% HCl for 90 s and wash at least twice with DeI water

Cleaning of Substrates

1. Sonicate in DECON 90 5% using a high-power sonicator

2. Rinse with deionised water until no bubbles appear, then sonicate in

clean deionised water

3. Sonicate in acetone, then in isopropanol

4. Expose to O2 plasma for 15 s
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B.3.2 Hole Transport Layer

1. Attach substrate to a microscope slide with carbon tape (ITO side up-

wards) and remove any loose particles with nitrogen gun

2. Place on vacuum chuck and ensure substrate is centered

3. Spread 50 µL filtered PEDOT:PSS onto the substrate (drop from micro-

pipette)

4. Spin-coat at 3000 rpm for 1 minute

5. Remove excess film with tweezers and/or a cotton bud and isopropanol,

leaving a film across the active area only

6. Dry in vacuum desiccator for at least 1 hour, ideally 2 hours

B.3.3 Emissive Layer

1. Dissolve solutions overnight:

Phosphorescent Blue Mix Dissolve 1 mg FIrPic, 4 mg OXD-7 and 10 mg

PVK in 600 µL anhydrous chlorobenzene in an amber vial using a

(thoroughly clean) magnetic stirrer

PFO Dissolve 15 mg/ml PFO in anhydrous chloroform in an amber vial

using roller-based agitation

F8BT Dissolve 12 mg/ml F8BT in anhydrous chloroform in an amber

vial using roller-based agitation

2. Filter using a 0.45 µm PVDF filter

3. Check substrate is secure on backing slide and remove any loose particles

with nitrogen gun as before; secure on spin coater

4. Spread 45 µL filtered solution onto the substrate (drop from micropipette)

5. Spin-coat at 2000 rpm for 30 s

6. Remove film outside of active area with tweezers, leaving a smooth film

which covers and extends ∼3–4 mm past the PEDOT edge on each side

7. Dry in vacuum desiccator while preparing other samples and evaporator
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B.3.4 Cathode

1. Place substrate(s) in substrate holder (use blanks if needed) and masking

across the top of the electrode to match the ITO pad

2. Position electrode mask onto substrate

3. Screw together onto evaporation stage

4. Put into evaporator with Al and Ag evaporation sources and follow evap-

orator instructions. The pump down to 5×10−6 Torr takes 2 hours but is

best if left overnight, and deposition takes ∼10–20 minutes with a rate of

∼2 A/s

5. Deposit 100 nm of metal, preferably aluminium; a capping layer of silver

may be used to reach the desired thickness if needed

B.3.5 Contacts

1. Cut a length of wire of about 50 mm. If insulated, remove ∼6-8 mm of

insulation at each end e.g. with solvent or with a scalpel, using a glass

slide to press on. Bend the ends into hooks (∼3 mm long, ∼0.5–1 mm

wide).

2. Attach to ends of ITO and Al/Ag electrodes with either pressed indium

or silver paint:

Pressed indium contacts: Cut a small (∼0.5 mm) slice of indium, melt

it with a soldering iron on low heat, and wrap it around the hook

to form a ball. Use the flat side of blunt tweezers (with teflon tape

wrapped around them if needed) to gently press the ball onto the

electrode until it forms a mechanical and electrical contact.

Silver paint contacts: Place the OLED in a suitable storage container.

Position the contact wires in the container such that the hooks of the

wires sit on the electrodes where contact is desired, without needing

to hold them there. Move the wires away and put a small drop of

silver paint onto the end of the electrode at the contact point. Repo-

sition the hooks, ensuring full coating with the silver paint. Leave

the contacts to dry for at least 30 minutes in a well-ventilated place

where they will not be moved.
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