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Abstract

This thesis describes and develops procedures for the generation of theoretical

lightcurves that can be used to model gravitational microlensing events that

involve multiple lenses. Of particular interest are the cases involving a single

lens star with one or more orbiting planets, as this has proven to be an effective

way of detecting extrasolar planets. Although there is an analytical expression

for microlensing lightcurves produced by single lensing body, the generation of

model lightcurves for more than one lensing body requires the use of numerical

techniques. The method developed here, known as the semi-analytic method,

involves the analytical rearrangement of the relatively simple ‘lens equation’ to

produce a high-order complex lens polynomial. Root-finding algorithms are then

used to obtain the roots of this ‘lens polynomial’ in order to locate the positions

of the images and calculate their magnifications.

By running example microlensing events through the root-finding algorithms,

both the speed and accuracy of the Laguerre and Jenkins-Traub algorithms were

investigated. It was discovered that, in order to correctly identify the image

positions, a method involving solutions of several ‘lens polynomials’ correspond-

ing to different coordinate origins needed to be invoked. Multipole and polygon

approximations were also developed to include finite source and limb darkening

effects. The semi-analytical method and the appropriate numerical techniques

were incorporated into a C++ modelling code at VUW (Victoria University of

Wellington) known as mlens2. The effectiveness of the semi-analytic method was

demonstrated using mlens2 to generate theoretical lightcurves for the microlens-

ing events MOA-2009-BLG-319 and OGLE-2006-BLG-109. By comparing these

theoretical lightcurves with the observed photometric data and the published

models, it was demonstrated that the semi-analytic method described in this

thesis is a robust and efficient method for discovering extrasolar planets.
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Preface

This MSc project was initially intended to be in two parts. Both of these parts

were to involve the development and the use of numerical modelling techniques to

investigate two distinct area in astrophysics. The first part of this thesis proposal

was aimed at modelling gravitational microlensing events involving multiple lens

systems. The particular events of interest were those that contained a planetary

mass orbiting a host star. This part of the project ended up growing to fill a

majority of the MSc thesis programme, as explained below.

The second part of this proposed project was to carry out modelling of the

structure of white dwarf stars. A white dwarf is the final evolutionary stage for

the vast majority of stars, and investigating the structure of these slowly cool-

ing stars is a flourishing area in astrophysics research. My supervisor Denis J.

Sullivan (DJS) has an active observational programme studying pulsating white

dwarf stars, and his collaborators at University of Texas have developed code for

modelling white dwarfs and are experts in its use. A relatively recent collabora-

tive programme called MESA (Modules in Experiments in Stellar Astrophysics)

has been set up by a group of astrophysicists. This collaborative programme is

leading to more general stellar evolution software packages. The intention for

the thesis was to investigate these packages. I presented an oral paper on my

initial white dwarf modelling activities at the Royal Astronomical Society of New

Zealand (RASNZ) annual conference held in May 2011 in Napier.

To date, twenty six extrasolar planets (including ten free floating planets) have

been discovered via gravitational microlensing. The raw data from a microlensing

event is in the form of a lightcurve, as explained in the body of the thesis. The

physical information is obtained from the data by fitting theoretical lightcurves to

this observed lightcurve. Generating model lightcurves for planetary lens events
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of interest requires a significant amount of computing power.

The first modelling software designed for gravitational microlensing at VUW

(Victoria University of Wellington) was developed by Aarno Korpela. The soft-

ware developed by Korpela used a method called ‘inverse-ray tracing’ to generate

model lightcurves and this code was run on one of the grid computing systems

at VUW. Korpela’s work is discussed in his VUW PhD thesis (2007). In 2009,

Paul Chote started working with the Korpela code, but the focus of this work

shifted to another method for generating theoretical lightcurves, now known as

the ‘semi-analytical method’. This method is discussed in his VUW MSc thesis

(2011).

The gravitational microlensing part of my thesis project was aimed at using

and developing the modelling code discussed in Chote’s thesis. In particular, the

proposed activity was to use the semi-analytical method to accurately compute

the lightcurves for multiple lensing systems. This part of the project led to

significant work dealing with various numerical accuracy issues.

Of the sixteen planets orbiting a host star that have been discovered via

gravitational microlensing, all but two have been found in binary lens events (one

star and one planet). The other two planets were found orbiting the same host

star, giving a triple lens system. It is not impossible that a system consisting

of four lenses might be found in the future, so these systems should also be

investigated.

The semi-analytical method investigated in this and in Chote’s thesis requires

numerically solving a complex polynomial. The polynomial for a binary lens

system has degree five, which cannot be solved analytically, and the degree of

this polynomial increases quadratically as the number of lenses increases. This

thesis discusses how these polynomials can be solved with adequate numerical

precision.

Only the research on gravitational microlensing modelling is discussed in this

thesis. It was considered inappropriate to include a chapter describing the initial

work that was done on white dwarf modelling.

xii



Acknowledgments

First of all I would like to acknowledge my supervisor Denis Sullivan (DJS) for

his invaluable guidance over the course of this project. Also to the rest of the

Optical Astronomy Group at Victoria University, especially Paul Chote for his

work on the original mlens2 software and for helping me with the programming

aspect of this project, and to Pauline Harris for her valued discussions, editorial

work, and much needed emotional support. I would like to thank Marsden Fund

for their generous financial support for this work.

Next I would like to thank my family - my Mother, Father and Sister for

their selfless support over my years at university, and to my friends, in particular

Olex, Waruna, Nick W and the others for their unwavering support, as well as

the members of Wellington Youth Choir, New Zealand Youth Choir, and the

Choir of Wellington Cathedral of St Paul for their endless encouragement.

I would also like to thank all those in bible study groups for their friendship,

spiritual support, and wonderful discussions about life, the universe, and every-

thing. Finally, I would like to thank God for his serenity, courage, and wisdom.

I feel honoured and humbled to be studying his beautiful universe.

xiii



xiv



Chapter 1

Introduction to Gravitational

Microlensing

The underlying concepts of gravitational lensing originated in the remarkable

works of Sir Isaac Newton, when early ideas about the nature of gravity were be-

ing developed. Newton himself promoted the corpuscular theory of light, where

light is composed of small discrete particles called “corpuscles” (little particles)

which travel in straight lines with finite velocity and possess kinetic energy. The

idea that rays of light could be deflected by gravity was first speculated in New-

tons third book of Opticks, which contained a set of “Queries” or rhetorical

questions that puzzled over the nature of light. The very first of his queries

(Newton, 1718) asked, “Do not Bodies act upon Light at a distance, and by their

action bend its Rays; and is not this action (caeteris paribus) strongest at the

least distance?” (p. 313)

It wasn’t until much later that Newtonian mechanics was used to calculate

the amount a beam of light would be deflected by the gravity of a star. This

was first attempted by French physician and revolutionary Jean-Paul Marat in

1783. However, his calculation significantly overestimated this deflection angle

by a large factor (Marat, 1780; Treder and Jackisch, 1981). The next attempt

at this calculation was performed by British scientist Henry Cavendish sometime

around the late 18th century to the early 19th century. The exact year of when

he made this calculation is unknown as his paper was not published at the time,

however the method he proposed to calculate the deflection angle is presented in

the collection of his complete works (Cavendish et al., 1921), and is given as,

1



To find the bending of a ray of light which passes near the surface

of any body by the attraction of that body. Let s be the centre of

body and a a point of surface. Let the velocity of body revolving in

a circle at a distance as from the body be to the velocity of light as

1 : u, then will the sine of half bending of the ray be equal to 1
1+u2 .

(p. 437)

The first published paper to give a reasonable estimate of the deflection of a

light ray grazing the limb of the Sun was by German physicist Johann Georg von

Soldner who, in 1801, calculated the angle of deflection as ω = 0.84′′ (Soldner,

1801; Jaki, 1978). However, in the same paper, he alluded that this deflection

would be so small, that it would be unobservable.

At this point in time, the idea of light rays being deflected due to gravity

was closely tied with the corpuscular theory of light. In fact, even the French

physicist and mathematician Pierre-Simon Marquis de Laplace used the corpus-

cular theory of light to postulate the existence of black holes - bodies so massive

and dense that corpuscles of light cannot escape from their surface (de Laplace,

1799; Hawking and Israel, 1989). However, when Thomas Young conducted his

double-slit experiment in the early 19th century, the corpuscular theory of light

was unable to explain the interferences patterns produced. This significant find-

ing propelled the wave model as the accepted theory of light, thus leaving the

corpuscular model of light and the theory that light rays can be deflected by

gravity somewhat redundant at this time.

However, a century later, not only was the particle theory of light reconsidered

(this time as packets called “photons”), but in an unrelated paper by the same

scientist, the idea that light rays could be deflected by gravity was again proposed.

This scientist was Albert Einstein.

In his 1915 paper, Einstein used the equivalence principle to develop a new

theory of gravity. This new theory predicted that a ray of light would be deflected

in a gravitational field. Einstein calculated that the amount of deflection of a

light ray passing the Sun was twice the amount predicted by Soldner. Einstein’s

prediction was validated in 1919 by two expeditions led by Eddington where,

2



during a solar eclipse, they measured the amount of deflection of the light passing

the Sun from a background star. This became one of the pivotal verifications of

Einstein’s new general theory of relativity.

Russian physicist Orest Chwolson was among the first to study this ‘new’

gravitational lensing effect, and in 1924, published a paper (Chwolson, 1924)

showing how gravitational lensing could produce multiple images of a star. How-

ever, the subject of gravitational lensing received very little attention from the

scientific community until 1936, when Einstein published a paper (this time at

request of R. W. Mandl) showing how the gravitational lensing effect could make

a background star appear as a luminous ring to an observer, if the background

star, lensing body and observer are perfectly aligned (Einstein, 1936). This lu-

minous ring is now known as the Einstein ring. However, after estimating the

angular radius of this ring to be much less than an arcsecond, which was smaller

than the resolving power of telescopes, he stated in this paper, ”there is no hope

of observing this phenomenon directly.” (p. 506)

When Einstein described the phenomenon of the luminous ring, he described

it in terms of stars within our galaxy acting as gravitational lenses. However, in

1937, Swiss astronomer Fritz Zwicky suggested that extragalactic objects such

as galaxy clusters could also act as gravitational lenses, and would in fact offer

a much better chance of observing these gravitational lensing effects (Zwicky,

1937).

This proved to be true, with the first gravitational lensing event to be observed

was in the form of a distant quasar lensed by a galaxy. This gravitational lensing

effect produced the illusion of ‘twin quasars’, which was observed in 1979 (Walsh

et al., 1979). Later that year Kyongae Chang and Sjur Refsdal proposed that the

individual stars in the lens galaxy could act as tiny lenses, making the luminous

flux of the quasar’s images fluctuate on the order of months (Chang and Refsdal,

1979). These tiny lenses would have Einstein rings with radii on the order of

10−5 arcseconds, leading Polish astronomer Bohdan Paczyński to coin the term

microlensing to describe this phenomenon.

In 1986, Paczyński suggested that gravitational microlensing could be used to

3



search for MACHOs (MAssive Compact Halo Objects), a dark matter candidate.

He proposed this could be achieved by observing a large number of stars in the

Magellanic Clouds. If MACHOs existed and passed in front of the stars, these

objects would act as gravitational lenses, amplifying the observed luminous flux

from the distant stars (Paczyński, 1986). In reality, the gravitational lens would

produce multiple images of the stars, but as suggested by Soldner and Einstein

these images would be impossible to resolve, so the only observable effect would

be the changing observable flux of the star as the MACHOs moved in front of

them. Plotting the changing observed flux over time gives a lightcurve, which can

be analysed to place limits on the mass of these MACHOs. The density of these

MACHOs would be proportional to the frequency at which these events occur,

however more recent observations have shown that MACHOs cannot account for

a significant proportion of the dark matter in our galaxy (Tisserand et al., 2007).

The idea that gravitational microlensing could be used to find extrasolar

planets was first proposed by Mao and Paczyński (1991). It was shown that the

alignment of two stars in the Milky Way galaxy could give a lightcurve similar

the “single lens” lightcurves expected for a MACHO event. Any planets orbiting

this star could cause dramatic deviations from these single lens lightcurves if the

planets were positioned close to the Einstein ring, equivalent to an orbital radius

of about 4 AU (the Astronomical Unit - the distance between the Earth and Sun)

for a star 4 kpc from Earth. The deviations would occur over the timescale of

just a few hours, and the magnitude and time of these changes would depend

on the properties of the planet, such as its position and mass. These planetary

lightcurves could then be modelled to obtain values for these properties.

A year later, Paczyński founded OGLE (Optical Gravitational Lensing Ex-

periment), a project originally intended to search for MACHOs, but since 2001,

has primarily focused on the search for extrasolar planets. This collaboration,

along with the New Zealand-Japan collaboration MOA (Microlensing Observa-

tions in Astrophysics), have become the principal survey groups in the search for

extrasolar planets.

Gravitational microlensing has a number of advantages over the other plan-
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etary detection techniques. While most other methods require observing over a

full (or several full) orbit periods of the planet, gravitational microlensing pro-

vides a “snapshot” of the planetary system. Since the orbital period of the

planet increases with its distance from its host star, most of these other meth-

ods cannot detect planets orbiting far from their host star, while gravitational

microlensing can. However, perhaps the most significant advantage is that most

other techniques depend on the light from the planet’s host star, whereas grav-

itational microlensing does not. Therefore, this technique can not only detect

planets orbiting dim or dark stars, such as brown dwarfs, or black holes, but it

can also detect “free-floating” planets - planets not gravitationally bound to any

star (Sumi et al., 2011).

One of the main disadvantages of this technique is that physical information

of interest, such as mass or distances, cannot be directly inferred from the ob-

served data, and only mass ratios or angular distances can be inferred from the

lightcurve. The values of mass or distances are normally obtained using statistical

estimates.

Another disadvantage with microlensing is the rarity that two stars align.

Meaning these events are infrequent, also they are a one-off event that cannot

be followed-up by repeated measurements. Therefore, when an event occurs, it

is important to obtain as much high quality data as possible during the event.

To ensure each event has an ample number of data points, the microlensing

community has developed a two-level structure for observing gravitational mi-

crolensing events. MOA and OGLE regularly observe a large number of stars,

searching for candidates for microlensing events. When a potential candidate

has been discovered, the follow-up collaborations are alerted to this candidate,

and these collaborations collect additional observations. These follow-up collab-

orations include µFUN (Microlensing Follow-Up Network), MPS (Microlensing

Planet Search), MiNDSTEp (Microlensing Network for the Detection of Small

Terrestrial Exoplanets) and Robonet-II.

The follow-up collaborations have smaller telescopes than MOA and OGLE,

so unlike these survey groups they cannot observe a large number of stars at any
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one time, however they use their telescopes to observe the potential microlensing

candidates to help obtain continual data coverage (Christie, 2006; Tsapras et al.,

2009). These microlensing events can last from a few hours up to hundreds

of days. To date, the gravitational microlensing technique has discovered ten

free-floating planets, as well as sixteen other planets in fifteen planetary systems

(Bond et al., 2004; Udalski et al., 2005; Bennett et al., 2006; Beaulieu et al., 2006;

Gould et al., 2006; Gaudi et al., 2008; Bennett et al., 2008; Dong et al., 2009;

Sumi et al., 2010; Janczak et al., 2010; Miyake et al., 2011; Muraki et al., 2011;

Batista et al., 2011; Yee et al., 2012; Bennett et al., 2012; Bachelet et al., 2012).

Once a gravitational microlensing event has ended, the observed lightcurve

is then fitted to theoretical models. Single lens events can be easily modelled,

however planetary events or multiple star systems are much more difficult to

analyse and requires the production of a huge number of theoretical lightcurves

along with searches in a large parameter space to find the model that best fits

the observed lightcurve. Therefore, when modelling microlensing lightcurves, it

is important to generate the theoretical lightcurves quickly, as this decreases the

amount of computing time. However, it is also important to calculate these

lightcurves accurately to obtain reliable results to best match the observed data.

This thesis builds upon the semi-analytic method developed by Chote (2011).

The semi-analytic method works by constructing polynomial called lens poly-

nomials and numerically solves these polynomials the obtain potential image

positions for lensing planetary systems with up to three planets orbiting a host

star. The theoretical lightcurve can then be generated from these potential image

positions. The work presented in this thesis expresses these polynomials in a gen-

eral form, which can be used to analyse lightcurves for models with any number

of planets. This thesis also focuses on a number of numerical techniques and al-

gorithms aimed at improving both the accuracy and speed of numerically solving

these polynomials, most notably the Jenkins-Traub and Laguerre algorithms, as

well as methods to accurately calculate the lightcurves from the theoretical image

positions. The techniques discussed in this thesis have been incorporated into

a computer package mlens2, designed and built at VUW (Victoria University of
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Wellington).

In this thesis, chapter 2 presents an overview of gravitational microlensing,

describing the background theory behind this phenomenon and introduces the

lens polynomials. This chapter also shows how the Einstein ring forms when there

is an alignment of the (background) source star, the lens star, and the observer.

Single lens events that form multiple images are also investigated, as well as

multiple lensing systems, and polynomials that describe the image positions are

derived for these cases.

Chapter 3 discusses the nature of the images produced in microlensing events

and investigates how the position of each image relates to the magnification of

that image.

Chapter 4 investigates a number of methods to estimate the total magni-

fication of a star (the sum of all the image magnifications) and discusses the

advantages and disadvantages of each method.

Chapter 5 introduces numerical algorithms that can be used to solve the

lens polynomials. The Jenkins-Traub and the Laguerre algorithms are discussed,

along with several numerical techniques often used to make these algorithms

run more efficiently. This chapter investigates the speed and accuracy of these

algorithms, and introduces the origin-shifting method, developed to reduce the

numerical errors in the image positions.

Chapter 6 demonstrates the practical applications of techniques derived in the

previous chapters. Also described is how these techniques can be incorporated

into the mlens2 package, and uses this package to analyse the microlensing events

OGLE-2006-BLG-109 and MOA-2009-BLG-319.

Chapter 7 concludes by discussing the outcomes of this thesis project.

The appendices contain material that is best not included in the main body

of the thesis, but contain important information such as tables of data and math-

ematical equations used in this thesis project.

Appendix A contains the analytical expressions and derivations of the lens

polynomial.

Appendix B gives an overview of the Jacobian matrix and its determinant,
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and shows how it is used in microlensing to estimate the image magnification.

Appendix C contains the analytical expressions and derivations of polynomials

that have roots that describe the critical curves.

Appendix D gives a full derivation of the multipole method used to estimate

the total magnification of the star.

Appendix E gives a brief overview of the Jenkins-Traub and Laguerre algo-

rithms, which can be used to numerically solve the roots of the lens polynomials.

Appendix F contains the control files used to generate the model lightcurves

and to search for the best fitting model using the mlens2 software package.
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Chapter 2

Microlensing Theory

Although the full mathematical description of gravitational microlensing is orig-

inally derived from the equations of general relativity, these mathematical re-

lationships can be simplified into elementary complex algebra, by making some

appropriate assumptions. This allows many physicists and astronomers to under-

stand the fundamental principles behind microlensing without needing a back-

ground in the complicated mathematics of differential geometry.

This chapter aims to give a basic overview of the theory behind gravitational

microlensing. We start by looking at the case of a single gravitational lens and

familarise ourselves with the concept of the Einstein ring. We show how the

light from a distance source star forms this ring when the source star, the lensing

object, and the observer are perfectly aligned. We then discuss how multiple

images are produced, and show how the angular positions of these images are

given by an equation called the lens equation.

Configurations with multiple lensing bodies are then introduced and we dis-

cuss how the lens equation can be generalised to include these multiple lens

configurations. We conclude the chapter by showing how the lens equation for

a multiple lens system can be rearranged into a polynomial, where the roots of

this polynomial give the positions of the images.

2.1 Einstein Ring

In Einstein’s general theory of relativity, the gravitational field in the vicinity of

a massive, uncharged, non-rotating spherical body with mass M can be described
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in terms of a value called the Schwarzschild radius Rs. The Schwarzschild radius

defines the radius of the spherical ‘event horizon’ for an uncharged, non-rotating

black hole with mass M . The ‘event horizon’ is a boundary in space-time, which

surrounds the black hole, such that any object including photons of light from

inside the event horizon cannot escape to an observer outside.

The Schwarzschild radius for an object is directly proportional to its mass M

and does not depend on any other variable quantity. Therefore, RS is a suitable

scale to use when comparing gravitational field strengths. The Schwarzschild

radius, RS, is given by,

RS =
2GM

c2
, (2.1)

where G is the gravitational constant and c is the speed of light.

Any physical object must have a radius greater than the Schwarzchild radius.

If an object had all its material squeezed into a sphere with a radius smaller than

RS, then this material would be unable to escape the gravitational influence of

the object, and the object would form a black hole with an event horizon of radius

RS. For very dense objects where the physical radius is close to the Schwarzschild

radius, such as neutron stars, the full equations of general relativity are usually

required to describe the gravitational field close to these objects. If a ray of light

passes close to a dense object, where the gravitational field is strong, the path

of the light ray is deflected by a large angle. In these cases, the full relativistic

expressions would be required to calculate this deflection.

Most objects, such as our own Sun and other main sequence stars, have a

physical radius much larger than the Schwarzschild radius. For example, the Sun

has a mass of 2 × 1031 kg, giving a Schwarzschild radius of 3 km. This is much

smaller than the 7 × 105 km physical radius of the Sun. Objects such as these

have relatively weak gravitational fields close to their physical radii, and rays of

light passing through these weak gravitational fields will bend by only a small

angle. Therefore, the small angle approximation can be applied to transform the

full equations of general relativity into much simpler expressions to obtain the

angle of deflection of the light ray.
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Using these ‘weak-field’ equations, it can be shown that a light ray from a

distant star (called the ‘source’ star), which passes close to another star (called

the ‘lens’), will have its path deflected by an angle α near this lens. This angle

of deflection is given by,

α =
2RS

b
(2.2)

where b is the impact parameter - the closest distance of the path of the light

ray to the lens.

Since the Schwarzschild radius is many orders of magnitude smaller than the

interstellar distances travelled by the light rays, it is reasonable to approximate

the lens star as a point, with the bending of the light ray occurring only in the

‘lens plane’ as shown in Figure 2.1. This is known as the thin lens approximation.

O

α

S

LS

Observer
bSource Lens

I

Image

DL

Source/image plane

Lens planeD

Figure 2.1: Light rays that are emitted by a source star, S, are bent by the gravitational field
of the lens, L, at an angle, α, on the lens plane. This causes an image, I, to form at a displaced
angle, α.

In Figure 2.1, a light ray is emitted from a source star, S, positioned on the

‘source/image plane’ at a distance, DS from an observer, O. When the light ray

passes close to the lens object L, the path of the light ray is bent by a small angle

α, due to the weak gravitational field of the lens, L. The lens, L, and the point
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where the light ray bends are both positioned on the ‘lens plane’ at a distance

DL from the observer. By tracing the light ray backward in a straight line from

the observer to the source/image plane, we find that the observer “sees” this

light ray coming from an offset position, I, which is an image of the source star.

In fact, as discussed later in this chapter, the observer “sees” two images of the

star, one due to the bending of light “above” L, and one due to the bending of

light “below” L.

D
S

θ
E

L

α
rE

S

rÊ 

D
L

O

Source/image plane

Lens plane

Figure 2.2: When a source, lens and observer are in perfect alignment, the path of the light
rays from source star, S, are bent by the lens L at an angle α on the lens plane. Due to the
circular symmetry of this event, an Einstein Ring is produced.

Figure 2.2 shows the geometry of the light rays when the source star, S, lens,

L, and observer, O are all aligned. In this situation, the geometry is circularly

symmetric about the axis SLO. By rotating the light rays about SLO, the

image I is revolved to become a ring on the source/image plane with S at its

centre. The formation of this ring was first theorised by Einstein in 1936 and has

since become known as the Einstein ring. Following the notation given by Gould

(2000), the Einstein radius is represented in the source/image plane by r̂E on

the source/image plane. The corresponding radius on the lens plane, found by

projecting this ring onto the lens plane from the observer, is represented by rE.
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Thus, the light rays in Figure 2.2 have an impact parameter b = rE and arrive

at the observer at an angle θE to the line LO. This angle θE is known as the

Einstein angle and is related to the Einstein radius by,

tan θE =
rE
DL

=
r̂E
DS

. (2.3)

As mentioned earlier in this chapter, all the angles involved in gravitational

microlensing are very small, so the small angle approximation (tan θ ≈ θ) can be

applied to Equation 2.3 to give θE = rE/DL = r̂E/DS and α = r̂E/(DS −DL).

Therefore, the Einstein angle can be expressed as

θE =

√

2RS
DS −DL

DSDL
. (2.4)

The typical size of this Einstein angle θE can be estimated using the average

values for the distances and masses of stars in our galaxy. For example, let us

consider a standard microlensing event observed from Earth with a source star

in the galactic bulge, DS ≈ 8 kpc from Earth, and a lens star halfway between

at a distance DL ≈ 4 kpc from Earth. If the lens star is a Sun-like star with a

Schwarzchild radius RS ≈ 3km, the Einstein angle can be calculated as θE ≈ 1

milliarcsecond.

To determine whether the Einstein ring can be resolved by a telescope on

Earth, we can use the Rayleigh criterion. If we consider two point sources of

light observed by an instrument with a circular aperture of a diameter D, the

Rayleigh criterion states that these two point sources of light can only be resolved

if the angular displacement φ between the images, with respect to the observer,

obeys the relationship,

sinφ ≥ 1.220
λ

D
,

where λ is the wavelength of the light. The upper limit for the wavelength

corresponds to the red end of the electromagnetic spectrum at λ ≈ 750 nm.

Therefore, given that θE ≈ 10−3arcseconds, in order to resolve the Einstein ring,

the diameter of the telescope lens would have to be at least 189 m, which currently

exceeds practical application at this time.
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2.2 Lens Equation

The star systems in the Milky Way are in continual motion around the centre of

the galaxy, and the distances between these stars is often on the order of parsecs.

This means that, the perfect alignment of the source, lens and observer is a very

rare event, and even when it does occur, it is only for a short time. Therefore when

investigating microlensing events, we need to consider the situation where the

source S is not aligned with the lens and observer, but is offset by a small angle.

This is shown in Figure 2.3, where the source is offset by an angle ŜOL = β 6= 0.

O

DL

DS

β

L

S r+

r+̂ 

r-
 ̂r-

I-

I
+

Source/image plane

Lens plane

θ+

θ-

Figure 2.3: Geometry of a single lens event when the source, S is offset at angle β from
the lens-observer line, LO. The light rays from source bend at the lens plane at an angle, α,
producing the images I+ and I

−
at the angles θ+ and θ

−
respectively.

The geometry of the light rays shown in Figure 2.3 is not cylindrically sym-

metric, so the Einstein ring does not form. However, light rays from the source

star will bend at the distances r+ and r−, above and below the lens respectively.

By tracing the light rays backward in a straight line from the observer to the

source/image plane, we find that the observer will “see” two images I+ and I−

on the source/image plane. These images are positioned above and below the

line OL, at the distances r̂+ and r̂− respectively, with angular displacements

Î+OL = θ+ and Î−OL = θ−. Note that the images and source are collinear on
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the source/image plane.

As mentioned earlier in the chapter, the angles involved in microlensing events

are often on the order of milliarcseconds. Therefore, the small angle approxima-

tion can be applied to the geometry of the event shown in Figure 2.3. Through

this approximation, the positions of the images r̂ = r̂+, r̂− can be related to their

respective angles θ = θ+, θ− through the following geometrical relationships.

α (DS −DL) = r̂ − s, (2.5)

βDS = s, (2.6)

θDL = r̂. (2.7)

By combining Equations 2.5 - 2.7, a single equation can be derived that relates

the angle of the images θ = θ± with the angle of the source β and the Einstein

angle θE . This equation is called the lens equation,

β = θ − θ2E
1

θ
. (2.8)

This equation has two solutions θ = θ+, θ−, which gives the angular positions

of the two images. These solutions can be found by rearranging Equation 2.8

into a quadratic equation and analytically solving it to obtain,

θ± =
β

2
±
√

β2

4
+ θ2E . (2.9)

From Equation 2.9 it can be shown that the two angles of the images θ+

and θ− are non-zero, real and distinct, for any non-zero real value for the source

angle β. This confirms the notion that the images and source are collinear on the

source/image plane. It is interesting to note that β = θ++θ−. In other words, the

angular distance between the two images is always equal to the angular distance

between the source and the lens, and the angular distance between I− and L is

always equal to the distance between I+ and S.

In the case where β ≫ θE , it can be shown that θ+ ≈ β and θ− ≈ 0. Chapter

3 shows that as θ− → 0, the magnification of image I− goes to zero, so that this

image is is no longer visible. Therefore, when the angular displacement between
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the source star and the lens is large, the only significant image is I+, which is

in the same location as the source star. In other words, the lensing mass has no

significant effect on the light rays.

In the other limit where β → 0, it can be shown that θ± → ±θE . This

corresponds to the formation of the Einstein ring when the source star, lensing

mass and observer are perfectly aligned.

2.3 Complex Representation

While the positions of stars within our galaxy can be described in terms of 3-

dimensional positions, an observer sees these positions projected onto the 2-

dimensional plane of the sky. Therefore similarly, the angular positions of the

images, source and lens can also be represented on a 2-dimensional plane. On

this 2-dimensional plane, the Einstein angle θE is represented by the Einstein

radius RE , and all the image and source positions can be scaled by this value.

When everything is scaled in this way, the Einstein ring becomes a circle of unit

radius, and the image and source positions can be defined as z± = θ±
θE

and w = β
θE

respectively. If these scaling definitions are applied to Equation 2.8, then the lens

equation becomes,

w = z − z

|z|2 . (2.10)

Since the stars are continually moving within our galaxy, it is important to

consider the relative motion of the source star to the lens star when investigating

microlensing events. To analyse the relative motion of the source, the image and

source positions can be represented by the Cartesian coordinates z = (x, y) and

w = (u, v) respectively. These positions can alternatively be expressed in terms

of their complex coordinates z = x + iy and w = u + iv, as first suggested by

Witt (1990). In this representation, the lens equation can be expressed as,

w = z − 1

z̄
. (2.11)
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The lens equation expressed in Equation 2.11 describes a function mapping

points on the image plane z to points on the source plane s. The separate

source and image planes are demonstrated in Figure 2.4. This diagram shows

the positions of the images I+ and I− represented by the blue and red dots

respectively at distances z+ and z− from the origin respectively, and the source

S represented by the orange dot at distance w from the origin. The lens L is

represented by the black dot at the origin, and the Einstein ring by the black

ring with unit radius.

Figure 2.4: The image and source planes, with the source S at a distance w, and the two
images, I+, at position z+, and I

−
, at position z

−
. Both these planes have the lens L positioned

at the origin.

In the single lens case, the lens equation can be rearranged and solved ana-

lytically, and the image positions given by the expression,

z± =
w

2
±
√

w2

4
+ 1. (2.12)

Since the lens plane is circularly symmetric, we can, without loss of generality,

choose the u direction as the direction of motion of the source, with a stationary

lens at the origin. As the source moves relative to the lens, the images will also

move in such a way that the source, lens and images are always collinear on this

plane. This is presented in Figure 2.5, which shows a superposition of the source

and image planes, where the source star is represented by an orange circle, and
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the images are represented by the blue and red shapes.

I 

I 

 S
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Figure 2.5: Superposition of the source and image planes, showing the source, S, lens, L
and (distorted) images I+ and I

−
, for a series of source positions. The source positions are

represented by the orange circles, and the blue and red shapes represent the images I+ and I
−

respectively.

While the deflection of light rays does not change the intrinsic brightness of

the source, it does distort the shape of the images, as demonstrated in Figure 2.5.

Therefore, the ‘luminous flux’ of each image, which is defined as the brightness

of the image multiplied by its ‘solid angle’, does change.

For any gravitational microlensing event, the angular separation between im-

ages is of the order of the Einstein angle. Therefore, as mentioned previously,

the images that are formed by the alignment of two stars in the Milky Way

Galaxy cannot be resolved using any practical telescope on Earth. However, the

observed total flux, which is simply the sum of the flux from all the images, can

be measured by telescopes on Earth. The observed total flux is directly related
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to the position of the source, and as the source moves relative to the lens, the

observed flux will change over time. Therefore, microlensing events can only be

observed from the lightcurve, which is a plot of magnification over time, where

the magnification is defined as the ratio of the total observed flux of the source to

the flux of the source when unaffected by the lens. Figure 2.6 presents a ‘typical’

example of a lightcurve from a single lens event.

Figure 2.6: A typical lightcurve for a single lens event, with the source magnification plotted
against time in days.

Observed microlensing events are analysed by generating a large number of

theoretical lightcurves from various models and finding the model that fits best

with the observed lightcurve. In these theoretical microlensing models, the mag-

nification of the source can only be calculated once the image positions are known.

The following sections of this chapter focus on the mathematical equations used

to find these image positions. Methods for calculating the magnification from

these image positions are presented in Chapters 3 and 4.
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2.4 Multiple Lenses

One of the main reasons for observing and analysing microlensing events is to

detect extrasolar planets. In order to analyse these events, the lens equation

given in Equation 2.8 must be extended to include multiple lens systems.

In the previous section, the origin of the complex plane was chosen, without

loss of generality, to be at the position of the lens. However, in a multiple lens

system, there are two or more lenses. Therefore, before the lens equation can

be extended to multiple lens systems, it needs to be modified so it describes

microlensing events for any arbitrarily chosen origin.

If the origin is chosen in such a way that the lens is at position r from this

origin, the source and image positions can be transformed by w → w − r and

z → z − r respectively. Under these transformations, Equation 2.11 becomes,

w = z − 1

z̄ − r̄
. (2.13)

When the lens equation is extended to a system with any integer N number

of lenses, Equation 2.13 becomes

w = z −
N
∑

j=1

ǫj
z̄ − r̄j

= z − ǫ1
z̄ − r̄1

− ǫ2
z̄ − r̄2

− · · · , (2.14)

where rj is the distance of the jth lens from the origin, and ǫj = Mj/MT is the

mass fraction of this lens where Mj is the mass of the jth lens and MT =
∑N

j=1Mj

is the total mass of all the lenses.

The lens equation shown in Equation 2.14 describes a function mapping points

on the image plane (z = x+ iy) to points on the source plane (w = u+ iv). This

is demonstrated in Figure 2.7. Every point on the image plane maps to a unique

point on the source plane. However, when the equation is inverted, every point

on the source plane corresponds to multiple points on the image plane. The

number of image points that correspond to the source point depends on the

number of lenses, the configuration of these lenses, and the position of the source

with respect to this configuration.
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Figure 2.7: Source and image planes for a binary lens event. The two lenses, L1 and L2, are
located at positions, r1 and r2, respectively on both planes. Each image I at position z on the
image plane corresponds to the source S at position w on the source plane. This transformation
from image to source plane can be obtained via the lens equation (Equation 2.14).

While the lens equation for a single lens can easily be inverted and solved

analytically, solving the lens equation for multiple lenses is much harder, as there

is no analytical solution to this equation. The difficulty of inverting the lens

equation has led many microlensing modellers to use a brute force approach

known as inverse-ray tracing. This approach works by iterating through a large

number of potential image positions and ‘inverse-ray tracing’ these positions to

the source plane by substituting these image positions z into the lens equation in

Equation 2.14. The positions on the image plane that return the original source

position w are recorded as physical image positions, whereas the positions that

do not are discarded. The process follows directly from the reversibility of light,

whereby any light ray travelling from the source to the lens plane or observer

will follow exactly the same path when going from the observer or the lens plane

back to the source.

One way of implementing this approach (sometimes called ray-shooting) is by

working with a finite source (often represented by a disk) at some position on the

source plane. The image plane is then represented by a pixel grid of all potential

image positions. The potential image positions are then iteratively substituted
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into the lens equation to find the pixels that correspond to the source disk. The

magnification of the source is then estimated as the ratio of the total area of the

successful pixels in the image plane to the area of the source disk. A lightcurve

can then be constructed by iterating through a series of source positions on

the source plane. Limb darkening effects (discussed in Chapter 4) can also be

included by ‘weighting’ these pixels.

This approach clearly requires a large number of calculations, since a large

number of potential image positions are tested. Therefore, this approach requires

significant computational resources like grid computing systems. However, this

approach can be made more efficient by subdividing the image plane into suc-

cessively smaller regions and eliminating regions from the search by testing the

rays around the perimeter of each region.

Inverse ray tracing can be made more efficient through the use of tools such as

magnification maps. Magnification maps are generated by representing the image

plane by a fine grid of all potential image positions, which are inverse-ray traced

to the source plane. The image positions are then recorded in such a way that the

ray density on the source plane can be determined. A lightcurve can therefore

be constructed by moving a finite source disk along a path and determining

the source magnification at each source position by measuring the number of

included rays. While this works well for a fixed lens configuration, when the

model contains orbital lens motion, the lens configuration varies through time,

and a new magnification map is required for each interval of time, significantly

increasing the amount of computational time.

The alternative method to finding the image positions is to invert the lens

equation analytically. This can be achieved by rearranging it into an N2 + 1

degree polynomial. However, even a lens configuration with two lenses gives

a polynomial with 5th degree, which cannot be solved analytically. Therefore,

the polynomials must be solved numerically using polynomial root-finding al-

gorithms. The numerical techniques that can be used to find these roots are

discussed in Chapter 5.

The method of rearranging the lens equation into a polynomial in complex

22



coordinates was first demonstrated in the binary lens case by Witt (1990) and has

since become known as the semi-analytical method (Chote, 2011). However, as

more lenses are included, the expressions for the coefficients of the polynomials

become increasingly lengthy and more difficult to derive. A method to derive

these expressions in the triple lens was developed by Rhie (2002) and this method

can be extended to any number of lenses without much difficulty. An overview of

this method is given in the following section and the full derivation is presented

in Appendix A.

2.5 Semi-Analytical Method

In order to rearrange the lens equation for any N lens system into N2 + 1 poly-

nomial with respect to z, the z̄ terms need to be removed. This can be achieved

by first rewriting Equation 2.14 and its complex conjugate as follows,

z − w =

N
∑

j=1

ǫj
z̄ − r̄j

, (2.15)

z̄ − w̄ =

N
∑

j=1

ǫj
z − rj

. (2.16)

To simplify the lens function, we can represent Equation 2.16 in terms of two

polynomials G and H , such that,

G =
N
∑

j=1

ǫj
∏

i 6=j

(z − ri) , (2.17)

H =

N
∏

i=1

(z − rj) . (2.18)

We can eliminate the z̄ terms in the lens equation, we can rewrite Equation

2.16 in terms of G and H , and substitute it into Equation 2.15 to give,

z − w =
N
∑

j=1

ǫj
G
H

+ w̄ − r̄j
. (2.19)
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The polynomial H has degree N , whereas the polynomial G has degree N−1.

By defining the variable ̟i = r̄i − w̄, Equation 2.19 can be rearranged to give,

0 = (z − w)

N
∏

i=1

(G−̟iH) −
N
∑

j=1

Hǫj
∏

i 6=j

(G−̟iH). (2.20)

The polynomial described in Equation 2.20 can be separated into two distinct

parts: the first half of the equation, which is the product
∏N

j=1(G−̟jH), and

the second half of the equation, which is the sum
∑N

j=1 ǫj
∏

j 6=i(G−̟iH). These

two parts can be considered analogous to polynomials. By defining the variable

πi = z−̟i, the polynomials X and V can be constructed in a similar way to H

and G respectively, such that the first part of Equation 2.20 is analogous to X ,

while the second part of Equation 2.20 is analogous to V as follows,

X =
N
∑

i=0

Xiz
i =

N
∑

j=1

ǫj
∏

i 6=j

(z −̟i), (2.21)

V =

N
∑

i=0

Viz
i =

N
∏

j=1

(z −̟j). (2.22)

In this analogy, the polynomial from Equation 2.20 would be analogous to

0 = (z − w)X − V . Therefore, we can define a polynomial W such that,

W = wX + V. (2.23)

Equation 2.20 can therefore be expanded and rewritten in the form,

0 = z

N
∑

i=0

GiHN−iXi − w

N
∑

i=0

GiHN−iWi. (2.24)

Note that the H polynomial has degree N and is multiplied by itself at most

N times, giving the HN polynomial a degree of N2. HN is then multiplied by z

in the first part of Equation 2.24, giving this polynomial a degree of N2 + 1.

The expressions for the coefficients of Equation 2.24 can be found by expand-

ing the polynomials G and H . The term ηi,k can then be defined as the kth

coefficient of the polynomial product GiHN−i,

ηi,n =
[

GiHN−i
]

n
. (2.25)
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By combining Equations 2.24 and 2.25, we can represent the polynomial in

the form,

0 =
N2+1
∑

n=0

cnz
n, (2.26)

where the coefficients of this polynomial are given by the expressions,

cn =
N
∑

i=0

ηi,n−1Xi −
N
∑

i=0

ηi,nWi. (2.27)

This polynomial is known as the ‘lens polynomial’. While this equation can

be used to solve for any N number of lenses, the expressions for the coefficients

become increasingly lengthy as the number of lenses increases. To date, only one

microlensing event has been published that required a model with a three lens

configuration (Gaudi et al., 2008) and none that required four or more lenses

in the model. While it is possible that a model with four lenses (most likely a

star plus three planets) might be required in the future, it seems unlikely that

a system with five or more planets will be discovered via microlensing in the

immediate future. Therefore, this thesis focuses on configurations with no more

than four planets.

2.6 Number of Images

Although the lens equation for a system with N lenses can be rearranged into a

polynomial with degree N2 + 1, not all of the N2 + 1 roots always correspond to

physical images; the set of physical images is only a subset of the roots. A point

z on the image plane corresponds to a physical image if and only if this point

inverse-ray traces to the source position w whenever it is substituted back into

lens equation (Equation 2.14). The roots that do not inverse-ray trace to the

source position are unphysical. For a configuration with N lenses, the number of

images is always N+1+2k where k is an integer (Witt, 1990). The specific value

for k depends on the position of the source relative to the lens configuration. An

upper limit to the number of images was set by Rhie (2001), who argued that

the number of images never exceeds 5(N − 1) when N > 1.
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For a multiple lens configuration, the number of images may change as the

source position moves along a path (known as the source track) on the source

plane. As this number changes, the physical images may appear and disappear

along the loci of points on the image plane called the ‘critical curves’. The

corresponding loci of points on the source plane (by inverse-ray-tracing these

points to the source plane via the lens equation) are called the ‘caustic curves’.

The two images appear or disappear at the critical curves on the image plane

whenever the source crosses a caustic curve on the source plane. The natures

of the critical and caustic curves are discussed in more detail in the following

chapter.

To determine the behaviour of the images when the source star is far from

the lens positions, we can take the limit w → ±∞. When this limit is applied to

Equation 2.14, the lens equation becomes,

z −
N
∑

j=1

ǫj
z̄ − r̄j

→ ∞. (2.28)

This equation corresponds to either z → ±∞ or −ǫj/(z − rj) → ±∞, where

j = 1, 2, · · · . The latter corresponds to when z → rj . Therefore, in this limit,

there is one (physical) image located near the source position w and one (physical)

image located near each lens position rj, giving a total of N+1 (physical) images.

When this limit is applied to the lens polynomial presented in Equations 2.26

and 2.27, it can be shown that the polynomial is reduced to,

0 = (z − w)

N
∏

j=1

(z − rj)
N . (2.29)

The proof of this result is shown in Appendix A, Section A.3. This shows

that there is one root near the source, w, and N roots near each lens position, rj.

Therefore there are N − 1 unphysical roots near each lens. This result becomes

important in subsequent chapters, where the identification of a root as being

physical or unphysical depends on the accuracy of the numerical polynomial

solver.
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2.7 Orbital Motion

For most microlensing events, the relative motion of the source star, lens, and

observer can be represented by uniform motion unaffected by any forces. Thus

the projected motion of the source relative to the lens as viewed by the observer

can be modelled by rectilinear motion - a straight line path at a constant speed.

For a single lens microlensing event, this leads to the lightcurve presented in

Figure 2.6, which results from the changing magnification of the source measured

by the observer. The microlensing survey groups (MOA and OGLE) use this

lightcurve shape to initially identify potential microlensing events from the other

causes of stellar variability. Any deviations from the single lens lightcurve shape

may imply a multiple lens system (a star plus planet(s) are of most interest) and

in this case the follow-up networks are required to help observe and characterise

the nature of these deviations.

However, for some microlensing events, orbital (accelerated) motion of the

observer, the source, or the lens system may have a significant on the lightcurve,

and this orbital motion needs to be included in the models.

The most common type of orbital motion required in models is the accelerated

motion of the observer, as the Earth orbits around the Sun. If the time scale

of the microlensing event is long enough, the orbital acceleration of the Earth

leads to apparent non-rectilinear motion of the source track and a consequent

distortion of the lightcurve. This effect is known as microlensing parallax.

In a similar way, any orbital motion of the source star around a companion

(which may be unseen) will produce effects similar to parallax. This effect is

known as ‘xallarap’, as it can be thought of as the reverse of parallax. However,

while parallax can be modelled with only two free parameters since the orbital

period and radius of the Earth are known, the details of the hypothesised or-

bital motion of the source in xallarap are unknown and need to be included as

free parameters in the process of modelling the lightcurve. Nevertheless, sev-

eral microlensing events have been modelled using xallarap, as well as the better

characterised parallax effect.

The third type of orbital motion is that of the lens system itself in the case
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of multiple lenses. The components of a multiple lens system orbit around their

common centre of mass, and depending on timescales, this can have an observable

impact on the lightcurve. At least one high profile microlensing event required

this effect to be included (Gaudi et al., 2008). This type of orbital motion is

different from parallax and xallarap, since it does not change the apparent motion

of the source; it only changes the positions of the lenses. Lens motion is modelled

simply by modifying the lens positions rj as a function of time.

When lens motion is included in the models, the lens configuration changes so

the coefficients for the polynomials G, H , X , V and W in Equations 2.17, 2.18,

2.21, 2.22 and 2.23 need to be recalculated at each time interval. However, if there

is no lens motion, the lens positions rj do not change, so the polynomials G and

H only need to be calculated once for each lightcurve, thus reducing computing

time. For more details on orbital motion, see Chote (2011).
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Chapter 3

Image Topology

In Chapter 2, we gave the analytical theory of microlensing and showed how to

derive polynomials, which have roots that are supersets of the image positions.

That chapter also explained how to determine whether a root from this equation

is a physical image or not. In this chapter, we will look into how to use these

image positions to calculate the magnification of a single point source position,

and how this can be used to calculate a lightcurve for a given lens configuration.

This chapter starts by looking at the lens equation introduced in Chapter 2,

using it to investigate the topology of the image plane, and showing how to find

the magnification of each (physical) image for a point source. We introduce the

concepts of critical curves, caustic curves, domains, and parity and show how

these relate to the number and magnification of the (physical) images. We then

show how to construct polynomials with roots that correspond to the critical

curves, and we use these polynomials to analyse the behaviour of the critical

and caustic curves for binary and higher lens configurations. We conclude this

chapter by focusing on configurations with multiple planets, investigating how

the position of each image affects its contribution to the total source magnifi-

cation, and showing how the caustic curves and lightcurves from these events

can be approximated to first order approximation by several independent binary

planetary events.
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3.1 Point Source Magnification

As mentioned in Chapter 2, the images cannot be resolved by any practical

telescope on Earth; only the observed flux from the source can be measured.

The observed flux is defined as the apparent brightness multiplied by the solid

angle of the image (or the area of the image when represented a dimensional

plane). Although the lensing does not affect the apparent brightness of the star,

it does distort the shape, and this distortion in shape will change the area of

the projection of the source on the image plane. By comparing the area of the

images during a gravitational microlensing event with the area of the source when

unaffected by the lenses, we can calculate the magnification of the source star.

Only the observed flux can be measured from a single observation; the area of

the source and images cannot be determined by a single measurement. Therefore,

in order to obtain the source magnification, a series of measurements must be

made to record the observed flux over time. A plot of the observed flux over time

gives a lightcurve.

For any configuration of lenses, the positions of the generated images can be

used to calculate the area of the images and the magnification, for any given

source position. The simplest method to calculate the source magnification is

called the point source approximation, where the amplitude is approximated in

the limit where the source and images are shrunk to points of zero size. In this

limit, the image magnifications can be calculated analytically from the image

positions as shown in this section. In a single lens case, these image positions

can be calculated analytically, so a formula describing the magnification for any

given source position can be obtained.

Although the point source approximation is simple and efficient, it is limited,

and often returns the incorrect source magnification in some cases. Therefore,

other methods must be used to calculate the source magnification. Some of these

other methods are given in the following chapter.
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3.1.1 Single Lens Magnification

In order to obtain the magnification of a source for a single lens configuration,

we need to calculate the area of the source as well as the area of the two images

produced in a single lens event. If the lens is positioned at the origin, the lens

plane is radially symmetric about the origin. This symmetry can be exploited by

representing the source and image positions in terms of polar coordinates. The

source and the two images can be approximated as sectors of annuli centred at

the lens, with a common central angle ψ, with widths δw and δz± respectively,

and with inner radii s and z± respectively.

ψ

δz

δz

z

zw

δw

+

+

-

-

1RE

Figure 3.1: A single point lens configuration with the source (red) and images (blue) approx-
imated as sectors of annuli. These sectors can be used to estimate the image magnification.
The lens (green) is at the centre and the Einstein ring is shown by bold black circle.
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Figure 3.1 shows the shape and position of the source and images for this

arrangement. If the values for ψ, δw and δz are small, it can be shown that

the source and the two images have areas approximately given as ψwδw, ψz±δz±

respectively. Therefore, magnification µ of an image in this diagram can be

expressed as,

µ± =
z±δz±
wδw±

. (3.1)

If the areas if the source and images all are shrunk to a point, then the

small widths δw and δz± become infinitesimally small, and the quotient of these

can be expressed as the derivative dz±/dw±. In a single lens case, the image

positions can be found using Equation 2.12. This analytical expression gives a

negative value for z−, which results in a negative value for the area of this image.

Therefore, we define the image magnification as the absolute value of the ratio

of the areas, which gives us,

µ± =

∣

∣

∣

∣

1

2
± w2 + 2

2w
√
w2 + 4

∣

∣

∣

∣

. (3.2)

The magnification of the source is defined as the sum of the image magnifi-

cations, which gives,

Atotal =
w2 + 2

w
√
w2 + 4

. (3.3)

This equation can be inverted to give the source position in terms of the total

source magnification, such that,

w =

√

√

√

√2

(

√

1

A2 − 1
+ 1 − 1

)

. (3.4)

As discussed earlier, the source magnification is defined as the quotient of

the apparent brightness of the source star over the brightness of the source star

when unaffected by the lens. Since the brightness of the star when unaffected

by the lens is hard to determine from a single microlensing observation, a series

of measurements of the apparent brightness is required as the source star moves
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behind the lens. The plot of this apparent brightness over time is referred to as

a lightcurve.

Suppose the source star moves in a straight path, with the source moving uni-

formly in the u-direction, and offset by a constant distance w0 in the v-direction.

If the source travels an Einstein radius (1RE) in time tE, and crosses the v-axis

at time t0, then the relative distance of the source from the lens w(t) can be given

by,

w2(t) = w2
0 +

[

t− t0
tE

]2

. (3.5)

Assuming that there is no nonlinear movement of the observer, lens, or source

star, a lightcurve for a point source and single lens can be analytically determined

using just three parameters: the impact parameter w0, the Einstein time tE , and

the crossing time t0. If the observer, lens, and source are moving in straight paths

but at different velocities, the source will still appear to move in a straight line

relative to the lens due to the principle of relativity, and this relative motion can

still be expressed in terms of the impact parameter, the Einstein time, and the

crossing time.

Figure 3.2: Lightcurves that represent the magnification of the source star with time, for 4
microlensing events with various parameters. The Einstein crossing time, tE , peak time, t0
and impact parameter, w0, affects the width, peak position and peak height of the lightcurve
respectively.
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Figure 3.2 shows several plots of the magnification of a source star against time

as it moves behind the single lensing mass. All of the plots give a bell like curve

not dissimilar to a resonance curve, but the height, width, and position of each

curve varies depending on the values for the impact parameter, the Einstein time,

and the crossing time respectively. From these plots, it can be seen that increasing

or decreasing the Einstein time widens or narrows the curve respectively, while

increasing or decreasing the crossing time shifts the curve to the right or left

respectively.

The height of the curve is governed by the impact parameter. A larger impact

parameter gives a shorter peak, while a smaller impact parameter gives a taller

peak. For very small impact parameters it can be shown, using Equation 3.3,

that the height of the peak for a given impact parameter, w0, can be estimated

by,

Apeak ≈ 1

w0
.

As the source approaches the point directly behind the lens (w0 → 0), the

magnification of the point source diverges. This clearly does not happen in

real gravitational microlensing events. Therefore, although calculating the point

source magnification is easy and efficient, it has limitations where it returns the

wrong result. In these cases, other methods must be used to calculate the source

magnification, such those introduced in the next chapter.

3.1.2 Multiple Lens Magnification

Calculating the magnification of a image produced by a multiple lens system

differs from that produced by the single lens case in two ways.

Firstly, when we generalise the point source magnification to a configuration

with more than one lens, we lose the radial symmetry of the image plane about the

primary lens. Therefore, there is no obvious advantage to use polar coordinates

over Cartesian coordinates, as we did in the single lens case.

Secondly, as discussed in Chapter 2, there is no analytical solution to the

position of the images for a multiple lens system, so unlike the single lens case,
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there is no analytical solution for the point source magnification in the multiple

lens cases.

The lens equation in Equation 2.11 described a mapping from a point on

the image plane to a point on the source plane. Vector calculus tells us if an

infinitesimal area δxδy is mapped onto the source plane, its projected area δuδv

can be given by the Jacobian determinant, often called the Jacobian for brevity.

The Jacobian gives an infinitesimal area element on the source plane divided by

its corresponding area element on the image plane (see Appendix B). Therefore,

the point image magnification, µ, which is the ratio of the area of the image to

the area of the source, can be described as the inverse of this determinant,

µ =
1

J
, (3.6)

and the total magnification, A, of the source can be expressed as the sum of

all the (physical) image magnifications, µ, such that,

A =
∑

images

µ =
∑

images

1

J
. (3.7)

If a position on the image plane is given by (x, y), and its corresponding

position on the source plane is given by (u, v), then the Jacobian determinant is

given by,

J =
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

=
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
. (3.8)

As shown in Appendix B, this Jacobian is exactly equivalent to,

J =
∂w
∂z

∂w
∂z̄

∂w̄
∂z

∂w̄
∂z̄

=
∂w

∂z

∂w̄

∂z̄
− ∂w̄

∂z

∂w

∂z̄
. (3.9)

When applying the Jacobian in Equation 3.9 to the lens equation, we get,

J =
1 ¯κ(z)

κ(z) 1
= 1 − |κ(z)|2, (3.10)

where κ(z) is given by,

κ(z) =
∂w̄

∂z
=

N
∑

i=1

ǫi
(z − ri)2

. (3.11)
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3.2 Image Topology

The lens equation describes a mapping from the image plane with point z = x+iy

to the source plane w = u + iv. Each image on the image plane corresponds to

one unique position on the source plane. However, as shown in Chapter 2, when

this mapping is inverted, one point on the source plane corresponds to up to

N2 + 1 points on the image plane for a system with N lenses.

To better visualise this mapping from the source plane to the image plane, we

can imagine the image plane as a deformable and stretchable sheet called a ‘sky

sheet’ (Mollerach and Roulet, 2002). In this picture, the lens equation describes

the deformation of the sky sheet, including how the sheet stretches and where it

folds over itself.

Source/Image Plane Sky Sheet

Figure 3.3: The sky sheet and source/image plane for a single lens, with the Einstein ring is
represented by the blue ring in the source/image plane. This sky sheet demonstrates how the
source is projected vertically up and down to produce images inside and outside the Einstein
ring.

The right panel of Figure 3.3 shows the sky sheet deformation for a single

lens, while the left panel shows the position of the source and images on the lens

plane. Since the single lens has circular symmetry about the lens, the positions
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on the image plane are represented by polar coordinates. The two horizontal

axes of the ‘sky space’ represent the u and v coordinates on the source plane,

and the vertical height represents the negative of the Jacobian of the image. The

lower part of the sky sheet represents the region on the image plane outside the

Einstein ring, whereas the upper part of the sky sheet represents the region on

the image plane inside the Einstein ring. It should be noted that the upper part

of the sky sheet is upside down, so that the projected image of the source on this

part of the sky sheet is inverted. Therefore, the image on the upper part of the

sky sheet would have a negative parity, while the image on the lower part would

have a positive parity.

The sheet crossing over itself at (u, v) = (0, 0) with a height of 1, represents

the way the images form the Einstein ring (with a radius of 1) when the source

is directly behind the lens. Figure 3.4 shows the lens plane and the sky sheet in

the situation where the Einstein ring is formed.

Figure 3.4: Sky sheet and source/image plane for a single lens for the formation of the Einstein
ring. This sky sheet demonstrates how a source at the lens position is projected vertically up
and down to produce the Einstein ring.
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When determining the magnification of an image from a sky sheet, it can be

shown that the magnification of an image depends on two properties: the slope

of the sky sheet at a particular source position, and the amount that the sky

sheet is stretched at that position. When the source is projected onto part of

the sky sheet with a steeper gradient, the image is spread over a larger area,

which would give a larger image magnification if the sky sheet is not stretched

here. However, some parts of the sky sheet are stretched, so when the source is

projected onto these parts of the sky sheet, the corresponding area on the image

plane is smaller. This is exemplified in the upper parts of the sky sheet, which

correspond to the regions on the image plane close to the lenses. Whereas on the

lower parts of the sky sheet, the sky sheet is close to flat and has been stretched

very little, so the total magnification of the image here is close to one.

Source/Image Plane Sky Sheet

Figure 3.5: Sky sheet and source/image plane for a binary lens system, showing critical
curves in blue and caustic curves in grey in the latter. This sky sheet demonstrates how a
source crossing the caustic curve is projected to form one image outside the critical curves, two
images inside the critical curves, and two part images joining at the critical curves.

The left panel of Figure 3.5 shows the lens plane for a binary lens configura-
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tion, and the right panel of this figure gives the sky sheet for this configuration.

This is clearly more complex that the ‘simple’ sky sheet of a single lens, as the

sky sheet in this binary lens case folds over itself several times. The blue lines on

the sky sheet represent the places where the sheet is folded. If we were to take

the sky sheet and unfold it to make the image plane, these blue fold lines become

the critical curves on the image plane. The critical curves can be considered as

generalisations of the Einstein ring - the boundary between images of positive

and negative parity. The places where the folds in the sky sheet are projected

onto the source plane are called the caustic curve folds, and where two caustic

folds meet is called a caustic cusp. These are represented by the smooth grey

curves and the sharp corners on the source plane respectively.

The sky sheet is folded is such a way that there are three layers of sky sheet

above the region outside the caustic curves, while there are five layers above the

region inside the caustic curve. Therefore, when the source is outside the caustic

curve, three images are formed (one with positive parity and two with negative

parity), while five images form when the source is inside the caustic curve (two

with positive parity and three with negative parity).

Figure 3.5 shows a case where the source straddles a caustic curve. When

this source is projected onto the sky sheet, an image is created along a fold in the

sky sheet. This corresponds to an image along the critical curve on the image

plane. However, this image is actually made from two ‘part’ images connected

at the critical curve. This part of the sky sheet is only over part of the source,

as it is only the source inside the caustic curve that is projected onto this part

of the sky sheet.

In a configuration with N lenses, when the source is outside the caustic folds,

there is always one image with positive parity located near the source, and N im-

ages with negative parity, each located near one of the lens positions. Therefore,

the minimum number of images is N + 1. This result was first shown mathemat-

ically by Witt (1990). Whenever the source crosses a caustic curve, one positive

and one negative image is created. Therefore a system with N lenses always has

a total parity of 1 −N .
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Since the number of images is determined by the position of the source, it

is useful to divide the source plane into ‘caustic domains’ [Rhie 2001]. In this

notation, D0 is the caustic domain outside the caustic curves where N+1 images

are produced, D1 is the caustic domain region where N + 3 images are produced,

and so on. Higher domains such as D2 are created when the sky sheet is folded

over again to create a set of caustic folds inside another set of caustic folds. In

general, N+1+2n images are produced whenever the source is in the caustic do-

main Dn. Figure 3.6 below shows the caustic curves, critical curves and domains

triple lens system.

D

D

D

D

D

D D

0

1

2

2

3

3

1

D
0

Source/Image Plane Sky Sheet

Figure 3.6: Sky sheet and source/image plane for a triple lens system, showing caustic domains
D0, D1, D2 and D3. This sky sheet demonstrates how the sheet folds over itself to produce
caustic curves on the source plane. The places where the sky sheet folds over correspond to
critical curves on the image plane. Multiple domains are formed as the sky sheet folds over
itself multiple times.

3.3 Critical and Caustic Curves

From Figure 3.5, it can be seen that the tangent of the sky sheet on the edge of

a fold is vertical, giving an infinite gradient. Since the sky sheet is not infinitely
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stretched at these folds, an infinite gradient gives an infinite magnification when-

ever a point source is projected onto the edges of these folds. Therefore, the

critical curves can be given as the points on the image plane where the point

image magnification is infinite. The caustic curves are then given by the corre-

sponding positions on the source plane. As shown in Equation 3.6, an infinite

point image magnification corresponds to a zero Jacobian. Therefore, it can be

shown from Equation 3.10 that the critical curves are the loci of points on the

image plane that are given by,

κ(z) = eiφ, (3.12)

where φ is any angle between 0 and 2π. Additionally, from Equation 3.11 it

can be shown that,

κ =
∂w̄

∂z
=

∂

∂z

[

G(z)

H(z)

]

. (3.13)

Therefore, it can be shown that the critical curves z can be given by the

polynomial,

0 = G′H −H ′G−H2eiφ, (3.14)

where G and H are the same polynomials given in Equations 2.17 and 2.18,

and G′ and H ′ are their derivatives respectively. By obtaining the expressions

for the coefficients of G and H (see Appendix C), the critical curves can be given

by the solutions of the polynomial,

0 =
2N
∑

n=0

cnz
n, (3.15)

where the coefficients can be given by,

cn =

n
∑

k=0

[

(k + 1) (Gk+1Hn−k −Gn−kHk+1) −HkHn−ke
iφ
]

. (3.16)

For a system with N lensing bodies, the polynomial given in Equation 3.15

has 2N roots for any value of φ. Values for φ in the range between 0 and 2π can

be substituted into this polynomial, which can then be solved for each value of

φ using the numerical root-finding algorithms, to give points along the critical

curves. Two numerical root-finding algorithms, the Laguerre and Jenkins-Traub
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algorithms are discussed in Chapter 5. Once the critical curve positions have

been found, these z = x+ iy points can be substituted into the lens equation to

give the corresponding point on the source plane to describe the caustic curves.

In a single lens case where the lens is located at the origin, it can be shown

that the points on the critical curves are given by the relationship z = eiφ, whose

solutions describe the unit circle - the Einstein ring.

3.4 Binary Lens

The simplest case with a caustic structure is the binary lens system. While the

caustic curves in higher lens systems often intersect and form a caustic structure

with multiple domains, the caustic curves in a binary structure do not. Thus

domain D1 is formed inside the caustic structure and D0 outside. However,

by investigating the nature of the binary caustic structure, we can develop an

understanding of caustic curves, which can then be applied to higher lens systems.

As in section 1.1 above, a simple single lens event has three parameters.

However, a multiple lens systems has three extra parameters for each lens added

to the system. If the primary lens is located at the origin, these extra parameters

are the mass ratio or mass fraction for each lens, the x and y positions or the

modulus, and the argument for each lens. If the primary lens is much larger than

the other lenses, then it is likely that the primary lens is a star (or black hole)

with planets orbiting it.

A binary lens event can be classified as a close binary, a far binary, or an

intermediate binary, as shown in Figures 3.7 and 3.8 below.

3.4.1 Caustic and Critical Curves

The shape and structure of the critical and caustic curves for a binary lens

ultimately depend on only two parameters: the distance between the lenses d,

and the mass ratio q. Figure 3.7 and Figure 3.8 show the how the structure of

the critical and caustic curves change as the lens separations increases for binary

lenses with mass ratios q = 1 and q = 0.1 respectively. The critical and caustic

curves are represented as red and blue lines respectively, and the scales on the
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axes are given in terms of units of Einstein radii.

Close Binary Lens

Let us first consider the case where the two lenses are initially at the origin.

In this situation, the critical curves will form the Einstein ring and the caustic

curves form a single point at the origin. As the two lenses move apart, the

critical curve becomes less circular, and the caustic curve grows into a 4-cusp

caustic loop, which hereafter will be called the central caustic. If the two lenses

have equal mass, then this central caustic grows into a symmetrical diamond-

like shape exactly midway between the lenses. However, if the masses of the

two lenses are unequal, this caustic curve grows into a kite-like shape, and is

positioned closer to the larger lens. As the lens separation continues to grow,

two smaller 3-cusp caustic loops (hereafter called planetary caustics) approach

the binary lens from infinity. When the masses are equal, these planetary caustics

approach at the direction perpendicular to the lens axis, and join with the central

caustic when the lens separation is d = 1/
√

2 ≈ 0.707. However, when the mass

ratio is unequal, the planetary caustics approach from lines tilted toward the

larger (primary) mass side of the binary, and as the mass ratio becomes more

unequal, these planetary caustics will approach along lines closer to the lens axis

(Han, 2006).

Two small critical curve loops corresponding to these planetary caustic curves

grow inside the continually distorting Einstein ring and move to join up with this

larger critical curve structure. It should be noted that the images which appear

inside these smaller critical loops have positive parity. When the masses are

equal, these critical loops appear and move in a line equidistant from the two

lenses, and join with the larger critical loop when the lens separation is d = 1√
2
.

However, when the masses are unequal, these small critical loops appear closer

to the smaller lens and move towards the ‘planetary’ side of the binary lens.

When the caustic curves and critical curves join to form a single caustic curve

and critical curve structure respectively, the binary lens then becomes known as

an intermediate binary.
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Intermediate Binary Lens

A binary lens is considered to be an intermediate binary when the separate critical

curve loops have joined to become a single critical curve surrounding the lenses,

and the caustic curves have combined to form a single 6-cusp caustic structure

called a resonant caustic. When the lens separation is d = 1, the caustic structure

will always form a resonant caustic regardless of the mass ratio. As the separation

increases, the caustic and critical curves continue to distort, until the resonant

caustic splits into two smaller caustic loops. This occurs when the lens separation

is d = 2 if the two masses are equal.

Wide Binary Lens

Two lenses are considered to be a wide binary when the caustic curve has split

into two smaller 4-cusp caustic structures, and the critical curve loop has split

into two smaller loops, surrounding the two lenses. If masses are unequal, then

the caustic structure closer to the larger mass is called the central caustic, while

the caustic structure closer to the smaller mass is called the planetary caustic.

The central caustic has a much smaller area than the planetary caustic, while

the planetary caustic is shaped more diamond-like in shape, and is increasingly

more diamond-like for increasingly unequal masses.

As the separation distance gets larger, the critical curves become more circu-

lar. As d → ∞, the caustic curves become points at the lens positions, and the

critical curves become the circular, or Einstein rings with a radius
√
ǫj for each

lens. Therefore the binary lens resembles two single lenses in this limiting case.

There are two cases where the resonant caustic splits into a planetary caustic

and central caustic: when a close binary becomes an intermediate binary, at the

lens separation dI , and when an intermediate binary becomes a wide binary, at

the lens separation dII .

When the masses are equal (q = 1), the values of these lens separations are

dI = 1√
2

and dII = 2, as mentioned earlier. Erdl and Schneider (1993) showed

that, if the mass fractions of the primary and planetary lenses are ǫ1 = 1/(1 + q)

and ǫ2 = q/(1 + q) respectively, the expressions for the lens separations dI and
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Figure 3.7: Critical curves (red) and caustic curves (blue) for a binary lens system with q = 1
at various lens separations.

Figure 3.8: Critical curves (red) and caustic curves (blue) for a binary lens system with
q = 0.1 at various lens separations.
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dII can be given by,

ǫ1ǫ2 =
1

d8I

(

1 − d4I
3

)3

, (3.17)

(

ǫ
1/3
1 + ǫ

1/3
2

)3

= d2II . (3.18)

It can be shown that dII = 1/d2I for all mass ratios. Equations 3.17 and 3.18

can be rearranged to give the lens separations dI and dII in terms of the mass

ratio q, such that,

dI = 4

√

1 + q

(1 + q1/3)
3 , (3.19)

dII =

√

(1 + q1/3)
3

1 + q
, (3.20)

Figure 3.9 show the range of parameters that determine whether a binary lens

is a close binary, an intermediate binary, or a wide binary. The lens separations

dI and dII are shown on this graph as lines between these cases. This graph

shows that in the limit where q → 1 the lens separations become dI → 1√
2

and

d → 2. As q → 0, both these lens separations become dI , dII → 1, showing that

the caustic structure always forms a resonant caustic when d = 1, regardless of

the mass ratio.

Figure 3.9: The close, intermediate and wide binary cases in parameter space, with the
boundaries dI and dII between each case.
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Caustic Curves in Planetary Configurations

A planetary system can be defined as a system where q << 1. In a binary lens

system like this, we can define the ‘front’ of the binary as the same side with the

planetary lens, and the ‘back’ of the binary as the opposite side. When a system

such as this has a lens separation d < 1, part of the caustic curve will usually be

‘behind’ the primary lens.

As the mass ratio decreases for a binary lens, the main critical curve will

get larger, approaching the Einstein ring as q → 0. In a wide binary, this is

accompanied by the critical loop surrounding the planetary lens getting smaller,

while in a close binary, the two smaller critical curves not only become small, but

also move towards the planetary lens. In the planetary limit where q → 0, the

distance between the primary lens and the planetary caustic approaches d− 1/d

(Han, 2006), where a positive value represents the ‘front’ of the binary lens, and

a negative value represents the ‘back’. We can easily invert this equation to give

the lens separation, d, in terms of the planetary caustic position, w, such that,

d =
w +

√
w2 + 4

2
. (3.21)

In the complex coordinate representation, where rj is the complex number

representing the position of the jth lens, the approximate position of the plane-

tary caustics w from the origin can be given by,

w = r2 −
1
¯r2 − r1

. (3.22)

This result comes directly from the lens equation by taking z ≈ r as the

position of the planetary critical curves in the limit ǫ1 → 1, ǫ2 → 0. Note that

when the lens separation is d =
√

2, the midpoint between the two lenses, 1/
√

2

from either lens, is always within the planetary (or resonant) caustic.

3.4.2 Point Source Magnification

In contrast to the single lens case, where the point source magnification diverges

at the lens, the point source magnification in a binary lens event only diverges
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at the caustic curves. In this binary lens case, the caustic curves never touch the

lenses, however, the caustic curves approach the both lenses in the limits d → 0

and d → ∞. Only in these limits, will the point source magnification appear to

diverge at two lens positions.

When a binary lens configuration has a large mass ratio q << 1, the central

(or resonant) caustic is very small and is located close to the primary lens. In

this configuration, the overall shape of the lightcurve can be expressed as a single

lens light curve with some ‘residual’ deviations, as demonstrated in Figures 3.11

below. In these situations, a majority of the data can be modelled using the

single lens analysis, to find the approximate parameters for the impact parameter,

Einstein time and crossing time. The nature of the binary lens itself can then be

analysed by looking at the ‘residuals’.

The features in a lightcurve caused by the interactions with the critical curves

can be divided into two types: the feature from the point source’s interaction with

the caustic folds, and the features from its interaction with the caustic cusps.

Figure 3.10 shows the magnification map for a binary lens with a lens separation

d = 0.8RE and a mass ratio of q = 0.04, with three source tracks (a), (b) and (c)

crossing the (black) caustic curves. Figure 3.11 shows the resultant lightcurves

for these three source tracks respectively.

As mentioned earlier in this chapter, the point source magnification suddenly

diverges when the source star hits a caustic fold, and the lightcurve forms a U-

shape as the point source travels from one side of the caustic structure to the

other. This is shown in source track (a) in Figures 3.10 and 3.11. When the

point source enters (or exits) the caustic structure via a caustic cusp, the source

magnification rises (or falls) more slowly as it approaches (or goes away from) the

cusp. Gaudi and Petters (2002) showed that, if wc is the distance between the

cusp and the point source, the source magnification rises (or falls) as A ∝ w−1
c

when the source approaches (or goes away from) the cusp along the ‘axis’ of the

cusp (shown in source track (c) in Figures 3.10 and 3.11), but rises as A ∝ w
−2/3
c

when the source approaches perpendicular to this axis.

When the point source passes near a cusp, the source magnification does not
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diverge as it would when hits a caustic curve, but it does rise as the source passes

the cusp, reaching a maximum when it is positioned along the cusp ‘axis’. This

is demonstrated by source track (b) in Figures 3.10 and 3.11.

Figures 3.10 and 3.11 also show the low magnification trough that forms

whenever a planetary binary lens has a lens separation d < 1. This is the region

between the caustic curves ‘behind’ the primary lens where the magnification of

the source is lower than the corresponding single lens source magnification.

a)

b)

c)

Magnification

Figure 3.10: Magnification map for a binary lens event showing three source tracks a, b and
c.

3.4.3 Image Positions and Magnifications

To study the magnification of a point source in more details, we can look at the

magnification of each image, and determine the contribution each image has on

the total source magnification.

Figure 3.12 presents the source plane for the binary lens configuration shown

in Figure 3.10, with source track (c). Figure 3.13 presents the image plane for this

binary lens configuration, with Figure 3.14 showing a close up of the image plane

in the vicinity of the planetary lens. The grey lines and arrows represent the

paths of the unphysical roots, while the coloured lines and arrows represent the

paths of the (physical) images. Figure 3.15 shows the lightcurve of the event in
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Figure 3.11: Lightcurves for a binary lens event for three source tracks a, b and c in Figure
3.10.

black, and the magnification of each (physical) image in its respective colour. The

green arrow head shows the position on the lightcurve and the source track where

the source passes a caustic cusp, along with the image position that corresponds

to this rise in the image magnification.

Figure 3.12: Source plane for a binary lens configuration. The primary lens position and the
caustic curves are shown as black dots and lines respectively. The source track is given as a
grey line, with an arrow indicating the direction of motion.
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Figure 3.13: Image plane for binary lens configuration. Lens positions and critical curves
shown as black dots and lines respectively. Physical images and unphysical roots shown as
coloured and grey line respectively. The colour of each physical image correspond to the its
magnification in Figure 3.15. The arrows indicate the direction of the images as the source
moves from left to right.

Figure 3.14: Close up of the image plane for the event in Figure 3.13, in the vicinity of
a planetary lens. The critical curves are shown by the black lines. Physical images and
unphysical roots are shown as coloured and grey lines respectively. The colour of each physical
image correspond to the its magnification in Figure 3.15. The arrows indicate the direction of
the images as the source moves from left to right.
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Figure 3.15: Lightcurves of the event in Figures 3.13 and 3.14. Total source magnification is
given in black, with magnification of each (physical) image in its respective colour.

Whenever the source crosses a caustic fold, going from D0 to D1, two unphys-

ical roots meet and disappear at a point on the critical curve, and two physical

images appear from this position on the critical curve. When the source goes

from D1 to D0, the opposite happens, where physical images disappear and be-

come two unphysical roots. . The two of physical images are always travelling

in opposite directions at the point of intersection, as are the two of unphysical

roots. The directions of the physical roots at this point are always perpendicular

to the direction of the unphysical roots when this occurs. This is demonstrated

in Figure 3.14, where two grey unphysical roots converge at the critical curve,

followed by the red and blue physical images emerging from this point on the

critical curve.

The positive-negative image pair that appears when the source enters D1 may

or may not have roots in common with the positive-negative pair that disappears

when it leaves D1. If the source enters and then exits D1 via the same caustic

fold, the same positive-negative pair of images will appear and disappear at the

critical curves. However, it is not possible for a source travelling in a straight

line to enter and then exit D1 via the same caustic fold since the caustic folds are

concave. When the source crosses the planetary caustics in a close binary lens,

the same positive image will appear and disappear at the (planetary) critical

curves, but the negative image will be different if the source enters and leaves
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via different caustic folds. The positive image may or may not different.

Whenever a source moves from D0 to D1 through a caustic cusp, one physical

image and two unphysical roots converge at a critical curve and disappear to

be replaced by three physical images. In these situations, the source must move

along the axis of the caustic cusp, since the caustic cusps represent a 360◦ turn

in the caustic curves. The initial physical image therefore moves at the normal

to the critical curves and is located outside the critical loop. The two initial

unphysical roots also move at the normal to the critical curves, one inside and

one outside the critical loop, moving towards each other. After the source has

crossed the caustic cusp, two of the new physical images move tangential to the

critical curves, and move away from each other, while the other physical image

moves at a normal to the critical curves inside the critical curve loop, as though

continuing the motion of the initial image. When the point source goes from D1

to D0 through a caustic curve, the reverse happens, where three physical images

and an unphysical root disappear at the critical curve to become three unphysical

roots and a physical image, travelling in opposite directions to the original roots.

Figures 3.12 to 3.15 also present a point source passing through the low mag-

nification trough, where the total source magnification is lower than the expected

corresponding single lens source magnification. These diagrams reveal that the

green and cyan images are most responsible for this drop in source magnification,

as these images travel between the planetary critical curves, passing close to the

planetary lens. As the image moves closer to the lens, the magnification of this

image decreases.

These diagrams show the source crossing a planetary caustic with images

appearing and disappearing at the critical curves. When the source crosses the

central caustic, or the ‘central’ part of the resonant caustic, these images appear

and disappear around the ‘central’ part of the critical curves, close to the Einstein

ring.

By observing the behaviour of the image positions in these cases, we can

summarise the behaviour into the following rules:

1. A smooth and continuous source track produces smooth and continuous
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root tracks.

2. The physical images only appear or disappear at the critical curves. Here-

after, a position on the critical curve where these images appear or disap-

pear will be called ‘junctions’.

3. The number of roots at each ‘junction’ is conserved, i.e. the number of

physical + unphysical roots entering a ‘junction’ is equal to the number of

physical + unphysical roots leaving the junction.

4. Parity at each ‘junction’ is conserved.

5. When a pair of physical or unphysical roots is entering a ‘junction’, the

roots are moving directly toward each other. The roots that leave the

‘junction’ will travel perpendicular to these initial roots.

3.4.4 Analysing Real Lightcurves

While data from observed lightcurve events is analysed computationally, we can

identify lightcurve features by eye and use our knowledge of these features to

give us a rough idea of the caustic curve structure and the lens configuration

in these microlensing events. An example of this can be demonstrated using

the lightcurve from the OGLE-2005-BLG-390 event shown in Figure 3.16. This

lightcurve can be described as a single lens lightcurve with a small bump on the

side. The main peak corresponds to the source passing primary lens, while the

small bump corresponds to the source passing the planetary caustics. The main

peak occurs around 2453583JD with a height of approximately 3.0. By assuming

the mass of the planet is very small and using the approximation ǫ ≈ 1, we can

us Equation 3.4 to show that the impact parameter is approximately given as

0.348RE.

A source magnification of approximately 1.34 corresponds to the time where

the source lies on the Einstein ring of the primary lens, which occurs at about

10days from the peak time. The small bump on the lightcurve occurs roughly

at this time, therefore the planetary caustics are positioned roughly 1RE from

the primary lens. Using Equation 3.21, the lens separation can be estimated
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as 1.618RE. Since the impact parameter is not small, the crossing time is a

little trickier to estimate. However, Pythagoras’ Theorem can show that dis-

tance between the impact parameter and the Einstein radius is 0.937RE, giving

a crossing time of approximately 10.66days. These values are reasonable close to

the values (0.359 ± 0.005)RE, (2453582.731 ± 0.005)JD, (11.03 ± 0.11)days and

(1.610 ± 0.008)RE for the impact parameter, peak time, crossing time, and lens

separation respectively (Beaulieu et al., 2006)

Figure 3.16: Lightcurve for the event OGLE-2005-BLG-390 (orange) with observational data.
The lower panel shows the residuals between the observational data and the model lightcurve.

While not all lightcurves can be analysed as easily as this, knowledge of

how the source magnification changes with respect to the caustic structure can

still reveal important information on the binary configuration. For example,

Figure 3.17 shows the best fitting model for the MOA-2009-BLG-387 event (which

included parallax and orbital motion) as given by Batista [2011]. This lightcurve

generally has the shape of a single lens lightcurve (grey) with a two U-shaped

features with a lower source magnification between them. This suggests the

source track crosses the caustic curves at the back of the binary lens and through

the low magnification trough, implying a planetary binary configuration with a
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lens separation less than 1RE . This model had a mass ratio q = 0.0132±0.0002RE

and a lens separation d = 0.9136 ± 0.0003RE.

Figure 3.17: Lightcurve for the event MOA-2009-BLG-387 (orange) with observational data.
The lower panel shows the residuals between the observational data and the model lightcurve.

3.5 Higher Lens Configurations

As seen previously in Figure 3.6, the caustic curves in triple lens and higher

configurations can cross over themselves in such a way to create multiple domain

caustic structures. This differs from the binary lens case where there is only one

caustic domain inside the caustic curves (D1). Triple and quadruple lens systems

have been shown to produce caustic domains up to D3 and D5 respectively.

However, it has been argued by Rhie [2001] that a multiple lens system with N

lenses cannot create caustic domains higher than D2N−3.

Figure 3.18 presents the source plane for a system with three lenses with equal

masses, showing the source track in grey and the caustic curves in black. Figures

3.19 and 3.20 present the image plane, showing the critical curves in black, and

each unphysical root in grey, and each physical image in colour. Figure 3.20
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shows a close up of the image positions near the centre of mass. Figure 3.21

shows the lightcurve for this event and the magnification of each image in its

respective colour.

Note that while in D1 the source passes a cusp and enters the caustic domain

D2. This is represented on the lightcurve as a peak and a higher (D2) U-shaped

feature inside the D1 U-shaped feature. This lightcurve with U-shaped features

inside other U-shaped features in the lightcurve only occurs in lens configurations

with three of more lenses. Identifying the presence of this occurrence in a real

observed light curve is an indication that the lightcurve is produced by a lens

system with three of more bodies.

D
3

D
2

D
1

D
1

D
0

Figure 3.18: Source plane for a triple lens configuration. The lens positions and the caustic
curves are shown as black dots and lines respectively. The source track is shown by the grey
line and the direction of the source is represented by the arrow.

3.5.1 Unphysical Root Pairs

When each root is inverse-ray traced back to the source plane, the roots that

correspond to the physical images are roots that inverse-ray trace to the position

of the source, whereas roots that are unphysical do not. However, it is interesting

to note that the unphysical roots form pairs; two unphysical roots inverse-ray

trace to two points on the source plane at equal and opposite displacements from

the source. This is shown in Figure 3.22b.

When the source is far from the lenses, the roots are positioned close to
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Figure 3.19: Image plane for a triple lens configuration. Lens positions and critical curves
shown as black dots and lines respectively. The physical images and unphysical roots are shown
as coloured and grey lines respectively. The colour of each physical image correspond to the
its magnification in Figure 3.21. The arrows indicate the direction of the images as the source
moves from left to right.

Figure 3.20: Close up of the image plane for a triple lens configuration in vicinity of a
planetary lens. The critical curves are shown by the black lines. The physical images and
unphysical roots are shown as coloured and grey lines respectively. The colour of each physical
image correspond to the its magnification in Figure 3.21. The arrows indicate the direction of
the images as the source moves from left to right.
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Figure 3.21: Lightcurve of the event in Figures 3.18 -3.20. The total source magnification is
shown in black, with magnification of each (physical) image given in its respective colour.

the lenses. In this situation, each root from an unphysical pair is close to a

different lens from its partner, and every unphysical pair has a different lens-pair

combination. This is shown in Figure 3.22a. Therefore, there are a maximum

number of N(N − 1)/2 pairs of unphysical roots, giving a maximum of N2 −N

unphysical roots, and there are N − 1 unphysical roots close to each lens, each

from a different pair. This agrees with the result shown in section 2.5.

Figure 3.22: The root positions and unphysical pairs for a 3 lens system. The critical and
caustic curves are shown in light grey, and the position of the source is shown by the orange
asterisk. The lenses and physical images are represented by the black dots and dark grey crosses
respectively. One pair of unphysical roots is represented by the two blue crosses, another pair
by the two red crosses, and another pair by the two green crosses. (a) shows the root positions
on the image plane, and (b) shows the image positions inverse-ray traced to the source plane.
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3.5.2 Multiple Planetary Events

While systems with three or more stars with equal masses are very rare and

unlikely to be discovered in the near future, a triple lens system consisting of

a star and two planets has been confirmed (paper ob06109), and another has

recently been observed (OGLE-2012-BLG-0026). Therefore, the lens equation

and the equations derived from it are far more useful when they use planetary

mass ratios.

Planetary mass ratios are typically on the order of 10−3 − 10−5. Therefore,

we can use the approximation ǫ1 >> ǫj with j ≥ 2 and ǫ ≈ 1 to decompose

the multiple planetary lens equation into first and second order approximations,

corresponding to single lens and binary lens configurations respectively. The first

order approximation is given by,

w ≈ z − 1

z̄ − r̄1
. (3.23)

Given a planetary system with N − 1 planets, there are N − 1 second order

binary lens approximations. Each binary lens approximation can be defined by,

w ≈ z − ǫ
(j)
1

z̄ − r̄1
−

ǫ
(j)
j

z̄ − r̄j
, (3.24)

where ǫ
(j)
j is given by,

ǫ
(j)
j =

ǫj
ǫ1

j ≥ 2, (3.25)

so that the mass ratios still add to unity.

The source position w calculated using this binary lens approximation will

have an error at an order of magnitude no less than the planetary mass fractions

( ǫj). The redefine mass fractions ǫ
(j)
j and the initial mass fractions ǫj will differ

on the order of the planetary mass fractions ( ǫ2j). Therefore, redefining the mass

fractions will have no significant effect on the approximation. Redefining the

mass fractions using Equation 3.25 is a matter of convenience, as the parameters

for a microlensing event usually give the mass ratio, not the mass fraction, and
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the expressions for the coefficients of the lens and critical curves polynomials

assume the mass fractions add to unity.

3.5.3 Additive Nature of Caustic and Critical Curves

The critical and caustic curves for a system with N lenses can be approximated

using the critical and caustic curves of several binary lens. The positions of these

curves can be derived from the binary lens approximation given in Equation 3.24.

The first order approximation for the critical curves and caustic curves are the

Einstein ring and a point at the primary lens respectively.

As mentioned earlier in the chapter, the critical curve polynomial for an N

lens system has 2N roots for each value of φ. Figures 3.23 and 3.24 respectively

show the critical curves and caustic curves separated into their corresponding

roots. The black curves in all six boxes correspond to the six critical curve roots

of the triple lens, consisting of the primary lens at the origin (represented by the

grey dot) with both planets (represented by the red and cyan dots, with mass

ratios ǫ2/ǫ1 = 0.001 and ǫ3/ǫ1 = 0.0005 respectively). The red and cyan curves

correspond to the two binary lenses. The curves for the binary lens configuration

consisting of the primary lens with the red planet are presented by the red curves

while the curves binary lens configuration consisting of the primary lens and the

cyan planet are presented by the cyan colours. The grey curves describe the

critical curves (or Einstein ring) for the single lens at the position of the primary

lens (the origin). These figures show that the separate roots correspond to the

“central” and “planetary” parts of the curves, as described above: boxes a) and

b) show the black, red, cyan curves corresponding to primary lens. The curves

generally follow the grey Einstein ring, except when these line deviate close to the

planetary lens. Boxes d) and e) show the black and red curves corresponding to

the red planet, and boxes c) and f) show the black and cyan curves corresponding

to the cyan planet.

Figure 3.25 shows a close up of the triple and binary lens caustic curves. The

caustic curves from these binary lens configurations are offset by approximately

0.001RE and 0.0005RE. This demonstrates that, for multiple planetary lenses
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(i.e. small mass ratios), the triple lens caustic curves are better approximated by

the binary lens caustic curves corresponding to the largest planetary mass, than

by the binary lens caustic curves corresponding to the smaller planetary masses.

The offset of the caustic curves of a particular binary lens approximation from

these of the multiple lens approximation is generally on the order of the mass

ratio of the planet. However, the main contributor of this offset could be the

changes in the centre of mass between the binary and triple lens systems.

Figure 3.23: Critical curves and decomposition curves for a triple lens. The critical curves
for the complete configuration are represented in black. The critical curves for each binary lens
consisting of the primary lens with the planetary lens are represented in the same colour as
their respective lenses: red or cyan. The grey curves represent the Einstein ring for a single
lens located at the origin.

3.5.4 Additive Nature of Planetary Lightcurves

Just as the caustic and critical curves of multiple planetary configurations can

be approximated using the caustic and critical curves from multiple individual

binary lens configurations, the lightcurves produced by multiple planetary events

can also be approximated using multiple individual binary lens lightcurves (Rat-

tenbury et al., 2002; Han, 2005). Suppose we define A1(t) as the lightcurve of
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Figure 3.24: Caustic curves and decomposition curves for a triple lens. The caustic curves
for the complete configuration in black. The caustic curves for each binary lens consisting of
the primary lens with the planetary lens are represented in the same colour as their respective
lenses: red or cyan.

Figure 3.25: Close up of Figure 3.24 showing the caustic curves for the complete configuration
in black. The critical curves for each binary lens consisting of the primary lens with the
planetary lens are represented in the same colour as their respective lenses: red or cyan.
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the corresponding single lens, and A1j(t) as the lightcurves corresponding to the

binary lenses consisting of the primary lens and the jth lens (planetary). The

final source magnification A(t) of the N lens event can then be approximated as,

A(t) ≈
[

N
∑

j=2

A1j

]

− (N − 1)A1(t). (3.26)

This is equation is demonstrated in Figures 3.26 to 3.28. Figure 3.26 presents

a triple planet configuration (quadruple lens) with the primary lens in violet and

the planetary lenses in red, cyan and chartreuse, with mass ratios q = 0.001,

0.0005, and 0.0002 respectively. In this diagram, the critical curves are shown by

the dark grey curves, the caustic curves by the black curves.

Figure 3.27 presents a close up of the (black) caustic curves of the quadruple

lens along with the caustic curves for the three binary lenses each consisting of the

primary lens and one planetary lens. The red, cyan and chartreuse caustic curves

correspond to binary lens configurations that consist of the primary lens and the

red, cyan and chartreuse green planetary lenses respectively, and the source track

by the light grey line. Figure 3.28 then shows the lightcurves produced by these

configurations in their respective colours. The violet lightcurve represents the

lightcurve calculated using Equation 3.26, showing that the overall lightcurve

can be reasonably approximated by this expression.

These diagrams demonstrate that the Equation 3.26 can give the approximate

shape of the lightcurve, however, just as the caustic curves of the binary lens

are offset from the caustic curves of the multiple planetary configuration, the

features in the binary lens light curves are offset from the multiple planetary

configuration, and this offset is on the order of the mass ratios. When analysing

a real microlensing event, the lightcurve must be calculated with a resolution

much smaller than the order of the mass ratio of the planet. Therefore, the

approximation given in Equation 3.26 should not be used directly when modelling

a real microlensing event. However, this type of deconstruction into binary lens

configurations can be used to help identify the parts of the caustic structure

associated with each planet (Gaudi et al., 2008).
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Figure 3.26: A quadruple lens configuration showing the critical curves (grey), the caustic
curves (black). The primary lens is represented by the dark grey dots at the origin, and the
planetary lens positions are represented by the red, cyan and chartreuse green dots respectively.

Figure 3.27: Close up of Figure 3.26 showing the caustic curves for the complete configuration
in black. The critical curves for each binary lens consisting of the primary lens with the
planetary lens are represented in the same colour as their respective lenses: red, cyan or
chartreuse green.
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Figure 3.28: The panels on the left show the lightcurves for a quadruple planet configuration,
along with each binary lens lightcurve and the residuals from the single lens lightcurve. The
panels on the right show the sum of the residuals and the corresponding lightcurve compared
with the triple planet lightcurve.
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Chapter 4

Finite Source Effects

In Chapter 4 we showed how the magnification can be calculated by taking the

limit where the images and source are shrunk to points on the complex plane.

While this approximation is simple, it sometimes fails to give an appropriate

estimate for the magnification. Examples of this include when the point source

crosses a caustic curve (or caustic point in the single lens case) where the point

source magnification diverges significantly. In these cases, a source with a finite

size must be used to give an accurate calculation of the magnification.

In this chapter we investigate methods to approximate the magnification for

a finite size source. We start by introducing the concept of a source disk and

showing the effects a finite source has on a theoretical lightcurve. We then in-

vestigate the concept of limb-darkening, where the brightness of the source disk

varies across its surface, darkening at the edges (or ‘limbs’) of the star. We

shall see later that this effect is significant for large source disk, especially as

the source crosses a caustic curve. Next, we show how the source disk can be

approximated as a polygon, and show how this can be used most effectively to

calculate the image areas and magnifications. We then introduce another fam-

ily of methods, the multipole approximations (in particular the quadrapole and

hexadecapole approximations), which approximate a finite source magnification

using a small number of point source magnifications. This chapter concludes by

discussing which method was found to be the optimal method for calculating the

magnification when modelling microlensing events.
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4.1 Finite Source Disk

Point source approximations work well in most cases when the source is at a

reasonable distance from the caustic curves, but as the source approaches the

caustic curves the point source magnification diverges. In these cases, the finite

size of the source star becomes important. To approximate this finite source, the

source star can be modelled as a disk with radius ρ. The source disk represents

the physically spherical star projected onto a 2-dimensional plane. The images

are therefore represented by the distorted projections of this source disk on the

image plane, so the magnification is calculated simply as the ratio of the areas

of these distorted images to the area of the source disk πρ2. However, the area

of these images cannot be calculated analytically, so numerical approximations

must be used. These two numerical approximations, the polygon and multipole

approximations will be discussed later in Sections 5.2 and 5.3.

Figure 4.1: Magnification over a range of source-lens separations by a single lens, where the
black, red and blue lines represent the magnifications for a point source, and finite source disk
with radius 0.025RE, and a finite source disk with radius 0.1RE.

Figure 4.1 shows the magnification plotted against the source-lens separation

for a single lens. In this plot, the magnification is calculated using three different
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sized sources: a point source, a finite source with radius ρ = 0.025RE, and a

finite source with radius ρ = 0.1RE . The two finite sources were calculated using

the polygon method discussed later in this chapter. These plots show that a

larger finite source disk produces a single lens lightcurve that is generally shorter

and wider than the lightcurve from a small source disk. When the finite source

is small, the lightcurve shows little difference from the point source lightcurve

except at very small source-lens separations. When the source-lens separation

zero (i.e. the source and lens are in the same position on the source/image pane),

the magnification A of the finite disk can be given as,

A = 2

√

1

ρ2
+

1

4
. (4.1)

A large finite source with a multiple lens has a similar effect on the lightcurve,

making the peaks shorter and wider. However, if the source disk becomes too

large, the features in the lightcurve are washed-out and individual cusp and

caustic crossings may merge together, or become lost altogether, as demonstrated

in the figures below.

Figure 4.2 shows the critical curves and caustic curves for a triple lens system

(a host star with two planets) and Figure 4.3 shows a close up of the caustic

curves with the source track. The arrows in Figure 4.3 indicate where the source

crosses a caustic curve or passes a caustic cusp. These arrows correspond to

the arrows in Figure 4.4, which indicate peaks in the lightcurve for this event.

The black lightcurve represents the point source magnification, and the red and

blue lines represent the lightcurves for two finite source disks with radii 0.005RE

and 0.02RE respectively. These sizes for source disk radii are within the range

of typical source disk radii in real microlensing events. The lightcurve with a

source radius of 0.005RE has peaks that are much shorter (and a little wider)

than the lightcurve with the point source. The lightcurve with a source radius

of 0.02RE demonstrates that the peaks become washed-out and start merging

together when the source becomes too large. A lightcurve associated with a large

source disk such as this is often hard to analyse, as there is a lack of clarity in

the peak positions and hence a large uncertainty in the positions of the caustic

curves.
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Figure 4.2: A triple lens event showing the lenses in black, the critical curves in green, the
caustic curves in magenta, and the source track in black.

Figure 4.3: Close up of the event shown in Figure 4.2, with the primary lens in black, the
caustic curves in magenta, and the source track in black.

70



Figure 4.4: The magnification over a range of source positions for a triple lens event showing
the point source (black), a finite source disk with a radius 0.005RE (red), and a finite source
disk with a radius 0.02RE (blue).

4.2 Limb Darkening

Limb darkening is the effect where the intensity of the source disk is not uniform

across the source disk, but is darker at the edge (limb) of a source. This is occurs

because the central core of the star is much hotter than the outer layer of the star.

Therefore, from the Stefan-Boltzmann law, more photons are emitted from the

centre of the source than the outer edge of the source. We give a brief discussion

and derivation of limb darkening expression here, with the full derivation given

in Appendix D, Section D.3.

When an observer is some distance away from a spherical source, the observed

intensity I(ψ) of a limb darkened star can be approximated by,

I(ψ) = I0

N
∑

k=0

akcos
k(ψ), (4.2)

where
∑N

k=0 ak = 1, I0 = I(0) is the intensity at the centre of the source disk,

and ψ is the angle of incidence, as shown in Figure 4.5. The limb darkening effect

can be modelled in the simplest case by the linear model, with a0 = 1 − u and

a1 = u, where 0 ≤ u ≤ 1. From Equation 4.2, it can be shown that if ρ is the
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Figure 4.5: The observer receives photons emitted along the line of sight from a distance d

within a star. For photons near the edge of the source disk, these photons are emitted from a
shallower (and therefore cooler) depth, at a radius ρ2, than the photons from the centre of the
disk.

radius of the source disk and r is the radial distance from the centre of the source

disk, then the limb darkened intensity across a source disk can be given by,

I(r)

I0
= 1 − u



1 −

√

1 −
(

r

ρ

)2


 . (4.3)

As discussed previously, to calculate the magnification of an image, we take

the ratio of the image area to the source area. We can define Iave as the aver-

age intensity across the source disk, so that the total flux of the source can be

expressed as Iaveπρ
2. Therefore the expression for the limb darkening variation

can be given in terms of this average intensity (Gould, 2008), given by,

I(r)

Iave
= 1 − Γ



1 − 3

2

√

1 −
(

r

ρ

)2


 , (4.4)

where Γ is called the limb darkening coefficient with 0 ≤ Γ ≤ 1. Figure 4.6

shows some profiles of the intensity of the source star plotted against the radial
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distance from the centre for limb darkening coefficients Γ = 0, 0.2, 0.4, 0.6, 0.8, 1.

These profiles show that a source disk with a limb darkening coefficient Γ = 0

does not have any variation in brightness across its surface.

Figure 4.6: The intensity over the radial distance from the centre of the source disk for the
limb darkening coefficients Γ = 0, 0.2, 0.4, 0.6, 0.8, 1 given by the black, red, orange, green, blue
and purple lines respectively.

In microlensing, limb darkening becomes especially important in cases where

a large source disk straddles a caustic curve. In these situation, one part of

the image will be projected onto both sides of the critical curve, as shown in

Figure 3.5. With limb darkening, the average intensity of each “part image” on

either side of the caustic curve may vary from the average intensity of the source

itself. Therefore, this variation of intensity across the source disk needs to be

incorporated into methods that estimate the finite magnification of the source

disk.
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4.3 Polygon Method

The polygon approximation is a method first derived from Stokes’ Theorem

(Gould and Gaucherel, 1997). This method estimates the area of the source

disk by inscribing a polygon with n vertices within the disk. The vertices on

the source can then used to find the points on the image plane and these image

points can be connected to form polygons inscribed within the images. These

image polygons can then be used to estimate the area of the constituent finite

images. The ratio of the area of each image polygon to the area of the source

polygon gives an approximation for the magnification of each image.

4.3.1 Area of a Polygon

The area of a polygon on an xy-plane can be calculated using a variation of the

trapezoidal rule used in numerical integration. The vertices of a polygon form a

series of points (xj , yj) where the areas between each edge of the polygon and the

x-axis is calculated using the area of a trapezium given in Equation 4.5. These

areas are then added together to give the total area of a polygon expressed by,

Areatrapezium = (xj−1 − xj)
yj−1 + yj

2
. (4.5)

Figure 4.7 shows the area of the 5-sided polygon, which is given by,

Areapolygon = Area0,1 + Area1,2 + Area2,3 + Area3,4 + Area4,0. (4.6)

In Figure 4.7, the areas of the red shapes are negative. Area4,0 is negative

because it is below the x-axis and Area2,3 is negative because x3 < x2. Area3,4 is

below the x-axis but x4 < x3, so 4.6 returns a positive area for this triangle.

For two adjacent trapeziums defined by the two pairs of vertices (xj−1, yj−1), (xj, yj)

and (xj , yj), (xj+1, yj+1), the formula for their respective areas can be given as,

Areaj−1,j =
1

2
(xj−1yj − xjyj−1) +

xj−1yj−1

2
− xjyj

2
, (4.7)

Areaj,j+1 =
1

2
(xjyj+1 − xj+1yj) +

xjyj
2

− xj+1yj+1

2
. (4.8)
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Figure 4.7: The area of a polygon, which represents the image, and the trapeziums and
triangles that make up the shape of the image.

When the trapezium areas Areaj−1,j and Areaj,j+1 are added together, their

third and second terms respectively cancel. By adding together the areas from

all the trapeziums, the second and third terms for all the trapezium areas cancel.

Therefore, the area of a polygon with n vertices can be given as,

Areapolygon =
1

2

n
∑

j=1

(xj−1yj − xjyj−1), (4.9)

where (x0, y0) = (xn, yn).

As discussed in the Sections 3.1 and 3.2, the images on the same side of the

critical curves as the lenses have a negative parity, while the images on the other

side have a positive parity. Suppose the area of the source disk is calculated

by going around the source polygon in a clockwise direction. The vertices for

the polygons representing the images with positive parity will also be sequenced

in the clockwise direction, returning a positive area. However, the vertices for

the polygons representing the images with negative parity will be sequenced in

the anticlockwise direction, giving a negative value for the area. Therefore these
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areas need to be multiplied by their respective parities to get the absolute image

magnifications.

When a source crosses a caustic curve, this method gets more complicated, as

shown in Figure 3.5. When this occurs, part of the image is formed on one side

of the critical curves, while the other part of the image is on the other side of

the critical curves. In this case, the two parts of the image need to be connected

to form a single polygon. However, this can only be achieved if the vertices are

sequenced in the same direction (either both clockwise or both anticlockwise),

so the sequence for one part of this image needs to be reversed before the image

parts are joined (see Chote (2011)).

If the image vertices are represented on the xy-plane, and the source vertices

are represented on the uv-plane, the total source magnification without the effects

of limb-darkening can be expressed as,

A =

∑

images

∣

∣

∣

∑n
j=1(xj−1yj − xjyj−1)

∣

∣

∣

∑n
j=1(uj−1vj − ujvj−1)

, (4.10)

where
∑

images represents the summation of all the (physical) image magnifi-

cations.

4.3.2 Constructing Polygon

To construct a polygon that accurately represents the finite source disk with a

radius ρ and its corresponding images, it is important to consider the number

of vertices in the polygon, and the spacing between the vertices. Supposing the

source disk is represented by a regular polygon with n vertices, then the angle of

vertex j from the x-axis about the centre of the source disk can be given by,

θj =
2πj

n
. (4.11)

While this places the vertices on the source disk at regular intervals, when

these vertices are mapped onto the image plane, they are positioned at highly

irregular intervals about the images. This is shown in the left panel of Figure 4.8

the right panel of this diagram shows the separation between the red and blue
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vertices on the positive parity image as the source moves along the horizontal

axis. This demonstrates that, as the source disk approaches the lens, the spacing

between the vertices increases rapidly. This could potentially lead to numerical

inaccuracies when calculating the area of the images.

Figure 4.8: The left panel shows the shape of the source and images when the source is
represented by a regular polygon. The right panel shows the separation between the pairs of
vertices of the corresponding coloured spacing as the source moves along the horizontal axis.

A better approach is to place the vertices dynamically so the spacing between

adjacent vertices on the images is roughly constant. One such dynamic method

was developed by Chote (2011). This method defines ∆θi+1 = θi+1 − θi as the

angular spacing between any two vertices, at the angular positions θi+1 and θi

around the circumference of the source disk.

If nmin is defined as the minimum acceptable number of vertices on the poly-

gon and the initial vertex is positioned at θ0 = 0, then the first angular spacing

∆θ1 = θ1 − θ0 is defined as,

∆θ0 = ∆θmax =
2π

nmin
. (4.12)

If ∆zi is the maximum distance between the vertex i and vertex i− 1 in any

image, then the next angular spacing ∆θi+1 can be defined as,

∆θi+1 = min

(

∆θmax, 0.75∆θi
∆zi

∆zmax

)

, (4.13)
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where ∆zmax is the maximum allowed distance between any two vertices. If

the distance between the vertices does exceed ∆zmax, then the current vertices

are deleted and angular spacing is halved: ∆θi+1/2 → ∆θi+1. This approach is

demonstrated in Figure 4.9.

Figure 4.9: The left panel shows the shape of the source and images when the vertices around
the source a positioned using the dynamic method developed by Chote (2011). The right panel
shows the separation between the pairs of vertices of the corresponding coloured spacing as the
source moves along the horizontal axis.

Since the point source magnification gives an approximate ratio of the sum

of the image areas to the source area, a more ‘natural’ dynamic approach was

developed as part of this research. This approach expresses the dynamic spacing

at the point (uj, vj) in terms of the point source magnification Aj . To keep the

spacing between the vertices on the images constant, the angular spacing of the

vertices on the source can be given by,

∆θj =
∆θmax

Aj
. (4.14)

Figure 4.10 shows this ‘natural’ dynamic spacing for a single lens event, show-

ing the spacing between the vertices on either side of the positive parity image

staying roughly the same when plotted against the distance between the lens and

the source.

This ‘natural’ dynamic method becomes problematic when the source is close

to the lens (or caustic curves in a multiple lens case). When the point source is
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Figure 4.10: The left panel shows the shape of the source and images when the vertices
around the source a positioned using the ‘natural’ dynamic method. The right panel shows the
separation between the pairs of vertices of the corresponding colour as the source moves along
the horizontal axis.

near to the single lens, the point source magnification grows approximately as

the inverse of its distance from the lens. Therefore, even when a small source is

0.1RE from the lens, it is using roughly 10 times as many points as when it was

far (> 1RE) from the source, and roughly 100 times as many when it is 0.01RE

from the lens. From numerical investigations, we found that polygons with no

less than 16 vertices were required to give an accurate calculation for the source

magnification when the source disk was far from the lens. Therefore, using the

‘natural’ dynamic method, we found that polygons produced by the dynamic

method gave more than 1500 vertices for sources 0.01RE from the lens.

For this reason, we concluded that Chote’s dynamic method was more efficient

for calculating the polygon areas as it constructs polygons using fewer vertices

than the ‘natural’ dynamic method.

4.3.3 Limb Darkening

The polygon approximation by itself assumes a source of constant brightness with

no limb darkening. However, the effects of limb darkening can be included in this

approximation by adding concentric circles inside the circularly symmetric source,

breaking the source disk up into NR annuli, as proposed by Chote (2011). The
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limb darkening effects can then be approximated by assuming each annulus has a

constant intensity. The intensity of the kth annulus can be given by Equation 4.4,

where r = rk− 1

2

, which is the radius midway between the inner and outer radii

rk−1 and rk respectively, bounding this annulus. Polygons can then be inscribed

inside each of the concentric circles to give a series of nested polygons. The area of

a particular annulus, bounded by an inner and outer circle, can be approximated

by the difference between the areas of its respective inner and outer polygons.

These areas are then multiplied by their respective limb darkening intensity and

are summed together to give the total flux from the source.

The vertices of the nested polygons on the source disk can then be mapped to

points on the image plane. These points on the image plane describe the vertices

of a series of nested polygons inside each image, corresponding to the annuli in

the source disk. In a similar way, the area of each annuli is approximated by the

difference between the areas of the inner polygon, with an area of Areak−1, and

the outer polygon, with an area of Areak, and the flux, F , of each image can be

expressed by,

F =

NR
∑

k=1

I
(

rk− 1

2

)

(Areak − Areak−1) , (4.15)

where I
(

rk− 1

2

)

is the limb darkening intensity for the corresponding annuli.

The magnification, µ, of each image is then calculated as,

µ =
F

FS

, (4.16)

where FS is the corresponding flux calculation for the source.

Chote proposed that the radii of the concentric circles can be found using

two methods. The first method is where the radii of the circles could be given

at equal intervals, so that each annulus has the same width. In this case, the

radius rk of the kth concentric circle would be given by rk = k
NR
ρ, where NR is

the number of concentric circles.

The second method is to define the radii so that the intensities of the con-

centric circles are at equal intervals. This can be achieved by inverting Equation
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4.4 to give the radius r in terms of the intensity, I, at that radius rk,

rk
ρ

=

√

1 − 4

9Γ2

(

Ik
Iave

+ Γ − 1

)2

, (4.17)

where the intensity of the kth annulus is given by,

Ik = I(0) +
k

NR
(I(ρ) − I(0)) . (4.18)

The profiles of the sizes and intensities of the annuli using these two methods

are shown in Figure 4.11. The left panel shows the first method where the radii

of the circles are given at equal intervals and the right panel shows the second

method where the intensities of the concentric circles are at equal intervals.

Figure 4.11: The two profiles for the annuli that make up the limb-darkened source disk. The
left panel shows annuli where the radii of the circles are given at equal intervals and the right
panel shows annuli where the intensities of the concentric circles are at equal intervals.

4.4 Multipole Approximations

While the polygon method provides a reasonably accurate approximation for

the image magnifications, it requires the calculation of many image positions,

for the approximation to reach an adequate level of accuracy. The number of

points is multiplied even further when one includes the effects of limb darkening.
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Every image point found increases the amount of computing time required to

calculate the image magnifications, which means the polygon method is clearly

very computationally expensive.

To include the finite source effects while still remaining computationally eco-

nomic, Gould (2008) developed the hexadecapole approximation which uses 13

points on the source disk to estimate the magnification of the source. This

approximation uses the Taylor series to approximate the source magnification

across the source disk and incorporates the effects of limb darkening. Using the

derivation proposed by Gould, we derive a slightly different hexadecapole approx-

imation from first principles. We also introduce the quadrapole approximation,

which approximates the finite source magnification using 5 points on the source

disk. The quadrapole approximation can be viewed as an approximation that

is faster than the hexadecapole method but more accurate the point source ap-

proximation. A description and derivation of these approximations is given here,

with the full derivation of these approximations can be found in Appendix D.

4.4.1 Derivation of Multipole Approximations

To derive the quadrapole and hexadecapole approximations, we first consider a

finite circular source disk of radius ρ. Since limb darkening depends only on

radius, the intensity profile of the source disk is circularly symmetric about the

centre of the disk. We can exploit this symmetry to make the derivation of the

multipole approximations easier. If (u0, v0) is the point at the centre of the source

disk in Cartesian coordinates, then a point on the source disk can be represented

by the point (r, θ) in polar coordinates, or (u, v) = (u0 + rcos(θ), v0 + rsin(θ)) in

Cartesian coordinates. The point source magnification at this point can be given

as A(r, θ) or A(u, v).

To calculate the source magnification, we can define Iave as the average in-

tensity over the disk. The total brightness of the source can then be calculated

by integrating across the area of the source disk, given as,

Adisk =

∫

disk
A(r, θ)I(r)da
∫

disk
I(r)da

=
2

ρ2Iave

∫ ρ

0

A(r)I(r)rdr, (4.19)
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where,

A(r) =
1

2π

∫ 2π

0

A(r, θ)dθ. (4.20)

If the disk is uniform in brightness (no limb darkening), so that I(r) = Iave,

then it can be shown that the magnification of the finite source disk can be given

by Adisk =
∫ ρ

0
A(r)rdr.

For any point (u, v) on the source disk, a 2-dimensional Taylor series can be

used to estimate the source magnification A(u, v) at that point. This Taylor

series contains partial derivatives with respect to u and v, but due to the circular

symmetry of the source disk, any partial derivative with an odd order with respect

to u or v cancels to zero. Therefore, the Taylor series simplifies to,

A(r) = A0 + A2r
2 + A4r

4 + · · · , (4.21)

where,

A0 = A00, (4.22)

A2 =
1

4

[

∂2A(u0, v0)

∂u2
+
∂2A(u0, v0)

∂v2

]

, (4.23)

A4 =
1

64

[

∂2A(u0, v0)

∂u4
+ 2

∂2A(u0, v0)

∂u2∂v2
+
∂2A(u0, v0)

∂y4

]

. (4.24)

The quadrapole approximates the finite source disk magnification using the

Taylor series up to the term A2, estimating the magnification of the finite source

disk as,

Aquadrapole = A0 +
A2ρ

2

2

(

1 − Γ
1

5

)

. (4.25)

The hexadecapole approximates the finite source disk magnification using the

Taylor series up to the higher term, A4, giving a more accurate estimation for

the finite source disk magnification, given as,

Ahexadecapole = A0 +
A2ρ

2

2

(

1 − Γ
1

5

)

+
A4ρ

4

3

(

1 − Γ
11

35

)

. (4.26)

The accuracy of the estimated finite source disk magnification depends partly

on the accuracy of the derivatives used in the Taylor expansion. These deriva-

tives can be calculated using two different methods. The first method is to find
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an analytical expression for these derivatives at the point (u0, v0) by differenti-

ating the inverse of the Jacobian determinant (point source magnification). The

second method is to estimate the derivative by numerical methods. The former

method calculates the multipole approximations using only a single point on the

source, and is known hereafter as the single-point multipole approximation. The

latter method uses the point source magnifications from several points around

the source disk to approximate the average derivatives across the whole disk, and

is known hereafter as the multiple-point multipole approximation.

4.4.2 Single-Point Multipole Approximations

The Jacobian given at the beginning of Chapter 3 is expressed in terms of the

complex number z = x + iy and its conjugate z̄ = x − iy. Therefore, it is easier

to find the analytical expressions for the derivatives, if the derivatives given in

Equations 4.22 - 4.24 are converted from derivatives in terms of x and y, into

derivatives in terms of z and z̄. In this case, Equations 4.22 - 4.24 can be given

by,

A0 = A, (4.27)

A2 =
∑

images

1

J

∂2µ

∂z∂z̄
, (4.28)

A4 =
∑

images

1

4J2

∂4µ

∂z2∂z̄2
. (4.29)

The expressions for the second and fourth derivatives can be obtained using

Faà di Bruno’s formula (Faà di Bruno, 1855). The expression for the second

derivative is given by,

∂2µ

∂z∂z̄
=

∂µ

∂J

∂2J

∂zz̄
+
∂2µ

∂J2

∂J

∂z

∂J

∂z̄
, (4.30)

while the expression for the fourth derivative can be found in Appendix B,

Equation B.23.

If the sign of the Jacobian determinant is given by sgn(J), then the kth order

derivative for the source magnification can be given by,

∂kµ

∂Jk
=
∑

images

(−1)kk!sgn(J)

Jk+1
. (4.31)

84



Using the expression for the Jacobian from the previous chapter, it can be

shown that the derivatives of the Jacobian with respect to z and z̄ can be given

by,

∂p+qJ

∂zp∂z̄q
= (−1)p+q+1

(

N
∑

j=0

(p+ 1)!ǫj
(z − rj)p+2

)(

N
∑

j=0

(q + 1)!ǫj
(z̄ − r̄j)q+2

)

. (4.32)

Equations 4.27 - 4.32, can be combined to give expressions for A2 and A4.

These expressions, along with the source radius, ρ, and the limb darkening co-

efficient, Γ, can be used to estimate the magnification of the finite source disk

using the quadrapole and hexadecapole approximation.

While these single-point multipole approximations account for the effects of

limb darkening, they still suffer from some of the same problems that affected

the point source approximation. For example, the magnification of the source

calculated using the quadrapole and hexadecapole approximations still diverges

as the source crosses a caustic curve.

4.4.3 Multiple-Point Multipole Approximations

The second method to estimate the derivatives is to use numerical approxima-

tions. This is done by obtaining point source magnifications for several positions

on the source disk, and using these points to approximate the derivatives over

the source disk. These numerical derivatives can be derived from Lagrange poly-

nomials.

Given a f(x) and a set of k+1 distinct points (x1, f(x1)), · · · , (xk+1, f(xk+1)),

the Lagrange polynomial p(x) is the unique polynomial of degree k that can be

interpolated from these points. This polynomial can be differentiated up to the

kth order derivative, and these derivatives of the polynomial p(x) describe approx-

imate derivatives for the function f(x). Deriving these approximate numerical

derivatives from Lagrange polynomial is not covered in this thesis, however, it is

important to note that estimating a derivative of f(x) to order k requires no less

than k + 1 distinct points.

If we have more distinct points, we can interpolate a polynomial with a higher

degree, and hence obtain a more accurate approximation of the function f(x).
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Given the points (x1, y1), (x2, y2), ...(xk, yk) on an xy-plane, a unique Lagrange

polynomial of degree k − 1 can be created that passes through all k points. By

obtaining the expression for the Lagrange polynomial and differentiating this

expression, we can derive formulae approximating the derivatives up to order

k − 1, for a function going through the k points.

In the quadrapole approximation, the second derivative terms in the expres-

sion for A2 can be obtained using three points along the line v = v0, and three

points along the line u = u0. The centre points of the two sets of collinear

points are both at the position (u0, v0), and the remaining four points are all at a

distance ρ from this central point. These five points can then be used to obtain

estimates for the second derivatives Auu(u0, v0) and Avv(u0, v0) (Abramowitz and

Stegun, 1965). These second derivatives can be used to find an expression for

A2ρ
2 in the Equation 4.25. The expression for this term is given by,

A2ρ
2
quadrapole =

1

4
[A (u0 + ρ, v0) + A (u0 − ρ, v0)

+A (u0, v0 + ρ) + A (u0, v0 − ρ)]

−A (u0, v0) . (4.33)

In the hexadecapole approximation, the fourth derivatives Auuuu(u0, v0) and

Avvvv(u0, v0) can be derived from two 4th degree Lagrange polynomials obtained

by no less than 5 points along the lines v = v0 and u = u0 respectively. Each

of these derivatives use a point located at (u0, v0), along with four other points,

two located at a distance ρ from this central point, and two located at a distance

ρ
2

from this central point. The hexadecapole approximation also requires four

more points, located at (u0 ± ρ
2
, v0 ± ρ

2
), in order to obtain the ‘cross derivative’

Auuvv(u0, v0).

With five points along the lines v = v0 and u = u0, the second derivatives

Auu(u0, v0) and Avv(u0, v0) respectively can also be approximated using two 4th

degree Lagrange polynomials. This gives a much better approximation for the

second derivative than the quadrapole approximation which estimates the second

derivative using only 3 points along each line. Therefore, the expression for the
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terms A2ρ
2 and A4ρ

4 in Equation 4.26 can be given by the following formula,

A2ρ
2
hexadecapole =

1

3

[

16Aρ/2,+ −Aρ,+

]

, (4.34)

A4ρ
4
hexadecapole = 2Aρ/

√
2,× + Aρ,+ − 8Aρ/2,+, (4.35)

where,

Ar,+ =
1

4

3
∑

j=0

A
(

u0 + rcos
(

j
π

2

)

, v0 + rsin
(

j
π

2

))

− A0, (4.36)

and,

Ar,× =
1

4

3
∑

j=0

A
(

u0 + rcos
(π

4
+ j

π

2

)

, v0 + rsin
(π

4
+ j

π

2

))

− A0. (4.37)

The hexadecapole expression derived by Gould (2008) uses four extra points

on the edge of the source instead of the points (u0± ρ/2, v0 ± ρ/2), and the term

A4ρ
4 is given by,

A4ρ
4
hexadecapole−Gould =

Aρ,+ + Aρ,×

2
− A2ρ

2
hexadecapole. (4.38)

Figure 4.12 shows the 13 points used for the hexadecapole approximation,

along with the source disk. The points used by both of the quadrapole and

hexadecapole approximations are shown by the black dots 1-5, while the points

used by only the hexadecapole method are shown by the dark grey dots 6-13.

The hexadecapole developed by Gould uses the light grey dots instead of the

points 10-13. The source disk is shown by the red circle.

Like the single-point multipole approximations, these multiple-point multi-

pole approximations do not solve the problem of a diverging magnification as the

source crosses a caustic. In fact, these numerical derivatives make the problem

even worse, since there are more points representing the source, and the source

magnification will diverge each time any of these points crosses a caustic.

Both the single-point and multiple-point multipole approximations attempt

to find the magnification of the source using only a small number of discrete
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Figure 4.12: The positions of the point sources used in the multipole approximations, where
ρ is the radius of the source disk. The quadrapole approximation uses the black dots (1-5),
and the hexadecapole approximation uses the black and grey dots (1-13).

points on the source disk. However the single-point multipole approximations

attempt to calculate the magnification of the source disk by extrapolating from

a single point at the centre of the source disk, while the multiple-point multipole

approximations attempt to calculate this magnification by mostly interpolating

from some selected points across the source disk. It has long been known that

extrapolating data can more easily lead to large errors than interpolating, so

the multiple-point multipole approximations are more likely to give an accurate

estimate of the source magnification than their single-point equivalents.

It is known that a Taylor series using derivatives at a single point only con-

verges across a finite disk. This disk of finite convergence is known as the radius

of convergence. Outside the radius convergence, the Taylor series never con-

verges, becoming more inaccurate as higher derivatives are included. In some

cases, the radius of convergence may be smaller than the size of the source disk,

which makes these derivatives at a point inappropriate to use in the Taylor series

when estimating the finite source magnification.
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However, the derivatives calculated using numerical approximations are, by

definition, the average derivatives across the source disk. Therefore, it seems more

appropriate to use these numerical derivatives when estimating the magnification

of the source.

Figure 4.13: The lightcurves plotted using the single-point and multiple-point quadrapole
approximations for a source radius of 0.0005RE, for the same event shown in Figure 4.2.

Figures 4.13 and 4.14 show the lightcurves for the OGLE-2006-BLG-109 event

for a source radius of 0.0005RE calculated using the quadrapole and hexadecapole

approximations respectively. The lightcurves calculated using the single-point

and multiple-point multipole approximations are shown by the red and blue

curves respectively, and the point source and polygon methods are shown by

the grey and black curves respectively. The hexadecapole approximation given

by Gould is shown by the green curve. The lower panels shows the relative er-

ror of each approximation when compared with the “true” source magnification,

calculated using the polygon approximation.

Gould (2008) suggested an error of 0.1% as an appropriate upper limit for

the numerical error in the source magnification calculations. From Figures 4.13

and 4.14 it is shown that multipole-point multipole approximations are more
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Figure 4.14: The lightcurves plotted using the single-point and multiple-point hexadecapole
approximations for a source radius of 0.0005RE, for the same event shown in Figure 4.2.

often within the 0.1% threshold than their single-point equivalents, thus giving

a more accurate approximation for the source magnification. It is shown that

the hexadecapole approximation given by Gould is no more accurate than the

hexadecapole approximation derived earlier in this section.

This figure also shows mini peaks in the multiple-point approximation

lightcurves corresponding to the places where each point crosses the caustic curve.

These mini peaks are smaller in the hexadecapole method than the quadrapole

method. This occurs as the hexadecapole has a larger number of points, so each

point source magnification in this approximation is divided by a larger value.

Higher multiple-point multipole approximations are possible, but each higher

order approximation requires more points. A quick calculation can show that

the next two multipole approximations in the sequence, the 64-pole and the 256-

pole approximations, which use the Taylor series up to the terms A6ρ
6 and A8ρ

8

respectively, requires 25 and 41 points on the source disk respectively. In general,

the 22k-pole uses the Taylor series up to the term A2kρ
2k and uses 2k2 + 2k +

1 points on the source disk. With the number of points rising quadratically
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as each higher order term in the Taylor series is included, it is clear that the

number of points required for higher multiple-point multipole approximations

soon approaches the number of points required for the polygon approximation.

Therefore, it is clearly better to use the polygon approximation than higher

multipole approximations, since this explicitly calculates the area of the images

and source, giving a more accurate calculation for the source magnification that

does not diverge when the source crosses the caustic curves.

4.5 Selection Algorithm

When creating a computer program to analyse microlensing data, it is important

to make the program both accurate and efficient. Therefore, one needs to balance

the speed of the algorithm with its accuracy. An approximation that uses a small

number of roots to calculate the source magnification, such as the point source

approximation, is fast, but it may calculate the source magnification inaccurately.

However, an approximation that uses a large number of point sources, such as

the polygon approximation, is more accurate but much slower. Therefore, in

order make the program efficient, it is important to determine the appropriate

approximation for a particular source position.

Previous work by Chote (2011) suggested that the appropriate approximation

could be selected by calculating the curvature (or the gradient of the gradient)

of the source magnification at that source position. However, the quadrapole

and hexadecapole algorithms give adequate approximations for the source mag-

nification if the higher order terms in the Taylor series are less than 0.1% or

a thousandth of the “true” source magnification at that point (Gould, 2008).

Therefore, a more robust method of determining the appropriate approximation

would be to calculate the higher order terms in the Taylor series, and compare

these terms with the second, fourth and sixth derivatives with the total source

magnification.

Calculating the (average) numerical derivatives to check the adequacy of

the program requires calculating the point source magnification at a number

of points, which in turn increases the amount of computing time. However this
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problem can be overcome using the analytical derivatives. Since each the deriva-

tive at a point can be calculated analytically from the point source magnifications,

calculating the derivatives this way takes very little extra time. Therefore, al-

though the derivatives at a point are no good in the multipole approximations,

they can be used to check if an algorithm gives an adequate estimate of the source

magnification.

To determine whether a particular algorithm would give an accurate estimate

for the source magnification, the second, fourth and sixth derivatives are calcu-

lated at several points on the source disk, and the largest of these are then found

(hereafter known as ‘maximum derivatives’ A2kmax). The maximum values for

the higher order terms can then be calculated as A2kmaxρ
2k. If then maximum

higher order terms are less than a thousandth of the estimated source magni-

fication, then the algorithm should give an adequate estimation of the source

magnification. From experimental investigations, we discovered an additional

condition was required, where the higher order terms must be less than 1% of

each individual ‘used’ term in the Taylor series.

If A2kaveρ
2k represents the terms of the Taylor series calculated using the (av-

erage) numerical derivative, then the point source approximations give adequate

estimations for the source magnification if,

A0 > 1000A2maxρ
2 , A0 > 1000A4maxρ

4 and A0 > 1000A6maxρ
6.

The quadrapole approximation gives an adequate estimation for the source

magnification if,

A0 +
A2aveρ

2

2
> 1000A4maxρ

4 , A0 +
A2aveρ

2

2
> 1000A6maxρ

6,

A2aveρ
2

2
> 100A4maxρ

4 and
A2aveρ

2

2
> 100A6maxρ

6.

The hexadecapole approximation gives an adequate estimation for the source

magnification if,

A0 +
A2aveρ

2

2
+
A4maxρ

4

3
> 1000A6maxρ

6 ,
A2aveρ

2

2
> 100A6maxρ

6

and
A4aveρ

4

4
> 100A6maxρ

6.
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The maximum derivative should generally be greater than the (average) nu-

merical derivative A2kaveρ
2k. However, this may not always be the case, since the

maximum derivative is calculated using a small sample of points, which may or

may not be representative across the whole source. If the average derivative is

greater than the maximum derivative, this is usually an indication that the point

source magnification and its derivatives vary a lot across the source disk, and the

polygon approximation should be used to calculate the source magnification.

As a point source approaches a caustic curve, the magnification of the point

source increases rapidly and diverges at the caustic curve. After it has crossed the

caustic curve it has a different number of images to before it crossed. Therefore,

if one point on a finite source disk has a different number of images to another

point on the source disk, then the source disk is lying on a caustic curve. When

this occurs the polygon approximation (the most accurate approximation) should

be used to calculate the source magnification, since the point source, quadrapole

and hexadecapole approximations diverge in these circumstances.

Figure 4.15 shows the lightcurve for the same triple lens configuration shown

in Figure 4.4 for a source radius of 0.0005RE, generated by switching between

algorithms. The upper panel shows the grey, red, blue, and black lines indicating

the source magnification produced using the point, quadrapole, hexadecapole,

and polygon approximations respectively. The lower panel shows the relative

error of these approximations from the “true” source magnification, plotted us-

ing the polygon approximation. This diagram also shows that the error when

modelling this event remains under the 0.1% threshold. Figure 4.16 shows the

critical and caustic curves in this configuration, and shows where in the source

track each algorithm was used.
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Figure 4.15: The source magnification plotted against source position for the same triple lens
event shown in Figure 4.2. This lightcurve was generated using the selection algorithm discussed
in Section 4.5, with the point source, quadrapole, hexadecapole and polygon approximations
represented by the grey, red, blue and black lines respectively.

Figure 4.16: The caustic curves and source track for the triple lens event shown in Figure
4.2, demonstrating where each source magnification approximation was used. The grey, red,
blue and black lines indicate where the point source, quadrapole, hexadecapole and polygon
approximations were used respectively
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Chapter 5

Numerical Algorithms

In the previous chapters, we presented an overview of the analytical theory of

gravitational microlensing, and discussed the lens equation and its solutions

which represent the positions of the images. We then showed how the mag-

nification of the images can be derived from their positions on the image plane.

As demonstrated in Chapter 2, the lens equation can be rearranged into the lens

polynomial, where the roots of this polynomial are a superset of the image po-

sitions. However, the lens polynomial for any multiple lens system has a degree

five or greater, which by the Abel-Ruffini theorem, cannot be solved analytically

(du Sautoy, 2009). Therefore, these lens polynomials need to be solved using

numerical methods.

The purpose of this chapter is to investigate numerical methods, which can

be used to solve the lens polynomials. The two algorithms of interest are the

Jenkins-Traub algorithm and the Laguerre algorithm, which are discussed in the

first two sections of this chapter. Here we give a basic overview of how they

work and introduce additional numerical techniques often employed to make

these algorithms run more efficiently. The final section examines the accuracy

and speed of each algorithm when operating on the lens polynomials, showing

how the roots can accumulate numerical errors when using these algorithms.

We also investigate the effectiveness of several techniques aimed at minimising

these numerical errors, including a method called origin shifting, which has been

developed as part of this research.
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5.1 Laguerre Algorithm

The Laguerre algorithm is a relatively straightforward polynomial root finding

algorithm named in honour of French mathematician Edmond Laguerre. Given

a polynomial P (z) with degree n and roots ζ1, ζ2, · · · ζn, this algorithm finds a

sequence of values z0, z1, · · · zλ, · · · which converges to the root ζ1. The Laguerre

algorithm makes the assumption that the root ζ1 is at a small distance aλ from

zλ, and all the other roots are at a distance bλ from zλ. The algorithm uses

the polynomial derivatives P ′(z) and P ′′(z) to estimate a value for a and from

this value it calculates the next z in the sequence, zλ+1 = zλ − a. This process

repeats until aλ is smaller than the machine precision or P (zλ) is smaller than

the acceptable numerical error, implying that the sequence zλ has converged to

the root ζ1 to within the numerical precision. The algorithm then starts again

to find the next root, ζ2. This algorithm is discussed in more detail in Appendix

E, Section E.1.

While the assumption that zλ is equidistant from the roots ζ2, · · · ζn is untrue

in almost every case, the Laguerre algorithm is almost guaranteed to converge to

a root for any complex polynomial.

This algorithm appears in Numerical Recipes as part of the function zroots

written in C (Press et al., 1992). zroots is designed so that it starts with the

initial value z0 = 0 and finds the roots in roughly increasing order. This code also

uses a number of techniques such as deflation, polishing and limit cycle breaking

to help the algorithm succeed in finding accurate values for the roots. These

terms are explained here.

5.1.1 Deflation

Deflation is the process where the calculated root is removed from the orig-

inal polynomial to give a polynomial with a smaller degree. For example,

if the the polynomial P (z) with degree n has the root ζi, the polynomial

Q(z) = P (z)/(z − ζi) has degree n − 1. The polynomial Q(z) has exactly the

same roots as P (z), excluding ζi, such that P (z) = (z − ζi)Q(z). This process

has two advantages; firstly, Q(z) has a smaller degree than P (z), so it generally
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takes less computing time to find the next root in Q(z) than it does for P (z),

and secondly, this prevents the algorithm converging more than once to the same

(non-multiple) root. An algorithm for deflating polynomials is written in the

zroots code (Press et al., 1992), however as this process is done numerically,

each numerical root is only known to a finite precision. Therefore, deflation may

increase the numerical error in the deflated polynomials and any subsequent roots

that are found (Wilkinson, 1965).

5.1.2 Polishing

Polishing is the process where, after all the roots are calculated, the Laguerre

algorithm is repeated using the newly calculated roots as initial values in the

algorithm, but this time the polynomial is not deflated after each root is recal-

culated. This process aims to reduce the numerical errors in the roots caused by

deflation. However, polishing can contribute a significant amount of computing

time to the algorithm, as it doubles the number of times the Laguerre algorithm

is used. The effectiveness of polishing is discussed in more detail in Section 5.3.

5.1.3 Breaking Limit Cycles

A so-called limit cycle is a sequence of z values such that the values do not

converge to the root but form an infinite loop. zroots breaks these limit cycles

by multiplying the step size a by a multiple of 1
8

after a set number of steps. If

the algorithm has not converged after 10, 20, 30, 40, 50, 60 and 70 steps, the

step size a is multiplied by 1
2
, 1

4
, 3

4
, 1

8
, 3

8
, 5

8
and 7

8
) respectively. In doing this, the

step size is shortened in an attempt to break the limit cycle.

5.2 Jenkins-Traub Algorithm

The Jenkins-Traub algorithm is a three stage, convergent, iterative, numerical

method developed Jenkins and Traub (1970). A brief overview of the algorithm

is presented here, but a more detailed description of the algorithm in given in

Appendix E, Section E.2.
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This algorithm works by generating a sequence of polynomials H(λ)(z), such

that,

P (z)

H(λ)(z)
→ z − ζ1 as λ→ ∞, (5.1)

where ζ1 is the root closest to the origin (i.e. the root with the smallest

modulus). The polynomials H(λ)(z) are generated using,

H̄(λ+1)(z) =
1

z − sλ

[

P (s)

H̄(λ)(sλ)
H̄(λ)(z) − P (z)

]

, (5.2)

where H̄(λ)(z) represents the normalised form of H(λ)(z) (i.e. the leading

coefficient set to 1).

The first stage of this algorithm, called the “No Shift” stage, generates these

polynomials with sλ = 0. The second and third stages of this algorithm use

sλ 6= 0, which effectively aims to shift the origin closer to the root so that ζ1

is smaller, and H̄(λ)(z) converges faster to Pi(z). Although stage one is not

necessary from a theoretical perspective, it is useful for accentuating the roots.

Stage one is terminated and stage two begins after 5 iterations (i.e. M = 5), as

determined by numerical experience (Jenkins and Traub, 1970).

The second stage, called the “Fixed Shift” stage, uses a fixed value for sλ = s

to shift the origin closer to the root. The fixed shift s is defined as the real positive

value β multiplied by a random phase (or |s| = β) where β is an estimate of the

lower bound for the modulus of the roots of P (z). The method used to obtain the

value for β is discussed in Appendix E, Section E.2. Stage two is terminated and

stage three starts, when so called weak convergence is satisfied in two successive

iterations. Weak convergence is said to occur when the following criterion is met,

∣

∣

∣

∣

P (z)

H̄(λ)(z)
− P (z)

H̄(λ−1)(z)

∣

∣

∣

∣

≤ 1

2

∣

∣

∣

∣

s− P (z)

H̄(λ−1)(z)

∣

∣

∣

∣

. (5.3)

If weak convergence is not satisfied after a set number of iterations, β is given

a new random argument to create a new fixed shift s, and stage two starts again.

The third stage, called the “Variable Shift” stage calculates a new value for sλ

based on the polynomial H(λ)(z). This stage uses a process identical to Newton’s

method to calculate the root at each iteration. When P (z) is smaller than the
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acceptable numerical error, stage three is terminated, the polynomial is deflated,

and the algorithm starts finding the next root, ζ2.

This algorithm, as it is appears in the FORTRAN subroutine CPOLY (Jenk-

ins and Traub, 1972), also uses deflation and breaking limit cycles to help it suc-

ceed in finding accurate values for the roots. This FORTRAN code was converted

into C for the calculations and plots used in this chapter. In a similar style to

the Laguerre algorithm, the roots of a polynomial are found in roughly increas-

ing order to reduce the numerical errors caused by deflating the polynomial by

a large root. Like the Laguerre algorithm, the Jenkins-Traub algorithm is also

almost guaranteed to converge to a root for any complex polynomial. However, in

contrast to the Laguerre algorithm, which has limited theoretical understanding,

the Jenkins-Traub algorithm has a solid theoretical base.

5.3 Algorithm Accuracy and Efficiency

When selecting an algorithm to analyse microlensing data, it is important to

consider both the speed and accuracy of the algorithm. Mekwi (2001) showed

that zroots (Laguerre algorithm) is faster than CPOLY (Jenkins-Traub algo-

rithm) for polynomials up to degree 90, when both algorithms are written in

FORTRAN, but implied that CPOLY finds the roots more accurately. In this

section, we discuss the speed and accuracy of these two algorithms when written

in C, focusing on how these algorithms can be used to analyse microlensing data.

As discussed in the previous chapters, the distinct images produced in a mi-

crolensing event cannot be resolved, so microlensing events are observed by mea-

sured the changing luminous flux (or source magnification) over time giving what

is known as a lightcurve. The analysis of a microlensing event requires produc-

ing up to millions of theoretical microlensing lightcurves to find the theoretical

lightcurve that fits best with the observed lightcurve. Each theoretical lightcurve

may require finding the root positions for up to 1000 source positions along a line

(hereafter known as a source track) so the root finding algorithm needs to be fast

and efficient.

However, when generating theoretical lightcurves, it is also important to dis-
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tinguish the physical images from unphysical roots. Only the physical images

contribute to the total magnification of the source, so the misidentification of

some images as unphysical when they should be physical, or vice versa would

lead to an incorrect value for the source magnification. As mentioned in Sec-

tion 2.6, the number of physical images is N + 1 + 2k where k is a non-negative

integer. If this does not match the number of physical images found using the

root-finding algorithm, then it is likely that the calculated source magnification

is incorrect. Therefore, as well as being fast, the root finding algorithms must

also be accurate so that each lightcurve is calculated accurately.

As mentioned in Chapter 3, a microlensing event with N lenses will always

have a total parity of 1 − N . If the total parity is not calculated as 1 − N ,

it is an indication that some of the roots have been misidentified as being un-

physical when they are in fact physical, or vice versa, so the calculated source

magnification is likely to be incorrect.

5.3.1 Accuracy and Efficiency of Numerical Techniques

A main aspect of this research was to investigate numerical techniques to im-

prove the accuracy and efficiency of the root-finding algorithms. The speed and

accuracy of these techniques were tested using 12 specifically developed programs

written in C, the largest of which had a total of about 2000 lines C code. Each

program calculated the image positions for 1000 lightcurves each with a randomly

generated lens system with 2, 3 and 4 lenses, and each consisting of 1000 source

positions.

Wambsganss (1997) proposed that planets should be detectable with current

telescope technology with mass ratios in the range 10−3 − 10−5 in the so-called

‘lensing zone’, in the range 0.6RE − 1.6RE from the primary lens. The lensing

zone represents the region where a planetary configuration will give planetary

caustics inside the Einstein ring, up to 1.0RE from the primary lens. Therefore,

each lens configuration has planets randomly positioned inside the lensing zone.

Gaudi et al. (1998) showed that the probability of detecting planets of the

same mass as Jupiter in the lensing zone is nearly 100% when the impact pa-
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rameter (closest distance between the source and the origin) is no greater than

0.1RE . Therefore, each configuration includes a random impact parameter in the

range 10−1 − 10−4 with a source track parallel to the x-axis from x = −1.0RE to

x = 1.0RE , composed of 1000 source positions.

If the algorithm failed to return the correct number of images (N + 1 + 2k)

or the correct parity (1 −N) for at least one source position in the source track,

then the whole lightcurve was labelled as a “failed lightcurve”. The “successful

lightcurves” were the lightcurves that did not fail. Note that a failed lightcurve

would still find N2 + 1 roots using the root-finding algorithm for each source

position, but did not find N+1+2k (physical) images for every source position. A

failed lightcurve is an indication that roots of the lens polynomial were calculated

inaccurately by the algorithm.

Polishing

As mentioned previously in Section 5.1, polishing is the process where the roots

are put through the root finding algorithm again with the undeflated polynomial.

CPOLY (Jenkins-Traub) by itself does not contain a polishing method, but

the Laguerre polishing method used in zroots can be easily implemented in

CPOLY. While polishing aims to increase the accuracy of the roots, it may also

increase the computing time.

We tested the speed and accuracy of these two root-finding algorithms by

implementing zroots and CPOLY into the 12 specifically developed programs

and compared the results. We found that the Laguerre algorithm is significantly

faster at solving the polynomials than the Jenkins-Traub algorithm, and polishing

increases the amount of computing time for both Laguerre and Jenkins-Traub. It

was also found that polishing increasing the time taken by more than double in

the quadruple lens case. However, we determined that polishing did not signifi-

cantly improve the accuracy roots. All algorithms in the quadrapole cases, with

and without polishing, failed to find all the physical images in all the lightcurves

(i.e. the algorithms had a success rate of 0% in the quadrapole case).
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Precision

At its core, the primary cause of numerical error is the compounded effect of two

types of errors. The first type, truncated error, is where mathematical equations

are simplified to make them usable for calculations. The second type of error,

precision error, is where each value is only stored on a finite number of bits, so

each number only has a finite precision. Values expressed using single-floating

precision-point are truncated to the nearest 23bits (approximately 7 digits), while

values expressed using double-floating precision-point are given to the nearest 52

significant bits (approximately 16 digits). Also, using a higher precision to express

these values would reduce the precision error and may decrease the numerical

error in each root.

The need for higher precision for a triple lens microlensing event has been

noted by Bennett (2010), who suggested using quadruple-floating precision-point

(128 bits or 34 digits) to avoid the errors caused by precision. However, he

mentioned that quadruple-precision can be up to 100 times slower than double-

precision in some compiler implementations.

We found that quadruple precision increased the amount of time to calculate

the roots by a significantly large factor, up to 90 times longer in some cases,

but it did not significantly increase the accuracy of the roots. Therefore, we

reasoned that it is not economic to use quadruple-precision in the modelling of

gravitational microlensing events.

Interestingly, we discovered that image positions calculated using single-

precision floating-point took about the same time to find the roots as double-

precision in most cases. This can be explained by noting that these simulations

were run on a laptop with an x86 Intel Pentium microprocessor. This type of pro-

cessor implements double-precision floating-point, so single-floating point values

are emulated by extending them. This conversion from single-floating point to

double-floating point values adds time to the calculations. On others computers

with different microprocessors, single-floating point precision calculations may

be faster, however we discovered that the roots calculated using single-precision

floating-point were significantly more inaccurate than roots found using double-
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and quadruple-precision. Thus, single-precision is too inaccurate to use when

analysing microlensing data.

Initial Guess

To simulate a lightcurve, a computer program calculates the roots for each source

position in a series of source positions along a line. A lightcurve with 1000 source

positions may have adjacent source positions less than 0.001RE apart. The lens

equation is continuous everywhere except at the lens positions, and a small change

in source position usually gives a small change in the root positions. Therefore,

the roots for a particular point source are generally expected to be close to the

roots from the previous source position. For this reason, the roots from the

previous source position could be used as the initial values for the root finding

algorithm to find the roots for a particular source position.

The ‘default’ initial value for the zroots subroutine is zero. The ‘default’

initial value for the CPOLY subroutine is the lower bound of the modulus of

the roots, with a random argument. These default initial values were used to

obtain the plots presented earlier in the chapter. As part of this research, both

these algorithms were adapted so the roots from the previous source position

were used as the initial values in the algorithms. By doing this, the algorithm

was expected to converge more quickly to the roots, so each theoretical lightcurve

would be generated faster. In this strategy, the ‘default’ initial values were only

used for the first source position in the lightcurve, and the previous roots were

used as initial values for every subsequent source position.

We found that Jenkins-Traub without polishing, using the previous roots as

initial values simulates the lightcurve in about 41% of the time it takes using

the default initial values. Using Laguerre without polishing with the previous

roots simulates the lightcurve in 64% of the time it takes using the default initial

values. However, we found that there is no significant difference in the accuracy

of the image positions when using the default initial values or using the previous

roots as the initial values.
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5.3.2 Origin Shifting

While investigating the accuracy and efficiency of these numerical techniques,

we discovered that only about 2 physical images were identified in the triple

and quadruple lens cases whenever the source was far from the primary lens,

compared to the N + 1 physical images that are expected in these cases. In some

triple lens systems, the algorithm returned 2 physical images when the source no

less than 0.5RE from the primary lens, and in some quadruple lens systems, this

occurred when the source was no less than 0.05RE from the primary lens.

As explained in Section 2.6, a source far from the primary lens corresponds to

roots that are close to the source position or lens positions, with N−1 unphysical

roots clustered around each lens, and one physical image near the source and each

lens. From our numerical investigations, we found that the root close to the source

was always correctly identified as a physical image, and of the N roots clustered

around the primary lens, one was identified as physical and N − 1 as unphysical,

implying that all the roots around the source and primary lens were correctly

identified as physical or unphysical. However, in these numerical investigations,

all the roots close to the planetary lenses were often returned as unphysical. This

indicates that the roots around planetary lenses were inaccurate, since one root

close to each lens should always be identified as a physical image.

This misidentification is caused in part by ǫ/(z−r) term in the lens equation.

i.e. when the root, z, is close to a lens, r, a small inaccuracy on the image

plane corresponds to a large inaccuracy on the source plane when the root is

inverse ray traced. However, the fundamental cause of the misidentification is

the inaccuracies in the roots. The main reason the roots around the primary lens

are not misidentified is because these roots we not inaccurate when they were

found via the polynomial root finding algorithm.

In the previous sections of this chapter, the lens polynomial has been con-

structed and the roots have been found with the origin of the complex plane

positioned at the primary lens, so that all planetary lenses and source positions

are given in terms of their distance from the primary lens. However, it was dis-

covered that when the origin was shifted to a particular planetary lens, the roots
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surrounding that lens becomes much more accurate, with one physical image

and N + 1 unphysical roots correctly identified around this root. However, when

this origin shift is applied, the roots clustered around every other planetary lens

become more inaccurate.

Therefore, to reduce the inaccuracies in all the roots, we have to shift the

origin from the original origin to each of the lenses, and calculate and record

the position of these roots for each origin shift. For a configuration with N

lenses, this can be achieved by creating N copies of the source track and the lens

positions, each where the origin has been shifted to a different lens. Using each of

these origin-shifted source tracks and lens positions, N polynomials are created,

each with N2 + 1 roots, using the method described in Chapter 2. Each of these

polynomials will have the origin at a different lens. These polynomials are then

solved, and the roots are shifted back to the original origin.

After polynomials are solved and shifted back to the common origin, there

are N representations for each of the N2 + 1 roots. From these, the most accu-

rate representation for each root needs to be selected. The Jenkins-Traub and

Laguerre algorithms find the roots in roughly increasing order, so when the roots

are shifted back to the original origin, the roots are ordered roughly from closest

to further from its corresponding lens origin. Therefore, before this selection

process occurs, the roots needed to be sorted, so that each root from each origin

matches up with their respective roots from the other origins.

Sorting Algorithm If the roots are calculated in a computer program, these

roots can be stored in arrays. The roots can then be shifted using the following

procedure:

1. Take the first root from the array with the primary lens at the origin. Call

this root z1,1.

2. Iterate through the roots with the secondary lens at the origin, and find

the root closest to z1,1. Call this root z2,i

3. Swap z2,i with z2,1, the first root in the array with the secondary lens at
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the origin. Now the first root in the primary lens array and the first root

in the secondary lens array correspond to the same root from two different

origins.

4. Repeat steps 2 and 3 with the remaining arrays. When this is complete,

the first root in all the arrays correspond to the same root from different

origins.

5. Repeat steps 1 - 4 with the second root from the array with the primary

lens at the origin (z1,2) and collect the corresponding roots into a group

using the remaining (unsorted) roots in the other arrays.

6. Repeat step 5 with the rest of the roots. When this is complete each root in

each array will be matched with its corresponding root in the other arrays.

Once the roots from each polynomial have been sorted to match their corre-

sponding roots from the other origins, we need to select the most accurate value

for each root. As we discovered earlier, the roots were most accurate when they

were closest to the origin. Therefore, to find the most accurate values, we must

find the closest lens to each root. The appropriate value for the root is then taken

from the origin associated with that lens.

We tested origin shifting technique conjunction with the polishing technique

and the different initial values to find the ideal algorithm for finding the root

positions. We found that origin shifting increases the computation time of the

algorithm by a factor of about 1.7 in the binary lens case, a factor of about 3.0 in

the triple lens case, and a factor of about 2.8 in the quadruple lens case. However,

it significantly reduces the proportion of lightcurves that fail. Without origin

shifting, all algorithms had a 0% success rate for the four lens systems, but with

origin shifting, all the algorithms had a non-zero success rate, demonstrating that

origin shifting generally calculates the roots more accurately. The only algorithm

to give a 100% success rate in the four lens case was the Jenkins-Traub algorithm

with origin shifting and default initial values but without polishing.
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Chapter 6

Modelling Gravitational

Microlensing Events

As mentioned in the previous chapters, one of the main reasons for studying

gravitational microlensing, and indeed, the primary reason at VUW (Victoria

University of Wellington) is to search for extrasolar planets. But, as there is no

analytical relationship between the lightcurve and the physical properties of the

lens system (such as mass, orbital distance, etc.), there is no easy method of

extracting values of these parameters from an observed lightcurve. However, the

parameters for a microlensing event can be obtained by comparing the observed

lightcurve with lightcurves from theoretical microlensing events. Each theoretical

event can be described by a set of parameters, which specifies the source track,

the finite size of the source, the positions and the relative masses of the each lens,

as well as any orbital motion, such as parallax, xallarap and lens motion.

Once a model lightcurve has been produced for a particular event, the model

lightcurve is compared against the observed data. The ‘quality of the fit’ of a the-

oretical lightcurve with the observed lightcurve can be quantitatively described

by the χ2 value, given as,

χ =
n
∑

i

A(ti) − Oi

σi
, (6.1)

where Oi and σi are the observed amplification and its uncertainty respectively

at the ith data point out of a total of n data points. A(ti) is the calculated

amplification for the theoretical lightcurve at time ti, corresponding to the ith

data point. Assuming the uncertainties are estimated correctly, each term in the
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sum should be on the order of 1 if the theoretical data agrees with the observed

lightcurve. Therefore, if m is the number of parameters, it can be shown that

a “good model” should have χ2/(n −m) ∼ 1, where n −m gives the degrees of

freedom, where smaller χ2 values indicate a better fit.

Therefore, the analysis of a particular microlensing lightcurve requires search-

ing the m-dimensional parameter space to find the theoretical lightcurve with the

smallest χ2. Two methods can be implemented to find the smallest χ2, the first

by iteratively converging to these points, and the other by stochastic methods,

such as Markov chain Monte Carlo algorithms. These searches require the simu-

lation of a large number of theoretical microlensing events to find the best-fitting

theoretical lightcurve. Therefore, massive computing power is required for these

parameter searches and the lightcurves need to be produced as quickly as possi-

ble without losing accuracy in the calculations. More details on comparing and

fitting models can be found in Korpela (2007).

6.1 Modelling Procedure

At VUW, the optical astrophysics team lead by Prof Denis Sullivan is currently

developing a software package that will ultimately be used to analyse microlensing

events. This software package originated as an inverse ray tracing based package

called MLENS developed by Korpela (2007). However, this was later replaced

by the software package mlens2 developed by Chote (2011), which used semi-

analytical method to calculate a χ2 value and generate lightcurves. The research

presented in this thesis builds upon the mlens2 code to make it more robust and

efficient.

In its current form, this package contains total of approximately 13000 lines

of C++ code, and is composed of two executables: MLjob and MLserver. The

MLjob executable contains the logic required to generate a lightcurve given a

set of parameters, using the numerical methods discussed in this thesis. This

executable is used to calculate the χ2 value for the model lightcurve, for a set

of observational data. The MLserver executable controls the searches in the

parameter space, given some initial conditions, to find the best fitting model for
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an observed lightcurve. As of mid-2012, the algorithms required to efficiently

search the parameter space have not yet been fully implemented in the MLserver

code, so large parameter searches are not possible. However, it is expected that a

Markov chain Monte Carlo algorithm will be implemented in the code in the near

future, which will make large parameter searches possible. For more information

on these executables, see Chote (2011).

The mlens2 package receives the parameters in the form of a plain text control

files. The parameters in each control file define the lens positions and masses, the

source size, the source track, and any orbital motion such as parallax, xallarap or

lens motion. Given these parameters, a collection of source targets are positioned

along the source track on the source plane. For each source position, the lens

polynomial is constructed using the semi-analytic method, and is then solved

using a root-finding algorithm. Once the roots of the polynomials are found, the

roots that corresponded to (physical) images are identified and the amplifica-

tions of these images are then summed to give the amplification of the source.

The amplification can be calculated using the point source approximation, the

multipole approximations, or the polygon approximation

The current version of the mlens2 code differs in a number of ways from

the code developed by Chote in 2010. Firstly, the lens polynomials and critical

curve polynomials in the current version of mlens2 are constructed differently

from the 2010 version of the code. The current version of the code uses the lens

polynomials and critical curve polynomials presented in this thesis (Chapters 2

and 3 and Appendices B and C), while the 2010 version of the code uses the

polynomial coefficients given by Chote (2011).

Secondly, the current version of the code incorporates the quadrapole and

hexadecapole approximations discusses in Chapter 4, whereas the 2010 version

did not include the quadrapole approximation, and used the hexadecapole ap-

proximation from Gould (2008). The quadrapole approximation is faster than the

hexadecapole approximation but more accurate than the point source approxi-

mation. Thirdly, the current version of the code uses the selection algorithm

described in Section 4.4, whereas the 2010 version of the code used the selection
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algorithm from Chote (2011). We found that the current version of the code used

the quadrapole approximation in some places where the 2010 version of the code

uses the hexadecapole approximation. The use of the quadrapole approximation

has been a factor in making the current code faster, as demonstrated in Sections

6.2 and 6.3.

Fourthly, the origin shifting technique was been implemented in the current

version of the code, but was not present in the 2010 version of the code. In Chap-

ter 5, we showed that Jenkins-Traub with origin shifting, the default initial value

and without polishing was the only algorithm to give a 100% success rate for all

lens configurations up to and including quadruple lens systems. However, origin

shifting was found to be reasonably time-consuming, taking approximately 1.7,

3.0, and 3.8 times longer than without origin-shifting for a lens system with 2, 3,

and 4 lenses respectively. To ensure time is not wasted using this computationally

expensive technique when it is not required, origin shifting was implemented in

such a way that mlens2 initially attempts to find the roots using the algorithm

without origin shifting, but falls back on the more time consuming but more

accurate origin shifting algorithm if the algorithm fails to return the expected

number of images (N + 1 + 2k where k = 0, 1, 2, · · · ) or total parity (1 −N).

Lastly, the current version uses this algorithm without polishing, while the

2010 version of the code used the Jenkins-Traub algorithm with Laguerre polish-

ing. The absence of the polishing technique has been another factor in making the

current code faster, as demonstrated in Sections 6.2 and 6.3. Both of the current

and 2010 versions of the code used the default initial values for the Jenkins-

Traub algorithm. In Chapter 5, we mentioned that using the previous roots

as the initial values for the algorithm was faster than using the default initial

values. However, these results were obtained using a set of smaller C programs

that did not have the added complexities contained within the mlens2 package.

Due to the complex structure of mlens2, this package does not always calculate

the amplifications of the source positions sequentially from one end of the source

track to the other. When this package uses observational data the algorithm of-

ten jumps relatively large distances between the source positions and the size of
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these jumps depends on time of data points. Thus, using previous roots as initial

values becomes inefficient when finding the root positions in mlens2. Therefore,

using the previous roots as the initial values for the algorithm was found to be

more appropriate for the mlens2 code.

We here implement the MLjob executable in the current version of the mlens2

software to model the gravitational microlensing events OGLE-2006-BLG-109

and MOA-2009-BLG-319 and discuss the result in the following sections.

6.2 MOA-2009-BLG-319

MOA-2009-BLG-319 was the tenth planetary microlensing event to be published,

making MOA-2009-BLG-319Lb the eleventh extrasolar to be discovered via grav-

itational microlensing (Miyake et al., 2011). This event was first detected by

the MOA collaboration on 20 June 2009. This data corresponds roughly with

HJD≈2455003 (Heliocentric Julian Days) or HJD’≡HJD-2450000=5003. This

event was initially announced as a normal microlensing event; however a prelim-

inary model indicated that it was a high-magnification event, so at once MOA

began follow-up observations with the Mt. John Observatory. Over the next

two nights, the µFUN, RoboNet, and MiNDSTEp collaborations also began to

observe this event. The first (weak) caustic crossing occurred three days after the

initial discovery but was initially described as “low-level systematics”. It was not

until the second caustic crossing, 14 hours later, that the µFUN collaboration

sent out an anomaly alert, indicating the discovery of a planetary lens.

The host star for this event is a K- or M-dwarf star type and is located in

the inner Galactic disk or Galactic bulge, at a distance of DL = 6.1+1.1
=1.2 kpc

from Earth. The mass of the host star, ML = 0.38+0.34
−0.18M

⊙, was obtained using

Bayesian analysis, based on the measurements for the Einstein crossing time, tE,

and the angular Einstein radius, θE , using a standard Galactic model.

The best fitting model (without parallax) for this event gave a planetary mass

ratio of q = (3.95±0.02)×10−4 and a lens separation of d = 0.97537±0.00007RE.

Using Bayesian analysis, this corresponded to a planet with a mass of Mp =

50+44
−24M⊕ or half the mass of Saturn, at a distance a = 2.4+1.2

−0.6 AU from its host
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star.

These model parameters for the mass ratio and lens separation were taken

from Miyake et al. (2011) and converted to the coordinates system used by

mlens2. The lightcurve for this model is presented in Figure 6.1, showing this

model agrees well with the observational data when using the mlens2 software.

The control file for this model is shown in Appendix F, Figure F.1.

Figure 6.1: Model lightcurve for MOA-2009-BLG-319, generated using the current version of
mlens2.

This model indicates that the source crossed the caustic curves at four distinct

times. The first crossing observed by MOA occurred at HJD’ = 5006.05 and was

described as weak, producing little effect on the lightcurve. This was followed by

the second caustic crossing at HJD’ = 5006.6. The third caustic was described as

a strong caustic entry and produced the peak in the lightcurve with Amax ∼ 205

at HJD’ = 5006.96. The fourth and final caustic crossing occurred quickly after at

HJD’ = 5007.0 with a source magnification of A ∼ 180. This final caustic crossing

was well observed by 16 telescopes, giving continuous photometric monitoring,

with gaps no larger than 5 minutes. The magnification map for this model is

presented in Figure 6.2, showing the caustic curves and the source track.
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Figure 6.2: Magnification map for MOA-2009-BLG-319, generated using the current version
of mlens2, showing the caustic curves in black. The line of the source track is in grey, with the
direction of the track shown by the arrow head.

When the mlens2 was used to calculate a χ2 value it returned a value of

χ2 = 7746.86 in 176 seconds. This used 18 observational data sets, containing

a total of 2801 data points. In the paper published by Miyake, the model has

χ2 = 7023.8, however this value was calculated using a total of 7210 data points,

so it cannot be compared directly to the χ2 value obtained using mlens2.

However, this χ2 value and the time taken to generate this model can be

compared to the late 2010 version of mlens2. This version of mlens2 does not

contain many of the improvements to the code presented in this thesis. Therefore,

comparing the χ2 values and the total run times of the current with this earlier

version of the code is a way of quantifying the improvements in the accuracy and

efficiency of the numerical methods presented in this thesis. When the control

file and data sets from in Figure 6.4 were run on this earlier version of mlens2, a

χ2 value of 7746.95 was calculated in 230 seconds. These results show that the

current version of mlens2 is also about 23% faster than the the earlier version of

the code.
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Figure 6.3: Comparison of the model lightcurves for MOA-2009-BLG-319, generated using
the current version (black) and the 2010 version (red) of mlens2. The lower panel shows the
residual between the 2010 version of the code, and the current version, demonstrating that the
two codes do not differ by more than 0.0006%.

Figure 6.3 shows a comparison between the current and the 2010 version of

the code. The black line shows the lightcurve generated by the current code,

while the red line shows the lightcurve generated by the 2010 version of the code.

This plot shows that the difference between the calculated amplification between

the two versions of the code remains under 0.0006% for any source position. Since

0.1% is the upper limit for the numerical error in amplification calculation, as

suggested by Gould (2008), this result implies that improvements to the code has

not had a significant effect on accuracy of the code for this particular model.

Although the current version of the mlens2 calculates the χ2 value faster

than the 2010 version, it is still an order of magnitude slower what is required

to economically search for the best fitting model in the parameter space. When

limb darkening was removed from the code, the calculation time dropped to 67

seconds with a χ2 value of 9318.15, and when the polygon approximation was

completely removed from the code, the calculation time dropped to less than a

second but with a χ2 value of over 9 million! This demonstrates that the polygon

approximation, while reasonably accurate, is very time consuming due to the
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large number of source points used to make this calculation, especially when

limb darkening is included in the model.

6.3 OGLE-2006-BLG-109

OGLE-2006-BLG-109 was the fifth planetary lens microlensing event to be pub-

lished, and the first event to be modelled with more than one planetary lens

(Gaudi et al., 2008). This event announced as a potential planetary event by the

OGLE collaboration on 28 March 2006, or HJD’≈3822. At once, the µFUN and

RoboNet collaborations began follow-up observations, as the source magnifica-

tion of the event increased. The first caustic crossing occurred seven days later on

5 April, and from this deviation, a preliminary model predicted a caustic crossing

on 8 April. This deviation did in fact appear on 8 April, however an additional

deviation was observed about 12 hours after the first deviation, indicating the

presence of a second planet.

The model parameters for the best-fitting model were taken from Bennett

et al. (2010). To analyse this event using mlens2, the parameters for the event

were taken from this paper and converted to the coordinates system used by

mlens2. The parameters in this control file included parameters for controlling

the effects of parallax, xallarap and lens motion. The control file containing these

parameters is presented in Appendix F, Figure F.2.

Figure 6.4 presents the lightcurve for this published model, generated using

the current version of mlens2. This plot shows that this model appears to agree

well with the observational data. The mlens2 calculated a χ2 value of 2511.33

in 94 seconds using 1193 observational data points for this model. Due to the

orbital motion of the lens, the caustic curves for this event transformed over time.

This is demonstrated Figure 6.5, where the red, magenta, and blue critical curves

correspond to HJD’=3820,3830,3840 respectively

In the paper published by Bennett et al. (2010), the model has a χ2 = 2542.06.

However we cannot directly compare this χ2 value with the value calculated using

mlens2, since the χ2 value calculated by mlens2 did not use the final set of data

used by Gaudi et al. (2008) or Bennett et al. (2010). The data sets used by
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Figure 6.4: Model lightcurve for OGLE-2006-BLG-109, generated using the current version
of mlens2.

Figure 6.5: Caustic curves for MOA-2009-BLG-319, generated using the current version of
mlens2, where the path and direction of the source track is shown by the black line and arrow.
The red, magenta, and blue curves represent the critical curves at HJD’=3820,3830, and 3840
respectively, showing how the critical curves evolve as the lens system changes due to the lens
motion in this event.
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mlens2 are preliminary data sets from late 2007, when the initial modelling of

this event was done.

The control file and data sets used in Figure 6.4 were also run on the 2010

version of mlens2 and calculated a χ2 value of 2511.56 in 103 seconds. This

demonstrates that the current version of this software is also about 9% faster

than the earlier version of the software for this particular model.

Figure 6.6 shows two close-ups of the lightcurve presented in Figure 6.4. Both

of these close-ups show times associated with the source crossing the caustic

curves, at the times, t ≈ 3823 and t ≈ 3831, for Figures 6.6a and 6.6b respectively.

These plots show that the model lightcurve is slightly off from the observed data

in some places. It has been suggested that the residuals between the model

lightcurve and the observational data in Figure 6.6 might be systematic errors

that were introduced when converting the parameters into the coordinate system

used by mlens2 (Chote, 2011).

Figure 6.6: Close-up views of the model lightcurve shown in Figure 6.4, using the model given
by Bennett et al. (2010). These views correspond to times associated with caustic crossings.

While the parameter search algorithms are not yet fully implemented in the

mlens2 code, small grid searches can be performed by defining a range a values for

one or more parameters, and calculating χ2 values for discrete parameter values

at regular intervals in these parameter ranges. The ranges for these parameters

can be defined in the control file.

A small grid search such as this was performed on the OGLE-2006-BLG-109
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data. This grid search only varied the five parameters relating to the source track

and source size, and calculated the χ2 value for three values in each parameter

range, giving a total of 243 model χ2 values. The control file for this grid search

is presented in Appendix F, Figure F.3.

Out of these 243 models, the best fitting model had a χ2 value of 1799.76,

which was calculated in 87 seconds. The lightcurve of this model is given in

Figures 6.7, and a close-up of this lightcurve around the caustic curve crossing is

presented in Figure 6.8. While Figure 6.6 shows that Bennett’s model deviates

from the observed around HJD’=3831.7, this deviation is reduced in Figure 6.8,

showing that latter model qualitatively fits slightly better with the observational

data than Bennett’s model. However, as mentioned before, these lightcurves only

used the preliminary data sets from late 2007, not the final set of data used by

Gaudi et al. (2008) or Bennett et al. (2010), so the quality of fit only applies to

this preliminary set of data. The control file for this better fitting model is given

in Appendix F, Figure F.4.

The model shown in Figure 6.7 is only the best fitting model out of the mod-

els tested; it is not the best fitting model out of all possible models. However, it

shows that the model provided by Bennett et al. (2010) is not the optimal model

for the preliminary OGLE-2006-BLG-109 data. When the parameter search al-

gorithms are completely implemented in the mlens2 code, it is hoped that a full

optimisation search could be run on this event to obtain the best fitting model

in all parameter space.
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Figure 6.7: Best fitting model lightcurve for OGLE-2006-BLG-109, generated using the cur-
rent version of mlens2.

Figure 6.8: Close-up views of the model lightcurve shown in Figure 6.7. These views corre-
spond to times associated with caustic crossings.
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Chapter 7

Conclusions

This thesis describes the improvements to the semi-analytic approach to mod-

elling gravitational microlensing events. These improvements were primarily built

on top of the semi-analytic approach developed by Chote (2011).

The initial step in the semi-analytic approach is to rearrange the lens equation

into a lens polynomial, where the complex roots of the polynomial is a superset of

the positions of the images. As part of this thesis project, we developed a method

to rearrange the lens equations into the lens polynomials. We also developed a

similar method to obtain a polynomial describing the critical curves. While this

thesis did not explore lens systems with more than four lenses, the polynomials in

this thesis are presented in a general form and can be used to describe theoretical

lens systems with any number of lenses.

Using these polynomials, we showed that the lightcurve, critical curves and

caustic curves exhibited an additive nature when the mass ratios were on the

order of planetary mass ratios. This means that multiple planetary systems

can be approximated using a number of binary lens systems (each consisting

of the host star and a planet) added together. While this behaviour is only an

approximation and cannot be used to accurately model observed lightcurves, it is

useful to get a feel of the behaviour of the caustic curves and source magnification

in multiple planetary systems.

To incorporate finite source effects into the code, we developed the multipole

(quadrapole and hexadecapole) approximations. Unlike the polygon approxima-

tion, which requires a large number of source positions, the multipole approxi-
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mations require only a handful of source points, thus they are computationally

much less expensive than the polygon method. However, it suffers some of the

same problems as the point source magnification, such as diverging it crosses a

caustic curve.

We also developed the ‘natural’ dynamic method to construct the source

polygon for the polygon approximation. However, this method was found to

be inefficient, as it used an order of magnitude more points than the dynamic

method developed by Chote (2011).

Along with these approximations, we developed a successful algorithm to de-

termine which approximation (point source, quadrapole, hexadecapole or poly-

gon) was most suitable for finding the lens positions for a particular source po-

sition, and incorporated this algorithm and the approximations into the mlens2

code.

As part of this thesis work, several numerical techniques were investigated to

find the optimal algorithms to solve the lens polynomials. While investigating

these methods we found that inaccuracies arise in obtaining the correct image

positions, particularly in the roots close to the planetary lenses. These inac-

curacies in the root positions ultimately result in incorrect image magnification

calculations and an inaccurate lightcurve.

We found that significant improvements could be obtained by developing the

origin shifting technique, which shifted the origin to each lens before solving the

polynomials. This technique dramatically reduced the inaccuracies in the roots

but at a cost of increasing the time taken to calculate the roots.

We discovered that the Jenkins-Traub algorithm without polishing was the

most accurate algorithm for calculating the roots. We also discovered that using

the default initial values for these algorithms was slightly more accurate than

using the roots from the previous source position as the initial values. Using the

roots from the previous source position was faster than using the default initial

values, but only when the source magnifications were solved sequentially from

one end of the source track to the other, with short gaps between each adjacent

source position. In the current version of the mlens2 code it was discovered that
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using the default initial values was actually faster than using the roots from the

previous source position.

The 2010 version of the mlens2 software used Jenkins-Traub algorithm with

polishing and with its default initial values but without origin shifting. Therefore,

mlens2 was adapted by removing the polishing and implementing a process where

the algorithm would “fall back” on origin shifting if the algorithm orignally failed

to return the expected number of physical images or the expected total parity.

The new 2012 version of the mlens2 code proved to be much more robust and

efficient than the old 2010 version. This was demonstrated in the lightcurves and

the χ2 calculations for the microlensing events MOA-2009-BLG-319 and OGLE-

2006-BLG-109, with the latter event being a triple lens event. The software was

also tested on some theoretical four lens events, showing that the software is more

than capable for calculating lightcurve and χ2 values for multiple planet events

with up to four lenses.

One important area of future research is the development of more methods

to approximate the magnification of finite source sizes. Of particular interest

is a method that calculates the magnification of a finite source (including limb

darkening effects) using a relatively small number of source points, but will not

return an infinite amplification when crossing caustic curves.

Another important area of future work will be the completion of the code for

the parameter search for the MLserver executable. Once this has been achieved,

the programme will then be implemented on the computing networks at VUW.

In the future, running this executable will calculate χ2 values for millions of

theoretical models to find the best-fit model for an observed microlensing event.

This could potentially be used to model multiple planetary events in ‘real time’,

as the events are being observed.
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Appendix A

Derivation of Lens Polynomials

The semi-analytic approach to gravitational microlensing events, as explained in

Chapter 2, works by expressing the image positions as complex numbers z = x+iy

and rearranging the lens equation into a polynomial in terms of z. A configuration

with N lenses corresponds to lens polynomials of degree N2 + 1. For multiple

lens systems, the lens polynomial has a degree greater than 4, so they cannot be

solved analytically. Instead they are solved through numerical algorithms such

as the Jenkins-Traub and Laguerre methods.

A basic overview of the lens polynomial was discussed in Section 2.4. This

appendix presents a more detailed description and derivation of this polynomial

for a general N lens system. This derivation is partly based on a derivation for

the 3 lens polynomial by Rhie (2002).

These expressions for the coefficients were incorporated into the mlens2 soft-

ware package developed by the optical astronomy research group at Victoria Uni-

versity of Wellington. While the coefficients of the lens polynomials for a general

N lens case can be expressed mathematically, writing these general expressions

into a code proved to be challenging. Therefore, the coefficient expressions spe-

cific to two, three, and four lenses were written into the code. These specific

coefficient expressions for two and three lenses are expressed in this appendix.

The full expressions of the coefficients for a four lens system are too lengthy to be

expressed here, but can be easily obtained from the general expression presented

in this appendix.
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The lens equation for a lens system with N lenses can be written as,

w = z −
N
∑

j=1

ǫj
z̄ − r̄j

, (A.1)

where the mass fraction of the jth planet is represented by the real value ǫj

and r̄j is the complex conjugate of rj , which is the 2-dimensional positions of the

lens is represented by complex position. To eliminate the z̄ terms, we take the

complex conjugate of the lens equation and rearrange it to make z̄ the subject,

as follows,

z̄ = w̄ +

N
∑

j=1

ǫj
z − rj

. (A.2)

By defining zj = z−rj , we can construct the polynomials G and H such that,

N
∑

k=0

Gkz
k = G =

N
∑

j=1

ǫj
∏

i 6=j

zi, (A.3)

N
∑

k=0

Hkz
k = H =

N
∏

i=1

zi. (A.4)

The polynomial H(z) has degree N with its roots at the lens positions rj,

whereas the polynomial G has degree N − 1. The quotient of the polynomials G

and H can be given as,

G

H
=

∑N
j=1 ǫj

∏

i 6=j zi
∏N

j=1 zj
=

N
∑

j=1

ǫj
zj
. (A.5)

The conjugate of the three lens equation in Equation A.2 can then be ex-

pressed as,

z̄ = w̄ +
G

H
. (A.6)

To eliminate the z̄ terms, Equation A.6 can be substituted into Equation A.1

to give,

z − w =
N
∑

j=1

ǫj
G
H

+ w̄ − r̄j
. (A.7)
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Equation A.7 can be simplified by defining ̟j = r̄j − w̄ giving,

z − w =

N
∑

j=1

ǫj
G
H
−̟j

0 = (z − w) −
N
∑

j=1

Hǫj
G−H̟j

0 = (z − w)
N
∏

j=1

(G−̟jH) −H
N
∑

j=1

[

ǫj
∏

j 6=i

(G−̟iH)

]

. (A.8)

The Equation A.8 can be thought of as in two parts: the product
∏N

j=1(G−
̟jH) in the first half of the equation, and the sum

∑N
j=1

[

ǫj
∏

j 6=i(G−̟iH)
]

in

the second half of the equation. By defining πj = z−̟j, we can construct three

polynomials X , V and W , such that,

N
∑

i=0

Xiz
i = X =

N
∏

j=1

πj , (A.9)

N
∑

i=0

Viz
i = V =

N
∑

j=1

[

ǫj
∏

j 6=i

πj

]

, (A.10)

N
∑

i=0

Wiz
i = W = wX + V . (A.11)

We can consider product
∏N

j=1(G − ̟jH) can be considered analogous to

polynomial X , while the sum
∑N

j=1

[

ǫj
∏

j 6=i(G−̟iH)
]

is analogous to the poly-

nomial V . Therefore, using the coefficients of X and V we can rewrite Equation

A.8 as,

0 = (z − w)

[

N
∑

i=0

GiHN−iX i

]

−
[

N
∑

i=0

GiHN−iV i

]

0 = z

N
∑

i=0

GiHN−iX i − w

N
∑

i=0

GiHN−iX i −
N
∑

i=0

GiHN−iV i

0 = z

[

N
∑

i=0

GiHN−iX i

]

−
[

N
∑

i=0

GiHN−iW i

]

. (A.12)

Note that Equation A.12 contains the polynomials G and H , where H has a

degree N and G has degree N−1. In the product
∏N

j=1(G−̟jH), H is multiplied
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by itself at most N , giving HN a degree of N2. This product is multiplied by z,

giving a this equation a degree of N2 + 1.

To obtain expressions for the coefficients of the polynomial in Equation A.12,

we can rewrite the term GiHN−i as,

GjHN−j =
N2

∑

k=0

ηj,kz
k, (A.13)

By substituting Equation A.13 into Equation A.12, the lens polynomial be-

comes,

0 = z

[

N
∑

j=0

N2

∑

k=0

(

ηj,kz
kXj

)

]

−
[

N
∑

j=0

N2

∑

k=0

(

ηj,kz
kW j

)

]

0 =

[

N
∑

j=0

N2

∑

k=0

(

ηj,kz
k+1Xj

)

]

−
[

N
∑

j=0

N2

∑

k=0

(

ηj,kz
kW j

)

]

0 =
N2+1
∑

k=0

zk

[

N
∑

j=0

(

ηj,k−1X
j
)

−
N
∑

j=0

(

ηj,kW
j
)

]

.

The polynomial shown in Equation A.14 has degree N2 + 1. This polynomial

can be written as,

0 =

N2+1
∑

n=0

ckz
k, (A.14)

where the coefficients for this polynomial are given by,

ck =

N
∑

j=0

(ηj,k−1Xj − ηj,kWj ] . (A.15)

To generate a lightcurve for a particular microlensing model, a series of point

sources are positioned on the source plane and the positions and magnifications

of the images are calculated for each source position. While the coefficients for

X , V , and W are dependent of the source position w, the coefficients for G

and H depend only on the positions and mass ratios of the lenses. Therefore,

when generating a theoretical lightcurve for a microlensing model that does not

have relative lens motion, the coefficients for the G and H do not need to be

recalculated for every source position, thus saving computational time. However,

if the model includes orbital motion, the position of the lenses rj change over

time, so the coefficients for the G and H need to be recalculated for every source

position.
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A.1 Two Lens System - Degree 5 Lens Polyno-

mial

From Equation A.1, the lens equation for a two lens system can be expressed as,

w = z − ǫ1
z̄ − r̄1

+
ǫ2

z̄ − r̄2
, (A.16)

where the mass fractions of the planets are represented by the real values

ǫ1 and ǫ2, and the 2-dimensional positions of the two lenses are represented by

complex positions r1 and r2 respectively. The complex positions of the roots can

be obtained by solving the 5th degree polynomial,

0 =

5
∑

k=0

ckz
k = c5z

5 + c4z
4 + c3z

3 + c2z
2 + c1z + c0, (A.17)

where coefficients cn for this polynomial are given by,

ck = η2,k−1X2 − η1,k−1X1 + η0,k−1X0 − [η2,kW2 − η1,kW1 + η0,kW0] . (A.18)

The values for ηi,k in the two lens case are given as,

η2,4 = G2
2,

η2,3 = 2G1G2,

η2,2 = G2
1 + 2G0G2,

η2,1 = 2G0G1,

η2,0 = G2
0,

(A.19)
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η1,4 = G2H2,

η1,3 = G1H2 +G2H1,

η1,2 = G1H1 +G0H2 +H0G2,

η1,1 = G0H1 +G1H0,

η1,0 = G0H0,

η0,4 = H2
2 ,

η0,3 = 2H1H2,

η0,2 = H2
1 + 2H0H2,

η0,1 = 2H0H1,

η0,0 = H2
0 ,

where coefficients of the polynomials G and H can be given as,

H2 = 1,

H1 = r1 + r2,

H0 = r1r2,

G2 = 0,

G1 = ǫ1 + ǫ2 (= 1) ,

G0 = ǫ1r2 + ǫ2r1.

The values forXj , Vj, and Wj correspond to the coefficients of the polynomials

X , V , and W , which are given as,

X2 = 1,

X1 = ̟1 +̟2,

X0 = ̟1̟2,

(A.20)
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V2 = 0,

V1 = ǫ1 + ǫ2 (= 1) ,

V0 = ǫ1̟2 + ǫ2̟1,

W2 = wX2 + V2 (= w) ,

W1 = wX1 + V1,

W0 = wX0 + V0.

where ̟1 = r̄1 − w̄ and ̟2 = r̄2 − w̄.

A.2 Three Lens System - Degree 10 Lens Poly-

nomial

From Equation A.1, the lens equation for a three lens system can be expressed

as,

w = z − ǫ1
z̄ − r̄1

+
ǫ2

z̄ − r̄2
+

ǫ3
z̄ − r̄3

, (A.21)

where the mass fractions of the planets are represented by the real values ǫ1,

ǫ2, and ǫ3, and the 2-dimensional positions of the three lenses are represented by

complex positions r1, r2, and r3 respectively. The complex positions of the roots

can be obtained by solving a 10th degree polynomial, given as,

0 = c10z
10 + c9z

9 + c8z
8 + c7z

7 + c6z
6 + c5z

5 + c4z
4 + c3z

3 + c2z
2 + c1z + c0,

=
10
∑

k=0

ckz
k. (A.22)

The coefficients cn for this polynomial are given as,

ck = η3,k−1X3 − η2,k−1X2 + η1,k−1X1 − η0,k−1X0

− [η3,kW3 − η2,kW2 + η1,kW1 − η0,kW0] . (A.23)
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The values for ηi,k in the three lens case are given as,

η3,9 = G3
3,

η3,8 = 3G2G
2
3,

η3,7 = 3G1G
2
3 + 3G2

2G3,

η3,6 = G3
2 + 3G0G

2
3 + 6G1G2G3,

η3,5 = 3G2
1G3 + 3G1G

2
2 + 6G0G2G3,

η3,4 = 3G2
1G2 + 3G0G

2
2 + 6G0G1G3,

η3,3 = G3
1 + 3G2

0G3 + 6G0G1G2,

η3,2 = 3G0G
2
1 + 3G2

0G2,

η3,1 = 3G2
0G1,

η3,0 = G3
0,

η2,9 = G2
3H3,

η2,8 = 2G2G3H3 +G2
3H2,

η2,7 = 2G1G3H3 +G2
2H3 + 2G2G3H2 +G2

3H1,

η2,6 = 2G0G3H3 + 2G1G2H3 + 2G1G3H2 +G2
2H2

+2G2G3H1 +G2
3H0,

η2,5 = 2G0G2H3 + 2G0G3H2 +G2
1H3 + 2G1G2H2

+2G1G3H1 +G2
2H1 + 2G2G3H0,

η2,4 = 2G0G1H3 + 2G0G2H2 + 2G0G3H1 +G2
1H2

+2G1G2H1 + 2G1G3H0 +G2
2H0,

η2,3 = G2
0H3 + 2G0G1H2 + 2G0G2H1 + 2G0G3H0

+G2
1H1 + 2G1G2H0,

η2,2 = G2
0H2 + 2G0G1H1 + 2G0G2H0 +G2

1H0,

η2,1 = G2
0H1 + 2G0G1H0,

η2,0 = G2
0H0,
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η1,9 = G3H
2
3 ,

η1,8 = G2H
2
3 + 2G3H2H3,

η1,7 = G1H
2
3 + 2G2H2H3 + 2G3H1H3 +G3H

2
2 ,

η1,6 = G0H
2
3 + 2G1H2H3 + 2G2H1H3 +G2H

2
2

+2G3H0H3 + 2G3H1H2,

η1,5 = 2G0H2H3 +G1H
2
2 + 2G1H1H3 + 2G2H0H3

+2G2H1H2 + 2G3H0H2 +G3H
2
1 ,

η1,4 = 2G0H1H3 +G0H
2
2 + 2G1H0H3 + 2G1H1H2

+2G2H0H2 +G2H
2
1 + 2G3H0H1,

η1,3 = 2G0H0H3 + 2G0H1H2 + 2G1H0H2 +G1H
2
1

+2G2H0H1 +G3H
2
0 ,

η1,2 = G0H
2
1 + 2G0H0H2 + 2G1H0H1 +G2H

2
0 ,

η1,1 = 2G0H0H1 +G1H
2
0 ,

η1,0 = G0H
2
0 ,

η0,9 = H3
3 ,

η0,8 = 3H2H
2
3 ,

η0,7 = 3H1H
2
3 + 3H2

2H3,

η0,6 = H3
2 + 3H0H

2
3 + 6H1H2H3,

η0,5 = 3H2
1H3 + 3H1H

2
2 + 6H0H2H3,

η0,4 = 3H2
1H2 + 3H0H

2
2 + 6H0H1H3,

η0,3 = H3
1 + 3H2

0H3 + 6H0H1H2,

η0,2 = 3H0H
2
1 + 3H2

0H2,

η0,1 = 3H2
0H1,

η0,0 = H3
0 .
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where coefficients of the polynomials G and H can be given by,

H3 = 1,

H2 = r1 + r2 + r3,

H1 = r1r2 + r1r3 + r2r3,

H0 = r1r2r3,

G3 = 0,

G2 = ǫ1 + ǫ2 + ǫ3 (= 1) ,

G1 = ǫ1(r2 + r3) + ǫ2(r1 + r3) + ǫ3(r1 + r2),

G0 = ǫ1r2r3 + ǫ2r1r3 + ǫ3r1r2.

The values forXj , Vj, and Wj correspond to the coefficients of the polynomials

X , V , and W , which are given as,

X3 = 1

X2 = ̟1 + ̟2 +̟3

X1 = ̟1̟2 +̟1̟3 +̟2̟3

X0 = ̟1̟2̟3

V3 = 0

V2 = ǫ1 + ǫ2 + ǫ3 (= 1)

V1 = ǫ1(̟2 +̟3) + ǫ2(̟1 +̟3) + ǫ3(̟1 +̟2)

V1 = ǫ1̟2̟3 + ǫ2̟1̟3 + ǫ3̟1̟2

W3 = wX3 + V3 (= w)

W2 = wX2 + V2

W1 = wX1 + V1

W0 = wX0 + V0

where ̟1 = r̄1 − w̄, ̟2 = r̄2 − w̄, and ̟3 = r̄3 − w̄.
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A.3 Solutions as the Source Position goes to In-

finity

To determine the behaviour of the lens equation solutions when the source star is

far from the lens positions, we can apply the limit w → ∞ to the lens polynomial.

By applying this limit to Equation A.8, while dividing both sides by w̄N , we get,

lim
w→∞

0

w̄N
= lim

w→∞

(z − w)
∏N

j=1(G−̟jH) −H
∑N

j=1

[

ǫj
∏

j 6=i(G−̟iH)
]

w̄N

lim
w→∞

0 = lim
w→∞

(z − w)

N
∏

j=1

(G− (r̄j − w̄)H)

w̄
− H

w̄N

N
∑

j=1

[

ǫj
∏

j 6=i

(G−̟iH)

]

lim
w→∞

0 = lim
w→∞

(z − w)
N
∏

j=1

(

G

w̄
+
r̄jH

w̄
−H

)

− H

w̄N

N
∑

j=1

[

ǫj
∏

j 6=i

(G−̟iH)

]

0 = (z − w)

N
∏

j=1

(H)

0 = (z − w)HN

0 = (z − w)

N
∏

j=1

(z − rj)
N .

Therefore, when the source is far from the lenses, there is one root near the

source, w, and N roots near each lens position, rj.
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Appendix B

The Jacobian

The Jacobian matrix is a matrix in vector calculus that generalises the concept of

the vector gradient ∇ to a vector-valued function. This matrix contains the first-

order partial derivatives of the vector-valued function with respect to another vec-

tor. If w(z) is a function from n-dimensional Euclidean space to m-dimensional

Euclidean space, then this function can be expressed as the real-valued compo-

nent functions w1(z1, . . . , zn), . . . wm(z1, . . . , zn). The Jacobian matrix JM of this

function is given by,

JM =
∂(w1, . . . , wm)

∂(z1, . . . , zn)
=







∂w1

∂z1
· · · ∂w1

∂zn
...

. . .
...

∂wm

∂z1
· · · ∂wm

∂zn






. (B.1)

The Jacobian is particularly useful when we want to make a change of vari-

ables. For example, suppose we want to integrate a scalar-valued function

f(w1, . . . , wn) over an n-dimensional surface,

∫

S

f(w1, . . . , wn)dw1 · · · dwn. (B.2)

If we wish to change the coordinates from (w1, . . . , wm) to (z1, . . . , zn), we

transform between coordinates by writing each wi as a function of (z1, . . . , zn),

such that,

w1(z1, · · · , zn),

...

wm(z1, · · · , zn).
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By differentiating these functions, we obtain the following expressions,

dw1 =
∂w1

∂z1
dz1 + · · · +

∂w1

∂zn
dzn,

...

dwm =
∂wm

∂z1
dz1 + · · · +

∂wm

∂zn
dzn.

Equations B.3 - B.3 can also be expressed as a product of a matrix and vector,







dw1
...

dwm






= JM







dz1
...
dzn






, (B.3)

where JM is the Jacobian identical to the one presented in Equation B.1.

The Jacobian determinant J (often simply called the Jacobian) is the deter-

minant of the square Jacobian matrix JM , and is expressed as,

J =

∣

∣

∣

∣

∂(w1, . . . , wn)

∂(z1, . . . , zn)

∣

∣

∣

∣

=

∂w1

∂z1
· · · ∂w1

∂zn
...

. . .
...

∂wn

∂z1
· · · ∂wn

∂zn

. (B.4)

When transforming between coordinates, the Jacobian determinant is used to

describe the ratio of an infinitesimal area element in the new coordinate system

to an infinitesimal area element in the old coordinate system,

J =
dw1 . . . dwn

dz1 . . . dzn
. (B.5)

In this way, the Jacobian can be used to transform the function f(w1, . . . , wn)

from the old coordinate system to the new coordinate system. For example, by

substituting the Jacobian J into Equation B.2, the integral can be expressed as,

∫

S

f(z1, . . . , zn)Jdz1 · · · dzn. (B.6)

B.1 Complex Coordinates

In the semi-analytical approach to gravitational microlensing, the points on the

source and image planes are represented as the complex numbers w = u + vi
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and z = x + yi respectively. The lens equation and its complex conjugate for a

multiple lens system, which describe a transformation from the image to source

plane, can be expressed respectively as,

w = z −
N
∑

j=0

ǫj
z̄ − r̄j

,

w̄ = z̄ −
N
∑

j=0

ǫj
z − rj

.

The Jacobian J of the lens equation therefore describes the ratio of an in-

finitesimal area on the source plane to an infinitesimal area on the image plane,

J =
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. (B.7)

Therefore, the image magnification (the ratio of the area of the image to the

area of the source) can be described as the reciprocal of the Jacobian determinant

J−1. Since the lens equation is described in terms of w, z, w̄, and z̄, where the

complex conjugates are given by w̄ = u−vi and z̄ = x−yi. Therefore, it is more

convenient and more powerful mathematically to express the Jacobian using the

terms w, z, w̄, and z̄.

To do this, the first step is to express the w components u and v in terms of

w and w̄, as follows,

u =
w + w̄

2
v =

w − w̄

2i
.

The next step is to obtain the appropriate first-order partial derivatives for

z, z̄, u and v,

∂z

∂x
= 1,

∂z

∂y
= i,

∂z̄

∂x
= 1,

∂z̄

∂y
= −i,

and

∂u

∂w
=

1

2
,

∂u

∂w̄
=

1

2i
,

∂v

∂w
=

1

2
,

∂v

∂w̄
=

−1

2i
.

139



From the above expressions, the Jacobian can be expressed in terms of w, z,

w̄ and z̄ by applying the chain rule to Equation B.7 to give,

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

=
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y

=

(

∂u

∂w

∂w

∂x
+
∂u

∂w̄

∂w̄

∂x

)(

∂v

∂w

∂w

∂y
+
∂v

∂w̄

∂w̄

∂y

)

−
(

∂v

∂w

∂w

∂x
+
∂v

∂w̄

∂w̄

∂x

)(

∂u

∂w

∂w

∂y
+
∂u

∂w̄

∂w̄

∂y

)

=

(

1

2

∂w

∂x
+

1

2i

∂w̄

∂x

)(

1

2

∂w

∂y
+

−1

2i

∂w̄

∂y

)

−
(

1

2

∂w

∂x
+

−1

2i

∂w̄

∂x

)(

1

2

∂w

∂y
+

1

2i

∂w̄

∂y

)

=
1

2i

[

∂w̄

∂x

∂w

∂y
− ∂w

∂x

∂w̄

∂y

]

=
1

2i

[(

∂w̄

∂z

∂z

∂x
+
∂w̄

∂z̄

∂z̄

∂x

)(

∂w

∂z

∂z

∂y
+
∂w

∂z̄

∂z̄

∂y

)

+

(

∂w

∂z

∂z

∂x
+
∂w

∂z̄

∂z̄

∂x

)(

∂w̄

∂z

∂z

∂y
+
∂w̄

∂z̄

∂z̄

∂y

)]

=
1

2i

[(

∂w̄

∂z
+
∂w̄

∂z̄

)(

i
∂w

∂z
− i

∂w

∂z̄

)

−
(

∂w

∂z
+
∂w

∂z̄

)(

i
∂w̄

∂z
− i

∂w̄

∂z̄

)]

=
∂w

∂z

∂w̄

∂z̄
− ∂w

∂z̄

∂w̄

∂z

=
∂w
∂z

∂w
∂z̄

∂w̄
∂z

∂w̄
∂z̄

. (B.8)

By differentiating Equation B.7 and B.7, the first-order partial derivatives are

given by,

∂w

∂z
= 1,

∂w

∂z̄
=

N
∑

j=0

ǫj
(z̄ − r̄j)2

, (B.9)

∂w̄

∂z
=

N
∑

j=0

ǫj
(z − rj)2

,
∂w̄

∂z̄
= 1. (B.10)

When the above derivatives are substituted into Equation B.8, the Jacobian

can be expressed as,

J =
1 ∂w

∂z̄
∂w̄
∂z

1
= 1 − ∂w

∂z̄

∂w̄

∂z
. (B.11)
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B.2 Derivative of the Jacobian

The derivatives of the Jacobian with respect to z and z̄ can be used to describe

the rate of change of the image magnification across the image plane. These

derivatives are especially useful when deriving the multipole approximations in

Appendix D. Since the Jacobian in Equation B.11 depends only on ∂w/∂z̄ and

∂w̄/∂z, these derivatives need to be obtained before calculating the Jacobian

derivatives. Note that ∂w/∂z̄ is independent of z, and ∂w̄/∂z is independent of

z̄, so

∂2w

∂z∂z̄
= 0, (B.12)

∂2w̄

∂z̄∂z
= 0. (B.13)

Therefore, the non-zero derivatives can be expressed as,

∂2w̄

∂z2
= −

N
∑

j=0

2ǫj
(z − rj)3

,

∂3w̄

∂z3
=

N
∑

j=0

6ǫj
(z − rj)4

,

∂p+1w̄

∂zp+1
= (−1)p

N
∑

j=0

(p+ 1)!ǫj
(z − rj)p+2

,

and

∂2w

∂z̄2
= −

N
∑

j=0

2ǫj
(z̄ − r̄j)3

,

∂3w

∂z̄3
=

N
∑

j=0

6ǫj
(z̄ − r̄j)4

,

∂q+1w

∂z̄q+1
= (−1)q

N
∑

j=0

(q + 1)!ǫj
(z − rj)q+2

.

The partial derivatives of the Jacobian can be obtained by differentiating

141



Equation B.11 by z and z̄, which gives,

∂J

∂z
=

∂2w̄

∂z2
∂w

∂z̄
, (B.14)

∂J

∂z̄
=

∂w̄

∂z

∂2w

∂z̄2
, (B.15)

∂J2

∂z2
=

∂3w̄

∂z3
∂w

∂z̄
, (B.16)

∂J2

∂z∂z̄
=

∂2w̄

∂2z

∂2w

∂z̄2
, (B.17)

∂J2

∂z̄2
=

∂w̄

∂z

∂3w

∂z̄3
, (B.18)

∂Jp+q

∂zp∂z̄q
=

∂p+1w̄

∂zp+1

∂q+1w

∂z̄q+1
. (B.19)

B.3 Derivative of the Magnification

The Jacobian J of the lens equation describes the ratio of an infinitesimal area

element on the source plane to an infinitesimal area element on the image plane.

The absolute value of this area ratio for each image is defined as the magnification,

µ, of the image and can be calculated from the inverse of the absolute Jacobian

determinant,

µ =
1

|J | . (B.20)

The total magnification A of a point source can therefore be defined as the

sum of all the image magnifications, µ, such that,

A =
∑

images

µ =
∑

images

1

|J | =
∑

images

sgn(J)

J
(J 6= 0). (B.21)

where sgn(J) is the sign of J , i.e.,

sgn(J) = +1 if J > 0,

sgn(J) = 0 if J = 0,

sgn(J) = −1 if J < 0.
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The derivatives of the image magnification can be obtained using Faà di

Bruno’s formula (Faà di Bruno, 1855), which generalises the concept of the chain

rule to higher derivatives,

∂2µ(J(z, z̄))

∂z∂z̄
=
∂2µ

∂J2

∂J

∂z

∂J

∂z̄
+
∂µ

∂J

∂2J

∂z∂z̄
, (B.22)

∂4µ(J(z, z̄))

∂z2∂z̄2
=

∂4µ

∂J4

(

∂J

∂z

)2(
∂J

∂z̄

)2

+
∂3µ

∂J3

[

(

∂J

∂z

)2
∂2J

∂z̄2
+ 4

∂J

∂z

∂J

∂z̄

∂2J

∂z∂z̄
+
∂2J

∂z2

(

∂J

∂z̄

)2
]

+
∂2µ

∂J2

[

2
∂J

∂z

∂3J

∂z∂2z̄
+ 2

∂3J

∂2z∂z̄

∂J

∂z̄
+ 2

(

∂2J

∂z∂z̄

)2

+
∂2J

∂z2
∂2J

∂z̄2

]

+
∂µ

∂J

∂4J

∂z2∂z̄2
. (B.23)

where the derivatives of the Jacobian are given in Equations B.14 - B.19.

Similar expression for higher derivatives can also be obtained using Faà di Bruno’s

formula. The derivatives of the magnification with respect to the Jacobian (when

J 6= 0) can be expressed as,

µ =
sgn(J)

J
,

∂µ

∂J
=

−sgn(J)

J2
,

∂2µ

∂J2
=

2sgn(J)

J3
,

∂3µ

∂J3
=

−6sgn(J)

J4
,

∂4µ

∂J4
=

24sgn(J)

J5
,

∂kµ

∂Jk
=

(−1)kk!sgn(J)

Jk+1
.
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Appendix C

Derivation of Critical Curve

Polynomials

As mentioned in Section 3.3, the critical curves in gravitational microlensing are

defined as the loci of points on the image plane where a point image has an

infinite magnification. In a similar way to the lens polynomials and the positions

of the images in Appendix A, the points that describe the critical curves can be

given as solutions to polynomials. These critical polynomials can be derived using

the same nomenclature described in Appendix A and like the lens polynomials,

the critical curve polynomials are derived by expressing the image positions as

complex numbers z = x + iy. However, although a lens system with N lenses

corresponds to a lens polynomial of degree N2 + 1, the critical curve polynomial

for an N lens system has a degree 2N .

This appendix discusses and derives the critical curve polynomial for a general

N lens system. The expressions for the coefficients of the two and three lens cases

are also given in this appendix. These polynomials can then be solved through

numerical algorithms such as the Jenkins-Traub and Laguerre methods.

In Section 3.3, we mentioned that the critical curves correspond to the points

on the image plane where the Jacobian of the lens equation is zero. As demon-

strated in Appendix B, Section B.1, the Jacobian of the lens equation is expressed

as,

J =
∂w
∂z

∂w
∂z̄

∂w̄
∂z

∂w̄
∂z̄

=
1 κ(z̄)

κ(z) 1
= 1 − |κ(z)|2, (C.1)
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where κ is defined as the potential flow on the image plane and is given as,

κ =
∂w̄

∂z
. (C.2)

Therefore, the critical curves are the loci of points where,

J = 1 − |κ(z)|2

0 = 1 − |κ(z)|2

|κ(z)|2 = 1

κ(z) = eiφ, (C.3)

where φ is any angle between 0 and 2π. The loci of points that describe the

critical curves can be obtained by solving Equation C.3 for these values of φ.

Configurations with 2, 3, and N lenses correspond to critical curve polynomials

of degree 4, 6, and 2N respectively.

The lens equation and its complex conjugate for a two lens system are given

by

w = z −
N
∑

j=1

ǫj
z̄ − r̄j

, (C.4)

w̄ = z̄ −
N
∑

j=1

ǫj
z − rj

, (C.5)

where the mass fractions of the planets are represented by the (real) values ǫj ,

and the 2-dimensional positions of the two lenses are represented by the complex

positions rj. We can simplify Equation C.5 by defining the terms zj = z − rj,

and constructing two polynomials G(z) and H(z) in terms of z,

G(z) =

N
∑

i=0

Gjz
j , (C.6)

H(z) =
N
∑

i=0

Hjz
j . (C.7)

Using these polynomials, we can rewrite Equation C.5 as,

w̄ = z̄ − G

H
. (C.8)
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The expression for κ can be obtained by deriving Equation C.8,

κ(z) =
∂w̄

∂z
=

∂

∂z

[

G

H

]

=
G′(z)H(z) −G(z)H ′(z)

[H(z)]2
. (C.9)

The expressions for G′(z) and H ′(z) can be obtained by differentiating Equa-

tions C.6 and C.7 to give,

G′(z) =
N
∑

j=0

jGjz
j−1 =

N−1
∑

j=0

j + 1Gj+1z
j , (C.10)

H ′(z) =
N
∑

j=0

jHjz
j−1 =

N−1
∑

j=0

j + 1Hj+1z
j . (C.11)

By substituting Equation C.9 into Equation C.3, the critical curve polynomi-

als can be derived as,

G′(z)H(z) −G(z)H ′(z)

[H(z)]2
= eiφ,

G′(z)H(z) −G(z)H ′(z) = [H(z)]2 eiφ,

[G′(z)H(z) −G(z)H ′(z)] − [H(z)]2 eiφ = 0. (C.12)

Substituting the expressions for G(z), H(z), G′(z), and H ′(z) into Equation

C.12, the critical curve polynomial can be obtained as,

[(

N−1
∑

k=0

(k + 1)Gk+1z
k

)(

N
∑

j=0

Hjz
j

)

−
(

N
∑

j=0

Gjz
j

)(

N−1
∑

k=0

(k + 1)Hk+1z
k

)]

−
[

N
∑

j=0

Hjz
j

]2

eiφ = 0,

N
∑

j=0

N
∑

k=0

[(

(k + 1)Gk+1z
k
) (

Hjz
j
)

−
(

Gjz
j
) (

(k + 1)Hk+1z
k
) (

Hjz
j
) (

Hkz
k
)]

eiφ = 0.

(C.13)

The polynomial in Equation C.13 has degree of 2N , and can be written in

the form,

0 =
2N
∑

n=0

ckz
k, (C.14)
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where the coefficients cn are given as,

ck =
k
∑

j=0

[

(j + 1) (Gj+1Hk−j −Gk−jHj+1) −HjHk−je
iφ
]

. (C.15)

For each value of φ, this polynomial gives 2N roots. These roots correspond

to 2N points on the critical curves. Solving the polynomial for a series of φ

values between 0 and 2π gives a loci of points on the image plane that describe

the critical curves. To obtain the loci of points that describe the caustic curves,

these critical curve points can then be inverse-ray traced to the source plane by

substituting these points into lens equation.

C.1 Two Lens System - Degree 4 Critical Curve

Polynomial

The lens equation for a two lens system can be expressed as,

w = z − ǫ1
z̄ − r̄1

+
ǫ2

z̄ − r̄2
, (C.16)

where the mass fractions of the planets are represented by the real values

ǫ1 and ǫ2 and the 2-dimensional positions of the two lenses are represented by

complex positions r1 and r2 respectively. The complex positions of the critical

curve can be obtained by solving the 4th degree polynomial,

0 =
4
∑

n=0

cnz
n = c4z

4 + c3z
3 + c2z

2 + c1z + c0, (C.17)

where the coefficients of this polynomial can be given by the expressions,

c4 = −H2
2e

iφ,

c3 = −2H1H2e
iφ,

c2 = [G2H1 −G1H2] −
[

H2
1 + 2H0H2

]

eiφ,

c1 = 2 [G2H0 −G0H2] − 2H0H1e
iφ,

c0 = [G1H0 −G0H1] −H2
0e

iφ.
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The coefficients of the polynomials G and H are given by,

H2 = 1,

H1 = r1 + r2,

H0 = r1r2,

G2 = 0,

G1 = ǫ1 + ǫ2 (= 1) ,

G0 = ǫ1r2 + ǫ2r1.

C.2 Three Lens System - Degree 6 Critical

Curve Polynomial

The lens equation for a two lens system can be expressed as,

w = z − ǫ1
z̄ − r̄1

+
ǫ2

z̄ − r̄2
+

ǫ3
z̄ − r̄3

, (C.18)

where the mass fractions of the planets are represented by the real values ǫ1,

ǫ2, and ǫ3, and the 2-dimensional positions of the three lenses are once again rep-

resented by complex positions r1, r2, and r3 respectively. The complex positions

of the critical curve can be obtained by solving the 6th degree polynomial,

0 =

6
∑

n=0

cnz
n = c6z

6 + c5z
5 + c4z

4 + c3z
3 + c2z

2 + c1z + c0, (C.19)

where the coefficients of this polynomial can be given by the expressions,

c6 = −H3
3e

iφ,

c5 = −2H2H3e
iφ,

c4 = [G3H2 −G2H3] −
[

2H1H3 +H2
2

]

eiφ,

c3 = 2 [G3H1 −G1H3] − [2H0H2 + 2H1H3] e
iφ,

c2 = 3 [G3H0 −G0H3] + [G2H1 −G1H2] −
[

2H0H2 +H2
1

]

eiφ,

c1 = 2 [G2H0 −G0H2] − 2H0H1e
iφ,

c0 = [G1H0 −G0H1] −H2
0e

iφ.
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The coefficients of the polynomials G and H are given by,

H3 = 1,

H2 = r1 + r2 + r3,

H1 = r1r2 + r1r3 + r2r3,

H0 = r1r2r3,

G3 = 0,

G2 = ǫ1 + ǫ2 + ǫ3 (= 1) ,

G1 = ǫ1(r2 + r3) + ǫ2(r1 + r3) + ǫ3(r1 + r2),

G0 = ǫ1r2r3 + ǫ2r1r3 + ǫ3r1r2.
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Appendix D

Quadrapole and Hexadecapole

Approximations

While the point source approximation can quickly obtain an estimate for the

source magnification, it cannot, by definition, account for the finite size of the

source disk or other finite source effects such as limb darkening (see Section

5.1). In contrast, the polygon method discussed in Section 5.3 is designed to

include these effects but requires finding the roots for large number of point source

positions, which can be very time consuming, especially when limb darkening

effects are included. This necessitates a method that can calculate the source

magnification quickly while including finite source effects.

The multipole approximations are a class of approximations that can be used

to estimate the magnification of the source reasonably quickly, while including

finite source effects. The multipole approximations are based on the hexade-

capole approximation proposed by Gould (2008). These approximations work

by approximating the magnification across the source using the Taylor series.

The two multipole approximations of interest are the quadrapole (or 4-pole) and

hexadecapole (or 16-pole) approximations, which approximate the magnification

up to the second order derivative and the fourth order derivative respectively.

The multipole approximations are classified into two types, the single-point

multipole approximations, which calculate the derivatives using a a single point

on the source disk, and the multiple-point multipole approximations, which place

a number of point source positions at particular locations on the source disk

and uses the magnification from each point source position to interpolate the
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magnification across the whole source disk. For reasons explained in Section

5.4.2, the multiple-point multipole approximation is the more accurate type of

multipole approximations.

Higher (multiple-point) multipole approximations are also possible but these

require a larger number of source points on the source disk. For example, the

next two approximations in the sequence, the 64-pole approximation and the 256-

pole approximation, require 25 source points and 41 source points respectively.

In fact, each 4n-pole approximation requires 2n(n + 1) + 1 source points on the

source disk. The number of source positions required for these higher multipole

approximations are similar to the number of points required for the polygon

method. Since the polygon method is fundamentally better at accounting for

finite source effects, it is more efficient in these cases to use the polygon method

instead of higher multipole approximations (see Chapter 4).

This appendix discusses how both the single-point and multiple-point multi-

pole approximations can be derived using the Taylor expansion. This derivation

mostly focuses on the quadrapole and hexadecapole approximations; however,

higher multipole approximations can also be obtained using the derivation de-

scribed in this appendix.

D.1 Finite Source Disk

To derive the quadrapole and hexadecapole approximations, we first consider a

finite circular source disk of radius ρ, and let A(u, v) be the point magnification

at any point (u, v) on the source disk. This source disk may have an intensity

that varies across the source due to limb darkening, where the intensity of a

point on the source disk is dependent on the radial distance from the centre of

the source disk.

Suppose Iave is the average intensity over the disk. The magnification of

a finite source is defined as the total apparent brightness of the finite images

divided by the brightness of the finite source disk, give as,

Afinite =

∫

disk
A(u, v)I(r)da
∫

disk
I(r)da

=

∫

disk
A(u, v)I(r)da

πρ2Iave
. (D.1)
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D.2 Taylor Expansion

Consider a function A(u, v) that returns the point magnification for any point

(u, v) on the source disk. This function can be represented by a Taylor series,

which uses the point source magnification and its derivatives to approximate the

magnification anywhere else on the source disk. If (u0, v0) is the point at the

centre of the source disk, and A(u0, v0) its corresponding magnification, then

A(u, v) can be represented by a 2-dimensional Taylor series with u = u0 + ∆u

and v = v0 + ∆v as follows,

A(u0 + ∆u, v0 + ∆v) = A(u0, v0)

+

[

∂A

∂u
∆u+

∂A

∂v
∆v

]

+

[

∂2A

∂u2
(∆u)2

2!
+

∂2A

∂u∂v
∆u∆v +

∂2A

∂v2
(∆v)2

2!

]

+

[

∂3A

∂u3
(∆u)3

3!
+

∂3A

∂u2∂v

(∆u)2∆v

2!

+
∂3A

∂u∂v2
∆u(∆v)2

2!
+
∂3A

∂v3
(∆v)3

3!

]

=

∞
∑

n=0

[

n
∑

k=0

[

∂nA

∂uk∂vn−k

(∆u)k(∆v)n−k

k!(n− k)!

]

]

(D.2)

Equation D.2 can then be rewritten as,

A(u0 + ∆u, v0 + ∆v) = A0,0

+ [A1,1∆u+ A1,0∆v]

+
[

A2,2(∆u)2 + A2,1∆u∆v + A2,0(∆v)2
]

+
[

A3,3(∆u)3 + A3,2(∆u)2∆v + A3,1∆u(∆v)2 + A3,0(∆v)3
]

=
∞
∑

n=0

[

n
∑

k=0

(

An,k(∆u)k(∆v)n−k
)

]

, (D.3)
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where,

A0,0 = A(u0, v0),

A1,1 =
∂A(u0, v0)

∂u
,

A1,0 =
∂A(u0, v0)

∂v
,

A2,2 =
1

2!

∂2A(u0, v0)

∂u2
,

A2,1 =
∂2A(u0, v0)

∂u∂v
,

A2,0 =
1

2!

∂2A(u0, v0)

∂v2
,

An,k =
1

k!(n− k)!

∂nA(u0, v0)

∂uk∂vn−k
.

D.3 Polar Coordinates

Since limb darkening depends only on radius, the variation in magnification is

radially symmetrical across the source. This symmetry of the source disk can be

exploited to make the integral in Equation D.1 easier to solve. Therefore, the

point source positions must be converted from Cartesian coordinates into polar

coordinates. In doing this, the infinitesimal area becomes da = rdφdr, so the

Equation D.1 becomes,

Afinite =
1

πρ2Iave

∫

disk

A(r, φ)I(r)da

=
1

πρ2Iave

∫ ρ

0

∫ 2π

0

A(r, φ)I(r)rdφdr

=
2

ρ2Iave

∫ ρ

0

A(r)I(r)rdr,

where,

A(r) =
1

2π

∫ 2π

0

A(r, φ)dφ. (D.4)
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D.3.1 Integrating over φ

The small steps in the ∆u and ∆v in Cartesian coordinates can be converted to

polar coordinates by the following expressions,

∆u = rcosφ, (D.5)

∆v = rsinφ. (D.6)

By substituting Equation D.5 and D.6 into Equation D.3, the expression for

the magnification becomes,

A(r, φ) =
∞
∑

n=0

[

rn
n
∑

k=0

(

An,kcos
n−kφsinkφ

)

]

.

Therefore, A(r) in Equation D.4 can be then calculated by,

A(r) =
1

2π

∫ 2π

0

A(r, φ)dφ

=
1

2π

∫ 2π

0

[ ∞
∑

n=0

[

rn
n
∑

k=0

An,kcos
kφsinn−kφ

]]

dφ

=

∞
∑

n=0

[

rn
n
∑

k=0

(

An,k
1

2π

∫ 2π

0

coskφsinn−kφdφ

)

]

. (D.7)

If we consider the odd integers p and q, it can be shown that,

1

2π

∫ 2π

0

cospφsinqφdφ = 0. (D.8)

Therefore, all the odd order derivatives, such as A1,1, A1,0, and A2,1, are

eliminated from Equation D.7. Therefore, without loss of generality, the values

of n and k can be transformed by, n → 2n and k → 2k. For example, second

term in the Taylor series, n = 2, now corresponds with n = 1.
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The remaining integrals in Equation D.7 are given by,

1

2π

∫ 2π

0

cos2φdφ =
1

2
,

1

2π

∫ 2π

0

sin2φdφ =
1

2
,

1

2π

∫ 2π

0

cos4φdφ =
3

8
,

1

2π

∫ 2π

0

cos2φsin2φdφ =
1

8
,

1

2π

∫ 2π

0

sin4φdφ =
3

8
.

A general expression for these integrals can be given by the following,

1

2π

∫ 2π

0

cos2pφsin2qφdφ =
1

2p+q(p+ q)!

(2p)!

2pp!

(2q)!

2qq!

=
(2p)!(2q)!

22(p+q)(p+ q)!p!q!
.

In terms of n and k (n = p+ q and k = p), these integrals can be written as,

1

2π

∫ 2π

0

cos2kφsin2(n−k)φdφ =
1

2nn!

(2k)!

2kk!

(2(n− k))!

2(n−k)(n− k)!

=
(2k)!(2(n− k))!

22nn!k!(n− k)!
.

Therefore, Equation D.7 becomes,

A(r) =
1

2π

∫ 2π

0

A(r, φ)dφ = A0 + A2r
2 + A4r

4 + · · · =
∞
∑

n=0

A2nr
2n, (D.9)
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where,

A0 = A00

= A(u0, v0), (D.10)

A2 =
A22 + A20

2

=
1
2!

∂2A(u0,v0)
∂u2 + 1

2!
∂2A(u0,v0)

∂v2

2

=
1

4

[

∂2A(u0, v0)

∂u2
+
∂2A(u0, v0)

∂v2

]

, (D.11)

A4 =
3A44 + A42 + 3A40

8

=
3
4!

∂2A(u0,v0)
∂u4 + 1

2!2!
∂2A(u0,v0)
∂u2∂v2

+ 3
4!

∂2A(u0,v0)
∂v4

8

=
1

64

[

∂2A(u0, v0)

∂u4
+ 2

∂2A(u0, v0)

∂u2∂v2
+

3

4!

∂2A(u0, v0)

∂v4

]

. (D.12)

A general expression A2n can be given by,

A2n =
n
∑

k=0

[

1

2π

∫ 2π

0

coskφsinn−kφdφA2n,2k

]

=
n
∑

k=0

[

(2k)!(2(n− k))!

22n(n)!k!(n− k)!

1

(2k)!(2(n− k))!

∂2nA(u0, v0)

∂u2k∂vn−k

]

=

n
∑

k=0

[

(2k)!(2(n− k))!

22n(2k)!(2(n− k))!

1

n!k!(n− k)!

∂2nA(u0, v0)

∂u2k∂vn−k

]

=

n
∑

k=0

[

1

22n

1

(n!)2
n!

k!(n− k)!

∂2nA(u0, v0)

∂u2k∂vn−k

]

=
1

22n(n!)2

n
∑

k=0

[(

n

k

)

∂nA(u0, v0)

∂uk∂vn−k

]

.

D.3.2 Integrating over r

After integrating with respect to φ, the expression for the finite magnification

becomes,

Afinite =
2

ρ2Iave

∫ ρ

r=0

A(r)I(r)rdr =
2

ρ2Iave

∫ ρ

r=0

( ∞
∑

n=0

A2nr
2n

)

I(r)rdr. (D.13)

However, before we can integrate over r, the expression for limb darkening

needs to be derived.
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D.4 Limb Darkening

As discussed in Section 4.2, the observed intensity I(ψ) of a limb darkened star

can be approximated by,

I(ψ) = I0

N
∑

k=0

akcos
k(ψ), (D.14)

with a0 = 1 − u, a1 = u, aj = 0 for j > 1, and 0 ≤ u ≤ 1. In this

approximation, Equation D.14 can be rewritten as,

I(φ) = I0(1 − u(1 − cos(φ)))

I(φ) = I0(1 − u(1 −
√

1 − sin(φ)2))

I(r) = I0

(

1 − u

(

1 −
√

1 −
(r

a

)2
))

, (D.15)

where r is radial distance from centre of source disk, which has radius ρ.

Since Equation D.13 is written in terms of the average intensity Iave, it is more

convenient to rewrite Equation D.15 in terms of Iave, such that,

I(r) = Iave

(

1 − Γ

(

1 − 3

2

√

1 −
(r

a

)2
))

, (D.16)

where Γ is called the limb darkening coefficient, with 0 ≤ Γ ≤ 1. This

should not be confused with the Gamma Function Γ(), which appears later in

this appendix.

By integrating Equation D.16 across the the source disk, it can be shown that

Iave is indeed the average intensity of the average flux per unit area,

∫

I(r)dA =

∫ a

0

Iave

(

1 − Γ

(

1 − 3

2

√

1 −
(r

a

)2
))

2πrdr

=

∫ a

0

2Iaveπ(1 − Γ)rdr + 3IaveπΓ

∫ a

0

r

√

1 −
(r

a

)2

dr

= Iaveπ(1 − Γ)a2 + 3IaveπΓa2
∫ π/2

0

sinφcos2φdφ

= Iaveπa
2 − IaveπΓa2 + 3IaveπΓa2

1

3

= Iaveπa
2 − IaveπΓa2 + IaveπΓa2

= Iaveπa
2.
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The relationship between flux at the centre of the source I0 and the average

flux per unit area Iave can be obtained by finding the intensity at r = 0 using

Equation D.16,

I0 = I(0) = Iave

(

1 − Γ

(

1 − 3

2

√
1 − 0

))

= Iave

(

1 +
Γ

2

)

. (D.17)

The relationship between u and Γ is found by equating the Equations D.15

and D.16.

I0

(

1 − u

(

1 −
√

1 −
(r

a

)2
))

= Iave

(

1 − Γ

(

1 − 3

2

√

1 −
(r

a

)2
))

(

1 +
Γ

2

)

(

1 − u

(

1 −
√

1 −
(r

a

)2
))

= 1 − Γ

(

1 − 3

2

√

1 −
(r

a

)2
)

Γ

2
− u− u

Γ

2
+

(

u+ u
Γ

2

)

√

1 −
(r

a

)2

=
3Γ

2

√

1 −
(r

a

)2

− Γ.

By collecting the like terms (the terms involving the square root), the rela-

tionship between u and Γ can be given by,

u

√

1 −
(r

a

)2

+ u
Γ

2

√

1 −
(r

a

)2

=
3Γ

2

√

1 −
(r

a

)2

u+ u
Γ

2
=

3Γ

2
u

2
(2 + Γ) =

3Γ

2

u =
3Γ

2 + Γ
.

D.4.1 The Integral

With the expression for limb darkening in Equation D.16, the integrand in Equa-

tion D.13 can now be integrated with respect to r. Therefore, the expression for
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the total magnification of a finite-source can be derived as follows,

Afinite =
2

ρ2Iave

∫ ρ

0

A(r)rI(r)dr

=
2

ρ2Iave

(∫ ρ

0

A0rI(r)dr +

∫ ρ

0

A2r
3I(r)dr +

∫ ρ

0

A4r
5I(r)dr + ...

)

=
2

ρ2Iave

∞
∑

0

∫ ρ

0

A2kr
2k+1I(r)dr

=
2

ρ2

∞
∑

0

∫ ρ

0

A2kr
2k+1



1 − Γ



1 − 3

2

√

1 −
(

r

ρ

)2






 dr

=
2

ρ2

∞
∑

0

∫ ρ

0

A2kr
2k+1dr − 2Γ

ρ2

∞
∑

0

∫ ρ

0

A2kr
2k+1



1 − 3

2

√

1 −
(

r

ρ

)2


 dr

=
2

ρ2

∞
∑

0

A2kρ
2k+2

2k + 2
− 2Γ

ρ2

∞
∑

0

A2k

∫ ρ

0

r2k+1dr

+
Γ

ρ2
3

2

∞
∑

0

A2k

∫ ρ

0

r2k+1

√

1 −
(

r

ρ

)2

dr

=
∞
∑

0

A2kρ
2k

k + 1
− Γ

∞
∑

0

A2kρ
2k

k + 1

+
3Γ

ρ2

∞
∑

0

A2k

∫ ρ

0

r2k+1

√

1 −
(

r

ρ

)2

dr. (D.18)

In Equation D.18 the integral
∫ ρ

0
r2k+1

√

1 − (r/ρ)2dr can be solved by using

the equation,

∫ L

0

qp
√

1 −
( q

L

)2

dq =

√
πLp+1Γ([p+ 1]/2)

4Γ(p/2 + 2)
. (D.19)

Note that Γ() in Equation D.19 is the Gamma function, where Γ(k+ 1) = k!,

not the limb darkening coefficien. If p = 2k+ 1, q = r, and L = ρ then Equation

D.19 becomes,

∫ ρ

0

r2k+1

√

1 −
(

r

ρ

)2

dr =

√
πρ2k+2Γ(k + 1)

4Γ(k + 5/2)
, (D.20)

with,

Γ

(

p+
1

2

)

=
(2p)!

√
π

4pp!

Γ

(

k +
5

2

)

=
(2k + 4)!

√
π

4k+2(k + 2)!
.
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Using these terms, Equation D.19 becomes,

∫ ρ

0

r2k+1

√

1 −
(

r

ρ

)2

dr =
4k+2

√
πρ2k+2k!(k + 2)!

4(2k + 4)!
√
π

=
4k+1ρ2k+2(k + 1)!(k + 2)!

(k + 1)(2k + 4)!
.

Therefore, Equation D.18 becomes,

Afinite =
∞
∑

0

A2kρ
2k

k + 1
− Γ

∞
∑

0

A2kρ
2k

k + 1

+
3Γ

ρ2

∞
∑

0

A2k
4k+1ρ2k+2(k + 1)!(k + 2)!

(k + 1)(2k + 4)!

=

∞
∑

0

A2kρ
2k

k + 1
[1 − Γ (1 − γ)] , (D.21)

where,

γ = 3
4k+1(k + 1)!(k + 2)!

(2k + 4)!
. (D.22)

.

Equation D.22 gives γ = 1, 4/5, 24/35 for k = 0, 1, 2 respectively. Therefore,

the expression for the finite magnification in Equation D.21 can be written as,

Afinite =
A0ρ

0

1
(1 − Γ + Γ) +

A2ρ
2

2

(

1 − Γ + Γ
4

5

)

+
A4ρ

4

3

(

1 − Γ + Γ
24

35

)

+ · · · .

= A0 +
A2ρ

2

2

(

1 − Γ
1

5

)

+
A4ρ

4

3

(

1 − Γ
11

35

)

+ · · · . (D.23)

The expression for the quadrapole approximation is given by the terms up to

and including the second derivative,

Aquad = A0 +
A2ρ

2

2

(

1 − Γ
1

5

)

. (D.24)

The hexadecapole approximation is given by the terms up to and including

the fourth derivative,

Ahex = A0 +
A2ρ

2

2

(

1 − Γ
1

5

)

+
A4ρ

4

3

(

1 − Γ
11

35

)

. (D.25)
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D.5 Calculating the Derivatives

As mentioned in Section 4.4, the accuracy of a Taylor series depends partly on

the accuracy of the derivatives used in the series. Therefore, the accuracy of the

estimated finite source magnification will depend on the values for the derivatives

A2 and A4. We investigate two different methods to find these derivatives. The

first method is by differentiating the equation for the point source magnification,

which we called the single-point multiple approximation method, and the second

method is to estimate the derivative with numerical approximations, which we

called multiple-point multipole approximation method. The single-point and

multiple-point multipole approximations are discussed and derived here.

D.5.1 Single-Point Multiple Approximation

To obtain expressions for the derivatives of the source amplification, we can

convert the derivative in D.10-D.12 from in terms of u and v, to in terms of w

and w̄. To do this, we first need to obtain the first-order partial derivatives for

z, z̄, u and v,

∂w

∂u
= 1

∂w

∂v
= i,

∂w̄

∂u
= 1

∂w̄

∂v
= −i.

Using the chain rule, the second derivative of the source amplification at the

point (u, v) can then be given as,

A2 =
Auu + Avv

4

=
1

4

[

Auw
∂w

∂u
+ Auw̄

∂w̄

∂u
+ Ayz

∂w

∂v
+ Avw̄

∂w̄

∂v

]

=
1

4

[(

Aww
∂w

∂u
+ Aww̄

∂w̄

∂u

)

∂w

∂u
+

(

Aww
∂w

∂u
+ Aww̄

∂w̄

∂u

)

∂w̄

∂u

+

(

Aww
∂w

∂v
+ Aww̄

∂w̄

∂v

)

∂w

∂v
+

(

Aww
∂w

∂v
+ Aww̄

∂w̄

∂v

)

∂w̄

∂v

]

=
1

4

[

Aww
∂w

∂u

∂w

∂u
+ 2Aww̄

∂w

∂u

∂w̄

∂u
+ Aw̄w̄

∂w̄

∂u

∂w̄

∂u

+Aww
∂w

∂v

∂w

∂v
+ 2Aww̄

∂w

∂v

∂w̄

∂v
+ Aw̄w̄

∂w̄

∂v

∂w̄

∂v

]
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A2 =
1

4
[Aww + 2Aww̄ + Aw̄w̄ + Aww(i)(i) + 2Aww̄(i)(−i) + Aw̄w̄(−i)(−i)]

=
1

4
[Aww + 2Aww̄ + Aw̄w̄ − Aww + 2Aww̄ − Aw̄w̄]

=
1

4
[4Aww̄]

=
∂2A

∂w∂w̄
.

The fourth derivative in Equation D.23 can be expressed as,

A4 =
Auuuu + 2Auuvv + Avvvv

64

=
1

4

∂4A

∂w2∂w̄2
.

The expression for the sixth derivative in Equation D.23 can be given as,

A6 =
1

36

∂6A

∂w3∂w̄3
.

In fact, these derivatives can be given by the general expression,

A2n =
1

(n!)2
∂2nA

∂wn∂w̄n
.

The source magnification, A, is the sum of the (physical) image magnifica-

tions, µ, therefore the source magnification derivatives can be expressed in terms

of the image magnification derivatives given in Appendix B, Section B.3, and the

Jacobian, J = dwdw̄
dzdz̄

. Thus the source magnification derivatives can be given as,

A2 =
∑

images

1

J

∂2µ

∂z∂z̄
,

A4 =
1

4

∑

images

1

J2

∂4µ

∂z2∂z̄2
,

A6 =
1

36

∑

images

1

J3

∂6µ

∂z3∂z̄3
,

A2n =
1

(n!)2

∑

images

1

Jn

∂2nµ

∂zn∂z̄n
.
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D.5.2 Numerical Approximation of Derivative

As mentioned in Section 4.4.3, numerical approximations for the derivatives of

some function, f(x), can be obtained from the Lagrange polynomials. A Laguerre

polynomial is a unique polynomial of degree k that can be interpolated from

a set distinct points, (x1, f(x1)), · · · , (xk+1, f(xk+1)). The Laguerre polynomial

can be differentiated up to the kth order derivative, and these derivatives describe

approximation for the derivatives of the function f(x). Therefore, if we use more

distinct points, we can obtain a Laguerre polynomial with a higher degree, and

hence the numerical derivatives will be more accurate.

The quadrapole approximation estimates the finite source magnification up

to the second order derivative along the x and v axes, each requiring 3 points.

The centre point of the two second derivatives can be shared between these two

derivatives, so the quadrapole approximation requires no less than 5 points.

The hexadecapole approximation estimates the finite source magnification up

to the fourth order derivative. The fourth derivative along the x and v axes

require 5 points each, while 9 points are required for the ‘cross derivative’ Auuvv.

Therefore, the hexadecapole approximation requires no less than 13 points.

Quadrapole Approximation

In the quadrapole approximation, the second derivative A2 can be estimated

using the following numerical approximations,

∂2A(u, v)

∂u2
≈ A (u+ ρ, v) − 2A (u, v) + A (u− ρ, v)

ρ2
,

∂2A(u, v)

∂v2
≈ A (u, v + ρ) − 2A (u, v) + A (u, v − ρ)

ρ2
.

Therefore, Equation D.11 can be expressed as,

A2ρ
2 = ρ2

A20 + A22

2

=
ρ2

2

[

1

2!

∂2A(u, v)

∂u2
+

1

2!

∂2A(u, v)

∂v2

]

=
ρ2

4

[

∂2A(u, v)

∂u2
+
∂2A(u, v)

∂v2

]
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A2ρ
2 ≈ ρ2

4

[

A (u+ ρ, v) − 2A (u, v) + A (u− ρ, v)

ρ2

+
A (u, v + ρ) − 2A (u, v) + A (u, v − ρ)

ρ2

]

≈ 1

4
[A (u+ ρ, v) + A (u− ρ, v) + A (u, v + ρ) + A (u, v − ρ)]

−A (u, v) .

If we define the term Ar,+, such that,

Ar,+ =
1

4

3
∑

j=0

A
(

u+ r cos
(

j
π

2

)

, v + r sin
(

j
π

2

))

− A0,

where 0 ≤ r ≤ ρ is the radial distance from the centre of the source disk, then

we can rewrite Equation D.26 as A2ρ
2 ≈ Ar,+.

Therefore, the magnification of a finite-source disk is approximated by,

Afinite ≈ A0 +
Aρ,+

2

(

1 − Γ
1

5

)

Hexadecapole Approximation

In the hexadecapole approximation, the fourth derivative A4 can be estimated

using the following numerical approximations,

∂4A(u, v)

∂u4
≈ 16

ρ4

[

A (u+ ρ, v) − 4A
(

u+
ρ

2
, v
)

+ 6A (u, v)

−4A
(

u− ρ

2
, v
)

+ A (u− ρ, v)
]

,

∂4A(u, v)

∂u2v2
≈ 16

ρ4

[

A
(

u+
ρ

2
, v +

ρ

2

)

+ A
(

u+
ρ

2
, v − ρ

2

)

+A
(

u− ρ

2
, v +

ρ

2

)

+ A
(

u− ρ

2
, v − ρ

2

)

−2A
(

u+
ρ

2
, v
)

− 2A
(

u− ρ

2
, v
)

−2A
(

u, v +
ρ

2

)

− 2A
(

u, v − ρ

2

)

+ 4A (u, v)
]

,

∂4A(u, v)

∂v4
≈ 16

ρ4

[

A (u, v + ρ) − 4A
(

u, v +
ρ

2

)

+ 6A (u, v)

−4A
(

u, v − ρ

2

)

+ A (u, v − ρ)
]

.
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Therefore, Equation D.12 can be expressed as,

A4ρ
4 = ρ4

3A40 + A42 + 3A44

8

= ρ4
3
4!

∂4A
∂u4 + 1

2!2!
∂4A

∂u2∂v2
+ 3

4!
∂4A
∂v4

8

A4ρ
4 ≈ 2A ρ√

2
,× + Aρ,+ − 8A ρ

2
,+,

where,

Ar,× =
1

4

3
∑

j=0

A
(

u+ r cos
(π

4
+ j

π

2

)

, v + r sin
(π

4
+ j

π

2

))

−A0.

Since the fourth derivative requires five points along the u and v axes, the

second derivatives can be also be estimated using the same five points for each

axis. This gives a much better approximation for the second derivative than the

quadrapole approximation which estimates the second derivative using only 3

points along each axis. Therefore, the second derivative term A2 can be approx-

imated as,

∂2A(u, v)

∂u2
≈ −1

3ρ2

[

A (u+ ρ, v) − 16A
(

u+
ρ

2
, v
)

+ 30A (u, v)

−16A
(

u− ρ

2
, v
)

+ A (u− ρ, v)
]

,

∂2A(u, v)

∂v2
≈ −1

3ρ2

[

A (u, v + ρ) − 16A
(

u, v +
ρ

2

)

+ 30A (u, v)

−16A
(

u, v − ρ

2

)

+ A (u, v − ρ)
]

.

Using these terms, Equation D.11 can be expressed as,

A2ρ
2 = ρ2

A20 + A22

2

=
ρ2

2

[

1

2!

∂2A(u, v)

∂u2
+

1

2!

∂2A(u, v)

∂v2

]

=
ρ2

4

[

∂2A(u, v)

∂u2
+
∂2A(u, v)

∂v2

]

=
ρ2

4

[−1

3ρ2

[

A (u+ ρ, v) − 16A
(

u+
ρ

2
, v
)

+ 30A (u, v)

−16A
(

u− ρ

2
, v
)

+ A (u− ρ, v)
]

+
−1

3ρ2

[

A (u, v + ρ) − 16A
(

u, v +
ρ

2

)

+ 30A (u, v)

−16A
(

u, v − ρ

2

)

+ A (u, v − ρ)
]

]

A2ρ
2 ≈ 1

3

[

16A ρ

2
,+ − Aρ,+

]

.
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Therefore, the hexadecapole approximation approximates the magnification

of a finite-source disk as,

Afinite ≈ A0 +
16A ρ

2
,+ −Aρ,+

6

(

1 − Γ
1

5

)

+
2A ρ√

2
,× + Aρ,+ − 8A ρ

2
,+

3

(

1 − Γ
11

35

)

.
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Appendix E

Laguerre and Jenkins-Traub

Algorithms

The lens equation for a multiple lens system described in Chapter 2 cannot be

solved analytically. Instead, these polynomials need to be solved numerically, via

polynomial root finder algorithms. The two particular algorithms of interest in

this thesis were the Jenkins-Traub algorithm and the Laguerre algorithm. These

algorithms were briefly described in Chapter 5.

This appendix aims to discuss the details of the structure and processes of

these two algorithms, including the equations these algorithms use to find these

roots. This appendix does not cover the proof of convergence nor the rate of

convergence for these algorithms, but this can be found in Jenkins and Traub

(1970) and Wilkinson (1965) for the Jenkins-Traub and Laguerre algorithms re-

spectively.

E.1 Laguerre Algorithm

The polynomial P (z) = 0 can be represented in two ways: either as a sum of the

coefficients ck, or as a product of its roots ζi,

0 =
n
∑

k=0

ckz
k, (E.1)

0 = cn

n
∏

i=1

(z − ζi), (E.2)

where C = cn is the coefficient of zn in this polynomial. From Equation E.2,
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it can be shown that the first and second derivatives can be given by,

P ′(z)

P (z)
= d

dz
ln|P (z)| =

n
∑

i=1

1

z − ζi
, (E.3)

P ′(z)2 − P ′′(z)P (z)

P (z)2
= d2

dz2
ln|P (z)| =

n
∑

i=1

1

(z − ζi)2
. (E.4)

If we assume that there is one root ζ1 at a close distance a from the initial

value z0, and the roots ζ1, · · · , ζn are all at a distance b from this value, Equations

E.3 and E.4 can respectively be expressed as,

P ′(z)

P (z)
= G =

1

a
+
n− 1

b
, (E.5)

P ′(z)2 − P ′′(z)P (z)

P (z)2
= H =

1

a2
+
n− 1

b2
. (E.6)

Equations E.5 and E.6 can then be combined, eliminating b to give a value

for a as,

a =
n

G±
√

(n− 1)(nH −G2)
. (E.7)

In order to prevent the algorithm overshooting the root, the sign of the square

root is chosen to give a larger denominator, giving a smaller value for a. Once

a is calculated, the next starting position z is calculated as z − a → z. This

process repeats until a is smaller than the machine precision or P (z) is smaller

than the acceptable numerical error, implying that z ≈ ζ1 to within its numerical

precision. Then the algorithm repeats the process to find the next root, ζ2. The

limit cycle breaking technique is implemented in zroots to break non-converging

infinite loops of z values, in the rare cases when these loops form. zroots also uses

deflation and polishing to improve the accuracy and efficiency of the algorithm.

Deflation, polishing and limit cycle breaking are discussed in Chapter 5.

E.2 Jenkins-Traub Algorithm

The Jenkins-Traub algorithm is a three staged algorithm developed Jenkins &

Traub (1970). This algorithm is described here as it is appears in the FORTRAN
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subroutine CPOLY (Jenkins & Traub 1972). In a similar style to Laguerre’s

Method, the roots of a polynomial are found in roughly increasing order to reduce

the numerical errors caused by deflating the polynomial by a large root. This

algorithm also employs deflation and breaking limit cycles.

The Jenkins-Traub algorithm works by generating a sequence of polynomials

H(λ)(z) such that H(λ)(z) → P1(z) as λ → ∞ where Pi(z) are the Laguerre

factors, or the co-factors of the roots ζi, given by,

Pi(z) =
P (z)

z − ζi
. (E.8)

From Equation E.3, it can be shown that,

P ′(z) =

k
∑

i=1

miPi(z), (E.9)

where mi is the multiplicity of the ith root and k is number of roots. We

can then generate a sequence of polynomials H(λ)(z) with H(0)(z) = P ′(z), such

that,

H(λ)(z) =

k
∑

i=1

d
(λ)
i Pi(z), (E.10)

where d
(0)
i = mi for i = 1, 2, ...k. We can then choose the sequence such that

d
(λ)
j /d

(λ)
1 → 0 as λ→ ∞. In this limit, Equation E.10 becomes,

lim
λ→∞

H(λ)(z) = P1(z) =
P (z)

z − ζ1
. (E.11)

Therefore, when λ is large, the value for the root ζi can be approximated from

H(λ)(z). For each value of λ, we can calculate the next polynomialH(λ+1)(z) using

the polynomials P (z) and H(λ)(z). All three stages in this algorithm calculates

H(λ+1)(z) using to the equation,

H̄(λ+1)(z) =
1

z − sλ

[

P (s)

H̄(λ)(sλ)
H̄(λ)(z) − P (z)

]

, (E.12)

where H̄(λ)(z) represents the normalised form of H(λ)(z) (i.e. the leading

coefficient set to 1). However, the value for sλ differs for each stage. The value
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for sλ represents the origin of this equation and shifting this value closer to the

root attempts to make H̄(λ)(z) converge faster to Pi(z).

The first stage of this algorithm is called the No Shift stage, which uses sλ = 0.

The second stage is called the Fixed Shift stage, in which the origin is shifted by

a fixed value sλ = s throughout this stage. The third and final stage is called the

Variable Shift stage, which calculates a new value for sλ using the polynomial

H(λ)(z), in attempt to move the origin closer to the root after each iteration.

E.2.1 Stage One: No shift

The polynomial H̄(λ+1)(z) is calculated by the equation,

H̄(λ+1)(z) =
1

z

[

P (0)

H̄(λ)(0)
H̄(λ)(z) − P (z)

]

. (E.13)

It can be shown that Equation E.13 is equivalent to,

H̄(λ+1)(z) =
k
∑

i=1

mi

ζλi
Pi(z), (E.14)

for λ = 0, ...,M − 1. Clearly, if ζ1 < ζi for i = 2, ..., k, then m1

mi

ζi
ζ1

→ 0 as

λ→ ∞. Although the sequence H(λ)(z) will eventually converge to Pi(z), it may

take many iterations until H̄(λ)(z) ≈ Pi(z) to within the numerical precision.

Therefore, stages two and three attempt to shift the origin closer to the root so

that ζi is relatively smaller, and H̄(λ)(z) converges faster to Pi(z).

Stage one is terminated and stage two is started after 5 iterations (i.e. M = 5),

as determined by numerical experience (Jenkins & Traub 1970). Although stage

one is not necessary from a theoretical perspective, it is useful for accentuating

the smaller roots.

E.2.2 Stage Two: Fixed shift

Stage two attempts to effectively shift the origin closer to the root by a fixed

value s, where |s| = β. β is given by the lower bound for the modulus of the

roots, which can be found from the coefficients cj of polynomial P (z),

y = |cN |xN + |cN−1|xN−1 + · · · + |c1|x− |c0|. (E.15)
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At x = 0, the value of polynomial given in Equation E.15 is y = −|c0| < 0.

However, for all x > 0, the first, second, and all higher derivatives are non-

negative, so in this range, the polynomial is monotonically increasing. Therefore,

the polynomial has only one positive root β, which can easily be found using the

Newton-Raphson iteration. A random phase is then assigned to β to give the

complex value s.

For λ = M,M + 1, · · · , L− 1 The polynomial H̄(λ+1)(z) is calculated by the

equation,

H̄(λ+1)(z) =
1

z − s

[

P (s)

H̄(λ)(s)
H̄(λ)(z) − P (z)

]

. (E.16)

It can be shown that the combination of Equations E.13 and E.16 is equivalent

to,

H̄(λ+1)(z) =

k
∑

i=1

mi

ζMi (ζi − s)λ−M
Pi(z). (E.17)

From Equation E.17, it can clearly be seen that the H̄(λ+1)(z) sequence will

quickly converge to the root ζ1 where |ζ1 − s| < |ζi − s| where s = 2, 3, ..k.

The main purpose of the second stage is to separate equimodular or almost

equimodular roots.

Stage two is terminated and stage three starts at iteration L, when so called

weak convergence is satisfied in two successive iterations,

|tL − tL−1| ≤
1

2
|tL−1| and |tL−1 − tL−2| ≤

1

2
|tL−2|. (E.18)

where,

tλ = s− P (z)

H̄(λ)(z)
. (E.19)

E.2.3 Stage Three: Variable Shift

Stage three attempts to effectively shift the origin closer to the root by sλ, a

value which changes at each iteration. For the first iteration in this stage, the
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shift is determined by,

sL = s− P (s)

H̄L(s)
. (E.20)

For each iteration the polynomial H̄(λ+1)(z) is calculated by the equation,

H̄(λ+1)(z) =
1

z − sλ

[

P (sλ)

H̄(λ)(sλ)
H̄(λ)(z) − P (z)

]

. (E.21)

It can be shown that, when combined with stages one and two, this equation

(above) is equivalent to,

H(λ+1)(z) =
k
∑

i=1

mi

ζMi (ζi − s)λ−M
∏

λ=L(ζi − sλ)
Pi(z). (E.22)

The shift is then determined by,

sλ+1 = sλ −
P (sλ)

H̄λ+1(sλ)
. (E.23)

Equation E.23 is identical to the Newton-Raphson iteration xi+1 = xi − f(x)
f ′(x) .

As the polynomial sequence Hλ(z) converges to P1(z), sλ+1 gets closer to the

root ζ1.

When P (sλ) is smaller than the acceptable numerical error, stage three is

terminated. The root is then stored and the polynomial is deflated, and the

algorithm starts finding the next root.
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Appendix F

Control Files

The control files define the parameter values for specific microlensing models,

which are used by mlens2 to calculate the model lightcurve and χ2 value. Each

control file is written as a plain text file and has the file extension .ctl. Each con-

trol file begins with the line #CTLFILEV3 and is followed by lines specifying

the values for the parameters, usually grouped into six sections,

• #CTLFILEV3: Indicates the beginning of the control file. The lines that

follow usually contain non-model parameters, such as the event name and

the celestial coordinates for the lens.

• PARAMETERS: This section contains the values for the model param-

eters.

• INTERACTIVE: This section contains the parameters for producing the

critical curves, caustic curves and the magnification maps.

• LIGHTCURVE: This section contains the parameters for producing the

lightcurves, including the number of source positions that make up the

lightcurve.

• PASSBANDS: This section contains the (linear) limb darkening param-

eters for each range of wavelength in the observational data.

• OBSERVATIONS: This section contains the list of the observational data

files and the passband required for each data file.
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The model parameters for the lens mass are defined in terms of mass ratios

relative to the primary lens, which by definition has a mass ratio of 1. The

mlens2 code internally converts these mass ratios into mass fractions (where the

sum of the mass fractions gives 1). The parameters for time are given in units of

Heliocentric Julian Days - 2450000.

The parameters for separations and lengths are expressed in units of Einstein

radii with total mass defined as 1, and all angles are in degrees. The lens sepa-

rations are measured from the primary lens, and these are angles measured from

the horizontal axis on lens plane. When these lenses are positioned on the lens

plane, the centre of mass is positioned at the origin, and the source parameters

are measured from this centre of mass. The impact parameter is defined so that

a positive impact parameter with an angle of zero and no orbital motion gives

a horizontal source track going from left to right above centre of mass, and a

negative impact parameter gives this horizontal source track going from left to

right below the centre of mass. Increasing the impact angle rotates this source

track in the anti-clockwise direction about the centre of mass, and decreasing the

impact angle rotates it in the clockwise direction.

Some examples of control files used to generate the lightcurves in Chapter 6

are shown here.
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#CTLFILEV3

EventName 09moa-319

LimbDarken true

MinVertexCount 50

LimbRings 5

MaxVertexSeparation 0.001

RightAscention 18 06 58.13

Declination -26 49 10.89

PerihelionTime 4834.80

EquinoxTime 4910.99

PARAMETERS

ImpactParameter -0.0062

ImpactAngle 330.4649

SourceRadius 0.001929

Companion1Angle 0

Companion1Distance 0.97537

Companion1Mass 3.95E-4

PeakTime 5006.99482

CrossingTime 16.57

StartTime 5004

EndTime 5009

INTERACTIVE

Viewport -0.12 0.12 -0.12 0.12

Steps 500

LIGHTCURVE

UseObservations true

UniformSteps 1000

UniformPassband 3

PASSBANDS

# V band

1 0.6630

# R band

2 0.5887

# I band

3 0.5090

# H band

4 0.3292

# Farm Cove, unfiltered

5 0.5413

# Auck, unfiltered

6 0.5490

OBSERVATIONS

phot_auck_mb09319_conv_norm 2

phot_bci_mb09310_conv_norm 3

phot_bcv_mb09310_conv_norm 1

phot_bron_mb09310_conv_norm

phot_cao_mb09310_conv_norm

phot_ctioi_mb09310_conv_norm 3

phot_danish_mb09310_conv_norm 3

phot_fco_mb09310_conv_norm 5

phot_ftn_mb09310_conv_norm

phot_fts_mb09310_conv_norm 2

phot_iac_mb09310_conv_norm 3

phot_loao_mb09310_conv_norm

phot_lt_mb09310_conv_norm 3

phot_moa_mb09310_conv_norm 2

phot_pal_mb09310_conv_norm 3

phot_sso_mb09310_conv_norm

phot_vlo_mb09310_conv_norm

phot_wc_mb09310_conv_norm

Figure F.1: Control file used to model MOA-2009-BLG-319 and used to generate the
lightcurves in Figures 6.1 and 6.3.
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#CTLFILEV3

EventName 06ob-109

MinVertexCount 50

LimbRings 5

LimbRingsSpaceRadius true

MaxVertexSeparation 0.001

RightAscention 17 52 34.51

Declination -30 05 16.0

PerihelionTime 3737.12

EquinoxTime 3815.27

PARAMETERS

ImpactParameter 0.003479

ImpactAngle 144.5555328

SourceRadius 0.0003120188531

Companion1Angle 180.0112307

Companion1Distance 0.6263753290

Companion1Mass 0.001358729084

Companion2Angle -13.49888565

Companion2Distance 1.04185

Companion2Orbit 0.00169 0.00181

Companion2OrbitPeriod 4901.960784

Companion2Mass 0.0005061020381

PeakTime 3831.0197

CrossingTime 127.300

StartTime 3820

EndTime 3840

ParallaxScale 0.3620

ParallaxAngle 156.3945597

INTERACTIVE

Viewport -0.06 0.17 -0.06 0.02

Steps 500

LIGHTCURVE

UseObservations true

UniformSteps 1000

UniformPassband 3

PASSBANDS

# V band

1 0.6630

# R band

2 0.5887

# I band

3 0.5090

# H band

4 0.3292

# Farm Cove, unfiltered

5 0.5413

# Auck, unfiltered

6 0.5490

OBSERVATIONS

06ob-109-auck 6

06ob-109-fcov 5

06ob-109-liv 2

06ob-109-mdm 3

06ob-109-mfun 3

06ob-109-moa 3

06ob-109-mtlem 3

06ob-109-ogle 3

06ob-109-tas 3

06ob-109-wise 2

Figure F.2: Control file used to model OGLE-2006-BLG-109 and used to generate the
lightcurves in Figures 6.4 and 6.6.
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#CTLFILEV3

EventName 06ob-109

MaxVertexSeparation 0.001

MinVertexCount 50

LimbRings 5

LimbRingsSpaceRadius true

RightAscention 17 52 34.51

Declination -30 05 16

PerihelionTime 3737.12

EquinoxTime 3815.27

PARAMETERS

ImpactParameter 0.003479 0.003514 3

ImpactAngle 144.5555328 144.6 3

SourceRadius 0.0003120188531 0.00038 3

ParallaxScale 0.362

ParallaxAngle 156.3945597

Companion1Angle 180.0112307

Companion1Distance 0.626375329

Companion1Mass 0.001358729084

Companion2Angle -13.49888565

Companion2Distance 1.04185

Companion2Orbit 0.00169 0.00181

Companion2OrbitPeriod 4901.960784

Companion2Mass 0.0005061020381

PeakTime 3831.0197 3831.03 3

CrossingTime 127.3 128 3

StartTime 3820

EndTime 3840

INTERACTIVE

Viewport -0.06 0.17 -0.06 0.032

Steps 500

LIGHTCURVE

UseObservations true

UniformSteps 1000

UniformPassband 3

PASSBANDS

# V band

1 0.6630

# R band

2 0.5887

# I band

3 0.5090

# H band

4 0.3292

# Farm Cove, unfiltered

5 0.5413

# Auck, unfiltered

6 0.5490

OBSERVATIONS

06ob-109-auck 6

06ob-109-fcov 5

06ob-109-liv 2

06ob-109-mdm 3

06ob-109-mfun 3

06ob-109-moa 3

06ob-109-mtlem 3

06ob-109-ogle 3

06ob-109-tas 3

06ob-109-wise 2

RESULTS

ImpactParameter ImpactAngle SourceRadius PeakTime CrossingTime ChiSquare

0.0034965 144.556 0.000346009 3831.02 127.3 1799.72

0.003479 144.556 0.000346009 3831.02 127.3 1842.91

0.003479 144.556 0.000346009 3831.02 127.65 1901.7

Figure F.3: Parameters used to do a small grid search to find a better model for OGLE-2006-
BLG-109. The results of the three models with the smallest χ2 value are also shown in this
file.
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#CTLFILEV3

EventName 06ob-109

MinVertexCount 50

LimbRings 5

LimbRingsSpaceRadius true

MaxVertexSeparation 0.001

RightAscention 17 52 34.51

Declination -30 05 16.0

PerihelionTime 3737.12

EquinoxTime 3815.27

PARAMETERS

ImpactParameter 0.0034965

ImpactAngle 144.556

SourceRadius 0.000346009

Companion1Angle 180.0112307

Companion1Distance 0.6263753290

Companion1Mass 0.001358729084

Companion2Angle -13.49888565

Companion2Distance 1.04185

Companion2Orbit 0.00169 0.00181

Companion2OrbitPeriod 4901.960784

Companion2Mass 0.0005061020381

PeakTime 3831.02

CrossingTime 127.3

StartTime 3820

EndTime 3840

ParallaxScale 0.3620

ParallaxAngle 156.3945597

INTERACTIVE

Viewport -0.06 0.17 -0.06 0.032

Steps 500

LIGHTCURVE

UseObservations true

UniformSteps 1000

UniformPassband 3

PASSBANDS

# V band

1 0.6630

# R band

2 0.5887

# I band

3 0.5090

# H band

4 0.3292

# Farm Cove, unfiltered

5 0.5413

# Auck, unfiltered

6 0.5490

OBSERVATIONS

06ob-109-auck 6

06ob-109-fcov 5

06ob-109-liv 2

06ob-109-mdm 3

06ob-109-mfun 3

06ob-109-moa 3

06ob-109-mtlem 3

06ob-109-ogle 3

06ob-109-tas 3

06ob-109-wise 2

Figure F.4: Control file describing a better model for OGLE-2006-BLG-109 and used to
generate the lightcurves in Figures 6.7 and 6.8.
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Wyrzykowski,  L., The OGLE Collaboration, Kains, N., Snodgrass, C., Steele,

181



I. A., The RoboNet Collaboration, Alsubai, K. A., Bozza, V., Browne, P.,

Burgdorf, M. J., Calchi Novati, S., Dodds, P., Dreizler, S., Finet, F., Gerner,

T., Hardis, S., Harpsøe, K., Hinse, T. C., Kerins, E., Mancini, L., Mathiasen,

M., Penny, M. T., Proft, S., Rahvar, S., Ricci, D., Scarpetta, G., Schäfer, S.,
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183
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J. P., Fouqué, P., Albrow, M., Menzies, J., Cassan, A., and Dominis-Prester,

192



D. (2009). RoboNet-II: Follow-up observations of microlensing events with a

robotic network of telescopes. Astronomische Nachrichten, 330:4.
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