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Abstract

Magritek, a company who specialise in NMR and MRI devices, required a
new backplane communication solution for transmission of data. Possible
options were evaluated and it was decided to move to the PXI Express in-
strumentation standard. As a first step of moving to this system, an FPGA
based PXI Express Peripheral Module was designed and constructed. In
order to produce this device, details on PXI Express boards and the sig-
nals required were researched, and schematics produced. These were then
passed onto the board designer who incorporated the design with other
design work at Magritek to produce a PXI Express Peripheral Module for
use as an NMR transceiver board. With the board designed, the FPGA
was configured to provide PXI Express functionality. This was designed to
allow PCI Express transfers at high data speeds using Direct Memory Ac-
cess (DMA). The PXI Express Peripheral board was then tested and found
to function correctly, providing Memory Write speeds of 228 MB/s and
Memory Read speeds of 162 MB/s. Also, to provide a test system for this
physical and FPGA design, backplanes were designed to test communica-
tion between PXI Express modules.
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Chapter 1

Introduction

In this chapter, the historical environment for the project is given. This de-
tails the relationship between computers and expansion buses, an overview
of instrumentation and lays out the motivation and reasons for the project.

1.1 Computers and Expansion buses

Computers are used in numerous areas of our lives for a number of dif-
ferent purposes. Each computer contains a Central Processing Unit (CPU)
which acts as the brains of the device for a number of applications. A stan-
dard computer makes use of a CPU to take care of computations, random
access memory (RAM) to save results of computations and data for cur-
rently used applications. Some basic Input/Output (I/O) to allow a user
to interact with a computer is also used (such as a keyboard, mouse and
screen). However, such a setup may not be enough for all applications as
the users’ needs may vary greatly. Some applications may require dedi-
cated hardware, for example a lot of desktop computers come equipped
with a video card to do the video processing. Less commonly, computers
may come equipped with sound cards to take care of the sound process-
ing. In the past, almost all computers did not have integrated video, sound
or even network controllers on board. Instead, a peripheral card was re-
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2 CHAPTER 1. INTRODUCTION

quired to provide this functionality. Recently, a lot of these commonly
required functions have been either integrated on the computer mother-
board, or even provided on the dye of the CPU. However for niche ap-
plications, such as an industrial test system, the functions and equipment
required would not be provided out of the box, and need to be provided
by an expansion card.

These peripheral devices require the ability to communicate with the
CPU, either to be informed of operations or for memory to be read or
written in either direction. The expansion bus is what takes care of this
communication between peripheral devices and the CPU. In fact, many
controllers embedded on the motherboard of a computer make use of the
expansion bus standard for communication, even if the particular form
factor is not used.

The first computer expansion bus, the S-100 bus or Altair bus, was part
of the Altair 8800 which is considered to be the very first personal com-
puter [1]. Here each board performed a particular function of the device.
There were separate CPU, memory, I/O and video boards which fitted
into a mainly passive backplane or motherboard.

The Altair and its variants were mainly hobbiest machines, although
some small businesses made use of them. The first successful home com-
puter, the IBM PC released in 1981 [2], used the Industry Standard Archi-
tecture (ISA) bus for expansion cards. This was the first concerted effort to
standardise the interface bus. Its bandwidth and functionality were some-
what limited but it paved the way for future designs which are still used
today.

ISA was later superseded by the Peripheral Communication Intercon-
nect (PCI) standard [3]. This brought about plug and play functionality
which meant no complex configuration was required to enable commu-
nication. Instead the host computer auto configures the system on start
up.

This ability to send information between devices on a computer sys-
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tem is an important aspect of the device. For specialist application test
and measurement systems, some manufacturers choose to design custom
solutions to have full control over the communication, whilst others de-
sign to standards to maintain interoperability with other devices.

Commonly, peripheral communication systems (such as PCI) use a
card edge connector, plugging into a socket on the motherboard, which
keeps the size small. Others use a socket-pin type connection which con-
sumes more space, but can give a more reliable connection.

1.2 Instrumentation

For most traditional PC applications which require an expansion card (such
as graphics processing), timing is not a major factor. Due to this, the ma-
jor PC peripheral interfaces PCI and PCI Express (PCIe) do not come with
clock and trigger signals. However, quality instrumentation equipment
does require this precise timing in order to get accurate measurements.
Thus for instrumentation applications, whether a standard or custom so-
lution, the backplane or motherboard will commonly come equipped with
clock and trigger lines. These keep devices synchronised and are used to
signal when particular events are to start or end.

1.3 Motivation of Project

1.3.1 Magritek

Magritek is a company based in Wellington, New Zealand which uses
technology developed at both Massey University and Victoria University
of Wellington. Magritek develops compact Nuclear Magnetic Resonance
(NMR) and Magnetic Resonance Imaging (MRI) devices for use in lab and
field environments. A lot of the equipment is modular where a NMR or
MRI system will make use of a number of different cards connected to the
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device. These cards may include RF transmitters, receivers etc. In order
for effective communication and data transfer between peripheral cards,
this requires a reasonable amount of bandwidth.

NMR is a physical phenomenon in which magnetic nuclei in a mag-
netic field absorb and re-emit electromagnetic radiation. Valuable infor-
mation about the structure of the sample is gathered from the interaction
between the magnetic moment of an atomic nucleus and an externally ap-
plied magnetic field. When an oscillating magnetic field is applied at a
specific frequency (the Larmor frequency), transitions between different
energy states (i.e. different orientations) occur. This is usually done by
placing a coil around the sample to irradiate it with radio waves at the
Larmor frequency. The nuclei in the sample absorbs these radio waves
and re-emits them at the Larmor frequency. This emission is the NMR sig-
nal which can be detected by the antenna. Only nuclei with a non-zero
magnetic moment - those with an odd number of protons or neutrons -
can undergo NMR.

Magritek presently makes use of their own custom backplane mech-
anism for the transfer of data between peripheral devices. However, it
has limited bandwidth of around 5M̃B/s which is not sufficient for more
advanced techniques such as multichannel MRI. Also, being a custom so-
lution gives the limitation that their devices are not inter-operable with
equipment manufactured by other companies. For these reasons, Magritek
is looking to move to a new system for data transport. The purpose of this
project was to develop some of the tools necessary to move in this direc-
tion.



Chapter 2

Background

In this chapter, the background of the project is described. This includes
the choice of the PXI Express (PXIe) system, a brief description of the de-
sign direction chosen and an overview of important topics of this project.
This includes details on the PXIe standard, FPGAs, high speed board de-
sign and the Linux environment.

2.1 Present Magritek system

In order to perform the data capture for NMR, data needs to be sent be-
tween the various components of the system. A typical piece of Magritek
NMR hardware consists of a chassis with add in cards which all perform
a particular task. An example device is shown in Figure 2.1. This includes
a DSP based host board which controls the applications on the device and
can possibly interface with a PC. A typical data transfer would be when
the host device sends a waveform file to the transmitter to output. Simi-
larly, the receiver could send data after collection to the host board. Thus a
transmission mechanism to perform these Memory Read, Memory Write
transfers as well as control tasks is a crucial part of the system. Details on
present backplane solution used by Magritek and the requirements for a
replacement system are given below.
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6 CHAPTER 2. BACKGROUND

Figure 2.1: An example of a Magritek Spectrometer - The Kea 2 [4]

2.1.1 Existing Backplane

Communication between boards is presently provided using Magritek’s
custom backplane solution. Communication between the devices is typ-
ically provided by using address and data pins of the Digital Signal Pro-
cessor (DSP). These get buffered and sent out along the backplane. This
allows the DSP device to read or write to external devices. The Peripheral
Modules of the Kea system meet a 3U form factor and are connected using
a standard 96 pin connector. This is connected with the backplane using
a socket-pin connection. For more sophisticated techniques such as multi
channel MRI, the system does not provide enough bandwidth. Also the
parallel format of data transfer meant the amount of expansion available
was limited.

2.1.2 Requirements for new backplane

With increased bandwidth and expansion being much desired aspects,
moving to a standard, well defined architecture was the approach cho-
sen. The advantage of moving to a standard is that the communication
system has already been designed so does not need to be developed from
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scratch. A form factor similar to their present system was desired so it
would not involve too much chassis redesign. Thus a format which used
pluggable expansion cards was required. The ability to send trigger and
clock signals along the backplane was also required. Magritek’s present
devices are portable, rugged and used out in the field so a solution which
provided these attributes was also desired. The intended architecture to
be built for was x86 or ARM thus a peripheral bus which was supported
by these architectures was required.

2.2 Choice of new Expansion Bus

The expansion bus industry was researched to find choices that fit the cri-
teria. Some standard solutions such as PCI and PCIe provided increased
bandwidth but did not give the desired form factor, or the trigger and
clock signals required for instrumentation. Thus instrumentation buses
were researched and evaluated. The choice was narrowed down to three
options.

2.2.1 Instrumentation buses

2.2.1.1 VMEbus eXtensions for Instrumentation (VXI)

VXI is an established open instrumentation standard which was adopted
by the IEEE in March 1993 (IEEE 1155). It implements the VMEbus stan-
dard for data transfer bus which provides 320 MB/s throughput [5]. How-
ever VXI modules are either 6U or 9U in size which is larger than desired
[6].

2.2.1.2 PCI Express eXtensions for Instrumentation (PXI Express or PXIe)

PXIe is an instrumentation standard which evolved from the older PXI
standard [7]. PXI used the older parallel PCI architecture for data trans-
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mission, whilst PXIe moved to the newer PCIe standard. Cards meet the
3U eurocard form factor which is similar to the present Magritek design.
The standard provides a plethora of high quality trigger and clock signals,
both differential and single-ended. The use of PCIe as the transmission
mechanism was somewhat future proof in terms of bandwidth availabil-
ity. Further revisions of the PCIe standard have successively increased
bandwidth where a maximum 250 MB/s is provided with revision 1.1 of
the specification [8] and is now at 1GB/s as of version 3.0 of the specifi-
cation [9]. It is a widely supported standard and is promoted by the PXI
Systems Alliance whose sponsor members include two major instrumen-
tation companies, Agilent Technologies and National Instruments.

2.2.1.3 LAN eXtensions for Instrumentation (LXI)

LXI is an instrumentation and data acquisition standard using the Ethernet
protocol to send data [10]. LXI is integrated with the PXIe standard where
PXIe devices can communicate as a part of a larger LXI system. However,
LXI is used more for distributed systems than standalone systems which
was not the direction of this project.

2.2.2 Evaluation of solutions

All the standards are supported by major vendors so would allow add-in
cards to be run across different devices. It was decided PXIe gave the best
combination of portability, features and transmission speed. Also, PXIe
devices are typically less cumbersome due to their 3U height rather than
VXI’s 6U height. As the data transport scheme of PXIe is essentially the
same as PCIe, this provides greater bandwidth than the VXI system.
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Peripheral SlotsHost Slot

1 2 3 4 5 6 7 8Host

System Timing 
Slot

Figure 2.2: The layout of a typical PXI Express chassis

2.3 PXI Express Overview

PXIe is an instrumentation standard which combines the PCIe serial trans-
mission protocol with a more robust form factor and the addition of clock
and trigger signals. An example PXIe chassis which houses these boards
and provides the mechanism for trigger and clock signals to be sent be-
tween devices is shown in Figure 2.2. Peripheral devices thus get installed
in this chassis and communicate through data being sent along the back-
plane. The backplane of this chassis distributes all the data, clock and
trigger signals to the installed modules. A diagram of the distribution of
these signals along an example backplane is given in Figure 2.3. Here,
slots 1 through 4 show PXIe slots whilst slots 5 through 8 show legacy PXI
slots.
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XJ4

XP1

XJ2

XJ3

Figure 2.4: The layout of a PXI Express System Module [11]

As can be seen in Figure 2.3, a PXIe system consists of PXIe System
Module (situated at the far left of the chassis) which communicates with
the other peripheral devices connected in the chassis. The layout of a PXIe
System Module and System Slot are shown in Figures 2.4 and 2.5.

Peripheral devices are added by plugging a Peripheral Module into a
Peripheral Slot or Hybrid slot on the chassis. The basic Peripheral Mod-
ule, Peripheral Slot and Hybrid Slot are shown in Figures 2.6 to 2.8 respec-
tively. Peripheral Slots only allow PXIe Peripheral Modules to connect
whilst Hybrid slots also allow legacy PXI boards to be connected. PXIe
systems commonly use Hybrid slots for the flexibility they provide.

Lastly, the other allowable PXIe device is for System Timing purposes.
The System Timing Slot is shown in Figure 2.9. The System Timing Board
controls the timing of the device. This includes the distribution of star
clock and trigger signals to the other peripheral modules.

2.4 Outcomes and goals for Project

PXIe is an excellent technology giving the best of high speed serial data
transfer along with high quality clocking and trigger resources. Although
it is an open standard its relatively niche use means that it is a rather un-
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XP4

XP3

XP2

XJ1

Figure 2.5: The layout of a PXI Express System Slot [11]

XJ4

XJ3

Figure 2.6: The layout of a PXI Express Peripheral Module [11]
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XP4

XP3

Figure 2.7: The layout of a PXI Express Peripheral Slot [11]
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XP4

XP3

P1

Figure 2.8: The layout of a PXI Express Hybrid Slot [11]

XP4

Optional—TP1

TP2

XP3

Figure 2.9: The layout of a PXI Express System Timing Slot [11]
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exploited market. As it stands, National Instruments and Agilent have
become the two major players where they dominate the market. Thus the
challenge was providing a device that met the standard at a relatively low
cost and ease of use. Presently, if custom PXIe solutions are required, Na-
tional Instruments provides the FPGA based FlexRIO board. This way the
PXIe functionality is provided out of box. However, these are relatively
high cost devices which do not offer much flexibility. If a high sensitivity
design is required this would need a custom board design which could
not be achieved using a breadboard or veroboard. Also, such a solution
would only be useful for one off designs.

Test and Measurement has traditionally been an area where propri-
etary formats have dominated. Due to the complexity of the equipment,
the high prices have just been attributed as a fact of the devices. However,
there is a definite opening in the market if PXIe devices could be offered
at a lower price point. An open source system could be provided with a
basic board design, FPGA design and device driver. The challenge was
making a high performance open system where no purchased IP had to
be used. Thus the major cost of the device would be the board construc-
tion and components used, rather than requiring any purchased IP from
outside of the company, producing devices at the lowest cost possible.

PXIe devices include a system controller card which includes the CPU,
RAM and I/O which the user makes use of to communicate with the de-
vice. Magritek’s present devices use a similar format where the user com-
municates with a host board which in turn communicates with the periph-
eral devices. The move to PXIe would allow for an ARM processor based
PXIe System Module to be designed in the future. ARM processors are
low cost, low power devices for which PCIe solutions are available [12].

A PXI Chassis complete with a PXIe System Module was required to
communicate with peripheral devices. For this, a National Instruments
(NI) PXIe-1062Q chassis fitted with a NI PXIe-8101 Embedded Controller
card was sourced. The PXIe-1602Q chassis is shown in Figure 2.10. The
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Figure 2.10: National Instruments NI PXIe-1062Q Chassis [13]

connectors on the backplane indicate this chassis came equipped with slots
for two Peripheral Modules and a System Timing Board. It also had slots
for older, legacy PXI cards. However, these were not the direction of the
project and were largely ignored.

The move to this open PXIe standard involves a number of steps in-
cluding the development of a PXIe chassis, controller card and Peripheral
Module. The first step in moving to this system was producing a PXIe
Peripheral Module for NMR use which is detailed below.

2.4.1 PXI Express Peripheral Module

For this project, the design and implementation of a PXIe Peripheral Mod-
ule was focussed on. The Peripheral Module would operate as a NMR



2.4. OUTCOMES AND GOALS FOR PROJECT 17

transceiver. The device was based off a present Magritek device which
makes use of the custom backplane. The device were adapted to meet the
PXIe standard as well as adding improved Digital to Analog Converters
(DACs), Analog to Digital Converters (ADCs) and other features.

As well as developing the physical PXIe Peripheral Module, the PXIe
communication on board had to be implemented. The base PCIe function-
ality can be provided using a dedicated IC [14]. In this case, the required
PCIe signals get connected directly to the IC which takes care of the PCIe
link. However, this would then have to be interfaced with the rest of the
logic on board which would complicate the board design.

The PXIe configuration can also be performed by an FPGA. FPGAs
(which will be covered in further detail later) allow dedicated logic blocks
to be implemented. No FPGA vendor provide complete PXIe solutions,
however Xilinx and Altera both provide PCIe solutions for their devices
[15, 16]. These have the potential to reduce development time and simplify
the board design as few external ICs would be required, and everything
could be configured inside the FPGA.

Implementing the PXIe protocol on an FPGA was decided as the best
design option. It simplified the board design and made development of
the PXIe system simpler. Magritek’s present devices all make use of FPGA
designs so this would allow the fastest development time for a PXIe Pe-
ripheral Module for NMR applications.

The physical device along with the FGPA design was intended to meet
to following requirements.

• Used a Xilinx FPGA (specifically the Spartan-6) as the controller of
the board.

• An open PCIe FPGA design system where no purchased or node-
locked IP was used and all source code was available.

• Open source device driver and application used.
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2.4.2 PXI Express System Timing Board

A PXIe System Timing Board was also designed, which would control the
timing, clocks and triggers to the peripheral devices. It also met the re-
quirements given for the Peripheral Module.

2.4.3 Backplanes to test devices

Along with the boards, test backplanes were designed to test designed
modules along with FPGA based PCIe development kits. These would
allow communication between a host and peripheral system to test that
the devices were working as required. The test backplanes were designed
to test PXIe modules as well as standard PCIe boards.

2.5 PXI Express description

As explained earlier, PXIe can be seen as the instrumentation extension of
the PCIe serial transmission protocol. Thus data is sent in the same way as
a PCIe transaction. The description of the standard has been broken into a
description of the PCIe data transmission system and the instrumentation
signals which make up the PXIe standard.

2.5.1 PCI Express

For more than a decade in computer technology, the preferred computer
bus for hardware devices was Peripheral Component Interconnect, most
commonly known as PCI. This became the standard for expansion cards in
the mid 1990s where it provided much higher bandwidth than the older
ISA standard of the time [17]. PCI is a parallel architecture which has a
max transfer rate of 133 MB/s, 266 MB/s or 533 MB/s depending on the
frequency and bus width [3]. Peripheral devices are connected to this PCI
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bus which can host up to five devices reliably. Whilst this provided ade-
quate bandwidth up until the late 1990s, the turn of the decade brought
about the requirement for dedicated high bandwidth which PCI could not
provide. This was due to number of reasons, one being the limitations
inherent in the parallel format. This meant that frequencies could not be
pushed much higher than that which were presently used without mas-
sive changes to board design. Also, the shared bus meant that dedicated
bandwidth was not provided. The maximum bus transfer rate was shared
between all devices.

To get around these problems in PCI, a new transmission system was
devised in PCIe which was released in 2004 [8]. Here, devices are con-
nected through a high speed serial connection. Each device has a connec-
tion to the central controller, known as the Root Complex. This is pro-
vided either directly or through a bridge. They do not share data and ad-
dress lines as seen in PCI, so there are no limitations on concurrent access
across multiple Endpoints. The serial scheme uses dedicated upstream
and downstream links which use differential signalling. Data can be sent
and received simultaneously, known as full-duplex transmission.

PCIe is a packet based technology where all information is sent across
the same link. There is no need for separate address, data, control, inter-
rupt or clock signals resulting in much more efficient use of ports. Also,
the design of PCIe allows for more bandwidth when required. A PCIe
link is built around couples of differential serial point-to-point connections
known as lanes. More lanes can be provided to give more bandwidth
when the application requires it. Revision 1.1 of the specification states
that along one lane, 250 MB/s is provided [8]. If only one of these lanes is
used, this would give a x1 PCIe link. A graphics card usually makes use
of a 16 lane (or x16) link which gives 4GB/s bandwidth in the 1.1 speci-
fication. This scalability allows a variety of devices, each with their own
bandwidth demands, to be used over a PCIe link. For instance, a device
may not require extremely high data speeds, but does need the dedicated
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bidirectional bandwidth which PCIe provides. For such a device, a x1 link
would be adequate.

Though PCIe was designed to succeed PCI, it was also designed so
the two maintained compatibility. As of 2012, PCI devices are still being
produced. Some devices do not require the increased bandwidth PCIe
provides and have opted to stay with the older PCI system. The two re-
main interoperable through software compatibility. PCI was the industry
standard for around ten years and brought with it a lot of strengths. PCIe
performs configuration in a similar method to PCI. They both make use
of the PCI Configuration Space. This is the underlying way that devices
get automatically configured when inserted into the bus. This is known as
plug-and-play. However it is implemented in such a way that compatible
devices can also make use of the more advanced PCIe features.

2.5.2 Instrumentation

Where a PXIe design differs from a standard PCIe design is that it is an
instrumentation module which comes in a much different form factor and
includes additional signals. PXIe uses the form factor specified by Com-
pactPCI Express (cPCIe) standard and provides additional instrumenta-
tion signals. The cPCIe form factor uses metric spacing and gives a more
robust mechanical form factor than desktop PCI.

The connector design defined in the standard specifications of PCI and
PCIe is fit for use in standard desktop computers. However, such a design
does not meet the requirements for industrial applications. Due to this,
the form factor CompactPCI was developed as an extension to PCI and the
specifications released in 1997 [18]. The advantages over conventional PCI
include a vertical card orientation for improved cooling, improved shock
and vibration characteristics, high performance, and robust connectors.

When used for instrumentation applications, the connectivity provided
by CompactPCI still had some limitations. Whilst the CompactPCI form
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factor is a lot more rigorous than PCI, a lot of measurement and automa-
tion systems require precise timing which CompactPCI cannot provide.
For this reason, the PCI eXtensions for Instrumentation (PXI) standard was
developed and released, also in 1997. This format takes the advantages of
the CompactPCI form factor and provides timing, synchronization and
triggers to be sent along the backplane [19].

With the development of PCIe, the benefits of the new technology were
desired in a more robust form factor. The cPCIe specification was released
on June 27, 2005 [20] which was soon followed by the PXIe (PXIe) standard
[11]. PXIe also improves on the clocking and triggers provided in the orig-
inal PXI standard by providing higher performance differential clocking
and trigger signals.

PXI and PXIe provide various clocking and triggering signals to the
system for use in instrumentation applications. These devices usually in-
clude a central System Timing card which controls length matched (or star)
trigger and clock signals to the other peripheral cards where this is re-
quired.

As well as the form factor, these described systems also differ from a
traditional PC as the CPU and memory are not found on the motherboard.
Instead, cPCI, cPCIe, PXI and PXIe all include a System Card which houses
the CPU, memory and hard drive for the system. This card also drives
the clock source to the peripheral cards for their PCIe interconnect. Thus
the backplane in these systems is much more passive than a standard PC
motherboard.

2.6 PCI Express Architecture

The system architecture can be explained using a three layer abstraction
model which is shown in Figure 2.11. The three layers which build a PCIe
transaction are the Transaction Layer, the Data Link Layer and the Physical
Layer. The serial architecture is packet based where each layer deals with
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Figure 2.11: The three-layer abstraction of the PCI Express protocol

a different level of the packet, like a typical network stack. These layers
become encapsulated in one another which is shown in Figure 2.12. These
layers and their interactions are detailed below.

2.6.1 Transaction Layer

The top layer of the PCIe protocol is the Transaction Layer. It receives re-
quests or data packets from the device core and serves as the starting point
for turning these into PCIe transactions. The Transaction Layer (TL) does
this by creating a Transaction Layer Packet (TLP) as shown in Figure 2.12.
This comprises of a header which outlines the details of the packet, a data
payload and an optional end-to-end cyclic redundancy check (CRC) which
is used to test the integrity of the TLP. As well as starting the process for
PCIe transactions on the transmission side, it also provides the reverse
process on the receiving side where it passes the data on to the device core
in the correct format.
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Figure 2.12: The encapsulated design of the PCI Express packet structure

For example say the core of some device A decides it wants to read
the memory of device B. The Transaction Layer turns this information into
a Memory Read Request and sends this packet onto the Data Link Layer.
Later, the Transaction Layer of device A receives a completion packet from
device B. This is passed up from the receive side of Data Link Layer which
the Transaction Layer then decodes and passes this data on to the device
A core.

2.6.2 Data Link Layer

The middle layer of the PCIe protocol is the Data Link Layer (DLL). The
function of the DLL is to keep the link performing well and provide er-
ror detection and correction. After packets are created in the Transaction
Layer, they get passed along to the DLL which adds a sequence num-
ber and LCRC error checker. This then gives a Data Link Layer Packet
(DLLP). Thus, when packets get received, the Data Link Layer checks their
integrity by verifying the CRC. The sequence number is also checked to
ensure the packets have arrived in the correct order.

As well as further encapsulating TLPs, the DLL also generates its own
packets to perform particular tasks it is responsible for. These tasks per-
formed in the DLL include flow control, power management and ensuring
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reliable delivery of TLPs between Endpoints via acknowledgements.

2.6.3 Physical Layer

The Physical Layer provides the digital and analogue circuitry necessary
to configure and maintain the link [17]. The Physical Layer comprises
of two different sub-blocks: the Logical and the Electrical sub-blocks as
shown in Figure 2.13. These are detailed below.

2.6.3.1 Logical Sub-Block

The transmit function of the logical sub-block provides four important
processes: data scrambling, 8-bit/10-bit encoding, packet framing and se-
rialisation. The receive function is to provide the reverse processes.

Data Scrambling Data scrambling is used to reduce the possibility of
electrical resonance on the link. Resonance is usually caused by repeated
patterns or bit sequences. Scrambling breaks up these repeated patterns
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Figure 2.14: PCI Express Data Scrambler

meaning no single frequency component is transmitted for a long period
of time. This spreads the frequency spectrum resulting in a ’whitening’
of the bit stream (known as spread-spectrum). The scrambling is done by
performing an XOR operation on the data with a pseudo-random num-
ber generator, implemented using a Linear Feedback Shift Register (LFSR).
On the receive side this data is then descrambled using another LFSR. Syn-
chronisation between LFSRs so that the same data is received on both sides
of link is performed on start up. This scrambler is shown in Figure 2.14.

8b/10b Encoding Encoding is also applied to the data in the logical sub-
block. This is used to embed the clock cycle into the data stream which
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eliminates the need for an external clock signal to recover the data. Due
to this embedded clocking, the same stringent routing required in PCI is
no longer necessary. In a parallel system such as PCI, there is a strict re-
quirement that all signals must arrive at the same time or a mismatch will
occur. To meet this requirement, signal lines are snaked across the board
to keep the track lengths the same meaning signals reach the destination at
the same time. The problem becomes exacerbated at higher frequencies,
where very small differences in track lengths can correspond to signals
being one or two bits out of phase with one another. It is for this reason
that PCI cannot be pushed much further than 33 MHz it operates at. With
the serial, embedded clock system of PCIe, the same timing problems are
not apparent which allows much higher frequencies to be used. It also
improves board routing, as signals do not have to be snaked which saves
board space and simplifies the routing process.

The encoding also provides DC balance on the data line as it keeps the
number of 1s and 0s as equal as possible. Removing the DC component
prevents capacitance along the lane from being over charged. This means
the ability to change from one logic level to another is not hindered which
therefore reduces inter-bit interference.

In the PCIe 1.1 specification the encoding is performed using 8b/10b
encoding where every 8 bits of data was encoded to a 10 bit data stream.
This forces a minimum number of bit-level transitions within a particular
signal. The 8-bit/10-bit encoding format allows at most five bits of the
same polarity to be transmitted before a bit transition must occur. This
gives sufficient 0-to-1 and 1-to-0 transition density so that the clock signal
can be recovered on the receive device using a phase-locked loop (PLL).
It is performed by breaking a byte up in to a five-bit block and a three-bit
block which get encoded to a six-bit block and four-bit block respectively
using table lookups. The encoding, whilst adding a 25% overhead to the
transmission, is worth it for the benefits gained from embedded clocking.
A description of the 8b/10b encoding scheme is given in Figure 2.15. The
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Figure 2.15: 8b/10b Encoding

reverse of this process is applied on the receive side to decode the original
data. Encoding is used in all versions of the PCIe protocol. A similar
process, but with less overhead, is used in PCIe 3.0 which uses 128b/130b
encoding [9].

2.6.3.2 Electrical Sub-Block

The electrical sub-block functions as the delivery mechanism along the
physical link. On the transmit side this consists of converting the serial
bit stream to electrical signals to send on along the link. The receive side
detects this electrical signalling and recreates the bitstream.

One of the major limitations of PCI is its use of single ended signalling
where all signals are referenced to ground. Noisy ground planes can effect
the signal integrity. At high frequencies the noise generated increases as
do the attenuation effects, thus PCIe employs a different type of signalling.
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The transmission scheme is known as high-speed Low-Voltage Differen-
tial Signalling (LVDS). This is where the signal is representing by the dif-
ference between two signals (a differential pair). The difference between
single ended signalling and differential signalling is shown in Figure 2.16.
A PCIe differential pair consists of two signals, D+ and D-. A logical one
is sent out by driving the D+ lane high and the D- lane low and a logical
zero is signalled by driving the D+ signal low and the D- signal high. In
this way, no ground reference is required which provides greater signal
integrity and noise immunity.

The high frequency differential signals also make use of a balanced
transmission line. This is employed in the PCIe LVDS transmission scheme.
The characteristic impedance of a link is 100 Ω. Balancing the transmission
lines helps the rejection of external noise in the circuit and minimise reflec-
tions along the link. This is matched to the transmitter and receiver.

To prevent any DC offset voltage appearing on these differential lines,
PCIe requires a decoupling capacitor to be used on the transmit side of the
differential pair. The decoupling is provided using a 75 to 200 nF capac-
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itor either on the PCIe device itself or on the motherboard. This greatly
simplifies the buffer design for PCIe devices as they do not receive signals
which have a large DC offset.

In the PCIe Revision 1.1 specification, the bitrate of transmission is
2.5Gb/s. To meet requirements this clock needs to be accurate to 300 ppm
jitter about its centre frequency [8]. This clock is usually derived from
a 100 MHz clock signal distributed along the system board which is then
multiplied to 2.5GHz by way of a PLL. This 2.5GHz clock does create some
EMI radiated noise however, and so the option of Spread spectrum clock-
ing (SSC) is given. This prevents a noise spike at 2.5GHz by spreading
over a small frequency range about 2.5GHz by way of a small 0% to -0.5%
modulation using a modulation rate between 30KHz and 33KHz.

As PCIe operates at very high frequencies, the period of each bit is
very small. Thus the capacitive effects on the link are very apparent. This
can cause inter-symbol interference (ISI) where a change in the polarity of
the bit can be effected by the previous bit(s). In order to overcome this, a
method known as de-emphasis is used. As detailed earlier, the number of
consecutive bits allowed is 5. Say for example that five logical 0s are sent
across the link, followed by a 1 and then another 0. Because of capacitance
on the link, transition to the 1 may not happen quickly enough to register
the logical 1 occurred before the next 0. The use of de-emphasis means that
every new bit (i.e. one that was different from the one that came before it)
would be transmitted at a higher power than any subsequent bits of the
same polarity. For example, the signal transmitted five 0s in a row and
then a 1, the four 0s that follow the first one would be at reduced power
and then a boosted power 1 would be sent. This allows the system to dis-
charge faster and thus the 1 can be transmitted successfully, overcoming
any issues with ISI. An example of this de-emphasis system is shown in
Figure 2.17. As can be seen, on every bit transition from 0 to 1 or 1 to 0, a
boosted voltage is used. Then for any bit which is the same polarity as the
previous bit, the standard voltage level is used.
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2.6.4 Configuration of Devices

One major strength of PCI was its software mechanism which brought
plug-and-play, the ability to add a new component to a system without
requiring manual configuration. PCIe kept this system which makes use of
the PCI Configuration Space. The PCI Configuration Space, enumeration
and configuration are detailed below.

2.6.4.1 PCI Configuration Space

The PCI Configuration Space is how PCI and PCIe devices are initialised
and configured for use in the system. This is a space with standardised
registers which allows the auto configuration of Peripheral Modules through
the reading and writing of particular registers. The format of the PCI Con-
figuration Space depends on the type of device. The Configuration Space
Header for a PCI Type 0 (Non-Bridge) device is shown in Table 2.1.

The Device ID and Vendor ID are useful for the operating system to
detect the particular device installed. The Vendor ID is a particular code
which PIC-SIG members are provided to identify their devices. The De-
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Bits [31-24] Bits [23-16] Bits [15-8] Bits [7-0] Reg
Device ID Vendor ID 0x00

Status Command 0x04
Class Code Revision ID 0x08

BIST Header Type Latency Timer Cache Line Size 0x0C
Base Address Register 0 (BAR0) 0x10
Base Address Register 1 (BAR1) 0x14
Base Address Register 2 (BAR2) 0x18
Base Address Register 3 (BAR3) 0x1C
Base Address Register 4 (BAR4) 0x20
Base Address Register 5 (BAR5) 0x24

Cardbus CIS Pointer 0x28
Subsystem ID Subsystem Vendor ID 0x2C

Expansion ROM Base Address 0x30
Reserved Revision ID 0x34

Reserved 0x38
Max latency Min Grant Interrupt Cache Line Size 0x3C

Table 2.1: PCI Configuration Space Header for a PCI Type 0 (Non-Bridge)
Device
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vice ID is a description of the function of the device. These together give
the ”PCI ID” and together identify the device model. The Vendor ID is the
chip manufacturer and the Subsystem Vendor ID is the card manufacturer.

The Header Type describes the remaining 48 bytes of the header, de-
pending on the function of the device. Type 1 headers are for the Root
Complex, switches and bridges. PCIe Endpoints are Type 0.

The Base Address Registers (BARs) are used to inform the device of
its address mapping by writing configuration commands to the PCI con-
troller.

PCIe makes use of the standard PCI Configuration Space and extends
it to include special PCIe functions. The standard 256 bytes of PCI Config-
uration Space can be used by legacy operating systems which do not sup-
port the advanced features. All PCIe devices must implement the PCI 3.0
Compatible Configuration Space Header and the PCIe Capability struc-
ture inside this 256 bytes of configuration space. As well as the PCI Ex-
press Capability structure there are also further registers known as the PCI
Express Configuration Space, past the first 256 bytes. These are known as
the PCI Express Extended Capabilities. This must start immediately after
the 256 byte PCI Configuration Space. Here pointers are included to the
rest of the registers which include, serial number and power management
registers. This configuration space (including the 256 bytes PCI Configura-
tion Space) is 4KB in total. A diagram of this layout is given in Figure 2.18

Inside the PCI Express Capability structure are parameters that are nec-
essary for PCIe transactions, that are not required for standard PCI de-
vices. As with the standard PCI Configuration Space, the format of the
header depends on the type of device. For PCIe Endpoints, the format is
as shown in Table 2.2.

Thus when the root complex communicates with PCIe Endpoints rather
than simple PCI devices, it also reads these registers to enable commu-
nication with the devices. Important parameters such as the maximum
payload size are read to enable successful PCIe transmission which is not
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Figure 2.18: Layout of the PCI Express Configuration Space

Bits [31-24] Bits [23-16] Bits [15-8] Bits [7-0] Byte Offset
PCI Express Capabilities Register Next Cap Pointer PCI Express Cap ID 0x00

Device Capabilities 0x04
Device Status Device Control 0x08

Link Capabilities 0x1C
Link Status Link Control 0x10

Table 2.2: PCI Express Capability Structure of Endpoint Devices
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required for PCI. The maximum payload size must be communicated be-
tween all devices to ensure that an unacceptable packet size is not sent.
PCIe devices must ensure a maximum payload size of at least 128 bytes is
provided so packets up to this size can be guaranteed to be accepted.

2.6.4.2 PCI Enumeration and Configuration

The configuration of the devices is accomplished by making use of the
standard format of the PCI Configuration Space. During start up, the con-
figuration space of each device is attempted to be read to detect its pres-
ence.

Initially only Bus 0 in the Root Complex has a bus number assigned.
The header of each device is read to learn whether it exists or not. If it
does and finds a bridge, it will search further down, then after reaching
the bottom will traverse back up the tree. It performs a depth first search
of all devices. On startup the system is unaware of the devices installed
and thus the system looks as shown in Figure 2.19. There is no direct
method for the BIOS or OS to determine which slots have peripherals or
devices installed so the PCI buses need to be enumerated. In order to
enumerate the peripheral devices, first the Device and Vendor ID registers
are read. If nothing is read, the slots are taken as empty. The bus master
performs an abort and returns all 1s in binary (0xFFFFFFFF). This is an
invalid Vendor ID/Device ID combination so the device driver can resolve
that the device does not exist. When a successful read occurs, it then writes
to the Base Address Registers (BARs) and reads back to investigate the
memory locations on the Endpoint.

The lower bytes of a BAR indicate the type of memory device ini-
tialised. What these lower bytes indicate is shown in Table 2.3. For mem-
ory elements, BARs must be at least 128 bytes wide. BARs are 32 bits wide,
so for 64 bit memory address, this takes up two adjacent bars.

The Base Address Register configuration is performed as follows. Once
a device is discovered, the host writes 0xffffffff to the BAR and the BAR is
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Bits Description Values
For all PCI BARs

0 Region Type 0 = Memory
1 = I/0 (deprecated)

For Memory BARs
2-1 00 = any 32 bit

10 = any 64 bit
3 Prefetchable 0 = no

1 = yes
6-4 Reserved
31-7 Base Address 128-byte aligned

For For 1/0 BARs (Deprecated)
1 Reserved
31-2 Base Address 4-byte aligned

Table 2.3: Base Address Register Bit Assignments

then read back. For example, after 0xffffffff gets written to a BAR, say
0xfffff800 is read back. The zero bits give the assigned memory size where
16x16x8 = 2048 bytes. Once this memory space is known, the BIOS then
programs the memory mapped and I/O port addresses the function will
respond to into the BAR. These addresses are valid whilst the computer
stays on. All settings are lost once power is removed and on next boot
the procedure is repeated over again. This auto configuration on startup
is how plug and play in implemented which means the user does not
have to manually change settings to add hardware such as modifying DIP
switches.

The enhanced PCIe configuration access mechanism utilises a flat memory-
mapped structure. The mapping from memory address space to PCI Ex-
press Configuration Space address is defined in Table 2.4.
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Memory Address PCI Express Configuration Space
A[(20 + n - 1):20] Bus Number 1 ≤ n ≤ 8
A [19:15] Device Number
A [14:12] Function Number
A [11:8] Extended Register Numbers
A [7:2] Register Number
A [1:0] Along with size of access, used to generate Byte Enables

Table 2.4: Enhanced Configuration Address Mapping
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Figure 2.20: The standard Transaction Layer Packet structure

2.6.5 Packet Transactions

As described earlier, PCIe is a packet based technology. The encapsula-
tion follows that shown in Figure 2.12. TLPs and DLLPs follow a standard
packet structure where this and the transactions of these packets is de-
tailed below.

2.6.5.1 Transaction Layer Packet

The most common packet is one sourced from the Transaction Layer. The
header for such a packet meets the format shown in Figure 2.20. The
header can be three or four DWs long. The headers of 32 bit memory
packets are 3 DWs long whilst 64 bit memory packets are 4 DWs long.

The ’R’ bits are the reserved bits which are set to ’0’ and do not do any-
thing. ’Fmt’ indicates the format of the packet. ’Type’ indicates what type
of the transaction it is such as a memory write transaction. ’TC’ designates
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Fmt[1:0] Field TLP Format
00 3 DW header, no data
01 4 DW header, no data
10 3 DW header, with data
11 4 DW header, with data

Table 2.5: Fmt Field Values

the traffic class of the packet. ’TD’ describes the presence of a TLP di-
gest and ’EP’ indicates whether the TLP is poisoned. ’Attr’ (or attributes)
allows modification of the default handling of transactions such as the or-
dering and hardware coherency management.

From reading the ’Fmt’ bits, the type of packet is read. This can be
either a 3 DW header with no data (”00”), a 4 DW header with no data
(”01”), a 3 DW header with data (”10”) or a 4 DW header with data (”11”).
If for example a memory read transaction is occurring, no payload will be
appended as it will be expecting data in return. So the ’fmt’ bits will be
either ”x0” or ”x1” depending if 32 or 64 bit addressing is used.

The Fmt[1:0] field gives the size of the header and whether there is a
data payload or not. The list of Fmt[1:0] codes is given in Table 2.5. The
full list of Fmt and Type codes and their corresponding packet types are
shown in Table 2.6.

Transactions are known as either ”posted” or ”non-posted”. A posted
transaction does not require a response. For example, a Memory Write
request is considered a posted transaction as the data gets sent to a par-
ticular location, and no response is required to complete the transaction.
A non-posted transaction is one which requires a response. For example,
a Memory Read transaction is classified as a non-posted transaction as
is starts a transaction and requires a completion packet to complete this
transaction.

Although Memory Write requests do not require completion packets,
Configuration Writes do require a completion packet. This is simply a
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TLP Type Fmt[1:0]
Field

Type[4:0]
Field

Memory Read Request (MRd) 00 0 0000
01

Memory Read Request-Locked (MRdLk) 00 0 0001
01

Memory Write Request (MWr) 10 0 0000
11

I/O Read Request (IORd) 00 0 0010
I/O Write Request (IOWr) 10 0 0010
Configuration Read Type 0 (CfgRd0) 00 0 0100
Configuration Write Type 0 (CfgWr0) 10 0 0100
Configuration Read Type 1 (CfgRd1) 00 0 0101
Configuration Write Type 1 (CfgWr1) 10 0 0101
Message Request (Msg) 01 1 0rrr
Message Request with Data (MsgD) 11 1 0rrr
Completion without Data (Cpl) 00 0 1010
Completion with Data (CplD) 10 0 1010
Completion for Locked Memory Read without Data
(CplLk)

00 0 1011

Completion for Locked Memory Read (CplDLk) 10 0 1011

Table 2.6: Description of TLP Fmt and Type codes
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Figure 2.21: Memory Write Packet

completion with no data to confirm that it successfully completed as this
is paramount to the system working successfully. For example, when pro-
gramming the BARs, confirmation is needed that it has been written suc-
cessfully before a read is signalled.

An example of a posted Memory Write packet is shown in Figure 2.21.
As can be seen, the fmt and type fields correspond to a 32 bit memory
write request. This packet is of length 1, so contains one DW of data.
Here, the address to be sent to is 0x10000000. However, the lower two bits
of the address are reserved. Hence this is equivalent to a 30 bit hex value
of 0x40000000. DW4 of this packet is the data to be written to the target.
No completion is required to be returned for this transaction. The data
of PCIe packets is Big Endian. However, x86 processors are little endian.
Thus data of 0x12345678 is interpreted as 0x78563412 on an x86 processor.

An example of a non-posted Memory Read packet is shown in Fig-
ure 2.22. As can be seen, the fmt and type fields correspond to a memory
read request. The length of the packet is 1 so a completion with 1DW of
data is expected. Again the lower two address bits are reserved so the
address gets multiplied by four to get the actual address. This packet
then gets passed along to the target. The target then retrieves the data
and sends a completion packet back with the desired data. This packet is
shown in Figure 2.23.
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Figure 2.22: Memory Read Request Packet
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Figure 2.23: Memory Read Completion Packet

2.6.5.2 Data Link Layer Packet

Memory, IO, messages, configuration and completion packets are formed
in the Transaction Layer. However there are also packets formed in the
Data Link Layer which deal with the upkeep of the link. The standard for-
mat of a Data Link Layer sourced packet is shown in Figure 2.24. The Data
Link Layer packets comprise of four different types: positive acknowl-
edgement (Ack), negative acknowledgement (Nak), flow control (FC) and
power management (PM). The sequence number adds 2 bytes of overhead
where 12 bits comprises the actual sequence number and four bits are re-
served. The DLLP Type field indicates whether it is an Ack, Nak, Power
Management or Flow Control packet. These are shown in Table 2.7.

Ack or Nak packets are initiated to let the sending device know that a
Memory Write or Memory Read request was successful or not. If it was
not successful, the packet gets resent.
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DLLP Type (Fields Vary With DLLP Type)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RByte 0

Byte 4 16 Bit CRC

Figure 2.24: The standard Data Link Layer Packet structure

Encodings DLLP Type
0000 0000 Ack
0001 0000 Nak
0010 0000 PM Enter L1
0010 0001 PM Enter L23
0010 0011 PM Active State Request L1
0010 0100 PM Request Ack
0011 0000 Vendor Specific - Not used in normal operation
0100 0v2v1v0 InitFC1-P (v[2:0] specifies Virtual Channel)
0101 0v2v1v0 InitFC1-NP
0110 0v2v1v0 InitFC1-Cpl
1100 0v2v1v0 InitFC2-P
1101 0v2v1v0 InitFC2-NP
1110 0v2v1v0 InitFC2-Cpl
1000 0v2v1v0 UpdateFC-P
1001 0v2v1v0 UpdateFC-NP
1010 0v2v1v0 UpdateFC-Cpl
All other encodings Reserved

Table 2.7: Description of DLLP Type codes
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2.7 FPGA

Many digital designs are moving from using dedicated digital logic to
Field Programmable Gate Array (FPGA) based systems. FPGAs are a flex-
ible alternative to an application-specific integrated circuit (ASIC). A typ-
ical FPGA contains a number of logic blocks and reconfigurable intercon-
nects wiring the logic blocks together. When combined, these logic blocks
can perform complex tasks or be as simple as a basic logic gate. FPGAs
typically contain other elements such as memory. Almost all of the pe-
ripheral devices designed by Magritek make use of an FPGA to control the
system. The PXIe Peripheral Module was also designed using an FPGA as
a central element.

FPGA devices provide a lot of flexibility to the designer and allow for
rapid prototyping of digital designs. FPGAs are traditionally configured
using a Hardware Description Language (HDL) which describes the cir-
cuits operation and organisation. HDLs can furthermore be used to verify
operation via simulation. The two main forms of HDL are Very-High-
Speed Integrated Circuit HDL (VHDL) and Verilog. VHDL, based off
ADA, is verbose and employs strong typing, whereas Verilog is similar
to C in syntax but employs weak typing [21].

From the HDL files the compiler will map the operations on to the
available resources of the selected device in a form known as a netlist. The
netlist is then used by the compiler to produce a configuration file for the
FPGA. For instance, say the following description were written in VHDL.

flip_flop : process(clk, rst) begin

if (rst = ’1’) then

Q <= ’0’;

elsif rising_edge(clk) then

Q <= D;

end if;

end process;
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Figure 2.25: VHDL Synthesis to AND gate and D Flip Flop

The compiler will see this description and recognise it as a D flip flop
and implement it as so. Likewise, if the following description were writ-
ten.

test_circuit : process(clk, rst) begin

if (rst = ’1’) then

Q <= ’0’;

elsif rising_edge(clk) then

Q <= A and B;

end if;

end process;

The compiler will notice that the description consists of a synchronous
process (D flip flop) and combinational logic to set the input value (A AND
B). This will then be synthesised as shown in Figure 2.25.

Xilinx’s development tools recognise arithmetic operations and utilise
the on board multipliers in synthesis. For example:
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multiply : process(A, B) begin

Q <= A * B;

end process;

The synthesiser will process ’*’ symbol and interpret this as a multipli-
cation operation. It will then route the appropriate signals (A and B) to the
inputs of a multiplier block on the FPGA.

These design examples are easy to synthesise but do not exhibit the
true potential of FPGAs. Where FPGAs really become advantageous is in
complex designs. Such designs would be difficult to construct from dis-
crete components due to the high IC count. Such designs traditionally
utilised software on CPUs or DSPs due to the complexity. However FP-
GAs provide the ability to produce designs that would be more efficiently
performed in hardware, without the difficulty of connecting a large num-
ber of ICs together.

Most FPGA vendors also allow typical features to be implemented us-
ing a drag-and-drop method. So rather than writing each individual digi-
tal block in HDL, if one wanted a VGA controller for example, this could
just be dragged into the design with the inputs and outputs declared.
These are known as IP Blocks. Very complex features may be added this
way. Having access to such tools greatly increases the speed of design.
Blocks can either be added as soft IP or hard IP. Soft IP is where there is
no dedicated hardware for the function required but the general logic on
board is configured to provide the function. Hard IP makes use of hard-
ware on the FPGA which is dedicated for that particular application which
can provide performance benefits, but can also be wasteful if that function
is not required.

Designs are often simulated first before being programmed to the phys-
ical FPGA. Simulation is provided using a testbench which the FPGA de-
sign communicates with. The testbench provides any required inputs and
reads output signals in the design. The simulation software performs the
description provided by the HDL. This lets the designer verify the HDL
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and check the internal signals before configuring the FPGA.

The two major FPGA vendors are Xilinx and Altera. Both produce sim-
ilar products but each have their own bundled design suites. Xilinx also
includes its own ISim simulation software whilst Altera bundles 3rd party
simulation software with their product. The choice of FPGA is normally
down to preference, with Xilinx chosen for this design as Magritek have
an existing relationship with the company and their tools and software are
widely used within the business.

Using an HDL design to configure an FPGA requires a number of steps.
The process for Xilinx devices includes:

• Writing an HDL design (normally in VHDL or Verilog).

• Synthesising the design which comprises converting the written project
to an actual design.

• (Optional) Simulating the design in software to test the device works
as expected.

• Mapping the hardware design to the actual hardware on the FPGA.

• Producing a file ready to program to the FPGA where the I/O pins
of the FPGA are also specified.

• The design is programmed to the FPGA, typically using the Joint Test
Action Group (JTAG) protocol.

Xilinx compiles projects in a number of steps. It first synthesises the
design which consists of mapping all the descriptions written in software
to hardware components which the FPGA utilises. Once this is complete,
it finds the optimum way to place the design on the hardware given. For
Xilinx devices this is usually done in their provided ISE design suite.
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2.7.1 VHDL

As previously mentioned, there are a number of HDLs that can be used to
describe how the FPGA can be configured. The two main languages used
are VHDL and Verilog. While both languages are almost equally popular
for FPGA development, there is a trend for Verilog to be more favoured
in industry and the USA, whereas VHDL is preferred more commonly in
academia and outside of the USA.

The verboseness of VHDL adds to the rigour for its use in the design
of digital circuits. Project components must be described completely with
the signal type and width of each input and output defined. For example,
signal assignments must be made with the exact correct signal length else
it will cause an error. In this way, there are more safeguards built into the
design than in Verilog.

2.8 High speed signal board design

The high speed signals used for this PXIe required particular care to be
taken in the routing of the signals. For such signals, meeting a character-
istic impedance is usually required. Also, differential signals require the
pairs that make up each link to be length matched. These techniques are
described in detail below.

2.8.1 Characteristic Impedance

With high frequency signals, reflections on the line become important.
Thus the size of these reflections need to be minimised. This is normally
accomplished by making the tracks the signals travel along meet a char-
acteristic impedance. If the characteristics of the wire change, reflections
will occur along the line which effects the signal integrity and can result
in power losses. These power losses can result in signals being detected
incorrectly.
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Figure 2.26: Parameters involved in microstrip calculation

The characteristic impedance is the ratio of the amplitudes of a single
pair of voltage and current waves propagating along the line in the ab-
sence of reflections. It is calculated based on aspects of the track routing
such as track width, copper thickness and track separation. If the tracks
are designed to all meet this impedance, this keeps the losses to a mini-
mum.

In order to meet the characteristic impedance for a PCB, it can be mod-
elled as either a microstrip case or a stripline case. The microstrip case is
used when the track is on an external layer of the PCB which is shown
in Figure 3.31. The stripline case is used when the track is routed as an
internal layer of a PCB which is shown in Figure 2.27. Each case has its
own equation for calculating the impedance of the line. The single ended
impedance calculation for the microstrip case is given in Equation 2.1. For
differential signals, the impedance calculation for a microstrip is shown in
Equation 2.2. For the stripline case, the single ended impedance calcula-
tion is shown in Equation 2.3. The differential impedance of the stripline
case is shown in Equation 2.4.
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ln(
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) (2.1)
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d

h
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2.8.2 Length Matching

The lines that make up a differential signal are opposite in polarity at any
given time. For differential signalling to function correctly, pairs that make
up a link need to be routed to the same length. This is done so that the two
components of the signal reach the destination at the same time. If not, the
differential signal could be received incorrectly.

2.9 Linux Systems

One of the ambitions for the design of PXI Modules was to provide an
open system where the design work could be widely used over a number
of products. To provide this, the modules were designed for use in the
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Linux environment. Linux Device Drivers and Applications are usually
provided in open source which made any modifications a lot easier.

A Linux system is built around a single monolithic kernel which con-
figures a base system. On top of this, the user environment, window man-
ager, graphical user interface (GUI) and applications are then added to
provide greater functionality to the user.

As Linux is an Open Source environment, device drivers are commonly
provided with source code. This makes developing and modifying de-
signs a lot easier. Linux can build device drivers as a part of the kernel or
separately as loadable modules. Commonly required drivers such as those
for disk drives, sound etc are provided with the kernel . As well as these,
loadable modules are added to allow additional peripherals to communi-
cate. Device drivers are typically written as a C source file. These files then
get compiled into a .ko kernel module where the linux command insmod
is then called to insert the module into the kernel.
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Design and Implementation

This chapter will discuss the PXIe design involved in the project. This
includes the design of the PXIe Peripheral Module, the FPGA design used
for the PXIe module and the design of the backplanes used for testing PCIe
and PXIe designs.

3.1 Description of project

Magritek’s present modular NMR systems make use of a custom back-
plane which uses a parallel transmission system. This provides around
8 MB/s bandwidth which gives adequate performance for many NMR
systems. However, the bandwidth requirements are insufficient for more
demanding applications such as multi channel MRI. This was a major mo-
tivation for the move to a PXIe system.

The project consisted of providing a PXIe Peripheral Module and Sys-
tem Timing Module for Magritek’s use. An FPGA design was carried out
to allow PCIe data transfers. Also, test environments and documentation
were provided so that PXIe systems could be further developed in the fu-
ture. The design work for providing a PXIe would require:

• Development of a PXIe Peripheral Module and System Timing Mod-

51
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ule in collaboration with Magritek. The schematics, connectors and
board details were designed and provided for Magritek’s use. This
involved research into the signals required and their particular at-
tributes. This work may then be used in the development of further
Endpoint modules.

• Configuration of the FPGA and software to perform configuration
and memory read and writes between devices. This consisted of
evaluating Xilinx PCIe solutions and adapting them to allow Mem-
ory Read and Writes.

• Design of backplanes used to test PCIe and PXIe devices. These
would be passive backplanes that would provide basic communi-
cation between a host and Endpoint. The communication between
PCIe and PXIe devices could be tested.

In the next section the design of the PXIe Peripheral Module is detailed.
The board, signal and connector requirements were researched to allow
the board designer to produce a PXIe Peripheral Module.

3.2 PXI Express Peripheral Module

The design of the PXIe Peripheral Module required:

• Research into PXIe signals their corresponding voltage level, length
matching and impedance requirements.

• Board design descriptions and sourcing of connectors and compo-
nents required for PXIe transmission.

• Creation of schematic documents, schematic libraries and footprints
for PXIe system.
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PCI Express Signals 
(transmit, receive, 

reset etc.)
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To
 ch
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Figure 3.1: How the PCI Express serial transmission signals were sepa-
rated from the instrumentation signals in PXI Express

To simplify the design, an abstraction between the PCIe functionality
and the instrumentation signals was made. A diagram describing how the
two sets of signals were abstracted is shown in Figure 3.1. This abstraction
meant that the existing tools available for PCIe designs could be used with
the additional PXIe functionality added to this.

As described earlier, FPGAs provide a lot of flexibility and fast proto-
typing. For the PXIe Peripheral Module, the Xilinx Spartan-6 XC6SLX45T
was used. A big advantage of this FPGA is that a hard IP block for PCIe
could be used which automatically configures the basic PCIe system [22].

The signals sourced from the backplane connectors were routed to the
pins of the FPGA. The Spartan-6 XC6SLX45T provided 296 I/O pins [23].
The pins on this device were separated into four different voltage banks.
This meant that at most, four different I/O voltage levels could be used.
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Thus the voltages for each of the PXIe signals had to be researched and
compiled so they would be connected to the correct bank. If there were any
differing voltage levels, these would have to be converted to a supported
voltage first.

Xilinx produces a Spartan-6 Connectivity Kit Development Board [24]
which it also provides schematics for [25]. This development board is also
based on the XC6SLX45T Spartan-6 FPGA. The board includes a x1 PCIe
connector which can be connected to a PCIe slot. This provided a useful
reference design when routing the PCIe signals for the designed PXIe Pe-
ripheral Module. The SP605 board was also used for testing of the FPGA
design.

3.2.1 Mechanical requirements for board design

A PXIe Peripheral Module meets the 3U eurocard form factor as described
in [11]. The dimensions given were 100 mm by 160 mm with a board thick-
ness of 1.6 ± 0.2 mm which the designed board was required to meet. The
high complexity of the design meant a multi-layer board was designed.
Thus the board thickness requirements had to be factored into the board
stack-up. The board requirements are shown in Figure 3.2. The board had
to be laid out to meet this size with the connectors in the positions shown.

Connections between the PXIe chassis and plug-in boards are made
using specific connectors. As the form factor was carried over from cP-
CIe, these were defined in this specification [18]. Connectors featured on
boards included:

• Advanced Differential Fabric (ADF) Connector (ADF-F-3-10-2-F-25)
- A 90 pin connector for the use of transmitting differential signals.
Each differential pair on the connector is shielded with a ground sig-
nal. These come as right angle female connectors for use on boards
and vertical male connectors for use on backplanes.
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XJ4

XJ3

Figure 3.2: Board layout of PXI Express Peripheral Module [11]

• Enriched Hard-Metric (eHM) Connector (eHM-F2) - A 60 pin con-
nector which carries power and non-differential (usually side-band)
signals. These come as right angle female connector for use on boards
and vertical male connectors for use on backplanes.

• Universal Power Connector (UPM) (UPM-F-7) - A 7 pin connector
used for Host Modules which require more power. These come as
right angle male connectors for use on boards and vertical female
connectors for use on backplanes.

A PXIe Peripheral Module includes two connectors, a right angle fe-
male XJ4 EHM connector and a right angle female XJ3 ADF connector [11].
The connectors needed to be sourced from a reputable vendor. Connectors
from ERNI electronics were used as these were verified to meet the PXIe
standard. These connectors are shown in Figure 3.3.
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Figure 3.3: Connectors used for PXI Express Peripheral Module

3.2.2 PXI Express Power

The PXIe standard provided 3.3V, 5V, 12V and an auxiliary 5V (5Vaux)
power line on the backplane. This information was passed onto the board
designer so that if different voltage levels were required for the design,
these were to be stepped up or stepped down from these levels.

3.2.3 PCI Express Signals

The core components of the serial transmission scheme employed by PCIe
and PXIe devices are the differential data signals (transmit and receive)
and the differential clock signal. The clock is used by the devices to pro-
duce it’s serial transmission scheme. The device was designed to meet
revision 1.1 of the PCIe specification [8]. This provided a maximum band-
width of 250MB/s where bits are clocked out at 2.5 Gb/s which is gener-
ated by multiplying the incoming 100 MHz by way of a PLL. These high
speed differential signals require care to be taken when routing. Thus in-
formation on the characteristic impedance and length matching was in-
vestigated. PCIe also makes use of a number of sideband signals. The
various signals used for PCIe transfers are detailed below.
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3.2.3.1 PCI Express Transmit and Receive signals

The PCIe Transmit and Receive signals are differential serial connections
which are connected across the backplane with 100 Ω balanced transmis-
sion lines. Each transmission pair was AC coupled to remove the DC com-
ponent. This was done using external 100 nF decoupling capacitors at the
output of the transmit pair on the FPGA. Being differential signals these
were also required to be length matched. A 100 Ω differential termination
was required which was provided by the FPGA so no external resistors
were required.

3.2.3.2 Clock Signal

With PXIe systems, a 100 MHz clock is derived from the System Controller
Card to each of the peripheral modules. This is a feature carried over
from cPCIe where on standard PCIe designs, the clock is usually provided
from the backplane or motherboard. The clock signal also required de-
coupling capacitors. Recommended decoupling capacitors of 100 nF were
suggested, but errors in the board design meant 10 nF capacitors were
used to decouple the signal. This still provided the decoupling required
however. Termination of 100 Ω was required and provided internally by
the FPGA.

3.2.3.3 Sideband Signals

Along with the differential transmit and receive pairs and the clock signal,
the PCIe standard also uses a number of sideband signals. PXIe has side-
band signals that vary subtly from the PCIe standard. The PXIe sideband
signals include:

• SMBus - This includes SMBDAT and SMBCLK signals. SMBus is a
two-wire interface for power and system management tasks. They
were not required signals but were decided to be connected for pos-
sible future use.
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• PERST# - The PCIe Reset signal. When the signal is high, all PCIe
functions are held in reset. The signal is de-asserted 100 ms after
the clock signal and voltage levels have reached stability. This is
activated upon power up of the device until stability is reached and
can also be triggered as a means of getting the device to reset when
the clock signal or voltage levels fall outside of safe limits.

• PRSNT# - This detects the board presence. It is connected to ground
on board so that by way of a pull-up resistor, can detect the presence
of board being inserted.

• Hot-Plug - This includes the signals: MPWRGD, ALERT#, ATNLED,
ATNSW#. Hot-Plug, as the name suggests, allows ”hot” removal
and insertion of cards to the system (removal or insertion whilst the
system is still powered on). The board being designed was still in
the prototyping stage and such functionality would not be required.
Magritek’s NMR units do not require cards to be swapped out of-
ten and the devices are usually powered off before replacing boards.
Thus the signals MPWRGD, ALERT#, ATNLED, ATNSW# were not
routed on the board.

• WAKE# - This can be used to wake up the system when in a low-
power state, making use of the 5Vaux power. Again it was decided
this functionality was not required in the prototyping. Thus the
WAKE# signal was not routed on board.

3.2.3.4 PCIe signals used for Peripheral Module

The PCIe signals used included the transmit (1PET0) and receive (1PER0)
differential pairs, the differential clock (1REFCLK), PERST#, SMBCLK and
SMBDAT. The details of these signals were researched and compiled in
Table 3.1. These signal requirements were followed when the board was
routed.
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The naming convection for the differential transmit (1PET0) and dif-
ferential receive (1PER0) signals is different in PCIe to that used for PXIe
(or that inherited from CompactPCIe). In PCIe, these are named all rela-
tive to the host system. On a PCIe slot or device, the 1PET0 signal is the
signal which the host system transmits and the peripheral device receives.
Likewise the 1PER0 signal is the signal which the host system receives and
the peripheral device transmits. This is reversed on cPCIe and PXIe sys-
tems where the signals are all labelled relative to the local unit. Thus on
peripheral modules, 1PET0 and 1PER0 signals are its transmit and receive
signals respectively.

3.2.4 PXI Express Signals

PXIe provides the instrumentation signals required for the device. From
the original PXI specification these include a 10 MHz clock (PXI CLK10),
eight trigger bus lines (PXI TRIG[0:7]), a daisy chained trigger line (PXI LBL6
and PXI LBR6) and star trigger lines from the system timing slot to each
of the other slots on board (PXI STAR). These signals are all single ended
signals.

With PXIe, the signals provided by PXI were retained with additional
differential signals added. The additional signals consisted of a 100 MHz
differential clock signal (PXIe CLK100), a differential synchronisation sig-
nal (PXIe SYNC100) and three length matched differential star signal lines
from the system timing slot to the other slots on board (PXIe DSTAR A/B/C).

The star lines allow signals to be transmitted between the system tim-
ing slot and the other peripheral devices. These include the PXIe DSTARA
and PXIe DSTARB slots which allow the system timing slot to provide
clock signals and trigger signals respectively. PXIe DSTARC is used for
signals in the other direction where peripheral modules can transmit clock
or trigger signals back to the system timing slot. All these signals provide
greater performance than those of the original PXI specification as they
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50 Ω 

50 Ω 

To receiver

50 Ω 

≥ 100 pF

To receiver

Figure 3.4: Termination circuit for incoming differential PXI Express clock
signals

moved from single ended to differential signalling.

PXIe also allows slot identification done by using Geographical Ad-
dressing (GA) pins. The slot number is encoded using these five pins. For
instance, physical slot one has GA[4:1] connected to ground and GA[0]
unconnected. Likewise, physical slot three would have GA[4:2] connected
to ground and GA[1:0] unconnected. These get read by connecting to the
FPGA through pull up resistors. Unconnected GA pins get read as high
and connected pins get read as low.

All the instrumentation signals provided were made use of and routed
to the FPGA. For successful routing the details of each signal were re-
searched and compiled. These are shown in Table 3.2. The 50 Ω to 1.3V
termination circuit is shown in Figure 3.4.

As well as these constraints, the PXIe specification states that all the
terminations shall not be made more than 1ns of electrical length beyond
the backplane connector [11]. Taking the speed of electrical signals as the
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Figure 3.5: XJ3 Schematic for PXI Express Peripheral Module

speed of light this gives:

Length = Speed of signal× Time of signal = 0.3 m

Thus the signal must be terminated within 30 cm of the connector.

3.2.5 Creation of Libraries, Schematics and Footprints for

Device

To implement the PXIe connectors on the board being made, schematics
libraries and footprints for the XP3 and XP4 connectors were designed.
The pin outs for these connectors were found in the PXIe specification
[11].

The default templates were available on AltiumLive, an online resource
where templates, component footprints etc are available to Altium users
[26]. These templates gave a base design for a PXIe module including
schematic files for the XP3 and XP4 connectors. The XJ3 and XJ4 schemat-
ics for the PXIe Peripheral module are shown in Figures 3.5 and 3.6.
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Figure 3.6: XJ4 Schematic for PXI Express Peripheral Module

The template also provided a blank PCB meeting the correct board size
with footprints for XJ3 and XJ4 connectors positioned correctly.

Using these default templates, the signals from the PXIe connectors
were routed to the correct pins of the FPGA. The PCIe transceiver and
clock signals had to be connected to the assigned ports whilst the sideband
signals and PXIe signals were routed to the correct bank on the FPGA.

3.2.6 Schematics

The described design was incorporated into a larger design for the PXIe
Peripheral Module which included the NMR transceiver functionality. A
block diagram of the the full system connected to the FPGA unit is shown
in Figure 3.7. Detailed schematics produced for the PXIe system are shown
in Figures 3.8 to 3.10. Figure 3.8 shows how some signals sourced from the
backplane were terminated or AC coupled. Figure 3.9 shows the differen-
tial signals required for PCIe functionality were connected to particular
transceiver ports of the FPGA. Figure 3.10 shows the additional PXIe sig-
nals connection to the FPGA on the 3.3 V bank.
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Figure 3.7: Block diagram of schematics for PXI Express Peripheral Mod-
ule design
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Figure 3.10: Connection of other PXI Express signals to FPGA
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Figure 3.11: Designed PXI Express Peripheral Module - The T-Rex 4

3.2.7 Completed board

These completed schematics along with information on length matching,
characteristic impedances and terminations was passed on to the board
designer. These were integrated with the rest of the circuit design com-
pleted by others at Magritek. This board was sent off to be constructed
and populated and the resulting board is shown in Figure 3.11. As can be
seen, the board includes the XJ3 and XJ4 connectors and Spartan-6 FPGA.

The designed board came to 10 layers in total because of the large
amount of circuitry. The total board size was 1.889 mm so just over the
bounds of the recommended board size of 1.6 ±0.2 mm. The layer stack is
shown in Figure 3.12. The differential signals were routed on the inner lay-
ers hence the stripline model was used to meet impedance requirements.
0.08 mm track widths with a separation of 0.125 mm were used. Using
the microstrip equations Equations 2.3 and 2.4, this gave a single ended
impedance of 55 Ω and a differential impedance of 101 Ω thus meeting the
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Figure 3.12: Layer stack of designed PXI Express Peripheral Module

requirements.

3.3 Design of System Timing Module

The design of the System Timing Module was similar to that of the Pe-
ripheral Module. The PCIe signals involved in the system were identical
therefore this stayed the same. However, there were more instrumenta-
tion signals as the System Timing Module was where all of the star clock
and trigger signals were sourced from. There was also the addition of an
extra High-Speed Advanced Differential Fabric connector. This connector
is known as a TJ2 connector. For System Timing Modules in chassis with
more slots, there is also a TJ1 connector for the addition clock and trigger
signals. However, it was not necessary to drive this many slots so only one
extra connection was used.

As the direction of the star clock and trigger signals of the System Tim-
ing Module was opposite to that of the Peripheral Modules, the termina-
tion requirements were different. This is shown in Table 3.3.

At the time of writing, the System Timing Module was still in the de-
sign stage where others at Magritek are to complete the rest of the design.
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The PXIe templates have been provided for this board for future work to
commence.

3.4 Implementation of PXI Express system

With the physical design of the PXIe Peripheral Module, the mechanical
and electrical requirements were met. The next step was to configure the
device to communicate with a host system. Providing PCIe communica-
tion was focussed on where the requirements for the device are outlined
below:

• Implement the PCI Express Configuration Space to allow the host
system to initialise and configure the device.

• Allow memory read and write transactions with the host.

• Make good use of the bandwidth provided by PCIe by providing
speeds near the maximum bandwidth of 250 MB/s.

For such a design to be implemented and connected to a host device,
three components are required. This includes

• An FPGA design where it is configured using a Hardware Descrip-
tive Language (HDL).

• A device driver is implemented to allow communication between
the peripheral device and the host system.

• A user application run on the host system to allow the user to com-
municate with the peripheral device.

A diagram showing the relationship between these elements is shown
in Figure 3.13. As can be seen, the device driver acts as the middle layer
to allow communication between the Endpoint and the application on the
host system.
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FPGA Design

Device Driver

User Application

Figure 3.13: Basic design of FPGA based PCI Express Endpoint application

The PXIe Peripheral Module was being made to work in a PXIe chassis
(NI PXIe-1062Q) to communicate with the PXIe controller board (NI PXIe-
8101). The PXIe-8101 controller card came equipped with a x86 Celeron
processor. It came pre-installed with Windows Vista; however it was con-
figured to boot Fedora 10 Linux from a flash drive. Providing an open
system which would allow for an ARM based PXIe System Module con-
troller in the future, Linux was the chosen environment for development.
This meant that an open source device driver and application was required
to communicate with the PXIe Peripheral Module.

3.5 FPGA Design

The FPGA was configured to provide PXIe functionality. As with the de-
sign of the physical PXIe board, the device configuration was separated
into two discrete parts.
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• Implementation of PCIe transmission system

• Configuration for PXIe instrumentation signals such as clock and
triggers

The focus of this project was to implement the PCIe transmission sys-
tem on the device. The instrumentation signals were more implementa-
tion specific. Thus the FPGA designs researched and provided were pri-
marily focussed on giving PCIe functionality.

With the FPGA being the central device, this gave a lot of flexibility to
the design of the PXIe system, as well as the general function of the device.
The Spartan-6 Integrated Endpoint Block for PCIe could be added to the
design to implement the base PCIe system [22]. This was verified to meet
version 1.1 of the specification and greatly simplified the design process.

The integrated Endpoint block allowed the device to be recognised and
configured by the host system but provided no real functionality to the
user. A user FPGA design was required to allow memory transfers to be
sent along the link. Outlined below is how the integrated Endpoint block
was used to implement a base system to send data along the link.

3.5.1 Spartan-6 FPGA Integrated Endpoint Block for PCI

Express

The Xilinx Spartan-6 FPGA Integrated Endpoint Block for PCI Express is a
hard IP block which can be added to Xilinx project. The configuration is all
done inside this block and it provides a multitude of input and output pins
that allow the user to tailor the design to their particular needs. This routes
the internals of the FPGA to implement the details of the PCIe standard. In
fact, it abstracts the Physical Layer and Data Link Layer away from the de-
signer so they can look at things from the Transaction Layer. This greatly
simplifies the design as the designer can move straight onto dealing with
Transaction Layer Packets (TLPs) rather than dealing with the gritty de-
tails of the PCIe protocol such as 8b/10b encoding, data scrambling etc. It
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Spartan-6 FPGA 

Integrated Endpoint 

Block for PCI 

Express (PCIE_A1)

Transceiver

PCI Express (PCI_EXP)

System (SYS)

PCI Express 

Fabric
Transaction (AXI4-Stream)

Configuration (CFG)

Clock and 

Reset

Host 

Interface

User Logic

Figure 3.14: Diagram of Spartan-6 Integrated Endpoint Block for PCI Ex-
press [22]

also implements the PCI Configuration space so these registers can all be
configured using the IP Core wizard.

The integrated Endpoint block meets revision 1.1 of the PCIe specifi-
cation and implements a x1 link which provides a maximum bandwidth
of 250MB/s. Whilst PCIe has now moved onto version 3.0 of the speci-
fication, the bandwidth provided by the Spartan-6 chip is more than ad-
equate and offers major advantages over the transmission scheme used
in Magritek’s present system. Reproduced from the User Guide [22], a
block diagram of the integrated Endpoint block is shown in Figure 3.14.
The signals used to communicate with the integrated Endpoint block are
separated into four types.

• The Transaction signals which use the standard AXI4-Stream inter-
face to communicate with the user design. These are used for the
transfer of data in and out of the integrated Endpoint block.

• The Configuration (CFG) signals which the host interface communi-
cates with. These are internal signals which are active when Config-
uration Read and Writes are called.
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• The PCIe (PCI EXP) transceiver signals which includes differential
transmit and receive signals.

• System signals which include the clock and reset signals.

The transaction and configuration signals are all internal signals which
can be used to communicate with a user design. The transceiver signals
are external signals which the integrated Endpoint block uses for transmit
and receive functions. These consist of the signals defined earlier in the
chapter in Table 3.1. Thus in the user constraints file (UCF) for the design,
these signals must all be mapped to the correct locations which are shown
in Figure 3.9. The transceiver and clock signals are provided with defined
I/O pins which cannot be changed. The sideband signals however can be
connected to any I/O bank provided with the correct voltage. For direct
connections which do not use a level shifter, this is a 3.3 V bank. These
simply need to be defined inside the UCF.

The use of the AXI-4 stream interface provides a single standard inter-
face to make IP integration easier [27]. This allows complicated designs to
be implemented a lot easier as they make use of the same input/output
signals. There are a multitude of Xilinx designs that make use of the AXI4-
Stream interface [28]. This interface meant that future, more complicated
designs, could be produced with reduced development time.

The integrated Endpoint block provides the user with some config-
urable options. This allows particular registers inside the PCI Configu-
ration Space to be set. The PCI Configuration Space implemented by the
Spartan-6 Integrated PCI Express block is shown in Table 3.4. Configu-
ration space options are set in a wizard for the IP Core which is shown in
Figure 3.15. The size and type of the PCI configuration space Base Address
Registers (BARs) can be set. It allows 32-bit memory spaces, 64-bit mem-
ory spaces and I/O spaces to be implemented (though use of I/O spaces
has been deprecated). The vendor ID and sub-vendor IDs can be config-
ured here too. Also the maximum payload size for TLPs can be set. The
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Figure 3.15: Spartan-6 Integrated Endpoint Block for PCI Express Wizard

input frequency provided to the FPGA can be either 100 MHz or 125 MHz
so this has to be set.

The integrated Endpoint block provides automated responses for Con-
figuration Space requests. Also, it will detect and report on errors found
on packets received in the core. So if the device was used in a host system,
it would perform initialisation and configuration. If any of these packets
were received malformed or unrecognised, it would report on errors.

A major advantage of the integrated Endpoint block is that the user
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Bits [31-24] Bits [23-16] Bits [15-8] Bits [7-0] Reg
Device ID Vendor ID 0x00

Status Command 0x04
Class Code Revision ID 0x08

BIST Header Type Latency Timer Cache Line Size 0x0C
Base Address Register 0 (BAR0) 0x10
Base Address Register 1 (BAR1) 0x14
Base Address Register 2 (BAR2) 0x18
Base Address Register 3 (BAR3) 0x1C
Base Address Register 4 (BAR4) 0x20
Base Address Register 5 (BAR5) 0x24

Cardbus CIS Pointer 0x28
Subsystem ID Subsystem Vendor ID 0x2C

Expansion ROM Base Address 0x30
Reserved Revision ID 0x34

Reserved 0x38
Max latency Min Grant Interrupt Cache Line Size 0x3C

PM Capability NxtCap PM Cap 0x40
Data BSE PMCSR 0x44

MSI Control NxtCap MSI Cap 0x48
Message Address (Lower) 0x4C
Message Address (Upper) 0x50

Reserved Message Data 0x54
PE Capability NxtCap MSI Cap 0x58

PCI Express Device Capabilities 0x5C
Device Status Device Control 0x60

PCI Express Link Capabilities 0x64
Link Status Link Control 0x68

Reserved Legacy Configuration Space (Returns 0x00000000) 0x6C-0xFF
Next Cap Capability Version PCI Express Extended Capability - DSN 0x100

PCI Express Device Serial Number (1st) 0x104
PCI Express Device Serial Number (2nd) 0x108

Reserved Extended Configuration Space (Returns Completion with 0x00000000) 0x10C-0xFFF

Table 3.4: PCI Configuration Space Header of the Spartan-6 FPGA Inte-
grated Endpoint Block for PCI Express
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design need only deal with the Transaction Layer. Technical aspects at the
Data Link Layer such as flow control are abstracted away and automat-
ically handled. Likewise the Configuration read and write requests are
handled internally in the integrated Endpoint block.

3.5.2 Format of PCI Express Design

FPGA designs are usually broken up into a number of elements where
each element takes care of a particular task. For instance, a simple com-
munication device such as a UART could consist of a Receiver and a Trans-
mitter embedded in a top wrapper unit. This is considered good design
practice rather than placing every process inside one large HDL file. A
common starting place for FPGA designs is simply a block diagram. Each
block in the diagram can then be used as its own element in the FPGA
project.

Thus a basic PCIe design was drafted as:

• Integrated Endpoint Block for PCIe to provide basic PCIe function-
ality

• A receive module to deal with incoming packets available from the
integrated Endpoint block

• A transmit module to construct TLPs and send them to the inte-
grated Endpoint block to be transmitted

• A memory element which will place data received in an appropriate
location and be avaiable for the transmitter to access to send data out

• A wrapper element to connect the receiver, transmitter and memory
element together

• A top wrapper to connect the integrated Endpoint block to the rest
of the design.
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Top

Spartan-6 FPGA Integrated Endpoint Block for PCI Express

User Design

Transmit Unit Receive Unit Memory Element

Figure 3.16: Basic format of user design for PCI Express

A block diagram of such a design is shown in Figure 3.16. This was
used as the core design which any user design would meet. Designs may
include additional elements inside the user design to add functionality.
However, any design must include at least these elements.

Three types of data transactions are allowed in PCIe: 32 bit memory,
64 bit memory, and I/O transactions. However, I/O elements have been
deprecated in PCIe designs. For simplicity and as being tested in a 32 bit
system, in this design 32 bit memory transactions were used.

3.5.3 PCI Express Data Transfer

There are two main forms of communication that can be made between
the host system and peripheral elements.

• Programmable Input/Ouput (PIO) transactions which are instigated
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by the CPU where data is sent through the chipset of the host com-
puter.

• Direct Memory Access (DMA) transactions which allows the periph-
eral device to become the Bus Master (BM) and send data directly to
the host memory.

Programmed Input/Output consists of data transfers instigated by the
host device where PCIe memory read and memory write requests are sent
out and completions received from peripheral devices. This gives all con-
trol to the user, which suffers two serious downsides.

• High CPU utilisation as each data transfer needs to be instigated by
the host.

• Lack of efficiency in PCIe link as packets can only send 1 DW of data
at a time. With each packet requiring at least three DWs of header
information, this adds at least 75% overhead.

Direct Memory Access overcomes the two major disadvantages of the
PIO system. Here, the bulk of the memory transfer is performed by the
peripheral device meaning this task is off loaded from the CPU. This frees
up the CPU to perform other tasks whilst the memory transfer is taking
place. Also, because data does not need to be presented in 1DW chunks,
larger payloads can be appended to PCIe packets, greatly increasing trans-
fer efficiency.

PIO transactions require a receiver unit to detect memory read and
memory write transactions and a transmitter unit to send out completion
packets. A DMA system also requires the transmitter to construct its own
memory read and memory write packets, a receiver to take the incoming
completion packets, and a unit to signal interrupts after transactions com-
plete. PIO and DMA transactions and their implementation on an FPGA
are described in greater detail below.



3.5. FPGA DESIGN 81

3.5.4 Programmed Input/Output

Programmed Input/Output (PIO) allows a system host CPU to access
Memory Mapper Input/Output (MMIO) and Configuration Mapped In-
put/Output (CMIO) in the PCIe fabric. The Endpoint then accepts Mem-
ory and I/O Write transactions and responds to Memory I/O Read trans-
actions with Completion and Data transactions.

In a basic PIO system, the CPU must initiate all of the transfers. The
transmit unit of the PIO system generates Completion packets. However,
it cannot initiate Memory Read and Memory Write transactions. Likewise,
the receive unit of the PIO system accepts Memory Read and Memory
Write packets. However, it does not accept Completion packets as these
would only be sent when responding to a Memory Read or Memory Write
request.

A downstream operation takes place when data moves from the Root
Complex to the Endpoint. An upstream operation occurs when data moves
from the Endpoint to the Root Complex. Downstream operations occur
when the CPU initiates a data transfer by sending a store register to a
MMIO mapped to the Endpoint. This address gets resolved as being one
belonging to a PCIe Endpoint and so the Root Complex generates a Mem-
ory Write TLP with the appropriate MMIO location address, byte enables
and register (or data) contents. Data moves upstream when the CPU is-
sues a load register from a MMIO. Again, the address gets resolved as
belonging to an Endpoint so the Root Complex generates a Memory Read
TLP with the appropriate MMIO location address and byte enables. The
Endpoint receives this Memory Read TLP, communicates with the mem-
ory controller to find the data required and generates a Completion with
Data TLP. This Completion is then received by the Root Complex and its
payload is loaded into the targeted register. Due to the nature of these op-
erations, each transfer is limited to 1DW of data at a time. If more than
1DW of data is sent, the TLP is ignored with no completion generated.

PIO transactions have major limitations as explained earlier. The data
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speeds are effectively 25% or less of the maximum PCIe bandwidth as
each DW of data needs to be sent with its own header as transactions of
over 1DW or data are not allowed. The other issue with this design is the
the CPU utilisation whilst the transfers are occurring. For transfers in the
Megabytes of data, this would render the CPU unable to perform other
tasks for a noticeable time.

3.5.4.1 Example Xilinx PIO Design

When a PCI Express Endpoint Block for PCIe core is added, Xilinx au-
tomatically creates an example Programmed Input/Output (PIO) project
[22]. A block diagram of the system reproduced from the Spartan-6 FPGA
Integrated Endpoint Block for PCI Express User Guide [22] is shown in
Figure 3.17. This allowed a basic system for packets to be sent across the
PCIe link. This demo project comes complete with source code and does
not require any input from the designer to get going. The PIO design al-
lows up to 8KB of memory organised as 4 512DW (2KB) Block RAM banks.
Each of the 4 block RAMs are implemented as a 2KB dual-port block RAM.
These regions are represented by the BARs from the Endpoint’s configu-
ration space. When transactions are received by the core, the core decodes
the address and determines which of the regions is being targeted. The
PIO design by default allows an IO space, 32 bit memory space, 64 bit
memory space and an expansion ROM. For the testing of this project, a
2KB 32 Bit memory space was used. In order to simulate the PIO design,
the project came with the Root Port Model simulation program. This simu-
lated the process that would be taken by a host system which the Endpoint
would communicate with. This is discussed in further detail in the next
chapter. Complimenting the FPGA design, Xilinx also provided an appli-
cation note XAPP1022, Using the Memory Endpoint Test Driver (MET) with
the Programmed Input/Output Example Design for PCI Express Endpoint Cores
[29]. In XAPP1022, a device driver and user application was provided
for Windows and Linux systems, with the Linux design also coming with
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Figure 3.17: Diagram of Programmable Input/Output System [22]

source code.

3.5.5 Direct Memory Access Transmissions

PCIe is a packet based architecture with the ability to send data at high
speeds. Thus the ability to perform fast read and write transactions to
memory is useful for PCIe systems. To perform this efficiently, if a device
is wanting to read or write to the system memory, the device must receive
direct access to the memory and thus become the Bus Master. This is what
comprises a Direct Memory Access (DMA) transfer.

A DMA transfer in PCIe takes place when the Endpoint generates a
Memory Read or Memory Write transaction, rather than simply respond-
ing with a completion packet. The DMA transfer can be triggered by a
PIO write command from the host or from another external event. A DMA
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Memory Write transaction consists of the Endpoint generating a Memory
Write packet and sending it across the link. The packet gets received by the
Root Complex and passes on the received data to memory. The Endpoint
will hold a lock on the memory until the transmission completes. Once
the Memory Write has completed, the Endpoint signals an interrupt sig-
nal. This gets passed onto the CPU which informs it that the memory has
been updated. A DMA Memory Read transaction consists of the Endpoint
generating a Memory Read packet and sending it across the link. The Root
Complex receives this packet and retrieves the requested data from mem-
ory. This then gets sent back to the Endpoint. When all the requested data
has been received, the Endpoint will then send an interrupt along the link
to signal that the transmission is completed.

3.5.5.1 Xilinx Bus Master Performance Demonstration Design for the
Xilinx Endpoint PCI Express Solutions

Xilinx provides the application note XAPP1052 Bus Master Performance
Demonstration Reference Design [30]. XAPP1022 provides an example Bus
Master DMA system. This gives the HDL to implement on the Spartan-6
FPGA used. Also provided is source code for the device driver and appli-
cation for both Linux and Windows environments.

The DMA unit had more advanced transmit and receive units to han-
dle these DMA transfers. The memory element also differed in that it com-
prised of a number of registers which could be read and set to control the
operation of the device. Within the transmit unit was an additional in-
terrupt module, used to tell the Endpoint Block to generate an interrupt
request. In the application note, a diagram of the DMA system was given
which is shown in Figure 3.18. As can be seen, the system is made up of
a number of modules. The PCIe Endpoint Block links in with the inter-
face block which the other modules are nested inside. The top wrapper
includes the integrated Endpoint block generated from IP Wizard and the
interface. Control and status registers contain operational information for
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Figure 3.18: Diagram of Xilinx DMA design [30]

the DMA controller. The example design is used to measure performance
of data transfers.

The engine works with PIO transactions similar to the PIO Example de-
sign. However it makes use of an older version of the integrated Endpoint
block which used the TRN interface rather than the newer AXI-Stream
interface. The initiator block generates Memory Read or Memory Write
TLPs depending on if upstream or downstream transfer is selected. The
design only supports generating one type of data flow at a time. The Bus
Master Enable bit (Bit 2 of PCI Command Register) must be set to initiate
TLP traffic upstream. The initiator logic generates Memory Write TLPs
when transferring data from the Endpoint to the system memory. The
write DMA control and status registers specify the address, size, payload
content, and number of TLPs to be sent.
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3.5.5.2 Other PCI Express DMA solutions

A number of vendors provide FPGA IP DMA solutions for PCI Express
devices [31, 32]. These provide high performance systems which can be
placed on FPGAs to take care of DMA transfers. The SP605 board was
provided with a node locked licence for the Northwest Logic DMA En-
gine. The issue with these systems is that they are licensed systems where
the source code cannot be shared freely. They are also primarily provided
only in Verilog which did not meet Magritek’s requirements.

3.5.6 Problems and improvements to be made on sample

Xilinx designs

One option for providing PCI Express functionality to the designed PXIe
Boards would have been to make use of one of the provided Xilinx de-
signs. The PIO design provided by Xilinx allowed basic PCIe transfers
to be made; however it did not make efficient use of bandwidth. The
XAPP1052 reference design provided fast transfer speeds through DMA;
however it made use of the older version of the integrated Endpoint block
which used the TRN interface. The FPGA design for the designed PXIe Pe-
ripheral Module was instead provided in VHDL and made use of the latest
version of the integrated Endpoint block. Using the AXI-Stream interface
provided future proofing of the design as newer devices only support the
AXI-4 interface.

Another issue with the reference DMA design is its use of Verilog HDL.
Although this is a well supported language, it does not provide the same
strong typing that VHDL does, as discussed earlier. Also, VHDL is widely
used for FPGA designs at Magritek hence was the sensible choice for the
HDL to be written in.

There were also issues with the design of the finite state machines used
in both the PIO project and the XAPP1052 DMA engine. This is explained
in further detail below.
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Finite State Machines As explained earlier, data was sent and received
to the integrated Endpoint block in 32 bit or 1 DW chunks. Thus the
data output would vary depending on which of these DWs was being
processed. In order to implement such a system on the FGPA, a finite-
state machine (FSM) was used. The machine can only be in one particular
state at a time where a task gets completed depending on what DW of the
packet was being processing.

There are two major types of state machines named Mealy and Moore.
The output of a Moore state machine is determined solely by its current
states. Alternatively, the output of a Mealy state machine is determined
also by the input values. Given the number of options available for PCI
Express packets, the best model for the state machine implementation was
Mealy, else a large amount of states would be required for all the particular
conditions.

A state machine design is typically separated into combinatorial and
sequential sections. Such a design is shown in Figure 3.19. This sort of
design is useful when spikes in the output are tolerable where the inputs
may change. However, if this is not appropriate, registered outputs can be
used. Such a design is shown in Figure 3.20.

In the example Xilinx designs, the state machine did not follow one of
these standard formats. Instead, the combinational and sequential sections
were combined into one large process.

if rising_edge(clk) then

...

when (state) is

WRITE =>

if (condition = ’1’)

output <= ’1’;

state <= WRITE;

end if;

...
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end if;

All transitions were designed like this. This is considered bad practice
as it is making decisions based on the state and inputs (combinational)
and setting the state (sequential) inside the same process [33]. This is why
the set next state and next state logic shown in Figures 3.19 and 3.20 are
separated into different processes.

3.5.7 FPGA design for use on PXI Express Peripheral Mod-

ule

The PXIe FPGA design was based on the XAPP1052 reference design. This
allowed an open source DMA system to be designed as well as provid-
ing an open source device driver and application for Linux which could
be further developed. The XAPP1052 reference design was used to test
throughput speeds thus using this as the base design provided the ability
to measure and analyse the performance. The HDL for the PXIe Peripheral
Module however was provided in VHDL and made use of the integrated
Endpoint block which used the AXI4-Stream interface. Unused signals
were removed from the design and more rigorously designed state ma-
chines were used. Following the structure of the XAPP1052 design, FPGA
design used on the PXIe Peripheral Module is shown in Figure 3.21.

The memory element of this design consisted of a number of defined
registers inherited from the XAPP1052 design. Also, the transmit unit in-
cludes an interrupt controller to signal the end of memory read and mem-
ory write transactions to the CPU. Also included was the read metering
unit. A configuration element was also included to read parameters such
as the max payload size, the MSI address and the maximum link width.
This would allow the system to configure itself to the requirements of the
transmission. Making use of the same general design of the XAPP1052
application meant that the device driver and user application provided
could be used without modification.
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Spartan-6 FPGA Integrated Endpoint Block for PCI Express

BMD

BMD_EP

BMD_TO_CTRL

EP_TX

EP_RX

EP_MEM_ACCESS

EP_MEMINTR_CTRL

BMD_CFG_CTRL

RD_THROTTLE

Figure 3.21: Diagram of DMA Design

XAPP1052 was a sample design to test throughput for Xilinx based
DMA systems. The design could test the performance of DMA Mem-
ory Read and Memory Write transactions. The performance measurement
was made by starting a counter when the data transfer was initiated. This
would then be stopped on the completion of the transfer. By reading back
the number of clock cycles, the performance of the system could be calcu-
lated. This measurement gave the actual data transfer rate rather than just
the raw bit speeds.

As described in [21], there is no major technical advantage of FPGA
designs configured in VHDL over Verilog. However for a number of rea-
sons it was decided VHDL was the best language of choice for this project.
These reasons included:

• Strong typing and verboseness of the language meant the design
could be more rigorously defined.

• VHDL does not allow sequential assignments to be made thus any
sequential assignments made in the XAPP1052 Verilog code was re-
moved and the VHDL description altered to suit.

• FPGA development at Magritek is primarily done in VHDL thus it
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improved integration and ease of modification.

• Process of porting the Verilog source code to VHDL gave a more
comprehensive understanding of the system.

Providing the system in VHDL required porting the 10 different mod-
ules provided in the XAPP1052 application to VHDL. The structure of
processes differed greatly between the two languages so these had to be
rewritten. Standard assignments were similar in VHDL and Verilog where
the ¡= character was used to set vectors. These assignments were syn-
chronous where the order of the assignments was unimportant. However,
Verilog also made use of sequential assignments which required the HDL
to be restructured in parts. In VHDL, assignments are always blocking
in that they wait until the next clock cycle before assignments are made.
This is typical of hardware designs which are concurrent in nature. For
example, see the following code snippet.

if rising_edge(clk) then

...

if (condition = ’1’)

a <= ’1’;

b <= a;

c <= b;

end if;

...

end if;

Here, ’a’, ’b’ and ’c’ are all ’0’ before the assignment. Following the as-
signment ’a’ would equal ’1’ whilst ’b’ and ’c’ would both equal ’0’. This
is because of the blocking mechanism of VHDL. It would not matter in
what order ’a’, ’b’ and ’c’ were assigned in this statement. An equivalent
assignment could be made in Verilog. However Verilog can also perform
sequential or non-blocking assignments using the = character. For exam-
ple, see the following code snippet.
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always @ (posedge clk) begin

...

if (condition = ’1’) begin

a = ’1’;

b = a;

c = b;

end;

...

end;

Again, ’a’, ’b’ and ’c’ are both equal to ’0’ before this assignment. After
these assignments took place, ’a’, ’b’ and ’c’ would all equal ’1’ as each
assignment would occur sequentially. Such a feature is common in soft-
ware (such as C which Verilog inherits its syntax from) where sequential
instructions are performed. Thus for such processes to be performed in
VHDL (without the ability to perform sequential assignments) the assign-
ment would be made in the previous state. Making such changes allowed
the order of the assignments more obvious to the system designer.

As previously mentioned, the design of the state machines in the XAPP1052
required improvement. These were altered in the FPGA design for the
PXIe Peripheral Module. How and where the outputs are set in a HDL
state machine are somewhat down to personal preference. In some de-
signs, the outputs get set inside the same process as the next state process.
This sort of design is appropriate for a state machine with few output sig-
nals. However, this design involved numerous output signals. Also, the
particular outputs set vary greatly depending on the current state. For
this reason, registered outputs in their own process were used. When an
incoming clock signal was received, it would set data depending on what
the current state was. The state machine used in the design for the PXIe
Peripheral Module was based on the three always block design given in
[34]. The diagram of how the state machines were implemented using
three processes is shown in Figure 3.22. An example of how this was writ-
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set_next_state

Sequential logic

sync

set_outputs
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rst

state

next_state

statestate

inputs

Figure 3.22: Design of State Machines in PXI Express FPGA project

ten in VHDL is shown below.

sync : process(clk, rst)

begin

if (rst = ’1’) then

state <= RESET;

elsif rising_edge(clk) then

state <= next_state;

end if;

end process;

set_next_state : process(...)

begin

case (state) is
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when RESET =>

if (condition_1 = ’1’)

next_state <= STATE_1;

...

end if;

...

end case;

end process;

set_outputs : process(clk, rst)

begin

if (rst = ’1’) then

output_1 <= ’1’;

...

elsif rising_edge(clk) then

case (state) is

when RESET =>

...

...

end case;

end if;

end process;

The design of the state machine meant that outputs were set on a rising
clock edge which would also cause a state transition. In this way, outputs
were also set at the end of a state rather than at the start of a state.

The XAPP1052 used the older TRN interface and also was made for
a whole range of FPGAs which included signals which the Spartan-6 re-
quired. To move to the newer version of the integrated Endpoint block,
this required the previously used TRN signals to be replaced by their AXI4
equivalents. If there was no equivalent signal, the description was al-
tered to work using the the AXI4-Stream interface. The move to the AXI4-
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Stream standard meant that, if required, the design could be more easily
ported to a newer FPGA which did not support the legacy TRN interface.

3.5.7.1 Memory Unit

The memory unit used in the design kept the same structure as that used
in the sample Xilinx DMA design. In order to access this memory space,
the integrated Endpoint block wizard was configured to set BAR0 as a 1KB
memory element. The memory element consisted of a number of registers
used to control the operation of the device. These would set parameters
such as, what data would be sent and received and the length of each
transaction. The registers and their location relative to the start of the 1KB
BAR are shown in Table 3.5.

Address Register Name Register Contents
0x00 DCSR Bits 31-24: FPGA Family

Device Control Status
Register

Bits 19-16: Core Data Path Width

Bits 15-8: Version Number
Bit 0: Initiator Register

0x04 DDMACR Bit 31: Read DMA Operation Data Error
Device DMA Control
Register

Bit 24: Read DMA Done

Bit 23: Read DMA Done Interrupt Support
Bit 22: Read DMA No Snoop
Bit 21: Read DMA Relaxed Ordering
Bit 16: Read DMA Start
Bit 8: Write DMA Done
Bit 7: Write DMA Interrupt Diable
Bit 6: Write DMA No Snoop
Bit 5: Write DMA Relaxed Ordering
Bit 0: Write DMA Start

0x08 WDMATLPA Bits 31-2: Write DMA Lower TLP Address
Write DMA TLP Address

0x0C WDMATLPS Bits 31-24: Write DMA Upper TLP Address
Write DMA TLP Size Bit 19: 64 bit Write TLP Enable
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Bits 18-16: Write DMA TLP TC
Bits 12-0: Write DMA TLP Size

0x10 WDMATLPC Bits 15-0: Write DMA TLP Count
Write DMA TLP Count

0x14 WDMATLPP Bits 31-0: Write DMA TLP Data Pattern
Write DMA Data Pattern

0x18 RDMATLPP Bits 31-0: Read DMA Expected Data Pattern
Read DMA Expected
Data Pattern

0x1C RSMATLPA Bits 31-0: Read DMA Low TLP Address
Read DMA TLP Address

0x20 RDMATLPS Bits 12-0: Read DMA TLP Size
Read DMA TLP Size Bits 31-24: Read DMA Upper TLP Address

Bit 19: 64 bit Read TLP Enable
Bits 18-16: Read DMA TLP TC

0x24 RDMATLPC Bits 15-0: Read DMA TLP Count
Read DMA TLP Count

0x28 WDMAPERF Bits 31-0: Write DMA Performance Counter
Write DMA Performance

0x2C RDMAPERF Bits 31-0: Read DMA Performance Counter
Read DMA Performance

0x30 RDMASTAT Bits 15-8: Completions w/ UR Tag
Read DMA Status Bits 7-0: Completions w/ UR Received

0x34 NRDCOMP Bits 31-0: Number of Completions with Data
Number of Read Comple-
tions with Data

0x38 RCOMPSIZW Bits 31-0: Total Completion Data
Read Completion Data
Size

0x3C DLWSTAT Bits 13-8: Negotiated Max. Link Width
Device Link Width Status Bits 5-0: Capability Max. Link Width

0x40 DLTRSTAT Bits 18-16: Max. Read Request Size
Device Link Transaction
Size Status

Bits 10-8: Programmed Max. Payload Size

Bits 2-0: Capability Max. Payload Size
0x44 DMISCCONT Bit 8: Receive Non-Posted OK
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Device Miscellaneous
Control

Bit 1: Read Metering Enable

Bit 0: Completion Streaming Enable
0x48 DMSICONT Bit 27: cfg interrupt msienable

Device MSI Control Bits 26-24: cfg interrupt mmenable
Bits 23-16: cfg interrupt do
Bit 8: LEGACYCLR
Bits 7-0: INTDI

Table 3.5: Registers in DMA Reference Design

All the unmentioned bits are simply reserved and left at ’0’. The DMA
system can be controlled simply by setting these registers. These registers
get written to and read by performing PIO transactions instigated by the
host system. Each PIO request can only hold one DW of data, which is the
size of one register so these get written to and read 1DW at a time.

In order to perform a Memory Write DMA transfer with the Endpoint,
the following process was followed.

• Reset system (PIO Write DCR1) - 0x00000001

• De-assert Initiator Reset (PIO Write DCR1) - 0x00000000

• Write DMA H/W Address (PIO Write WDMATLPA) - H/W Address

• Write DMA TLP Size (PIO Write WDMATLPS) - Write TLP Size

• Write DMA TLP Count (PIO Write WDMATLPC) - Write TLP Count

• TLP Payload Pattern (PIO Write WDMATLPP) - Data Pattern

• Write DMA Start (PIO Write DCR2) - 0x00000001

• Wait for Interrupt TLP

• Write DMA Performance (PIO Read WDMAPERF)
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The reset of the system clears any possible transaction that may have
been taking place and resets the data registers to 0. The system is then
de-asserted to allow the data registers to be set again. The registers on the
Endpoint are then set which includes the address for the Endpoint to com-
municate with, the size of transfer, the number of transfers and the data
pattern. The bit to start the transfer is then set which starts the Endpoint
transfer. Once the total data is sent out, the transaction completes and the
Endpoint signals an Interrupt TLP to the host to indicate this. The mea-
sured performance of the Endpoint then gets read back via a PIO transfer.

In order to provide this functionality, the DMA unit was to provide the
following transactions:

• Receiving of PIO Memory Read packets and sending completions in
response

• Receiving of PIO Memory Write packets and updating data

• Sending Memory Read packets and receiving the completions

• Sending Memory Write packets

Thus the Transmit and Receive Units had to be written to deal with
these transaction types. These are detailed below.

3.5.7.2 Receive Unit

The receive unit included a finite state machine which would process all
the possible packets it could receive. The packets included:

• Memory Read packets

• Memory Write packets

• Completion packets
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Memory Read and Memory Write packets were known to be PIO trans-
actions from the host unit which would carry 1DW payloads. The state
machines for these transactions followed how they were given in the ex-
ample Xilinx design. The receiving of Completion packets were responses
to DMA Memory Read transfers. The state machine for this system is
given in Figure 3.23. As well as the transition details given in the state ma-
chine diagram, transitions also required the m axis rx tvalid and m axis rx tready
signals to be high. The m axis rx tvalid signal is provided by the inte-
grated Endpoint block to tell the user application when the data is valid.
The m axis rx tready is provided by the user design to let the integrated
Endpoint block know when it is ready to receive data.

Memory Read packets The reception of Memory Read packets follows
the process shown in Figure 3.23. On probing the first DW of data, bits 30
to 24 of the data signal show the packet type is detected as a 32 Bit Mem-
ory Read Transaction (”0000000”). It also checks if the packet has a pay-
load of 1DW (which PIO transactions should meet). It then sets the data
included in this first DW of the header. After one clock cycle, it moves
on to the next DW of the header. It then sets the other bits such as the
request id and tag. Then it moves to the final DW of the packet which pro-
vides the address that the host is attempting to read. The receive unit then
sets req compl o high, signalling to the transmit unit to send a completion
packet in response. It then moves into the wait state until the completion
is completed (compl done i = ’1’) before moving back to the reset state.

Memory Write packets The reception of Memory Write packets follows
the process shown in Figure 3.23. The first DW of data is read with bits
30 to 24 indicating a 32 Bit Memory Write Transaction (”1000000”). It sets
all requisite data and moves onto the next DW. Here the BE is read and
moves onto the next DW. The address is then read which gives the register
being written to. The data is then set to the wr data o vector and wr en o
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set high to enable the register to be written. It then moves in to the wait
state until the write is completed (wr busy i = ’0’).

Completion packets Completion packets follow a similar process to that
of the Memory Read and Memory Write packets. It checks the TLP type,
and begins the processing of the Completion Packet. It then extracts infor-
mation to check what the completion was in response too. When process-
ing the payload of the packet, as this is a simple Endpoint test application,
it simply checks the received data up against the expected data. If it is cor-
rect it will carry on checking the data. If not, it will signal an error signal
to indicate that it has not received the data successfully. Once each DW of
data is checked, it is simply discarded.

3.5.7.3 Transmit Unit

The transmit unit also included a finite state machine which would process
all the possible transactions it could fulfil. This included:

• 32 bit and 64 bit memory write packets

• 32 bit and 64 bit memory read packets

• Completion packets

The completion packets are generated in response to PIO transactions
from the host. These would always offer 1DW of data. The 32 and 64 bit
memory read and write packets were the DMA transfers initiated by the
Endpoint. The finite state machine which processed all these transfers is
shown in Figure 3.24. As well as the transitions given in the state machine,
each transition was also dependent on s axis tx tready being high. This
is provided by the integrated Endpoint block to the user application to
inform when it is ready to receive more data to transmit. This was to
prevent data being loaded in the integrated Endpoint block when it still
had not processed the previous lot of data.
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Memory Read Packets When the conditions are met for Memory Read
transaction, it will follow this routine in the state machine. These con-
ditions are that a read request has been signalled (mrd start i = ’1’), the
current read request has not finished (mrd done = ’0’), ongoing write re-
quests are not blocking read requests (mrd serv = ’1’) and bus mastering
is enabled (cfg bm en = ’1’). It then places the appropriate data in DW0 of
the header and moves onto the next state. Here it continues placing data
in the header. If a 64 Bit address is being used, there is an extra optional
state in the state machine to deal with this case. This would provide the
higher bytes required to communicate with the system. It then moves on
to DW2 where it places the lower bytes of the address. Once this is com-
plete it moves to the reset state where it waits for the completion data to
be received.

Memory Write Packets When conditions are met for a Memory Write
transaction, it follows this routine in the state machine. These conditions
are that a write request has been signalled (mwr start i = ’1’), the current
write request is not finished (mwr done o int = ’0’), a memory read re-
quest is not blocking write requests (mwr serv = ’1’) and bus mastering
is enabled (cfg bm en = ’1’). The appropriate data is then placed in the
first DW of the header and it moves on to the next DW of the header. It
then places the appropriate data for the second DW of the header. If a
64 bit memory write request is being made, it moves onto this optional
state where it would provide the higher bytes required. It then moves on
to DW2 where it places the lower address. This is the end of the header
where it then moves onto placing data in the packet. This is provided from
the data that is set in the data register of the design. This will continue un-
til the maximum allowed payload size has been reached or the memory
write request has completed. If there is more data to send to complete
the transfer, it will create another memory write packet. Otherwise, it will
move into the reset state.
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Completion Packets When conditions are met to respond to a request
with a Completion Packet, this routine in the state machine is followed.
The conditions being that a completion request has been signaled (req compl q
= ’1’) and the completion has not finished (compl done o int = ’1’). It fills
in the required header information as required in each DW, including the
packet type and address. At DW3, it places the data requested from the
targeted register. Finally, it moves to the wait state where it will then move
to the reset state if the s axis tx tready signal is high, indicating it is ready
to receive more packets to transmit.

Interrupt Unit As well as sending out packets of data, the Transmit unit
was also responsible for issuing interrupts to the CPU to indicate the DMA
transfer had completed. Traditionally, the CPU receives interrupts by hav-
ing one of its interrupt pins written to. For PCI transactions, these pins
were labelled INT1 through INT4. However, with newer generations of
CPUs this is used less and less and instead Message Signalled Interrupts
(MSIs) are used. An MSI consists of setting a small amount of data to
a special address in memory space. The chipset then delivers the corre-
sponding interrupt to the CPU. It has a few advantages over legacy style
interrupts. Using this special piece of memory space to signal interrupts
allows the CPU to have less pins which makes for a simpler, cheaper and
more reliable connector. MSI also increases the number of possible inter-
rupts. Conventional PCI limited the number of interrupts to 4 per card.
However, as all cards sat on the same bus, this meant that typically they
only had access to one interrupt line. MSI on the other hand allows dozens
of interrupts per card. This was not a particular advantage for this appli-
cation but could be useful later, for example if there were multiple data
transmissions occurring simultaneously.

PCI Express allows interrupts to be triggered by both of these mech-
anisms. For legacy style interrupts, a memory write transaction is per-
formed by writing to a particular memory location which the root complex
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maps as being one of the INT1-4 locations. The style of interrupt used by
the Endpoint is decided by the integrated Endpoint block. During the
configuration phase, the Endpoint communicates with the Root Complex
which provides information as to what interrupt mechanism is supported.
There are two sorts of interrupts that are triggered, interrupts for Memory
Write transactions and interrupts for Memory Read transactions. When a
Memory Write transaction completes, the transmit unit triggers an inter-
rupt to signal to the CPU that the data has been updated. When the End-
point receives the last completion packet in response to a Memory Read
transaction, the transmit unit will also generate an interrupt to signal that
it has finished reading data.

3.5.7.4 Implementation on FPGA

The FPGA design for the PXIe Peripheral Module had to be programmed
to the FPGA itself. The Xilinx ISE is used to generate a bit file from the
HDL which can then be used to program the FPGA. The device gets pro-
grammed through communication using the Joint Test Action Group (JTAG)
protocol. This is a widely used protocol for debugging and programming
purposes.

When FPGA devices are programmed, the configuration is only valid
whilst power is provided. Once power is removed, the FPGA loses its con-
figuration. Thus if the configuration needs to stay through power cycles,
the configuration data needs to be saved on board. This is done by saving
the configuration to some flash memory on board. Thus when power gets
restored to the device, it will load the configuration from the flash device.

The FPGA design was configured for the designed PXIe Peripheral
Module as well as the SP605 development board. Each of these devices
used the same Spartan-6 FPGA thus the FPGA design could be tested first
on the SP605 board.

When a host system starts, it performs configures all the connected
peripheral devices. Thus in order for the board to be detected by the host



106 CHAPTER 3. DESIGN AND IMPLEMENTATION

system, the FPGA needed to be configured on startup. However, when
power is not supplied, FPGAs lose their configuration. Two methods were
used to have the device configured to be detected by the host:

• The configuration could be loaded onto some on board flash memory
so that once power is received, the FPGA would configure itself fast
enough to be detected by the host.

• The host is powered up with the peripheral device connected where
the FPGA is then configured directly using JTAG. Once this was
achieved, a soft reset is performed so the host restarts and is then
able to detect the device on start up. This process is a lot faster how-
ever, the configuration is not saved to the device and loses it when
the system is powered down. However it was useful in testing the
operation of the device where any possible problems with using the
flash memory method could be circumvented.

On the SP605 board, a 64 Mb flash memory device was used, the X4W25Q64VSFIG.
This is communicated with the FPGA using the Serial Peripheral Interface
Bus (SPI) interface. This is a four wire communication protocol which al-
lows for x1 to x4 communication speeds. x4 was used to get the FPGA to
configure as quickly as possible.

In order to allow these devices to function correctly, particular settings
in the Xilinx compilation process had to configured. This was done by
adding some additional parameters to the compilation, which could be
done in the ISE design suite as shown in Figure 3.25. Firstly, the project
was configured to allow for an external clock signal as it was sourcing the
clock signal off the backplane. To use the .spi flash device, it had to be set
to allow x4 configuration mode.

Communication with the device was provided with JTAG where the
bundled program IMPACT was used to configure the FPGA. A screen-
shot of the program is shown in Figure 3.26. When connected over JTAG,
this probes the device and detects the attached FPGA and flash device on
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Figure 3.25: Configuration Options in Xilinx ISE Project Navigator

board. When a boundary scan is performed, this finds the FPGA and any
attached flash memory. As can be seen, the FPGA is detected along with
a connected SPI/BPI flash device. The FPGA can be directly programmed
with the .bit file, else a .mcs file is used. A .mcs file is generated by first
setting the targeted device (this being a .spi 64Mbit device). The .bit file
can then be converted to the required .mcs file.

The performance of the DMA system and its comparison with the other
FPGA designs is detailed in the next chapter.

3.6 Backplanes for testing devices

As a means of testing the card’s physical design and the FPGA work for
configuring the system, backplanes for testing the devices were created.
As Xilinx FPGAs were being used for the designed PXIe Peripheral mod-
ules, FPGA development was tested first on Xilinx development board
including the Virtex-6 Connectivity Kit [35] which contained the ML605
board and the Spartan-6 Connectivity Kit [24] which included the SP605
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Figure 3.26: Screenshot of the program IMPACT when connected to the
SP605 board over JTAG
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board. The Virtex-6 is a high end FPGA offered by Xilinx which gives a
x8 lane PCI Express device over the simple x1 lane which the Spartan-6
provides. FPGAs allow soft processors to be configured using their logic.
The Virtex-6 would be configured to run a MicroBlaze soft processor core
on which Linux could be installed. Thus the Virtex-6 would be configured
as the host device to communicate with the SP605 board. Thus backplanes
were to be provided which would enable communication between these
Xilinx development boards as well as PXIe Controller Boards and Periph-
eral Modules.

These backplanes were designed to test both the physical design and
FPGA design of the designed PXIe modules. As well as this, the prelimi-
nary design here could be adopted for construction of a full PXIe chassis.
The impedance matching, connector spacing and circuit design could all
be directly ported for use on a PXIe chassis.

The three backplanes would operate as so:

• An x8 PCI Express slot routed to a x1 PCI Express slot (so only one
lane would be connected from the x8 slot). In this setup the Virtex-6
Connectivity Kit (ml605) would plug into the x8 slot and behave as
the host of the system and the Spartan-6 Connectivity Kit (SP605)
would be the Peripheral Module. These boards require an input
clock signal which will be provided on the backplane.

• An x8 PCI Express slot routed to a PXIe Peripheral slot. The PXIe
functionality and wider NMR use will not be tested on the PXIe Pe-
ripheral Module, merely the PCI Express and physical design of the
board. One lane would be routed between the x8 PCI Express slot
and the PXIe Peripheral Slot. As with the other backplane, a clock is
required to be provided on the backplane to the two slots.

• A PXIe System Slot (the host) connected to a x1 PCI Express slot. Ini-
tially, the PXIe-8101 National Instruments System Module would act
as the host and communicate with the SP605 board. For future use,
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a designed PXIe System Module would be tested here. PXIe Sys-
tem Modules provide the PCI Express clock source to the peripheral
modules. Thus the clock signal is derived from the System Slot and
routed across the backplane to the x1 PCIe slot.

• A PXIe System Slot to PXIe Peripheral Slot. As before, the clock sig-
nal is derived from the PXIe System Module and routed to the PXIe
Peripheral Slot.

As well as the clock signals routed to each slot, the differential transmit
and receive signals were required to be routed between the connectors.
The overview of the PCIe to PCIe backplane whole backplane is shown in
Figure 3.27 where the other backplanes all followed a similar format. The
routing of signals and power are described in further detail below.

3.6.1 Power

PCI Express boards can source their power from the slot they are con-
nected to. However, as the Spartan-6 and Virtex-6 boards were for general
development, they would not necessarily be plugged into a PCI Express
slot so had alternative power connectors. Thus when the boards were con-
nected to a PCI Express slot, they were powered by way of a standard
Molex 4-pin connector which had been traditionally used for PATA and
low-end SCSI disk drives. This connector plug can be seen in Figure 4.3.
The power plug to connect to this is usually sourced off an ATX mother-
board power supply. Because of this power requirement, it was decided
to use an ATX motherboard power supply to draw power for these back-
planes. This meant that the molex connectors would be provided, as well
as all the required voltages (3.3V, 5V, 5Vaux and 12V). The PXIe devices
and on board circuitry would all be provided power on the backplane.
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Figure 3.27: Top level view of PCIe to PCIe backplane
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3.6.2 Reset Circuit

Another important signal in the PCI Express specification is the PCI Ex-
press Reset (PERST#) signal. PERST# is driven low to cards until 100 ms
after voltage levels reach stability. If at a later time the ATX power sup-
ply falls out of stability, PERST# should also be driven low. To provide
this system, the use of the ATX power supply was especially useful. ATX
power supplies have a ’Power Good’ signal which is driven high when the
power supply voltage rails reach stability. Thus the ’Power Good’ signal
can be used as the PERST# signal to be delivered to the connectors on the
backplanes.

The implementation is slightly more complicated though. The PCIe
specification requires that the power levels be stable for at least 100 ms
before the PERST# signal is de-asserted. In order to do this a simple timer
circuit was implemented on the backplane. The timing diagram is shown
in Figure 3.28. The schematic circuit for this is shown in Figure 3.29. When
the ’Power Good’ signal goes high, this gets inverted to trigger a 555 timer
configured as a monostable to start timing. The output of the 555 is used
as the trigger for a D flip flop. When the transition is made from high to
low from the 555 timer, the output of the D flip flop goes high so drives the
PERST# signal high. The ’Power Good’ signal is also used as the D input
for the flip flop. This means that when power levels had stabilised and the
555 timer had completed, only then would the output of the D flip flop go
low, hence de-asserting PERST#.

3.6.3 Signal integrity

The boards were fairly basic however attention to signal integrity was re-
quired. A PCIe link runs at 2.5Gb/s and these high speeds require care
to be taken when routing the signals. Routing recommendations for each
PCI Express link was given in design guidelines in [36] [37]. This gave
recommended track width, differential signal separation and general tips
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100ms
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Figure 3.28: Timing diagram of PERST# circuit

on avoiding noise. However, these recommendations were for 6 to 8 layer
boards thus the calculations to find track widths required for characteristic
impedances were much different.

3.6.3.1 Impedance Matching

To meet specification, the tracks needed to meet a single-ended impedance
of 50 ± 10 Ω and differential impedance 100 ± 10 Ω

Originally, due to the relatively simple nature of the boards and low
component count, it was planned for these backplanes to be made from
two layer PCBs. These were to be 1.6 mm FR4 boards with a copper pour
of 1oz per square foot or 1.4 mils. This gave copper thickness of 0.036 mm.
The board stack up for such a board is shown in Figure 3.30.

In order to calculate the impedance requirements, the details of the
board had to be collected. The impedance calculation was done according
to the microstrip calculation due to the tracks sitting on the outside of the
board. The equation for calculating the single ended impedance is given
in Equation 2.1.

The parameters of the board were trace thickness (t) = 0.036 mm, dielec-
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Figure 3.30: Structure of standard 2 Layer PCB
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Figure 3.31: Parameters involved in microstrip calculation

tric thickness (h) = 1.6 mm and dielectric constant of ε = 4.2. Substituting
multiple values of track width into Equation2.1 gives a required width of
around 2.5 mm to meet the impedance requirements. Given the pin sepa-
ration of many of the connectors is less than 2 mm, this would not allow
for routing to the pins. Thus another method had to be tried.

As the impedance was proportional to the dielectric thickness, if the
dielectric thickness could be reduced, this would mean the required track
width would not be so great. However, a 0.3-0.4 mm board would not
prove sturdy. To get this separation down without reducing the overall
thickness to a very small width, it was decided to move to a four layer
design. The default board stack for this was an inner core of 1 mm with
outer layers 0.3 mm either side of this. Thus if routing on the top or bottom
layer, this would give a microstrip case with a dielectric height of 0.3 mm.
This board stack is shown in Figure 3.32. As well as meeting the single
ended impedance, a differential impedance of 100 Ω had to be met. The
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Figure 3.32: Structure of standard 4 Layer PCB

equation for this calculation is shown in Equation 2.2.

Zd =
174√

εr + 1.41
ln(

5.98h

0.8w + t
)(1− 0.48 exp(−0.96

d

h
))

Firstly, the track width was decided on by trying multiple values to
work with the single ended impedance equation. It was desired to have
the tracks as thin as possible so that routing to the closely separated pins
would be easiest. A track width of 0.4 mm was chosen as this was the
smallest available which met the requirements as this gave an impedance
of 59.4 Ω. With the track width chosen, the track separation was decided
by using the differential microstrip equation. A separation of 0.3 mm gave
an impedance of 97.0 Ω so this was chosen.

3.6.3.2 Length Matching

As well as meeting the impedance requirements, other steps were taken
to ensure the signal integrity. Because of the use of differential signals,
the propagation delay of each line has to be the same else they will ap-
pear out of phase. Hence both tracks on a pair need to be the same length.
Following the guidelines given in [37], the length difference between each
member of a pair should be no longer than 5 mils (or 0.127 mm). As the
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Figure 3.33: Use of serpentines to correct length mismatch. The incorrect
method is shown above with the correct method shown below

board was routed according to metric measurements, this was taken as
0.1 mm, however it was attempted to match the signals closer than that.
Also according to the guidelines, all mismatches, must be corrected near
the mismatch. An example of this is shown in Figure 3.33. When routing
from the pins of a connector, one pin was further away and thus the track
length is longer. This must be corrected close to this mismatch rather than
further along the track. Also shown in the diagram, is the style of length
matching used. Serpentines were used with 45 degree bends as per the de-
sign recommendation. Each section of serpentine must be at least 3 times
the track width, or 1.2 mm in this case.

To route the differential signals, some of the advanced tools provided
by the Altium software package were used. A screenshot of these tools is
shown in Figure 3.34. Board design in Altium makes use of user defined
rules around track width, signal separation and so on. These were so when
routing tracks across the board, the software would check for any breaking
of these rules and default to the set track widths and separation given.

3.6.3.3 Other steps

As well as meeting these length and impedance requirements, other steps
were taken to maintain signal integrity. The routing of the signals on the
bottom layer which included the differential transmit, receive and clock
signals can be seen in Figure 3.35. The longer the trace is, the greater the
loss will be due to the greater impedance along the line. For this reason,
the high frequency differential signals were kept as short as possible. To
provide this for the clock signals, the on board clock was put as close as
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Figure 3.34: Screenshot of Altium PCB Rules and Constraints Editor

possible to the connectors. Also, the slots to hold the PCI Express and
PXIe boards were kept as close as possible whilst still providing adequate
space to allow the two boards to both be installed in the backplane. Al-
though it was important to keep the track lengths to a minimum, it was
also necessary to keep the transmit, receive and clock signals a moderate
distance apart so as to not allow coupling between the lines. This is rec-
ommended from [37] to be at least four times the track width. Thus when
routing signals out from the connectors, they were first routed outward
somewhat to keep adequate distance between the various differential sig-
nals. As well as the above steps, the differential pairs were kept on one
layer only and they were not routed through vias. Routing through vias
would have changed the characteristic impedance and introduced reflec-
tions into the signal path. Thus, by keeping the signals only on one layer,
this meant that no possible problems with losses through vias would be
encountered.
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Figure 3.35: Bottom layer of PCB for backplane showing the routing of
differential signals between connectors

3.6.4 Component Selection

With the schematics completed the boards for each backplane were laid
out. First footprints for each connector had to be created . For a design of
such high frequency operation, through hole components were avoided
where possible due to the board noise they create. Some of the footprints
were standard and existing Altium libraries existed hence were imported
whilst others had to be created by referencing the components or connec-
tors data sheets.

3.6.5 Completed PCBs

The PCBs were sent to be manufactured and components for the PCBs
ordered. The boards are shown in Figures 3.36 and 3.37. At the time of
writing, these boards were still being prototyped and had yet to be popu-
lated and tested.
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Figure 3.36: Top layer of backplane PCBs

Figure 3.37: Bottom layer of backplane PCBs



Chapter 4

Testing and Design Evaluation

This chapter details the testing and evaluation of the designed system.
This includes the physical and electrical testing of the designed PXIe Pe-
ripheral Module, the evaluation of the FPGA designs and the implemen-
tation of the FPGA on the designed PXIe Peripheral Module.

4.1 Testing of PXI Express Peripheral Module

The physical design of the PXIe Peripheral Module was tested to ensure it
met the electrical and physical requirements of the PXIe protocol. This is
described in detail below.

4.1.1 Electrical testing of PXI Express Peripheral Module

Some preliminary testing with the board was performed where power was
applied externally. This was done by using a PC power supply to supply
the correct voltages to all of the power rails. This was found to work as
intended and would allow programming to take place over a JTAG con-
nection. This setup is shown in Figure 4.1.

However, in the development of the board, the lack of I/O pins avail-
able on the FPGA meant that some signals considered unessential were

121
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Figure 4.1: Designed PXI Express Peripheral Module powered by PC
power supply

removed from the design. For this reason, the PERST# reset signal was
left unconnected. The lack of this signal meant that the board did not
strictly meet the PXIe specification. However, testing of the module (de-
tailed later) confirmed that the device still functioned correctly. This signal
will be added to further revisions of the device.

4.1.2 Mechanical testing of PXI Express Peripheral Module

When the PXIe Peripheral Module was received back, it was confirmed to
meet the board dimensions given in the PXIe specification [11] as stated in
the background chapter. The designed board connected to the PXIe-1062Q
chassis is shown in Figure 4.2. This confirmed the board met the required
mechanical requirements as it was able to be inserted in the chassis and
powered up (indicated by the lit green LED). The cover and handle used
to secure the board in the chassis was not designed, however this could
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Figure 4.2: Designed PXI Express Peripheral Module installed in the NI
PXIe-1062Q Chassis

be added on a later revision. There were also some subtle issues with
the board manufacturing which would be fixed for the next revision. For
instance, footprints used for the PXIe connectors were found to be slightly
too small. These had to be altered to allow the connector to fit.

4.2 FPGA Designs

The FPGA designs described in the previous chapter were then tested,
evaluated and compared.
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Figure 4.3: Xilinx PCI Express Spartan-6 Connectivity Kit Board - The
SP605

4.2.1 Test Configuration

The PCI Express functionality was first tested on the Xilinx SP605 board.
This uses the same Spartan-6 FPGA as used on the designed PXIe Periph-
eral Module (XC6SLX45T-3FGG484C). It contains a 1x PCIe finger so can
be installed in a PC. This board is shown in Figure 4.3. As PXIe is an exten-
sion of PCI Express, the PCI Express design was first tested on the SP605
board and then ported onto the designed PXIe device. This was useful for
initial testing of the FPGA design as particulars of the PXIe design did not
have to be considered.

The device was tested primarily in Linux and required an environment
for these to take place. The particular operating system used was Fedora
10 [38]. Although this was a somewhat outdated operating system, it was
secure and Xilinx applications recommended this environment [29, 30].



4.2. FPGA DESIGNS 125

This meant that no difficulties such as driver incompatibilities would be
experienced.

The FPGA design was tested on the SP605 board and on the designed
PXIe Peripheral Module. The test configuration for these devices is de-
tailed below.

4.2.1.1 Test Configuration for SP605 Board

Revision 1.1 of the PCI Express standard was being implemented which
was introduced in 2004 [8]. This meant that a leading edge computer was
not required to test the device. A computer with a motherboard with PCI
Express Revision 1.1 slots was required. The host device used met the
following specifications.

• Intel Pentium 4 630 3.00 GHz processor

• Intel Corporation D945GNT (J3E1) Motherboard

• 1 GB DDR2 RAM

• 75 GB Seagate HDD

• 1 x16 PCIe slot, 2 x1 PCIe slots

The test setup is shown in Figure 4.4. The chipset of the motherboard
used was the Intel 945G [39]. This allowed a maximum payload size of 128
bytes to be sent which is the smallest allowed for a link. As the Endpoint
accepted up to 512 bytes, this limited the capabilities somewhat. However,
the largest packet size sent by the DMA user application was 128 bytes so
this was appropriate.

Commonly, PCI Express devices source their power off the backplane.
However the SP605 was powered by alternative means. When the board
is disconnected from a host computer, power is provided through a 9 pin
DC power unit. When connected to a host PC, it draws its power from a
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Figure 4.4: Host PC Setup used for testing SP605 Xilinx Development
Board

4 pin molex connector. The power provided from the PCI Express slot is
simply left unconnected. The molex connector provides ground, 12V and
5V power rails. Any other voltages get up or down from here as required.

The Integrated Endpoint Block for PCI Express gets configured de-
pending on the specifics of the board design. The integrated Endpoint
block can take in two clock frequencies, 100 MHz or 125 MHz. On the
SP605 board, the 100 MHz REFCLK signal is converted by way of a PLL to
125 MHz. Thus the integrated Endpoint block was set to accept a 125 MHz
input frequency. In fact, there was an option to set all the parameters as
required for the SP605 development board, as this was a Xilinx produced
board. This is shown in Figure 4.5. This was set in the integrated Endpoint
block wizard.
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Figure 4.5: Setting PCI Express design to use the settings for the SP605 de-
velopment board in Spartan-6 Integrated Endpoint Block for PCI Express
wizard

4.2.1.2 Test Configuration for designed PXI Express Peripheral Module

The National Instruments PXIe-1062Q fitted with the PXIe-8101 embed-
ded controller card was used for testing the designed PXIe Peripheral
module. The embedded controller card provided specifications of:

• Intel Celeron 575 2.0 GHz processor

• Four x1 PCI Express links

• 1GB of DDR2 RAM

• 80GB onboard HDD

• Gigabit Ethernet, 2 USB ports and a DVI port for video out

As the embedded controller card was fitted in the PCIe-1062Q chassis,
this provided slots for three PXIe boards, where one could be a System
Timing Module. The other PCI Express link provided with the embedded
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controller card was used for a PCI-to-PCI Express bridge to provide band-
width to the legacy PXI slots. Detailed specifications were not provided
for the chipset used however the diagram is shown in Figure 4.6. The
maximum allowed payload size was not relevant as the sample applica-
tion used packet sizes of 128 bytes which is the minimum accepted packet
size for PCI Express devices [8].

The PXIe System Module system came installed with Windows Vista
and could also run an embedded version of LabVIEW for running their
particular data acquisition and testing devices. For testing of the module
however, Linux was required as this was the intended application host
environment for the system. Rather than changing the configuration and
partitioning of the hard drive, Fedora 10 Linux was installed on a flash
drive and the PXIe system was tested in this environment.

4.2.2 Software for testing

As well as providing the hardware to test the devices in, software was re-
quired for communication. As explained earlier, the device drivers and
applications were provided by Xilinx and were used as is. This included
the device driver and application provided from Bus Master Performance
Demonstration Reference Design for the Xilinx Endpoint PCI Express So-
lutions [30] and Using the Memory Endpoint Test Driver (MET) with the
Programmed Input/Output Example Design for PCI Express Endpoint
Cores [29].

Detection of the devices was confirmed using the linux lspci command.
This performs a read of all the PCI devices connected to the computer and
reports back in the terminal. An example lspci command run in Fedora 10
is shown in Figure 4.7. The line ”05:00.0 Memory controller: Xilinx Corpo-
ration Device 0007” shows the detection of the Xilinx FPGA design. The
lspci associates the Vendor ID and Device ID of 10EE and 0007 respectively
as a Xilinx device and reports as such.
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Figure 4.6: Block diagram of PXIe 8101 Embedded Controller card
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Figure 4.7: Screenshot in Fedora 10 showin lspci command in terminal

The PIO FPGA system was tested, and found to be sending and receiv-
ing data successfully though the throughput speeds were not measured.
However, as each DW of data was accompanied by 3DW of header, this
75% overhead meant that the system performance was at best, 62.5 MB/s.
The performance of the XAPP1052 application and the FPGA design used
for the PXIe Peripheral Module was measured. The sample user applica-
tion used for both designs provided throughput speeds to be measured. A
screenshot of the test application is shown in Figure 4.8. The settings were
kept consistent for all of the testing to allow a fair comparison point.

• Test DW data of 0xFEEDBEEF (default data given by user applica-
tion)

• 32 DWs data to be sent for each packet

• 32 packets transmitted giving a total data size of 4096 bytes

• Each test run 100 times
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Figure 4.8: Screenshot of user application running

The measurement was made using a counter to operate whilst the data
transfer was occurring. After the transfer had completed, the number of
clock periods was read from the WDMAPERF register for Memory Write
measurements and RDMAPERF register for Memory Read measurements.
The internal clock speed of the system was 62.5 MHz. As the data was
clocked out at 2.5 Gb/s, this meant that the system was clocked once every
40 data cycles. This is because 1 DW of data becomes 40 bits when encoded
by the 8b/10b encoding. The user application provided the performance
measurement of a test, however the equation used for calculating it from
the number of clock cycles was incorrect. Instead the transmit speeds were
calculated from the measured clock cycles during a transmission using the
following equation.

Speed =
Total data× Frequency of clock

Number of clock cycles

Performance measurements were received by performing PIO transac-
tions on the register space. These registers are 32 bits wide and the user
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application read back the values in their hex representation. These were
first converted to decimal which could then be used to calculate the overall
speed of transmission.

4.2.3 PIO Design

Initial testing of the integrated Endpoint block was done by making use of
the example PIO system. It gave an overview as to how the PCI Express
transactions are accomplished and showed the major downsides of using
only PIO transactions. In the XAPP1022 application note, Using the Mem-
ory Endpoint Test Driver (MET) with the Programmed Input/Output Ex-
ample Design for PCI Express Endpoint Cores, device drivers and user
applications were provided for the device.

In order to test the design, the Endpoint was configured such that the
driver could communicate with the device. This could communicate with
32 bit memory elements thus a single Base Address Register (BAR) in place
BAR0 was configured as a 2 KB 32 bit memory space. The Vendor ID
and Device ID were set as 10EE and 0007 respectively as these are the
default IDs for Xilinx devices. The class code was set with a base class of
05 (indicating a ”memory controller”) and a sub-class of 80 (indicating a
”other memory controller”). The payload size was left at the default size
of 512 bytes.

This basic design was tested in two ways. Firstly it was tested in simu-
lation using the Root Port Model. After this was verified, it was compiled
and programmed on the SP605 board.

4.2.3.1 Root Port Model

The Root Port Model was full simulation program used to verify the PIO
project to test the function of the device. The Root Port Model functioned
as the host computer so the interactions between the Endpoint and the
computer could be analysed. The simulation was comprised of a number
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of testbench units and other test scripts. The simulation can be run in the
graphical ISim simulation program or can be run at command line [22].
When run, the root port model keeps a log of the data transmitted and
received from the host side. This simulation consisted of:

• The system reset gets de-asserted allowing the integrated Endpoint
block to start up and a lock to be achieved with the input clock. Once
this is achieved the internal reset signal sourced from the integrated
Endpoint block gets de-asserted.

• The integrated Endpoint block starts up allowing data to be sent and
received.

• Configuration Read and Writes performed by the host on the inte-
grated Endpoint block to enumerate and configure the device.

• Test data of ”01020304” is written to and read back from the device.

A screenshot of the full simulation in ISim where all these processes
take place is shown in Figure 4.9. Once the PLL of the integrated End-
point block achieves a lock with the input clock and starts up, the internal
reset signal gets de-asserted. Registers in the Configuration Space then
get read and written to, starting with the Device and Vendor IDs being
read. An example configuration request is shown in Figure 4.10. As can
be seen, the state machine of the user application stays in the reset state
for the entire duration. This is as the configuration requests are handled
internally by the integrated Endpoint block. After configuration is per-
formed, a sample data read and write is performed. This is done by first
writing data of ”01020304” to the Endpoint then reading it back. This tests
that the unit’s transmit, receive and memory elements are working as de-
sired. Screenshots from ISim showing the initial memory write, the mem-
ory read and the completion packet sent out are shown in Figures 4.11
to 4.12. These simulations performed gave valuable information on the
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enumeration, configuration and Memory Read and Memory Write pro-
cesses.

4.2.3.2 Implementation on device

The PIO system was programmed to the SP605 board. This was done by
loading the configuration into the SPI flash memory. The host system then
detected the device on startup once power was applied and the FPGA
configured itself. This was tested in the Fedora 10 Linux environment.
The detection of the device was confirmed by issuing the lspci command,
which provides a read out of the connected PCI devices.

As the system verified it detected the SP605, communication with the
device was made. In XAPP1022, a device driver and sample application
were provided for the generated PIO design. The xpcie.c file was com-
piled to the xpcie.ko kernel module. This was then inserted to the device
using the insmod (Insert Module) command which returned ”true” veri-
fying that the driver was added successfully. The Memory Endpoint Test
(MET) program was then run. This was a terminal based program which
constructed random data, wrote data to the Endpoint and read it back
to verify that the data was sent and received successively. The program
verified that the transfers were occurring successfully. The user applica-
tion abstracted away the 1DW memory limitation apparent in PIO trans-
actions. The application allowed memory transactions of over 1DW where
each block of data is automatically separated into 1DW chunks with 3DW
of header added. Likewise when receiving, data gets automatically com-
piled together based on how large the data requested was. For example,
a Memory Read transaction of 8 DW could be performed, however this
would consist of 8 Memory Read packets being sent out, and 8 Comple-
tion packets being received.

The PIO design allowed a basic memory communication system to be
implemented. However, it showed up the major limitation of using PIO
transactions for large memory transfers. The transfer and system utilisa-
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Figure 4.14: CPU Utilisation with PIO transactions occurring

tion are shown in Figure 4.14. As can be seen, when these Memory Read
and Writes were occurring the CPU was fully occupied. Also, the effect of
the great load was noticed as the CPU fan moved to full speed adding in-
creased noise and heat. Such aspects were very undesirable which would
have been noticeable for large data transfers.

The system utilisation of the example PIO design was also compared.
Xilinx provides the design in VHDL and Verilog. The system utilisation
was thus compared between the two designs. The system utilisation of
the VHDL and Verilog systems is shown in Tables 4.1 and 4.2 respectively.
Comparing the resources used in the two designs, they are rather similar
which is not surprising as the HDL which describe the two designs are
effectively equivalent. Subtle differences in the way processes between
the two designs are synthesised can explain the differences in resources
used.

4.2.4 XAPP1052

The provided Xilinx DMA system was first tested as a comparison point
for the FPGA design on the PXIe Peripheral Module. The XAPP1052 ap-
plication made use of the older version of the integrated Endpoint block
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Resource Number used Percentage used
Slice registers 394 2%
Slice LUTs 358 5%
Occupied Slices 171 6%
MUXCYs 28 2%
LUT Flip Flop pairs 476

Table 4.1: FPGA Utilisation for VHDL PIO System

Resource Number used Percentage used
Slice registers 406 1%
Slice LUTs 323 1%
Occupied Slices 156 2%
MUXCYs 28 1%
LUT Flip Flop pairs 456

Table 4.2: FPGA Utilisation for Verilog PIO System

which used the TRN interface. No simulation was provided for this design
as was provided with the Root Port Model. However this Root Port Model
could be modified to test particular features of the design. The FPGA util-
isation was also tested to use as a benchmark against the newly designed
system. This is given in Table 4.3. As can be seen, the system utilisation
is greater than that of the PIO design shown in Table 4.2. However the
overall resources used is not particularly high.

The design was tested in the Fedora 10 Linux environment. Provided

Resource Number used Percentage used
Slice registers 917 1%
Slice LUTs 1095 4%
Occupied Slices 396 5%
MUXCYs 292 2%
LUT Flip Flop pairs 1355

Table 4.3: FPGA Utilisation for Older DMA System
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was a Linux device driver and user application. As with the PIO design,
the driver source code (the xbmd.c file) was compiled to a kernel .ko mod-
ule and inserted into the kernel using the insmod command. The user
application was then compiled. This application was used to measure the
memory read and memory write throughput speeds. These measurements
were taken as a benchmark, where this could be compared with a FPGA
design for the designed PXIe Peripheral Module. PIO reads and writes to
the register space were used to control the system. An example register
read is shown below.

*** XBMD Register Values ***

DCSR = 0x20021600

DMACR = 0x101

WDMATLPA = 0x22c00000

WDMATLPS = 0x20

WDMATLPC = 0x20

WDMATLPP = 0xfeedbeef

RDMATLPP = 0xfeedbeef

RDMATLPA = 0x23000000

RDMATLPS = 0x20

RDMATLPC = 0x20

WDMAPERF = 0x465

RDMAPERF = 0x0

RDMASTAT = 0x0

NRDCOMP = 0x0

RCOMPDSIZE = 0x0

DLWSTAT = 0x101

DLTRSSTAT = 0x20002

DMISCCONT = 0x8080001

DLNKC = 0x0

*** End XBMD Register Space ***

Tests were run for Memory Read and Memory Write transfers with the
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Test Clock periods Speed
Memory Write 1125 227 MB/s
Memory Read 1575 162 MB/s

Table 4.4: Performance of TRN system

measurements shown in Table 4.4. Here the performance measurement
was read back, converted to decimal and the transmission speed calcu-
lated using Equation 4.2.2.

4.2.5 FPGA Design for the PXI Express Peripheral Module

The new FPGA design was intended for use on the reported PXIe Periph-
eral module. This design was tested first on the SP605 board and then
ported to the designed module.

4.2.5.1 Testing on the SP605 board

The project was compiled and programmed to the flash device of the SP605
board as before. The throughput speeds were tested here to compare
against the XAPP1052 design using the TRN interface. A screenshot of
the user application is given in Figure 4.8.

The FPGA utilisation and performance of the design is shown in Ta-
bles 4.5 and 4.6. As can be seen, the utilisation is somewhat higher than
that of the XAPP1052 design. However, for the benefits gained by moving
to the AXI4-Stream interface and providing the system in VHDL, this was
considered acceptable. Also, the utilisation still allowed much more con-
figuration to be added to the device. The measured performance speeds
were identical to that of the TRN system. This suggests that the trans-
mission ran uninterrupted in both systems to complete the transmission.
Thus no benefit was seen from either system. Thus good utilisation of the
PCI Express bandwidth was achieved.
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Resource Number used Percentage used
Slice registers 1160 1%
Slice LUTs 1417 4%
Occupied Slices 498 7%
MUXCYs 320 2%
LUT Flip Flop pairs 1643

Table 4.5: FPGA Utilisation for VHDL AXI-4 DMA Design

Test Clock periods Speed
Memory Write 1125 228 MB/s
Memory Read 1578 162 MB/s

Table 4.6: Performance of VHDL AXI-4 DMA Design

4.2.5.2 Implementation on designed PXI Express module

With the system verified on the SP605 board, the design was then ported
to the designed module. The data transmission side of PXIe makes use of
effectively the same signals as PCI Express so there were no differences in
this respect. There were some subtle but important differences in the two
devices which needed to be factored in. As explained earlier, the SP605
design made use of an on board PLL which steeped the input clock fre-
quency up to 125 MHz. However, on the designed module, the clock from
the backplane was simply routed straight into the FPGA as shown in Fig-
ure 3.9. Thus the integrated Endpoint block settings had to be configured
to accept a 100 MHz input clock to accommodate for this. This is shown
in Figure 4.15. Also, the PERST# reset signal ended up not being routed
on the designed module. The FPGA design could have been altered to
implement some sort of advisory circuit however this was decided as un-
necessary as the PERST# signal would be connected on later revisions. As
the PERST# signal was not connected, this was removed from the UCF file.
Inside the top module this signal was instead tied to ’0’ as the Endpoint
reset required an active high signal. The device can function without the
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Figure 4.15: Choice of input clock frequency for Spartan-6 FPGA Inte-
grated Endpoint Block for PCI Express

PERST# signal for a few reasons:

• The device would only be configured once the power and clock sig-
nals had already been brought up. Thus there would be no issue with
the power levels or clock being out of range as the system would al-
ready have reached stability.

• If the clock did fall out of range, this would be detected in the inte-
grated Endpoint block as the PLL would be unable to achieve a lock.
This would mean the integrated Endpoint block would then trigger
a self reset without the requirement of the PERST# signal.

If the power levels fall out of range on the PXIe chassis, PERST# signal
should be asserted to the peripheral modules. However, this would not
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Figure 4.16: PXI Express system installed with PXI Express Peripheral
Module running example application

occur with the signal being unconnected to the FPGA. Due to the high
quality of the chassis the card was connected to, this was unlikely to be a
problem.

The device was tested by connecting it to the chassis, powering it up,
programming the FPGA and then performing a soft reboot of the host sys-
tem. This meant that power was sustained to the device thus the FPGA
configuration would be kept and the device would be detectable on start
up. The chassis booted up and detected the device successfully. This was
confirmed by performing the lspci command in the terminal once the com-
puter had started. The device was detected, so this was followed by in-
stalling the device driver and user application. The PXIe system, installed
with the designed PXIe Peripheral Module, running the user application
is shown in Figure 4.16.
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4.2.6 Comparison of designs

In order to fairly test the designs tried, they were all compared when com-
piled for the SP605 board. Two major factors were evaluated, the through-
put of the devices and the resources used on the FPGA. As well as pro-
viding a more adaptable system for further modification and integration,
performance increases were also found with the new system.

As can be seen, additional resources of the FPGA were used with the
VHDL design. This was possibly due to the fact that many more inter-
nal signals were required for the VHDL version. However, by improving
the design and its efficiency, this could be reduced. The resources used
were not overly high however and still allowed for more additions to the
design.

The measured performance of the two designs were basically identical.
Write speeds were transmitting at near the maximum theoretical band-
width of the link. This meant that the Endpoint was able to constantly
send out data with no interruptions.

Memory Read speeds were substantially lower than write speeds which
is to be expected. Memory Read requests are non-posted transactions thus
require a completion packet. This adds some latency into the transaction
which effects the overall transmission speed. A memory read transaction
follows the following process:

• Memory Read request initiated from the Endpoint. This starts the
timer measuring the performance of the system and sends a packet
with no data requesting data to be read back.

• The host receives the request, retrieves the data and sends back a
completion packet with the requested data.

• The Endpoint receives the requested data, and will issue another
read request (following the process again) until the full 4KB of data
has been read.
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• Once the full 4KB of data has been received, the timer measuring
read performance stops and issues an interrupt to signal its comple-
tion.

This process adds much latency into the transaction. Each request re-
quires a wait for the packet to reach the host and a response to be received
back before any data is received back. This is the reason for the major
difference in transfer speed between Memory Write requests and Memory
Read requests.
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Conclusions and Future Work

Making use of the schematics and footprints provided through the Al-
tiumLive [26] provided an easily implementable board design. This pro-
vided a board layout and schematics required to quickly implement a base
PXIe system. Though the hole sizes for the footprints for the connectors
subtly differed from the size required, this was still usable and would be
altered for future designs. The FPGA based design was found to work well
with it providing a central location for required signals to be connected to.
The low cost Spartan-6 unit was able to provide high throughput speeds
with its Integrated Endpoint Block for PCI Express.

The PXIe Peripheral Module FPGA design verified the ability to use
existing PCIe solutions for PXIe devices. The FPGA design provided the
ability to perform read and write transfers to the host system. The use
of the open source DMA system allowed high speed Memory Read and
Memory Write transfers to be achieved. This gave measured throughput
speeds of 227 MB/s for writes and 162 MB/s for reads. As well as pro-
viding this performance, the source code was provided in VHDL making
it more suited for further enhancements by others at Magritek. Porting of
the system to the VHDL language allowed a greater understanding of the
DMA system thus making alterations easier in the future.

The test backplanes for the system were constructed and parts ordered

149
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but were not populated. They are to be used further along as a means of
testing newer FPGA designs as well as PXIe Controller cards.

5.1 Further Work

To move to the full PXIe system, a host module and chassis would need to
be designed to communicate with the designed PXIe module. The work
on the test backplanes for PXIe modules could be used as a starting point
for designing a full chassis system. PXIe chassis meet a standard design
with the size, board separation and signals required well defined. Thus
most of the design work is already completed, it would simply be a task
of implementing the described format. As well as the chassis, a host sys-
tem would also be required. This would consist of developing a computer
system which would fit on a host module. The intended processor for
such a system would be ARM based, possible the newly released all pro-
grammable System on a chip (SoC) Zync-7000 device provided by Xilinx
[40]. As well as this RAM, external connectors such as ethernet and USB,
some form of non-volalite memory (either flash or a hard disk) would be
required on the host system.

The FPGA design and device driver would also be further developed
for Magritek’s use. The user application was fairly basic with the ability to
simply run endpoint speed tests. With some additional work, this could be
further developed to integrate well with the intended NMR/MRI use. On
board the PXIe Peripheral Module was a block of DDR2 RAM which the
device would use when performing transactions. The waveform to be sent
out and received back would be stored in this DDR2 RAM. With this con-
figured, the data could be sent over DMA. When loading the waveforms
to be sent out, this could be loaded up via a DMA read from the periph-
eral unit. When sending data back to the host for further processing, this
could be performed also by a DMA transfer in the other direction. As well
as this, for use in an NMR design, the performance measurement function-
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ality would not be required. Thus the registers and processes used for this
part of the design could be removed which would improve the efficiency
of the design.

The DMA design could be extended to allow Scatter/Gather DMA [41].
The present DMA system requires a block of contiguous or nonsegmented
block of physical memory to transmit. However, on most systems it is dif-
ficult to get nonsegmented memory returned from the operation system.
Thus Scatter/Gather stores the starting addresses of all the memory seg-
ments. After a move operation starts the DMA controller automatically
adjusts the start address of the next segment after a previous segment of
memory is completed. This allows for noncontiguous block of memory
to be sent. Recently released open source solutions have been provided
which could be evaluated for use on the Spartan-6 system [42, 43].

As it currently stands, DMA transfers are instigated by the host provid-
ing an appropriate PIO write command to trigger a DMA transfer. How-
ever, this trigger for DMA transfers could be provided from a number of
sources. For instance, once a NMR/MRI test has been successfully com-
pleted, this could trigger the PCIe controller to send a memory write trans-
fer to the host system.

In order to transfer data greater than 128 bytes of size, the logic to split
the payload data would need to be developed. This could simply limit
packets at 128 bytes or a more sophisticated system which accounted for
the largest payload size allowed could be used. The system would com-
prise of a unit which would take the data to write and separate it into
several chunks so this maximum payload size was not exceeded. This
logic could be added to the transmit unit where it would simply check the
length of the data and the current payload size and once the maximum
was reached, it would create a new TLP.
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