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Abstract

The Food Nutrition Environment Survey (FNES) is a survey of New Zealand early child-
hood centres and schools and the food and nutritional services that they provide for their
pupils. The 2007 and 2009 FNES surveys were managed by the Ministry of Health. Like all
the other social surveys, the FNES has the common problem of unit and item non-responses.
In other words, the FNES has missing data. In this thesis, we have surveyed a wide variety of
missing data handling techniques and applied most of them to the FNES datasets.

This thesis can be roughly divided into two parts. In the first part, we have studied and inves-
tigated the different nature of missing data (i.e. missing data mechanisms), and all the com-
mon and popular imputation methods, using the Synthetic Unit Record File (SURF) which
has been developed by the Statistics New Zealand for educational purposes. By comparing
all those different imputation methods, Bayesian Multiple Imputation (MI) method is the pre-
ferred option to impute missing data in terms of reducing non-response bias and properly
propagating imputation uncertainty.

Due to the overlaps in the samples selected for the 2007 and 2009 FNES surveys, we
have discovered that the Bayesian MI can be improved by incorporating the matched dataset.
Hence, we have proposed a couple of new approaches to utilize the extra information from
the matched dataset. We believe that adapting the Bayesian MI to use the extra information
from the matched dataset is a preferable imputation strategy for imputing the FNES missing
data. This is because the use of the matched dataset provides more prediction power to the
imputation model.
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Chapter 1

Introduction

The first purpose of this project is to provide a review of standard imputation methods for
continuous and categorical variables in survey data, including multiple imputation methods.
The second purpose is to apply these methods to missing data in the Food Nutrition Environ-
ment Survey (FNES), which was conducted by the Ministry of Health in 2007 and 2009, and
to select the best imputation method. The outline of the thesis is as follows.

Chapter 2 introduces the general forms of missing data patterns; the three missing data
mechanisms: Missing Completely At Random (MCAR), Missing At Random (MAR), and
Not Missing At Random (NMAR). This chapter also explores what might happen to our sam-
ple estimates if we ignore the missing data, under the three missing data mechanisms. The
investigation was carried out by creating missing data under the three missing data mecha-
nisms on the Synthetic Unit Record File (SURF) which is based on the Statistics New Zealand
income survey (Statistics New Zealand 2011).

Chapter 3 explains the two most common methods of dealing with missing data: the first
approach is to ignore the missing data by deleting records with missing data from datasets;
the second approach is the imputation of the missing data.

Chapter 4 discusses standard single imputation methods. We have also applied them to the
replicate SURF datasets with missing data.

Chapter 5 discusses and explores the use of resampling methods to incorporate imputation
uncertainty, and shows why the resampling and Multiple Imputation (MI) methods are a
means of including the imputation uncertainty in survey estimates. We have also discovered
that the jackknife resampling method does not work well in imputation procedures.

Chapter 6 discusses and explores likelihood based imputation methods by using the EM
algorithm. The EM algorithm is normally used to set up the initial estimates of the parameters
before the use of Multiple Imputation.

Chapter 7 distinguishes standard Multiple Imputation and Bayesian Multiple Imputation
(MI). Then, the chapter focuses on how to apply Bayesian iterative simulation methods (the
Gibbs sampler and the Metropolis-Hastings algorithm), which is the Bayesian part of the
Bayesian MI, to missing data, and how to measure the convergence of Bayesian simulation
chain.
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Chapter 8 demonstrates how Bayesian MI is applied, the exact MI process, and how the
sample estimates from multiple imputed datasets are combined to get the final MI estimates.
Then, the chapter discusses the difference between proper and improper MI.

Chapter 9 applies the imputation methods that have been introduced in previous chapters
to a particular missing categorical data problem. Chapters 4 to 8 only present imputation
methods for continuous data. Hence, the purpose of Chapter 9 is to present analogous methods
for categorical data.

Chapter 10 describes the 2007 and 2009 FNES surveys, detailing the sample design used,
and the collected sample data.

Chapter 11 displays the missing data pattern of the 2007 and 2009 FNES data, describes
the methods of investigating the missing data mechanism, and applies previously introduced
imputation methods to a few categorical variables with missing data. The chapter also pro-
poses the use of Bayesian MI to incorporate the extra information we get from matching the
2007 and 2009 datasets to gain precision. This is our new development of the Bayesian MI
for the case of partially matched datasets. Then, after comparing the results from different
imputation methods, the chapter concludes that the use of Bayesian MI is the best imputation
option for the FNES data.

Chapter 12 summarizes the previous chapters and proposes future improvements.
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Chapter 2

Introducing Missing Data

2.1 Missing data
Missing data mean there are “holes” in our datasets1. In the real world, it is very common

to have a dataset with missing data. For example, an interviewer may fail to ask a question;
a respondent may refuse to answer the question or cannot provide the information; a data
processor entering the data may skip the value (Lohr 1999). If missing data haven’t been dealt
with properly, statistical estimates can be seriously distorted. In other words, missing data or
poorly handled missing data introduce bias. There will be detailed discussion of how exactly
missing data lead to bias, but for now, an intuitive explanation is to imagine that missing data
hold some unique information of our target population. If we cannot retrieve the missing data,
the inferences of the target population based on the observed data would be wrong.

Hence, in order to deal with missing data properly, we need to investigate the patterns, the
causes, and the characteristics of missing data.

The first thing for dealing with missing data is to investigate its missing pattern. Little
& Rubin (2002) and Enders (2010) classify missing data patterns into six prototypical pat-
terns. Figure 2.1 displays the six missing data patterns, with the shaded areas representing the
observed values in the data set.

Y2Y1 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 X Y2 Y3 Y4

(A) Univariate Pattern (B) Unit Nonresponse Pattern (C) Monotone Pattern

(D) General Pattern (E) Planned Missing Pattern (F) Latent Variable Pattern

Figure 2.1: Missing data Patterns

1In this thesis, the data we have investigated are survey data
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The univariate pattern in panel A describes the situation that has only one variable with
missing data for some observations. This type of missing pattern is not common in survey
data, but it is an ideal example for researchers to explore missing data handling theories and
techniques. The unit non-response pattern in panel B, also called “Multivariate Two Pat-
terns” by Little & Rubin (2002), has more than one variable with missing data. We usually
encounter this situation in survey data. For example, there might be some variables which
are available for everyone from a sample frame, but some respondents may refuse to answer
some of the survey questions. The monotone missing data pattern in panel C, often refers
to attrition 2 for a longitudinal study. The general pattern in panel D is perhaps the most
common missing data pattern data users encounter. It is not surprising to see missing values
dispersed throughout the data matrix in a random fashion. The planned missing data pat-
tern (or structural missingness pattern) in panel E is another common pattern in survey
data. For example, if a respondent gives values for variables Y2 and Y4, then she/he does not
need to provide information for variable Y3. This can reduce respondent burden if we are col-
lecting a large number of questionnaire items. Strictly speaking, the latent variable pattern
in panel F, is not a missing data pattern. This is because there is no missing data in our col-
lected data set. However, we derive another variable, called a “latent” variable 3 based on our
collected variable values. From a missing data perspective, we consider this “latent” variable
to be completely missing for the entire sample.

As an aside, researchers often describe missing data as item non-response and unit non-
response. Item non-response means that survey participants answer some of the survey ques-
tions, but refuse to provide information for all the asked questions. Unit non-response means
that survey participants refuse to answer any of the survey questions. For example, panel A,
D, E, and F can be considered as item non-response, and panel B and C are unit non-response.

Missing data arise from the design of data collection stage to the data processing stage.
For instance, during a design stage, a survey or experimental design does not include all the
variables which might contribute to the data user’s research at the data analysis stage. These
unobserved “latent” variables are completely missing and weregard them as missing data (Lit-
tle & Rubin 2002). However, the majority of missing data come from the data collection stage:
people may refuse to respond to all or a part of a survey; there might be no outcome for an
experiment; drop outs may occur when we repeat our survey after a certain time in a longitu-
dinal study. These are missing data due to non-response. Missing data are also caused by data
collectors and data processors: the data may not be properly collected, or mistakes happen at
the data entry stage (Ader & Mellenbergh 2008).

Understanding the causes of missing data can help us to solve some of the missingness
problems. For example, we can investigate whether some of observed variables are related
to the “latent” variables and build up a model based on their relationship to predict “latent”
variables’ values; we can re-contact the survey non-respondents to get their data; we can
double check our edited data to make sure there is no typographic error.

However, not all the missing data can be fixed by using the above methods. There will be
missing data in the raw data sets whether we like it or not.

2In a longitudinal study, we collect information from the same respondents repetitively during different time
periods. Some of our participants may drop out and never return to the study. These drop outs are referred to as
attrition.

3latent variables are variables which haven’t been surveyed or collected.
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The question is what we can do about the irretrievable missing data. Little & Rubin (2002)
think that there are possible relationships between observed variables and the probability of
missing data, so they have identified three mechanisms which lead to missing data. They
are: missing completely at random (MCAR), missing at random (MAR) and not missing at
random (NMAR) (Little & Rubin 2002).

Let Y = (yi j) denote an (n×K) rectangular complete data set, with ith row yi = (yi1, ...,yiK)
where yi j is the value of variable Yj for observation i. If there are missing data, let us define
the missing data indicator matrix R = (ri j), such that:

ri j =

{
0 if yi j is missing
1 if yi j is not missing

Missing completely at random (MCAR): If the conditional distribution of R given Y
does not depend on the values of the data Y , missing or observed, the data are called missing
completely at random (MCAR):

f (R|Y,φ) = f (R|φ)for all Y , φ , (2.1)

where f is a generic symbol for a probability distribution, φ is a parameter (or a set of param-
eters).

One easy way to understand this concept is to imagine that we draw a simple random
sample from the population. If we randomly delete a few observations’ values of one complete
variable from our sample, the remaining sample is still considered a simple random sample.
Theoretically, our sample is still the same as the sample without missing data, except it has a
smaller sample size for that variable with missing data. This means that the estimates of our
incomplete sample data are not biased against complete sample data, although they are less
efficient due to reduced sample size.

Missing at random (MAR): Let Yobs denote the observed components or entries of Y ,
and Ymis the missing components. If missingness depends only on the components Yobs of Y
that are observed, and not on the components that are missing, then the missing data are called
missing at random (MAR):

f (R|Y,φ) = f (R|Yobs,φ)for all Ymis, φ , (2.2)

Now, suppose we stratify our sample data into several groups according to one or a few of
complete variables. Then, we randomly delete some observations’ values of another complete
variable from one4 of the groups. Again, we can consider these deleted observations as our
missing data. Clearly, our missing data is MCAR within that particular group. However, for
the whole sample data, there is only one group of data that has missing data. This means
missingness is somehow related to the groups. If the computation of the sample estimates
does not incorporate the fact that missingness depends on the variables that forms the groups,
the result could be biased.

Not Missing at random (NMAR): The mechanism is called not missing at random
(NMAR) if the distribution of R depends on the missing values in the data matrix Y :

f (R|Y,φ) = f (R|Ymis,Yobs,φ)for all Y , φ , (2.3)
4could be more than one group. We used one here only for demonstration purposes
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Let us still use the above example. This time we first divide the sample into several groups
according to the characteristics of the complete variable before deleting a few observations’
values from it. Then, we randomly delete a few observations’ values of that variable within
one of the several groups. However, the information about the groups is not included in the
final dataset. Hence, we have no idea which group has the missing values by looking at the
final dataset. This is NMAR. Equivalently, for the MAR example, if we delete the information
of the groups and the variables that have been used to stratify our sample data, then MAR
becomes NMAR.

2.2 Creating Missing data in a Synthetic Unit Record File
In this section, incomplete data are generated based on complete synthetic unit record data.

The generations are designed to create cases of MCAR, MAR, and NMAR. Because we have
the complete data set, it is possible for us to compare the estimates from the incomplete
datasets which are generated from different missing data mechanisms with the estimates from
the complete data set. The purpose of this comparison is to assess the impact of different
kinds of missing data on the sample estimates.

2.2.1 Description of the SURF dataset
The SURF dataset we use is a synthetic unit record file based on the Statistics New Zealand

income survey(Statistics New Zealand 2011). The SURF is a complete dataset. It has 200
observations and 8 variables: PersonID, Gender, Highest qualification, Age, Weekly working
hours, Weekly Income, Marital status, and Ethnicity. PersonID is the identification variable.
Age, Weekly working hours and Weekly Income are numeric variables. The rest are categor-
ical variables. Table 2.1 describes the frequency counts of SURF’s categorical variables, and
Figure 2.2 to Figure 2.4 show the distribution of the SURF’s numerical variables.

Table 2.1: Frequency table of SURF’s categorical variables

Gender Male Female
93 107

Highest qualification None School Vocational Degree
39 66 67 28

Marital status Never Married Previously Other
88 70 21 21

Ethnicity Maori Pacific European Other
24 7 156 13
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Figure 2.4: SURF’s weekly income distribution

2.2.2 Creating the missing SURF income values
For simplicity and demonstration purposes, we only create missing data for the SURF’s

income variable. This makes it a univariate missing data pattern.
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Table 2.2 shows estimates of weekly Income variable from the complete5 SURF data. The
estimates are: means, variances and confidence intervals (95%) for the means. The estimates
have also been broken down by gender. We refer these estimates as “true” estimates6 in our
latter sections and chapters. We also consider the SURF as a simple random sample (SRS)
from the population aged 16−45.

Table 2.2: Estimates for complete SURF

Mean Variance Confidence Interval (95%)
All 575.36 120137.60 527.32–623.40

Female 438.50 73568.97 400.91–476.10
Male 732.82 128253.30 683.18–782.45

Missing completely at random (MCAR)

Method: We can indicate the missing data with an indicator variable for each unit, so
missing data can be created by drawing a Bernoulli random variable ri with probability p. This
method creates MCAR missing data. Mathematically, suppose we have n observations, for
each observation i, i = 1, ...,n, we draw an indicator number ri from the Bernoulli distribution
with a probability p, if ri = 0, a missing value is assigned to the unit i for the “Income”
variable.

ri ∼ Bernoulli(p) (2.4)

One thousand replicate SURF datasets with missing data for the income variable were gen-
erated by using this method. Estimates have been calculated for each replicate dataset.

The means and variances are calculated as follows:

ˆ̄Y =
∑

n
i=1 riyi

∑
n
i=1 ri

(2.5)

var( ˆ̄Y ) =
∑

n
i=1 ri(yi− ˆ̄Y )2

∑
n
i=1 ri−1

(2.6)

where

ri =

{
0 if yi is missing
1 if yi is not missing

and ˆ̄Y is the estimated mean.

Histograms and density plots (Figure 2.5) show the set of one thousand means and vari-
ances. The red vertical dashed lines are the true means and variances.

5Throughout this thesis, I use “complete” to describe the original complete dataset which has no missing
data. This is different from the imputed complete dataset which has been used in other literature.

6Technically, these estimates should be the sample estimates. “True” estimates are often used to refer the
population estimates. The term “true” estimate is used here because we want to compare the complete data
estimates with the imputed data estimates.
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Figure 2.5: Missing SURF Income (MCAR)

Here below is the R program which can be used to create MCAR missing data for any
variables. This program uses the R function “sample” which implements the process of draw-
ing a Bernoulli random variable. We have used it to create 50 missing income values, e.g.
MCAR(SURF, 50, “Income”).

#MCAR

#Apply missing completely at random mechanism to create missing data

#this program can produce different numbers of MCAR data for more than

#one variables

#dat-input dataset, nmissing-number of missing data, variables-variables with

#missing data, same-create missing data for the same observations of more than

#one variables

MCAR=function(dat,nmissing,variables,same=FALSE){

n=nrow(dat)

nvar=length(variables)

if (length(nmissing)<nvar & length(nmissing)==1){

nmissing_temp=rep(nmissing,nvar)

}else{

nmissing_temp=nmissing

}

if (same==F){

for (i in 1:nvar){

idx=sort(sample(n,nmissing_temp[i],replace=F))

dat[idx,variables[i]]=NA

}

}else{

idx=sort(sample(n,nmissing,replace=F))

dat[idx,variables]=NA

}dat }
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As seen in Figure 2.5, the means and variances of the simulated missing data for the income
variable are distributed around the true mean and variance which are shown by the red vertical
dashed lines. These results confirm that the estimates of MCAR incomplete sample data are
not biased.

Figure 2.5 also shows that the distribution of income variances of the replicate SURF
datasets is skewed. This is related to the distribution of the Income variable. Figure 2.4 tells
us that there are a few very high income observations (outliers) in the data, but there are no
extremely low income observations. Hence, removing those very high income observations
greatly reduces the variance, on the other hand, the removal of some of the lowest income
values has little impact on the variance. Because we randomly sample observations as our
missing data with equal probability, those few extremely high income observations have little
chance to be chosen as missing, comparing to the majority of observations with normal range
income values. This is why we have many high variances, but few low variances.

However, the distribution of simulated means is symmetric and bell shaped. This is because
the outliers have smaller impact on the mean than on the variance. Equation (2.5) shows that
the mean of incomplete income variable has a linear relationship with yi, but the variance of
incomplete income variable has a quadratic relationship with yi, according to equation (2.6).

We have broken down each of our simulated datasets by sex, and shown the separate mean
and variance estimates for male and female in Figure 2.6 and 2.7. These plots show the
results of means and variances of 1000 simulated replicate datasets. Again, the vertical lines
represent the complete data means and variances for male and female groups. These results
provide further evidence that MCAR sample data does not deviate from the complete data
estimates. The reason is that MCAR does not introduce bias to the sample. Hence, we see
that the estimates of replicate datasets are centred around the true estimates.
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Missing at random (MAR)

We assume the missingness of Income is related to other variables. For example: suppose
that male respondents are less likely to give their income details in a survey. Then, the missing
data for the income variable are no longer MCAR, because male respondents are less likely
to respond than female respondents. However, the missing pattern is still random within the
male group. This is called Missing at random (MAR)

Let’s assume male respondents have higher probability of missing “Income” than female
respondents. We created missing Income data by this probability. One thousand simulated
replicate datasets were also created. Mathematically, suppose we have n = 200 units, for
each gender group, we draw a number of indicator ri from the Bernoulli distribution with a
probability pi (the probabilities are different for different gender ). Units in each gender group
with indicator ri = 0 are treated as having missing Income values. For example:

ri ∼ Bernoulli(pi) (2.7)

where

ri =

{
0 if yi is missing
1 if yi is not missing

and

pi =

{
0.5 if Male
0.2 if Female

Here below is the R program which can be used to create the MAR missing data for any vari-
ables. We have used it to create MAR missing data for income variable, e.g. MAR(SURF,“Gender”,
“Income”, c(0.5,0.2))

#MAR -- Apply missing at random mechanism to create missing data

#Only can be used for single variable

#group-divide data into groups by its own categorical variable

#pmiss-probability of being missing for different groups

MAR=function(dat,group,variable,pmiss){

group_temp=levels(dat[,group]) #assign probabality of missing to each group

for (i in 1:length(group_temp)){ pmiss[group_temp[i]]=pmiss[i]}

#get rid of extra columns which are the products of above for loop

pmiss=pmiss[-(1:length(group_temp))]

dat= by(dat,dat[,group],

function(msub){

g=as.character(msub[,group][1])

idx=(rbinom(nrow(msub),1,pmiss[g])==1)

msub[idx,variable]=NA

return(msub)

})

d=dat[[group_temp[1]]]

for (i in 2:length(group_temp)){

d= rbind(d,dat[[group_temp[i]]]) }

d=cbind(d, randid=runif(nrow(d)))

dat=d[order(d$randid),]

dat

}
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Figure 2.8 clearly indicates that most of means and variances of the 1000 simulated MAR
datasets are very different from the true mean and variance. These estimates are biased be-
cause the male group has more missing data than the female group. We also noticed that most
of the incomplete data estimates are less than the true estimates. This is because males earn
more income than females. If more male respondents were deleted than female respondents,
then the estimates of incomplete data would tend to be smaller than the true estimates. Hence,
we have learnt that treating MAR missingness as if it were MCAR missingness leads to bias
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Figure 2.8: Missing SURF Income (MAR)

Figure 2.9 and Figure 2.10 show us that the estimates of male and female of MAR datasets
do not deviate systematically from the complete data estimates. This is because missing data
is still MCAR within each gender group. This means the within gender estimates are unbiased.
We can therefore fully adjust for the missingness and conduct unbiased population estimates
by incorporating the variables that are related to the missingness.
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Not missing at random (NMAR)

Now, if we assume the missingness of Income variable is related to income itself, then this
is called not missing at random. For example: high income male respondents are less likely
to give their income detail in a survey.

We create missing Income values probabilistically. We set high income male respondents
to have the most missing Income values. One thousand simulated replicate SURF datasets
were created as previously. Mathematically, suppose we have n = 200 observations, for each
observation i, we draw an indicator ri from the Bernoulli distribution with a probability pi.
If ri = 0, the income value is missing for the ith unit. The p0

i for male group is higher than
the female group (0.6 : 0.1), where p0

i is part of pi. The pi is the combination of p0
i , and the

fraction 0.4yi
2000 . The fraction makes pi higher for the high income observations than low income

observations.

ri ∼ Bernoulli(pi) (2.8)

where

p0
i =

{
0.6 if Male
0.1 if Female

pi = p0
i +

0.4yi

2000
(pi ≤ 1)

Here is the R program which creates the NMAR missing data for any variables. We have
used it to create NMAR missing data for income variable, e.g NMAR(SURF,“Gender”, “In-
come”, c(0.6,0.1)).

#NMAR

NMAR=function(dat,group,variable,pmiss,ph=0.4,nh=2000){

pmiss=pmiss[dat$group]

# make this higher for higher incomes

pmiss = pmiss + ph*(dat$variable/nh)

pmiss=pmin(1,pmax(0,pmiss))

# now toss the coin for each row

idx <- as.logical(sapply(pmiss, function(p) rbinom(1,size=1,prob=p)))

# anything with idx==1 will be missing

dat[,variable][idx] <- NA

dat

}

Figure 2.11 shows that the simple estimates of means and variances of 1000 replicate
NMAR SURF datasets are concentrated far away from the true mean and variance. It also
shows that most of the means and variances are much less than the true mean and variance.
The reason for this is that after losing more male and high income observations, the estimates
become much smaller than the estimates of the complete data.
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Figure 2.11: Missing SURF Income (NMAR)

Figure 2.12 and Figure 2.13 also show that the means and variances of 1000 simulated
NMAR SURF datasets breakdown by sex deviate from the true mean and variance. The
means and variances of male group are higher than the means and variances of female group.
In addition, they are both less than the true estimates. This further confirms that high in-
come observations are more than likely to be male, and after losing some high income male
observations, the estimates becomes much less than the complete data estimates.

Since missingness is related to the outcome variable, we cannot create unbiased estimates
in either “Gender” subgroups or the total population. NMAR missingness is much more
problematic than MCAR or MAR missingness.
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2.3 Conclusion
In this Chapter, we have introduced the concept of missing data for survey samples, and

the missing mechanisms which lead to missing data. If the missing mechanism is MCAR,
we have seen that our incomplete data estimates are unbiased. If the missing mechanism is
MAR, we haven seen that the overall incomplete data estimates are biased. This is because
one or some groups of the observations drive the estimates apart from the complete data esti-
mates. However, we found that the incomplete data estimates which incorporate the variables
which determine the pattern of missingness are not biased against the complete data estimates.
This is because for each individual groups the missing mechanism is actually MCAR. If the
missing mechanism is NMAR, we have shown that both the overall estimates and the break-
down estimates by each groups are biased against the complete data. This is because some
groups with particular characteristics are missing and we cannot find any groups with similar
characteristics in the observed data.

This thesis does not discuss the impact of the proportion p of missing data on the bias
of estimates. Scheffer (2002) has demonstrated that the impact on estimates is small even
when the proportion of missing data is up to 50%, if the missing data mechanism is not
NMAR. However, according to Scheffer (2002) simulations, if the missing data mechanism
is NMAR, the impact on the estimates can be substantial, if there is a large proportion of
missing data. Hence, this thesis focuses on investigating missing data handling methods which
can reduce the impact on the bias of estimates from the missing data mechanisms, assuming
MAR missingness.
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Chapter 3

Dealing with missing data

3.1 Introduction
When people encounter missing data in their datasets, the easiest approach is to get rid of

them. The easiest and quickest method we can think of is to remove the missing data directly
by discarding all data for any unit that has missing information. However, it has been shown
that missing data cause bias for statistical estimates if the missingness is not MCAR (Chapter
2). This bias is called non-response bias. We would like to deal with this non-response bias
before conducting any further statistical analysis. Apparently, deletion is not a good method
of reducing non-response bias, although some deletion methods which are associated with
a reweighting method can reduce bias when dealing with unit non-responses. If we do not
delete missing data and leave them in the dataset, then some analysis cannot be performed
because they depend on the data being complete. Furthermore, in most cases, missingness is
not MCAR. This means missingness causes bias.

If you cannot delete or ignore the missing data, then it is reasonable to think a way of fill-
ing in the missing data with some “guessed” values. This is called imputation. The apparent
advantage of imputation is that you get a balanced data set which can feed into any statistical
software. If your fill in values are close to the true missing values, imputation can also reduce
the non-response bias. However, if you only fill in the missing data once and treat them as
if they were true, then you have introduced another source of estimation error - the uncer-
tainty introduced by non-response. This uncertainty is referred as “imputation uncertainty”.
This may mean your parameter estimates are biased and it also means that standard errors
are underestimated due to apparently larger sample size (the complete data sample size) than
the actual sample size (the responding sample size). Imputation methods which only impute
missing data once are classified as “single imputation” methods in most statistical literature.
To cope with the drawbacks of single imputation, Rubin (1977) developed a method called
“multiple imputation”. The simplest and most intuitive explanation of multiple imputation
is that missing data are filled in multiple times, so researchers can use the multiple imputed
missing values to estimate the imputation uncertainty. In the following sections of this Chap-
ter, we briefly introduce some of the common methods of data deletion and imputation. The
following chapters will give more detailed discussion.

3.2 Dealing with missing data I: Data Deletion Methods
One of the simplest and most commonly used methods for dealing with missing data is data

deletion procedure (McKnight, M.McKnight, Sidani & Figueredo 2007). Schafer & Graham
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(2002) identify four main data deletion methods. They are: (1) listwise deletion, (2) pairwise
deletion, (3) reweighting, and (4) averaging the available items. Data deletion is often not
the ideal solution for handling missing data, because it may introduce large bias as shown in
Chapter 2. However, it can still provide suitable parameter estimates when its methods have
been used appropriately. The advantage of data deletion methods is that they are very easy to
be implemented. To be clear, the deletion methods can only be used appropriately under the
assumption that we have MCAR data, or the variables upon which missingness depends are
known and observed fairly.

3.2.1 Listwise Deletion
The most popular data deletion method is to discard units which have missing data. In

other words, drop all units with any missing data for any of their variables. This method
is called listwise deletion (LD) or complete-case analysis. LD is a default routine for most
statistical software. According to Little & Rubin (2002), Schafer & Graham (2002), listwise
deletion is appropriate if data are MCAR. As we have demonstrated in the previous Chapter,
if the missing mechanism is MCAR, the incomplete data estimates are not biased against
the complete data estimates. Hence, LD can be performed if data are MCAR. Figure 3.1
demonstrate how listwise deletion works. The double question marks stand for the missing
data, the two horizontal lines which strike through the centre of the cells mean that the whole
records for those units are deleted. Figure 3.1 also clearly displayed the downside of LD even

??

?? ??

Missing data

Gender Income Ethnicity Qualification

Figure 3.1: Listwise Deletion: units with missing data are deleted

if data are MCAR. As we can see, the LD method tends to delete more data than we want.
That is, if an unit has even only one variable with missing data, the unit is deleted from the
data. Obviously, this process deletes observed values of other variables of that unit. Hence,
LD reduces the efficiency of estimates from survey data.

We express LD mathematically. Suppose we have n units with K variables, so yi j, where
i=(1, ...,n) and j =(1, ...,K), represent the value of cell i j, and we use indicator Ri to indicate
rows with complete responses. Hence:

Ri =

{
0 if any yi j is missing, for j = 1, ...,K
1 if no yi j is missing, for j = 1, ...,K

For the mean of Yj,

Ȳj =
∑

n
i=1Riyi j

∑
n
i=1 Ri
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For the covariance of Y j and Yk,

ˆCov(Yj,Yk) =
∑

n
i=1 Ri(yi j− Ȳj)(yik− Ȳk)

∑
n
i=1 Ri

3.2.2 Pairwise Deletion
Pairwise deletion (PD) or available-case analysis method is in contrast to LD. Instead of

deleting units with missing data, it chooses to discard data only at the level of the variable
(McKnight, M.McKnight, Sidani & Figueredo 2007). Obviously, PD preserves all units. For
example, we may use every observed value of Y j to estimate the mean on Yj, and every ob-
served pair of values (Yj,Yk) to estimate the covariance of Yj and Yk. However, we might end
up with a different number of units for each variable. The differing numbers of units affects
the stability of the estimates while also affecting the characteristics of the correlation matrix
(McKnight, M.McKnight, Sidani & Figueredo 2007). Figure 3.2 demonstrate how pairwise
deletion works. The double question marks are the missing data, and the crosses in some cells
mean that those cells have been deleted.

??

?? ??

Missing data

Gender Income Ethnicity Qualification

Figure 3.2: Pairwise Deletion: Missing data are deleted and not shown in the final dataset

We express PD mathematically. Suppose we have n units with K variables, and we use
indicator ri j where i = (1, ...,n) and j = (1, ...,K) to indicate cells with observed data. Hence:

ri j =

{
0 yi j is missing
1 yi j is not missing

For the mean of Yj,

Ȳj =
∑

n
i=1ri jyi j

∑
n
i=1 ri j

For the covariance of Y j and Yk,

ˆCov(Yj,Yk) =
∑

n
i=1 ri jrik(yi j− Ȳj)(yik− Ȳk)

∑
n
i=1 ri jrik
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3.2.3 Reweighting
As discussed, LD and PD methods introduce bias in non-MCAR cases, but it is possible

to reduce the bias by applying a weighting class adjustment method. This method is called
reweighting in Schafer & Graham (2002). The basic idea is to re-weight the observed units
in order to represent the full sample or population after removing units with missing data.
Please note that reweighting is more suitable for unit non-response than item non-response in
practice. This is because a dataset normally only has one set of weights instead of creating
a set of weights for each variable. Also, the reweighting method cannot handle a function of
more than one variable unless both are missing together.

Sample can be considered to be a miniature version of the population of interest. The
weights can be used to scale up the sample estimates to the population estimates. This is
because a weight wi for a sample unit i represents that there are wi similar units in the popula-
tion. For example, if the sample size is n, then an estimate of the population total is ∑

n
i=1 wiyi,

where yi is the sampled value for unit i. Now, there are only r respondents in our sample out
of the sample size n. This means that our actual sample size is r instead of n. Hence, it is
reasonable to think that if the weights wi can be adjusted somehow according to the “new”
sample size r, we effectively adjust weights for the non-response.

If the probabilities of selecting a unit from a target population is πi, and the probabilities of
response for each responding unit i is φi, then:

P(unit i selected in sample and responds) = P(selection)×P(response|selection) = πiφi

Hence, the final adjusted weights for non-response is w̃i = 1/(πiφi).

So far, we have only considered the general case of non-response weighting adjustment. If
our missing data is MAR, we can apply the weighting class adjustment methods to adjust for
non-response. We know that MAR means that our missing data is related to some other vari-
ables. Therefore, we can divide the variable with missing data into several classes according
to the other related variables. These classes are called “weighting classes”(Lohr 1999). It is
assumed that the probability of response is to be the same within each weighting class. The
weight for a respondent in weighting class c is 1/(πiφ̂c).

To estimate the population total using weighting-class adjustments, let kci = 1 if unit i is in
class c, and 0 otherwise. Then the new weight for respondent i is:

w̃i = ∑
c

wikci

φ̂c

where wi = 1/πi.

Little & Rubin (2002) classify “Reweighting” method as data deletion methods. This is
because it seems that the reweighting method discards missing data completely as the listwise
deletion and pairwise deletion methods, and the reweighting method also shares the same
dilemmas as those two deletion methods, such as losing observed values for some variables
or creating unbalanced datasets. However, we tend to think the reweighting method as some
kind of imputation method. As stated previously, a weight wi stands for wi units which are
similar to the sample unit i in the population, reweighting increases wi to count the number
of non-responses, so the new weight w̃i represents the non-respondents as well. This can be
considered as replacing the missing data with the observed data which fundamentally is the
same concept as imputation which we talk about in section 3.3.
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3.2.4 Averaging the Available Items
Many variables are not able to be measured directly by survey questions, such as self-

esteem, intelligence, depression, and anxiety. These variables are normally derived variables.
They can only be approximated by combining different survey questions. Usually, we tend to
create a scale to find derived variables by averaging the items. If there are missing items, we
average the remaining items. This is equivalent to replacing the missing items with the mean
of observed items (Schafer & Graham 2002). However, we need to point out that this method
only works if we have sufficient item responses, and equivalent items.

Mathematically, suppose we have n units with K variables, r responses. The derived vari-
able Y = (yi), where i = (1, ...,n), can be estimated by a vector of variables X = (xi j), where
i = (1, ...,n) indicates the units, and j = 1, ...,K indicates the variables. Then:

yi =
∑

K
j=1 Ri jxi j

∑
K
j=1 Ri j

(3.1)

where the Ri j is the indicator of missing data:

Ri j =

{
1 xi j is missing
0 xi j is not missing

3.3 Dealing with missing data II: Imputation
Missing data often reduce the usability of data. Imputation methods are designed to handle

missing data problems. Imputation can reduce the non-response bias and produce datasets
without “holes” (missing data). The basic idea is to impute (fill in) the values of items that are
missing by replacing values from other respondents in the survey who are similar to the item
non-responses on other variables (Lohr 1999). There are a variety of imputation methods that
deal with missing data. These imputation methods can be used to impute one value for each
missing item (single imputation) or, in some cases, to impute more than one value in order to
reflect imputation uncertainty (multiple imputation) (Little & Rubin 2002).

3.3.1 Single Imputation Methods
Little & Rubin (2002) classify single imputation into two generic approaches: Explicit

modelling and Implicit modelling.

Explicit modelling

The imputed missing values are generated from formal statistical models. Hence, the results
are explicit. Here are some explicit modelling examples:

(1) Mean imputation

One of the simplest imputation methods is to replace all the missing values with the mean
of the observed values for the numerical variable. There are two mean imputation methods.
One is called “unconditional mean imputation”. The other one is called “conditional mean
imputation”
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Unconditional mean imputation: This method simply replaces missing values with the
mean of all the observed values for the variable. It is very easy but it also is very likely to
distort the distribution for the variable. Normally, this method is not recommended. Let us
define Ȳ as the mean of our variable Y with missing values. For n units, we have:

Ȳk =
1

Ck

n

∑
j=1

R jkYjk (3.2)

where

Ck =
n

∑
j=1

R jk

R jk =

{
1 if item k is not missing for unit j
0 Otherwise

Conditional mean imputation: This is an improvement of unconditional mean imputa-
tion. It simply divides data into several groups or strata based on fully observed variables or
auxiliary data. Then, means of variables with missing data will be calculated for each stratum.
The missing values can be replaced by the means of their stratum. Compared to unconditional
mean imputation, this method can preserve the distribution of the variable. Let us define Ȳg as
the mean of our variable Y with missing values for group g. For n units, we have item k:

Ȳgk =
1

Cgk

n

∑
j=1

R jkI jgYjk (3.3)

where

Cgk =
n

∑
j=1

R jkIig.

R jk =

{
1 if item k is not missing for unit j
0 Otherwise

I jg =

{
1 if unit j is in group g
0 Otherwise

Then
Ȳk = ∑

g
WgȲgk

where

Wg =
ng

n
∑
g

Wg = 1

(2) Regression imputation

A statistical model is established by using observed data. Then the model can be used to
predict the missing values. Conditional mean imputation can be considered a special case
of regression imputation. Suppose a random variable Y has density f (Y |X ,θ) for random
variable X , given the X is observed. We can estimate θ from complete data Yobs and Xobs.
Then, each missing Y can be imputed independently as

Ymis,i = E
[
Yi|Xi; θ̂

]
(3.4)

where i = 1, ...,n, n is the sample size, and θ̂ = θ̂ (Yobs,Xobs).
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(3) Stochastic regression imputation

This is like the regression imputation method. The only difference is that we introduce
uncertainty to the predicted missing values. The missing Y (Ymis) is randomly drawn from the
distribution f (Y |X ; θ̂):

Ymis,i ∼ f
(
Yi|Xi, θ̂

)
(3.5)

Implicit modelling

In implicit modelling, the imputation is based on an algorithm. There are no formal statis-
tical models. Here are some implicit modelling examples:

(1) Simple random imputation

This is the simplest imputation method. It simply imputes missing values of variable y from
a random draw of the observed data from all observed records for this variable.

(2) Hot deck imputation

The basic idea of this method is to replace individual missing values drawn from the ob-
served values of “similar” responding units. In other words, for each unit with a missing Y ,
find a unit with similar values of X in the observed data and take its Y value. The hot deck
method can be very complex. Here is some examples of hot deck imputation.

• Sequential hot deck Imputation: There are hot deck imputation procedures that im-
pute the value in the same subgroup that was last read by the computer in a single scan
of the data

• Random hot deck Imputation: A donor is randomly chosen from the respondents with
information on all missing items. It is just like the “Simple random imputation”

• Adjustment cell hot deck imputation: Adjustment cells are formed from the joint
levels of categorical variables which have observed values for variables with missing
data. Then, a donor is randomly chosen from the respondents within each adjustment
cell to replace the missing data with that cell. This is a similar idea to conditional mean
imputation.

• Nearest-Neighbor hot deck Imputation: Define a distance measure between units,
and impute the value of a respondent who is “closest” to the person with the missing
item, where closeness is defined using the distance function, such as the Mahalanobis
distance (Andridge & Little 2010):

d(i, j) = (xi− x j)
T ˆVar(xi)

−1(xi− x j)

where V̂ar(xi) is an estimate of the covariance matrix of xi.
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(3) Substitution

This method is basically to replace non responding units with alternative units not selected
into the sample. The method can only be applied during the data collection stage. This
method is not recommended. This is because the substituted responding units may differ
systematically from non-respondents. Although we may end up with a complete dataset, the
non-respondents’ information is actually missing (Little & Rubin 2002).

(4) Cold deck imputation

This method imputes missing values from historical records of a particular unit. For exam-
ple, we might be able to find a value of an unit from the same survey of previous period to
replace the missing value of current survey.

(5) Imputation based on logical rules (or deductive imputation)

Sometimes we can impute using logical rules: for example, suppose a survey has questions
such as “ whether drinking water is free of charge to students during the school day” and
“Whether drinking water is available to students through drinking water fountains”. If the an-
swer for free drinking water is “no” and for availability of drinking water fountains is missing,
it is reasonable for us to conclude that there is no drinking water fountains in the school. This
is also called the deductive imputation method (Kalton 1983).

3.3.2 Likelihood Based Approaches
Maximum Likelihood Estimator

Suppose a simple random sample with size n is designed to collect data for variable Y .
Assuming its probability density function (pdf) is fy(Y ;θ),−∞ < y < ∞. In other words, this
means that the pdf of observing Y1 is fy(Y1;θ), if θ is known. The same logic can be applied
for Y2,Y3, ...Yn. Hence, the probability of observing sample Y = (Y1,Y2, ...Yn) altogether is the
product of fy(Y ;θ), y ∈ (Y1,Y2, ...Yn), or it can be expressed as below:

f (Y |θ)≡ L(θ |y) =
n

∏
i=1

fy(Yi;θ))

We call the above function the likelihood function (Azzalini 1996).

The purpose of maximum likelihood estimation is to find θ̂ which produces the highest
probability of observing sample Y = (Y1,Y2, ...Yn) . The θ̂ is called the Maximum Likelihood
Estimator. In order to make the calculation of the maximum likelihood estimator easier, we
take the logarithm of the likelihood function, hence, the likelihood function is transformed
into log-likelihood function. Mathematically:

Log-Likelihood≡ `(θ |Y ) = log( f (Y |θ)) (3.6)
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Now, if we repeat our survey over and over again, each time we draw a sample size of n, and
find the maximum likelihood estimator θ̂ . Then, we can get the sampling distribution of our
maximum likelihood estimator θ̂ . In other words, θ̂ is just an estimate and is not guaranteed
to equal to the population parameter θ in any particular sample. Hence, there is uncertainty
in estimating θ with θ̂ from a sample. Fortunately, we can use the inverse of the negative
expected value of the second derivative of the log-likelihood function to estimate the variance
of the sampling distribution of θ̂ . Mathematically:

Var(θ̂) = I(θ)−1 =

(
−E
(

d2LL(θ |Y )
dθ 2

))−1

(3.7)

Given the expected θ and the variance of θ , we can find the confidence interval for θ .

I(θ) is called the “information matrix” (Scott 2007). We use the inverse of information I(θ )
to define the means although we do not know the exact true θ , we can find an interval which
θ lies in to some specific confidence level.

Expectation Maximization (EM) Algorithm

We know that ML can be used to estimate distribution parameters. Given the parameters,
we will be able to draw samples from the probability distribution. This could be very use-
ful for imputing missing values. Actually, the EM algorithm is one of the methods based on
ML to solve incomplete data problems. The EM algorithm is a very general iterative algo-
rithm which formalizes an intuitive idea for obtaining parameter estimates when some of the
data are missing. This ad hoc idea has four steps: (1) Replace missing values by estimated
values, (2) estimate parameters, (3) re-estimate the missing values using the new parameter
estimates, (4) re-estimate parameters, and so forth,iterating until convergence (Healy & West-
macott 1956). Roughly speaking the EM algorithm follows the very same idea, but instead of
filling in any missing values and iterating, EM computes missing values by using the condi-
tional expectation of the “missing data”, or in other words, the functions of “missing data”.
Hence, its E step finds the conditional expectation of the “missing data” given the observed
data and current estimated parameters, and then fills in the missing value; the M step is just
simply performing ML estimation of θ (Little & Rubin 2002).

Mathematically, let θ (t) be the current estimate of the parameter θ . The E step of EM finds
the expected complete-data loglikelihood if θ were θ (t):

Q(θ |θ (t)) =
∫

`(θ |y) f (Ymis|Yobs,θ = θ
(t))dYmis (3.8)

The M step of EM determines θ (t+1) by maximizing this expected complete-data loglikeli-
hood:

Q(θ (t+1)|θ (t))≥ Q(θ |θ (t)), for all θ (3.9)

3.3.3 Bayes Theory and Simulation methods
The fundamental idea of Bayes’ Theorem is to provide us with the reversed conditional

probability. This is extremely useful. For example, it might be easy to calculate the probability
of later event, given earlier event (P(A=later event|B=earlier event)), but it could be very hard
to find the probability of earlier event, given later event (P(B=earlier event|A=later event)),
because it is not possible to have information of the later event. If P(A=later event|B=earlier event)
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can be reversed, we can easily work out P(B=earlier event|A=later event). The Bayesian ap-
proach offers us this kind of possibility. Bayes’ theorem states:

P(B|A) = P(A|B)P(B)
P(A)

(3.10)

The theorem says that a conditional probability for event B given event A is equal to the
conditional probability of event A given event B, multiplied by the marginal probability for
event B and divided by the marginal probability for event A (Scott 2007).

Bayes’ theorem can be applied to probability distributions. Bayes’ Theorem, expressed in
terms of probability distributions, appear as:

f (θ |data) =
f (data|θ)P(θ)

f (data)
(3.11)

where f (θ |data) is the posterior distribution for the parameter θ , f (data|θ) is the sampling
density for the data which is proportional to the likelihood function, f (data) is the marginal
probability of the data, and P(θ) is the prior distribution. The P(θ) is not usually known, but
we may use a fairly flat distribution. The posterior is not very sensitive to the prior. It can be
computed as:

f (data) =
∫

f (data|θ)P(θ)dθ (3.12)

In Eq (3.11), the prior knowledge of θ , summarized by P(θ), is updated to the posterior
distribution gives the addition of new data. Equation 3.11 is a density function of θ , and treats
the data as a parameter. As such it can be simplified as:

Posterior ∝ Likelihood×Prior (3.13)

In terms of imputing missing values, Bayes’ theorem offers us the opportunity to find the
join posterior distribution of (θ ,Ymis) given Yobs. This is very powerful, because we can draw
samples from the posterior distribution to replace our missing values and create updated esti-
mates of the parameter θ . We talk about this in detail in Chapter 7.

A Simple Iterative Simulation method: Data Augmentation

Data Augmentation is a Bayesian iterative simulation method which can be used to solve
missing data problems. It simulates the posterior distribution of θ (Tanner & Wong 1987). We
can consider data augmentation as a refinement of the EM algorithm using simulation, with the
imputation (or I) step corresponding to the E step and the posterior (or P) step corresponding
to the M step (Little & Rubin 2002). Basically, it includes multiple imputation to enhance the
EM algorithm. Mathematically, given a starting value θ (t) of θ drawn at iteration t:

• I Step (Imputation Step): Generate a sample Y (t+1)
mis from the predictive density

p(Ymis|Yobs,θ
(t))

• P Step (Posterior Step): Draw θ (t+1) with density p(θ |Yobs,Y
(t+1)
mis )

Data augmentation can be easily understood if we compare it with EM algorithm. For the
EM algorithm we substituted a predicted value on the basis of the variables that were available.
In data augmentation we will substitute random data (Howell 2009).

26



We talk about more generic Bayesian iterative simulation methods in Chapter 7.

3.3.4 Multiple Imputation
The purpose of multiple imputation

Multiple imputation (MI) (Durrant 2005) is a procedure which replaces missing values mul-
tiple times. Hence, as a result, MI produces several datasets with different imputed missing
values. According to Little & Rubin (2002), normally 2 to 10 data sets are sufficient. How-
ever, Enders (2010) argues that a minimum of 20 data sets might be better for most situations.
This is discussed in later chapters. However, the essential question is why we impute missing
values multiple times?

The reason to impute missing values multiple times is to reflect sampling variability and
uncertainty for those missing values. The idea is based on the resampling methodology. In-
stead of having only a single imputed value which obviously cannot reflect the variability and
uncertainty of the missing or unknown, a sample of missing values has the ability to capture
sampling variability and uncertainty.

The performance of multiple imputation in a variety of missing data situations has been
well-studied and it has shown good results. The results show that, under MCAR and MAR
assumptions, MI produces unbiased parameter estimates which reflect the uncertainty associ-
ated with estimating missing data. Furthermore, MI has been shown to be robust to departures
from normality assumptions and provides adequate results in the presence of small sample
size or a high proportion of missing data (Schafer & Graham 2002, Graham & Schafer 1999).

The multiple imputation process

The MI procedure is intuitive, (Wayman 2003) but it is also complex. For a proper MI 1,
Bayesian theory and Bayesian simulation methods are heavily involved. This will be explored
in the later chapters. For now, a simple description of MI is that it has two main stages. Stage
I: impute missing data D times. Hence, we end up creating D datasets; Stage II: derive the
final set of estimates by averaging over the estimates of our datasets following a set of rules
provided by Rubin (Little & Rubin 2002). Again, the formulas are given in Chapter 8.

3.4 Distinguishing Non-response bias and Imputation un-
certainty

Throughout this chapter, we have mentioned the concepts of non-response bias and impu-
tation uncertainty several times. In this section, let’s spend some time to discuss what exactly
they are, their relationship, and their differences, because these two terms can be confused,
and are the foundation for understanding the concept of multiple imputation.

First of all, the name “non-response bias” is too specific. It misleads us to think bias is
only caused by non-response in survey data, but the term actually can be applied to any types
of missing data in any types of data, not just non-response in survey data. I personally think
“missing data bias” might be more appropriate. Anyway, as we have demonstrated in Chapter

1There are proper and improper multiple imputation. Their formal definitions and differences are discussed
in Chapter 8.

27



2, if missing data are not MCAR, they are likely to bias our estimates. It is hard, if not
impossible, to figure out the exact size of the bias of the estimates. However, it is possible to
show how the biases happen. Let’s consider simple univariate survey data with missing values.
We can divide the respondents and non-respondents into two groups. These two groups can
be treated as strata. The respondent stratum has NR units, and the non-respondent stratum has
NM (M for missing) units. In total, there are N units. Let ȳR be the mean of the respondent
stratum, and ȳM be the mean of the non-respondent stratum, then, the overall mean ȳ is:

ȳ =
NR

N
ȳR +

NM

N
ȳM,

According to Lohr (1999), the bias of mean is approximately

bias = E[ȳR]− ȳ≈ NM

N
(ȳR− ȳM) (3.14)

Hence, we see that the bias happens when there is a difference between the mean of respondent
stratum and the mean of non-respondent stratum. The bias can be ignored if the difference
between the mean of respondents and the mean of non-respondents is close to zero, or the
fraction NM

N is very small, which means little non-responses.

Of course, the best way to eliminate bias is to have no missing data, but we usually do not
have the luxury of getting non-missing survey data since it may require too much time and
resources to go back and collect data from non-respondents. Imputation offers us a cheaper
and more efficient way to deal with missing data in the hope of reducing non-response bias.
We have to make it clear that if the missingness is MCAR, then there is no non-response bias.
The non-response bias happens when the missingness is not MCAR, and we can only reduce
the bias if the missingness is MAR.

However, all imputation methods make the assumption that missing data have similar values
to the entire or some particular groups of the observed data, if missing data is MCAR or MAR.
If the missing data is NMAR, then we cannot even make the assumption that missing data is
similar to observed data. Even if we are sure that the missing data is MCAR or MAR, the
assumption of missing data’s similarity with observed data is still an assumption that can not
be verified. Hence, we cannot be sure that our imputed values are the true values. This “lack
of sureness” is the root of “imputation uncertainty”. This is somewhat like sampling error in
survey statistics. The sampling error results from taking only a sample instead of the entire
population. If a different sample were taken from the same population, the results, or estimates
might be different from the estimates of the previous sample. Similarly, the values we impute
for the missing data might be different from the true values if there were no missing data.
Loosely speaking, imputation is like sampling from the population of missing data.

We know that our survey data estimates are already subject to sampling error. A sampling
error is usually quantified by the standard error of a particular estimates (mean, regression pa-
rameters,etc.). The standard error can be used to calculate confidence intervals within which
the true population estimates may fall. Imputation uncertainty may be thought of as the im-
puted values’ “sampling error”. There are likewise intervals within which the true values of
missing data may fall. This means imputation adds extra variance to the sampling error of a
survey data.
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Figure 3.3 demonstrates what the imputation uncertainty means for the confidence inter-
val of mean estimation. The graph shows what the mean and confidence would be like if
the imputation method has propagated the imputation uncertainty, comparing to imputation
methods which do not. The plots are not based on any data, they are just examples to help us
get a tangible idea of imputation uncertainty.

Without imputation uncertainty

With imputation uncertainty

Mean

Confidence interval

Figure 3.3: Mean and Confidence interval for imputed data: a simple demonstration of the
added variance by imputation uncertainty

3.5 Conclusion
This Chapter simply exhibits two ways to handle missing data: data deletion and imputa-

tion. Data deletion methods are very easy to implement. It is suitable to use data deletion
methods if our missing data is MCAR. If missing data is not MCAR, data deletion methods
simply introduce bias and reduce the usability of the data. All imputation methods aim to
increase the usability of data with missing values and reduce the non-response bias, although
some of them are not easy to use, compared to data deletion methods.

Then we discussed the concepts of non-response bias and imputation uncertainty. Gener-
ally, if missing data is not MCAR, the estimates are likely to be biased. Imputation is designed
to tackle the non-response bias issue. However, as we have described, imputation, in some
sense, resembles sampling. As sampling error usually associates with sample survey data, im-
putation produces its own “sampling error”, which we may call it “imputation uncertainty”.
If we say imputation uncertainty is like sampling error, does this mean we can measure im-
putation uncertainty as we do for sampling error? Indeed, statisticians have developed similar
methodologies to measure imputation uncertainty as the measure of sampling error. In Chap-
ter 5, we introduce resampling methods which are widely used for measuring sampling error
to measure imputation uncertainty. Based on the same concept of resampling, Rubin (1977)
developed multiple imputation which, comparing to single imputation methods, has a major
advantage in dealing with imputation uncertainty.
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Chapter 4

Applying single imputation methods to
the SURF data

4.1 Introduction
In the previous chapter, we discussed several common single imputation methods. In this

chapter, we apply these single imputation methods to the SURF data. The purpose of doing
these applications is to enhance our understanding of these single imputation techniques and
compare their advantages and disadvantages. Some of these single imputation methods are
used on the large and complex FNES data in later chapters.

As described in the previous chapters, incomplete data estimates are not biased against the
complete data estimates if the missing data are MCAR. Hence, imputation offers little benefit
to incomplete data if missing data are MCAR. However, according to Acock (2005) and Bud-
dhavarapu (2007), MCAR is very rare in social science research. MAR is likely to be more
common than MCAR. MAR assumption is established on the knowledge or assumption that
we have complete information about the variable or variables that the missingness depends
on. In order to impute the proper missing values, we need to incorporate variables that the
missingness depends on into our imputation methods. If the missing data are NMAR, it means
we lost some groups of unit with distinct characteristics. Because all of our imputation meth-
ods are based on inference from the observed data, there is no remedy for us to retrieve the
missing groups’ characteristics. In the situation of NMAR, imputation methods again offers
little benefit. The only case which makes imputation methods quite useful is when the missing
data are MAR. Again, we have discussed in the previous chapter that the non-response bias
can be reduced if the missingness is MAR. In this chapter, we demonstrate how imputation
methods can help to reduce the non-response bias if the missing data are MAR.

4.2 Explicit modelling methods
As we have introduced before, these methods impute missing values by using formal sta-

tistical models, such as mean, regression models, etc.

4.2.1 Unconditional mean imputation
Let us make some of the income variable values of the SURF data missing at random. We

do this by making male income missing with a probability of 50% and female income miss-
ing with a probability of 20%. Then, throughout this chapter, we apply different imputation
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methods to the SURF data with the same missing probabilities. In addition, please note that
males have a higher mean income than females.

Eq.(3.2) can be re-expressed as:

ȲIncome =
1

CIncome

n

∑
j=1

RIncome( j)YIncome( j) (4.1)

where

CIncome =
n

∑
j=1

RIncome( j)

RIncome( j) =

{
1 if Income is not missing for unit j
0 Otherwise

The following steps demonstrate how to implement Eq.(4.1). The unconditional mean
imputation process has also been applied 1000 times to 1000 replicate incomplete SURF data
which have the same missing probabilities. This simulation helps us to find the distribution of
the estimates of the imputed data.

Recipe: Unconditional mean imputation

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: Calculate the mean of “Income” variable without missing ”Income” values

Step 3: Replace missing “Income” values with the mean of “Income” variable from
Step 2

Step 4: Estimate mean and variance of imputed “Income” variable

Step 5: Repeat Step 1 to Step 4 for 1000 times and record the means and variances
for each imputed “Income” variable

The following is the R program which applied the unconditional mean imputation to the
simulated 1000 incomplete SURF data.

# R program

#(a)1 -- Unconditional mean imputation - impute MAR data

Imp.mean.mar=c()

Imp.var.mar=c()

for (i in (1:1000)){

#Create missing Income (Missing at random)

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#unconditional mean imputation

Mean.mar.surf=mean(mar.surf$Income,na.rm=T)

mar.surf$Income[is.na(mar.surf$Income)]=Mean.mar.surf

#Compute means and variances

Imp.mean.mar[i]=mean(mar.surf$Income)

Imp.var.mar[i]=var(mar.surf$Income)

}
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Figure 4.1 shows the distribution of the means and variances for the 1000 imputed SURF
datasets, the red vertical lines represent the true mean and variance. Comparing to Figure
2.8 which displays the means and variances for the 1000 incomplete SURF datasets, we find
that the shapes of the distribution of the means of the two figures are about the same, but the
variances for the unconditional mean imputed datasets tends to be less than for the simulated
1000 MAR data variances.
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Figure 4.1: Unconditional Mean Imputed MAR SURF income

This is because imputed means has no effect on the original incomplete data mean, but they
caused the imputed data variance to be smaller than the incomplete data variance. Intuitively
speaking, since missing values are all replaced by a common mean, we can consider these
missing values as one group and clearly its variance is zero. This group with zero variance
reduces the overall variance. We can prove this mathematically. Suppose yi are iid N(µ,σ2)
where yi for i = 1, ...,r are observed, and yi for i = r+1, ...,n are missing. The n− r missing
values are replaced by one common mean µ̂mis =

∑
r
i=1 yi
r , then the overall mean is:

µ̂ =
∑

r
i=1 yi +(n− r)µ̂mis

n

=
∑

r
i=1 yi +(n− r)∑

r
i=1 yi
r

n

=
∑

r
i=1 yi

r
= µ̂mis

Hence, we see that the shapes of the distributions of means of Figure 2.8 and Figure 4.1 are
about the same. The slight differences are cause by random creation of MAR data. However,
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the variances are different. The overall variance of unconditional mean imputed data is:

V̂imputed =
∑

n
i=1(yi− µ̂)2

n−1

=
∑

r
i=1(yi− µ̂)2 +∑

n
i=r+1(yi− µ̂)2

n−1

=
∑

r
i=1(yi− µ̂)2 +∑

n
i=r+1(µ̂mis− µ̂)2

n−1

=
∑

r
i=1(yi− µ̂)2 +0

n−1

=
∑

r
i=1(yi− µ̂)2

n−1
<

∑
r
i=1(yi− µ̂)2

r−1
= V̂MAR

where V̂MAR is the variance of data with missing data that are MAR. The V̂imputed is also less
than the complete data variance V̂complete, where

V̂complete =
∑

n
i=1(yi− µ̂)2

n−1

This is even true if the missing data are MCAR. Figure 4.2 shows the results for the simulated
1000 MCAR SURF data.
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Figure 4.2: Unconditional Mean Imputed MCAR SURF income
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4.2.2 Conditional mean imputation (Cell mean)
Figure 4.1 also shows that the imputed means and variances are biased against the true

mean and variance. This means the unconditional mean imputation cannot reduce the non-
response bias. In our case, the mean of the MAR income variable is already biased against the
true mean; using that mean to replace the missing income values produces the same overall
mean which is biased. Now, we know that the income missingess depends on the gender
variable, then we can apply conditional mean imputation to impute the missingness in the
hope of reducing the bias. To be clear, conditional mean imputation reduces non-response
bias if, and only if it is conditioned on the missingess depended variables. But, why do we
think conditional mean imputation can reduce bias? This is because the missing values are
replaced by the group means instead of the overall mean. The group means, if grouped by
the missingness depended variables, is unbiased against the true group means, as Figure 2.9
shows that the income means for each gender are unbiased even if the overall income mean is
biased (Figure 2.8).

For our case of missing SURF income, conditional mean imputation Eq.(3.3) can be re-
expressed as:

Ȳ(g)Income =
1

Cg(Income)

n

∑
j=1

R j(Income)I jgYj(Income) (4.2)

where

g = Gender

Cg(Income) =
n

∑
j=1

R j(Income)Iig.

R j(Income) =

{
1 if Income is not missing for unit j
0 Otherwise

I jg =

{
1 if unit j is in group g
0 Otherwise

The following steps demonstrate how to implement Eq.(4.2), and also simulated the con-
ditional mean imputation process 1000 times in order to find the distribution of the estimates
of the imputed data.

Recipe: Conditional mean imputation

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: Divide observations into subgroups by variable “Gender”.

Step 3: Calculate the mean of “Income” variable without missing ”Income” values
for each subgroup

Step 4: Replace each subgroup’s missing “Income” values with the mean of “Income”
variable for each subgroup from “Step 3”

Step 5: Estimate mean and variance of imputed “Income” variable

Step 6: Repeat “Step 1” to “Step 5” for 1000 times and record the means and vari-
ances for each imputed “Income” variable
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# R program

#(a)1b -- Conditional mean imputation

# Condition on Gender.....

Imp.mean.mar.Con=c()

Imp.var.mar.Con=c()

Condition=c("Gender")

add.condition=function(x){

if (is.null(ncol(x))) x

else do.call("paste",c(x,sep=""))

}

for (i in (1:1000)){

#Create missing at random Income values

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#Compute mean for each group

qual.mean=tapply(mar.surf[which(mar.surf$Income!="NA"),"Income"],

add.condition(mar.surf[which(mar.surf$Income!="NA"),Condition]), mean)

#Replace missing Income with computed mean for each group

mar.surf$Income[is.na(mar.surf$Income)]

=qual.mean[add.condition(mar.surf[is.na(mar.surf$Income),Condition])]

#Store means and variances

Imp.mean.mar.Con[i]=mean(mar.surf$Income)

Imp.var.mar.Con[i]=var(mar.surf$Income)

}

Figure 4.2 shows the distribution of the means and variances for the imputed 1000 simulated
SURF datasets. Comparing the distribution of estimates of unconditional mean imputed data
sets (Figure 4.1) and the distribution of estimates of the MAR data sets (Figure 2.8), we see
an improvement in the distribution of means, although the variances are still biased against
the complete data variances.
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Figure 4.3: Conditional Mean Imputed MAR SURF Income
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We can explain this phenomenon by using the following proofs. Again, suppose yi are iid
N(µ,σ2) where yi is classified into g groups where g = 1, ...,G by other variables. For each g
group, yi for i = 1, ...,rg are observed, yi for i = rg +1, ...,ng are missing. n is ∑

G
g=1 ng Then,

we replace each missing value by the mean µ̂mis,g of its group. Hence, the overall mean µ̂ is:

µ̂ =
∑

G
g=1(∑

rg
i=1 yi +(ng− rg)µ̂mis,g)

n

=
∑

G
g=1(∑

rg
i=1 yi +(ng− rg)

∑
rg
i=1 yi
rg

)

n

=
∑

G
g=1(

ng
rg

∑
rg
i=1 yi)

n
where ng/rg is actually the weight wg = ng/rg, so we have:

µ̂ =
∑

G
g=1(∑

rg
i=1 wgyi)

n
If we have no missing data, the overall mean can be expressed as:

µ̂complete =
∑

n
i=1 yi

n

=
∑

G
g=1(∑

ng
i=1 yi)

n
Lohr (1999) tells us that ∑

rg
i=1 wgyi ≈ ∑

ng
i=1 yi. Hence, we can conclude that:

µ̂ ≈ µ̂complete

However, the variance is different. For the conditional mean imputed incomplete data vari-
ance:

V̂ =
∑

G
g=1(∑

rg
i=1(yi− µ̂)2 +∑

ng−rg
rg+1 (yi− µ̂)2)

n−1

=
∑

G
g=1(∑

rg
i=1(yi− µ̂)2 +(ng− rg)(µ̂g− µ̂)2)

n−1
The variance for the complete data is:

V̂complete =
∑

n
i=1(yi− µ̂complete)

2

n−1

=
∑

G
g=1(∑

ng
i=1(yi− µ̂complete)

2)

n−1

=
∑

G
g=1(∑

rg
i=1(yi− µ̂complete)

2 +∑
ng
i=rg+1(yi− µ̂complete)

2)

n−1

Now, the reason for having biased variances is clear. Given µ̂ ≈ µ̂complete, ∑
ng
i=rg+1(yi −

µ̂complete)
2 tends to be bigger than (ng− rg)(µ̂g− µ̂)2 in most cases. Hence, we have:

V̂ 5 V̂complete (4.3)

The question is then how to explain the upper tail of the distribution of variances in Figure 4.3.
According to equation (4.3), we shouldn’t have variances from the conditional mean imputed
data sets being bigger than the variance of the complete data. The explanation lies within the
outliers or very big values. Because our data are MAR, there is always a chance that a large
number of the lower values will be chosen to become the missing data, but all the very high
values will be kept. If this happens, we will see big means, and (ng− rg)(µ̂g− µ̂)2 will be
bigger than ∑

ng
i=rg+1(yi− µ̂complete)

2 for some group g.
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4.2.3 Regression imputation
Harvey (2001, p.7) points out that the conditional mean imputation is actually a special

case of regression imputation. The variables which conditional mean imputation conditions
on can be considered as the explanatory variables of the regression model. The advantage
of regression imputation, compared to conditional mean imputation, are: (1) it is possible to
incorporate as many explanatory variables as we wish, without worrying about the cell size.
However, we do not recommend fitting too many variables in the model due to over-modelling
problems. On the contrary, if conditional mean imputation has too many conditional variables,
the cell sizes could be one or less. If the size one cell happens to have a missing value,
then there will be no value available to replace that missing value; (2) regression imputation
can have any types of explanatory variables, but the conditional mean imputation can only
condition on categorical variables.

For demonstration purposes, we used all the SURF variables to construct a regression
model, although the income missingness only depends on the gender variable. Eq.(3.4) can
be re-expressed as:

Ymis(Income) ∼ f (YIncome|XGender,XQuali f ication,XAge,XHours,XMarital,XEthnicity; θ̂) (4.4)

The purpose of this regression imputation is only to show how this imputation method works.
Hence, the regression model we used is not the optimal model. Suppose the sample size is
n, there are r complete observations, and n− r observations with missing “Income”, and K is
the number of explanatory variables. The regression model which is used to impute missing
“Income” can be expressed as:

ŶIncome(i) = β̃0 +
K

∑
j=1

βK jXi j (4.5)

where ŶIncome(i) is the imputed missing “Income” for unit i, i = (n− r, ...,n), β̃0 is the inter-
cept and βK j is the coefficient of X j in the regression of YIncome on X1, ...,XK based on the r
complete observations.

The following steps demonstrate how to implement Eq.(4.4), and also to simulate the linear
regression imputation process 1000 times in order to find out the distribution of the estimates
of the imputed data.

Recipe: Regression imputation

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: Fit a linear regression model to the observed data, using “Income” as response
variable.

Step 3: Predict “Income” values by using the linear regression model from Step 2

Step 4: Replace missing “Income” values with the predicted “Income” values

Step 5: Estimate mean and variance of imputed “Income” variable

Step 6: Repeat “Step 1” to “Step 5” for 1000 times and record the means and vari-
ances for each imputed “Income” variable
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#R program

RegImp.mean.mar=c()

RegImp.var.mar=c()

for (i in (1:1000)){

#Create missing Income values -- MAR

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#fit regression to income

lm.imp=lm(Income~Gender+Qualification+Age+Hours+Marital+Ethnicity,

data=mar.surf[!is.na(mar.surf$Income),])

pred=predict (lm.imp, mar.surf)

mar.surf[,"Income"]=impute(mar.surf$Income, pred)

RegImp.mean.mar[i]=mean(mar.surf$Income)

RegImp.var.mar[i]=var(mar.surf$Income) }

Figure 4.4 shows the distribution of the simulated 1000 means and variances. As we can
see, the shapes of the distributions of the means and the variances are almost identical to the
distributions of Figure 4.3. This is expected as the real contributor in the regression model’s
explanatory variables is the gender variable which is the variable the income missingness
depends on.
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Figure 4.4: Regression Imputed MAR SURF Income
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4.2.4 Stochastic regression imputation
As described in the previous chapter, stochastic regression imputation replaces missing

values by a model predicted value plus an uncertainty. A simple normal linear regression
model was used to impute/predict missing “Income” values. Then, the uncertainties which
are random draws from the normal distribution with zero means and residual variance in the
regression added to the imputed values. Similarly to Eq (4.5), we can add an uncertainty term
to the regression model:

ŶIncome(i) = β̃0 +
K

∑
j=1

βK jXi j + zik, (4.6)

where zik is a random normal deviate with mean 0 and variance σ̃K , the residual variance from
the regression of YIncome on X1, ...,XK based on the r complete observations.

The following steps demonstrate how to implement the stochastic regression method, and
also to simulate the imputation process 1000 times in order to find out the distribution of the
estimates of the imputed data.

Recipe: Stochastic regression imputation

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: Fit a linear regression model to the observed data, using “Income” as response
variable.

Step 3: Find the standard error of the regression “sigma” which is just the standard
deviation of the residuals

Step 4: Predict “Income” values by using the linear regression model from Step 2

Step 5: Draw stochastic predicted “Income” values from a normal distribution with
mean equal to the predicted “Income values” and standard deviation equal to
“sigma”

Step 6: Replace missing “Income” values with the stochastic predicted “Income” val-
ues

Step 7: Estimate mean and variance of imputed “Income” variable

Step 8: Repeat Step 1 to Step 7 1000 times and record the means and variances for
each imputed “Income” variable

#R program

#Stochastic regression MAR

Sto.RegImp.mean.mar=c()

Sto.RegImp.var.mar=c()

for (i in (1:1000)){

#Create missing Income values -- MAR

#mcar.surf=MCAR(SURF,50,"Income")

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#fit regression to income

lm.imp=lm(Income~Gender+Qualification+Age+Hours+Marital+Ethnicity,

data=mar.surf[!is.na(mar.surf$Income),])
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sigma <- summary(lm.imp)$sigma

pred.Stochastic=rnorm(nrow(mar.surf),predict(lm.imp,mar.surf),sigma)

mar.surf[,"Income"]=impute(mar.surf$Income, pred.Stochastic)

Sto.RegImp.mean.mar[i]=mean(mar.surf$Income)

Sto.RegImp.var.mar[i]=var(mar.surf$Income)

}

Figure 4.5 shows the distribution of the simulated 1000 means and variances. We have
seen the improvement on both means and variances of the stochastic imputed data, compared
to previous imputation methods. The increase of the variances is due to the addition of a
random error (zik) to the regression prediction obtained by using regression imputation. As
Little & Schenker (1995) point out, Stochastic regression imputation compensates for the un-
derestimation of the variance of variables with missing data that is associated with regression
imputation.
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Figure 4.5: Stochastic regression Imputed MAR SURF Income

4.3 Implicit modelling methods
As briefly described in Chapter 3, the implicit modelling methods are based on algorithms.

Hence, the hot deck method is the best example to illustrate implicit modelling methods. The
hot deck basically means replacing missing values by values sampled from similar responding
units in the sample. Suppose we have a sample size of n out of a population of size N, r units
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for variable Y are observed, and n− r units are missing. If the sampling scheme is simple
random sampling without replacement (SRSWOR) and the n− r units with missing Y values
are imputed, then the mean Y can be estimated as the mean of the responding and the imputed
units. This can be written as:

ȳHD = {rȳR +(n− r)ȳNR}/n (4.7)

where ȳR is the mean of the respondent units, and the mean of non-responding units ȳNR is:

ȳNR =
r

∑
i=1

Hiyi

n− r
(4.8)

where Hi is the number of times yi is used as a replacement for a missing Y values, with
∑

r
i=1 Hi = n−r, the number of missing units. If the imputed values can be regarded as selected

from the values for the responding units by a probability sampling design, then the distribution
of H1, ...,Hr in repeated applications of the hot deck method is known. The mean and variance
of ȳHD can be expressed as:

E(ȳHD) = E[E(ȳHD|Yobs)] (4.9)

Proof:

E[E(ȳHD|Yobs)] = ∑
yobs

E(ȳHD|yobs)P(yobs)

= ∑
yobs

(∑
ȳHD

ȳHDP(ȳHD|yobs))P(yobs)

= ∑
yobs

∑
ȳHD

ȳHDP(ȳ|yobs)P(yobs)

= ∑
yobs

∑
ȳHD

ȳHDP(yobs|ȳHD)P(ȳHD)

= ∑
ȳHD

ȳHDP(ȳHD)(∑
yobs

P(yobs|ȳHD))

= ∑
ȳHD

ȳHDP(ȳHD)

= E(ȳHD)

Var(ȳHD) =Var[E(ȳHD|Yobs)]+E[Var(ȳHD|Yobs)] (4.10)

Proof:

Var(ȳHD) = E(ȳ2
HD)−E(ȳHD)

2

= E[E[ȳHD|yobs]]−E[E[ȳHD|yobs]]
2

= E[Var[ȳHD|yobs]+E[ȳHD|yobs]
2]−E[E[ȳHD|yobs]]

2

= E[Var[ȳ|yobs]]+ (E[E[ȳ|yobs]
2]−E[E[ȳHD|yobs]]

2)

= E[Var[ȳHD|yobs]]+Var[E[ȳHD|yobs]]

where the inner expectations and variances are over the distribution of {H1, ...,Hr} given the
observed data Yobs, and the outer expectations and variances are over the model distribution
of Y . The second term in Eq (4.10) represents the additional variance from the imputation
procedure (Little & Rubin 2002).
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4.3.1 Hot deck imputation - random hot deck imputation with replace-
ment

Let ȳHD denote the hot deck estimator when the {Hi} are obtained by random sampling
with replacement from the recorded values of Y . This means any Hi can be 0,1,2, ...n− r.
Conditioning on the sampled and recorded values, the distribution of H1, ...,Hr in repetitions
of the hot deck is multinomial with sample size n− r and probabilities (1/r, ...,1/r) (Cochran
1977). Therefore, the moments of the distribution of {H1, ...,Hr} given the observed data Y
are:

E(Hi|Yobs) =
n− r

r

Var(Hi|Yobs) =
(n− r)(1−1/r)

r

Cov(Hi,H j|Yobs) =−
(n− r)

r2

Hence, we can express the imputed mean and variance as:

E(ȳHD|Yobs) = ȳR (4.11)

Proof:

E[ȳHD|yobs] = E[
r
n

ȳR +
n− r

n

r

∑
i=1

Hiyi

n− r
]

=
r
n

ȳR +
n− r

n
E[

r

∑
i=1

Hiyi

n− r
]

=
r
n

ȳR +
n− r

n

r

∑
i=1

E[Hiyi]

n− r
, since Hi ⊥ yi

=
r
n

ȳR +
n− r

n
n− r

r
1

n− r

r

∑
i=1

E[yi]

=
r
n

ȳR +
n− r

n
n− r

r
1

n− r

r

∑
i=1

ȳR

= ȳR

and
Var(ȳHD|Yobs) = (1− r−1)(1− r/n)s2

yR
/n (4.12)

Proof:

Var(ȳHD|yobs) =Var[
r
n

ȳR +
n− r

n

r

∑
i=1

Hiyi

n− r
]

=
1
n2Var(

r

∑
i=1

Hiyi)

42



The variance Var(∑r
i=1 Hiyi) follows:

Var(
r

∑
i=1

Hiyi) = E[
r

∑
i=1

Hiyi

r

∑
j=1

H jy j]−E[
r

∑
i=1

Hiyi]E[
r

∑
j=1

H jy j]

=
r

∑
i=1

r

∑
j=1

E[HiH j]yiy j−
r

∑
i=1

r

∑
j=1

E[Hi]E[H j]yiy j

=
r

∑
i=1

r

∑
j=1

Cov[HiH j]yiy j

=
r

∑
i=1

y2
i Cov[Hi,Hi]+

r

∑
i=1

r

∑
j=1, j 6=i

yiy jCov[Hi,H j]

=
r

∑
i=1

y2
i
(n− r)(1−1/r)

r
−

r

∑
i=1

r

∑
j=1, j 6=i

yiy j
(n− r)

r2

=
n− r

r2

(
r

∑
i=1

y2
i (r−1)−

r

∑
i=1

r

∑
j=1, j 6=i

yiy j

)

=
n− r

r2

(
r

r

∑
i=1

y2
i −

r

∑
i=1

r

∑
j=1

yiy j

)

=
n− r

r2

(
r

r

∑
i=1

y2
i − r2ȳR

)

= (n− r)(r−1)
s2

yR

r

Then, we have Var(ȳHD|Yobs) =
1
n2Var(∑r

i=1 Hiyi) = (1− r−1)(1− r/n)s2
yR
/n.

If we assume the missing data are MCAR, then Eq (4.9) and (4.10) yield

E(ȳHD) = ȳ

Var(ȳHD) = (r−1−N−1)S2
y +(1− r−1)(1− r/n)S2

y/n

where the first component of the variance is the simple random sample variance of ȳR, and the
second component represents the increase in variance from the hot deck procedure.

The following steps demonstrate how to implement the simple random hot deck imputation
with Replacement method, and also simulate the imputation process 1000 times in order to
find out the distribution of the estimates of the imputed data.

43



Recipe: Random hot deck imputation with Replacement

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: Randomly choose n “Income” values from the non-missing “Income” values
with replacement

Step 3: Replace missing “Income” values with the chosen “Income” values from Step
2

Step 4: Estimate the mean and variance of imputed “Income” variable

Step 5: Repeat Step 1 to Step 4 for 1000 times and record the means and variances
for each imputed “Income” variable

#R program

#Random hot deck imputation -- with replacement

hotImp.mean.mar=c()

hotImp.var.mar=c()

for (i in (1:1000)){

#Create missing value

#mcar.surf=MCAR(SURF,50,"Income")

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#Count the number of missing

nmissing=nrow(mar.surf[is.na(mar.surf$Income),])

#Hot deck imputation

mar.surf[is.na(mar.surf$Income),"Income"]

=sample(mar.surf[!is.na(mar.surf$Income),"Income"],

size=nmissing,replace=T)

hotImp.mean.mar[i]=mean(mar.surf$Income)

hotImp.var.mar[i]=var(mar.surf$Income)

}

Figure 4.6 shows the distribution of the simulated 1000 means and variances. Comparing
to Figure 2.8, we see that the distributions of the means and variances are about the same.
This is because imputed values are randomly selected from the observed values with an equal
selection probability. This simple hot deck with replacement method does not change the
distribution of male and female income values.
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Figure 4.6: Random hot deck Imputed MAR SURF Income with replacement

However, as we have pointed out in Eq. (4.10), the variance of the mean ȳHD becomes
larger than the non imputed data. In fact, Little & Rubin (2002) has worked out the maximum
proportionate variance increase of ȳHD over ȳR is 0.25 when r/n = 0.5.

Proof:
Var(ȳHD|yobs)

Var(ȳR)
=

(1− r−1)(1− r/n)S2
y/n

(r−1−N−1)S2
y

=
(1− r−1)(1− r/n)(1/n)

(r−1−N−1)

= (r−1)(1− r
n
)
1
n

= (r−1)(n− r)
1
n2

=
r
n
− r2

n2 −
1
n
+

r
n2

Now, assume x = r
n , and n as constant. We have: f (x) = x− x2− 1

n +
x
n . Then differentiate

f (x), we get:

d f (x)
dx

= 1−2x+
1
n

set
= 0

⇒ x =
1
2
+

1
2n

n→∞
=

1
2
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Hence, we have r
n = 1

2 . Substituting n = 2r to Equation (4.3.1), we get 1
4−

1
4r . If we assume r

is large, which means 1
4r → 0, then the maximum value is 1

4 .

4.3.2 Hot deck imputation - random hot deck imputation without re-
placement

This hot deck imputation method is very similar to the previous one, except that imputations
are by random sampling of observed values without replacement. In addition, this hot deck
method is also slightly different under two conditions. This first condition is when there
are more observed units than missing units; the second condition is when there are fewer
observed units than missing units. The first condition can be written as n− r = t, where
0 < t < r. The hot deck without replacement selects t units randomly without replacement to
produce the n− r values required for the missing data. The second condition can be written
as n− r = kr + t, where k is a positive integer and 0 < t < r. Then, the hot deck without
replacement selects all the recorded units k times, and then selects t additional units randomly
without replacement to yield the n− r values required for the missing data.
Hence

ȳNR =

{
tȳt/(n− r) if n− r < r
(krȳR + tȳt)/(n− r) if n− r > r

(4.13)

where ȳt is the mean of the t supplementary values of Y .

Let’s express the mean Y for hot deck imputation without replacement as:

ȳHD2 =
rȳR +(n− r)ȳNR

n
Given Eq. (4.13), the above equation can be re-expressed as:

ȳHD2 =
(k+1)rȳR + tȳt

n
(4.14)

ȳt can also be re-expressed as:

ȳt =
∑

r
i=1 Iiyi

t
(4.15)

where the indicator variable Ii is a random variable which takes the value one if a unit has
been selected as the hot deck imputed value, otherwise, the value is zero. Hence:

E(Ii|Yobs) =
t
r

Var(Ii|Yobs) =
t
r
(1− t

r
)

Cov(Ii, I j|Yobs) =−
t
r
(1− t

r
)

1
r−1

Then these yield the mean and variance of ȳHD2 given Yobs:

E(ȳHD2|Yobs) = ȳR (4.16)

Proof:

E(ȳHD2|Yobs) =
(k+1)rȳR

n
+

tE(ȳt)

n

=
(k+1)rȳR

n
+

t
n

1
t

rE(Hi)E(yi)

= ȳR
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and
Var(ȳHD2|Yobs) = (t/n)(1− t/r)s2

yR
/n (4.17)

Proof:

Var(ȳHD2|Yobs) =
t2

n2Var(ȳt)

=
t2

n2Var(
∑

r
i=1 Iiyi

t
)

=
t2

n2
1
t2Var(

r

∑
i=1

Iiyi)

Again, Var(∑r
i=1 Iiyi) follows:

Var(
r

∑
i=1

Iiyi) = E[
r

∑
i=1

Iiyi

r

∑
j=1

I jy j]−E[
r

∑
i=1

Iiyi]E[
r

∑
j=1

I jy j]

=
r

∑
i=1

r

∑
j=1

E[IiI j]yiy j−
r

∑
i=1

r

∑
j=1

E[Ii]E[I j]yiy j

=
r

∑
i=1

r

∑
j=1

Cov[IiI j]yiy j

=
r

∑
i=1

y2
i Cov[Ii, Ii]+

r

∑
i=1

r

∑
j=1, j 6=i

yiy jCov[Ii, I j]

=
t
r
(1− t

r
)

r

∑
i=1

y2
i −

t
r
(1− t

r
)

1
r−1

r

∑
i=1

r

∑
j=1, j 6=i

yiy j

=
t
r
(1− t

r
)

1
r−1

(
(r−1)

r

∑
i=1

y2
i −

r

∑
i=1

r

∑
j=1, j 6=i

yiy j

)

=
t
r
(1− t

r
)

1
r−1

(
r

r

∑
i=1

y2
i −

r

∑
i=1

r

∑
j=1

yiy j

)

=
t
r
(1− t

r
)

1
r−1

(r
r

∑
i=1

y2
i − r2ȳr)

= t(1− t
r
)

1
r−1

∑
r
i=1 y2

i − rȳr

r−1
(r−1)

= t(1− t
r
)s2

yR

Hence, Var(ȳHD2|Yobs) =
t2

n2
1
t2Var(∑r

i=1 Iiyi) =
t
n(1−

t
r )

s2
yR
n .

The following steps demonstrate how to implement the simple random hot deck imputation
without Replacement method, and also simulate the imputation process 1000 times in order
to find the distribution of the estimates of the imputed data.

47



Recipe: Random hot deck imputation without Replacement

Step 1: Create missing income with the missing probability 50% for male and 20%
for female

Step 2: If n− r ≤ r, then randomly choose n “Income” values from non-missing “In-
come” values without replacement. If n− r > r, then select all the recorded
units (r) k times, and select t additional units randomly without replacement
to yield the n− r values.

Step 3: Replace missing “Income” values with the chosen “Income” values from Step
1

Step 4: Estimate the mean and variance of imputed “Income” variable

Step 5: Repeat Step 1 to Step 4 1000 times and record the means and variances for
each imputed “Income” variable

#R program

#Random hot deck imputation -- without replacement

hotImp.mean.mar=c()

hotImp.var.mar=c()

for (i in (1:1000)){

#Create missing value

#mcar.surf=MCAR(SURF,50,"Income")

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

#Count the number of missing

nmissing=nrow(mar.surf[is.na(mar.surf$Income),])

#Count the number of not missing

not_missing=nrow(mar.surf[!is.na(mar.surf$Income),])

#Hot deck imputation -- two cases: (1) n-r<r; (2) n-r>r

if (not_missing>=nmissing){

mar.surf[is.na(mar.surf$Income),"Income"]

=sample(mar.surf[!is.na(mar.surf$Income),"Income"],

size=nmissing,replace=F)

}else{

ty_size=round(((nmissing/not_missing)-

as.integer(nmissing/not_missing-1))*not_missing)

kry= rep(mar.surf[!is.na(mar.surf$Income),"Income"],

as.integer(nmissing/not_missing-1))

ty= sample(mar.surf[!is.na(mar.surf$Income),"Income"],

size=ty_size,replace=F)

mar.surf[is.na(mar.surf$Income),"Income"]= c(kry,ty)

}

hotImp.mean.mar[i]=mean(mar.surf$Income)

hotImp.var.mar[i]=var(mar.surf$Income)

}

Figure 4.7 shows the distribution of the simulated 1000 means and variances. Comparing
Figure 2.8 and Figure 4.6, we found that the distribution of means and variances are very
similar. This is still due to this hot deck imputation method (hot deck without replacement)
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randomly selecting observed values as imputed values. This does not change the distribution
of observed male and female income.
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Figure 4.7: Random hot deck Imputed MAR SURF Income without replacement

Again, Equation (4.10) shows that there is an increase of the variance of the mean ȳHD2
over ȳR. However, as Little & Rubin (2002) pointed out, hot deck imputation without replace-
ment can reduce the additional variance from the hot deck imputation with replacement. The
proportionate variance increase of ȳHD2 over ȳR is at most 0.125 when k = 0, t = n/4 and
r = 3n/4.

Proof: Assuming simple random sampling from a finite population of size N and missing
data are MCAR, then Eq (4.9) and (4.10) yield

E(ȳHD2) = ȳ

Var(ȳHD2) = (
1

(k+1)r
− 1

N
)s2

y +
t
n
(1− t

r
)
s2

y

n

Hence, the proportionate variance increase of ȳHD2 over ȳR is:

t
n(1−

t
r )

1
n

1
(k+1)r −

1
N

N→∞
=⇒

t
n(1−

t
r )

1
n

1
(k+1)r

=
t
n
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n2 ]

(4.18)
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We have already seen that (k+1)r+ t = n. This can be re-expressed as r = n−t
k+1 . Substituting

this r to Eq. (4.18) yields:

(k+1)[
tr
n2 −

t2

n2 ] = (k+1)[
t n−t

k+1

n2 −
t2

n2 ]

= (k+1)[
t

(k+1)n
− t2

n2(k+1)
− t2

n2 ]

Now, let’s differentiate the above equation with respect to t, and set it equal to zero, then we
get:

2t +2t(k+1)
n2(k+1)

=
1

(k+1)n
2t +2t(k+1) = n

⇒ t =
n

2(k+2)

Then, r in terms of n is: r = n(2k+3)
2(k+2)(k+1) . Substituting t = n

2(k+2) and r = n(2k+3)
2(k+2)(k+1) into Eq.

(4.18), we get the maximum variance increase increase of ȳHD2 over ȳR is: 1
4(k+2) . It is also

known that k≥ 0. Hence, the maximum value for function f (k) = 1
4(k+2) is 0.125, when k = 0.

Also, if k = 0, then t = n/4 and r = 3n/4.

4.3.3 Hot deck imputation - sequential hot deck
The sequential hot deck imputation method treats the observed and missing units in a se-
quence. This means that, under the assumption that sampled units are regarded as randomly
ordered, a missing value of Y is replaced by the nearest responding value preceding it in the
sequence. For example, if n = 4,r = 2, y1 and y3 are observed, and y2 and y4 are missing, then
y2 and y4 are replaced by y1 and y3 respectively. However, if y1 is missing, then some starting
value is necessary, maybe chosen from records in a previous survey. (Bailar et al. 1978)

Now, we apply this sequential hot deck imputation method to the SURF data. The following
steps demonstrate how to implement the method, and also simulate the imputation process
1000 times in order to find the distribution of the estimates of the imputed data.

Recipe: Sequential hot deck imputation

Step 1: Replace missing “Income” values with the nearest “Income” values in the
sequence

Step 2: Estimate mean and variance of imputed “Income” variable

Step 3: Repeat “Step 1” to “Step 2” for 1000 times and record the means and vari-
ances for each imputed “Income” variable

#R program

#Sequential hot deck imputation

hotImp.mean.mar=c()

hotImp.var.mar=c()

for (i in (1:1000)){
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#Create missing value

#mcar.surf=MCAR(SURF,50,"Income")

mar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

mar.surf$Income[1]=SURF$Income[1]

n=length(mar.surf$Income)

#Sequential hot deck

for (j in (1:n)){

if (is.na(mar.surf$Income[j])){

mar.surf$Income[j]=mar.surf$Income[j-1]

}

}

hotImp.mean.mar[i]=mean(mar.surf$Income)

hotImp.var.mar[i]=var(mar.surf$Income)

}

Figure 4.8 shows the distribution of the simulated 1000 means and variances. Again, we see
similar distributions of means and variances as Figure 2.8. This is because the dataset itself is
randomly ordered and the proportion of missing values is not large. The sequential hot deck
imputed data has little impact on the distribution of observed male and female income.
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Figure 4.8: Sequential hot deck Imputed MAR SURF Income

However, the variance of mean ȳHD is still larger than the variance of mean ȳR due to the
added variance according to Equation (4.10). In fact, Little & Rubin (2002) showed that its
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total variance is Var(ȳHD) = [1+ (n+ r)/n]S2
y/r, assuming large r and n and ignoring the

finite population corrections. This means the proportionate increase in variance over ȳR is
(n− r)/n, the fraction of missing data.

4.3.4 Hot deck imputation - Hot deck within adjustment cells
This hot deck method applies a similar idea to the conditional mean imputation method.

Adjustment cells are formed from the joint levels of categorical variables which have observed
values for variables with missing values. Missing values within each cell are replaced by
observed values from the same cell. The choice of variables for creating adjustment cells is
often arbitrary and relies on subjective knowledge of which variables are related to the missing
value being imputed. For example, suppose our SURF data has n− r missing income values,
but its other categorical variables have no missing values. Hence, we can form cells based on
its categorical variables, such as: ”HoursBand”,”AgeBand”,”Marital”,”Ethnicity”,”Gender”
and ”Qualification”. This is because we think those variables are associated with the income
variable, e.g.. male respondents might earn more income than female respondents. Then, we
replace missing values within each cell by a random draw from its observed values.

The following steps demonstrate how to implement the hot deck within adjustment cells
imputation method, and also simulate the imputation process 1000 times in order to find the
distribution of the estimates of the imputed data.

Recipe: Hot deck within adjustment cells

Step 1: Form cells based on categorical variables, such as: ”HoursBand”, ”Age-
Band”, ”Marital”, ”Ethnicity”, ”Gender” and ”Qualification”

Step 2: If a cell has only missing “Income” values, then form cells with less variables
until all cells with missing “Income” values have observed “Income” values
as well

Step 3: Randomly choose “Income” values from the cell

Step 4: Replace missing “Income” values with the chosen “Income” values from
“Step 3”

Step 5: Estimate mean and variance of imputed “Income” variable

Step 6: Repeat “Step 1” to “Step 5” for 1000 times and record the means and vari-
ances for each imputed “Income” variable

#R program

#(c) Hot deck within adjustment cells

hotImpCells.mean.mcar=c()

hotImpCells.var.mcar=c()

hotdeckvars <-

c("HoursBand","AgeBand","Marital","Ethnicity","Gender","Qualification")

SURF2=SURF

SURF2$AgeBand <- 5*(SURF$Age%/%5)

SURF2$HoursBand <- 10*((SURF$Hours-5)%/%10)+5

for (i in (1:1000)){

#Create missing value
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mar.surf=MAR(SURF2,"Gender","Income",c(0.5,0.2))

mar.surf=mar.surf[order(mar.surf$Personid),]

mar.surf.nomiss=mar.surf[!is.na(mar.surf$Income),]

mar.surf.miss =mar.surf[is.na(mar.surf$Income),]

#Count the number of missing

nmissing=nrow(mar.surf.miss)

idx=sort(mar.surf[is.na(mar.surf$Income),"Personid"])

for (j in (1:nmissing)){

matched <- F

m <- length(hotdeckvars)

while(!matched) {

mm <- merge(mar.surf.miss[j,], mar.surf.nomiss, by=hotdeckvars[1:m])

if(nrow(mm)>0) {

matched <- T

mar.surf[idx[j],"Income"] <- mm[sample(nrow(mm),1),"Income.y"]

} else {

m <- m-1

if(m==0) {

mar.surf[idx[j],"Income"] <-

mar.surf.nomiss[sample(nrow(mar.surf.nomiss),1),"Income"]

matched <- T

}

}

}

}

hotImpCells.mean.mar[i]=mean(mar.surf$Income)

hotImpCells.var.mar[i]=var(mar.surf$Income)

}

Figure 4.9 shows the distribution of the simulated 1000 means and variances. Now, the
distributions of means and variances are centred around the mean and variance of the original
complete data. This means this hot deck within adjustment cells imputation method has an
unbiased estimate of the “true” complete data estimates, if the missing data are MAR and vari-
ables which form adjustment cells have a strong association with the missing data. We know
gender has a strong relation to missing data because we used it to create the MAR SURF
income data. Now, we can explain why the previous simple hot deck with and without re-
placement methods have underestimated the estimates and why this hot deck with adjustment
cells method is better. The reason is that the male respondents have more missing income val-
ues than female respondents and overall male respondents have higher income than female.
Those previous hot deck imputation methods have a higher probability of selecting female’s
income values to impute missing male income values because females have more recorded
data than males. Then, this makes the estimates of income become lower than the “true” com-
plete data estimates. By grouping the incomplete data by gender and other variables, the hot
deck method only selects values to replace missing values from their own groups. Hence, the
missing income values of male respondents have only being imputed by choosing observed
income values from other male respondents. Because observed male respondents have higher
incomes than female, the imputed male non-respondents will have higher incomes than the
imputed female non-respondents as well. This results unbiased estimates.
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Figure 4.9: Hot deck within adjustment cells Imputed MAR SURF Income

4.3.5 Hot deck imputation - Nearest-Neighbour Hot deck Imputation
The Nearest-Neighbour hot deck method can be considered to be a more complex version

of the hot deck Within Adjustment cells method. It uses the distance between units by defining
a metric, based on the values of covariates, and then it chooses imputed values from observed
units close to the unit with the missing value. Andridge & Little (2010) provides an example,
let yi = (yi1, ...,yik)

T be the values of K appropriately scaled covariates for a unit i for which
yi is missing. If these variables are used to form adjustment cells, the metric

d(i, j) =

{
0, i,j in same cell
1, i,j in different cells

(4.19)

yields the method of the hot deck Within Adjustment Cells. For the example we demonstrated
by using the SURF data, we used Mahalanobis metric to measure distance between units.

d(i, j) = (yi− y j)
T ˆVar(yi)

−1(yi− y j)

where ˆVar(xi) is an estimate of the covariance matrix of yi.

The measurement of the distance d(i, j) can be used for both categorical and numerical
variables. Unlike the hot deck within adjustment cells method, there is no longer a need to
categorize continuous variables in order to form a cell.

The following steps demonstrate how to implement the hot deck within adjustment cells
imputation method, and also simulate the imputation process 1000 times in order to find out
the distribution of the estimates of the imputed data.
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Recipe: Nearest-Neighbor hot deck Imputation

Step 1: Measure distance between observations

Step 2: Choose “Income” values that come from observations with “Income” values
close to the observation without “Income” value.

Step 3: Replace missing “Income” values with the chosen “Income” values from
“Step 2”

Step 4: Estimate mean and variance of imputed “Income” variable

Step 5: Repeat “Step 1” to “Step 4” 1000 times and record the means and variances
for each imputed “Income” variable

#R program

#(d) Nearest-Neighbor hot deck Imputation

#Using existing packages

library(rrp)

rrp.imp.mean.mcar=c()

rrp.imp.var.mcar=c()

for (i in (1:1000)){

#Create missing value

#mcar.surf=MCAR(SURF2,50,"Income")

mcar.surf=MAR(SURF,"Gender","Income",c(0.5,0.2))

mcar.surf=mcar.surf[order(mcar.surf$Personid),]

idx=sort(mcar.surf[is.na(mcar.surf$Income),"Personid"])

mcar.surf[idx,"Income"]=rrp.impute(mcar.surf)$new.data[idx,"Income"]

rrp.imp.mean.mcar[i]=mean(mcar.surf$Income)

rrp.imp.var.mcar[i]=var(mcar.surf$Income)

}

Figure 4.10 shows the distribution of the simulated 1000 means and variances. Unsurpris-
ingly, the estimates are unbiased against the “true” complete data estimates. The reason is
similar to the one we have given in section 4.3.4.
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Figure 4.10: Nearest-Neighbor hot deck Imputed MAR SURF Income

4.4 Conclusion
Throughout this chapter, we have applied various single imputation methods to missing

data. The results show that some are good at reducing bias, some are not. Unconditional
mean imputation is the worst imputation method in terms of alleviating bias. As we have
shown in figure 4.2, unconditional mean imputation even causes bias when the missing data is
MCAR. This method is even worse than deletion methods, regarding bias. Conditional mean
imputation and regression imputation have demonstrated much better estimates, compared
to unconditional mean imputation, if the missingness is MAR and the variables upon which
missingness depends are observed and complete. However, they still present biased variance
estimates. Enders (2010) points out that both methods lack variability that would have been
present if the data had been complete. We also see that stochastic regression imputation, and
hot deck imputation, especially, Nearest-Neighbour hot deck imputation, present unbiased
estimates. This is because both methods, regardless of whether they are explicit or implicit
modelling methods, have a random sampling mechanism in them. For example, stochastic
regression imputation has an added uncertainty term from a normal distribution; hot deck im-
putation random sample replacement values from observed units. This sampling mechanism
provides the needed variability if the data had been complete.

As we have discussed in previous chapters, the problem with single imputation methods is
that the imputation itself introduces variance, or more appropriately, imputation uncertainty.
Unless missing data become not missing, even the best single imputation method underes-
timates variances, potentially by a substantial amount. However, we cannot measure this
uncertainty with any of the single imputation methods. This is why we need methods such as
resampling and multiple imputation.
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Chapter 5

Using Non-parametric Resampling
Methods to Incorporate Imputation
Uncertainty

5.1 Introduction
As described in previous chapters, single imputation methods fill in missing values with

imputed values, then standard complete data methods are used to analyse the imputed data.
Those filled in values are treated as observed values. However, no matter how good single im-
putation is at reducing non-response bias, its imputed values are still not the “true” observed
values. This means the missing values imputed by using single imputation methods are un-
certain, there might be other candidates that can replace the missing values as well. This, as
we have discussed previously, is called “Imputation Uncertainty”. We have also pointed out
that imputation uncertainty introduces extra variance to the estimated variance of parameters
based on the imputed complete data.

As Shao & Sitter (1996) point out, the potential underestimation of variance estimates of
imputed data could be serious if variance estimates are only based on the single imputed data.
This is because it does not account for the inflation in the variance due to missing data and
imputation. In other words, single imputation does not account the added variance due to
imputation uncertainty.

There have been some proposed methods to address this issue. Little & Rubin (2002)
recommend resampling and Multiple Imputation methods as the most useful general tools
for propagating imputation uncertainty. We focus on the discussion of resampling methods
(bootstrap and jackknife) in this chapter, and there is further discussion of Multiple Imputation
methods in later chapters.

5.2 Relationship between Resampling Methods and Impu-
tation Uncertainty

So, why can resampling methods be used to propagate imputation uncertainty? Before we
can answer this, let’s first discuss what resampling is.
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A sample is not a census1. A single sample does not have all the units of our population.
This means that if we draw another sample from the same population, the sample we get might
be different from the previous sample. The difference in parameter estimates arising from
different samples is called sampling variability or sampling error. Theoretically, If all possible
samples with the same sample size were drawn from the same population, and estimates of
each sample were computed, we would be able to construct the sampling distribution. Given
the knowledge of sampling distribution, we can find confidence intervals for estimates drawn
from a sample. However, as Lohr (1999) points out, we normally take only one sample from
a population and have no information about the true population total. This is mainly due to
the purpose of a sample survey is to provide a cost efficient way to gather information about
the population. There is no point to conduct the same samples many times in the same period.
If one has more resources, we’d better do a census instead. Hence, it is practically not worth
to find the real sampling distribution.

If we have a large enough sample, one common method to approximate the unknown sam-
pling distribution problem is to use the Central Limit Theorem (CLT)2 to assume the sampling
distribution of sample estimates based on all possible samples of the same sample size is ap-
proximately normal, regardless of the distribution of the original data in the sample. Then,
we can compute confidence intervals for sample estimates of a single sample. We can say the
“true” population estimates fall inside the confidence intervals at a given confidence level. For
example, if the confidence level is 95%, we say that the confidence interval contains the true
estimates most (95 out of 100) of the time.

However, we know that the computation of a confidence interval involves the calculation
of the standard error. Sometimes, it is very hard to compute the standard error of a sam-
ple estimate, if the sample design is complex3 or if post survey adjustments, such as post-
stratification4 are made to the weights. This leads to the method of resampling. In the hope
that our single sample reproduces true properties of the whole population, we treat the sample
as if it were a population. As we have described before, one possible way to measure the
sampling error is to draw as many samples with the same sample size as one could from the
same population, but this makes no sense as the idea of repeated sampling from true popula-
tion leading to the sampling distribution is entirely theoretical, otherwise, we would just have
a census or use a larger sample. Hence, we can only have one sample. Now, if we assume the
sample is the smaller version of our population, then apart from computation time, it actually
cost us nothing to draw as many samples as we like from the “smaller population” which has
all the variables (or information) we want. “If the sample really is similar to the population,
if the empirical probability mass function (epmf) of the sample is similar to the probability
mass function of the population, then samples generated from the epmf should behave like
samples taken from the population” (Lohr 1999). This means resampling methods help us to
construct an approximation to the sampling distribution. Based on this approximate sampling
distribution, we can easily estimate variances.

How are these related to imputation and imputation uncertainty? As described before,
imputation uncertainty is due to treating single filled-in values as the true values, but, in fact,

1Census means we select all the units of a population.
2The Central Limit Theorem says that given a large enough sample size, the sampling distribution of the

sample mean will follow an approximately normal distribution, and the mean of all samples from the same
population will be approximately equal to the mean of the population with an arbitrary distribution.

3This means the sample is not simple random sampling.
4Post-stratification is a way to use auxiliary information on the population to improve precision.
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other values can be used to replace the missing values, because the true values for the missing
data are unknown. Now, suppose resampling methods generate M resamples from the original
sample which has missing data. These resamples may have missing data as well. If we impute
missing data for each resample, it is equivalent to drawing M samples for missing values from
the unknown missing data population. In other words, this means each missing value is filled
in with M different imputed values. As Little & Rubin (2002) state, such resampling methods
propagate the uncertainty in the imputations and provide valid inferences.

5.3 The Simple Bootstrap for Complete Data
Let’s have a look at a simple resampling method - the bootstrap resampling method. Let

us consider a simple random sample with replacement of sample size n. Let Y = (y1,y2, ...yn)
be the observed values and for now we assume that there is no missing data. Efron (1979)
provides us with the simplest form of bootstrap method. Let Y (b) be a sample of size n
obtained from the original sample Y by simple random sampling with replacement, where b
indexes the drawn samples. The idea is to select a large number B of these bootstrap samples.
If θ̂ is an estimate of θ based on the original sample Y , then θ̂ (b) is the corresponding estimate
obtained by applying the original estimation method to Y (b). Hence, we get a set of estimates
(θ̂ (1), ..., θ̂ (B)).

We have noticed that bootstrap method requires us to take samples with replacement of size
n from the original sample of size n. This means that the bootstrap sample size is the same as
our original sample. One of the main advantages of sampling with replacement is when our
sample size n is small and we cannot afford to have smaller sample size. However, as Politis &
Ramano (1994) describe that the bootstrap method can use the sampling without replacement
scheme. They call such method “subsampling”. The limitation of “subsampling” method is
that the sample size of resamples has to be smaller than the original sample size n, because
it samples without replacement. The advantage is that it is more reliable than the bootstrap
method when dealing with time series or any other form of dependent data (Geyer 2006).
This is because the current observation’s value depends on the previous observations’ value,
if we do a bootstrap sample of the time series data, the dependency will be disturbed. The
subsampling method can overcome the dependency issue by applying a systematic sampling5

method.

The bootstrap estimate of θ is the average of the bootstrap estimates:

θ̂boot =
1
B

B

∑
b=1

θ̂
(b) (5.1)

Variances can be estimated from the bootstrap distribution of θ̂ (b), which is estimated by
the distribution formed by the bootstrap estimates (θ̂ (1), ..., θ̂ (B)). The bootstrap estimate of
the variance of θ̂ or θ̂boot is:

V̂boot =
1

B−1

B

∑
b=1

(θ̂ (b)− θ̂boot)
2 (5.2)

see (Little & Rubin 2002).
5Systematic sampling selects units from an ordered sampling frame, every kth unit in the frame is chosen

(systematically) for inclusion in the sample, where 0 < k < N, N is the population size.
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The bootstrap estimator θ̂boot is less biased than the original estimator θ̂ . This is because
the bootstrap estimator θ̂boot is supposed to be much closer to the expected value of θ̂boot than

the original estimator θ̂ , so Ê(θ̂boot) =
1
B

∑
B
b=1 θ̂ (b) according to the law of large numbers6.

In fact, this fact has been used to estimate bias. Let b̂(θ̂) be the bias of θ̂ , then we have:

b̂(θ̂) = Ê(θ̂boot)− θ̂

=
1
B

B

∑
b=1

θ̂
(b)− θ̂

This b̂(θ̂) is called bootstrap bias estimator (Efron & Tibshirani 1993).

Little & Rubin (2002) also state that under quite general conditions, V̂boot is a consistent
estimate of the variance of θ̂ or θ̂boot as n and B tend to infinity. Singh (1981) concludes
that confidence intervals may be constructed based on the bootstrap that outperform those
based on the normal approximation. If the bootstrap distribution is approximately normal, a
100(1−α)% bootstrap confidence interval for a scalar θ can be computed as

Inorm(θ) = θ̂ ± z1−α/2

√
V̂boot (5.3)

where z1−α/2 is the 100(1−α)% percentile of the normal distribution. Alternatively if the
bootstrap distribution is non-normal, a 100(1− α)% bootstrap confidence interval can be
computed as

Iemp(θ) = (θ̂ (b,l), θ̂ (b,u)) (5.4)

where θ̂ (b,l) and θ̂ (b,u) are the empirical (α/2) and (1−α/2) quantiles of the bootstrap dis-
tribution of θ . The empirical quantiles are the quantiles for the observed data. In this case,
they are the quantiles of the bootstrap estimates (θ̂ (1), ..., θ̂ (B)). Efron (1994) states that stable
intervals based on Eq.(5.3) require bootstrap sample of the order of B = 200. Intervals based
on Eq.(5.4) require much larger samples, for example B = 2000 or more.

5.4 The Simple Bootstrap Applied to Imputed Incomplete
Data

We have discussed the basic idea of the bootstrap method. Although the bootstrap has many
applications in statistics, this chapter only focuses on its application to imputation.

Suppose we have a sample Y . It has n independent observations, and some observations
have a missing Y value. Some imputation method Imp is used to impute missing values and
an estimate θ̂ of a true parameter θ is computed by using the imputed data. The simple
bootstrap is applied to the original sample Y to draw B bootstrap samples, then the imputation
method Imp is applied to the B bootstrap samples and B estimates are computed. Little &
Rubin (2002) emphasised that the imputation has to be done for each individual bootstrap
resample. As we have described in section 5.2, imputation needs to be done many times in
order to reflect imputation uncertainty.

6In probability theory, the law of large numbers is a theorem that describes the result of selecting the same
sample a large number of times. According to the law, the average of the results obtained from a large number
of samples should be close to the expected value, and will tend to become closer as more samples are selected
(Grimmett & Stirzaker 1992).
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Little & Rubin (2002) lists the following steps:

For b = 1, ...,B:

(a) Generate a bootstrap sample Y (b) from the original incomplete sample Y

(b) Fill in the missing data in Y (b) by applying the imputation procedure to the bootstrap
sample Y (b), Ŷ (b) = Imp(Y (b))

(c) Compute θ̂ (b) on the filled-in data Ŷ (b) from (b).

Let us consider an example by applying the simple bootstrap method to the SURF data
we introduced in the previous chapters. Suppose m “Income” values are missing at random,
which has the missingness depending on the “Gender” variable. The Adjustment cell hot
deck imputation method is applied to impute missing Income values. The initial adjustment
cells were formed by ”Ethnicity”, ”Gender”, and ”Qualification” variables. If a cell only has
missing income values, a larger adjustment cell would be formed by using one less variable.
This process goes on until there are no cells which only have missing income values. Then,
the missing income values inside each cell are replaced by randomly selecting values from
the observed income values in that cell. The following steps demonstrate the imputation of
missing data by using the simple bootstrap method:

Recipe: The simple bootstrap applied to incomplete data

Step 1: Draw B = 20 bootstrap samples Y (b) with replacement from the original sam-
ple Y . Y (b) ∼ (y1, ...,yn), b = 1, ...,B

Step 2: Fill in the missing data for each bootstrap sample Y by applying the Adjust-
ment Cell hot deck imputation method

Step 3: Compute means µ̂(b) = T̂ (Y (b)) on the filled-in data from Step 2.

Step 4: Calculate the bootstrap mean, the bootstrap variance of the mean by using
Eq.(5.1) and Eq. (5.2).

Please refer to Appendix A for the R code.

For demonstration purposes, we choose to compute the bootstrap mean of the SURF In-
come variable, but the bootstrap method can be applied to estimate any parameters. First,
we simulated 100 SURF data with incomplete income variables. The missing mechanism is
MAR, with the missingness depends on Gender. So, the male respondents have 50% proba-
bility of missing income and the female respondents have 20% probability of missing income.
We applied the Adjustment Cell hot deck imputation method to impute these 100 incomplete
SURF data, and computed the income means and variances of income means for the imputed
datasets. Then, we applied the bootstrap procedure that we have introduced above to impute
the 100 incomplete SURF datasets, and computed the bootstrap income means and variances
of income means for the imputed datasets. Figure 5.1 shows the results. The red vertical lines
represent the true income mean and variance of the income mean.
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Figure 5.1: Comparing the Adjustment cell hot deck income means and variances with the
bootstrap income means and variances for the simulated 100 incomplete SURF data

As we can see from Figure 5.1, the distribution of the bootstrap variances of the income
means is much wider than the distribution of the variances of the Adjustment cell imputed
datasets. This is what we expected. The imputation uncertainty which is properly reflected by
using the bootstrap blows up the variances of the income mean.

5.5 The Simple Jackknife for Complete Data
The jackknife is a similar resampling concept to the bootstrap method. Like the bootstrap

method, it allows the replicate groups to overlap. However, it differs from the bootstrap
method by systematically deleting subgroups, rather than randomly resampling.

There are generally two cases of jackknife resampling. The first one is only based on
deleting a single unit from the original sample sequentially (JK1). The other one is based
on dropping multiple units from the original sample sequentially (JKn) (Efron & Gong 1983,
Wu 1986). Hence, we see that the jackknife creates its resamples by deleting units from the
original sample.

Little & Rubin (2002) provide us with an example of the simple jackknife for complete
data. Let θ̂ be a consistent estimate of a parameter θ based on a sample Yi, i = 1, ...,n of
independent observations. Let Y (\ j) be a sample of size n− 1 obtained by dropping the jth
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observation from the original sample, and let θ̂ (\ j) be the estimate of θ from this reduced
sample. The quantity

θ̃ j = nθ̂ − (n−1)θ̂ (\ j) (5.5)

is called a pseudovalue. The jackknife estimate of θ is the average of the pseudovalues:

θ̂ jack =
1
n

n

∑
j=1

θ̃ j = θ̂ +(n−1)(θ̂ − θ̄) (5.6)

where θ̄ = 1
n ∑

n
j=1 θ̂ (\ j). The jackknife estimate of the variance of θ̂ or θ̂ jack is

V̂jack =
1

n(n−1)

n

∑
j=1

(θ̃ j− θ̂ jack)
2 =

n−1
n

n

∑
j=1

(θ̂ (\ j)− θ̄)2 (5.7)

The multiplier (n− 1)/n in Eq. (5.7) is larger than the multiplier 1/(B− 1) in the bootstrap
equation (5.2). This is because if (n = B > 2) and n and B are both integers, then (n− 1)/n
is much closer to 1 than 1/(B− 1). This difference means the jackknife estimates θ̂ \ j of θ

tend to be closer to θ̂ than the bootstrap estimates, since they differ from the computation of
θ̂ only by the value of a single observation. There is an intuitive way to understand why the
jackknife estimates of θ tend to be closer to the original θ̂ than the bootstrap estimates. The
bootstrap selects samples of size n obtained from the original sample Y by simple random
sampling with replacement. This means that it is possible that the same units have been
selected several times in the bootstrap sample. On the other hand, the jackknife method does
not select the same sample units several times but deletes units from the original sample Y
sequentially. Hence, the jackknife sample Y b

jackkni f e distributions are closer to the distribution
of the original sample.

The jackknife has similar properties to the bootstrap. That is, (a) the jackknife estimator
θ̂ jack is less biased than the original estimator θ̂ , and under quite general conditions (b) V̂jack

is a consistent estimate of the variance of θ̂ or θ̂ jack as n tends to infinity. From property (b),
if the jackknife distribution is approximately normal, a 100(1−α)% confidence interval for a
scalar θ can be computed as

Inorm(θ) = θ̂ ± z1−α/2

√
V̂jack (5.8)

where z1−α/2 is the 100(1−α) percentile of the normal distribution.

5.6 The Simple Jackknife Applied to Imputed Incomplete
Data

Little & Rubin (2002) also provide us with an example of applying the simple jackknife
to imputed incomplete data. Suppose we have a sample Yi, i = 1, ...,n of independent obser-
vations, but some observations i are incomplete. A consistent estimate θ̂ of a parameter θ is
computed by filling in the missing values in Y using some imputation method Imp, producing
imputed data Ŷ = Imp(Y ), and then estimating θ from the filled in data Ŷ . This method can
be implemented as follows:
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For j = 1, ...,n

(a) Delete j = 1 observation from Y , yielding the sample Y (\ j)

(b) Fill in the missing data in Y (\ j) by applying the imputation procedure Imp, producing
Ŷ (\ j) = Imp(Y (\ j))

(c) Compute θ (\ j) on the filled-in data Ŷ (\ j) from (b).

Let us apply the simple jackknife to the SURF data. Suppose m “Income” values are miss-
ing at random, again, the Adjustment cell hot deck imputation method is used to impute
missing “Income” values. The formation of the adjustment cells is exactly the same as we
have introduced in the bootstrap section (Section 5.4). The following steps demonstrate the
imputation of missing data by using the simple jackknife method (delete a single observation
at a time):

Recipe: The simple jackknife applied to imputed incomplete data

Step 1: Delete the first j = 1 observations from the original unimputed sample Y =
{yi : i = 1, ...,n}. This yields sample Y (\1) = {yi : i = 2, ...,n}.

Step 2: Fill in the missing “Income” data in Y (\1) by applying the Adjustment cell hot
deck procedure Imp, yielding Ŷ (\1) = Imp(Y (\1))

Step 3: Compute θ̂ (\1) on the filled in data Ŷ (\ j) from Step 2

Step 4: Repeat Step 1 to Step 3 for the 2nd , 3rd ,...,Jth observations

Step 5: Compute the jackknife estimate θ̂ jack and the V̂jack the jackknife estimate of
the variance of θ̂ jack by using Eq.(5.6) and Eq.(5.7) respectively, replacing
their n with k.

Please refer to Appendix A for the R code.

We have simulated 100 replicate SURF data with incomplete income variables, and com-
pared the jackknife income means and variances of income means with the single imputation
(Adjustment cell hot deck) imputed data. Figure 5.2 displays the comparison results, the
vertical red lines are the true income mean and variance.
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Figure 5.2: Comparing the Adjustment cell hot deck income means and variances with the
jackknife income means and variances for the simulated 100 incomplete SURF data

It is a surprise to see the jackknife variances that big and far away from the true variance,
and the jackknife means have negative values (Figure 5.2). This is not what we have expected
nor what Little & Rubin (2002) suggest. We have expected that the jackknife variances would
be larger than the Adjustment cell hot deck variances, but like the Bootstrap variances in
Figure 5.1 which are centred around the true variance. So, what is the problem? By studying
the Equation (5.5) to Equation (5.7), we have suspected that the imputation we have done for
each jackknife samples blows up the jackknife variance and yields negative means.

In order to find out the cause of the problem, we applied a naive jackknife procedure to
impute incomplete data. The naive jackknife procedure applies the imputation procedure just
once to yield an imputed data set Ŷ , and then jackknife the Ŷ and compute the jackknife
estimates. This method is implemented as follows:

For j = 1, ...,n

(a) Impute the missing values in Y , producing imputed data Ŷ = Imp(Y )

(b) Delete j = 1 observation from Ŷ , yielding the sample Ŷ (\ j)

(c) Compute θ (\ j) on the jackknifed data Ŷ (\ j) from (b) jackknife
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Again, we applied the naive jackknife procedure to the simulated 100 replicate SURF data
with incomplete income variables, and compared the naive jackknife income means and vari-
ances of income means with the single imputation (Adjustment cell hot deck) imputed data.
Figure 5.3 displays the results.
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Figure 5.3: Comparing the Adjustment cell hot deck income means and variances with the
naive jackknife income means and variances for the simulated 100 incomplete SURF data

The results shown in Figure 5.3 are what we have expected. The naive jackknife means and
variances are unbiased. The naive jackknife variances are slightly bigger than the Adjustment
hot deck variance due to the added variation from the jackknife samples. We have to point out
that this naive jackknife approach does not propagate the imputation uncertainty. However,
this investigation tells us two things: (1) we have properly implement the jackknife estimation
formulas (ie. Eq (5.5) to Eq (5.7)); (2) our suspicion that imputing each jackknife sample
could inflate the variance is correct.

So, how exactly does the imputation inflate the variance of estimates? Let’s recall that
the consistent estimate θ̂ of a parameter θ is computed from the imputed data Ŷ before im-
plementing the jackknife to the incomplete dataset Y . Then, θ̂ is used in the calculation of
θ̂ jack = θ̂ +(n− 1)(θ̂ − θ̄) , where θ̄ = 1/n∑

n
j=1 θ̂ (\ j). If Y is complete, then θ̄ ≈ θ̂ . How-

ever, if Y is incomplete, we cannot be sure that θ̄ always approximates θ̂ as the imputation
uncertainty can make these two estimates very different from each other. This is why we see
that some of the Income means (ie θ̂ jack) are negative in Figure 5.2. As for the variance of the
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estimate V̂jack =
n−1

n
∑

n
j=1(θ̂

(\ j)− θ̄)2, we already know that the jackknife estimates θ̂ \ j of

θ tends to be closer to θ̂ than the bootstrap estimates from Section 5.5. Hence, we conclude
that ∑

n
j=1(θ̂

(\ j)− θ̄)2 is much smaller than ∑
B
b=1(θ̂

(b)− θ̂boot)
2, if the Y is complete. How-

ever, if the Y is incomplete, we know that the added variance due to imputation uncertainty
can be very large as Figure 5.1 shows us. This means that ∑

n
j=1(θ̂

(\ j)− θ̄)2 could be very
large for jackknife, and the factor (n−1)/n≈ 1 does not reduce the value of V̂jack by a large
amount. This is why we see that all the jackknife variances for incomplete data are much
larger than the true variance in Figure 5.2.

For the SURF examples, we let θ = µ . According to Eq (5.5), the pseudovalue of the
jackknife mean is µ̃ j,Jack = nµ̂−(n−1)µ̂(\ j)

Jack, and the naive pseudovalue of the jackknife mean

is µ̃ j,naive = nµ̂− (n−1)µ̂(\ j)
naive. Now, let’s compare the distribution of the pseudovalues of the

jackknife mean µ̃ j,Jack, the distribution of the naive pseudovalue of jackknife mean µ̃ j,naive,
and the distribution of the SURF Income YIncome. Figure 5.4 displays the distributions. The
red vertical lines are the jackknife estimate of µ̃ j,Jack, the naive jackknife estimate of µ̃ j,naive,
and the mean of SURF Income ȲIcnome = ∑

n
i=1YIncome,i/n.
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Figure 5.4: Comparing the distributions of the pseudovalue of jackknife mean µ̃ j,Jack, the
naive pseudovalue of jackknife mean µ̃ j,naive, and the SURF Income YIncome

As shown in Figure 5.4, the distributions of the naive pseudovalue of jackknife mean
µ̃ j,naive, and the SURF Income YIncome are almost identical. This gives them similar esti-
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mate of mean and variance. The distribution of the pseudovalue of jackknife mean µ̃ j,Jack is
much wider than the other two distributions. This means large variance.

The exact reason of why the jackknife procedure applied to imputed incomplete data yields
biased estimates of variance needs some further study. Due to the scope of this thesis, our
investigation stops here. What we take from this is that the jackknife procedure, proposed by
Little & Rubin (2002), performs poorly when imputation is applied to impute each jackknife
sample. Hence, we use the bootstrap as our resampling method for later chapters.

5.7 Conclusion
In this chapter, we have introduced a couple of resampling methods to deal with the im-

putation uncertainty problem. Generally speaking, the jackknife method and the Bootstrap
method should produce similar results. However, Lohr (1999) points out that the jackknife
can performs poorly if the estimate θ̂ is not smooth7 (eg, median, quantiles). One of the
advantages of the bootstrap method is its ability to deal with non smooth estimates, because
it does not delete units. Compared to the jackknife method, one of the disadvantages of the
bootstrap method is that it requires more computation. This is because the required number
of resamples is usually very large for the bootstrap (Little & Rubin 2002). However, we have
discovered that current jackknife procedure, proposed by Little & Rubin (2002), produces
large and biased variances.

The resampling methods are robust, easy to use, and efficient for dealing with imputation
uncertainty, but they require large samples and are computation intensive. As we have stated
in this chapter, the resampling methods sometimes need to produce 200 or more resamples in
order to give a proper estimate. This places a burden on both computation and data storage.
Also, we have discussed that resampling methods treat the original sample as a mini version
of the population, in other words, they are based on large-sample theory. Hence, if the sample
is very small, the quality of their estimates are doubtful (Little & Rubin 2002).

7A small change in the data can cause a large change in the statistic.
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Chapter 6

Likelihood based imputation methods

6.1 Introduction
If we have a complete observed data y, Azzalini (1996) tells us that the first practical prob-

lem is to find a value of the estimate θ close to the true estimate value θ ∗. This θ defines
the shape of the distribution of y. Maximum likelihood estimation provides us a way to es-
timate θ close to the true θ ∗, given a vector of observed y = (y1, ...,yn)

T . As we have in-
troduced in the previous chapter, if the probability density function (pdf) of a data point is
f (yi;θ), i = (1, ...,n), then its likelihood function is L(θ ;y) = ∏

n
i=1 f (yi,θ) for sample with

replacement, and its log-likelihood is `(θ ;y) = logL(θ ;y). To compute the maximum likeli-
hood estimate of θ based on the distribution of y, then we find the value of θ that maximises
the log-likelihood function.

The maximum likelihood estimation method becomes more complicated in the presence
of missing data. Let’s denote the complete data y as (yobs,ymis), where yobs denotes the ob-
served but “incomplete” data and ymis denotes the unobserved or “missing” data, assuming
the missing data are MAR. Then, we can express the joint density f (y;θ) as:

f (y;θ) = f (yobs,ymis;θ)

= f1(yobs;θ)× f2(ymis|yobs;θ),

where f1 is the joint density of yobs and f2 is the joint density of ymis given the observed data
yobs, respectively. We also want to point out that log f (y;θ) = logL(θ ;y). Thus, we have:

`(θ ;y) = `obs(θ ;yobs)+ log f2(ymis|yobs;θ) (6.1)

where `obs(θ ;yobs) is the observed data log-likelihood (log f1(yobs|θ)).

To maximize the incomplete data log-likelihood `(θ ;y) is not straight forward. Since some
of the units of vector y are not observed, ` cannot be evaluated and maximized. The Expec-
tation Maximization (EM) algorithm provides an iterative algorithm for parameter estimation
by maximum likelihood when there are incomplete data. It attempts to maximize `(θ ;y)
iteratively, by replacing missing values by their conditional expectation given the observed
data yobs. This expectation is computed with respect to the distribution of the complete-data
evaluated at the current estimate of θ . As discussed, Equation (3.8) for the E step, and Equa-
tion (3.9) for the M step. The E-step and the M-step are repeated again and again until the
difference `(θ (t+1))− `(θ (t)) is less than some prescribed small quantity.
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Equation (3.8) for the E step of EM finds the expected complete-data loglikelihood if θ

were θ (t):
Q(θ |θ (t)) =

∫
`(θ |y) f (Ymis|Yobs,θ = θ

(t))dYmis

Equation (3.9) for the M step of EM determines θ (t+1) by maximizing this expected complete-
data loglikelihood:

θ
(t+1) = argmax

θ

Q(θ |θ t)

6.2 Applying EM Algorithm to the Exponential Family
This thesis is about dealing with missing data for social survey data. We assume that these

data arise from members of the exponential family of distributions. Hence, this chapter only
focuses on applying EM algorithm to distributions which are exponential families.

The exponential family has density

f (y|θ) = exp
(
g(θ)T t(y)−b(θ)+ c(y)

)
where g(θ), t(y), b(θ) and c(y) are known functions. And g(θ) and t(y) are vectors with
length p = dim(θ). And note that (under regularity conditions)

1 =
∫

f (y|θ) dy

0 =
∂

∂θ

∫
f (y|θ) dy

=
∫

∂ f (y|θ)
∂θ

dy

=
∫ 1

f (y|θ)
∂ f (y|θ)

∂θ
f (y|θ) dy

=
∫

∂`(θ |y)
∂θ

f (y|θ) dy

=
∫

∂ (g(θ)T t(y)−b(θ)+ c(y))
∂θ

f (y|θ) dy

=
∫ (dg(θ)T

dθ
t(y)− db(θ)

dθ

)
f (y|θ) dy

=
∂g(θ)T

∂θ
Ey|θ [t(y)]−

∂b(θ)
∂θ

Ey|θ [t(y)] =

[
∂g(θ)T

∂θ

]−1
∂b(θ)

∂θ

For n observations y = (y1, . . . ,yn)
T of a random variable from the exponential family the

log likelihood is

`(θ |y) = g(θ)T
n

∑
i=1

t(yi)−nb(θ)+
n

∑
i=1

c(yi)

The complete data Maximum Likelihood estimate is

θ̂ = argmax
θ

`(θ |y)

= argmax
θ

(
g(θ)T

n

∑
i=1

t(yi)−nb(θ)+
n

∑
i=1

c(yi)

)
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This is the solution of the ML equations

∂`(θ |y)
∂θ

=
∂g(θ)T

∂θ

n

∑
i=1

t(yi)−n
∂b(θ)

∂θ

set
= 0

Now assume the values yo = (y1, . . . ,yr)
T are observed, and ym = (yr+1, . . . ,yn)

T are miss-
ing. The incomplete data Maximum Likelihood estimate is

θ̂obs = argmax
θ

`(θ |yo)

= argmax
θ

(
g(θ)T

r

∑
i=1

t(yi)− rb(θ)+
r

∑
i=1

c(yi)

)

which is the solution of the incomplete data ML equations

∂`(θ |y)
∂θ

=
∂g(θ)T

∂θ

r

∑
i=1

t(yi)− r
∂b(θ)

∂θ

set
= 0

EM Algorithm: Initialise with estimate θ 0. Then iterate:
E step:

Q(θ |θ t ;yo) = Eym|θ t ,yo[`c(θ |y)]

= Eym|θ t ,yo[g(θ)
T

n

∑
i=1

t(yi)−nb(θ)+
n

∑
i=1

c(yi)]

= g(θ)T
r

∑
i=1

t(yi)+g(θ)T
n

∑
i=r+1

Ey|θ t [t(yi)]−nb(θ)+
r

∑
i=1

c(yi)+
n

∑
i=r+1

Ey|θ t [c(yi)]

M step: Solve the M-step equations

∂Q(θ |θ t ;yo)

∂θ
=

∂g(θ)T

∂θ

r

∑
i=1

t(yi)+
∂g(θ)T

∂θ

n

∑
i=r+1

Ey|θ t [t(yi)]−n
∂b(θ)

∂θ

set
= 0

Note that if the functions t(y) defining the sufficient statistics ∑i t(yi) are linear in the data yi,
then

Ey|θ [t(y)] = Ey|θ [t(y)] = t(Ey|θ [y])

in which case we can replace the missing data yr+1, . . . ,yn at each step with their current
expected values

ỹt
i =

{
yi for i = 1, . . . ,r
Ey|θ t [yi] for i = r+1, . . . ,n

and solve the complete data likelihood equations using the data set ỹt = (ỹt
1, . . . , ỹ

t
n)

T :

∂`(θ |ỹt)

∂θ
=

∂g(θ)T

∂θ

n

∑
i=1

t(ỹt
i)−n

∂b(θ)
∂θ

set
= 0

If g(θ) is a canonical link function which means g(θ) = θ , then the exponential family is in
canonical form, and we can re-express the above equation as:

∂`(θ |ỹt)

∂θ
= 1T

n

∑
i=1

t(ỹt
i)−n

∂b(θ)
∂θ

set
= 0
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6.3 Example one: applying EM Algorithm to the Univariate
Normal Data with Missing Values

Let’s consider a univariate complete data y = (y1, ...,yn)
T which is a random sample from

N(µ,σ2). Then, we can express its probability density function (pdf) as:

n

∏
i=1

f (yi|θ) =
(
y; µ,σ2)= ( 1

2πσ2

)n/2

exp{−1
2

n

∑
i=1

(yi−µ)2

σ2 }

=

(
1

2πσ2

)n/2

exp{− 1
2σ2

n

∑
i=1

(
y2

i −2µyi +µ
2)}

=

(
1

2πσ2

)n/2

exp{− 1
2σ2

(
∑y2

i −2µ ∑yi +nµ
2)}

(6.2)

which implies that (∑yi,∑y2
i ) are sufficient statistics for θ = (µ,σ2)T . The complete data

log-likelihood function is:

`(µ,σ2;y) =−n
2

log(σ2)− 1
2

n

∑
i=1

(yi−µ)2

σ2 + constant

=−n
2

log(σ2)− 1
2σ2

n

∑
i=1

y2
i +

µ

σ2

n

∑
i=1

yi−
nµ2

σ2 + constant
(6.3)

where

t(yi) = yi g(θ) =
µ

σ2

b(θ) =
µ2

σ2 c(yi) = y2
i

Clearly, the complete data log-likelihood `(µ,σ2;y) has a linear relationship with the
complete-data sufficient statistics. Now, let’s consider an incomplete data case. Suppose yi are
iid N(µ,σ2) where yi, i = 1, ...r are observed, and yi, i = r+1, ...,n are missing, and assume
the missing-data mechanism is ignorable. The observed data vector is yobs = (y1, ...,yr)

T . The
log-likelihood function becomes `(µ,σ2;y) = `(µ,σ2;yobs)+ log f (ymis|yobs; µ,σ). We need
to work out the Eµ,σ2[`(µ,σ2;y)|yobs]. However, the complete-data y is from the exponential
family. This means:

Q(θ |θ t ;y) = `(µ,σ2;yobs)+ log f (ymis|yobs; µ,σ)

=
µ

σ2

r

∑
i=1

yi +
µ

σ2

n

∑
i=r+1

Ey|θ t [yi]−
1

2σ2

r

∑
i=1

y2
i −

1
2σ2

n

∑
i=r+1

Ey|θ t [y2
i ]−

nµ2

2σ2 +
n
2

log(
1

σ2 )

+
n
2

log(
1

2π
)

=
µ

σ2

r

∑
i=1

yi +
µ

σ2 (n− r)µ̂ t− 1
2σ2

r

∑
i=1

y2
i −

1
2σ2 (n− r)[(µ̂ t)2 +(σ̂ t)2]− nµ2

2σ2 +
n
2

log(
1

σ2 )

+
n
2

log(
1

2π
)

Hence, the E-step computes:

Ey|θ t (
n

∑
i=1

yi|yobs) and Ey|θ t (
n

∑
i=1

y2
i |yobs)
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instead of computing the expectation of the complete-data log-likelihood function. Thus, at
the tth iteration of the E-step, compute

E(
n

∑
i=1

yi|θ (t),yobs) =
r

∑
i=1

yi +(n− r)µ(t) (6.4)

E(
n

∑
i=1

y2
i |θ (t),yobs) =

r

∑
i=1

y2
i +(n− r)[(µ(t))2 +(σ (t))2] (6.5)

For the M-step, first note that the complete-data maximum likelihood estimates of µ and
σ2 are:

µ̂ =
∑

n
i=1 yi

n
and σ̂

2 =
∑

n
i=1 y2

i
n
− (

∑
n
i=1 yi

n
)2 =

∑
n
i=1 y2

i
n
− µ̂

2

The M-step is defined by substituting the expectations computed in the E-step for the complete-
data sufficient statistics on the right-hand side of the above expressions to obtain expressions
for the new iterates of µ and σ2. Note that complete-data sufficient statistics themselves can-
not be computed directly since yr+1, ...,yn have not been observed. We get the expressions:

µ
(t+1) = E(

n

∑
i=1

yi|θ (t),yobs)/n (6.6)

(σ (t+1))2 = E(
n

∑
i=1

y2
i |θ (t),yobs)/n− (µ(t+1))2 (6.7)

Substitute Eq.(6.4) and Eq.(6.5), we have:

µ
(t+1) =

1
n

[
r

∑
i=1

yi +(n− r)µ(t)

]

(σ (t+1))2 = E(
n

∑
i=1

y2
i |θ (t),yobs)/n− (µ(t+1))2

=
1
n

[
r

∑
i=1

y2
i +(n− r)[(µ(t))2 +(σ (t))2]

]
− 1

n2

[
r

∑
i=1

yi +(n− r)µ(t)

]2

=
1
n

 r

∑
i=1

y2
i −

1
n

(
r

∑
i=1

yi

)2
+ (n− r)(r−2n)

n2 (µ t)2 +
n− r

n
(σ t)2

Thus, the E-step involves evaluating Eq.(6.4) and Eq.(6.5) beginning with starting values µ(0)

and σ2(0). M-step involves substituting these in Eq. (6.6) and (6.7) to calculate new val-
ues µ(1) and σ2(1), etc. Thus, the EM algorithm iterates successively between Eq.(6.4) and
Eq.(6.5) and Eq. (6.6) and (6.7). Of course, the EM algorithm is unnecessary for this example
since the explicit ML estimates (µ̂, σ̂2) are available.

Let us apply the EM algorithm to a univariate normal data with missing values. Again,
we use the SURF data set for the demonstration. For demonstration purpose, the missing
SURF’s “Income” variable values were created by the missing completely at random (MCAR)
mechanism. That is,

f (MissingIncome|Income,θ) = f (MissingIncome|θ) for all Income and θ

where θ = (µ,σ2).
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The following steps show how to apply the EM algorithm to the impute univariate normal
data with missing values.

Recipe: EM algorithm - Univariate Normal Data

Step 1: Estimate the initial mean and variance from the observed data

Step 2: Calculate the expectations of the sufficient statistics (E-step)

Step 3: Calculate the mean and variance by using the sufficient statistics from the
E-step and sample size n = 200 (M-step)

Step 4: Iterate E and M steps until it converges

Please refer to Appendix B for the R code.

Then, the above procedure was repeated one thousand times. Each time we created a differ-
ent set of missing data (MCAR) which has 50 missing values for the SURF’s Income variable,
and applied the EM algorithm to impute the missing data. Figure 6.1 shows the distribution
of the 1000 simulated income variable’s means and variances. The dashed red vertical line
represents the means of the 1000 means and variances. The solid red vertical line represents
the true mean and variance of the original complete data.

From previous sections, we understand that the EM algorithm replaces missing values with
the expected values given the updated θ and observed values. This is somehow similar to the
unconditional mean imputation method as Ey|θ t (∑n

i=1 yi|yobs)/n for a univariate normal distri-
bution is actually the mean. However, unlike unconditional mean imputation which produces
biased estimates even when the missing data is MCAR (please refer to Chapter 4, Section
4.2), the EM algorithm produces unbiased estimates. As Schafer & Graham (2002) claim
that the EM algorithm as one of the state-of-the-art missing data techniques yields unbiased
parameter estimates if the data are at least missing at random (MAR). However, for the case
of MAR, we need to point out that if the EM algorithm does not incorporate the variables that
the missingness depends on, then the estimates would still be biased. In fact, if the variables
that the missingness depends on are excluded in the construction of the EM algorithm, the
MAR actually becomes NMAR. Hence, Enders (2010, p.106) states that the EM algorithm
needs to involve information from other variables, so the E step of the algorithm should really
use the conditional expectations to replace the missing components of the formulas.

6.4 Applying EM Algorithm to Bivariate Normal data with
Missing Data on Both Variables

In this section, we look at how the EM algorithm works on bivariate normal data with
missing data on both variables. Before we can easily introduce the EM algorithm to bivariate
normal sample with missing data on both variables, we need to take time to review the content
of bivariate normal distribution. Suppose we have complete sample data for variables Y1 and
Y2, and both variables are normally distributed. Hence, we have a bivariate normal distribution

f (y1,y2)=
1

2πσy1σy2

√
1−ρ2

exp(− 1
2(1−ρ2)

[
(y1−µy1)

2

σ2
y1

+
(y2−µy2)

2

σ2
y2

−
2ρ(y1−µy1)(y2−µy2)

σy1σy2

])

(6.8)
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Figure 6.1: The distributions of means and variances of the 1000 replicate SURF data’s in-
come variables imputed by the EM algorithm (The dashed red vertical line represents the
means of the 1000 means and variances. The solid red vertical line represents the “true” mean
and variance of the original complete data)

where ρ is the correlation between Y1 and Y2, and

µ =

(
µy1

µy2

)
Σ =

(
σ2

y1
ρσy1σy2

ρσy1σy2 σ2
y2

)
It is not hard to work out the values for µy1 and µy2 respectively. To find the values for Σ, we
need to realise that

Σ =

(
σ2

y1
σ2
(y1,y2)

σ2
(y1,y2)

σ2
y2

)
=

(
S11/n− µ̂2

y1 S12/n− µ̂y1µ̂y2

S12/n− µ̂y1µ̂y2 S22/n− µ̂2
y2

)
(6.9)

where Si j are the sufficient statistics:

s1 =
n

∑
i=1

yi1, s2 =
n

∑
i=1

yi2, s11 =
n

∑
i=1

y2
i1, s22 =

n

∑
i=1

y2
i2, s12 =

n

∑
i=1

yi1yi2, (6.10)

Refer back to section 6.3, we understand that the E step of the EM algorithm is thus to find
the conditional expectation of the sums in Eq.6.10, given Yobs and θ = (µ,Σ). Then, the M
step is to update θ , given the updated sufficient statistics.
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Now, suppose we have two normally distributed variables Y1 and Y2 with a general pattern
of missing data. The first group of units have both Y1 and Y2 observed, the second group of
units have Y1 observed but are missing Y2, and the third group of units have Y2 observed but
are missing Y1. Clearly, it is not hard to work out the sufficient statistics for the group of units
that have both variables observed. For the groups of units with one variable observed but the
other missing, we need to introduce a regression model to impute the missing values first, then
we can work out the sufficient statistics for these groups.

Hence, suppose we have r1 units with both variables observed, r2 units with Y1 observed
but Y2 missing, and r3 units with Y2 observed but Y1 missing, given r1 + r2 + r3 = n.

Then the E step of the algorithm calculates:

1. For the group of units with both variables observed: sr1
1 =∑

r1
i=1 yi1, sr1

2 =∑
r1
i=1 yi2, sr1

11 =

∑
r1
i=1 y2

i1, sr1
22 = ∑

r1
i=1 y2

i2, sr1
12 = ∑

r1
i=1 yi1yi2

2. For the group of units with Y1 observed but Y2 missing:

sr2
1 =

r2

∑
i=1

yi1

sr2
11 =

r2

∑
i=1

y2
i1

sr2
2 = E(yi2|yi1,µ,Σ) = β20.1 +β21.1yi1

sr2
22 = E(y2

i2|yi1,µ,Σ) = (β20.1 +β21.1yi1)
2 +σ22.1

sr2
12 = E(yi2yi1|yi1,µ,Σ) = (β20.1 +β21.1yi1)yi1,

3. For the group of units with Y2 observed but Y1 missing:

sr3
2 =

r3

∑
i=1

yi2

sr3
22 =

r3

∑
i=1

y2
i2

sr3
1 = E(yi1|yi2,µ,Σ) = β10.2 +β12.2yi2

sr3
11 = E(y2

i1|yi2,µ,Σ) = (β10.2 +β12.2yi2)
2 +σ11.2

sr3
12 = E(yi1yi2|yi2,µ,Σ) = (β10.2 +β12.2yi2)yi2,

where β20.1, β21.1, and σ22.1 are functions of Σ corresponding to the regression of yi2 on yi1;
β10.2, β12.2, and σ11.2 are functions of Σ corresponding to the regression of yi1 on yi2.

We have found the expectations of yi1, yi2, y2
i1, y2

i2, and yi1yi2 for each unit in the three
groups, so the expectations of the sufficient statistics of the two variables can be found as the
sums of these quantities over all n units.

s1 = sr1
1 + sr2

1 + sr3
1

s2 = sr1
2 + sr2

2 + sr3
2

s11 = sr1
11 + sr2

11 + sr3
11

s22 = sr1
22 + sr2

22 + sr3
22

s12 = sr1
12 + sr2

12 + sr3
12
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The M step computes the µ and Σ by using those filled-in sufficient statistics:

µ̂1 = s1/n, µ̂2 = s2/n,

σ̂
2
1 = s11/n− µ̂

2
1 , σ̂

2
2 = s22/n− µ̂

2
2 , σ̂

2
12 = s12/n− µ̂1µ̂2

Then, the EM algorithm goes back to the E step to update those expectations or sufficient
statistics again. By feeding those updated statistics into the M step, we can get the updated µ

and Σ. The EM algorithm performs this cycle again and again until convergence.

A problem you might have already noticed is that how to use the updated µ t and Σt , or θ t ,
where θ t = (µ t ,Σt), to update the sufficient statistics? There is no obvious connection from
the M step back to the E step. The answer lies inside the β s. Stuart & Ord (1994) demonstrated
that the parameter of the regressions of bivariate normal distribution can be expressed as a one
to one function of the original parameter θ = (µ1,µ2,σ11,σ12,σ22)

T .

1. If yi2 is response variable, and yi1 is explanatory variable:

β21.1 = σ12/σ11 (6.11)
β20.1 = µ2−β21.1µ1, (6.12)

σ22.1 = σ22−σ
2
12/σ11 (6.13)

2. If yi1 is response variable, and yi2 is explanatory variable:

β12.2 = σ12/σ22 (6.14)
β10.2 = µ1−β12.2µ2, (6.15)

σ11.2 = σ22−σ
2
12/σ22 (6.16)

The updated µ t and Σt from each of the M steps can be used to compute the β s in the E steps,
then we have the updated sufficient statistics to be fed into the M steps.

So far, we haven’t seen how the EM algorithm helps us to impute any missing values. In-
stead, the EM algorithm only provides us with the estimation of the parameters if we have
incomplete data. Some rather confusing questions might be: why do we estimate parame-
ters? why not impute missing values directly? Indeed, Healy & Westmacott (1956) described
an iterative technique: (1) impute missing values, (2) estimate parameters from the imputed
values, (3) re impute missing values by using the estimated parameters, (4) then estimate pa-
rameters again based on the updated imputed values, and so on, until the missing values do
not change much. This iterative technique actually can be considered as an EM algorithm,
if the complete data loglikelihood `(θ |Yobs,Ymis) = logL(θ |Yobs,Ymis) is linear in Ymis. If it
is non-linear, we need to estimate missing sufficient statistics rather than individual observa-
tions, more generally, the loglikelihood `(θ |Y ) needs to be estimated (Little & Rubin 2002).
This is because the E step of EM algorithm is about finding the conditional expectation of the
missing data, and we have demonstrated this in section 6.2 by using the exponential family as
an example.

Again, let’s show how the EM algorithm works for the bivariate normal data with missing
values on both variables by applying it to the SURF data. This time, we first make the SURF’s
Hours missing value MCAR, then make the SURF’s Income missing MCAR. Then, we have:

f (MissingHours|Hours,θhours)
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and
f (MissingIncome|Income,θIncome).

Specifically, 50 units’ Hours values were created as MCAR. Then, we subset the units which
have Hours values not missing. Because the missingness is MCAR, the subset sample is
simply a smaller version of the original sample. This is because a random sample from a
random sample is still random. Finally, another 50 units’ Income values were created as
MCAR for the subset sample. The bivariate normal data with missing values on both variables
was created by merging the data set with missing Hours with the data set with missing Income.

The following steps show how we apply the EM algorithm to the bivariate normal data with
missing values on both variables.

Recipe: EM algorithm - Bivariate Normal Sample with Missing Data on
both Variables

Step 1: compute the sufficient statistics for the group of units with both variables
observed

Step 2: compute the sufficient statistics for the group of units with one variable ob-
served, but the other missing

Step 3: combine sufficient statistics from step 1 and step 2

Step 4: estimate the mean and covariance matrix of all observations by using the com-
bined sufficient statistics

Step 5: update parameters (β s, σs), and repeat step 2 to step 4 until convergence

Please refer to Appendix B for the R code.

As we did for the univariate normal data, we repeated the above procedure 1000 times.
Each time there was a different data set with missing data (MCAR) for the Income and Hours
variables, and the EM algorithm was applied to each dataset. Figure 6.2 shows the distribution
of the 1000 simulated Hours and Income variables’ means and variances. The dashed red
vertical line represents the means of the 1000 means and variances. The solid red vertical line
represents the true mean and variance of the original complete data. Compared to Figure 6.1,
the estimates are closer to the true estimates. This is because unlike applying EM algorithm to
the univariate normal data, the calculation of the expected values for the bivariate normal data
involves more variables which can produce more accurate results. In addition, it also helps
that the Hours and Income are highly correlated in the SURF data.
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Figure 6.2: The distributions of the means and variances of the 1000 replicate SURF data’s
income and hours variables imputed by the EM algorithm. (The dashed red vertical line
represents the mean of the 1000 means and variances. The solid red vertical line represents
the true mean and variance of the original complete data)

6.5 Convergence of EM algorithm
Section 6.3 and section 6.4 have demonstrated how to apply EM algorithm to univariate

normal and bivariate normal sample with missing data. As we have seen, the EM algorithm for
both examples involves iterative steps, and we have said the iteration stops until the algorithm
converges. But, how does the EM algorithm actually converge?

Eq. (6.1) shows that the complete-data with missing values log likelihood can be expressed
as:

`(θ ;y) = `obs(θ ;yobs)+ log f (ymis|yobs;θ)

Taking expectation on both sides of the above Eq.(6.1) over the distribution of the missing
data Ymis, given the observed data Yobs and a current estimate of θ (t) for θ , we have:

Q
(

θ |θ (t)
)
= logL(θ |Yobs)+H(θ |θ (t))

where H(θ |θ (t)) = Ey|θ t [log f (ymis|yobs;θ)|yobs]. Then, we can show that:

`
(
θ

t+1|Yobs
)
− `
(
θ

t |Yobs
)
= [Q

(
θ
(t+1)|θ (t)

)
−Q

(
θ
(t)|θ (t−1)

)
]

− [H
(

θ
(t+1)|θ (t)

)
−H

(
θ
(t)|θ (t−1)

)
]

(6.17)
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By Jensen’s inequality, we have H
(

θ (t+1)|θ (t)
)
≤ H

(
θ (t)|θ (t)

)
.

Generally, an EM algorithm maximizes Q
(

θ |θ (t)
)

by choosing θ (t+1) so that Q
(

θ (t+1)|θ (t)
)

is greater than Q
(

θ (t)|θ (t)
)

. Obviously, the difference of Q functions in Eq. (6.17) is positive

for any EM algorithm. Hence for any EM algorithm, the change from θ (t) to θ (t+1) does not
decrease the log likelihood.

`
(
θ

t+1|Yobs
)
≥ `
(
θ

t |Yobs
)

Thus for a bounded sequence of likelihood values `(θ t |Yobs), `(θ t |Yobs) converges monotoni-
cally to some stationary value `∗, under the assumption that there is a global maximum. The
question now is to the conditions under which `∗ corresponds to a stationary value and when
this stationary value is at least a local maximum if not a global maximum (McLachlan &
Krishnan 1997). Acually, a key result of Dempster, Laird & Rubin (1977) is:

`
(
θ

t+1|Yobs
)
≥ `
(
θ

t |Yobs
)

with equality if and only if:

Q
(

θ
(t+1)|θ (t)

)
= Q

(
θ
(t)|θ (t)

)
This means that the likelihood function increases at each iteration of the EM algorithm, until
the condition for equality and a fixed point of the iteration are reached. Hence we have our
convergence. The convergence dose not necessarily mean a global maximum. Actually, the
EM algorithm could converge to a local maximum, or even to local minimum and to a saddle
point. These concerns have been thoroughly discussed in Dempster, Laird & Rubin (1977)
and Wu (1983), but they are out of scope of this thesis.

6.6 Conclusion
We started this chapter by introducing the problem of using the Maximum Likelihood (ML)

estimation in incomplete data. The problem is that maximising the incomplete data log likeli-
hood directly does not give us the ML estimates. Although there are many algorithms which
have been developed to solve this problem (such as Newton-Raphson), we have only intro-
duced the EM algorithm. This because the EM algorithm is by far one of the best missing
data handling techniques, according to Schafer & Graham (2002).

Technically speaking, the EM algorithm does “fill-in” the missing values, although Little &
Rubin (2002) describes it is actually the function of missing data . This is the key point where
the EM algorithm is different from any other imputation methods. We may argue that, as
we have shown in section 6.2, the E step of the EM algorithm does fill in individual missing
values with their expected values, but it is only under the condition that t(y) is linear in y.
Also, it is worth noting that the EM algorithm only generates the ML estimates at the end of
its iterations. This means that we might get unbiased estimates by using the EM algorithm,
although the missing values in the data set are still empty.

Although the EM might be able to produce unbiased estimates, given the missing data is at
least MAR and we have the complete variables which the missingness depends on, it is still
like the single imputation methods which cannot propagate imputation uncertainty. As we
have seen in section 6.2, the EM algorithm only imputes missing data by using the expected
values once, although it updates the expected values many times.
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Chapter 7

Bayesian Multiple Imputation

7.1 Introduction
Bayesian theory and Bayesian iterative simulation methods are the underlying foundation

of Rubin’s Multiple Imputation (MI) (Rubin 1987). However, the Bayesian theory and the
Bayesian iterative simulation methods cannot apply to all the imputation methods. For ex-
ample, it is easy to apply Bayesian iterative simulation methods to the stochastic regression
imputation method1, but not easy to adapt it for hot deck imputation. In fact, Rubin classifies
MI as either “proper” or “improper”. The proper MI random draws the imputations from a
posterior distribution in a Bayesian framework. Rubin (1987) calls MI methods “improper” if
they do not properly propagate imputation uncertainty and lack a Bayesian framework. There
will be discussions about proper and improper MI in the next Chapter. Other researchers refer
to MI as Bayesian Multiple Imputation and Non-Bayesian Multiple Imputation (Schafer 2003,
Bjørnstad 2007). Nevertheless, this chapter focuses on the description of the Bayesian part of
Rubin’s Multiple Imputation.

Therefore, the question we want to answer in this chapter is “How do we apply Bayesian
estimation to MI?” After all, Bayesian statistics is usually about estimating the entire distribu-
tion of parameters conditional on some collected data. In other words, it has been widely used
to estimate the distributions of parameters given some data. However, Scott (2007) points out
that both parameters and data are considered random quantities from the Bayesian perspec-
tive, so the same techniques can be applied to draw data conditional on given parameters. This
sheds light on imputing missing data by using Bayesian iterative simulation methods. This
is because we can treat missing data as unknown and simulate them given the observed data,
and parameters.

Let Y = (Yobs,Ymis), Yobs represent the observed data, and Ymis the missing data. Suppose
Ymis is MAR, and θ is the parameters of the likelihood f (Y |θ). Thus, our posterior distribution
becomes:

p(θ ,Ymis|Yobs) ∝ p(θ ,Ymis) f (Yobs|θ ,Ymis)

where p(θ ,Ymis) is the prior distribution and f (Yobs|θ ,Ymis) = f (Yobs|θ) is the likelihood func-
tion of the observed data. The prior distribution can be further decomposed as:

p(θ ,Ymis) ∝ p(θ) f (Ymis|θ)
1Details of how to apply Bayesian iterative simulation to stochastic regression will be discussed shortly in

this chapter.
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where f (Ymis|θ) is the likelihood of Ymis. Hence, the posterior is now:

p(θ ,Ymis|Yobs) ∝ p(θ) f (Ymis|θ) f (Yobs|θ ,Ymis)

Given Ymis is MAR, this means that the θ captures all relevant information about Yobs, so that
Yobs and Ymis are conditionally independent given θ , so the term f (Yobs|θ ,Ymis) reduces to
f (Yobs|θ). Then, the full posterior distribution is:

p(θ ,Ymis|Yobs) ∝ p(θ) f (Ymis|θ) f (Yobs|θ) (7.1)

The fundamental idea of Bayesian iterative simulation methods for imputation is actually
about sampling θ and Ymis from the full posterior distribution given in Eq (7.1).

7.2 Bayesian Iterative Simulation Methods - Markov Chain
Monte-Carlo (MCMC)

As introduced in the previous section, the Bayesian iterative simulation method is all about
yielding draws from the posterior distribution. This idea is not hard to understand. However,
the devil is in the detail. When we try to implement the simulation idea for some data, a diffi-
cult problem appears. How do we generate draws from a distribution we are not familiar with
or one which is high dimensional and complicated? Markov Chain Monte Carlo (MCMC)
sampling method provides a way to draw from unknown or complex posterior distributions.
In order to draw from those distributions, MCMC often involves breaking down them into
more manageable distributions.

“Markov Chain” refers to the process which the draws are made in sequence and are de-
pendent, but where each draw only depends on the previous one. In terms of Bayesian ter-
minology, it generates a new value from the posterior distribution, given the previous value.
“Monte Carlo” refers to the random simulation process.

We will introduce two common MCMC methods in the rest of this section.

7.2.1 Gibbs sampling algorithm
The Gibbs sampler is one of the most basic special cases of the MCMC method (Scott

2007). It is simply an iterative simulation method that produces a draw from the joint dis-
tribution in the case of a general pattern of missing data (Little & Rubin 2002). The Gibbs
sampler can also be regarded as a multivariate extension of the chained data augmentation
algorithm in which we estimate p parameters θ1, ...θp (Peter 1997). This means it has the
ability to simulate from the full conditional distribution p(θi|θ1,...,p), where i ∈ 1, ..., p. A
generic Gibbs sampler follows the following iterative process (t indexes the iteration count):

0. Assign a vector of starting values, θ 0, to the parameter vector, and set t = 0

1. Set t = t +1

2. Draw p(θ t
1|θ

t−1
2 ,θ t−1

3 ...θ t−1
p )

3. Draw p(θ t
2|θ t

1,θ
t−1
3 ...θ t−1

p )

.. . .
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p+1. Draw p(θ t
p|θ t

1,θ
t
2...θ

t−1
p−1)

p+2. Return to step one, repeating until convergence2

In other words, Gibbs sampling orders the parameters and generates draws from the condi-
tional distribution for these parameters given the current value of all the other parameters and
cycles through the updating process repeatedly. The process of cycling stops when the distri-
butions become stable and stationary3. In other words, the process stops when the algorithm
converges. Section 7.4 discusses the convergence of MCMC in more detail.

7.2.2 Metropolis-Hastings (MH) algorithm
As we have mentioned that MCMC methods breakdown a complex or unfamiliar poste-

rior distribution into smaller manageable distributions, then parameters are drawn from those
smaller distributions. Actually, this is the case of the Gibbs sampling algorithm. The Gibbs
sampler usually works fine until we encounter situations that even the breakdown for con-
ditional posterior distributions p(θk|θ1, ...,θk−1,θk+1, ...,θp) are foreign to us, or we might
know the functional form, but not know the normalisation, nor have a means of drawing a
sample directly. Again, we ask the question: “how do we generate draws from a distribution
which we are not familiar with?”

The Metropolis-Hastings (MH) algorithm overcomes the unfamiliar distribution problem
by generating draws from the posterior distribution (Hastings 1970). Basically, the MH al-
gorithm draws a candidate point from a proposal distribution, then uses some techniques to
determine whether we accept the candidate point as a draw from the full conditional distribu-
tion (or the target distribution). Clearly, the MH algorithm bypasses the need of generating
draws from the full conditional distribution or its breakdown distributions directly. We also
need to point out that we can have MCMC updates in blocks where all blocks except one or
two are Gibbs updates, but the rest special cases are the MH steps.

Here is the generic process of using the MH algorithm to generate parameters from the
posterior distribution (t indexes the iteration count):

1. Establish starting values θ 0 for the parameter: θ . Set t = 0.

2. Draw a “candidate” parameter, θ c from a “proposal density” q(θ c|θ t−1).

3. Compute the ratio

R = min
(

1,
f (θ c)q(θ t−1|θ c)

f (θ t−1)q(θ c|θ t−1)

)
(7.2)

4. Compare R with a U(0,1) random draw u. If R > u, then set θ t = θ c. Otherwise, set
θ t = θ t−1

5. Set t = t +1 and return to step 2 until it converges (Please refer to section 7.4 for details
of convergence).

2The convergence will be discussed in later part of this chapter.
3Stationary means the joint probability distribution of a stochastic process does not vary with respect to a

shift in time (DelSole 2010).

83



In the MH algorithm we have described above, if the “proposal density” q(θ c|θ t−1) is
chosen to be independent of θ t−1, that is:

q(θ c|θ t−1) = q(θ c)

for a given probability density function q(θ c). Then, the candidate point is generated from
q(θ c). The candidate point is accepted or rejected with an acceptance probability α(θ t−1,θ c)
given by:

α(θ t−1,θ c) = min
(

1,
f (θ c)q(θ t−1)

f (θ t−1)q(θ c)

)
This version of the MH algorithm is called the MH independence sampler. Clearly, the MH
independence sampler has a potential to boost up computation, since it only accepts or rejects
the candidate points which are random draws from the proposal distribution. In other words,
if the proposal distribution is not well matched to the target density, then many proposals will
be rejected. For example, if the proposal distribution is too wide, it will take a very long time
for the Bayesian iterative chain to converge; or if the proposal distribution is too narrow, the
Bayesian iterative chain will not cover the target distribution. Hence, this method requires the
proposal distribution to be as close as the target distribution, otherwise it can get stuck in the
tails of the target distribution (Marin & Robert 2007, pg. 93).

7.2.3 Relationship between Gibbs and MH sampling
The Gibbs sampler is actually a special case of the MH algorithm. The only difference is

that there is no rejection of selected candidate points in Gibbs sampling. The reason is that
the ratio R is always 1 (Gamerman & Lopes 2006). Why? Let’s consider the equation for
the ratio R, Eq. (7.2). In Gibbs sampling, we set the “proposal density” q(θ c|θ t−1) to equal
the target density f (θ c). This means that θ c is independent of θ t−1, and is an independent
sampler. Hence, we have:

R =
f (θ c)q(θ t−1|θ c)

f (θ t−1)q(θ c|θ t−1)

=
f (θ c) f (θ t−1)

f (θ t−1) f (θ c)

=
f (θ c)/ f (θ c)

f (θ t−1)/ f (θ t−1)

= 1

Since the candidate point is accepted with probability min(1,R), and it is always true that
R = 1, every draw is accepted.

Given the Gibbs sampler is part of the MH algorithm, there is no inherent reason we can not
combine both algorithms. Actually, the MH algorithm can be a sub algorithm inside a Gibbs
sampling cycle (Gilks et al. 1996) and (Muller 1991). It is also fine to have the Gibbs sampler
inside the MH algorithm (Gamerman & Lopes 2006) and (Scott 2007). However, as we have
already discussed above, the Gibbs sampler automatically accepts any candidate points, but
the MH algorithm does not accept all the candidate points coming from the proposal density.
To be precise, all Gibbs sampling is MH sampling, but not all MH sampling is Gibbs sampling.
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7.2.4 Block Updating
So far, the MH algorithm and the Gibbs sampler we have introduced are only for updating

a single scalar parameter θ one at a time. For a high dimensional posterior distribution, where
we have a large number of parameters, θ1, ...,θp, updating only a single parameter θi at a
time, where i ∈ 1, ..., p, is not only a daunting task, but many have a very slow convergence
rate. Hastings (1970) proposed a method that applies the MH algorithm in turn to subblocks
of the vector of parameters θ = (θ1, ...,θp). Hence, instead of having p parameters, we group
these p parameters into b subblocks, where b < p. For example, if b = 2, then we have
θ = ((θ1, ...,θk),(θk+1, ..,θp)) = (θblock1,θblock2).

7.3 Applying MCMC methods to Normal data with Ignor-
able Non-response

7.3.1 Applying the Gibbs sampler to Univariate Normal data
Let’s consider a univariate normal distribution example. Suppose Y = (Yobs,Ymis) has n

observations and each observation is normally distributed with mean µ and variance σ2. Then,
Eq. (7.1) can be transformed into:

p(µ,σ2,Ymis|Yobs) ∝ p(µ,σ2) f (Ymis|µ,σ2) f (Yobs|µ,σ2)

Note: the pdf for Ymis is technically conditional on Yobs, ie f (Ymis|µ,σ2,Yobs). However, since
non-response is ignorable, Yobs has been left out.

If we assume the prior p(µ,σ2) is Jeffery’s prior which in this case is 1/σ2, which is
commonly known as the improper prior4 for the variance of a normal distribution, then the
posterior density could be factored to (1) a marginal posterior density for σ2 that is an inverse
gamma distribution, (2) a conditional posterior density for µ that is a normal distribution, and
(3) a conditional posterior density for Ymis that is a normal distribution as well. Hence we
have:

p(Ymis|µ,σ2,Yobs) ∝ N(µ,σ2)

p(σ2|µ,Yobs,Ymis) ∝ IG(n/2,∑(yi−µ)2/2)

p(µ|σ2,Yobs,Ymis) ∝ N(Ȳ ,σ2/n)

Proof:
We set our joint prior distribution p(µ,σ2) = 1/σ2. Hence, we have:

p(µ,σ2,Ymis|Yobs) ∝ p(µ,σ2) f (Ymis|µ,σ2) f (Yobs|µ,σ2)

∝
1

σ2

r

∏
i=1

1√
2πσ2

exp{−
(yobs,i−µ)2

2σ2 }
n

∏
i=r+1

1√
2πσ2

exp{−
(ymis,i−µ)2

2σ2 }

4Priors such as p(µ) = 1, p(σ) = 1/σ are improper because they do not integrate to 1. That is, the area under
the prior density is not unity (and, in fact, is infinity).
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Then, the posterior distribution of the mean µ , given other parameters are fixed, is:

f (µ|Yobs,Ymis,σ
2) ∝ exp{−

r

∑
i=1

(yobs,i−µ)2

2σ2 }exp{−
n

∑
i=r+1

(ymis,i−µ)2

2σ2 }

∝ exp{−rµ2−2rȲobsµ

2σ2 }exp{−(n− r)µ2−2(n− r)Ȳmisµ

2σ2 }

∝ exp{−nµ2−2nȲ µ

2σ2 }

∝ exp{−(µ− Ȳ )2

2σ2/n
}

µ|σ2,Yobs,Ymis ∼ N
(

Ȳ ,
σ2

n

)
where Ȳ ≈ Ȳobs ≈ Ȳmis.

The posterior distribution of the variance, given other parameters are fixed, is:
The first step is to expand the quadratic term of f (µ,σ2|Yobs,Ymis):

f (µ,σ2|Yobs,Ymis) ∝
1

σ2

r

∏
i=1

1√
2πσ2

exp{−
(yobs,i−µ)2

2σ2 }
n

∏
i=r+1

1√
2πσ2

exp{−
(ymis,i−µ)2

2σ2 }

∝
1

σn+2 exp{−
∑

r
i=1Y 2

obs,i−2rȲobsµ + rµ2

2σ2 }

exp{−
∑

n
i=r+1Y 2

mis,i−2(n− r)Ȳmisµ +(n− r)µ2

2σ2 }

∝
1

(σ2)
n
2+1 exp{−

∑
r
i=1Y 2

obs,i−2rȲobsµ + rµ2

2σ2 }

exp{−
∑

n
i=r+1Y 2

mis,i−2(n− r)Ȳmisµ +(n− r)µ2

2σ2 }

Then, the joint posterior density for µ and σ2 can be factored using the conditional probability
rule as:

f (µ,σ2|Yobs,Ymis) ∝ f (µ|σ2,Yobs,Ymis) f (σ2|Yobs,Ymis)

∝
1
σ

exp{−r(µ− Ȳobs)
2

2σ2 }exp{−(n− r)(µ− Ȳmis)
2

2σ2 }

× 1
(σ2)

n
2

exp{
∑

r
i=1Y 2

mis,i− rȲ 2
mis

2σ2 }exp{
∑

n
i=r+1Y 2

mis,i− (n− r)Ȳ 2
mis

2σ2 }

∝
1
σ

exp{−(µ− Ȳ )2

2σ2

n

} 1
(σ2)

n
2
× exp{∑

n
i=1Y 2

i −nȲ 2

2σ2 }

Now, we see that the first term is the conditional posterior for µ . The second term is propor-
tional to the conditional posterior density for σ2|µ . The numerator in the exponential is the
numerator for the simplified version of the sample variance, ∑(Yi− Ȳ )2. Hence, we have an
inverse gamma distribution5 with parameters α = (n−1)/2, and β = (n−1)var(Y )/2, where

5The density function for the inverse gamma distribution is:

f (y) =
β α

Γ(α)
y−(α+1)e−β/y
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var(Y ) = ∑(Yi− Ȳ )2/(n−1). Hence:

σ
2|µ,Yobs,Ymis ∝ IG(n/2,∑(yi−µ)2/2)

The posterior distribution of Ymis, given other parameters are fixed, is:

f (Ymis|µ,σ2,Yobs) ∝
1

σ2

r

∏
i=1

1√
2πσ2

exp{−
(yobs,i−µ)2

2σ2 }
n

∏
i=r+1

1√
2πσ2

exp{−
(ymis,i−µ)2

2σ2 }

∝

n

∏
i=r+1

exp{−
(ymis,i−µ)2

2σ2 }

∝ exp{−∑
n
i=r+1(ymis,i−µ)2

2σ2 }

Clearly, this shows that f (Ymis,i|µ,σ2,Yobs,i)∼ N(µ,σ2).

As shown in the following R program, we have applied the Gibbs sampler to the SURF
data which has 50 missing Income values. The missing mechanism is MCAR. We use 1000
iterations. Figure 7.1 displays the results. The histograms show the distribution of the means
and variances which were generated from normal and inverse gamma distributions. The time-
series plots show the values of the means and variances at each iteration. The red solid lines
represent the “true” mean and variance.

#Gibbs sampling algorithm -- univariate normal

#step 0: Create MCAR income data

Y_MCAR_O=MCAR(SURF,50,"Income")$Income

Y_MCAR=Y_MCAR_O

#step 1: Set up initial values

iter=1000

mY_MCAR=matrix(mean(Y_MCAR[!is.na(Y_MCAR)]),iter)

sY_MCAR=matrix(var(Y_MCAR[!is.na(Y_MCAR)]),iter)

#step 2: Draw missing income from the normal distribution with

# observed income mean and variance

for(i in 2:iter)

{

Y_MCAR[is.na(Y_MCAR_O)]=rnorm(length(Y_MCAR[is.na(Y_MCAR_O)]),

mY_MCAR[i-1], sqrt(sY_MCAR[i-1]))

#step 3: draw sigma^2 and mean

sY_MCAR[i]=rgamma(1,(length(Y_MCAR)/2),rate=sum((Y_MCAR-mY_MCAR[i-1])^2)/2)

sY_MCAR[i]=1/sY_MCAR[i]

mY_MCAR[i]=rnorm(1,mean(Y_MCAR),sqrt(sY_MCAR[i]/length(Y_MCAR)))

}

Despite the information about convergence which will be discussed in later sections, the
graph tells us that the Gibbs Sampler produces unbiased estimates, given the missingness is
MCAR.

The inverse gamma distribution is a special case of the inverse wishart distribution which has a density function:

f (y) = |Y |−(υ+d+1)/2 exp{−1
2

tr(SY−1)}

where S is a scale matrix of dimension d, and υ is the degrees of freedom.
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Figure 7.1: Applying the Gibbs sampler to the SURF data with 50 income values missing
completely at random (MCAR). The number of iterations is 1000

7.3.2 Applying the MH algorithm to Univariate Normal data
Let’s still use the example in Section 7.3.1. Suppose we are not familiar with the condi-

tional posterior distribution of µ and σ2, we only know how to generate draws for Ymis from
the normal distribution N(µ,σ2). As we have discussed in Section 7.2.3, it is fine to use
Gibbs sampler to generate draws for Ymis, and use MH algorithm to draw µ and σ2 from their
conditional posterior distribution.

Assume the prior is Jeffery’s prior 1/σ2. It is not hard to find the full posterior density:

p(Y ; µ,σ2) =
1

σ2

(
1

σ
√

2π

)n

exp

(
− 1

2σ2

n

∑
i=1

(yi−µ)2

)

With large samples, Scott (2007) points out that “evaluating the posterior would generate an
underflow problem because of the large negative exponents involved in the posterior”. Log
transforming the posterior resolves this problem. However, we then have to compare the ratio
R to the log of a uniform draw U(0,1). The log of the posterior density is:

log f (Y ; µ,σ2)≡ log p(Y ; µ,σ2) =− logσ
2− n

2
log(2πσ

2)− 1
2σ2

n

∑
i=1

(yi−µ)2

where Y = (Yobs,Ymis). The ratio R becomes:

logR = log
(

f (θ c)q(θ t−1|θ c)

f (θ t−1)q(θ c|θ t−1)

)
= log

(
f (θ c)q(θ t−1|θ c))− log( f (θ t−1)q(θ c|θ t−1)

)
= log( f (θ c))+ log(q(θ t−1|θ c))− log( f (θ t−1))− log(q(θ c|θ t−1))

where log f (θ) is our log f (Y ; µ,σ2).
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As in the previous section, we applied the MH algorithm to the SURF’s Income variable’s
missing values which are MAR. The proposal distribution q(θ c|θ t−1) for the mean µ and
variance σ2 is a uniform distribution, where:

µ
t ∼U(µ t−1−10,µ t−1 +10)

(σ2)t ∼U((σ2)t−1−1000,(σ2)t−1 +1000)

The R program repeated the generating of missing Income data, Income mean, and Income
variance 100000 times. Compared to the Gibbs sampler, the iteration for the MH algorithm
is 100 times larger. This is due to the MH algorithm needing more iterations to converge.
We expect that the rate of convergence of the Gibbs sampler is faster than the MH algorithm.
This is because the Gibbs sampler directly samples values from the known distributions, but
the MH algorithm samples values for unknown distribution from the proposed distributions.
Please refer to appendix C for the R code. Figure 7.2 displays the results. Again, the his-
tograms show the distributions of generated means and variances. The time-series plots show
the values of means and variances for each iteration. The solid red lines represent the true
mean and variance.
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Figure 7.2: Applying the MH algorithm to the SURF data with 50 MCAR income values. The
number of iterations is 100000
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7.3.3 Applying Gibbs sampler to Bivariate Normal data
When p = 2, the Gibbs’ sampler can be simplified as data augmentation (Chapter 3) if

Y1 = Ymis, Y2 = θ , and the distribution condition on Yobs. The process becomes:

• I Step: Draw Y (t+1)
mis ∼ p(Ymis|Yobs,θ

(t))

• P Step: Draw θ (t+1) ∼ p(θ |Y (t)
mis,Yobs)

Suppose we have two variables Y1 and Y2, and one group of units has both variables ob-
served, the other groups have one variable observed but the other missing. Apply the DA
algorithm to this example, we have:

The I (or imputation) step:

1. For missing yi2:
y(t+1)

i2 ∼ind N(β
(t)
20.1 +β

(t)
21.1yi1,σ

(t)
22.1),

2. For missing yi1:
y(t+1)

i1 ∼ind N(β
(t)
10.2 +β

(t)
12.2yi2,σ

(t)
11.2),

where β
(t)
20.1, β

(t)
21.1, and σ

(t)
22.1 are the tth iterates of the regression parameters of Y2 on Y1; β

(t)
10.2,

β
(t)
12.2, and σ

(t)
11.2 are the tth iterates of the regression parameters of Y1 on Y2. These β s and σs

can be calculated by using equations Eq (6.11) to Eq (6.16).

The P (or posterior) step:

The P step is basically drawing parameters from the imputed complete data posterior dis-
tribution. The first step of the P step is to find the posterior distribution for the parameter θ

which is µ and Σ in this example. Equation (3.13) shows that the posterior is equivalent to
the product of the prior and the likelihood function. Clearly, we have little knowledge about
the prior distribution of θ . Of course, we can assign any prior information to get the posterior
distribution, but Little & Rubin (2002) pointed out that small samples are likely to generate
bad inferences if the choice of prior distribution is not appropriate. Hence, Jeffreys (1961)
provided us with this Jeffrey’s prior distribution which is a conventional choice if there is an
absence of strong prior information for a multivariate normal sample. For the bivariate normal
distribution, the Jeffery’s prior is:

p(µ,Σ) ∝ |Σ|−(k+1)/2 = |Σ|−3/2 (7.3)

where k = 2 for bivariate normal distribution.

Now, we have the prior distribution, the likelihood of the bivariate normal sample is:

p(y1, ...yn) =
1

(2π)n|Σ|n/2 exp(
1
2

n

∑
i=1

(yi−µ)T
Σ
−1(yi−µ)) (7.4)

Hence, according to equation 3.13, the posterior distribution is:

p(µ,Σ|y1, ...yn) ∝
1

(2π)n|Σ|(n+3)/2
exp(

1
2

n

∑
i=1

(yi−µ)T
Σ
−1(yi−µ)) (7.5)
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In order to draw µ and Σ, we need to re-express equation 7.5 in terms of:

p(µ|Σ,y1, ...yn) =
1

(2π)|(1/n)Σ|
exp(−1

2
(µ− ȳ)T (nΣ

−1)(µ− ȳ)),

p(Σ|y1, ...yn) ∝
1

|Σ|(n+2)/2
exp(−nTr(ΣyΣ

−1)),

where ȳ = (1/n)∑
n
i=1 yi, Σy is the covariance matrix computed from the yi, where Σy =

(1/n)∑
n
i=1(yi− ȳ)(yi− ȳ)T , and Tr(ΣxΣ−1) is the trace of the matrix ΣyΣ−1.

Hence, to draw from p(µ,Σ|y1, ...yn), we first need to draw from p(Σ|y1, ...yn) to get
Σ(t), and then draw from p(µ|Σ,y1, ...yn) to get µ(t). Little & Rubin (2002) indicated that
p(Σ|y1, ...yn) is an Inv-Wishart distribution with scale parameter S = nΣy and n−1 degrees of
freedom. To draw from the Inv-Wishart distribution, we first need to form an upper triangular
matrix B with bi j draw from the chi-squared distribution χ2

n− j and then take the square root:

bi j ∼
√

χ2
n− j, b jk ∼ N(0,1), j < k, (7.6)

For the bivariate normal distribution case, we have b11 ∼
√

χ2
n−1 b12 ∼

√
χ2

n−2

. b22 ∼
√

χ2
n−2


and sampling

Σ
(t) = (BT )−1A, (7.7)

where A is the Cholesky factor of S−1 (i.e. AT A = S−1).

Now, we have Σ(t). The next step is to draw µ(t) from p(µ|Σ,y1, ...yn) which is a multivari-
ate Gaussian distribution.

µ
(t) = ȳ+A(t)z, (7.8)

where z = (z1, ...,zk)
T is a vector of independent N(0,1) draws, and A(t) is an upper triangular

Cholesky factor such that A(t)T A(t) = Σ(t)/n.

We applied the methods we have discussed in this section to the SURF data with 50 MCAR
values for each income variable and hours variable. The missing values on both variables do
not overlap. That is, if a respondent has missing income, then the respondent cannot have
missing hours. We have followed the exact steps that have been described in this section, for
1000 iterations. Please see appendix C for the R code. Figure 7.3 shows the results. Again,
the Gibbs sampler produces unbiased estimates.
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Figure 7.3: Applying the Gibbs sampler to the SURF data with 50 MCAR values for each
income and hours variables. The number of iterations is 1000

7.4 Convergence Diagnostics

7.4.1 The Theory of Convergence
The diagnostics of the convergence for the Bayesian iterative simulation methods are very

different from the diagnostics for the EM algorithm. As discussed in Chapter 6, the EM algo-
rithm converges when the parameter estimates no longer change across successive iterations.
But, as discussed in this Chapter, the fundamental mechanism of Bayesian iterative simula-
tion methods is to draw parameter estimates randomly from their posterior distribution. This
means that draws from each iteration are most likely to be different from any other draws from
other iterations. Hence, apparently, the Bayesian iterative simulation has a different kind of
convergence to that of EM algorithm.

However, the Bayesian iterative simulation has to stop at some point of the iteration. Gen-
erally speaking, the Bayesian iterative simulation converges when the distributions of the
parameter estimates become stable and stationary. Why do we say a stable and stationary dis-
tribution of the parameter estimates means convergence? This is because that once a draw of
parameter estimate from the target distribution has been obtained in the process of the simu-
lation, all the subsequent draws will be from that distribution. This means, for the subsequent
draw θt and θt+k, where k is any integer, the joint distribution of the parameter estimates
θt1, ...,θtn is the same as the joint distribution of the parameter estimates θt1+k, ...,θtn+k for
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all n and k, given t1, ..., tn. Hence, the posterior distribution becomes stable and we use this
criterion as an indicator of the convergence of the Bayesian iterative simulation methods.

As an aside, the convergence diagnostics for the Bayesian iterative simulation methods
which are applied to the imputation of missing data is no different from any other Bayesian
iterative simulation methods which do not involve the missing data problem. Despite whether
there is any missing data, the convergence diagnostics all focus on measuring the changes of
parameter estimates of the posterior distribution. Theoretically, we can check the convergence
of the distribution of individual missing data points themselves, because the Bayesian method
treats the individual missing data and parameters as random quantities. However, in practice, a
dataset normally has a large number of missing data. Hence, it will be very hard and complex
to check the convergence for each missing data point.

7.4.2 Pre-convergence: the burn-in period
The “burn-in” refers to the part of a Bayesian iterative simulation chain where the current

state of the chain is dependent on its starting point (Sahlin 2011). In other words, it refers
to the part of the chain before its convergence. Researchers normally throw away the burn-in
iterations. Then, after the burn-in period, they do their calculation based on the iterates from
the convergence part.

7.4.3 Some of the popular Methods of Convergence Diagnostics
Time Series Plots: Intuitively, the simplest way to look for the convergence of the Bayesian

iterative simulation is to plot all the simulated parameter estimates on a time series like scale.
The vertical axis is the values of all the parameter estimates, and the horizontal axis is the
iteration number which is similar to the time in a time series plot. Then, we just simply
look at the time series plot to see whether and beyond which point the series starts becoming
stationary.

A burning question is:“How do we know how many iterations we need in order to see the
series turning stationary?”. The answer is “we do not know”. Hence, we can only increase
the number of iterations until we find the series turning stable and stationary. According to
(Enders 2010, p. 206), if the series becomes stable and stationary at iteration t, we normally
double or triple the number t for an extra margin of safety.

Figure 7.4 displays two time series plots of simulated SURF’s Income means. If the series
does not have any obvious trend, and stays stable and stationary after some iteration, we say
there is a possible convergence. It shows that the distribution of the income means simulated
by the MH algorithm (the top plot) does not converge even for 10000 iterations. On the other
hand, the distribution of the income means generated by the Gibbs sampler (the bottom plot)
converges very quickly.
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Figure 7.4: Time series plots for the simulated SURF’s Income mean. The top plot shows the
results of the MH algorithm; the bottom plot shows the results of the Gibbs sampler

Gelman and Rubin’s method: The Time Series Plots are simple and “easy to use” con-
vergence diagnostic methods, but they are more or less subjective6, and more importantly,
they are only suitable for a single sequence of the Bayesian iterative simulation in practice,
because it would be very tedious to plot multiple sequences for each parameter for which
we want to find its convergence. But, why do we want to run multiple sequences? This is
because the converged value of a single sequence might correspond to a local maximum in-
stead of a global maximum, if the posterior distribution is not unimodal7(Hoeschele 1989).
Hence, The Time Series Plots and the Autocorrelation Function plots are only recommended
for well-understood models and straightforward data sets Little & Rubin (2002, pg. 206).

For the not so well-understood models and complex data sets, or for all the known and
unknown distributions in general, Gelman & Rubin (1992) propose a general approach to
monitoring convergence of the Bayesian iterative simulation methods by simulating D > 1
sequences with starting values dispersed throughout the parameter space. This means that
the starting values for parameter estimates are far away from the centre of their respective
posterior distribution. Then, the convergence obtained, if variations between and within the
D simulated sequences are roughly equal. Obviously, the convergence which is monitored
this way has reduced risk of corresponding to a local max-mode. This is for two reasons.

6The decision of convergence depends on the shape of the plots.
7A unimodal probability distribution is a probability distribution which has a single mode. A mode is the

maximum value, or the most likely value of a probability distribution.
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The first reason is that D dispersed starting points increase the chance of reaching different
local max-modes, if the posterior distribution is not unimodal. The second reason is that the
between sequences variation would be not equal to the within sequences variation, if each
sequence only converged to its local maximum. In addition, a single sequence might have
a starting value which is very close or far away from the centre of the posterior distribution
by chance. This means that the convergence speed is either too fast or too slow. Hence,
multiple sequences provide us with a more conservative guess of convergence speed than
single sequence (Enders 2010, pg. 209).

The actual method is rather straightforward. Suppose we have D sequences, and each
sequence has T iterations, where d = 1, ...,D, and t = 1, ...,T . Then, the between sequence
variance is:

B =
T

D−1

D

∑
d=1

(θ̄.d− θ̄..)
2,

where

θ̄.d =
1
T

T

∑
t=1

θ̂t.d

θ̄.. =
1
D

D

∑
d=1

θ̄d

and the within sequence variance is:

V̄ =
1
D

D

∑
d=1

s2
d,

where

s2
d =

1
T −1

T

∑
t=1

(θ̂t,d− θ̄.d)
2.

Then, we estimate the overall variance V̂total , by a weighted average of the within and between
variances:

V̂total =
T −1

T
V̄ +

1
T

B (7.9)

If the chains do not converge, the first term on the right hand side of the equation underes-
timates the variance, since the individual chains have not had time to range all over the sta-
tionary distribution, and the second term overestimates the variance, since the starting points
were chosen to be dispersed. As a result, the within variance (V̄ ) should be smaller than the
between variance (B) (Gelman et al. 1995, pg. 332). However, as T → ∞ in Equation (7.9),
we can see the first term T−1

T V̄ → V̄ , and the second term 1
T B→ 0, then V̂total ≈ V̄ , which

means the expectation of within variance (V̄ ) approaches the total variance (Vtotal). Therefore,
Gelman & Rubin (1992) establish a single explicit monitoring statistic R, that compares V̂total
and V̄ :

R =

√
V̂total

V̄

which declines to 1 as T → ∞. So, if R is close to 1, we have convergence. Otherwise,
the simulation runs should be continued, or it suggests that the simulation algorithm is not
efficient.
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7.5 Applying Gibbs sampler to multiple regression with miss-
ing data

So far, we have only applied the MCMC methods to MCAR situation. Now, we consider the
situation of MAR. The multiple regression model can be as useful a method to impute missing
data, as a single imputation method, when the missingness is MAR. The variable with missing
values is our response variable, and the variables which the missingness depends on are our
explanatory variables. The Gibbs sampler can be applied to this regression model, if we treat
the missing values and the regression parameters as random variables.

Suppose we still have Y = (Yobs,Ymis), but we also have some explanatory variables X which
the missingness depends on. Y can be regressed on X :

Y = Xβ + e

where β is the coefficients. Now, our posterior becomes:

p(β ,σ2
e ,Ymis|Yobs,X) ∝ p(β ,σ2

e )p(Yobs|β ,σ2
e ,Xobs)p(Ymis|β ,σ2

e ,Xmis)

Assume we have the values for Ymis, then the conditional posterior for β is:

(β |Y,σ2
e )∼ N((XT X)−1(XTY ),σ2

e (X
T X)−1)

Similarly, given fully observed Y , the conditional posterior for the error variance σ2
e is inverse

gamma:
(σ2

e |Y,β )∼ IG(n/2,eT e/2)

where n is the sample size, and (e = Y −Xβ ).

Then, we draw Ymis from a normal distribution with a mean of XT
i β and variance σ2

e .

(Ymis|X ,β ,σ2
e )∼ N(XT

i β ,σ2
e )

The following R program applies the Gibbs sampler method to the SURF data with MAR
income values. The missingness depends on the gender variable. The male respondents have
50% probability of getting missing income, and the female respondents have 20% probability
of getting missing income. The multiple regression model is set up with the income as the re-
sponse variable, and the gender, age, and working hours as the explanatory variable. Although
the missingness is not related to the age and the working hours variables, we included them
in the regression model in order to have a best fit regression model. This is because the age
and working hours are highly correlated with the income variable. The number of iteration is
1000.
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#Special example - Multiple linear regression (Gibbs sampling)

#We still use the SURF data. Now, suppose we have some MAR missing Income, but

#other variables are observed.

# step 0: Create MAR income data

Y_MAR=MAR(SURF,"Gender","Income",c(0.5,0.2))

# step 1: set up y and x matrix

y=as.matrix(Y_MAR$Income)

x=as.matrix(cbind(rep(1,nrow(Y_MAR)),Y_MAR$Gender, Y_MAR$Age, Y_MAR$Hours))

ystar=y

# step 2: establish initial parameters

iter=10000

s2=matrix(1,iter) #sigma squre

b=matrix(0,iter,4) #beta matrix. only consider three variables:Gender, Age, Hours

a=matrix(0,iter) #intercept

xtxi=solve(t(x)%*%x)

muY=matrix(mean(ystar[!is.na(y)]),iter) #mean Y

varY=matrix(var(ystar[!is.na(y)]),iter) #variance Y

for (i in 2:iter){

#step 3: sample missing data

ystar[is.na(y)]=rnorm(length(ystar[is.na(y)]),

mean=x[is.na(y),]%*%(b[i-1,]), sd=sqrt(s2[i-1]))

muY[i]=mean(ystar)

varY[i]=var(ystar)

#step 4: simulate beta from multivariate normal distribution

b[i,]=coefficients(lm(ystar~x-1))+t(rnorm(4,0,1))%*%chol(s2[i-1]*xtxi)

#step 5: simulate sigma from inverse gamma distribution

s2[i]=1/rgamma(1,length(y)/2,

0.5*t(ystar-x%*%(b[i,]))%*%(ystar-x%*%(b[i,])))

}

Figure 7.5 shows the results of the estimated coefficients for the gender, and the variances
of the residual. The red lines represent the true estimated coefficient for the gender and the
variance of the residual, if there is no missing data. The graphs show that the Gibbs sampler
produces unbiased estimates and the estimates converge quickly.
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Figure 7.5: Applying the Gibbs sampler to the multiple regression with missing data. The
response variable is income with missing data, the explanatory variables are gender, age, and
working hours. The graph only displays the values of the estimated coefficient for the gender,
and the variances of the residual. The number of iterations is 1000.

7.6 Conclusion
This chapter has basically introduced the Bayesian theory and its two most popular iter-

ative simulation methods: the MH algorithm and the Gibbs sampler. The advantage of the
MH algorithm is its ability to deal with complex or high dimension posterior distributions. As
we have seen, the MH algorithm does not need to breakdown those distributions into smaller
and more manageable distributions. In other words, it can simulate parameters from a famil-
iar and manageable “proposal distribution” without directly drawing from the complex and
high dimension distribution. However, it may suffer slow convergence, or even not be able to
converge, if we use the independent MH sampler, because the “proposal distribution” might
not be close to the target distribution. On the contrary, the Gibbs sampler breaks down those
complex or high dimension distributions into smaller and more manageable distributions, and
samples directly from these sub distributions. This makes the Gibbs sampler generally much
faster than the MH algorithm to converge. But, there are situations where we cannot break-
down the target distribution. Hence, we can only rely on the MH algorithm.

We have also discussed a few convergence diagnostic methods. These methods are crucial
for Bayesian Multiple Imputation (MI). This is because Bayesian MI needs to generate its
imputed data sets which have independent imputations by randomly drawing imputations from
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the stationary or converged part of the simulated chain or chains. This will be elaborated in
more detail in the following chapter.

As we have mentioned at the beginning of this chapter, the Bayesian theory is the underlying
theory of Rubin’s Bayesian Multiple Imputation. He distinguished Bayesian MI from the MI
which does not implement Bayesian methods as proper and improper MI. Again, we will
discuss these concepts in the next chapter.
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Chapter 8

Multiple Imputation

8.1 Introduction
Multiple Imputation (MI) has become a more and more popular method for statistically han-

dling missing data in recent years (Rubin (1996); Allison (2002); Schafer & Graham (2002)).
The reason for its success is rooted in the fundamental purposes of imputation. The whole im-
putation idea is basically trying to achieve two objectives: (1) reduce non-response bias; (2)
create complete data in order to apply statistical analysis methods and software easily (Ghosh
& Pahwa 2008). As discussed in Chapter 4, we have seen that imputation can indeed reduce
non-response bias. However, as we have discussed in Chapter 5, if missing values are only
imputed once, then the imputation yields a different kinds of bias which is called uncertainty
of non-response. To be more specific, whenever a single imputation strategy is used, the stan-
dard errors of estimates tend to be too low. Intuitively, there is no way we can “guess” the
true values of missing data. There is always some uncertainty about the missing data, but by
choosing a single imputation we pretend that we have found the true values of missing data.
Hence, we need a way to quantify the extra uncertainty we have introduced to the data.

In Chapter 5, we have discussed several simple resampling methods which propagate im-
putation uncertainty, but compared to MI, these resampling methods have some inconvenient
disadvantages. While neither the resampling methods nor MI is model free, the resampling
methods only work well for large samples and require at least 200 different imputed data sets.
On the other hand, MI, if it has Bayesian statistics as its underlying theory, can work for both
large and small samples, and it usually only needs 2 to 10 imputed data sets (Rubin (1996);
Fay (1996); Rao (1996)). Apparently, MI reduces data storage and transition1 costs.

Now, the question is what Bayesian MI actually is? As the name implies, Multiple Impu-
tation imputes missing values multiple times. The multiply imputed values are derived from
an iterative process which is normally based on Bayesian models that use the observed data.
Each set of imputed values is then used to replace missing data in the incomplete data set. For
each set of imputed values, there is a separate complete dataset. If there are D sets of imputed
values, then there are D imputed complete data sets. Figure 8.1 shows the general concept.
The multiple datasets are then used in complete case analyses to test the statistical models
of interest. As a result, the multiple complete data analyses produce multiple estimates (e.g.,
mean, variance and regression coefficients.). Those multiple estimates are then combined to
produce a single set of best estimates. The multiple estimates can also be used to estimate the

1Transition means moving data from one place to another
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increased variability which can be used to adjust standard errors upward, which in turn reduces
the probability of a Type I error2(McKnight, M.McKnight, Sidani & Figueredo 2007).

?                    

?

?

?

..............

..............

..............

...............

1 2 D

Data with missing values

Figure 8.1: Matrix of multivariate data with missing values and multiple imputation

8.2 Analysis of multiply-imputed data
Let θ̂d,Wd,d = 1, ...,D be D complete-data estimates and their associated variances for

an estimated parameter θ , calculated from D repeated imputations under one model. The
combined estimate is the average of the D sets of estimate θ̂d over D:

θ̄D =
1
D

D

∑
d=1

θ̂d (8.1)

The variability associated with this estimate θ̄D has two components: the average within-
imputation variance,

W̄D =
1
D

D

∑
d=1

Wd, (8.2)

and the between-imputation variance component which is calculated by computing the vari-
ance for each estimate,

BD =
1

D−1

D

∑
d=1

(θ̂d− θ̄D)
2 (8.3)

The total variability associated with θ̄D equals within variance W̄D plus between variance
BD, and Rubin (1987) weights the between imputation variance according to the number of
imputations performed. Thus, the total variance TD is:

TD = W̄D +
D+1

D
BD (8.4)

2A null hypothesis that should have been accepted was rejected.
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where (1+1/D) is a weighted adjustment for finite D. Rubin & Schenker (1986) works out
that for large sample sizes and scalar θ , the reference distribution for interval estimates and
significance tests is a t distribution,

(θ − θ̄D)T
− 1

2
D ∼ td f , (8.5)

where the degrees of freedom,

d f = (D−1)(1+
D

D+1
W̄D

BD
)2 (8.6)

Eq. (8.6) shows that the degrees of freedom is adjusted based on the number of imputations
and the within and between imputation variance to correct for the missing data. McKnight,
M.McKnight, Sidani & Figueredo (2007) say we should not use the degrees of freedom from
the imputed “complete” data set nor the degrees of freedom from the data set with only ob-
served units. This is because we need to adjust the degrees of freedom based on the number of
imputations and the within and between imputation variance to correct for the missing data.

A unique feature of MI is its ability to estimate the influence of missing data on estimation.
In other words, MI can help us measure the information loss or rate of missing information.
We then have a sense of the impact the missing data have on estimates based on the rate of
missing information. Missing information is different from missing data. As Dempster, Laird
& Rubin (1977) point out, the higher amount of missing data does not necessarily have a
larger impact on the estimates, but the higher amount of missing information suggests that
missing data have a larger impact on the estimates.

In fact, the missing information can be measured by looking at the variance. Rubin (1987)
provides diagnostic measures for assessing the missing information, known as the estimated
rate of missing information γ . The rate of missing information can be estimated using the
degrees of freedom from Eq (8.6) and the relative increase in variance (ν , defined shortly) due
to non-response:

γ =
ν +2/(d f +3)

ν +1
(8.7)

where

ν =
(1+D−1)BD

W̄D
=

D+1
D

BD

W̄D

then according to Eq (8.6):

d f = (D−1)
(

1+
1
ν

)

8.3 The MI Process
So far, we have a general understanding of how MI works. The MI can be concluded in basi-

cally four steps: imputing values, conducting statistical analyses with each imputed complete
dataset, combining the results/estimates from each analysis, and analysing the combined esti-
mates. However, we still haven’t gotten a tangible idea of how MI works, and how Bayesian
theorem can be involved in MI procedure. In this section, we apply the MI procedure to the
SURF data with MCAR missing income variable as an example. The next section, we will
introduce the concept of proper and improper MI in order to emphasis the important role of
Bayesian theory to MI.
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As in the example given in Chapter 7, section 7.5, we have the SURF Income as the re-
sponse variable with MAR missing data. The MAR missing data depend on Gender. We
also have Gender, Age and Hours as our explanatory variables. Assuming SURF Income is
normally distributed, we can construct a multiple regression model between income and the
other three explanatory variables. The choice of these variables is only for demonstration pur-
poses. In practice, Allison (2002) suggests including variables that are highly correlated with
the variables that have missing data or are associated with the probability that those variables
have missing data; even those variables which may not make practical sense to be included in
the model.

Step 1: Imputation
As Schafer (2005) describes, there is no necessary restriction on the MI procedure selected.

In other words, the missing values can be imputed using stochastic single imputation meth-
ods (e.g., hot deck imputation), likelihood-based methods (e.g., EM algorithm), or Bayesian
iterative simulation methods (e.g., the MCMC method). However, McKnight et al. (2007)
recommends that an iterative procedure that is not limited to only a specific group of imputed
values and produces values which are unique between each imputed set, and share a common
underlying relationship to the data is preferred for MI. This means that Bayesian iterative
simulation imputation is more suitable for MI than any other imputation method. In fact, we
can see that Bayesian procedures satisfy the conditions to be “proper” MI in the next section.
In contrast, McKnight et al. (2007) also points out that the idea of mixing single imputation
methods in MI is not encouraged. To be clear, for example, suppose we want to create five MI
datasets, it is not recommended to create one MI dataset by using the hot deck imputation, and
the second one by using mean imputation, and the third one by using regression imputation,
and the rest MI datasets by using other different single imputation methods. This is because
the single imputation methods produce somewhat different results (e.g., mean imputation vs
hot deck imputation). For example, the hot deck imputation method can maintain the vari-
ance, if it has been used properly. But, the mean imputation decreases the variance. Those
differences would then be reflected in the estimate of missing information by yielding larger
estimates due to the increased variability.

If Bayesian iterative simulation methods are used to perform the imputation stage of the MI
procedure, then how do we choose the values to replace the missing data? After all, as we
have discussed in Chapter 7, the Bayesian iterative (MCMC) simulation methods converge to
a stationary distribution. This means any values from the stationary distribution can be the
candidate for replacing the missing data. In fact, Enders (2010, pg. 211) summarizes two
approaches which generate independent imputations. The first approach: sample D candidate
points at regular intervals in the part where the Bayesian iterative simulation chain converges;
the second approach: generate D Bayesian iterative simulation chains which start at different
starting points. After these chains converge, select the end points of each chain as the imputed
data.

For our example, we use the Gibbs sampler method to impute missing SURF income data
as the demonstration of Chapter 7, section 7.5. We apply the Gibbs sampler to produce chains
of estimates. Then, we select five points on the chains to get five imputed datasets. The choice
of five imputations is based on Rubin (1987)’s recommendation which has been discussed
previously. The five complete data sets provide the basis for step 2.

To be clear, the following steps show how we do the simulation:
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Recipe: MI-Gibbs sampler

Step 1: set up starting points. In this case, they are sigma squared S2 = 1, and intercept
β0, coefficients βGender, βAge, and βhours which are all equal to 0.

Step 2: apply the Gibbs sampler as we’ve described in previous chapter. Simulating
1000 iterations produces 1000 estimates for S2 and β , and 1000 sets of im-
puted datasets. The exact detail of how to apply the Gibbs sampler to multiple
regression is in Chapter 7, section 7.5. Here, we just list a simplified version
of applying the Gibbs sampler to our particular multiple regression.

(Ymis|X ,β ,σ2
e )∼ N(XT

i β ,σ2
e )

(β |Y,σ2
e )∼ N((XT X)−1(XTY ),σ2

e (X
T X)−1)

(σ2
e |Y,β )∼ IG(n/2,eT e/2)

where X = (XGender,XAge,XHours) and β = (β0,βGender,βAge,βHours).

Step 3: apply simple time series convergence diagnostics. As the plots show on Fig-
ure 8.2, we conclude that the chains converge very quickly after the first few
iterations

Step 4: suppose the first 200 iterations are the burn-in period, then we start picking
five imputed complete datasets after the first 200 iterations.

The R program in Appendix D shows how we implement MCMC MI procedure to the
SURF data.
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Figure 8.2: Time Series convergence diagnostics
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Step 2: Routine Analysis
This step simply involves performing statistical analysis on the MI datasets. The only

difference is that we need to perform such analysis D times for each imputed dataset, instead
of doing it to one data set. D is the number of imputed data sets. Generally, there are no limits
on the types of statistical analyses that can be conducted on the MI datasets. However, for
the demonstration purpose, we only look at the estimates of income means, and the variances
of income means. We report the overall mean, and the means for each Qualification. There
are four Qualification levels: None, School, Vocational and Degree. The five complete case
analyses are listed in Table 8.1.

The five values for each of the means reflect variability in the estimates resulting from the
different imputed values. We see the same variability exists in the variances associated with
each of these means.

The multiple parameter estimates in Table 8.1 are used for the next step in the MI procedure.

Table 8.1: Mean Estimates (total mean and means for each qualification) from Each of the
Five MI Data Sets

Data Sets

Income Means 1 2 3 4 5

Overall mean 583.88 590.00 601.77 576.21 582.73
(variance of the mean) (558.15) (572.96) (605.73) (557.93) (504.22)

Qualification: None - mean 612.19 614.64 622.25 597.93 586.09
(variance of the mean) (3132.39) (2913.43) (3377.14) (2399.58) (2088.12)

Qualification: School - mean 582.44 568.19 573.76 568.70 571.07
(variance of the mean) (1907.15) (1998.73) (1819.94) (2142.98) (1901.19)

Qualification: Vocational - mean 589.12 626.04 620.83 588.05 598.62
(variance of the mean) (1387.88) (1457.40) (1561.13) (1444.12) (1224.36)

Qualification: Degree - mean 535.29 520.85 593.71 535.33 567.50
(variance of the mean) (4172.11) (4220.79) (5685.15) (3957.62) (4458.07)

Step 3: Parameter Estimation from Aggregated Results
According to Rubin (1987), we can take the mean of the estimates produced by each of the

imputed data sets to obtain a single estimate for each parameter, as equation (8.1):

θ̄D =
1
D

D

∑
d=1

θ̂d
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If we say each parameter estimate is referred to as θ̂ , then the overall estimates or mean
of the θ̂s is referred to as θ̄ . The last column of Table 8.2 shows the overall estimate for the
intercept, coefficients and σ2

e . Table 8.2 is just an extension of Table 8.1.

Table 8.2: Overall Estimates for means

Data Sets Overall
estimate of
θ̄DIncome Means 1 2 3 4 5

overall mean 583.88 590.00 601.77 576.21 582.73 586.92
Qualification: None - mean 612.19 614.64 622.25 597.93 586.09 606.62

Qualification: School - mean 582.44 568.19 573.76 568.70 571.07 572.83
Qualification: Vocational - mean 589.12 626.04 620.83 588.05 598.62 604.53

Qualification: Degree - mean 535.29 520.85 593.71 535.33 567.50 550.54

There are several steps involved to compute the overall variance of the income mean, which
is necessary for significance test and confidence intervals. The overall variance also includes
the effect of non-response uncertainty. First, we need to compute the within-imputation vari-
ance, which is basically the average of the variances associated with each of the parameters,
as equation (8.2):

W̄D =
1
D

D

∑
d=1

Wd

where W̄D represents the variability of the variances that are calculated within each of the
imputations. Table 8.3 displays the W̄Ds and the variances of the overall income means, and
the variances of income means for each Qualification levels.

Table 8.3: Within-Imputations Variance for means

Data Sets Within
Imputations
variance or W̄Dvariances of Income mean 1 2 3 4 5

Variance of overall mean 558.15 572.96 605.73 557.93 504.22 559.8
Qualification: None 3132.39 2913.43 3377.14 2399.58 2088.12 2782.13

Qualification: School 1907.15 1998.73 1819.94 2142.98 1901.19 1954
Qualification: Vocational 1387.88 1457.40 1561.13 1444.12 1224.36 1214.98

Qualification: Degree 4172.11 4220.79 5685.15 3957.62 4458.07 4498.75

After estimation of the within-imputation variance, we move on to estimate the between-
imputation variance BD. The between-imputation variance is:

BD =
1

D−1

D

∑
d=1

(θ̂d− θ̄D)
2

The last column of Table 8.4 lists the results of our example. Again, Table 8.4 is just an
extension of Table 8.2.
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Table 8.4: Between Imputation Variance (or B) for means

Data Sets Between
imputation
variance or
BD

1 2 3 4 5
Income Means θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

Overall mean 583.88 590.00 601.77 576.21 582.73 92.88
Qualification: None - mean 612.19 614.64 622.25 597.93 586.09 209.16

Qualification: School - mean 582.44 568.19 573.76 568.70 571.07 33.73
Qualification: Vocational - mean 589.12 626.04 620.83 588.05 598.62 318.09

Qualification: Degree - mean 535.29 520.85 593.71 535.33 567.50 874.17

Next, given the within-imputation variance W̄D and the between-imputation variance BD,
we can compute the total variance TD. Equation (8.4) gives us:

TD = W̄D +
D+1

D
BD

As described in the previous section, this is the weighted between-imputation variance plus
the within-imputation variance. The factor (1+ 1/D) which Rubin (1987) describes as an
adjustment for using a finite number of imputations. In other words, the factor weights the
between-imputation variance according to the number of imputations performed.

The overall standard error for significance testing is equal to the square root of the total
variance TD. The 95% confidence intervals of θ̄ can be computed as:

θ̄ ± t∗d f ,95%(
√

TD)

Finally, a t-value similar to the Student’s t-test can be computed by a simplified version of
Equation (8.5) which can be displayed as:

td f ∼
θ̄√
TD

The computation of the degrees of freedom (d f ) is Equation (8.6):

d f = (D−1)(1+
D

D+1
W̄D

BD
)2

As we can see, this formula adjusts the degrees of freedom based on the number of imputations
and the within- and between-imputation variance to correct for the missing data (McKnight
et al. 2007). This means it has reflected the impact of non-response uncertainty. Now, given
the t-value and its degrees of freedom, we can compute its p-value. This allows us to test the
null hypothesis that θ = 0, where θ is the parameter of interest. Table 8.5 displays the results
of TD, t-value and d f for our means.

Table 8.5: Tests for Parameter Estimates Produced Using MI

Income Means θ̄D W̄D BD TD t-value d f
Overall mean 586.92 559.8 92.88 671.25 0.87 145.09

Qualification: None - mean 606.62 2782.13 209.16 3033.12 0.20 584.15
Qualification: School - mean 572.83 1954 33.73 1994.47 0.29 9714.96

Qualification: Vocational - mean 604.53 1214.98 318.09 1596.69 0.38 69.99
Qualification: Degree - mean 550.54 4498.75 874.17 5547.76 0.10 111.88
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The degrees of freedom in Table 8.5 are not accurate. The sample size of SURF data is only
200. Hence, The degrees of freedom could not exceed that number. However, we are sure that
our calculation is correct. Then, what is the problem? The problem is that the Equation (8.6)
we used to compute the MI’s degrees of freedom is designed by Rubin & Schenker (1986)
under the assumption that there is an infinite number of observations in the sample. If the
sample is infinitely large, then there is no need to consider its influence on the computation
of the degrees of freedom. However, for a small size data, Rubin and Schenkers degrees-
of-freedom approximation equation produces inaccurate results. Hence, Barnard & Rubin
(1999) propose an alternative approach to compute the degrees of freedom of MI for small
size samples.

d f ∗ = (d f−1 + d̂ f
−1
obs)
−1 (8.8)

where

d̂ f
−1
obs = (1− f̂D)

(
d fcom +1
d fcom +3

)
d fcom

The f̂D = (1+D−1)B/(W̄D +(1+D−1)B), estimates the “fraction of missing information”3

about θ missing due to non-response, and d fcom is the degrees of freedom for θ if there are
no missing values. Note that, d f ∗ is always less than or equal to d fcom, and d f ∗ equals d f
when d fcom is infinite. We recomputed the d f by using Equation (8.8). Table 8.6 gives us the
accurate d f estimation.

Table 8.6: Tests for Parameter Estimates Produced Using MI

Income Means θ̄D W̄D BD TD t-value d f ∗

Overall mean 586.92 559.8 92.88 671.25 0.87 77.05
Qualification: None - mean 606.62 2782.13 209.16 3033.12 0.20 31.37

Qualification: School - mean 572.83 1954 33.73 1994.47 0.29 61.42
Qualification: Vocational - mean 604.53 1214.98 318.09 1596.69 0.38 28.74

Qualification: Degree - mean 550.54 4498.75 874.17 5547.76 0.10 17.28

Step 4: Compute Missing Information
As discussed in section 8.2, there is a distinction between missing data and missing infor-

mation. However, most missing data procedures only concentrate on handling the missing
data. As explored in previous chapters, large amount of missing data do not mean large im-
pact on the estimates. As equation (8.7) shows, the MI allows us to estimate the amount of
missing information. According to McKnight et al. (2007), one of the advantages of MI is
that it can measure the rate of missing information that can provide us clues to the impact of
missing data on parameter estimates.

Table 8.7 lists the relative increase in variance v and rate of missing information γ for our
example’s parameters. These values are calculated by using Equation (8.7):

γ =
v+2/(d f +3)

v+1
3The fraction of missing information measures the level of uncertainty about the values one would impute

for current missing data (Wagner 2010).
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where

v =
(1+D−1)BD

W̄D

Table 8.7: Rate of Missing Information

Rate of missing
information or γIncome Means d f ∗ v

Overall mean 77.05 0.20 0.19
Qualification: None - mean 31.37 0.09 0.14

Qualification: School - mean 61.42 0.02 0.05
Qualification: Vocational - mean 28.74 0.31 0.29

Qualification: Degree - mean 17.28 0.23 0.27

If we rewrite Equation (8.7) as

γ =
v+2/(d f +3)

v+1
=

v
v+1

+
2/(d f +3)

v+1

then, due to d f > 0, it is not hard to notice that

0 <
2

d f +3
<

2
3

However, most social survey data have large sample sizes. This means the degrees of freedom
d f s are usually very large. Therefore, 2

d f+3 is actually much less than 2
3 , but very close to 0.

Under normal circumstances, 2
d f+3 ≈ 0. Hence, if v→∞, we have γ = 1. It can be concluded

that values of γ can range from 0 to 1, where 1 means there is 100% missing information.

We also conclude that the larger the v, the larger the γ . This is because the larger the v, the
v

v+1 is moving towards 1, given 2
d f+3 ≈ 0. Now, we see that the value of γ is actually driven by

the values of v. According to Equation (8.7), the value of v is mainly determined by the values
of the between imputation and within imputation variances. The greater between imputation
variance and the lower within imputation variance can result a large v value, translated as an
increase in the variance of the estimates due to missing data. Hence, the higher the rate of
missing information γ , the less the statistical certainty. Table 8.7 indicates that the missing
data do not lead large missing information as the γs are all close to 0.

8.4 Proper and Improper Multiple Imputation
We have mentioned in Chapter 7 that Rubin (1987) classifies MI into proper and improper

imputation methods. The proper MI generates imputed values from a Bayesian posterior
distribution (eg. using the Bayesian iterative simulation methods to generate imputed data);
the improper MI generates imputed values without applying any Bayesian theory (e.g., using
the simple hot deck method to create several imputed data sets). Rubin recommends the use of
the proper MI method because he has shown that this method properly propagates imputation
variance. On the other hand, improper MI may underestimate imputation uncertainty.

109



There is an intuitive way to understand why imputation uncertainty is underestimated using
improper MI. As we have described throughout previous chapters, the Bayesian views param-
eters of a distribution as random variables which have their own distributions. We also know
that those distributions of parameters are called posterior distributions which are constructed
by combining their prior distribution with the likelihood function. The prior distribution repre-
sents our subjective beliefs about the relative probability of different parameter values before
collecting any data. The likelihood function is the function of the parameters whose shape is
determined by the collected data. Hence, due to MI imputing different values for the missing
data, the shape of the likelihood function is slightly different for each imputed data set. This
means the posterior distributions of parameters are also slightly different from each other for
different imputed data sets. If we ignore the difference and treat the parameters as fixed, which
means we act as if the distribution of the observed Yobs values were exactly the same as the true
population distribution of Y values, and only generate imputed values from the distribution of
the observed data, then we certainly underestimate the variability of parameters.

Rubin (1987) defines three conditions for proper Multiple Imputation:

C1 E(θ̄∞|Y )≈ θ̂ , where θ̂ is the sample estimates if the data is complete.

C2 E(W∞|Y )≈V , where V is the variance of the sample estimates if the data is complete.

C3 E(B∞|Y )≈V (θ̄∞|Y )

These conditions are under the assumptions that D imputed datasets are infinitely large, that
is:

θ̄∞ = limD→∞θ̄D

W∞ = limD→∞WD

B∞ = limD→∞BD

These conditions are somewhat intuitive. As described in previous chapters, if samples of the
same size are drawn from the same population infinitely many times, the average of the sam-
ple estimates is approximately the population estimates. The same logic applies to condition
C1. If the imputation which properly takes the account of the missing mechanism were per-
formed infinitely many times on the same data Y with missing values, then E(θ̄∞|Y ) should
approximately equal the sample estimate θ̂ , if Y is complete. Condition C2 can be inferred
in the same way. The condition C3 is also straightforward because the between imputation
variance for the infinite imputations is indeed the variance of θ̄∞.

Now, let’s consider this simple random MI method to investigate if it satisfies the three
conditions and demonstrate how exactly improper MI underestimates variability. The simple
random MI is basically the multiple-imputation version of the single imputation hot deck
method in which multiple imputations are created by drawing a simple random sample with
replacement from the Yobs (Rubin 1987, pg. 120).

First, we consider a simple random sample of size n with r respondents and m = n− r
nonrespondents, and let ȳR and s2

R be the sample mean and variance of the respondents’ data,
and ȳNR and s2

NR the sample mean and variance of the imputed data. Then

ȳ∗ =
1
n

n

∑
k=1

yk =
1
n
(rȳR +mȳNR).
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Suppose imputations are randomly drawn with replacement from the r respondents’ values,
then the variance of ȳ∗ conditional on the observed data is:

V (ȳ∗) =V
(

1
n
(rȳR +mȳNR)

)
=

m2

n2 V (ȳNR)

=
m2

n2
1
m

r−1
r

s2
R

=
m
n2

r−1
r

s2
R

Now, suppose multiple imputations are created using the same imputation method D times,
and let ȳ(d)∗ and W d

∗ be the values of ȳ∗ and W∗ for the dth imputed data set, and Ii the response
indicator, where Ii = 1 if yi is observed, and Ii = 0 otherwise. Let ¯̄y∗ = ∑

(D)
d=1 ȳd

∗/D, and
T∗ = W̄∗+(1+D−1)B∗ is the total variance, where B∗ = ∑

D
d=1(ȳ

d
∗− ¯̄y∗)2.

For condition C1, we have:

θ̄D =
1
n

n

∑
i=1

Iiyi +
1
n

n

∑
i=1

(1− Ii)
1
D

D

∑
d=1

y∗id

where y∗id is the imputed value for the dth imputation.

θ̄∞ =
1
n

n

∑
i=1

Iiyi +
1
n

n

∑
i=1

(1− Ii)ȳR = ȳR

and

E(θ̄∞|Y ) = E
(

∑
n
i=1 Iiyi

∑
n
i=1 Ii

|Y
)

≈ E (∑n
i=1 Iiyi|Y )

E (∑n
i=1 Ii|Y )

=
∑

n
i=1 E(Iiyi|yi)

∑
n
i=1 E(Ii|yi)

=
∑

n
i=1 yiE(Ii)

∑
n
i=1 E(Ii)

= ȳn

Hence, condition C1 is satisfied.

For condition C2, we have:

W∞ ≈
1

n(n−1)

n

∑
i=1

(yi− ȳR)
2

then

E(W∞|Y )≈
1

n(n−1)

n

∑
i=1

(yi− ȳn)
2 =V

Hence, condition C2 is satisfied.
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For condition C3, we have the expected value of B∗, conditional on the observed data is:

Ed(B∗) = E

[
∑
d
(ȳd
∗− ¯̄y∗)2

]

= E

[
∑
d
(ȳd
∗)

2−D ¯̄y2
∗

]
= ∑

d
Ed(ȳ

(d)2
∗ )−DEd( ¯̄y2

∗)

= D
[

m
n2

r−1
r

s2
R + ȳ2

R

]
− 1

D ∑
dd′

Ed
[
ȳd
∗ ȳ

d′
∗

]
= D

[
m
n2

r−1
r

s2
R + ȳ2

R

]
− 1

D ∑
d

Ed(ȳ
2(d)
∗ )− 1

D ∑
d 6=d′

Ed(ȳd
∗)Ed(ȳd′

∗ )

= D
[

m
n2

r−1
r

s2
R + ȳ2

R

]
− 1

D
D
(

ȳ2
R +

m
n2

r−1
r

s2
R

)
− 1

D
D(D−1)ȳ2

R

= (D−1)
m
n2

r−1
r

s2
R +Dȳ2

R− ȳ2
R− (D−1)ȳ2

R

= (D−1)
m
n2

r−1
r

s2
R

This means if the D is infinitely large, and r is large as well, then

B∞ =
m
n2

r−1
r

s2
R =

(
1− r

n

) s2
R
n

(8.9)

If we say p = r/n, then B∞ = (1− p)V , where V =
s2

R
n

Now, let’s look at the left side of condition C3,

V (θ̄∞|Y ) =V (ȳR|Y )

=V
(

∑
n
i=1 Iiyi

∑
n
i=1 Ii

|Y
)

=
1
p2V

(
n

∑
i=1

Iiyi|Y

)
+

ȳ2
n

p2V

(
n

∑
i=1

Ii|Y

)

− 2ȳn

p2 Cov

(
n

∑
i=1

Iiyi,
n

∑
i=1

Ii|Y

)

=
1
p2

p(1− p)
n2

n

∑
i=1

y2
i +

ȳ2
n

p2
p(1− p)

n
− 2ȳn

p2
p(1− p)

n2

n

∑
i=1

yi

=
1− p

p
1
n2

(
n

∑
i=1

y2
i − ȳ2

n

)
≈ 1− p

p
V

Then, we have E(B∞|Y )<V (θ̄∞|Y ) which means the condition C3 is not satisfied. Replacing
p with r/n, we can easily work out that the between imputation variance of the simple random
(or hot deck) Multiple Imputation underestimates the true between imputation variance by
r/n.
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Mathematically, We have proved that the simple random MI underestimates variance, com-
pared to the proper MI. We can also prove this by simulation. However, it is not easy to
adjust the simple random MI to make it a proper MI. Therefore, we choose a simpler impu-
tation method to demonstrate the difference between the proper and improper MI estimate
of the variances of the mean. The scheme of the improper MI is that we first compute the
mean µ = ȳR and variance σ2 =2

R, then we use the mean and variance to construct a normal
distribution N(ȳR,s2

R) and randomly draw Ymis from this distribution to replace missing data:

Ymis ∼ N(ȳR,s2
R)

D = 5 MI datasets were created by using this imputation method. This MI scheme is improper
because we act as if we know the precise population values, hence we underestimate the
variability (Rubin 1987).

As we have discussed at the beginning of this section, the problem is that we do not know
the precise population values, and under Bayesian theory, the parameters that we use to con-
struct the population distributions are also random variables. Hence, we should randomly
draw µ and σ2 from their posterior distributions as well. We have discussed how to do this in
Chapter 7 Section 7.3.1. A much simplified explanation of this method is:

Ymis|µ,σ2,Yobs ∝ N(µ,σ2)

σ
2|µ,Yobs,Ymis ∝ IG(n/2,∑(yi−µ)2/2)

µ|σ2,Yobs,Ymis ∝ N(Ȳ ,σ2/n)

Please refer to Chapter 7 for a detailed explanation.

We have applied our improper and proper MI methods to 1000 replicated SURF data with
missing income values, which generate 1000 total variance values. The missingness is MAR
with 50% probability of missing male income and 20% probability of missing female income.

Figure 8.3 clearly show that the proper MI generates larger total variances of the mean, com-
pared to the improper MI. This evidence has further confirmed our assumptions and proofs.
The R program for the improper and proper MI procedures can be found in Appendix D
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Figure 8.3: Comparison of the total variance of improper MI and proper MI
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8.5 Conclusion
This chapter demonstrated how to perform MI and compute its subsequent results step by

step in detail. The very same procedure will be repeated on the FNES data in a later chapter.

Then, we discussed the distinction between proper and improper MI. We have proved and
shown that improper MI underestimates variance. Hence, the take away message is that we
should use proper MI (i.e. Bayesian MI) whenever possible.
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Chapter 9

Imputation methods for categorical
variables

9.1 Introduction
We have introduced most of the commonly used imputation methods in the previous chap-

ters. However, all of the examples we have demonstrated so far are for continuous numerical
variables. Some of these imputation methods need to be adapted somewhat differently in
order to apply them to categorical variables, although the underlying theories are the same.
This chapter will not introduce any more imputation methods, but focuses on applying those
introduced imputation methods to categorical variables, again using the SURF as an example,
and comparing these imputed data estimates to the non-missing complete data estimates. This
is because we will eventually implement these imputation methods to impute missing data for
the Food Nutrition Environment Survey (FNES) data which only has categorical variables.

9.2 Types of categorical variable
First of all, we need to distinguish the two main types of categorical variables as this is

important for us to choose the proper imputation methods to impute missing categorical data.
The two main types of categorical variables are: nominal variables and ordinal variables.
“Nominal” is a Latin word for “name”. This means nominal data are items which are distin-
guished by names. For example, variables such as gender, ethnicity, are nominal variables.
One important characteristic of nominal variables is that there is no particular order among
categorical items. On the contrary, ordinal variables are set into some kind of order by their
position on an ordinal scale. For example, variables such as income band, qualification, are
ordinal variables. Income band can be ranked from “low income” to “high income”; quali-
fication can be ranked from “no qualification” to “degree or higher”. In the SURF data, the
qualification variable has four levels: none, school, vocational, and degree.

9.3 Single imputation methods for categorical data

9.3.1 Mode imputation
Mode imputation is the categorical missing data’s version of mean imputation. We know

that it is not possible to compute the mean or median value for a categorical variable. Hence,
instead of looking for mean and median values to replace missing data of a categorical vari-
able, missing values for that variable are imputed with the category that has the most of in-
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dividuals with the observed values, this is, mode imputation (Ramirez et al. 2011). Actually,
most papers in the literature consider mean/median/mode imputation to be the same impu-
tation method. Why? Let’s consider what mean/median imputation is actually doing. We
know that the mean or median for a numerical variable is the best guess of the centre of its
distribution. This means that for a symmetric unimodal distribution, most of data points are
centred around mean and median. Then, it makes sense to replace missing values with the
mean or the median, because these missing values have higher chance to be located close to
mean or median than to be located far away from them on a distribution. Therefore, we see
that the underlying theory here is to replace missing values with values which have higher
probability than others to be selected from a distribution. For categorical data, the category
with the highest frequency is the category that has higher chance than other categories to be
selected from a distribution, so it makes sense to replace missing values with the value of that
category. Hence, mode imputation and mean/median imputation have the same motivation of
selecting the most likely values of a distribution. Obviously, categorical missing data cannot
use mean or median imputation, but we have to point out that the mode imputation can be
used for numerical continuous variables as well (Torgo 2003). The way is to transform the
numerical continuous variables into categorical variables by grouping the numerical values
into ranges.

As with mean imputation which we discussed in Chapter 3, Section 3.3.1, there is uncon-
ditional and conditional mode imputation. Suppose Y is a categorical variable with n obser-
vations, and Y = (Yobs,Ymis), where Yobs are observed values, and Ymis are missing values.
There are r response observations, and n− r missing observations. If Y has K categories, with
category values (C1,C2, ...,CK), then unconditional mode imputation is:

Ymis,i =Ck (9.1)

if

k = argmax
k

r

∑
j=1

qk, j

where i = (1, ...,n), and j = (1, ...,r)

qk, j =

{
1 if Yobs, j =Ck

0 Otherwise

For conditional mode imputation, suppose we divide Y into g groups conditioning on some
independent variables X . Then

Yg,mis,i =Ckg (9.2)

if

kg = argmax
kg

r

∑
j=1

qk, jIi,g

where i = (1, ...,n), and j = (1, ...,r)

qk, j =

{
1 if Yobs, j =Ck

0 Otherwise

and

Ii,g =

{
1 if unit i in group g
0 Otherwise
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From Eq (9.1) and Eq (9.2), we see that unlike mean/median imputation for which there
can only be one mean or median for each variable, there can be more than one mode of a
variable, which means there is more than one category with the highest frequency. How do
we impute missing values if there is more than one mode? There are three methods. The
simplest one is to randomly select one category as the replacement values for all the missing
data, from categories with the same highest frequencies. Obviously, this method alters the
original distribution of proportion of each category1 which has multiple categories with
the same highest frequencies in only a single category with the highest frequency. If the
proportion of missing data is large, this method makes the estimates very different from the
unimputed data. Hence, a slightly better method is to impute missing values equally with
all the highest frequency categories. For example, if two categories have the same highest
frequencies, then half of the missing values will be imputed by using one of the categories,
and the other half of the missing values will be imputed by using the other categories. By
doing this, we have made sure that the imputed data still have the same or a very similar
distribution of proportions in each category as the unimputed data. But, do we really want
the imputed data to have exactly the same distribution of proportions in each category as the
original unimputed data? or, do we want some variation from the original unimputed data?
Hence, we have this last method which randomly selects one of the categories with the same
highest frequencies as the imputed value for each missing value. It is still highly likely that the
imputed data will have different distributions of proportions in each category, e.g. only have
one category with the highest frequency instead of having multiple categories with the same
highest frequencies. However, because we have a random selecting process for each missing
value, and each category with the highest frequency has the same chance to be selected each
time, it is likely that the imputed data will have roughly similar distributions of proportions
in each category as the original unimputed data (e.g. the category with the highest frequency
is only slightly bigger than the category with the next highest frequency), although it might
be a uni-modal instead of multi-mode distribution. It is really hard to say which of the last
two methods is the best method. This is because, in practice, different researchers may have
different needs or objections to what the distribution of proportions in each category of the
imputed data ought to be like.

As has been done in Chapter 4, we applied the unconditional and conditional mode impu-
tation methods to the “Qualification” variable of the SURF data. The Qualification variable is
a categorical variable which has four levels: “None”, “School”, “Vocational”, and “Degree”.
First, we applied the MCAR mechanism to the Qualification variable and created 50 MCAR
missing values out of 200 observations. Then, the unconditional and conditional mode im-
putation methods were used to impute those MCAR missing qualification data. The whole
process was repeated 1000 times. The following steps depict the exact process:

1The distribution of the proportion of each category is not the distribution of the data. After any imputation,
the distribution of the data will be different, but for a categorical variable, the distribution of the proportion of
each category can be the same.
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Recipe: Unconditional and conditional mode imputation

Step 1: create 50 MCAR missing observations for the Qualification variable.

Step 2: apply unconditional and conditional mode imputation to impute the missing
qualification data. For conditional mode imputation, the condition is on “Gen-
der” and “Marital status”.

Step 3: repeat step 1 to step 2 1000 times, which produces 1000 imputed qualification
variables.

Figure 9.1 and Figure 9.2 show the proportions to the total observations of the four levels
of the 1000 imputed qualification variables. The red lines represent the true proportions of
the four qualification levels of non-missing qualification variable. Similarly to the results for
the unconditional and conditional mean imputation in chapter 4, conditional mode imputa-
tion performs better, having less bias against the true proportion values than unconditional
imputation, although the missing data is MCAR.

The distributions of the four graphs in Figure 9.1 are somewhat strange. After imputation,
the proportions of the qualification categories: none and degree are less than the true pro-
portions of those two categories. Meanwhile, the proportions of the qualification categories:
school and vocational are either less or more than the true proportions of those two categories.
What are the causes of these patterns? For the rare categories2: none and degree, it is highly
likely that they are still rare after the creation of the MCAR missing observations, hence, these
rare categories will never be imputed under the scheme of the unconditional imputation. This
is why we see that their proportions after imputation are less than the true proportions. For the
categories with large proportions of observations: school and vocational, it is highly likely that
one of them will become the category with the most observed observations after the creation
of the MCAR missing observations. If one of them becomes the most populated category,
then unconditional imputation will impute all the missing observations with the value of the
most populated category. This means its proportion after imputation will be larger than the
true proportion. On the other hand, the category with the second most observations will suffer
the same fate as those rare categories which means that it will not be imputed. However, we
have simulated the process of creating 50 MCAR missing observations 1000 times and the
chance of one of the qualification categories: school and vocational becomes the most popu-
lated category is random, hence, both school and vocational categories have had the chance to
be imputed.

The distributions of the four graphs in Figure 9.2 shows that the conditional imputation
method produced much better estimates than the unconditional imputation method, although
the estimates are sill biased against the true estimates of the proportions. The improvement
is due to the imputation being conditioned on the “Gender” and “Marital” variables. This
means that we separate the data into several subgroups. Hence, there is a chance that the
rare categories might become the most populated categories in a subgroup. Then, we impute
missing observations in that subgroup with the value of the “new” most populated category.
In the end, the missing observations are not imputed by just a single category value. The
rare categories also have a chance to be imputed. This is why we see that the estimates of
the proportions moving towards the true proportions. However, the proportions of the rare

2Categories with small number of observations.
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categories: none and degree are small. Under the scheme of the MCAR mechanism, the
chance for them to become the dominant categories in a subgroup is slim. This is why that
majority of the proportions of none and degree after imputation are still less than the true
proportions of these two categories.

Please refer to Appendix E, section E.1.1 for the R code.
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Figure 9.1: The proportions of the four qualification categories. The 1000 qualification vari-
ables were imputed by unconditional mode imputation
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Figure 9.2: The proportions of the four qualification levels. The 1000 qualification variables
were imputed by conditional mode imputation
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9.3.2 Logistic regression imputation
When dealing with categorical response variables, logistic regression models are the com-

monly preferred models. Although there are other models which can take care of categorical
response variables under certain circumstances, such as the probit model, the complementary
log log model etc., we only concentrate on logistic regression models as one of our imputation
methods for categorical data.

As discussed in Chapter 3, the idea of regression imputation is that we first construct a
model based on the response and explanatory variables, then we use this model to “predict”
the response variable’s missing values given the observed explanatory variables’ values. How-
ever, for logistic regression models, the “predicted” values are probabilities πs. We want our
imputed values to be categories, not the probabilities.

This section will introduce two methods to convert the probability π into category values.
Let’s consider a simple binary logistic regression first. Suppose we have a binary response
variable Y = (Yobs,Ymis). Yobs are the observed Y values, and Ymis are the missing values.
Hence, for unit i with missing Y value:

logit[P(Yi,mis = 1)] = logit[πi] = log(
πi

1−πi
) = xT

i β (9.3)

where xi is a vector of explanatory variables, and β is the parameter vector. We can transform
Eq.(9.3) to:

πi =
exp(xT

i β )

1+ exp(xT
i β )

The response variable Y has two categories 0 and 1. The question is then how to convert πi
into either 0 or 1. We have three methods.

Method 1: If π̂i ≥ 0.5, then we assign Yi,mis = 1, otherwise, Yi,mis = 0. The justification for
this is that Yi,mis has more than a 50% chance to be 1, given P(Yi,mis = 1) = π̂i, if π̂i ≥ 0.5.
Although there is still less than a 50% chance that Yi,mis = 0, we still make Yi,mis = 1, because
we are more than likely to get Yi,mis = 1 than Yi,mis = 0, if we run the survey again, and given
the same explanatory variables. The problem of Method 1 is that the choice of either Yi,mis = 1
or 0 is somewhat arbitrary. It is sure that if π̂i ≥ 0.5, then Yi,mis is highly likely to be 1, but we
cannot exclude the possibility that Yi,mis could be 0 by a probability of less than 50%. Hence,
we have Method 2.

Method 2: We can first randomly draw a value u from a uniform distribution, (u ∼ (0,1)).
If π̂i ≥ u, we have Yi,mis = 1, otherwise 0. This Method 2 fixes this problem of the Method
1 by randomly drawing from the uniform distribution. Hence, if π̂i ≥ 0.5, we can still get
Yi,mis = 0, although the chance of getting a 0 is smaller than getting a 1.

Figure 9.3 shows the results of the proportions for male and female of the 1000 simulated
SURF datasets which have 50 MCAR missing data for their Gender variable. The red lines
represent the true proportions for male and female from the original complete SURF data. As
in the previous results in chapter 4, the regression method produced unbiased estimates, that
is, all the 1000 proportions are centred around the true proportions.

The R code is in Appendix E section E.1.2.
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Figure 9.3: The proportion of Male and Female. The 1000 Gender variables were imputed by
the logistic regression imputation method

9.3.3 The Nearest-Neighbour hot deck imputation methods
Intuitively, it should be straightforward to apply hot deck imputation method to categorical

variables with missing data. The basic idea of hot deck imputation is to draw observed values
of a variable randomly to replace the missing data. Hence, we can use the same method
for any types of data. This is true for most hot deck imputation methods. However, this is
not exactly true for the Nearest-Neighbour hot deck imputation method. We have written up
the definition of the Nearest-Neighbour hot deck imputation in Chapter 3. It is a distance
measure between observations, and imputes the value of a respondent who is “closest” to the
observation with the missing item”. The distance is measured by using the distance function,
such as Mahalanobis distance.

d(i, j) = (xi− x j)
TV̂ar(xi)

−1(xi− x j)

where V̂ar(xi) is an estimate of the covariance matrix of xi.

Clearly, the Mahalanobis distance function which we have stated above does not work if
the xs are categorical variables, or a mixture of categorical and numerical variables. Hence,
researchers have developed several distance functions for categorical variables. In this paper,
we introduce the Gower distance function which has been used in the R package “StatMatch”.
The Gower distance function is derived from the Gower’s dissimilarity coefficient (Gower
1971), by the Kaufman & Rousseeuw (1990).

Suppose a data matrix Y has k categorical variables and n units, the Gower’s distance func-
tion finds the dissimilarity between the ith and jth unit by obtaining a weighted sum of dis-
similarities for each variable:

d(i, j) =
∑k δi jkdi jk

∑k δi jk
(9.4)

where di jk is the distance between the ith and jth unit computed considering the kth vari-
able, δi jk is the weight. Normally, the weight δi jk equals 1 unless yik or y jk is missing. The
computation of di jk is different for different types of data.
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• if the variable k is nominal categorical variable, then di jk = 0 if yik = y jk, otherwise
di jk = 1

• if the variable k is continuous numeric variable, then:

di jk =
|yik− y jk|

Rk

where Rk is the range of the variable k.

• if the variable k is ordinal categorical variable, and the values are substituted with the
corresponding position index rik in the factor levels, then we create a new value zik,
where

zik =
(rik−1)

max(rik)−1
and the di jk is computed by treating the zik as continuous numeric variable.

9.4 Likelihood based and Bayesian iterative simulation im-
putation methods for categorical data

9.4.1 EM algorithm for categorical variable
Suppose the random variable Y is a binary categorical response variable, has n observations,

and X is the vector of explanatory variables. Assume the observations i, i = 1, ...,n, are
independent, and Yi|X ∼ Bernoulli(πi). From Eq.(9.3), we know that:

πi =
exp(xT

i β )

1+ exp(xT
i β )

=
1

1+ exp(−xT
i β )

where β denotes the vector of parameters to be estimated.

Since each Yi is a Bernoulli random variable, then its probability distribution is:

f (Yi) = π
yi
i (1−πi)

1−yi, Yi = 0,1, i = 1, ...,n

Given that observations are independent, the likelihood function is:

L(yi) =
n

∏
i=1

π
yi
i (1−πi)

1−yi

Then, the log of the likelihood function is:

`(yi) = logL(yi) =
n

∑
i=1

log(πyi
i (1−πi)

1−yi)

Substituting in the formula for πi = 1/(1+ exp(−xT
i β )):

logL(yi) =
n

∑
i=1

log
(
π

yi
i (1−πi)

1−yi
)

=
n

∑
i=1

log

((
exp(xT

i β )
)yi

1+ exp(xT
i β )

)

=
n

∑
i=1

yixT
i β −

n

∑
i=1

log
(
1+ exp(xT

i β )
)
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Now, suppose we have r observed units, and n−r missing observations, then the log-likelihood
function for the complete variable Y is:

`(yi|xi,β ) =
r

∑
i=1

yixT
i β −

r

∑
i=1

log
(
1+ exp(xT

i β )
)
+

n−r

∑
i=r+1

ŷixT
i β −

n−r

∑
i=r+1

log
(
1+ exp(xT

i β )
)

(9.5)

Using some initial value for β , say β 0, the E-step of EM algorithm requires the computation
of Q(β |β 0) = E

[
`(yi|xi,β

0)
]
, the expectation of the complete-data log-likelihood `(yi|xi,β ),

as discussed in Chapter 3 and Chapter 6. The expectation is:

E (`(yi|xi,β ))=
r

∑
i=1

yixT
i β−

r

∑
i=1

log
(
1+ exp(xT

i β )
)
+

n−r

∑
i=r+1

E[yi]xT
i β−

n−r

∑
i=r+1

log
(
1+ exp(xT

i β )
)

This means this E-step for logistic regression is performed by simply replacing each missing
Y values by its expectation conditional on xi, where:

E
(
yi|xi,β

0)= Pr(Yi = 1|xi,β
0) =

1
1+ exp(−xT

i β 0)

The M-step maximizes the function in Eq.(9.5) over β . To find the value of β that max-
imizes the function in Eq.(9.5), people normally use iteratively re-weighted least squares
(IRLS). As Kotz & Johnson (1983) described, IRLS is a numerical algorithm that maximizes
any specified function using a standard weighted least squares method. We show how the
exact IRLS algorithm works in the following paragraphs.

Therefore, there are two iterative loops regarding the parameters β , one big and one small.
The big iterative loop is the EM algorithm. It is already clear to us that we need to loop
through the E-step and the M-step, until the convergence of the algorithm which is attained
when there is a sufficiently small difference between `(yi|xi,β

t+1)− `(yi|xi,β
t).

The unfamiliar part is the small loop (IRLS) to find the estimate β in the M-step. We outline
the iterative solution to computing the value of β :

Step 1: Choose initial estimates of the regression coefficients β by using the observed
data only

Step 2: At each iteration t, update the regression coefficients:

β
t+1 = β

t +(XTV tX)−1XT (yt−π
t)

where
X is the matrix of explanatory variables values
yt is the response variable at iteration t, the missing Y values were replaced
by the expectation E [yi|xi,β

t ]
πt is the vector of fitted response probabilities at iteration t
V t is a diagonal matrix, with diagonal entries πt

i (1−πt
i ).

Step 3: Repeat step 2 until |β t+1−β t | is sufficiently close to 0
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Unlike numerical variables, there is a problem in applying the EM algorithm to the logistic
regression with missing response variables. The E

(
yi|xi,β

0)=Pr(Yi = 1|xi,β
0) is in the form

of probability. What we really want is to replace the missing Y with its categorical values, not
the probabilities. However, we cannot just simply use the techniques we have introduced in
Section 9.3.2 to convert the probability π̂i into categorical values. For example, suppose the
response variable has categorical values 1 or 0, and the cut off probability C = 0.5 which is
fixed, then we set:

Ymis,i =

{
1 π̂i >C
0 Otherwise

After the first EM iteration, the Ymiss will be the same for the following iterations, or in other
word, the EM algorithm converges immediately. Let’s break down the EM algorithm step by
step to show how this happens.

1. Replace missing Y 0
mis by its expectation probability p̂i0 conditional on X and convert its

values to either 0 or 1 according to the cut off probability C.

2. Estimate parameters β 1

3. Re-estimate the missing Ymis assuming the new parameter estimates β 1s are correct

4. Re-estimate parameters β

5. ...

The problem occurs at step 3 “Re-estimate the missing Ymis”. Unlike the EM algorithm for the
simple numerical regression model where the original expected values (usually the mean of
observed units) will be replaced by different values, the updated Y 1

mis for a categorical response
variable will be the same as the replaced Y 0

mis from step 1. This is because the β 0 and X is
used to compute the Y 0

mis, and regressing (Yobs, Y 0
mis) on X gives us the β 1 which is equal to the

β 0. Therefore, step 3 gives us Y 1
mis = Y 0

mis. In order to solve this problem, Anderson & Hardin
(2009) propose to update the cut off probability C according to the updated Y . Hence, instead
of having fixed cut off probability C, the C is defined by:

C =
∑

n
i=1Yi

n
(9.6)

where n is the sample size and

Yi =

{
1 Yi = 1
0 Otherwise

Once Ymis is updated, C will be updated as well. Then, step 3 gives us a different Y 1
mis than

Y 0
mis.

Again, we create 1000 replicate data with MAR missingness from the SURF data. The
missingness for “Gender” depends on the “Qualification” with probabilities of missingness
0.2 for “None qualification”, 0.3 for “School level qualification”, 0.1 for “Vocational level
qualification”, and 0.1 for “Degree level qualification”. So, the Gender is our response vari-
able Y , and Qualification is our explanatory variable X . Then, we applied the EM algorithm
to impute the missing gender values, and compute the ratio of “Female/Male” for each of the
1000 replicate data and the original SURF data. Figure 9.4 is the histogram of the ratio of
“Female/Male” of the 1000 replicate data, the red vertical line represents the “Female/Male”
ratio of the original SURF data. As can be seen, the imputation result is unbiased.
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The R code is in Appendix E section E.2.1

The ratio of female over male
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Figure 9.4: The ratio of counts of females over males. The 1000 Gender variables were
imputed by EM imputation method

9.4.2 Bayesian iterative simulation methods for categorical variables with
missing data

In Chapter 7, we have given some detailed discussion about Bayesian iterative simulation
methods. In this section we apply these methods to categorical variables.

First, let’s review the key ideas of Bayesian iterative simulation methods. As discussed in
Chapter 7, an important step for Bayesian iterative simulation methods is to find the posterior
distribution for both parameters θ and missing data Ymis. This is given by Eq.(7.1):

p(θ ,Ymis|Yobs) ∝ p(θ) f (Ymis|θ) f (Yobs|θ)

Then, a rough description is: randomly draw Ymis from its conditional distribution at itera-
tion t:

Ymis ∼ p(Ymis|θ t)

At iteration t +1, we randomly draw θ t+1 from its conditional posterior distribution given the
updated Y t

mis and observed Yobs from the previous iteration.

θ
t+1 ∼ p(θ |Y t

mis,Yobs)

Now, let’s consider a simple categorical variable with missing data. Suppose the response
variable Y in a regression model is dichotomous (0,1). This means we have a binary logistic
regression. There are n observations, r observations were observed for Y , and n− r were
missing. We still use Yobs to denote observed data, and Ymis for missing data. We also assume
all the explanatory variables X are observed. The likelihood function for Yobs and Ymis can be
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expressed as:

f (Yobs|β ) =
r

∏
i=1

π
yi
i (1−πi)

1−yi

f (Ymis|β ) =
n

∏
i=r+1

π
yi
i (1−πi)

1−yi

where

πi =
exp(xT

i β )

1+ exp(xT
i β )

=
1

1+ exp(−xT
i β )

and β are the logistic regression coefficients.

For simplicity reasons, we choose uniform prior as our prior distribution, then we have the
improper prior p(β ) ∝ 1. Hence, according to Eq. (7.1), the full posterior distribution is:

p(β ,Ymis|Yobs) ∝ p(β ) f (Ymis|β ) f (Yobs|θ)

∝

r

∏
i=1

π
yi
i (1−πi)

1−yi
n

∏
i=r+1

π
yi
i (1−πi)

1−yi

=
n

∏
i=1

(
exp(xT

i β )

1+ exp(xT
i β )

)yi(
1−
(

exp(xT
i β )

1+ exp(xT
i β )

))1−yi

(9.7)

The distribution of Ymis conditional on β is from Bernoulli distribution. Hence:

Ymis|β ∼ Bernoulli(1,
exp(xT

i β )

1+ exp(xT
i β )

)

However, it is not easy to draw β from the posterior distribution given in Eq (9.7).

Sampling β from unfamiliar distribution

The posterior distribution of β is complicated and is not a simple member of a well known
family of exponential distributions. As discussed in Chapter 7, the Metropolis-Hastings (MH)
algorithm can be applied in the situation of such unknown distributions. However, Groe-
newald & Mokgatlhe (2005) proposed a method for the simulation of samples from the exact
posterior distributions of the parameters in logistic regression. This means we can use Gibbs
sampler to sample β even if the distribution is unknown to us. In this section, we will intro-
duce the use of MH algorithm first, then discuss the Groenewald and Mokgatlhe’s method.

Metropolis-Hastings algorithm for β simulation.
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Sample β by using the MH algorithm

Step 1: Choose initial estimates of the regression coefficients β , β ∗ = β 0. This could
be extracted from the logistic model based on the r observed data

Step 2: Select a proposal distribution q(β ∗|β t). We propose that β come from a nor-
mal distribution N(β t ,Σβ ).

Step 3: Randomly draw β from the proposal distribution. That is, β t+1 ∼ N(β t ,Σβ ).
Σβ can be kept constant during the process

Step 4: The acceptance ratio r is calculated:

r =
f (Y |β t+1)q(β t+1|β t)

f (Y |β t)q(β t |β t+1)

Step 5: Generate u from U ∼ Uniform(0,1)

Step 6:

β
t+1 =

{
β ∗ if u≤ min(1,r)
β t Otherwise

Now, let’s combine the step of drawing Ymis and the step of drawing β to form the complete
Bayesian iterative simulation for the missing data, which can be also referred as the Data
Augmentation (DA) algorithm we have introduced in previous chapters. Again, we applied
the DA algorithm to the 500 replicate SURF data with MAR missingness. The missingness
structure is the same as the description given in Section 9.4.1, the Gender is the response
variable Y , and Qualification is the explanatory variable X , for the logistic regression model
we use. Figure 9.5 displays the results of the ratio of counts of females to males for the 500
replicate SURF data. The red vertical line represents the true ratio of counts of females to
males. As shown, the DA imputation result is unbiased.
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The ratio of female over male(Bayesian MH)
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Figure 9.5: Applying Data Augmentation(DA) to impute missing values for the SURF Gender
variables by using the MH algorithm. The DA is applied to 500 replicate SURF data

Let’s return to the discussion of sampling β from an unfamiliar distribution. The Groe-
newald & Mokgatlhe (2005) method can be used for dichotomous (or binary) response vari-
ables, polychotomous response variables and ordinal responses. We only introduce its ap-
plication for dichotomous response variables because this is the only scenario we need to
consider within the scope of this thesis. Suppose we construct a logistic regression based on a
data matrix which has n observations. The response variable Y is a binary categorical variable:

Yi =

{
1 with probability πi

0 with probability 1−πi

and
log

πi

1−πi
= xT

i β

where i= 1,2, ...,n, X is the matrix of the explanatory variables, and β is a vector of regression
coefficients. Then, assume:

logit(πi) = xT
i β ⇒ πi =

exp(xT
i β )

1+ exp(xT
i β )

= FZ(xT
i β )
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where FZ(z) is the Cumulative Density Function (CDF) of random variable Z. Then, its prob-
ability density function (pdf) is:

fZ(z) =
d
dz

FZ(z)

=
ez(1+ ez)− (ez)2

(1+ ez)2

=
ez

(1+ ez)2

where ez = exp(xT
i β ). So

πi = FZ(xT
i β )

=
∫ xT

i β

−∞

dFZ

dz
dz

=
∫ xT

i β

−∞

fZ(z)dz

=
∫ FZ(u)

0
du, u = FZ(z), 0≤ u≤ 1

=
∫ exp(xT

i β )

1+exp(xT
i β )

0
du

= P
(

U <
exp(xT

i β )

1+ exp(xT
i β )

)
=
∫ 1

0
I
(

u <
exp(xT

i β )

1+ exp(xT
i β )

)
du

where U is a Uniform (0,1) distribution.

Now, we introduce an independent uniformly distributed latent variable u = (u1,u2, ...,un).
Then, the pdf is:

p(ui) = I(0≤ ui ≤ 1)

Hence, Y , where yi = (y1,y2, ...,yn) given that u can be expressed as:

p(Yi = 1|ui) =

{
1 ui ≤ FZ(xT

i β )

0 ui > FZ(xT
i β )

p(Yi = 0|ui) =

{
1 ui > FZ(xT

i β )

0 ui ≤ FZ(xT
i β )

Then

p(Yi = yi|ui) = yiI(ui ≤ FZ(xT
i β ))+(1− yi)I(ui > FZ(xT

i β ))

= I(yi = 1)I(ui ≤ FZ(xT
i β ))+ I(yi = 0)I(ui > FZ(xT

i β ))

Hence, the joint probability density function of Y and u, given x and β is:

p(yi,ui|xT
i β ) = p(yi|ui)p(ui)

=
[
(yi = 1)I(ui ≤ FZ(xT

i β ))+ I(yi = 0)I(ui > FZ(xT
i β ))

]
I(0≤ ui ≤ 1)

129



Then, the likelihood of p(yi,ui|xT
i β ) is:

p(y,u|β ) =
n

∏
i=1

[
(yi = 1)I(ui ≤ FZ(xT

i β ))+ I(yi = 0)I(ui > FZ(xT
i β ))

]
I(0≤ ui ≤ 1)

The Bayesian theory in Chapter 3 section 3.3.3 tells us that the probability of β given Y and u
can be attained by:

p(β |y,u) ∝ p(β )p(y,u|β ) (9.8)

∝ p(β )
n

∏
i=1

[
I
(

ui ≤
exp(xT

i β )

1+ exp(xT
i β

)
I(yi = 1)+ I

(
ui >

exp(xT
i β )

1+ exp(xT
i β )

)
I(yi = 0)

]
× I(0≤ ui ≤ 1)

(9.9)

∝ p(β )
n

∏
i=1

[
I
(

xT
i β ≥ log

(
ui

1−ui

))
I(yi = 1)+ I

(
xT

i β < log
(

ui

1−ui

))
I(yi = 0)

]
× I(0≤ ui ≤ 1)

(9.10)

where p(β ) is the prior probability of β and I(X ∈ A) is the indicator function that is equal to
1 if X ∈ A, and 0 otherwise.

According to Equation (9.9), ui is a uniform distribution, given β and y.

ui|β ,yi ∼

Uniform
(

0, exp(xT
i β )

1+exp(xT
i β )

)
if yi = 1,

Uniform
(

exp(xT
i β )

1+exp(xT
i β )

,1
)

if yi = 0,
i = 1,2, ...,n (9.11)

This is because if yi = 1, then I(yi = 0) = 0. This makes I
(

ui >
exp(xT

i β )

1+exp(xT
i β )

)
I(yi = 0) = 0,

and I
(

ui ≤
exp(xT

i β )

1+exp(xT
i β

)
I(yi = 1) becomes I

(
ui ≤

exp(xT
i β )

1+exp(xT
i β

)
which tells us that ui needs to be

smaller than or equal to exp(xT
i β )

1+exp(xT
i β

, given yi = 1. Then, we have I
(

ui ≤
exp(xT

i β )

1+exp(xT
i β

)
× I(0 ≤

ui ≤ 1), where I(0≤ ui ≤ 1) defines the range of ui is between 0 and 1. Hence, if yi = 1, then

ui|β ,y∼ Uniform
(

0, exp(xT
i β )

1+exp(xT
i β )

)
. The same logic applies to the case where yi = 0.

Suppose there are p explanatory variables, β = (β0,β1, ...,βp), then xT
i = (xi0,xi1, ...,xip)

T ,
from Equation (9.10) we have that

xT
i β =

p

∑
j=0

xi jβ j ≥ log
ui

1−ui
, if yi = 1,

xT
i β =

p

∑
j=0

xi jβ j < log
ui

1−ui
, if yi = 0,

Hence

βk ≥
1

xik

(
log

ui

1−ui
−

p

∑
j 6=k

xi jβ

)
, if yi = 1,

βk <
1

xik

(
log

ui

1−ui
−

p

∑
j 6=k

xi jβ

)
, if yi = 0,
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for all i, assuming xik 6= 0. Let Ak and Bk be the sets:

Ak = (i : ((yi = 1)∩ (xik > 0))∪ ((yi = 0)∩ (xik < 0))) ,
Bk = (i : ((yi = 0)∩ (xik > 0))∪ ((yi = 1)∩ (xik < 0))) ,

Then, assuming a Jeffreys prior (Jefferys 1939), p(β ) ∝ 1, for β , the conditional distribution
of βk, given all the other β ’s and u, is the uniform distribution:

βk|β(−k),u,y∼ Uniform(ak,bk),k = 0,1,2, ..., p. (9.12)

where

ak = max
i∈Ak

[
1

xik

(
log

ui

1−ui
−

p

∑
j 6=k

xT
i jβ

)]
(9.13)

and

bk = min
i∈Bk

[
1

xik

(
log

ui

1−ui
−

p

∑
j 6=k

xT
i jβ

)]
(9.14)

If the xi j is a categorical dummy variable, which means the xi j has values 1 and 0 only, then
we can remove the fraction 1

xik
from the computation of Equation (9.13) and Equation (9.14).

Now, the Gibbs sampler can be applied by drawing from uniform distributions. However,
the limitation of Groenewald & Mokgatlhe (2005) method is that we have to make sure that
the explanatory variables X contain no zero values, otherwise the algorithm will not work.
This shortcoming limits the use of this method to be applied to categorical variables. We
can use this method for a categorical response variable, and numerical explanatory variables,
but not if the explanatory variables are also categorical. This is because when forming the
regression model with categorical explanatory variables, we need to create dummy variables
Vdummy. If a categorical explanatory variable has K = (1, ...,k) levels, then there will be k
dummy variables with each variable corresponding to each of the k levels, where Vdummy =
(Vdummy,1, ...,Vdummy,k). Then, a unit with the categorical variable equal to level 1, will have
the Vdummy,1 = 1, but other dummy variables will have value equal to 0. This violates the
condition that the explanatory variables X contain no zero values.

9.5 Conclusion
In this chapter, we have demonstrated in detail of how to apply various imputation methods

to categorical data. Although the fundamental concepts are the same when applying these
imputation methods to categorical data, the exact procedures are somewhat different and we
think it is worth spending time exploring them before applying these methods to the FNES
data.

In the following chapters, we will try to apply all the imputation methods which have been
introduced so far to the FNES data.
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Chapter 10

Introduction to the Food Nutrition
Environment Survey (FNES)

10.1 Purpose
In this chapter, we introduce the background of the Food Nutrition Environment Survey

(FNES), then we impute its missing survey data in the following chapter. The purpose of
doing this is to reduce non-response bias and increase the utility of data with missing values.

10.2 Survey background
The FNES is a survey of early childhood centres and schools and the food and nutritional

services that they provide for their pupils. The 2007 and 2009 FNES surveys were managed
by the Ministry of Health. The FNES aimed to collect information on key baseline indicators,
follow-up indicators and experiences of key stakeholders in relation to the implementation of
Healthy Eating Healthy Action (HEHA) and Mission-On initiatives within school and Early
Childhood Education (ECE) services. In other words, it aimed to collect the food and nutrition
environment within schools and ECE services in New Zealand.

The survey results will be used to describe the food and nutrition environment in schools
and ECE services, contribute to the food and nutrition policies and provide such information
to other research.

10.3 Periods
The research reported in this project uses data from both the 2007 and 2009 FNES surveys.

10.4 Target Population
The target population has two parts: school and ECE. The school target population for the
2007 and 2009 FNES surveys were all primary and secondary schools in New Zealand. Ex-
cluded were the Correspondence School, Teen Parent Units, hospital-based schools or health
camps. The ECE services target population was all licensed and/or chartered ECE services.
Excluded were licence-exempt ECE services such as Playgroups, Ngā Puna Kōhungahunga
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and Pacific Island ECE Groups, some Play centres and licence-exempt Kōhanga Reo. Hospital-
based ECE services and the Correspondence ECE services were also excluded from the target
population.

10.5 Survey Population
The survey population was the same as the target population with some further exclusions.
Schools and ECE services on outlying islands of New Zealand were excluded from the survey
frame. Other ECE services excluded were mobile kindergartens. These exclusions were for
practical reasons, e.g. too expensive and difficult to sample remote areas.

10.6 Sample Frame
The sample frame for both surveys was constructed from the Ministry of Education’s (MoE)
directories of schools and ECE services available from MoE’s website. There were 3778 ECE
services, 2082 primary schools and 481 secondary schools in the sample frame in 2007, and
4103 ECE services, 2065 primary schools and 485 secondary schools in the sample frame in
2009.

For the research purpose of this paper, we exclude Te Kōhanga Reo ECE services from our
FNES sample. This is because the Khanga Reo ECE services have actually been excluded
from the sample frame in 2007 and 2009 (Pledger et al. 2010).

The reduced sample frame for each stratum for both FNES survey is displayed in Table
10.1.

The 2007 and 2009 FNES surveys have used essentially the same sample frame. Hence,
both surveys have the potential to select the same sample units and there was no overlap
control with the two FNES surveys.

Table 10.1: Sample frame for both 2007 and 2009

Type Stratum 2007 2009 Matched
sample frame sample frame sample frame

ECE Education and Care Centres (ECE1) 1961 2230 1907
Kindergartens (ECE2) 613 623 619

Home-based childcare (ECE3) 237 309 226
Playcentre (ECE4) 473 462 458

TOTAL 3284 3651 3210
Schools Primary 2082 2065 2053

Secondary 481 485 481
TOTAL 2563 2550 2534
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10.7 Sample Size
Table 10.2 shows the selected sample sizes of 2007 and 2009. The selected sample size of

2007 has 2308 selected sample units and the selected sample size of 2009 is 2312. Of those
sample units in 2007, 827 are ECE services, 1000 are primary schools, and 481 are secondary
schools. Of those sample units in 2009, 827 are ECE services, 1000 are primary schools, and
485 are secondary schools. In addition, 218 ECE services and 950 schools are selected in both
2007 and 2009 FNES surveys.

The final sample size (Table 10.3) of the 2007 survey has 1307 respondents and there are
1774 respondents in the 2009 survey. Of those respondents in 2007, 562 are ECE services,
518 are primary schools and 277 are secondary schools. Of those respondents in 2009, 637
are ECE services, 783 are primary schools and 354 are secondary schools. Furthermore, 109
ECE services and 373 schools responded both the 2007 and 2009 FNES surveys.

Table 10.2: Selected sample size for both 2007 and 2009

Type Stratum 2007 2009 2007&2009
selected sample size selected sample size matched sample size

ECE ECE1 345 345 54
ECE2 193 193 59
ECE3 120 120 44
ECE4 169 169 61

TOTAL 827 827 218
Schools Primary 1000 1000 478

Secondary 481 485 472
TOTAL 1481 1485 950

Table 10.3: Final sample size for both 2007 and 2009

Type Stratum 2007 2009 2007&2009
final sample size final sample size matched final sample size

ECE ECE1 275 281 35
ECE2 156 170 39
ECE3 40 66 7
ECE4 91 120 28

TOTAL 562 637 109
Schools Primary 518 783 213

Secondary 227 354 160
TOTAL 745 1137 373
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10.8 Matching process
The matched sample frame, the matched selected sample and the matched actual sample were
produced by using the 2007 and 2009 FNES sample frames and selected and actual sample
information. We matched the sample frames and samples by using the unique school/ECE
identifier in both FNES datasets. Only the units with the same identifiers in both 2007 and
2009 FNES surveys could be matched. Figure 10.1 to Figure 10.4, and Table 10.4 to Table
10.7 display the matched results for the selected samples and responding samples.

2007 and 2009 FNES Surveys

(Selectedl Sample Size)

(Selectedl Sample Size)
(Matchaed Selected Sample Size)

827

827
218

2007  Selected ECE unitss

        2009 ECE units

Selected ECE services of both the

Figure 10.1: Selected sample size of ECEs in 2007, 2009 and size of ECEs in both the 2007
and 2009 FNES

Table 10.4: Selected sample size of ECEs in 2007, 2009 and size of ECEs in both the 2007
and 2009 FNES

Unit not in 09 Unit in 09 Total
Unit not in 07 0 609 609

Unit in 07 782 218 1000
Total 782 827 1609

2007 and 2009 FNES Surveys

2007  Selected School unitss
(Selectedl Sample Size)

        2009 School units
(Selectedl Sample Size)

(Matchaed Selected Sample Size)

Selected Schools units of both the

1481

1485

950

Figure 10.2: Selected sample size of schools in 2007, 2009 and size of schools in both 2007
and 2009 FNES

135



Table 10.5: Table of selected sample size of schools in 2007 and 2009 and size of schools in
both 2007 and 2009 FNES

Unit not in 09 Unit in 09 Total
Unit not in 07 0 535 535

Unit in 07 531 950 1481
Total 531 1485 2016

Figure 10.3, Figure 10.4, Table 10.6 and Table 10.7 display the counts of unit response
units. Although there was unit non-response, in this thesis we ignore this and concentrate on
imputation for item non-response. Question level response rates are given in Chapter 11.

2007 ECE Services Respondents
(Final Sample Size)

562

2009 ECE Services Respondents
(Final Sample Size)

637

ECE Services Respondents of both the
2007 and 2009 FNES Surveys

(Matchaed Final Sample Size)

109

Figure 10.3: Responding sample size of ECEs in 2007, 2009 and size of ECEs that responded
to both the 2007 and 2009 FNES

Table 10.6: Responding sample size of ECEs in 2007, 2009 and size of ECEs that responded
to both the 2007 and 2009 FNES

Unit not in 09 Unit in 09 Total
Unit not in 07 0 528 528

Unit in 07 451 109 560
Total 451 637 1088
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(Final Sample Size)

(Final Sample Size)

2007 and 2009 FNES Surveys
(Matchaed Final Sample Size)

2007  School Respondents

2009 School Respondents

Schools Respondents of both the

745

1137

373

Figure 10.4: Responding sample size of schools in 2007, 2009 and size of schools that re-
sponded to both the 2007 and 2009 FNES

Table 10.7: Responding sample size of schools in 2007, 2009 and size of schools that re-
sponded to both the 2007 and 2009 FNES

Unit not in 09 Unit in 09 Total
Unit not in 07 0 764 764

Unit in 07 370 373 743
Total 370 1137 1507

10.9 Sample Weights
Suppose there is a well mixed glass of honey water, a spoon of that honey water should

have the same honey and water ratio as the rest of the honey water in the glass. Hence,
we can measure how much honey is in the water by investigating that spoon of honey water
instead of the whole glass, given we know that the glass can pour w = 20 spoons. This
is a simple example of sampling and weighting. The glass of honey water is our interest
population, the spoon of honey water is our sample and the number of spoons can be poured is
our sample weight w. Of course, the FNES samples are far more complex than a glass of honey
water, but the underlying assumption is still the same. We draw samples of ECE centres and
schools from their sample frame, and assume that our sample contains all the characteristics
the population does. Then, we estimate the population characteristics by scaling up the sample
to the population. If the sample size is n, then each unit i has a weight wi, representing that
there are wi such units in the population of size N.

N =
n

∑
i=1

wi

Hence, if we want to measure the population total of Y , where Y is a variable, then

TotalY =
n

∑
i=1

wiyi

where yi is the sampled value for unit i.

For a simple random sample of size n, the weight for each sample unit is the same wi =N/n.
The FNES is a stratified sample. Hence, the weights are different for units in different strata.
Let K = 1, ...,k be the stratum number, then for unit i of stratum k, the weight is wik = Nk/nk.

Table 10.8 and Table 10.9 show the selected sample weights and matched selected sample
weights for both 2007 and 2009 FNES surveys.
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Table 10.8: Sample selection weights for both 2007 and 2009

Type Stratum 2007 selected sample wgt 2009 selected sample wgt
ECE ECE1 5.684057971 6.463768116

ECE2 3.176165803 3.227979275
ECE3 1.975 2.575
ECE4 2.798816568 2.733727811

Schools Primary 2.082 2.065
Secondary 1 1

Table 10.9: Matched Sample selection weights for both 2007 and 2009

Type Stratum 2007 matched sample wgt 2009 matched sample wgt
ECE ECE1 36.31481481 41.2962963

ECE2 10.38983051 10.55932203
ECE3 5.386363636 7.022727273
ECE4 7.754098361 7.573770492

Schools Primary 4.355648536 4.320083682
Secondary 1.019067797 1.027542373

As discussed in Section 3.2.3, Chapter 3, “Reweighting” is a method for dealing with miss-
ing data. Some researchers classify it as one of the data deletion methods. As with other
data deletion methods, reweighting deletes collected information if the missing data is item
non-response. Please refer to Chapter 3 for detailed discussions. However, reweighting can
be considered as one of imputation methods when the missing data is unit non-response.
As described in Section 3.2.3, Chapter 3, reweighting increases wi to count the number of
non-response, so the new weight w̃i represents the unobserved population units and the nonre-
spondents. Suppose there are rk response units in stratum k, the new weight w̃ik for the FNES
sample can be computed as:

w̃ik = Nk/rk

Table 10.10 and Table 10.11 show the responding sample weights (or final sample weight)
and matched responding sample weights for both 2007 and 2009 surveys

Table 10.10: Responding Sample weights for both 2007 and 2009

Type Stratum 2007 final sample wgt 2009 final sample wgt
ECE ECE1 7.130909091 7.935943

ECE2 3.929487179 3.664706
ECE3 5.925 4.681818
ECE4 5.197802198 3.85

Schools Primary 4.019305019 2.637292
Secondary 2.118942731 1.370056
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Table 10.11: Matched responding Sample weights for both 2007 and 2009

Type Stratum 2007 matched FinalWgt 2009 matched FinalWgt
ECE ECE1 56.02857143 63.71429

ECE2 15.71794872 15.97436
ECE3 33.85714286 44.14286
ECE4 16.89285714 16.5

Schools Primary 9.774647887 9.694836
Secondary 3.00625 3.03125

10.10 Sample Design
The overall sample design for both FNES surveys was a stratified design using seven strata
consisting of five categories of ECE service types, plus a stratum for primary schools and a
full-coverage stratum for secondary schools. The systematic random sample method was used
for all non full-coverage strata. The five categories of ECE service types are shown in table
10.12. However, prior to fieldwork in 2007 it was decided to have a separate data collection
method for the Kōhanga Reo ECE services in the sample frame. For 2009, Kōhanga Reo were
again excluded from this sample. Hence, there were actually only six strata.

Table 10.12: The five categories of ECE service types

ECE Stratum ECE service type
ECE1 Education and Care Centres
ECE2 Free Kindergarten
ECE3 Home-based childcare
ECE4 Playcentre
ECE5 Te Kōhanga Reo

10.11 Questionnaire
Most of the questions in both FNES surveys were closed (i.e.. multiple choice with tick box
options). There are only a few open-ended questions. Respondents need to self-complete their
questionnaires. Two forms of the questionnaire were used: one was hard copy and the other
was on-line-based. The respondents had the choice of completing either a hard copy or an
online questionnaire. To avoid duplicate responses, a unique code is used for the hard copy
questionnaire and a unique identifier is also used for the online-based questionnaire.
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Chapter 11

Imputation of FNES missing data

11.1 Exploratory Data Analysis (EDA)
We have introduced the general survey background of the FNES in the previous chapter. In

this chapter, we impute some of its missing data. The first step of imputation is to understand
the data set. Therefore, this section focuses on describing the basic characteristics of the FNES
data. This information come in handy when we need to pick the most appropriate imputation
methods for the FNES missing data. There are four FNES sample datasets: the FNES ECE
2007, the FNES ECE 2009, the FNES School 2007, and the FNES School 2009. Each of these
datasets contains: identification variables, question variables and design variables. Please
refer to Table 11.3 and Table 11.4 for detailed information.

As introduced in Chapter 2, there are two types of missing data: unit non-response and
item non-response. Let’s start with the description of the unit non-response case. Table 11.1
and Table 11.2 display the sample frame, sample size, responded sample size, and response
rate for the 2007 and 2009 FNES. As indicated in the Chapter 10, we do not impute unit
non-response in this thesis, but it has been dealt with by using the reweighting method.

Table 11.1: The sample frame, sample size, responded sample size, and response rate of the
FNES 2007

Type Stratum Sample Frame 07 Sample Size 07 Actual Sample 07 Response rate 07
ECE ECE1 1961 345 275 80%

ECE2 613 193 156 81%
ECE3 237 120 40 33%
ECE4 473 169 91 54%

Total 3284 827 562 68%
School Primary Schools 2082 1000 518 52%

Secondary Schools 481 481 227 47%
Total 2563 1481 745 50%

Table 11.2: The sample frame, sample size, responded sample size, and response rate of the
FNES 2009

Type Stratum Sample Frame 09 Sample Size 09 Actual Sample 09 Response rate 09
ECE ECE1 2230 345 281 81%

ECE2 623 193 170 88%
ECE3 309 120 66 55%
ECE4 462 169 120 71%

Total 3624 827 637 77%
School Primary Schools 2065 1000 783 78%

Secondary Schools 485 485 354 73%
Total 2550 1485 1137 76.5%
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Table 11.3: Design and Sample variables for 2007 and 2009

2007 ECE sample variables 2009 ECE sample variables 2007 school sample variables 2009 school sample variables
Stratum Stratum Stratum stratum

Institution Number Institution Number Institution Number School Number
Suburb Suburb Suburb Suburb

City City City City
Institution Type Institution Type School Type School Type

Definition Definition Definition Definition
Authority Authority Authority Authority

Group
Gender of Students Gender of Students

Hours ECE
Territorial Local Authority Territorial Local Authority Territorial Local Authority Territorial Local Authority

Regional Council Regional Council Regional Council Regional Council
General Electorate General Electorate General Electorate General Electorate
Roll as at July 2006 Roll as at July 2008 School Roll July 2006 School Roll July 2008

Area Type Area Type
Urban Rural Zone Urban Rural Zone

Maori roll Maori roll
Pasifika roll Pasifika roll
mao pac roll
random num random num

Decile Decile 2009
Operating Structure

roll roll roll roll
SelectionProb SelectionProb SelectionProb SelectionProb

Sampling Weight SamplingWeight SamplingWeight SamplingWeight

Table 11.4: Collected Sample variables for 2007 and 2009

2007 ECE collected variables 2009 ECE collected variables 2007 school collected variables 2009 school collected variables
Int ID Int ID Int id 3 Int ID

Q1-Q36 Q1-Q29 Q1-Q51 Q1-Q41
Pword

Format Format
Institution Number Institution Number Int id 3 School Number

Stratum Stratum Stratum 1 Stratum
City City1

Institution Type Institution Type School Type 1 School Type
Definition Definition Definition 1 Definition
Authority Authority Authority 1 Authority

Group
Gender of Students 1 Gender of Students

Hours ECE
Territorial Local Authority Territorial Local Authority Territorial Local Authority 1 Territorial Local Authority

Regional Council Regional Council Regional Council 1 Regional Council
Ministry of Education Local Off

General Electorate General Electorate General Electorate 1 General Electorate
Decile 1 Decile 2009

Roll as at July 2006 Roll As At July 2008 School Roll July 2006 1 School Roll July 2008
Maori roll maori roll 1

Pasifika roll pasifika roll 1
Area Type Area Type 1

Urban Rural Zone Urban Rural Zone 1
City Town City Town 1

Operating Structure
random num random num 1

mao pac
roll roll roll 1 roll

SelectionProb SelectionProb SelectionProb
Sampling Weight SamplingWeight SamplingWeight

stratum1
X TYPE X TYPE
samsize samsize

pop pop
finalwgt finalwgt

Now, we want to look at what the missing data look like in terms of item non-response.
FNES datasets only have item non-response for their question variables. Any missing design
variables can be found by matching the units to the sample frame which have information for
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those variables as well. The FNES has two kinds of questions: closed question and open-
ended question. All closed questions are categorical variables. All the open-ended questions
are free text responses. We only consider performing imputation for the closed questions.

In addition, some of the FNES questions are interrelated. Hence, if one question has
been answered, then other related questions do not need to be answered. This causes struc-
tural missingness. For example, Question “15l” of the 2009 FNES school questionnaire
asks:“Places where ‘Individually wrapped branded ice creams’ can be purchased on school
grounds”, the options/interrelated questions are from “15l a” to “15l h”. Option 15l a is
“School did not sell this ice cream”, and options 15l b to 15l h list the name of possible
places. Hence, if the response to 15l a was “Yes”, then the respondent would not answer
other options/interrelated questions. This is called structural missingness. However, the de-
sign of FNES questionnaires has required respondents to still indicate that they do not need
to answer those interrelated questions by selecting “99=NA (Not Applicable)”. Therefore, we
think the structural missingness may have already been dealt with by the survey. Table 11.5
shows the structure of Q15l.

Table 11.5: Example of Q15l

Q15l Places where “Individually wrapped branded ice creams”
can be purchased on school grounds

Q15l a “School did not sell this”
1=Yes, 2=No, .=missing, 99=NA

Q15l b “Canteen/tuck shop”
1=Yes, 2=No, .=missing, 99=NA

Q15l c “Cafeteria”
1=Yes, 2=No, .=missing, 99=NA

Q15l d “Vending machine”
1=Yes, 2=No, .=missing, 99=NA

Q15l e “Order in System”
1=Yes, 2=No, .=missing, 99=NA

Q15l f “Fund raising”
1=Yes, 2=No, .=missing, 99=NA

Q15l g “Other place”
1=Yes, 2=No, .=missing, 99=NA

Q15l h “Don’t know”
1=Yes, 2=No, .=missing, 99=NA

Note: NA=Not Applicable

Figure 11.1 shows the overall response rates for the 2007 and 2009 FNES questions. Easy
to be noticed, there are a few questions with very low response rates (ie. less than 50%).
We suspected that most of those questions with low response rates were due to being either
open-ended questions or questions with structural missingness. In Figure 11.2, we displayed
the questions with less than 50% response rate. In Table 11.6, we counted the number of
open-ended questions and closed questions for the low response questions. As shown, a large
number of low response questions are open-ended questions. This is expected as Andrews
(2004) points out that open-ended questions have traditionally low response rates. In terms of
how many low response questions were due to structural missingness, we did not investigate
further. The reasons are: (1) we do not impute variables with less than 50% response rates;
(2) how to deal with structural missingness will be discussed later.

Table 11.6: Composite of low response (< 50%) questions

Survey Number of Open-ended questions Number of Closed questions Total number of low response questions
The 2007 ECE questions 12 21 33

The 2007 School questions 14 28 42
The 2009 ECE questions 11 6 17

The 2009 School questions 13 5 18
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Figure 11.1: Response rate of responding sample for 2007 and 2009 FNES questions
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Figure 11.2: Response rate of responding sample less than 50% for 2007 and 2009 FNES
questions
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Then, we separate those questions with response rates between 50% and 90% in order to
identify the variables which are the most imputable. The choice of the upper limit is because a
question with high response rate (90%) is not worth to be used for demonstrating our imputa-
tion methods; the choice of the lower limit is because most researchers recommend not using
data with more than 50% missing counts (Statistics Netherlands 2012). Figure 11.3 shows
the barplots of the question variables with response rates between 50% and 90% for 2007 and
2009 FNES data. The open-ended questions have been removed.
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Figure 11.3: Response rate of responding sample between 50% and 90% for 2007 and 2009
FNES questions
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Due to the scope of this project, we are not going to impute all the variables with missing
data. What we will do is to just impute a few variables. The implication is that the rest of the
variables can be imputed in the same way. So, which variables? We pick the variables which
have at least one of the following characteristics: (1) high non-response rate (e.g response
rate less than 90%, but more than 50%); (2) exists in both 2007 and 2009 FNES; (3) questions
have structural missingness.

Table 11.7 lists the variables we selected to be imputed in this project. The ECE questions
3a, 7b, and 7c have relatively high non-response rate and they are also comparable between the
2007 and 2009 FNES data, but they are not interrelated questions. Not all the school questions
satisfy our first characteristic, but Q5a and Q5b are related to each other. For example, if the
answer is “Yes” to question 5b “Whether drinking water available to students at any time”,
then question 5b “Whether drinking water available to students during breaks only” is not
applicable. Hence, if the answer to 5b is missing, then we can deduce that the answer for
question 5b should be “NA”1 by using the “imputation based on logical rules” method which
we have introduced in Chapter 3.

Table 11.7: The selected variables

Question Description of data Response rate 2007 Response rate 2009
ECE 3a Drinking water available to children through drinking water fountains

1=Yes, 2=No, 98=Don’t know, .=No box ticked
69.6% 71.4%

7b Food/beverages availble at ECE service are prepared on site by a cook
1=Yes, 2=No, 98=Don’t know, .=No box ticked

78.3% 77.6%

7c Food/beverages availble at ECE service are prepared on site by parents
1=Yes, 2=No, 98=Don’t know, .=No box ticked

75.6% 76.1%

School 5a Whether drinking water available to students at any time
1=Yes, 2=No, 98=Don’t know, 99=NA, .=No box ticked

95.3% 88.9%

5b Whether drinking water available to students during breaks only
1=Yes, 2=No, 98=Don’t know, 99=NA, .=No box ticked

88.1% 89.9%

Note: NA=Not Applicable

For the selected variables which are comparable between 2007 and 2009, there are five
missing data scenarios:

1. units with missing data on the 2007 FNES

2. units with missing data on the 2009 FNES

3. units with missing data on both 2007 and 2009 FNES in the matched dataset

4. units with missing data on the 2007 FNES but not missing on the 2009 FNES in the
matched dataset

5. units with missing data on the 2009 FNES but not missing on the 2007 FNES in the
matched dataset

Table 11.8 gives detailed information on each scenario. The response rates were calculated by
using the response sample size for each questions divided by the total response sample size.

11.2 Investigating the Missing Data Mechanism
After gaining some initial general understanding of the missing data pattern of our data, the

next step is to investigate what kind of missing data mechanism the incomplete data possesses.

1NA=Not Applicable

145



Table 11.8: Sample response rate of the five missing data scenarios

ECE Question (1) 07 data
Full 07 respond-
ing sample

(2) 09 data
Full 09 respond-
ing sample

(3) 07 and 09
matched sample

(4) 07 but not 09
matched sample

(5) 09 but not 07
matched sample

3a Response rate (sample size) 70% (391) 71% (455) 61% (66) 14% (15) 15% (16)
7b Response rate (sample size) 78% (440) 78% (494 ) 59% (64) 22% (24) 13% (14)
7c Response rate (sample size) 76% (425) 76% (485) 61% (66) 19% (21) 13% (14)

Total Responding sample size for each scenarios 562 637 109 109 109
School Question

5a Response rate (sample size) 94%(699) 87%(989) 82%(193) 14%(33) 3%(6)
5b Response rate (sample size) 86%(637) 88%(1001) 76%(178) 13%(30) 9%(21)

Total Responding sample size for each scenarios 745 1137 234 234 234

Of course, without the complete data, we can only manage to find out if our missing data are
MCAR or not MCAR. Trying to distinguish MAR and NMAR is impossible, unless we can get
related auxiliary variables and make some assumptions, as Desai et al. (2010, p. 2) describe
in their paper. This thesis only focuses on distinguishing between the MCAR and not MCAR
missing mechanism. The question is how useful it is to find out if missing data are MCAR or
not? It is very useful in terms of helping us to decide the most appropriate imputation methods.
For example, if the missing data are MCAR, then a simple hot deck imputation would have
the same efficiency in terms of imputation as the more elaborate Nearest Neighbour hot deck
imputation method which also requires more computational resource. More importantly, as
(Enders 2010, p. 17) points out that the process for deciding whether the missing data are
MCAR or not can also help us to identify the variables which might be related to the variable
with missing values. Hence, even the missing data are not MCAR, we have found variables
which correlate to the missingness. Feeding these variables into our missing data handling
procedure can mitigate bias and satisfy the MAR assumption (Collins et al. 2001).

There are many methods for testing the MCAR mechanism. We are going to introduce two
of them.

11.2.1 Univariate comparisons
The univariate t-test is the simplest method for assessing whether missing data are MCAR

(Dixon 1988), given continuous complete explanatory variables X . It simply separates the
whole data set into two groups: missing and observed, according to the variable of interest Y .
Because other complete variables are separated by these two groups as well, we can work out
the means of each groups of those complete variables. Under the assumption of MCAR, the
mean of X for the observed data should be the same as the mean of X for the missing data.
Hence, we apply the t-test to test whether the two group means are equal, or significantly dif-
ferent. A non-significant t-test provides no evidence to doubt that the missing data are MCAR,
whereas a significant t-test suggests that the missing data are MAR or NMAR. Suppose the
variable Y which has missing data is converted into the response indicator:

R =

{
1 If Y is observed
0 Otherwise

We further assume that the explanatory variables X are complete. Then:

the null hypothesis: µX |R=1 = µX |R=0 the missingness is MCAR

the alternative hypothesis: µX |R=1 6= µX |R=0 the missingness is not MCAR
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If the explanatory variables X are categorical variables, we can simply switch to similar hy-
pothesis tests which are developed for categorical data, such as the Chi-square (χ2) test. For
MCAR data, the distribution of categorical X is independent of whether or not Y is observed.

We are going to demonstrate the use of the univariate comparison test on the FNES miss-
ing data, but we do not recommend this method because it has number of practical issues.
Firstly, the FNES has a large number of variables, doing a t-test or Chi-square (χ2) test for the
two groups of each variable is time consuming task and multiple comparisons have the risk
of increasing Type I errors2. Secondly, as the name “univariate comparison” suggests, this
method does not take into account the correlations among the explanatory variables. So, it is
possible that a number of variables have significant mean differences between the missing and
observed groups, but, in fact, there is only one variable which relates to the missingness, the
other variables just simply correlate with that variable. Thirdly, if the missing group is very
small, then this means that our t-test power is limited which makes it impossible to perform
certain comparisons (Enders 2010).

For demonstration purposes, we have chosen the “Q3a - Drinking water available to chil-
dren through drinking water fountains” of 2009 ECE FNES as our Y , and the sample design
variable “Authority” as our X . Table 11.9 shows the split data.

Table 11.9: Split the “Authority 2009” based on the missingness of “Q3a 2009”

X=”Authority”
Y =”Q3a 2009” Privately Owned Community Based Proportion of privately owned (P)

Observed units (R = 1) 128 323 0.28
Unobserved units (R = 0) 77 109 0.41
Note: (1) P = Privately Owned

Privately Owned+Community Based

Hence, we have:

the null hypothesis: PPrivate|R=1 = PPrivate|R=0 the missingness is MCAR

the alternative hypothesis: PPrivate|R=1 6= PPrivate|R=0 the missingness is not MCAR

The R results of Pearson’s Chi-squared test are as follows:

Pearson’s Chi-squared test with Yates’ continuity correction

data: split_Q3a

X-squared = 9.6353, df = 1, p-value = 0.001909

The p-value is very small (< 0.002). Hence, we have very strong evidence against the null
hypothesis. This means the missingness is not MCAR and is associated with the variable
“Authority”.

11.2.2 Logistic regression assessment method
Ridout & Diggle (1991) and Fairclough (2010) propose that a logistic regression model can

be used as an effective tool to investigate the missing data mechanism. Their essential idea is
to test the association between missingness and the explanatory variables, or the covariates,
to be precise. If the associations are strong (p-values of Chi-square test are significant), then

2A type I error is the incorrect rejection of a true null hypothesis.
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the missing data is not MCAR. Otherwise, the missingness is MCAR. More importantly, this
method gives us an indication of which are the variables to form the best MAR model for
prediction. The advantages of the logistic regression assessment method are: (1) it handles
multiple variables at one go; (2) identifies variables which are related to the missingness;
(3) and has the ability to deal with more complicated designs such as an incomplete block
design3(Ridout & Diggle 1991).

So, how exactly does the logistic regression assessment method work? I will demonstrate
this with a few variables from the FNES ECE 2009 dataset. I have picked up question 3a
(“Drinking water available to children/tamariki through drinking water fountains?”), and three
proposal explanatory variables: “Stratum”, “Authority”, and “Regional council”. All the three
proposal explanatory variables are categorical variables. Hence, the first step should be to
check the sample size at the breakdown levels by each explanatory variable’s levels. This is
because that each categorical variable’s level is treated as an independent dummy variable in
the logistic regression, and Harrell (1984) defines the rule of thumb that there should be at
least 10 cases per independent variable. We need to make sure that the choice of our variables
does not fail this rule. Table 11.10 lists the variables and their descriptions. Table 11.11 shows
us the actual sample size of 2009 ECE FNES breaks down by the three explanatory variables.

Table 11.10: Subset variables form the ECE 2009 data

Field name 2009 Description of data
Q3a Q3a Drinking water fountains

1=Yes, 2=No, 98=Don’t know, .=No box ticked

Stratum ECE1, ECE2, ECE3, ECE4
Authority Privately Owned, Community Based

Regional council Auckland, Bay of Plenty, Canterbury, Gisborne, Hawkes Bay, Manawatu-Wanganui,
Marlborough, Nelson, Northland, Otago, Southland, Taranaki, Tasman, Waikato,
Wellington, West Coast

3In a design, the treatments are allocated to the experimental units or plots within homogeneous blocks. This
is called block design. An incomplete block design is a block design does not include all factor combinations in
every block (Mason et al. 2010)
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Table 11.11: Responding sample size breaks down by explanatory variables

Stratum
Levels Actual sample size

ECE1 (Education and Care Centres) 281
ECE2 (Free Kindergarten) 170

ECE3 (Home-based childcare) 66
ECE4 (Playcentre) 120

Authority
Levels Actual sample size

Privately Owned 205
Community Based 432

Regional council
Levels Actual sample size Levels Actual sample size Levels Actual sample size

Auckland 172 Manawatu-Wanganui 39 Southland 20
Bay of Plenty 37 Marlborough 5 Taranaki 25

Canterbury 76 Nelson 7 Tasman 5
Gisborne 9 Northland 27 Waikato 66

Hawkes Bay 22 Otago 34 Wellington 82
West Coast 6 Region is missing 5

As Table 11.11 shows, the variable “Regional council” has levels with sample size less than
10, and there are 5 units with no “Regional council” information in the survey dataset. A
simple solution is to discard this variable, but we do not want to do that. We select these three
explanatory variables because we think they are the most likely variables to have an associ-
ation with the missing data. Before the logistic regression model identifies their relationship
with the missing data, we do not want to discard them easily. So, what can we do? One
easy and efficient method is to regroup or merge those levels with small sample size levels to
make them bigger. For the 5 units with missing “region” information, as mentioned earlier in
this chapter, we can match the survey dataset to the frame list which also has the “Regional
council” variable to find out the locations. This is actually a kind of deduction imputation.

Table 11.12 shows the regrouped and edited “Regional council” variables. We rename
this new variable as “Region” as it is no longer the regional councils. As can be seen, we
grouped the “Marlborough Region”, the “Nelson Region”, the “West Coast Region”, and the
“Tasman Region” into one group called “Nelson.Marlborough.Tasman.West Region”, and the
“Gisborne Region”, and the “Hawkes Bay Region” into one group called “Gisborne.Hawkes
Region” for the “Regional council” variable.

In terms of the matching process to find the regions for the five units with missing “Regional
council” information, we found that the sample frame does not have the “regional council”
information for the five units either. However, fortunately, the sample frame has complete
“City” variable. Hence, we simply applied the deductive imputation method to deduce the
“regional council” information. For example, if the “City” variable says the unit is in Auck-
land, then we infer its “Regional council” should be the “Auckland Region”.
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Table 11.12: Responding sample size breaks down by regrouped variables

Region
Levels Actual sample Levels Actual sample Levels Actual sample

Auckland 175 Manawatu-Wanganui 39 Southland 21
Bay of Plenty 37 Nelson.Marlborough.Tasman.West 23 Taranaki 25

Canterbury 76 Northland 27 Waikato 67
Gisborne.Hawkes 31 Otago 34 Wellington 82

Figure 11.4 shows the response rate of Q3a breaks down by these variables separately. It
actually gives some indications that the missing data of Q3a is not MCAR. For example, the
stratum ECE3 (“Home-based childcare”) has the lowest response rate compared with other
strata (ECE1, ECE2 and ECE3), and the “privately owned” ECE services have lower response
rate than “community based” ECE services. This means the response rate of Q3a may have
association with stratum and authority.
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Figure 11.4: Response rate of Q3a breaks down by the four explanatory variables

Note: 1=Auckland Region, 2=Bay of Plenty Region, 3=Canterbury Region, 4=Gisborne.Hawkes Region,
5=Manawatu-Wanganui Region, 6=Nelson.Marlborough.Tasman.West Region, 7=Northland Region, 8=Otago
Region, 9=Southland Region, 10=Taranaki Region, 11=Waikato Region, 12=Wellington Region.

The next step is to introduce a dummy missing data indicator variable. If the answer for
question 3a is not missing, then the dummy variable has a value equal to 1, otherwise, the
value is 0. Suppose my dummy variable is “Response ind”, then

Ri = Response indi =

{
0 if Q3ai is missing
1 if Q3ai is not missing

Finally, we can construct the logistic model.

logit(µi) = α +XT
i β , Ri ∼ Bernoulli(µi) (11.1)

where Xi is the set of explanatory variables, and β = β1, ...,βp, given that there are p ex-
planatory variables. In our case, it can be any or all of the four explanatory variables or the
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interactions of them with each other. However, we did the logistic regression modelling with-
out considering interactions. This is because the FNES ECE 2009 dataset only has 637 units.
A multidimensional table (i.e stratum×authority)(table 11.13) contains cells with zero units.
In an interaction model these zero cells cause a problem, and there are many methods that have
been developed to solve it, such as “add-a-constant” approach4 (Haldane 1956) and “Pseudo-
Bayes” Approach5(Bishop et al. 1975). However, these zero cells do not cause problems for
logistic regression, especially, if only pairwise interactions are included.

Table 11.13 also gives us some indication that the variable “Stratum” and “Authority” are
correlated. For instance, the privately owned ECE services are only in stratum ECE1 (Edu-
cation and Care Centres) and ECE3 (Home-based childcare), but not in stratum ECE2 (Free
Kindergarten) and ECE4(Playcentre). This means that there is no private owners of non-
profitable ECE services (by definition), such as the “Free Kindergarten” and the “Playcentre”.

Table 11.13: Cross tabulation between Stratum and Authority

Authority
Community Based Privately Owned

ECE1 (Education and Care Centres) 124 157
Stratum ECE2 (Free Kindergarten) 170 0

ECE3 (Home-based childcare) 18 48
ECE4 (Playcentre) 120 0

The logistic regression modelling results are displayed in Table 11.14 and Table 11.15.
These results basically say that there are strong correlations among missingness and the “stra-
tum” as the p-value is < 0.01. Hence, the missing data for question 3a are not MCAR. The
results also identify that with the presence of the “stratum” variable, the coefficient of the
“Authority” variable does not have a significant p-value. This, as discussed previously, might
be due to the association between the “stratum” and the “Authority”, or there might even be
multi association6 among the three explanatory variables.

The multiple association, or a similar terminology “multicollinearity”7 can be a problem in
modelling. The problem is that it increases the standard errors of the coefficients. Increased
standard errors means that coefficients for some explanatory variables may be found not to be
significantly different from zero, whereas without multicollinearity and with lower standard
errors, these same coefficients might have been found to be significant and the researcher may
not have come to null findings in the first place. However, the multicollinearity is more of a
concern for researchers who want to interpret the model or find the true relationships between
explanatory and response variables (Vaughan & Berry 2005) than to us. This is because the
primary goal of this project is to impute missing data. As long as the model can provide us
with reliable imputation results, then the existence of multicollinearity in the model is not of
concern as it does not affect the prediction of the response variable.

4Adding a small constant, generally 0.5, to every cell of the table has been a common recommendation.
5It is a Bayesian method, an alternative approach to Maximum Likelihood estimation, providing a way of

smoothing the data in a less ad hoc manner than adding an arbitrary constant to cells(Agresti 2002).
6More than two explanatory variables are related to each other.
7Multicollinearity means that there are strong correlations among explanatory variables.

151



Table 11.14: Investigate missing mechanism: logistic modelling results

Estimate(β ) Standard Error z value p-value
Intercept 0.750545 0.241163 3.112 <0.01

(Stratum)ECE2 0.287314 0.255376 1.125 0.26056
(Stratum)ECE3 -0.794603 0.295585 -2.688 <0.01
(Stratum)ECE4 1.887350 0.399109 4.729 <0.01

(Region)Bay of Plenty Region -0.245635 0.408574 -0.601 0.54771
(Region)Canterbury Region 0.229570 0.339054 0.677 0.49835

(Region)Gisborne.Hawkes Region 0.479136 0.506704 0.946 0.34436
(Region)Manawatu-Wanganui Region -0.721919 0.386584 -1.867 0.06184

(Region)Nelson.Marlborough.Tasman.West Region 0.175318 0.556426 0.315 0.75270
(Region)Northland Region 0.165469 0.545106 0.304 0.76147

(Region)Otago Region -1.149244 0.409173 -2.809 <0.01
(Region)Southland Region 0.234350 0.564545 0.415 0.67806
(Region)Taranaki Region -0.006325 0.527203 -0.012 0.99043
(Region)Waikato Region -0.109942 0.341542 -0.322 0.74753

(Region)Wellington Region -0.117779 0.308970 -0.381 0.70306
(Authority)Privately Owned 0.124845 0.243305 0.513 0.60787

Table 11.15: Investigate missing mechanism: Analysis of Deviance Table

Degree of Freedom Deviance Pr(>Chi)
Stratum 3 50.215 <0.0001
Region 11 15.684 0.1533

Authority 1 0.263 0.608

11.3 Applying Imputation Methods to the FNES
We have outlined some of the most popular imputation methods in Chapter 3 to Chapter

9. Now, let’s apply some of the most appropriate ones to our selected FNES incomplete
variables. In this section, we give a detailed description of the imputation procedures for the
imputing of the question Q3a from the 2009 FNES ECE sample data. The imputation for the
other selected incomplete variables follows a similar approach. Hence, the descriptions for
their imputation procedures were omitted. Only the final imputation results were shown.

The general outline of our imputation plan is:

• Impute 2009 FNES questions

• Impute 2007 FNES questions

• Impute the questions in both 2007 and 2009

11.3.1 Preparing for Imputation
Before imputing Q3a, we need to conduct some further Explanatory Data Analysis (EDA)

on Q3a. We did some general EDA in section 11.1, but this time we concentrate on Q3a only.
Table 11.16 shows the breakdown of responses for 2009 ECE FNES Q3a.

As reflected in Table 11.16, we see that the answer category “98=Don’t know” has only a
small sample, and the answer “Don’t know” does not actually represent anything meaningful.
It means the answer could be “Yes” or “No”. Hence, we reclassified the “Don’t know” into
missing category “NA”. The other thing we did was to have further investigation on the cross
tabulation of the two selected explanatory variables: “Stratum” and “New regional council”.
Table 11.17 shows the multidimensional table. As can be seen, some of the cells have very
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Table 11.16: Responding sample size for 2009 ECE FNES Q3a breaks down by answer cate-
gories

2009 ECE FNES Q3a: Drinking water available to children through drinking water fountain
Answer categories 1=Yes 2=No 98=Don’t know NA=missing Total

Sample size 113 338 4 182 637

small sample size, i.e. less than 3. This could be problematic if we want to perform con-
ditional mode imputation and hot deck imputation conditioning on these two variables. For
example, when the cell has only one respondent and the answer is missing, it is impossible to
find an observed value or mode within that cell to replace the missing data. Hence, we fur-
ther regrouped the “region” variable into five super regions: “Auckland Region”, “Wellington
Region”, “Canterbury Region”, “The rest of North Island”, and “The rest of South Island”.
Table 11.18 shows the results of the regrouped regions.

Table 11.17: Multiway table “Region” and “Stratum”

New regional council Stratum
ECE1 ECE2 ECE3 ECE4

Auckland Region 105 41 11 18
Bay of Plenty Region 11 10 10 6

Canterbury Region 35 19 4 18
Gisborne.Hawkes Region 11 10 4 6

Manawatu-Wanganui Region 15 14 3 7
Nelson.Marlborough.Tasman.West Region 11 5 1 6

Northland Region 9 7 1 10
Otago Region 11 12 4 7

Southland Region 6 7 4 4
Taranaki Region 7 7 3 8
Waikato Region 26 8 15 18

Wellington Region 34 30 6 12

Table 11.18: Multiway table “Super region” and “Stratum”

Super region Stratum Original regions
ECE1 ECE2 ECE3 ECE4

Super Auckland Region 114 48 12 28 Auckland Region, Northland Region
Super Wellington Region 49 44 9 19 Wellington Region, Manawatu-Wanganui Region

Rest of North Island 44 25 28 32 Waikato Region, Bay of Plenty Region, Gisborne.Hawkes Region, Taranaki Region
Super Canterbury Region 46 31 8 25 Canterbury Region, Otago Region

Rest of South Island 28 22 9 16 Southland Region, Nelson.Marlborough.Tasman.West Region
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11.3.2 Incorporating sample weights in the imputation models
Unlike the imputation we have done for the simple SURF, the use of sample weights need to

be addressed when applying imputation models to impute the missing FNES data. Naively, we
may choose to ignore sample weights in creation of imputation models. This approach may
effectively impute the unweighted sample distribution of respondents, but potentially cause
bias to the weighted sample distribution. For example, suppose an incomplete categorical
variable has categories: “A” and “B”. Without incorporating sample weights, category A has
the higher frequency than category B. Hence, if mode imputation is used, then A would be
used to replace missing data. But, if sample weights are involved in the computation of
frequencies for category A and category B, then category B actually has the highest frequency.
Therefore, we ought to impute missing data with B instead of A.

A few approaches have been suggested by researchers on how to use sample weights in
the imputation models. The first intuitive approach, proposed by Platek & Gray (1983), is to
inflate the observed values by the sample weight or the ratio of the sample weight (i.e. the
observed value of unit i × its sample weight). Then, the imputation models are applied to the
updated observed values. This approach has shortcomings. In the case of categorical values or
integer-valued imputed values, the imputations may no longer be plausible values (Andridge
& Little 2009).

The second approach is to randomly draw values from observed data to replace the missing
data with probability of selection proportional to the sample weight of the selected observed
units (Rao & Shao 1992). This approach does not need to alter the original observed values.
Hence, it can be relatively easily to apply to any data type. However, due to this method need-
ing to randomly select observed data values, there are only a limited number of imputation
methods that can adopt this approach, such as hot deck imputation methods.

The third approach is to include the sample weights as a covariate in the imputation model
or have design variables which have been used to form the sample weights in the imputation
model (Carpenter 2011). If the variables used to form the sample weights are incorporated in
the imputation model, then the use of sample weights in the imputation model is unnecessary
and inefficient. This is because they all achieve the same imputation results. For example,
if we apply the conditional mode imputation or hot deck within adjustment cells imputation,
the imputation cells that are formed by using the sample weights would be identical to the
imputation cells formed by the design variables are used to construct the sample weights.
This is because the sample weights would be the same for the observations which have the
same design variables’ values. Please see Table 10.8 to Table 10.11 in Section 10.9, Chapter
10 for examples.

Compared to the first two approaches, Andridge & Little (2009) suggest that the third ap-
proach is better. The first two approaches fail to reduce non-response bias if the missingness
and the incomplete variable are related to the sample weights or design variables, as both
approaches do not include these variables in the imputation model. Furthermore, if the impu-
tation model needs to form imputation cells, the response propensity8 would not be constant
within each imputation cell. For example, we would expect that Primary and Secondary
schools answer differently and have different response propensity in the FNES data, and we

8Response propensity is the theoretical probability that a sampled unit will become a respondent in a survey.
For example, some people are easier to get into contact with than are others in a particular survey.
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would not want to impute secondary schools’ missing data with the responses from the ob-
served primary schools.

Therefore, we chose the third approach as our method of incorporating sample weights in
the imputation models. Fortunately, we have decided to use “Stratum” as one of our explana-
tory variables in our imputation models. Hence, as explained above that the weights being
equal within strata, we do not specifically include sample weights in our imputation models
in the following sections.

11.3.3 Imputing the 2007 and the 2009 ECE FNES missing data
Based on previous analysis, we assumed MAR missingness and defined the general impu-

tation model as:
Y |X ,θ (11.2)

In the following demonstrations, Y represents the data of Q3a 2009, and X encompasses
Stratum and Super region variables. θ has the parameters when logistic regressions are used
in some imputation methods.

We have applied the following imputation methods to the selected incomplete FNES vari-
ables. The 2009 ECE FNES question “Q3a” is used as a demonstration in the descriptions.

• Conditional mode imputation

• Hot deck within adjustment cells

• Nearest Neighbour hot deck imputation

• Logistic regression imputation

• Nonparametric Resampling methods

• EM Algorithm

• Multiple Imputation

For the units which have been observed in both 2007 and 2009, we have applied cold deck
imputation as well, i.e. copying the response from 2007 if missing in 2009, and vice versa.
Cold deck imputation serves two purposes here: (1) it provides an alternative imputation
method; (2) it can be compared to the results of other imputation methods to check their
efficiencies. Due to the nature of Q3a, we believe cold deck imputation provides us with the
most reliable imputed values. This is because facilities such as drinking water fountain are
unlikely to change in only a two year period. Given that the cold deck imputed values are
likely to be the closest to the true values, then we can use them to compare to the results of
other imputation methods. However, this comparison is limited for Q3a because the number
of missing data in the matched dataset is very small (Table 11.8). Please refer to Chapter 9 for
theoretical details of these methods.
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Conditional mode imputation: we have divided the respondents into G = 20 groups by
Stratum and Super region variables. The number of units in each group are shown in Table
11.18. Hence, let Y =Q3a, n= 637, and the answer with category values Ck = (C1,C2), where
C1 =Yes, and C2 =No, then we can re-express Equation (9.2) as:

Y miss
i =Ckg, i ∈ 1, ...,n g ∈ G

if
kg = argmax

k
∑

i∈Sr
g

qg,k,i

where Sr
g = respondent in group g

qk,i =

{
1 if Y obs

i =Ckg

0 Otherwise

If there are multiple modes, then one of the modes will be randomly selected as the imputed
value.

Hot deck within adjustment cells: this method has been introduced in Chapter 3, Section
3.3.1 and demonstrated in Chapter 4, Section 4.3.4 by imputing missing data for a numerical
variable. As it belongs to the implicit modelling methods, it can be easily adopted for imputing
categorical missing data. For the imputation of Q3a, the imputation cells were formed by
variables Stratum and super regional council, then missing Q3a were replaced by a random
draw from the observed Q3a values in each cell.

Nearest Neighbour hot deck imputation: as have been introduced in Chapter 9, we apply
the Gower distance to measure the dissimilarity between the ith and the jth unit. Due to
the Q3a being a nominal categorical variable, the distance function Equation (9.4) can be
re-expressed as:

d(i, j) =
∑

H
h=1 δi jhdi jh

∑
H
h=1 δi jh

where H is the number of categorical variables. In this case, we have two categorical ex-
planatory variables: Stratum and Super region. Hence, H = 2. δi jh is the weight of variable,
and

di jh =

{
0 if yih = y jh

1 Otherwise

Logistic regression imputation: let Y =Q3a as our response variable, and the Stratum and
Super region as the explanatory variables X . First, we construct a logistic regression model
based on the observed units for Q3a. Then, we use this logistic model to predict the missing
Q3a answers. The Equation (9.3) can be re-expressed as:

logit[P(Yi = 1)] = logit[πi] = log
(

πi

1−πi

)
= xT

i β

We apply the “Method 2” from Section 9.3.2 in Chapter 9 to convert the probability π̂ into
category values. The Method 2 randomly draws values from the Bernoulli distribution, Y miss

i ∼
Bernoulli(π̂i), given the computed π̂i.
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Nonparametric Resampling: as have been introduced in Section 5.4 and Section 5.6 of
Chapter 5, the resampling methods resamples a large number of sub-samples from the origi-
nal sample, then applies the same imputation method to impute missing data for all the sub-
samples. We have applied two resampling methods: the Bootstrap method and the jackknife
method. For this Chapter, we only apply the Bootstrap method for Q3a. The chosen imputa-
tion method is the hot deck within adjustment cells imputation method, and there are B = 200
bootstrap samples

EM Algorithm: we applied the same method introduced in Chapter 9, Section 9.4 to Q3a.
We use the same logistic regression above to predict the missing Q3a answers, but instead
of imputing missing values once, we impute them several times through iteration until the
algorithm converges. The EM algorithm for this case is as follows:

The E step: Replace each missing Q3a values by its expectation conditional on X:

ŷt
Q3a,i = E(yQ3a,i|xi,β

t) =
1

1+ exp(−xT
i β t)

where yQ3a,i is the value of Q3a, and t = 0,1, ...m, m is the number of iterations, and
i = 1, ...,n, n is the sample size.

The M step: Maximize the log-likelihood function to find the estimate β t+1:

`(yQ3a,i|xi,β ) =
r

∑
i=1

yQ3a,ixT
i β −

r

∑
i=1

log(1+ exp(xT
i β ))

+
n−r

∑
i=r+1

ŷt
Q3a,ix

T
i β −

n−r

∑
i=r+1

log(1+ exp(xT
i β ))

where r is the number of respondents.

The E-step and the M-step repeat again and again until there is a sufficiently small difference
between `(yQ3a,i|xi,β

t+1)− `(yi|xi,β
t). As also described in Chapter 9, Section 9.4, we have

introduced changing cut off probability C when we need to convert the predicted missing Q3a
values from probabilities into categorical values. The cut off probability C is the same as in
Chapter 9, where

C =
∑

n
i=1 yi

n
and

yi =

{
1 yQ3a,i = Yes
0 Otherwise

Hence, the cut off probability C changes each time we update the missing values at the E-step.

Bayesian Multiple Imputation: Again, we applied the same Bayesian iterative simulation
method for categorical variable from Chapter 9 to the FNES Q3a. Then, the Multiple Im-
putation (MI) part is basically to select 5 to 10 imputed datasets from the converged part of
the Bayesian iterative simulation chain. This method of selecting D points from the Bayesian
simulation chain has been introduced in Chapter 8, Section 8.3. Here is a general description
of the Bayesian iterative simulation process for Q3a:

I-step: Randomly draw Ŷ t
Q3a,miss from the conditional distribution at iteration t:

Ŷ t
Q3a,miss,i ∼ p(Y t

Q3a,miss,i|β t) = Bernoulli
(

1,
exp(xT

i β t)

1+ exp(xT
i β t)

)
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P-step: At iteration t + 1, randomly draw β t+1 from the conditional posterior distribution
given the updated Ŷ t

Q3a,miss and observed YQ3a,obs from the I-step:

β
t+1 ∼ p(β t+1|Ŷ t

Q3a,miss,YQ3a,obs)

The Metropolis-Hastings (MH) algorithm is applied to sample β as we have demon-
strated in Chapter 9.

The “I-step” and “P-step” were repeated many times until the Bayesian iterative simulation
chain converges. The detail of diagnosis of the convergence has been introduced in Chapter
7, section 7.4.

The R code is in Appendix F, Section F.1.

The results: Table 11.20 to Table 11.25 display the imputation results for Q3a, Q7b, and
Q7c of 2009 and 2007 ECE FNES. In the tables, the estimated proportion P̂s were computed
as follows:

P̂h =
nh,yes

nh,yes +nh,no
(11.3)

Then

P̂ =
H

∑
h=1

(
Nh

N

)
P̂h (11.4)

where H is the number of strata, N is the size of population and Nh is the size of population
in stratum h, h = 1, ...,H, and nh,yes is the number of respondents who give “Yes” answers in
stratum h, and nh,no is the number of respondents who give “No” answers in stratum h. The
sum of nh,yes and nh,no is the sample selected from stratum h. The formulae for computing the
standard error of P̂ for unimputed sample, single imputation and EM algorithm is as follows:

ˆVar(P̂) =
H

∑
h=1

(
Nh

N

)2(
1− nh

Nh

)
P̂h(1− P̂n)

nh−1
(11.5)

Standard error of P̂ = se =
√

ˆVar(P̂) (11.6)

where nh = nh,yes + nh,no and
(

1− nh
Nh

)
is called the finite population correction (fpc)9

factor which can be ignored if the ratio of nh
Nh

is close to 0. We did not ignore the fpc in our
calculations.

Please note that we have ignored the involvement of sample selection weights in the com-
putation of P̂hs. The weights would not make a difference in our results as the weights are the
same in each stratum (Section 11.3.2). Hence, Equation (11.3) can be also shown as:

P̂h =
nh,yes

nh,yes +nh,no
=

∑
nh
i=1 wiyi,h

∑
nh
i=1 wi

where

yi =

{
1 if observation unit i is in stratum h with answer “Yes”
0 Otherwise

and wi is the weight for observation i in stratum h, i = 1, ...,nh.

9The finite population correction factor is used to adjust the error in estimating a mean or a total, which is
due to lack of independence when sample without replacement, i.e. negative correlation between observations.
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The computation of P̂hs for the un-imputed incomplete data also uses Eq (11.3). The obser-
vations with missing data were omitted from the computation. We did not do non-response
adjustments for the sample selection weights or use the adjusted weights in the computation
of P̂hs. The reasons are: (1) as discussed in Section 3.2.3 Chapter 3, we consider that the
non-response adjustment for the weights is a sort of imputation method; (2) The non-response
adjustment treats the responding observations as the new sample and re-calculate the selection
weights based on this new sample and the same stratum. Therefore, the new weights within
each stratum are still equal to each other.

For the computation of the standard error (se) of P̂ for Bootstrap resampling and Multiple
Imputation, please refer to Equation (5.2), Section 5.3, Chapter 5; and Equation (8.4), Section
8.2, Chapter 8, respectively.

Figure 11.5 to Figure 11.10 display the estimated proportions P̂s and their 95% confidence
intervals. The 95% confidence interval is computed as follows:

P̂±1.96se (11.7)

In the figures, the middle points of the vertical lines are the estimated proportion P̂, the lengths
of the vertical lines are the range of confidence intervals.

Looking at Figure 11.5 to Figure 11.10, overall the estimates from all imputation methods
are similar, and have comparable standard errors. However, there are some differences. As
expected, the Bootstrap resampling and MI produce larger standard errors and wider confi-
dence intervals than other imputation methods. Comparing the bootstrap resampling and MI
standard errors, we find that the results are almost identical for most cases. This means that
both methods are effective in estimating imputation uncertainty. However, the bootstrap re-
sampling needs B = 200 resamples, but the MI only needs D = 5 datasets. Hence, MI is more
efficient than the bootstrap resampling in terms of data storage. In terms of computation ef-
ficiency, the bootstrap resampling method might be faster than the MI method for small size
samples as the Bayesian MI simulation chains need to run thousands of iterations which might
require huge computational resources, compared to the bootstrap resampling method.

We have also noticed that the conditional mode imputation produces a lower estimated
proportion P̂ than other imputation methods. This is because all questions have large number
of “No”s, but a small number of “Yes”s. This means that the mode are more likely to be “No”
in each of the G = 20 groups. Table 11.19 shows us what the modes are in each group for the
2009 ECE FNES Q3a. As shown, using conditional mode imputation, most missing values
were imputed as “No”. This is the same for other selected incomplete questions.
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Table 11.19: Breakdown of incomplete Q3a of 2009 ECE FNES by Stratum and Super region

Group (G = 20) 1=”Yes” 2=”No” Missing Conditional Mode imputed value
1=(ECE 1 & Rest of North Island) 14 14 16 “Yes” or “No”
2=(ECE 1 & Rest of South Island) 6 14 8 ”No”

3=(ECE 1 & Super Auckland Region) 19 58 37 ”No”
4=(ECE 1 & Super Canterbury Region) 6 28 12 ”No”
5=(ECE 1 & Super Wellington Region) 5 27 17 ”No”

6=(ECE 2 & Rest of North Island) 10 8 7 “Yes”
7=(ECE 2 & Rest of South Island) 9 9 4 “Yes” or “No”

8=(ECE 2 & Super Auckland Region) 19 20 9 ”No”
9=(ECE 2 & Super Canterbury Region) 8 10 13 ”No”
10=(ECE 2 & Super Wellington Region) 12 16 16 ”No”

11=(ECE 3 & Rest of North Island) 1 10 17 ”No”
12=(ECE 3 & Rest of South Island) 0 5 4 ”No”

13=(ECE 3 & Super Auckland Region) 0 5 7 ”No”
14=(ECE 3 & Super Canterbury Region) 0 3 5 ”No”
15=(ECE 3 & Super Wellington Region) 0 4 5 ”No”

16=(ECE 4 & Rest of North Island) 1 28 3 ”No”
17=(ECE 4 & Rest of South Island) 1 15 0 ”No”

18=(ECE 4 & Super Auckland Region) 2 25 1 ”No”
19=(ECE 4 & Super Canterbury Region) 0 22 3 ”No”
20=(ECE 4 & Super Wellington Region) 0 17 2 ”No”

Total 113 338 186

On the other hand, we have found that the EM algorithm produces larger estimated propor-
tions than other imputation methods. It is unclear why the EM algorithm behaves like this.
One possible reason is that the use of the cut off probability C causes the overestimation. If the
prediction probability is larger than C, then the imputed value will be “2=No”, otherwise, the
imputed value will be “1 = Yes”. Hence, unlike other imputation methods, there is no chance
for a prediction probability that is less than C to get the other imputed value . If C is large,
then most of the prediction probability will be converted to 1. Unfortunately, our starting cut
off probability is large for all the questions (ie. above 70%), compared to the SURF example
we gave in Section 9.4.1, Chapter 9, where the starting cut off probability is around 50%. Fur-
thermore, the cut off probability will remain high throughout the EM iterations because the
ratio of nno/nyes is large for all the selected FNES questions. This means most missing values
were imputed as “1 = Yes” for the FNES questions. This drives up the estimated proportion
P̂. This also indicates that our current EM algorithm for categorical data has some potential
overestimation or underestimation problems.

Table 11.20: Imputation results for 2009 ECE FNES Q3a

Q3a, the number of missing observations is 186

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 113 338 0.2511 0.0203
Conditional Mode 140 497 0.2198 0.0157
Hot deck within adjustment cells 159 478 0.2465 0.0162
NN hot deck 152 485 0.2332 0.0158
Logistic regression 165 472 0.2606 0.0162
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.2511 0.0240
EM Algorithm 186 451 0.2758 0.0162
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.2466 0.0184
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Figure 11.5: The 95% confidence interval of proportion P̂ for the imputed Q3a 2009 ECE

Table 11.21: Imputation results for 2009 ECE FNES Q7b

Q7b, the number of missing observations is 144

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 145 348 0.3757 0.0191
Conditional Mode 180 457 0.3888 0.0168
Hot deck within adjustment cells 172 465 0.3683 0.0172
NN hot deck 177 460 0.3793 0.0171
Logistic regression 173 464 0.3604 0.0164
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.3760 0.0198
EM Algorithm 183 454 0.3954 0.0167
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.3709 0.0212
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Figure 11.6: The 95% confidence interval of proportion P̂ for the imputed Q7b 2009 ECE
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Table 11.22: Imputation results for 2009 ECE FNES Q7c

Q7c, the number of missing observations is 153

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 154 330 0.2346 0.0154
Conditional Mode 172 465 0.2078 0.0118
Hot deck within adjustment cells 189 448 0.2275 0.0124
NN hot deck 189 448 0.2270 0.0124
Logistic regression 191 446 0.2445 0.0130
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.2343 0.0172
EM Algorithm 218 419 0.2561 0.0121
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.2311 0.0148
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Figure 11.7: The 95% confidence interval of proportion P̂ for the imputed Q7c 2009 ECE

Table 11.23: Imputation results for 2007 ECE FNES Q3a

Q3a, the number of missing observations is 181

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 92 289 0.2481 0.0212
Conditional Mode 99 463 0.1717 0.0147
Hot deck within adjustment cells 132 430 0.2337 0.0165
NN hot deck 138 424 0.2411 0.0166
Logistic regression 140 422 0.2452 0.0167
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.2471 0.0230
EM Algorithm 157 405 0.2636 0.0166
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.2416 0.0249
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Figure 11.8: The 95% confidence interval of proportion P̂ for the imputed Q3a 2007 ECE

Table 11.24: Imputation results for 2007 ECE FNES Q7b

Q7b, the number of missing observations is 128

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 122 312 0.3180 0.0190
Conditional Mode 144 418 0.3116 0.0169
Hot deck within adjustment cells 143 419 0.3090 0.0170
NN hot deck 143 419 0.3087 0.0171
Logistic regression 146 416 0.3152 0.0171
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.3154 0.0211
EM Algorithm 156 406 0.3376 0.0168
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.3095 0.0197
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Figure 11.9: The 95% confidence interval of proportion P̂ for the imputed Q7b 2007 ECE
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Table 11.25: Imputation results for 2007 ECE FNES Q7c

Q7c, the number of missing observations is 147

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 131 284 0.2572 0.0169
Conditional Mode 149 413 0.2266 0.0127
Hot deck within adjustment cells 161 401 0.2494 0.0141
NN hot deck 163 399 0.2477 0.0135
Logistic regression 162 400 0.2506 0.0142
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.2552 0.0186
EM Algorithm 178 384 0.2631 0.0130
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.2531 0.0181
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Figure 11.10: The 95% confidence interval of proportion P̂ for the imputed Q7c 2007 ECE
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11.3.4 Imputing the School FNES data
As introduced in Table 11.7, Section 11.1, school questions Q5a and Q5b are interrelated

questions. This gives us a chance to apply deductive imputation (or “imputation based on
logical rules”) method (Section 3.3.1, Chapter 3). This imputation method can be used for the
following scenarios in Table 11.26:

Table 11.26: Scenarios where the imputation based on logical rules can be applied

Scenario

Q5a Whether drinking water
available to students at any time
1=Yes, 2=No, 98=Don’t know,
99=NA, .=No box ticked

Q5b Whether drinking water
available to students during
breaks only
1=Yes, 2=No, 98=Don’t know,
99=NA,.=No box ticked

Imputed value by
using logical rules

1 1=Yes 98=Don’t know NA
2 1=Yes .=No box ticked NA
3 98=Don’t know 1=Yes 2=No
4 .=No box ticked 1=Yes 2=No
5 99=NA 98=Don’t know both Q5a and Q5b should be missing
6 99=NA .=No box ticked both Q5a and Q5b should be missing
7 98=Don’t know 99=NA 1=Yes
8 .=No box ticked 99=NA 1=Yes
9 99=NA 99=NA both Q5a and Q5b should be missing

Note: NA=Not Applicable, “98=Don’t know” is considered as missing

As an aside, we do not think Q5a needs the option of “99=NA”. No matter what the answer
Q5b is, Q5a can not have an answer “NA”, and we can neither infer Q5a is “NA” by looking
at other questions’ answers.

The actual scenarios we have for Q5a and Q5b of the 2009 and 2007 School FNES are
displayed in Table 11.27 and Table 11.28. Table 11.27 has scenarios 1, 3 and 9. Table 11.28
has scenarios 1, 2, 3, 4 and 9. We have also noticed that Q5a and Q5b of 2007 School FNES
have some strange answers. First, one respondent gave an answer “3” to Q5a, which must
be a typographic error. Since there is no way to retrieve the true answer, we classify it as
missing. Second, 145 respondents have given the “1=Yes” answer to both Q5a and Q5b.
According to the way the questions were asked, this is impossible. Hence, for the respondents
who answered “Yes” to both Q5a and Q5b, we changed their Q5b answers to “99=NA”. This
is because we have assumed it is highly likely that people give the right answer to the first
question, but misinterpret the related following questions.

Table 11.27: Cross tabulation of Q5a and Q5b for 2009 School FNES

Q5b Total Q5a
1 2 98 99 Missing

1 0 841 2 0 0 843
Q5a 2 145 0 0 0 1 146

98 13 1 2 0 0 16
99 0 0 0 6 0 6

Missing 0 1 0 0 125 126
Total Q5b 158 843 4 6 126 Total=1137
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Table 11.28: Cross tabulation of Q5a and Q5b for 2007 School FNES

Q5b Total Q5a
1 2 98 99 Missing

1 145 403 14 4 67 633
2 64 2 0 0 0 66

Q5a 3 1 0 0 0 0 1
98 9 0 0 0 0 9
99 0 0 0 1 0 1

Missing 13 0 0 0 22 35
Total Q5b 232 405 14 5 89 Total=745

Initially, we want to merge the interrelated questions into one question in order to simplify
the imputation process. For example, if the respondent has both Q5a and Q5b missing, and
we impute both questions independently, then we could end up with imputing “99=NA” to
both questions. This result is our scenario 9 for which we think it is incorrect to have “NA” as
answers to both questions. There are other scenarios as well. It is impossible to impute the in-
terrelated questions separately without incorporating the interrelationship into the imputation
process. This could be difficult as the number of scenarios can be very large, if there are more
than two interrelated questions. Hence, combining the interrelated questions into one seems
as an easy way out. For instance, we create a new variable “Q5”. If Q5a is “1=Yes”, then Q5
can be “a”; if Q5a is “2=No”, but Q5b is “1=Yes”, then Q5 is “b”. However, combining the
interrelated questions into one gives us even bigger problems. Please see Table 11.29.

Table 11.29: Combining Q5a and Q5b into Q5

Scenario
Q5a Whether drinking water
available to students at any time

Q5b Whether drinking water
available to students during
breaks only

Q5

I 1=Yes 2=No or 99=NA a
II 2=No 1=Yes b
III 1=Yes 1=Yes or 99=NA a
IV 2=No 2=No c
V missing 1=Yes b
VI 1=Yes missing a
VII missing 2=No need to impute
VIII 2 missing need to impute
IX missing missing need to impute

As Table 11.29 shows, scenario IV has “2=No” for both Q5a and Q5b, and we code the
corresponding Q5 values as “c”. But, Table 11.27 shows that “2=No” for both questions
does not occur in 2009 School FNES, and Table 11.28 indicates that there were only two
respondents had answered “2=No” for both questions in 2007. This means “c” has zero or
very rare chance to be selected as the imputation value for the missing data. Hence, we
conclude that although it is possible to merge some interrelated question into one and impute,
Q5a and Q5b cannot be merged.

As a result, in order to tackle the interrelationship problem described previously, we planned
to impute Q5a first, then impute Q5b by using the completed Q5a. In other words, the imputa-
tion of Q5b depends on the imputation of Q5a. Furthermore, we have found that the “99=NA”
for Q5a and Q5b does not really contribute anything meaningful. For Q5a, if the answer to
Q5b is “1=Yes”, then logically the answer to Q5a should be “2=No”; if the answer to Q5b
is “2=No”, then logically the answer to Q5a shouldn’t be “99=NA”; if the answer to Q5b is
missing, then this does not mean the answer to Q5a can be “99=NA”. For Q5b, if the answer
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to Q5a is “1=Yes”, then logically the answer to Q5b must be “2=No”, it can be “99=NA” but
it means the same thing as “2=No”; if the answer to Q5a is “2=No”, then logically it does not
mean the answer to Q5b can be “99=NA”; if the answer to Q5a is missing, then this does not
mean the answer to Q5b can be “99=NA”. Both Q5a and Q5b have “99=NA” as their answer
only means that the answers to Q5a and Q5b are missing or incorrect, otherwise this kind
of answer does not make sense. Hence, we have decided to change “99=NA” to missing or
“2=No”.

The exact imputation procedure is as follows:

Step 1: convert the “98=Don’t know” and “99=NA” into missing for Q5a and Q5b. The reason
for changing “98=Don’t know” to missing has been discussed in Section 11.3.1. The
reason for changing “99=NA” to missing is that we believe that Q5a and Q5b with “NA”
answers can be changed to missing as discussed in previous paragraphs.

Step 2: for missing Q5a, if their corresponding Q5b has value “1=Yes”, then Q5a has value
“2=No” (logical rules)

Step 3: for missing Q5b, if a respondent’s Q5a value is “1=Yes”, then its Q5b value must be
“2=No” (logical rules)

Step 4: for the remaining missing Q5a, impute Q5a missing data by using some other imputa-
tion methods. Q5a can only have “1=Yes” or “2=No” as its values

Step 5: for the remaining missing Q5b, if a respondent’s imputed Q5a value is “1=Yes”, then
its Q5b value must be “2=No” (logical rules)

Step 6: for the remaining missing Q5b, if a respondent’s Q5a value is “2=No”, then the missing
data of Q5b can be imputed as “1=Yes” or “2=No” by some other imputation methods.

Due to the logical rules needing to be applied after finishing imputing Q5a in order to update
the remaining missing Q5b, the imputation methods which create multiple imputed datasets
cannot be applied easily for the imputation of Q5b. For example, if MI is our imputation
method and we want to create D = 5 MI datasets, then step 4 will give us D = 5 datasets.
However, we then need to use all the five datasets to update Q5b, which gives us five Q5b
datasets. Then, each of the five Q5b datasets will be imputed by MI in step 6. This gives us
5×5 = 25 imputed Q5b datasets.

This approach is impractical as the number of required imputed Q5b datasets is D2 which
can be very large if the D increases. Hence, we decided to create five MI datasets for Q5a
and use these datasets to update Q5b which gives us five updated Q5b datasets. Then, each of
the five updated Q5b datasets was imputed by Bayesian MI but only one imputed Q5b dataset
was draw from each of the Bayesian simulation chains. The justification is that the imputation
uncertainty has already been captured by the imputation of Q5a and can be passed over to
Q5b as there will be multiple imputed Q5b datasets as well.

However, for the resampling methods, we can fix this problem by drawing interrelated
questions together and impute each resampled dataset. For example, in our case, each resam-
pled dataset will have both Q5a and Q5b, then we just simply apply the above imputation
procedure to impute each resampled dataset.
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Then, we imputed the Q5a and Q5b under the assumption that the missing mechanism is
MAR, and applied the general imputation model Eq (11.2). In this case, The Ymiss represents
missing data of Q5a and Q5b of 2007 and 2009. After applying the same missing data mech-
anism detection methods that we introduced in Section 11.2, we decided to set the X to be
the stratum variable. All the listed imputation methods in Section 11.3.3 were applied to the
imputation of missing data of Q5a and Q5b of 2007 and 2009 FNES.

Table 11.30 to Table 11.33 display the imputation results for Q5a and Q5b of 2007 and 2009
FNES data. Equation (11.3) to Equation (11.6) were used to compute the estimated proportion
P̂ and standard error of P̂. Figure 11.11 to Figure 11.14 display the estimated proportions P̂
and their 95 % confidence intervals. The confidence intervals were computed as Equation
(11.7).

Again, the results shows that the bootstrap resampling method and MI have larger stan-
dard errors and wider confidence intervals than other imputation methods (except for the Q5b
2007). Looking at Figure 11.12 and Figure 11.14, we noticed that the estimated proportions
P̂ for the incomplete Q5b are higher than the estimates from the imputed data. This is mainly
due to the fact that Q5bs were updated by the imputed Q5as before applying imputation meth-
ods to the remaining missing Q5b data. As the majority of answers to the imputed Q5as were
“1=Yes”, this means that Q5bs would get a large number of “2=No” to replace their missing
values, and the estimated proportions P̂ would become smaller after updating.

Another interesting thing we have noticed is that Table 11.33 and Figure 11.14 show that
most imputation methods produce the same or very close estimated proportions P̂ and standard
error of P̂ for Q5b 2007. This is purely because there are only 2 observations with missing
Q5b after updating by the imputed Q5a 2007. We think imputing two missing values does not
make much change to the estimates. This is also why Bayesian MI does not produce larger se
and wider confidence intervals for Q5b 2007. There wouldn’t be much imputation uncertainty
if the dataset only has a very few missing data. However, the bootstrap resampling method
produced larger se and wider confidence intervals, although they are just slightly bigger. We
think this larger se is more likely to be the result of resampling than the imputation uncertainty.
Hence, this suggests that the bootstrap resampling method might potentially overestimate
imputation uncertainty compared to the Bayesian MI.

Table 11.30: Imputation results for 2009 School FNES Q5a

Q5a, the number of missing observations is 148

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 843 146 0.8860 0.0067
Conditional Mode 978 159 0.8922 0.0059
Hot deck within adjustment cells 957 180 0.8779 0.0062
NN hot deck 954 183 0.8768 0.0061
Logistic regression 958 179 0.8795 0.0061
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.8772 0.0090
EM Algorithm 978 159 0.8922 0.0059
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.8755 0.0070
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Figure 11.11: The 95% confidence interval of proportion P̂ for the imputed Q5a 2009 School

Table 11.31: Imputation results for 2009 School FNES Q5b

Q5b, the number of missing observations is 136

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 158 843 0.1223 0.0069
Conditional Mode 158 979 0.1068 0.0058
Hot deck within adjustment cells 164 973 0.1105 0.0059
NN hot deck 163 974 0.1094 0.0058
Logistic regression 165 972 0.1105 0.0058
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.1103 0.0081
EM Algorithm 158 979 0.1068 0.0058
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.1108 0.0060
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Figure 11.12: The 95% confidence interval of proportion P̂ for the imputed Q5b 2009 School
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Table 11.32: Imputation results for 2007 School FNES Q5a

Q5a, the number of missing observations is 46

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 633 66 0.9268 0.0073
Conditional Mode 656 89 0.9064 0.0080
Hot deck within adjustment cells 654 91 0.9040 0.0081
NN hot deck 652 93 0.9009 0.0083
Logistic regression 653 92 0.9032 0.0083
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.9035 0.0096
EM Algorithm 656 89 0.9064 0.0080
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.9022 0.0089
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Figure 11.13: The 95% confidence interval of proportion P̂ for the imputed Q5a 2007 School

Table 11.33: Imputation results for 2007 School FNES Q5b

Q5b, the number of missing observations is 108

Imputation method 1=“Yes” 2=“No”
Estimated
Proportion(P̂) Standard Error of P̂

Unimputed 232 405 0.3292 0.0161
Conditional Mode 232 513 0.2815 0.0139
Hot deck within adjustment cells 233 512 0.2823 0.0139
NN hot deck 232 513 0.2815 0.0139
Logistic regression 232 513 0.2815 0.0139
Bootstrap Resampling (B=200) Not Applicable Not Applicable 0.2834 0.0155
EM Algorithm 232 513 0.2815 0.0139
Bayesian Multiple Imputation (D=5) Not Applicable Not Applicable 0.2832 0.0139
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Figure 11.14: The 95% confidence interval of proportion P̂ for the imputed Q5b 2007 School

11.3.5 Imputation using the matched 2007 and 2009 ECE FNES sample
As given in Table 11.8, there are 109 ECE services in both 2007 and 2009 ECE FNES

samples. These matched units can provide us with some extra information when we want to
impute the 2007 or 2009 ECE samples. A simple method of utilising this extra information
is to use cold deck imputation to replace the missing 2009 data with the matched 2007 data.
However, as shown in Table 11.34, after updating the 2009 ECE FNES data with the matched
2007 data, for questions Q3a, Q7b, and Q7c, not all the missing data of the matched 2009 data
have been replaced with the 2007 data due to the matched 2007 data having missing data as
well. More importantly, the cold deck only updates the variables we want to impute by using
the matched data. There are other variables in the matched data as well, such as the variables
which relate to the missingness. Hence, the cold deck imputation method does not utilise all
the available and useful information in the matched data.

Table 11.34: Update the matched 2009 ECE FNES data with the matched 2007 data

The matched 2009 data 1=“Yes” 2=“No” Missing
Q3a
Before updating 23 59 27
After updating 23 73 14
Q7b
Before updating 21 57 31
After updating 24 78 7
Q7c
Before updating 30 50 29
After updating 35 66 8

In terms of utilising all the useful information in the matched data, a better way is to use
imputation methods which properly deal with the MAR missingness. Then, there are two
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approaches: the separate datasets approach, and the combined datasets approach. The separate
datasets approach treats the matched part of the data, and the non-matched part of the data as
two separate datasets. Imputation methods are applied to the two datasets separately. Most
imputation methods we have introduced can be used for this approach. The combined datasets
approach treats the matched and non-matched parts of the data as a whole. Bayesian related
imputation methods (e.g. MI) can be used to impute such datasets. The imputation is done
through Bayesian iterations:

Step 1: Impute the matched part of the data

Step 2: Impute the rest of missing data based on the imputed data from step 1 and the observed
data

Step 3: Repeat Step 1 and Step 2 until the estimates converges

In order for the iteration to work, the imputed data from step 1 must have slightly different
values each time. Although this can be done by some single imputation methods, such as
a stochastic regression model, or simple hot deck imputation, we think it performs the best
under Bayesian imputation scheme. Before introducing this approach in greater detail by
using the 2007 and 2009 ECE FNES samples, we want to point out that the combined datasets
approach is better than the separate datasets approach in terms of using the extra information
from the matched dataset. This is because all the information we get from the matched dataset
has been passed in to impute the missing data in the non-matched part of the data.

We have applied Bayesian MI for the combined datasets approach. Suppose Y is the vari-
able with missing data in the 2009 ECE FNES sample, X are the 2009 variables that are related
to the missingness of Y , and X is complete. The 2007 ECE FNES sample is matched to the
2009 sample. Z are the matched 2007 variables that are related to the missingness of Y of the
matched part. Z can include the Y from 2007 ECE FNES sample. This means we may use
the value of Y from 2007 to predict the missing value of Y in the 2009 sample. The use of
previous Y to impute the current Y was introduced later in this section. For now, we focus on
the simpler approach which does not include Y from 2007 sample.

The simple approach: Y , X and Z have four forms: YA, XA, and ZA are for the matched units
with observed Y values; YB, XB, and ZB are for the matched units with missing Y values; YC and
XC are for the non-matched units with observed Y values; YD and XD are for the non-matched
units with missing Y values. Figure 11.15 displays the idea graphically.
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Figure 11.15: Utilizing information from the matched data. Note: The tick 3 means observed
data, and the cross 8 means missing data

Basically, we have two models:
Y |XZ;α

and
Y |X ;β

The former is a better model since it has a richer set of covariates (X and Z), but only available
for the matched data. We can however use it to impute YB, after that, relying on the inferior
model Y |X ;β to impute YD, given that YB is available for imputing YD

The Bayesian part of the MI is:
At iteration t, we randomly draw YB and YD from their conditional distribution:

Y t
B ∼ p(YB|XB,ZB,α

t)

Y t
D ∼ p(YD|XD,β

t)

At iteration t +1, we randomly draw α t+1 and β t+1 from their conditional posterior distribu-
tion given the updated Y t

B and Y t
D, and the observed YA and YC:

α
t+1 ∼ p(α|YA,Y t

B,XA,XB,ZA,ZB)

β
t+1 ∼ p(β |YA,Y t

B,YC,Y t
D,XA,XB,XC,XD)

where α and β are the logistic regression parameters:

logit[πAB,i] = (xz)T
AB,iα

and
logit[πi] = xT

i β

As we can see, every time the YB is updated, it is used to update the β , then the updated β is
used to update YD. This means that we have incorporated Z in the process of imputing YB and
YD.
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For demonstration and description purposes, we use the Q3a of 2009 ECE FNES sample
as the Y variable. As briefly introduced before, we first used a simple approach which does
not involve Y from 2007 as one of the variables for Z, then we increased the complexity of
our models (the complex approach) to include Y from 2007 sample. Originally, we want to
just use the same explanatory variables: Stratum and Super region, which have been used in
previous sections, but after matching, these variables for 2007 and 2009 ECE FNES samples
have identical values for each matched units because they are the sample design variables.
Therefore, they are not good candidates for Z. The solution we propose is to add other vari-
ables on top of the sample design variables. For the simple approach without involving Y
from 2007, we add couple of non sample design variables from 2007 sample to be our Z, and
the X includes both non sample design variables and the added variables from 2009. For the
complex approach, the sample design variables were used to predict missing data of Y from
2007 sample in order to provide a complete Y variable from 2007 to Z, and they also were
used as one of the variables for X .

Hence, for the simple approach, we select Q3b (”Drinking water available to children
through water coolers”), and Q3c (”Drinking water available to children through tap water”)
from both 2007 and 2009 sample data to be the X and Z variables. To be clear, the X variable
is Q3b, Q3c, stratum and super region from the 2009 ECE FNES sample, and the Z variable is
Q3b and Q3c from the 2007 ECE FNES sample. However, all the Q3b and Q3c variables also
have missing data in both years’ samples. This violates the assumption that we have com-
plete explanatory variables when imputing the response variable. Hence, we need to impute
the Q3b and Q3c first. Because we only want to show how to do the MI for the combined
datasets approach once, we short-cut the imputation for Q3b and Q3c by simply applying the
adjustment cells hot deck imputation. Hence, we have the following for Y , X and Z:

Y = Q3a(2009)
X = (Q3b,Q3c,stratum,super region)(2009)
Z = (Q3b,Q3c)(2007)
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The following steps show how exactly we apply the MI for the combined datasets approach

Apply Multiple Imputation for the combined datasets approach

Step 1: Impute the Z = (Q3b,Q3c) from the 2007 and 2009 ECE FNES data by using the adjustment
hot deck imputation. The imputation cells were formed by the sample design variables:
Stratum and Super region

Step 2: Initial parameters: estimate α0 based on the matched units with observed 2009 Q3a values;
estimate β 0 based on the observed 2009 Q3a. Then, random noise generated from normal
distribution are added to the initial parameters. The normal distributions have 0 means and
10 times the standard deviations of α and β .

α
0 = α

0 +noise, noise∼ N(0,10× sdα) (11.8)

β
0 = β

0 +noise, noise∼ N(0,10× sdβ ) (11.9)

This is because we want to produce multiple chains with different starting points. m = 5
chains have been produced.

Step 3: Assuming the prior distributions are p(α) ∝ 1, and p(β ) ∝ 1.
Draw YB:

YB|α ∼ Bernoulli
(

exp((xz)T
i α t)

1+ exp((xz)T
i α t)

)
Draw YD:

YD|β ∼ Bernoulli
(

exp((x)T
i β t)

1+ exp((x)T
i β t)

)
Step 4: Draw α t+1 ∼ p(α|YA,Y t

B,XA,XB,ZA,ZB), by using the MH algorithm. The proposal distribu-
tion is N(α t ,Σα0)
Draw β t+1 ∼ p(β |YA,Y t

B,YC,Y t
D,X), by using the MH algorithm. The proposal distribution is

N(β t ,Σβ 0)
Σα0 and Σβ 0 are kept constant during the process

Step 5: Compute the proportion P̂ and the standard error of P̂ (se)based on the updated Y .

Step 6: For each Bayesian chain, repeat step 3 to step 5 until the estimates P̂ and se convergence.
The convergence is diagnosed by using the time series plots and Gelman and Rubin’s method
which have been introduced in Chapter 7

The choice of initial parameters: we decided to have m = 5 Bayesian simulation chains.
After the chains converge, the datasets that generated by the final iteration of those chains
were selected as our Bayesian MI datasets. Hence, we need five starting points10 for the five
Bayesian simulation chains. The choice of the starting points can be arbitrary (SAS 2008).
However, we would like our starting points to be well dispersed but relative to the posterior
distributions. Doing this can avoid the chains converging to a local maximum and check for
stability in our estimates. Therefore, we first need to have some understanding of what kind of
distributions α and β may have. Then, we estimate their standard deviations sdα and sdβ , and
substitute their values in Eq (11.8) and Eq (11.9) in Step 2. As described in Step 2, we draw
random noise from normal distributions with 0 means and 10 times the standard deviations
of α and β . We believe that doing this can make sure our choice of starting points are well
dispersed.

We found the possible distributions of α and β by setting the α0 and β 0 without adding the
random noise and repeating Step 3 and Step 4 for 5000 times. Figure 11.16 and Figure 11.17
display the distributions of α and β .

10Each of starting points is a set of initial parameters
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Figure 11.16: Distributions of α
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Beta: Intercept
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Figure 11.17: Distributions of β
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Convergence diagnostics for the simple approach: as introduced in Chapter 7, we first
drew time series plots of the estimates of the proportion P̂ and the standard error (se) of P̂.
These plots can give us some indication of how long the chains need to be in order to converge.
Figure 11.18 gives us the results. By looking at the time series plots, it seems that the five
chains for P̂ and se become very stable after the first 2000 iterations. This means that the
chains were converging within 5000 iterations.
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Figure 11.18: Time series plots of P̂ and se for m = 5 Bayesian chains
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With the indication from the time series plots, we then applied Gelman and Rubin’s diag-
nostic method in order to measure the convergence precisely. The R code for the Gelman and
Rubin diagnostic are obtained from the “coda” package in R. There are both numerical and
graphical results. The “gelman.diag()” function gives us numerical results:

> gelman.diag(mh.list_prop)

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.01 1.04

> gelman.diag(mh.list_se)

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.01 1.04

The results given are the median Potential scale reduction factor (PSRF) and its 97.5% quan-
tile. The PSRF is equivalent to the statistic R which we have introduced in Section 7.4.3,
Chapter 7. The rule of thumb is that the convergence is reached once the PSRF < 1.2 (Bolker
2011). As shown, the PSRFs for the chains of P̂ and the chains of se are all less then 1.2.
Therefore, we concluded that the Bayesian chains converge with 5000 iterations.

We can also show how the PSRF changes through the iterations using the “gelman.plot()”
function. Figure 11.19 shows the results. As can be seen, the PSRFs for both P̂ and se were
indeed starting to decline after the first 2000 iterations. This means that the Bayesian chains
were starting to become stable after the 2000th iteration. This confirms our initial guessing of
convergence by investigating the time series plots.

Based on the convergence diagnostics, we set the number of iterations for Bayesian chains
to be 5000 and combined the last estimates of each m = 5 chains to be the MI estimates.
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Figure 11.19: The simple approach: plot of Gelman-Rubin PSRF by iteration for P̂ and stan-
dard error of P̂

The results of the simple approach: we have applied similar steps to impute all the listed
ECE variables in Table 11.7 for both 2007 and 2009 data. Table 11.35 and Table 11.36 display
the results. The R code for imputing Q3a 2009 is in Appendix F, Section F.2.1.
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Table 11.35: Impute 2009 ECE FNES with the matched 2007 data by using MI

1=“Yes” 2=“No” Proportion (P) Standard Error of P
Q3a 2009 Not Applicable Not Applicable 0.2613 0.0215
Q7b 2009 Not Applicable Not Applicable 0.3840 0.0195
Q7c 2009 Not Applicable Not Applicable 0.2403 0.0172

Table 11.36: Impute 2007 ECE FNES with the matched 2009 data by using MI

1=“Yes” 2=“No” Proportion (P) Standard Error of P
Q3a 2007 Not Applicable Not Applicable 0.2676 0.023
Q7b 2007 Not Applicable Not Applicable 0.3389 0.0231
Q7c 2007 Not Applicable Not Applicable 0.2603 0.0167

The complex approach: As mentioned previously, a better way of selecting the variables
for Z is to include the 2007 Q3a variable. This is because the 2007 Q3a which is likely to have
similar values as the 2009 Q3a can provide better prediction power for the logistic regression.
As the 2007 Q3a is incomplete as well, we now have three models:

Y |X ,Z(YZ,XZ);α

and
Y |X ;β

and
YZ|XZ,γ

The added model (YZ|XZ,γ) is used to impute missing 2007 Q3a data.

Of course, we can short-cut the imputation for Q3a of 2007 by using the adjustment cells
hot deck imputation method, but the better way is to simply add a step to the Bayesian iterative
simulation in which the missing values of Q3a of 2007 are replaced with simulated values,
given the Q3b and Q3c of 2007 have been imputed beforehand. This is a better way of imput-
ing the response variable, because we have incorporated the imputation uncertainty that was
introduced by imputing the explanatory variables as well. Then, this actually extends the use
of Bayesian MI from imputing response variables only to imputing response and explanatory
variables together. Hence, we have the following for Y , X , and Z:

Y = Q3a(2009)
X = (Q3b,Q3c,stratum,super region)(2009)
Z = (Q3a,Q3b,Q3c,stratum,super region)(2007)

In order to simplify our description, we separated the Q3a of 2007 from the Z group of
variables, and gave it the symbol Y07. There are: Y07A for the matched observed units, Y07B
for the matched unobserved units, Y07E for the unmatched observed units, and Y07F for the
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unmatched unobserved units. Then, we have:

Y = Q3a(2009)
X = (Q3b,Q3c,stratum,super region)(2009)
Z = (Q3b,Q3c,stratum,super region)(2007)

Y2007 = Q3a(2007)

Figure 11.20 shows the idea graphically.
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Figure 11.20: Utilizing information from the matched and unmatched data. Note: 3 means
observed data, and 8 means missing data

Then, the Bayesian part of the MI is:
At iteration t, we randomly draw (Y2007B, Y2007F ,Y2007G), (YB,YH), and YD from their condi-
tional distribution

(Y t
2007B,Y

t
2007F ,Y

t
2007G)∼ p

(
(Y2007B,Y2007F ,Y2007G)|ZB,ZF ,zGγ

t)
(Y t

B,Y
t
H)∼ p(YB,YH |XB,XH ,Y t

2007B,Y2007H ,ZB,zHα
t)

Y t
D ∼ p(YD|XD,β

t)

where γ is the logistic regression parameters: logit[πY2007,i] = zT
i γ .

At iteration t+1, we randomly draw γ t+1, α t+1 and β t+1 from their conditional posterior dis-
tribution given the updated (Y t

2007B, Y t
2007F ,Y t

2007G), (Y t
B,Y t

H), and Y t
D, and the observed Y2007A,

Y2007E , Y2007H , YA, YC and YG:

γ
t+1 ∼ p(γ|Y2007A,Y t

2007B,Y2007E ,Y t
2007F ,Y

t
2007G,Y2007H ,ZA,ZB,ZE ,ZF ,ZG,ZH)

α
t+1 ∼ p(α|YA,Y t

B,YG,Y t
H ,Y2007A,Y t

2007B,Y
t
2007G,Y2007H ,XA,XB,XG,XH ,ZA,ZB,ZG,ZH)

β
t+1 ∼ p(β |YA,Y t

B,YC,Y t
D,YG,Y t

H ,XA,XB,XC,XD,XG,XH)

As, we can see, the γ t is updated based on the information from Y2007A, Y t
2007B, Y2007E , Y t

2007F ,
Y t

2007G, Y2007H , ZA, ZB, ZE , ZF , ZG, ZH . This means that the unmatched part of the 2007 data
has also been incorporated into the Bayesian MI. This gives better simulated Y t

2007B values.
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The exact steps are as follows:

Apply Multiple Imputation to impute the missing response and explanatory variables for the
combined datasets approach

Step 1: Impute the Z = (Q3b,Q3c) from the 2007 and 2009 ECE FNES data as previously introduced

Step 2: Initial parameters: estimate the γ0 based on the observed 2007 Q3a; estimate the α0 based on the
matched units with observed 2009 Q3a values; estimate β 0 based on the observed 2009 Q3a. Then,
random noise generated from a normal distribution is added to the initial parameters. The normal
distributions have 0 means and 10 times the standard deviations of γ , α , and β .

γ
0 = γ

0 +noise, noise∼ N(0,10× sdγ)

α
0 = α

0 +noise, noise∼ N(0,10× sdα)

β
0 = β

0 +noise, noise∼ N(0,10× sdβ )

m = 5 chains have been produced. The initial distributions of γ , α , and β were found as the proce-
dures introduced in the simple approach.

Step 3: Assuming the prior distributions are p(γ) ∝ 1, p(α) ∝ 1, and p(β ) ∝ 1.
Draw (Y t

2007B,Y
t
2007F ,Y

t
2007G):

(Y t
2007B,Y

t
2007F ,Y

t
2007G)|γ ∼ Bernoulli

(
exp((z)T

i γ t)

1+ exp((z)T
i γ t)

)
Draw (Y t

B,Y
t
H):

(Y t
B,Y

t
H)|α ∼ Bernoulli

(
exp((xzy2007)

T
i α t)

1+ exp((xzy2007)T
i α t)

)
Draw Y t

D:

Y t
D|β ∼ Bernoulli

(
exp((x)T

i β t)

1+ exp((x)T
i β t)

)
Step 4: Draw γ t+1 ∼ p(γ|Y2007A,Y t

2007B,Y2007E ,Y t
2007F ,Y

t
2007G,Y2007H ,ZA,ZB,ZE ,ZF ,ZG,ZH), by using the

MH algorithm. The proposal distribution is N(γ t ,Σγ0)

Draw α t+1 ∼ p(α|YA,Y t
B,YG,Y t

H ,Y2007A,Y t
2007B,Y

t
2007G,Y2007H ,XA,XB,XG,XH ,ZA,ZB,ZG,ZH), by us-

ing the MH algorithm. The proposal distribution is N(α t ,Σα0)
Draw β t+1 ∼ p(β |YA,Y t

B,YC,Y t
D,YG,Y t

H ,XA,XB,XC,XD,XG,XH), by using the MH algorithm. The
proposal distribution is N(β t ,Σβ 0)
Σγ0 , Σα0 and Σβ 0 were kept constant during the process

Step 5: Compute the proportion P̂ and the standard error of P̂ (se)based on the updated Y .

Step 6: For each Bayesian chain, repeat step 3 to step 5 until convergence. The convergence diagnostics
have the same procedures as the introduced simple approach which are the time series plots and the
Gelman and Rubin’s diagnostic method.

In this particular example, there is a great chance that a perfect fit will happen by using
Q3a 2007 from the matched data. This is because it is highly likely that the same respondents
provide the same answers to Q3a in 2007 and 2009 FNES surveys. If this happens, there is no
need to continue updating α through the MH algorithm as the best estimation of α has been
found. Then, we only need to draw (Y t

B,Y
t
H) from its posterior distribution with constant α .

The convergence diagnostic procedures were the same as the simple approach. However,
compared to the simple approach, the complex approach needs at least 20000 iterations to
converge. With the time series plots omitted, the Gelman and Rubin’s diagnostic results are
as follows:
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> gelman.diag(mh.list_prop)

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.19 1.45

> gelman.diag(mh.list_se)

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.17 1.41

Figure 11.21 displays the time series plots of Gelman-Rubin PSRF by 20000 iterations. The
convergence diagnostics show that the Bayesian chains converge within 20000 iterations, but
longer chains may produce better results.
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Figure 11.21: The complex approach: plot of Gelman-Rubin PSRF by iteration for P̂ and
standard error of P̂

Again, we have applied similar steps to impute all the listed variables in Table 11.7 for both
2007 and 2009 data. Table 11.37 and Table 11.38 display the results. The R code for imputing
Q3a 2009 and Q3a 2007 is in Appendix F, Section F.2.2.

Table 11.37: Impute 2009 ECE FNES with the matched 2007 data by using MI on both
response and explanatory variables

1=“Yes” 2=“No” Proportion (P) Standard Error of P
Q3a 2009 Not Applicable Not Applicable 0.2742 0.0245
Q7b 2009 Not Applicable Not Applicable 0.3876 0.0190
Q7c 2009 Not Applicable Not Applicable 0.2413 0.0154

Table 11.38: Impute 2007 ECE FNES with the matched 2009 data by using MI on both
response and explanatory variables

1=“Yes” 2=“No” Proportion (P) Standard Error of P
Q3a 2007 Not Applicable Not Applicable 0.2478 0.0210
Q7b 2007 Not Applicable Not Applicable 0.3113 0.0210
Q7c 2007 Not Applicable Not Applicable 0.2715 0.0157
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Comparing the results of imputation using the matched 2007 and 2009 ECE FNES sample
with the previous Bayesian MI imputation results (Section 11.3.3) from unmatched samples,
it is hard to tell which approach is better as they should all produce unbiased estimates and
properly reflect the imputation uncertainty. However, we believe that using more information
that relate to the missingness and the variables we want to impute should produce better im-
puted values than using less information, as the models utilizing more information possess
more prediction or imputation power. Hence, if partially matched datasets are available, we
recommend using Bayesian MI with our proposed complex approach to incorporate the extra
information from the matched datasets.

11.4 Discussion
In this Chapter, we have conducted some basic EDA to explore the missing data pattern of

the FNES data, and tried to impute the missing data by applying the various of imputation
methods introduced in previous Chapters, with the focus on Bayesian Multiple Imputation.
Unlike performing imputation methods on the simple SURF data, there are many challenges
we have faced when dealing with the real FNES data.

The first challenge is that there are far more variables and observations from the FNES than
the simple SURF. This makes it is very difficult to investigate the missing data patterns by
purely looking at the datasets only. Hence, we have carried out EDA to help us to investigate
the missing data patterns by plotting the response rate of each variables on bar charts.

The second challenge is that we impute the FNES missing data under the assumption that
the missingness is MAR and is related to other variables that have been observed as well,
but this is just an assumption. Unlike previous Chapters, we created the MCAR or MAR
missingness for the replicate SURF datasets, so the variables that are related to the missingness
were already known. For the real FNES data, we do not know whether the missingness is
MCAR, MAR or NMAR. This means we do not know which variables are related to the
missingness which creates difficulties when we want to construct the best imputation model.
Hence, in this Chapter, we have introduced the univariate comparison method and the logistic
regression assessment method to help us to identify the variables which are related to the
missingness.

The third challenge is to adapt our imputation methods to impute the interrelated variables.
As described, the difficulty is that once the variable with missing data is imputed, then other
variables that are related to that variable need to be updated as well, otherwise, the imputa-
tion results do not make practical sense. Our solution basically is to combine the deductive
imputation method with other imputation methods to impute missing data in the interrelated
variables. However, we have only imputed two variables that are related to each other. How
to find an efficient algorithm to deal with large number of variables that are interrelated is
something needed to be further studied.

The fourth challenge or improvement is to utilize the extra information we get by matching
the 2007 and 2009 FNES datasets. The matched datasets are very useful in terms of enhancing
our imputation methods. However, if it is only used for cold deck imputation, it is as though
we are taking the jewel box but throwing away the jewellery within. Hence, we have proposed
to incorporate the matched dataset in the Bayesian MI scheme. Doing this, we maximize the
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information we can get from the matched and unmatched part of both 2007 and 2009 FNES
data.

This Chapter also displays the imputation results for the selected FNES variables. As ex-
pected, the resampling method applied to imputed incomplete data and the Bayesian MI have
the largest variances of estimates than the single imputation method and the EM algorithm.

To sum up, from our investigation, we think the Bayesian MI is the best imputation method
for the FNES data. This is because it produces similar estimates to other imputation methods;
it properly propagates the imputation uncertainty; and it is extremely flexible in the case
of incorporating extra information from the matched datasets. This is also because we can
construct familiar and reliable logistic models by using the FNES variables, which might not
be the same case for other datasets.
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Chapter 12

Some final thoughts

This chapter summaries the previous chapters in this project, and proposes some thoughts
on future work and improvements. Specifically, the first section summaries the main points
and findings from previous chapters, and the second section lists things that we haven’t done,
but could be done and improved in the future.

12.1 Summary of previous chapters
Chapter 2 focuses on introducing the three missing data mechanisms (MCAR, MAR, and

NMAR). We have shown that the missing data do not cause biases only if they are MCAR.
Both MAR and NMAR introduce bias to the estimates. This chapter paves the foundation of
our discussion on how to deal with missing data in later chapters.

Chapter 3 exhibits most commonly used data deletion and imputation methods. This chap-
ter also gives in-depth discussion on the concepts of non-response bias and imputation uncer-
tainty. The main point is that the imputation methods are developed to tackle the bias issue if
the missingness is MAR, but most imputation methods ignore the fact that they underestimate
the imputation uncertainty due to treating the imputed values as true observed values.

Chapter 4 demonstrates how the various single imputation methods work in detail by ap-
plying them to the replicate SURF datasets with incomplete Income variable. We have shown
that the imputation methods can reduce bias if they properly incorporate the MAR mechanism
which means the imputation model includes the variables that are related to the missingness.
We have also shown that the imputation methods, such as stochastic regression model, and
hot deck imputation, perform better than other imputation methods which haven’t gotten any
random sampling mechanism. However, although some single imputation methods can deal
with bias, none of them can reflect the imputation uncertainty.

Chapter 5 discusses two popular resampling methods (the bootstrap and the jackknife),
and applies them to missing replicate SURF data to properly account for the imputation un-
certainty. These methods are efficient for dealing with imputation uncertainty, but they also
require large samples to achieve the desired results.

Chapter 6 introduces the EM algorithm which has been considered to be one of the best
missing data handling technique. We have included in our introduction of the EM algorithm
the case of multivariate missing data problems. Dealing with the multivariate missing data
problem is one of EM’s advantages, compared to single imputation methods. The reason that
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we go through the EM algorithm is that researchers normally use the EM algorithm to find the
initial estimates for the Bayesian MI.

Chapter 7 discusses the underlying Bayesian iterative simulation methods of the Bayesian
MI. We focus on how to apply the Metropolis-Hastings (MH) algorithm and the Gibbs sam-
pling algorithm to impute missing data, and compare the pros and cons of these two methods.
Again, we have also extended our introduction of these algorithms to the case of multivariate
missing data problems. This chapter also lists a few convergence diagnosis methods. This
chapter has the foundation of the Bayesian MI we apply to the replicate SURF and the FNES
data.

Chapter 8 shows how exactly Bayesian MI works, and how we pool the estimates from mul-
tiple imputed datasets together to compute the final MI estimates, and variances of estimates.
This chapter also gives mathematical and simulation proofs of why and how the improper MI
underestimates the variance of estimate.

Chapter 9 shows how to apply various imputation methods introduced in previous chapters
to missing categorical data. These imputation methods have only been applied to continuous
numerical missing data in previous chapters. In this Chapter, we show that, although the
fundamental concepts of these imputation methods are the same, variations are needed in
order to apply them to the missing categorical data. This chapter also prepares the use of
these imputation methods for the FNES data as all of its variables are categorical variables.

Chapter 10 simply describes the sample design of the FNES data.

Chapter 11 uses EDA to investigate the missing data pattern of the FNES data. Then,
this chapter introduces the univariate comparison method and logistic regression assessment
method to detect the missing data mechanism and the variables that are related to the missing-
ness. We start to introducing these detection methods for the missing data mechanism here,
because of the need to detect the missing data mechanism and variables that related to miss-
ingness only arises when we deal with the real life social survey data. Finally, we have applied
several imputation methods introduced in previous chapters to a few FNES variables. The re-
sults indicate that Bayesian MI produces estimates similar to other imputation methods, and
it also gets similar variances of estimates to the bootstrap resampling methods. Furthermore,
we propose the use of Bayesian MI for the case of partially matched datasets. Bayesian MI
maximizes the information we can get from the matched and unmatched datasets in order to
find the best imputation values. The model of Bayesian MI for the partially matched datasets
is the new development in this project.

12.2 Future work

• Apply the EM algorithm and Bayesian MI to Multivariate data with missing values. We
have touched this area in Chapter 6 and 7, and they are all for the case of multivariate
numerical data. The multivariate data can be categorical data or a mixture of categorical
and numerical data. Some theories of how to deal with this types of missing data prob-
lem have been developed by Schafer (2003), and Little & Rubin (2002), and others.
It will be beneficial to investigate the missing data problem for Multivariate data and
apply the methods to the FNES data.
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• Develop imputation methods for categorical data. We have seen that the development
of imputation methods for categorical data lags behind the the development for the
numerical data. For example, the Groenewald & Mokgatlhe (2005) method we have
introduced in Chapter 9 does not work for the situation that the explanatory variables X
are also categorical data. Further modification of their method could be made.

• Investigate data editing methodologies for the FNES data. “Data editing is the activ-
ity aimed at detecting and correcting errors (logical inconsistencies) in data” (OECD
2001). Normally, the data editing is the step before imputation after we collect the raw
data. The data editing process can affect the quality of the data and the imputation, due
to its ability to deal with logical inconsistencies, outliers and typographic errors. For
example, if the outliers can be removed or dealt with at the data editing stage, then our
imputation can avoid imputing the outliers values to the missing data.

• Research the possible modification of other non-Bayesian related imputation methods
for partially matched data. Since the purpose of this project is to focus on the discussion
and development of Bayesian MI, we have only explored the use of Bayesian MI for the
partially matched data. But, it is possible to apply the EM algorithm, or even resampling
methods to the partially matched data as well.
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Appendix A

R code for chapter 5

A.1 The simple bootstrap
#R program for the simple Bootstrap applied to imputed incomplete data

#function for adjustment cell hot deck imputation

Adjust_hot_imp=function (dataset, hotdeckvars, imputevar){

dataset=dataset[order(dataset$Personid),]

dataset.nomiss=dataset[!is.na(dataset[,imputevar]),]

dataset.miss =dataset[is.na(dataset[,imputevar]),]

#Count the number of missing

nmissing=nrow(dataset.miss)

idx=sort(dataset[is.na(dataset[,imputevar]),"Personid"])

for (j in (1:nmissing)){

matched <- F

m <- length(hotdeckvars)

while(!matched) {

mm <- merge(dataset.miss[j,], dataset.nomiss, by=hotdeckvars[1:m])

if(nrow(mm)>0) {

matched <- T

dataset[idx[j],imputevar]

<- mm[sample(nrow(mm),1),paste(imputevar,"y", sep=".")]

} else {

m <- m-1

if(m==0) {

dataset[idx[j],imputevar]

<- dataset.nomiss[sample(nrow(dataset.nomiss),1),imputevar]

matched <- T

}

}

}

}

dataset

}

###############################################################

###############################################################

#Bootstrap method

hotdeckvars

<- c("HoursBand","AgeBand","Marital","Ethnicity","Gender","Qualification")
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SURF2=SURF

SURF2$AgeBand <- 5*(SURF$Age%/%5)

SURF2$HoursBand <- 10*((SURF$Hours-5)%/%10)+5

#repeat the whole process 1000 times

b=200

mu=c()

mu_boot=c()

var_boot=c()

for (i in 1:1000){

mar.surf=MAR(SURF2,"Gender","Income",c(0.5,0.2))

for (j in 1:b){

Y=mar.surf

Income_boot=sample(Y$Income,nrow(Y),replace=T)

Y=cbind(Y,Income_boot)

Y_hat=subset(Y, select=-Income) #remove original income var

#imputation

Y_hat=Adjust_hot_imp(Y_hat, hotdeckvars, "Income_boot")

#compute mean for each imputed bootstrap sample

mu[j]=mean(Y_hat$Income_boot)

}

mu_boot[i]=mean(mu)

var_boot[i]=var(mu)

}

A.2 The simple jackknife
#Jackknife method

hotdeckvars

<- c("HoursBand","AgeBand","Marital","Ethnicity","Gender","Qualification")

SURF2=SURF

SURF2$AgeBand <- 5*(SURF$Age%/%5)

SURF2$HoursBand <- 10*((SURF$Hours-5)%/%10)+5

Jack_mean=c()

Jack_var=c()

mu=c()

n=19

for (i in 1:100){

mar.surf=MAR(SURF2,"Gender","Income",c(0.5,0.2))

Y=mar.surf

#consistent estimate of theta (mean)

theta_con=mean(Adjust_hot_imp(Y, hotdeckvars, "Income")$Income)

for (j in 0:19){

Y_hat=Y[order(Y$Personid),]

Y_hat=Y_hat[-c(j*10+1:j*10+10),]

Personid=seq.int(1,nrow(Y_hat),1) #add new personid

Y_hat=subset(Y_hat, select=-Personid) #remove old personid

Y_hat=cbind(Y_hat,Personid)

Y_hat=Adjust_hot_imp(Y_hat, hotdeckvars, "Income")
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mu[j]=mean(Y_hat$Income)

}

#pseudovalue theta (mean)

pseudo_mu=length(mu)*theta_con-(length(mu)-1)*mu

#jack mean

Jack_mean[i]=mean(pseudo_mu)

#jack variance

Jack_var[i]=(length(mu)-1)*sum((mu-mean(mu))^2)/length(mu)

}
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Appendix B

R code for chapter 6

B.1 EM algorithm - Univariate Normal Data
# R program -- EM Algorithm EM algorithm for univariate normal data

# Now, suppose Income

# variable is normally distributed. Then, we can consider an univariate

# normal data. Creating missing data

mcar.surf=SURF

nmissing <- c(Income=40)

nsurf <- nrow(SURF)

idx <- sort(sample(nsurf, size=nmissing["Income"], replace=F))

mcar.surf[idx,"Income"] = NA

em.uni.norm=function(Y){

Yobs=Y[!is.na(Y)]

Ymis=Y[is.na(Y)]

n=length(c(Yobs,Ymis))

r=length(Yobs)

#initial values

#mut=mean(Yobs)

#sit=var(Yobs)*(r-1)/r # (n-1)s^2/n -- sample variance

mut=1

sit=0.1

#log-likelihood function

log.like=function(y,mu,sigma2,n){

-0.5*n*log(2*pi*sigma2)-0.5*sum((y-mu)^2)/sigma2}

#Compute the log-likelihood for the initial values, and ignoring the

#missing data mechanism

log.like.tmp=log.like(Yobs,mut,sit,n)

repeat{

#E-step

EY=sum(Yobs)+(n-r)*mut

EY2=sum(Yobs^2)+(n-r)*(mut^2+sit)

#M-step

mut1=EY/n

sit1=EY2/n-mut1^2

#Update parameter

mut=mut1

sit=sit1

199



#Compute log-likelihood using current estimates

log.like.t=log.like(Yobs,mut,sit,n)

#print current parameter values and likelihood

cat(sprintf("%.4f %.1f %.3f\n",mut,sit,log.like.t))

#stop if converged

if (abs(log.like.tmp-log.like.t)/abs(log.like.t)<1.0e-6) break

log.like.tmp=log.like.t

}

c(mut,sit)

}

X=mcar.surf$Income

em.uni.norm(X)

B.2 Recipe: EM algorithm - Bivariate Normal Sample with
Missing Data on both Variables

# EM for bivariate normal sample with missing data

mu_hours=c()

mu_income=c()

var_hours=c()

var_income=c()

for(k in 1:1000){

Y_H=MCAR(SURF,50,"Hours")

Y_I=MCAR(Y_H[!is.na(Y_H$Hours),],50,"Income")

Y_I=Y_I[,c("Personid","Hours","Income")]

Y_HR=Y_H[!(Y_H$Personid %in% Y_I$Personid),]

Y_HR=Y_HR[,c("Personid","Hours","Income")]

Y=rbind(Y_I,Y_HR)

Y=Y[order(Y$Personid),]

n=nrow(Y)

# Step 1: compute means, variances, covariance and construct loglikelihood

# function

Y=Y[,-1]

idx.11 <- !is.na(Y[,1]) & !is.na(Y[,2])

idx.10 <- !is.na(Y[,1]) & is.na(Y[,2])

idx.01 <- is.na(Y[,1]) & !is.na(Y[,2])

idx.00 <- is.na(Y[,1]) & is.na(Y[,2]) # should be all FALSE

Y.obs <- Y[!is.na(Y[,1]) & !is.na(Y[,2]),]

mub=apply(Y.obs,2,mean) # means

mubx=mub[1]

muby=mub[2]

covar=cov(Y.obs) # variances and covariances

sigmax=sqrt(covar[1,1])

sigmay=sqrt(covar[2,2])

rho=cor(Y.obs)[1,2] # correlation

sigmaxy=rho*sigmax*sigmay
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# log-likelihood function

BV.log.like <- function(x,y,mux,muy,n,sigmax,sigmay,rho) {

sigmat <- array(c(sigmax^2, rho*sigmax*sigmay,

rho*sigmax*sigmay, sigmay^2), dim=c(2,2))

detsigmat <- det(sigmat)

m <- 2

ss <- sum( ((x-mux)/sigmax)^2

- 2*rho*(x-mux)*(y-muy)/(sigmax*sigmay)

+ ((y-muy)/sigmay)^2 )

retval <- ( -n*m/2*log(2*pi) -(n/2)*log(detsigmat) -0.5*ss/(1-rho^2) )

return(retval)

}

# BV.log.like(Y.obs[,1],Y.obs[,2],mubx,muby,160,sigmax,sigmay,rho)

BV.log.like.tmp = BV.log.like(Y.obs[,1],Y.obs[,2],

mubx,muby,n,sigmax,sigmay,rho)

i=0

# Step 2: E step

repeat{

# the sufficient statistics for both variables with observed units

EX.obs =sum(Y[idx.11 | idx.10,1])

EY.obs =sum(Y[idx.11 | idx.01,2])

EX2.obs=sum(Y[idx.11 | idx.10,1]^2)

EY2.obs=sum(Y[idx.11 | idx.01,2]^2)

EXY.obs=sum(Y[idx.11,1]*Y[idx.11,2]) #need to have complete data

# the sufficient statistics for Income observed, but hours missing

beta21=sigmaxy/sigmax^2

beta20=muby-beta21*mubx

sigmay1=sqrt(sigmay^2-sigmaxy^2/sigmax^2)

EY.2=sum(beta20+beta21*Y[,1][is.na(Y[,2])])

EY2.2=sum((beta20+beta21*Y[,1][is.na(Y[,2])])^2+sigmay1^2)

EXY.2=sum((beta20+beta21*Y[,1][is.na(Y[,2])])*Y[,1][is.na(Y[,2])])

# the sufficient statistics for hours observed, but Income missing

beta12=sigmaxy/sigmay^2

beta02=mubx-beta12*muby

sigmax1=sqrt(sigmax^2-sigmaxy^2/sigmay^2)

EX.1=sum(beta02+beta12*Y[,2][is.na(Y[,1])])

EX2.1=sum((beta02+beta12*Y[,2][is.na(Y[,1])])^2+sigmax1^2)

EXY.1=sum((beta02+beta12*Y[,2][is.na(Y[,1])])*Y[,2][is.na(Y[,1])])

# final sufficient statistics

EX.tot=EX.obs+EX.1 #s1

EY.tot=EY.obs+EY.2 #s2

EX2.tot=EX2.obs+EX2.1 #s11

EY2.tot=EY2.obs+EY2.2 #s22
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EXY.tot=EXY.obs+EXY.2+EXY.1 #s12

# Step 3: M step

mubxt=EX.tot/n

mubyt=EY.tot/n

sigmaxt=sqrt(EX2.tot/n-mubx^2)

sigmayt=sqrt(EY2.tot/n-muby^2)

sigmaxyt=EXY.tot/n-mubx*muby

#update parameters

mubx=mubxt

muby=mubyt

sigmax=sigmaxt

sigmay=sigmayt

sigmaxy=sigmaxyt

i=i+1

#Compute log-likelihood using current estimates

BV.log.like.t=BV.log.like(Y.obs[,1],Y.obs[,2],mubx,muby,n,sigmax,sigmay,rho)

print(c(mubx,muby,n,sigmax,sigmay,i,BV.log.like.t))

#stop if converged

if (abs(BV.log.like.tmp-BV.log.like.t)<0.001) break

BV.log.like.tmp=BV.log.like.t

}

c(mubx,muby,n,sigmax,sigmay,i)

mu_hours[k]=c(mubx,muby,n,sigmax,sigmay,i)[1]

var_hours[k]=c(mubx,muby,n,sigmax,sigmay,i)[4]^2

mu_income[k]=c(mubx,muby,n,sigmax,sigmay,i)[2]

var_income[k]=c(mubx,muby,n,sigmax,sigmay,i)[5]^2

}
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Appendix C

R code for chapter 7

C.1 Applying MH algorithm to Univariate Normal data
#Metropolis-Hastings algorithm -- univariate normal

#step 0: create MCAR income data

Y_MCAR_O=MCAR(SURF,50,"Income")$Income

Y_MCAR=Y_MCAR_O

#step 1: set up posterior density function

n=length(Y_MCAR)

logpost=function(y,mY,sY)

{-log(sY)-(n/2)*log(2*pi*sY)-(2*sY)^-1*sum((y-mY)^2)}

#step 2: set up initial values

iter=100000

a=5

b=5

mY=matrix(mean(Y_MCAR_O[!is.na(Y_MCAR)]),iter)

sY=matrix(var(Y_MCAR_O[!is.na(Y_MCAR)]),iter)

acctot_m=0

acctot_s=0

for (i in 2:iter){

#step 3: sample Ymis

Y_MCAR[is.na(Y_MCAR_O)]=rnorm(length(Y_MCAR_O[is.na(Y_MCAR_O)]),

mY[i-1], sqrt(sY[i-1]))

#step 4: sample mean mY

#mY[i]=runif(1, mY[i-1]-a, mY[i-1]+a)

mY[i]=mY[i-1]+runif(1,min=-10,max=10)

acc_m=1

if (mY[i]<0) {

acc_m=0

mY[i]=mY[i-1]

}

if ((logpost(Y_MCAR,mY[i],sY[i-1])-logpost(Y_MCAR,mY[i-1],sY[i-1]))

<log(runif(1,min=0,max=1)))

{

acc_m=0

mY[i]=mY[i-1]

}

acctot_m=acctot_m+acc_m
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#strp 5: sample variance sY

#sY[i]=runif(1,sY[i-1]-b,sY[i-1]+b)

sY[i]=sY[i-1]+runif(1,min=-1000,max=1000)

acc_s=1

if (sY[i]<0){

acc_s=0

sY[i]=sY[i-1]

}

if ((logpost(Y_MCAR,mY[i],sY[i])-logpost(Y_MCAR,mY[i],sY[i-1]))

<log(runif(1,min=0,max=1)))

{

acc_s=0

sY[i]=sY[i-1]

}

acctot_s=acctot_s+acc_s

}

C.2 Applying Gibbs sampling algorithm to Bivariate Nor-
mal data

#Gibbs sampling algorithm -- bivariate normal

library(MCMCpack)

#Data Augmentation

# Example 10.1

# Bivariate normal data with ignorable nonresponse and a general pattern of

# missing data

# Step 0: create missing data for Income and Hours, missing data cannot overlap

Y_H=MCAR(SURF,50,"Hours")

Y_I=MCAR(Y_H[!is.na(Y_H$Hours),],50,"Income")

Y_I=Y_I[,c("Personid","Hours","Income")]

Y_HR=Y_H[!(Y_H$Personid %in% Y_I$Personid),]

Y_HR=Y_HR[,c("Personid","Hours","Income")]

Y=rbind(Y_I,Y_HR)

mcar.surf=Y[order(Y$Personid),]

idx.In=which(is.na(mcar.surf$Income))

idx.Hour=which(is.na(mcar.surf$Hours))

d=1000

# Step 1: compute means, variances, covariance and betas

mubx=c()

muby=c()

sigmax=c()

sigmay=c()

sigmaxy=c()

rho=c()

beta21=c()

beta20=c()

beta12=c()

beta02=c()

sigmax1=c()
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sigmay1=c()

Y=cbind(mcar.surf$Income, mcar.surf$Hours)

#units with both variables observed

Y.obs=cbind(Y[,1][!is.na(Y[,1])& !is.na(Y[,2])],

Y[,2][!is.na(Y[,1])& !is.na(Y[,2])])

mub=apply(Y.obs,2,mean) # means

mubx[1]=mub[1]

muby[1]=mub[2]

covar=cov(Y.obs) # variances and covariances

sigmax[1]=sqrt(covar[1,1])

sigmay[1]=sqrt(covar[2,2])

rho[1]=cor(Y.obs)[1,2] # correlation

sigmaxy[1]=rho[1]*sigmax[1]*sigmay[1]

for (j in 1:d){

beta21[j]=sigmaxy[j]/sigmax[j]^2

beta20[j]=muby[j]-beta21[j]*mubx[j]

sigmay1[j]=sqrt(sigmay[j]^2-sigmaxy[j]^2/sigmax[j]^2)

beta12[j]=sigmaxy[j]/sigmay[j]^2

beta02[j]=mubx[j]-beta12[j]*muby[j]

sigmax1[j]=sqrt(sigmax[j]^2-sigmaxy[j]^2/sigmay[j]^2)

# Step 2: I step

# Income is missing (Y1 missing)

for (i in 1:length(idx.In)) {

Y[idx.In[i],1]=rnorm(1,beta02[j]+beta12[j]*Y[idx.In[i],2],

sigmax1[j])

}

# Hours is missing (Y2 missing)

for (i in 1:length(idx.Hour)) {

Y[idx.Hour[i],2]=rnorm(1,beta20[j]+beta21[j]*Y[idx.Hour[i],1],

sigmay1[j])

}

# Step 3: P step

# part one: new means, covariance matrix

mup=apply(Y,2,mean)

covarp=cov(Y)

S=n*covarp

sigma=(riwish(n-1, S))

sigma

z=rnorm(2,0,1)

mupt=mup+t(z)%*%chol(sigma/(n-1))

# Step 4: update parameters

mubx[j+1]=mupt[1]

muby[j+1]=mupt[2]

sigmax[j+1]=sqrt(sigma[1,1])

sigmay[j+1]=sqrt(sigma[2,2])

rho[j+1]=sigma[1,2]/(sqrt(sigma[1,1])*sqrt(sigma[2,2])) #correlation

sigmaxy[j+1]=rho[j+1]*sigmax[j+1]*sigmay[j+1]

j=j+1

}
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Appendix D

R code for Chapter 8

D.1 The MI Process

Step 1: Imputation
#Multiple Imputation

#step 0: Create MAR income data

Y_MAR=MAR(SURF,"Gender","Income",c(0.5,0.2))

#step 1: set up y and x matrix

y=as.matrix(Y_MAR$Income)

x=as.matrix(cbind(rep(1,nrow(Y_MAR)),Y_MAR$Gender, Y_MAR$Age, Y_MAR$Hours))

ystar=y

#step 2: establish intial parameters/starting points

iter=1000

#sigma square

s2=matrix(1,iter)

#beta matrix. only consider three variables:Gender, Age, Hours and the intercept

b=matrix(0,iter,4)

xtxi=solve(t(x)%*%x)

muY=matrix(mean(ystar[!is.na(y)]),iter) #mean Y

varY=matrix(var(ystar[!is.na(y)]),iter) #variance Y

yreplace= as.matrix(y)[,rep(1,iter)]

for (j in 2:iter){

#step 3: sample missing data

ystar[is.na(y)]=rnorm(length(ystar[is.na(y)]),

mean=x[is.na(y),]%*%(b[j-1,]), sd=sqrt(s2[j-1]))

yreplace[,j][is.na(yreplace[,j])]= ystar[is.na(y)]

muY[j]=mean(ystar)

varY[j]=var(ystar)

#step 4: simulate beta from multivariate normal distribution

b[j,]=coefficients(lm(ystar~x-1))+t(rnorm(4,0,1))%*%chol(s2[j-1]*xtxi)

#step 5: simulate sigma from inverse gamma distribution

s2[j]=1/rgamma(1,length(y)/2,

0.5*t(ystar-x%*%(b[j,]))%*%(ystar-x%*%(b[j,])))

}

#step 6: Convergence diagnosis

par(mfrow=c(3,2))

plot(as.vector(s2),type="l", xlab="iteration",
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ylab="Sigma Square", main="Time series plot")

plot(as.vector(b[,1]),type="l", xlab="iteration",

ylab="Intercept", main="Time series plot")

plot(as.vector(b[,2]),type="l", xlab="iteration",

ylab="Beta_Gender", main="Time series plot")

plot(as.vector(b[,3]),type="l", xlab="iteration",

ylab="Beta_Age", main="Time series plot")

plot(as.vector(b[,4]),type="l", xlab="iteration",

ylab="Beta_Hours", main="Time series plot")

#step 7: Sample five datasets

D=5

#D number of imputed data sets, burn-in iteration is 200

MI_y=as.matrix(y)[,rep(1,D)]

for (d in 1:D){

MI_y[,d]=yreplace[,-c(1:200)][,d]

d=d+100

}

D.2 Proper and Improper Multiple Imputation
#Improper Multiple Imputation - modified simple random MI

hotImp.mean.mcar=c()

hotImp.var.mcar=c()

hotImp.totvar.mcar=c()

for (i in 1:1000){

#Step 0: create MCAR missing income

Y_MCAR=MCAR(SURF,50,"Income")

Y_MCAR_imp=Y_MCAR

#Step 1: the simple hot deck imputation

#Count the number of missing

nmissing=nrow(Y_MCAR[is.na(Y_MCAR$Income),])

D=5

for (d in 1:D){

#draw Y_mis from the normal distribution

Y_MCAR_imp[is.na(Y_MCAR$Income),"Income"]=

rnorm(length(Y_MCAR_imp[is.na(Y_MCAR)]),

mean(Y_MCAR[!is.na(Y_MCAR$Income),"Income"]),

sd(Y_MCAR[!is.na(Y_MCAR$Income),"Income"]))

#Step 2: estimates

hotImp.mean.mcar[d]=mean(Y_MCAR_imp$Income)

hotImp.var.mcar[d]=var(Y_MCAR_imp$Income)/nrow(Y_MCAR_imp)

}

#total variance

hotImp.totvar.mcar[i]=mean(hotImp.var.mcar)+(1+1/D)*var(hotImp.mean.mcar)}

#Proper Multiple Imputation

totvar.mcar=c()

for (j in 1:1000){

#Step 0: create MCAR missing income

Y_MCAR=MCAR(SURF,50,"Income")$Income
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Y_MCAR_imp=Y_MCAR

#assume prior =1

#step 1: Set up initial values

iter=1000

mY_MCAR=mean(Y_MCAR_imp[!is.na(Y_MCAR_imp)])

sY_MCAR=var(Y_MCAR_imp[!is.na(Y_MCAR_imp)])

#step 2: Draw missing income from the normal distribution with

#observed income mean and variance

for(i in 2:iter){

Y_MCAR_imp[is.na(Y_MCAR)]=rnorm(length(Y_MCAR_imp[is.na(Y_MCAR)]),

mY_MCAR[i-1], sqrt(sY_MCAR[i-1]))

#step 3: draw sigma^2 and mean

sY_MCAR[i]=rgamma(1,(length(Y_MCAR_imp)/2),

rate=sum((Y_MCAR_imp-mY_MCAR[i-1])^2)/2)

sY_MCAR[i]=1/sY_MCAR[i]

mY_MCAR[i]=rnorm(1,mean(Y_MCAR_imp),sqrt(sY_MCAR[i]/length(Y_MCAR_imp)))

}

#sample D MI dataset start from iteration 200

D=5

#D number of means

MI_mean=c()

MI_var=c()

for (d in 1:D){

MI_mean[d]=mY_MCAR[-(1:200)][d]

MI_var[d]=sY_MCAR[-(1:200)][d]/length(Y_MCAR_imp)

d=d+100

}

totvar.mcar[j]=mean(MI_var)+(1+1/D)*var(MI_mean)}

208



Appendix E

R code for Chapter 9

E.1 Single imputation methods for categorical data

E.1.1 Mode imputation
Here below is the R code for unconditional and conditional mode imputation:

#Unconditional mode imputation

uncon_mode=function(dat, variable){

surf_table=table(dat[,variable])

Mode=max(surf_table)

Mode_name=names(which(surf_table == Mode))

#if more than one variable have the max number,

#then random sample one of them as imputed value

Mode_name=sample(Mode_name,1)

dat[,variable][is.na(dat[,variable])]=Mode_name

dat}

#Conditional mode imputation

add.condition=function(x){

if (is.null(ncol(x))) x

else do.call("paste",c(x,sep=""))}

con_mode=function(dat,variable,Condition){

con.table=tapply( dat[which( dat[,variable]!="NA"),"Qualification"],

add.condition(dat[which( dat[,variable]!="NA"),Condition]), table)

con=add.condition( dat[,Condition])

dat=cbind(dat,con)

for (i in 1:length(con.table)){

Mode_name=names(which(con.table[[i]]==max(con.table[[i]])))

Mode_name=sample(Mode_name,1)

Sep=dat[,variable][which(dat[,"con"]==names(con.table[i]))]

dat[,variable][which(dat[,"con"]==names(con.table[i]))][is.na(Sep)]

=Mode_name

}dat}

E.1.2 Logistic regression imputation
Here is the R code for the binary logistic regression imputation method which has been applied
to the SURF data.
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#binary logistic regression

impute = function (a, a.impute){

ifelse (is.na(a), a.impute, a)}

colname=c("Male", "Female")

all_lgit=t(as.matrix(table(SURF$Gender,useNA="always")/200))[,colname]

for (i in 1:1000){

mcar_surf=MCAR(SURF,50,"Gender")

glm_Gen=glm(Gender ~ Qualification+Marital,

data=mcar_surf[!is.na(mcar_surf$Gender),], family=binomial)

#glm_Gen=glm(Gender ~ Qualification+Hours+Marital+Ethnicity+Income+Age,

data=mcar_surf[!is.na(mcar_surf$Gender),], family=binomial)

pred=predict.glm (glm_Gen, mcar_surf, type = "response")

for (j in 1:length(pred)){

if (pred[j]>runif(1,0,1)) {pred[j]="Female"}

else {pred[j]="Male"}

}

mcar_surf[,"Gender"]=impute(as.vector(mcar_surf$Gender), as.vector(pred))

all_lgit=rbind(all_lgit,

t(as.matrix(table(mcar_surf$Gender,useNA="always")/200))[,colname])}

E.2 Likelihood based and Bayesian iterative simulation im-
putation methods for categorical data

E.2.1 EM algorithm for categorical variable
Here is the R code for the EM algorithm of binary logistic regression:

impute = function (a, a.impute){

ifelse (is.na(a), a.impute, a)}

ratio=c()

ratio_true=nrow(SURF[which(SURF$Gender=="Female"),])/

nrow(SURF[which(SURF$Gender=="Male"),])

for (k in 1:1000){

mar_surf=MAR(SURF,"Qualification","Gender",c(0.2,0.3, 0.1, 0.1))

EMlgit_surf=mar_surf

coe_sum=c(1)

finished = F

converged = F

rtol = 1.e-5

imax = 2

i=1

while (!finished){

i=i+1

cutoff=nrow(EMlgit_surf[which(EMlgit_surf$Gender=="Female"),])

/nrow(EMlgit_surf)

glm_Gen=glm(as.factor(Gender) ~ Qualification+Hours+Marital

+Ethnicity, data=EMlgit_surf[!is.na(EMlgit_surf$Gender),],

family=binomial)
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#extract coeffiecients and sum their absolute values

coe_sum[i]=sum(abs(summary(glm_Gen)$coefficients[,1]))

pred=predict.glm (glm_Gen, EMlgit_surf, type = "response")

for (j in 1:length(pred)){

if (pred[j]>cutoff) {pred[j]=’Female’}

else {pred[j]=’Male’}

}

#EMlgit_surf[,"Gender"]=impute(mar_surf$Gender, as.factor(pred))

EMlgit_surf[,"Gender"]=impute(as.vector(mar_surf$Gender), pred)

if( abs(coe_sum[i]-coe_sum[i-1])<rtol ) {

converged = T

finished = T

}

else if(i==imax) {

finished = T

}

}

ratio[k]=nrow(EMlgit_surf[which(EMlgit_surf$Gender=="Female"),])/

nrow(EMlgit_surf[which(EMlgit_surf$Gender=="Male"),])}
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Appendix F

R code for Chapter 11

Here is the R code for implementing all the proposed imputation methods for the FNES data

F.1 Impute the 2007 and 2009 ECE FNES missing data
#Function to compute standard error pf proportion

SE_complex=function(dat,variable,stra,big_N){

small_n=tapply(dat[,variable], dat[,stra], length)

ny_holder=as.matrix(table(dat[,stra]))

ny_holder[,1]=0

ny_holder=cbind(ny_holder,stratum=rownames(ny_holder))

ny_temp=dat[which(dat[,variable]==1),]

ny=as.matrix(tapply(ny_temp[,variable], ny_temp[,stra], length))

ny=cbind(ny,stratum=rownames(ny))

ny_f=replace(ny_holder[,1],ny_holder[,"stratum"] %in% ny[,"stratum"],ny[,1])

p=as.numeric(ny_f)/small_n

variance=sum((big_N/sum(big_N))^2*(1-(small_n/big_N))*(p*(1-p))/(small_n-1))

se=sqrt(variance)

big_p= sum((big_N/sum(big_N))*p)

c(big_p,se)

}

#Single imputation

#conditional mode

add.condition=function(x){

if (is.null(ncol(x))) x

else do.call("paste",c(x,sep=""))}

con_mode=function(dat,variable,Condition){

con.table=tapply( dat[which( dat[,variable]!="NA"),variable],

add.condition(dat[which( dat[,variable]!="NA"),Condition]), table)

con=add.condition( dat[,Condition])

dat=cbind(dat,con)

for (i in 1:length(con.table)){

Mode_name=names(which(con.table[[i]]==max(con.table[[i]])))

Mode_name=sample(Mode_name,1)

Sep=dat[,variable][which(dat[,"con"]==names(con.table[i]))]

212



dat[,variable][which(dat[,"con"]==names(con.table[i]))][is.na(Sep)]=Mode_name

}dat}

#adjustment cell hot deck

adjHD=function(adjdata,adjvar,adjvary,hotdeckvars){

id=seq(1:nrow(adjdata))

ECE_adj_hot=cbind(adjdata,id)

nomiss=adjdata[!is.na(adjdata[,adjvar]),]

miss=adjdata[is.na(adjdata[,adjvar]),]

nmissing=nrow(miss)

idx=sort(ECE_adj_hot[is.na(ECE_adj_hot[,adjvar]),"id"])

if (nrow(miss)==0) {

ECE_adj_hot

} else{

for (j in (1:nmissing)){

matched <- F

m <- length(hotdeckvars)

while(!matched) {

mm <- merge(miss[j,], nomiss, by=hotdeckvars[1:m])

if(nrow(mm)>0) {

matched <- T

ECE09_adj_hot[idx[j],adjvar] <- mm[sample(nrow(mm),1), adjvary]

} else {

m <- m-1

if(m==0) {

ECE_adj_hot[idx[j],adjvar] <- nomiss[sample(nrow(nomiss),1),adjvar]

matched <- T

}

}

}

}

ECE09_adj_hot

}

}

#nearest neighbour hot deck

library(StatMatch)

NN_hotdeck=function(dat, ind, varb, match_var){

gower_rec=dat[which(dat[,ind]==0),-which(names(dat) %in% c(varb))]

gower_don=dat[which(dat[,ind]==1),] # donor data.frame

#search for NND donors

imp.NND = NND.hotdeck(data.rec=gower_rec,

data.don=gower_don, match.vars=c(match_var), dist.fun="Gower")

# imputing missing values

rec.imp=create.fused(data.rec=gower_rec,

data.don=gower_don, mtc.ids=imp.NND$mtc.ids, z.vars=varb)

# rebuild the imputed data.frame

final = rbind(rec.imp, gower_don)

final

}
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#logistic regression

logreg=function(lrdata,lrvar){

impute = function (a, a.impute){

ifelse (is.na(a), a.impute, a)}

lrdata=lrdata[,c("Stratum","super_regional_council",lrvar)]

regform=paste(paste("as.factor(",lrvar,")"),

paste("as.factor(Stratum)","as.factor(super_regional_council)",sep="+") ,sep="~")

glm_lr=glm(as.formula(regform), family=binomial, data=na.omit(lrdata))

pred=predict.glm(glm_lr, lrdata, type = "response")

for (i in 1:length(pred)){

if (pred[i]<runif(1,0,1)) {pred[i]=1}

else {pred[i]=2}

}

lrdata[,lrvar]=impute(as.vector(lrdata[,lrvar]), pred)

c(table(lrdata[,lrvar],useNA="always") ,SE_complex(lrdata,lrvar,"Stratum",big_N))

}

#Bootstrap resampling methods

B=200

propotion_se=matrix(,nrow=B, ncol=2)

big_N=c(1961,613,237,473)

for (i in 1:B){

ece.actual.sample2007_boot=

ece.actual.sample2007_thesis[sample(nrow(ece.actual.sample2007_thesis),

size=nrow(ece.actual.sample2007_thesis),replace=T),

c("Response_ind_Q3a", "Response_ind_Q7b", "Response_ind_Q7c" ,"Stratum",

"super_regional_council","new_Q3a", "new_Q7b", "new_Q7c")]

Table_adjHD=adjHD(ece.actual.sample2009_boot, "new_Q3a", "new_Q3a.y",

c("Stratum", "super_regional_council"))

propotion_se[i,]=SE_complex(Table_adjHD,"new_Q3a","Stratum",big_N)

}

boot_proportion=mean(propotion_se[,1])

boot_se=sqrt(sum((propotion_se[,1]-mean(propotion_se[,1]))^2)/(B-1))

#EM algorithm

impute = function (a, a.impute){

ifelse (is.na(a), a.impute, a)}

EM_CAT=function(EMdata,EMvar){

glmEM_data=EMdata[,c("Response_ind_Q3a","Stratum","super_regional_council",EMvar)]

coe_sum=c(0)

finished = F

converged = F

rtol = 1.e-3

imax = 100

i=1

cutoff=c(0.5)
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while (!finished){

i=i+1

regform=paste(paste("as.factor(",EMvar,")"),

paste("as.factor(Stratum)","as.factor(super_regional_council)",sep="+") ,sep="~")

glm_EM=glm(as.formula(regform), family=binomial, data=na.omit(glmEM_data))

#extract coeffiecients and sum their absolute values

coe_sum[i]=sum(abs(summary(glm_EM)$coefficients[,1]))

pred=predict.glm (glm_EM, glmEM_data, type = "response")

for (j in 1:length(pred)){

if (pred[j]>cutoff[i-1]) {pred[j]=2}

else {pred[j]=1}}

glmEM_data[,EMvar]=impute(as.vector(EMdata[,EMvar]), pred)

cutoff[i]=nrow(glmEM_data[which(glmEM_data[,EMvar]==2),])/

nrow(glmEM_data[which(glmEM_data[,EMvar]!="NA"),])

if( abs(coe_sum[i]-coe_sum[i-1])<rtol ) {

converged = T

finished = T

}else if(i==imax) {finished = T}

}

c(table(glmEM_data[,EMvar],useNA="always"),

SE_complex(glmEM_data,EMvar,"Stratum",big_N))

}

#multiple imputation

MI_cat=function(MIdata,DMI,MIvar,Bit, burnin){

impute = function (a, a.impute){ifelse (is.na(a), a.impute, a)}

expit <- function(x) 1/(1+exp(-x))

#set up posterior distribution function

lpost=function(coe_beta, xmat, y){

eta=xmat%*%as.vector(coe_beta)

p=1/(1+exp(-eta))

return(sum(log(p[y==2])) + sum(log(1-p[y==1])))}

proportion_MI=c()

se_MI=c()

pred_cat=c()

DAlgit_MI=MIdata[,c("Response_ind_Q3a","Stratum","super_regional_council",MIvar)]

#estimates of the regression coefficients

regform=paste(paste("as.factor(",MIvar,")"),

paste("as.factor(Stratum)","as.factor(super_regional_council)",sep="+") ,sep="~")

glm_MI=glm(as.formula(regform), family=binomial, data=na.omit(DAlgit_MI))

coe_beta=t(as.numeric(coefficients(glm_MI)))

#extract x by using the SURF data

xmat=model.matrix(as.factor(Response_ind_Q3a) ~ as.factor(Stratum)+

as.factor(super_regional_council), data=DAlgit_MI, family=binomial)

#compute sigma matrix

b_sr=sqrt(diag(vcov(glm_MI)))

for (i in 2:Bit){

coe_beta=rbind(coe_beta,coe_beta[i-1,])

#draw Y-mis from Bernoulli distribution, given Y-obs and beta
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pred=as.numeric(expit(xmat%*%as.vector(coe_beta[i,])))

for (k in 1:length(pred)){

if (rbinom(1,1,as.numeric(pred[[k]]))==1) {pred_cat[k]=2}

else {pred_cat[k]=1}

}

DAlgit_MI[,MIvar]=impute(as.vector(MIdata[,MIvar]), as.vector(pred_cat))

y=DAlgit_MI[,MIvar]

#draw beta from the proposed distribution

#begin MH

coe_beta[i,]=coe_beta[i-1,]+rnorm(ncol(coe_beta),0,b_sr)

if ((lpost(coe_beta[i,], xmat, y)-

lpost(coe_beta[i-1,], xmat, y))<log(runif(1,min=0,max=1))){

coe_beta[i,]=coe_beta[i-1,]

}

y_full=cbind(y=y,Stratum=DAlgit_MI$Stratum)

proportion_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[1]

se_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[2]

}

proportion_MI_d=c()

se_MI_d=c()

for (d in seq(burnin,length(se_MI),floor((length(se_MI)-burnin)/DMI))){

proportion_MI_d[d]=proportion_MI[d]

se_MI_d[d]=se_MI[d]

}

proportion_MI_d=proportion_MI_d[!is.na(proportion_MI_d)]

se_MI_d=se_MI_d[!is.na(se_MI_d)]

DMI=length(proportion_MI_d)

final_prop_MI=mean(proportion_MI_d)

WD=sum(se_MI_d^2)/length(se_MI_d)

BD=sum((proportion_MI_d-mean(proportion_MI_d))^2)/(length(proportion_MI_d)-1)

TD=WD+BD*(DMI+1)/DMI

c(final_prop_MI, sqrt(TD))

}

F.2 Imputation using the matched 2007 and 2009 ECE FNES
sample

F.2.1 The simple approach
convergence_chain_prop=matrix(0,5000,5)

convergence_chain_se=matrix(0,5000,5)

for (m in 1:5){

#Matching the 2007 and 2009 ECE FNES sample data

match_can_09=ece.actual.sample2009_thesis[,

c("Institution_Number", "new_Q3a", "new_Q3b",

"new_Q3c","Stratum","super_regional_council")]

match_can_07=ece.actual.sample2007_thesis[,

c("Institution_Number", "new_Q3a", "new_Q3b",
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"new_Q3c","Stratum","super_regional_council")]

#apply adjustment cells hot deck to imputate Q3b and Q3c.

#They will be used as explanatory varaibles.

match_can_09=adjHD(match_can_09, "new_Q3b", "new_Q3b.y",

c("Stratum", "super_regional_council"))

match_can_09=subset(match_can_09,select=-c(id))

match_can_09=adjHD(match_can_09, "new_Q3c", "new_Q3c.y",

c("Stratum", "super_regional_council"))

match_can_09=subset(match_can_09,select=-c(id))

match_can_09=adjHD(match_can_09, "new_Q7a", "new_Q7a.y",

c("Stratum", "super_regional_council"))

match_can_09=subset(match_can_09,select=-c(id))

match_can_07=adjHD(match_can_07, "new_Q3b", "new_Q3b.y",

c("Stratum", "super_regional_council"))

match_can_07=subset(match_can_07,select=-c(id))

match_can_07=adjHD(match_can_07, "new_Q3c", "new_Q3c.y",

c("Stratum", "super_regional_council"))

match_can_07=subset(match_can_07,select=-c(id))

#match 07 and 09

matched_0709=merge(match_can_09, match_can_07, by="Institution_Number")

colnames(matched_0709)[2]="new_Q3a"

#functions

impute = function (a, a.impute){

ifelse (is.na(a), a.impute, a)}

expit <- function(x) 1/(1+exp(-x))

#set up posterior distribution function

lpost=function(coe_beta, xmat, y){

eta=xmat%*%as.vector(coe_beta)

p=1/(1+exp(-eta))

return(sum(log(p[y==2])) + sum(log(1-(p[y==1]))))

}

#set up logistic model

glm_match_can=

glm(as.factor(new_Q3a) ~ as.factor(new_Q3b)+as.factor(new_Q3c)+

as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_09[!is.na(match_can_09$new_Q3a),], family=binomial)

glm_matched=

glm(as.factor(new_Q3a) ~ as.factor(new_Q3b.x)+as.factor(new_Q3c.x)+

as.factor(Stratum.x)+as.factor(super_regional_council.x)

+as.factor(new_Q3b.y)+as.factor(new_Q3c.y),

data=matched_0709[!is.na(matched_0709$new_Q3a),], family=binomial)

coe_beta=t(as.numeric(coefficients(glm_match_can)))+noise_b

coe_beta_match=t(as.numeric(coefficients(glm_matched)))+noise_a
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xmat=

model.matrix(as.factor(Institution_Number) ~ as.factor(new_Q3b)+as.factor(new_Q3c)

+as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_09, family=binomial)

xmat_matched=

model.matrix(as.factor(Institution_Number) ~ as.factor(new_Q3b.x)+

as.factor(new_Q3c.x)+as.factor(Stratum.x)+as.factor(super_regional_council.x)

+as.factor(new_Q3b.y)+as.factor(new_Q3c.y), data=matched_0709, family=binomial)

#compute sigma matrix

b_sr=sqrt(diag(vcov(glm_match_can)))

b_sr_matched=sqrt(diag(vcov(glm_matched)))

#set original datasets. They are used for imputation purposes

y_09=match_can_09

y_0709=matched_0709

proportion_MI=c()

se_MI=c()

big_N=c(2230,623,309,462)

for (i in 2:5000){

coe_beta=rbind(coe_beta,coe_beta[i-1,])

coe_beta_match=rbind(coe_beta_match, coe_beta_match[i-1,])

#draw Y-mis from Bernoulli distribution, given Y-obs and beta

pred=as.numeric(expit(xmat%*%as.vector(coe_beta[i,])))

pred_match=as.numeric(expit(xmat_matched%*%as.vector(coe_beta_match[i,])))

for (f in 1:length(pred_match)){

if (rbinom(1,1,as.numeric(pred_match[[f]]))==1) {pred_match[f]=2}

else {pred_match[f]=1}

}

matched_0709$new_Q3a=impute(as.vector(y_0709$new_Q3a), as.vector(pred_match))

yb=matched_0709$new_Q3a

for (k in 1:length(pred)){

if (rbinom(1,1,as.numeric(pred[[k]]))==1) {pred[k]=2}

else {pred[k]=1}

}

match_can_09$new_Q3a=impute(as.vector(y_09$new_Q3a), as.vector(pred))

#update yd

df1=match_can_09[,c("Institution_Number","new_Q3a")]

df2=matched_0709[,c("Institution_Number","new_Q3a")]

for(id in 1:nrow(df2)){

df1$new_Q3a[df1$Institution_Number %in% df2$Institution_Number[id]] =

df2$new_Q3a[id]}

yd=df1$new_Q3a

#draw beta from the proposed distribution

for (j in 1:ncol(coe_beta_match)){

coe_beta_match[i,j]=coe_beta_match[i-1,j]+rnorm(1,0,b_sr_matched[j])

if ((lpost(coe_beta_match[i,], xmat_matched, yb)-

lpost(coe_beta_match[i-1,], xmat_matched, yb))<log(runif(1,min=0,max=1))){

coe_beta_match[i,j]=coe_beta_match[i-1,j]

}
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}

for (g in 1:ncol(coe_beta)){

coe_beta[i,g]=coe_beta[i-1,g]+rnorm(1,0,b_sr[g])

if ((lpost(coe_beta[i,], xmat, yd)-

lpost(coe_beta[i-1,], xmat, yd))<log(runif(1,min=0,max=1))){

coe_beta[i,g]=coe_beta[i-1,g]

}

}

y_full=cbind(y=yd,Stratum=match_can_09$Stratum)

proportion_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[1]

se_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[2]

}

convergence_chain_prop[,m]= proportion_MI

convergence_chain_se[,m]= se_MI

}

#serarching initial paprameters

start_b=as.data.frame(coe_beta)

start_a=as.data.frame(coe_beta_match)

plotf=function(dat){

for (i in 1:ncol(dat)){

hist(dat[,i], xlab=names(dat)[i],main="")}}

par(mfrow=c(4,3))

plotf(start_a)

par(mfrow=c(5,2))

plotf(start_b)

intial_b=apply(coe_beta, 2, sd)

noise_b=c()

for (i in 1:length(intial_b)){

noise_b[i]=rnorm(1,0,intial_b[i]*10)

}

intial_a=apply(coe_beta_match, 2, sd)

noise_a=c()

for (i in 1:length(intial_a)){

noise_a[i]=rnorm(1,0,intial_a[i]*10)

}

#Convergence diagnostics

#Gelman and Rubin diagnostic

library(coda)

mh.list_prop=

mcmc.list(list(as.mcmc(convergence_chain_prop[-1,1]),

as.mcmc(convergence_chain_prop[-1,2]),as.mcmc(convergence_chain_prop[-1,3]),

as.mcmc(convergence_chain_prop[-1,4]),as.mcmc(convergence_chain_prop[-1,5])))

mh.list_se=

mcmc.list(list(as.mcmc(convergence_chain_se[-1,1]),

as.mcmc(convergence_chain_se[-1,2]),as.mcmc(convergence_chain_se[-1,3]),

as.mcmc(convergence_chain_se[-1,4]),as.mcmc(convergence_chain_se[-1,5])))

gelman.diag(mh.list_prop)
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gelman.diag(mh.list_se)

gelman.plot(mh.list_prop, main="PSRF of proportions")

gelman.plot(mh.list_se, main="PSRF of standard errors of proportion")

#MI estimates computation

proportion_MI_d=convergence_chain_prop[5000,]

se_MI_d=convergence_chain_se[5000,]

DMI=5

final_prop_MI=mean(proportion_MI_d)

WD=sum(se_MI_d^2)/length(se_MI_d)

BD=sum((proportion_MI_d-mean(proportion_MI_d))^2)/(length(proportion_MI_d)-1)

TD=WD+BD*(DMI+1)/DMI

c(final_prop_MI, sqrt(TD))

F.2.2 The complex approach
con_chain_prop_com=matrix(0,20000,1)

con_chain_se_com=matrix(0,20000,1)

options(warn=-1)

for (m in 1:5){

#A better method, invovling Y from the 2007

match_can_09=ece.actual.sample2009_thesis

[,c("Institution_Number", "new_Q3a",

"new_Q3b","new_Q3c","Stratum","super_regional_council")]

match_can_07=ece.actual.sample2007_thesis

[,c("Institution_Number", "new_Q3a",

"new_Q3b","new_Q3c","Stratum","super_regional_council")]

match_can_09=adjHD(match_can_09, "new_Q3b",

"new_Q3b.y", c("Stratum", "super_regional_council"))

match_can_09=adjHD(match_can_09, "new_Q3c",

"new_Q3c.y", c("Stratum", "super_regional_council"))

match_can_07=adjHD(match_can_07, "new_Q3b",

"new_Q3b.y", c("Stratum", "super_regional_council"))

match_can_07=adjHD(match_can_07, "new_Q3c",

"new_Q3c.y", c("Stratum", "super_regional_council"))

#match 07 and 09

matched_0709=merge(match_can_09, match_can_07, by="Institution_Number")

colnames(matched_0709)[2]="new_Q3a"

#set up logistic model

glm_match_can_09=glm(as.factor(new_Q3a) ~ as.factor(new_Q3b)+

as.factor(new_Q3c)+as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_09[!is.na(match_can_09$new_Q3a),], family=binomial)

glm_match_can_07=glm(as.factor(new_Q3a) ~ as.factor(new_Q3b)+

as.factor(new_Q3c)+as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_07[!is.na(match_can_07$new_Q3a),], family=binomial)

#summary(glm_match_can)

glm_matched=glm(as.factor(new_Q3a) ~as.factor(new_Q3b.x)+as.factor(new_Q3c.x)+

as.factor(new_Q3a.y)+as.factor(new_Q3b.y)+as.factor(new_Q3c.y)

+as.factor(Stratum.x)+as.factor(super_regional_council.x),
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data=matched_0709[!is.na(matched_0709$new_Q3a)&

!is.na(matched_0709$new_Q3a.y),], family=binomial)

coe_beta_09=t(as.numeric(coefficients(glm_match_can_09)))+rnorm(1,0,noise_b)

coe_beta_07=t(as.numeric(coefficients(glm_match_can_07)))+rnorm(1,0,noise_g)

coe_beta_match=t(as.numeric(coefficients(glm_matched)))+rnorm(1,0,noise_a)

xmat_09=model.matrix(as.factor(Institution_Number) ~ as.factor(new_Q3b)+

as.factor(new_Q3c)+as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_09, family=binomial)

xmat_07=model.matrix(as.factor(Institution_Number) ~ as.factor(new_Q3b)+

as.factor(new_Q3c)+as.factor(Stratum)+as.factor(super_regional_council),

data=match_can_07, family=binomial)

#compute sigma matrix

b_sr_09=sqrt(diag(vcov(glm_match_can_09)))

b_sr_07=sqrt(diag(vcov(glm_match_can_07)))

b_sr_matched=sqrt(diag(vcov(glm_matched)))

#set original datasets. They are used for imputation purposes

y_09=match_can_09

y_07=match_can_07

y_0709=matched_0709

proportion_MI=c()

se_MI=c()

big_N=c(2230,623,309,462)

for (i in 2:20000){

coe_beta_07=rbind(coe_beta_07, coe_beta_07[i-1,])

coe_beta_09=rbind(coe_beta_09, coe_beta_09[i-1,])

coe_beta_match=rbind(coe_beta_match, coe_beta_match[i-1,])

#draw Ys

pred_07=as.numeric(expit(xmat_07%*%as.vector(coe_beta_07[i,])))

pred_09=as.numeric(expit(xmat_09%*%as.vector(coe_beta_09[i,])))

#Y_2007

for (j in 1:length(pred_07)){

if (rbinom(1,1,as.numeric(pred_07[j]))==1) {pred_07[j]=2}

else {pred_07[j]=1}

}

match_can_07$new_Q3a=impute(as.vector(y_07$new_Q3a), as.vector(pred_07))

y_2007=match_can_07$new_Q3a

#update Y_2007

matched_0709=merge(match_can_09, match_can_07, by="Institution_Number")

colnames(matched_0709)[2]="new_Q3a"

#Y_B

xmat_matched=model.matrix(as.factor(Institution_Number) ~

as.factor(new_Q3b.x)+as.factor(new_Q3c.x)

+as.factor(new_Q3a.y)+as.factor(new_Q3b.y)+as.factor(new_Q3c.y)+

as.factor(Stratum.x)+as.factor(super_regional_council.x),

data=matched_0709, family=binomial)

pred_match=as.numeric(expit(xmat_matched%*%as.vector(coe_beta_match[i-1,])))
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for (k in 1:length(pred_match)){

if (rbinom(1,1,as.numeric(pred_match[k]))==1) {pred_match[k]=2}

else {pred_match[k]=1}

}

matched_0709$new_Q3a=impute(as.vector(y_0709$new_Q3a), as.vector(pred_match))

yb=matched_0709$new_Q3a

#Y_09

for (m in 1:length(pred_09)){

if (rbinom(1,1,as.numeric(pred_09[m]))==1) {pred_09[m]=2}

else {pred_09[m]=1}

}

match_can_09$new_Q3a=impute(as.vector(y_09$new_Q3a), as.vector(pred_09))

#update yd

df1=match_can_09[,c("Institution_Number","new_Q3a")]

df2=matched_0709[,c("Institution_Number","new_Q3a")]

for(id in 1:nrow(df2)){

df1$new_Q3a[df1$Institution_Number %in% df2$Institution_Number[id]]=

df2$new_Q3a[id]}

yd=df1$new_Q3a

#draw beta from the proposed distribution

for (z in 1:ncol(coe_beta_07)){

coe_beta_07[i,z]=coe_beta_07[i-1,z]+rnorm(1,0,b_sr_07[z])

if ((lpost(coe_beta_07[i,], xmat_07, y_2007)-

lpost(coe_beta_07[i-1,], xmat_07, y_2007))<log(runif(1,min=0,max=1))){

coe_beta_07[i,z]=coe_beta_07[i-1,z]

}

}

for (p in 1:ncol(coe_beta_match)){

coe_beta_match[i,p]=coe_beta_match[i-1,p]+rnorm(1,0,b_sr_matched[p])

if ((lpost(coe_beta_match[i,], xmat_matched, yb)-

lpost(coe_beta_match[i-1,], xmat_matched, yb))=="NaN"){

coe_beta_match[i,p]=coe_beta_match[i-1,p]

}

else if ((lpost(coe_beta_match[i,], xmat_matched, yb)-

lpost(coe_beta_match[i-1,], xmat_matched, yb))<log(runif(1,min=0,max=1))){

coe_beta_match[i,p]=coe_beta_match[i-1,p]

}

}

for (g in 1:ncol(coe_beta_09)){

coe_beta_09[i,g]=coe_beta_09[i-1,g]+rnorm(1,0,b_sr_09[g])

if ((lpost(coe_beta_09[i,], xmat_09, yd)-

lpost(coe_beta_09[i-1,], xmat_09, yd))<log(runif(1,min=0,max=1))){

coe_beta_09[i,g]=coe_beta_09[i-1,g]

}

}

y_full=cbind(y=yd,Stratum=match_can_09$Stratum)

proportion_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[1]

se_MI[i]=SE_complex(y_full,"y","Stratum",big_N)[2]

}
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con_chain_prop_com=cbind(con_chain_prop_com,proportion_MI)

con_chain_se_com=cbind(con_chain_se_com,se_MI)

}

proportion_MI_d=con_chain_prop_com[20000,-1]

se_MI_d=con_chain_se_com[20000,-1]

DMI=5

final_prop_MI=mean(proportion_MI_d)

WD=sum(se_MI_d^2)/length(se_MI_d)

BD=sum((proportion_MI_d-mean(proportion_MI_d))^2)/(length(proportion_MI_d)-1)

TD=WD+BD*(DMI+1)/DMI

c(final_prop_MI, sqrt(TD))
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