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Abstract

Kinser developed a hierarchy of inequalities dealing with the dimensions of cer-
tain spaces constructed from a given quantity of subspaces. These inequalities can
be applied to the rank function of a matroid, a geometric object concerned with
dependencies of subsets of a ground set. A matroid which is representable by a
matrix with entries from some finite field must satisfy each of the Kinser inequal-
ities. We provide results on the matroids which satisfy each inequality and the
structure of the hierarchy of such matroids.
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Chapter 1

Introduction

A fundamental question in matroid theory is whether it is possible to find a char-
acterisation of the class of representable matroids. In particular, we wish to know
whether this can be achieved with a finite number of axioms, by adding additional
rank axioms to the existing three. This was first alluded to by Whitney [10], in the
paper which initiated the area of matroid theory, and the problem remains open
today. Ingleton [3] introduced one new axiom which a matroid must satisfy in
order to be representable.

Definition 1.1. Let M = (E,r) be a matroid. For subsets X1, . . . ,X4 of E, the
Ingleton inequality is:

r(X3)+ r(X4)+ r(X1∪X2)+ r(X1∪X3∪X4)+ r(X2∪X3∪X4)

≤ r(X1∪X3)+ r(X1∪X4)+ r(X2∪X3)+ r(X2∪X4)+ r(X3∪X4)

This new condition, while necessary, is not sufficient to characterise representabil-
ity. For instance, the direct sum of the Fano and non-Fano matroids satisfies the
Ingleton condition but is not representable, as later proved in Lemma 4.1.

1
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Fano matroid, F7 Non-Fano matroid, F−7

More recently, Kinser [4] introduced an infinite family of new representability
conditions, the first of which is equivalent to the Ingleton condition.

Definition 1.2. Let M be a matroid, and let X1, . . . ,Xn be any collection of subsets
of E(M). The n-th Kinser inequality, where n≥ 4, is

n

∑
i=3

r(Xi)+ r(X1∪X2)+ r(X1∪X3∪Xn)+
n

∑
i=4

r(X2∪Xi−1∪Xi)

≤ r(X1∪X3)+ r(X1∪Xn)+
n

∑
i=3

r(X2∪Xi)+
n

∑
i=4

r(Xi−1∪Xi)

This hierarchy of inequalities is also not sufficient to guarantee representability
of a matroid – the direct sum of the Fano and the non-Fano is again a counter-
example to this. Briefly putting aside the use of an infinite list of axioms, we have
the following conjecture, which is due to Mayhew, Newman, and Whittle [5].

Conjecture 1.3. It is impossible to characterise the class of representable ma-

troids with a finite number of rank axioms.

Note that [5] is a response to an paper of Vámos’ [9] dealing with the same ques-
tion. In this paper, Vámos introduced the following geometric construction, which
we call a V -matroid:

Definition 1.4. A V-matroid consists of a (possibly infinite) set E and a collection
of finite subsets I ⊆ E such that:

I1. ∅ ∈ I

I2. If I ∈ I and J ⊆ I, then J ∈ I
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I3. If I,J ∈ I and |I|= |J|+1, there exists x ∈ I− J such that J∪ x ∈ I

Instead of using rank axioms, Vámos describes V -matroids with an infinite list
of first-order axioms. In [9], Vámos proved that it is not possible to characterise
representable V -matroids by adding a further first-order axiom to this infinite list.
Note that a first-order axiom is not equivalent to a rank axiom. However, as every
finite V -matroid is a matroid, Conjecture 1.3 could be regarded as having been
inspired by this result.

This thesis is dedicated to investigating the classes of matroids which satisfy each
of the Kinser inequalities. We will cover invariant properties of the classes, such as
being minor-closed and direct sum closed, and, more importantly, we will provide
results on how the classes interact with each other to form an infinite hierarchy.
We will touch on the complexity of verifying a matroid satisfies a given Kinser
inequality, which will show that gaining certain information on the Kinser classes,
such as which classes are closed under duality, could involve a great amount of
computational work.

This thesis will conclude by considering a question which arises naturally in con-
junction with representability, that of excluded minors. The following theorem
was proved by Mayhew, Newman, and Whittle in 2008 [6], settling a conjecture
by Geelen [2].

Theorem 1.5. For any infinite field K and any matroid N representable over K,

there is an excluded minor for K-representability that has N as a minor.

We will provide a strengthening of this result, showing that there is in fact an in-
finite number of such excluded minors. Specifically, we will show that for each
layer of the Kinser class hierarchy, we can find an excluded minor which is con-
tained inside that layer.



Chapter 2

Fundamentals

To begin with, we will cover the basic concepts in matroid theory which will be
used throughout this thesis. All of the following concepts and results can be found
in [7].

Definition 2.1. A matroid M = (E,I) consists of a finite ground set E and a col-
lection of subsets I ⊆ E such that:

I1. ∅ ∈ I

I2. If I ∈ I and J ⊆ I, then J ∈ I

I3. If I,J ∈ I and |I|< |J|, there exists x ∈ J− I such that I∪{x} ∈ I

Any subset of E contained in I is referred to as an independent set, while any
subset of E which is not contained in I is called dependent. A dependent set of
cardinality one is called a loop. We may use E(M) in the place of E at times, in
order to make it clear which matroid is being referred to.

Definition 2.2. Take a matroid M with ground set E. The rank of a subset X of
E, denoted by r(X), is the cardinality of the largest independent subset of X .

Lemma 2.3. A matroid M can be described by the ground set E and a rank func-
tion r : P(E)→ Z+ ∪{0} such that, for X ,Y ∈ P(E), the following conditions

hold:

R1. r(X)≤ |X |

4
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R2. If Y ⊆ X, r(Y )≤ r(X)

R3. r(X ∪Y )+ r(X ∩Y )≤ r(X)+ r(Y )

A set X is independent if and only if r(X) = |X |. If r(X) = r(M) we call X a basis

of M. If a set contains a basis, it is called spanning.

2.1 Dependencies

Definition 2.4. The closure of a set X is denoted by cl(X), where

cl(X) = X ∪{e ∈ E−X | r(X ∪ e) = r(X)}

Lemma 2.5. The closure function of a matroid satisfies the following conditions:

CL1. If X ⊆ E, then X ⊆ cl(X).

CL2. If X ⊆ Y , then cl(X)⊆ cl(Y ).

CL3. If X ⊆ E, then cl(cl(X)) = cl(X).

CL4. If X ⊆ E and x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

The closure function corresponds to the notion of span of a vector space, and is
sometimes referred to as such. A flat is a set whose closure is equal to the set
itself, i.e. cl(X) = X . If a flat has rank r(M)−1, it is called a hyperplane.

A minimally dependent set – that is, a dependent set where every proper subset of
that set is independent – is called a circuit. A matroid can be described entirely
by its set of circuits C.

Lemma 2.6. (E,C) describes a matroid when the following conditions hold.

C1. ∅ /∈ C

C2. If C,D ∈ C and C ⊆ D, then C = D

C3. If C,D are distinct elements of C amd e ∈C∪D, then (C∪D)− e contains

a circuit
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A circuit-hyperplane is a set which is both a circuit and a hyperplane.

Definition 2.7. Let M be a matroid and let H be a circuit-hyperplane of M. H has
rank equal to r(M)− 1. We say that we relax H when we make it independent,
i.e. r(H) = r(M). When we reverse this operation, we say that we tighten H.

2.2 Representability

Definition 2.8. If V is a set of vectors in a vector space, and for every subset X

of V , we define r(X) to be the linear rank of X , then (V,r) is a matroid, which we
say is representable.

If these vectors come from a finite field K, we say that M is K-representable.

2.3 Minors

Definition 2.9. We can remove an element e of a matroid M = (E,r) by deleting

it. This yields a matroid M\e = (E−{e},rM\e), where rM\e(X) = rM(X) for all
X ⊆ E−{e}.

Definition 2.10. We can also remove an element e of a matroid M = (E,r) by
contracting it. This gives a matroid M/e = (E −{e},rM/e) where rM/e(X) =

rM(X ∪{e})− r({e}) for all X ⊆ E−{e}.

Any matroid produced by a sequence of deletions and contractions is called a
minor of M.

We say that a class of matroidsM is minor-closed if, for every matroid M inM,
each of its minors is also inM.

A matroid M is an excluded minor for a minor-closed class of matroids M if
M /∈M but deleting or contracting any element from M produces a matroid in
M. A matroid M is contained inM if and only if M does not contain an excluded
minor forM.
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2.4 Duality

Definition 2.11. From M we can construct the dual matroid M∗. This has ground
set equal to the ground set E of M, and the rank of any subset X is found using the
function r∗(X) = |X |+ r(E∗−X)− r(M).

A basis of M∗ is is called a cobasis of M. Note that if B is a basis of M, then E−B

is a cobasis of M. Similarly, the rank function, circuits, loops and independent
sets of M∗ are called the corank function, cocircuits, coloops and coindependent

sets of M.

Lemma 2.12 ([7, Proposition 2.1.7]). Let M be a matroid. Relax a circuit-

hyperplane H of M to yield the matroid M′. Then (M′)∗ is identical to the matroid

yielded from M∗ by relaxing the circuit-hyperplane E−H of M∗.

Lemma 2.13 ([7, Proposition 3.3.5]). Let H be a circuit-hyperplane of a matroid

M, and let M′ be the matroid obtained from M by relaxing H.

i. When e ∈ E(M)−H, M/e = M′/e, and, unless e is a coloop of M, M′\e is

obtained from M\e by relaxing the circuit-hyperplane H of M\e.

ii. Dually, when f ∈ H, M\ f = M′\ f and, unless f is a loop of M, M′/ f is

obtained from M/ f by relaxing the circuit-hyperplane X−{ f} of M/ f .

2.5 Transversals

Definition 2.14. Let S be any set. Take a family of subsets A= (A1, . . . ,Ak) of S.
A transversal or system of distinct representatives of A is a subset {s1, . . . ,sm} of
S such that si ∈ Ai for all i ∈ {1, . . . ,m} and s1, . . . ,sm are distinct.

Definition 2.15. Let S be any set. X ⊆ S is a partial transversal of a family
of subsets A = (A1, . . . ,A j) of S if X is a transversal of (A1, . . . ,Ak) for some
A1, . . . ,Ak ⊆ S.

Lemma 2.16. Let A = (A1, . . . ,Am) be a family of subsets of a set S. When A
is a partition of S, the collection of partial transversals of A is the collection of

independent sets of a matroid on S. This matroid is denoted by M[A].
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If a matroid M is isomorphic to M[A] for some family of subsetsA, we say that M
is a transversal matroid and that A is a presentation of M. Every transversal ma-
troid is representable over all sufficiently large fields, as proved in [7, Proposition
11.2.16].

A transversal matroid can be represented by a bipartite graph. Let A =

(A1, . . . ,Am) be a family of subsets of S, and let J = {1, . . . ,m}. Construct the
graph G[A] which has vertex set S∪ J and edge set {x j | x ∈ A j, j ∈ J}. Recall
that a matching of a graph is a collection of edges such that no two share a com-
mon endpoint. A subset X is a partial transversal of A if and only if there is a
matching in G[A] in which every edge has an endpoint in X , i.e. X is matched
into J.

Definition 2.17. Take a matroid M = (E,r) with independent sets I. Let J =

{I ∈ I | |I|= r(M)}. The truncation of M is a matroid T (M) = (E,r) with inde-
pendent sets I −J .

2.6 Free extensions

Definition 2.18. Take a matroid M = (E,r). An element e is freely placed in a
flat F of M if, for any set Z ⊆ E, e ∈ cl(Z) implies F ∈ cl(Z).

Definition 2.19. Let M = (E,r) be a matroid. Add an element e /∈ E freely to E.
This gives a matroid (E ∪{e},r), which we call a free extension of M.



Chapter 3

Kinser Inequalities

We will now introduce the Kinser inequalities, developed by Kinser in 2009 in
[4]. An example of a matroid which exemplifies inequality n for all n≥ 4 will be
described, as the Vámos matroid exemplifies the Ingleton inequality. If a single
circuit-hyperplane of this matroid is relaxed, it no longer satisfies the inequality.
These matroids will be used in further results in this thesis. We will show that the
class of matroids which satisfy Kinser inequality n for all n ≥ 4 is minor-closed.
These classes are also closed under direct sums.

3.1 Inequalities

Definition 3.1. Let M be a matroid, and let X1, . . . ,Xn be any collection of subsets
of E(M). Kinser inequality n, where n≥ 4, is

n

∑
i=3

r(Xi)+ r(X1∪X2)+ r(X1∪X3∪Xn)+
n

∑
i=4

r(X2∪Xi−1∪Xi)

≤ r(X1∪X3)+ r(X1∪Xn)+
n

∑
i=3

r(X2∪Xi)+
n

∑
i=4

r(Xi−1∪Xi)

We often use inequality n to refer to Kinser inequality n. Note that inequality n

has 2n−3 terms on each side.

9
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X1

X2 X3

X4Xn−1

Xn

The above diagram gives a representation of Kinser inequality n. The ovals repre-
sent the n subsets of E(M), and each edge aside from the dotted one between X1

and X2 represents a term on the right-hand side of the inequality. On the left-hand
side, we have the singleton sets starting from X3, the triple X1∪X3∪Xn at the very
top, the dashed X1∪X2 edge, and every triangle of edges involving X2, excluding
those using X1.

When n = 4, this yields the Ingleton inequality [3], which holds for any four
subspaces X1, . . . ,X4 of a vector space:

dim(V3)+dim(V4)+dim(V1 +V2)+dim(V1 +V3 +V4)+dim(V2 +V3 +V4)

≤ dim(V1 +V3)+dim(V1 +V4)+dim(V2 +V3)+dim(V2 +V4)+dim(V3 +V4)

As a representable matroid can be embedded inside a vector space, this inequality
clearly holds for such matroids. In fact, in order for a matroid to be representable,
it must satisfy each Kinser inequality for all choices of families X1, . . . ,Xn.

Recall that if X and Y are subspaces of some vector space V , then

X +Y = {x+y | x ∈ X ,y ∈ Y}

is a subspace of V as well.

The following proof is adapted from that of [4, Theorem 1], which was stated in
terms of an arrangement of n subspaces.
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Lemma 3.2. A representable matroid M satisfies each Kinser inequality.

Proof. Let M be a matroid representable over an infinite fieldK, and let V1, . . . ,Vn

be subsets of E(M). Embed M in the projective geometry PG(r− 1,K) and re-
place each Vi with its closure 〈Vi〉 in the projective geometry. Let W = 〈V3〉∩ . . .∩
〈Vn〉. Let |〈Vi〉| denote the dimension of 〈Vi〉. Using sub-modularity, we have that

|〈W 〉+ 〈V1〉|+ |〈W 〉+ 〈V2〉| ≥ |(〈W 〉+ 〈V1〉)∩ (〈W 〉+ 〈V2〉)|
+ |〈W 〉+ 〈V1〉+ 〈V2〉|

≥ |〈W 〉+(〈V1〉∩ 〈V2〉)|+ |〈W 〉+ 〈V1〉+ 〈V2〉|
≥ |〈W 〉|+ |〈W 〉+ 〈V1〉+ 〈V2〉|

Rearranging this, we get that

|〈W 〉+ 〈V1〉+ 〈V2〉|− |〈W 〉+ 〈V1〉| ≤ |〈W 〉+ 〈V2〉|− |〈W 〉| (3.2.1)

We will give a bound on each side of this inequality.

Note that |〈W 〉+ 〈V1〉+ 〈V2〉| ≥ |〈V1〉+ 〈V2〉|.
As 〈W 〉+ 〈V1〉 ⊆ (〈V1〉+ 〈V3〉)∩ (〈V1〉+ 〈Vn〉), we have by sub-modularity that

|〈W 〉+ 〈V1〉| ≤ |〈V1〉+ 〈V3〉|+ |〈V1〉+ 〈Vn〉|− |〈V1〉+ 〈V3〉+ 〈Vn〉|

This gives us a lower bound for the left-hand side of (3.2.1):

|〈V1〉+ 〈V2〉|− |〈V1〉+ 〈V3〉|− |〈V1〉+ 〈Vn〉|+ |〈V1〉+ 〈V3〉+ 〈Vn〉|
≤ |〈W 〉+ 〈V1〉+ 〈V2〉|− |〈W 〉+ 〈V1〉|

Now take the right-hand side. We have that

|〈W 〉+ 〈V2〉|− |〈W 〉|= |〈V2〉|− |〈V2〉∩ 〈W 〉|

Note that V2 ⊇V2∩V3 ⊇ . . .⊇V2∩ . . .∩Vn =V2∩W . This gives that

|〈V2〉|− |〈V2〉∩ 〈W 〉|=
n

∑
i=3

(|〈V2〉∩ . . .∩〈Vi−1〉|− |〈V2〉∩ . . .∩〈Vi〉|) (3.2.2)

For each summand in 3.2.2, we give an upper bound: for 3≤ i≤ n, sub-modularity
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gives that

|〈V2〉∩ . . .∩〈Vi−1〉|− |〈V2〉∩ . . .∩〈Vi〉|= |〈Vi〉+(〈V2〉∩ . . .∩〈Vi−1)〉|− |〈Vi〉|

As 〈Vi〉+(〈V2〉∩ . . .∩〈Vi−1〉)⊆ (〈Vi〉+ 〈V2〉)∩ (〈Vi〉+ 〈Vi−1〉), we have

|〈Vi〉+(〈V2〉∩ . . .∩〈Vi−1〉)|− |〈Vi〉| ≤ |(〈Vi〉+ 〈V2〉)∩ (〈Vi〉+ 〈Vi−1)〉|− |〈Vi〉|
= |〈Vi〉+ 〈V2〉|+ |〈Vi〉+ 〈Vi−1〉|
− |〈V2〉+ 〈Vi−1〉+ 〈Vi〉|− |〈Vi〉|

Note that when i = 3 this simplifies to

|〈V3〉+ 〈V2〉|− |〈V3〉| ≤ |〈V3〉+ 〈V2〉|+ |〈V3〉+ 〈V2〉|− |〈V2〉+ 〈V3〉|− |〈V3〉|
= |〈V2〉+ 〈V3〉|− |〈V3〉|

Plugging this into (3.2.2) then (3.2.1) gives, after rearranging,

n

∑
i=3
|〈Vi〉|+ |〈V1〉+ 〈V2〉|+ |〈V1〉+ 〈V3〉+ 〈Vn〉|+

n

∑
i=4
|〈V2〉+ 〈Vi−1〉+ 〈Xi〉|

≤ |〈V1〉+ 〈V3〉|+ |〈V1〉+ 〈Vn〉|+
n

∑
i=3
|〈V2〉+ 〈Vi〉|+

n

∑
i=4
|〈Vi−1〉+ 〈Vi〉|

Note that |〈Vi〉| = r(Vi). In order to show that inequality n holds, we must show
that |〈Vi〉+ 〈Vj〉|= r(Vi∪Vj). We have that

r(Vi∪Vj) = |〈Vi∪Vj〉|

We will show that this is equal to |〈Vi〉+ 〈Vj〉|.
Let x ∈ 〈Vi〉+ 〈Vj〉. This means that x = x1 + x2 where x1 ∈ 〈Vi〉 and x2 ∈ 〈Vj〉.
We have that x1 ∈ 〈Vi ∪Vj〉 and x2 ∈ 〈Vi ∪Vj〉, so x ∈ 〈Vi ∪Vj〉. Now take x ∈
〈Vi ∪Vj〉. We can write x as a linear combination of elements Si from Vi and
elements S j from Vj. We have that Si ⊆ 〈Vi〉 and that S j ⊆ 〈Vj〉, so x ∈ 〈Vi〉+ 〈Vj〉.
Thus |〈Vi∪Vj〉|= |〈Vi〉+ 〈Vj〉|. We can therefore replace every term |〈Vi〉+ 〈Vj〉|
with r(Vi∪Vj). Similarly, |〈Vi∪Vj ∪Vk〉| = |〈Vi〉+ 〈Vj〉+ 〈Vk〉|. Making all such
replacements yields inequality n. �
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We say that a bad family for a matroid M, relative to n, is a family of subsets
X1, . . . ,Xn which does not satisfy Kinser inequality n.

We can also represent an inequality as applied to a specific matroid with a graph.
Let X1, . . . ,Xn be a family of subsets of a matroid M. Take a graph G on vertices
V = {X1, . . . ,Xn} with adjacency relation a such that

a(Xi) = {X j | Xi∪X j is a term on the right-hand side of inequality n}.

In other words, two vertices are joined by an edge if the union of the two vertices
is a term in inequality n. Recall that when G[V,E] is any graph with vertex set V

and edge set E, an induced subgraph G[E ′], has edge set E ′ and vertex set equal to
the vertices incident with edges in E ′. We will use this construction to show that
certain subgraph structures cannot exist, when attempting to find a bad family in
a matroid.

Definition 3.3. Kinser class n, denoted byKn, is the set of matroids which satisfy
Kinser inequality n for all families of subsets X1, . . . ,Xn of the ground set. We
define K∞ =

⋂
i≥4Ki.

A matroid M has a bad family relative to n if and only if M /∈ Kn.

Definition 3.4. The dual Kinser class n is K∗n = {M∗ |M ∈ Kn}

3.2 Kinser matroids

Next we will construct a class of matroids called Kinser matroids, relating to the
Kinser inequalities as the Vámos matroid [7, Figure 2.4] relates to the Ingleton
inequality. In fact, the Vámos matroid is obtained from the fourth Kinser matroid
by relaxing a circuit-hyperplane. The rank-r Kinser matroid, for r ≥ 4, is denoted
by Kin(r), and has a ground set of size r2−3r+4.

First, we will define a rank r + 1 transversal matroid, Mr+1. Let A =

(A1,A3, . . . ,Ar,A,A′). Also let V1, . . . ,Vr be pairwise disjoint sets such that

|V1|= |V3|= · · ·= |Vr|= r−2

and V2 = {e, f}. The ground set of Mr+1 is V1∪·· ·∪Vr. Let A = E(Mr+1) and let
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A′ =V2. Let

A1 = (V1∪V3∪·· ·∪Vr)− (V1∪Vr)

A3 = (V1∪V3∪·· ·∪Vr)− (V1∪V3)

For i ∈ {4, . . . ,r}, let

Ai = (V1∪V3∪·· ·∪Vr)− (Vi−1∪Vi)

Note {e, f} is a series pair in Mr+1.

Mr+1 is the transversal matroid M[A]. Define Kin(r) to be the truncation of Mr+1.

V1

V2

V3

V4

e

f

Figure 3.1: Kin(4)

V2

e

f

V1

V3

V4

V5

Figure 3.2: Kin(5)
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The following result is Proposition 4.3 of [5]

Lemma 3.5. Let K be an infinite field. Then Kin(r) is K-representable for any

r ≥ 4.

As Mr+1 is a transversal matroid, it is representable over every infinite field by [7,
Proposition 11.2.16]. We obtain Kin(r) by truncating Mr+1. This is equivalent to
freely adding an element to the ground set of Mr+1 and then contracting it. As
the class of representable matroids is closed under free extensions, Kin(r) is also
representable.

The following result is proved in [5, Proposition 4.4].

Lemma 3.6. Let r≥ 4 be an integer. Then V2∪Vi is a circuit-hyperplane of Kin(r)
for any i ∈ {1,3, . . . ,r}.

Define Kin(r)− to be the matroid obtained from Kin(r) by relaxing the circuit-
hyperplane V1∪V2. Also define Kin(r)=i to be the matroid obtained from Kin(r)
by relaxing the circuit-hyperplanes V1∪V2 and V2∪Vi, for some i ∈ {3, . . . ,r}.
The next two results are Proposition 4.5 and Lemma 4.6 of [5].

Lemma 3.7. Let r ≥ 4. The matroid Kin(r)− is not in Kr, and is therefore not

representable over any field.

The family of subsets V1, . . . ,Vn in Kin(r)− is a bad family relative to r, as will be
proved in Lemma 4.3.

Lemma 3.8. Let r ≥ 4 and let K be an infinite field. The matroid Kin(r)=i is

K-representable.

3.3 Kinser classes

Lemma 3.9. Kn is minor-closed for all n≥ 4.

Proof. Take some M ∈ Kn and e ∈ E(M) such that M/e /∈ Kn. Assume e is not
a loop. Assume X1, . . . ,Xn is a bad family in M/e and let Xi

′ = Xi ∪{e} for all
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i. Recall that rM/x(X) = rM(X ∪ x)− rM(x). Thus rM/e(Xi) = rM(Xi∪ e)− rM(e).
When e is not a loop, we have that rM(Xi

′) = rM/e(Xi)+1 for all i, and

rM(Xi
′∪X j

′∪Xk
′) = rM/e(Xi∪X j∪Xk)+1.

Now evaluate inequality n for X ′1, . . . ,X
′
n in M.

n

∑
i=3

rM(X ′i )+ rM(X ′1∪X ′2)+ rM(X ′1∪X ′3∪X ′n)+
n

∑
i=4

rM(X ′2∪X ′i−1∪X ′i )

≤ rM(X ′1∪X ′3)+ rM(X ′1∪X ′n)+
n

∑
i=3

rM(X ′2∪X ′i )+
n

∑
i=4

rM(X ′i−1∪X ′i )

Using the rank equalities calculated above, this is equivalent to

n

∑
i=3

(rM/x(Xi)+1)+ rM/x(X1∪X2)+1

+ rM/x(X1∪X3∪Xn)+1+
n

∑
i=4

(rM/x(X2∪Xi−1∪Xi)+1)

≤ rM/x(X1∪X3)+1+ rM/x(X1∪Xn)+1

+
n

∑
i=3

(rM/x(X2∪Xi)+1)+
n

∑
i=4

(rM/x(Xi−1∪Xi)+1)

All the constant terms cancel out, leaving inequality n as applied to X1, . . . ,Xn in
M/e, contradicting X1, . . . ,Xn being a bad family in M/e. Thus there is no e such
that M/e /∈ Kn.

Now consider M\e. Assume that M\e has a bad family X1, . . . ,Xn. These subsets
are also subsets of M and their rank is unchanged, so they must form a bad family
in M as well, contradicting M ∈ Kn. �

Lemma 3.10. Suppose X1, . . . ,Xn is a bad family for Kinser inequality n. Then

there exists a bad family Y1, . . . ,Yn such that each Yi is a basis of Xi.

Proof. Take some matroid M with bad family X1, . . . ,Xn. For each X j in the bad
family, let I j be a basis of M|X j. We will show that we can replace each set X j

with its basis I j. We have that r(X j) = r(I j). Now consider r(X j ∪Xk). Clearly
r(I j ∪ Ik) ≤ r(X j ∪ Xk). If x ∈ X j ∪ Xk, then x is either in X j or it is in X j, so
x∈ clM(I j) or x∈ clM(Ik). In either case, x∈ clM(I j∪ Ik), so X j∪Xk ⊆ clM(I j∪ Ik).
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Thus

r(X j∪Xk)≤ r(clM(I j∪ Ik))

= r(I j∪ Ik)

Thus r(I j ∪ Ik) ≤ r(X j ∪ Xk) ≤ r(I j ∪ Ik), so r(X j ∪ Xk) = r(I j ∪ Ik). Similarly,
r(X j∪Xk∪Xl) = r(I j∪ Ik∪ Il). Thus I1, . . . , In is a bad family for Kinser inequality
n. �

Lemma 3.11. Suppose X1, . . . ,Xn is a bad family for Kinser inequality n. Then

there exists a bad family Y1, . . . ,Yn such that each Yi is a flat.

Proof. Recall that a flat is a set X such that cl(X) = X . We simply replace each Xi

with cl(Xi). First note that r(cl(Xi)) = r(Xi). Now consider r(Xi∪X j) = r(cl(Xi∪
X j)). We need to show that this is equal to r(cl(Xi)∪ cl(X j)). As Xi ⊆ cl(Xi), we
must have that

r(Xi∪X j)≤ r(cl(Xi)∪ cl(X j)).

Now note that if e ∈ cl(Xi), then e ∈ cl(Xi∪X j). This implies that cl(Xi)⊆ cl(Xi∪
X j) Likewise, every element in the closure of X j is also in the closure of Xi∪X j,
so cl(X j)⊆ cl(Xi∪X j). We thus have that cl(Xi)∪ cl(X j)⊆ cl(Xi∪X j), so

r(cl(Xi)∪ cl(X j))≤ r(cl(Xi∪X j))

= r(Xi∪X j)

We thus have that

r(cl(Xi)∪ cl(X j))≤ r(Xi∪X j)≤ r(cl(Xi)∪ cl(X j))

so r(Xi ∪ X j) = r(cl(Xi)∪ cl(X j)), and so cl(Xi), . . . ,cl(Xn) is a bad family for
inequality n as well. �

3.4 Sums

Definition 3.12. Take M = (E,r) and M′ = (E ′,r′) where E∩E ′ =∅. The direct

sum of these matroids is denoted by M⊕M′, and has ground set E ∪E ′ and rank
of X ⊆ E ∪E ′ equal to r(X ∩E)+ r′(X ∩E ′).
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Lemma 3.13. Kn is closed under direct sum for all n.

Proof. Take two matroid M = (E,r) and M′ = (E ′,r′) which are contained in Kn.
Take the direct sum M⊕M′. We wish to show that for any family X1, . . . ,Xn of
E ∪E ′ the following inequality holds:

n

∑
i=3

rM⊕M′(Xi)+ rM⊕M′(X1∪X2)+ rM⊕M′(X1∪X3∪Xn)+
n

∑
i=4

rM⊕M′(X2∪Xi−1∪Xi)

≤ rM⊕M′(X1∪X3)+ rM⊕M′(X1∪Xn)+
n

∑
i=3

rM⊕M′(X2∪Xi)+
n

∑
i=4

rM⊕M′(Xi−1∪Xi)

This is equivalent to

n

∑
i=3

r(Xi∩E)+ r((X1∪X2)∩E)+ r((X1∪X3∪Xn)∩E)

+
n

∑
i=4

r((X2∪Xi−1∪Xi)∩E)+
n

∑
i=3

r′(Xi∩E ′)+ r′((X1∪X2)∩E ′)

+ r′((X1∪X3∪Xn)∩E ′)+
n

∑
i=4

r′((X2∪Xi−1∪Xi)∩E ′)

≤ r((X1∪X3)∩E)+ r((X1∪Xn)∩E)+
n

∑
i=3

r((X2∪Xi)∩E)

+
n

∑
i=4

r((Xi−1∪Xi)∩E)+ r′((X1∪X3)∩E ′)+ r′((X1∪Xn)∩E ′)

+
n

∑
i=3

r′((X2∪Xi)∩E ′)+
n

∑
i=4

r′((Xi−1∪Xi)∩E ′)

(3.13.1)

As M ∈ Kn, we have that

n

∑
i=3

r(Xi∩E)+ r((X1∪X2)∩E)

+ r((X1∪X3∪Xn)∩E)+
n

∑
i=4

r((X2∪Xi−1∪Xi)∩E)

≤ r((X1∪X3)∩E)+ r((X1∪Xn)∩E)

+
n

∑
i=3

r((X2∪Xi)∩E)+
n

∑
i=4

r((Xi−1∪Xi)∩E)
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As M′ ∈ Kn, we have that

r′(Xi∩E ′)+ r′((X1∪X2)∩E ′)

+ r′((X1∪X3∪Xn)∩E ′)+
n

∑
i=4

r′((X2∪Xi−1∪Xi)∩E ′)

≤ r′((X1∪X3)∩E ′)+ r′((X1∪Xn)∩E ′)

+
n

∑
i=3

r′((X2∪Xi)∩E ′)+
n

∑
i=4

r′((Xi−1∪Xi)∩E ′)

The values of the terms on the left of inequality (3.13.1) are thus bounded by the
terms on the right-hand side, and so the inequality holds. �



Chapter 4

Kinser Hierarchy

In this chapter we will investigate how the Kinser classes interact with each other.
We will first show that representable matroids are properly contained inside every
Kinser class. Next we will show that the classes form a descending chain, and
show that the relaxed Kinser matroid of rank n is contained inside Kn−1 but not
Kn. Next we will consider the issue of duality, and prove that the class of matroids
which satisfy Kinser inequality 4 is dual closed. The class of matroids which
satisfy Kinser inequality 5 is, in contrast, not dual closed. The proof of this is
given in the next chapter.

Lemma 4.1. The class of representable matroids is properly contained in K∞

Proof. Note that as a consequence of Lemma 3.2, the class of representable ma-
troids are contained inside every Kinser class, and so is a subset of K∞. We will
now show the class of representable matroids forms a proper subset of K∞. Re-
call that Kn is closed under direct sum for all n. Take two matroids in K∞. As
these matroids are in the intersection of every Kinser class, their direct sum is also
contained in every Kinser class, and so contained in K∞. Thus K∞ is also closed
under direct sums.

Define F7 to be the matroid represented over GF(2) by1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


Define F−7 to be the matroid represented by the same matrix, but over GF(3).

20
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By [7, Proposition 6.4.8], F7 can be represented over a field only if the field has
characteristic 2, while F−7 can be represented over a field only if the field has
characteristic different from 2. Therefore F7⊕F−7 is not representable. However,
it is contained in K∞, since F7 and F−7 are both representable, and hence in K∞.�

Lemma 4.2. Kn ⊇Kn+1.

Proof. Assume inequality n+ 1 holds for the matroid M. Let X1, . . . ,Xn be arbi-
trary subsets of E(M). We show inequality n holds for X1, . . . ,Xn. Let Xn+1 = Xn.
We have that

n+1

∑
i=3

r(Xi)+ r(X1∪X2)+ r(X1∪X3∪Xn+1)+
n+1

∑
i=4

r(X2∪Xi−1∪Xi)

≤ r(X1∪X3)+ r(X1∪Xn+1)+
n+1

∑
i=3

r(X2∪Xi)+
n+1

∑
i=4

r(Xi−1∪Xi)

Bringing out the last term of each sum,

n

∑
i=3

r(Xi)+ r(Xn+1)+ r(X1∪X2)+ r(X1∪X3∪Xn)

+
n

∑
i=4

r(X2∪Xi−1∪Xi)+ r(X2∪Xn+1)

≤ r(X1∪X3)+ r(X1∪Xn)+
n

∑
i=3

r(X2∪Xi)

+ r(X2∪Xn+1)+
n

∑
i=4

r(Xi−1∪Xi)+ r(Xn∪Xn+1)

Now bringing these terms to the start of each side of the inequality and using
Xn+1 = Xn, we have that this is the same as

r(Xn)+ r(X2∪Xn)+
n

∑
i=3

r(Xi)+ r(X1∪X2)

+ r(X1∪X3∪Xn)+
n

∑
i=4

r(X2∪Xi−1∪Xi)

≤ r(X2∪Xn)+ r(Xn)+ r(X1∪X3)+ r(X1∪Xn)

+
n

∑
i=3

r(X2∪Xi)+
n

∑
i=4

r(Xi−1∪Xi)

The two terms at the start of each side of the inequality cancel out, leaving in-



CHAPTER 4. KINSER HIERARCHY 22

equality n:

n

∑
i=3

r(Xi)+ r(X1∪X2)+ r(X1∪X3∪Xn)+
n

∑
i=4

r(X2∪Xi−1∪Xi)

≤ r(X1∪X3)+ r(X1∪Xn)+
n

∑
i=3

r(X2∪Xi)+
n

∑
i=4

r(Xi−1∪Xi). �

We now have the following diagram of the Kinser hierarchy.

K4

K5

Kn

K∞

Representable

Figure 4.1: Kinser classes

Next, we will give an example of a matroid which lies in the gap between two of
these classes.

Lemma 4.3. For n≥ 5, Kin(n)− ∈ Kn−1−Kn.

Proof. Take Kin(n)−. We will first show that V1, . . . ,Vn as in the definition of
Kin(n) forms a bad family for inequality n – that is,

n

∑
i=3

r(Vi)+ r(V1∪V2)+ r(V1∪V3∪Vn)+
n

∑
i=4

r(V2∪Vi−1∪Vi)

� r(V1∪V3)+ r(V1∪Vn)+
n

∑
i=3

r(V2∪Vi)+
n

∑
i=4

r(Vi−1∪Vi)
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We sketch the proof of [5, Proposition 4.5].

Recall that V1 ∪V2 is a relaxed circuit-hyperplane, while V2 ∪Vi is a circuit-
hyperplane for all i ∈ {3, . . . ,n}. Also, Vi ∪Vi+1 is a hyperplane for all i ≥ 4,
as is V1∪V3, while Vi∪Vk is spanning for inconsecutive i,k. Each Vi is indepen-
dent, while the union of any three Vi is spanning. Substituting these results into
inequality n gives

∑n
i=3(n−2)+n+n+∑n

i=4 n 6≤ (n−1)+n(n−1)
+∑n

i=3(n−1)+∑n
i=4(n−1)

⇔ (n−2)(n−2)+2n+(n−3)n 6≤ (2n−3)(n−1)
⇔ 2n2−5n+4 6≤ 2n2−5n+3

Thus Kin(n)− /∈ Kn.

Assume Kin(n)− has a family X1, . . . ,Xn−1 which violates inequality n− 1. Re-
call that if we take a second hyperplane of the form V2 ∪Vj, for an arbitrary
j ∈ {3, . . . ,n} and relax it, this yields a representable matroid Kin(n)=j by Lemma
3.8. As relaxing a circuit-hyperplane causes that subset to become independent,
the rank of V2∪Vj increases by one. The rank of all other subsets are unchanged.
Suppose V2∪Vj was not a term in inequality n−1 as applied to X1, . . . ,Xn−1. Re-
laxing V2∪Vj would then have no effect on the value of the inequality, giving that
X1, . . . ,Xn−1 is a bad family in Kin(n)=. This contradicts the matroid being repre-
sentable. Suppose that V2∪Vj is a term on the left-hand side of inequality n−1.
Then, when we relax V2∪Vj, the left-hand side of the inequality increases by one
while the right-hand side remains the same. As the inequality previously did not
hold, that is, the left-hand side was in fact greater than the right-hand side, it still
cannot hold. Thus V2∪Vj must be a term on the right-hand side of inequality n,
for all j. There are n−2 choices of j, hence n−2 terms on the right-hand side of
inequality n−1 must be these circuit-hyperplanes, V2∪Vj.

Next, note that if we tighten V1 ∪V2, the resulting matroid is representable, by
[5, Lemma 4.6]. This decreases the rank of V1 ∪V2 by one and leaves the ranks
of all other subsets unchanged. As with V2 ∪Vj, the set V1 ∪V2 must be a term
of inequality n− 1 in order for the inequality to be able to reflect the change in
representability. If V1∪V2 was a term on the right-hand side, after tightening V1∪
V2 the right-hand side would decrease by one and the left-hand side would remain
the same. As prior to tightening the left-hand side was greater than the right-hand
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side, this fact is still true, meaning the inequality does not hold, contradicting the
matroid being representable. A term on the left-hand side of inequality n−1 must
be equal to V1∪V2.

Now consider a graph G on vertices V = {X1, ...,Xn−1} with adjacency relation a

such that

a(Xi) = {X j | Xi∪X j | is a term on the right-hand side of inequality n−1}

Take the subgraph G′ induced by the edges of G corresponding to the circuit-
hyperplanes V2∪V3, . . . ,V2∪Vn. Suppose G′ has a path of length three. Call this
path Xa,e,Xb, f ,Xc,g,Xd and let the edges e, f ,g refer to the circuit-hyperplanes
V2∪Vi, V2∪Vj, V2∪Vk respectively.

Xa

Xb Xc

Xd

V2∪Vi

V2∪Vj

V2∪Vk

Consider what elements must lie where; Xb ∪Xc must be equal to V2 ∪Vj. The
set Xb cannot contain any elements of Vj as Xa ∪Xb = V2 ∪Vi, and Vi and Vj are
disjoint. However, Xc cannot contain any of the elements of Vj either, since Xc∪
Xd = V2 ∪Vk does not. This structure can thus not exist, that is, G′ can have no
paths of length three. The same reasoning shows G′ cannot have a cycle of length
three. We will now show that G′ does in fact contain a path or cycle of length
three. As V1∪V2 must be a term on the left-hand side of inequality n−1, one of
X1, ...,Xn−1 must contain elements from V1. This subset cannot be incident with
any edge representing a circuit-hyperplane V2∪Vi, so G′ has at most n−2 vertices.
G′ must have n−2 edges. As trees must have an edge set of size one less than the
number of vertices, this shows G′ is not a tree, and thus contains a path or cycle
of length three. Hence Kin(n)− cannot have a bad family for inequality n−1. �
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K4

K5

Kn

K∞

Representable

Kin(4)−

Kin(5)−

Kin(6)−

Figure 4.2: Kinser classes (2)

Next we show that the first Kinser class, K4, is dual-closed.

Lemma 4.4. Let M be an excluded minor for the class K4. Let X1, . . . ,X4 be a

bad family in M for inequality 4. Then X1, . . . ,X4 is a partition of E(M).

Proof. Suppose there is an element of E(M) which is not contained in some Xi.
We could then delete this element and X1, . . . ,Xn would still form a bad fam-
ily, contradicting M being minor-minimal with respect to not being in K4. Thus
X1, . . . ,Xn must cover the entire ground set.

Now assume the sets in the bad family are not disjoint, so there exists an x which
is in Xi∩X j for some i, j. Contract x, and for each set Xk, let X ′k = Xk−{x}.
Let L be some union of the Xi’s, so that r(L) appears somewhere in the inequality.
Say that L is stable if rM/x(L−{x}) = rM(L). If none of the five terms on the
right-hand side of the inequality are stable, then the sum on the right-hand side
of the inequality decreases by exactly five when we contract x and remove x from
each term. Since the left-hand side can decrease by at most five, this means that
X1/x, . . . ,Xn/x is a bad family in M/x, which is impossible as M is an excluded
minor for K4, and so M/x ∈ K4. Therefore there is a stable set on the right-hand
side.

As x ∈ Xi ∩X j, the rank of any term that includes Xi or X j decreases when we
contract x and remove it from the term, and so these terms cannot be stable. There
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is at most one term on the right-hand side of the inequality that does not involve
Xi or X j, so the right-hand side has exactly one stable term. Now this stable term
is equal to Xm ∪Xn, where either m or n is equal to 3 or 4. Note x /∈ cl(Xm) and
x /∈ cl(Xn), or else Xm∪Xn would not be stable. Therefore either X3 or X4 is stable,
so there is a stable term on the left-hand side of the inequality also. This means
that X1/x, . . . ,Xn/x is a bad family in M/x, and we get another contradiction. �

Lemma 4.5. K4 =K∗4

Proof. Assume for a contradiction that M ∈ K4 and M∗ /∈ K4. Note that M∗ con-
tains a minor-minimal matroid not in K4. Let N be a minor of M such that N∗ is
an excluded minor for K4. Let X1, . . . ,X4 be a bad family of N∗. By the previous
lemma, we have that X1, . . . ,X4 partitions E(N∗). By assumption we have that

r∗(X3)+ r∗(X4)+ r∗(X1∪X2)+ r∗(X1∪X3∪X4)+ r∗(X2∪X3∪X4)

� r∗(X1∪X3)+ r∗(X1∪X4)+ r∗(X2∪X3)+ r∗(X2∪X4)+ r∗(X3∪X4)

(4.5.1)

Recall r∗(X) = |X |+r(X)−r(N) where X = E(N)−X . Use this identity on every
term in the inequality. Now we see that (4.5.1) is true if and only if (4.5.2) is true.

|X3|+ |X4|+ r(X3)+ r(X4)+ |X1∪X2|+ r(X1∪X2)

+ |X1∪X3∪X4|+ r(X1∪X3∪X4)

+ |X2∪X3∪X4|+ r(X2∪X3∪X4)−5r(N)

� |X1∪X3|+ r(X1∪X3)+ |X1∪X4|+ r(X1∪X4)

+ |X2∪X3|+ r(X2∪X3)+ |X2∪X4|
+ r(X2∪X4)+ |X3∪X4|+ r(X2∪X4)−5r(N)

(4.5.2)

Using the identities |Xi ∪X j| = |Xi|+ |X j| − |X1 ∩X j| and |Xi ∪X j ∪Xk| = |Xi|+
|X j|+ |Xk|− |Xi∩X j|− |Xi∩Xk|− |X j ∩Xk|+ |Xi∩X j ∩Xk|, we can simplify this.
Fully apply these identities to each cardinality term. We now have that (4.5.2) is
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true if and only if (4.5.3) is true.

|X3|+ |X4|+ r(X3)+ r(X4)

+ |X1|+ |X2|− |X1∩X2|+ r(X1∪X2)

+ |X1|+ |X3|+ |X4|− |X1∩X3|− |X1∩X4|
− |X3∩X4|+ |X1∩X3∩X4|+ r(X1∪X3∪X4)

+ |X2|+ |X3|+ |X4|− |X2∩X3|− |X2∩X4|− |X3∩X4|
+ |X2∩X3∩X4|+ r(X2∪X3∪X4)

� |X1|+ |X3|− |X1∩X3|+ r(X1∪X3)

+ |X1|+ |X4|− |X1∩X4|+ r(X1∪X4)

+ |X2|+ |X3|− |X2∩X3|+ r(X2∪X3)

+ |X2|+ |X4|− |X2∩X4|+ r(X2∪X4)

+ |X3|+ |X4|− |X3∩X4|+ r(X2∪X4)

(4.5.3)

As X1, . . . ,X4 is a partition of E(M), any term Xi ∩X j is empty. Cancelling out
these terms, and all common terms, yields

r(X3)+ r(X4)+ r(X1∪X2)+ r(X1∪X3∪X4)+ r(X2∪X3∪X4)

� r(X1∪X3)+ r(X1∪X4)+ r(X2∪X3)+ r(X2∪X4)+ r(X3∪X4)
(4.5.4)

Now let Y1 = X1∪X2∪X3, Y2 = X1∪X2∪X4, Y3 = X1∪X3∪X4, and Y4 =

X2∪X3∪X4.

We have the following equalities

Y1∪Y3∪Y4 = X1∪X2∪X3∪X1∪X3∪X4∪X2∪X3∪X4

= X4∪X2∪X1

= X3

Y2∪Y3∪Y4 = X1∪X2∪X4∪X1∪X3∪X4∪X2∪X3∪X4

= X3∪X2∪X1

= X4
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Y1∪Y2 = X1∪X2∪X3∪X1∪X2∪X4

= X4∪X3

= X1∪X2

Y1∪Y3 = X1∪X2∪X3∪X1∪X3∪X4

= X4∪X2

= X1∪X3

Y2∪Y3 = X1∪X2∪X4∪X1∪X3∪X4

= X3∪X2

= X1∪X4

Y1∪Y4 = X1∪X2∪X3∪X2∪X3∪X4

= X4∪X1

= X2∪X3

Y2∪Y4 = X1∪X2∪X4∪X2∪X3∪X4

= X3∪X1

= X2∪X4

Y3∪Y4 = X1∪X3∪X4∪X2∪X3∪X4

= X2∪X1

= X3∪X4

Inequality (4.5.4) thus becomes

r(Y1∪Y3∪Y4)+ r(Y2∪Y3∪Y4)+ r(Y1∪Y2)+ r(Y3)+ r(Y4)

� r(Y1∪Y3)+ r(Y2∪Y3)+ r(Y1∪Y4)+ r(Y2∪Y4)+ r(Y3∪Y4)

These rank terms are exactly those of inequality 4, which holds for Y1, . . . ,Y4 as
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N ∈ K4. Thus N∗ also satisfies inequality 4, for all choices of X1, . . . ,X4. �

We conjecture that this is the only Kinser class which is dual-closed. We provide
a proof that the second Kinser class is indeed not dual-closed. There appears to
be no simple way to verify that a matroid satisfies a particular Kinser inequality,
which leads to the difficulty involved in the next chapter. In a later chapter, we
will provide a result on the complexity of verifying that a matroid satisfies Kinser
inequality n.

Theorem 4.6. K5 6=K∗5

The proof of this theorem forms the content of the next chapter. There are now
two possibilities of how the Kinser classes sit in the hierarchy, as shown in the
following diagrams.

K4 =K∗4

K5 K∗5
K6

Figure 4.3: Kinser classes (3a)

K4 =K∗4

K5 K∗5
K6

Figure 4.4: Kinser classes (3b)



Chapter 5

K5 6=K∗5

Theorem 5.1. Kin(5)− ∈ K∗5.

Proof. Recall that Kin(5)− is the matroid obtained from the rank-5 Kinser matroid
by relaxing the circuit-hyperplane V1 ∪V2. Assume (Kin(5)−)∗ has at least one
bad family X1, . . . ,X5 violating Kinser inequality 5, where each set Xi is a flat of
(Kin(5)−)∗.

Note that the complement of V1∪V2 is a relaxed circuit-hyperplane in (Kin(5)−)∗,
and tightening it produces Kin(5)∗, which is representable. This operation affects
the rank function by decreasing the rank of exactly one set: V3∪V4∪V5. Suppose
V3∪V4∪V5 is not a term in inequality 5 as applied to X1, . . . ,X5. Then evaluating
the inequality after relaxing the circuit-hyperplane would give the same value as
before relaxing, contradicting the change in representability. As the rank of V3∪
V4 ∪V5 decreases by one when we tighten it, the only way for the inequality to
hold only after the tightening is for the left-hand side of the inequality to decrease
and the right-hand side to remain the same. So V3∪V4∪V5 must be a term on the
left-hand side of the inequality.

Next note that V2∪V3, V2∪V4, and V2∪V5 are circuit-hyperplanes in Kin(5)−, so
V1∪V4∪V5, V1∪V3∪V5, V1∪V3∪V4 are circuit-hyperplanes of (Kin(5)−)∗. Re-
laxing any one of these would yield a representable matroid, and so these subsets
must be terms in the inequality. The rank of each of these subsets increases by
one when relaxed, so for the inequality to hold the right-hand side must increase,
meaning these three sets must be terms on the right-hand side of inequality 5.

Let e ∈V2. If e /∈ X1, . . . ,X5, then (Kin(5)−)∗\e = (Kin(5)−/e)∗ has a bad family.

30
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This means that Kin(5)−/e is not representable. We will show that the elements
of V1 are freely placed in Kin(5)−/e . Pick z ∈ V1. Let Z be a non-spanning
subset in Kin(5)−/e such that z ∈ clKin(5)−/e(Z)− Z. This implies by Lemma
2.5 z ∈ clKin(5)−(Z ∪{e}). Note that the closure of a set in Kin(5) only differs
from that in Kin(5)− in that it may contain additional elements in Kin(5). Thus
z ∈ clKin(5)(Z∪{e}).
Recall that M6 is the transversal matroid whose truncation is defined to be Kin(5).
As Z∪{e} does not span Kin(5), truncation does not affect the rank of this subset,
and so z ∈ clM6(Z∪{e}). Now consider the neighbours of Z∪{e} in the transver-
sal system A. The neighbours of z must be contained in this set, as otherwise
the rank of Z ∪ {e,z} would be greater than the rank of Z ∪ {e}, contradicting
z ∈ cl(Z∪{e}). Recall that in Mr+1, V1 is incident with A4, A5 and A, while A2 is
incident with A′. As z ∈ V1 and e ∈ V2, we have that Z ∪{e} is neighbours with
A4,A5,A, and A′.

Recall Z is non-spanning in Kin(5)−/e. As Kin(5)−/e has rank 4, rKin(5)−/e(Z)≤
3, and rKin(5)−(Z ∪{e}) ≤ 4. This rank cannot change after tightening V1 ∪V2,
so rKin(5)(Z ∪ {e}) ≤ 4. Hence Z ∪ {e} is non-spanning in Kin(5), so rM6(Z ∪
{e} ≤ 4. This means that Z ∪ {e} has exactly A0, A1, A3, and A4 as neigh-
bours. Thus Z ∪ {e} ⊆ V1 ∪ {e, f}. This implies that Z ∪ {e,z} is independent
in Kin(5)−, and so Z∪{z} is independent in Kin(5)−/e. This is a contradiction,
as z ∈ clKin(5)−/e(Z)− Z. Thus z is free in Kin(5)−/e and Kin(5)−/e is a free-
extension of Kin(5)−/e\z = Kin(5)/e\z which is K-representable. This contra-
dicts (Kin(5)−)∗\e = (Kin(5)−/e)∗ having a bad family, and so all elements of
V2 must be contained in some set Xi.

Suppose the elements of V2 are contained in different sets in the bad family. That
is, suppose e ∈ Xi and f ∈ X j for some i, j. The three circuit-hyperplanes V1 ∪
V3∪V4, V1∪V4∪V5, V1∪V3∪V5 and the relaxed circuit-hyperplane V3∪V4∪V5

do not include elements of V2, and thus cannot be equal to terms in the inequality
which use Xi or X j. Removing these terms from the inequality leaves at most
three possible terms for these circuit-hyperplanes, regardless of the values of i

and j. Thus both elements of V2, e and f , must be contained in the same set Xi of
the bad family.

Considering each possible location for the elements of V2 gives us five cases –
V2 ∩X1 6= ∅, V2 ∩X2 6= ∅, V2 ∩X3 6= ∅, V2 ∩X4 6= ∅, and V2 ∩X5 6= ∅. Take
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the case X5 ∩V2 6= ∅. Swapping X3 and X5 gives the inequality, and this case is
thus identical to the case where V2 ∩X3 6= ∅. We thus reduce to the four cases
examined below.

Case 1. X3∩V2 6=∅

Consider which term on the left-hand side of the inequality must be V3∪V4∪V5.
As this term does not contain any elements of V2 and these elements are contained
in X3, the term cannot involve X3. In the following diagram, the ovals represent
the sets X1, . . . ,X5. An edge between two sets represents the union of those two
sets. The edges shown below are on the right-hand side of the inequality, and thus
possible locations for the necessary circuit-hyperplanes V1∪V3∪V5, V1∪V4∪V5,
V1∪V3∪V4. Note that X1∪X2, indicated by the dashed line, appears on the left-
hand side of the inequality. The edges coming from X3 have been left off as, since
the elements of V2 are contained in X3, none of these edges could represent the
three circuit-hyperplanes.

X1

X2 X3

X4

X5

If V3 ∪V4 ∪V5 is equal to X4 or X5 then any term involving these sets cannot be
one of the circuit-hyperplanes V1∪V3∪V5, V1∪V4∪V5, V1∪V3∪V4 as these must
appear on the right-hand side of the inequality. This will not leave us with enough
terms on the right-hand side which could be these three circuit-hyperplanes – if
V3∪V4∪V5 = X4, then the terms available for the circuit-hyperplanes are X1∪X5

and X2∪X5, while if V3∪V4∪V5 = X5, there are again only two terms available,
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X1∪X2 and X2∪X4. If V3∪V4∪V5 = X2∪X4∪X5, then elements of V1 can only
be in X1. Note that all of the three circuit-hyperplanes which must appear on the
right-hand side include V1. However, as X3∩V2 6=∅, the only free term using X1

is X1 ∪X5, so we are unable to have the three needed circuit-hyperplanes on the
right-hand side. The only remaining possibility is that V3∪V4∪V5 = X1∪X2.

We now have four possibilities of where the circuit-hyperplanes on the right-hand
side of the inequality lie, and we will consider various subcases. Let {i, j,k} =
{3,4,5}. The following diagrams show these subcases, as indicated by the bold
lines.

X1

X2 X3

X4

X5

Subcase 1.1

X1

X2 X3

X4

X5

Subcase 1.2

X1

X2 X3

X4

X5

Subcase 1.3

X1

X2 X3

X4

X5

Subcase 1.4
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In each subcase examined below, we are considering the circuit-hyperplanes to lie
as indicated by the diagram at the start of each subcase. In all of these, there are
multiple options for which elements are in what sets, as described below.

Subcase 1.1.

X1

X2 X3

X4

X5

V1
∪V

j∪
V k

V
1 ∪

V
i ∪

V
j

V1∪Vi∪Vk

Here, we have assumed that V2 ⊆ X3. As X3 may contain other elements of the
ground set of M, any terms in the inequality involving X3 will not be immediately
evaluated. Recall that X1 ∪X2 = V3 ∪V4 ∪V5. This means that V1 can only be a
subset of X4 or X5. In order for the three circuit-hyperplanes to lie as indicated,
both X4 and X5 must contain V1. Also, X2 must be equal to Vi, as this forms the
common values of the two circuit-hyperplanes involving X2, excluding V1. Finally,
X5 must be equal to V1∪Vk, while X1 must contain Vj∪Vk. As we assumed the sets
Xi to be flats, X1 could also include one or two elements of Vi. It cannot contain all
three elements, as Vi∪Vj∪Vk is a relaxed circuit-hyperplane, and thus has closure
equal to the entire ground set. This gives the following three subcases, which
differ only in elements of X1. In each subcase, we will begin by evaluating terms
of the left-hand and right-hand sides of inequality 5, then show that the left-hand
side must be lower in value, meaning that the inequality holds.

Subcase 1.1a: X1 =Vj∪Vk

X2 =Vi

X3 =V2∪Z where Z ⊆ E(M)
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X4 =V1∪Vj

X5 =V1∪Vk

Note that X1∪X2 =V1∪V2 and that X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

We will use M to refer to Kin(5)−.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

+ |X4|+ |X5|+ |X1∪X2|+ |X2∪X4∪X5|
+ r(X4)+ r(X5)+ r(X1∪X2)+ r(X2∪X4∪X5)−4r(M)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)

+6+6+9+12+5+5+5+2

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)+50

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+ |X1∪X5|
+ |X2∪X4|+ |X2∪X5|+ |X4∪X5|+ r(X1∪X5)

+ r(X2∪X4)+ r(X2∪X5)+ r(X4∪X5)−4r(M)

≥ r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)

+9+9+9+9+4+4+4+4

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)+52

We must have that

r∗(X3)+ r∗(X1∪X3∪X4)+ r∗(X2∪X3∪X5)

> r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+2

in order for X1, . . . ,X5 to be a bad family.

Suppose Z = ∅, that is, X3 = V2. We then have 2+ 9+ 9 > 8+ 5+ 8+ 2 which
is untrue. Suppose we increase the size of Z. If the cardinality of one of the
unions in the above inequality does not change, then neither does the rank of
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the complement, and thus the corank is unchanged. Note that X1 ∪ X3 ∪ X5 =

V1∪V2∪Vj ∪Vk∪Z. If the cardinality of this set is greater when Z is non-empty,
then Z ⊆ Vi. As X1∪X3∪X5 = Vi−Z, this will cause the rank of X1∪X3∪X5 to
decrease. The corank is thus unchanged from when Z = ∅. A similar argument
shows that the corank of X2∪X3∪X4 = V1∪V2∪Vi∪Vj ∪Z must be unchanged
as its complement Vk−Z is independent. Also,

r∗(X3∪X4)+2≥ r∗(X3)+ r∗(X4)− r∗(X3∩X4)+2

≥ r∗(X3)+ r∗(X4)− r∗(Z∩X4)+2

≥ r∗(X3)+2

≥ r∗(X3)

Thus increasing the size of Z can only cause the left-hand side to decrease by more
than the right-hand side, and so we cannot have a bad family for any choice of Z.

Subcase 1.1b: X1 =Vj∪Vk∪{a} where a ∈Vi

X2 =Vi

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vj

X5 =V1∪Vk

The only terms whose value changes from Subcase 1.1a is |X1 ∪X5| which in-
creases by one. So we must have that

r∗(X3)+ r∗(X1∪X3∪X4)+ r∗(X2∪X3∪X4)

> r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+3

The same argument as before shows that we do not have a bad family, for any
choice of Z.

Subcase 1c: X1 =Vj∪Vk∪{a,b} where a,b ∈Vi

X2 =Vi

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vj

X5 =V1∪Vk

Here, |X1∪X5| is one higher than in Subcase 1.1a, while r(X1∪X5) is one lower,
and the inequality is thus identical to subcase 1b.
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Subcase 1.2.

X1

X2 X3

X4

X5

V1
∪V

i∪
V j

V
1 ∪V

j ∪V
k

V1∪Vi∪Vk

Again, we have by assumption that V2 ⊆ X3. X3 may contain other elements of
the ground set of M, thus any terms in the inequality involving X3 will not be
immediately evaluated. X5 must be equal to V1, as these are the only common
elements of the three circuit-hyperplanes. This forces X1 to be equal to Vi ∪Vj,
as X1 ∪X2 = V3 ∪V4 ∪V5 and thus X1 cannot contain elements of V1. Likewise,
X2 must be equal to Vi∪Vk. Also, X4 must contain Vj ∪Vk. As we assumed that
the sets Xi are flats, X4 could also include one or three elements of V1. Note X4

cannot contain exactly two elements of V1, as V1∪Vj ∪Vk is a circuit-hyperplane.
This gives the following three subcases, which differ only in elements of X4. As
before, in each subcase we will begin by evaluating terms on the left-hand and
right-hand sides of inequality 5, then show that the left-hand side must be lower
in value, meaning that the inequality holds.

Subcase 1.2a: X1 =Vi∪Vj

X2 =Vi∪Vk

X3 =V2∪Z where Z ⊆ E(M)

X4 =Vj∪Vk

X5 =V1
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Note that X1∪X2 =V1∪V2 and X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

+ |X4|+ |X5|+ |X1∪X2|+ |X2∪X4∪X5|
+ r(X4)+ r(X5)+ r(X1∪X2)+ r(X2∪X4∪X5)−4r(M)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)

+6+3+9+12+5+5+5+2

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)+47

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+ |X1∪X5|
+ |X2∪X4|+ |X2∪X5|+ |X4∪X5|+ r(X1∪X5)

+ r(X2∪X4)+ r(X2∪X5)+ r(X4∪X5)−4r(M)

≥ r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)

+9+9+9+9+4+5+4+4

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)+53

We must have that

r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

> r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+6

Suppose Z = ∅. Then 2 + 9 + 9 > 8 + 8 + 8 + 6 which is untrue. The same
argument as in subcase 1a shows that if Z is non-empty, we still cannot have a bad
family.

Subcase 1.2b: X1 =Vi∪Vj

X2 =Vi∪Vk

X3 =V2∪Z where Z ⊆ E(M)

X4 =Vj∪Vk∪{a} where a ∈V1

X5 =V1



CHAPTER 5. K5 6=K∗5 39

Compared to subcase 2a, |X4| increases by one on the left-hand side. On the right-
hand side, |X2∪X4| increases by one. The overall inequality is unchanged, so the
same argument as in subcase 2a holds.

Subcase 1.2c: X1 =Vi∪Vj

X2 =Vi∪Vk

X3 =V2∪Z where Z ⊆ E(M)

X4 =Vj∪Vk∪Vi

X5 =V1

Compared to subcase 2a, both |X4| and |X2 ∪X4| increase by three, leaving the
inequality unchanged.

Subcase 1.3.

X1

X2 X3

X4

X5

V
1 ∪V

i ∪V
k

V
1 ∪

V
j ∪

V
k

V1∪Vi∪Vj

Again, we have by assumption that V2 ⊆ X3. As X3 may contain other elements
of the ground set of M, any terms in the inequality involving X3 will not be im-
mediately evaluated. Recall that X1∪X2 = V3 ∪V4∪V5. This means that V1 can
only be a subset of X4 or X5. In order for the three circuit-hyperplanes to lie as
indicated, both X4 and X5 must contain V1. Also, X2 must be equal to Vj, as this
forms the common values of the two circuit-hyperplanes involving X2, excluding
V1. Finally, X5 must be equal to V1 ∪Vi, while X4 must be equal to Vi ∪Vk. As
we assumed that the sets Xi are flats, X1 could also include one or two elements
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of Vj. It cannot contain three elements of Vj, as Vi ∪Vj ∪Vk is a relaxed circuit-
hyperplane in (Kin(5)−)∗ and thus has closure equal to the entire ground set. This
gives the following three subcases, which differ only in elements of X1. As before,
in each subcase we will begin by evaluating terms of the left-hand and right-hand
sides of inequality 5, then show that the left-hand side must be lower in value,
meaning that the inequality holds.

Subcase 1.3a: X1 =Vi∪Vk

X2 =Vj

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vk

X5 =V1∪Vi

Note that X1∪X2 =V1∪V2 and X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

+ |X4|+ |X5|+ |X1∪X2|+ |X2∪X4∪X5|
+ r(X4)+ r(X5)+ r(X1∪X2)+ r(X2∪X4∪X5)−4r(M)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)

+6+6+9+12+5+5+5+2

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)+50

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+ |X1∪X5|
+ |X2∪X4|+ |X2∪X5|+ |X4∪X5|+ r(X1∪X5)

+ r(X2∪X4)+ r(X2∪X5)+ r(X4∪X5)−4r(M)

≥ r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)

+9+9+9+9+4+4+4+4

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)+52
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We must have that

r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

> r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+2

Suppose Z = ∅. Then we have 2+ 9+ 9 > 8+ 5+ 8+ 2 which is untrue. If we
increase the size of Z, the same argument as in subcase 1a shows that we still
cannot have a bad family.

Subcase 1.3b: X1 =Vi∪Vk∪{a} where a ∈Vj

X2 =Vj

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vk

X5 =V1∪Vi

Compared to subcase 3a, |X1∪X5| increases by one, and the same argument still
holds.

Subcase 1.3c: X1 =Vi∪Vk∪{a,b} where a,b ∈Vj

X2 =Vj

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vk

X5 =V1∪Vi

Compared to subcase 3a, |X1∪X5| increases by two, while r(X1∪X5) falls by one.
The right-hand side of the inequality increases by one, and the same argument as
before holds.
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Subcase 1.4.

X1

X2 X3

X4

X5

V1
∪V

i∪
V k

V
1 ∪V

i ∪V
j

V
1 ∪

V
j ∪

V
k

Again, we have by assumption that V2 ⊆ X3. As X3 may contain other elements of
the ground set of M, any terms in the inequality involving X3 will not be immedi-
ately evaluated. Recall that X1∪X2 =V3∪V4∪V5. This means that V1 can only be
a subset of X4 or X5. In order for the three circuit-hyperplanes to lie as indicated,
both X4 and X5 must contain V1. As X2∪X4 cannot contain Vi, X5 must be equal
to V1∪Vi. Likewise, X2 must contain Vk. This forces X4 to contain Vj, and X1 to
contain Vk. Finally, in order for X1∪X2 =V3∪V4∪V5, it must be that X2 is equal
to Vj∪Vk and X1 is equal to Vi∪Vk.

X1 =Vi∪Vk

X2 =Vj∪Vk

X3 =V2∪Z where Z ⊆ E(M)

X4 =V1∪Vj

X5 =V1∪Vi
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Note that X1∪X2 =V1∪V2 and X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

+ |X4|+ |X5|+ |X1∪X2|+ |X2∪X4∪X5|
+ r(X4)+ r(X5)+ r(X1∪X2)+ r(X2∪X4∪X5)−4r(M)

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)

+6+6+9+12+5+5+5+2

= r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)−4r(M)+50

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)+ |X1∪X5|
+ |X2∪X4|+ |X2∪X5|+ |X4∪X5|+ r(X1∪X5)

+ r(X2∪X4)+ r(X2∪X5)+ r(X4∪X5)−4r(M)

≥ r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)

+9+9+9+9+4+4+2+4

= r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)−4r(M)+50

We must have that

r∗(X3)+ r∗(X1∪X3∪X5)+ r∗(X2∪X3∪X4)

> r∗(X1∪X3)+ r∗(X2∪X3)+ r∗(X3∪X4)

Suppose Z = ∅. Then we have 2+ 9+ 9 > 8+ 8+ 8 which is untrue. If we
increase the size of Z, the same argument as in subcase 1a shows that we still
cannot have a bad family.

Case 2. X4∩V2 6=∅

As in Case 1, we will consider which term on the left-hand side dual inequality
must be V3∪V4∪V5. As this term does not contain any elements of V2 and these
elements are contained in X4, the term cannot involve X4. We now have the fol-
lowing representation of the locations remaining as possibilities for all necessary
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circuit-hyperplanes, where the dashed line again indicates a term which falls on
the left-hand side of the inequality.

X1

X2 X3

X4

X5

If V3∪V4∪V5 is equal to X3 or X5 then any term involving these sets cannot be one
of the circuit-hyperplanes V1∪X4∪V5 or V1∪V3∪V5. When V3∪V4∪V5 = X3, the
possible terms left are X1∪X5 and X2∪X5. When V3∪V4∪V5 = X5, the possible
terms left are X1∪X3 and X2∪X3. In both cases there are not enough terms on the
right-hand side for the three circuit-hyperplanes. Thus V3∪V4∪V5 = X1∪X2. As
X3 and X5 can be switched with no effect on the inequality, we now have, up to
symmetry, two possibilities of where the circuit-hyperplanes lie, as indicated by
the bold lines in the following diagrams.

X1

X2 X3

X4

X5

Subcase 2.1

X1

X2 X3

X4

X5

Subcase 2.2
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We will again consider both of these subcases, with circuit-hyperplanes lying as
shown in the diagrams, which give multiple options within each subcase for the
choice of sets X1, . . . ,X5.

Subcase 2.1.

X1

X2 X3

X4

X5

V
1 ∪V

j ∪V
k

V1∪Vi∪VjV1∪Vi∪Vk

Here, we have assumed that V2 ⊆ X4. As X4 may contain other elements of the
ground set of M, any terms in the inequality involving X4 will not be immediately
evaluated. Recall that X1 ∪X2 = V3 ∪V4 ∪V5. This means that V1 can only be a
subset of X3 or X5. In order for the three circuit-hyperplanes to lie as indicated,
both X3 and X5 must contain V1. Note X2 must be equal to Vi, as this forms the
common values of the two circuit-hyperplanes involving X2, excluding V1. This
forces X1 to be equal to Vj∪Vk. Note that X1 cannot contain any elements of Vi as
X1∪X3 does not. Also, X3 must contain Vj and X5 must contain Vk. We have that
X3 must be equal to V1∪Vj. As we assumed that the sets Xi are flats, X5 could also
include one or three elements of Vi. X5 cannot contain exactly two elements of
Vi as V1∪Vk∪Vi is a circuit-hyperplane in the dual.This gives the following three
subcases, which differ only in elements of X5.

Subcase 2.1a: X1 =Vj∪Vk

X2 =Vi

X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk
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Note that X1∪X2 =V1∪V2 and X1∪X3∪X5 =V1∪Vj∪Vk =V2∪Vi.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

+ |X3|+ |X5|+ |X1∪X2|+ |X1∪X3∪X5|
+ r(X3)+ r(X5)+ r(X1∪X2)+ r(X1∪X3∪X5)−4r(M)

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)−4r(M)

+6+6+9+9+5+5+5+4

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)−4r(M)+49

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)+ |X1∪X3|
+ |X1∪X5|+ |X2∪X3|+ |X2∪X5|+ r(X1∪X3)

+ r(X1∪X5)+ r(X2∪X3)+ r(X2∪X5)−4r(M)

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)−4r(M)

+9+9+9+9+4+4+4+4

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)−4r(M)+52

We must have that

r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

> r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)+3

Suppose Z = ∅. Then we have that 2+ 8+ 8 > 5+ 8+ 8+ 3 which is untrue.
Now suppose Z is non-empty. Note that X2 ∪ X3 ∪ X4 = V1 ∪V2 ∪Vi ∪Vj ∪ Z

and X2∪X3∪X4 = Vk − Z, so if |X2 ∪ X3 ∪ X4| increases, then Z ⊆ Vk, and
r(X2∪X3∪X4) must decrease by the same amount. Thus r∗(X2 ∪ X3 ∪ X4) re-
mains unchanged. Likewise, r∗(X2 ∪X4 ∪X5) cannot change, as X2 ∪X4 ∪X5 =

V1∪V2∪Vi∪Vj∪Z and has complement Vk−Z. Finally, r∗(X4) must be no greater
than r∗(X4∪X5). We thus do not have a bad family.

Subcase 2.1b: X1 =Vj∪Vk

X2 =Vi
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X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk∪{a} where a ∈Vi

On the left-hand side, |X5| and |X1 ∪X3 ∪X5| both increase in size by two. On
the right-hand side, |X1∪X5| increases in size by one. The same argument as in
Subcase 1a shows there can be no bad family regardless of Z.

Subcase 2.1c: X1 =Vj∪Vk

X2 =Vi

X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk∪{a,b} where a,b ∈Vi

On the left-hand side, |X5| and |X1∪X3∪X5| both increase in size by two, while
r(X1∪X3∪X5) falls by one. On the right-hand side, |X1∪X5| increases in size by
two while r(X1∪X5) falls by one. We still have no bad family.

Subcase 2.2.

X1

X2 X3

X4

X5

V
1 ∪V

i ∪V
j

V1∪Vj∪Vk

V1
∪V

i∪
V k

Again, we have assumed that V2 ⊆ X4. As X4 may contain other elements of the
ground set of M, any terms in the inequality involving X4 will not be immediately
evaluated. Recall that X1 ∪X2 = V3 ∪V4 ∪V5. This means that V1 can only be a
subset of X3 or X5. In order for the three circuit-hyperplanes to lie as indicated,
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both X3 and X5 must contain V1. Also, X1 must be equal to Vi, as this forms the
common values of the two circuit-hyperplanes involving X2, excluding V1. This
forces X2 to be equal to Vj ∪Vk, forces X3 to be equal to V1 ∪Vj, and forces X5

to contain V1∪Vk. As we assumed that the sets Xi are flats, X5 could also include
one or three elements of Vi. Note X5 cannot contain exactly two elements of Vi

as V1 ∪Vk ∪Vi is a circuit-hyperplane in the dual.This gives the following three
subcases, which differ only in elements of X5.

Subcase 2.2a: X1 =Vi

X2 =Vj∪Vk

X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk

Note that X1∪X2 =V1∪V2 and X1∪X3∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

+ |X3|+ |X5|+ |X1∪X2|+ |X1∪X3∪X5|
+ r(X3)+ r(X5)+ r(X1∪X2)+ r(X1∪X3∪X5)−4r(M)

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)−4r(M)

+6+6+9+12+5+5+5+2

= r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)−4r(M)+50

RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)+ |X1∪X3|
+ |X1∪X5|+ |X2∪X3|+ |X2∪X5|+ r(X1∪X3)

+ r(X1∪X5)+ r(X2∪X3)+ r(X2∪X5)−4r(M)

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)−4r(M)

+9+9+9+9+4+4+4+4

= r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)−4r(M)+52
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We must have that

r∗(X4)+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

> r∗(X2∪X4)+ r∗(X3∪X4)+ r∗(X4∪X5)+2

Suppose Z = ∅. Then we have that 2+ 8+ 8 > 8+ 8+ 8+ 2 which is untrue.
Now suppose Z is non-empty. The same argument from Subcase 1a shows we
still cannot have a bad family.

Subcase 2.2b: X1 =Vi

X2 =Vj∪Vk

X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk∪{a} where a ∈Vi

On the left-hand side, |X5| increases by one relative to Subcase 2.2a. On the right-
hand side, |X2∪X5| increases by one. We still have no bad family.

Subcase 2.2c: X1 =Vi

X2 =Vj∪Vk

X3 =V1∪Vj

X4 =V2∪Z where Z ⊆ E(M)

X5 =V1∪Vk∪{a,b} where a,b ∈Vi

Both |X5| and |X2 ∪X5| increase by two, while r(X2∪X5) falls by one. We still
have no bad family.

Case 3. X2∩V2 6=∅

Again consider which term on the left-hand side dual inequality must be V3 ∪
V4∪V5. As this term does not contain any elements of V2 and these elements are
contained in X2, the term cannot involve X2. We have the following representation
of remaining possible locations for the necessary circuit-hyperplanes.
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X1

X2 X3

X4

X5

If V3∪V4∪V5 is equal to X3, X4, or X5 then any term involving these sets cannot
be one of the circuit-hyperplanes V1∪V3∪V4, V1∪X4∪V5, or V1∪V3∪V5. This
will leave us with two terms on the right-hand side which could be the circuit-
hyperplanes, but three are needed. If it is equal to X1 ∪ X3 ∪ X5, then only X4

can contain elements of V1. As V1 appears in all of the three circuit-hyperplanes
needed on the right-hand side of the inequality, and there are only two terms avail-
able using X4, we do not have enough terms left for the circuit-hyperplanes. This
covers all terms on the left-hand side, and thus X2∪V2 =∅.

Case 4. X1∩V2 6=∅

Consider which term on the left-hand side of the dual inequality must be V3∪V4∪
V5. It cannot be any of the terms involving X1 . We have the following representa-
tion of the remaining possible locations for the necessary circuit-hyperplanes.
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X1

X2 X3

X4

X5

If V3∪V4∪V5 is X1∪X3∪X5, X2∪X3∪X4, or X2∪X4∪X5, only two sets could
include elements of V1. We will not have enough terms left on the right-hand
side to be the circuit-hyperplanes V1 ∪V3 ∪V4, V1 ∪X4 ∪V5, and V1 ∪V3 ∪V5. If
V3 ∪V4 ∪V5 = X4, the circuit-hyperplanes cannot be terms using X4, so the only
possible edges remaining are X2∪X3 and X2∪X5 – one edge less than is necessary.
Thus V3∪V4∪V5 must be either X3 or X5. These two possibilities are symmetric,
so assume V3∪V4∪V5 = X3. The necessary circuit-hyperplanes now cannot use
X3 or X1. This gives only one possible assignment to the terms in the inequality,
as shown in the following diagram.

X1

X2 X3

X4

X5

V
1 ∪V

j ∪V
k

V1∪Vi∪Vj

V
1 ∪

V
i ∪

V
k
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We have that X1 = V2 ∪Z where Z is a possibly empty subset of the ground set
and that X3 =V3∪V4∪V5. X2 must contain Vi but cannot contain Vj or Vk, X4 must
contain Vk but cannot contain Vi or Vj, and X5 must contain Vj but cannot contain
Vi or Vk. All three of these sets could also contain one of three elements from V1,
such that whenever we take the union of two of the sets, the union contains V1. A
set cannot contain two elements of V1 as this would mean it was not a flat.

Note that if one of the sets X2, X4, or X5 contains no elements of V1, both the other
two sets must contain all elements of V1. If one of the sets contains one element of
V1, the other two sets must again contain all elements of V1. The third possibility
is that all three sets contain V1.

Subcase 4.1a: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪V1

X3 =V3∪V4∪V5

X4 =Vk

X5 =Vj∪V1

Note that X2∪X3∪X4 = X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)+ |X3|+ |X4|+ |X5|
+ |X2∪X3∪X4|+ |X2∪X4∪X5|+ r(X3)+ r(X4)

+ r(X5)+ r(X2∪X3∪X4)+ r(X2∪X4∪X5)−5r(M)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+9+3+6

+12+12+5+5+5+2+2

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+61
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RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X1∪X5)+ |X2∪X3|+ |X2∪X4|+ |X2∪X5|
+ |X3∪X4|+ |X4∪X5|+ r(X2∪X3)+ r(X2∪X4)

+ r(X2∪X5)+ r(X3∪X4)+ r(X4∪X5)−5r(M)

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+12+9+9

+9+9+2+4+4+5+4

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+67

We must have that

r∗(X1∪X2)+ r∗(X1∪X3∪X5)

> r∗(X1∪X3)+ r∗(X1∪X5)+6

in order for this to be a bad family.

Suppose Z = ∅. Then we have that 7+ 9 > 9+ 8+ 6 which is untrue. Now
suppose Z is non-empty. Note X1 ∪X3 ∪X5 is equal to the entire ground set, so
changing Z has no effect on this term and it is thus still spanning. Now take
r∗(X1∪X3) = r∗(V2∪V3∪V4∪V5∪Z). As X1∪X3 =V1−Z is coindependent for
any choice of Z, X1∪X3 is spanning for any choice of Z.

Now note that X1 ∪X2 = V1 ∪V2 ∪Vi ∪Z and X1∪X2 = (Vj ∪Vk)−Z. Note that
r(Vj ∪Vk) = 4. If Z = ∅, then r(X1∪X2) = 4. If Z is equal to one element in
Vj∪Vk, the cardinality of X1∪X2 will increase by one but the rank of X1∪X2 will
be unchanged. This increases r∗(X1∪X2) by one. Likewise, if Z is equal to two
elements of Vj∪Vk, then r∗(X1∪X2) increases by two. If Z has cardinality greater
than or equal to two, (Vj∪Vk)−Z will be coindependent, making X1∪X2 spanning
for all such Z. This means the left-hand side of the inequality can increase by at
most two.

Finally, |X1∪X5|= |V1∪V2∪Vj∪Z| and X1∪X5 = (Vi∪Vk)−Z. Note that r(Vi∪
Vk) = 5. If Z is equal to one element in Vi ∪Vk, the cardinality of X1 ∪X5 will
increase by one but the rank of X1∪X5 will be unchanged. This increases r∗(X1∪
X5) by one. When Z is equal to one or more elements in Vi∪Vk, (Vi∪Vk)−Z is
coindependent. This means that X1∪X5 is spanning for all such Z, and increasing
Z further can have no effect. This means the right-hand side of the inequality can
only increase in value by at most one with a non-empty Z.
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The inequality willl not be satisfied for any choice of Z.

Subcase 4.1b: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪V1

X3 =V3∪V4∪V5

X4 =Vk∪V1

X5 =Vj

Compare this to Subcase 4.1a. X4 now contains V1 and X5 does not, while in
Subcase 4.1a this was the opposite way around. First consider the left-hand side of
the inequality. We have that r∗(X4)+ r∗(X5) is unchanged, as is r∗(X2∪X4∪X5).
As V1 is contained in X2, r∗(X2∪X3∪X4) and r∗(X2∪X4∪X5) are also unchanged.
The only possible change from Subcase 4.1a is thus in r∗(X1 ∪X3 ∪X5). Note
that X1∪X3∪X5 = V2∪Vi∪Vj ∪Vk ∪Z and X1∪X3∪X5 = V1−Z. As V1−Z is
coindependent for any value of Z, X1 ∪X3 ∪X5 is spanning, as in Subcase 4.1a.
The left-hand side of the inequality is thus unchanged from Subcase 4.1a.

Now consider the right-hand side of the inequality. We have that r∗(X2 ∪X4)+

r∗(X2 ∪X5) remains the same, as does r∗(X4 ∪X5). This leaves r∗(X1 ∪X5) and
r∗(X3∪X4). First note that X3∪X4 =V1∪V3∪V4∪V5 and X3∪X4 =V2, which is
coindependent, and so X3∪X4 is still spanning. Now take X1∪X5 = V2∪Vj ∪Z,
where X1∪X5 = (V1 ∪Vi ∪Vk)− Z. Suppose Z = ∅. As Vi ∪Vk is spanning,
r∗(X1∪X5) will fall by three in comparison to Subcase 4.1a. As V1∪Vi∪Vk is a
dependent set of rank 5, we can remove at most three elements from it without
affecting the rank. Thus we can increase |X1 ∪ X5| by three without affecting
r∗(X1 ∪X5), but, after that, any change in |X1 ∪X5| is matched by a decrease in
r(X1∪X5), causing r∗(X1∪X5) to remain the same.

Thus, in comparison to Subcase 4.1a, the inequality is at worst three lower on the
right-hand side. As we showed in that subcase that the left-hand side can increase
by at most two with a non-empty choice of Z, the inequality cannot be satisfied.

Subcase 4.1c: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi

X3 =V3∪V4∪V5

X4 =Vk∪V1

X5 =Vj∪V1
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Compared to subcase 4.1a, X5 now contains V1 and X2 does not.

Consider the left-hand side of the inequality. Any terms which do not involve X2 or
X5 will be unchanged from Subcase 4.1a. Note |X5| increases by three, while r(X5)

remains the same, causing r∗(X5) to increase by three. Also, r∗(X2∪X3∪X4) and
r∗(X2∪X4∪X5) remain the same, as V1 ⊂ X4. Finally, take X1∪X2 =V2∪Vi∪Z.
We have that r∗(V2∪Vi) = 5, which is two less than in Subcase 4.1a. As X1∪X2 =

(V1∪Vj ∪Vk)−Z is a dependent set of rank 5, we can increase |X1∪X2| by three
without changing r(X1∪X2). If the cardinality of Z ⊆ V1∪Vj ∪Vk is any greater,
X1∪X2 is coindependent, and so X1∪X2 is spanning for all such Z. Thus, in total,
the left-hand side increases in value by at most one.

Now take the right-hand side of the inequality. Note that X2∪X3 is still spanning,
as X2∪X3 = V2 is coindependent, and note that r∗(X2∪X4) is unchanged. Also,
r∗(X2∪X5) and r∗(X4∪X5) remain the same, as V1 ⊂ X5. The right-hand side thus
does not change in value.

The inequality does not hold, and we thus have no bad family for any choice of Z.

Subcase 4.2a: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪V1

X3 =V3∪V4∪V5

X4 =Vk∪V1

X5 =Vj∪{a} where a ∈V1

Note that X2∪X3∪X4 = X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)+ |X3|+ |X4|+ |X5|
+ |X2∪X3∪X4|+ |X2∪X4∪X5|+ r(X3)+ r(X4)

+ r(X5)+ r(X2∪X3∪X4)+ r(X2∪X4∪X5)−5r(M)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+9+6+4

+12+12+5+5+5+2+2

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+62
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RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X1∪X5)+ |X2∪X3|+ |X2∪X4|+ |X2∪X5|
+ |X3∪X4|+ |X4∪X5|+ r(X2∪X3)+ r(X2∪X4)

+ r(X2∪X5)+ r(X3∪X4)+ r(X4∪X5)−5r(M)

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+12+9+9

+12+9+2+4+4+2+4

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+67

We must have that

r∗(X1∪X2)+ r∗(X1∪X3∪X5)

> r∗(X1∪X3)+ r∗(X1∪X5)+5

in order for this to be a bad family.

Suppose Z = ∅. We have that 7+ 9 > 9+ 6+ 5 which is untrue. Now suppose
Z 6=∅. We have shown in Subcase 4.1a that r∗(X1∪X3) cannot change, and that
r∗(X1∪X2) can increase by at most two. The sets X1, X2, and X3 are the same in
the current subcase and hence the same facts apply. Note that X1∪X3∪X5 is equal
to the entire ground set, and thus changing Z will have no effect on this term, as
in Subcase 4.1a. Let V1 = {a,b,c}. Finally, note that X1∪X5 = {a}∪V2∪Vj ∪Z

and X1∪X5 = ({b,c}∪Vi∪Vk)−Z. As {b,c}∪Vi∪Vk is a dependent set of rank
5, we can remove at most three elements from it without affecting the rank. Thus
we can increase |X1 ∪X5| by three without affecting r∗(X1 ∪X5), but, after that,
X1∪X5 is coindependent, causing r∗(X1∪X5) to be spanning for all such Z. Thus
the right-hand side of the inequality can increase by at most three when we make
Z non-empty. The left-hand side can increase by at most two, and so the inequality
cannot be satisfied.

Subcase 4.2b: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪{a} where a ∈V1

X3 =V3∪V4∪V5

X4 =Vk∪V1

X5 =Vj∪V1
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Compared to Subcase 4.2a, X2 contains two less elements of V1 while X5 contains
two more.

Consider the left-hand side of the inequality. Any terms not involving X2 or X5

are unchanged from Subcase 4.2a. As |X5| increases by two in comparison to
Subcase 4.2a, while r(X5) remains the same, we have that r∗(X5) to increase by
two. As V1 ⊂ X4, r∗(X2 ∪X3 ∪X4) and r∗(X2 ∪X4 ∪X5) remain the same. Note
that X1 ∪ X3 ∪ X5 is equal to the entire ground set and thus must be spanning,
as in Subcase 4.2a. Now note that X1 ∪ X2 = {a} ∪V2 ∪Vi ∪ Z and X1∪X2 =

({b,c} ∪Vi ∪Vk)− Z. As {b,c} ∪Vi ∪Vk is a dependent set of rank 5, we can
remove at most three elements from it without affecting the rank. Thus we can
increase |X1∪X2| by three without affecting r∗(X1∪X2), but, after that, X1∪X2 is
coindependent, causing r∗(X1∪X2) to be spanning for all such Z. The left-hand
side can thus increase by at most five in comparison to Subcase 4.2a.

Take the right-hand side of the inequality. Note r∗(X2 ∪X5) is unchanged. As
V1 ⊂ X4, r∗(X2∪X4) and r∗(X4∪X5) are also unchanged. We have that |X2∪X3|
decreases by two, but r(X2∪X3) increases by two, meaning that r∗(X2 ∪X3) is
unchanged. Finally, take X1∪X5 =V1∪V2∪Vj∪Z, where X1∪X5 = (Vi∪Vk)−Z.
Suppose that, to begin with, Z =∅. In Subcase 4.2a, r∗(X1∪X5) = 6. As X1∪X5

is still spanning in the current subcase, r∗(X1 ∪X5) increases by two due to the
increase in |X1∪X2|. Now suppose Z is non-empty. As Vi∪Vk has rank 5, we can
increase |X1∪X5| by one without decreasing r(X1∪X5). For any Z ⊆Vi∪Vk with
a cardinality greater than or equal to one, X1∪X5 is coindependent. This means
X1 ∪X5 is spanning for all such Z, and so r∗(X1 ∪X5) can increase by at most
one with a non-empty Z. Thus, in total, the right-hand side of the inequality can
increase by at most three. We cannot have a bad family for any choice of Z.

Subcase 4.2c: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪V1

X3 =V3∪V4∪V5

X4 =Vk∪{a} where a ∈V1

X5 =Vj∪V1

Compared to Subcase 4.2a, X4 contains two less elements of V1 while X5 contains
two more.

On the left-hand side of the inequality, there is no change in value compared to
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Subcase 4.2a. Note that r∗(X4)+ r∗(X5) remains the same, as does r∗(X2∪X4∪
X5). In Subcase 4.2a, X1∪X3∪X5 was spanning and the same is true after adding
additional elements to it. As V1 ⊂ X2, r∗(X2∪X4∪X4) is also unchanged.

Now take the right-hand side of the inequality. We have that r∗(X4 ∪X5) is un-
changed, as are r∗(X2 ∪X4) and r∗(X2 ∪X5) since V1 ⊂ X2. As in Subcase 4.2b,
r∗(X1∪X5) can increase by at most three. Finally, take X3∪X4 = {a}∪V3∪V4∪V5.
This set is spanning, as in Subcase 4.2a.

We have that, in comparison to Subcase 4.2a, the left-hand side remains the same
while the right-hand side increases by at most three. We still have no bad family,
for any choice of Z.

Subcase 4.3: X1 =V2∪Z where Z ⊆ E(M)

X2 =Vi∪V1

X3 =V3∪V4∪V5

X4 =Vk∪V1

X5 =Vj∪V1

Note that X2∪X3∪X4 = X2∪X4∪X5 =V1∪Vi∪Vj∪Vk =V2.

LHS = r∗(X3)+ r∗(X4)+ r∗(X5)+ r∗(X1∪X2)+ r∗(X1∪X3∪X5)

+ r∗(X2∪X3∪X4)+ r∗(X2∪X4∪X5)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)+ |X3|+ |X4|+ |X5|
+ |X2∪X3∪X4|+ |X2∪X4∪X5|+ r(X3)+ r(X4)

+ r(X5)+ r(X2∪X3∪X4)+ r(X2∪X4∪X5)−5r(M)

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+9+6+6

+12+12+5+5+5+2+2

= r∗(X1∪X2)+ r∗(X1∪X3∪X5)−5r(M)+64
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RHS = r∗(X1∪X3)+ r∗(X1∪X5)+ r∗(X2∪X3)+ r∗(X2∪X4)

+ r∗(X2∪X5)+ r∗(X3∪X4)+ r∗(X4∪X5)

= r∗(X1∪X3)+ r∗(X1∪X5)+ |X2∪X3|+ |X2∪X4|+ |X2∪X5|
+ |X3∪X4|+ |X4∪X5|+ r(X2∪X3)+ r(X2∪X4)

+ r(X2∪X5)+ r(X3∪X4)+ r(X4∪X5)−5r(M)

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+12+12+9

+12+9+2+4+4+2+4

= r∗(X1∪X3)+ r∗(X1∪X5)−5r(M)+70

We must have that

r∗(X1∪X2)+ r∗(X1∪X3∪X5)

> r∗(X1∪X3)+ r∗(X1∪X5)+6

in order for this to be a bad family.

Suppose Z = ∅. Then we have that 7+ 9 > 9+ 8+ 6 which is untrue. We have
shown in Subcase 4.1a that r∗(X1∪X3) cannot change when Z is non-empty, and
that r∗(X1∪X2) can increase by at most two. The sets X1, X2, and X3 are the same
in the current subcase and hence the same facts apply. Note that X1 ∪X3 ∪X5 is
equal to the entire ground set, and thus changing Z will have no effect on this term.
Finally, X1∪X5 =V1∪V2∪Vj ∪Z and X1∪X5 = (Vi∪Vk)−Z. As r(Vi∪Vk) = 5,
we can remove one element from it without decreasing the rank. This increases
|X1 ∪X5| by one and therefore r∗(X1 ∪X5). For any Z ⊆ Vi ∪Vk with cardinality
one or higher, X1∪X5 is coindependent, so X1∪X5 is spanning for all such Z. We
thus have that the left-hand side can increase by at most two, while the right-hand
side can increase by at most one, giving us no possible bad family. �



Chapter 6

A Complexity Theorem

As yet no method of testing whether a matroid satisfies a Kinser equality has
presented itself other than brute force. This leads to the question of whether it
is possible to do this in polynomial time. Given the increasing number of terms
in each inequality and the lack of bounds on a matroids possible ground set, this
is an important question in terms of the results it is feasible to get – in particular,
whether it would be feasible to construct a matroid similar to that used in Theorem
5.1 and test whether it satisfies inequality n for n ≥ 5, in order to show that the
higher Kinser classes are not dual closed. We give a proof that it would in fact be
impossible to test these in polynomial time.

An oracle machine consists of a Turing machine with a black box attached, which
is referred to as the oracle. Given some question about a particular matroid, inputs
are fed to the oracle, which then gives an output answering the question. The time
the machine takes to produce an output is given as a function of the number of
inputs necessary to answer the question. We wish to know the time an oracle
machine would take to answer whether a matroid satisfies Kinser inequality n.

Definition 6.1. Let r ≥ 4 and take two distinct r-element sets A = {a1, . . . ,ar}
and B= {b1, . . . ,br}. We define the circuit-hyperplanes of the rank-r binary spike,
denoted by Zr, on ground set E = A∪B by its set of circuits. First, define the set
of circuit-hyperplanes to be the subsets {z1, . . . ,zr}, where zi ∈ {ai,bi}, such that
|{z1, . . . ,zr}∩{b1, . . . ,br}| is even. The non-spanning circuits of Zr consist of the
circuit-hyperplanes as defined above and subsets of E of the form {ai,bi,ak,bk}.
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Zr can be represented by the following matrix:

[Ir | [1]r×r− Ir] .

Lemma 6.2. Take an arbitrary rank r binary spike where r is even. If we relax

any circuit-hyperplane other than A, the resulting matroid violates the Ingleton

condition.

Proof. Take a binary spike Zr. Take one of the circuit-hyperplanes of Zr and call it
Z, where Z is chosen so that Z∩A and Z∩B are non-empty. Define I ⊆ {1, . . . ,r}
such that i ∈ I if and only if ai ∈ Z, and define J ⊆ {1, . . . ,r} such that j ∈ J if
and only if bi ∈ Z. Now let X1 = {ai | i ∈ I}, X2 = {b j | j ∈ J}, X3 = {bi | i ∈ I},
and X4 = {a j | j ∈ J}. In other words, X1 and X2 consist of the elements in the
circuit-hyperplane Z contained in A and B respectively, while X3 and X4 consist
of all the remaining elements in B and A. Note that X2 contains an even number
of elements from B and that |X1∪X2| = r, making it a circuit-hyperplane. Relax
X1∪X2 to get the matroid Z−r and evaluate the Ingleton condition:

r(X3)+ r(X4)+ r(X1∪X2)+ r(X1∪X3∪X4)+ r(X2∪X3∪X4)

≤ r(X1∪X3)+ r(X1∪X4)+ r(X2∪X3)+ r(X2∪X4)+ r(X3∪X4)

The set of non-spanning circuits of Zr consists of the circuit-hyperplanes as de-
fined above and subsets of E of the form {ai,bi,ak,bk}. X3 and X4 do not fit
into this category and are thus independent. The ground set of Z−r has size 2r

and Z has size r, so X3 and X4 have ranks which sum to r. A leg is a subset
of the ground set of Zr of the form {ak,bk} for some k. A proper subset of the
legs has rank one greater than the number of legs. X1 ∪ X3 = {ai ∪ bi | i ∈ I}
and X2 ∪X4 = {a j ∪ b j | j ∈ J} are both collections of legs, the former having
|X1|= |X3| legs and the latter having |X2|= |X4| legs. Thus r(X1∪X3) = |X1|+1
and r(X2∪X4) = |X2|+1. As Z is a circuit-hyperplane, |X2| is even by definition.
This means X2∪X3 is a circuit-hyperplane. Recall that X2 and X3 partition B. As r

is even, |X3|= r−|X2|must be even as well. Thus X3∪X4 is a circuit-hyperplane,
as is X1 ∪X4 = A. Now consider X1 ∪X3 ∪X4. This set properly contains the
circuit-hyperplane X3∪X4, and all the sets Xi are non-empty. Thus X1∪X3∪X4 is
spanning. The set X2∪X3∪X4 also properly contains a circuit-hyperplane, and so
is also spanning. Using these calculations we can now evaluate the inequality.
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4r ≤ (|X1|+1)+(r−1)+(r−1)+(|X2|+1)+(r−1)

Since |X1|+ |X2| = r, this simplifies to 4r ≤ 4r− 1 which is untrue. Therefore
X1, . . . ,X4 form a bad family. �

Theorem 6.3. Let n≥ 4. There does not exist a polynomial time oracle machine

testing Kinser inequality n or its dual.

Proof. As proved above, each binary spike Zr of even rank is representable, there-
fore satisfies the inequality, while its relaxation Z−r does not. This means that in or-
der to test whether a matroid satisfies Kinser inequality n or its dual, the oracle ma-
chine must distinguish between each Zr and Z−r . Recall Z−r can be constructed by
relaxing any circuit-hyperplane, which consists of an r element subset {z1, ...,zr}
of the ground set A∪B where zi ∈ {ai,bi} and |{z1, ...,zr}∩{b1, ...,br}| is even.
Suppose the oracle did not check the rank of the relaxed circuit-hyperplane. This
would mean it yields the same result as before the circuit-hyperplane was relaxed,
as that is the only subset which changes in rank. Thus the oracle must check the
rank of each possible circuit-hyperplane. There are 2r r-element sets using one
element from each leg, and half of these contain an even number of elements from
{b1, ...,br}. The algorithm hence takes at least 2r−1 = 2

E
2−1 checks, and therefore

is exponential in the size of the ground set. As the class of spikes is dual-closed,
testing whether the dual of a matroid satisfies Kinser inequality n is also exponen-
tial in the size of the ground set. �



Chapter 7

Excluded minors

The following theorem was proved by Mayhew, Newman, and Whittle in 2008
[6], settling a conjecture by Geelen [2].

Theorem 7.1. For any infinite field K and any matroid N representable over K,

there is an excluded minor for K-representability that has N as a minor.

The proof of Theorem 7.1 constructed an excluded minor which contained N and
which was not contained in K4, and thus was not contained inside any Kinser
class. In Theorem 7.3 we give a strengthening of this result, which states that the
excluded minors can actually be contained inside any layer of the hierarchy.

Lemma 7.2. Let r ≥ 3 be an integer. Let P be the projective geometry PG(r−
1,K), where K is an infinite field, and let S1, . . . ,St be a finite collection of proper

subspaces of P. If S is a subspace of P that is not contained in any of S1, . . . ,St ,

then S is not contained in S1∪ . . .∪St .

This is Proposition 4.2 of [5] and we will make frequent reference to it throughout
this chapter. Whenever we add points freely to a subspace, it is justified by this
result.

Theorem 7.3. Let n ≥ 5 be an integer. Let K be a infinite field and let M be a

K-representable matroid. Then M is contained in an excluded minor for Kn+1

which is in Kn.

Proof. As we can add coloops as desired, we can assume M has rank r where r ≥
n. By [6, Lemma 2.2], we can assume that M is partitioned into two independent
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hyperplanes. Call these H0 and Hn−1. Let K be an infinite field. Imbed M in the
projective geometry P = PG(r,K), so that the elements in the ground set of M are
identified with points in P. Note that this geometry has rank r+ 1, so M spans a
hyperplane of P. If X is any set of points in P, let 〈X〉 denote the closure of X in
P. We will now extend M to get N, an excluded minor for Kn+1. First we will
choose points which will not be added to the ground set of M, but will enable us
to freely place points within M.

Begin by arbitrarily choosing x0 in P−〈E(M)〉. Next freely place xn−1 with re-
spect to 〈H0〉 – i.e., choose xn−1 in 〈H0〉 so that xn−1 is not spanned by any subset
of E(M)∪{x0} that doesn’t span H0. We are able to do this using Lemma 7.2.

Choose x1 in 〈Hn−1〉 so that it is not spanned by any subset of E(M)∪{x0,xn−1}
that doesn’t span Hn−1. Now choose x2 in 〈H0〉∩ 〈Hn−1〉 so that it is not spanned
by any subset of E(M)∪ {x0,x1,xn−1} unless that subset spans 〈H0〉 ∩ 〈Hn−1〉.
Choose x3 in 〈H0〉 ∩ 〈Hn−1〉 so that it is not spanned by any subset of E(M)∪
{x0,x1,x2,xn−1} unless that subset spans 〈H0〉 ∩ 〈Hn−1〉. Continue in this way
until x0,x1, . . . ,xn−1 have been chosen. Now choose r− n+ 1 points in the same
space, 〈H0〉∩〈Hn−1〉 using the same technique. Call this set of points X , and note
that X ∪{x2, . . . ,xn−2} is an independent set that spans 〈H0〉∩ 〈Hn−1〉.
The points chosen so far, X ∪{x0, . . . ,xn−1}, will act as guides for adding points
to the ground set of N. Add a point e1 to 〈(X ∪ {x0, . . . ,xn−1})−{x1,x2}〉 so
that it is not spanned by any subset of E(M)∪X ∪{x0, . . . ,xn−1} unless that sub-
set spans (X ∪ {x0, . . . ,xn−1})− {x1,x2}. Now add another point to the same
space so that it is not spanned by any subset of E(M)∪ X ∪ {x0, . . . ,xn−1,e1}
unless that subset spans (X ∪ {x0, . . . ,xn−1})− {x1,x2}. Continue in this way
until r− 1 points have been added to the space. Call this set of r− 1 points
H1. Follow this same method to create r− 1 points to form the set H2, this
time adding the points to the space 〈(X ∪{x0, . . . ,xn−1})−{x2,x3}〉. In this way
we create H1, . . . ,Hn−2; that is, for i ∈ {1, . . . ,n− 2}, create Hi by freely plac-
ing r− 1 points in the space 〈(X ∪ {x0, . . . ,xn−1})−{xi,xi+1}〉. Note that the
points of H0 are in 〈(X ∪{x0, . . . ,xn−1})−{x0,x1}〉 and the points of Hn−1 are in
〈(X ∪{x0, . . . ,xn−1})−{xn−1,x0}〉.
Finally, add a point p freely to 〈X〉, then add another point p′ freely to P. Freely
place a point e on the line spanned by p and p′, 〈{p, p′}〉, then do the same with
another point f . Let N be the matroid consisting of the points H0 ∪ . . .Hn−1 ∪
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{e, f}.

Lemma 7.4. N is K-representable.

This lemma is true by construction.

Lemma 7.5. Hi∪{e, f} is a circuit-hyperplane of N for every i ∈ {0, . . . ,n−1}.

Proof. Note Hi ∪ {e, f} has r + 1 points, and by construction is contained in
〈(X ∪{p′,x0, . . . ,xn−1})−{xi,xi+1}〉. This is a rank r space and so Hi ∪{e, f}
must be dependent. Suppose Hi is dependent for some i. Then at some
point in constructing N, we would have added a point g to already chosen el-
ements of Hi so that the point was contained in cl(Hi − g); that is, contained
in 〈(X ∪ {x0, . . . ,xn−1})−{xi,xi+1}〉. This contradicts every point of Hi being
freely placed in the space 〈(X ∪ {xo, . . . ,xn−1})− {xi,xi+1}〉. Thus Hi is in-
dependent. Now suppose Hi ∪ {e} is dependent. Then e ∈ cl(Hi). That is,
e ∈ 〈(X ∪{x0, . . . ,xn−1}−{xi,xi+1}〉. This contradicts e being a point on the line
spanned by p and p′. Likewise, Hi ∪{ f} is also independent. We have shown
that every subset of Hi∪{e, f} is independent, meaning that Hi∪{e, f} must be a
circuit.

Now suppose Hi ∪ {e, f} is not a flat. Then there must be some element
g ∈ E(N)− (Hi ∪ {e, f}) such that r(Hi ∪ {e, f ,g}) = r(Hi ∪ {e, f}) – that is,
g ∈ cl(Hi∪{e, f}). This implies g ∈ cl(Hi∪{e}). Let g ∈H j for some j. Assume
g∈ cl(Hi). Then we have that g∈ 〈(X ∪{x0, . . . ,xn−1})−{xi,i+1 }〉. This is a con-
tradiction, as (X∪{x0, . . . ,xn−1})−{xi,xi+1} does not span (X∪{x0, . . . ,xn−1})−
{x j,x j+1}.
Now suppose g /∈ cl(Hi). By the third closure axiom, e ∈ cl(Hi∪{g}). Recall that
p ∈ cl(Hi). As p and e form a line, we must have that 〈{p,e}〉 ⊆ cl(Hi ∪{g}).
Thus p′ ∈ cl(Hi∪g). As p′ was added freely to the projective geometry, the only
way this is possible is if Hi∪g is spanning, which is a contradiction. �

Lemma 7.6. Relaxing H0∪{e, f} in N produces a matroid not in Kn+1.

Proof. We will show that (X1,X2, . . . ,Xn+1) = (H0,{e, f},H1, . . . ,Hn−1) violates
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inequality n+1, that is,

n+1

∑
i=3

r(Xi)+ r(X1∪X2)+ r(X1∪X3∪Xn+1)+
n+1

∑
i=4

r(X2∪Xi−1∪Xi)

> r(X1∪X3)+ r(X1∪Xn+1)+
n+1

∑
i=3

r(X2∪Xi)+
n+1

∑
i=4

r(Xi−1∪Xi)

Recall that Xi is independent by construction, as proved in Lemma 7.5, with rank
r− 1. Recall Xi ∪X2 is a circuit-hyperplane for all i as also proved in Lemma
7.5. Note that Xi ⊆ 〈X ∪ {x0, . . . ,xn−1}− {xi,xi+1}〉 for all i 6= 2, and that the
points were chosen so as to make it an independent set of rank r− 1. Take two
consecutive sets Xi and X j, where i, j 6= 2.

r(Xi∪X j)

≤ r(〈X ∪{x0, . . . ,xn−1}−{xi,xi+1}〉∪〈X ∪{x0, . . . ,xn−1}−{xi+1,x j}〉)
= r(〈X ∪{x0, . . . ,xn−1}−{xi,xi+1}〉)+ r(〈X ∪{x0, . . . ,xn−1}−{xi+1,x j}〉)
− r(〈X ∪{x0, . . . ,xn−1}−{xi,xi+1}〉∩〈X ∪{x0, . . . ,xn−1}−{xi+1,x j}〉

= (r−1)+(r−1)− (r−2)

= r

Now suppose Xi,X j are inconsecutive. The intersection term will now have rank
r−3, one less than when they were consecutive, so r(Xi∪X j) = r+1. Note that
these two calculations imply the rank of the union of any three Xi’s must be r+1.
We can now show that the inequality above holds:

n+1

∑
i=3

(r−1)+(r+1)+(r+1)+
n+1

∑
i=4

(r+1)> r+ r+
n+1

∑
i=3

r+
n+1

∑
i=4

r

Therefore X1, . . . ,Xn+1 is a bad family if and only if

(n+1−2)(r−1)+2(r+1)+(n+1−3)(r+1)

> 2r+(n+1−2)r+(n+1−3)r

which is true if and only if

(n−1)(r−1)+n(r+1) > (2n−1)r
⇔ (2n−1)r+1 > (2n−1)r
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and this completes the proof. �

Call this relaxation N′.

Lemma 7.7. Relaxing Hi∪{e, f} in N′ creates aK-representable matroid for any

i ∈ {1, . . . ,n−1}.

Proof. Construct L from M in exactly the same way as N was constructed, up
until the point where p and p′ are added. Instead of adding p to 〈X〉, add it freely
to 〈X ∪{x1, . . . ,xi}〉. Now add p′ freely to 〈X ∪{xi+1, . . . ,xn−1,x0}〉. Then add e

and f freely to the line 〈{p, p′}〉 as before. This matroid L is K-representable by
construction. We will show that it is the same as the matroid obtained from N′ by
relaxing Hi∪{e, f}, referred to as N′′.

Note that by [7, Proposition 3.3.5], we have that N\e\ f = N′\e\ f = N′′\e\ f ,
and also that N\e\ f = L\e\ f by construction. If Z ⊆ E(N\e) spans f , then, as
we chose f to be freely placed on the line spanned by p and p′, Z must span
〈{p, p′}〉. This implies that p′ ∈ 〈Z〉. As p′ was freely placed in E(N\e), this
implies Z is spanning. Thus N\e is a free extension of N\e\ f by the element f .

Now suppose Z ⊆ E(L\e) spans f . Then again we have that 〈{p, p′}〉 ⊆ 〈Z〉. As
this gives that p ∈ 〈Z〉, we have that X ∪{x1, . . . ,xi} ⊆ 〈Z〉 by the way p was cho-
sen in the construction of L. As p′ ∈ 〈Z〉, we have that X ∪{xi+1, . . . ,xn−1,x0} ⊆
〈Z〉. Putting these together gives X ∪{x0, . . . ,xn−1} ⊆ 〈Z〉. As X ∪{x0, . . . ,xn−1}
was chosen so as to be a basis of L, Z must be spanning. This tells us that f is
freely placed in L\e, so L\e is a free extension of L\e\ f by the element f . As
L\e\ f = N\e\ f , we have that L\e = N\e. Note also that N\e = N′\e = N′′\e, so
L\e = N′′\e. The same argument shows that L\ f = N′′\ f .

Suppose L 6= N′′. There must exist a set A which is a non-spanning circuit in N′′

and independent in L or vice versa. The above two paragraphs imply that e, f ∈ A,
as otherwise A would have the same rank in both L and N′′.

Suppose A is a non-spanning circuit in L. Say that the points in E(L)−{e, f}
were added in the order e1, ....,et . Let e j be the largest element of A according
to this ordering, and let e j ∈ Hk. As e j was freely placed, A must span 〈(X ∪
{x0, . . . ,xn−1})−{xk,xk+1}〉. This means that

(A−Hk)∪ ((X ∪{x0, ...,xn−1})−{xk,xk+1})
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spans the same set as A. Suppose the last element added to A before those in Hk

is el ∈H j where j < k. Then (A−Hk)∪ (X ∪{x0, ...,xn−1})−{xk,xk+1} spans an
element from H j, and by construction, as every element in the set above was added
before H j, we see that this set spans (X∪{x0, ...,xn−1})−{x j,x j+1}. Thus A spans
both 〈(X ∪{x0, . . . ,xn−1})−{xk,xk+1}〉 and 〈(X ∪{x0, . . . ,xn−1})−{x j,x j+1}〉.
As shown in Lemma 7.6, if H j and Hk are inconsecutive, A will have rank r+ 1
and be spanning. H j and Hk must be consecutive in order for A to be non-spanning.
Take a dependent subset of H j ∪Hk in L. As this subset does not include e nor f ,
it has the same rank in L\e. Likewise, the rank of the subset in N′′ has the same
rank in N′′\e. As we have already shown L\e=N′′\e, we have that any dependent
subset of H j ∪Hk in L is also dependent in N′′. This contradicts the assumption
that A is independent in N′′. If there is no point contained in a set H j where j < k,
in order for A to be a circuit, A must be equal to Hk ∪{e, f}, where k /∈ {0, i}, as
any subset of this is independent in L, as proved in the next lemma.

Lemma 7.8. Hk∪{e, f} is a circuit of L for all k ∈ {1, . . . , i−1, i+1, . . . ,n}.

Proof. Consider Hk ∪{e, f}. Recall that p was added freely to 〈X ∪{x1, . . . ,xi}〉
while p′ was added freely to 〈X ∪{xi+1, . . . ,xn−1,x0}〉. Hk is contained in 〈(X ∪
{x0, . . . ,xn−1}−{xk,xk+1}〉. When i ≤ k, this subspace spans 〈X ∪{x1, . . . ,xi}〉
and so spans p. When i≥ k, this subspace spans 〈X ∪{xi+1, . . . ,xn−1,x0}〉 and so
spans p′. As e and f were freely placed on the line spanned by p and p′, in either
case we have that Hk∪{e, f} ∈ cl(Hk∪{e}) and so Hk∪{e, f} is dependent.

Suppose Hk is dependent for some k. Then at some point in constructing L, we
would have added a point g to already chosen elements of Hk so that the point was
contained in cl(Hk− g), that is, contained in 〈(X ∪{x0, . . . ,xn−1})−{xk,xk+1}〉.
This contradicts each of the r−1 points of Hk being freely placed in the rank r−1
space 〈(X ∪{xo, . . . ,xn−1})−{xk,xk+1}〉. Thus Hk is independent.

Now suppose Hk ∪ {e} is dependent. Then e ∈ cl(Hk) – that is, e ∈ 〈(X ∪
{x0, . . . ,xn−1})−{xk,xk+1}〉. However, e was freely placed on the line spanned
by p and p′. Thus if Hk spans e, it must span this line. As the line itself is free
in L, for this to happen, Hk must be spanning, which is a contradiction. Likewise,
Hk ∪{ f} is also independent. We have shown that every subset of Hk ∪{e, f} is
independent, meaning that Hk∪{e, f} must be a circuit. �

Thus Hk∪{e, f} is dependent in L. We have shown that it is also dependent in N′′,
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so again have a contradiction to A being independent in L. The same argument
shows that if A is dependent in N′′, A is also dependent in L. Thus L = N′′. �

We constructed N to be representable, so N must satisfy every Kinser inequality.
In particular, it must be contained inside Kn+1. Next we have shown in Lemma
7.7 that if we relax a single circuit-hyperplane of N, the resulting matroid N′ has
a bad family for Kn+1. We will now show that N′ is in fact an excluded minor
for Kn+1 – that is, we will show that each proper minor of N′ is representable and
thus is contained in Kn+1.

First suppose that x ∈ H j where j 6= 0. Let N′′ = N′ with the circuit-hyperplane
H j ∪ {e, f} relaxed. By [7, Proposition 3.3.5], N′′\x = N′\x. As N′′ is K-
representable by Theorem 7.7, and representability is preserved under minors,
N′\x is K-representable. Say l ∈ {0, . . . ,n− 1}−{0, j}. Now let N′′ = N′ with
Hl ∪{e, f} relaxed. Also by [7, Proposition 3.3.5], we have that N′′/x = N′/x,
and so N′/x is K-representable.

Next, suppose x ∈H0. As N′ = N with the circuit-hyperplane H0∪{e, f} relaxed,
we have that N′\x=N\x, so N′\x isK-representable. Let N′′=N′ with Hi∪{e, f}
relaxed. We have that N′′/x = N′/x, so N′/x is K-representable.

Now suppose x is equal to e. As e and f were freely placed on the line spanned by
p and p′, the same argument as follows works for x= f . We have that N′\e=N\e,
so N′\e is K-representable.

Finally, consider N′/e. Take some z ∈ H0. Recall that N′ = N with the circuit-
hyperplane H0∪{e, f} relaxed. Note that N′/e is obtained from N/e by relaxing
H0∪{ f}. This gives us that N′/e\z = N/e\z, as deleting z effectively undoes the
relaxation. As N is K-representable, and thus N/e\z is K-representable, N′/e\z
is also K-representable. Let Z ⊆ E(N′/e) be such that z /∈ Z and z ∈ clN′/e(Z).
Recall N′/e is a relaxation of N/e which can only affect closures in so far as that
some may contain additional elements in N/e, so z ∈ clN/e(Z). This implies that
z ∈ clN(Z ∪{e}) by [7, Proposition 3.1.11]. Due to the way H0 was constructed,
we thus have that 〈Z ∪{e}〉 ⊇ (X ∪{x0, . . . ,xn−1})−{x0,x1}. As we have that
z ∈ clN(Z∪{e}) and all elements of H0 are freely placed in the relevant subspace,
Z∪{e, f} must thus also span every other element of H0. As e and f were freely
placed on the line spanned by p and p′, we also have that f ∈ clN(Z∪{e}). Thus
in N, H0∪{e, f} is contained in 〈Z∪{e}〉. As H0∪{e, f} is a circuit-hyperplane,
this implies that either Z ∪{e} is spanning in N or that Z ∪{e} = H0∪{e, f}. If
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Z ∪{e} = H0∪{e, f}, we have a contradiction to the assumption that z /∈ Z. We
thus have that Z∪{e} is spanning in N. This means that Z∪{e} is also spanning
in N′, and, as r(N′/e) = r(N′)− 1, that Z is spanning in N′/e. We have that z

is only in the closure of a subset of N′/e when that subset spans N′/e – that is,
we have shown that z is freely placed in N′/e. Thus N′/e is a free extension of
N′/e\z by z. As N′/e\z is K-representable and this fact is preserved under free
extensions, we have that N′/e is K-representable.

We have now shown that every minor of N′ is K-representable and so contained
in Kn+1, making N′ an excluded minor for Kn+1. This completes the proof of
Theorem 7.1. �



Chapter 8

Conjectures

Finally, we give some conjectures on the hierarchy of the Kinser classes.

Conjecture 8.1. Let n > 5. Kn 6=K∗n.

Recall that we have proved this holds when n= 5 in Theorem 5.1, and have proved
this does not hold when n = 4 in Theorem 4.5.

As shown in Theorem 6.3, verifying that a matroid satisfies a Kinser inequality
is very difficult. Given the amount of difficulty involved in proving that the fifth
Kinser class is not dual closed, proving this result in general would involve an even
greater amount of work. Based on that case, however, we give a strengthening of
the above conjecture.

Conjecture 8.2. Let n≥ 5. Kin(n)− ∈ K∗n−Kn

One further question about the structure of the hierarchy is how each dual class
interacts with the previous Kinser class. There are two possibilities here, and we
conjecture that the following is true.

Conjecture 8.3. Let n > 4. K∗n+1 ⊆Kn.

If Conjecture 8.3 is true, the following conjecture is also true.

Conjecture 8.4. K∗∞ =K∞

To see that this follows from Conjecture 8.3, assume M ∈ K∞, but M 6∈ K∗∞ and
assume that Conjecture 8.3 holds. Then there exists an integer n such that M 6∈ K∗n.
However, this contradicts Conjecture 8.3, which gives that M ∈ Kn+1 ⊆K∗n.

71
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K4 =K∗4

K5 K∗5

K6 K∗6
Representable

Figure 8.1: Kinser classes (4)

Assuming these conjectures to hold true, we have a final diagram of the hierarchy.

Now we will consider two classes of matroids which we conjecture satisfy every
Kinser inequality.

Definition 8.5. Let G be an abelian group. Take a complete graph and add a loop
to very vertex, replace every edge with a parallel class of |G| edges. Call this
graph H. Orient every edge which is not a loop so that parallel edges have the
same direction. Bijectively label each parallel class with the elements of G, and
label loops with non-identities. Let C be a cycle of H. Consider the product of
group labels in C, taken in cyclic order, where if an edge is oriented against the
cyclic order we take the inverse of its label instead. If the result is the identity,
call C positive. Otherwise, call C negative. Take such a graph H. There exists a
matroid which has E(H) as its ground set, and set of circuits equal to the positive
cycles of H and minimal connected subgraphs that contain two negative cycles.
Call this matroid a Dowling geometry.

Take a field F. Recall that F× is the multiplicative group consisting of the non-
zero elements of F.

Lemma 8.6 ([7, Theorem 6.10.10]). Take a Dowling geometry of rank r over a

finite group G. This matroid is representable over a field F if and only if G is

isomorphic to a subgroup of F×.
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In this case, the Dowling matroid satisfies every Kinser inequality. We also have
that if G is a finite subgroup of the multiplicative group of a field, then G is cyclic
by [1, Theorem 33.4]. The following conjecture is thus open when G is both finite
and non-cyclic.

Conjecture 8.7. A Dowling geometry satisfies every Kinser inequality.

Now we will consider matroids which are representable over skew partial fields.
All of the following definitions and results can be found in [8].

Definition 8.8. A skew partial field is a pair (R,G) where R is a ring, and G is a
subgroup of the group of units of R, such that −1 ∈ G.

Definition 8.9. Let R be a ring, and let E be a finite set. An R-chain group on E

is a subset C ⊆ RE such that, for all f ,g ∈C and r ∈ R,

i. 0 ∈C,

ii. f +g ∈C,

iii. r f ∈C

The elements of C are called chains, and the support of a chain c = {c1, . . . ,ce} ∈
C is

||c||= {i ∈ E | ci 6= 0}

Definition 8.10. A chain c ∈C is elementary if c 6= 0 and there is no c′ ∈C−{0}
with ||c′|| ⊂ ||c||.

Definition 8.11. Let G be a subgroup of the group of units of R. A chain c ∈C is
G-primitive if c ∈ (G∪{0})E .

Definition 8.12. Let P = (R,G) be a skew partial field, and E a finite set. A P-

chain group on E is an R-chain group C on E such that every elementary chain
c ∈C can be written as c = rc′ for some G-primitive chain c′ ∈C and some r ∈ R.

Lemma 8.13. Let P= (R,G) be a skew partial field, and let C be a P-chain group

on E. Then C∗= {||c|| | c∈C, c is elementary} is the set of cocircuits of a matroid

on E.
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A matroid M is said to be P-representable if there exists a P-chain group C such
that M = M(C). If a matroid is representable and thus satisfies every Kinser in-
equality, it is representable over a skew partial field.

Conjecture 8.14. Take a matroid M which is P-representable. M satisfies every

Kinser inequality.
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