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Abstract

We studied the transport through magnetic molecules (MM) coupled to supercon-

ducting (S), ferromagnetic (F) and normal (N) leads, with the aim of investigating the

interplay between the magnetism and the superconducting proximity effect. The mag-

netic molecules were modeled using the Anderson model with an exchange coupling

between the electron spins and the spin of the molecule. We worked in the infinite

superconducting gap limit and treated the coupling between the molecule and the su-

perconducting lead exactly, via an effective Hamiltonian. For the F/N-MM-S systems

we used a real-time diagrammatic perturbation theory to calculate the electronic trans-

port properties of the systems to first order in the tunnel coupling to the normal or

ferromagnetic lead and then analysed the properties with respect to the parameters of

these models. For these systems we found that the current maps out the excitation

energies of the eigenstates of the effective Hamiltonian and that various parameters

in these systems can lead to a negative differential conductance. In the N-MM-S case

the current had no overall spin dependence, but when the normal lead is instead fer-

romagnetic there was a spin dependence and both the electronic and molecular spin

expectation values could take on non-zero values. We also found that the polarisation of

the ferromagnetic lead suppresses the superconducting proximity effect. Furthermore

in the N-MM-S case the Fano factor indicated a transition from Poissonian transport

of single electrons to Poissonian transport of electron pairs as the superconducting

proximity effect goes out of resonance, however in the F-MM-S case this did not occur.

For the S-MM-S systems we calculated the equilibrium Josephson current and found

that in the infinite superconducting gap limit no 0 − π transition was possible. Ad-

vantages of this study compared to related ones are that we allow for arbitrarily large

Coulomb interactions and we take into account coupling to the superconducting lead

non-perturbatively. This is however at the expense of working in the superconducting

gap limit. Recently it has been possible to couple single molecules to superconducting

leads. This study therefore aims to be indicative of the transport properties that will

be observed in future experiments involving single magnetic molecules coupled to leads.
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Chapter 1

Introduction

As semi-conductor based electronics are reaching their limits there are exciting new

possibilities on the horizon. In 1994 Peter Shor showed that a quantum algorithm

could exponentially speed up classical computations [1]. Since then researchers around

the globe have been working towards the realisation of quantum computing. The

fields of spintronics, nano-electronics and molecular electronics play an essential role

in achieving this goal, as it is through the manipulation of individual spins, electrons

and atoms that devices capable of quantum computing will be made.

Single molecule magnets (SMM) have received a lot attention in the past few years

as they are a good platform for developing devices which exhibit spin dependent trans-

port and could therefore be used for quantum information storage and processing [2]. A

significant amount of research has been carried out on the transport properties through

systems containing quantum dots [3–7]. In comparison the research done on electronic

and spin transport through magnetic molecules is still in its early stages. Furthermore,

it is only through recent advances in nano-fabrication techniques that experimentalists

are now capable of contacting individual molecules to electrodes [8–13].

As with quantum dots, due to the size and relatively few degrees of freedom of

an individual molecule, quantisation and charging effects play an important role in

transport. To realise transport through molecules they are coupled to leads. Depend-

ing on the type of leads different effects can be observed. Experimental work on C60

molecules between superconducting leads has exhibited Josephson currents [14], Kondo

correlations [15,16] and Coulomb interaction effects [13]. Quantum dots coupled to su-

perconducting leads have been extensively studied [5,13,17,18] and it has been shown

that a superconducting proximity effect induces Andreev bound states [19] in the quan-

tum dot. As magnetism and superconductivity are competing effects it is interesting,
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from not only a practical point of view but also due to the interesting physics that could

arise, to investigate the effects of coupling a magnetic molecule to a superconducting

lead. For practical applications it is interesting to investigate if such a system can

exhibit spin dependent transport, for then the extra degrees of freedom introduced by

the spin dependence can be utilised along with the coherent, dissipation-less transport

properties of the superconductor. In this thesis we will therefore perform a theoretical

study on the electronic transport properties of systems involving a magnetic molecule

coupled to a superconducting lead. For simplicity we will focus on an idealised model

for the magnetic molecule. Nevertheless, when transport is dominated by the molec-

ular orbital closest to the Fermi level of the leads this model should be predictive of

electronic transport through magnetic molecules.

Recent theoretical studies have looked at the Josephson current through isotropic

and anisotropic magnetic molecules [20,21]. In these works the models for the molecules

contained a single orbital level, an energy cost U for double occupation, which is due to

Coulomb interactions, and an exchange coupling between the electronic and molecular

spins. References [20] and [21] treated the superconducting gap ∆ as finite, however for

simplicity they let U →∞. We will be concerned with only sub-gap transport and will

therefore let ∆→∞. This will allow us to perform a non-perturbative expansion in the

tunnel coupling to the superconducting lead which will let us easily include arbitrarily

strong Coulomb interactions. Because we are interested in the effect of superconduct-

ing proximity effect on the magnetic molecule we will consider strong coupling to the

superconducting lead. In the past, experiments have been conducted on quantum dots

coupled to superconducting leads but due to technical difficulties, such as the oxida-

tion between the superconductor and semiconductor interfaces completely suppressing

Cooper pair tunneling, these setups were only in the weak coupling regime. However

the development of new materials such as carbon nanotubes and self-assembled quan-

tum dots, as well as the ability to couple single molecules to leads, has now made it

possible to carried out experiments in the intermediate to strong coupling regimes [3].

In this thesis we investigate the transport properties of the MM-S subsystem cou-

pled to normal, ferromagnetic and superconducting leads. For the case of coupling to

a ferromagnetic lead we will look at the effects of applying an external magnetic field

and will allow for arbitrary alignment of the magnetisation of the ferromagnetic lead

and the external magnetic field. To investigate the transport properties we will calcu-

late the sequential current through these systems by using a real-time diagrammatic

perturbation theory.
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1.1 Magnetic Molecules

In recent years the electronic transport properties of single molecules have attracted

a lot of attention, both experimentally and theoretically [10–13, 20–22]. This is due

to advances in nano-fabrication techniques [12] as well as quantum effects, such as

tunneling, the Coulomb blockade and the Kondo effect [23], which can be observed in

these single molecules. A subset of single molecules that are of particular interest, due

to their potential application in spintronics, are molecular magnets.

Figure 1.1: Examples of SMMs. a) shows Mn12 [21], b) shows Fe8 [10] and c) shows
N@C60 [11].

A conventional magnet is usually made of some ferromagnetic metal in which the

spins of the electrons are aligned and a macroscopic number of coupled centers are

involved. A single molecule magnet (SMM) is very different from a conventional magnet

due to the small number of coupled centers and the structure of the molecule; they are

strictly speaking not magnets as they are not in the thermodynamic limit. An SMM

is defined as a molecule whose magnetization is persistent over long time scales. An

example is Mn12 acetate which has a relaxation of magnetisation of the order of months

at a temperature of 2 K [24].

The prototypical SMM is Mn12 acetate (Mn12). This molecule consists of organic

ligands bonded to 12 manganese ions. There are various derivatives of Mn12 which

feature different ligands, one example is [Mn12O12(O2C-C6H4-SAc)16(H2O)] [12]. Fig-

ure 1.1 a) shows a schematic diagram of an Mn12 molecule. The total spin of Mn12

is S= 10 and the molecule has an anisotropy barrier of about 6 meV [25]. Due to the

large spin and high anisotropy barrier molecules such as Mn12 show magnetic hystere-

sis. The high anisotropy barrier is important in achieving long relaxation times of the
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magnetisation of the molecule. Also shown in Fig. 1.1 are diagrams of the structures

of Fe8 and N@C60. Fe8 is another SMM that has received a lot of attention [10]. The

formula for this molecule is [Fe8O2(OH)12(tacn)6]Br8 (tacn = 1,4,7-triazacyclononane),

it also has total spin S= 10. For Fe8 the relaxation times becomes long enough to per-

form direct measurements at temperatures under 1 K [26]. The third molecule, N@C60,

is a nitrogen atom caged in a C60 molecule. The total spin S=3/2 of this molecule is

much lower than the previously mentioned molecules [11]. Within the C60 cage much

of the atomic character of the nitrogen atom is retained, which is often not the case

since previous studies involving SMMs have shown that strong interaction with the

environment can destroy the molecular magnetism [27]. Due to this there is interest in

using the nuclear spin of the nitrogen atom or the electron spin residing on the atom

for quantum information processing [2].

SMMs typically have quite a complicated structure (Fig. 1.1). To theoretically

model such molecules is very difficult, therefore for general studies on the transport

properties of magnetic molecules simplifying approximations are usually made. To

reduce the degrees of freedom of the molecule, often only one orbital level is considered

[20–23]. This approximation is realistic in a scenario where the spacing between orbital

levels is large enough such that only one level is accessible in the energy regime of

interest. In this case the model for describing the molecule coupled to leads is based

on the Anderson model. The Anderson model was first developed by P. W. Anderson

to model localised magnetic states in metals [28] and has since been widely used to

model quantum dots and magnetic molecules. The Anderson model is described in the

next subsection.

1.1.1 Anderson Model

Here we give the Anderson model describing a single orbital level coupled to two metal-

lic systems. The Hamiltonian reads

HD =
∑
σ

εd+
σ dσ + Un↑n↓, (1.1)

where d
(+)
σ is an electron annihilation (creation) operator, nσ = d+

σ dσ is the number

operator and σ =↑, ↓ is the spin of the electron. The first term describes the occupation

of the level, it can either be empty, singly occupied, or doubly occupied. The second

term is the Coulomb interaction term, it describes the energy cost of double occupation,

U .



6 CHAPTER 1. INTRODUCTION

To describe the tunneling coupling to the leads the Hamiltonian

Htunn,η =
∑
k,σ

(VηkσC
+
ηkσdσ +H.c.) (1.2)

is used. Here C+
ηkσ is the electron creation operator for lead η = L,R and Vηkσ is the

tunneling matrix element, which is related to the strength of the coupling. The leads

are treated as equilibrium reservoirs and in the case of normal metallic leads they can

be modeled by

Hη =
∑
k,σ

εkC
+
ηkσCηkσ. (1.3)

This simple model is usually employed to describe transport through quantum dots

but can easily be modified to include effects that occur in magnetic molecules. Such

effects include exchange coupling between electronic and molecular spins, anisotropy,

and quantum tunneling of magnetisation. The Hamiltonians describing the leads can

also be modified to describe ferromagnetic or superconducting leads.

1.1.2 Quantum Dots

As the model for describing a single orbital magnetic molecule reduces to that of a

quantum dot in certain limits, it can be useful to compare the transport properties of

these systems. We therefore give a brief introduction to quantum dots in this section.

Quantum dots are made by confining the charge carriers to a small region in a

semi-conducting material in all three spatial directions. They contain 103-109 atoms

and range in size from several nanometers to microns [29]. Due to their size, their

properties are intermediate between bulk semiconductors and atoms and have been

referred to as artificial atoms [30]. Striking properties of quantum dots are that both

the charge on and the energy of the dot are quantised. Like atoms, quantum dots have

well defined energy levels, yet unlike in atoms the level spacing can be tuned. It is this

control that makes quantum dots so attractive for a wide range of applications in fields

including optics [31], nano-electronics [4] and quantum computing [32–34].

Properties of quantum dots can be investigated by performing electronic transport

measurements. To do this the quantum dot is contacted to source and drain electrodes.

Figure 1.2 shows a schematic diagram of such a setup. As well as being contacted to

the electrodes the quantum dot is also capacitively coupled to a gate. Varying the

gate voltage will shift the orbital levels of the quantum dot, thereby controlling which

levels are in the energy regime needed for transport. Due to the size of the quantum
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dot Coulomb repulsion effects are strong. For an electron to tunnel onto the dot

it must have enough energy to overcome the repulsion due to the electrons already

occupying the dot. This is energy, referred as the charging energy, is dependent on the

gate voltage. Therefore tuning the gate voltage can control when sequential tunneling

can occur and when the system is in the so called Coulomb blockaded regime where

transport is forbidden.

Figure 1.2: a) Schematic diagram of a quantum dot. The boxes represent the tunnel
barriers. b) Scanning electron microscope image of a lateral quantum dot [35].

1.2 Superconductivity, Andreev Bound States and

the Josephson Effect

Superconductivity is a very well-researched phenomenon that was discovered by Heike

Kamerlingh Onnes in 1911 [36]. A material in the superconducting state has zero

electrical resistance and zero magnetic field in its interior. The exclusion of magnetic

field was discovered by Meissner and Ochsenfeld in 1933 and is known as the Meissner

effect [37]. Since its discovery much work has been carried out to theoretically describe

superconductivity. The first successful microscopic theory of superconductivity was de-

veloped by Bardeen, Cooper and Schrieffer [38], the so call BCS theory. In BCS theory

it was shown that electrons could form pairs in the presence of just a weak attractive

interaction to form a new ground state. The effective interaction is often provided

by an electron-phonon interaction. The bound electrons are called Cooper pairs; they

have equal and opposite momenta, so that the ground state has zero momentum. To

calculate the ground state wavefunction BCS used a mean field approach to describe

the dependence of the occupation of one state on all other states. Through this they
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discovered that the formation of bound pairs leads to the gap in the energy spectrum of

the superconductor, 2|∆|. The superconducting gap ∆ is temperature dependent. At

high temperatures there is no gap and the material is not superconducting, but as the

temperature is lowered past the critical temperature the gap is opened. In BCS theory

the critical temperature can be found by letting |∆| tend to zero. At energies greater

than |∆|, quasiparticles states exist, but these are forbidden for energies less than |∆|.
Within the superconducting gap only Cooper pairs can occupy states. Therefore for

energy regimes that are small compared to the superconducting gap only Cooper pairs

contribute to transport. In order to single out these subgap contributions the ∆→∞
limit can be taken.

When a molecule or a quantum dot is contacted to a superconducting lead with

∆ → ∞ only Cooper pairs can tunnel to and from this lead. The process by which

this can occur is called Andreev reflection. If the both leads are superconducting

then a current can flow through the system even if there in no applied bias. This

current, called the Josephson current, flows if there is a phase difference between the

two superconductors.

1.2.1 BCS Theory

In this subsection we give a brief introduction to BCS theory. More detailed descrip-

tions can be found in texts such as Ref. [39].

In 1956 Cooper showed that at least one bound pair of electrons would form if there

is a weak interaction in a Fermi sea of electrons, regardless of how weak that interaction

is, as long as it is positive [40]. Therefore, in the presence of a net positive interaction

pairs of electrons, known as Cooper pairs, should form until an equilibrium point is

reached. To describe the ground state of such a system BCS used the variational wave

function

|ψG〉 =
∏

k=k1,...,kM

(
uk + vkC

+
k↑C

+
−k↓
)
|φ0〉, (1.4)

where |φ0〉 is the vacuum state, |uk|2 + |vk|2 = 1 and k = k1, ...,kM are the occupied

states in momentum space. The coefficients uk and vk are related to the probability of

pairs being occupied. Using this ground state and the so-called pairing Hamiltonian,

H =
∑
kσ

εknkσ +
∑
kl

VklC
+
k↑C

+
−k↓C−l↓Cl↑, (1.5)
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the coefficients uk and vk can be calculated. These are found to be

|vk|2 =
1

2

(
1− ξk

Ek

)
(1.6)

and

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, (1.7)

where ξk = εk − µS is the is single particle energy εk relative to the Fermi level µS,

Ek = (∆2 + ξ2
k)

1/2
and ∆ is related to the pairing potential Vkl which is chosen to be

−V for states below a cut-off energy ~ωc and zero otherwise. In Ginzburg-Landau

theory for superconductivity ∆ is the order parameter and contains a phase factor eiϕ,

where ϕ is the phase difference between uk and vk. This leads to the BCS mean field

Hamiltonian

HS =
∑
kσ

(εk − µS)C+
kσCkσ −∆

∑
k

(C−k↓Ck↑ + C+
k↑C

+
−k↓). (1.8)

for an s-wave superconductor. This Hamiltonian does not conserve particle number, but

for the purposes of this work this does not matter since we treat the superconducting

lead as an equilibrium reservoir with a fix electrochemical potential. HS is quadratic

in electron operators and can therefore be diagonalised. To do this the Bogoliubov

quasi-particle operators

γk↑ ≡ ukck↑ − vkc+
−k↓, (1.9)

γk↓ ≡ ukck↓ + vkc
+
−k↑. (1.10)

are introduced. The creation operators are the Hermitian conjugates. Using these

fermionic quasi-particle operators, with the definitions of uk and vk given above, ne-

glecting an irrelevant constant the BCS Hamiltonian can be cast into the form

HS =
∑
kσ

Ekγ
+
kσγkσ, (1.11)

where Ek has the same definition as above and has turned out to be the quasi-particle

excitation energy. From the equation for Ek we can see that ∆ is half the width of the

gap in the single particle density of states of the superconductor, as |∆| is the minimum

energy a quasi-particle can have. Figure 1.3 shows the quasi-particle density of states

of a superconductor. For energies less than |∆| either side of the Fermi level there are

no single particle states; in this energy range only Cooper pairs are allowed.



10 CHAPTER 1. INTRODUCTION

Figure 1.3: The single particles density of states for a superconductor, NS, shows
a symmetric gap about µS with a width of 2|∆|. Out side the gap quasi-particle
excitations are possible, however at energies inside the gap only Cooper pairs are
allowed.

1.2.2 Andreev Reflection

When a normal metal is contacted to a superconductor then superconductivity can

be induced in the normal metal. This is known as the proximity effect [41] and has

been known of since the 1930s [42]. If the Fermi level of the metal lies within the

gap of the superconductor then a single electron cannot enter the superconductor from

the metal as there are no available states. Therefore if an electron is incident on the

boundary between the metal and the superconductor it must be reflected (Fig. 1.4).

This electron can be reflected in the form of a hole with the opposite velocity of the

incident electron and the opposite spin. This means that both momentum and spin are

conserved in this reflection process. In this process a Cooper pair is transferred into the

superconductor, which makes up for the charge 2e that is lost in the reflection process.

This process is called Andreev reflection [43, 44] and is a convenient way to explain

the process by which a Cooper pair can pass between the two materials. When the

normal metal is in between two superconducting leads then the hole that is reflected

from one boundary must be reflected as an electron from the opposite boundary. This

process happens repeatedly and can lead to constructive interference of the incident

and reflected electron waves, forming a so called Andreev bound state [19].

If there is a molecule or a quantum dot contacted to a superconducting lead then

the same process occurs. However in this case it is the orbital levels of the molecule or

quantum dot that are relevant, rather than the Fermi level of the metal.
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Figure 1.4: This diagram shows an S-N-S junction. The Fermi level of the normal metal
lies in the gap of the two superconducting regions, meaning that a single electron
cannot enter the superconductors. The electron impinging on the boundary to the
right superconductor is reflected as a hole and a charge of 2e is transfered to the
superconductor. The reflected hole is then reflected as an electron at the left boundary
and in this process a charge of 2e leaves the left superconductor.

1.2.3 Josephson Current

In 1962 Brian Josephson predicted what is now known as the Josephson effect [14]. The

Josephson effect allows a supercurrent to flow between two superconducting regions

separated by an insulating region or a non-superconducting metallic region when there

is no applied voltage, as long as there is a difference between the phases of the order

parameters of the two superconducting regions. Josephson perdicted that the current

Ijos = Icsinϕ (1.12)

would flow when no bias voltage is applied. Here ϕ is the phase difference between

the two superconducting regions and Ic is the critical current, i.e. the maximum su-

percurrent that can flow across the junction. Josephson also predicted that the phase

difference would vary with an applied voltage according to

dϕ

dt
=

2eV

~
, (1.13)

causing an AC Josephson current. We will concentrate on the DC Josephson current,

details on the AC Josephson current can be found in Ref. [39].
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The electrical work done by the current source is

W = F =

∫
IjosV dt =

∫
Ijos

~
2e
dϕ, (1.14)

where F is the free energy stored in the junction. Rearranging this equation we find

Ijos = −2e

~
∂F

∂φ
. (1.15)

If the states of the system in question are discrete then the free energy can be calculated

using

F = −kBT lnZ, (1.16)

where

Z =
∑
i

e
− Ei
kBT (1.17)

is the partition function and Ei is the energy of state i. Substituting the free energy

and the partition function into Eq. 1.15, the Josephson current can be expressed as

Ijos =
2e

~
kBT

∂

∂φ
lnZ = −2e

~
∑
i

∂Ei
∂φ

e
− Ei
kBT

Z
. (1.18)

The critical current in Eq. 1.12 can be positive or negative. When Ic> 0 the Joseph-

son phase ϕ of the junction is zero in the ground state (when no current is flowing).

When Ic< 0 Eq. 1.12 can be rewritten as

Ijos = −|Ic|sinϕ = |Ic|sin (ϕ+ π) . (1.19)

Here we see that ϕ=π when Ijos = 0. When this is the case the junction is said to

be a π-Josephson junction. Under certain circumstances a Josephson junction can

transition between the zero and π phases.

1.3 Electronic Transport Through Molecules and

Quantum Dots

In this section we will address how electronic transport through molecules and quantum

dots is realised. We will then review some of the relevant experimental and theoretical

work that has be done in the fields of nano and molecular electronics.
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Figure 1.5: A molecule coupled to a normal metal lead and a superconducting lead.
The blue lines in the central region indicate the orbital levels of the molecule. The
states of the molecule that contribute to the current are those that lie within the bias
window set by the two leads.

To study the electronic transport properties through a molecule (or a quantum dot)

it must be contacted to at least two conducting leads. These leads can be supercon-

ducting, magnetic or normal metallic. In each case, for current to flow the energy levels

of the molecule must lie within the bias window set by the leads. Figure 1.5 shows

a schematic diagram of a molecule weakly coupled to a normal metallic lead on the

left and strongly coupled to a superconducting lead on the right. The levels of the

molecule lie within the gap of the superconductor, meaning that no single particles

can tunnel between the superconducting lead and the molecule. In an experimental

setup the energy levels of the molecule could be tuned by applying a gate voltage.

The choice of material for the leads depends on the effects to be investigated. With

superconducting leads interesting effects include the proximity, Josephson, and Kondo

effects. Ferromagnetic leads can cause spin-dependent transport, spin accumulation on

the molecule and a ferromagnetic proximity effect. Some of these effects can be used

to probe properties of the molecule through which transport is occurring [45] [46] [20].

Systems which contain a combination of lead types are also of interest for pure physics

reasons, and for the possibility of developing devices with new properties which could

be useful in areas such as spintronics, quantum computing and optics.

In this thesis we investigate the transport properties of a magnetic molecule coupled

to a superconducting lead and a second lead which can either be a normal metal,
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ferromagnetic or superconducting. For the remainder of this section we will review

some of the theoretical and experimental research that has been carried out on systems

containing combinations of the aforementioned components.

Most experimental work that has been carried out on SMMs has involved normal

metallic leads, gold is commonly used. Heersche et al. have performed transport mea-

surements through a single Mn12 molecule coupled to gold electrodes. They observed

negative differential conductance features on the energy scale of the anisotropy barrier,

something they had not previously observed with other molecules or bare gold samples.

Figure 1.6 shows an SEM image of the type of devices they have tested. The molecule

is too small to be resolved but it sits in the gap between the two gold electrodes. Heer-

sche et al. found that with a simple model that incorporates the anisotropy of the

molecule and the quantum tunneling of magnetisation they were able to qualitatively

understand current and differential conductance features in the sequential tunneling

regime [12]. The current calculations we will perform in this work will also be in the

sequential tunneling limit for coupling to a normal lead. Roch et al. have carried out

experimental and theoretical studies on N@C60 coupled to gold electrodes. They calcu-

lated the current in both the sequential tunneling regime and the cotunneling regime.

In both cases they found good qualitative agreement between their experimental and

their theoretical results and that an anti-ferromagnetic exchange between the nitrogen

atom and the C60 molecule best fits the data [11].

Figure 1.6: A scanning electron microscope (SEM) image of a Mn12 molecule contacted
to two gold electrodes. The scale bar corresponds to 200 nm and the width of the
molecule is about 3 nm [12].

Zyazin et al. carried out measurements on individual Fe4 SSMs. They coupled the

molecule to three gold electrodes to perform three-terminal transport measurements

in the presence of an external magnetic field. The ground states spin of Fe4 is S=5

and this is retained when the molecule is deposited on gold. Using the transport
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measurements they were able to make estimates of the easy axis anisotropy constant

and the anisotropy barrier of the molecule and demonstrated that, via an electric field,

they could control the anisotropy of an SMM [9]. The ability to control properties of

SMMs is important for their use in applications such as quantum computing. Parks et

al. have also reported the experimental confirmation of mechanical control of the spin

states and anisotropy of a SMM; in this case a Cobalt complex [8].

The experimental work discussed so far has involved only normal metallic leads.

We will now discuss two experimental studies that involve superconducting and fer-

romagnetic leads, neither of these studies however involve SMMs. Winkelmann et al.

have carried out electronic transport measurements on C60 molecules coupled to su-

perconducting leads. The superconducting leads are made of either aluminium or gold

in the proximity of an aluminium capping layer. They engineered samples with weak

to strong coupling to the leads and demonstrated the coexistence and competition of

superconductivity and Kondo correlations for varying coupling strength and external

magnetic field magnitudes [13]. This work paves the way for similar experiments in-

volving endofullerenes such as N@C60. The second study was carried out by Hofstetter

et al.. They studied the ferromagnetic proximity effect in a quantum dot coupled to

a superconducting and a ferromagnetic lead. Figure 1.7 shows an image of a typical

devices they have constructed. Through transports measurements they were able to

demonstrate that a local exchange field is induced in the quantum dot due to the fer-

romagnetic lead. They used the Kondo effect to probe the local exchange field. With

respect to the energy regime they were working in the superconducting lead had a finite

gap [45].

A lot of theoretical research has has been carried out on electronic transport through

quantum dots. Sothmann et al. studied the transport properties of a quantum dot

coupled to two ferromagnetic leads and one superconducting lead. They worked in

the infinite superconducting gap limit, considered a finite Coulomb interaction and

allowed for arbitrary alignment of the ferromagnetic leads. The F-QD-F subsystem

forms a quantum dot spin valve, a device that has received a lot of experimental and

theoretical interest due to the spin dependence of electronic transport through this

system. They were able show that by introducing the superconducting lead the ex-

change field induced by the proximity to the ferromagnetic lead could be experimentally

probed [46]. Sothmann et al. have used the same real-time diagrammatic technique

that we use in this thesis. The same diagrammatic approach is used in [5] and [47] to

calculate the current through quantum dots coupled to normal and superconducting
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Figure 1.7: A SEM image of an InAs nanowire contacted to a Ti/Al bilayer supercon-
ducting lead and a Ni/Co/Pd trilayer ferromagnetic lead, with an external magnetic
field applied parallel to the easy axis of the ferromagnetic lead [45].

leads. Governale et al. model an interacting quantum dot coupled to a normal and

two superconducting leads. In the infinite superconducting gap limit they found that

there is a π transition in the non-equilibrium Josephson current, which can be triggered

by both the voltage of the normal lead and the gate voltage, which controls the level

position [5]. Braggio et al. performed a theoretical study on an interacting quantum

dot coupled to a normal metallic lead and a superconducting lead. They also worked

in the limits of infinite superconducting gap and finite Coulomb interaction. To study

the superconducting proximity effect in this system they used full counting statistics

to obtain the current and the zero frequency noise. They found that the Fano factor

changes from 2 to 1 as the superconducting proximity effect goes from off-resonance to

resonance conditions. This suggests Poissonian transport in both regimes, one electron

transport on resonance as the transport is limited by single electron tunneling events

between the dot and the normal lead, and two electron transport off resonance as in

this regime the current is limited by the tunneling of electron pairs to and from the

superconducting lead [47]. In the limit of zero exchange coupling between the elec-

tronic and molecular spins the dynamics of the single level isotropic magnetic molecule

(IMM) in an N-IMM-S system reduce to those of the systems studied in [5] and [47].

In the theoretical work of Lee et al. the Josephson effect through an isotropic

magnetic molecule is investigated. They work with a finite superconducting gap and
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model the magnetic molecule as a single level quantum dot with an exchange interaction

between molecular spin and the electron spin. They use a numerical renormalisation

approach to calculate non-perturbative low temperature transport properties. To do

this they work in the regime of infinite Coulomb interaction between electrons on the

molecule, meaning that the level of the molecule can only be singly occupied or empty.

They find that when the superconducting gap exceeds the Kondo temperature the

Josephson junction is in the π state, however with sufficiently large antiferromagnetic

exchange coupling the 0 state is restored. Due to the asymmetry in the behaviour

with the exchange coupling Lee et al. suggest that the sign of the coupling could be

determined experimentally [20]. In this thesis we use the same model for the isotropic

magnetic molecule as is used by Lee et al. However we work in a different regime. As

we will work in the ∆ → ∞ limit transport will only be possible through Andreev

reflection processes. On the other hand, in the work of Lee et al. transport must

occur in the cotunneling regime. The results of the for the two regimes will therefore

be quite different. Sadovskyy et al. have studied a similar system to that in [20],

however their system is generalised to an anisotropic magnetic molecule. The model

they used consisted of a single level magnetic molecule in the presence of an external

magnetic field, coupled to two finite gap superconducting leads. They also worked

in the infinite Coulomb interaction limit. They used a perturbation expansion in

the tunnel coupling to the leads to calculate the Josephson current and also found

that with anti-ferromagnetic coupling between the electronic and molecular spins a π-0

transition can be induced. They also find that it is possible to obtain information of the

anisotropy of the molecule by studying the critical current [21]. Other studies involving

SMMs demonstrate that a transport spectroscopy of a SMM coupled to normal and/or

ferromagnetic leads shows signs of quantum tunneling [48] and negative differential

conductance features [22].

1.4 Outline

The aim of thesis is to investigate the electronic transport properties through systems

comprised of a magnetic molecule coupled to a superconducting lead and a second lead

that can be normal, ferromagnetic or superconducting, with the purpose of adding

new knowledge to the fields of nano and molecular electronics. To calculate the non-

equilibrium sequential current through these systems we will use a real-time diagram-

matic approach and work in the ∆ → ∞ limit. We will work in the regime of strong
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coupling to the superconducting leads and weak coupling to the normal or ferromag-

netic leads. The coupling to the superconducting leads will be treated exactly by using

an effective Hamiltonian. Our main focus will be on the Andreev current but we will

also calculate the zero frequency noise and briefly look at the Josephson current in the

case where the molecules are coupled to two superconducting leads.

In Chapter 2 we introduce the diagrammatic perturbation theory that will be used

in the subsequent chapters. In this chapter we also introduce full counting statistics

and explain how the zero frequency noise and the Fano factor can be calculated. Next,

in Chapter 3 we investigate an isotropic magnetic molecule coupled to a normal and a

superconducting lead. The spin of the molecule is incorporated into the model via an

exchange interaction between the electronic and molecular spins. We first introduce the

model then give the derivation for the effective Hamiltonian describing the coupling to

the superconducting lead. Using the eigenstates of the effective Hamiltonian we then

calculate the sequential current caused by the couping to the normal lead. In Chapter

4 we modify the system slightly to allow for the molecule to be anisotropic. Then in

Chapter 5 we use the models for the isotropic and anisotropic molecules of the pervious

two chapters and investigate the Josephson current through these molecules. Following

this, in Chapter 6 we are once again concerned with the electronic transport through

an isotropic magnetic molecule, however this time coupled to a superconducting lead

and a ferromagnetic lead in the presence of an external magnetic field. We investigate

the cases of magnetisation of the ferromagnetic lead and the external magnetic field

being collinear and non-collinear. Finally, in Chapter 7 we summaries the results of

the previous four chapters.



Chapter 2

Real-time Keldsyh Diagram

Expansion

In the following section a diagrammatic perturbation theory for a molecule, or a quan-

tum dot, with strong interactions, contacted to non-interacting leads in non-equilibrium

conditions and at finite temperature, is given. The Hamiltonian of such a system is of

the form

H = HL +HM +HT ≡ H0 +HT , (2.1)

where HL describes the leads, HM describes the molecule and HT are the tunneling

terms. The perturbation expansion that will be performed is with respect to the

tunneling Hamiltonian. The general idea of the theory is to split the density matrix of

the system into two parts, one describing the leads, which have many degrees of freedom

but are non-interacting, and the other describing the molecule, which is interacting but

has only a few degrees of freedom. Because the leads are non-interacting they can be

integrated out using Wick’s theorem, leaving the much smaller system of the molecule

to be treated exactly. The time evolution of the remaining reduced density matrix

is described by a master equation in Liouville space, the elements of which can be

calculated using diagrammatic techniques.

The advantage of this technique is that allows one to calculate non-equilibrium

dynamics, include arbitrarily strong Coulomb interactions, and easily treat off-diagonal

density matrix elements. In some cases this technique also allows non-perturbative

expansions in the tunnel coupling. This is the case with BCS leads in the ∆ → ∞
limit, the expansion can be exactly summed to all orders in tunneling coupling.

The diagrammatic perturbation expansion can be used to calculate the elements of

the reduced density matrix, as well as the current. With a minor adjustment to the

19
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theory full counting statistics can also be calculated. In this chapter we will first derive

the master equation of the reduced density matrix elements [49] then show how the

current can be calculated. Lastly, we will show how the full counting statistic can be

calculated, with an emphasis on the Fano factor.

2.1 Master Equation

The expectation value of an observable at time t is given by

〈A(t)〉 = Tr[A(t)Hρ0] (2.2)

where ρ0 is the initial density matrix of the system and AH(t) is the observable at time

t in the Heisenberg representation. We assume that at the initial time t0 the denstiy

matrix can be factorised into parts, for the molecule (or dot) ρM0 and the leads ρr0;

ρ0 = ρM0
∏
r=L,R

ρr0. (2.3)

The leads are treated as equilibrium reservoirs with fixed Fermi levels µr and can

therefore be described using the Fermi function f(ω) and the equilibrium density matrix

ρr0 =
1

Zr
0

e−β(Hr−µrNr). (2.4)

Here β = 1/kBT , where kB is the Boltzmann factor, Nr is the number operator and

Hr =
∑

k,σ εkC
+
rkσCrkσ is the Hamiltonian that describes the leads with annihilation

(creation) operators C
(+)
rσ and energies εk. In the case of a superconducting lead the

Hamiltonian is that given in Eq. 1.11. The normalisation factor Zr
0 is determined by

the condition Tr[ρr0] = 1. The initial density matrix describing the molecule can be

chosen to be diagonal in an appropriate basis {|χ〉} and is given by

ρM0 =
∑
χ

P (0)
χ |χ〉〈χ|, (2.5)

where P
(0)
χ are the initial occupation probabilities of the states |χ〉 and

∑
χ P

(0)
χ = 1. We

are interested in the stationary limit, t0 → −∞. In this limit, at time t, all observables

are independent of the choice of the initial probabilities P
(0)
χ . Furthermore, choosing

the initial density matrix to be diagonal does not mean it must remain so at some later
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time t.

Next it is useful to go from the Heisenberg picture to the interaction picture. The

aim of this section is to perform a perturbation expansion in the tunnel coupling

between the molecule and the leads, therefore we treat the tunneling Hamiltonians as

the perturbation when we change to the interaction picture. The tunneling Hamiltonian

is of the form of Eq. 1.2. Doing this gives us

A (t)H = T̃ e
i
∫ t
t0
dt′HT (t′)IA (t)I Te

−i
∫ t
t0
dt′HT (t′)I , (2.6)

where T (T̃ ) is the (anti-)time ordering operator and we have set ~= 1. Substituting

this into Eq. 2.2 we get

〈A (t)〉 = Tr
[
T̃ e

i
∫ t
t0
dt′HT (t′)IA (t)I Te

−i
∫ t
t0
dt′HT (t′)Iρ0

]
. (2.7)

Reading from the right we start with ρ0 then propagate forward in time up to t, the

time at which the expectation value of A(t) is calculated, then we propagate backwards

in time back to t0. This is represented diagrammatically in Fig. 2.1. This time curve is

referred to as the Keldysh contour and propagation along this contour can be written

more compactly by introducing the Keldysh time ordering operator TK , which acts on

all operators to the right of it,

〈A(t)〉 = Tr

[
TK exp

(
−i
∫
K

dt′HT (t′)

)
A(t)Iρ0

]
. (2.8)

Figure 2.1: A diagrammatic representation of Eq. 2.7. Along the top path the system
is propagated forward to the time when the observable is measured, then backward
along the bottom path to the initial time.

To calculate the elements of the reduced density matrix of the molecule P χ1
χ2

(t) we

must find the expectation value of the projection operator |χ2〉〈χ1|(t). Replacing A(t)
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in Eq. 2.8 with |χ2〉〈χ1|(t) we find

P χ1
χ2

(t) = 〈|χ2〉〈χ1|(t)〉 = Tr

[
TK exp

(
−
∫
K

dt′HT (t′)I

)
|χ2〉〈χ1|(t)Iρ0

]
. (2.9)

Writing out the trace over the states of the molecule in terms of the sum over the states

and the using Eqs. 2.3 and 2.5, this can be written as

P χ1
χ2

(t) =
∑
χ′1,χ

′
2

〈χ′2|Trleads

[
TK exp

(
−i
∫
K

dt′HT (t′)I

)
|χ2〉〈χ1| (t)I

∏
r=L,R

ρr0

]
|χ′1〉P

χ′1
χ′2

(t0) .

(2.10)

It is now useful to define the full propagator of the the system as

Π
χ1χ′1
χ2χ′2

(t, t0) = 〈χ′2|Trleads

[
TK exp

(
−i
∫
K

dt′HT (t′)I

)
|χ2〉〈χ1| (t)I

∏
r=L,R

ρr0

]
|χ′1〉.

(2.11)

Equation 3.6 can now be compactly written as

P χ1
χ2

(t) =
∑
χ′1,χ

′
2

Π
χ1χ′1
χ2χ′2

(t, t0)P
χ′1
χ′2

(t0) . (2.12)

The next step is to expand the time-ordered expotential,

TK exp

(
−i
∫
K

dt′HT (t′)I

)
=
∞∑
n=0

(−i)n

n!

∫
K

dt1 . . .

∫
K

dtnTK [HT (t1)I . . . HT (tn)I ] .

(2.13)

The lead Hamiltonians are bilinear in the creation and annihilation operators of the

lead electrons (or quasiparticles in the case of a superconducting lead). This means

Wick’s theorem can be applied. Performing pairwise contractions of the lead oper-

ators in the tunneling Hamiltonians can be represented diagrammatically by placing

internal vertices (black dots) on the Keldysh contour at every position where a tun-

neling Hamiltonian arises from the expansion of the time-ordered exponential and a

directed tunnel line (a black line with an arrow head) indicating the contraction of two

lead operators. The tunnel lines point to the vertex where an electron is created on

the molecule. The observable is indicated on the contour by an external vertex (open

circle) at time t. The Hamiltonian of the molecule is not bilinear in the electron opera-

tors, meaning that Wick’s theorem does not apply and the operations of the tunneling

Hamiltonian on the states of the molecule must be worked out explicitly. This can be
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done by keeping track of the state of the molecule along the contour. Figure 2.2 shows

this diagrammatic representation of the time evolution of the reduced system.

Figure 2.2: The time evolution of the reduced density matrix is shown in this example.
Along the top path the reduced system propagates forward in time from t0 to t, at
which time the observable A(t) is measured, then the system propagates along the
bottom contour back to time t0. Along the contour, vertices indicate the tunneling
Hamiltonian terms that have arisen from the expansion of the exponential, Eq. 2.13.
Each is connected to one other tunneling Hamiltonian term and the change in the state
of the molecule due to the tunneling event is indicated by the state of the molecule
before and after each tunneling event.

The diagram in Fig. 2.2 can be broken up into two types of blocks, irreducible self-

energies W
χ1χ′1
χ2χ′2

(t, t′) and free propagators Π(0)χ1χ′1
χ2χ′2

(t, t′). Irreducible self-energies are

parts of the diagram where any vertical cut would intersect a tunneling line and the

free propagators are the parts where any vertical cut intersects no tunneling lines. The

irreducible self-energies represent the transition from P
χ′1
χ′2

(t′) to P χ1
χ2

(t) which occur due

to tunneling events to and from the leads. The free propagators represent free time

evolution of the reduced system and are given by

Π(0)χ1χ′1
χ2χ′2

(t, t′) = δχ1χ′1
δχ2χ′2

e−i(ε1−ε2)(t−t′) (2.14)

where ε1 (ε2) is the energy of the eigenstate |χ1〉 (|χ2〉).
The full propagator is obtained by summing over all combinations of the free prop-

agators and the irreducible self-energies, represented diagrammatically in Fig. 2.3. The

resulting Dyson equation for the full propagator is given by

Π
χ1χ′1
χ2χ′2

(t, t′) = Π(0)χ1

χ2
(t, t′)δχ1χ′1

δχ2χ′2
+
∑
χ′′1χ

′′
2

∫ t

t′
dt2

∫ t2

t′
dt1Π(0)χ1

χ2
(t, t2)W

χ1χ′′1
χ2χ′′2

(t2, t1)Π
χ′′1χ

′
1

χ′′2χ
′
2
(t1, t

′).

(2.15)

For convenience we introduce the notation Xχ1χ1
χ2χ2

= Xχ1
χ2

, where X can be a free

propagator or an irreducible self-energy.
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Figure 2.3: Summing over all combinations of free propagators and irreducible self-
energies gives a Dyson equation for the full propagator.

Using Eqs. 2.12 and 2.15 the time evolution of the reduced density matrix can now

be written as

Pχ1
χ2

(t) = Π(0)χ1

χ2
(t, t′)Pχ1

χ2
(t′)+

∑
χ′1χ

′
2χ
′′
1χ
′′
2

∫ t

t′
dt2

∫ t2

t′
dt1Π(0)χ1

χ2
(t, t2)W

χ1χ′′1
χ2χ′′2

(t2, t1)Π
χ′′1χ

′
1

χ′′2χ
′
2
(t1, t

′)P
χ′1
χ′2

(t′).

(2.16)

To get the dynamics, or a generalised master equation, of the reduced density we

differentiate this equation with respect to t, giving

Ṗ χ1
χ2

(t) = −i(εχ1 − εχ2)P
χ1
χ2

(t) +

∫ t

t0

dt′
∑
χ′1χ

′
2

W
χ1χ′1
χ2χ′2

(t, t′)P
χ′1
χ′2

(t′). (2.17)

The first term on the right side of the equation describes the coherent evolution of the

reduced system, whereas the second term describes dissipative coupling to the leads.

In the stationary limit, where the system has no memory of the initial state of the

system, we take t0 → −∞. P χ1
χ1

at time t depends on the state of the system at earlier

times t′, however in the stationary limit the elements of the reduced density matrix are
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not changing, meaning P χ1
χ1

(t) =P χ1
χ1

(t′). In this limit we can rewrite Eq. 2.17 as

Ṗ χ1
χ2

(t) = −i(εχ1 − εχ2)P
χ1
χ2

(t) + P
χ′1
χ′2

(t)

∫ t

−∞
dt′
∑
χ′1χ

′
2

W
χ1χ′1
χ2χ′2

(t, t′). (2.18)

If there is no explicit time dependence in the system then the self-energies only depend

on the time difference t − t′. Defining τ = t − t′ the integral of the kernel becomes∫∞
0
dτW

χ1χ′1
χ2χ′2

(τ). Introducing the factor e−zτ into the integral, with z= 0+, gives the

Laplace transform of the kernel

W
χ1χ′1
χ2χ′2

=

∫ ∞
0

dτe−zτW
χ1χ′1
χ2χ′2

(τ)
∣∣∣
z=0+

, (2.19)

which we define as the so called generalised transition rates. In the stationary limit

Eq. 2.17 then becomes

0 = −i(εχ1 − εχ2)P
χ1
χ2

+
∑
χ′1χ

′
2

W
χ1χ′1
χ2χ′2

P
χ′1
χ′2
. (2.20)

The generalised transition rates W
χ1χ′1
χ2χ′2

can be calculated using a set of diagrammatic

rules or using Fermi’s golden rule when the rates are to first order in the tunnel coupling

and χ1=χ2 (χ′1=χ′2). Diagrammatic rules are given in Appendix A and in Chapter 6.

2.2 Current

The current through each of the leads is given by

Îr = −edN̂r

dt
= −ie[H, N̂r] = −ie

∑
kσ

VrC
+
rkσdσ +H.c. (2.21)

Apart from a factor and a sign difference in front of one of the terms, Eq. 2.21 is the

same as the tunneling Hamiltonians. The current can therefore be calculated in a very

similar way to the generalised transition rates.

The derivation of the equation for the current is very similar to that for the pro-

jection operator. Instead of inserting the projection operator into Eq. 2.8 the current

operator is inserted. This gives

Ir (t) = 〈Îr (t)〉 = Tr

[
TK exp

(
−
∫
K

dt′HT (t′)I

)
Îr (t) ρ0

]
. (2.22)



26 CHAPTER 2. REAL-TIME KELDSYH DIAGRAM EXPANSION

By inserting the identity this equation can be rewritten as

Ir (t) =
∑
χχ′1,χ

′
2

〈χ′2|Trleads

[
TK exp

(
−i
∫
K

dt′HT (t′)I

)
Îr (t) |χ〉〈χ|

∏
r=L,R

ρr0

]
|χ′1〉P

χ′1
χ′2

(t0) .

(2.23)

As the current operator terms are of the same form as the tunneling Hamiltonian terms,

this equation is very similar to Eq. 3.6. The subsequent manipulation of this equation

is the same as what is carried out to obtain the master equation of the density matrix

elements, and leads to the following equation for the current -

Ir = −e
∑
χχ′1χ

′
2

W
χχ′1
χχ′2

r
P
χ′1
χ′2
. (2.24)

The diagrammatic rules for calculating the generalised current rates, W
χχ′1
χχ′2

r
, are slightly

different to those for calculating the generalised transition rates as they must account

for a sign difference when an electron is created or destroyed in the lead. They must

also ensure that each current diagram is counted only once. The current vertex appears

at the end of the Keldysh contour at time t and is contracted with a tunneling vertex.

This diagram can be draw in block form in one of two ways, as shown in Fig. 2.4, and

only one of these should be included in the current calculation. These diagrams also

show that the generalised current rates must always end in diagonal terms.

2.3 Full Counting Statistics

In a 2006 publication Braggio et al. presented a theory of full counting statistics for

electronic transport in systems with interacting electrons [6]. This theory presents a

way of calculating not only the current in the system but the full transport properties.

The information on the transport properties is contained in the probability distribution

P (N, t) that N charges have passed through the system in time t. P (N, t) is related

to the current, the noise and higher order moments of the distribution cumulants.

These properties can all be conveniently derived using the cumulant generating function

(CGF) which is defined as

S(ξ) = −ln

[
∞∑

N=−∞

eiNξP (N, t)

]
, (2.25)
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Figure 2.4: These diagrams show the contraction of an external current vertex with
an internal tunneling vertex. The current vertex appears at the end of the Keldysh
contour at time t. This curved contour can be drawn in block form in the two ways that
are shown. In both cases the diagram must end in diagonal terms. The equations for
the two block diagrams are the same and only one is needed to calculate the current.

where ξ is the counting field. The counting field is used to keep track of the number of

charges that have passed through the system and can be introduced into the generalised

transition rates by multiplying each term by e±iNξ, where N is the number of charges

transferred and the sign depends on whether an electron is leaving or entering the

metallic lead. We are only concerned with sequential tunneling, in which case N=±1.

The derivatives of the CGF,

〈〈I〉〉n = −(−ie)n

t
∂nξ S(ξ)

∣∣∣
ξ=0

, (2.26)

give the transport information for the system. The first cumulant gives the average

current and the second is the zero-frequency noise.

Braggio et al. showed that when there are no off-diagonal reduced density matrix

elements, there is an alternative to using Eq. 2.25. They found that to first order in

the tunnel coupling the CGF is given by

S(1)(ξ) = −tλ(1)(ξ), (2.27)

where λ(1)(ξ) is the eigenvalue of the matrix of first order generalised transition rates

W which has the smallest absolute real part.
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Dividing the second cumulant by e times the first,

F = −i ∂ξλ
(1)(ξ)

∂2
ξλ

(1)(ξ)

∣∣∣
ξ=0

, (2.28)

gives the Fano factor. If the transport is Poissonian then the Fano factor gives the

charge of the carriers. For example if we have Poissonian transfer of electrons in a

system without superconductors then the Fano factor will be 1. If we have a system

with two superconducting leads and Cooper pairs are being transfered in a Poissonian

manner then the Fano factor will be 2.



Chapter 3

Isotropic Magnetic Molecule

Coupled to Normal and BCS Leads

In this chapter we study an isotropic magnetic molecule coupled to one superconduct-

ing lead and one normal metallic lead (N-IMM-S). Any realistic magnetic molecule

will have more than one orbital level, however due to the complexity of a many level

system we will consider a theoretical description with only one orbital level. This be-

ing said such a description could be valid for a molecule that has large level spacing

compared to the energy regime of transport through that system. In recent work Lee

et al. calculated the low temperature transport properties of a single orbital isotropic

magnetic molecule coupled to superconducting leads using a numerical renormalisation

approach [20]. As this approach is computationally expensive they worked in the limit

of infinitely strong Coulomb interactions. We will use the perturbation theory intro-

duced in Chapter 2 and work in the limit of an infinite superconducting gap, which will

allow us to derive an effective Hamiltonian for the coupling of the superconducting lead

to the magnetic molecule. The advantage here is that we can allow for an arbitrarily

strong Coulomb interaction on the molecule. In the first section of this chapter we

will introduce the theoretical description of the N-IMM-S system. Then we will de-

rive the effective Hamiltonian. Understanding the states of the effective Hamiltonian

will be very important to understand the transport properties of this system, as this

Hamiltonian contains information on the transport of Cooper pairs to and from the

superconducting lead. We will then calculate the current to first order in coupling to

the normal lead, as well as the zero frequency noise, and analyse these results.

29
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3.1 N-IMM-S System

Figure 3.1: A single level magnetic molecule coupled to a superconducting lead and a
normal lead, with coupling strengths ΓS and ΓN , and exchange coupling, J , between
the spin of the electrons occupying the orbital level and the spin of the rest of the
molecule.

We consider an isotropic magnetic molecule (IMM) between a superconducting lead

and a normal lead, as depicted in Fig. 3.1. The Hamiltonian for this system is

H = HM +HN +HS +Htunn,N +Htunn,S, (3.1)

where HM is the Hamiltonian for the molecule, Hη are the Hamiltonians for the nor-

mal, η=N , and superconducting, η=S, leads and Htunn,η are the Hamiltonians that

describe the tunneling of electrons between the molecule and the leads.

The Hamiltonian describing the molecule is given by

HM =
∑
σ

εd+
σ dσ + Un↑n↓ + JS.se. (3.2)

This Hamiltonian describes a single orbital molecule with coupling between the spin

of the electron in the orbital level, se, and the spin of the rest of the molecule, S. It

is very similar to the Hamiltonian describing the quantum dot in the Anderson model

(Eq. 1.1), the only difference being the addition of the last term, which describes the

exchange coupling between the molecular spin and the electronic spin. Once again dσ,

d+
σ are the creation and annihilation operators for electrons with spin σ= ↑, ↓. The

strength of the exchange coupling is given by J . The same model was used in Ref. [20].

The components of se can be written in terms of creation and annihilation operators
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by using the general equation

(se)µ =
1

2
( d+
↑ d+

↓ )σµ

(
d↑

d↓

)
. (3.3)

Here σµ represents the x,y and z Pauli matrices. Using this equation the components

of se are

sex =
1

2
(d+
↑ d↓ + d+

↓ d↑), (3.4)

sey =
i

2
(−d+

↑ d↓ + d+
↓ d↑) (3.5)

and

sez =
1

2
(d+
↑ d↑ − d

+
↓ d↓). (3.6)

With these expressions S.se can be written as

S.se =
1

2
S−d

+
↑ d↓ +

1

2
S+d

+
↓ d↑ +

1

2
Sz(n↑ − n↓), (3.7)

where S± = Sx±iSy are the raising and lowering operators for the spin of the molecule.

Note that for simplicity we have set ~=1 and will do this in all subsequent chapters.

We are considering a molecule with only one orbital level (or sufficient separation

from higher levels such that these can be neglected). This level can either be empty,

singly occupied or doubly occupied. The states of the isolated molecule are

|0, α〉 = |0〉e ⊗ |α〉, (3.8)

|σ, α〉 = d+
σ |0〉e ⊗ |α〉 = d+

σ |0, α〉 (3.9)

and

|d, α〉 = d+
↑ d

+
↓ |0〉e ⊗ |α〉 = d+

↑ d
+
↓ |0, α〉, (3.10)

where α is the spin of the molecule, |0〉e is the vacuum state for the molecule and d

represents double occupation. To calculate the eigenstates we must now specify what

the spin of the molecule is. Most SMMs have large molecular spins [10], for example

Mn12 with S= 10. To model such a large spin would result in a cumbersomely large

Hilbert space and as we are taking a first look at the physics of a SMM coupled to nor-

mal and superconducting leads, for simplicity we will choose the smallest possible spin

to show the effects of an exchange interaction between the electronic and molecular

spins. Hence for the remainder of this chapter we will choose S= 1
2
. Using the ba-
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sis {|0, 1/2〉, |d, 1/2〉, | ↑, 1/2〉, | ↓,−1/2〉, | ↓, 1/2〉, | ↑,−1/2〉, |0,−1/2〉, |d,−1/2〉} the

matrix form of HM is

HM =



0 0 0 0 0 0 0 0

0 2ε+ U 0 0 0 0 0 0

0 0 ε+ J
4

0 0 0 0 0

0 0 0 ε+ J
4

0 0 0 0

0 0 0 0 ε− J
4

J
2

0 0

0 0 0 0 J
2

ε− J
4

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2ε+ U


(3.11)

and the eigenstates are |0,±1
2
〉, |d,±1

2
〉, |T+〉 = | ↑, 1/2〉, |T−〉 = | ↓,−1/2〉, |T0〉 =

1√
2
(| ↓, 1/2〉 + | ↑,−1/2〉) and |S〉 = 1√

2
(| ↓, 1/2〉 − | ↑,−1/2〉). Due to the exchange

coupling between the spin-1
2

electrons and molecular spin, the singly occupied states

form a triplet and a singlet.

The Hamiltonian for the leads is given by

Hη =
∑
k,σ

εkC
+
ηkσCηkσ − δη,S∆

∑
k

(Cη−k↓Cηk↑ +H.c.), (3.12)

where η can either be N or S for the normal and superconducting leads. The C
(+)
ηkσ

terms are the creation and annihilation operators in the leads. The second term comes

from BCS mean-field theory for superconductors, 2∆ is the gap of the quasi-particle

density of state in the superconductor.

The tunnel coupling to the leads is described by

Htunn,η =
∑
k,σ

(VηC
+
ηkσdσ +H.c.), (3.13)

where Vη are the tunnel matrix elements, which for simplicity are assumed to be inde-

pendent of the wave number k and spin σ. The tunnel coupling strengths are defined

as Γη = 2πNη|Vη|2, where Nη is the density of states of lead η. As we will calculate

the current by treating the tunnel coupling to the normal lead as a perturbation, the

coupling strength ΓN must be smaller than kBT , where T is the temperature and kB

the Boltzmann constant. In the subsequent section we will derive the effective Hamil-

tonian for the molecule coupled to the superconducting lead in the ∆ → ∞ limit. In

this limit the coupling to the superconducting lead can be taken into account non-
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perturbatively, so the strength of ΓS can be arbitrary. However, as we are interested

in observing the superconducting proximity effect in the molecule, we will work in the

regime ΓS >> ΓN . Because we are only dealing with one superconducting lead, with-

out loss of generality, we set the electrochemical potential of the superconducting lead

equal zero, µS = 0, and use it as a reference energy.

3.1.1 Effective Hamiltonian

We are only interested in the sub-gap transport to and from the superconducting

lead. Therefore we will make the simplifying approximation that ∆ → ∞. Due to

this approximation the affect the superconducting lead has on the magnetic molecule

can be fully taken into account by introducing an effective Hamiltonian. The form of

this effective Hamiltonian can be obtained by applying the diagrammatic perturbation

theory of Chapter 2 to the coupling between the molecule and the superconducting lead.

Physically this approximation means that all the electrons in the superconductor form

Cooper pairs; when an electron leaves the superconductor to tunnel to the molecule

the other electron in the Cooper pair also has to leave the condensate since there are

no available single electron states. The order of the time separation between the two

electrons in the pair leaving the superconductor is determined by 1/∆. Therefore as

∆→∞ the time goes to zero. Because both electrons in a Cooper pair have to leave

the superconductor at the same time, or two electrons must enter the superconductor

at the same time, the interaction between the molecule and the superconductor must

have the form E1d
+
↑ d

+
↓ + E2d↓d↑, where E1/2 is some energy.

Figure 3.2: a) Diagrams of this form are non-zero and do not cancel out in the ∆→∞
limit. b) Higher order diagrams of this form are zero in the ∆→∞ limit.

We will now use the diagrammatic technique described in Chapter 2 to derive

the exact form of the effective Hamiltonian. It can be shown that in the ∆ → ∞
limit the only diagrams that are non-zero are first order diagrams connecting vertices

on the same propagator where two electrons are either created or destroyed in the

molecule [5]. Figure 3.2 a) shows the type of diagram that must be calculated. Higher
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order diagrams, such as the one shown in Fig. 3.2 b), are proportional to 1/∆ and

therefore tend to zero in the infinite band gap limit. Using the diagrammatic rules

given in the Appendix A we get

W
0,1/2 d,1/2
0,1/2 0,1/2 = iΓS

2π

∫∞
−∞ f

+(ω)sign(ω) |∆|θ(|ω|−|∆|)√
ω2−|∆|2(

1
ω−ET++i0+

+ 1
2(ω−ET0+i0+)

+ 1
2(ω−ES+i0+)

)
dω (3.14)

where Eχ is the energy of state χ and f+ (ω) = 1
eβ(ω−µS)+1

is the Fermi function. One

of the diagrams for this generalised transition rate is that given in Fig. 3.2 a). Only

transitions between states with the same molecular spin are non-zero, as there is no

mechanism to change the molecular spin in the tunneling Hamiltonian. If |∆| is very

large then f+(ω) = 0 when ω>|∆| and f+(ω) = 1 when ω<−|∆|. In this limit Eq. 3.14

becomes

W
0,1/2 d,1/2
0,1/2 0,1/2 =

−iΓS
2π

∫ −∆

−∞

|∆|√
ω2 − |∆|2

(
1

ω − ET+ + i0+
+
∑

η=T0,S

1

2 (ω − Eη + i0+)

)
dω.

(3.15)

Introducing x = −ω
|∆ we get

W
0,1/2 d,1/2
0,1/2 0,1/2 =

−iΓS
2π

∫ ∞
1

1√
x2 − 1

 1

−x− ET+

|∆| + i0+

|∆|

+
∑

η=T0,S

1

2
(
−x− Eη

|∆| + i0+

|∆|

)
 dω.

(3.16)

In the limit of ∆→∞ Eq. 3.16 becomes

W
0,1/2 d,1/2
0,1/2 0,1/2 =

iΓS
π

∫ ∞
1

dω

x
√
x2 − 1

=
iΓS
2
. (3.17)

Performing a similar calculation we find W
0,1/2 0,1/2
0,1/2 d,1/2 = −iΓS

2
. Using Eq. 2.20 the time

evolution of P0,1/2 in the stationary limit is

dP0,1/2

dt
= 0 = W

0,1/2 d,1/2
0,1/2 0,1/2P

d,1/2
0,1/2 +W

0,1/2 0,1/2
0,1/2 d,1/2P

0,1/2
d,1/2 =

iΓS
2

(P
d,1/2
0,1/2 − P

0,1/2
d,1/2 ). (3.18)

All other diagrams are also equal to ± iΓS
2

. We can deduce that the form of the effective

Hamiltonian is

Heff = HM −
ΓS
2

(d+
↑ d

+
↓ + d↓d↑). (3.19)

Using basis {|0, 1/2〉, |d, 1/2〉, |T+〉, |T−〉, |T0〉, |S〉, |0,−1/2〉, |d,−1/2〉}, Heff can be
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written as

Heff =



0 −ΓS
2

0 0 0 0 0 0
−ΓS

2
2ε+ U 0 0 0 0 0 0

0 0 ε+ J
4

0 0 0 0 0

0 0 0 ε+ J
4

0 0 0 0

0 0 0 0 ε+ J
4

0 0 0

0 0 0 0 0 ε− 3J
4

0 0

0 0 0 0 0 0 0 −ΓS
2

0 0 0 0 0 0 −ΓS
2

2ε+ U


(3.20)

We can check that the dynamics of this system are described by this Hamiltonian by cal-

culating the time evolution of the reduced density matrix using dρM

dt
= 0 = i[ρM , Heff ].

The reduced density matrix for this system is

ρM =



P0,1/2 P
0,1/2
d,1/2 0 0 0 0 0 0

P
d,1/2
0,1/2 Pd,1/2 0 0 0 0 0 0

0 0 PT+ 0 0 0 0 0

0 0 0 PT− 0 0 0 0

0 0 0 0 PT0 0 0 0

0 0 0 0 0 PS 0 0

0 0 0 0 0 0 P0,−1/2 P
0,−1/2
d,−1/2

0 0 0 0 0 0 P
d,−1/2
0,−1/2 Pd,−1/2


. (3.21)

Therefore the commutator of ρM and Heff is( ΓS
2

(P
d,1/2
0,1/2 − P

0,1/2
d,1/2 ) ΓS

2
(Pd,1/2 − P0,1/2) + Ed,1/2P

0,1/2
d,1/2

−ΓS
2

(Pd,1/2 − P0,1/2)− Ed,1/2P d,1/2
0,1/2 −ΓS

2
(P

d,1/2
0,1/2 − P

0,1/2
d,1/2 )

)
(3.22)

and( ΓS
2

(P
d−,1/2
0,−1/2 − P

0,−1/2
d,−1/2 ) ΓS

2
(Pd,−1/2 − P0,−1/2) + Ed,−1/2P

0,−1/2
d,−1/2

−ΓS
2

(Pd,−1/2 − P0,−1/2)− Ed,−1/2P
d,−1/2
0,−1/2 −ΓS

2
(P

d,−1/2
0,−1/2 − P

0,−1/2
d,−1/2 )

)
(3.23)

for the bases {|0, 1/2〉, |d, 1/2〉} and {|0,−1/2〉, |d,−1/2〉} and zero otherwise. Giving
dP0,1/2

dt
= 0 = iΓS

2
(P

d,1/2
0,1/2 − P

0,1/2
d,1/2 ), the correct result for the time evolution of P0. All

P χ′
χ can be checked likewise.

Because the effective Hamiltonian is block diagonal the eigenvalues and eigenvectors



36 CHAPTER 3. IMM COUPLED TO NORMAL AND BCS LEADS

can easily be found. Four of the eigenstates are Andreev bound states given by

|+,±〉 =
1√
2

√
1− δ

2εA
|0,±1/2〉 − 1√

2

√
1 +

δ

2εA
|d,±1/2〉 (3.24)

and

|−,±〉 =
1√
2

√
1 +

δ

2εA
|0,±1/2〉+

1√
2

√
1− δ

2εA
|d,±1/2〉 (3.25)

with energies

E+ =
δ

2
+ εA (3.26)

and

E− =
δ

2
− εA, (3.27)

respectively. Here δ= 2ε+U is the detuning and 2εA =
√
δ2 + Γ2

S. The remaining four

states form a triplet and a singlet state. The triplet states are given by

|T+〉 = | ↑, 1/2〉, (3.28)

|T−〉 = | ↓,−1/2〉 (3.29)

and

|T0〉 =
1√
2

(| ↓, 1/2〉+ | ↑,−1/2〉) (3.30)

with energy

ET = ε+
J

4
. (3.31)

And the singlet is given by

|S〉 =
1√
2

(| ↓, 1/2〉 − | ↑,−1/2〉) (3.32)

with energy

ES = ε− 3J

4
. (3.33)

These four states are the same as those of the isolated molecule, as singly occupied

states cannot couple to an infinite gap superconductor.

The Andreev bound states arise due to the coupling to superconducting lead. When

this coupling is in resonance then the superposition of the empty and the doubly occu-

pied states will be maximal. This occurs when ΓS� δ, in which case the bound states

reduce to |+,±〉= 1√
2
|0,±1/2〉 − 1√

2
|d,±1/2〉 and |−,±〉= 1√

2
|0,±1/2〉+ 1√

2
|d,±1/2〉,



3.2. TRANSITION RATES AND CURRENT 37

as δ
2εA
≈ δ

ΓS
≈ 0. The above condition is fulfilled for arbitrary coupling strengths

when ε= −U
2

. When the superconducting proximity effect is not in resonance, |δ|�ΓS,

then the states reduce to |+,±〉=−|d,±1/2〉 and |−,±〉= |0,±1/2〉 for positive δ and

|+,±〉= |0,±1/2〉 and |−,±〉= |d,±1/2〉 for negative δ.

The singlet and triplet states arise due to the coupling of the electron spin and the

molecular spin. If the coupling constant tends to zero, J → 0, then all four states are

degenerate and the system reduces to two copies of a single level quantum dot coupled

to a superconducting lead, one copy for the each of the molecular spins as there is no

longer any superposition of states with different molecular spins.

Transitions between the eigenstates of Heff are induced by tunneling events in-

volving the normal lead. For transition to occur the energy of the electron entering

or leaving the normal lead must account for the energies difference between the initial

and final states of the IMM-S subsystem. The excitation energies are therefore very

important for understanding the transport properties of this system. To zeroth order

in the coupling to the normal lead, the excitation energies are

ET+ = ±|ET − E+| = ±
∣∣∣∣J4 − U

2
− εA

∣∣∣∣ , (3.34)

ET− = ±|ET − E−| = ±
∣∣∣∣J4 − U

2
+ εA

∣∣∣∣ , (3.35)

ES+ = ±|ES − E+| = ±
∣∣∣∣3J4 +

U

2
+ εA

∣∣∣∣ (3.36)

and

ES− = ±|ES − E−| = ±
∣∣∣∣3J4 +

U

2
− εA

∣∣∣∣ . (3.37)

3.2 Transition Rates and Current

To calculate the steady state current flowing through the system we must first calculate

all the relevant generalised transition rates between the elements of the reduced density

matrix of the IMM-S subsystem. In the most general case there could be off-diagonal

density matrix elements that contribute to the dynamics of the system, in which case

one would need to use the diagrammatic technique described in Chapter 2 to calculate

the generalised transition rates to and from these off-diagonal elements. With an 8x8

density matrix this could mean having to calculate up to 4096 generalised transition

rates. However, due to the regime we are working in, most of these rates are zero or
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|+ +〉
 |T+〉 - |+ +〉
 |T0〉 |+ +〉
 |S〉
- |+−〉
 |T−〉 |+−〉
 |T0〉 |+−〉
 |S〉

| −+〉
 |T+〉 - | −+〉
 |T0〉 | −+〉
 |S〉
- | − −〉
 |T−〉 | − −〉
 |T0〉 | − −〉
 |S〉

Table 3.1: Transitions relevant to first order transport through the N-IMM-S system.

not relevant to the transport properties of the system. Firstly, we are only interested

in first order transitions, meaning that we do not consider transitions between Andreev

bound states, or between the singlet-triplet states. Secondly, we are working in the

regime where ΓS�ΓN . This means for off-diagonal elements involving one of the

bound states Eq. 2.20 reduces to 0 = −i(εχ1 − εχ2)P
χ1
χ2

, as εχ1 − εχ2 would be of the

order of ΓS and W
χ1χ′1
χ2χ′2

only of the order of ΓN . Therefore P χ1
χ2

must be equal to zero.

We cannot use the same reasoning to deduce that superpositions of the | ± +〉 and

|±−〉 states will be zero, however these can be neglected because they can only couple

to superpositions of the singlet-triplet states and not to any diagonal density matrix

elements. Therefore these superpositions do not contribute to the dynamics of the

diagonal elements. Hence the only transitions that are relevant are those from the

Andreev bound states to the singlet-triplet states and vice versa. Of these transitions

the four in which the molecular spin is not conserved are also equal to zero. The

transitions that are relevant to transport in this system are given in Table 3.1

Because the only transitions that effect the dynamics of this system are first order

transitions between diagonal elements of the reduced density matrix, it is not necessary

to use diagrammatic techniques to calculate the transition rates. Instead they can be

calculated more simply using Fermi’s golden rule -

Wf,i = 2π

∫
|〈f |Htunn,N |i〉|2δ(Ei − Ef )dω. (3.38)

Here Wf,i is the transition rate from the initial state |i〉 to the final state |f〉, Ei and

Ef are the energies of the initial and final states and the integral is over all available

states of the normal lead. The initial and final states involve the state of the molecule

and the state of the lead. For example:

|i〉 = |T+〉molecule ⊗ |ω〉lead → |f〉 = |+ +〉molecule ⊗ |0〉lead (3.39)
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The lead states represent the Fermi sea plus a state at energy ω, which is either

occupied, |ω〉lead, or unoccupied, |0〉lead. To change to an integral over all energies

the integrand is multiplied by the density of states in the normal lead and the Fermi

function, which weighs the probability of the states being occupied (or one minus the

Fermi function for the probability of the state being unoccupied). Note that we have

assumed the density of states in the normal lead to be constant for our energy range

of interest. With these changes Eq. 3.38 becomes

Wf,i = 2πNN

∫
f±(ω)|〈f |Htunn,N |i〉|2δ(Ei − Ef )dω, (3.40)

where f−(ω) = 1− f+(ω).

Using Eq. 3.40, the non-zero transition rates are

W±+,T+ = W±−,T− =
ΓN
2

[
δ2
∓f
− (ET − E±) + δ2

±f
+ (E± − ET )

]
, (3.41)

WT+,±+ = WT−,±− =
ΓN
2

[
δ2
∓f

+ (ET − E±) + δ2
±f
− (E± − ET )

]
, (3.42)

W±+,η = W±−,η =
ΓN
4

[
δ2
∓f
− (Eη − E±) + δ2

±f
+ (E± − Eη)

]
(3.43)

and

Wη,±+ = Wη,±− =
ΓN
4

[
δ2
∓f

+ (Eη − E±) + δ2
±f
− (E± − Eη)

]
, (3.44)

where δ2
±=

(
1± δ

2εA

)
and η=S, T0.

When Fermi’s golden rule is used there are no transition rates of the form Wχχ.

This means that we must slightly modify Eq. 2.20 when using Fermi’s golden rule. The

modified equation for the steady state evolution of the reduced density matrix elements

is

0 =
∑
χ′ 6=χ

(Wχχ′Pχ′ −Wχ′χPχ). (3.45)

For our system the master equation gives eight linear simultaneous equations. Along

with the condition
∑

χ Pχ = 1, these equations can be solved to find the occupation

probabilities, Pχ. To calculation the current we use Eq. 2.24. The first order current

rates can easily be determined from the transition rates as the only change is a sign

difference for electrons entering or leaving the molecule. All terms containing a f− (E)

term are multiplied by -1.

We also calculate the Fano factor using the method described at the end of Chapter
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2. To do this the counting field must be introduced into the transition rates, which is

done by inserting the factor e±iξ into each term, where the sign is positive if an electron

is entering the normal lead and negative if an electron is leaving the normal lead.

3.3 Results

In this section we will analyse the results of the probability, current and Fano factor

calculations. Due to the large dimension of the Hilbert space of the system we were

unable to obtain any analytic results. We have therefore made plots of numerical

results for varying parameter values. At this stage it is useful to summarise the regime

in which the results are valid. The current is valid for ΓN� kBT and will be given in

units of ΓN . The molecule is strongly coupled to the superconducting lead, ΓS�ΓN ,

and the superconducting gap is infinite. Also note that we have chosen µS = 0.

3.3.1 Equilibrium and Zero Exchange Coupling Limits

Figure 3.3: Density plot of the current as a function of the chemical potential µN
and the level position ε. The dashed lines show the excitation energies. The other
parameters used in this plot are ΓS = 0.2U , β= 100/U and J = 0U .

Braggio et al. studied the transport properties of a quantum dot coupled to an

infinite gap superconducting lead and a normal lead (N-QD-S). In the limit of J → 0

the model for the N-IMM-S system reduces to that of the N-QD-S system. We find

that our results agree with those of Braggio et al. This can be seen when comparing

Fig. 3.3 with Fig. 2 of Ref. [47]. As a second consistency check we compare our results
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at equilibrium, µS =µN = 0, to those obtained using Boltzmann statistics. We find that

when µN = 0 the current is zero and the probabilities are in agreement with Pχ = e−βEχ

Z
,

where Z =
∑

χ e
−βEχ .

3.3.2 Andreev Current

Figure 3.4: Density plots of the current (a) and the differential conductance (b) as
functions of the chemical potential µN and the level position ε. The dashed lines show
the excitation energies. The red lines show ES+, the black lines show ES−, the blue
lines show ET+ and the green lines show ET−. The other parameters used in these
plots are ΓS = 0.5U , β= 50/U and J = 0.2U .

To analyse the results for the current we have made density plots of the current,

the differential conductance and the occupation probabilities as functions of the level

position, ε, and the chemical potential of the normal lead, µN . Figure 3.4 shows

such plots for the current and differential conductance. Here we can see that for any

level position the maximum current is achieved when the chemical potential is greater

than all the excitation energies, as under this condition all the states of the system

can contribute to transport. The current is greatest when ε≈−U
2

. This is because

when this condition is met the superconducting proximity effect is in resonance as δ=0

and therefore the superposition of the empty and doubly occupied states is maximal.

Greater superposition of these states decreases waiting times between tunneling events

to and from the superconducting lead, thus increasing the current. Either side of ε= -

0.5U the current decreases, as the proximity effect goes out of resonance. Another

notable feature is the central region where the current is zero. Plotted in Fig. 3.5

are the energies of the eigenstates of the molecule. For ε between about -1.1U and
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0.1U |S〉 is the ground states of the molecule. This means in the central zero current

region the molecule is trapped in the |S〉 state until the applied bias is high enough that

transitions to the Andreev bound states can occur. Figure 3.6 shows the corresponding

occupation probability plots and we see that in the central region the probability for

|S〉 is one.

Figure 3.5: Energies of the eigenstates of the effective Hamiltonian as a function of the
level position ε. The other parameters used in this plot are ΓS = 0.5U and J = 0.2U .

Features in the current density plot in Fig. 3.4 occur along the excitation energies.

This is more apparent when plotting the differential conductance, which is shown in

Fig. 3.4 b). Here we see that changes in the current, with respect to µN , occur only

in the vicinity of the excitation energies. We also see that features do not occur along

all parts of the excitation energies. This means that increasing |µN | from zero there

is a stepwise increase in the current where an excitation energy is crossed, depending

on the ε value. How sharp these steps are is determined by the temperature, as is

shown in Fig. 3.7. Plots a) and b) of Fig. 3.7 show the current as a function of µN for

kBT=0.05U and kBT=0.01U , at the lower temperature we see very distinct steps in

the current that occur at the excitation energies. This stepwise increase in the current

occurs because the energies of the states in the normal lead need to be comparable

to the energy difference of the states of the molecule. When µN is close to zero the

molecule will remain in the ground state until µN is comparable to the energy difference

to the next highest state, in which case an electron can tunnel to or from the normal

lead. Because the superconducting lead only talks to the |+±〉 and |−±〉 states there

is no current when the molecule is trapped in the singlet state. However, as soon as

µN is sufficiently high that transitions to | − ±〉 can occur, current can flow.
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Figure 3.6: Density plots of the occupation probabilities for (a) the triplet, (b) the
singlet and (c) (d) the Andreev bound states as functions of the chemical potential µN
and the level position ε. The probabilities for the three triplet states are equal, the
same is true for the |+,±〉 states and the |−,±〉 states. The other parameters used in
these plots are ΓS = 0.5U , β= 50/U and J = 0.2U . The dashed lines are the excitation
energies as in Fig. 3.4.

To understand why features do not occur along all parts of the excitation energies

we look at Fig. 3.6 showing the occupation probabilities. Features in the differential

conductance plot only occur along parts of the excitation energies where there is a finite

occupation probability of the two states involved. Comparing the probability plots to

the current plot in Fig. 3.4 we see that the regions of highest current correspond to

parameters values for which the probabilities are all comparable. This suggests that in

these regions all states are equally contributing to the current. Plots c) and d) show

regions of high probability for the bound states when the superconducting proximity

effect is off resonance. For δ < 0 δ+<δ− meaning that the | +±〉 states are weighted
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Figure 3.7: Plots of the current as a function of the chemical potential µN for (a)
kBT = 0.05U and (b) kBT = 0.01U . The other parameters used in these plots are
ΓS = 0.5U and J = 0.2U .

more for the zero occupation and for δ > 0 δ+>δ− meaning double occupation is more

likely. The opposite is true for the | − ±〉 states. Because the probabilities of all the

degenerate eigenstates are the same, and in each set of degenerate eigenstates there

are states of the molecule with opposite electronic and molecular spins that contribute

equally, the expectation values of the electronic and molecular spins are zero for all

parameter values.

Figure 3.8 shows the current for weak and for strong coupling to the superconducting

lead. For weak coupling there is only a narrow range about δ=0 where the current is

non-zero, whereas for strong coulping this range is much wider. To understand this

we look at the constants in the Andreev bound states, δ± =
√

1± δ
2εA

. When ΓS is

sufficiently larger than δ, then δ+ ≈ δ− and the superconducting proximtiy effect is



3.3. RESULTS 45

Figure 3.8: Density plots of the current as a function of the chemical potential µN
and the level position ε for (a) weak, ΓS = 0.1U , and (b) strong, ΓS = 1U , coupling to
the superconducting lead. The other parameters used in these plots are β= 50/U and
J = 0.5U . The excitation energies are shown as in Fig. 3.4.

in resonance, which leads to a large current. This occurs over a larger range of level

position values when the coupling is stronger. Varying ΓS also affects the excitation

energies and therefore the size of the central region where the current is zero. In Fig. 3.9

the current is plotted against ε at sufficiently high bias that the maximum current is

reached. This is done for three superconductor coupling strengths. Here we see that the

maximum current is independent of ΓS and confirm that width of the resonant current

peak decreases with ΓS. We also find that the width of the peaks at half maximum is

equal to ΓS.

Varying the strength of the exchange coupling affects the excitation energies. When

J is increased the size of the central region between the ES− excitation energies, where

transport is suppressed, also increases. In Fig. 3.10 a) the differential conductance is

plotted for J=0.8U . We see that the ET+ excitation line now crosses the ES− excitation

line and that there are now no resonances along ET+. In Fig. 3.10 b) we show cuts of

the density plot along ε=-0.5U for four values of the exchange coupling constant. In

the latter we see a transition from two steps in the current to three and then to two

again as J is increased. For the smallest coupling there are only two steps discernible

as the energy difference between the singlet and triplet states is very small. Then

for intermediate values there are three steps and finally for the largest value there

two steps. When the ES− and ET+ excitation lines cross there are no differential

conductance resonances at the excitation energies within the current suppressed region
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Figure 3.9: Plot of the current, at high bias, as a function of level position ε for three
coupling strengths ΓS. The other parameters used in this plot are J = 0.2U , β= 50/U
and µN = 2U .

as here the molecule is in the singlet state and therefore no transitions involving the

triplet states can occur. However as soon as the chemical potential of the normal lead

is large enough that transitions out of the singlet state can occur, transport channels

involving the triplet states are also opened. This is evident in the size of the first

current step for J=0.8U in Fig. 3.10 b). Similarly for J=0.1U the second current step

plateaus at the maximum current, as in this step all transitions to | + ±〉 are made

possible. At high bias we find that the width of the current peaks are unaffected by the

strength of the exchange coupling, meaning that J has no affect on the superconducting

proximity effect. This is because the exchange coupling only affects the states of the

molecule that are singly occupied, whereas only the empty and doubly occupied states

are affected by the proximity to the superconducting lead.

3.3.3 Fano Factor

It was found by Braggio et al. that for a single level dot, between a normal and a

superconducting lead, the Fano factor is equal to 2 when the superconducting proximity

effect is out of resonance and 1 when it is in resonance [47]. Setting J equal to zero

we find the same result (Fig. 3.11). Switching on the exchange coupling we find that

the same behaviour occurs and that at high bias the Fano factor is not affected by the

strength of the exchange coupling.
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Figure 3.10: (a) Density plot of the differential conductance as a function of the chem-
ical potential µN and the level position ε for J=0.8U . (b) Plot of the current as a
function of the chemical potential µN for three J values, at ε=-0.5U . The other pa-
rameters used in these plots are ΓS = 0.5U and β= 50/U . The excitation energies are
shown as in Fig. 3.4.

3.4 N-IMM-S Conclusions

In this chapter we presented a theoretical model for a single orbital isotropic magnetic

molecule coupled to a normal lead and an infinite gap superconducting lead. We then

calculated the reduced density matrix elements of the IMM-S subsystem, as well as the

sequential current and the Fano factor. We found that the current is greatest when the

superconducting proximity effect is in resonance and reduces to zero as the proximity

effect goes out of resonance. Because only sub-gap transport to the superconducting

lead is permitted and tunneling events to and from the normal lead, involving spin

up and spin down electrons, are equally probable, the occupation probabilities of the

eigenstates with the same energies are equal. This leads to the spin expectation values

being equal to zero. Therefore, the magnetic molecule does not add any spin depen-

dence to the transport in this system. In the current and differential conductance plots

features occur along the excitation energies. Thus by measuring the current at varying

bias and gate voltages a spectroscopy of the excitation energies could be performed.

This would give information on the Andreev bound states and the exchange coupling

between the electronic and molecular spins. Lastly, we found that Fano factor exhibits

the same behaviour as a the N-QD-S system. It is equal to 1 when the superconducting

proximity effect is in resonance, indicating Poissonian transport of single electrons, and

out of resonance it is equal to 2, indicating Poissonian transport of electrons pairs.
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Figure 3.11: Plot of the Fano factor as a function of the level position ε for µN = 0.5U
in blue and µN = 1.5U in red. The other parameters used in this plot are ΓS = 0.2U ,
β= 100/U and J = 0U .



Chapter 4

Anisotropic Magnetic Molecule

Coupled to Normal and BCS Leads

In the previous chapter we studied an isotropic magnetic molecule. However some

realistic magnetic molecules, such as Mn12 [25], are anisotropic, therefore in this chapter

we will analyse the current through an anisotropic magnetic molecule (AMM). All

calculations in this chapter will be performed in the same way as in the previous

chapter. In the anisotropic model we will include a quantum tunneling of magnetisation

term and an anisotropy term.

4.1 N-AMM-S System

Figure 4.1: A single level anisotropic magnetic molecule coupled to a superconducting
lead and a normal lead, with coupling strengths ΓS and ΓN , and exchange coupling, J ,
between the spin of the electrons occupying the orbital level and the spin of the rest
of the molecule.

To model an anisotropic magnetic molecule we add an anisotropy term, D, and

49
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a quantum tunneling of magnetisation term, M , to the Hamiltonian of the magnetic

molecule to give

HM =
∑
σ

εd+
σ dσ + Un↑n↓ −DS2

Z +
M

2
(S2

+ + S2
−) + JS.se, (4.1)

where S+ and S− are the ladder operators for the molecular spin. All other terms have

the same definitions as in the previous chapter. The lead and tunneling Hamiltonians

are the same as in Chapter 3 (Eqs. 3.12 and 3.13). The QTM term couples states with

different molecular spins, as depicted in Fig. 4.2. We have only included the lowest order

QTM term as higher order terms (Mn

2

(
S2n

+ + S2n
−
)
, n= 2, 3, ...) are usually small [21].

Figure 4.2: Quantum tunneling of magnetisation allows coupling between molecular
spin states two levels apart. For S=1 QTM couples the |1〉M and | − 1〉M states.

The effect of the superconducting lead, to all orders in tunnel coupling, is again

taken into account by using an effective Hamiltonian to describe MM-S subsytem. This

effective Hamiltonian is now given by

Heff =
∑
σ

εd+
σ dσ + Un↑n↓ −DS2

Z +
M

2
(S2

+ + S2
−) + JS.se −

ΓS
2

(d+
↑ d

+
↓ + d↓d↑). (4.2)

The coupling to the superconducting lead gives rise to the same term in the effective

Hamiltonian as in the previous chapter. This is because the superconducting proximity

effect only causes superpositions of |0〉e and |d〉e states that have the same molecular

spin.

For simplicity we will use the smallest molecular spin, S = 1, that will show the

effects of the anisotropy and QTM. With S=1 there are now twelve states in this

system; |0, 0〉, |d, 0〉, |0,−1〉, |d,−1〉, |0, 1〉, |d, 1〉, | ↑, 0〉, | ↓, 1〉, | ↓,−1〉, | ↓, 0〉, | ↑,−1〉,
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| ↑, 1〉. The effective Hamiltonian is block diagonal and the sub-matrices are given by

HA =

(
0 −ΓS

2
−ΓS

2
2ε+ U

)
, (4.3)

HB =


−D −ΓS

2
−M 0

−ΓS
2

2ε+ U −D 0 −M
−M 0 −D −ΓS

2

0 −M −ΓS
2

2ε+ U −D

 (4.4)

and

HC/D =

 ε J√
2

0
J√
2

ε−D − J
2

−M
0 −M ε−D + J

2

 (4.5)

with the bases {|0, 0〉, |d, 0〉}, {|0,−1〉, |d,−1〉, |0, 1〉, |d, 1〉}, {| ↑, 0〉, | ↓, 1〉, | ↓,−1〉}
and {| ↓, 0〉, | ↑,−1〉, | ↑, 1〉} for HA, HB, HC and HD, respectively. Diagonalising these

matrices leads to eigenstates of the form

|A〉 = X1A|0, 0〉+X2A|d, 0〉, (4.6)

|B〉 = X1B|0,−1〉+X2B|d,−1〉+X3B|0, 1〉+X4B|d, 1〉, (4.7)

|C〉 = X1C | ↑, 0〉+X2C | ↓, 1〉+X3C | ↓,−1〉 (4.8)

and

|D〉 = X1D| ↓, 0〉+X2D| ↑,−1〉+X3D| ↑, 1〉, (4.9)

where A→ A1, A2, B → B1, B2, B3, B4, C → C1, C2, C3 and D → D1, D2, D3. The

corresponding energies are given in Table 4.1 and the expressions for the eigenstate

coefficients can be found in the Appendix B.

The sub-matrix HA produces two Andreev bound states similar to those encoun-

tered in the previous model. If we were considering an isotropic molecule then there

would be four further Andreev bound states of the same form, two each for S= 1 and

S= -1. However due to the tunneling of magnetisation term in this model there is

coupling between states with S= 1 and S= -1. This leads to the form of the bound

states that arise from the diagonalisation of the matrix HB. The energies of these

states are very similar to the Andreev bound state energies of HA, however they have

an extra term for the anisotropy and the tunneling of magnetisation. The form of the

remaining six states arise due to the coupling of the electronic and molecular spins, as
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χ A B C/D

Eχ1

δ
2

+ εA
δ
2
− εA −M −D Re

[
γ+β2+i

√
3(γ−β2)2

12β

]
+ 3ε−2D

3

Eχ2

δ
2
− εA δ

2
− εA +M −D Re

[
γ+β2−i

√
3(β2−γ)2

12β

]
+ 3ε−2D

3

Eχ3 - δ
2

+ εA −M −D Re
[
−γ+β2

6β

]
+ 3ε−2D

3

Eχ4 - δ
2

+ εA +M −D -

Table 4.1: Energies of the 12 eigenstates of the anisotropic system. δ and εA are defined
as in Chapter 3. The other terms are defined as β= (

√
α+ 72M2D − 8D3 + 27J3)1/3,

γ= 12M2 + 4D2 + 9J2 and α=−(12M2 + 4D2 + 9J2)3 + (72M2D − 8D3 + 27J3)2.

well as the tunneling of magnetisation. The X1χ|σ, 0〉+ X2χ|σ̄,±1〉 terms are similar

to the singlet and |T0〉 states of the previous model.

4.2 Transition Rates and Current

Because we are still only interested in transport to first order in ΓN , and there are no

off-diagonal reduced density matrix elements that contribute to the dynamics of the

system, we can once again use Fermi’s golden rule to calculate the transition rates. The

transitions that are made possible by first order tunneling events are |χ〉
 |χ′〉, with

χ=A,B and χ′=C,D. Calculating the corresponding generalised transition rates we

get

WA,C/C,A = ΓN |X1C |2
[
|X1A|2f−/+ (EC − EA) + |X2A|2f+/− (EA − EC)

]
, (4.10)

WA,D/D,A = ΓN |X1D|2
[
|X1A|2f−/+ (ED − EA) + |X2A|2f+/− (EA − ED)

]
, (4.11)

WB,C/C,B = ΓN

[
|X1BX3C +X3BX2C |2f−/+ (EC − EB)

+|X2BX3C +X4BX2C |2f+/− (EB − EC)
]

(4.12)

and

WB,D/D,B = ΓN

[
|X1BX2D +X3BX3D|2f−/+ (ED − EB)

+|X2BX2D +X4BX3D|2f+/− (EB − ED)
]
. (4.13)



4.3. RESULTS 53

Using these rates we calculate the current in the same way as in Chapter 3. For

this system we are not able to obtain analytic results. Therefore in the next section

we will analyse numerical results, as was done in Chapter 3.

4.3 Results

Figure 4.3: Density plots of the current (a) and the differential conductance (b) as
functions of the chemical potential µN and the level position ε. The other parameters
used in these plots are ΓS = 0.5U , kBT = 0.02U , J = 0.2U , D= 0.2U and M = 0.1U .

Figure 4.3 shows an example of the current and differential conductance of the

N-AMM-S system. These plots are very similar to those of the N-IMM-S system

analysed in Chapter 3, however we see more features due to the larger Hilbert space of

this system. In the limit of J tending to zero the dynamics of the anisotropic magnetic

molecule reduce to those of a single level quantum dot. The anisotropy and the QTM

have no affect in this limit as it is only through the exchange coupling between the

electronic and molecular spins that the molecular spin influences the dynamics of the

system. The effect that the strength of the exchange coupling has on the current is

the same as in the previous model. As J is increased the central low conduction region

becomes larger and some of the Andreev bound states start to overlap which causes

some features to disappear (Fig. 4.4).

At high bias, when all transitions are possible, the maximum current and the width

of the current resonance are unaffected by D or M . This is not immediately obvious

from the transition rates due to the intricate forms of the prefactors. To investigate
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Figure 4.4: Plot of the current as a function of the chemical potential µN for J = 0.1,
0.3 and 0.6U . The other parameters used in this plot are ΓS = 0.5U , ε= -0.5U ,
kBT = 0.02U , D= 0.2U and M = 0.1U .

the effect of the D and M on the bias dependents of the current we have plotted the

current as a function of µN in Figs. 4.5 and 4.6. For these plots ε= -0.5U , meaning the

superconducting proximity effect is in resonance. Here we see that changing D or M

does not have a significant effect on the current, especially compared to the effect of

changing J (Fig. 4.4). For the anisotropy this could be because, apart from the |A〉
states, all states are affected by the anisotropy to a similar degree and therefore the

anisotropy mostly cancels out in the excitation energies.

As the changes in the current are relatively small as D and M are varied, we have

plotted the differential conductance in Figs. 4.7 and 4.8, again for the superconducting

proximity effect in resonance. In Fig. 4.7 the QTM is zero and the plots are made for

various magnitudes of the anisotropy. In Fig. 4.8 the anistropy is zero and the plots are

made for various QTM values. Here we see that for the smaller D and M values there

are more differential conductance peaks. As |µN | is increased from zero the first peak

is largest for greater D and M values. This is because when D and M are sufficiently

large some of the excitation energies cross, meaning that when µN is high enough for

the system to tunnel out of the ground state several transport channels are opened at

once causing a greater increase in the current than for smaller D and M , where the

additional channels are opened at slightly higher |µN | values. For this system we have

not plotted the excitation energies as there are too many for a visual representation to

be meaningful, however the effect is the same described in reference to Fig. 3.10 in the

previous chapter. In Figs. 4.9 and 4.10 we have plotted the differential conductance
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Figure 4.5: Plot of the current as a function of the chemical potential µN for D= 0.1,
0.3 and 0.6U . The other parameters used in this plot are ΓS = 0.5U , ε= -0.5U ,
kBT = 0.02U , J = 0.2U and M = 0.1U .

for ε= -1.1U . In these plots there is a negative differential conductance feature for

D= 0.1U and M = 0.1U , respectively. The feature for D= 0.1U is however very small.

The expectation values of the electronic and molecular spins are zero for all param-

eter values. This can be deduced from the eigenstates. The electron spin expectation

value is zero because the kets with opposite electron spins, in the |C〉 and |D〉 eigen-

states, have the same prefactors and therefore contribute equally to the spin expectation

value. For the same reasons the |C〉 and |D〉 states do not contribute to the expectation

value of the molecular spin. The |B〉 states also do not give rise to non-zero molecular

spin expectation values because for these states the magnitude of the prefactors of the

kets with opposite molecular spins are the same.

4.4 N-AMM-S Conclusions

In this chapter we modified the model of Chapter 3 to allow for the molecule to be

anisotropic. To see the affects of the anisotropy and QTM we chose the spin of the

molecule to be S= 1. The results for the current were similar to those found in the

previous chapter. As a function of the applied bias and the level position, the current

and differential conductance map out the excitation energies, meaning that current

measurements should provide information on the anisotropy of a molecule. We found

that the anisotropy and the QTM do not affect the maximum current or the resonance

conditions of the proximity effect when the bias is greater than all excitation energies.
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Figure 4.6: Plot of the current as a function of the chemical potential µN for M = 0.1,
0.3 and 0.6U . The other parameters used in this plot are ΓS = 0.5U , ε= -0.5U ,
kBT = 0.02U , J = 0.2U and D= 0.2U .

Although changes in the differential conductance can be observed as D and M are

varied, these parameters have little effect on the current compared with the effect of

the exchange coupling. Certain D or M values can however cause negative differential

conductances. For this system we also find that the spin expectation values are zero,

meaning that neither the spin of the electron or the molecule can be tuned using the

bias voltage or by applying a gate voltage.
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Figure 4.7: Plot of the differential conductance as a function of the chemical potential
µN for D= 0.1, 0.3 and 0.6U . The other parameters used in this plot are ΓS = 0.5U ,
ε= -0.5U , kBT = 0.02U , J = 0.2U and M = 0.1U .

Figure 4.8: Plot of the differential conductance as a function of the chemical potential
µN for M = 0.1, 0.3 and 0.6U . The other parameters used in this plot are ΓS = 0.5U ,
ε= -0.5U , kBT = 0.02U , J = 0.2U and D= 0.2U .
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Figure 4.9: Plot of the differential conductance as a function of the chemical potential
µN for D= 0.1, 0.3 and 0.6U . For D= 0.1U there is negative differential conductance
feature near µN = 0.2U . The other parameters used in this plot are ΓS = 0.5U , ε= -
1.1U , kBT = 0.02U , J = 0.2U and M = 0.1U .

Figure 4.10: Plot of the differential conductance as a function of the chemical potential
µN for M = 0.1, 0.3 and 0.6U . For M = 0.1U there is negative differential conductance
feature near µN = 0.1U . The other parameters used in this plot are ΓS = 0.5U , ε= -
1.1U , kBT = 0.02U , J = 0.2U and D= 0.2U .



Chapter 5

Josephson Current

In the previous two chapters we have analysed the current through an isotropic and

an anisotropic magnetic molecule coulped to normal and superconducting leads. In

this chapter will replace the normal lead with a second superconducting lead to derive

the Josephson current through the two magnetic molecules. Such systems have been

analysed in recent years [20,21], however in these studies the superconducting gap was

finite and the charging energy U was infinite, and the current was only calculated to

second order in tunnel coupling. In these limits the electrons of a Cooper pair can-

not tunnel simultaneously to and from the superconducting leads. Instead, transport

between the molecule and the leads involves the transfer of quasi-particles. We will

once again work in the finite U and ∆→∞ limits and we will calculate the Josephson

current to all orders in the coupling to the superconducting leads. In references [20]

and [21] it is found that for strong anti-ferromagnetic coupling between the electronic

and molecular spins a 0-π transition is induced. For this transition to occur the sign

of the current must change. This can be achieved if the order in which the electrons

of a Cooper pair are created on the molecule is switched. However in the ∆ → ∞
limit the electrons of a Cooper pair tunnel simultaneously, therefore no 0-π transition

is excepted in this case.

5.1 S-MM-S Systems

To describe the molecules we use Eqs. 3.2 and 4.1. The superconducting leads and

tunneling coupling are described by

Hη =
∑
k,σ

εkC
+
ηkσCηkσ −∆

∑
k

(Cη−k↓Cηk↑ +H.c.) (5.1)
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Figure 5.1: Single level magnetic molecule tunnel coupled to two superconducting
leads, with coupling strengths ΓL, ΓR and exchange coupling, J , between the spin of
the electrons occupying the orbital level and the spin of the rest of the molecule.

and

Htunn,η =
∑
k,σ

(VηC
+
ηkσdσ +H.c.), (5.2)

where η=L,R for the left and right superconducting leads. All other symbols have the

same meaning as in Chapter 3.

We will calculate the Josephson current to all orders in tunnel coupling to the

superconducting leads. In order to do this we once again use an effective Hamiltonian

to describe the effect of coupling to these leads. For the case of a single level Anderson

model dot between two superconducting leads the effective Hamiltonian was derived by

Rozhkov and Arovas [50]. This Hamiltonian can easily be modified for the isotropic and

anisotropic magnetic molecule cases by adding the exchange coupling, the anisotropy

and the quantum tunneling of magnetisation terms. The effective Hamiltonians for the

isotropic and anisotropic molecules are

HIeff =
∑
σ

εd+
σ dσ + Un↑n↓ + JS.se −

χS
2
d+
↑ d

+
↓ −

χ∗S
2
d↓d↑ (5.3)

and

HAeff =
∑
σ

εd+
σ dσ +Un↑n↓−DS2

Z +
B2

2
(S2

+ +S2
−) +JS.se−

χS
2
d+
↑ d

+
↓ −

χ∗S
2
d↓d↑, (5.4)

respectively. Here χS = ΓLe
iφL+ΓRe

iφR , where Γη and φη are the coupling strength and

the phase of superconducting lead η. We once again choose S= 1/2 for the isotropic

case and S=1 for the anisotropic case.

The eigenstates of the effective Hamiltonians that involve single occupation of the
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E+±
δ
2

+ 1
2

√
δ2 + |χS|2

E−±
δ
2
− 1

2

√
δ2 + |χS|2

ET ε+ J
4

ES ε− 3J
4

Table 5.1: Energies of the 8 eigenstates of HI,eff . δ is defined as in chapter 3.

χ A B C/D

Eχ1

δ
2

+ 1
2

√
δ2 + |χS|2 δ

2
− 1

2

√
δ2 + |χS|2 −M −D Re

[
γ+β2+i

√
3(γ−β2)2

12β

]
+ 3ε−2D

3

Eχ2

δ
2
− 1

2

√
δ2 + |χS|2 δ

2
− 1

2

√
δ2 + |χS|2 +M −D Re

[
γ+β2−i

√
3(β2−γ)2

12β

]
+ 3ε−2D

3

Eχ3 - δ
2

+ 1
2

√
δ2 + |χS|2 −M −D Re

[
−γ+β2

6β

]
+ 3ε−2D

3

Eχ4 - δ
2

+ 1
2

√
δ2 + |χS|2 +M −D -

Table 5.2: Energies of the 12 eigenstates of HA,eff . δ is defined as in chapter 3. The
other terms are defined as β= (

√
α+ 72M2D− 8D3 + 27J3)1/3, γ= 12M2 + 4D2 + 9J2

and α=−(12M2 + 4D2 + 9J2)3 + (72M2D − 8D3 + 27J3)2.

molecules are the same as those in Chapters 3 and 4. This is because only the |0〉e and

|d〉e states are affected by coupling to the extra superconducting lead. The remaining

eigenstates are very similar to the bound states of the previous chapter; the only

difference being that ΓS becomes χS or χ∗S. To calculate the Josephson current, the

energies of the eigenstates are needed. These are given in Tables 5.1 and 5.2.

5.2 Current

The equilibrium Josephson current is calculated using Eq. 1.18 and the energies of the

eigenstates of the two systems. We obtain analytic expressions. However, these are

too long to be useful, thus in the next section we will investigate numerical results.
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5.3 Results

In the J →0 limit the there is no coupling between the electronic and molecular spins

and the singly occupied states of the isotropic molecule become degenerate. In this

limit the result for the Josephson current reduces to that for a single level quantum

dot in place of the molecule. Governale et al. have calculated the Josephson current

for the S-QD-S system, in the ∆ → ∞ limit, to second order in the coupling to the

leads. Setting J = 0, ΓL = ΓR≡ΓS and taking the terms up to second order in the

Taylor expansion of the current through the isotropic molecule, we find

Ijos =

(
e
U+2ε
kBT − 1

)
Γ2
Ssinφ(

1 + 2e
U+ε
kBT + e

U+2ε
kBT

)
(U + 2ε)

, (5.5)

which is in agreement with the result of Governale et al. [5].

Figure 5.2: Density plots of the Josephson current through (a) the isotropic and (b)
the anisotropic magnetic molecules as functions of the exchange coupling U and the
level position ε. The other parameters used in these plots are φ=π/2, kBT = 0.5ΓS,
J = 0.2ΓS, D= 0.3ΓS and M = 0.2ΓS.

Figures 5.2 a) and b) show density plots of the Josephson current for the isotropic

and anisotropic molecules, respectively. Here and in all subsequent plots we have chosen

ΓL = ΓR≡ΓS. In plot b) there is no noticeable difference due to the anisotropy or the

QTM compared with the isotropic molecule. Both plots show that as U increases the

current tends to zero in the negative ε half plane. In the positive ε half plane the

ground states of the isotropic system are the | − ±〉 states and these states contribute
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to the Josephson current. But for large U > ε in the negative ε half plane the ground

state is |S〉, which does not contribute to the Josephson current, as this state does not

couple to the superconducting leads. This occurs similarly for states of the anisotropic

molecule. The current is greatest when U = ε= 0, because there the energy of the

lowest bound state is minimised.

In Fig. 5.2 we see that the anisotropy and QTM of the anisotropic molecule do not

have a significant effect on the current. To quantify the influence of these parameters

we have plotted the current as functions of D and M in Figs. 5.3 and 5.4. In both

cases the current increases with the magnitude of the parameter, but only by a few

percent. This is probably because D and M affect all of the lowest energy eigenstates

in a similar manner.

Figure 5.3: Plot of the current through the anisotropic molecule as a function of D at
δ= 0. The other parameters used in this plot are φ=π/2, kBT = 0.5ΓS, J = 0.2ΓS and
M = 0.2ΓS.

To analyse the affect of the exchange coupling we will concentrate on the isotropic

molecule. Figure 5.5 a) and b) show density plots of the Josephson current for J = 3ΓS

and J =−3ΓS. Compared with Fig. 5.2 a) the current is decreased for both plots. For

large positive J values the parameter range over which the singlet state is the ground

state increases. This is shown by the larger zero current region. When J is negative the

triplet states are lower in energy than the singlet and are therefore the ground states

in the zero current region.

Shown in Fig. 5.6 are density plots of the Josephson current through the isotropic

molecule at kBT = 0.1ΓS and kBT = 1.0ΓS. Note that the scales for these plots are
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Figure 5.4: Plot of the current through the anisotropic molecule as a function of M at
δ= 0. The other parameters used in this plot are φ=π/2, kBT = 0.5ΓS, J = 0.2ΓS and
D= 0.2ΓS.

different. As expected, the transition form the zero current region to the non-zero cur-

rent region becomes sharper as the temperature is lowered. In Fig. 5.2 a) kBT = 0.5ΓS.

Comparing this plot with Fig. 5.6 b) we see that with U and ε scaled by the same factor

as the temperature the current features appear the same, but the magnitude is approx-

imately halved for the factor of two increase in the temperature. This trend occurs

because as the temperature increases the eigenstates contribution more equally to the

partition function, meaning that the denominator of Eq. 1.18 increases with respect to

the numerator. We also see that in Fig. 5.6 a) the current is larger than for the higher

temperature plots.

The phase dependence of the Josephson current is approximately sinusoidal. To

second order the Josephson current through a quantum dot depends on sinφ (Eq. 5.5),

but because we have calculated the current to all orders in ΓS for the magnetic molecule

systems, this is not exactly correct. However deviations from the sine dependence are

not noticeable in the numerical results. We also find that for both the isotropic and

the anisotropic cases there is no 0-π phase transition. As the parameters are varied

the current can tend to zero, however it never changes sign. This is as expected since

no quasi-particle states are allowed in the leads.
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Figure 5.5: Density plots of the Josephson current through the isotropic magnetic
molecule as a function of the exchange coupling U and the level position ε for (a)
J = 3ΓS and (b) J = -3ΓS. The other parameters used in these plots are φ=π/2 and
kBT = 0.5ΓS.

5.4 Josephson Current Conclusions

In this chapter we calculated the equilibrium Josephson current through an isotropic

and an anisotropic magnetic molecule coupled to two infinite gap superconducting

leads. We found that no 0-π transition is induced for any parameter values and that the

anisotropy and QTM have negligible affect on the current. Strong exchange coupling

between the electronic and molecular spins decreases the current, as it lowers the energy

of at least one of the singly occupied states and these do not contribute to the current.
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Figure 5.6: Density plots of the Josephson current through the isotropic as a func-
tion of the exchange coupling U and the level position ε for (a) kBT = 0.1ΓS and (b)
kBT = 1.0ΓS. The other parameters used in these plots are φ=π/2 and J = 0.2ΓS.



Chapter 6

Isotropic Magnetic Molecule

Coupled to Ferromagnetic and BCS

Leads

In Chapter 3 we studied an isotropic magnetic molecule between a superconducting

lead and a normal metallic lead. In this chapter we will modify this system to allow

for the normal lead to be ferromagnetic and for the presence of an external magnetic

field. The motivation for this is that it will add spin dependence to the current. In

Chapter 3 we found that even though the molecule is magnetic the spin expectation

values were zero, meaning that the current has no overall spin dependence. However

with the normal lead now ferromagnetic more of the majority spins will tunnel to and

from the molecule. This will change the non-equilibrium occupation probabilities of

the eigenstates of the IMM-S subsystem and cause non-zero spin expectation values.

For simplicity we will only consider the isotropic molecule in this chapter, as this shows

interesting properties without having to work in the larger Hilbert space that is required

for the anisotropic molecule.

We will allow for arbitrary alignment of the magnetisation of the ferromagnetic

lead and the external magnetic field. This will lead to off-diagonal reduced density

matrix elements contributing to the dynamics of the system. To calculate generalised

transition rates involving these off-diagonal elements we will use the diagrammatic

technique described in Chapter 2, since to the best our knowledge this is not possible

using Fermi’s golden rule.

67
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6.1 F-IMM-S System

Figure 6.1: Single level isotropic magnetic molecule coupled to a superconducting lead
and a ferromagnetic lead, in the presence of an external magnetic field, with coupling
strengths ΓS and ΓF , and exchange coupling, J , between the spin of the electrons
occupying the orbital level and the spin of the rest of the molecule. The orientation of
the external magnetic field is at an angle φ to the magnetisation of the ferromagnetic
lead.

The modified system consists of a magnetic molecule, in the presence of an external

magnetic field, tunnel coupled to a superconducting lead and ferromagnetic lead, as

depicted in Fig. 6.1. The Hamiltonian of the system is given by

H = HM +HF +HS +Htunn,F +Htunn,S. (6.1)

The Hamiltonian for the molecule in the presence of an external magnetic field is given

by

HM =
∑
σ

εd+
σ dσ + Un↑n↓ +

B1

2
(n↑ − n↓) +B2Sz + JS.se, (6.2)

where B1

2
(n↑ − n↓) describes the spin dependent Zeeman splitting of the orbital level

due to the external magnetic field and B2Sz describes the effect the external magnetic

field has on the spin of the molecule. All other terms have the same meaning as in

Eq. 3.2.

Because we allow the magnetisation of the ferromagnetic lead to be arbitrarily

aligned with respect to the orientation of the external magnetic field, the spin of the

electrons occupying the lead will not be collinear with those occupying the molecule.

We will therefore adopt a new notation to describe the orientation of the electrons

occupying states in the ferromagnetic lead. The Hamiltonian for the ferromagnetic
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lead is now given by

HF =
∑
k,α

εkC
+
F,k,αCF,k,α, (6.3)

where α = +,− stands for the majority and minority spins, respectively. The majority

spins point in the direction of the magnetisation of the lead, whereas the minority

spins point in the opposite direction. The Hamiltonian describing tunneling between

the molecule and the ferromagnetic lead is given by

Htunn,F =
∑
k,σ,α

(VF,σ,αC
+
F,k,αdσ +H.c.). (6.4)

The matrix elements VF,σ,α are no longer diagonal in spin space due to the different

quantisation axes of the lead and IMM-S subsystem. The individual tunneling ampli-

tudes are given by VFUσα, where Uσα is a SU(2) rotation matrix, the form of which

depends on the geometry of the system, and VF is the tunneling amplitude, which is

assumed to be independent of spin and energy. We will consider the spin-quantisation

axes of the lead and the IMM-S subsystem in the x-z plane and use the matrix for

rotations about the y-axis, Uy(φ). The tunneling Hamiltonian then becomes

Htunn,F =
∑

k VF

(
cos
(
φ
2

)
C+
Fk+d↑ − sin

(
φ
2

)
C+
Fk+d↓

+sin
(
φ
2

)
C+
Fk−d↑ + cos

(
φ
2

)
C+
Fk−d↓ +H.c.

)
, (6.5)

where φ is the angle between the quantisation axes of the magnetisation of the ferro-

magnetic lead and the external magnetic field, as shown in Fig. 6.1. The maximum

tunnel couplings for the majority and minority spins are given by ΓF± = 2πρ±|VF |2,

where ρ± are the energy independent density of states for the majority and minority

spins in the ferromagnetic lead. It is useful to express these tunnel coupling strengths

in terms of ΓF = ΓF++ΓF−
2

and to use the polarisation P = ρ+−ρ−
ρ++ρ−

.

The Hamiltonians describing the superconducting lead and tunneling to and from

the superconducting are still given by Eqs. 3.12 and 3.13 in Chapter 3, and once again

we take into account the effect of the superconducting lead by introducing an effective

Hamiltonian,

Heff = HM −
ΓS
2

(d+
↑ d

+
↓ + d↓d↑). (6.6)

For simplicity we again choose the molecular spin to be S=1/2. Using the basis

{|0, 1/2〉, |d, 1/2〉, |0,−1/2〉, |d,−1/2〉, | ↑, 1/2〉, | ↓,−1/2〉, | ↓, 1/2〉, | ↑,−1/2〉}, we can

write the effective Hamiltonian in matrix form. This matrix is block diagonal and can
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therefore be broken into two blocks, the first involving the empty and doubly occupied

states and the second involving the singly occupied states:

Heff1 =


B2

2
−ΓS

2
0 0

−ΓS
2

2ε+ U + B2

2
0 0

0 0 −B2

2
−ΓS

2

0 0 −ΓS
2

2ε+ U − B2

2

 , (6.7)

Heff2 =


ε+ J

4
+ B1+B2

2
0 0 0

0 ε+ J
4
− B1+B2

2
0 0

0 0 ε− J
4
− B1−B2

2
J
2

0 0 J
2

ε− J
4

+ B1−B2

2

 . (6.8)

We diagonalise these matrices to find the energies and eigenstates of this system for

zero coupling to the ferromagnetic lead. Compared with the eigenstates of the system

studied in Chapter 3 the degeneracy of the Andreev bound state pairs has been lifted

due to the magnetic field acting on the molecular spin. The four bound states and

their respective energies are now given by

|+,±〉 =
1√
2

√
1− δ

2εA
|0,±1/2〉 − 1√

2

√
1 +

δ

2εA
|d,±1/2〉 (6.9)

E+± =
δ

2
+ εA ±

B2

2
(6.10)

and

|−,±〉 =
1√
2

√
1 +

δ

2εA
|0,±1/2〉+

1√
2

√
1− δ

2εA
|d,±1/2〉 (6.11)

E−± =
δ

2
− εA ±

B2

2
. (6.12)

The definitions of δ and εA are those given in Chapter 3.

In Chapter 3 the remaining four states formed a singlet and a triplet. The states

in this system still resemble those of Chapter 3 but the degeneracy of the triplet states

has been lifted. The states and their energies are now given by

|I+〉 = | ↑, 1/2〉 (6.13)

EI+ = ε+
J

4
+
B1 +B2

2
, (6.14)
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|I−〉 = | ↓,−1/2〉 (6.15)

EI− = ε+
J

4
− B1 +B2

2
, (6.16)

|I0〉 =
λ1+√

2
| ↓, 1/2〉+

λ2+√
2
| ↑,−1/2〉 (6.17)

EI0 = ε− J

4
+

1

2

√
(B1 −B2)2 + J2 (6.18)

and

|IS〉 =
λ1−√

2
| ↓, 1/2〉 − λ2−√

2
| ↑,−1/2〉 (6.19)

EIS = ε− J

4
− 1

2

√
(B1 −B2)2 + J2. (6.20)

The prefactors of the kets in the states |IS〉 and |I0〉 are

λ1± =

√
J2

J2 + (B1 −B2)2 ± (B1 −B2)
√

(B1 −B2)2 + J2
(6.21)

and

λ2± =

√
J2 + 2(B1 −B2)2 ± 2(B1 −B2)

√
(B1 −B2)2 + J2

J2 + (B1 −B2)2 ± (B1 −B2)
√

(B1 −B2)2 + J2
. (6.22)

In the limit B1 =B2 →0 the eigenstates reduce to the Andreev bound states and

triplet-singlet of Chapter 3. We will label the excitation energies as |Eab|=±|Ea−Eb|.

6.2 Transition Rates and Current

When φ 6= 0 the spin of the electron is not conserved in individual tunneling events

between the molecule and the ferromagnetic lead. Due to this there are off-diagonal

reduced density matrix elements that can contribute to the dynamics of the system.

However, when φ= 0 no off-diagonal elements should be included. We will therefore

treat the two cases separately. First we will calculate the rates for the collinear case,

φ= 0, then we will consider the non-collinear case, φ 6= 0.
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6.2.1 Collinear

As the electronic and molecular spins are conserved during tunneling events the gener-

alised transition rates contributing to the dynamics of the system are still restricted to

those given in Chapter 3. We do not have to consider any off-diagonal reduced density

matrix elements and therefore can once again use Fermi’s golden rule to calculated the

first order rates. Because in this case the spin of the electrons in the ferromagnetic

lead are aligned with those on the molecule it is more convenient to let α= ↑, ↓ instead

of +,−. Therefore we define the polarisation and average coupling strength as

P =
ρ↑ − ρ↓
ρ↑ + ρ↓

(6.23)

and

ΓF =
ΓF↑ + ΓF↓

2
, (6.24)

respectively. It is convenient to write ΓF↑ and ΓF↓ in terms of P and ΓF , giving

ΓF↑ = (1 + P )ΓF (6.25)

and

ΓF↓ = (1− P )ΓF . (6.26)

The non-zero transition rates are

W±+I+ =
ΓF
2

[
(1− P ) δ2

±f
+ (E±+ − EI+) + (1 + P ) δ2

∓f
− (EI+ − E±+)

]
, (6.27)

WI+±+ =
ΓF
2

[
(1− P ) δ2

±f
− (E±+ − EI+) + (1 + P ) δ2

∓f
+ (EI+ − E±+)

]
, (6.28)

W±−I− =
ΓF
2

[
(1 + P ) δ2

±f
+ (E±− − EI−) + (1− P ) δ2

∓f
− (EI− − E±−)

]
, (6.29)

WI−±− =
ΓF
2

[
(1 + P ) δ2

±f
− (E±− − EI−) + (1− P ) δ2

∓f
+ (EI− − E±−)

]
, (6.30)

W±+η =
ΓFλ

2
1ζ

4

[
(1 + P ) δ2

±f
+ (E±+ − Eη) + (1− P ) δ2

∓f
− (Eη − E±+)

]
, (6.31)

Wη±+ =
ΓFλ

2
1ζ

4

[
(1 + P ) δ2

±f
− (E±+ − Eη) + (1− P ) δ2

∓f
+ (Eη − E±+)

]
, (6.32)

W±−η =
ΓFλ

2
2ζ

4

[
(1− P ) δ2

±f
+ (E±− − Eη) + (1 + P ) δ2

∓f
− (Eη − E±−)

]
(6.33)
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and

Wη±− =
ΓFλ

2
2ζ

4

[
(1− P ) δ±

2f− (E±− − Eη) + (1 + P ) δ2
∓f

+ (Eη − E±−)
]
. (6.34)

Here η= I0, IS and ζ = + if η= I0 or ζ = - if η= IS. As in Chapter 3 δ2
±=

(
1± δ

2εA

)
.

The occupation probabilities, current and Fano factor are calculated using the same

methods as in Chapter 3.

6.2.2 Non-collinear

With eight eigenstates and without the requirement that the electronic spin be con-

served during tunneling events there are now off-diagonal reduced density matrix ele-

ments that effect the dynamics of the system. In the most general case there are over

200 generalised transition rates that are non-zero. Table 6.1 summarises the coher-

ent superpositions that must be taken into account for various parameter values. For

simplicity we have set B1 =B2 =B. To make the system of equations more manage-

able we will consider only case (iv)-b. The condition |2εA − B|.ΓN is satisfied when

2εA−B= 0. This can be rewritten to give the condition δ=±
√
B2 − Γ2

S. In this regime

there are only two off-diagonal reduced density matrix elements that contribute to the

current. The reduced density matrix of the molecule coupled to the superconducting

lead, in this regime, is

ρRM =



P++ 0 0 0 P++
T1 0 0 0

0 P+− P+−
−+ 0 0 0 P+−

T0 P+−
S

0 P−+
+− P−+ 0 0 0 P−+

T0 P−+
S

0 0 0 P−− 0 P−−T -1 0 0

P T1
++ 0 0 0 PT1 0 0 0

0 0 0 P T -1
−− 0 PT -1 0 0

0 P T0
+− P T0

−+ 0 0 0 PT0 0

0 P S
+− P S

−+ 0 0 0 0 PS


. (6.35)

The entries in red are non-zero but in first order they cannot couple to the diagonal

elements and therefore do not contribute to the dynamics of the system. With the ten

reduced density matrix elements that contribute to the dynamics of the system there

are 42 non-zero generalised transition rates that must be calculated.

As there are now non-zero off-diagonal reduced density matrix elements that con-

tribute to the dynamics of the system we can no longer use Fermi’s golden rule to
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Case Parameters Superpositions

(i) B . ΓN , J � ΓN |I+〉, |I−〉, |I0〉
| ± ±〉, | ± ∓〉

(ii) B, J . ΓN |I+〉, |I−〉, |I0〉
|I±〉, |IS〉
|I0〉, |IS〉
| ± ±〉, | ± ∓〉

(iii) J . ΓN , B � ΓN |I0〉, |IS〉
a (if |2εA −B| . ΓN) (|+−〉, | −+〉)

(iv) B, J � ΓN none

a (if |J −B| . ΓN) (|I−〉, |IS〉)
b (if |2εA −B| . ΓN) (|+−〉, | −+〉)

Table 6.1: Coherent superpositions of that have to be taken into account for various
parameter values are given in this table.

calculate all of the rates. Therefore we will use the diagrammatic technique outlined

in Chapter 2. Each generalised transition rate, W
χ2χ′2
χ1χ′1

, can be represented by diagrams

such as that shown in Fig. 6.2. Then a set of rules can be used to write out the equa-

tions represented by these diagrams. To calculate the generalised transition rates of

this system, to first order in tunnel coupling ΓF , the diagrammatic rules are:

1. Draw all topologically different diagrams and assign energies to all propagators

and tunneling lines.

2. For each part of the diagram between adjacent vertices assign a resolvent 1
∆E+i0+

,

where ∆E is the energy difference between left going and right going propagators

and tunneling lines.

3. For each tunneling line the diagram acquires a factor of f±(ω), - (+) for lines

running forward (backward) with respect to the Keldysh contour.

4. For each pair of vertices connected by a tunneling line the diagram is multiplied

by

ρ+〈χ′i|C+σ|χi〉〈χ′f |C+
+σ|χf〉+ ρ−〈χ′i|C−σ|χi〉〈χ′f |C+

−σ|χf〉 (6.36)

where χi and χ′i (χf and χ′f ) are the states that enter and leave the vertex

where the tunneling line begins (ends), respectively. The operators C
(+)
ασ are the
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coefficients (including the dot operators) of C
(+)
Fkα in the tunneling Hamiltonian.

5. The diagram is multiplied by a factor of −i(−1)a, where a is the number of

vertices on the lower propagator.

6. Integrate the diagram over all energies ω.

7. When calculating the generalised current rates multiply each diagram by 1 if the

line is going form the lower to the upper propagator and -1 if it is going from the

upper to the lower propagator, otherwise multiply the diagram by zero.

Figure 6.2: One of the possible transitions from P χ2
χ1

to P
χ′2
χ′1

. The top line represents

forward propagation in time and the bottom line backward propagation. The line with
the arrow head is the tunneling line and represents the contraction of two tunneling
vertices. The tunneling line points to where an electron is created on the orbital
level of the molecule. The spin of the electrons destroyed and created on the dot are
represented by σ and σ̄; these can be the same or different.

Figure 6.3 shows the diagrammatic representation of W+−+−
−+−+ . Applying the di-

agrammatic rules to Fig. 6.3, and rewriting the equation in terms of ΓF and P , we

obtain

W+−+−
−+−+ = −i

4π
{ΓF (1 + P cosφ)(δ2

+

[∫ f−(ω)dω
E−+−EI−−ω+i0+

+
∫ f+(ω)dω

EI+−E+−−ω+i0+

]
+

δ2−
2

[∫ f+(ω)dω
E−+−EI0+ω+i0+

+
∫ f+(ω)dω

E−+−EIS+ω+i0+
+
∫ f−(ω)dω

EI0−E+−+ω+i0+
+
∫ f−(ω)dω

EIS−E+−+ω+i0+

]
)

+ΓF (1− P cosφ)(δ2
−

[∫ f+(ω)dω
E−+−EI−+ω+i0+

+
∫ f−(ω)dω

EI+−E+−+ω+i0+

]
+ (6.37)

δ2+
2

[∫ f−(ω)dω
E−+−EI0−ω+i0+

+
∫ f−(ω)dω

E−+−EIS−ω+i0+
+
∫ f+(ω)dω

EI0−E+−−ω+i0+
+
∫ f+(ω)dω

EIS−E+−−ω+i0+

]
)}.

These integrals are then calculated using the residue theorem, which is given in Ap-

pendix C along with an example calculation. The expression for W+−+−
−+−+ is rather
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Figure 6.3: All of the first order contributions to the generalised transition rate W+−+−
−+−+ .

cumbersome and is therefore given in Appendix C, with all other non-zero generalised

transition rates. Here we give two example rates;

WI+±+ =
ΓF
2

[
δ2
± (1− P cosφ) f− (E±+ − EI+) + δ2

∓ (1 + P cosφ) f+ (EI+ − E±+)
]

(6.38)

and

W±∓η
∓±η = α iδ+δ−

8π
ΓFP sinφ

(
iπ(f+ (E+− − Eη) + f+ (E−+ − Eη) + f− (Eη − E−+) +

f− (Eη − E+−) )∓ Re
[
Ψ
(

1
2

+ iβ
2π

(Eη − E+− − µF )
)
−Ψ

(
1
2

+ iβ
2π

(Eη − E−+ − µF )
)]

∓Re
[
Ψ
(

1
2

+ iβ
2π

(E+− − Eη − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E−+ − Eη − µF )
)] )

. (6.39)

Ψ(x) is the digamma function, η= I0,IS and α= + (-) if η= I0 (IS).

To calculate the current we modify the generalised transition rates to obtain the



6.3. RESULTS - COLLINEAR 77

current rates. This is done by applying rule 7, given in the list of diagrammatic rule

presented in this section. These current rates are then used in Eq. 2.24. For the non-

collinear case we will not calculate the Fano factor as the method described in Chapter

2 is only valid for systems where no off-diagonal density matrix elements contribute to

the current.

6.3 Results - Collinear

In this section we will investigate the results of the collinear case. As in Chapter 3

it was not possible to obtain analytic expressions for the occupation probabilities or

the current. We therefore present numerical results in graphical form in this section.

Firstly we consider the case where the external field is switched off, in which case the

energies and eigenstates reduce to those in Chapter 3. Secondly we consider the case

where the molecule is in the presence of an external magnetic field, but switch off the

magnetisation of the ferromagnetic lead. Lastly we look at the most general case where

both the magnetisation of the metallic lead and the external magnetic field are non

zero.

6.3.1 Ferromagnetic Lead, B=0

The magnetisation of the metallic lead is introduced into the model via spin dependent

density of states. Having a finite polarisation will reduce the likelihood of tunneling

events involving the minority spin. If the polarisation is positive and we consider the

case where the molecule is singly occupied with a spin up electron, and the applied

bias favours transport from the ferromagnetic lead to the molecule, then the effect of

this polarisation is to increase the waiting time for the transfer of a spin down electron.

This means that the maximum current in the system is reduced compared with the

non-magnetic lead case. Figure 6.4 shows density plots of the current for polarisations

of 0.4 and 0.9. Note that the colour scales for the two plots are different. Here we see

that the maximum current, which is achieved at high bias and zero detuning, is reduced

with increased polarisation. For P=0.4 the maximum current is reduced by about 10

percent compared with an unpolarised lead and for P=0.9 by about 80 percent. The

magnitude of the maximum current is given by |Imax| = ΓF (1− P 2). As expected,

when P =±1 no current flows through the system. This is because in this case there

is only one type of spin in the ferromagnetic lead and no possibilities of spin flips.

The polarisation of the lead also changes the relative magnitude of the current for
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Figure 6.4: Density plots of the current as a function of the chemical potential µN
and the level position ε for (a) P = 0.4 and (b) P = 0.9. The dashed lines show the
excitation energies. The red lines show ES+, the black lines show ES−, the blue lines
show ET+ and the green lines show ET−. Note that the colour scales for the two
plots are different. The other parameters used in these plots are ΓS = 0.5U , β= 50/U ,
J = 0.2U and B1 =B2 = 0U .

different bias voltages and level positions. This is best seen when the polarisation

difference is large. Comparing Fig. 6.4 a) and b) we see that the current becomes more

asymmetric about δ=0 with increasing polarisation, and that between the ES− and

the ET− excitation energies current peaks develop near ε=−1U and ε= 0U . Looking

at the differential conductance plots (Fig. 6.5) we can see that there are now negative

resonance peaks along some parts of the excitation energies, whereas with P = 0, for any

level position, the current was monotonically increasing with µN . The probability plots

(Fig. 6.6 and 6.7) show that in the regions corresponding to the negative differential

conductances the probability of the singlet state decreases and the probabilities of

the | − ±〉 states become finite, making transport in these regions possible. In the

differential conductance plots we also see that the conductance resonances deviate

from the excitation energies where the ET− and the ES− lines cross. This is a finite

temperature effect that decreases when the temperature is lowered. It is caused by

competition between the exponential suppression of components of the generalised

transition rates due to temperature and linear suppression due to the polarisation.

If the latter effect is greater then we can see differential conductance features that

deviate from the excitation energies. Plotting the differential conductance at lower

temperatures than that used in Fig. 6.5 would show less deviation from the excitation

energies.
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Figure 6.5: Density plots of the differential conductance as a function of the chemical
potential µN and the level position ε for (a) P = 0.4 and (b) P = 0.9. The dashed lines
show the excitation energies as in Fig. 6.4. The other parameters used in these plots
are ΓS = 0.5U , β= 50/U , J = 0.2U and B1 =B2 = 0U .

Even though the triplet states and the pairs of Andreev bound states are degenerate,

they exhibit different behviour when coupled to the ferromagnetic lead. For example, if

the bias and polarisation are both positive then, compared with |T−〉, transport would

be suppressed if the initial state is |T+〉, as there is a lower density of states of spin

down electrons in the lead and therefore a greater waiting time for a spin down electron

to tunnel on to the molecule. Due to this the occupation probabilities for all eight states

are now different. Figures 6.6 and 6.7 show the occupation probabilities for P = 0.4

and P = 0.9, respectively. Plots a) and b) show that for |T+〉 non-zero probabilities are

mainly confined to the µF > 0 half plane, whereas for |T−〉 the occupation probability

is non-zero in the µF < 0 half plane. This can be understood by considering the

transport sequence described above. For µF > 0 the molecule will spend more time in

the |T+〉 state as it is less likely for a spin down electron to tunnel on to the molecule.

For µF < 0 electrons tunnel from the molecule on to the ferromagnetic lead. If the

molecule is initially in one of the bound states then the transfer of a spin up electron

to the ferromagnetic lead will be more likely, leaving the molecule occupied by a spin

down electron. When the polarisation is negative the density of states of the spin down

electrons is greater and the situation described above is reversed. Compared to positive

P the occupation probabilities of |T+〉 and |T−〉, and | ±+〉 and | ± −〉 are switched.

The probabilities of |T0〉 and |S〉 remain unchanged as they involve both electronic

spin orientations. Therefore the current is even in P .
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Figure 6.6: Density plots of the occupation probabilities of the eigenstates of Heff as
functions of the chemical potential µN and the level position ε for P = 0.4. The dashed
lines show the excitation energies as in Fig. 6.4. The other parameters used in these
plots are ΓS = 0.5U , β= 50/U , J = 0.2U and B1 =B2 = 0U .
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Figure 6.7: Density plots of the occupation probabilities of the eigenstates of Heff as
functions of the chemical potential µN and the level position ε for P = 0.9. The dashed
lines show the excitation energies as in Fig. 6.4. The other parameters used in these
plots are ΓS = 0.5U , β= 50/U , J = 0.2U and B1 =B2 = 0U .
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Figure 6.8: Density plots of the expectation value of the z component of the spin of the
electrons occupying the orbital of the molecule as a function of the chemical potential
µN and the level position ε for (a) P = 0.4 and (b) P = 0.9. The dashed lines show
the excitation energies as in Fig. 6.4. The other parameters used in these plots are
ΓS = 0.5U , β= 50/U , J = 0.2U and B1 =B2 = 0U .

Figure 6.9: Density plots of the expectation value of the z component of the spin
of the molecule as a function of the chemical potential µN and the level position ε
for (a) P = 0.4 and (b) P = 0.9. The dashed lines show the excitation energies as in
Fig. 6.4. The other parameters used in these plots are ΓS = 0.5U , β= 50/U , J = 0.2U
and B1 =B2 = 0U .
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Due to the eigenstates of the effective Hamiltonian having different occupation

probabilities when coupled to the ferromagnetic lead, the expectation values of the

electronic and molecular spins are no longer generally zero. Figures 6.8 and 6.9 show the

z components of the spin expectation values for P = 0.4 and P = 0.9. The expectation

values of the x and y components of the spins are still zero. The plots show that

for P > 0 the expectation values of both spins are positive in the upper half plane

and negative in the lower half plane. In regions of the plots that correspond to the

high occupation probabilities for |S〉 and |T0〉 the expectation values are zero, as these

states describe a coherent superposition of spin up and down for both the electronic

and molecular spins. For negative polarisation the results are reversed.

To investigate the effect that the polarisation of the ferromagnetic lead has on the

superconducting proximity effect we have plotted the normalised current in Fig. 6.10

as a function of the level position. The plot is made for a sufficiently high bias that all

conductance channels are open. In Chapter 3 we found that at sufficiently high bias

the width of the current peak at half maximum is equal to ΓS. Here we see that this

is no longer the case for P 6= 0, for larger polarisations the width of the current peak

increases. This means that due to the polarisation of the ferromagnetic lead the current

is suppressed, but comparatively less away from zero detuning. Related to this may be

the change in the Fano factor for P 6= 0. For the system of Chapter 3, at high bias, the

Fano factor is equal to 2 when the superconducting proximity effect is off resonance

and 1 when it is on resonance. In this case we find no evidence of Poissonian transport

on or off resonance. Figure 6.11 shows the Fano factor for P = 0.8. At zero detuning

the Fano factor is equal to approximately 1.6. This is probably because the waiting

times for spin up and spin down electrons are different, leading to the distribution of

tunneling events being non-Poissonian.



84 CHAPTER 6. IMM COUPLED TO FERROMAGNETIC AND BCS LEADS

Figure 6.10: Plot of the normalised current as a function of the level position ε for
µF = 2U . The other parameters used in this plot are ΓS = 0.5U , β= 50/U , J = 0.2U
and B1 =B2 = 0U .

Figure 6.11: Plot of the Fano factor as a function of the level position ε for µF = 2U
and P = 0.8. The other parameters used in this plot are ΓS = 0.5U , β= 50/U , J = 0.2U
and B1 =B2 = 0U .
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6.3.2 External Magnetic Field, P=0

With an external magnetic field applied to the system the previously degenerate states

are split. In the model we use we allow for the electrons and the spin of the molecule

to have different g-factors. We will first consider the case where the g-factors are the

same, B1 =B2 =B.

Figure 6.12: Plot of the current as a function of the chemical potential µN at ε=-0.5U ,
for three values of the Zeeman splitting. The other parameters used in this plot are
ΓS = 0.5U , β= 100/U , J = 0.2U and P = 0.

The splitting of the eigenstates leads to more steps in the current as the voltage

is increased, this is shown in Fig. 6.12. For large B the voltage required to initiate

transport increases and a higher voltage is needed to reach the maximum current. The

maximum current is the same as in the B= 0 case and density plots of the current

have the same form. Figure 6.13 shows a plot of the differential conductance. Here we

see that the external magnetic field causes negative features.

Because none of the eigenstates are degenerate in the presence of an external mag-

netic field the occupation probabilities of the eigenstates are different. This leads to

the spin expectation values being non-zero for some parameter values. Figures 6.14

and 6.15 show density plots of the z components of the electronic and molecular spin

expectation values for a small and a large external field. In plot a) of both figures the

expectation value is zero in the central region, this is because for B= 0.1U the state

|IS〉 is the equilibrium ground states of the molecule. But for B= 0.8U the equilibrium

ground state is |I−〉 and therefore in plot b), for both figures, the expectation value is

-0.5, corresponding to both the electronic and molecular spins being in the down state.

If the field is reversed and B>J then the expectation values become positive.
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Figure 6.13: Density plot of the differential conductance as a function of the chemical
potential µN and the level position ε. The other parameters used in this plot are
ΓS = 0.5U , β= 50/U , J = 0.5U , P = 0 and B= 1U .

Now we will consider the case where B1 and B2 are different. For simplicity we will

take one to be zero and the other non-zero. Figures 6.16 and 6.17 show plots of the spin

expectation values for B1 = 0.4U , B2 = 0U and B1 = 0U , B2 = 0.4U . For positive B1 the

non-zero electron spin expectation values are negative and the non-zero molecular spin

expectation values are positive. The opposite is true for B2 non-zero. This indicates

that it is mainly |IS〉 or |I0〉 contributing to the non-zero spin expectation values.

Figure 6.18 shows example plots of the current and the differential conductance for

B1 and B2 not equal and non-zero. As with the N-IMM-S system of Chapter 3 there

are features along some of the excitation energies and the current is greatest where the

superconducting proximity effect is in resonance. When the bias is high enough that

all excitations are possible, the external magnetic field has no effect on the current.

The current peak, as a function of ε, still has width ΓS and height ΓF . The Fano factor

also shows the same behaviour as for the N-IMM-S system. When the superconducting

proximity effect is off resonance the Fano factor is 2; on resonance it is 1.
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Figure 6.14: Density plots of the expectation value of the z component of the spin of the
electrons occupying the orbital of the molecule as a function of the chemical potential
µN and the level position ε for (a) B= 0.1U and (b) B= 0.8U . The dashed lines
show the excitation energies. The other parameters used in these plots are ΓS = 0.5U ,
β= 50/U , J = 0.2U and P = 0.

Figure 6.15: Density plots of the expectation value of the z component of the spin of
the molecule as a function of the chemical potential µN and the level position ε for (a)
B= 0.1U and (b) B= 0.8U . The dashed lines show the excitation energies. The other
parameters used in these plots are ΓS = 0.5U , β= 50/U , J = 0.2U and P = 0.
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Figure 6.16: Density plots of the expectation value of the z component of the spin of the
electrons occupying the orbital of the molecule as a function of the chemical potential
µN and the level position ε for (a) B1=0.4U , B2=0U and (b) B1=0U , B2=0.4U . The
dashed lines show the excitation energies. The other parameters used in these plots
are ΓS = 0.5U , β= 50/U , J = 0.2U and P = 0.

Figure 6.17: Density plots of the expectation value of the z component of the spin of
the molecule as a function of the chemical potential µN and the level position ε for (a)
B1=0.4U , B2=0U and (b) B1=0U , B2=0.4U . The dashed lines show the excitation
energies. The other parameters used in these plots are ΓS = 0.5U , β= 50/U , J = 0.2U
and P = 0.
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Figure 6.18: Density plots of (a) the current and (b) the differential conductance
as functions of the chemical potential µN and the level position ε for B1 = 0.4U and
B2 = 0.2U . The dashed lines show the excitation energies. The other parameters used
in these plots are ΓS = 0.5U , β= 50/U , J = 0.2U and P = 0.

6.3.3 Ferromagnetic Lead and External Magnetic Field

When we include both the polarisation of the lead and the external magnetic field the

current and spin expectation value density plots show features that are combinations

of what is discussed above. The maximum current is restricted by the polarisation

of the lead and the features in the current and differential conductance plots can be

seen near the excitation energies. At which excitation energies current features can be

observed again depends on the configuration of the excitation energies, as discussed in

Chapter 3. Shown in Fig. 6.19 are two examples of current density plots. When there is

no external magnetic field the current is even in P , however when there is an external

magnetic field this is no longer the case. This is because in the presence of an external

field the formerly triplet states are no longer degenerate. With either B1 =B2 = 0 or

P = 0 the current is antisymmetric about δ= 0, µF = 0, however this is not the case

when both the polarisation and the external magnetic field are non-zero (Fig. 6.19).

With only P non-zero we found that one of |T±〉 mainly contributed to the current

for positive bias and the other for negative bias. Because these states have the same

energy there is a symmetry about µF = 0. But when the external field is also non-zero

then the corresponding eigenstates, |I±〉, do not have the same energy and therefore

the symmetry about µF = 0 is broken.
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Figure 6.19: Density plots of the current as a function of the chemical potential µN
and the level position ε for (a) P=0.9 and (b) P=-0.9. The dashed lines show the
excitation energies. The other parameters used in these plots are ΓS = 0.5U , β= 50/U ,
J = 0.2U , B1 = 0.4U and B2 = 0.2U .

Figure 6.20 shows the differential conductance for P = 0.8, B1 = 0.4U and B2 = 0.2U .

Comparing this plot to Fig. 6.18 b) we see that the introduction of the polarisation of

the lead has vastly changed the differential conductance resonances. We see again the

symmetry about δ= 0, µF = 0 is no longer present. The magnitude of the resonances

have also decreased. This is because the current decreases with increasing |P |, but

the width of the current steps depend on kBT . Some features that were visible in

Fig. 6.18 b) are not present in Fig. 6.20. This can be attributed to the change in

occupation probability for P = 0 compared with P = 0.8. For example in Figs. 6.6 and

6.7 we saw the probability of |T0〉 is suppressed with increasing |P |. Furthermore, we

see prominent negative differential conductance features for P 6= 0.

The effects of J , ΓS and kBT are the same as in Chapter 3. ΓS controls the width

of the current peak about δ= 0. J shifts the excitation energies and controls the size

of the central current suppressed region. And, the temperature affects the width of the

current steps.

6.4 Results - Non-collinear

In this section we present graphical results for the current and the spin expectation

values for the non-collinear case. Again, due to the size of the system we were not

able to obtain analytic results. Firstly we will investigate the ΓF dependence of the
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Figure 6.20: Density plots of the differential conductance as a function of the chemical
potential µN and the level position ε for B1 = 0.4U , B2 = 0.2U and P = 0.8. The dashed
lines show the excitation energies. The other parameters used in this plot are ΓS = 0.5U ,
β= 50/U and J = 0.2U .

current and the error induced by the inclusion of off-diagonal reduced density matrix

elements. Then we will investigate the effect of the polarisation and orientation of

the ferromagnetic lead when the off-diagonal reduced density matrix elements are in

resonance at zero detuning. Lastly we will look at the effect of shifting the resonances

of the off-diagonal reduced density matrix elements.

6.4.1 Dependence of Current on ΓF

In the previous models because we calculated the current to first order in the tunnel

coupling to the metallic lead I ∝ ΓN/F . However, due to the inclusion of off-diagonal

elements in this model this is no longer the case. To first order in ΓF the off-diagonal

density matrix elements P χ
χ′ are non-zero if ∆E=Eχ − Eχ′ . ΓF . Rewriting Eq. 2.20

in terms of the vector, W̄, comprised of the generalised transition rates that end in

an off-diagonal term and the vector, P̄, containing the corresponding non-zero reduced

density matrix elements we get

P χ
χ′ =

−i
∆E

W̄ · P̄. (6.40)
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Rearranging for P χ
χ′ gives

P χ
χ′ =

−W̄′ · P̄′
(
i+ 1

∆E
W χχ
χ′χ′

)
∆E

(
1 +

(
1

∆E
W χχ
χ′χ′

)2
) , (6.41)

where W̄′ and P̄′ are the previous vectors with the W χχ
χ′χ′ and P χ

χ′ terms removed. The

off-diagonal element is on resonance when ∆E → 0. In this regime Eq.6.41 becomes

P χ
χ′ =

−W̄′ · P̄′

W χχ
χ′χ′

, (6.42)

meaning that P χ
χ′ is of zeroth order in ΓF and therefore the current is proportional to

ΓF . As ∆E gets larger

P χ
χ′ ≈ −

iW̄′ · P̄′

∆E
−

W̄′ · P̄′W χχ
χ′χ′

∆E2
. (6.43)

For ∆E�ΓF the corresponding off-diagonal reduced density matrix elements should

not be included and therefore the current should be proportional to ΓF . In Fig. 6.21 a)

we have plotted the current, in units of ΓF , as a function of ΓF for ∆E≈ 0.08U . In this

plot ∆E�ΓF for the entire ΓF range that is shown. Here we see that the current is

not proportional to ΓF , but that it changes by less than a 0.02% for a ΓF range of three

orders of magnitude. Therefore the erroneous inclusion of the off-diagonal elements has

little affect. When ∆E.ΓF the off-diagonal elements should be included. However as

we can see from Eq. 6.43 this means that P χ
χ′ will not be of zeroth order in ΓF , which

leads to terms in the current that are of higher order than first. The inclusion of higher

order terms in the current is unavoidable when there are off-diagonal density matrix

elements, as there is no systematic way to include the first order terms only. However

the error introduced due to this is very small and only occurs for a narrow range of

parameter values. Figure 6.21 b) shows the current for ∆E≈ 0.0002U as a function of

ΓF . For the range of values where ∆E.ΓF we see some change in the current, meaning

that it is not proportional to ΓF , however this change is not significant compared with

the magnitude of the current. In the plots of Fig. 6.21 we have only used ΓF values as

high as 0.001U as we require ΓF � kBT .

Because the current is not proportional to ΓF it is necessary to specify its value.

However as the change in the current, in units of ΓF , is very small as ΓF is varied the

results for a specific ΓF value are representative of a large range of ΓF values. Thus,

in the subsequent sections we ignore the error introduced by the off-diagonal elements
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Figure 6.21: Plots of the current as a function of ΓF near parameter values where the
off-diagonal density matrix elements are in resonance. The parameters used in these
plots are φ=π/4, kBT = 0.05U , J = 0.5U , B= 1U , ΓS = 1U , P = 0.8 and µF = 0.7U .

and give the current in units of ΓF , with ΓF = 0.001U .

6.4.2 Effect of Polarisation and Alignment of the Magnetisa-

tion of the Ferromagnetic Lead - B = ΓS = 2J

In this section we will explore the effect of changing the polaristion and the angle of the

ferromagnetic lead. Because this system is very similar to that of the previous section

and that of Chapter 3 its dynamics should reduce to those of these systems in certain

limits. When φ = 0 the quantisation axis of the ferromagnetic lead is parallel with the

external magnetic field and the current and probabilities reduced to the results given

in the previous section. As required the rates connecting off-diagonal reduced density

matrix elements are zero in this limit, this is made evident by the factor sinφ contained
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Figure 6.22: Density plots of (a) the current, (b) the z component of the electron spin
expectation value and (c) the z component of the molecular spin expectation value as
functions of the chemical potential µN and the level position ε for φ= 0. The other
parameters used in these plots are kBT = 0.05U , J = 0.5U , B= 1U , ΓS = 1U , P = 0.8
and ΓF = 0.001U .

in these rates. When the polarisation is zero then the results are independent of φ as

the lead is non-magnetic. In the first system we did not consider an external magnetic

field, therefore this system only reduces to that of Chapter 3 when the external field it

set to zero.

In Fig. 6.22 the current and spin expectation values are shown for φ= 0. Figures

6.23, 6.24 and 6.25 show the same plots for φ= π
4
, φ= π

2
and φ= 3π

4
, respectively. Note

that the scales for these plots vary. We have not shown plots of negative angles as

I (φ) = I (−φ). As φ increases from 0 to π
2

the maximum current, which is achieved at

high bias and level position ε=−0.5U , increases and peaks at φ= π
2
. This is also shown
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Figure 6.23: Density plots of (a) the current, (b) the z component of the electron
spin expectation value, (c) the z component of the molecular spin expectation value
and (d) the absolute value of the off-diagonal reduced density matrix elements as
functions of the chemical potential µN and the level position ε for φ=π/4. The other
parameters used in these plots are kBT = 0.05U , J = 0.5U , B= 1U , ΓS = 1U , P = 0.8
and ΓF = 0.001U .

clearly in Fig. 6.26, which shows the current as a function of µF at zero detuning. This

can be understood by considering the coefficients of the generalised transition rates.

When φ= π
2

the rates involving only diagonal reduced density matrix elements reduce

to the transition rates for the system with a normal lead coupled to the magnetic

molecule. The generalised rates connecting diagonal to off-diagonal reduced density

matrix elements all depend on a factor of sinφ, therefore when φ= π
2

these terms

are maximal. In the absence of these terms the dynamics of the system would be

identical to the N-MM-S system. However, with the off-diagonal elements present

there is a difference in the current between the two systems that occurs at µF and ε
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values where the off-diagonal elements are non-zero and depends on the size of these

elements. Physically it makes sense that the current is greatest when the angle between

the magnetistion of the lead and the external magnetic field is π
2
, as at this angle both

the majority and the minority carriers have equal coupling strengths for tunneling on

to the molecule in a spin up or a spin down state, meaning that transport is not limited

by the minority carriers.

Figure 6.24: Density plots of (a) the current, (b) the z component of the electron
spin expectation value, (c) the z component of the molecular spin expectation value
and (d) the absolute value of the off-diagonal reduced density matrix elements as
functions of the chemical potential µN and the level position ε for φ=π/2. The other
parameters used in these plots are kBT = 0.05U , J = 0.5U , B= 1U , ΓS = 1U , P = 0.8
and ΓF = 0.001U .

We have not plotted the excitation energies in Figs. 6.22-6.25, so as to not obscure

features of the density plots, however the features in the current and spin expectation

value plots are in the vicinity of the excitation energies of the eigenstates. As the angle,
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Figure 6.25: Density plots of (a) the current, (b) the z component of the electron
spin expectation value, (c) the z component of the molecular spin expectation value
and (d) the absolute value of the off-diagonal reduced density matrix elements as
functions of the chemical potential µN and the level position ε for φ= 3π/4. The other
parameters used in these plots are kBT = 0.05U , J = 0.5U , B= 1U , ΓS = 1U , P = 0.8
and ΓF = 0.001U .

φ, is varied between zero and π the locations of the features are unchanged, but their

prominence increases or decreases. This can be seen in the density plots of the current,

but is made more apparent in Figs. 6.26 and 6.27, which show the current as a function

of the electrochemical potential of the ferromagnetic lead for three values of ε. The

variation of the angle between these limits has this effect on the current because there

is no change to what transport channels are open, only the likelihood of each transition

is varied, since the tunnel coupling strengths depend on φ.

The expectation values of the x and y components of the molecular and electronic

spins are zero. This is because in the regime we are working in there are no coherent
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Figure 6.26: Plot of the current as a function of the chemical potential µN for various
alignments of the magnetisation of the ferromagnetic lead with respect to the exter-
nal magnetic field. The parameters used in this plot are J = 0.5U , B= 1U , ΓS = 1U ,
P = 0.8, ε= -0.5U and ΓF = 0.001U .

superpositions of states with the same electronic state but different molecular spins (or

vice versa). Even though the inclusion of the P−+
+− and P+−

−+ reduced density matrix

elements means there is superposition of molecular spin up and spin down, this does

not lead to non-zero 〈Sx〉 or 〈Sy〉 because the parts of the |±,∓〉 states that describe the

occupation of the molecule cause all contributions to 〈Sx〉 and 〈Sy〉 to cancel. However,

as in collinear system the z components of the spin expectation values are not generally

zero. In Fig. 6.22 we see that for high positive bias voltages the expectation value of the

spin of the molecule is close to a half. As the angle is increased the expectation value

gradually decreases to minus a half at φ=π. A similar effect occurs for the electronic

spin.

Also shown in Figs. 6.23, 6.24 and 6.25 are density plots of the corresponding off-

diagonal reduced density matrix elements. Here we see that resonances in these plots

occur along ε= -0.5U , where the detuning is zero, and very rapidly tend to zero either

side of this line. The variation with the applied bias is related to the occupation

probabilities of the |±,∓〉 states. The resonances occur where overlap is greatest in

the occupation probabilities of these states. The magnitude of the resonances are very

small and therefore do not have a great effect on the current; they are greatest when

φ= π
2
. At this angle the current is independent of the polarisation as both carriers

have equal coupling strength to the spin up and spin down states in the molecule and

as mentioned earlier, apart from the off-diagonal elements, the dynamics of the system
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Figure 6.27: Plot of the current as a function of the chemical potential µN for various
alignments of the magnetisation of the ferromagnetic lead with respect to the external
magnetic field for (a) ε= 0.5U and (b) ε= -1.5U . The other parameters used in these
plots are J = 0.5U , B= 1U , ΓS = 1U , P = 0.8, kBT =,0.02U and ΓF = 0.001U .

are the same as those for the N-MM-S system. Therefore by comparing the current

when φ= π
2

to the current when P = 0 we can see the effect of the off-diagonal elements.

Figure 6.28 shows the difference in the current for these two cases. Here we see that

the maximal current difference is only about 1% of the total current.

When ε=−U
2

the superconducting proximity effect is in resonance and the current

is maximal. With ε 6= −U
2

we see a reduction in the maximum current at high bias and

a different response to µF at intermediate values. In Fig. 6.27 we see that for some

parameter values the current decreases with increasing µF , an effect that does not

occur when ε=−U
2

. These features are similar to the negative differential conductance

features discussed in the previous section.

Figure 6.29 shows the differential conductance for various angles. φ increases from
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Figure 6.28: Plot of the difference in the current due to the off-diagonal elements.
Plotted is I(φ=π/2, P = 0.8) − I(P = 0) as a function of the chemical potential µN .
The other parameters used in this plot are J = 0.5U , B= 1U , ΓS = 1U , kBT = 0.02U
and ΓF = 0.001U .

0 to π/2 in plots a) to d). This causes some features to become more prominent.

Comparing plot d) to Fig. 6.13 we once again see that I(φ=π/2)≈ I(P = 0). All four

plots show negative differential conductance features. These negative features only

appear to occur near regions where excitation energies cross.

In the collinear case we found that the polarisation affected the maximum current

and relative magnitude of the current for different bias voltages and level positions.

We also found that when the polarisation is ±1 that the current is zero. With the

magnetisation of the lead and the external magnetic field non-collinear the effects are

similar. However the current is no longer zero when P =±1. This can be understood

by considering the transport sequence needed for current to flow in these systems.

For current to flow into the superconducting lead, in the ∆ → ∞ limit, the molecule

needs to be doubly occupied. If we consider the situation where the molecule starts

off unoccupied and the spin of the molecule is up, after some time a spin up electron

tunnels from the metallic lead to the molecule. Transport on the molecule is now

blocked for all spin up electrons in the ferromagnetic. After some time (that will

depend on the polarisation of the lead) a spin down electron may tunnel on to the

molecule. Once this happens transport from the molecule to the superconducting lead

is possible. If the ferromagnetic lead is highly polarised then in the collinear case the

current is limited by the tunneling of the minority carriers. If the magnetisation of

the lead is not collinear with the quantisation axis of the molecule then there is a
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Figure 6.29: Density plots of the differential conductance as a function of the chemical
potential µN and the level position ε for (a) φ= 0, (b) φ=π/6, (c) φ=π/4 and (d)
φ=π/2. The other parameters used in these plots are kBT = 0.02U , J = 0.5U , B= 1U ,
ΓS = 1U , P = 0.8 and ΓF = 0.001U .

finite probability of both majority and minority carriers tunneling to the molecule and

occupying it in the spin up or the spin down state, meaning there is a current even

when there are only majority carriers.

For the collinear case we also found that the polarisation affects the current peak at

high bias, resulting in the width at half maximum not being equal to ΓS. In Fig. 6.30 we

have plotted the normalised current at high bias, for various angles, as a function of ε.

Here we see that the angle affects the width of the current peak as well as the maximum

current. As φ varies from π/2 to 0 the current is suppressed, but comparatively less

away from δ= 0.
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Figure 6.30: Plot of the normalised current, at high bias, as a function of the level
position ε. The parameters used in these plots are µF = 3U , J = 0.5U , B= 1U , ΓS = 1U ,
P = 0.8, kBT = 0.02U and ΓF = 0.001U .

6.4.3 Varying J, B and ΓS, and the Effect of Shifting the Off

Diagonal Reduced Density Matrix Element Resonances

In Fig. 6.31 we show the current as a function of µF for various values of J . At µF=0

there is a region where the current is zero; this region varies with J . In previous

chapters the central zero current region increased in size as J increased. This was

because for the corresponding parameter values the singlet state is the ground state of

the system and the energy of this state decreases with J . However here we see that

the size of the zero current region first decreases and then increases as J is increased.

This is occurs because the ground state changes from |I−〉 to |IS〉. For B>J the

ground state is |I−〉. The steps in the current occur at the excitation energies and

the width of these steps of course still dependents on the temperature. Figure 6.32

shows the current plotted as a function ε for various magnetic field strengths. Here we

see similar effects as those observed for the exchange coupling. The value of B affects

the excitation energies, therefore the positions of the current steps are shifted as B

is varied. The maximum current is independent of magnetic field strength, but the

voltage at which it is reached increases with B. The effect of varying ΓS is the same as

described in Chapter 3. Increasing the coupling to the superconducting lead causing

the superconducting proximity effect to be in resonance over a greater range of level

positions, therefore the current is larger for δ 6= 0.
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Figure 6.31: Plot of the current as a function of the chemical potential µN for various
J values. The parameters used in this plot are φ=π/2, B= 1U , ΓS = 1U , P = 0.8,
ε= -0.5U , kBT = 0.02U and ΓF = 0.001U .

Figure 6.32: Plot of the current as a function of the chemical potential µN for various B
values. For the parameters used in these calculations there are no off-diagonal elements
of the reduced density matrix that contribute to the current to first order in ΓF . The
parameters used in these plots are φ=π/2, J = 0.5U , ΓS = 1.5U , P = 0.8, ε= -0.5U ,
kBT = 0.02U and ΓF = 0.001U .

When B 6= ΓS the resonances of the off-diagonal reduced density matrix elements

are shifted away from δ= 0. This is shown in Fig. 6.33 for various B and ΓS values.

Comparing with plots d) of Figs. 6.23-6.25 we see that the magnitude of the resonances

decrease as they are shifted away from δ= 0 and that they are spread over a greater
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Figure 6.33: Density plots of the absolute value of the off-diagonal reduced density
matrix elements as a function of the chemical potential µN and the level position
ε for (a) B= 1U , ΓS = 0.6U , (b) B= 1U , ΓS = 1.1U , (c) B= 0.9U , ΓS = 1U and (d)
B= 1.4U , ΓS = 1U . The other parameters used in these plots are φ=π/4, kBT = 0.05U ,
J = 0.5U , P = 0.8 and ΓF = 0.001U .

range of values. The resonance condition for the off-diagonal reduced density matrix

elements is δ=±
√
B2 − Γ2

S. For the parameters of plots b) and c) the right side of

this equation is complex and the condition cannot be achieved, thus we see that in

these cases the off-diagonal elements are suppressed. The off-diagonal elements do not

have a great effect on the current. This is shown in Fig. 6.34 where we have plotted

I(P = 0.8, φ=π/2) − I(P = 0), normalised by I(P = 0). The current is only changed

by a fraction of a percent due to the off-diagonal density matrix elements.



6.5. F-IMM-S CONCLUSIONS 105

Figure 6.34: Density plot of I(P = 0.8, φ=π/2) − I(P = 0), normalised by I(P = 0),
as a function of the chemical potential µN and the level position ε. The other pa-
rameters used in this plot are kBT = 0.05U , J = 0.5U , B= 1.4U , ΓS = 1U , P = 0.8 and
ΓF = 0.001U .

6.5 F-IMM-S Conclusions

In this chapter we calculated the current through a system consisting of an isotropic

magnetic molecule, in the presence of an external magnetic field, coupled to a ferro-

magnetic lead and an infinite gap superconducting lead. We separately considered the

cases of the magnetisation of the ferromagnetic lead and the external magnetic field

being collinear and non-collinear. In the latter case off-diagonal reduced density ma-

trix elements contribute to the dynamics of the system. Generally many off-diagonal

elements can contribute to the dynamics of the system in the non-collinear case, which

can lead to a very large system of equations. To reduce the number of generalised tran-

sition rates to be calculated we worked in a regime where only P+−
−+ and P−+

+− needed to

be considered. To calculate the generalised transition rates involving the off-diagonal

reduced density matrix elements we used the diagrammatic technique of Chapter 2.

As expected, in the collinear case we found that the maximum current is reduced

when the polarisation of the ferromagnetic lead is non-zero. This is because the trans-

port is restricted by the minority carriers. The occupation probabilities of the Andreev

bound states also decrease when P is non-zero. We can therefore conclude that the

polarisation of the ferromagnetic lead suppresses the superconducting proximity effect.

We also find that the spin expectation values are not generally zero when P 6= 0. This
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means that if the ferromagnetic lead is sufficiently polarised it should be possible to

tune the spin of the molecule and the occupation of the molecule by adjusting the bias

voltage and a gate voltage. Once again features in the current occur at the excitation

energies, so it should also be possible to perform a spectroscopy of the excitation en-

ergies by measuring the current as functions of applied bias and gate voltages. The

Fano factor calculations for this case show that the behaviour at high bias is not the

same as for the N-IMM-S system. Here the Fano factor does not show Poissonian

2 particle transport when the superconducting proximity effect is off resonance, or

Poissonian 1 particle transport on resonance. This is likely due to the suppression of

superconducting proximity effect caused by the polarisation of the ferromagnetic lead.

In the non-collinear case we found that the current is greatest when the magneti-

sation of the ferromagnetic lead is perpendicular to the orientation of the external

magnetic field. This is because under these circumstances the majority carriers can

couple with equal strengths to the electronic spin up and spin down states of the

molecule and thereby the current is not restricted by the minority carriers. The align-

ment of the magnetisation of the ferromagnetic lead also affects the superconducting

proximity effect. For |φ| 6=π/2 the effect is suppressed or, as φ tends to |π/2|, one could

view this as the suppression due to P being lifted. As for the collinear case we find

that the spin expectation values can be non-zero. We also found that the off-diagonal

reduced density matrix elements did not have a great affect on the dynamics of the

system. Moreover, due to the specific form of the components of the | ± ∓〉 states

that correspond to the occupation of the molecule, the coherent superposition of these

states does not lead to non-zero x or y molecular spin expectation values.

In both the collinear and non-collinear cases the external magnetic field caused the

splitting of the previous degenerated orbitals. This leads to more excitation energies

and therefore more differential conductance features. Because the external field lifts

the degeneracy of the eigenstates, even when the second lead is not ferromagnetic the

spin expectation values can be non-zero. Also observed for both cases is that when

the polarisation is non-zero, or for certain external magnetic field strengths, negative

differential conductances can occur.



Chapter 7

Summary and Conclusions

In this thesis we have investigated electronic transport through a magnetic molecule

coupled to an infinite gap superconducting lead and a second lead which is either

a normal metallic lead, ferromagnetic or superconducting. To calculate the current

through these systems we have used a real-time diagrammatic approach to perform a

perturbation expansion in the tunneling coupling between the molecule and the leads.

We were interested in the interplay between the superconducting proximity effect and

the magnetism of the molecule, hence only the sub-gap transport between the molecule

and the superconducting lead was relevant. We therefore worked in the ∆→∞ limit.

The Coulomb interaction on the molecule was taken into account exactly and the

coupling to the superconducting lead was calculated to all orders and described by

an effective Hamiltonian for the MM-S subsystem. In Chapter 3 we considered an

isotropic molecule coupled to a superconducting lead and a normal metallic lead. In

Chapter 4 we modified this system to allow for the molecule to be anisotropic. Then

in Chapter 5 we investigated the Josephson current through the isotropic and the

anisotropic molecules. Finally in Chapter 6 we analysed the dynamics of an isotropic

molecule, in the presence of an external magnetic field, coupled to a superconducting

lead and a ferromagnetic lead.

For each of the systems involving only one superconducting lead the current shows

features that occur at the excitation energies of the eigenstates, and the current is

maximal when the superconducting proximity effect is in resonance. The magnetisa-

tion of the molecule affects the current via the exchange coupling, the magnitude of

which influences the size and number of steps in the current as a function of voltage.

When the second lead is ferromagnetic then the proximity effect is suppressed, however

this suppression is lifted when the magnetisation of the ferromagnetic lead is perpen-

107
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dicular to the magnetisation of the molecule, as under these conditions the current

is not restricted by the minority carriers. The anisotropy, the quantum tunneling of

magnetisation and the exchange coupling between the electronic and molecular spins

all have no effect on the superconducting proximity effect. For the exchange coupling

this is because the singly occupied states of the molecule do not couple to the supercon-

ducting lead. We also found that coupling to the ferromagnetic lead or the presence

of an external magnetic field can cause the expectation values of the electronic and

molecular spins to be non-zero. These effects indicate that it should be possible to

use current measurements to probe the properties of a magnetic molecule and to use

the bias voltage and a gate voltage to tune the occupation and spin of the molecule.

The results for the Josephson current through both the isotropic and the anisotropic

molecules show that a 0-π transition cannot occur in the infinite superconducting gap

limit and that the anisotropy and QTM have negligible affect on the Josephson current.

We have studied in detail the transport dynamics of the aforementioned systems

in the infinite superconducting gap limit. It would be interesting to extend this work

to the finite ∆ limit. For the Josephson current this already been done in the infinite

Coulomb interaction limit [20,21], however for the other systems no such studies have

been carried out. To treat a finite Coulomb interaction exactly and to allow the

superconducting gap to be finite is a very computationally expensive task. In contrast

to the ∆ → ∞ limit it would not be practically possible to treat the coupling to the

superconducting lead exactly. For the F-IMM-S system we restricted ourselves to a

regime where only the P∓±±∓ off-diagonal elements needed to be considered. Working in a

different regime where coherent superpositions of states with either the same molecular

spin, or the same occupation of the molecule, contribute to the dynamics of the system

could lead to interesting results, as such superpositions could cause spin precession or

spin accumulation.

The results are indicative of the transport properties that may be observed in

future experiments involving magnetic molecules coupled to superconducting and non-

superconducting metallic leads. Ideally these results will aid with the interpretation of

current measurements and characterisation of the magnetic properties of the molecules

in question.



Appendix A

Diagrammatic Rules

Here we give the diagrammatic rules for perturbation expansions in both ΓS and ΓN .

These rules can be used to calculate generalised transition rates to any order in tunnel

coupling. These rules are a modified version of those presented in Ref. [5].

1. Draw all topologically different diagrams with fixed ordering of the vertices and

tunneling lines connecting the vertices in pairs. Assign the energy ωi o each

tunneling line and assign energies to all propagators according to the state of

the molecule. Tunneling lines connecting two lead creation (or annihilation)

operators shall be called incoming anomalous lines (outgoing anomalous lines)

and should be drawn with two arrows pointing away from (towards) each other.

For each anomalous line choose the direction with respect to the Keldysh contour

(forward or backward) arbitrarily.

2. For each part of the diagram between adjacent vertices (on the top or bottom

propagator) assign a factor 1
∆E+i0+

, where ∆E is the energy difference between

left-going and right-going propagators and tunneling lines.

3. For each tunneling line the diagram acquires a factor of 1
2π

ΓηDη(ωi)f
α
η (ωi), where

Dη(ω) = |ω−µη |√
(ω−µη)2−|∆η |2

θ(|ω − µη| − |∆η|). For lines going backward (forward)

with respect to the Keldysh contour α= + (-). For anomalous lines also multiply

by a factor α sign(ωi − µη)
|∆η |
|ωi−µη |e

±iφη , where + (-) is for incoming (outgoing)

anomalous lines. For normal leads no anomalous lines appear and Dη(ωi) = 1.

4. Multiply by an overall prefactor −i and assign an additional factor −1 for each

(a) vertex on the lower propagator; (b) crossing of tunneling lines; (c) vertex that

connects a doubly occupied state of the molecule to a spin up state; (d) outgoing
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(incoming) anomalous tunneling line for which the vertex that appears earlier

(later) on the Keldysh contour involves a spin up electron of the molecule.

5. Integrate the diagrams over all energies ωi, then sum over all diagrams.



Appendix B

Coefficients of the Eigenstates of

the AMM-S System

Here we give the eigenstates and energies of the AMM-S subsystem studied in chapter

4. The 12 eigenstates are

|A〉 = X1A|0, 0〉+X2A|d, 0〉, (B.1)

|B〉 = X1B|0,−1〉+X2B|d,−1〉+X3B|0, 1〉+X4B|d, 1〉, (B.2)

|C〉 = X1C | ↑, 0〉+X2C | ↓, 1〉+X3C | ↓,−1〉 (B.3)

and

|D〉 = X1D| ↓, 0〉+X2D| ↑,−1〉+X3D| ↑, 1〉, (B.4)

where A → A1, A2, B → B1, B2, B3, B4, C → C1, C2, C3 and D → D1, D2, D3.

The corresponding energies are given in Table B.1. To give the expression for the

coefficients of the components of the eigenstates we first define some parameters;

Z−− =

√
8 +

4(ρ+ δ)2

Γ2
s

+
(−4M2 + Γ2

s + (2M + ρ+ δ)2)2

(2M + ρ)2Γ2
s

, (B.5)

Z+− =

√
8 +

4(ρ+ δ)2

Γ2
s

+
(−4M2 + Γ2

s + (−2M + ρ+ δ)2)2

(−2M + ρ)2Γ2
s

, (B.6)

Z−+ =

√
8 +

4(ρ− δ)2

Γ2
s

+
(−4M2 + Γ2

s + (2M − ρ+ δ)2)2

(−2M + ρ)2Γ2
s

, (B.7)
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Z++ =

√
8 +

4(ρ− δ)2

Γ2
s

+
(−4M2 + Γ2

s + (2M + ρ− δ)2)2

(2M + ρ)2Γ2
s

, (B.8)

Z1 =

√
4 + 2

(
ξC1

MJ

)2

+

(
2D + 2EC1 − J − 2ε

M

)2

, (B.9)

Z2 =

√
4 + 2

(
ξC2

MJ

)2

+

(
2D + 2EC2 − J − 2ε

M

)2

, (B.10)

Z3 =

√
4 + 2

(
ξC3

MJ

)2

+

(
2D + 2EC3 − J − 2ε

M

)2

, (B.11)

with

ρ =
√
U2 + Γ2

s + 4Uε+ 4ε2 (B.12)

and

ξC = 2M2 − 1/2(2D + 2EC − J − 2ε)(2D + 2EC + J − 2ε). (B.13)

The coefficients of the eigenstates are given in Tables B.2, B.3, B.4 and B.5.

χ A B C/D

Eχ1

δ
2

+ εA
δ
2
− εA −M −D Re

[
γ+β2+i

√
3(γ−β2)2

12β

]
+ 3ε−2D

3

Eχ2

δ
2
− εA δ

2
− εA +M −D Re

[
γ+β2−i

√
3(β2−γ)2

12β

]
+ 3ε−2D

3

Eχ3 - δ
2

+ εA −M −D Re
[
−γ+β2

6β

]
+ 3ε−2D

3

Eχ4 - δ
2

+ εA +M −D -

Table B.1: Energies of the 12 eigenstates of the anisotropic system. δ and εA are defined
as in Chapters 3 and 6. The other terms are defined as β= (

√
α + 72M2D − 8D3 +

27J3)1/3, γ= 12M2+4D2+9J2 and α=−(12M2+4D2+9J2)3+(72M2D−8D3+27J3)2.

χ A1 A2

X1χ
1√
2

√
1− δ

2εA

1√
2

√
1 + δ

2εA

X2χ
−1√

2

√
1 + δ

2εA

1√
2

√
1− δ

2εA

Table B.2: Coefficients of the |A〉 eigenstates.
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χ B1 B2 B3 B4

X1χ
2(ρ+δ)
Z−−Γs

− 2(ρ+δ)
Z+−Γs

− 2(ρ−δ)
Z−+Γs

2(ρ−δ)
Z++Γs

X2χ
2

Z−−
− 2
Z+−

2
Z−+

− 2
Z++

X3χ
2(ρ+δ)
Z−−Γs

2(ρ+δ)
Z+−Γs

− 2(ρ−δ)
Z−+Γs

− 2(ρ−δ)
Z++Γs

X4χ
2

Z−−
2

Z+−
2

Z−+

2
Z++

Table B.3: Coefficients of the |B〉 eigenstates.
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A
P
P
E
N
D
IX

B
.
E
IG

E
N
S
T
A
T
E
S
O
F
T
H
E
A
M
M
-S

S
Y
S
T
E
M

χ C1 C2 C3

X1χ
4(M+D+EC1−ε)(M−D−EC1+ε)+J2

MJ
√

2Z1

4(M+D+EC2−ε)(M−D−EC2+ε)+J2

MJ
√

2Z2

4(M+D+EC3−ε)(M−D−EC3+ε)+J2

MJ
√

2Z3

X2χ
−2D−2EC1+J+2ε

MZ1

−2D−2EC2+J+2ε
MZ2

−2D−2EC3+J+2ε
MZ3

X3χ
2
Z1

2
Z2

2
Z3

Table B.4: Coefficients of the |C〉 eigenstates.

χ D1 D2 D3

X1χ
4(M+D+ED1−ε)(M−D−ED1+ε)+J2

MJ
√

2Cr1

4(M+D+ED2−ε)(M−D−ED2+ε)+J2

MJ
√

2Cr2

4(M+D+ED3−ε)(M−D−ED3+ε)+J2

MJ
√

2Cr3

X2χ
−2D−2ED1+J+2ε

MCr1
−2D−2ED2+J+2ε

MCr2
−2D−2ED3+J+2ε

MCr3

X3χ
2
Cr1

2
Cr2

2
Cr3

Table B.5: Coefficients of the |D〉 eigenstates.



Appendix C

Generalised Transition Rates of the

F-IMM-S System

C.1 Solving Integrals of Generalised Transition Rates

To solve the integrals that arise when calculating generalised transition rates that

involve off-diagonal reduced density matrix elements we use the residue theorem. This

theorem states ∮
γ

f(z)dz = 2πi
N∑
k=1

Resz=zkf(z), (C.1)

where f(z) is a single-valued analytic function everywhere on γ and inside γ except at

a finite number of singular points z1, z2...zN , and the contour γ is positively oriented.

The residual of f(z) at z= a is given by

Resz=af(z) = lim
z→a

[(z − a)f(z)] . (C.2)

The residue theorem can be used to calculate an integral of the form
∫∞
−∞ f(z)dz if

certain conditions are met. Figure C.1 shows two contour integrals with poles contained

in the contours. If |z| → ∞ and the contributions to the integrals from the upper and

lower contours cancel for α 6= 0, π, then the integral from −∞ to ∞ can be calculated

using the residuals of the poles contained in the contours. Writing this out we get

∮
γ+
f(z)dz +

∮
γ−
f(z)dz = 2πi

(
N+∑
k=1

Resz+=z+k
f(z)−

N−∑
k=1

Resz−=z−k
f(z)

)
, (C.3)
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where γ+ and γ− indicate the upper and lower contours, respectively, and the contri-

bution from lower contour is negative due to the clockwise orientation of the contour.

Then, for |z| → ∞ and contributions for complex z values canceling, this equation

becomes

2

∫ ∞
−∞

f(z)dz = 2πi
N∑
k=1

Resz=zkf(z), (C.4)

where the sum is now over all poles and those from the lower half plane should be

multiplied by a factor of −1. The integrals we are concerned with meet the appropriate

criteria to be calculated in this manor.

Figure C.1: Two contour integrals of a function, one in the upper half plane and the
other in the lower half plane. The crosses indicate poles of the function in question.

We will now use the above equations to solve the integral∫ ∞
−∞

g(ω)dω = −
∫ ∞
−∞

f+(ω)

(
ε1 − ε2 + 2i0+

(ε1 − ω + i0+)(ω − ε2 + i0+)

)
dω, (C.5)

where f+ (ω) = 1
eβ(ω−µ)+1

is the Fermi function. The integrand has poles in the upper

half of the complex plane at

ω = ε1 + i0+ (C.6)

and

ω = ω+
n =

2πi

β

(
n+

1

2

)
+ µ. (C.7)

In the lower half plane it has poles at

ω = ε2 − i0+ (C.8)
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and

ω = ω−n = −2πi

β

(
n+

1

2

)
+ µ. (C.9)

Here n ∈ N0 and β= 1/kBT . The poles at ±ωn are the poles of the Fermi function.

Using Eq. C.4 the integral is given by

∫ ∞
−∞

g(ω)dω = −2πi

2

N∑
n=1

Resz=zn

[
f+(ω)

(
ε1 − ε2 + 2i0+

(ε1 − ω + i0+)(ω − ε2 + i0+)

)]
. (C.10)

Substituting in the residuals at the various poles we get

∫∞
−∞ g(ω)dω = −πi(ε1 − ε2 + 2i0+)

[
f+(ε1+i0+)
ε1−ε2+2i0+

− f+(ε2−i0+)
ε2−ε1−2i0+

−
∑∞

n=0

(
1

β(ω+
n−ε1−i0+)(ω+

n−ε2+i0+)
− 1

β(ω−n−ε1−i0+)(ω−n−ε2+i0+)

) ]
, (C.11)

where terms that arise from poles in the negative half plane are multiplied by an

additional factor of −1. We can now let 0+ tend to zero to give

∫ ∞
−∞

g(ω)dω = −πi

[
f+(ε1) + f+(ε2)− ε1 − ε2

β

∞∑
n=0

(
1

(ω+
n − ε1)(ω+

n − ε2)
− 1

(ω−n − ε1)(ω−n − ε2)

)]
.

(C.12)

Rewriting the term in the sum we get

∫ ∞
−∞

g(ω)dω = −πi

[
f+(ε1) + f+(ε2)− 1

β

∞∑
n=0

(
1

(ω+
n − ε1)

− 1

(ω+
n − ε2)

− 1

(ω−n − ε1)
+

1

(ω−n − ε2)

)]
.

(C.13)

We now substitute in the expressions for ω±n and use properties of the digamma

function Ψ (x),

Ψ(x)−Ψ(y) =
∞∑
n=0

(
−1

x+ n
+

1

y + n

)
, (C.14)

and

Ψ(x∗) = Ψ∗(x), (C.15)

to express the sum terms. The integral is then given by∫ ∞
−∞

g(ω)dω = −πi
[
f+(ε1) + f+(ε2)

]
−Re

[
Ψ

(
1

2
+
iβ

2π
(ε1 − µ)

)
−Ψ

(
1

2
+
iβ

2π
(ε2 − µ)

)]
.

(C.16)
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C.2 Generalised Transition Rates

The elements of the kernel W are given by;

Wη+± =
ΓF
4

[
δ2

+ (1± P cosφ) f− (E+± − Eη) + δ2
− (1∓ P cosφ) f+ (E − η − E+±)

]
,

(C.17)

Wη−± =
ΓF
4

[
δ2
− (1± P cosφ) f− (E−± − Eη) + δ2

+ (1∓ P cosφ) f+ (E − η − E−±)
]
,

(C.18)

WI+±+ =
ΓF
2

[
δ2
± (1− P cosφ) f− (E±+ − EI+) + δ2

∓ (1 + P cosφ) f+ (EI+ − E±+)
]
,

(C.19)

WI−±− =
ΓF
2

[
δ2
± (1 + P cosφ) f− (E±− − EI−) + δ2

∓ (1− P cosφ) f+ (EI− − E±−)
]
,

(C.20)

with the rates for the reverse transitions (eg. W+±η) are obtained by switching the

signs of the Fermi functions, and

W±∓η
∓±η = α iδ+δ−

8π
ΓFP sinφ

(
iπ(f+ (E+− − Eη) + f+ (E−+ − Eη) + f− (Eη − E−+) +

f− (Eη − E+−) )∓ Re
[
Ψ
(

1
2

+ iβ
2π

(Eη − E+− − µF )
)
−Ψ

(
1
2

+ iβ
2π

(Eη − E−+ − µF )
)]

∓Re
[
Ψ
(

1
2

+ iβ
2π

(E+− − Eη − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E−+ − Eη − µF )
)] )

(C.21)

and

W η±∓
η∓± = α iδ+δ−

8π
ΓFP sinφ

(
iπ(f+ (Eη − E−+) + f+ (Eη − E+−) + f− (E+− − Eη) +

f− (E−+ − Eη) )∓ Re
[
Ψ
(

1
2

+ iβ
2π

(E−+ − Eη − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E+− − Eη − µF )
)]

∓Re
[
Ψ
(

1
2

+ iβ
2π

(Eη − E−+ − µF )
)
−Ψ

(
1
2

+ iβ
2π

(Eη − E+− − µF )
)] )

, (C.22)

where η= I0,IS and α= + (-) if η= I0 (IS), and

W±+±+ = −ΓF
2

[
(1 + P cosφ)

(
δ2
∓f

+ (EI+ − E±+) +
δ2±
2

[f− (E±+ − EI0)

+f− (E±+ − EIS) ]
)

+ (1− P cosφ)
(
δ2
±f
− (E±+ − EI+)

+
δ2∓
2

[f+ (EI0 − E±+) + f+ (EIS − E±+)]
)]
, (C.23)

W±+±+ = −ΓF
2

[
(1− P cosφ)

(
δ2
∓f

+ (EI− − E±−) +
δ2±
2

[f− (E±− − EI0)
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+f− (E±− − EIS) ]
)

+ (1 + P cosφ)
(
δ2
±f
− (E±− − EI−)

+
δ2∓
2

[f+ (EI0 − E±−) + f+ (EIS − E±−)]
)]
, (C.24)

WI±I± = −ΓF
2

[
(1± P cosφ)

(
δ2
−f
− (EI± − E+±) + δ2

+f
− (EI± − E−±)

)
+ (1∓ P cosφ)

(
δ2

+f
+ (E+± − EI±) + δ2

−f
+ (E−± − EI±)

) ]
, (C.25)

Wηη = −ΓF
4

[
(1 + P cosφ)

(
δ2
− [f− (Eη − E+−) + f+ (E++ − Eη)] +

δ2
+ [f− (Eη − E−−) + f+ (E−+ − Eη)]

)
(1− P cosφ)

(
δ2

+[f+ (E+− − Eη)

+f− (Eη − E−+) ] + δ2
− [f+ (E−− − Eη) + f− (Eη − E++)]

)]
(C.26)

and

W∓±∓±
±∓±∓ = −iΓF

4π

[
(1 + P cosφ)

(
δ2

+

[
− iπ (f+ (EI+ − E+−) + f− (E−+ − EI−))

±Re
[
Ψ
(

1
2

+ iβ
2π

(E−+ − EI− − µF )
)
−Ψ

(
1
2

+ iβ
2π

(EI+ − E+− − µF )
)] ]

+

δ2−
2

[
− iπ (f+ (EI0 − E−+) + f+ (EIS − E−+) + f− (E+− − EI0) + f− (E+− − EIS))

±Re
[
Ψ
(

1
2

+ iβ
2π

(EI0 − E−+ − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E+− − EI0 − µF )
)]

±Re
[
Ψ
(

1
2

+ iβ
2π

(EIS − E−+ − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E+− − EIS − µF )
)] ])

+ (1− P cosφ)
(
δ2
−

[
− iπ (f+ (EI− − E−+) + f− (E+− − EI+))

±Re
[
Ψ
(

1
2

+ iβ
2π

(EI− − E−+ − µF )
)
−Ψ

(
1
2

+ iβ
2π

(E+− − EI+ − µF )
)] ]

+

δ2+
2

[
− iπ (f+ (EI0 − E+−) + f+ (EIS − E+−) + f− (E−+ − EI0) + f− (E−+ − EIS))

±Re
[
Ψ
(

1
2

+ iβ
2π

(E−+ − EI0 − µF )
)
−Ψ

(
1
2

+ iβ
2π

(EI0 − E+− − µF )
)]

±Re
[
Ψ
(

1
2

+ iβ
2π

(E−+ − EIS − µF )
)
−Ψ

(
1
2

+ iβ
2π

(EIS − E+− − µF )
)] ])]

,(C.27)

and

W+−−+
±∓±∓ = W−++−

±∓±∓ = iδ−δ+
8π

ΓFP sinφ
[
iπ(f− (E±∓ − EIS)



120 APPENDIX C. GENERALISED TRANSITION RATES – F-IMM-S

−f+ (EIS − E±∓)− f− (E±∓ − EI0) + f+ (EI0 − E±∓) )

+Re
[
Ψ
(

1
2

+ βi
2π

(E±∓ − EI0 − µF )
)
−Ψ

(
1
2

+ βi
2π

(E±∓ − EIS − µF )
)]

+Re
[
Ψ
(

1
2

+ βi
2π

(EI0 − E±∓ − µF )
)
−Ψ

(
1
2

+ βi
2π

(EIS − E±∓ − µF )
)]
, (C.28)

W±∓±∓
+−−+ = W±∓±∓

−++− = iδ−δ+
8π

ΓFP sinφ
[
iπ(f− (E±∓ − EI0)

−f+ (EI0 − E±∓)− f− (E±∓ − EIS) + f+ (EIS − E±∓) )

−Re
[
Ψ
(

1
2

+ βi
2π

(E±∓ − EI0 − µF )
)
−Ψ

(
1
2

+ βi
2π

(E±∓ − EIS − µF )
)]

−Re
[
Ψ
(

1
2

+ βi
2π

(EI0 − E±∓ − µF )
)
−Ψ

(
1
2

+ βi
2π

(EIS − E±∓ − µF )
)]
. (C.29)
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