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ABSTRACT 
 

This study has utilised the Mg/Ca paleothermometry method to provide a new, North Island 
reference of sea temperatures in the Southwest Pacific during a period of extreme global 
warming, referred to as the Early Eocene Climatic Optimum (EECO; ~53-50 Ma). This period 
of Earth’s history is of great interest as it represents the warmest climates of the Cenozoic. 
Importantly the climate dynamics of this period as simulated by computer models do not appear 
to match paleo-proxy data, specifically with regard to the latitudinal distribution of heat. 
 
Development of this paleoceanographic record involved detailed mapping of three sections in 
the Wairarapa region (41.506199 S, 175.517663 E) of New Zealand’s North Island. Three 
primary stratigraphic sections (Pukemuri, Awheaiti and Te Oroi Streams) were described and 
dated using foraminiferal and calcareous nannofossil biostratigraphy, with supplementary 
observations and measurements included from sections at Manurewa and Te Kaukau Points. 
These sediments are primarily siliciclastic sandstones and mudstones in composition, and 
sedimentary structures within these sections include turbidite sequences, channelisation and syn-
sedimentary slumping, suggesting the EECO interval here is represented by sedimentation within 
a mid-bathyal submarine channel and fan environment. In contrast, the Early Paleocene 
Manurewa and Awhea Formations have previously been interpreted as a shallow, marginal 
marine environment which is at odds with benthic foraminiferal paleodepth indicators and trace 
fossil assemblages identified in this study.  
 
Selected genera of planktic foraminifera were extracted from the EECO interval and paleo-water 
temperatures determined from Mg/Ca values measured by Laser Ablation Inductively Coupled 
Plasma Mass Spectrometry (LA ICPMS). This method was selected as it allows specific targeting 
of analysis sites, enabling avoidance of contaminated and altered parts of the test. This method 
also provides simultaneous measurements of other trace elements (Al, Si, Ti, Mn, Zn, Sr, Ba) that 
can be used as a guide to preservation state of the test (for example, Al, Ti and Si are considered 
indicators of detrital contamination levels). Four foraminifera genera were selected as suitable 
paleotemperature indicators of separate components of the water column. Morozovella spp. and 
Acarinina spp. were selected for surface mixed layer paleotemperature estimates, Subbotina spp. for 
thermocline temperature values, and Cibicides spp. for bottom water temperature determinations.  
 
SEM images, combined with trace element data were used to parse the resulting Mg/Ca data and 
only those that met strict quality criterion, including low detrital contamination and lack of visual 
evidence for recrystalisation were used for temperature reconstruction. Planktic Mg/Ca data were 
converted to temperature using the relationship (Mg/Ca = [Mg/Casw-t]/[Mg/Casw-0] × 0.38 0.09 × T) 
and benthic Mg/Ca temperatures calculated using (Mg/Ca = [Mg/Casw-t]/[Mg/Casw-0] × 0.87 0.109 × T), 
each assuming an early Eocene seawater Mg/Ca value of 4.1 mol/mol. Calibrated Mg/Ca results 
show peak sea surface temperatures of 29°C for Morozovella and Acarinina in the East Coast Basin 
during the Early Eocene, with bottom water temperatures of 17°C obtained from Cibicides. These 
data are consistent with the high sea surface temperatures reconstructed by previous workers in 
the nearby Canterbury Basin. The data from this new reference point support the idea that the 
EECO was characterised by a lower, possibly absent latitudinal temperature gradient in the mid-
latitude Southwest Pacific, than numerical models suggest, indicating a fundamental gap in the 
knowledge of climate dynamics in conditions much warmer than today.  
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Chapter One 

 INTRODUCTION 

1.1 General Introduction 

Concerns about present global warming have promoted study of Earth’s past climates in order to 

better understand the effects and implications that anthropogenically-driven increases of 

atmospheric carbon dioxide (CO2) concentrations may have on future climate systems. The early 

Eocene (55.8–49 Ma) was the most recent period in Earth’s history to have experienced 

atmospheric CO2 levels as high as those forecast for the peak in CO2 emissions by the year 2400 

(Zachos et al., 2008). Paleoclimate models suggest that the Pacific Ocean played a significant role 

in early Paleogene climate dynamics, and is estimated to have been responsible for up to 80% of 

global heat transport during this time (Huber & Sloan, 2001). 

This study uses the Mg/Ca ratios of carbonate tests of fossil foraminifera to reconstruct sea 

temperatures within the East Coast Basin of New Zealand during the early to middle Eocene. 

The primary aim was to constrain temperature estimates for the Early Eocene Climatic 

Optimum (EECO) and the post-EECO decline in the middle Eocene. Previous temperature 

estimates derived from foraminiferal Mg/Ca ratios and other geochemical temperature proxies 

(Bijl et al., 2009; Hollis et al., 2009; Creech et al., 2010; Sluijs et al., 2011) indicate that southwest 

Pacific sea surface temperatures (SSTs) at high latitudes (55–65°S) were as high as 30°C during 

the Paleocene Thermal Maximum (PETM) and EECO. These tropical-like temperatures are 

difficult to reconcile with known climate dynamics and paleoclimate models (e.g. Huber & 

Caballero, 2011), as they imply that almost no latitudinal temperature gradient existed between 

the tropics and polar regions.  

The southern Hawke’s Bay and Wairarapa area currently lies at 40°S on the East Coast of the 

North Island, New Zealand. However, during the Eocene the New Zealand subcontinent 

occupied a position 10–15° further south (Figure 1.1). The Chatham Rise was a major barrier to 

ocean circulation during the early Paleogene, and location of the East Coast Basin northwards of 

the Chatham Rise, and north of previously studied sites in the Canterbury Basin, means that 

Eocene rocks from this region are ideally suited for the study of high latitude, southwest Pacific 

Ocean temperature dynamics in the Paleogene. This region is especially important in the critical 

period that preceded the development of the modern, global deep-water circulation driver (i.e., 

the Antarctic Circumpolar Current (ACC)). Therefore, this study examines the possibility of a 
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thermal gradient between sites to the south (Burgess et al., 2008; Creech et al., 2010; Hollis et al., 

2012) and in the tropics (Tripati et al., 2003) during the early Eocene. 

The primary study area examined in this thesis is a Paleocene to middle Eocene succession 

located on the southeast Wairarapa coast. Complex vertical and lateral facies changes in this 

succession necessitated the establishment of a robust age and stratigraphic framework, which 

involved extensive field mapping and detailed measurement of stratigraphic sections along with 

microfossil sampling. A secondary comparative sample suite was selected from the sections at 

Tawanui and Aropito in southern Hawke's Bay to provide an additional sample set for 

geochemical analysis. Outcrop studies generated the stratigraphic, microfossil and geochemical 

information, providing a new East Coast Basin record of climatic and oceanographic conditions 

during this past period of extreme global warmth in the “greenhouse” world. This information 

can be used to test modelled scenarios for climate and ocean conditions.  
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Figure 1.1: Paleoenvironmental reconstruction of the southwest Pacific during the early Eocene 
(54 Ma), displaying the locations of key localities utilised in this study (adapted from Hollis et al., 
2012). Sections studied were: TW = Tawanui, TR = Tora, MW = Mid-Waipara River, HD = 
Hampden Beach, CV = Clarence Valley. Core sites are: DSDP 206 and DSDP 277. Also plotted 
are ODP cores 1121, 1124 and 1172, which sampled Paleogene records for the southwest Pacific 
(e.g. ODP 1172: Bijl et al., 2009; Sluijs et al., 2011).  
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1.2 Location and Site Setting 

The location of the New Zealand subcontinent occupied a position approximately 10-15° further 

south during the Eocene than the present (Figure 1.1). Consequently, passive margin sedimentary 

sequences deposited in the East Coast Basin during the early Paleogene record aspects of 

southwest Pacific Ocean climate during this time. For the purposes of this study, two different 

successions from the central East Coast Basin were selected. The Tora area in southeast 

Wairarapa was selected as the primary field area, along with comparative sections and sample 

suites from the Aropito and Tawanui sections in the southern Hawke’s Bay.  

The Paleogene strata of the Tora area provide a sequence of sedimentary rocks deposited 

between the clastic-rich sequence of the rest of the North Island and the pelagic-hemipelagic 

succession of Marlborough (Field, Uruski et al., 1997). The stratigraphy at Tora has long been 

recognised as distinctly different from the successions in these other regions but has received 

remarkably little attention since the original descriptions by Waterhouse & Bradley (1957). There 

is increasing interest in the Cretaceous-Paleogene sequence at Tora because it provides an 

onshore analogue for prospective petroleum basins offshore eastern New Zealand, particularly 

the Pegasus Basin (Uruski & Bland, 2011). The sequence also has potential to contribute to 

studies of past greenhouse climates as it includes expanded intervals of the Paleocene and 

Eocene that can be compared with coeval intervals to the north in Hawke’s Bay (Crouch et al. 

2001, 2003) and to the south in Canterbury Basin (e.g. Burgess et al. 2008; Hollis et al. 2005a; 

2009; 2012). 

 

Tora 

The Tora area is located on the southeastern Wairarapa coast, located 40 km south of 

Martinborough township (Figure 1.2). The 50 km2 field area is bounded by the coast to the east, 

and by large faults and the older rocks of the Aorangi Mountains to the west. Outcrop is 

generally restricted to the shore platform and stream cuttings in several small catchments that 

drain the coastal ranges. Land use is primarily privately held farmland used for grazing livestock, 

and permission is required for access to some stream and coastal sections. Topography 

surrounding the area is rugged, rising to 400 m above sea level less than 1 km from the coast, 

and stream access is occasionally hindered by narrow gorges and waterfalls. Although outcrops 

are predominantly confined to stream beds, they are generally well-exposed with only a moderate 

degree of weathering.  
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A moderately coherent package of early Eocene strata is exposed in Awheaiti and Pukemuri 

Streams at Tora. Stratigraphic relationships are complicated by faulting, folding and occasional 

poor exposure in places, but comprehensive mapping and detailed measurement of stratigraphic 

sections has documented a complete succession containing Early to Middle Eocene strata. 

Samples collected during this fieldwork provided foraminifera and calcareous nannofossil 

assemblages for age, paleotemperature and paleoenvironmental reconstructions.  

 

Tawanui and Aropito Composite Section 

A composite section was produced from two sparsely sampled sections in southern Hawke’s Bay 

to produce a comparative record from elsewhere in the central East Coast Basin, in order to 

eliminate uncertainty arising from local climate variability during the Eocene and post-

depositional diagenetic effects which may have affected the Tora specimens.  

The Tawanui section is located in a tributary of the upper reaches of the Akito River and the 

Aropito section is located ca. 10 km north of Tawanui in Aropito Stream, a tributary of the 

Mangaorapa River (Figure 1.2). The Paleocene–Eocene sedimentary succession at Aropito and 

Tawanui is represented by smectitic mudstones of the Wanstead Formation (Moore & Morgans, 

1987).  
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Figure 1.2: Location of the Tora field area and the position of the Aropito and Tawanui 
sections in the southern Hawke’s Bay. 
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1.3 Paleogene Climate 

The climate of the late Cretaceous and early Paleogene is characterised by temperatures that were 

significantly warmer than the present day, reaching a peak during the early Eocene (Figure 1.3). 

These warm temperatures characterise the 'greenhouse' world of the late Cretaceous to the early 

Paleogene before the onset of cooling which began in the latest Eocene – early Oligocene, 

leading to the icehouse conditions of the Miocene to the present.  

Eocene climate was characterised by some of the warmest temperatures during the Cenozoic 

(Zachos et al., 2001; Tripati et al., 2003). Gradual widespread warming was initiated in the late 

Paleocene (~58 Ma) and culminated in the EECO (53–50 Ma), and was punctuated by an 

abrupt, 150 kyr duration, hyperthermal event (PETM) at the Paleocene-Eocene boundary (56 

Ma) (Zachos et al., 2001; Bijl et al., 2009; McInerney & Wing, 2011; Sluijs et al., 2011). Stable 

oxygen isotope and Mg/Ca trace element studies on fossil planktic foraminifera from deep sea 

sediments indicate a 5–8°C warming during the PETM (Thomas et al., 2002; Zachos et al., 2003). 

The PETM was also associated with a massive release of 13C-depleted carbon, which appears in 

the sedimentary record as a negative carbon isotope excursion, and implies a large, transient 

increase in atmospheric CO2 concentrations at this time (Zachos et al., 2008; Zeebe et al., 2009; 

Sluijs et al., 2011). A similar negative carbon isotope excursion is associated with the EECO, 

suggesting a similar triggering mechanism (Zachos et al., 2001).  

TEX86 sea temperature reconstructions from the southwest Pacific Ocean suggest that SSTs 

reached 34°C during the PETM and EECO, and gradually decreased to 21°C by the late Eocene 

(36 Ma) (Bijl et al., 2009; Hollis et al., 2009; Sluijs et al., 2011). Even though recent reviews of 

these datasets suggest that SSTs may have been overestimated by 5–8°C (Hollis et al., 2010, 2011, 

2012), cool subtropical temperatures (ca. 25–27°C) for southern mid- to high latitudes are only 

marginally cooler than equatorial regions (e.g. Tripati et al., 2003), implying that meridional 

temperature gradients were unusually low in the early Eocene.  

A 17 Myr cooling trend began at the termination of the EECO, and by the end of the Eocene 

(~34 Ma) the first major Antarctic ice sheets had appeared, suggesting that significant cooling 

had occurred and signalling the onset of the ‘Icehouse’ world (Figure 1.3; Zachos et al., 2001; Bijl 

et al., 2009). A decline in deep sea 18O is inferred to represent the combined effects of declining 

temperature (from ca. 12°C to 4.5°C at 34 Ma; Figure 1.3) and growth of Antarctic ice volume 

(Zachos et al., 2001). During the latest Eocene to earliest Oligocene, the Tasman Gateway had 

opened sufficiently to allow the development of a circumpolar current, consequently resulting in 
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the thermal isolation of the Antarctic continent (Carter et al., 1996). This was followed by a 

period of unstable ice sheet fluctuations with permanent ice sheets and complete icehouse 

conditions developing during the middle Miocene (Figure 1.3; Zachos et al., 2001; Miller et al., 

2005).  

 

 

 

 

 Figure 1.3: Global climate record from stacked deep-sea benthic foraminiferal oxygen isotope 
data based on Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) cores. 
Also shown is the presence of permanent or partial ice sheets. The temperature scale was 
calculated assuming ice-free conditions, and therefore does not apply following the glaciation of 
Antarctica (ca. 35 Ma). Figure modified from Zachos et al. (2008).  
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1.4 Unresolved Questions about Paleogene Climate 

Several outstanding questions remain regarding the climate of the early Paleogene. Independent 

proxy records have proven notoriously difficult to verify unequivocally due to inherent 

uncertainties that are unique to each proxy method. Furthermore, modelled early Paleogene 

climate reconstructions are difficult to reconcile with existing geochemical proxy evidence, which 

indicate significantly lower temperature gradients between the equator and the poles than that 

predicted by global circulation models (GCMs). During times of peak warmth in the Early 

Eocene, geochemical proxies indicate sea surface temperatures in excess of 30°C in the high 

latitude southwest Pacific, comparable to low latitude estimates, implying a systematic 

breakdown of the equator-to-pole thermal gradient which cannot be reconciled with the known 

climate dynamics that control climate and circulation models (Hollis et al., 2012). 

The presence or absence of Antarctic ice sheets during the Early to Middle Eocene has long 

been a controversial point. This is significant given the influence Antarctic ice exerts on global 

ocean circulation, latitudinal temperature gradients, and the oxygen isotope ratio of seawater. 

Given that global deep ocean waters are primarily derived from cooling and sinking of dense 

saline water in polar regions (largely during the winter), the deep sea benthic foraminifera record 

may also provide a record of high-latitude winter sea surface temperatures (Zachos et al., 2001). 

However, high-latitude SSTs (>25°C) are difficult to reconcile with early Eocene bottom water 

temperatures (BWT) of 10–13°C suggested by deep sea benthic foraminiferal Mg/Ca and 18O 

(Figure 1.3; Zachos et al., 2001, 2008; Cramer et al., 2011). 

Early to middle Eocene temperature estimates made using the 18O temperature proxy rely on an 

inherent assumption of global ice volume. Small ephemeral ice sheets may have been present on 

the Antarctic continent since the middle Eocene (Ehrmann & Mackensen, 1992; Burgess et al., 

2008). By applying the Mg/Ca paleotemperature proxy, which is independent of ice volume 

effects, these uncertainties can be eliminated. However, the Mg/Ca proxy is not without its own 

complications. The Mg/Ca ratio of seawater has varied significantly over time (Coggon et al., 

2010), and as foraminifera precipitate calcite in equilibrium with the seawater in which they lived, 

the Mg/Ca content of seawater exerts a significant control over Mg/Ca paleo-ocean temperature 

reconstructions. Unfortunately, there are no direct and unequivocal records for Eocene seawater 

cation concentrations, with only modelled values (e.g. Wilkinson & Algeo, 1989; Stanley & 

Hardie, 1998) and indirect evidence from mid-ocean ridge calcite veins (Coggon et al., 2010), 

biogenic calcite (Lear et al., 2002; Dickson, 2004) and halite fluid inclusions (Zimmermann, 2000; 

Lowenstien et al., 2001; Horita et al., 2002).  
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1.5 Aims and Objectives of this Thesis  

The global transition from the ‘greenhouse’ world of the early Eocene into an ‘icehouse’ climate 

remains poorly constrained, with relatively few temperature records from southern high latitude 

regions. This study aims to generate a new southern high latitude record from the East Coast 

Basin of New Zealand documenting the greenhouse climate of the Early Eocene prior to the 

decline to icehouse conditions. These results can then be compared with other intra-basinal 

records, thereby contributing to a robust regional understanding of Eocene conditions 

throughout the New Zealand region. In order to achieve this, the stratigraphy, age and 

paleoenvironment of the sedimentary succession at Tora first had to be reliably determined. This 

required a review and revision the Paleogene stratigraphy at Tora, development of a depositional 

model and demonstration of how Paleogene units and facies may be correlated to the rest of the 

East Coast Basin and included the following approaches:  

 

 I) Field Mapping and Establishing a Lithostratigraphic Framework 

Geological field mapping was an essential prerequisite in this study in order to establish the 

extent and coherency of the stratigraphic succession at Tora. This addressed structural 

complications and exposure. Detailed measured sections were recorded providing a 

lithostratigraphic framework for moderately high resolution microfossil sampling and correlation 

and sedimentological interpretation of paleoenvironments.  

  

II) Biostratigraphic Analysis 

Bulk rock samples yielded foraminifera and calcareous nannofossil assemblages that were used to 

interpret the paleoenvironmental and oceanic conditions at the time of deposition, as well as 

providing age constraints.  

 

III) Geochemical Analysis 

A subset of foraminifera species were selected, prepared and subsequently analysed using laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mg/Ca ratios derived 

from LA-ICP-MS analysis of foraminiferal calcite were used to construct a paleo-sea temperature 

record for the selected interval. Subsets of bulk samples were analysed by the National Isotope 

Centre (Institute of Geological and Nuclear Sciences) for bulk carbonate 13C and 18O values.  

10



 

 IV) Correlation with other Localities 

The results of this study provide a southwest Pacific marine paleotemperature record from the 

Tora, Aropito and Tawanui sections, which can be compared with existing records and used to 

enhance and refine regional paleoclimate reconstructions. Particular focus is given to comparing 

the results obtained with existing studies at Hampden Beach (Burgess et al., 2008) and mid-

Waipara River (Hollis et al., 2009; Creech et al., 2010) in the Canterbury Basin (Figure 1.1).  

 
 

1.6 Thesis Structure and Outline 

Chapter One briefly describes the motivation for this research, and relevant background 

material. Chapter Two outlines the general stratigraphic relationships of the East Coast Basin, 

describes previous work conducted in the Tora field area, introduces the climatic conditions of 

the Paleogene, and the analytical framework of this study. Chapter Three presents in detail the 

field and analytical methods employed in this study, as well as describing key concepts 

surrounding the development of the paleotemperature record and analytical methodology. 

Measured section results and revised formation descriptions, as well as age and environmental 

interpretations, are presented in Chapter Four. Chapter Five outlines the results of geochemical 

sampling and analysis at Tora and the Aropito–Tawanui composite section as well as discussion, 

integration and interpretation of the results along with an inter-basinal comparison of early to 

middle Eocene proxy records. Chapter Six provides a summary of the key findings of this study, 

their implications, and suggestions for future work. All field and analytical data are tabulated and 

listed in Appendices 1 and 2.  

Two manuscripts are currently in preparation as a direct consequence of the material reported in 

this thesis; a revised stratigraphy of the early Paleogene succession of the Tora area (Hines et al., 

in prep [1]) as well as the first quantitative paleotemperature history of the early Eocene reported 

in the North Island of New Zealand (Hines et al., in prep. [2]). Additional related work which is 

beyond the scope of this thesis include Mg/Ca analysis of additional records from the Hampden 

Beach section (Canterbury Basin), published in Hollis et al. (2012), a Mg/Ca paleotemperature 

record from DSDP Site 277 spanning the late Paleocene to early Eocene with particular 

emphasis on the PETM interval (Kulhanek et al., in prep.), and a study on quantifying the effect 

of diagenetic alteration on Early Eocene foraminifera via coupled laser ablation, electron 

microprobe analysis SEM and optical imaging  (Hines et al., in prep. [3]).  
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Chapter Two 

STRATIGRAPHIC AND PALEOCLIMATIC FRAMEWORK 

2.1 Regional Stratigraphy 

Passive margin thermal subsidence following the Late Cretaceous Rangitata Orogeny resulted in 

the formation of several marine sedimentary basins around New Zealand (King et al., 1999; 

Furlong & Kamp, 2009). During the Late Cretaceous and Paleogene, thick sequences of marine 

sediment were deposited in these gradually subsiding basins offshore of New Zealand at a paleo-

latitude of between 48–65° south (Lawver et al., 1992; King et al., 1999). Thus, the sediments of 

the East Coast Basin comprise an overall fining-upwards succession from Cretaceous sandstone 

to Paleocene–Eocene mudstone and muddy limestone (Field, Uruski et al., 1997).  

Moore et al. (1986) divided the Cretaceous-Paleogene stratigraphy of the East Coast Basin into 

three broad lithological divisions. These were subsequently adopted by Field, Uruski et al. (1997) 

in a review of the stratigraphy of the East Coast Basin. The subdivisions are:  

I. A clastic sandstone, mudstone and conglomerate sequence (Early to Late 

Cretaceous). 

II. A fine-grained clastic sequence that becomes increasingly calcareous upwards. 

This is a transitional sequence between divisions I and III (Late Cretaceous to 

Paleocene). 

III. A calcareous, fine-grained sequence comprising smectitic mudstone, micritic 

limestone and glauconitic sandstone (Eocene to Oligocene). 

These divisions are readily recognisable within the general sedimentary succession of the East 

Coast Basin. Correlation of these sedimentary units has allowed the development of a structural 

and stratigraphic framework that enables the relationships between various lithostratigraphic 

components of the East Coast Basin to be determined. Distinct contrasts in the stratigraphy and 

structure were recognised and utilised by Moore et al. (1986) and Moore (1988a) to propose the 

division of the East Coast Basin into structural blocks. These blocks are grouped into the 

Western Sub-belt and the Eastern Sub-belt, and have provided a basis for future studies of the 

complex tectonic processes that have affected the basin following the onset of convergent 

margin tectonism in the late Oligocene to early Miocene (Figure 2.1).  
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In the southern North Island, the Western Sub-belt consists of the Aorangi, Woodville and 

Pongaroa Blocks (Figure 2.1). The Eastern Sub-belt is subdivided into the Coastal and Tora 

Blocks, which are approximately analogous to the narrow (≤10 km wide) onshore expression of 

an accretionary wedge (Figure 2.1). Post-Oligocene east–west orientated compression associated 

with the Kaikoura Orogeny, in conjunction with westward-dipping thrust faulting, has resulted in 

complex folding and faulting relationships in the Tora and Coastal Blocks (Moore, 1988a; 

Berryman et al., 2011). The onshore exposure of the Tora Block is separated from the Pongaroa 

and Coastal Blocks by the Ewe, Hungaroa, Tutu and Adams-Tinui Fault systems (Figure 2.1). The 

eastern and southern extent of the Tora Block is undetermined, but seismic mapping and 

modelling (Barnes et al., 2010; Berryman et al., 2011) suggest that a significant thrust system lies 

close to the Tora-Glenburn coast. The upper Cretaceous strata of the Tora Block are considered 

laterally continuous with the Coastal Block to the north (Crampton, 1997; after Moore et al., 

1986), with the Tora Block distinguished primarily by poorly-defined facies differences in the 

Paleogene sediments. 
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Figure 2.1: Simplified geological map and structural setting of the southern North Island, 
New Zealand, and schematic cross-section (after Moore, 1988a; Little et al., 2009). Key to 
acronyms: ECB = East Coast Basin, EF = Ewe Fault, HF = Hungaroa Fault, ATF = 
Adams-Tinui Fault, TF = Tutu Fault.  
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2.2 Tora Stratigraphy 

Previous Work 

Crawford (1868) noted possible Mesozoic limestones and sandstones on the East Coast, 

describing the rocks as “traversed by reefs of diallage”; a probable reference to the greensand 

dykes that are pervasive through the Whangai, Manurewa and Mungaroa Formations. McKay 

(1878) visited White Rock, describing the limestone as “beyond all doubt Amuri Limestone”, 

suggesting a connection between this locale and northern Marlborough. King (1930) also visited 

the White Rock area, but added little more than stating that the limestone is “certainly 

Notocene” in age (Upper Cretaceous to Recent; Carter et al., 1974). McLean (1953) completed 

mapping of the area, although his study predominantly focused on the Early Cretaceous 

sedimentary sequence in the Aorangi Ranges, but did not map the Paleogene succession at Tora. 

The Paleogene stratigraphy at Tora was originally mapped by Waterhouse (1955). Waterhouse & 

Bradley (1957) published a comprehensive description of the stratigraphy and deformation of the 

Tora succession, as well as formally identifying the formations, assigning ages to the strata and 

discussing the depositional and deformation history. Kirk (1966) completed a BSc Honours 

study on the origin and emplacement of greensand dykes in the Manurewa Formation and the 

Mungaroa Limestone. Moore & Speden (1984) mapped and described the Lower Cretaceous 

succession bounding the Tora Block, but did not refine the Upper Cretaceous–Paleogene 

stratigraphy. Subsequently, Pukemuri Stream was later utilised as a reference section for the 

Upper Cretaceous Whangai Formation (Moore, 1988b). In addition to this, Moore & Morgans 

(1990) measured sections of the Late Cretaceous–Paleogene succession in Awheaiti, Pukemuri 

and Te Oroi Streams for the East Coast Cretaceous–Cenozoic Programme (Field, Uruski et al., 

1997). This was followed by Alexander (1990), who completed a structural field study of the 

northern Tora area for his BSc Honours thesis. North of the Tora field area, Lee (1995) 

conducted a structural study of deformed sediments at Huatokitoki Stream, Glenburn, utilising 

Pukemuri Stream at Tora as a reference section for the Late Cretaceous–Early Paleocene 

stratigraphy. 

Several studies have recognised the Cretaceous–Paleogene (K/Pg) Boundary section at Tora in 

investigations of Late Cretaceous–Early Paleocene sediments (Wasmuth, 1996; Laird et al., 2003; 

Vellekoop, 2010). However, the younger Paleogene sediments remained largely unstudied, 

perhaps due to the difficulties posed by intraformational slumping, variable exposure, tectonic 

deformation and poor access.  
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2.3 Stratigraphy of the Tora Area  

Previous studies have divided the late Cretaceous–Paleogene stratigraphy into eight 

lithostratigraphic units overlying early to mid-Cretaceous Torlesse Supergroup basement (Figure 

2.2). 

 

Pahaoa Group (Early–Middle Cretaceous) 

The Pahaoa Group sediments are generally considered the basement rocks of southern 

Wairarapa. In the Tora area, this is largely represented by the Mangapokia Formation. The mid-

Cretaceous (Motuan) Mangapokia Formation represents the youngest part of the Torlesse 

accretionary wedge and predominantly consists of sandstone, argillite and conglomerate along 

with minor pebbly-mudstone, scattered spilitic igneous rocks and associated volcanogenic 

sediments (Moore & Speden, 1984; Barnes & Korsch, 1991). The accreted submarine fan 

turbidite sequence is weakly metamorphosed and complexly deformed (Barnes, 1988; Barnes & 

Korsch, 1991).  

 

Glenburn Formation (Late Cretaceous) 

The Glenburn Formation comprises an alternating sequence of fine to very-fine sandstone that 

is exposed on a narrow coastal strip at Tora. It has a minimum thickness of 62 m (Laird et al., 

2003), and is inferred to unconformably overlie Mangapokia Formation. A Santonian (late 

Piripauan) age is inferred from inoceramids and dinoflagellates (Crampton, 1996; Laird et al., 

2003). Much of the Glenburn Formation was deposited in a submarine fan environment at 

bathyal depths (Crampton, 1997). However, only the uppermost part of the unit is exposed at 

Tora and sedimentary structures suggest a shallow marine setting (Laird et al., 2003).  

 

Whangai Formation (Late Cretaceous) 

The Rakauroa Member of the Whangai Formation occurs throughout the East Coast Basin, and 

is the only member of the Whangai Formation formally identified at Tora (Moore, 1988b). The 

formation consists of hard, non-calcareous, micaceous siltstone with sparse beds of calcareous, 

glauconitic sandstone. The formation has an estimated minimum thickness of ca. 350 m. The 
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basal contact with the Glenburn Formation is faulted at Tora (Moore, 1988b; Wasmuth, 1996; 

Laird et al., 2003).  

Foraminifera from lower in the formation indicate deposition at shelf depths, possibly with 

reduced oxygen levels (Moore, 1988b). Dinoflagellate assemblages give an early Campanian (early 

Haumurian) age for the base of the section at Pukemuri Stream and a late Campanian–

Maastrichtian (late Haumurian) age for the uppermost Whangai Formation at Manurewa Point 

(Laird et al., 2003).  

 

Manurewa Formation (Late Cretaceous–Paleocene) 

The Manurewa Formation overlies the Whangai Formation with a sharp, channelised lower 

contact (Moore, 1988b; Laird et al., 2003) and exhibits significant variability along strike 

(Waterhouse & Bradley, 1957; Wasmuth, 1996). The formation comprises two informal 

members; a lower limestone member and an upper greensand member. The 4 m-thick lower 

member consists of thin, interbedded glauconitic mud and calcareous beds which grade upwards 

from coarse pebbly sandstones and glauconitic mudstone into pure limestone (Waterhouse & 

Bradley, 1957). The upper member is a ca. 15 m-thick laminated greensand that contains 

abundant pyrite nodules. The basal contact of the upper member is channelised into underlying 

strata and in some sections the lower member is absent (Waterhouse & Bradley, 1957).  

Dinoflagellate and foraminiferal assemblages indicate a Maastrichtian to Paleocene (late 

Haumurian to Teurian) age, with an environment of deposition at middle to lower bathyal 

depths (Wasmuth, 1996; Wilson, 1998; Begg & Johnston, 2000). Several studies have identified 

the Cretaceous–Paleogene boundary at the base of the upper member (Wasmuth, 1996; Laird et 

al., 2003; Vellekoop, 2010). Dinoflagellate assemblages from the lower member of the Manurewa 

Formation are assigned to the latest Cretaceous Manumiella druggii Zone, whereas the upper 

member contains an assemblage that is correlated to the early Paleocene Trithyrodinium evitii Zone 

(Laird et al., 2003).  

 

 

 

18



 

  

Figure 2.2: Summary of Late Cretaceous–Paleogene stratigraphic units and nomenclature of 
the Tora area based on previous studies (Waterhouse, 1955; Waterhouse & Bradley, 1957; 
Moore & Morgans, 1990; Wasmuth, 1996; Laird et al., 2003; Vellekoop, 2010), compared to the 
findings of this study.  
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Paleogene Stratigraphy 

The majority of the lower Paleogene formations at Tora were placed into the ‘Awhea’ Group by 

Moore et al. (1986) and consists of the Manurewa Formation, Awhea Formation, Mungaroa 

Limestone and Awheaiti Formation. The Manurewa Formation is conformably overlain by the 

Awhea Formation, consisting of 270 m of well-bedded glauconitic sandstone (Waterhouse & 

Bradley, 1957; Field, Uruski et al., 1997; Begg & Johnston, 2000). The Mungaroa Limestone 

conformably overlies the Awhea Formation, and is divided into three recognisable members; a 

white calcareous siltstone (base), an alternating sequence of sandstones and siltstones (middle) 

and a porcellaneous micritic limestone (upper) (Waterhouse & Bradley, 1957; Browne, 1987). 

The limestone member is either considerably thinner or entirely absent in several stream sections 

at Tora. However, excellent exposures of the limestone member are observed at Te Kaukau and 

Manurewa Points (Waterhouse & Bradley, 1957; Browne, 1987). The Mungaroa Limestone is 

overlain by cm- to dm-bedded sandstone and siltstone of the Awheaiti Formation (Waterhouse 

& Bradley, 1957). Overlying the Awhea Group are an additional two formations; the Pukemuri 

Siltstone and the Wanstead Formation. An angular unconformity of ca. 15° separates the 

Awheaiti Formation and Pukemuri Siltstone (Waterhouse, 1955). The Pukemuri Siltstone is 

unconformably overlain by the basal conglomerate of the Wanstead Formation (previously the 

Kandahar Formation of Waterhouse (1955) and Waterhouse & Bradley (1957)). The Wanstead 

Formation comprises an estimated thickness of ca. 200 m of largely undifferentiated smectitic, 

calcareous mudstone that is extensively slumped and deformed, displaying poor outcrop 

expression. With the exception of the Wanstead Formation, these Paleogene units are restricted 

to the Tora Block. The Paleogene formations of the Tora area are described in detail in Chapter 

Four.  
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2.4  Paleoceanographic Setting during the Paleogene 

The Antarctic continent is currently thermally isolated by the Antarctic Circumpolar Current 

(ACC), which plays a significant role in the global thermohaline circulation (Kennett & Exon, 

2004; Lyle et al., 2007). The Antarctic region also played a major oceanographic role in the early 

Paleogene, with Global Circulation Models (GCMs) suggesting that the Pacific Ocean alone was 

responsible for 80% of the global heat distribution (Huber & Sloan, 2001). The geometry of the 

Southern Hemisphere ocean basins differed significantly during the early Paleogene. Most 

notably, the modern Southern Ocean did not exist, there was no deep water flow through the 

Tasman Gateway between Australia and Antarctica, and the Drake Passage between South 

America and Antarctica had yet to open, preventing the development of a circumpolar current 

(Carter et al., 1996; Exon et al., 2004). Consequently, no significant oceanic fronts existed in the 

Southwest Pacific Ocean sector during the early Eocene until the initiation of a proto-subtropical 

front (STF) during the late Eocene and the development of the ACC in the Oligocene (Kennett 

et al., 1975; Nelson & Cooke, 2001).  

Model outputs and examination of proxy evidence produce conflicting evidence of ocean 

circulation patterns in the Southwest Pacific Ocean during the Eocene, resulting in two opposing 

models (Figure 2.3). Reconstructions based on proxy evidence (e.g. Murphy & Kennett, 1986; 

Nelson & Cooke, 2001) imply a warm, saline East Australian Current (EAC) which transported 

warm water masses polewards during the Eocene, potentially providing a mechanism for 

Antarctic warmth during this period (Figure 2.3a). Model outputs (e.g. Huber et al., 2004) suggest 

that a northward flowing Tasman Current (TC) prevented the EAC from extending into the high 

southern latitudes (Figure 2.3b), which would imply that southward heat transport by the EAC is 

less significant than suggested by proxy evidence.  

Paleotemperature studies through the Paleocene-Eocene transition (Bijl et al., 2009; Hollis et al., 

2009, 2012) suggest that both scenarios may have operated at different times in the Paleogene, 

and help to explain the pronounced temperature contrast of ca. 10°C between the late Paleocene 

and the early Eocene: the TC and cool cyclonic gyre being predominant in the Paleocene; and 

the EAC and warm anticyclonic gyre predominant in the early Eocene. Given that the transition 

zone between these gyral systems currently straddles the Chatham Rise (i.e. the Subtropical 

Front), it is particularly useful to compare and contrast temperature records obtained from the 

East Coast and Canterbury Basins.   
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 Figure 2.3: Alternative oceanographic scenarios for the Southwest Pacific Ocean during the 
Early to Middle Eocene. A) Reconstruction based on proxy-derived evidence modified from 
Nelson & Cooke (2001). DSDP drill sites labelled. B) Temperature and circulation patterns from 
a climate model output with an atmospheric CO2 concentration of 4480 ppm. Arrow depicts 
vector magnitude. Modified from Hollis et al. (2012).  
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B 
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2.5 Sea Temperature Evolution of the Southwest Pacific 

Stable isotope analysis of DSDP cores 277, 279 and 281 (Shackleton & Kennett, 1975) provided 

the founding basis for the development of a Paleogene marine temperature history in the 

Southwest Pacific region. Warm temperatures of the early Eocene were followed by a rapid 

cooling to the Eocene-Oligocene boundary, marking the onset of deep-water circulation in the 

Pacific. The New Zealand fossil record during the early Eocene is characterised by a warm 

subtropical or marginally tropical climate, as suggested by marine biota (e.g. the tropical planktic 

foraminifera genus Morozovella), coastal mangroves and Cocos trees (Hornibrook, 1992).  

Multiple studies using a variety of proxies have been used to reconstruct sea temperatures during 

the early Paleogene in the Southwest Pacific (Figure 2.4). While the proxies show general 

agreement in the overall temperature trends, there are differences in the actual temperature 

variations. Recent sea temperature studies in the Southwest Pacific (Bijl et al., 2009; Hollis et al., 

2009; Sluijs et al., 2011) indicate that sea surface temperatures (SSTs) rose from ca. 26°C during 

the late Paleocene to ca. 33°C during the PETM (Figure 2.4). However, early Eocene TEX86 SST 

values for the mid-latitude Southwest Pacific are >10°C warmer than predicted by climate model 

simulations for this latitude during the early Eocene (Sluijs et al., 2011). A review of these data by 

Hollis et al. (2012) suggests that a combination of factors have resulted in anomalously warm 

temperature estimates derived from the TEX86 proxy: choice of calibrations (use of the low 

temperature calibration reduces maximum temperatures by ca. 5°C); the role of the EAC 

delivering warm subtropical to tropical water into the SW Pacific; and a likely summer bias that 

applies to all proxy SST data (including Mg/Ca-based SSTs). 

An equatorial Pacific Mg/Ca sea temperature record (ODP Site 865) displays a long-term 

warming trend from 27°C in the late Paleocene to 30°C in the early Eocene between 51.2–48.5 

Ma (EECO), with a rapid cooling to ca. 28°C at 48 Ma (assuming 4.1 mol/mol Eocene Mg/Ca 

seawater concentration) (Tripati et al., 2003; Hollis et al., 2012). Kozdon et al. (2011) obtain 

similar temperatures (ca. 33°C) during the PETM from ion microprobe 18O analysis of 

foraminifera from ODP 865. This temperature record is several degrees warmer than previous 

18O temperature estimates for the same site (Bralower et al., 1995), with the likely cause of the 

discrepancy attributed to secondary calcite overgrowths on foraminiferal tests (Tripati et al., 2003; 

Kozdon et al., 2011). These low-latitude Pacific studies provide ocean temperature estimates 

comparable to those obtained from the mid- to high-latitude Southwest Pacific suggesting that 

minimal or no meridional temperature gradient characterised the early Eocene Pacific Ocean. 
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 Figure 2.4: A compilation of Paleogene ocean temperatures from different proxies (TEX86, 18O 
and Mg/Ca) for the Late Paleocene to Early Eocene of the Southwest Pacific plotted alongside the 
global benthic 18O record. Significantly elevated benthic (bottom water, BWT) and planktic (sea 
surface, SST) temperatures are evident for the Paleocene–Eocene Thermal Maximum (PETM) and 
the Early Eocene Climatic Optimum (EECO). Four alternative calibrations are shown for TEX86-
derived SSTs, with current studies (Hollis et al., 2012) indicating that the low temperature 
calibration of Kim et al. (2010) is the best estimate of Paleocene–Eocene SST in the Southwest 
Pacific. Figure supplied by C. Hollis. 
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2.6 Trace Element Chemistry of Foraminifera 

Calcium in biogenic calcite skeletal structures can be substituted by a variety of divalent cations 

such as Cd, Fe, Mg, Ni, Sr, Co, Zn and Mn (Nurnberg et al., 1996). Ratios of these elements in 

seawater reflect their addition and removal from the oceans and exert a control over many 

geochemical processes, such as the precipitation of aragonite (high seawater Mg/Ca 

concentrations) as opposed to calcite (low seawater Mg/Ca concentrations), as well as affecting 

precipitation of biogenic carbonates and the distribution of carbonate sediments (Coggon et al., 

2010).  

Fluxes in the major ion chemistry of seawater (Na+, K+, Ca2+, Cl-, SO4
2- and HCO3

-) are largely 

driven by geochemical processes, particularly changes in the rate of carbonate deposition, 

continental weathering, and the production and hydrothermal alteration of oceanic crust 

(Elderfield & Schultz, 1996; Lowenstein et al., 2001). Trace element concentrations in seawater 

(e.g. Ti, Mn, Zn, Ba) are more readily affected by biological processes, terrigenous and 

hydrothermal inputs, precipitation of insoluble particulate phases (e.g. barite), and ‘scavenging’ 

(adsorption into solid surfaces) by particulate matter of dissolved cations from solution as they 

progress through the water column (Balistrieri et al., 1981). Particular elements serve different 

roles in the ocean system and can provide proxies for environmental information (Boyle, 1981; 

Marchitto et al., 2000, Anand et al., 2003; Morel & Price, 2003). A primary consideration in the 

extraction of environmental proxy records from foraminiferal calcite is the ocean residency time 

of the elements in seawater, which vary on differing timescales (Table 2.1). Elements 

incorporated in foraminiferal calcite and analysed in this study are discussed below.  

  

Table 2.1: Oceanic residency times of elements used in this study. 

Element
Ocean residency 
Time (ca. Ma) Source 

Mg 13 × 100 Broeker & Peng (1982)

Al 6.2 × 10-4 Brand et al. (1983); Morel et al. (1991) 

Si 1.7 × 10-4 Savenko (2008)

Ca 1.0 × 100 Broeker & Peng (1982)

Ti 8.6 × 10-3 Savenko (2008)

Mn 76 × 10-5 Savenko (2008)

Zn 5.1 × 10-4 Brand et al. (1983); Morel et al. (1991) 

Sr 5.0 × 100 Broeker & Peng (1982)

Ba 10 × 10-3 Paytan et al. (2007)
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Magnesium 

The primary source of Mg in the ocean is the weathering of continental rocks, and its removal 

from the ocean system is due to deposition of dolomite and hydrothermal alteration in mid-

ocean ridge settings. The application of Mg incorporation into carbonates as a paleo-ocean 

thermometer has long been recognised. Clark & Wheeler (1922) proposed the potential of Mg 

substitution in carbonates as a paleo-ocean temperature proxy. Emiliani (1955) recognised the 

implications of detrital contaminants artificially increasing the trace element concentrations 

(particularly Mg, Al, Zn and Ba) of foraminiferal calcite, and the potential impact on Mg/Ca 

paleo-ocean thermometry. Subsequent experimental studies demonstrated that the substitution 

of Mg into inorganic calcite was temperature dependent (e.g. Mucci & Morse, 1983; Oomori et 

al., 1987). 

Culturing experiments have shown that the concentration of Mg into foraminiferal calcite is 

dependent on the endothermic substitution of Mg for Ca within the calcite matrix (e.g. Nurnberg 

et al., 1996; Lea et al., 1999), forming the basis of the Mg/Ca paleo-ocean thermometer. Mg/Ca 

values exhibit an exponential relationship with temperature, indicating that temperature is the 

primary control on the incorporation of Mg into foraminiferal calcite (Lear et al., 2002). This 

process is favoured at high temperatures, resulting in an exponential increase in the Mg/Ca ratio 

of ca. 3–9%/°C in foraminiferal calcite (Anand et al., 2003). The consequence of this is that as a 

paleo-ocean thermometer, the Mg/Ca proxy increases in sensitivity at higher temperatures.  

Temperature dependency of Mg incorporation into foraminifera varies between species, 

requiring species-specific calibrations. Sea temperatures are calculated using an exponential 

relationship between Mg/Ca and temperature expressed in Equation 2.1, where A and B are 

species-dependent pre-exponential and exponential constants, respectively, Mg/Casw-t is the paleo-

Mg/Ca seawater ratio, Mg/Casw-0 is the modern Mg/Ca seawater ratio, and T is temperature (Lear 

et al., 2002; Anand et al., 2003).  

 

 

 

The temperature sensitivity of foraminiferal calcite to Mg incorporation means that secondary 

environmental factors (e.g. salinity and carbonate ion saturation) have a less significant control 

on the incorporation of Mg in foraminiferal calcite. 

Mg/Ca=
Mg/Casw-t x A x exp B x T

Mg/Casw-0

Equation 2.1
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There are two possible mechanisms suggested for the incorporation of trace metals into 

foraminiferal calcite. The first mechanism involves substitution of the trace element directly into 

foraminiferal calcite via solid solution (Lea, 1999). The second mechanism involves ‘trapping’, 

where the metal ion becomes imbedded within the calcite lattice during the precipitation of the 

calcite (Lea, 1999; Erez, 2003). However, the actual mechanism of incorporation is not known at 

present, and potentially varies between both species and trace elements. In addition to Mg, 

several of the transition metals form solid solutions in the carbonate phase and may be utilised as 

proxies for environmental conditions other than temperature and as indicators for post-

depositional chemical alteration of primary foraminiferal calcite. Additional trace elements 

analysed in this study include Al, Si, Ti, Mn, Zn, Sr and Ba. 

 

 Aluminium, Titanium & Silicon 

Aluminium, Ti and Si do not directly substitute into calcite, but indicate the presence of detrital 

sediments which have high concentrations of Al, Ti and Si relative to calcite, and are utilised in 

this study to monitor potential silicate contamination from clay minerals. Silicate minerals are 

high in Mg, and thus silicate contamination of foraminiferal samples can cause temperature 

estimates derived from the Mg/Ca paleo-ocean thermometer to be erroneously high. Al/Ca, 

Si/Ca and Ti/Ca ratios are commonly applied to screen for the effects of silicate contamination 

in foraminiferal Mg/Ca (e.g. Barker et al., 2003; Greaves et al., 2005).  

Conventionally, Al has been used to quantitatively determine the amount of terrigenous material 

in marine sediments (Murray & Leinen, 1996). However, scavenging of Al by particulate matter 

as it descends down through the water column can create Al enrichment. Consequently, the sole 

use of Al as an indicator of terrigenous sediment may overestimate the true terrigenous load by a 

factor of two, particularly in biogenic sediments (Murray & Leinen, 1996). Titanium, which is 

mineralogically bound to the terrigenous fraction (with >95% of Ti contained in silicate phases, 

as compared with Al of which ca. 50% is associated with biogenic components), can provide a 

better indication of terrigenous input (Murray & Leinen, 1996). Titanium is a common minor 

constituent element in clay minerals, pyroxenes and amphiboles (Skrabal & Terry, 2002). The 

most commonly occurring Ti-bearing phases are ilmenite (FeTiO3), sphene (CaSiTiO5), 

titaniferous magnetite (Fe3O4) and hematite (Fe2O3), as well as the TiO2 polymorphs (rutile, 

anatase and brookite). The high resistance of titaniferous minerals to chemical weathering has 

resulted in the use of Ti as an index element against which the mobility of other elements is 
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measured (Correns, 1978). Acid dissolution can make Ti soluble, allowing its mobilisation in 

rocks and minerals (Skrabal & Terry, 2002). As such, Ti may indicate both dissolution and 

silicate contamination in foraminiferal calcite. The major processes controlling the concentration 

of dissolved Ti in seawater is scavenging in particulate matter in low salinity zones of the surface 

ocean and regeneration in the deep ocean (Orians et al., 1990; Skrabal & Terry, 2002).  

Sediment derived from terrigenous sources is particularly high in Si, especially in the case of 

quartz- and feldspar-dominated mineral assemblages. However, in marine settings, silica in 

sediments can also have a biogenic origin.  

 

Manganese 

Variations in the Mn/Ca values of foraminiferal calcite can add to the understanding of factors 

that influence test composition that are unrelated to primary elemental changes in seawater 

chemistry (Lea & Martin, 1996). The Mn content of foraminiferal calcite typically reflects post-

depositional diagenetic processes and the precipitation of Mn carbonate and oxyhydroxide 

phases (Boyle, 1983; Lea, 1999). These phases are an important product of redox reactions in 

suboxic sediments and are often associated with significantly elevated Mg/Ca ratios (Boyle, 1983; 

Pena et al., 2005).  

 

Zinc 

Zinc is concentrated in the deep ocean due to its role as an ocean micronutrient and subsequent 

biogenic export from surface waters to the deep ocean (Morel & Price, 2003). Zinc is 

remobilised by dissolution, and Zn/Ca ratios of benthic foraminifera track dissolved bottom 

water Zn concentrations and the calcite saturation state of bottom water (Marchitto et al., 2000). 

Dissolved Zn concentrations of bottom water are controlled by the circulation of deep-water 

masses. Therefore, Zn/Ca ratios may provide a record of the distribution and circulation of deep 

water masses as well as carbonate ion concentrations (Marchitto et al., 2000). The utilisation of 

fossil foraminiferal Zn as a nutrient proxy is restricted due to its high susceptibility to 

contamination by secondary diagenetic effects (Boyle, 1981; Lea, 1999).  
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Strontium 

In addition to Ca and Mg, Sr forms one of the most important solid solution substitutions in the 

carbonate series. The larger ionic radius of Sr2+ compared with Ca2+ causes it to typically form a 

solid solution with the aragonite structure (Speer, 1983). Strontium content has been shown to 

increase with the increasing Mg content of carbonates, although no temperature control has been 

demonstrated for the incorporation of Sr into foraminiferal calcite (Lea et al., 1999). 

Despite this, Sr is a useful element to monitor because both the Sr/Ca ratio and isotopic 

concentration of pore fluids are sensitive to carbonate recrystallisation (Schrag et al., 1995). Due 

to biological effects, carbonate precipitated from pore-waters in sea floor sediments is enriched 

in Sr relative to biogenic calcite precipitated in equilibrium with seawater (Schrag et al., 1995). 

Dissolution of carbonate on the sea floor increases the Sr concentration of pore fluids and, 

therefore, secondary calcite precipitated from solution is enriched in Sr relative to primary 

biogenic calcite (Schrag et al., 1995). Variations in Sr/Ca values of foraminiferal calcite can thus 

identify diagenetic or growth factors that may in turn have influenced the concentrations of 

other trace elements (Lea & Martin, 1996).  

 

Barium 

Barium tends to be depleted in surface waters and enriched at depth which is primarily a 

function of the precipitation of barite at the surface, which is formed in conjunction with 

particulates, and subsequently sinks and re-dissolves at depth or becomes incorporated into 

sediments (Bishop, 1988; Lea, 1999). Barium may represent an oceanic productivity indicator, as 

elevated Ba concentrations are found beneath the most productive areas of the oceans 

(Shimmield et al., 1988; Dymond et al., 1992). The Ba/Ca ratio of benthic and planktic 

foraminifera can be used to reconstruct the Ba composition of ocean floor and surface waters, 

respectively (Lea & Boyle, 1989; 1991). Therefore, Ba/Ca ratios may be a proxy for biological 

productivity and changes in deep ocean circulation (Lea, 1999), although Ba/Ca ratios of 

foraminifera are readily biased by the presence of barite in sediments and diagenetic overprints.  
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2.7 Key Parameters and Assumptions in Mg/Ca Paleo-Ocean Thermometry 

In order to reliably reconstruct a sea temperature history from fossil foraminiferal calcite using 

Equation 2.1, a number of variables and factors must be taken into account apart from just the 

measured Mg/Ca ratio. The most notable of these are the Mg/Ca ratio of seawater at the time 

the species was extant, foraminiferal vital effects that are corrected by the application of species-

specific calibration constants, and assessment of whether the primary foraminiferal calcite 

Mg/Ca value has indeed been preserved. 

  

2.7.1  Eocene Seawater Mg/Ca ratio 

The Mg/Ca ratio of seawater has changed over time as a function of variations in the flux of Mg 

into the ocean (hydrothermal and continental weathering) and Mg drawdown into marine 

sediments. Due to the oceanic residence time of Mg (10–13 Myr) and Ca (1–2 Myr), changes in 

seawater Mg/Ca ratios are insignificant on glacial-interglacial time scales, but become relevant on 

timescales of tens of millions of years (Lear et al., 2002). The Mg/Ca ratio of Eocene seawater 

(Mg/Casw) has been the subject of much debate. Low values (<3 mol/mol; Table 2.2) suggested 

by long-term modelling and inorganic geochemistry result in unreasonably high sea temperatures 

(Tripati et al., 2003; Sexton et al., 2006a; Hollis et al., 2012). Figure 2.5 shows how the assumed 

seawater Mg/Ca ratios affects sea temperature determinations from foraminiferal calcite.  

 

 Table 2.2: Estimates of values for Eocene seawater Mg/Ca ratios.  

Study Method 
Eocene Mg/Casw 

(mol/mol) 

Wilkinson & Algeo (1989) Modelled 4.07 

Stanley & Hardie (1998) Modelled 1.6 

Zimmermann (2000); Lowenstein et al. (2001) Fluid inclusions 2.5–3.7 

Lear et al. (2002) Foraminifera Mg/Ca 3.3–4.6 

Dickson (2004) Echinoderms 1.7 

Horita et al. 2002 Halite inclusions 2.4 

Coggon et al. (2010) CaCO3 veins 1.5–2.5 

 

 

30



 

The relationship between benthic foraminiferal Mg/Ca ratios and bottom water temperatures 

was revised by Lear et al. (2002), and application of the revised calibration to Cenozoic 

foraminifera used to infer that Eocene Mg/Casw was no more than 35% lower than the modern 

value of 5.16 mol/mol, and most likely within the range of 3.3–4.6 mol/mol. Tripati et al. (2003) 

utilised bracketed Mg/Casw values of 3.0–3.5 and 5.1 mol/mol for tropical Mg/Ca paleo-ocean 

temperature reconstructions. Sexton et al. (2006a) combined paired Mg/Ca and 18O records 

from well-preserved Eocene foraminifera, and showed that for Eocene Mg/Casw values of 3.1–

5.1 mol/mol, the higher values resulted in the best fit with 18O-based temperatures (assuming 

ice-free conditions). Middle Eocene paleo-ocean temperatures derived by Burgess et al. (2008) 

utilised a Mg/Casw value of 4.07 mol/mol (after Wilkinson & Algeo, 1989), which yielded a good 

agreement between Mg/Ca, 18O and TEX86 proxies. A Mg/Casw ratio of 3.35 mol/mol was 

adopted for paleo-ocean temperature reconstructions in the Canterbury Basin, based on the Lear 

et al. (2002) findings (Hollis et al., 2009; Creech et al., 2010; Creech, 2010). However, Hollis et al. 

(2012) adopted a higher value of 4.0 mol/mol, which is consistent with Cenozoic Mg/Casw ratios 

modelled by Wilkinson & Algeo (1989) and in line with the observations of other studies (Lear et 

al., 2002; Tripati et al., 2003, Sexton et al., 2006a). Reconciling the discrepancies between 

estimates for Eocene Mg/CaSW derived from foraminifera and other methods will require more 

thorough consideration of the effects of carbonate ion saturation state and in Mg partitioning 

during calcification (Lear et al., 2010; Hasiuk & Lohmann, 2010; Cramer et al., 2011). In this 

study, a Mg/CaSW value of 4.1 mol/mol has been adopted  to provide conservative temperature 

estimates for the Early Eocene that are in line with multiproxy paleotemperature determinations 

(after Hollis et al., 2012). 
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 Figure 2.5: Demonstration of the sensitivity of temperature reconstructions to seawater Mg/Ca 
ratios at 48–49 Ma (adapted from Billups & Schrag, 2003). Contours represent benthic 
foraminiferal Mg/Ca ratios (in mmol/mol) derived using the Lear et al. (2002) calibration. The 
square denotes the intersection between foraminiferal Mg/Ca ratios and seawater Mg/Ca ratios 
from Stanley & Hardie (1998). The open circle marks the intersection between foraminiferal 
Mg/Ca ratios and the seawater Mg/Ca ratios of Wilkinson & Algeo (1989) and the star shows 
the relationship between observed foraminiferal calcite Mg/Ca and modern Mg/Ca ratio of 
seawater (Elderfield & Schultz, 1996).  

 

2.7.2 Mg/Ca–Temperature Calibration 

Only a few genera of Eocene foraminifera are still extant, necessitating the use of calibrations 

developed from modern species (e.g. Lear et al., 2000, 2002) and multi-species calibrations (e.g. 

Anand et al., 2003) in this study. A calibration is required to translate the exponential relationship 

between foraminiferal calcite Mg/Ca values to a sea temperature record (Figure 2.6). A number of 

Mg/Ca sea temperature calibrations exist for modern planktic foraminifera (Table 2.3), but there 

are limited calibrations available for benthic foraminifera (Billups & Schrag, 2003). Biological or 

vital effects on the incorporation of Mg into foraminiferal calcite appear to be exaggerated in 

benthic foraminifera, making genus-specific calibrations essential for the reliable determination 

of past bottom water temperatures.  
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 Figure 2.6: Mg/Ca–temperature calibration from ten planktic foraminifera species selected from 
coretop samples, with a fitted calibration curve displaying the exponential relationship between the 
Mg/Ca ratio of foraminiferal calcite and the calcification temperature (determined by oxygen isotope 
data). Modified after Anand et al. (2003).  

 

 

Table 2.3: Examples of species-specific calibration constants for various foraminifera.  

Species Source A B Reference 

Neogloboquadrina pachyderma Coretop samples 0.46 0.088 Nurnberg et al. (1995) 

Globigerina sacculifer Culture 0.39 0.089 Nurnberg et al. (1996) 

Globigerina bulloides Culture 0.53 0.102 Lea et al. (1999) 

Globigerinoides ruber Coretop samples 0.30 0.089 Lea et al. (2000) 

Mixed Coretop samples 0.52 0.100 Elderfield & Ganssen (2000)

Mixed Sediment trap 0.38 0.09 Anand et al. (2003) 

Cibicidoides spp.  Coretop samples 0.87 0.109 Lear et al. (2002) 

Hoeglundina elegans Coretop samples 0.96 0.034 Rosenthal et al. (2006) 
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2.7.3 Preservation of Foraminiferal Calcite 

In order to reliably reconstruct past ocean temperatures from the chemistry of foraminifera tests, 

it is important to ascertain the extent to which diagenesis has affected test chemistry, particularly 

the stable isotope and trace element chemistry. Ocean thermometers dependent on biogenic 

calcite (18O and Mg/Ca) are influenced by the presence and composition of secondary calcite, 

with recrystallisation generally biasing temperature estimates towards cooler values (Tripati et al., 

2003). Subsequently, ambiguities associated with interpreting the 18O record have yielded a 

discrepancy between proxy records, termed the ‘cool tropics paradox’ (Tripati et al., 2003; Sexton 

et al., 2006a), which is now inferred to be a function of diagenetic overprinting, whereby the 

oxygen isotope ratios of decalcified outgrowths bias recovered sea temperatures to erroneously 

low values (Kozdon et al., 2011). Temperatures may be biased towards higher values by the 

addition of secondary calcite from diagenetic fluids post-burial, and contamination from Mg-rich 

silicate minerals. 

A range of diagenetic processes may affect a foraminiferal test after death during its descent 

through the water column and subsequent incorporation and burial in sea floor sediment. These 

processes may be divided into three distinct categories; overgrowths, dissolution, and 

recrystallisation (Pearson & Burgess, 2008).  

Overgrowth occurs when inorganic calcite is precipitated on the exterior or interior surfaces of 

the test. In calcareous sediments, it is common for tests to be completely infilled with diagenetic 

calcite. This inorganic calcite can often be visually distinguished because it consists of large 

equant and euhedral crystals. Dissolution has been shown to preferentially remove Mg2+ during 

early stages of dissolution, resulting in lower Mg/Ca ratios (Pearson et al., 2006). Recrystallisation 

is a less obvious process in which the original microgranular structure of the test is replaced by 

larger, more equant crystals, with the end state of this process typically consisting of loosely 

packed, blocky calcite crystals (Pearson & Burgess, 2008). One of the most obvious indicators of 

recrystallisation is the replacement of the translucent (‘glassy’) appearance of well-preserved 

specimens with an opaque ‘frosty’ texture (Figure 2.7; Pearson et al., 2001; 2006; Pearson & 

Burgess, 2008). These two conditions, ‘glassy’ and ‘frosty’ represent end-member states, with a 

continuum of potential appearances in between these. Frequently, frosty material has only 

undergone comparatively minor diagenetic alteration, and material that has processed further 

through the process may be described as ‘chalky’. Foraminifera may be entirely recrystallised 

without displaying any significant overgrowths or infilling, whilst in other cases they may be 
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completely infilled whilst retaining the original microgranular structure (Pearson & Burgess, 

2008).  

The mode of diagenetic alteration depends on a combination of several factors, including time, 

burial history, sediment composition, pore water chemistry and burial temperature (Pearson & 

Burgess, 2008). Fossil tests sourced from relatively impermeable clay-rich sediments tend to 

exhibit near-pristine microgranular structures, whereas tests from carbonate oozes in deeper 

oceanic settings are almost always recrystallised to some degree (Figure 2.7; Pearson et al., 2001; 

Pearson & Burgess, 2008).  

 

 

Figure 2.7: Comparison of examples of ‘glassy’ and ‘frosty’ Morozovella spp. and Subbotina spp. 
foraminifera in early Eocene sediments from Hampden Beach and DSDP Site 277 showing how 
‘frosty’ foraminifera may appear to be well preserved, yet display signs of recrystallisation of 
micron-scale features on the test surface. Scale bars on whole test images images are 100 µm in 
length, whilst scale bars on test surface images are 10 µm long. SEI = scanning electron image, 
BSI = back-scatter electron image. Hines, unpublished data. 
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2.7.4 Laser Ablation Analysis 

The application of the laser ablation method allows distinct chamber and chamber wall layer 

compositions to be resolved within tests and individual chambers (Eggins et al., 2003). Surface 

veneers enriched in Mg, Mn, Zn and Ba are found on all fossil specimens and live-sampled 

(plankton-tow) tests of Globerginoides ruber, potentially suggesting a biological, rather than 

diagenetic origin for the enriched mantle (Eggins et al., 2003). These veneers would induce a 

warm temperature bias in bulk test composition analyses that is not reflective of the true 

environmental conditions (Eggins et al., 2003). The application of the laser ablation inductively 

coupled plasma mass spectrometry (LA-ICP-MS) method avoids this issue. A further major 

advantage of using the laser ablation method is that the foraminifera test is preserved for any 

subsequent work, such as stable isotope analysis or electron microscopy, which allows sources of 

potential error or contaminant(s) to be identified. This is particularly important for the 

application to Eocene foraminifera in this study, where there are limited numbers of 

foraminifera, and considerable potential for detrital and diagenetic contamination. 

An additional benefit of applying the laser ablation technique is that less exhaustive cleaning 

measures are required prior to the analysis of individual foraminifer tests. Oxidative and 

reductive cleaning methods can significantly reduce the measured Mg/Ca values of fossil 

foraminifera (Martin & Lea, 2002). Mg-bearing contaminants originating from remnant 

foraminiferal organic matter can be removed through thorough rinsing of the test in distilled 

water and methanol (Martin & Lea, 2002). Although this method does not remove exterior Fe-

Mn oxy(hydroxides) and mixed Mn-Ca-Mg authigenic coatings, which form a fine film on the 

exterior of the fossil tests, the effects of these contaminants can be avoided by the application of 

the laser ablation method and the screening of individual ablation depth profiles (refer to 

Chapter Three).  
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2.8 Other Relevant Paleoclimate Proxies Utilised in this Study 

2.8.1 Bulk Carbonate Stable Carbon and Oxygen Isotopes 

Changes in the ratio of carbon stable isotopes (12C, 13C) in carbonates provide information 

regarding perturbations of the carbon cycle. Typically, stable carbon isotopes represent the 

modulation of a global signal by local effects. Changes in the marine 13C record generally reflect 

changes in the size of the terrestrial biosphere and/or a disruption of the carbon cycle due to 

alteration of a geological source or sink, release of gas hydrates, volcanic degassing or organic 

matter accumulation (Zachos et al., 2008; Zeebe et al., 2009). The onset of the PETM and EECO 

were both accompanied by a large negative shift in 13C recorded in marine sediments (Zachos et 

al., 2001), making carbon isotope analysis a useful correlation tool in calcareous sediments of this 

age (e.g. Hollis et al., 2005b). Carbon isotopes are less prone to diagenetic alteration than oxygen 

isotopes as the 13C ratio of pore waters is buffered by the seafloor carbonate reservoir (Sexton et 

al., 2006a). 

The ratio of the stable isotopes of oxygen (16O, 18O) is perhaps the most established geochemical 

paleo-ocean thermometer, which provided the first quantitative Cenozoic paleo-ocean 

temperature records (Shackleton & Kennett, 1975). The use of oxygen stable isotopes of oxygen 

as a paleo-ocean thermometer was first suggested by Urey (1947), and further developed by 

Epstein et al. (1951), who determined a calibration for the temperature-dependent fractionation 

of oxygen isotopes between molluscan carbonate and water. Emiliani (1955) then applied this 

method to planktic foraminifera from deep sea cores, showing that foraminifera precipitate their 

tests in isotopic equilibrium with seawater, enabling their application in paleoclimatic studies, 

provided the isotopic composition of seawater (18Osw) is known. 

The ratio of 18O to 16O (18O) of foraminiferal calcite is primarily dependent on two factors; 

temperature and global ice volume. 18Osw is dependent on ice volume because the lighter 

isotope (16O) is preferentially removed from the oceans by evaporation, and when this is 

precipitated as snow and locked in continental ice sheets, the ocean becomes enriched in the 

heavier 18O isotope. The precipitation and accumulation of “lighter” water in continental ice 

sheets removes a substantial proportion of 16O from the system. Therefore, changes in global ice 

volume can have a significant effect on the 18O value of seawater. This can lead to some 

uncertainty in paleo-ocean temperature determinations, particularly during the Eocene, where the 

presence or absence of Antarctic ice sheets is a matter of controversy (Dawber & Tripati, 2011). 
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Therefore, certain assumptions must be made with respect to ice volume and the isotopic 

composition of ice sheets when applying the stable oxygen isotope paleo-ocean thermometer. 

When applying an ice volume correction for paleo-ocean temperature calculations, values used 

for 18Osw assuming an ice-free world are usually either –1.0‰ or –1.2‰ PDB (e.g. Shackleton 

& Boersma, 1981; Zachos et al., 1994).  

The bulk carbonate 18O signal represents an amalgamation of values sourced from planktic and 

benthic foraminifera, calcareous nannofossils, as well as any inorganic calcite present. Typically, 

the bulk carbonate 18O record has an intermediate value between planktic and benthic 

foraminiferal 18O values, with diagenetic calcite creating more negative values. The 18O signal 

can be affected by diagenesis and interaction with pore waters (Hollis et al., 2003). Nelson & 

Smith (1996) showed that Late Cretaceous to early Paleogene micritic limestones in New 

Zealand yield more depleted 18O values than many other Cenozoic limestones. Several potential 

explanations are possible, including increased burial pressures and tectonic stresses, diagenetic 

alteration, and/or warmer (and more 18O depleted) oceans during the Late Cretaceous to early 

Paleogene.  

Both the isotopic ratios of carbon and oxygen in carbonates are usually expressed in delta 

notation in per mil (‰) units difference, relative to a standard (typically the Pee Dee Belemnite 

(PDB) for carbonates). Calculation of the delta notation for oxygen isotopes is shown in Equation 

2.2.  
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൲	ൈ 1000  

 

 

2.8.2 GDGT-based SST proxies 

The development of thaumarchaeol lipid-derived SSTs, such as TEX86, which are based on the 

relative abundance of glycerol dialkyl glycerol tetraethers (GDGTs), provides an alternative 

quantitative temperature proxy that is independent of foraminiferal calcite. The TEX86 index 

(TetraEther indeX of the tetraethers consisting of 86 carbon atoms) is based on the distribution 

of cyclopentane rings in sedimentary membrane lipids derived from marine thaumarchaeota, 

which has a linear correlation with mean annual SST. Using this correlation, Schouten et al. 

Equation 2.2
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(2002) developed a calibration relating the TEX86 index to SST. As laboratory studies and core-

top sampling has progressed, several new calibrations have been developed (e.g. Liu et al., 2009; 

Kim et al., 2010). Most recently, Hollis et al. (2012) developed a paleo-calibration by relating 

TEX86 values to independently-derived SST estimates in several Eocene records. They showed 

that for the middle- to high-latitude Southwest Pacific, the best match between the paleo-

calibration and modern calibrations was with the low temperature calibration of Kim et al. 

(2010). 

 

2.8.3 Faunal assemblages 

In addition to providing chronologic constraints, marine microfossil assemblages can provide 

qualitative assessments of paleoenvironmental and paleoclimatic conditions through comparison 

with modern assemblages and their known environmental preferences. Marine microfossils have 

been extensively used to both qualitatively and quantitatively reconstruct paleoenvironmental 

conditions, including ocean temperatures, salinity, oxygenation, nutrient availability and 

productivity. Various microfossils preserved in sediments can be utilised, such as radiolarians, 

dinoflagellates, foraminifera and nannofossils (Crouch & Brinkhuis, 2005; Hollis, 2006). These 

organisms are particularly useful for age and paleoenvironmental identification as they tend to be 

widespread, and at least one group is preserved in most types of marine sediment (Brasier, 1980).  

Benthic foraminifera are particularly useful to provide paleodepth constraints in addition to 

bottom water oxidation, temperature and salinity (Kaiho, 1994; Hayward et al., 2010) as well as 

the redox state of the seafloor sediments. However, benthic foraminifera can tolerate a wide 

range of conditions, so it is often beneficial to consider the entire benthic assemblage.  

The proportion of cold and temperate species present in planktic foraminiferal assemblages can 

indicate the temperature of the overlying water column. However, the temperature preferences 

of early Paleogene foraminifera are not known with certainty as there are no extant 

representatives of this fauna. Despite this, the restricted latitudinal extent of particular species 

can make them reasonable indicators of relative SSTs. In addition, stable isotope analysis of 

individual foraminifera species within an assemblage can provide constraints on their depth 

preference within the water column (Figures 2.8 & 2.9).  
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2.9 Foraminiferal Ecology 

An important factor that should be taken into consideration for Mg/Ca paleo-ocean temperature 

estimates is species-specific habitats and life cycles. Foraminifera are a diverse group of marine, 

single-celled protists that shield their protoplasm with a secreted calcareous (CaCO3) skeletal 

structure, called a test, and inhabit all aspects of the marine environment from shallow marginal 

marine environments to abyssal settings below the carbonate compensation depth (CCD) (Wade 

et al., 2008; Hayward et al., 2010). The preservation and accumulation of foraminifera tests in the 

sedimentary fossil record can be interpreted to determine the relationships between climatic and 

paleoceanographic controls (Wade et al., 2008).  

The environment inhabited by particular foraminifera species has significant implications for 

paleo-ocean temperature interpretations. The foraminifera species used in this study are extinct, 

and information pertaining to the ecology of these species is somewhat limited. Test morphology 

is not a particularly strong indicator of the ecology of planktic foraminifera. For example, 

Acarinina and Morozovella species have both been shown to be strongly photosymbiotic with non-

spinose tests, which strongly contrasts with all modern foraminifera known to bear 

photosymbionts that are muricate and non-keeled (D’Hondt et al., 1994). In the late Paleocene to 

middle Eocene, spinose and keeled Morozovella and Acarinina species dominated near-surface 

planktic foraminiferal faunas, whereas spinose and non-keeled taxa (e.g. Subbotina spp.) inhabited 

deeper and cooler water masses. This is the opposite of the relationship between test 

morphology and habitat occupation exhibited by planktic foraminifera in the modern oceans 

(D’Hondt et al., 1994).  

Carbon and oxygen stable isotope analysis of individual species within an assemblage provide 

some of the most robust insights into the ontogeny (life cycle) of extinct Paleogene planktic 

foraminifera. Foraminifera that contained photosymbionts exhibit higher values of 13C, whilst 

asymbiotic taxa demonstrate lower values with considerable variability (Figure 2.8). Details of 

species utilised in this study are listed in Table 2.4. 
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Figure 2.8: Model for the identification of symbiotic relationships in planktic foraminiferal calcite from 
carbon and oxygen stable isotope variations. Figure taken from Quillévéré et al. (2001). 

 

 

Figure 2.9: A) Changes in stable isotopes (13C, 18O) relative to depth in the water column. B) Inverse 

relationship between test size and stable isotopes (13C, 18O) with respect to decreasing water depth. 
Image modified from Wade et al. (2008), after Birch et al. (2012). 
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 Genera of Foraminifera used in this Study 

The muricate planktic foraminifera genus Morozovella was an abundant and diverse taxon during 

the late Paleocene to middle Eocene, dominating tropical to subtropical assemblages before a 

significant biotic turnover in the late Middle Eocene resulted in the extinction of the Morozovella 

lineage (Wade, 2004). Oxygen and carbon stable isotopes indicate that Morozovella species likely 

occupied the warmest and shallowest levels of the surface mixed layer (Birch et al., 2012), and the 

presence of dinoflagellate symbionts suggests this genus occupied an environment within the 

photic zone of the ocean (upper ca. 200 m). An inverse relationship between test size and 18O is 

present in Morozovella suggesting larger morozovellids occupied higher levels in the water column 

(Birch et al., 2012). Due to the strongly symbiotic relationship of morozovellids, individuals living 

deeper in the water column, where light intensity and temperatures are lower would have 

reduced photosymbiont activity and therefore resulted in smaller tests (Figure 2.9; Birch et al., 

2012). Two species, Morozovella crater and Morozovella lensiformis (Figure 2.10; Table 2.4) were utilised 

for Mg/Ca paleo-ocean thermometry in this study.  

The genus Acarinina generally had a cosmopolitan distribution and, unlike Morozovella, some 

species were adapted to cool, high-latitude conditions (Pearson et al., 2006). Most Acarinina 

species occupied a mixed layer habitat (Pearson et al., 2006). Two species, A. primitiva and A. 

collactea were preferentially picked from the Acarinina genus for Mg/Ca paleo-ocean thermometry 

in this study (Figure 2.10; Table 2.4). 

Subbotina was a cosmopolitan genus common at high latitudes (Pearson et al., 2006). The absence 

of a 13C symbiosis ‘fingerprint’ indicates that the taxa was asymbiotic and maintained a relatively 

constant depth habitat within or below the thermocline, representing temperatures from around 

ca. 400 m water depth (D’Hondt et al., 1994; Pearson et al., 2006; Birch et al., 2012). The test wall 

structure of Subbotina is very similar to the modern planktic foraminifera Globigerinoides sacculifer, 

with a coarsely cancellate wall produced from a well-developed pore-ridge system (Sexton et al., 

2006b). Some Eocene specimens display extensive, heavy gametogenic calcification (Pearson et 

al., 2006). Subbotina generally were not subdivided at species level for this study.  

The rotaline benthic genus Cibicides may have had an attaching epifaunal habitat either above or 

on the sediment–water interface, and is indicative of oxic water conditions (Kaiho, 1994). Two 

species, C. eocaenus and C. truncatus were preferentially picked from assemblages (Figure 2.11; Table 

2.4).  
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Figure 2.10: Examples of well-preserved Morozovella and Acarinina species from the Hampden 
Beach section. A–C) Morozovella crater (md = 0.41 mm); D & E) Morozovella lensiformis 
(maximum dimension (md) = 0.31 mm); F–H) Acarinina primitiva (md = 0.23 mm); I–K) 
Acarinina collactea (md = 0.31 mm). Images adapted from Morgans (2009).  
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Figure 2.11: Examples of well-preserved Subbotina and Cibicides species from the Hampden Beach 
section. A–C) Subbotina linaperta (md = 0.31 mm) A) View of final whorl, B) Apertural view, C) 
Umbilicus view; D–F) Subbotina eocenica (md = 0.34 mm); D) View of final whorl, E) Apertural/side 
view, F) Umblicus view; G & H) Cibicides truncatus (md = 0.85 mm); I & J) Cibicides eoceanus (md = 
0.56 mm). Images adapted from Morgans (2009).  
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 Table 2.4: Summary of important statistical information for the foraminiferal species utilised for trace element analysis in this stud

Species Morozovella 
crater 

Morozovella 
lensiformis 

Acarinina 
primitiva 

Acarinina 
collactea 

Subbotina 
spp. 

Cibicides 
eocaenus 

Cibicides 
truncatus 

Morphotype Planktic Planktic Planktic Planktic Planktic Benthic Benthic 

Age Range (Ma) 53.3–49.3 54.52–53.06 55.8–38.5 53.3–37.43 Dt–lLwh 53.3–27.3 53.3–30.4 

Latitudinal Range Mid- to high 
latitudes 

Mid- to high 
latitudes 

High latitudes, 
less common 

at low 
latitudes 

Mid- to high 
latitudes High latitudes - - 

Environment Surface mixed 
layer (<200 m) 

Surface mixed 
layer (<200 m) 

Surface mixed 
layer (<200 m) 

Surface mixed 
layer (<200 m) 

Thermocline 
(ca. 400 m) 

Epifaunal 
(>200 m) Epifaunal 

Test Structure Muricate, 
keeled 

Muricate, 
keeled Muricate Muricate Coarsely 

cancellate Porcellaneous Porcellaneous 

Description 

Plano-conical 
form with five 

chambers in the 
final whorl, 
spinose keel, 

wide umbilicus 
surrounded by 

strongly 
muricate distal 

ends of 
chambers, 

dextrally coiled 

Four chambers 
in the final 
whorl, keel 

present only on 
final chamber, 
sinstrally coiled 
except at top of 

range 

Angular form 
with flattened 
inner chamber 
faces, deeply 

incised sutures 
and strongly 
muricate test 

Small inflate 
hispid form 

with five 
chambers in the 
final whorl and 

low, arched 
aperture 

Typically 3–31/2 
chambers in the 

final whorl, 
spinose 

Rounded, 
strongly 

planoconvex 
form with 
coarsely 

punctuate 
surface on 

uncoiled side 

Dorsally 
evolute, 

smooth, gently 
convex, 
ventrally 
strongly 

reticulate and 
flat or gently 
convex with 

strongly 
carinate 

periphery 

Symbionts Yes Yes Yes Yes No No No 
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Chapter Three 

FIELDWORK AND LABORATORY TECHNIQUES 

Fieldwork at Tora initially focused on geological mapping to delineate structural complications 

and ensure the establishment of a coherent stratigraphy. Once this was completed, locations of 

sections to be investigated in detail were selected and subsequently measured, and bulk rock 

samples collected. Samples were split for various analyses and then processed for microfossil and 

bulk rock analysis.  

 

3.1 Stratigraphy & Field Measurements 

3.1.1 Geological Mapping & Section Measuring 

Field mapping was conducted with the aid of enlarged copies of the Topo50 BR34 map sheet 

(NZMS 260 sheet S28 map grid replacement; Figure 3.1). Sample localities are referenced in the 

New Zealand Fossil Record File (FRF) with respect to the old NZMS 260 map series. Given that 

Land Information New Zealand (LINZ) has recently converted the NZMS 260 map sheets to 

the Topo250 and Topo50 map sheets, which utilise a different co-ordinate system, a conversion 

table between the two co-ordinate systems is provided in Appendix 1. 

Geological mapping included traverses along the main streams and tracing faults in outcrop, in 

addition to examining aerial photographs and satellite images. Outcrop descriptions of the gross 

lithology and sedimentology were described in the field, in addition to identification of trace 

fossil assemblages.  

The tape and compass method was utilised to produce measured sections. Strikes and dips were 

recorded several times along each section, and the true stratigraphic thickness calculated utilising 

the ‘Sections’ programme developed by Dr James Crampton (GNS Science) to calculate the true 

stratigraphic thickness of the section. Bulk rock samples of approximately 1000 g were collected 

during the measurement of sections. A handheld GPS unit with an accuracy of ±3.0 m provided 

supplementary data for field mapping and was used to record the location of sections and 

samples.  
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Figure 3.1: Location of NZMS 260 S28 map sheet and the superseding Topo50 map sheets BQ34, 
BR33 and BR34 covering the field area mapped in this thesis.   

 

 3.1.2 Paleo-Current Directions 

Paleo-current directions were calculated from the orientation of long-axis of large elongate 

foraminifera (Bathysiphon) which are common in the Awheaiti Formation in Pukemuri Stream. 

The specimens observed in outcrop at Tora range from 6-50 mm in length and display a 

preferred orientation, from which ninety individual lineation measurements were recorded 

(Appendix 1). The measurements were then subdivided into 10° increments and plotted against 

frequency as a rose diagram.  
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 3.1.3 Paleo-Slope Directions 

Paleo-slope directions were determined from the orientation of the axial plane of syn-

depositional slump folds formed by the plastic deformation of soft sediment (Figure 3.2). The 

axis of the slump fold reflects the direction of downslope slumping during deposition. Slump 

folds were measured in Te Oroi and Pukemuri streams and data plotted on a stereo-net to 

correlate and evaluate relationships between folds.  

 

 

Figure 3.2: Schematic diagram displaying slump orientation relative to movement. Image adapted from 
Tucker (2011). The slope direction corresponds with the direction of movement. 

 

Regional tilting of strata in the Tora necessitated removal of tectonic influences. A regional 

correction of 30° was applied to correct for tilting. In addition, resulting data was rotated 40° 

anticlockwise to correct for a regional rotation of the East Coast Basin since the Eocene (King et 

al., 1999). Strikes and dips of bedding surrounding slump structures and paleocurrent lineations 

were measured and used to remove structural deformation influences on the directionality of 

these features by manually plotting measurements on stereonets. In stereonet rotations, it is 

assumed that there has been no rotation around the vertical axis during deformation.  

 

3.2 Sample Processing 

Each bulk rock sample was split into four fractions, with a quarter each used for nannofossil and 

stable isotope analysis, foraminifera extraction, bulk rock analysis, and the remaining fraction 

stored for later use. Archived Cretaceous–Cenozoic Programme (CCP) samples were also 

processed to produce foraminiferal residues for this study (Appendix 1). 
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Collections 

Samples utilised for paleontological study include 20 archived samples from the Te Oroi, 

Pukemuri and Awheaiti Stream sections stored in the National Paleontology Collection (GNS 

Science, Lower Hutt) and new collections made in the Pukemuri Stream (39 samples) and 

Awheaiti Stream (26 samples) sections in 2010-2011 (Appendix 1). Sampling intervals for the 

archive samples are sparse, often with only 1–2 samples per formation. New collections of the 

Pukemuri Stream section have sample intervals that rarely exceed 5–8 m. Collections in Awheaiti 

Stream are more varied, with sample intervals ranging from 1–20 m, due to structural 

complications and limited outcrop in some locations. All samples were assigned Fossil Record 

File (FRF) numbers (Appendix 1) and sample numbers were recorded in the FRF administered by 

GNS Science and the Geological Society of New Zealand (www.fred.org.nz). Samples referred to 

in text are preceded by the prefix S28/f... in standard FRF format.  

 

3.3 Paleontology and Age Assignment 

Biostratigraphic data used for age and environmental control in this study are from 

micropaleotological analyses that were carried out by Hugh Morgans (foraminifera) and Denise 

Kulhanek (calcareous nannofossils) of GNS Science. Foraminifera and calcareous nannofossil 

assemblage data is compiled in Appendix 1.  

 

3.3.1. Foraminifera 

A total of 20 samples were processed for foraminifera (Appendix 1). Sample splits were crushed 

to 5 mm diameter pieces then dried at 40°C. Each sample was then weighed, soaked for 24 h in a 

solution of Calgon and water, then thoroughly washed over a 63 µm screen until the sample had 

suitably disaggregated. The residue was then dried at 40°C for 24 h, before being dry sieved and 

divided into >500 µm, 500–300 µm, 300–150 µm and <150 µm sediment fractions. Foraminifera 

were picked from the >150 µm fraction under a binocular microscope. Given the low abundance 

of foraminifera in the Tora samples, all specimens were picked and adhered to a faunal slide pre-

coated with a solution of gum tragacanth. International and local stage assignments and cited 

ages are based on the 2010 New Zealand Geological Timescale (Figure 3.3; Hollis et al., 2010). 
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3.3.2 Calcareous Nannofossils 

The following calcareous nannofossil methodology was provided by D. Kulhanek of GNS 

Science. A total of 48 calcareous nannofossil samples (37 from Pukemuri Stream and 11 from 

Awheaiti Stream) were prepared following standard smear-slide techniques (e.g. Bown & Young, 

1998). A small amount of sediment was scraped onto a coverslip from a fresh surface on each 

sample using a razor blade. The sediment was mixed with a drop of distilled water and spread 

evenly over a coverslip, dried on a hot plate, affixed to a glass microscope slide using Norland 

Optical Adhesive 61 and cured under ultraviolet light. Slides were examined at 1000 and 630 

times magnification using a Leitz Ortholux II POL-BK microscope or an Olympus BX53 

microscope under cross-polarised and plain-transmitted light. A minimum of four coverslip 

traverses (approximately 800 fields of view at 1000 times magnification) were observed for each 

slide and the following qualitative scale used to estimate the abundance of each species: 

A (abundant) =   >10 specimens/field of view 

C (common) =   1–10 specimens/field of view 

Fr (frequent) =   1 specimen/2–10 fields of view 

F (few) =   1 specimen/11–100 fields of view 

R (rare) =   1 specimen/>100 fields of view 

B (barren) =   no nannofossils observed within ~800 fields of view 

? (questionable)  = questionable identification of a specimen 

* =   reworked specimen 

 

Results are correlated to the biostratigraphic zonation scheme of Martini (1971). Taxonomic 

concepts for species are those given in Perch-Nielsen (1985) and Bown (1998). Calcareous 

nannofossil results are presented in Appendix 1. 
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Figure 3.3: The 2010 New Zealand Geological Timescale (NZGTS 2010) displaying ages for 
stage boundaries, duration of stages, defining events and boundary stratotypes (Hollis et al., 
2010).  
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3.4 Bulk Rock Components 

3.4.1  Percent Mud Content 

At least 200 g of bulk rock was crushed and then dried at 40°C for 24 h to remove any residual 

moisture before the sample was weighed. The sample was then disaggregated, dispersed in 

calgon and washed over a 63 µm screen. The remaining residue was then dried at 40°C for 24 h 

and weighed. Due to the degree of induration of the samples, several samples did not 

disaggregate completely so a modified equation (equation 3.1) was used to determine the 

percentage of mud within the bulk sample.         

         (Initial Weight – Final Weight)        
   100 = % Mud 

  (Initial Weight – Unprocessed Fraction)    

 

3.4.2 Percent Bulk Carbonate Content 

The gravimetric method (by loss of carbon dioxide) was used to determine the carbonate 

component of bulk rock material. When carbonates are dissolved with acid, CO2 gas is released 

(Equation 3.2), with the decrease in sample mass resulting from CO2 loss providing an index for 

the carbonate content (Demars & Chaney, 1982). The mass of CO2 lost is determined by the 

difference in the initial and final weights of the flask, sample and acid combined.  

 

 CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)   

 

Approximately 50 g of bulk rock was crushed then dried for 24 h. The sample was then 

reweighed to ascertain the exact weight, and 50 mL of 10% hydrochloric acid (HCl) solution was 

added to the sample, ensuring the sample was completely saturated. The sample was then left to 

digest for 24 h. Once effervescence had stopped, the flask and all its contents were weighed, and 

Equation 3.3 used to determine the percentage of bulk carbonate within the rock sample. The 

difference in mass is multiplied by the molecular weight of CaCO3 divided by the molecular 

weight of CO2 (= 2.274) following Loeppert & Suarez (1996).  

Final Weight 
 x 2.274 x 100 = %wt CaCO3 

Initial Weight 
 

  

Equation 3.3

Equation 3.2

Equation 3.1
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3.4.3 Bulk Carbonate Stable Isotopes 

Bulk rock samples from the Pukemuri Stream section were processed at the National Isotope 

Centre (GNS Science), Gracefield, to determine the carbon and oxygen stable isotope ratios 

(13C and 18O) of the bulk carbonate fraction.  

Carbonate samples were processed using a GV Instruments Isoprime Carbonate Preparation 

System at a reaction temperature of 25°C and analysed on an Isoprime Isotope Ratio Mass 

Spectrometer (IRMS) via a dual inlet. All results are reported relative to VPDB (Vienna Pee Dee 

Belemnite) and normalised to the GNS Marble internal standard with reported values of 2.04‰ 

for 13C and -6.40‰ 18O. Five samples were run in duplicate to provide an estimate of the 

reproducibility of the analyses (0.05‰ for 13C and 0.12‰ for 18O). 
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3.5 Paleoenvironmental Classification 

Paleodepth estimates are based on selected benthic foraminifera species with calibrated 

minimum upper depth ranges (Table 3.1; Figure 3.4). The percent abundance of planktic 

foraminifera can also be used to characterise the overlying water mass (Figure 3.4). These 

calibrations are derived from several sources, including the depth distribution of New Zealand 

recent benthic foraminifera (Hayward et al., 2010), calibrated depth limits from New Zealand 

petroleum exploration wells (Hayward, 1986), and Deep Sea Drilling Project (DSDP) and Ocean 

Drilling Program (ODP) sites (Morkhoven et al., 1986).  

Benthic foraminifera typically occupy a variety of depths, although the upper depth limit of a 

species can be a particularly useful paleoenvironmental and paleobathymetric tool (Morkhoven et 

al., 1986). Key paleodepth indicative taxa are listed in Table 3.1. Benthic foraminifera can also 

provide an indication of bottom water oxygenation (epifaunal species) and the oxygenation state 

of seafloor sediments (infaunal species) (Kaiho, 1994).  

 

 Table 3.1: Upper paleodepth limits applied to key benthic taxa used for paleoenvironment 
interpretation.  

Taxa 
Paleodepth 

(m) 
Source 

Anomalina aotea 200 Hayward (1986) 
Anomalina aotea 600 Morkhoven et al. (1986) 
Anomalina aotea 1000 Tjalma & Lohmann (1983) 
Nuttallides carinotruempyi 400 Hayward (1986) 
Vulvulina zespinosa 400 Hayward (1986) 
Vulvulina spp. 1000 Tjalma & Lohmann (1983) 
Cassidulina subglobosa 500 Hayward et al. (2010) 
Karreriella bradyi 500 Hayward et al. (2010) 
Oridorsalis umbonatus 600 Hayward et al. (2010) 
Osangularia sp. 600 Hayward et al. (2010) 
Pleurostomella spp. 600 Hayward et al. (2010) 
Nuttallides florealis 1000 Morkhoven et al. (1986) 
Pleurostomella spp. 1000 Hayward & Buzas (1979) 
Cibicides eocaenus 1000 Tjalma & Lohmann (1983) 
Stilostomella spp.  1000 Tjalma & Lohmann (1983) 
Tritaxilina zealandica 1500 Hayward (1986) 
Glomospira gordialis 2000 Hayward et al. (2010) 
Abyssamina poagi 3500 Morkhoven et al. (1986) 
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 Figure 3.4: Paleodepth classification scheme adopted for this study. Figure taken and modified from 
Hayward et al. (2010), after Morgans (2009).  

 

3.6 Trace Element Geochemistry 

3.6.1 Sample Preparation 

Bulk rock samples were crushed and then dried before being washed over a 75 µm screen to 

disaggregate the material and remove the unwanted fine fraction. The remaining sediment 

fraction (>75 µm) was subsequently dried, and selected species of foraminifera were handpicked 

and mounted on slides. The foraminifera were washed in ultra-clean water, then methanol, and 

the process was repeated a further three times to remove any loosely adhering detritus, followed 

by a final wash in ultra-clean water. The foraminifera were then mounted on adhesive paper 

which was attached to a National Institute of Standards and Technology (NIST) glass standard 

NIST-SRM610 using double-sided cellotape (Figure 3.5) at which point they are ready for analysis 

using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method.  
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 Figure 3.5: Prepared NIST610 silicate glass standard, with selected planktic foraminifera adhered 

to adhesive paper.  

 

3.6.2 Selecting Foraminifera for LA-ICP-MS analysis 

Foraminifera inhabit various levels within the water column, which has a direct bearing on sea 

temperature determinations. Four genera were selected for Mg/Ca analysis in this study: 

Morozovella, Acarinina, Subbotina and Cibicides. The species Morozovella crater, Acarinina primitiva and 

Cibicides eocaenus (Figures 2.10 and 2.11) were preferentially picked throughout the record to retain 

consistency in sample analysis. Where these particular species were not available, M. lensiformis, A. 

collactea, and C. truncatus were picked and analysed (Figures 2.10 and 2.11). Subbotina specimens 

were not identified to species level.  

These genera were selected for the environment and position within the oceanic water column in 

which they lived. Morozovella and Acarinina (Figure 2.10) were surface–mixed layer dwelling 

planktic forms (Pearson et al., 2006; Sexton et al., 2006b) and, therefore, temperatures derived 

from these foraminifera are indicative of sea surface temperatures. Subbotina spp. (Figure 2.11) 

were generally thermocline dwellers (Pearson et al., 2006), and thus derived temperature estimates 

are cooler than those of sea surface dwelling planktic species. The benthic genus Cibicides (Figure 

2.11) provides a record of sea floor temperatures. 

2.0 mm 
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3.6.3 LA-ICP-MS Analytical Technique 

The LA-ICP-MS technique was used to measure elemental ratios of the tests (shells) of planktic 

and benthic foraminifera species selected from the Eocene samples. In situ elemental ratios of 

key isotopes (24Mg, 27Al, 29Si, 47Ti, 55Mn, 66Zn, 88Sr, 138Ba) relative to 43Ca were measured to 

determine paleo-sea temperatures and potentially, changes in productivity, nutrient availability, 

environmental conditions and also to screen analyses for post-depositional contamination and 

diagenesis of the samples.  

A New Wave deep ultraviolet (193 nm) laser ablation system operated at a spot size of 35 µm, 

with a laser repetition rate of 5 Hz, was used to ablate foraminifera tests. Operating under these 

conditions, the laser progressively ablates a pit into the surface of the foraminifera test at an 

estimated rate of 0.2–0.3 µm/s. Analytical running conditions are presented in Table 3.2. Each pit 

was ablated to a depth not less than 25 µm, allowing the construction of trace element/Ca 

profiles through the test (Figure 3.6). The ablation process was conducted in a helium atmosphere, 

which is subsequently introduced into an Agilent 7500cs ICP-MS using a helium-argon mixture 

as a carrier gas. Instrumental trace element fractionation during the course of analyses is 

corrected using bracketing analyses of the NIST-SRM610 glass standard between clusters of nine 

to twelve analyses (Figure 3.7). The NIST standard is doped with 61 elements of known 

concentration (Pearce et al., 1997). Each foraminifer was ablated at least three times in order to 

produce a mean value attributable to each individual, and in order to avoid and reduce the 

influence of anomalous values from contamination and diagenetic alteration. The resulting trace 

element depth profiles enable the identification and avoidance of zones of external and internal 

contamination in the sample, as well as exclusion of digenetic coatings and mineralisation that 

may have formed in the post-depositional environment (Figure 3.6). 
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 Table 3.2: LA-ICP-MS analytical conditions during tuning, NIST analysis and ablation of 

foraminiferal calcite.  

Laser Ablation    

  Laser ablation system New Wave 193 nm (deep UV) solid state 

  Ablation mode Static spot analyses 

  Spot size 35 µm 

  Depth ablated/pulse 0.05 µm 

    

ICP-MS   

  ICP-MS system Agilent 7500cs 

  Acquisition mode Peak hopping 

  Detection mode Pulse counting 

    

Tuning   

  Tuning standard NIST-SRM610 

  Ablation mode Rastering (2 µm/s) beneath a 35 µm spot 

  Monitored isotopes 
24Mg, 27Al, 29Si, 43Ca, 47Ti, 55Mn, 66Zn, 88Sr, 138Ba 
(% RSD for each isotope typically 4–8%) 

  Carrier gas (Ar) 0.83–0.90 L/min 

  Optional gas (He) 77–86% 

  RF power 1500 W 

  RF matching 1.72 V 

  Repetition rate 5 Hz 

  Laser power 80% 

    

Standards and Calibration   

  Calibration standard NIST-SRM610 

  Repetition rate 5 Hz 

  Laser power 80% 

  Background acquisition 60 s 

  Sample data acquisition 60 s 

  Washout time 30 s 

  Measured isotopes 24Mg, 27Al, 29Si, 43Ca, 47Ti, 55Mn, 66Zn, 88Sr, 138Ba 

  Dwell time 60 s 

    

Foraminifera Method   

  Repetition rate 5 Hz 

  Laser power 55 or 60% 

  Background acquisition 60 s 

  Sample data acquisition 60 s 

  Washout time 30 s 

  Measured isotopes 24Mg, 27Al, 29Si, 43Ca, 47Ti, 55Mn, 66Zn, 88Sr, 138Ba 

  Dwell time 60–90 s 
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Figure 3.6: Examples of trace element depth profiles produced by laser ablation analysis 
displaying a variety of profiles. A) An example of a ‘good’ profile showing an trace element 
enriched veneer on the exterior of the test and a large proportion of primary calcite. B) A profile 
displaying enrichment of Ti on the exterior and interior surfaces of the test, indicating detrital 
sediment contamination, with a significant proportion of primary biogenic calcite preserved 
between these zones. C) A profile displaying only a short section of primary calcite. D) A profile 
that is too short to be integrated for sea temperature analysis. E) A complex profile displaying 
elevated trace element values produced by the laser ablating the test surface obliquely and/or 
continuous contamination from surface ornamentation. F) Extensively altered profile where the 
primary calcite signal has been completely overprinted by diagenetic processes.   
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3.6.4 Data Reduction  

During the course of LA-ICP-MS analysis, there is an observed increase in ion transmission with 

the increasing isotope mass causing a deviation in the measured elemental ratio from the true 

elemental ratio (Rosenthal et al., 1999). As there is no existing homogenous carbonate standard 

that is comparable to the calcite matrix of foraminifera, the silicate glass standard (NIST-

SRM610) is used to correct for the effects of instrumental fractionation. Elemental fractionation 

is corrected by external normalisation to NIST-SRM610. Raw data files were processed with a 

script in Matlab which formats the raw data (counts per second [cps] for each element) into 

Microsoft Excel spreadsheets, and corrects for the effects of background counts and 

instrumental drift during the course of the analysis as well as normalising fractionation effects to 

the NIST-SRM610 standard (Reference values used: Mg/Ca = 9.38, Al/Ca = 195.9, Si/Ca = 

5.73, Ti/Ca = 4.40, Mn/Ca = 3.86, Zn/Ca = 3.42, Sr/Ca = 2.78, Ba/Ca = 1.51 mmol/mol; 

Pearce et al., 1997). Resultant spreadsheets were processed with a Microsoft Excel macro 

modified from one created by Victoria University of Wellington staff and previous postgraduate 

students. The macro converts cps data into trace element/Ca ratios that were plotted against 

ablation time, producing a depth profile of the foraminiferal test chemistry from the exterior to 

interior (Figure 3.6), allowing the data to be screened for the effects of diagenetic alteration and 

contamination. 

 

Figure 3.7: Raw cps data in the Matlab processing step displaying how foraminiferal calcite 
analyses are bracketed by ablation of the NIST610 standard to correct for instrumental trace 
element fractionation during the course of data collection. 
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Almost all trace element depth profiles display a zone of significantly elevated element/Ca ratios 

at the beginning of each analysis followed by a relatively constant zone of lower Mg/Ca values 

and other trace element/Ca ratios (Figure 3.6). These zones in the profile correspond to the test 

wall and primary foraminiferal calcite, respectively, and are consistent with previous LA-ICP-MS 

foraminifera studies (e.g., Eggins et al., 2003; Creech et al., 2010; Marr et al., 2011). Changes in the 

trace element chemistry of the test are distinguishable in the profiles allowing only data from the 

zone of primary calcite to be selected and utilised in Mg/Ca sea temperature calculations.  

 

3.6.5 Data Screening Limits 

Following the preliminary screening of trace element/depth profiles, summary data exhibiting 

high Mg/Ca, Sr/Ca and Ba/Ca values were discarded. Mg/Ca values >7.0 mmol/mol were 

discarded as these generate unrealistic temperature values when combined with the Eocene 

seawater Mg/Ca value of 4.1 mol/mol, which should provide conservative paleotemperature 

estimates. Previous laser ablation studies have shown that strontium typically occurs at uniform 

levels throughout the foraminifera test, making it a useful indicator of severe alteration or 

secondary calcification (Eggins et al., 2003). On this principle, samples with Sr/Ca values outside 

the range of 1.0-1.6 mmol/mol were also removed from the dataset. 

Screening limits for silicate contamination were determined following the method of Creech 

(2010) after Barker et al. (2003). Unscreened, whole test Mg/Ca data was plotted against Al/Ca, 

Si/Ca and Ti/Ca values, resulting in quasi-linear correlations, indicating silicate contamination 

arising from sediment infilling pores and adhering to the exterior and interior surfaces of the test 

(Figure 3.8). Adapting the method of Barker et al. (2003) and Creech (2010), the Si, Al and Ti 

composition of the contaminant phase can be identified by plotting Mg/Ca against Al/Ca, Si/Ca 

and Ti/Ca. Subsequently, the inverse of the slope of the linear regression determines the Al/Mg, 

Si/Mg and Ti/Mg ratios of the sediment (Table 3.3).   

Table 3.3: Calculated silicate contaminant values for each species used in sea 
temperature determinations.  

Species 
Contaminant 

Al/Mg Si/Mg Ti/Mg

Morozovella spp. 7.58 22.22 0.19 

Acarinina spp. 7.48 29.50 0.17 

Subbotina spp. 4.90 17.86 0.26 

Cibicides spp. 7.99 22.12 0.19 
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Al/Mg, Si/Mg and Ti/Mg ratios were then used to calculate the screening limits for each species 

used in this study. Given that sedimentary contamination has the effect of increasing the Mg/Ca 

value, resulting in overestimates of sea temperatures, calculation of the screening limit depends 

on the calibration used and the typical Mg/Ca ratio for each species. When the typical Mg/Ca 

value and the calibration are substituted into Equation 3.4, and assuming a maximum sensitivity 

of Mg/Ca to 1°C of temperature of 9% (after Anand et al., 2003), the increase in Mg/Ca required 

to increase temperature estimates by 1°C can be calculated. For example, the genus Morozovella 

yields a typical Mg/Ca value of 3.8 mmol/mol in this study. Using the planktic calibration of 

Anand et al. (2003), an increase of 9% (0.34 mmol/mol) would be required to increase sea 

temperature estimates by 1°C. 

The screening limit is then determined by multiplying the Mg/Ca excess by the sediment 

composition. Following the example above, the screening limit for Al/Ca is calculated by 0.34 × 

7.58 = 2.57 mmol/mol. Screening limits for Al/Ca, Si/Ca and Ti/Ca are given in Table 3.4. The 

application of these screening limits to summary trace element data means that no Mg/Ca sea 

temperatures in this study should be overestimated by more than 1°C (as a result of post-

mortem diagenetic effects). Values obtained in this study for the sediment Al/Mg ratio, and the 

Al/Ca screening limits, are comparable to those calculated by Creech (2010).  

 

 Table 3.4: Silicate mineral contamination screening limits (Al/Mg, Si/Mg and Ti/Mg) calculated 
for all species used for sea temperature estimates. 

Species 
Average Mg/Ca 

(mmol/mol) 
Mg/Ca Sensitivity + 

1°C (mmol/mol) 

Screening Limit (mmol/mol)

Al/Ca  Si/Ca Ti/Ca 

Morozovella spp. 3.8 0.34 2.57 7.55 0.07 

Acarinina spp. 3.3 0.29 2.20 8.66 0.05 

Subbotina spp. 3.2 0.29 1.41 5.13 0.08 

Cibicides spp. 3.3 0.30 2.37 6.56 0.06 
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Figure 3.8: A) Unscreened Mg/Ca versus Al/Ca data for the four genera 
analysed in this study. Extreme Al/Ca values >50 mmol/mol have been 
removed. A linear regression fitted to the data, provides an estimated 
Mg/Al ratio of the silicate contaminant phase (i.e., Mg/Al = 1/0.132 = 
7.58). B) Unscreened Si/Ca versus Al/Ca data for the four genera analysed 
in this study. Extreme Si/Ca values >200 mmol/mol have been removed. A 
linear regression fitted to the data, provides an estimated Si/Al ratio of the 
silicate contaminant phase (i.e., Si/Al = 1/0.045 = 22.22). C) Unscreened 
Ti/Ca versus Al/Ca data for the four genera analysed in this study. Extreme 
Ti/Ca values >3.5 mmol/mol have been removed. A linear regression fitted 
to the data, provides an estimated Ti/Al ratio of the silicate contaminant 
phase (i.e., Ti/Al = 1/5.2232 = 0.19). 
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3.6.6 Scanning Electron Microprobe Imaging  

Upon completion of LA-ICP-MS analysis, selected foraminifera were removed from the double-

sided tape adhering them to the NIST standard, transferred to an aluminium Scanning Electron 

Microprobe (SEM) stub pre-coated with carbon tape, and then subsequently coated with a 14–24 

µm thick carbon film. Imaging was conducted using a JEOL JXA-8230 ‘Superprobe’ electron 

probe microanalyser, utilising a probe current of 4.3 nA and an accelerating voltage of 15 kV.  

Scanning electron images (SEI) were produced for whole foraminifer tests and, where available, 

SEI and backscattered electron images (BSI) were also produced for ablation pits, allowing direct 

comparison between the ablation site and the LA-ICP-MS analysis results in order to highlight 

potential sources of error caused by sedimentary contamination and/or diagenetic alteration of 

the specimen (Figure 3.9). After initial imaging, the stubs were removed from the SEM and 

individual foraminifer chambers levered apart with a pick, or crushed beneath a glass slide, then 

re-coated with carbon, enabling SEI and backscattered imaging of the microcrystalline test 

structure. This step allows fine details of microcrystalline structures and the test surface to be 

examined for effects of diagenetic alteration and assessment of the preservation of the 

foraminiferal test (Figure 3.9).  
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Figure 3.9: A suite of SEM images from a single Morozovella crater specimen. 1a) Whole test SEM 
image to assess the general condition of the test. 1b and 1c) Selected images of laser ablation pits, and 
SEM images (1b) and back-scattered electron images to determine the condition of the test surface 
and the presence or absence of potential contamination and/or diagenetic calcite at the ablation site. 
The test was then crushed (2a) and scanning electron (2b) and back-scattered (2c) images produced of 
the test wall structure to assess subtle changes to the test’s crystalline structure.  
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3.6.7 EPMA Element Distribution Mapping 

The whole tests of selected foraminifera were imaged to produce SEI and BSI images, then 

removed from the aluminium stub and inserted into a pre-drilled, 25 mm diameter epoxy disc 

and back-filled with epoxy. The prepared blank was left to cure in a vacuum chamber for 30 

minutes then removed and cured at 50°C overnight. The mount was then progressively polished 

using 10 µm grit, and progress regularly checked under a transmitted light microscope, until a 

satisfactory cross-section of each foraminifera was achieved. The mount was then finished using 

1 µm grit, and checked to ensure all scratches were removed. A ca. 14 nm thick carbon film was 

applied and the epoxy mount inserted into a LH9 holder for imaging on a JEOL JXA-8230 

‘Superprobe’ electron probe microanalyser, fitted with five energy dispersive (EDS) and 

wavelength dispersive (WDS) spectrometers. The cross-sectioned foraminifera were initially 

imaged using both scanning electron imaging and backscatter electron imaging modes to identify 

zones for mapping. Element mapping was conducted at 15.0 kV and a probe current of 20.0 nA, 

with a dwell time of 1000 ms and a spot size of 1 µm. The five EDS channels were used to map 

the distribution of calcium, magnesium, aluminium, iron and manganese, whilst WDS was used 

to record the distribution of silicon and calcium in addition to other irrelevant, but abundant 

elements present in the epoxy and carbon coating (notably; carbon, oxygen and chlorine).  

The basic principle is that the intensity and wavelengths of characteristic x-rays emitted from a 

point on the sample where the stationary electron beam is focused are measured. The 

wavelength of the x-ray identifies the element, and the concentration is related to the x-ray 

intensity by a procedure called a ZAF calculation. Counts are processed through a ZAF 

calculation in an internal computer control program, which accounts for inelastic electron 

scattering and energy loss related to atomic number (Z), absorption of x-rays by the sample (A), 

and an x-ray fluorescence correction (F). The beam effectively scans a predetermined area in a 

grid-like pattern, producing element distribution maps for the selected elements, with a 

resolution of 1 µm.  
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3.7 Paleo-Sea Temperature Calculations 

Sea temperatures were calculated using Equation 3.4, inherent to which are four key assumptions 

that need to be addressed when considering the reliability of these calculations.  

 

 

 

 

3.7.1 Inter-specific Ecological Differences 
 

Inter-specific offsets are common and widely recognised in the composition of δ18O records 

(Shackleton & Kennett, 1975). The same is also true for Mg/Ca ratios of foraminifera and relates 

to the mechanisms employed by individual species in the precipitation of calcite, and has been 

shown to vary significantly between spinose and non-spinose as well as symbiotic and asymbiotic 

species (Lea, 1999). The simplest means to curtail this issue is to select a single representative 

species and normalise the offset observed in the other species to the representative.  

Morozovella and Acarinina are both used to derive sea surface temperatures, however raw Mg/Ca 

ratios of Morozovella are consistently offset to lower values than Acarinina ratios. The consistency 

of this means it is likely to be a manifestation of an inter-species difference in Mg incorporation 

into the test and can be remedied with a simple correction. A significant offset is observed 

between Subbotina and the other planktic species, mainly as a function of the deeper, cooler 

environment in which Subbotina calcified. No correction has been applied to Subbotina data as it 

provides a useful indicator of thermocline temperatures. Given that Cibicides is the only benthic 

genus analysed in this study it is not necessary to account for any inter-specific offsets in benthic 

genera. Creech et al. (2010) showed that the multispecies calibration of Anand et al. (2003) yielded 

consistent temperature values for the planktic genera Morozovella and Acarinina, noting that 

Acarinina primitiva yielded marginally cooler temperature that Morozovella crater, and Acarinina 

collactea produced temperature values slightly warmer than M. crater suggesting subtle differences 

in the Mg/Ca – temperature calibration between morozovellids and acarininds.  

 

 

 

 

Mg/Ca=
Mg/Casw-t x A x exp B x T

Mg/Casw-0
Equation 3.4
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3.7.2 Preservation of Primary Calcite 

A quantitative and unambiguous assessment of the degree of preservation of primary 

foraminiferal calcite is difficult. However, diagenetic factors typically affect the test surface and 

are largely surmounted by the laser ablation method employed in this study and the rigorous 

screening of trace element depth profiles. The preservation of primary calcite was further 

ascertained by qualitative visual inspection via reflected light microscopy and SEM imaging. 

 

3.7.3 Eocene Seawater Mg/Ca values 

Eocene seawater is considered to have had a lower Mg/Ca value than the modern seawater value 

of 5.16 mol/mol (Lear et al., 2002). Sea temperatures for this study have been calculated using an 

estimated seawater value of 4.1 mol/mol, which yields conservative temperature estimates (i.e., 

low) that are consistent with multi-proxy comparisons (e.g. Hollis et al., 2012).  

 

3.7.4 Mg/Ca–Temperature Calibrations 

As there are no extant species of the planktic genera utilised in this study, temperature 

calculations for planktic taxa were made using a multi-species Mg/Ca–temperature calibration 

from modern tropical–subtropical planktic foraminifera (Table 3.5; Anand et al., 2003). Benthic 

temperatures were calculated using a calibration obtained from core-top calibration of three 

modern Cibicidoides species; C. wuellerstorfi, C. pachyderma and C. compressus. (Table 3.5; Lear et al., 

2002).  

 

Table 3.5: Calibration constants used in Mg/Ca sea temperature determinations (Equation 3.4). 

Calibration A  B  Source 

Planktic 0.380 0.090 Anand et al. (2003) 
Benthic 0.867 0.109 Lear et al. (2002) 
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3.7.5 Calculation of Errors 

Three types of errors were considered for the sea temperatures derived from Mg/Ca ratios. 

These include the analytical error, a standard calibration error, and the sample error. The 

analytical error is accounted for in the data processing step and typically produces very small 

uncertainties (± 1–3%; 2 se) associated with counting statistics during ablation and data 

acquistion. The calibration error is the residual error of ±1.5°C on the regression of the multi-

species calibrations established by Lear et al. (2002) and Anand et al. (2003). The sample error 

pertains to the 95% confidence interval calculated for the mean temperature value obtained from 

multiple analyses within a single sample. The confidence interval is calculated by: 

ݔ̅                                                              	േ 	ݐ ൈ	 σ	
√୬

 

where ̅ݔ	 is the sample mean, t is is the inverse of the student’s t-distribution, σ represents the 

standard deviation and n is the number of analyses. The cumulative error calculated from the 

sum of all three errors is applied to each temperature value, providing upper and lower 

uncertainties. However, these calculations greatly underestimate the true uncertainty of Mg/Ca-

derived sea temperatures when the number of individuals analysed (n) is small, as previous 

studies (Sadekov et al., 2008; Bolton et al., 2011; Marr et al., 2011) of plankton tow, core-top and 

Quaternary foraminifera have shown that in single samples the inter-individual variability in 

foraminiferal Mg/Ca ratios is large (ca. ± 60% about the mean). This presumably reflects some, 

as yet unknown, foraminiferal vital effects during the precipitation of calcite. Within a single 

sample, different individual planktic foraminifera show a range of values that can be up to 50–70% 

higher or lower than the cumulative mean of individuals in that sample. When a large number of 

foraminifera are analysed then this effect is largely diminished, but in this study, where n is small, 

this uncertainty becomes the greatest source of errors on calculated sea temperatures. 

A Monte Carlo method of modelling these errors (Baker, pers. comm.) has been used to 

determine how the temperature uncertainties of planktic species changes with n, and to robustly 

estimate the percent standard error (% 2 se) of Mg/Ca ratios as a function of the number of 

individuals analysed (Figure 3.10). This method utilises samples for which a large number of 

foraminifera have been analysed and then randomly samples n analyses (n = 1 to 15) multiple 

times. The multiply sampled analyses for each n are then averaged and a % 2 sd and % 2 se 

calculated, with the % 2 se considered to provide the best estimate of how the uncertainty on 

Mg/Ca ratios varies as a function of n. For example, Figure 3.10 shows that for Globigerina bulloides 

the % 2 se on Mg/Ca ratios decreases as a power law function from ca. ±60%, ±25%, ±18% and 

Equation 3.5
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±14% for n = 1, 2, 3 and 4, respectively. Benthic foraminiferal data from Creech (2010) also 

clearly display the same inter-individual variability as planktic species, despite a maximum 

number of six individuals being analysed per sample, so the same % 2 se estimates were used for 

both benthic and planktic species.  

 

 Figure 3.10: Modelled effect of the number of individuals analysed on the % 2 se on Mg/Ca 
ratios for planktic species (G. bulloides) from four Quaternary samples showing a decrease in 
the error applied to Mg/Ca ratios as n increases. Figure supplied by J. Baker.  
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Chapter Four 

PALEOGENE STRATIGRAPHY OF TORA 

 

4.1  Introduction 

The Paleogene stratigraphy of the East Coast Basin in the Tora area of the southern Wairarapa 

region contains important records of paleoenvironmental changes that occurred within the New 

Zealand region during the Paleogene, including Eocene climatic events, and represents an 

important locality for potential hydrocarbon source and reservoir units, as the area may contain 

the only onshore expression of key units derived from the Pegasus Sub-basin.  

Initial field mapping for this study identified a coast parallel-striking stratigraphic succession 

bisected by several small streams perpendicular to the coast (Figure 4.1). Field mapping identified 

good exposure of all formations and minimal structural complications in Pukemuri Stream, 

which is designated as the reference section for the Tora area. Small-scale deformational 

structures are prevalent in Awheaiti and Te Oroi Streams, but good outcrop in Awheaiti Stream 

makes it suitable as a secondary section in support of the Pukemuri reference section. Te Oroi 

Stream was measured and described as a further accessory section. In addition, key units from 

Manurewa and Te Kaukau Points are described, as some units are not preserved in the stream 

sections (Figure 4.1). Measured section results from three sections (Pukemuri, Awheaiti and Te 

Oroi Streams) are reported here with supplementary details from Manurewa and Te Kaukau 

Points. Extensive sampling was carried out in the Pukemuri and Awheaiti Stream sections. 

Foraminiferal and calcareous nannofossil assemblage data referred to in this chapter is presented 

in Appendix 1.  

Original lithological divisions identified by Waterhouse (1955) and Waterhouse & Bradley (1957) 

have largely been confirmed and adopted by this study. Notable exceptions include the 

identification of Glenburn Formation by Laird et al. (2003), replacing the Piripauan Sandstone of 

Waterhouse & Bradley (1957), and identification of Wanstead Formation in lieu of the Kandahar 

Formation (after Moore et al., 1986; 1988a; Field, Uruski et al., 1997). It should be noted that field 

mapping for this study identified three members in the Mungaroa Limestone (as identified by 

Waterhouse & Bradley, 1957; Browne, 1987), but not all members are present in all sections. A 

revised stratigraphy of the Tora area is presented in this chapter.  
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Figure 4.1: Geological map of the late Cretaceous to early Paleogene sequence exposed at Tora, on the southeast Wairarapa coast, North Island, New Zealand.   
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4.2 Structural Geology of the Tora Area 

The dominant structures in the Tora area are the Ewe and Hungaroa Faults and the Coastal 

Anticline (Waterhouse 1955; Waterhouse & Bradley, 1957; Laird et al., 2003). The Ewe Fault 

separates the Paleogene sequence of the Tora area from Early Cretaceous rocks of the Aorangi 

Ranges, and is readily traced in outcrop and in aerial and satellite imagery from White Rock in 

the south, northwards to the Awhea River (Figure 4.1). The Ewe Fault consists of at least two 

fault splays separated by ca. 70 m, demonstrating a reverse sense of displacement, striking 040° 

and dipping at 62° northwest. Based on conservative thickness estimates from field mapping, the 

fault zone represents a minimum vertical displacement of 1000 m between the Upper 

Cretaceous-Lower Paleogene succession exposed on the eastern footwall block and the Lower 

Cretaceous strata of the western hanging wall block. Micritic limestone is observed thrust up 

along the fault trace at several locations, with one such example forming the reef at White Rock 

(Figure 4.2a). 

The axis of the Coastal Anticline trends 040° dipping at 20° to the northeast and roughly follows 

the Tora coastline, and is well-exposed on the shore platform between Te Oroi and Pukemuri 

Streams and at Manurewa Point (Figure 4.1). Normal faulting occurs near the crest of the anticline 

in the Mungaroa and Awhea Formations (Figure 4.2b), likely associated with folding of the 

anticline. The parallel trends of the Coastal Anticline and the Ewe Fault suggest that they are 

probably associated with the same tectonic regime. At least two deformational episodes are 

associated with the formation of the Coastal Anticline; the first folding the strata, and the second 

tilting the anticline by 20°. This second event may be associated with the development of the 

Hungaroa Fault, which obliquely truncates the Coastal Anticline in the north of the Tora area 

(Figure 4.1). The shear zone associated with the Hungaroa Fault is 20 m-wide, with a well-

developed shear fabric exposed on a wave cut section near the mouth of Hungaroa Stream (Figure 

4.2c, d).  

An unnamed, small-scale reverse fault can be traced in outcrop between Pukemuri and Awheaiti 

Streams, representing a displacement of approximately 60 m. In Pukemuri Stream this causes 

repetition of the middle Mungaroa Limestone member - Awheaiti Formation - lower Pukemuri 

Siltstone sequence (Figure 4.2e), whereas in Awheaiti Stream it simply repeats the lower section of 

the Pukemuri Siltstone. Extensive small-scale folding, shearing and fault repetition of the 

Pukemuri and Wanstead Formations has resulted in an over-thickening of the formations in the 

Awheaiti Stream section (Figure 4.2f), with the apparent repeated thickness decreasing southwards 

towards Te Kaukau Point. 
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Figure 4.2: Aspects of structural geology observed in the Tora area. A) Mungaroa Limestone 
thrust up along the Ewe Fault at White Rock forming a reef. (Highest point is 15 m) B) Small-
offset normal faulting in Awhea Formation near the crest of the Coastal Anticline, Manurewa 
Point. C) Hungaroa Fault zone outcropping on the shore platform, with lower Cretaceous 
Mangapokia Formation thrust over middle to late Eocene Wanstead Formation. D) Well-
developed shear fabric of the Hungaroa Fault zone exposed on the shore platform at Stoney 
Bay. Hammer is 33 cm long. E) Unnamed reverse fault exposed in Pukemuri Stream causing 
repetition of the Mungaroa Limestone-lower Pukemuri Siltstone sequence. F) Small-scale 
folding of Wanstead Formation, Pukemuri Stream.   
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4.3  Measured Section Results 

Initial geological mapping identified several areas where suitable outcrop and reasonably 

coherent stratigraphy occurred. Tape and compass maps and stratigraphic sections were 

measured for the Paleogene strata in Pukemuri, Awheaiti and Te Oroi Streams. These sections 

are several kilometres apart (Figure 4.1), providing a basis for correlating changes in the 

stratigraphic succession.  

The tape and compass maps, cross-sections, micro-fossil sample locations and measured sections 

are presented for the Pukemuri and Awheaiti Stream sections. Foraminiferal assemblages were 

collected from each measured section, and calcareous nannofossil assemblages collected from 

the Pukemuri and Awheaiti Stream sections for age and environmental determinations (this 

chapter). Foraminiferal and calcareous nannofossil assemblages are presented in Appendix 1. 

Foraminiferal assemblages from Cretaceous-Cenozoic Programme (CCP) samples collected in 

each of the stream sections were also used in this study (Appendix 1). Bulk rock samples and 

foraminiferal collections from these measured sections were used for geochemical analyses 

presented in Chapter Five.  

 

4.3.1 Pukemuri Stream 

The Pukemuri Stream section extends from the base of the Paleocene Awhea Formation (grid 

reference: S28 175 618) to the middle Eocene Wanstead Formation (grid reference: S28 168 626) 

(Figures 4.3 and 4.4). The base of the Manurewa Formation outcrops 500 m upstream of the 

mouth of Pukemuri Stream. This formation has been studied in detail by Wasmuth (1996) and 

Laird et al. (2003), so the measured section began at the upper contact with the Awhea 

Formation, represented by a 3 m-thick glauconitic sandstone bed.  

The reference sections selected by Waterhouse (1955) and Waterhouse & Bradley (1957) were 

unable to be identified due to poor documentation and obscured sections. However, Pukemuri 

Stream has excellent exposure of all nine formations present in the Tora area, and a minimum of 

structural complications. Consequently, Pukemuri Stream has been designated the reference 

section in this study for the stratigraphic succession at Tora.  
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Figure 4.3: Pukemuri Stream tape and compass map and schematic cross-section. Key to 
abbreviations: Af = Awhea Formation, Mg = Mungaroa Limestone, Aw = Awheaiti 
Formation, Pm = Pukemuri Siltstone, Wn = Wanstead Formation.  
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Figure 4.4: Stratigraphic column for Pukemuri Stream showing key lithostratigraphy and biostratigraphic 
datums.  
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Awhea Formation 

Lithostratigraphy 

The base of the Awhea Formation is marked by a 3 m-thick glauconitic sandstone bed, exposed 

1 km upstream from the mouth of Pukemuri Stream. The Awhea Formation conformably 

overlies Manurewa Formation with 275 m of hard, cm- to dm-bedded, glauconitic sandstone 

beds with sharp basal contacts, separated by thin, calcareous, micaceous mudstone. The lower 

Awhea Formation outcrops as prominent, steeply inclined dip slopes (Figure 4.5a), and shows 

extensively bioturbated bedding surfaces. Vertical and horizontally oriented burrows are 

commonly infilled with pyrite (Figure 4.5b). Occasional fragments of carbonaceous material occur 

near the base of the formation (Figure 4.5c). The formation becomes progressively thinner 

bedded, finer grained and less glauconitic towards the top of the formation and bioturbation 

becomes less extensive (Figure 4.5d, e).  

 

Paleontology and Age 

A sample (S28/f192) from the lower Awhea Formation contains a long-ranging agglutinated 

foraminiferal assemblage that extends from the Campanian to Paleocene (Haumurian to 

Teurian). Identification of the Cretaceous/Paleogene (K/Pg) boundary in the underlying 

Manurewa Formation (Wasmuth, 1996; Laird et al., 2003) and a sample (S28/f1093) from the 

middle of the Awhea Formation contains the Teurian marker species Nuttalides florealis, 

constraining the age of the Awhea Formation to the Paleocene (Figure 4.4). Agglutinated taxa 

(>90%) dominate assemblages from samples S28/f0192 and S28/f0193, which also contain the 

benthic foraminifera Bathysiphon sp., Ammodiscus cretaceous, Gavelinella beccariiformis and N. florealis 

(Appendix 1). Extensive trace fossil assemblages exposed on bedding planes in lower Awhea 

Formation include Planolites, Ophiomorpha, Paleodictyon, Nereites, Scolicia and occasional Zoophycos.  
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Figure 4.5: Features of the Awhea Formation exposed in Pukemuri Stream. A) Steeply inclined 
dip-slopes of the Awhea Formation. B) Lower Awhea Formation displaying sandstone beds 
separated by thin mudstone layers and an abundance of weathered, pyrite filled burrows. C) 
Carbonaceous material from the lower Awhea Formation. D) Well-bedded middle Awhea 
Formation displaying consistent bedding thickness and classic turbidite characteristics. Hammer 
for scale. E) Uppermost extent of the Awhea Formation, exhibiting significant thinning of beds.  
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Mungaroa Limestone 

Lithostratigraphy 

Much of the Mungaroa Limestone outcrops in a 20 m-high waterfall (Figure 4.6a) 1500 m from 

the mouth of Pukemuri Stream, where it conformably overlies the Awhea Formation. The lower 

20 m of Mungaroa Limestone is pale grey, calcareous, glauconitic, interbedded fine sandstone 

with minor mudstone displaying dm-scale bedding. This unit represents the lower member of the 

Mungaroa Limestone. Conformably overlying this interval is a 10 m-thick unit of green-grey, cm- 

to dm-bedded glauconitic sandstone and mudstone (Figure 4.6b), with sharp lower contacts on 

moderately sorted sandstone beds, grading up into mudstone with dark laminae, which 

occasionally outline small-scale cross-bedding (Bouma sequences A, B, C; Figure 4.6c, d, e). This 

unit is identified as the middle member of the Mungaroa Limestone, and the upper micritic 

limestone member is absent in the Pukemuri Stream section. The middle member is extensively 

bioturbated on some bedding planes, including traces of Scolicia and Zoophycos.  

 

Paleontology and Age 

A sample from the base of the Mungaroa Limestone (S28/f0194) contains a Paleocene (Teurian) 

foraminiferal assemblage that includes Conotrochammina whangaia, Matanzia varians, Gavelinella 

beccariiformis and Nuttalides florealis (Figure 4.4). In addition, the benthic foraminiferal assemblage 

also contains Osangularia sp., Rzehakina epigona, Glomospira charoides and Lituotuba sp.  

Calcareous nannofossil assemblages from two samples (S28/f0392 and S28/f0393) from the 

upper unit of the Mungaroa Limestone in Pukemuri Stream are correlated with Nannofossil 

Zone NP5 (middle Paleocene, late Teurian). The relatively sparse assemblages are characterised 

by Coccolithus pelagicus, Chiasmolithus spp., Prinsius spp., Toweius spp. and Fasciculithus spp. The 

samples are assigned to Zone NP5 based on the presence of zonal marker Fasciculithus 

tympaniformis and the absence of Heliolithus kleinpellii, which marks the base of Zone NP6. Sample 

S28/f0393 contains Heliolithus cantabriae, which first occurs within Zone NP5 (Figure 4.4).  

 

 

 

 

82



 
Figure 4.6: Features of the Mungaroa Limestone outcropping in Pukemuri Stream. A) 20 m-
high waterfall, with the contact between the lower and middle members (white dashed line). 
Figure for scale. B) Outcrop of dm-bedded glauconitic sandstone of the middle member above 
the waterfall. C) Example of well-bedded, normal graded sandstones fining into mudstone D) 
Fining upwards, cross-laminated mudstone and sharp contact with overlying sandstone. E) 
Detail of small cross-lamination outlined by carbonaceous material in mudstone.  
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Awheaiti Formation 

Lithostratigraphy 

In Pukemuri Stream, the Awheaiti Formation is best exposed in a fault-repeated section, above a 

small waterfall (S28 171 622). The Awheaiti Formation is channelised into the underlying 

Mungaroa Limestone, and the lower portion of the formation is composed of ca. 60 cm-thick 

cross-bedded sandstone layers, with channelised contacts between beds (Figure 4.7a, b). The 

remainder of the 11 m-thick unit is well-bedded, laminated, micaceous mudstone and glauconitic 

fine sandstone (Figure 4.7c, d). Bedding surfaces 2 m below the upper contact contain abundant 

Bathysiphon sp., up to 5 cm-long, displaying a northwest-southeast current lineation (Figure 4.7e). 

In addition, the trace fossils Ophiomorpha sp. and Planolites occur on bedding planes.  

 

Paleontology and Age 

Four samples from the Awheaiti Formation at Pukemuri Stream were examined for calcareous 

nannofossils (S28/f0466, f0406 and f0407), although the latter two were barren (Appendix 1). 

The lowest sample (S28/f0466) contains the best assemblage, with frequent, moderately well-

preserved nannofossils. The assemblages are correlated with Nannofossil Zone NP7 or lower 

NP8 (late Paleocene, late Teurian) based on the presence of Discoaster mohleri and absence of 

Discoaster nobilis (Figure 4.4). A foraminiferal residue examined from Awheaiti Formation 

(S28/f0196) provided a very poor fauna with no age or environmentally diagnostic taxa.  
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Figure 4.7: Features of the Awheaiti Formation exposed in Pukemuri Stream. A) 
Channelisation of the Awheaiti Formation in the Pukemuri Stream outcrop. B) Example of 
channelised sandstones of the Awheaiti Formation. Hammer for scale. C) Exposure of 
Awheaiti Formation in Pukemuri Stream and the unconformable upper contact with the 
Pukemuri Siltstone. D) Detail of laminated and dm-bedded fine sandstone and mudstone of 
the Awheaiti Formation E) ≤5 cm long Bathysiphon foraminifera (arrowed).  
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Pukemuri Siltstone 

Lithostratigraphy 

The Pukemuri Siltstone unconformably overlies the Awheaiti Formation with an angular 

discordance of ca. 20°. The basal contact at Pukemuri Stream is represented by a 1 m-thick 

massive, pebbly-sandstone, with poorly-sorted, well-rounded clasts and a glauconitic sandy 

matrix (Figure 4.8a). Above this is a 30 m-thick pebbly-mudstone unit with well-rounded pebbles 

of mixed lithologies, mostly indurated sandstone and occasional chert (Figure 4.8b). These 

pebbles rarely exceed 10 cm in size and are supported within a glauconitic, grey sandy-mudstone 

matrix. Pebbles become less frequent and scattered towards the top of the unit, which grades 

into blue-grey, faintly cm-bedded mudstone that displays some convolute bedding and 

intraformational slumping interspersed amongst undisturbed layers (Figure 4.8c). A 1 m-thick 

layer of light brown mudstone occurs in the middle of this succession and contains a 25 cm-thick 

glauconitic sandstone layer. The glauconitic sandstone appears faintly cross-bedded and includes 

small, 5 cm-long sideritic concretions and well-rounded, brown mudstone clasts (Figure 4.8d).  

Immediately above the glauconitic sandstone layer is a large boulder (2 × 6 m) of cemented, 

clast-supported conglomerate and several well-rounded boulders of hard, cemented sandstone 

up to 1.5 m in diameter (Figure 4.8e). The upper part of the formation consists of 50 m of grey, 

thin-bedded sandstone and mudstone and 5 m of cm-laminated, purple-brown micaceous 

mudstone with glauconitic laminae between layers. This is overlain by 30 m of grey, well-bedded, 

laminated mudstone at the top of the formation (Figure 4.8f), with 20 cm of soft, grey, calcareous 

mudstone immediately beneath the unconformable contact with the overlying Wanstead 

Formation.  

 

Paleontology and Age 

Two samples from the Pukemuri Siltstone (S28/f0197 and S28/f0198) produced extensive 

foraminiferal assemblages; with zonal markers (e.g. Acarinina primitiva, Elphidium hampdenense, 

Morozovella crater) from an additional 27 samples providing supplementary information. Sample 

S28/f0198 in the upper Pukemuri Siltstone contains the key index species Morozovella crater and 

Elphidium hampdenense, indicating a Heretaungan age (latest Early Eocene to early Middle Eocene). 

Sample S28/f0197 from slightly lower in the section contains a less definitive fauna, giving a 

Waipawan to Porangan (Early to Middle Eocene) age.  
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Sample S28/f0197 has a benthic assemblage that includes; Lenticulina spp., Bulimina pupula, 

Cibicides truncatus, Anomalinoides sp., Bathysiphon sp., Bolivinopsis cf. spectabilis, and Gyroidinoides cf. 

neosoldanii, while the benthic foraminiferal assemblage from sample S28/f0198 is characterised by 

Tritaxilina zealandica, Gyroidinoides neosoldanii, Kalamopsis grzybowskii, Chilostomella sp., Pleurostomella 

sp., Nuttallides carinotruempyi and Anomalina aotea.  

Twenty-seven calcareous nannofossil samples from the Pukemuri Siltstone contain Early to 

Middle Eocene assemblages. The presence of Discoaster lodoensis throughout the formation, 

indicates correlation with Nannofossil Zones NP12-14 (late Early to early Middle Eocene), 

consistent with foraminiferal biostratigraphy (Figure 4.4). Despite the high sampling resolution, 

no further zonal subdivision is possible.  
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Figure 4.8: Details of the Pukemuri Siltstone in Pukemuri Stream. A) Pebbly-sandstone 
immediately above the basal contact of the Pukemuri Siltstone. B) Pebbly mudstone unit of the 
lower Pukemuri Siltstone. C) Soft sediment slump structure in the Pukemuri Siltstone. D) 
Glauconitic sandstone incorporating well-rounded brown mudstone clasts. E) Indurated 
conglomerate and sandstone boulders (arrowed) included within the lower Pukemuri Siltstone. 
Person for scale. F) Thin-bedded, grey, flaggy mudstone typical of much of the Pukemuri 
Siltstone.  
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Wanstead Formation 

Lithostratigraphy 

Outcrops of the Wanstead Formation in Pukemuri Stream are typically slumped and poorly 

exposed (Figure 4.9a). The Wanstead Formation unconformably overlies the Pukemuri Siltstone, 

with a basal 1 m-thick poorly-sorted, clast-supported conglomerate (Figure 4.9b) separating the 

grey mudstone of the Pukemuri Siltstone from the typical green mudstones of the Wanstead 

Formation. The remainder of the formation is ca. 200 m-thick, intensely sheared and deformed 

green-grey calcareous mudstone (Figure 4.9c), with occasional thin glauconitic sandstone beds and 

thin (<0.5 m), laterally-restricted, lenses of grey, well-cemented sedimentary breccia (Figure 4.9d, 

e). Undeformed mudstones display a mottled texture and little or no primary sedimentary 

structures. The top of the section is not exposed. 

 

Paleontology and Age 

A late Middle Eocene (Bortonian) age applied to the basal portion of the formation immediately 

above the conglomerate is based on the presence of the planktic foraminifera index species 

Globigerinatheka index and Acarinina primitiva in sample S28/f0199 (Figure 4.4). Conversely, the 

presence of Elphidium hampdenense and Morozovella crater some 200 m higher in the section 

(S28/f200) gives an older Heretaungan (late Early to early Middle Eocene) age. The Wanstead 

Formation foraminiferal faunas (S28/f199 and S28/f200) contain similar benthic assemblages 

including the benthic foraminifera Abyssamina poagi. 

Ages derived from calcareous nannofossil assemblages from the lower Wanstead Formation are 

consistent with foraminiferal results. Four samples from lowermost Wanstead Formation were 

examined for calcareous nannofossils. Two samples (S28/f0465 and S28/f0428) are identified as 

reworked clasts from Pukemuri Siltstone based on the continued presence of Discoaster lodoensis 

and other similarities with the underlying assemblages (Appendix 1). Sample S28/f0464 contains 

an assemblage characterised by Reticulofenestra spp. (including R. umbilicus), Coccolithus formosus, 

Chiasmolithus spp., Sphenolithus radians, Zygrhablithus bijugatus and Nannotetrina spp. The presence of 

R. umbilicus and Nannotetrina spp., as well as the absence of Reticulofenestra reticulata, indicates a 

correlation with lower Zone NP16 (late Middle Eocene; Figure 4.4). The overlying sample 

S28/f0394 contains a somewhat younger assemblage that includes Reticulofenestra reticulata, 

Dictyococcites bisectus and Chiasmolithus grandis. The co-occurrence of D. bisectus and C. grandis 

indicates a correlation with upper Zone NP17 (latest Middle to earliest Late Eocene) age. 
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Figure 4.9: Features of the Wanstead Formation exposed in Pukemuri Stream. A) Typical 
slumped outcrop of the Wanstead Formation. Slip is 10 m high. B) Clast-supported basal 
conglomerate, marking the contact between Pukemuri Siltstone and Wanstead Formation. C) 
Intensely deformed section, common in the Wanstead Formation. D) Outcrop of coherent 
green mudstone. Note dark grey 10 cm-thick breccia lens E) Detail of breccia lens showing 
3-4 mm subangular clasts and calcite cement. 
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4.3.2 Awheaiti Stream 

The Awheaiti Stream section provides a secondary section for comparison to the primary 

reference section in Pukemuri Stream. The Awheaiti section is a composite section (Figures 4.10, 

4.11 & 4.12) measured and described from the base of the Awhea Formation (grid reference: 

S28 191 632) through to the Wanstead Formation (grid reference: S28 183 642) (Figures 4.10 & 

4.11). The stratigraphy of the upper Pukemuri and Wanstead Formations is difficult to trace in 

this section due to the high degree of slumping, shearing and folding of exposures, along with 

fault repetition of units, which creates an over-thickening of the Pukemuri and Wanstead 

Formations. 

 

 

 Figure 4.10: Construction of composite sections from three sections outcropping in Awheaiti 
Stream. Key to abbreviations: WF = Whangai Formation, MF = Manurewa Formation, ML = 
Mungaroa Limestone.  
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Figure 4.11: Awheaiti Stream tape and compass map and schematic cross-section. Af = Awhea 
Formation, Mg = Mungaroa Limestone, Aw = Awheaiti Formation, Pm = Pukemuri Siltstone, 
Wn = Wanstead Formation. 
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Figure 4.12: Stratigraphic column for Awheaiti Stream showing lithostratigraphy and key 
calcareous nannofossil and foraminiferal biostratigraphic datums.  
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Awhea Formation 

Lithostratigraphy 

The Awhea Formation is poorly exposed in Awheaiti Stream. The basal contact with the 

Manurewa Formation lies ca. 80 m from the mouth of the stream but has poor outcrop exposure 

and is obscured by vegetation. The formation consists of 200 m of hard, grey, cm- to dm- 

bedded, glauconitic sandstone with sharp basal contacts and minor mudstone layers separating 

beds. No samples were collected for paleontology, age or environmental interpretation.  

 

Mungaroa Limestone 

Lithostratigraphy 

The Mungaroa Limestone is exposed in a small gorge 350 m upstream from the mouth of 

Awheaiti Stream (Figure 4.13a). The formation has a gradational lower contact with the 

underlying Awhea Formation, and is distinguished by increases in the carbonate content, 

cementation and bedding thickness (Figure 4.13b). The basal Mungaroa Limestone comprises 20 

m of grey, dm-bedded, glauconitic, medium to coarse calcareous sandstone with minor 

mudstone separating layers, progressively grading into alternating sandstone and mudstone 

further up section (Figure 4.13c, d). Repeated alternation of sandstone, fining upwards into 

laminated mudstone is clearly displayed within bedding sequences in the upper part of the 

section. Bioturbation is absent at the base of the formation but scattered trace fossils become 

evident, including Zoophycos and c.f. Planolites, increasing in frequency on occasional bedding 

surfaces towards the top of the formation (Figure 4.13e).  

 

Paleontology and Age 

Sample S28/f0450, collected from the base of the Mungaroa Limestone (Figures 4.11 and 4.12) 

contains a calcareous nannofossil assemblage that is assigned to Nannofossil Zones NP3-4 (early 

Paleocene) based on the presence of Chiasmolithus bidens and absence of Fasciculithus tympaniformus. 
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Figure 4.13: Details of Mungaroa Limestone in Awheaiti Stream. A) Small gorge with 
outcropping lower Mungaroa Limestone. B) Conformable contact between the Awhea 
Formation and overlying Mungaroa Limestone. Bluff in the centre of the image is 5 m high. C) 
Well-bedded, dm-scale bedding of the lower Mungaroa Limestone, with thin mudstone layers 
separating calcareous sandstone beds. D) Alternating sandstone/mudstone near the top of the 
formation. E) c.f. Planolites exposed on bedding plane near the top of the section.  
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Pukemuri Siltstone 

Lithostratigraphy 

The Pukemuri Siltstone unconformably overlies the Mungaroa Limestone and has an estimated 

thickness of 170 m. True stratigraphic thickness is difficult to determine due to structural 

complexities, and estimated thickness is based on the correlation of three logged subsections in 

Awheaiti Stream (Figure 4.10) The base of the formation crops out above a small gorge, where 

the Awheaiti Stream flows along the strike of a dip-slope formed by the top of the Mungaroa 

Limestone. The basal unit of the Pukemuri Siltstone comprises 30 m of pebbly-mudstone, 

containing clasts of indurated sandstone, limestone and chert, with occasional greywacke pebbles 

within a matrix of sandy, blue-grey mudstone (Figure 4.14a, b). This is overlain by 60 m of hard, 

blue-grey, laminated, glauconitic, calcareous, micaceous mudstone displaying rare horizontal 

burrows and abundant pyrite. Above this is an 8 m-thick interval of brown glauconitic mudstone 

with a 50 cm-thick layer of glauconite, bearing sedimentary breccia and sideritic concretions 

(Figure 4.14c), which probably correlates with a similar interval in Pukemuri Stream. The layer is 

offset by cm-scale normal faults. A grey, well-bedded, laminated, poorly calcareous mudstone 

unit lies above the brown mudstone (Figure 4.14d), displaying rare slump folds (Figure 4.14e). This 

is overlain by ca. 20 m of weakly calcareous to non-calcareous, massive, grey mudstone with 

frequent 3-12 mm-thick calcite veins. Above this lies approximately 50 m of massive to faintly 

laminated blue-grey mudstone containing occasional concretions up to 4 m in diameter (Figure 

4.14f). 

 

Paleontology and Age 

Foraminifera and calcareous nannofossils provide good age control for this unit in Awheati 

Stream. The planktic foraminifera Morozovella crater occurs in all but the lowermost sample, 

indicating a Mangaorapan-Heretaungan (late Early to early Middle Eocene) age range. An 

isolated occurrence of Elphidium hampdenense in sample S28/f212 suggests that the upper part of 

the unit is Heretaungan. This correlation is consistent with calcareous nannofossil assemblages, 

with the base of Nannofossil Zone NP12 (lower Mangaorapan) identified by the first occurrence 

of Discoaster lodoensis at the base of the formation (Figure 4.12).  

Samples S28/f0210 and S28/f0211 from basal Pukemuri Siltstone produce a foraminiferal 

assemblage containing the planktics Globanomalina wilcoxensis, Acarinina primitiva, Planorotalites 
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laevigata, Morozovella cf. aquea rex, and M. crater. These species, along with the benthic species 

Buliminella browni, indicate a late Waipawan to Heretaungan (late Early to early Middle Eocene) 

age range (Appendix 1). The absence of the benthic E. hampdenense, which is a Heretaungan index 

species, may restrict the age of these samples to the early Eocene (upper Waipawan to 

Mangaorapan). Samples higher in the section (S28/f0206, S28/f0213 and S28/f0214) contain M. 

crater and M. lensiformis indicating a late Early to early Middle Eocene (Mangaorapan to 

Heretaungan) age, which is constrained to the latest Early to early Middle Eocene (Heretaungan) 

by the presence of E. hampdenense in sample S28/f0212. Benthic foraminiferal assemblages 

include; Vulvulina zesprinosa, Ellipsoglanulina sp. (S28/f0210), Chilostomella sp. and Anomalina visenda 

(S28/f0211), E. hampdenense and Stilostomella sp. (S28/f0212), Allomorphina conica, Kalamopsis 

grzybowskii, Chilostomella sp., Pleurostomella sp. and Nuttallides carinotruempyi (S28/f0206).  

Five calcareous nannofossil samples from the Pukemuri Siltstone at Awheaiti Stream contain late 

Early to earliest Middle Eocene (Mangaorapan to early Heretaungan) assemblages characterised 

by Reticulofenestra spp., Toweius callosus, D. lodoensis, Discoaster kuepperi, Coccolithus formosus, 

Zygrhablithus bijugatus, Neococcolithes spp. and Sphenolithus radians (Appendix 1). The presence of D. 

lodoensis indicates a zonal assignment of NP12-14 (Figure 4.12). The sporadic and rare occurrence 

of Tribrachiatus orthostylus (NP12 restricted) in several samples is likely due to reworking if the 

occurrence of E. hampdenense is reliable. 
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Figure 4.14: Features of the Pukemuri Siltstone exposed in Awheaiti Stream. A) Pebbly 
mudstone of lowermost Pukemuri Siltstone containing limestone, chert and indurated sandstone 
clasts (arrowed). B) Large chert clast in lower Pukemuri Siltstone. C) Glauconitic sandstone 
containing breccia and sideritic concretions offset by small-scale normal faulting. Hammer for 
scale. D) cm-bedded mudstones of the Pukemuri Siltstone. Rock pick (80 cm long) for scale. E) 
Soft sediment deformation structure. Rock pick for scale. F) Large concretion (arrowed) in 
Pukemuri Siltstone, 1 × 4 m in size. 
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Wanstead Formation 

Lithostratigraphy 

Overlying the Pukemuri Siltstone is a highly deformed and strongly sheared interval of Wanstead 

Formation mudstone. The lower contact is obscured but inferred to be faulted based on a 

reversal in younging direction indicated by the biostratigraphy. The formation varies from pale 

grey to green to red-brown mudstone, although it is predominantly composed of extensively 

sheared, highly-calcareous, green mudstone (Figure 4.15). It contains frequent calcite veins up to 

20 mm-thick with crystals forming in voids. Infrequent dm- to m-thick beds of glauconitic 

sandstone and white calcareous mudstone also outcrop in the formation.  

 

Paleontology and Age 

Two samples from the base of the Wanstead Formation at Awheaiti Stream (S28/f0441 and 

S28/f0440) contain an early Late Eocene (upper Kaiatan to lowermost Runangan) calcareous 

nannofossil assemblage distinctly different from assemblages in the underlying Pukemuri 

Siltstone (Appendix 1). The assemblage includes Reticulofenestra spp. (including R. umbilicus and R. 

reticulata), Dictyococcites bisectus, Coccolithus formosus, Discoaster saipanensis, Zygrhablithus bijugatus and 

Chiasmolithus oamaruensis. The co-occurrence of C. oamaruensis with R. reticulata and D. saipanensis 

indicate a correlation with Nannofossil Zone NP18 (Figure 4.12). Two samples from 

approximately 30 m higher in the section (S28/f0387 and fS28/0388) contain an older 

nannofossil assemblage assigned a Middle Eocene (late Heretaungan to early Bortonian) age, 

indicating faulting or an overturned section not readily obvious within the exposed outcrop due 

to shearing and poor exposure. The assemblage is characterised by Reticulofenestra spp., C. formosus, 

Neococcolithes spp., S. radians and Z. bijugatus. The nannofossil zonal assignment of upper NP14 to 

lower NP16 is based on the absence of Discoaster lodoensis (LAD within Zone NP14) and absence 

of R. umbilicus (FAD in Zone NP16), as well as the questionable occurrence of Nannotetrina 

cristata in one sample. 

An Early to early Middle Eocene (Mangaorapan to Heretaungan) age is favoured for a single 

foraminiferal sample (S28/f0214), which contained the index fossil Morozovella crater, although the 

absence of Elphidium hampdenense may indicate a Mangaorapan restricted age. The benthic 

foraminiferal assemblage in sample S28/f0214 contains; Pleurostomella sp., Karreriella bradyi, 

Anomalina visenda, Trochamminoides sp., Aragonia zealandica and Quadrimorphina allomorphinoides. 
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Figure 4.15: Features of the Wanstead Formation in Awheaiti Stream. A) Typical, sheared, green-
grey mudstone of the Wanstead Formation. Rock pick for scale (80 cm long). B) Outcrop of light 
grey and red-brown mudstone. C) Extensively sheared outcrop of the Wanstead Formation in 
Awheaiti Stream. 
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4.3.3 Te Oroi Stream  

The Te Oroi Stream section is utilised as an accessory section in this study, and was measured 

and described from the base of the Awhea Formation (grid reference: S28 148 592) to lower 

Wanstead Formation (grid reference: S28 144 600). Outcrop, sampling and paleontological data 

for the section is limited, and neither a map or stratigraphic section are presented. However, 

brief descriptions are included in this study to establish changes in stratigraphic thickness of 

formations and confirm age and paleoenvironmental assessments. No calcareous nannofossil 

assemblages were examined from Te Oroi Stream, and foraminiferal data is only available from 

sparse CCP samples from the Awhea, Pukemuri and Wanstead Formations.  

 

Awhea Formation 

Lithostratigraphy 

The Awhea Formation consists of 290 m of cm- to dm-scale, well-bedded, glauconitic, slightly 

calcareous, fine to very fine sandstones and grey micaceous mudstones. Occasional thicker beds 

(0.5-1.0 m) occur towards the middle of the formation, becoming less well-bedded and softer 

near the top of the formation.  

 

Paleontology and Age 

The age of the lower Awhea Formation (sample S28/f0202) is poorly constrained, with a sparse, 

entirely agglutinated foraminifera fauna indicating an age range of Campanian to Paleocene 

(Haumurian to Teurian) based on the presence of Rzehakina epigona (Appendix 1). Sample 

S28/f0202 also contained Bathysiphon sp. and Kalamopsis gryzbowskii. A somewhat richer fauna 

from the middle of the Awhea Formation (sample S28/f0203) from the upper Awhea Formation 

contains a Paleocene (Teurian) assemblage that includes Gavelinella beccariiformis, Nuttalides florealis, 

Acarinina sp. and Globigerina sp., in addition to Gyroidinoides cf. globosus, Dorothia cf. bullata, 

Bolivinopsis spectabilis and Ammodiscus cretaceus.  
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Mungaroa Limestone 

Lithostratigraphy 

The Mungaroa Limestone outcrops as a largely inaccessible bluff exposed by a 70 m-high 

waterfall in Te Oroi Stream (Figure 4.16a). The basal Mungaroa Limestone consists of 25 m of 

hard, poorly-bedded, green-grey calcareous mudstone with Zoophycos traces (= the lower 

member), overlain by 20 m of hard, cm-bedded, light green to white-grey, slightly glauconitic 

sandstone (= the middle member). The top of the formation consists of 40 m of hard, well-

bedded, white, micritic limestone with abundant Zoophycos, Scolicia and Planolites traces (= the 

upper limestone member). The Mungaroa Limestone in Te Oroi Stream was not sampled for 

foraminifera, and no age diagnostic data is available. 

 

Awheaiti Formation 

Lithostratigraphy 

The Awheaiti Formation unconformably overlies Mungaroa Limestone with an angular 

discordance of 15-20° (Figure 4.16b). The formation is composed of several metres of cm-

bedded, laminated, grey-brown, micaceous, slightly glauconitic mudstone and fine sandstones 

(Figure 16c). The contact between Mungaroa Limestone and Awheaiti Formation in the Te Oroi 

Stream section is unconformable, but does not display any evidence of channelisation as 

observed at Pukemuri Stream. No paleontological data is available.  
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Figure 4.16: Features of the Mungaroa and Awheaiti Formations in Te Oroi Stream. A) 
Mungaroa Limestone outcropping in 70 m-high waterfall. Person for scale (arrowed). B) 
Contact and angular discordance between bedding in the Mungaroa Limestone and the 
Awheaiti Formation C) Typical, thin-bedded Awheaiti Formation in Te Oroi Stream.  

 

Pukemuri Siltstone 

Lithostratigraphy 

The Pukemuri Siltstone unconformably overlies the Awheaiti Formation. The lower part of the 

formation is a 20 m-thick, grey mudstone containing abundant, ≤10 cm, well-rounded pebbles at 

the base, which decrease in frequency and size up-section. This grades into a massive, grey, 

glauconitic, fine-grained calcareous sandstone and mudstone up to 20 m-thick. This is overlain 

by 6 m of calcareous, brown, laminated mudstone. Overlying the mudstone is 30 m of poorly 

calcareous, massive or cm-bedded grey mudstone, displaying evidence of syn-depositional 

slumping, rare clasts up to 20 cm in size and scattered pebbles. This is overlain by 15 m of 

laminated, cm- to dm-bedded, grey, fine sandstone and mudstone. The upper 20 m of the 

formation consists of massive, grey, calcareous mudstone.  
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Paleontology and Age 

A single sample from the base of the Pukemuri Siltstone (sample S28/f0204) contains a sparse 

foraminiferal fauna, including the key planktic species M. crater, indicating a late Early Eocene to 

earliest Middle Eocene (Mangaorapan to Heretaungan) age. The absence of benthic index species 

E. hampdenense could restrict the age to late Early Eocene (Mangaorapan); however, its absence 

may be due to the sparse nature of the assemblage rather than an indication of an older age. The 

benthic foraminiferal assemblage includes common Cibicides wahoensis, Oridorsalis umbonatus, 

Hyperammina sp., Bathysiphon sp. Bolivinopsis compta and elongate nodosariids.  

 

 

Wanstead Formation 

Lithostratigraphy 

Exposure of the Wanstead Formation is limited to several tens of metres of poorly-exposed, cm-

bedded, green-grey, bioturbated, highly calcareous mudstone and thin, glauconitic fine 

sandstones. The base of the formation is largely obscured, but appears to be unconformable and 

consists of a cemented, clast-supported, poorly-sorted basal conglomerate, containing well-

rounded clasts of mixed lithologies including chert and indurated sandstone within a grey, sandy 

matrix. 

 

Paleontology and Age 

The base of the Wanstead Formation (sample S28/f0205) is assigned a late Middle Eocene 

(Bortonian) age based on the co-occurrence of the planktic foraminifera Globigerinatheka index, 

Truncorotaloides pseudotopilensis and Acarinina primitiva. The assemblage also contains the benthic 

taxa; Cassidulina subglobosa, Karreriella bradyi, Pleurostomella sp., Osangularia sp., Glomospira gordialis, 

Nuttallides subtruempyi, Kalamopsis grzybowskii, Arenobulimina sp. and Abyssamina poagi.  
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4.4 Additional Stratigraphic Data 

Additional features that are useful for the environmental and age interpretation of the Mungaroa 

Limestone occur in coastal outcrops north and south of the main sections. The upper micritic 

limestone member of the Mungaroa Limestone, which is absent or inaccessible in stream 

sections has good outcrop exposure at Te Kaukau Point (Figure 4.17a), and the base of the 

member is well exposed at Manurewa Point. The upper member consists of well-bedded, muddy 

limestone, micritic limestone and glauconitic sandstone, with sharp contacts between beds. 

Complex folding of the Mungaroa Limestone occurs at the base of the Manurewa Point section 

(Figure 4.17b). Stylolitic surfaces are observed within the micritic limestone member at Te Kaukau 

Point, which indicate pressure solution during burial. Several east to southeast directed slump 

folds and plastic deformation of bedding is observed in the upper limestone member at 

Manurewa and Te Kaukau Points (Figure 4.17c). Intrusive sedimentary dykes composed of 

greensand penetrate perpendicular to strata in the middle member in Pukemuri Stream and the 

upper member at Manurewa and Te Kaukau Points. At Manurewa and Te Kaukau Points, 

bedding in the micritic limestone is observed to be displaced upwards by the injection of 

greensand dykes (Figure 4.17d & e). The dykes also contain angular to sub-angular limestone 

clasts, suggesting that the limestone was semi-lithified at the time of intrusion.  

Sampling of the upper micritic member of the Mungaroa Limestone at Te Kaukau Point 

indicates deposition within Radiolarian Zone RP5 (Late Paleocene), marked by the presence of 

primary index species Buryella tetradica (C. Hollis; pers. comm.). 

At Te Kaukau and Manurewa Points the upper micritic limestone member hosts two dark, fine-

grained layers separated by 1.5 m of cm- to dm- bedded alternating layers of white micritic 

limestone and grey sandstone (Figure 4.18a). At Te Kaukau Point this is identified as ‘Waipawa 

facies’ and comprises two 50 cm-thick, dark-grey siliceous, organic-rich mudstone layers (Figure 

4.18b & c). Ripple cross-bedding up to 5 cm high is observed within both mudstone layers and 

occasional intervening sandstone beds (Figure 4.18c & d). 
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Figure 4.17: Features of the Mungaroa Limestone from supplementary sections A) dm-bedded 
micritic limestone of the upper limestone member exposed at Te Kaukau Point. New Zealand 
fur seal for scale (circled), approximately 1 m long. B) Complex folding of the Mungaroa 
Limestone at Manurewa Point. Field of view approximately 25 m. C) Slump folding and plastic 
deformation of limestone layers at Te Kaukau Point. New Zealand fur seal for scale, 
approximately 1 m long. D) Sedimentary dyke and minor normal faulting at Manurewa Point. 
E) Glauconitic sedimentary dyke intruding into micritic limestone at Te Kauaku Point. Note 
deflection of bedding near the dykes in D and E.  
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Figure 4.18: Features associated with the ‘Waipawa facies’ incorporated within the Mungaroa 
Limestone. A) Pair of ca. 50 cm-thick, black mudstone layers (arrowed) separated by 1.5 m of 
micritic limestone. Person for scale. B) Abrupt contact between lower mudstone layer and the 
middle member of the Mungaroa Limestone. Arrows indicate position of the two black 
mudstone layers. Hammer for scale. C) Detail of cross-bedding in the lower layer of black 
mudstone. Pen for scale (14 cm long). D) Cross-bedding in sandstone bed from the interval 
separating the two black mudstones.  
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4.5 Trace Fossil Assemblages 

Trace fossils are often indicative of specific environments or conditions, and are particularly 

prevalent in some aspects of the Paleogene succession at Tora, providing additional information 

for environmental interpretations based on sedimentology and foraminiferal assemblages. 

Observations of trace fossil assemblages in the Manurewa Formation include Nereites, ?Chondrites, 

Ophiomorpha and Zoophycos (Figure 4.19), indicating an association with the Nereites ichnofacies 

(Buatois & Mángano, 2011). Extensive trace fossils exposed on bedding planes in the Awhea 

Formation include Planolites, Ophiomorpha, Nereites, Paleodictyon, Scolicia and Zoophycos (Figure 4.20). 

This assemblage also corresponds with deposition in the Nereites ichnofacies (Buatois & 

Mángano, 2011). Similar, although less extensive trace fossil assemblages are observed in the 

middle member of the Mungaroa Limestone. 

Zoophycos dominates the trace fossil assemblages observed in the upper member of the Mungaroa 

Limestone, although a variety of other trace fossils, (e.g. c.f. Paleodictyon, c.f. Scolicia, c.f. 

Thalassinoides) are also observed to occur infrequently within the member (Figure 4.21).  

Occasional Ophiomorpha and Planolites are observed in the Awheaiti Formation (Figure 4.22). 

Bioturbation traces are almost entirely absent in the Pukemuri Siltstone, with the exception of 

rare small, unidentified burrows observed in Awheaiti Stream. In the few unsheared outcrops of 

Wanstead Formation in Pukemuri Stream, a mottled texture is observed, indicative of extensive 

and pervasive bioturbation, although no distinct traces were observed.  
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Figure 4.19: Trace fossils observed in Manurewa Formation. A) Nereites. B) ?Chondrites. C) 
Ophiomorpha. D) Zoophycos.  
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Figure 4.20: Trace fossil assemblages from Awhea Formation. A) Paleodictyon. B) c.f. Scolicia ca. 5 
cm in diameter. C & D) Ophiomorpha. E) c.f. Helmetioda F) Planolites. 
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Figure 4.21: Trace fossils from the Mungaroa Limestone A, B) Zoophycos from Te Oroi Stream 
in outcrop (A) and in float (B). Rock pick for scale (80 cm long). C) Worm borings, Manurewa 
Point. D) Biogeneic collapse structure of Collen (1978) observed at Manurewa Point, likely 
formed by collapse of a Zoophycos burrow. E) Scolicia observed on bedding plane of the middle 
member in Pukemuri Stream. F) c.f. Paleodictyon, Manurewa Point. G) c.f. Scolicia, Manurewa 
Point. H) c.f. Thalassinoides, Manurewa Point.  
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Figure 4.22: Trace fossils of the Awheaiti Formation in Pukemuri Stream. A & B) Planolites. C 

& D) Ophiomorpha.  

 

4.5.1 Interpretation of Trace Fossil Assemblages 

Trace fossil assemblages have long been recognised as indicative of specific environments and 

conditions. Using the environmental preferences and associations of various trace fossil 

assemblages, as summarised in Buatois & Mángano (2011), the trace fossil assemblages observed 

within the Manurewa, Awhea, Mungaroa and Awheaiti Formations provide a 

paleoenvironmental interpretation presented in Figure 4.23. 

Trace fossils of the Nereites ichnofacies display a close affinity to base-of-slope turbidity systems, 

and traces such as Nereites and Paleodictyon are rarely preserved outside of this environment (Figure 

4.23; Buatois & Mángano, 2011). Trace fossil assemblages in the Manurewa Formation correlate 

to the Nereites ichnofacies, supporting the bathyal depth suggested by benthic foraminiferal 

assemblages (S28/f0191, S28/f0291; Appendix 1). The overlying Awhea Formation displays a 

similar, although more extensive, trace fossil assemblage that also corresponds with turbidite 

deposition in the Nereites ichnofacies (Figure 4.23). Proximal turbidites are often characterised by 
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gently meandering traces such as Scolicia (e.g. lowermost Awhea Formation and the middle 

member of the Mungaroa Limestone), while medial and distal turbidites may be indicated by 

patterned or tightly spiralling forms such as Paleodictyon and Nereites (e.g. Manurewa Formation 

and the remainder of the Awhea Formation).  

The prevalence of Zoophycos traces in the upper micritic limestone member of the Mungaroa 

Limestone likely represents a shift to the Zoophycos ichnofacies, which is characterised by low, but 

not limiting oxygen, with some other infrequent and small traces in addition to Zoophycos (Figure 

4.23; Frey, 1975). A trace fossil assemblage containing infrequent traces of Ophiomorpha and 

Planolites in Awheaiti Formation corresponds with channels in submarine turbidite environments, 

which may be inhabited by components of the Skolithos ichnofacies (e.g. Ophiomorpha) that extend 

to deep marine, high-energy settings (Figure 4.23; Pemberton et al., 1992; Buatois & Mángano, 

2011). In the absence of turbidite deposition, comparatively slow, continuous deposition means 

that bioturbation in the Nereites ichnofacies is not recorded as discrete traces, but rather as an 

overlapping, mottled texture, such as that observed in the Wanstead Formation (Figure 4.23; Frey 

et al., 1990).  

 

 

 

 Figure 4.23: Depositional setting for the formations at Tora, based on ichnofossil relationships. 
Key to abbreviations: Ch = Chondrites, Ne = Nereites, Op = Ophiomorpha, Pa = Paleodictyon, Pl = 
Planolites, Sc = Scolicia, Zo = Zoophycos. Figure adapted from Buatois & Mángano (2011).  
Pukemuri Siltstone has been omitted due to the lack of trace fossil faunas.  
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4.6 Revised Paleogene Stratigraphy and Depositional Environments of the Tora Area 

The measured sections from Pukemuri, Awheaiti and Te Oroi Streams combined with additional 

observations from Te Kaukau and Manurewa Points confirms the overall published stratigraphy, 

but also indicates that there are significant lateral facies variations and unconformities (Figure 

4.26). A detailed revision of formation ages (Figure 4.27), along with a revised Paleogene 

stratigraphy for the Tora area is presented here. In addition, depositional environments are 

interpreted on the basis of foraminiferal assemblages, sedimentology and trace fossils.  

 

4.6.1 Awhea Formation 

 Description 

The lower Awhea Formation consists of 20-50 cm-thick, well-bedded, green-grey, glauconitic 

sandstone beds divided by thin layers of mudstone. Bedding surfaces are extensively bioturbated, 

including traces of Nereites, Paleodictyon, Ophiomorpha, Scolicia and Planolites. Vertically and 

horizontally oriented burrows are commonly infilled with pyrite and carbonaceous material is 

occasionally found in sandstone beds. The formation becomes progressively finer-grained, 

thinner bedded as well as less glauconitic up-section and bioturbation becomes significantly less 

extensive towards the top of the formation. The lower contact with the underlying Manurewa 

Formation varies between localities, being gradational in Te Oroi and Pukemuri Streams and 

sharp at Manurewa Point.  

 

 Distribution & Lithologic Variation 

Extensive exposure of the formation occurs in Te Oroi Stream (290 m-thick), and Pukemuri 

Stream (270 m-thick), decreasing to 200 m in Awheaiti Stream (Figure 4.26) 

 

 Paleontology & Age 

Foraminiferal assemblages from the lower Awhea Formation (S28/f0192, S28/f0202) indicate an 

age range of late Cretaceous to Paleocene (Haumurian to Teurian). Identification of the 

Cretaceous/Paleogene (K/Pg) boundary in the underlying Manurewa Formation (Wasmuth, 

1996; Laird et al., 2003; Vellekoop, 2010) suggests an early Paleocene (Teurian) age for the lower 

Awhea Formation (Figure 4.27). Samples from the middle and upper Awhea Formation 
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(S28/f0193, S28/f0203) produce distinctly Paleocene (Teurian) assemblages containing 

Gavelinella beccariiformis, Nuttalides florealis, Acarinina spp. and Globigerina sp. 

 

 Depositional Environment  

Benthic foraminiferal assemblages from the Awhea Formation suggest a middle to lower bathyal 

depositional depth based on the presence of Bathysiphon sp., Ammodiscus cretaceous, G. beccariiformis 

and N. florealis, in conjunction with the dominance of agglutinated taxa (>90%) in samples 

S28/f0192 and S28/f0193 (Appendix 1). The scarcity of calcareous benthic taxa and the complete 

absence of planktic foraminifera is typical of Upper Cretaceous and Paleocene sediments of 

eastern New Zealand, apparently independent of water depth (Moore, 1988b; Schiöler et al., 

2010). The cause is uncertain but it may be the consequence of a combination of factors: high 

sedimentation rates in a turbid coastal setting, relatively cool ocean conditions causing carbonate 

dissolution or post-depositional dissolution during diagenesis. The presence of carbonaceous 

material does not necessary infer shallow depositional depths as silt to pebble size organic 

carbon has been shown to occur over 300 km offshore at depths of 2000-3000 m on the 

Mississippi Fan (Thayer et al., 1986).  

Trace fossil assemblages containing Paleodictyon, Ophiomorpha, Scolicia and Planolites place the 

Awhea Formation within the Nereites ichnofacies, which supports the bathyal paleodepth 

assessment from benthic foraminiferal assemblages. The high frequency of bioturbation in the 

lower Awhea Formation suggests a largely quiet, oxygenated seafloor environment, interrupted 

by periodic turbidity flows (Frey et al., 1990; Buatois & Mángano, 2011), consistent with the 

sedimentology.  

 

4.6.2 Mungaroa Limestone 

Description 

The Mungaroa Limestone is here divided into four informal units on the basis of lithology; the 

lower member, middle member, “Waipawa facies” and the upper limestone member. White, 

faintly bedded, calcareous mudstone of the lower member conformably overlies the Awhea 

Formation, and the basal contact is gradational, distinguished by a change in colour and an 

increase in bedding thickness, carbonate and degree of cementation. The lower member grades 

into a well-bedded sequence of grey-green sandstones and mudstones of the middle member. 
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Bedding thickness in the middle member is between 10-20 cm with sharp lower contacts on 

sandstone beds grading upwards into siltstone and mudstone with dark laminae that occasionally 

display cross-lamination corresponding to Bouma sequences A, B and C. The middle member is 

abruptly overlain by the upper member which contains the “Waipawa facies”; a pair of 50 cm-

thick, glauconitic black mudstone intervals separated by 1.5 m of dm-bedded white, 

porcellaneous limestone and white-grey sandstone. The grey sandstone beds and black mudstone 

contain ripple cross-bedding up to 5 cm. The “Waipawa facies” is sharply overlain by well-

bedded, white micritic limestone of the upper limestone member. Bedding is very regular 

showing an average bed thickness of 10 cm, with sharp contacts between beds, styolites and 

infrequent chert nodules. Zoophycos trace fossils occur throughout the formation, becoming 

extensive in the upper micritic limestone member. Criteria applied in the field to delineate the 

various members of the Mungaroa Limestone are presented in figure 4.24.  

 

 Distribution & Lithologic Variation 

The Mungaroa Limestone varies significantly in stratigraphic thickness laterally, thinning 

dramatically from south to north (Figure 4.25). This is displayed by its physical morphology in the 

landscape; in Te Oroi Stream to the south, all three members of the formation outcrop as a sheer 

70 m cliff, with a total stratigraphic thickness of 85 m (Figures 4.16 & 4.26). In Pukemuri Stream, 

4 km to the north, the lower two members outcrop as a steep 20 m-high bluff, with a thickness 

of 30 m (Figures 4.6a, 4.25 & 4.26). Further north, only the lowermost member is expressed as a 

small gorge in Awheaiti Stream (Figures 4.12b, 4.25 & 4.26). Exposure of the upper members of 

the formation resumes at Manurewa Point (Figures 4.25 & 4.26). The greatest outcrop 

representation of the upper micritic limestone members is in coastal exposures at Te Kaukau 

Point.  

 

Paleontology & Age 

Calcareous nannofossil assemblages from the lower member in Awheaiti Stream correspond 

with deposition during Nannofossil Zone NP3-4 (Figure 4.27). Calcareous nannofossil 

assemblages from Pukemuri Stream place the middle member in zone NP5, and the upper 

micritic limestone member and the incorporated ‘Waipawa facies’ mudstone are placed in 

Radiolarian Zone RP5 (61-59 Ma; Hollis, 2002) based on sampling at Te Kaukau Point (Figure 

4.27).  
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 Figure 4.24: Divisions of the Mungaroa Limestone and the field criteria used to identify 
individual members in the field.  

 

 

 Figure 4.25: Variation in the thickness and distribution of the members of the Mungaroa 
Limestone across various sections in the Tora area, and relation to overlying and underlying 
formations.  
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Depositional Environment 

The lower member of the Mungaroa Limestone exposed in Pukemuri Stream was deposited in a 

middle to lower bathyal environment based on the presence of Osangularia sp., Rzehakina epigona, 

Glomospira charoides, Lituotuba sp., Nuttalides florealis and Gavelinella beccariiformis which indicate a 

deeper middle to lower bathyal depth of 800-1500 m (Hayward, 1986; Morkhoven et al., 1986). 

The well-bedded character of the middle member with sharp basal contacts, cross-bedding and 

clear Bouma sequences indicates deposition by turbidity currents. The upper micritic member of 

the Mungaroa Limestone reflects pelagic deposition with minor terrigenous input, although the 

inclusion of the ‘Waipawa facies’ at the base of the member suggests an influx of terrestrial 

organic matter and a possible fall in eustatic sea level (Hollis et al., in prep). The dominance of 

Zoophycos trace fossils in the upper limestone member suggests an affinity with the Zoophycos 

ichnofacies. This is not particularly indicative of water depth, ranging from shallow depths just 

below storm wave base to abyssal settings. However, it does indicate an oxygen depleted seafloor 

environment in an area that is free from turbidity flows and significant bottom water currents 

(Frey et al., 1990).  

Deformation structures within the formation (slump folding and sedimentary dykes) and the 

apparent absence of brittle shearing suggest that the formation was semi-lithified, but still plastic, 

at the time of deformation, consistent with the observations of Waterhouse & Bradley (1957), 

Kirk (1966) and Browne (1987). These slump structures indicate paleoslope movements and syn-

sedimentary deformation of sediments. Sedimentary dykes are indicative of a sudden shock 

applied to the sedimentary sequence which may be triggered by submarine slumping or tectonic 

activity (Onasch & Kahle, 2002).  

The reduced thickness of the Mungaroa Limestone in the Pukemuri and Awheaiti Stream 

sections is attributed to paleo-channel erosion, corresponding with the removal of much of the 

upper two members of the Mungaroa Limestone in these sections (Figures 4.25 & 4.26).  
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4.6.3 Awheaiti Formation 

Description 

In the Pukemuri Stream section, the formation rests on an unconformable, channelised contact 

with the middle member of the Mungaroa Limestone. The base of the formation displays sub 

metre-scale, low-angle cross-bedding of moderately-sorted, medium sandstone overlain by 

planar-bedded, laminated, alternating fine sandstones and mudstones. In Te Oroi Stream the 

formation outcrops as cm-bedded, grey, laminated mudstones. Bedding surfaces exposed in 

Pukemuri Stream display an abundance of Bathysiphon sp. foraminifera, some reaching 5 cm-long 

and indicating a preferred northwest-southeast orientation.  

 

Distribution & Lithologic Variation 

The Awheaiti Formation varies in thickness and outcrop considerably. It is thickest in Te Oroi 

Stream with 16 m exposed, and reaches a thickness of 11 m in a fault repeated section in 

Pukemuri Stream. The formation is entirely absent in Awheaiti Stream. This is likely the result of 

paleo-channel erosion that has also removed part of the underlying Mungaroa Limestone (Figure 

4.26). 

 

Paleontology & Age 

An upper Paleocene age (NP8) is assigned to Awheaiti Formation based on calcareous 

nannofossil assemblages from Pukemuri Stream containing Discoaster mohleri and absence of 

Discoaster nobilis (Figure 4.27). The FAD of D. mohleri represents the first appearance of the genus; 

it marks the base of Zone NP7 and is a reliable event near the Chron C26/C25 boundary 

(Agnini et al., 2007). The FAD of Heliolithus riedelii defines the base of Zone NP8; however, the 

use of this taxon for biostratigraphy is not considered reliable, as its stratigraphic range has been 

reported to differ significantly at different locations (Okada & Thierstein, 1979; Berggren et al., 

2000). The absence of the more reliable D. nobilis, which has a FAD within Zone NP8, indicates 

that the sample must be older than middle NP8. 
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Depositional Environment 

The Late Paleocene Awheaiti Formation overlies an erosional unconformity where a significant 

portion of the upper two members of the Mungaroa Limestone in the Pukemuri Stream section 

have been removed (Figure 4.26). Low-angle cross-bedding, laminated sandstones and mudstones 

and channelised contacts within the Awheaiti Formation imply a submarine channel and 

channel-fill sequence. The localised extent of the formation also supports this interpretation. The 

observation of Ophiomorpha and Planolites in the Awheaiti Formation is consistent with 

observations within channels of exhumed submarine turbidite systems (e.g. Kane et al., 2011; 

Buatois & Mángano, 2011; Callow et al., 2012; Figure 4.23). 

 

4.6.4 Pukemuri Siltstone 

Description 

The formation crops out in Pukemuri and Te Oroi Streams where the stratigraphy has limited 

structural complications. Although extensive outcrop occurs in Awheaiti Stream, it is affected by 

several structural complications and the uppermost portion of the formation is either obscured 

or absent. The base of the formation is represented by 20-40 m of pebbly-mudstone. Pebbles 

become scattered and less frequent towards the top of the unit, grading into blue-grey, faintly 

cm-bedded mudstone, which displays intraformational slumping and convolute bedding amongst 

coherent bedding sequences. The upper portion of this interval also contains megaclasts of 

indurated, clast-supported conglomerate and well-rounded boulders of hard, cemented 

sandstone. Above this interval lies massive, flaggy, grey mudstone overlain by light-brown 

mudstone with fine cm-scale bedding separated by glauconitic laminae, grading into alternating 

beds of mudstone and sandstone that are well-bedded on a dm-scale.  

 

 Distribution & Lithologic Variation 

The Pukemuri Siltstone increases in thickness from 110 m at Te Oroi Stream to 130 m at 

Pukemuri Stream and ca. 170 m at Awheaiti Stream (Figure 4.26). The 1 m-thick glauconitic 

sandstone at the base of the formation in Pukemuri Stream does not extend to the other 

sections. All other units can be traced across sections, including a 25 cm-thick glauconitic 

sandstone bed.  
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Paleontology & Age 

The Pukemuri Siltstone ranges from Early Eocene (Mangaorapan) at the base to early Middle 

Eocene (Heretaungan) at the uppermost extent of the formation based on calcareous nannofossil 

and foraminifera assemblages (Figure 4.27). The presence of the calcareous nannofossil Discoaster 

lodoensis throughout the formation, indicates correlation with Nannofossil Zones NP12-14 (late 

Early to early Middle Eocene), consistent with foraminiferal biostratigraphy. Despite the high 

sampling resolution, no further zonal subdivision is possible.  

 

Depositional Environment 

The pebbly-mudstone of the lower Pukemuri Siltstone is interpreted as a marine debris flow 

deposit, with supporting evidence including intraformational slump structures, convolute 

bedding and rafted blocks of conglomerate and sandstone. This unit can be traced from the Te 

Oroi Stream section to the Awheaiti Stream section, potentially within a broad channel, 

suggested by an angular, unconformable discordance with underlying strata (Figure 4.27). Micritic 

limestone and chert clasts observed in lowermost Pukemuri Siltstone in Awheaiti Stream 

probably originated from the upper member of the Mungaroa Limestone, which was reworked 

as a result of the erosion of the Mungaroa-Pukemuri unconformity. Higher in the section, the 

occurrence of glauconitic sandstone and glauconitic laminae between mudstone layers suggests 

reduced sedimentation rates and intermittent deposition or remobilisation.  

In Awheaiti and Te Oroi Streams, benthic foraminiferal assemblages indicate a mid-bathyal 

depth greater than 800 m. Sample S28/f0212, which contain Stilostomella sp., (900 m or deeper), 

Allomorphina conica, Kalamopsis grzybowskii, Chilostomella sp., Pleurostomella sp. and Nuttallides 

carinotruempyi (S28/f0206); Vulvulina zesprinosa, Ellipsoglanulina sp. (S28/f0210), Chilostomella sp. 

and Anomalina visenda (S28/f0211) and Oridorsalis umbonatus (600-5000 m; Hayward et al., 2010) 

(S28/f0204).  

Slump folds and plastic deformation in lower Pukemuri Siltstone indicate slope deposition and 

remobilisation of sediment (Walker & James, 1992). Therefore, benthic foraminifera with deeper 

upper limits are used to constrain the minimum depth of deposition in sample S28/f197. The 

two samples from Pukemuri Stream used for paleodepth determinations contain a mixture of 

shelfal and bathyal indicators, suggesting down-slope redeposition of shelf species. The deep-

water taxa that are assumed to be in situ from sample S28/f0197 indicate an upper to mid-bathyal 
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depositional environment, supported by an assemblage containing Lenticulina spp., Bulimina 

pupula, Cibicides truncatus, Anomalinoides sp., Bathysiphon sp., Bolivinopsis cf. spectabilis, and 

Gyroidinoides cf. neosoldanii. The benthic foraminiferal assemblage from sample S28/f0198 

indicates deepening during deposition of the upper part of the Pukemuri Siltstone, increasing 

from upper/mid-bathyal (S28/f0197) to lower bathyal depths. Key paleodepth taxa from 

S28/f0198 include Tritaxilina zealandica, Gyroidinoides neosoldanii, Kalamopsis grzybowskii, Chilostomella 

sp., Pleurostomella sp., Nuttallides carinotruempyi and Anomalina aotea.  

The low foraminiferal abundance in samples collected in lower Pukemuri Siltstone may 

potentially reflect rapid deposition. In addition, the presence of Morozovella spp. throughout 

foraminiferal assemblages recovered from the formation implies sub-tropical to tropical sea 

temperatures at the time of deposition, a feature which correlates with the established concepts 

of early Eocene paleoclimate (e.g. Hornibrook, 1992; Pearson et al., 2006).   

 

4.6.5 Wanstead Formation 

Description 

A poorly-sorted, 1.0 m-thick basal conglomerate comprised of a broad assortment of pebble-

sized, moderately to well-rounded, chert, greywacke and sandstone clasts overlies the 

unconformable contact with Pukemuri Siltstone. The majority of the Wanstead Formation is 

observed as a pale-green mudstone with occasional grey layers and minor glauconitic sandstones. 

Higher in the formation are occasional 5-50 cm-thick lenses of well-cemented, poorly-sorted, 

coarse sandstone and gravel that pinch out laterally over a distance of 10 m. The majority of the 

mudstones display a mottled texture, indicative of pervasive bioturbation. 

 

 Distribution & Lithologic Variation 

The formation is poorly exposed, with common slumping and slope instability, common in all 

three sections. This, coupled with a high degree of tectonic shearing and folding makes it 

difficult to determine true stratigraphic thickness. In addition, the Wanstead Formation at Tora is 

truncated by the Ewe and Hungaroa Faults. The measured thickness of the Wanstead Formation 

in Pukemuri Stream is approximately 200 m.  
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Paleontology & Age 

Foraminiferal assemblages from lowermost Wanstead Formation produce a mixed Middle 

Eocene (Heretaungan to Bortonian) age. The middle Wanstead Formation in Pukemuri Stream is 

assigned an age of 37.69-36.95 Ma (late Middle to early Late Eocene (Kaiatan)) based on the 

highest occurrence of the calcareous nannofossil Chiasmolithus grandis and the lowest occurrence 

of Dictyococcites bisectus. Similarly, the youngest sediments sampled from the Wanstead Formation 

in Awheaiti Stream produce an early Late Eocene (late Kaiatan) age (Figure 4.27). Some of the 

Middle Eocene (Porangan stage) may have been removed along the basal unconformity and 

therefore be completely absent, or the thickness may be reduced and is not apparent at the 

sampling resolution. Dinoflagellate samples collected by Lee (1995) in Pukemuri Stream also 

failed to identify strata of Porangan age, further suggesting that the stage is absent. A sample 

from the uppermost extent of the Wanstead Formation in Pukemuri Stream (S28/f0200), an 

estimated 200 m above sample S28/f0199, provides an early Middle Eocene (Heretaungan) age. 

This contradiction confirms the significant extent of deformation within the formation, in which 

older sediments appear stratigraphically above younger sediments.  

 

Depositional Environment 

The occurrence of Abyssamina poagi, an abyssal dweller in the middle Eocene (Morkhoven et al., 

1986) implies a paleodepth of >3500 m. This is supported by assemblages containing Cassidulina 

subglobosa, Karreriella bradyi (500-4000 m) and Glomospira gordialis (2000-5000 m) (Hayward et al., 

2010). The mid-bathyal dwellers Pleurostomella sp. and Osangularia sp. (600-800 m; Hayward et al., 

2010) also found in these assemblages have probably been reworked or transported downslope.  

The co-occurrence of the lower bathyal to abyssal dwelling foraminifera Abyssamina poagi with the 

Heretaungan index species, Elphidium hampdenense in sample S28/f0200 from the Wanstead 

Formation indicates that the basin deepened rapidly during the early Middle Eocene 

(Heretaungan) from mid-bathyal depths in the Early Eocene Pukemuri Siltstone to lower 

bathyal-abyssal depths in the Wanstead Formation (ca. 3500 m; Morkhoven et al., 1986). Benthic 

foraminiferal assemblages indicate that the basin remained deep until the Late Eocene (Kaiatan), 

accumulating pelagic sediments.  

The Wanstead conglomerate occurs at the base of the Wanstead Formation, and a significant 

increase in paleodepth occurs between the underlying Pukemuri Siltstone and the overlying 
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mudstones of the Wanstead Formation. Interpretation of deep marine conglomeratic facies 

remains rather speculative (Walker & James, 1992). However, the basal Wanstead Formation 

conglomerate falls in to the ‘disorganised conglomerate’ category of Walker (1975) and likely 

represents a debris flow deposit.  

The overlying calcareous mudstones of the Wanstead Formation at Tora display little variation 

and a pervasive bioturbated texture common to basin plain deposits. The mudstones of the 

Wanstead Formation represent a deeper and possibly more distal facies than the underlying 

units, with a record of more continuous, slow deposition and bioturbation yielding the complex, 

mottled bioturbation textures (Frey et al., 1990; Buatois & Mángano, 2011). Subsequent tectonic 

uplift and folding and faulting has preferentially deformed the soft Wanstead Formation 

mudstones, as described in the Wanstead Formation elsewhere in the East Coast Basin (e.g. 

Lillie, 1953).  
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Figure 4.26: Correlation between sections, from Te Kaukau Point in the southeast, to Manurewa Point in the northwest of the Tora area. 
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 Figure 4.27: Revised formation ages for the Paleogene stratigraphy at Tora. ‘Ar’ denotes the 
Runangan Stage in the New Zealand Geological timescale. Timescale based on Hollis et al. 
(2010). Note radiolarians only used for age control on the upper limestone member of the 
Mungaroa Limestone. No nannofossil assemblages were studied from the Awhea Formation.  
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4.7 Depositional Setting: Orientation and Rotation 

Slump folding and oriented Bathysiphon foraminifera measured at Tora provide indications of the 

paleo-slope (e.g. Strachan & Alsop, 2006; Tucker, 2011) and current orientation (Figures 4.28 and 

4.29). Lineations measured from Bathysiphon foraminifera in Pukemuri Stream were observed 

within the confines of channelised Awheaiti Formation, and largely produce a NW-SE lineation. 

Slump folding within the Mungaroa Limestone is predominantly oriented in a south-easterly 

direction, while slump folding evident in the Pukemuri Siltstone is largely directed SE to NE. 

The bimodal distribution of slump fold orientations measured in the Pukemuri Siltstone suggest 

slumping occurred on the slopes of a channel system, as depicted in Figure 4.28.  

Accounting for tilting of the stratigraphic succession and a basin-wide estimate of ca. 40° 

anticlockwise tectonic rotation around the vertical pole during the last 40 Ma (King et al., 1999), 

this would indicate a north-northeast oriented slope direction at the time of deposition (Figure 

4.29). This is consistent with paleogeographic reconstructions of the New Zealand region (e.g. 

King et al., 1999; Crampton et al., 2003).  

 

 

 

 Figure 4.28: Interpretation of the influence of slope orientation within a channel on the 
directionality indicated by slump folds, where the black arrows D1 and D2 represent the bimodal 
peaks in the distribution of slump fold orientations and the red arrow is indicative of the channel 
direction. Slump fold orientations (black arrows) from the Pukemuri Siltstone displaying a largely 
bimodal distribution, and the inferred channel orientation is shown by the red arrow.  
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 Figure 4.29: 1A; present day orientation of the East Coast Basin (ECB) and field observations of 
large foraminifera current lineations measured in the Awheaiti Formation (1B) and slump fold (1C) 
orientations from the Pukemuri Siltstone. 2A; Latest Paleocene reconstruction of the New 
Zealand region with paleocurrent (2B) and slump fold orientations (2C) corrected for 40° 
anticlockwise rotation of the East Coast Basin over the past 40 Ma. Black arrows represent mean 
directions of the two groupings, and the red arrow indicates the potential channel and slope 
directionality. Hatched area on paleogeographic maps represents the East Coast Basin, with the 
Tora locality denoted by a red dot. Paleogeographic maps modified from King (2000) and Hollis et 
al., 2012. Key to abbreviations: ECB = East Coast Basin, TB = Taranaki Basin, CB = Canterbury 
Basin, WB = Westland Basin, GSB = Great South Basin, CV = Clarence Valley, MW = mid-
Waipara River, and 1124 = ODP site 1124. Pink dots depict recent volcanism.  
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4.8 Paleoenvironmental Discussion and Depositional History 

Submarine fans and turbidite systems have long been recognised as important for understanding 

deep water depositional environments. Submarine fans can vary considerably in morphology, 

structure and processes operating (Bouma, 2000). Despite continued refinement of fan models in 

recent years, one of the most useful and widely used is an early model proposed by Walker 

(1978) (Figure 4.30). Although this model has limitations, particularly in not taking into account 

external controls like sea level changes (Bouma et al., 1985; Walker & James, 1992, Bouma, 

2000), it provides a simple and suitable model to assist interpretation of the Paleogene rocks 

described at Tora. 

 

 

Figure 4.30: The submarine fan model of Walker (1978).  

 

Using key features of the sediments described at Tora and the Walker (1978) model, 

interpretations of the depositional environment are used to construct a depositional history of 

the stratigraphic succession at Tora, and a series of paleoenvironmental maps (Figure 4.31). In 

addition, ichnofossil relationships are utilised to produce supporting evidence. Details of the 

Manurewa Formation observed in the field during the course of this study and features noted by 

Lee (1995), Wasmuth (1996), Laird et al. (2003) and Vellekoop (2010) are incorporated in this 

discussion for a revised interpretation of the Manurewa Formation.  

129



4.8.1 Manurewa Formation 

The Manurewa Formation was deposited in the Late Cretaceous-Early Paleogene, and overlies 

the widespread Rakauroa Member of the Whangai Formation. The Manurewa Formation is 

interpreted as a nested channel complex, with cross-bedding, scours, channels, and 

conglomeratic intervals indicative of periods of high energy erosion and deposition (Laird et al., 

2003). Laird et al. (2003) interpreted the Manurewa Formation as a shallow marine channel 

complex based on the presence of marginal marine acritarchs and fungal material. However, 

these indicators are possibly reworked, as the benthic foraminiferal assemblages (S28/f0191, 

S28/f0201; Appendix 1) suggest a bathyal paleodepth which is supported by trace fossil 

assemblages associated with the Nereites ichnofacies (Nereites, Chondrites, Zoophycos) observed in the 

field (this study; Figure 4.19), and observations of Helminthoida and c.f. Paleodictyon recorded by 

Wasmuth (1996).  

The basal conglomerate of the Manurewa Formation likely represents a phase of down-cutting 

and channel incision into the underlying Whangai Formation, associated with the initial stages of 

the development of a submarine fan or the expansion of a new lobe of an existing fan. The 

massive sandstone of the upper member which is channelised into the lower member of the 

Manurewa Formation (Wasmuth, 1996; Laird et al., 2003) is also consistent with the 

interpretation of channel incision, deposition and lobe development, as described in the Walker 

(1978) model (Figure 4.30). Furthermore, the Manurewa Formation is a localised unit restricted to 

the Tora area (Laird et al., 2003), consistent with the interpretation of restricted early stage fan 

development (Figure 4.31).  

 

4.8.2 Awhea Formation 

The Manurewa Formation grades into the bedded sandstones of the lower Awhea Formation 

which is interpreted as the deposition of proximal turbidite sequences within the main body of a 

submarine fan (Figures 4.30 & 4.31). Higher in the formation, the shift to ‘classical’, normal-

graded, well-bedded turbidites is interpreted to represent ‘smooth’ fan environments towards the 

outer extent of the supra-fan lobes (Walker, 1978). The Awhea Formation displays a thinning 

upwards sequence of turbidites which is indicative of gradual lobe shifting (Walker & James, 

1992). 
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The stratigraphic thickness of the Awhea Formation thins northwards, from 290 m at Te Oroi 

Stream to 47 m near the Pahoa River mouth at Glenburn (Tayler, 2011), consistent with the 

interpretation of a fan environment which had its source to the southeast and the depositional 

centre located near the Tora area, extending and thinning to the north during deposition of the 

Awhea Formation (Figure 4.31).  

 

4.8.3 Mungaroa Limestone 

The gradational contact from the Awhea Formation upwards into the lower member of the 

Mungaroa Limestone, as well as the transition from the thin, fine-grained turbidites of the upper 

Awhea Formation to the thicker sandstone beds separated by thin mudstones in the lower 

members of the Mungaroa Limestone, suggests a return to a more proximal position in the lower 

fan (Walker, 1978). The abrupt transition to the upper limestone member, suggests a rapid, 

regional reduction in the deposition of clastic sediment during NP5 (mid-Paleocene) and 

potentially a northwards extension of the calcareous, biogenic Mead Hill-Amuri Limestone 

sedimentary sequence of the southern East Coast Basin (Figure 4.31). Like the Awhea Formation, 

the Mungaroa Limestone thins northwards, where is has a thickness of 28 m at Glenburn 

(Tayler, 2011).  

 

4.8.4 Awheaiti Formation 

The Awheaiti Formation is channelised into the underlying Mungaroa Limestone, with cross-

bedding at the base of the formation suggesting channel deposition in an upper fan environment 

(Figure 4.30). The Awheaiti Formation does not extend beyond the Tora area, supporting an 

interpretation of localised channel incision and infilling during Nannofossil Zone NP8 (late 

Paleocene; Figure 4.31). Thin-bedded mudstones of the Awheaiti Formation observed in Te Oroi 

Stream likely had a slightly different mode of deposition, and potentially may represent levee 

deposits or the outer margin of the channel system, as shown in the fan model in Figure 4.30. 
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4.8.5 Pukemuri Siltstone 

The basal, 20 m-thick pebbly-mudstone of the Pukemuri Siltstone is indicative of a debris flow 

deposit. This, coupled with the unconformable and possibly channelised contact between the 

Pukemuri Siltstone and the underlying Awheaiti Formation, suggests that the depositional system 

changed to a slope environment during the Early to early Middle Eocene (Figure 4.31). 

Mudstones overlying the basal pebbly-mudstone unit contain very few sandstone beds, and are 

characterised by subtle soft-sediment folding on a variety of scales. This aptly fits the description 

of the slumped shale and mudstone facies of Walker & James (1992) and the inferred 

depositional environment on the slope of a basin. The Pukemuri Siltstone likely represents a 

slope-influenced end member equivalent of the Wanstead Formation at Glenburn (Figure 4.31). 

 

4.8.6 Wanstead Formation 

Basin subsidence and marine transgression, apparent in benthic foraminiferal assemblages, 

resulted in a significant increase in paleodepth between the Pukemuri Siltstone and the overlying 

mudstones of the Wanstead Formation. The basal conglomerate of the Wanstead Formation is 

likely deep marine in origin, deposited as a submarine debris flow, which would account for the 

mixed lithologies of clasts present. A similar, thin (≤2 m) conglomeratic unit is incorporated 

within the Wanstead Formation in the Akito area of the northeast Wairarapa, and is interpreted 

as deposition near the mouth of a submarine canyon system (Neef, 1992). 

Calcareous mudstones with characteristic mottling from pervasive bioturbation occur 

throughout the remainder of the formation. These are indicative of deposition on the basin 

plain, offering further evidence of marine transgression and deepening of the depositional setting 

from a slope setting to a basin plain environment (Figure 4.31). The deposition of the Wanstead 

Formation at Tora is coeval with the deposition of the ‘upper marl’ member of the Amuri 

Limestone in the Marlborough area (Figure 4.31; Crampton et al., 2003).  
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  Figure 4.31: Schematic paleoenvironmental maps and cross-sections at different times in the central East Coast Basin. Base map adapted from Crampton et al. (2003) to accommodate the bathyal marine interpretation of Tora. No relative scale has been 

applied to cross-sections in order to exaggerate stratigraphic relationships.  
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4.9 Correlation with Other East Coast Sections 

The sedimentary succession exposed at Tora can be correlated to other slope-basin sediments 

deposited elsewhere in the East Coast Basin. The Paleogene succession at Tora broadly fits the 

typical fining upwards sequence that is observed throughout the East Coast Basin (Moore et al., 

1986; Ballance, 1993).  

The Upper Cretaceous to Lower Paleocene strata at Glenburn, north of Tora, display no obvious 

unconformities that can be correlated with the basal Manurewa, intra-Haumurian unconformity 

at Tora (Lee, 1995; Laird et al., 2003), consistent with the localised extent of the Manurewa 

Formation submarine channel system (Figure 4.32). Field, Uruski et al. (1997) suggest that the 

Manurewa Formation is a lateral correlative of the Upper Calcareous or Porongahau Members of 

the Whangai Formation. However, this seems unlikely due to the localised and incised nature of 

the lower Manurewa Formation as documented by Wasmuth (1996) and Laird et al. (2003). 

Nevertheless, the upper member of the Manurewa Formation may be correlated with the 

widespread Te Uri Member, a glauconite-rich unit that occurs directly above the K/Pg boundary 

in many Hawke’s Bay sections that is overlain by the Wanstead Formation (Moore, 1988b). This 

correlates well in terms of the timing of deposition, but does not relate well with stratigraphic 

associations at Glenburn, in the northern component of the Tora Block.  

The Awhea Formation is coarser than typical early Paleocene facies observed elsewhere in the 

East Coast Basin (Field, Uruski et al., 1997), but broadly fits the description of the Upper 

Calcareous Member provided by Moore (1988b) and Field, Uruski et al. (1997) as a hard, 

medium-grey, micaceous mudstone and bioturbated glauconitic sandstone containing pyrite 

nodules. Collectively the Manurewa and Awhea Formations of Tora may represent a southern 

extension of the Upper Calcareous Member described elsewhere in the East Coast Basin (Figure 

4.31). This observation is consistent with the stratigraphic succession observed in the Glenburn 

area, where the Glenburn Formation is successively overlain by the Rakauroa and Upper 

Calcareous Members of the Whangai Formation, followed by the Kaiwhata Limestone (Moore, 

1988b).  

The Mungaroa Limestone is recognised as a lateral correlative of the Kaiwhata Limestone, 

mapped in the Glenburn-Flat Point area, in terms of both age and environment (van de Hueval, 

1960; Webby, 1969; Field, Uruski et al., 1997; Lee & Begg, 2002), thereby placing an upper limit 

on the application of the Whangai Formation nomenclature at Tora. The white, well-bedded 
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porcellaneous Mungaroa Limestone is a likely correlative or northern extension of the Amuri 

Limestone found in Marlborough (van de Hueval, 1960; Browne, 1987; Field, Uruski et al., 1997).  

Siliceous, dark-grey mudstones of the ‘Waipawa facies’ within Mungaroa Limestone at Tora 

probably represent the siliceous, deep marine end member of the Waipawa Formation, similar to 

that observed in Mead Stream overlying Mead Hill Formation in the southern East Coast Basin 

at Marlborough (Strong et al., 1995; Andrew, 2010; Hollis et al., in prep.). The paired dark 

mudstone bands of the ‘Waipawa facies’ identified at Tora correlate well with outcrop 

observations further south at Mead Stream, Marlborough (Killops et al., 2000; Hollis et al., 2005a, 

b). North of Tora, the Te Uri Member of the Whangai Formation, at least in part, represents the 

glauconitic, shallow marine end member of the Waipawa Formation (Moore, 1988b; Field, 

Uruski et al., 1997; Rogers et al., 2001). 

The Wanstead Formation (previously the Huatokitoki Formation of van de Hueval, 1960; 

Moore, 1980) in the Glenburn area and described as conformably overlying the Kaiwhata 

Limestone (van de Hueval, 1960), confirms that channelisation associated with the late Paleocene 

Awheaiti Formation at Tora is of localised extent. Slump structures and blocks of Waipawa-type 

mudstone, micritic limestone and boulders of Glenburn-type siltstone are incorporated within 

the Wanstead Formation at Glenburn (Moore, 1980; Lee, 1995). Moore (1980) suggests this is 

evidence of early Eocene tectonism. Similar features at Tora may also indicate early Eocene 

tectonic activity. The Pukemuri Formation at Tora is coeval with the Wanstead Formation in 

other parts of the East Coast Basin, but represents a more proximal slope facies as evidenced by 

the apparently localised distribution of debris flows and the coarser character of the sediment.  

Deposition of the Wanstead Formation at Tora occurred at lower bathyal to abyssal depths 

during the early Middle to Late Eocene (Heretaungan to Kaiatan), which may reflect regional 

deepening of the area. The Wanstead Formation represents the deepest depositional 

environment of the Cretaceous-Paleogene East Coast Basin, with average paleodepths of mid-

bathyal and lower bathyal to abyssal (Field, Uruski et al., 1997). The Wanstead Formation at Tora 

is younger than typically expressed in many other East Coast sections (typically Paleocene to 

middle Eocene; Field, Uruski et al., 1997). The transition from Wanstead to Weber Formation, 

which usually occurs during the Bortonian (Figure 4.31), may represent a facies change to 

shallower, more calcareous sediments within the basin that is not represented at Tora because 

this portion of the basin was significantly deeper.  
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 Figure 4.32: Generalised regional stratigraphic framework of the southern East Coast Basin, 
North Island, displaying the revised, distinctly different sedimentary trends of the late Cretaceous 
to early Paleogene present at Tora in comparison to the typical East Coast succession. Blank areas 
depict unconformities.  

 

4.10 Evidence of Early Paleogene Tectonism 

The Paleocene-Eocene is widely considered a period of tectonic quiescence in the New Zealand 

sector of the southwest Pacific, associated with a passive margin regime and thermal subsidence 

following Cretaceous rifting (Bradshaw, 1991; King et al., 1999).  However, there are several lines 

of evidence suggesting syntectonic deformation of early Paleogene sediments in the East Coast 

Basin. (e.g. Moore, 1980; Moore, 1989b; Delteil et al., 2006, Tayler, 2011).  

The angular discordance of 15-20° between the Awheaiti Formation and the Pukemuri Siltstone 

suggests a regional tilting of strata prior to the deposition of the Pukemuri Siltstone. Calcareous 

nannofossil datums in the Awheaiti Formation and the Pukemuri Siltstone would constrain this 

event in the range of NP8-NP12 (57.6-53.2 Ma). A similar discordance is also observed between 

Mungaroa Limestone and Awheaiti Formation in Te Oroi Stream (Figure 4.16b), and tectonism 

associated with the tilting of strata may also be responsible for the emplacement of greensand 

dykes and slumping in the Mungaroa Limestone (Figure 4.17c, d, e & Figure 4.33a, b). Tectonic 

activity potentially continued into the Mangaorapan, causing soft sediment slumping (Figure 
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4.33c) and the inclusion of megaclasts in the Pukemuri Siltstone at Tora (Figure 4.8e) and the 

Wanstead Formation at Glenburn (Moore, 1980).  

The widely accepted passive margin setting during the early Paleogene implies that the tectonism 

evident at Tora was likely caused by localised normal faulting associated with thermal subsidence 

and internal deformation of the East Coast Basin, as suggested by Furlong & Kamp (2009).  

 

 

 Figure 4.33: Evidence of syn-depositional deformation of sediments at Tora. A) Greensand 
dyke injected into Mungaroa Limestone at Te Kaukau Point. Bedding is deflected upwards and 
truncated near the top of the frame. Hammer for scale (arrowed). B) Slumping in Mungaroa 
Limestone outcropping at Manurewa Point. Hammer for scale (arrowed). C) Classic example of 
a slump fold in the Pukemuri Siltstone exposed in Te Oroi Stream.  
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4.11 Summary 

The Paleogene stratigraphy of the Tora area is divided into five distinct lithostratigraphic units, 

representing a finer stratigraphic division than the typical lithostratigraphic succession observed 

in other areas of the East Coast Basin. The diversity of facies at Tora reflects sedimentation 

within a submarine fan and channel complex at middle to lower bathyal depths within the 

context of a regional transgression from the late Cretaceous to the late Eocene.  

The Awhea Formation is inferred to have been deposited as a turbidite succession within the 

main body of a fan complex during the early Paleocene. The Mungaroa Limestone consists of a 

lower part that represents the distal or lateral margin of a fan complex and an upper part that is 

dominated by deposition of pelagic carbonate during the middle and late Paleocene. 

 The Awheaiti Formation was likely deposited in a channel incised into the Mungaroa Limestone 

during the late Paleocene. The lower Pukemuri Siltstone was most likely deposited in a slope 

setting, with a basal debris flow overlain by siliclastic sediments. The syn-sedimentary 

deformation of Paleogene and Early Eocene sediments suggests that active tectonic deformation 

was occurring during this period. The middle Eocene Wanstead Formation was deposited in a 

deep bathyal setting beyond the margins of the submarine fan, with paleodepth indicators 

indicative of regional transgression.  
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Chapter Five 

PALEOGENE CLIMATE HISTORY OF THE CENTRAL EAST COAST BASIN 

 

5.1 Introduction 

A robust early Eocene paleoclimate record from the central East Coast Basin is of great value as 

it provides a critical North Island reference for early Eocene climate reconstructions and an 

external comparison to the established multi-proxy records in the Canterbury Basin. However, 

the recovery of a quantitative paleoclimate record from the central East Coast Basin has been 

hampered by several difficulties, the most significant of which is the complex depositional and 

deformational history, combined with the effects of post-depositional alteration, causing variable 

preservation of foraminiferal calcite. The application of the laser ablation inductively coupled 

plasma mass spectrometry (LA-ICP-MS) method to produce a Mg/Ca record for 

paleotemperature calculation allows the identification and removal of effects caused by 

diagenetic alteration and silicate contamination, unlike traditional oxygen stable isotope methods 

and the solution method of Mg/Ca data acquisition. To provide additional confidence in 

paleotemperature reconstructions, SEM imaging, EPMA analysis and multiple silicate 

contamination proxies were applied to foraminifera from three selected sections in the East 

Coast Basin to determine if primary foraminiferal calcite and the inherent paleoclimate signal has 

been preserved.  

Two sections through the Early Eocene Pukemuri Siltstone at Tora (Awheaiti and Pukemuri 

Streams) were sampled to provide foraminiferal assemblages for geochemical analysis. 

Calcareous nannofossil and foraminiferal assemblages provided reasonable age control for 

samples from Pukemuri Stream and yielded moderately preserved foraminiferal assemblages 

suitable for the application of laser ablation analysis. However, extremely poor preservation of 

foraminiferal assemblages in Awheaiti Stream, coupled with structural complexities in the strata, 

generated uncertainties in age and temperature determinations. In addition, very few Mg/Ca 

analyses of foraminifera from Awheaiti Stream passed the screening process and, as such, it was 

not possible to produce a comprehensive or robust record from this section. Therefore, the 

samples from Awheaiti Stream have been omitted, and only the results from the Pukemuri 

section are reported here. Additional sample suites from two sections in the southern Hawke’s 

Bay (Aropito and Tawanui sections) were utilised to produce a composite comparative section to 

complement the Tora record and increase confidence in the sea temperature reconstructions for 

the central East Coast Basin. 
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Prior to developing a sea temperature history, the depositional age of the sampled sediments 

must be determined and a temperature calibration applied to the foraminiferal Mg/Ca values, 

both of which involve inherent assumptions. In this study, the mean Mg/Ca value obtained for 

each species within a sample is initially reported relative to stratigraphic height, in order to 

present the data without any introduced ambiguity pertaining to age and temperature 

determinations. The composite temperature record of the East Coast Basin (Aropito, Tawanui 

and Pukemuri Stream sections) is then compared to existing Mg/Ca temperature records from 

the mid-Waipara River and Hampden Beach in the Canterbury Basin, and the implications for 

regional oceanography during the early Eocene discussed.   

Benthic foraminiferal assemblages for the Pukemuri Stream section can be found in Appendix 1, 

and all raw Mg/Ca data for foraminifera from the Aropito, Tawanui and Pukemuri Stream 

sections is presented in Appendix 2.   
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5.2 Age Model Development 

Assigning a numerical age to samples is essential to correlate results between different 

stratigraphic sections and with existing paleoclimate records. Biostratigraphic datums were 

applied to the stratigraphic records from the Pukemuri, Aropito and Tawanui sections to 

produce individual age models allowing for comparison between sections (Figures 5.1, 5.2 and 

5.3). Sample ages were determined by placing a line of best-fit through biostratigraphic datums, 

from which an assumed-linear sedimentation rate was calculated, enabling the assignment of an 

age to each sample.  

Calcareous nannofossil and foraminiferal assemblages collected from the Pukemuri Stream 

section provided the necessary biostratigraphic constraints to produce robust age control (Figure 

5.1). For construction of the Pukemuri age model, emphasis was placed on calcareous 

nannofossil datums and the foraminifera present within each sample. The moderate to poor 

diversity foraminiferal assemblages collected from the Pukemuri Siltstone meant that the 

apparent absence of a taxon may be a reflection of the quality of the assemblage rather than 

evidence of a true biostratigraphic event.  

Calcareous nannofossil assemblages were not available for samples from the Aropito and 

Tawanui sections, and the respective age models were constructed using foraminiferal 

biostratigraphic events. Samples from the Wanstead Formation at Aropito and Tawanui produce 

diverse foraminiferal assemblages, providing good age control for the low resolution sampling in 

these sections. 

Application of the age models shows that samples analysed for Mg/Ca in the Pukemuri Stream 

section range in age from 60.4 to 37.3 Ma (Figure 5.1). The temporal resolution of sampling 

varies between 0.07 and 4.6 Myr, with a typical sampling resolution in the Early Eocene 

Pukemuri Siltstone of between 70 and 200 kyr. Sampling resolution in the Aropito and Tawanui 

sections is coarse, with Aropito samples ranging from 47.3 to 42.0 Ma in age with an 

approximately 1.0 Myr sampling resolution (Figure 5.2a). The Tawanui sample suite is slightly 

older, ranging in age from 53.4 to 45.0 Ma, with a sample resolution that varies from 0.4 to 5.0 

Myr (Figure 5.2b). Together, the Aropito and Tawanui sections form a relatively low-resolution 

composite section that spans the Early to Middle Eocene (53.4–42.0 Ma).   
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Figure 5.1: Age model for the Pukemuri section at Tora with calcareous nannofossil and foraminiferal age constraints. Sedimentation rates were calculated 
assuming a linear sedimentation rate. Arrow lengths indicate the distance between samples that constrains the datum, and the arrow direction indicates that the 
event could move with further sampling; i.e. lowest the occurrence could occur lower in the section, and the highest occurrence higher in the section.   
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 Figure 5.2: Age models for the Aropito (A) and Tawanui (B) sections, southern Hawke’s Bay. 
Grey dots represent estimated ages (Morgans, pers. comm.). Age constraints were based on 
foraminiferal assemblages. Arrow lengths indicate the distance between samples that constrains 
the datum, and the arrow direction indicates that the event could move with further sampling; i.e. 
lowest the occurrence could occur lower in the section, and the highest occurrence higher in the 
section.   
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5.3  Bulk Carbonate Stable Isotope Stratigraphy of Pukemuri Stream 

The bulk carbonate carbon and oxygen stable isotope signatures recorded in sedimentary 

successions often provide indications of paleoclimate signals, although bulk carbonate δ18O in 

early Paleogene sediments is often diagentically overprinted. Significant warming of the oceans 

during the EECO resulted in dramatic perturbations in global carbon cycle dynamics, recorded 

in carbonate reservoirs as a negative δ13C excursion (e.g. Zachos et al., 2001; Hollis et al., 2005b). 

Carbon isotopes are typically more resistant to diagenetic alteration than oxygen isotopes and 

this is reflected in the Tora record. Even so, several samples display unusually low δ13C values 

which may be attributable to post-depositional alteration, low carbonate content, or to a high 

abundance of organic carbon present within the bulk sediment sample. A sustained peak in bulk 

carbonate δ13C values averaging ca. 0.3‰ in the lower Pukemuri Siltstone during the 

Mangaorapan is comparable to benthic foraminiferal δ13C values from DSDP and ODP cores 

during this interval, although they are lower than bulk carbonate δ13C values of ca. 1.0‰ 

recorded in Mead Stream, Marlborough (Slotnick et al., 2012). Further up the section, δ13C values 

for the upper Pukemuri Siltstone are more negative and average -0.3‰ (Figure 5.3).  

Bulk carbonate δ18O values are more difficult to interpret, and average -5.3‰ in the lower 

Pukemuri Siltstone. They remain relatively constant throughout the middle of the section, and 

marginally increase to less negative values of ca. -4.7 ‰ at the top of the section (Figure 5.3). 

Highly negative δ18O values in the range of -4.0 to -10‰ may be attributable to a late phase of 

diagenetic alteration, influenced by meteoric pore fluid interactions (Nelson & Smith, 1996), 

rather than seafloor diagenesis, which typically increases δ18O values (Sexton et al., 2006a). 

Despite the poor preservation of the bulk oxygen isotope signal, these still serve some utility as 

an index for the alteration of the sediment, and presumably the foraminiferal assemblages it 

hosts.  

Bulk rock carbonate and grain size distribution may provide additional environmental 

information. The carbonate component of bulk rock samples increases from 0 to 5% at the base 

of the section to ca. 17% at the top of the section. This may reflect increased calcareous 

productivity (also corresponding with better preserved and more diverse foraminiferal faunal 

residues recovered up-section) or, more likely, a decrease in terrigenous sedimentation as 

suggested by mud content increasing from 7% to 58% up the section. The inverse of the percent 

mud implies a reduction in the supply of the coarse sediment fraction (>63 µm) to the 

depositional site, particularly in the upper Pukemuri Siltstone and the Wanstead Formation.  
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Figure 5.3: Bulk carbonate stable carbon and oxygen isotope stratigraphy, percent carbonate and percent mud from bulk rock analyses of samples from 
Pukemuri Stream, Tora.  
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5.4 Trace Element Data 

Elemental ratios determined in this study are the result of multiple ablated holes in individual 

specimens of Morozovella, Acarinina, Subbotina and Cibicides. Each laser ablation site was 

individually selected and specifically targeted to avoid zones of detrital contamination, 

recrystallization or foraminiferal test ornamentation which may cause irregular trace element/Ca 

profiles (Figure 5.4). Specific zones within individual depth profiles are screened for the effects of 

diagenetic alteration or detrital contamination by the identification of anomalous Mg/Ca, Ti/Ca, 

Mn/Ca and Sr/Ca ratios.  

 

 

 Figure 5.4: Example of a well-preserved Cibicides truncatus specimen from the Tawanui section 
(U24/f341), displaying how laser ablation sites were located to avoid silicate contaminants and 
surface ornamentation which may produce anomalous trace element/Ca values.  

 

Mg/Ca ratios from foraminifera sourced from the lower to middle Pukemuri Siltstone range 

between 2.3 and 5.8 mmol/mol with the highest and lowest values generally attributable to 

Cibicides and Morozovella respectively. Subbotina typically occupy intermediate values between those 

of Morozovella and Acarinina and those from Cibicides (Figure 5.5). Mg/Ca values for all species 

decrease towards the top of the section, although there is a slight increase in Subbotina and 

Cibicides Mg/Ca values in sample f0427 in the uppermost Pukemuri Siltstone (Figure 5.5). Planktic 
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species generally produce lower Mg/Ca ratios, with Morozovella Mg/Ca values ranging from 2.6–

3.7 mmol/mol, similar to those of Acarinina (2.4–4.4 mmol/mol). Subbotina display a similar, 

although slightly higher, range of Mg/Ca values from 3.1–4.4 mmol/mol. The benthic species 

Cibicides exhibit the greatest range of Mg/Ca values, from 2.9–5.8 mmol/mol. Subbotina Mg/Ca 

ratios in the Aropito and Tawanui sections are consistently lower than those of the other planktic 

species analysed in this study, and are generally also less than Cibicides Mg/Ca ratios (Figure 5.6).  

Mg/Ca values in all species are highest within the Waipawan to Heretaunagan intervals in the 

Aropito and Tawanui sections, with the exception of Cibicides in sample f207 (Figure 5.6). Mg/Ca 

ratios from foraminifera in the Aropito and Tawanui sections are generally lower than those 

from Tora, with Morozovella and Acarinina in the range of 2.2–3.6 mmol/mol. Subbotina Mg/Ca 

values from Aropito and Tawanui are significantly lower than those recorded from Tora, ranging 

from 1.8–2.8 at Aropito-Tawanui, compared to 3.1–4.4 mmol/mol at Tora. Likewise, Cibicides 

Mg/Ca ratios from Aropito and Tawanui are lower than recorded at Tora, ranging from 2.0-3.8 

mmol/mol.  

Variable preservation of the benthic genus Cibicides, has less effect on the quality of the trace 

element data for this species than that of the planktic species studied. Even within the most 

diagenetically affected assemblages, a greater proportion of Cibicides passed the screening process 

in comparison to Morozovella and Acarinina specimens. Subbotina from the Aropito and Tawanui 

sections also displayed good preservation of primary trace element signals, with ≥ 75% of 

analyses passing screening for silicate contaminants and secondary alteration. In comparison, 

Subbotina trace element data from the Pukemuri section produced lower quality trace element/Ca 

profiles, with ≤ 25% of analyses passing screening. The remaining Subbotina analyses from the 

Pukemuri section that passed screening display elevated Mg/Ca ratios relative to corresponding 

Acarinina and Morozovella assemblages, and in comparison to coeval Subbotina specimens from the 

Aropito and Tawanui sections.  

The typical inter-individual variance of Mg/Ca analyses within a sample is 50–60%, which is 

consistent with that of extant planktic foraminifera (e.g. Sadekov et al., 2008). The observed 

variability may also be influenced by the varying degrees of preservation. Variably-preserved 

specimens, such as those sourced from the sections in this study, would likely induce additional 

scatter to the mean Mg/Ca values. Alternatively, pervasive recrystallization of foraminiferal 

calcite could result in a reduction of the inter-individual variance, as the precipitation of 

inorganic calcite might have re-equilibrated trace element/Ca values to some extent.  
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The lower inter-individual variability of Subbotina Mg/Ca values in Tora specimens (ca. 30%) is 

considerably lower than that of specimens sourced from the Aropito and Tawanui sections (ca. 

60%) and modern Globigerina bulloides (50-60%; Marr et al., 2011). This potentially provides 

further evidence for the pervasive alteration of Subbotina from the Pukemuri section, despite the 

retention of surface textures and apparent better physical preservation in comparison to 

corresponding Acarinina and Morozovella. Furthermore, Mg/Ca ratios derived from Subbotina 

analysed from the better-preserved assemblages at the Aropito and Tawanui sections exhibit 

greater variability than Acarinina and Morozovella, which is attributed to the non-specific selection 

of Subbotina taxa, which were not sub-divided to the species level as the other genera used in this 

study were.  

Variability of screened Mg/Ca ratios in the benthic genus Cibicides is greater than that recorded in 

planktic Acarinina and Morozovella Mg/Ca values. As indicators of silicate contamination in 

Cibicides are not anomalous, this could relate to species-specific biological effects on the 

incorporation of Mg into calcite, or perhaps an environmental modulation of the Mg/Ca signal, 

in which variable Mg concentrations of surrounding sediments or subsurface pore waters have 

influenced the primary calcite benthic compositions.  
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Table 5.1: Screened trace element/Ca data for the foraminifera analysed in this study. 

Species Section 
 Sample 
Number 

Strat. 
Height 

(m) 

Age 
(Ma) 

Element/Ca (mmol/mol) %2se 
Mg/Ca

95% C.I. 
(Mg/Ca) 

 Mg/Ca 
Variability

(%) 

Analyses Specimens 
Analysed 

Mg/Ca Ti/Ca Mn/Ca Zn/Ca Sr/Ca Ba/Ca Good Total

Morozovella 

Aropito f332 272 47.3 2.18 0.012 1.62 0.019 0.81 0.054 2.3 0.2 - 2 12 4 

Tawanui 

f325 20.1 50.0 2.97 0.025 0.69 0.016 0.96 0.078 2.6 0.3 24.8 8 12 4 

f342 17.8 51.5 2.57 0.013 0.93 0.017 0.91 0.052 2.4 1.3 52.3 9 12 4 

f341 12.8 53.0 2.71 0.046 0.73 0.012 0.88 0.054 2.3 0.6 29.9 3 12 4 

Pukemuri 

f0426 109.3 48.2 2.77 0.014 1.32 0.015 0.79 0.063 2.2 1.3 - 2 12 4 

f0421 67.3 50.3 3.12 0.018 1.46 0.014 0.86 0.042 2.6 1.4 64.1 4 12 4 

f0417 53.7 50.9 3.71 0.003 0.43 0.003 1.33 0.088 9.8 1.0 - 1 9 3 

f0416 49.4 51.1 2.60 0.020 0.92 0.013 1.23 0.031 1.7 0.4 - 2 9 3 

f0415 44.5 51.3 3.26 0.058 1.42 0.014 1.12 0.031 5.4 1.0 - 1 3 1 

f0412 32.7 51.8 3.29 0.012 1.35 0.020 0.95 0.025 2.3 0.4 - 3 3 1 

f0411 25.6 52.1 2.92 0.034 0.86 0.017 1.13 0.029 2.2 1.0 - 2 3 1 

                                  

Acarinina 

Aropito 

f351 343 42.0 2.18 0.026 0.74 0.012 0.98 0.047 2.2 0.2 43.2 11 12 4 

f227 332 43.0 2.25 0.010 0.36 0.007 1.22 0.018 1.8 0.4 35.9 6 12 4 

f203 310 44.0 2.32 0.022 0.79 0.014 1.07 0.062 2.3 0.3 53.1 8 12 4 

f226 294 44.5 2.31 0.013 0.35 0.010 1.29 0.044 1.6 0.2 52.6 10 12 4 

f332 272 47.3 2.66 0.016 1.02 0.010 1.13 0.045 1.7 0.6 38.6 5 12 4 

Tawanui 

f326 26.8 45.0 2.16 0.017 0.31 0.005 1.17 0.023 1.6 0.3 32.0 6 12 4 

f325 20.1 50.0 2.86 0.031 0.61 0.018 0.91 0.074 2.0 0.3 27.7 7 12 4 

f342 17.8 51.5 2.27 0.018 0.76 0.011 0.98 0.048 1.7 0.3 51.5 8 12 4 

f341 12.8 53.0 3.00 0.027 0.59 0.010 1.02 0.033 2.8 0.5 61.6 2 12 4 

f207 2.3 53.4 3.58 0.026 0.71 0.023 1.02 0.101 2.3 0.4 49.3 10 12 4 

Pukemuri 

f0394 154 37.3 3.95 0.023 1.34 0.031 0.72 0.020 1.7 0.8 29.9 4 9 3 

f0428 132.1 41.9 2.92 0.014 1.22 0.020 0.96 0.057 1.8 1.3 - 2 9 3 

f0426 109.3 48.2 3.16 0.036 0.51 0.010 1.17 0.043 1.7 2.0 - 2 12 4 

f0419 62.4 50.5 4.11 0.008 0.21 0.005 1.40 0.024 1.9 1.0 - 3 12 4 

f0417 53.7 50.9 3.44 0.040 1.75 0.024 0.62 0.017 2.2 1.3 - 3 12 4 

f0416 49.4 51.1 4.43 0.005 0.76 0.009 1.41 0.080 1.7 1.0 - 1 12 4 

f0413 36.6 51.6 3.01 0.013 1.28 0.031 0.76 0.025 2.0 1.0 70.8 5 12 4 

f0412 32.7 51.8 3.10 0.050 1.14 0.011 0.95 0.023 1.7 0.3 27.5 12 12 4 

f0411 25.6 52.1 2.39 0.013 1.14 0.009 0.89 0.031 2.2 0.5 62.2 7 12 4 

Subbotina 

Aropito 

f351 343 42.0 1.79 0.018 0.67 0.013 0.88 0.057 2.8 0.3 67.9 9 12 4 

f227 332 43.0 2.09 0.030 0.61 0.010 1.00 0.064 2.3 0.3 48.2 9 12 4 

f203 310 44.0 1.83 0.025 0.72 0.016 0.92 0.060 2.1 0.5 92.0 8 12 4 

f226 294 44.5 1.93 0.020 0.42 0.012 1.11 0.053 2.1 0.3 52.4 9 12 4 

f332 272 47.3 2.01 0.022 1.33 0.015 0.86 0.063 2.3 0.1 21.7 9 12 4 

Tawanui 

f326 26.8 45.0 1.86 0.021 0.52 0.010 0.97 0.049 2.2 0.2 52.3 9 12 4 

f325 20.1 50.0 2.61 0.039 0.56 0.018 0.94 0.068 3.7 0.2 43.5 10 12 4 

f342 17.8 51.5 2.27 0.020 0.81 0.043 0.98 0.057 2.9 0.2 36.1 11 12 4 

f341 12.8 53.0 2.29 0.021 0.68 0.034 0.88 0.101 2.4 0.3 60.0 12 12 4 

f207 2.3 53.4 2.83 0.023 0.56 0.016 1.14 0.093 2.2 0.4 60.4 12 12 4 

Pukemuri 

f0427 124.5 47.2 4.40 0.035 1.21 0.038 0.98 0.057 2.6 0.1 21.5 2 12 4 

f0426 109.3 48.2 3.52 0.039 0.58 0.012 1.33 0.074 2.6 1.5 34.2 3 12 4 

f0419 62.4 50.5 4.10 0.042 0.47 0.015 1.40 0.068 2.1 1.1 21.5 3 12 4 

f0415 44.5 51.3 3.82 0.028 0.25 0.047 1.11 0.054 1.5 2.0 - 2 12 4 

f0413 36.6 51.6 4.25 0.027 0.64 0.013 1.31 0.068 5.9 1.0 - 1 12 4 

f0411 25.6 52.1 3.09 0.025 1.14 0.016 0.99 0.035 2.5 0.3 33.4 8 12 4 

f0410 20.5 52.3 4.12 0.017 1.34 0.012 1.16 0.073 3.0 1.7 32.9 3 12 4 

f0407 -1 57.8 3.10 0.038 1.07 0.041 0.75 0.012 2.3 1.4 35.5 3 9 3 

Cibicides 

Aroptio 

f351 343 42.0 3.14 0.005 0.74 0.059 1.09 0.053 2.5 0.3 17.5 6 6 2 

f227 332 43.0 2.25 0.036 0.73 0.053 0.93 0.041 2.5 1.7 58.9 3 6 2 

f203 310 44.0 2.12 0.020 0.62 0.039 0.90 0.072 3.2 0.4 37.0 5 6 2 

f226 294 44.5 2.55 0.016 0.99 0.025 0.74 0.069 2.4 0.4 66.8 11 12 4 

f332 272 47.3 3.08 0.024 1.66 0.024 0.75 0.062 2.8 0.7 56.9 6 9 3 

Tawanui 

f326 26.8 45.0 2.00 0.026 0.89 0.024 0.74 0.046 2.1 0.3 48.3 7 12 4 

f325 20.1 50.0 3.87 0.022 0.27 0.040 1.08 0.051 1.8 0.5 64.9 12 12 4 

f342 17.8 51.1 3.51 0.016 0.76 0.032 1.01 0.049 1.8 0.3 27.3 11 12 4 

f341 12.8 53.0 3.54 0.022 0.51 0.021 1.10 0.060 3.0 0.7 50.7 7 12 4 

f207 2.3 53.4 2.51 0.022 1.02 0.031 0.79 0.083 2.9 0.5 95.6 11 12 4 

Pukemuri 

f0428 132.1 41.9 2.91 0.029 0.90 0.035 1.01 0.101 5.4 1.0 - 1 9 3 

f0427 124.5 47.2 3.76 0.035 0.61 0.025 1.27 0.098 3.5 0.3 1.1 2 12 4 

f0426 109.3 48.2 3.20 0.020 0.72 0.017 1.13 0.111 3.8 0.9 59.3 6 9 3 

f0419 62.4 50.5 4.53 0.020 0.28 0.013 1.47 0.132 2.6 2.0 - 2 12 4 

f0416 49.4 51.1 4.77 0.017 0.71 0.013 1.30 0.107 2.9 0.6 34.4 7 12 4 

f0413 36.6 51.6 4.08 0.007 1.13 0.012 1.18 0.134 2.9 0.2 6.7 4 12 4 

f0411 25.6 52.1 5.80 0.027 0.30 0.012 1.58 0.095 5.4 0.5 18.2 6 9 3 

f0410 20.5 52.3 3.83 0.029 0.39 0.022 1.37 0.114 2.8 2.2 45.0 3 12 4 
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 Figure 5.5: Foraminiferal Mg/Ca values plotted against stratigraphic height for the Pukemuri 
Stream section at Tora. Sample numbers with no corresponding Mg/Ca data represent samples 
that were analysed but did not pass the screening criteria used in this study. The error plotted is 
the 95% confidence interval on Mg/Ca analyses.  
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Figure 5.6: Foraminiferal Mg/Ca ratios potted against stratigraphic height for the Aropito (A) and Tawanui 
(B) sections in southern Hawke’s Bay. The error plotted is the 95% confidence interval on Mg/Ca analyses. 
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5.5 Preservation of Primary Foraminiferal Calcite 

The extraction of a reliable, robust paleoclimate record from variably preserved foraminifera is 

dependent on the preservation of primary foraminiferal calcite, and the inherent geochemical 

signature. Qualitative and quantitative methods have been applied to foraminiferal assemblages 

from the Aropito, Tawanui and Pukemuri Stream sections to ascertain the state of primary 

calcite preservation. For the purposes of comparison, SEM micrographs of foraminifera from 

this study are compared with images of foraminifera from the Hampden Beach section (Figure 

5.7). Foraminifera sourced from the Early Eocene Kurinui Formation at Hampden Beach are 

widely recognised as yielding exceptionally well-preserved Eocene assemblages (Burgess et al., 

2008; Pearson & Burgess, 2008; Morgans, 2009).  

Some specimens from the Aropito, Tawanui and Pukemuri Stream sections display evidence of 

extensive recrystallization, resulting in the loss or obscuring of surface textures and test wall 

structures (Figure 5.7). Such specimens are obvious when examined under reflected light 

microscopy and are clearly distinguishable using scanning electron microscopy. In addition to 

this, some specimens were observed to be infilled with secondary calcite, pyrite, sediment, 

calcareous nannofossils or a combination of these elements (Figure 5.8). Analyses from 

foraminifera that were found to be pervasively altered were removed from the final 

paleotemperature determinations of this study. Whilst the presence of recrystallized and 

secondary calcite is an issue for traditional δ18O and solution Mg/Ca analytical methods, the laser 

ablation method employed in this study largely circumvents problems associated with variable 

preservation. 

 

5.5.1 Physical Preservation of Foraminifera Tests 

Visual inspection using reflected light microscopy and scanning electron microscopy (SEM) has 

shown that Subbotina and Cibicides specimens typically display better preservation than Acarinina 

or Morozovella in assemblages from the East Coast Basin sections. This may due to the physical 

surface texture inherent to particular genera. The growth of pronounced calcareous muricae on 

the test exterior by Morozovella and Acarinina species (Figure 5.4) creates a rugose surface texture 

which is more likely to ensnare clay particulates and resist their removal during the washing 

process, subsequently giving a coarse, grainy appearance in SEM images. It is also possible that 

these projections provide a greater surface area on the foraminifera test which is more likely to 

promote the development of secondary calcite overgrowths. In comparison, Subbotina have a 
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smoother surface, with less indented pores, which may explain the better physical preservation. 

Cibicides specimens are generally better preserved than corresponding planktic specimens, which 

is likely a function of the comparatively reduced size and abundance of pores in conjunction with 

a porcellaneous test surface, making it difficult for particulate matter to adhere to the test. The 

preservation of foraminiferal tests from the Aropito and Tawanui sample suites is better than 

that of the Tora specimens, regardless of species (Figure 5.7). However, older samples from the 

Mangaorapan-Heretaungan interval in the Aropito and Tawanui sections display poorer 

preservation of test surface features than foraminifera from higher in the stratigraphic succession. 

Foraminiferal preservation in the Pukemuri Stream section is quite variable, although 

preservation is marginally better in the lower to middle portion of the section. In this part of the 

section, pores, surface textures and ornamentation are distinguishable on foraminifera test 

surfaces and microgranular layering is preserved within test walls.  

Qualitative estimates of the preservation of foraminiferal calcite using optical and SEM imaging 

methods are generally supported by trace element/Ca ratios from LA-ICP-MS analysis. The 

exception to this is Subbotina specimens recovered from the Pukemuri section. Although 

Subbotina from Tora typically give the appearance of being better preserved than Morozovella, 

Acarinina and Cibicides within the same sample, trace element profiles through the test wall have 

Mg/Ca, Ti/Ca, Mn/Ca and Sr/Ca values indicative of secondary alteration of the primary calcite. 

The screened Mg/Ca ratios of the majority of Subbotina from Tora display elevated Mg/Ca 

values above those of Morozovella and Acarinina (Figure 5.7). Based on the depth habitat of 

Subbotina, a lower (and consequently cooler) Mg/Ca ratio than Acarinina and Morozovella would be 

expected, such as that observed in the Aropito and Tawanui sections (Figure 5.6) and previous 

studies (e.g. Tripati & Elderfield, 2004). Therefore the high Mg/Ca ratios produced by 

moderately to poorly preserved specimens from Tora may be the result of pervasive alteration 

that is not apparent in the physical characteristics exhibited by the tests.  
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 Figure 5.7: Representative examples of foraminifera species from the Wanstead Formation 
(Aropito–Tawanui sections) and the Pukemuri Siltstone (Pukemuri Stream section) used in this 
study for Mg/Ca paleothermometry, compared to well-preserved examples from the early 
Eocene Kurinui Formation at Hampden Beach. Scale bars are 100 µm in length.  
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 Figure 5.8: Examples of sediment and secondary calcite infilling Acarinina and Subbotina. A) 
Poorly preserved Acarinina collactea (PM112) B) internal examiniation primary structures present 
in test calcite and infilling sediment. C). Acarinina topilensis (U24/f332) crushed to reveal infilling 
sediment and small calcite prisms (D). E) Subbotina sp. (U24/f203) largely infilled with secondary 
calcite (F). G). Subbotina linaperta (U24/f207) with well-preserved surface texture entirely infilled 
with secondary calcite (H). Note the preserved casts of pores in the secondary calcite (H).  

155



 

5.5.2 Element mapping 

Visual inspection of foraminiferal tests obtained from the East Coast sections identified three 

common alteration types; infilling with calcareous (primarily nannofossils) and siliciclastic 

sediments, secondary calcite precipitation, and pyrite mineralisation within the test. Examples of 

foraminifera displaying these alteration states were individually selected, cross-sectioned and 

targeted for electron probe microanalysis (EPMA) element distribution mapping of key elements 

(Ca, Mg, Al, Si, Mn and Fe) to determine the effects that these alteration states have on the 

composition of primary foraminiferal calcite. A fourth alteration state, dissolution of primary 

foraminiferal calcite, was not frequently observed in the specimens from this study. The three 

alteration states typically observed in the foraminifera of this study are discussed in detail below.  

 

Sediment Infilling 

Infilling of foraminiferal tests with calcareous nannofossils and fine-grained sediments is a 

common feature of many of the foraminifera examined from the Aropito, Tawanui and Tora 

sections. This is a particular concern as silicate minerals are considerably enriched in Mg and 

depleted in Ca compared to foraminiferal calcite, consequently resulting in elevated Mg/Ca ratios 

that may erroneously increase temperature estimates if not identified. Several examples of 

sediment-infilled specimens were cross-sectioned and the distribution of key elements mapped 

using the EPMA method. A Morozovella crater specimen from the Tawanui section displays 

moderate preservation of the test exterior (Figure 5.9a), although cross-sectioning and imaging 

reveals the interior to be infilled with sediment and calcite rhombs ≤ 10 µm in size (Figure 5.9b). 

Element mapping of Ca shows the preservation of primary structures such as pores and layering 

within the test wall. Mg concentrations are highest in areas of the test infilled with sediment, and 

characterise small voids within test calcite on both the interior and exterior of the test (Figure 

5.9d). This is reflected in Mg/Ca ratios, which are significantly elevated in areas of infilling 

sediment (Figure 5.9e). Likewise, Mg/Ca values are elevated within preserved pores in the test 

wall, which has implications for LA-ICP-MS analysis.  

Infilled sediment has high Al and Si values, reflected in the Al/Ca and Si/Ca ratios (Figures 5.9 f, g, 

i). Notably, Al and Si are not incorporated into the test wall, and are entirely excluded from 

zones of calcite. This was anticipated, as neither Al nor Si form a solid solution with minerals of 

the carbonate series.  
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Interestingly, both primary and secondary calcite are enriched in Mn compared with the infilling 

sediment (Figure 5.9j), although when ratioed to Ca, the Mn/Ca ratio of the sediment is 

significantly higher than that of calcite, as expected due to the high concentration of calcium in 

the calcite relative to that of the sediment (Figure 5.9k).  

The concentration of Fe is greater than foraminiferal test calcite within both the infilling 

sediment and the secondary calcite (Figure 5.9l, m). An interesting feature of the Fe and Fe/Ca 

distribution is the outlining of laminae within the structure of the test wall (Figure 5.9l, m). This 

implies that Fe/Ca ratios may have an application not only in the identification of silicate 

contamination (e.g. Barker et al., 2003), but also in the recognition of either compositional 

changes in primary calcite or zones of secondary calcification, a feature which could be 

potentially useful in the application of laser ablation studies to variably preserved foraminifera.  
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Figure 5.9: Morozovella crater from the early Eocene Tawanui section (sample U24/f325). A) Moderately 
well-preserved test exterior. B) Cross-section revealing infilling of chambers with sediment and 
secondary calcite, and showing the mapped area (yellow box). C). Distribution of Ca throughout the test. 
D) Mg distribution. E) Mg/Ca ratio. F). Distribution of Al. G) Al/Ca ratio. H) Si distribution. I) Si/Ca 
ratio. J) Distribution of Mn. K) Mn/Ca ratio. L) Distribution of Fe. M) Fe/Ca ratio. The colour scale 
for elemental distributions is in counts per second.  
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Secondary Calcite Precipitation 

Infilling of complete foraminiferal tests with a secondary calcite phase is a relatively common 

feature of the thinner-walled planktic specimens, being more prevalent in Subbotina, and to a 

lesser extent, Acarinina and Morozovella. The benthic genus Cibicides was generally infilled with 

sediment, but rarely calcite.  

An example of an Acarinina primitiva specimen infilled with secondary calcite was cross-sectioned 

and a portion of the test mapped for the distribution of a range of elements (Mg, Ca, Al, Si, Mn 

and Fe; Figure 5.10). The outward appearance of better preservation of test surface structures on 

calcite-infilled specimens was a frequently noted feature. Exterior examination of the selected 

Acarinina example suggests that it is moderately to well-preserved (Figure 5.10a), although 

examination of the cross-section displays near-complete infilling of chambers with secondary 

calcite. Minor pyrite is observed enclosed in a small (10 µm) void within the calcite in the final 

chamber, and the f-3 (third from last) chamber has been infilled with sediment prior to the 

precipitation of the secondary calcite enclosing the chamber (Figure 5.10b).  

Element mapping shows a homogeneous distribution of Mg and Ca throughout the foraminifera 

and secondary calcite (Figures 5.10c & d), resulting in little to no variance in Mg/Ca ratios across 

the transition between calcite phases (Figure 5.10e). This is probably because the compositional 

changes between the different calcite phases is below the resolution of the EPMA method. 

Sediment infilling pores within the foraminiferal calcite is clearly defined by the distribution of 

both Al and Si and their respective ratios to calcium (Figures 5.10f, g, h, & i), with no Al or Si 

substituting into either the foraminiferal or secondary calcite phases. This confirms the 

established application of Al as an indicator of silicate contamination (e.g. Barker et al., 2003), 

and suggests the potential application of Si for the same role.  

Element maps of Mn and Mn/Ca display a noisy signal, characteristic of low concentrations. A 

vague increase in Mn/Ca ratios is apparent in the infilling secondary calcite, supporting the 

application of Mn/Ca ratios to identify zones of secondary calcification and recrystalisation (e.g. 

Eggins et al., 2003). Siliclastic contamination within pores is also highlighted by Fe (Figure 5.10l), 

although to a lesser extent than Al and Si. The concentration of iron is particularly elevated in 

the secondary calcite relative to foraminiferal calcite and background counts (Figure 5.10l), a 

feature that is also reflected in Fe/Ca ratios (Figure 5.10m). This further suggests that Fe/Ca 

ratios may have a potential role in the identification of zones of secondary calcite in laser 

ablation Mg/Ca studies of biogenic calcite.  
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 Figure 5.10: Acarinina primitiva from the early Eocene Tawanui section (U24/f207). A) 
Moderately well-preserved test exterior. B) Cross-section revealing infilling of chambers with 
secondary calcite throughout the test. Yellow box indicates mapped area. C) Distribution of Ca 
throughout the test. D) Mg distribution. E) Mg/Ca ratio. F). Distribution of Al. G) Al/Ca ratio. 
H) Si distribution. I) Si/Ca ratio. J) Mn distribution. K) Mn/Ca ratio. L) Distribution of Fe. M) 
Fe/Ca ratio. The colour scale for elemental distributions is in counts per second. Pixilation is an 
artefact of the beam size resolution on the EPMA. Each pixel is 1 µm, the smallest beam size 
attainable. 
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Pyritisation 

Pyrite mineralisation within foraminiferal tests is a frequently observed phenomenon, even in 

well-preserved specimens such as those from the Hampden section. Pyritisation of foraminiferal 

tests is a natural occurrence, resulting from a sulphide residue remaining from bacterial digestion 

of organic matter within the test following deposition in oxygen-depleted, reducing 

environments on the seafloor (Berner, 1984; Raiswell et al., 1988). Examples of early Eocene 

foraminifera tests from the East Coast sections displaying pyritisation produced poor cross-

sections; however, a good example of a pyritised Cibicides porrodeliquatus specimen from the Upper 

Miocene Mangaopari Mudstone in the Wairarapa, was produced in a parallel study (Figure 5.11; 

Hines, unpublished data), and is presented here in order to demonstrate the potential implications 

of pyrite mineralisation on Mg/Ca paleothermometry. The exterior of the test appears well-

preserved, with pores clearly visible and no adhering sediment (Figure 5.11a). A cross-section of 

the same specimen (Figure 5.11b) reveals that although primary structures such as pores and 

calcite laminae are preserved within the test, there is an abundance of framboidal pyrite ca. 10 µm 

in diameter.  

The corresponding element map of Ca (Figure 5.11c) provides a good indication of the 

distribution of foraminiferal calcite, and no secondary calcite is evident in or on the specimen. 

The abundance of pyrite mineralisation is reflected in the high density of the metals mapped (Mg, 

Al, Mn and particularly Fe; Figures 5.11d to k) associated with the secondary precipitation of 

pyrite. Precipitation of the pyrite phase results in Mg/Ca values that are substantially elevated 

above the Mg/Ca values of primary foraminiferal calcite. This is shown in Figure 5.11e, in which 

significantly higher Mg/Ca ratios are observed in the prytised areas relative to foraminiferal 

calcite.  

Interestingly, Mn concentrations are significantly elevated above that of the surrounding pyrite at 

the centre of the test where the densest distribution of pyrite occurs. This may suggest that the 

pyrite at the centre of the test was precipitated at a different time compared to the remaining 

pyrite, under different conditions.  

Elevated counts of aluminium are generally associated with silicate contamination, although in 

this example, Al and corresponding Al/Ca ratios are considerably higher in areas of pyrite 

mineralisation than background concentrations in foraminiferal calcite (Figures 5.11f & g). Al/Ca 

ratios vary between different areas of pyrite mineralisation, but in all cases are substantially 

elevated above that of foraminiferal calcite.  
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Elevated ratios of Mn, Mg, Al and Fe relative to Ca show that these all provide good indications 

of pyrite mineralisation, demonstrating that the silicate screening methods applied in this study 

will also identify and eliminate Mg/Ca values associated with pyrite mineralisation within the 

foraminifera test.   

Pyrite does not substitute into the calcite matrix, although erroneous Mg/Ca ratios would be 

induced by its incorporation into paleotemperature measurements, either through the application 

of solution ICP-MS studies, or poor screening of trace element profiles. However, the 

significantly elevated trace element/Ca ratios in pyrite (demonstrated in Figure 5.11) means that 

the silicate screening measures applied in this study would remove any contamination arising 

from pyrite mineralisation, although the screening method would benefit from Fe/Ca screening 

in addition to the existing protocols.  
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 Figure 5.11: Example of Cibicides porrodeliquatus from the Upper Miocene Mangaopari Mudstone 
exhibiting framboidal pyrite mineralisation infilling chambers. A) Well-preserved test exterior. B) 
Cross-section revealing pyrite mineralisation within chambers throughout the test. C). 
Distribution of Ca throughout the test. D) Mg distribution. E) Mg/Ca ratio. F). Distribution of 
Al. G) Al/Ca ratio. H) Mn distribution. I) Mn/Ca ratio. J) Distribution of Fe. K) Fe/Ca ratio. 
The colour scale for elemental distributions is in counts per second.  
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5.5.3 Evaluation of Silicate Contamination Indicators 

High concentrations of Mg incorporated within silicate mineral assemblages have the potential to 

artificially elevate Mg/Ca values, consequently resulting in overestimated, erroneous 

paleotemperature determinations. Screening of laser ablation analyses to remove the influences 

of silicate minerals was primarily based on the application of calculated Ti/Ca screening limits 

(Chapter Three). To assess the validity of titanium as a primary indicator of silicate 

contamination, Ti/Ca ratios were compared to Al/Ca ratios, which are widely applied in the 

screening of Mg/Ca analyses (e.g. Barker et al., 2003; Greaves et al., 2005; Creech et al., 2010). 

EPMA element mapping indicated Si/Ca was comparable to Al/Ca ratios as an index for silicate 

contamination, and subsequently Si/Ca ratios were recorded in parallel with Al/Ca and Ti/Ca 

ratios during LA-ICP-MS analysis. EPMA element mapping of selected foraminifera specimens 

in a variety of alteration states showed that both Al and Si are particularly pronounced indicators 

of sedimentary contamination. Element mapping also showed that Al and Si do not substitute 

into foraminiferal calcite (at the sensitivity of the EPMA), unless the specimen has undergone 

extensive and pervasive alteration.  

Al/Ca, Si/Ca and Ti/Ca ratios display a high degree of covariance in laser ablation trace element 

depth profiles (Figure 5.12a, b, c, d & e) which is consistent with their application as a primary 

index of silicate contamination. Ti/Ca ratios may prove to be especially sensitive to initial 

alteration of primary calcite as the substantial offset between Ti/Ca ratios in silicate minerals and 

values observed in foraminiferal calcite is greater than that of either Al/Ca or Si/Ca ratios. Thus, 

even trace contamination from silicate minerals is likely to cause amplification above that of the 

primary Ti/Ca signal (e.g. Figures 5.12 b & c).  

Some Si/Ca profiles show that Si has a particularly poor distribution in foraminiferal calcite, with 

Si/Ca ratios phasing out in primary calcite, implying that Si is not particularly mobile within the 

calcite matrix (Figure 5.12 f). This may potentially imply that Si/Ca ratios may be less sensitive to 

the effects of subtle diagenetic alteration than either Al/Ca or Ti/Ca ratios. An issue with Ti/Ca 

ratios is that trace element/Ca ratios often approached detection limits of the Agilent 7500cs 

mass-spectrometer used in this study, consistent with observations of Ti/Ca ratios by Greaves et 

al. (2005).  

An additional consideration that may have application in future work is that of Fe/Ca ratios as 

an indicator of both silicate mineral contamination, which has already been acknowledged by 

Barker et al. (2003), and also as an index for secondary calcite mineralisation as shown in EPMA 
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analysis. The distribution of Fe in foraminiferal calcite appears to give an indication of small-

scale changes within test walls (e.g. Figure 5.9) and secondary alteration in the studied 

foraminifera. This supports the recommendations of Barker et al. (2003), who promoted the 

application of both Al/Ca and Fe/Ca ratios in the screening of Mg/Ca analyses. Micron-scale 

resolution in the Fe/Ca ratios of EPMA element distribution maps would suggest that 

application of Fe/Ca measurements to established laser ablation protocols may provide 

beneficial insights into intra-test compositional changes of foraminiferal calcite.  

SEM imaging and EPMA element mapping also revealed details relating to the cleaning methods 

applied in the preparation of foraminifera for LA-ICP-MS analysis. SEM micrographs show that 

there is adhering sedimentary and calcareous nannofossil detritus on many specimens studied 

from the Aropito and Tawanui sections. Foraminifera from Hampden prepared using the same 

methods have significantly less adhering material and no infilling sediment (Figure 5.7), potentially 

suggesting the debris attached to the variably preserved East Coast specimens may be partially 

cemented in place. In addition, cross-sectioning, SEM imaging and EPMA element mapping of 

specimens sourced from the East Coast sections show sediment trapped deep within pores 

(Figures 5.13 1A-1I), particularly on the better preserved specimens, as the pores on poorly 

preserved examples have typically been sealed during secondary calcification. Figures 5.13 1a-1i 

clearly demonstrates the substantially elevated Mg/Ca, Al/Ca and Si/Ca ratios caused by in 

filling of pores with silicate sediments. When such pores are ablated, the infilling sediment is 

more resistant to laser pulses than the surrounding calcite (Figure 5.13 2a), although the 

corresponding trace element/Ca profiles display high values (Figure 5.13 2b) which are 

significantly above the calculated screening limits, providing reassurance that screening of Al/Ca, 

Si/Ca and Ti/Ca ratios removes any contaminated profiles.  

Ablating siliclastic sediment within infilled pores during laser ablation analysis will result in 

elevated Mg/Ca values (Figures 5.13 2a-2b) leading to erroneously high paleotemperature 

estimations, showing the importance of silicate mineral screening limits and cleaning protocols. 

The application of multiple silicate screening criteria (e.g. Al/Ca, Si/Ca and Ti/Ca) and 

subsequent SEM imaging of laser ablation pits provides further reassurance that the primary 

foraminiferal calcite Mg/Ca signal is recorded.  
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 Figure 5.12: Trace element/Ca ratios in trace element depth profiles of foraminiferal calcite. A) 
Excellent, long profile. B) Typical shortened profile. C) Short, complex profile. D) Very short 
profile. E) Exaggerated trace element profile with high Mg/Ca, Al/Ca, Si/Ca and Ti/Ca indicating 
substantial silicate contamination. F) Si/Ca ratios phasing out, suggesting a poor distribution of Si 
in calcite.  
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Figure 5.13: Examples of silicate sediments infilling pores. 1A) Exterior SEM image of a 
Morozovella crater specimen. 1B) Cross-section of the same foraminifera, displaying infilling 
sediment. The yellow box shows the mapped area. 1C) Distribution of calcium in the mapped 
area, showing four pores in the test calcite. 1D) distribution of Mg concentrations. 1E) Mg/Ca 
ratio. 1F) Distribution of Al concentrations. 1G) Al/Ca ratio. 1H) Distribution of Si 
concentrations. 1I) Si/Ca ratio. 2A) Example of an ablation pit in a Cibicides specimen, where 
detrital sediment infilling pores has proven more resistant than the surrounding calcite to laser 
pulses, resulting in pronounced projections in the ablation pit. The corresponding ablation 
profile (2B) displays markedly high element/Ca ratios.  
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5.5.4 Effects of diagenetic alteration on calcite 

Secondary diagenetic processes may have the effect of altering the elemental composition of 

foraminiferal calcite. The different diagenetic processes (overgrowths, dissolution and 

recrystallisation; outlined in Chapter 2.7.3) each affect the composition of calcite in different 

manners. SEM images of foraminifera specimens displaying these various forms of alteration are 

displayed in figure 5.14, alongside a well-preserved specimen from the Kurinui Formation at 

Hampden Beach (Figure 5.14a). 

 

Calcite overgrowths 

Diagenetic overgrowths are formed by the precipitation of inorganic calcite on the exterior and 

interior surfaces of foraminiferal tests. Inorganic calcite precipitated from solution in seawater 

typically has significantly elevated trace element/Ca ratios, particularly Mg/Ca, Mn/Ca and 

Sr/Ca (e.g. Eggins et al., 2003; Creech et al., 2010). The quantitative and qualitative screening 

processes utilised in this study were specifically applied to remove any influence of inorganic 

calcite precipitation on the primary foraminiferal calcite composition. SEM imaging was utilised 

to identify zones of calcite overgrowths (Figure 5.14b), and subsequently remove LA-ICP-MS 

analyses within such zones from paleotemperature derivations. LA-ICP-MS ablation profiles 

were screened to remove zones of elevated trace element/Ca values occurring on the exterior 

and interior surfaces of the test.   

 

 Calcite dissolution 

Dissolution of primary foraminiferal calcite appears to be a feature of many deep marine 

calcareous oozes, and considerably less of an issue in hemipelagic settings such as the East Coast 

and Canterbury Basins (e.g. Pearson et al., 2001; Pearson & Burgess, 2008). Dissolution of 

biogenic calcite is readily apparent in the multivariate trace element/Ca plots utilised in the 

screening process as affected analyses produce significantly and consistently low trace 

element/Ca values for each element analysed. The application of SEM imaging also enables the 

identification of physical changes to the test structure in order to identify the occurrence or 

extent of dissolution (Figure 5.14c).  
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 Calcite Recrystallisation 

Recrystallisation of primary calcite is a less obvious process, whereby the original microcrystalline 

calcite structure of the foraminiferal test is replaced with larger, more equant crystals (Figure 

5.14d), which may retain the original trace element composition or a hybrid trace element 

composition of the original calcite and secondary inorganic calcite (e.g. Sexton et al., 2006a). The 

ratios of Mg/Ca, Mn/Ca and Sr/Ca form key indices for the identification of recrystallisation, 

with affected profiles displaying elevated ratios for these trace elements. Mn/Ca ratios appear to 

be a good index for subtle changes, whilst Sr/Ca ratios appear to only identify substantial 

alteration of the primary foraminiferal calcite. Pervasively altered foraminifera will produce flat 

trace element/Ca profiles lacking the characteristic ‘U-shape’ of well-preserved tests.  

 

 Figure 5.14: Examples of differing types of alteration affecting Early Eocene planktic 
foraminiferal tests. A) Cross-section of a well-preserved Morozovella test from Hampden Beach, 
displaying primary layering and test calcite. B) Example of an Acarinina from DSDP 277 
displaying pronounced secondary calcite overgrowths of the exterior of the test. C) Cross-
section of a Subbotina specimen from DSDP 277 showing large cavities when primary calcite has 
been preferentially dissolved. D) Cross-section of a Morozovella from DSDP 277 displaying a 
granular test wall structure indicative of recrystallisation. Images sourced from Hines, unpublished 
data.  
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5.6 East Coast Basin Sea Temperature Record 

Four genera were selected for Mg/Ca paleothermometry in this study. Morozovella and Acarinina 

inhabited a surface mixed-layer habitat (upper 200 m; Pearson et al., 2006; Wade et al., 2008) and 

are used to provide Mg/Ca ratios for estimates of sea surface temperatures (SSTs). Bottom water 

temperature (BWT) estimates are based on Mg/Ca ratios from the benthic genus Cibicides. 

Mg/Ca ratios from the thermocline dwelling planktic genus Subbotina were also analysed in this 

study, providing a useful insight into thermocline temperatures. As previously discussed, 

stringent screening criteria were developed and applied to trace element profiles produced by this 

study in order to remove the any effects of post-depositional diagenesis and silicate 

contamination. Calculated temperature estimates are based on screened Mg/Ca values averaged 

from multiple ablations across the final three chambers of several individuals from a given 

species within a sample. Despite the specific targeting of laser ablation sites, subsequent 

application of screening criteria and qualitative assessment based on SEM imaging resulted in the 

vast majority (ca. 80%) of trace element/Ca analyses being excluded from sea temperature 

derivations.   

Intra- and inter-species variability in Mg/Ca ratios provides confidence in the preservation of a 

primary climate signal, as pervasive recrystallization of foraminiferal calcite would have resulted 

in a homogenous distribution of Mg/Ca values obtained from an assemblage. Because consistent 

variation between the Mg/Ca ratios of different species can be observed in the raw data, the 

primary biological signal is believed to be still preserved.  

Paleotemperature estimates derived from Mg/Ca paleothermometry are calculated using a high 

value for Eocene seawater Mg/Ca concentrations (4.1 mol/mol; refer to Chapters 2 & 3). This 

consequently has the effect of lowering estimated sea temperature values. The Eocene seawater 

value used in this study is higher than that suggested by several proxy studies (e.g. Dickson, 2004; 

Horita et al., 2004; Coggon et al., 2010) and models (e.g. Stanley & Hardie, 1998), but is in line 

with estimates suggested by paired Mg/Ca and δ18O values for foraminiferal calcite (Lear et al., 

2002; Sexton et al., 2006a) and modelled values from Wilkinson & Algeo (1989). A multi-proxy 

comparison of paleotemperature records from the Canterbury Basin (Hollis et al., 2012) displayed 

good agreement between a high Eocene seawater Mg/Ca value (4.0 mol/mol) and TEX86 and 

δ18O temperature proxies. Paleotemperatures are calculated as outlined in Chapters 2.6, 2.7 and 

3.7. 
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For the purposes of temperature calculations, a static Mg/Ca seawater ratio has been assumed 

throughout the composite record produced for the East Coast Basin, as the temperature record 

of this study spans a period of ca. 13 Myr, which is approximately equal to the Mg/Ca residency 

time of the ocean (Broeker & Peng, 1982). However, most model and proxy records suggest that 

Mg/Casw may have increased by 30% through the period occupied by the paleoclimate record of 

this study (e.g. Wilkinson & Algeo, 1989; Hardie, 1996; Lowenstein et al., 2001). If this is the case, 

this would mean that the reported temperatures of the middle Eocene portion of this record are 

too warm, and the observed cooling trend is even more marked than that displayed in Figure 5.12. 

Whilst an increase in seawater Mg/Ca values during the Eocene may not be as pronounced using 

the high value of 4.1 mol/mol, it is recognised that over the duration of the paleotemperature 

record presented in this study, and the residency time of Mg/Ca in the ocean reservoir, there 

were likely secular changes in the seawater Mg/Ca chemistry. As the majority of records indicate 

an increasing trend in seawater Mg/Ca values throughout the Cenozoic, this may translate into a 

more marked temperature decrease in the latter portion of the record. The combination of these 

factors result in the reporting of a conservative paleotemperature record for the East Coast Basin.  

An additional consideration that may affect calculated paleotemperatures is changes in the 

partitioning coefficient of magnesium (e.g. Coggon et al., 2010) into biogenic calcite and role of 

biological and physiological effects (e.g. Bentov & Erez, 2005; Segev & Erez, 2006) in 

foraminiferal Mg/Ca. However, as the species utilised by this study are extinct, these variable 

cannot be reliably quantified, and it is assumed that partitioning coefficients determined from 

modern foraminifera are appropriate (after Tripati et al., 2009; Coggon et al., 2010). In order to 

minimise any influence this may have, the particular species have been consistently analysed 

throughout the record, and modern, multi-species calibrations (Anand et al., 2003; Lear et al., 

2002) applied to foraminiferal Mg/Ca ratios to calculate temperatures.  

 

5.6.1 Sea Surface Temperatures 

A smoothed sea surface temperature (SST) record was calculated from the weighted means of 

Acarinina and Morozovella. Sea surface temperatures reach a maximum of 29°C at 51 Ma before 

declining to 22°C at 45 Ma (Figure 4.15). Temperature values calculated from Acarinina are 

generally 1-2°C cooler than those of Morozovella, consistent with the 0.7–2.6°C offset between M. 

crater and A. primitiva reported by Creech et al. (2010). This suggests either a genus-specific 

control over the incorporation of Mg in foraminiferal calcite of these two taxa, or alternatively, a 

171



 

seasonal or depth-controlled difference in test precipitation between genera. Despite this 

apparent systematic offset, temperature estimates derived from Morozovella and Acarinina 

correlate well throughout the record. The majority of the middle Eocene temperature record is 

based on temperature estimates derived from Acarinina, as the morozovellids utilised in this 

study (M. crater and M. lensiformis) do not extend beyond the early Middle Eocene (Heretaungan, 

49.3-45.3 Ma).  

 

 5.6.2 Bottom Water Temperatures 

Paleodepths are an important consideration for comparison between records derived from 

benthic foraminifera. Benthic foraminiferal paleodepth indicators imply a 500–1000 m water 

depth for the Wanstead Formation at Aropito and Tawanui (Moore & Morgans, 1987; Kaiho et 

al., 1993, 1996), equivalent to that of early Eocene benthic foraminifera assemblages from Tora, 

with an estimated paleodepth of 800 m for the Pukemuri Siltstone in the Pukemuri Stream 

section. Therefore, paleodepths of the Wanstead Formation in the southern Hawke’s Bay and 

the early Eocene Pukemuri Siltstone at Tora are considered comparable, and correspond with 

intermediate water (600–1450 m water depth; Carter et al., 1996). The bottom water temperature 

record (BWT) is solely based on analysis of Cibicides. 

The BWT record displays similar trends to the SST record, but offset to lower temperatures, as 

expected. BWT reached a peak of 19°C at 52 Ma and remained around 17°C until 50 Ma before 

declining to 10°C at 45 Ma (Figure 5.15). Following this, there is a slight increase of 4°C in BWTs 

between 45 to 42 Ma, which corresponds with a smaller warming of SSTs by ca. 1.5–2.0°C.  

Paleodepths increase considerably between Pukemuri Siltstone and the Wanstead Formation in 

the Pukemuri Stream section. However, the agreement between temperatures from the middle 

Eocene Wanstead Formation at Tora and the coeval, but shallower Aropito and Tawanui 

sections implies that the same water mass was influencing temperatures at these sites over a 

significant water depth range.  
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Species Section 
Sample 
Number 

Strat. 
Height 

(m) 

Age 
(Ma) 

Analyses Specimens 
available 

Mg/Ca  
(mmol/mol) 

%2se 
Mg/Ca 

Temperature 
(°C) 

2σ 
(°C) 

95% 
C.I.  

n 

Inter-
Individual 
Variability 

(%) 

Modelled %2se 
Mg/Ca 

Temperature 
Errors (±°C) 

Good Total + - 

Morozovella 

Aropito f332 272 47.3 2 12 4 2.18 2.3 22.0 0.6 2.90 1 - 53.9 4.8 8.6 

Tawanui 

f325 20.1 50.0 8 12 4 2.97 2.6 25.5 2.0 0.86 3 24.8 18.1 1.8 2.2 

f342 17.8 51.5 9 12 4 2.57 2.4 23.9 3.3 1.25 4 52.3 13.6 1.4 1.6 

f341 12.8 53.0 3 12 4 2.71 2.3 24.5 4.1 5.10 2 29.9 27.1 2.7 3.5 

Pukemuri 

f0426 109.3 48.2 2 12 4 2.77 2.2 24.7 1.1 5.13 1 - 53.9 4.8 8.6 

f0421 67.3 50.3 4 12 4 3.12 2.6 26.0 6.2 4.92 2 64.1 27.1 2.7 3.5 

f0417 53.7 50.9 1 9 3 3.71 9.8 28.0 0.0 6.00 1 - 53.9 4.8 8.6 

f0416 49.4 51.1 2 9 3 2.60 1.7 24.0 0.3 1.51 1 - 53.9 4.8 8.6 

f0415 44.5 51.3 1 3 1 3.26 5.4 26.5 0.0 6.00 1 - 53.9 4.8 8.6 

f0412 32.7 51.8 3 3 1 3.29 2.3 26.6 1.1 1.32 1 - 53.9 4.8 8.6 

f0411 25.6 52.1 2 3 1 2.92 2.2 25.3 3.3 14.87 1 - 53.9 4.8 8.6 

                                    

Acarinina 

Aropito 

f351 343 42.0 11 12 4 2.18 2.2 22.1 3.2 1.09 4 43.2 13.6 1.4 1.6 

f227 332 43.0 6 12 4 2.25 1.8 22.4 3.4 1.76 3 35.9 18.1 1.8 2.2 

f203 310 44.0 8 12 4 2.32 2.3 22.8 3.9 1.64 3 53.1 18.1 1.8 2.2 

f226 294 44.5 10 12 4 2.31 1.6 22.7 3.1 1.10 4 52.6 13.6 1.4 1.6 

f332 272 47.3 5 12 4 2.66 1.7 24.3 3.8 2.33 3 38.6 18.1 1.8 2.2 

Tawanui 

f326 26.8 45.0 6 12 4 2.16 1.6 22.0 2.5 1.33 4 32.0 13.6 1.4 1.6 

f325 20.1 50.0 7 12 4 2.86 2.0 25.1 2.4 1.11 4 27.7 13.6 1.4 1.6 

f342 17.8 51.5 8 12 4 2.27 1.7 22.5 3.5 1.47 3 51.5 18.1 1.8 2.2 

f341 12.8 53.0 2 12 4 3.00 2.8 25.6 10.0 44.92 2 61.6 27.1 2.7 3.5 

f207 2.3 53.4 10 12 4 3.58 2.3 27.6 3.2 1.14 4 49.3 13.6 1.4 1.6 

Pukemuri 

f0394 154 37.3 4 9 3 3.95 1.7 28.7 3.0 2.40 2 29.9 27.1 2.7 3.5 

f0428 132.1 41.9 2 9 3 2.92 1.8 25.3 5.7 25.67 1 - 53.9 4.8 8.6 

f0426 109.3 48.2 2 12 4 3.16 1.7 26.2 6.8 30.61 1 - 53.9 4.8 8.6 

f0419 62.4 50.5 3 12 4 4.11 1.9 29.1 2.3 2.85 1 - 53.9 4.8 8.6 

f0417 53.7 50.9 3 12 4 3.44 2.2 27.1 3.4 4.19 1 - 53.9 4.8 8.6 

f0416 49.4 51.1 1 12 4 4.43 1.7 29.9 0.0 6.00 1 - 53.9 4.8 8.6 

f0413 36.6 51.6 5 12 4 3.01 2.0 25.6 6.0 3.70 3 70.8 18.1 1.8 2.2 

f0412 32.7 51.8 12 12 4 3.10 1.7 25.9 2.8 0.88 4 27.5 13.6 1.4 1.6 

f0411 25.6 52.1 7 12 4 2.39 2.2 23.1 4.7 2.18 3 62.2 18.1 1.8 2.2 

Table 5.2:  Mg/Ca paleotemperature and error calculations for the Aropito, Tawanui and Pukemuri Stream sections. Two methods of error calculation are presented; the 95% confidence 
interval typically applied to Mg/Ca analyses, and the modelled temperature variance. 
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Species Section 
 Sample 
Number 

Strat. 
Height 

(m) 

Age 
(Ma) 

Analyses Specimens 
available 

Mg/Ca  
(mmol/mol)

%2se 
Mg/Ca 

Temperature 
(°C) 

2σ 
(°C) 

95% 
C.I.  

n 

Inter-
Individual 
Variability 

(%) 

Modelled %2se 
Mg/Ca 

Temperature 
Errors 

Good Total + - 

Subbotina 

Aropito 

f351 343 42.0 9 12 4 1.79 2.8 19.9 4.8 1.83 4 67.9 13.6 1.4 1.6 
f227 332 43.0 9 12 4 2.09 2.3 21.6 3.3 1.27 4 48.2 13.6 1.4 1.6 
f203 310 44.0 8 12 4 1.83 2.1 20.1 5.6 2.34 4 92.0 13.6 1.4 1.6 
f226 294 44.5 9 12 4 1.93 2.1 20.7 4.3 1.66 4 52.4 13.6 1.4 1.6 
f332 272 47.3 9 12 4 2.01 2.3 21.2 1.9 0.75 4 21.7 13.6 1.4 1.6 

Tawanui 

f326 26.8 45.0 9 12 4 1.86 2.2 20.3 3.6 1.40 4 52.3 13.6 1.4 1.6 
f325 20.1 50.0 10 12 4 2.61 3.7 24.0 3.0 1.09 4 43.5 13.6 1.4 1.6 
f342 17.8 51.5 11 12 4 2.27 2.9 22.5 2.9 0.97 4 36.1 13.6 1.4 1.6 
f341 12.8 53.0 12 12 4 2.29 2.4 22.6 4.1 1.29 4 60.0 13.6 1.4 1.6 
f207 2.3 53.4 12 12 4 2.83 2.2 24.9 4.6 1.45 4 60.4 13.6 1.4 1.6 

Pukemuri 

f0427 124.5 48.2 2 12 4 4.40 2.6 29.9 0.1 0.29 2 21.5 27.1 2.7 3.5 
f0426 109.3 48.2 3 12 4 3.52 2.6 27.4 3.8 4.71 2 34.2 27.1 2.7 3.5 
f0419 62.4 50.5 3 12 4 4.10 2.1 29.1 2.6 3.18 2 21.5 27.1 2.7 3.5 
f0415 44.5 51.3 2 12 4 3.82 1.5 28.3 2.2 9.66 1 - 53.9 4.8 8.6 
f0413 36.6 51.6 1 12 4 4.25 5.9 29.5 0.0 6.00 1 - 53.9 4.8 8.6 
f0411 25.6 52.1 8 12 4 3.09 2.5 25.9 2.8 1.19 3 33.4 18.1 1.8 2.2 
f0410 20.5 52.3 3 12 4 4.12 3.0 29.1 3.8 4.73 2 32.9 27.1 2.7 3.5 
f0407 -1 57.8 3 9 3 3.10 2.3 26.0 4.0 5.01 2 35.5 27.1 2.7 3.5 
  

Cibicides 

Aroptio 

f351 343 42.0 6 6 2 3.14 2.5 14.0 1.4 0.75 2 17.5 27.1 2.2 2.9 
f227 332 43.0 3 6 2 2.25 2.5 10.9 5.5 6.83 2 58.9 27.1 2.2 2.9 
f203 310 44.0 5 6 2 2.12 3.2 10.4 2.6 1.63 2 37.0 27.1 2.2 2.9 
f226 294 44.5 11 12 4 2.55 2.4 12.1 4.1 1.36 4 66.8 13.6 1.2 1.3 
f332 272 47.3 6 9 3 3.08 2.8 13.8 4.5 2.37 3 56.9 18.1 1.5 1.4 

Tawanui 

f326 26.8 45.0 7 12 4 2.00 2.1 9.9 3.6 1.67 4 48.3 13.6 1.2 1.3 
f325 20.1 50.0 12 12 4 3.87 1.8 15.9 4.4 1.39 4 64.9 13.6 1.2 1.3 
f342 17.8 51.1 11 12 4 3.51 1.8 15.0 2.0 0.67 4 27.3 13.6 1.2 1.3 
f341 12.8 53.0 7 12 4 3.54 3.0 15.1 3.9 1.81 4 50.7 13.6 1.2 1.5 
f207 2.3 53.4 11 12 4 2.51 2.9 11.9 4.8 1.61 4 95.6 13.6 1.2 1.3 

Pukemuri 

f0428 132.1 41.9 1 9 3 2.91 5.4 13.3 0.0 6.00 1 - 53.9 4.0 7.1 
f0427 124.5 47.2 2 12 4 3.76 3.5 15.6 0.1 0.63 2 1.1 27.1 2.2 2.9 
f0426 109.3 48.2 6 9 3 3.20 3.8 14.2 4.8 2.50 3 59.3 18.1 1.5 1.8 
f0419 62.4 50.5 2 12 4 4.53 2.6 17.3 3.8 17.01 1 - 53.9 4.0 7.1 
f0416 49.4 51.1 7 12 4 4.77 2.9 17.8 2.7 1.26 4 34.4 13.6 1.2 1.3 
f0413 36.6 51.6 4 12 4 4.08 2.9 16.4 0.7 0.52 2 6.7 27.1 2.2 2.9 
f0411 25.6 52.1 6 9 3 5.80 5.4 19.6 1.6 0.83 2 18.2 27.1 2.2 2.9 
f0410 20.5 52.3 3 12 4 3.83 2.8 15.8 4.2 5.17 2 45.0 27.1 2.2 2.9 

Table 5.2 (Continued):  Mg/Ca paleotemperature and error calculations for the Aropito, Tawanui and Pukemuri Stream sections. Two methods of error calculation are presented; the 95% 
confidence interval typically applied to Mg/Ca analyses, and the modelled temperature variance. 

174



 

 

Figure 5.15: Early to middle Eocene sea surface (SST) and bottom water (BWT) temperature 
records derived from foraminiferal Mg/Ca ratios within the Pukemuri and Aropito–Tawanui 
composite sections.  The error plotted is the 95% confidence interval.   
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5.6.3 Reporting of Errors on Mg/Ca Paleotemperatures 

A significant source of error on Mg/Ca paleothermometry is the inter-individual variability of 

Mg/Ca ratios incorporated into the tests of individual foraminifera. Preliminary modelling of this 

error on extant foraminifera genera has shown that this is a significantly greater source of error 

than analytical or calibration uncertainties, particularly in studies with low number of individual 

foraminifera in the sample population. Traditional methods of reporting uncertainties on Mg/Ca 

values largely account for analytical and calibration errors, resulting in an understatement in the 

reporting of the true error applied to Mg/Ca temperature estimates. This becomes a significant 

consideration for the application of the Mg/Ca paleothermometry method to ancient, variably 

preserved material with a low number of individuals in each sample population.  

Uncertainties arising from estimates of Eocene seawater Mg/Ca ratios and calibration errors are 

equally applicable to all data, resulting in a systematic offset of the entire record, and thereby 

have little implication on the relative temperature trends within a record. However, the inter-

individual variability of Mg/Ca in foraminiferal calcite may be 60–70% between any selected 

individuals within a population. Therefore, in small datasets, such as those of this study, the 

potential error within inter-individual variability considerably outweighs that arising from 

analytical uncertainties. 

The application of a modelled method (Chapter Three) to derive a % 2 se to account for the 

variability of Mg/Ca between generally results in the reporting of significant errors on Mg/Ca 

analyses in this study (Figure 5.16). Foraminifera from samples in the Pukemuri and southern 

Hawke’s Bay sections are expected to have a significant uncertainty attached to temperature 

derivations, due to the small sample populations and the variable preservation of foraminiferal 

calcite exhibited by assemblages from these sites. Considering this, the modelled errors are 

potentially more reasonable than those derived using the 95% confidence interval. The errors 

presented using this method are not symmetrical, due to the exponential relationship between 

Mg/Ca ratios and temperature (Figure 5.16). Because the Mg/Ca paleothermometer increases in 

sensitivity with increasing temperature, the error margin on the lower temperature range is 

slightly larger than the higher temperature range. There is currently no published literature on 

inter-individual variability of Mg/Ca in Paleogene foraminifera, although variability of Mg/Ca 

between individuals in a given assemblage is acknowledged in studies of extant planktic species 

(e.g. Sadekov et al., 2008, 2009; Marr et al., 2011), and variability in Mg/Ca analyses of individual 

Paleogene foraminifera in Creech (2010) and this study (Table 5.2) strongly suggest that this is 

also the case with both planktic and benthic Paleogene foraminifera.  
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Also likely to be contributing to the reported variability of analyses are intra-individual variations 

in the Mg/Ca content of individual chambers. This is recognised as a regular feature in extant 

planktic foraminifera species, particularly species which precipitate a gametogenic calcite layer 

(e.g. Sadekov et al., 2005). Coupled EPMA and LA-ICP-MS analysis of well-preserved Subbotina 

specimens have demonstrated an increase in Mg/Ca ratios of ≤ 0.8 mmol/mol in the final 

chamber that has a heavy gametogenic calcite layer (Hines, unpublished data). This may also be the 

case for Morozovella and Acarinina, although these species do not display any significant 

gametogenic calcification and any variation between individual chambers has yet to be quantified.  

 

5.6.4 Size Effect on Temperature 

A potential source of error that has not been accounted for within this study is the size effect on 

Mg/Ca precipitation in foraminiferal calcite. A difference of 0.2°C between the 300–350 µm and 

425–500 µm size fractions has been reported in modern specimens of Globigerinoides ruber (Anand 

et al., 2003). This is especially relevant to photosymbiotic species (e.g. Acarinina and Morozovella 

used in this study) as δ13C and δ18O ratios have shown that smaller individuals of these species 

occupy lower (and therefore cooler) levels in the water column (Wade et al., 2008; Birch et al., 

2012), which will likely have the effect of reducing Mg/Ca values in smaller specimens. This 

Mg/Ca ratio dependency on size is widely acknowledged and incorporated into Holocene and 

Quaternary Mg/Ca paleothermometry studies (e.g. Elderfield et al., 2002), however the poor 

foraminiferal assemblages, particularly from the Pukemuri Stream section yielded too few 

specimens for preferential size selection. This consequently induces another potential source of 

error into temperature reconstructions, although it is greatly overwhelmed by other sources of 

uncertainty, such as that of inter-individual variability.  
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Figure 5.16: The modelled method of error determination generally produces larger errors than 
the 95% confidence interval (Figure 5.15) for the composite paleo-temperature record of the East 
Coast Basin. The modelled method takes into account the both the inter-individual variance in 
Mg/Ca values as well as the small population size. The upper range on the errors is smaller due 
to the increasing sensitivity of the Mg/Ca paleothermometer at higher temperatures.  
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5.6.5 Timing of the EECO 

A decline in temperatures derived from foraminiferal Mg/Ca ratios in the Pukemuri Stream 

section constrains the termination of the EECO to 48.2 Ma, which is comparable to that 

recorded at mid-Waipara (48.5 Ma; Creech et al., 2010), although later than recorded at Hampden 

(49.5 Ma; Hollis et al., 2012). This difference is most likely attributable to the low temporal 

resolution at Tora. Although a relatively high-density sample suite was collected across the 

Pukemuri Stream section, poor preservation of foraminiferal specimens has resulted in low 

temporal resolution across the termination of the EECO at this section. Thus, further high-

resolution sampling of the Pukemuri Stream section is not likely to better constrain the 

termination of the EECO. The improved preservation of the foraminiferal assemblages obtained 

from the Aropito and Tawanui sections yielded significantly better results, and would benefit 

from a higher sampling resolution for Mg/Ca paleothermometry.  

 

5.6.6 Terrigenous flux during the EECO 

The percentage of mud reflects the flux of terrigenous sediment into a depositional basin, which 

is largely controlled by proximity to land and water depth, but may also be modulated by climatic 

variables; increased precipitation leads to increased terrestrial run-off, as well as increasing rates 

of chemical weathering, both of which contribute towards an increased sedimentary load (e.g. 

Kump et al., 2000; Ravizza et al., 2001; Kelly et al., 2005; Schimtz & Pujalte, 2007). The amount of 

terrigenous material increases across the PETM and later Eocene hyperthermals in many marine 

sedimentary successions (Hollis et al., 2005; Nicolo et al., 2007; Slotnick et al., 2012). This has 

previously been demonstrated in the East Coast Basin across the PETM interval at Tawanui 

(Crouch et al., 2003). Increased sediment flux during the EECO would have likely had the effect 

of diluting the carbonate content in environments closer to land. Such an effect is observed in 

the Pukemuri Stream section, where the carbonate content increases up-section with a 

corresponding decrease in the coarse (> 63 µm) sediment fraction. However, this trend is likely 

to be strongly influenced by the depositional setting of the Pukemuri Siltstone (outlined in 

Chapter Four), and in particular, the deepening depositional depth upwards through the 

sedimentary succession indicated by benthic foraminiferal faunas.  
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5.6.7 Interpretation of Additional Trace Element/Ca Ratios 

Trace element/Ca ratios in foraminiferal calcite may provide supplementary information on 

changes in seawater chemistry that may be related to oceanic environmental conditions other 

than temperature. 

 Ti/Ca values for all sections in this study were consistently low, as expected because Ti does not 

substitute directly into the CaCO3 matrix. These low values are further enforced by the 

application of Ti/Ca screening limits to raw data, and as the majority of Ti is bound to silicate 

mineral phases, screening removes any excessive influence on the observed Ti/Ca values. Ti 

values measured in the modern Pacific and Atlantic Oceans show that dissolved Ti 

concentrations are depleted in surface waters and enhanced at depth (Orians et al., 1990). 

Therefore, increased Ti/Ca ratios may be expected in Cibicides relative to Morozovella, Acarinina 

and Subbotina; however, no discernable trend or species-specific offsets were observed in 

measured Ti/Ca values from the Aropito, Tawanui and Pukemuri sections.  

Mn/Ca values were applied to screen for the effects of diagenetic alteration, particularly 

secondary calcite precipitation; however Creech et al. (2010) showed an increasing trend from 

50–46 Ma in Mn/Ca values of foraminiferal calcite from the Canterbury Basin, and postulated 

that this may be linked to changing redox conditions in the ocean at the time of deposition. No 

such trend is apparent in the Aropito, Tawanui or Pukemuri sections in the East Coast Basin. 

Mn/Ca values measured in this study varied between 0.2 and 1.6 mmol/mol, with values from 

the Aropito and Tawanui sections generally at the lower end of this range, and foraminiferal 

assemblages from Pukemuri Stream yielding higher Mn/Ca values.  

The planktic species Morozovella and Acarinina from the Aropito and Tawanui sections display 

similar Zn/Ca values. Subbotina Zn/Ca values tend to display similar values and trend to 

Morozovella and Acarinina, with the exception of two samples in the Mangaorapan interval. 

Excluding the high values recovered from Subbotina low in the sequence, Cibicides Zn/Ca ratios 

are consistently higher than those recorded for the planktic species, displaying a marked increase 

in the Porangan and Bortonian intervals (Figure 5.17). This increase applies solely to the benthic 

record. Marchitto et al. (2000) have suggested the use of Zn/Ca ratios in foraminiferal calcite as a 

tracer of bottom water movements. This observed increase in the benthic Zn/Ca record may 

indicate the influx of deepwater mass into the southern Hawke’s Bay (Aropito-Tawanui region) 

during the Middle Eocene. This is supported by a coeval increase in bottom water Mg/Ca 
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paleotemperatures (+4°C) for the Aropito and Tawanui sections, and corresponding SSTs during 

this interval only display a slight increase (ca. +1-2°C) in temperature.  

Assemblages from the Pukemuri Stream section appear to display no distinctive trends of 

species-specific offsets in Zn/Ca values, although notably there is considerably more variation in 

the planktic Zn/Ca values observed in values from the Aropito and Tawanui sections.  

Ba/Ca ratios obtained from all species analysed from the Aropito and Tawanui sections appear 

to display the same trends and similar values, generally depicting a slight decrease in values with 

decreasing age (Figure 5.17). No species specific offset is apparent in Ba/Ca values from Aropito 

and Tawanui.  

The Ba/Ca record from Pukemuri Stream exhibits a clear offset between the benthic species 

(Cibicides) and the planktic species analysed in this study (Morozovella, Acarinina and Subbotina), 

with Cibicides providing distinctly higher Ba/Ca ratios that the planktic species (Figure 5.17). For 

the most part, Subbotina produce Ba/Ca values higher than Morozovella and Acarinina, though 

distinctly lower than Cibicides (Figure 5.17). Applying the preferred depth habitats of the genera 

analysed, this apparent trend would suggest that surface waters were depleted in Ba, but 

increasingly concentrated at depth. This is consistent with values recorded in modern oceans, in 

which precipitation of barite in the upper levels of the ocean results in depleted barium 

concentrations in surface waters, and subsequent dissolution of barite on the seafloor results in 

enriched Ba concentrations in bottom waters (Lea, 1999).  
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Figure 5.17: Zn/Ca and Ba/Ca concentrations for each of the genera utilised in this study for the 
Aropito and Tawanui composite section and the Pukemuri Stream section.  
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5.7 Comparison with Previous Studies 

Previous Mg/Ca paleothermometry studies in the Southwest Pacific have utilised a multi-proxy 

approach, using a combination of the TEX86, δ
18O and Mg/Ca paleothermometers. However, 

these studies are limited to two stratigraphic sections in the Canterbury Basin; the mid-Waipara 

River section (Hollis et al., 2009; 2012; Creech et al., 2010), and the Hampden Beach section 

(Burgess et al., 2008; Hollis et al., 2012). Species used to provide Mg/Ca paleotemperature data in 

these previous records correspond with the species assemblage used for Mg/Ca 

paleothermometry in this study, establishing a basis for direct comparison between records. 

Paleo-depth estimates for the Aropito and Tawanui sections (500–1000 m; Moore & Morgans, 

1987; Kaiho et al., 1993, 1996), and Tora (800 m; Chapter Four) are comparable to those of the 

mid-Waipara section (500 m; Hollis et al., 2012), and deeper than the Hampden Beach section 

(200–400 m; Burgess et al., 2008; Morgans, 2009; Hollis et al., 2012).  

The mid-Waipara record of Creech et al. (2010) has here been recalculated using the mean 

Mg/Ca ratio from Acarinina and Morozovella to calculate SSTs, and Cibicides sp. A in order to 

facilitate comparisons between the SST record of this study and that of Creech et al. (2010). The 

Hampden BWT record of Burgess et al. (2008) was produced from undifferentiated Cibicides spp. 

enabling direct comparison to this record. The Hampden SST and BWT record of Hollis et al. 

(2012) was produced using the same taxa for Mg/Ca analysis as the East Coast Basin record of 

this study (Figure 5.15). In all cases, the respective planktic and benthic Mg/Ca-temperature 

calibrations of Anand et al. (2003) and Lear et al. (2002) have been applied, and the Mg/Ca 

paleotemperature records calculated using a conservative estimate for early Eocene seawater 

Mg/Ca (4.1 mol/mol). This high value has been adopted based on comparative studies of 

foraminiferal Mg/Ca ratios and δ18O values (Lear et al., 2002; Sexton et al., 2006a). 

The multi-proxy approach of the Burgess et al. (2008), Creech et al. (2010) and Hollis et al. (2009, 

2012) records provides a robust approach to paleotemperature estimations. The comparable 

temperature records derived from these studies provide confidence in the regional 

paleotemperature reconstruction of this study (Figure 5.18). The substantial distance separating 

the depositional systems of the East Coast and Canterbury Basins, and varied post-depositional 

processes of the respective basins, would have influenced the composition and distribution of 

pore fluids to differing extents, and subsequently the composition of secondary calcite. The 

agreement between these records provides a convincing argument for the preservation of a 

primary Mg/Ca temperature signal, even within the variably preserved material of the East Coast 

Basin sections.  
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The comparable BWT values (Figure 5.18) derived from the variably preserved foraminifera from 

the Pukemuri section and the well-preserved foraminifera of the Hampden Beach section further 

confirms the preservation of a primary ocean temperature signal obtained from the East Coast 

Basin sections. This demonstrates that the stringent screening criteria and assessment of 

foraminiferal preservation has resulted in the reporting of an unaltered primary temperature 

signal.  

Termination of the EECO in the Canterbury Basin is associated with a pronounced cooling of 

bottom waters at Hampden and in the mid-Waipara River section (although less pronounced) 

which is accompanied by an equivalent cooling of surface waters at Hampden (Hollis et al., 2012). 

BWTs of the mid-Waipara and the East Coast Basin records display very similar trends, which 

indicates that there were similar oceanographic influences and water masses throughout the 

Early to early Middle Eocene (ca. 53-46 Ma). The older portion of the Hampden BWT record 

(51.5-52.3 Ma) also corresponds well with the mid-Waipara River and East Coast Basin records. 

The abrupt cooling of the Hampden BWT record, representing the termination of the EECO, 

corresponds with a poorly sampled interval in both the mid-Waipara and East Coast Basin 

records, and appears to correspond with an offset in temperatures from mid-Waipara. The 

sampling resolution for the East Coast record through this interval is too low to infer any 

relationships with the records of the Canterbury Basin during the termination of the EECO.  

SST records from the East Coast and Canterbury Basins display good agreement between 52-50 

Ma, with peak temperatures of 29°C in both records. Following this, the East Coast Basin record 

is 2-3°C cooler than the mid-Waipara river record. The abrupt cooling of SSTs observed in the 

Hampden record at 49 Ma is not apparent in the mid-Waipara record and the temporal 

resolution of the East Coast Basin record is too low through this interval to make any inferences.  
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 Figure 5.18: Comparison between the composite East Coast Basin Mg/Ca temperature record 
(Aropito, Tawanui and Pukemuri sections) with previous Mg/Ca temperature records of the 
Canterbury Basin (mid-Waipara River and Hampden Beach). Mg/Ca values for Burgess et al. 
(2008) and Creech et al. (2010) have been recalculated with and Eocene Mg/Casw value of 4.1 
mol/mol to enable direct comparison with the results of this study.  
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5.8 Southwest Pacific Paleoceanography 

Extrapolation of an early Eocene climate record outside of the Canterbury Basin is essential for 

producing a regional synthesis of southwest Pacific sea temperature distributions, and 

subsequently relating measured proxy temperature values to global circulation models. The 

record for the East Coast Basin produced by this study provides a critical external 

paleotemperature record north of the Chatham Rise, which likely acted as a major barrier to 

oceanic fronts during the early Eocene as it does today. Surface temperatures during the Early 

Eocene remained fairly constant, with comparable temperatures derived from the East Coast and 

Canterbury Basins, suggesting that surface water masses were still able to cross the transition 

between the East Coast and Canterbury Basins, implying a shallow seaway or submarine 

platform across the Chatham Rise during the Early Eocene. This inference is supported by the 

presence of a hypothesised paleo-platform in the Clarence Valley–Marlborough area in early 

Eocene palinspastic reconstructions (Crampton et al., 2003).  

A rapid decline in bottom water temperatures is apparent at 49 Ma in the mid-Waipara and 

Hampden records. This cooling is not apparent in the composite East Coast basin record, which 

is likely due to the low temporal resolution through this interval.  

The cooling of BWTs in the Canterbury Basin potentially reflects an influx of a cooler deep 

water mass around the termination of the EECO at ca. 49 Ma. The absence of an abrupt cooling 

in the deep waters of the East Coast basin at this time could perhaps imply that the cooler water 

mass was derived from the south, and northwards progression of the deep, cooler water mass 

was barred from entering the East Coast Basin by the Chatham Rise, which plays a similar role in 

the distribution of water masses in the modern Southwest Pacific Ocean.  

SSTs and BWTs at Hampden are 2°C warmer than deeper, more northern proxy records from 

the mid-Waipara River, which likely reflects the comparatively shallow marine influence on the 

Hampden record. The warm shallow marine setting of the Hampden record may result in the 

introduction of a salinity effect on Mg/Ca incorporation into foraminiferal calcite. An increase 

of 1.6°C in Mg/Ca temperature estimates has been observed in modern specimens of G. ruber 

for an increase in salinity of 1.0 psu (Mathien-Blard & Bassinot, 2009). Therefore, increased 

salinity in the warmer, shallower depositional setting at Hampden may explain the higher 

temperatures in the foraminiferal Mg/Ca record. Salinity corrections are available for extant 

planktic foraminifera (e.g. Mathien-Blard & Bassinot, 2009), although these are unlikely to be 

meaningful if extrapolated to Eocene foraminifera.  
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The surface-to-seafloor gradient of paleotemperatures derived from the Early Eocene 

successions in the East Coast and Canterbury Basins consistently lies within the range of 9–12°C, 

comparable to the present day mid-latitude ocean, with modern SSTs of ca. 14°C and BWTs of 

2–3°C measured at ODP Site 1123 (Hayward et al., 2008; Elderfield et al., 2010). The surface-to-

seafloor gradient observed in the Hampden record is comparable to that of the mid-Waipara and 

East Coast sections, which is in contrast with the shallower (200 m) depth of the Hampden 

section reported in Hollis et al. (2012). A reduced surface-to-seafloor temperature gradient might 

be expected at Hampden as a result of the shallow (200 m) shelfal depositional setting, yet the 

temperature offset between the surface and seafloor is comparable to the deeper basinal settings 

(500–1000 m) of the mid-Waipara and East Coast Basin sections.  

There is good agreement between peak early Eocene temperatures derived from the multiproxy 

records of the Canterbury Basin (Burgess et al., 2008; Hollis et al., 2009, 2012; Creech et al., 2010), 

the Mg/Ca record of the East Coast Basin (this study) and the TEX86 record from ODP 1172 

(Bijl et al., 2009; Sluijs et al., 2011). However, low SSTs (18°C; Shackleton & Kennett, 1975) 

derived from δ18O at DSDP Site 277 seem to contradict the higher temperatures derived from 

ODP Site 1172 at the same latitude during the early Eocene. Preliminary results from the Mg/Ca 

analysis of the Early Eocene DSDP 277 record (Hines, unpublished data; Kulhanek et al., in prep.) 

give higher SSTs of 29°C in contrast with the cooler temperatures produced by planktic δ18O. 

Lower temperatures derived from the δ18O temperature proxy are attributed to post-depositional 

diagenetic alteration of foraminiferal calcite (Hollis et al., 2009; 2012), which has been confirmed 

by SEM imaging and EPMA analysis of planktic foraminifera from DSDP 277, which display 

signs of significant dissolution and recrystallization (Hines et al., unpublished data).  

The higher temperatures derived from Mg/Ca imply no latitudinal temperature gradient across 

10° of latitude from the East Coast Basin to DSDP Site 277, which is impossible to reconcile 

with climate dynamics and global circulation models, even assuming hyper-greenhouse 

conditions during the early Eocene (4480 ppm atmospheric CO2; Hollis et al., 2012). The role of 

surface currents potentially played a major role in the distribution of heat in the surface waters of 

the early Eocene southwest Pacific. Intensification of surface currents during the EECO would 

provide an efficient means of oceanic heat distribution, subsequently resulting in the decreased 

thermal gradient from the equator to poles suggested by proxy records.  Hollis et al. (2012) 

hypothesise an intensification of a proto-East Australian Current to explain the distribution of 

tropical sea temperatures extending into the high-latitude Southwest Pacific Ocean during the 

EECO (Figure 5.19). The high temperatures of the East Coast Basin, which correspond to similar 
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temperatures in the Canterbury Basin during this time, appear to support this premise, and 

suggest that this current also bathed northern New Zealand (Figure 5.19). Furthermore, these 

high temperatures, which indicate the intensification of a proto-EAC, may have promoted the 

development of an anticyclonic gyre in the South Tasman Sea.  

In addition to this, to explain the unusually high temperatures recorded by paleoclimate proxies 

utilised in previous studies of the early Paleogene climate of the SW Pacific, the TEX86, δ
18O and 

Mg/Ca paleothermometers may be recording summer temperatures, rather than mean annual 

temperatures, inducing a potential seasonal bias in temperature reconstructions (Hollis et al., 

2012).  

 

 Figure 5.19: Early Eocene paleogeographic reconstruction of the New Zealand sector of the 
Southwest Pacific comparing maximum SSTs (orange text) and BWTs (blue text) of this study 
(red circles) with previous studies (black circles) as summarised in Hollis et al. (2012). Base map 
adapted from Hollis et al. (2012). Surface currents (arrows) are based on modelled circulation 
patterns adapted from Hollis et al. (2012). Warm, tropical waters are transported across northern 
New Zealand by a proto-East Australian Current (EAC).   
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5.9 Summary  

The high frequency of infilling of foraminiferal tests with sediment, nannofossils, secondary 

calcite and pyrite, means that solution methods of Mg/Ca paleothermometry data acquisition 

could not be reliably applied to assemblages from the Aropito, Tawanui and Pukemuri Stream 

sections. The laser ablation method utilised in this study, and the subsequent screening measures 

applied, circumvents these issues, resulting in a paleotemperature record that shows good 

correspondence with previous multi-proxy records in the Canterbury Basin.  

Age models for the Aropito, Tawanui and Pukemuri Stream sections indicate that the composite 

East Coast Basin record extends from the Early to Middle Eocene, although poor preservation 

within several of the foraminiferal assemblages collected from Pukemuri Stream has reduced the 

resolution of the temperature record considerably below that of the original sample suite 

collected. 

Bulk carbonate δ18O results from Pukemuri Stream display values that are indicative of 

diagenetic alteration by meteoric waters. Bulk carbonate δ13C values are typically more resistant 

to alteration, and values obtained from Pukemuri Stream are consistent with previously recorded 

bulk carbonate δ13C values from the southern East Coast Basin (e.g. Hollis et al., 2005; Slotnick et 

al., 2012) and benthic foraminiferal records from ODP and DSDP cores (e.g. Zachos et al., 2001).  

Preservation of foraminiferal assemblages is variable, and tests are often observed to display 

evidence of infilling by silicate sediments or calcareous nannofossils, secondary calcite or pyrite. 

Screening protocols applied to Mg/Ca data have been shown to effectively remove any profiles 

altered by the presence of silicate minerals, secondary alteration or pyrite, resulting in the 

reporting of a primary Mg/Ca signal that produces temperature estimates that correlate well with 

established multiproxy records in the Canterbury Basin.   

Peak SSTs of 29°C during the EECO obtained from the mid-Waipara River record are identical 

to a coeval peak of 29°C at Tora. Peak sea surface and bottom water temperatures from the 

composite Aropito-Tawanui section are marginally cooler than those obtained from the 

Pukemuri Stream section at Tora. This observation may support the hypothesised intensification 

of a proto-East Australian Current during the EECO (Hollis et al., 2012), during which surface 

waters from the South Tasman Sea are forced northwards around the western margin of the 

New Zealand landmass, then around northern New Zealand. However, this inference requires 

further support which could be obtained from future paleothermometry studies of the western 

margin of the New Zealand sub-continent.   
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The corresponding increase of 4°C in BWTs and an increase in Zn/Ca concentrations during the 

middle Eocene record from the Aropito-Tawanui composite record, coupled with only a minor 

increase in surface water temperatures, implies the influx of a different, warmer bottom water 

mass during this time.  
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Chapter Six 

CONCLUSIONS 

 

6.1 Key Findings 

 6.1.1  Paleogene Stratigraphy and Paleoenvironment at Tora 

The Paleogene succession at Tora has been mapped and described in main three sections: 

Pukemuri Stream, Awheaiti Stream and Te Oroi Stream. New, detailed measured section studies 

have retained the existing broad lithostratigraphic divisions, but sampling yielded calcareous 

nannofossil and foraminiferal assemblages, which have provided a revision of the age for the 

lower Paleogene sequence. This provides a well-documented stratigraphy in the East Coast 

Basin, and has provided a robust age and stratigraphic framework. Microfossils, sedimentology 

and trace fossil analyses are used to provide a revised geological history for the Tora area and the 

central East Coast Basin, with a series of new paleogeographic maps.  

The Lower Paleocene Awhea Formation is indicative of deposition within a central submarine 

fan setting, with a thinning-upward succession of alternating sandstone and mudstone beds 

suggestive of gradual lobe migration. The lower and middle members of the Lower to Middle 

Paleocene Mungaroa Limestone represent a continuation of submarine fan sedimentation, 

although potentially in a more proximal part of the fan. The upper micritic limestone member 

represents a reduction in the sediment supply to the region, allowing calcareous biogenic 

sediments typical of the Marlborough area to extend northwards into the central East Coast 

Basin. The Upper Paleocene Awheaiti Formation represents a return to the submarine fan 

setting, being deposited in a channel system that is locally incised into the Mungaroa Limestone. 

The Awheaiti Formation is unconformably overlain by the Lower Eocene Pukemuri Siltstone, 

with a basal pebbly-mudstone interpreted as a debris flow deposit, overlain by mudstone 

deposited in a slope environment. An unconformity separates the Upper Eocene Wanstead 

Formation from the Lower Eocene Pukemuri Siltstone. The Wanstead Formation was deposited 

at lower bathyal to abyssal depths, with a marine transgression apparent across the Pukemuri 

Siltstone – Wanstead Formation unconformity, deepening the basin to lower bathyal-abyssal 

depths during the Middle Eocene, subsequently followed by hemipelagic deposition. The 

Wanstead Formation at Tora is younger than typically expressed in the East Coast Basin, which 

is likely related to a deepening of the Tora area during the middle Eocene. 
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The stratigraphy at Tora can be related to general sedimentary sequences elsewhere in the East 

Coast Basin. The Manurewa and Awhea Formations jointly represent a lateral extension of the 

Upper Calcareous Member of the Whangai Formation. The upper micritic limestone member of 

the Mungaroa Limestone is recognised as a lateral equivalent of the Kaiwhata Limestone 

described further north in the Glenburn area. The Pukemuri Siltstone shares features in common 

with the Wanstead Formation described at Glenburn, and potentially represents a more 

proximal, slope influenced facies of the Wanstead Formation.  

This study has produced a revised stratigraphic framework for the lower Paleogene stratigraphic 

succession at Tora, which is a transitional environment between the largely clastic sedimentation 

typically expressed in the North Island East Coast Basin, and the biogenic sedimentation of the 

Marlborough area in the southern East Coast Basin.  

 

 6.1.2 Mg/Ca Paleothermometry of the Central East Coast Basin 

A sampling resolution of 70–200 kyr in the Lower Eocene Pukemuri Siltstone produced 

foraminiferal assemblages suitable for LA-ICP-MS Mg/Ca paleothermometry; however, poor 

preservation of some samples reduced the temporal resolution to 0.2–1.5 Myr. The Pukemuri 

Stream section has been supplemented by foraminiferal assemblages from sample suites from the 

Aropito and Tawanui sections in the southern Hawke’s Bay portion of the central East Coast 

Basin, which had a lower sampling resolution of 0.4–3.0 Ma.  

Bulk carbonate oxygen stable isotope analyses of samples from the Pukemuri Stream section 

predominantly show highly negative values, indicative of alteration by meteoric waters. Carbon 

stable isotope values recovered are comparable with those of other Lower Eocene sediments in 

the East Coast Basin (e.g. Hollis et al., 2005; Slotnick et al., 2012).  

LA-ICP-MS analysis of planktic and benthic foraminifera from the Aropito, Tawanui and 

Pukemuri Stream sections in the central East Coast Basin has provided the first quantitative 

Early Eocene sea surface and bottom water temperature records for the North Island of New 

Zealand. The individual records display good agreement in temperature reconstructions between 

sections. Sea surface temperatures (SSTs) at Tora derived from planktic foraminiferal Mg/Ca 

ratios peaked at 29°C within the early Eocene climatic optimum (EECO) at 50 Ma, with a coeval 

peak in bottom water temperatures (BWTs) of 19°C from benthic Mg/Ca ratios. A composite 
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southern Hawke’s Bay record consisting of the Aropito and Tawanui sections produced 

marginally cooler peak SSTs of 27°C and BWTs of 15°C.  

The composite Mg/Ca paleotemperature record for the East Coast Basin (Aropito, Tawanui and 

Pukemuri Stream sections) displays good correspondence with existing Mg/Ca records from the 

coeval mid-Waipara River and the Hampden sections in the Canterbury Basin (Hollis et al., 2009, 

2012). A cooling is observed in the composite East Coast Basin record at ~48 Ma which is 

approximately 1 Myr after a comparable cooling in the Canterbury Basin. This time offset may 

be an artefact of poor temporal resolution across the termination of the EECO. A total cooling 

of 7°C in SSTs and a slightly more pronounced cooling of 9°C in BWTs is observed across the 

composite East Coast Basin record from 51 to 42 Ma.  

The similarities between the East Coast Basin and the Canterbury Basin temperature records 

supports the concept presented by Hollis et al. (2012) of an intensification of a proto-East 

Australian Current (EAC), explaining the distribution of tropical SSTs into the high-latitude 

Southwest Pacific during the EECO. The warm temperatures in the East Coast Basin, north of 

the Chatham Rise, suggest that the amplified EAC warmed the seas around northern New 

Zealand in addition to potentially forming an anticyclonic gyre in the South Tasman Sea.  

Electron probe micro-analysis (EPMA) element mapping techniques applied to the variably 

preserved foraminifera of the East Coast Basin sections has shown the benefits of the LA-ICP-

MS method, as opposed to solution chemistry, and subsequent trace element/Ca screening 

protocols measured for Mg/Ca data acquisition.  
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6.2 Suggestions for Future Work 

6.2.1 Stratigraphy of Tora 

Field mapping and measured section studies at Tora have identified considerable potential for 

detailed sedimentological facies analysis within the Paleogene succession at Tora. In addition, the 

diverse trace fossil assemblages within the lower Paleogene succession warrant more detailed 

description and analysis to refine environmental interpretation.  

The Tora structural block has previously been interpreted as an allocthonously emplaced portion 

of the Pegasus Sub-basin (Moore, 1988a). Thermochronological and fission track dating methods 

applied to the adjoining greywacke and lower Cretaceous strata may constrain the emplacement 

history of the Tora Block. The application of such methods may also constrain a tectonic history 

for the area, which stratigraphic evidence from this study suggests may include active tectonism 

that extends as far back as the late Paleocene to early Eocene. This could provide insights into 

the internal deformation and structural evolution of the East Coast Basin prior to the inception 

of the modern plate boundary through New Zealand.  

Age constraints applied to the stratigraphic succession examined in this thesis are based solely on 

calcareous nannofossil and foraminiferal biostratigraphy. Independent dating methods such as 

magnetostratigraphy or 40Ar/39Ar and 40K–40Ar dating of glauconite (e.g. Jackson, 2000) would 

significantly improve the age control applied to the sections studied in this thesis.  

 

 6.2.2 Paleoclimate Studies 

The late Paleogene–Middle Eocene stratigraphic succession at Tora contains calcite veins 

infilling fractures within the Mungaroa Limestone, Pukemuri Siltstone and Wanstead Formation, 

providing a unique opportunity to compare the Mg/Ca ratios of inorganic calcite precipitates 

with both primary foraminiferal calcite and secondary diagenetic calcite Mg/Ca values obtained 

from LA-ICP-MS analysis of foraminiferal tests; thus allowing end member calcite Mg/Ca 

compositions to be determined. This will allow the effects of variable preservation and post-

depositional diagenetic processes to be quantified in greater detail.  

The Aropito and Tawanui sections have displayed great potential for further application of 

paleothermometry methods. The better preservation of foraminiferal tests from these sections 

may enable reconstruction of a reliable δ18O record, which, coupled with additional, high-
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resolution sampling of these sections for Mg/Ca paleothermometry, could result in a refined 

early Paleogene sea temperature record. Section studies in the Canterbury Basin have shown the 

power of applying a multiproxy approach to early Paleogene temperature reconstructions using 

Mg/Ca, δ18O and TEX86 (Hollis et al., 2009, 2012; Creech et al., 2010). TEX86 methods may be 

applicable to sedimentary successions in the central East Coast Basin, on the proviso that 

organic carbon is thermally immature, which has generally been demonstrated in outcrop studies 

of the Paleogene strata in the East Coast Basin (Hollis, pers. comm.). High-resolution sampling 

of the Aropito and Tawanui sections would provide better constraints on the timing of the 

EECO in the East Coast Basin. In addition, the East Coast Basin contains an extensive marine 

sedimentary record that spans the entire Paleogene, creating ample opportunity to produce a 

composite paleoclimate record. Offshore ODP holes and piston cores contain excellent records 

of Neogene and Quaternary sedimentation, which may enable the development of a composite 

Cenozoic record.  

The application of the LA-ICP-MS Mg/Ca paleothermometry method largely circumvents issues 

associated with variable preservation, thereby enabling the application of the method to a wide 

range of geographically-diverse early Paleogene sedimentary successions. Section studies could 

produce Mg/Ca paleotemperature records from Northland, additional sections in the East Coast 

Basin, the Chatham Islands, coastal Otago, and Campbell Island, which could be integrated to 

produce a regional synthesis of Southwest Pacific Ocean climatic and oceanic changes during the 

Eocene. This would enable regional scale oceanographic reconstructions, as well as providing 

records of oceanic changes which may be used to constrain the timing of cool water intrusions 

and associated climatic variations. 

 

 6.2.3 Mg/Ca Paleothermometry 

Aspects of the analytical geochemistry conducted in this study have highlighted areas of potential 

future work and suggestions for future applications. The applications of some new and 

developing geochemical methodologies to foraminiferal calcite are also suggested.  

EPMA element mapping of foraminiferal calcite has indicated that Fe/Ca ratios may have an 

application in the identification of both secondary calcification (see Chapter Five, this study), and 

contamination of primary calcite arising from the presence of both silicate minerals (as per 

Barker et al., 2003). The measurement and screening of Fe/Ca ratios in laser ablation profiles 

should be implemented as a regular feature of LA-ICP-MS Mg/Ca data acquisition. Fe/Ca ratios 
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were not measured during the adopted laser ablation protocol of this study; although the 

distribution of iron in the element maps produced by this study suggests that this should be 

incorporated into future work to identify zones of silicate contamination and secondary 

calcification. However, measuring Fe is only possible with high-resolution ICP-MS due to argide-

based interferences on Fe isotopes.  

The application of the clumped isotope and CO2 isotopologue methods to derive past sea 

temperatures could be applied to provide an additional paleotemperature proxy, which has the 

benefit of being independent of δ18Osw variations.  

The observation of remaining detrital debris of the exterior of foraminifera used in this study 

suggests that an additional cleaning step should be considered for preparation of foraminiferal 

tests for LA-ICP-MS analysis. Immersing specimens in an ultrasonic bath was found to be 

destructive in many instances. However, the cleaning of foraminifera by centrifuging in acid 

leached glass vials (e.g. Greaves et al., 2005; Weldeab et al., 2006) in addition to alternating washes 

of milli-Q water and methanol, may provide an additional means to remove detrital 

contaminants from foraminiferal tests, without the application of ultrasonic disaggregation 

methods to fragile specimens.  

Electron microprobe analysis conducted for this study and in parallel studies of early Paleogene 

foraminifera from Hampden and DSDP Site 277 have provided significant insight into the 

preservation, potential, ontogeny and geochemistry of foraminifera. However, the EPMA 

method employed in this study often lacks the sensitivity to resolve minute variations in trace 

element concentrations within foraminiferal calcite. Additional work utilising ion microprobe 

methods may provide greater detail in detecting geochemical variations in foraminiferal tests 

including paired studies into the distribution of Mg/Ca and Sr/Ca ratios and oxygen stable 

isotopes (e.g. Allison & Austin, 2003, 2008; Kozdon et al., 2011).  

Using high-resolution sample excavation (micromill/drill) and laser techniques such as that 

applied to phenocryst zonation in crystal-specific studies of magma evolution (e.g. Morgan et al., 

2007, Charlier et al., 2008) it is possible to attain high quality in-situ isotopic microanalyses from 

within individual foraminiferal calcite laminae, which may provide indications of intra- and inter-

individual variability of stable isotope compositions.  
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