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Abstract 

Lake Taupo is the effective source of the Waikato River. The Waikato Power Scheme 

relies on the outflow from the lake for moderated flows throughout the year. As the 

lake is maintained between a 1.4m operating range, it is the inflows to the lake that 

determine the amount of water available to the scheme for electricity generation.  

These inflows have not been modelled in any detail prior to this dissertation.  

This dissertation aims to develop a predictive rainfall-runoff model that can provide 

accurate and reliable inflow and lake level forecasts for the Lake Taupo catchment. 

Model formulation is guided by a fundamental understanding of catchment 

hydrologic principles and an in-depth assessment of catchment hydrologic 

behaviour. The model is a semi-distributed physically-consistent conceptual model 

which aims to provide a parsimonious representation of different storages and flow 

pathways through a catchment. It has three linear sub-surface stores. Drainage to 

these stores is related to the size of the saturation zone, utilising the concept of a 

variable source area. This model is used to simulate inflows from gauged 

unregulated sub-catchments. It is also used to estimate the inflow from ungauged 

areas through regionalisation. For regulated sub-catchments, the model is modified 

to incorporate available data and information relating to the relevant scheme‟s 

operation, resource consent conditions and other physical and legislative 

constraints. 

The output from such models is subject to considerable uncertainty due to 

simplifications in the model structure, estimated parameter values and imperfect 

driving data. For robust decision making, it is important this uncertainty is reduced 

to within acceptable levels. In this study, a constrained Ensemble Kalman Filter 

(EnKF) is applied to the four unregulated gauged catchments to deal with model 

structure and data uncertainties. Used in conjunction with Monte Carlo simulations, 

all three sources of uncertainty are addressed. Simple mass and flux constraints are 

applied to the four (soil storage, baseflow, interflow and fastflow) model states. 

Without these constraints states can be adjusted beyond what is physically possible, 

compromising the integrity of model output. It is demonstrated that the application 

of a constrained EnKF improves the accuracy and reliability of model output. 
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Due to the complexity of the Tongariro Power Scheme (TPS) and the limited data 

available to model it, the conceptual model is not suitable. Rather, a statistical 

probability analysis is used to estimate the discharge from this scheme given the 

month of the year, day of the week and hour of the day.  

Model output is combined and converted into a corresponding change in lake level. 

The model is evaluated over a wide range of hydrological and meteorological 

conditions. An in-depth critical evaluation is undertaken on eight events chosen a 

priori as representation of both extreme and „usual‟ conditions. The model provides 

reasonable predictions of lake level given the uncertainty with the TPS, complexity 

of the catchment and data/information constraints. The model performs 

particularly well in „normal‟ and dry conditions but also does a good job during 

rainfall events in light of errors associated with driving data. However, for real-time 

operational use the integration of the model with meteorological forecasts is 

required. Model recalibration would be required due to the issue of moving from 

point estimation to areal rainfall data. Once this is achieved, this operational model 

would allow robust decision-making and efficient management of the water resource 

for the Waikato Power Scheme.  Although there is room for improvement, there is 

considerable scope for extending the application of the constrained EnKF and 

techniques for incorporating regulation to other catchments both in New Zealand 

and internationally. 
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1 Introduction 

1.1 Background 

Lake Taupo, located in the central North Island, is New Zealand‟s largest lake. It 

covers an area of 611 km2 and holds over 59 km3 of water. The lake is the effective 

source of the Waikato River along which the Waikato Power Scheme has been 

developed. This hydro system, operated by Mighty River Power Ltd, stretches over 

160km from the Taupo Control Gates to Karapiro. Figure 1.1 shows the location of 

the eight dams and nine power stations of the scheme. The scheme generates 

electricity for the national grid accounting for approximately 10% of New Zealand‟s 

electricity needs (Mighty River Power Ltd, 2007). The eight hydro dams have 

relatively little storage capacity and rely on the outflows from Lake Taupo, which 

holds 93% of the total storage for the system, for sustained flows throughout the 

year (Mighty River Power Ltd, 2008).  

Outflows from Lake Taupo are carefully managed to be consistent with both 

operational requirements and energy demands. In accordance with resource consent 

obligations, lake levels must be kept within a 1.4 m operating range (which holds 

0.855 km3) to reflect natural lake level fluctuations (Mighty River Power Ltd, 2007)1.  

                                                             
1 Current flood rules include a minimum outflow of 50 m3/s (Opus International Consultants Limited, 2009). 

In drought conditions, if lake level drops below the minimum control level outflow from Lake Taupo must 

equal the inflows to the Lake, so outflow could be below 50 m3/s. This situation has not yet occurred (pers 

comm. MRP 2011). 
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Figure 1.1 The Waikato Power Scheme is located along the Waikato River between the Taupo Control 

Gates and Karapiro. There are eight dams and nine power stations that make up this scheme. Source: 

Mighty River Power Ltd 

This equates to only one percent of its volume being available for electricity 

generation. Consequently, although the lake holds a large amount of water, it is the 

timing and volume of inflows that effectively determine the amount of energy 

available for power generation.  

Despite the importance of Lake Taupo to the Waikato Power Scheme and to New 

Zealand‟s electricity generation, inflows to Lake Taupo have not been previously 

modelled in any detail. The complex nature of the Lake Taupo catchment makes the 

determination of inflows challenging. Not only are outflows controlled for electricity 

generation but water is diverted into Lake Taupo from outside of the natural 

catchment and some natural inflows (approximately 29%) are also controlled or 

affected by other hydro power schemes. Over 50% of the catchment is currently 

ungauged.  
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1.2 Reservoir inflow forecasting  

Rainfall-runoff models have been widely used to simulate regulated systems for the 

purpose of deriving reservoir operation policies, improving existing operation 

procedures, improving historic simulation for impact assessment, assessing the 

impact on streamflow regimes and for short-term inflow prediction (Amenu and 

Killingtveit, 2001; Collischonn et al., 2005; Druce, 2001; Hotchkiss et al., 2000; 

Hughes, 1992; Yang et al., 2005). In catchments where unregulated inflows entering 

regulated systems are modelled, this is a relatively straightforward task. The 

problem of reservoir inflow forecasting becomes more complicated when both 

regulated and unregulated inflows need to be modelled. The success of such 

applications is often limited by the availability (or lack thereof) of specific 

operational information. 

With or without regulation, one of the challenges of traditional rainfall-runoff 

models is providing reliable and accurate predictions of streamflow. Model output is 

inherently uncertain because of simplifications in the model structure, estimated 

parameters and imperfect data. These sources of uncertainty should be reduced to 

acceptable levels. Data assimilation is being increasingly recognised as an essential 

part of any hydrological forecasting application (Liu et al., 2012, in review). Data 

assimilation via state-updating uses observations to correct for errors in driving 

data, a major source of uncertainty. When combined with a robust parameter 

estimation routine and constrained to be consistent with physical laws, it can 

reliably improve model output for more robust decision making. 

1.3 Specific context of this work 

The overarching aim of this study is to develop a model that can provide 

quantitative predictions of inflows to Lake Taupo and corresponding forecasts of 

lake level changes. As a predictive model, it should be computationally efficient and 

able to produce reliable and accurate forecasts within the lead time of the prediction 

interval for robust decision making. The highly regulated and complex nature of the 

Lake Taupo catchment and issues with data quality and availability can make 

determining and predicting inflows difficult. In this case, a model needs to be able to 

incorporate data and information relating to the regulation of inflows. However, 

there is relatively little guidance in the literature about how this regulation can be 
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incorporated into traditional model structures, especially where data and 

information specific to dam operation and scheduling is not easily obtained.  

Further, the output from such a model should provide accurate and reliable 

predictions of inflows to Lake Taupo, particularly if it is to be used operationally. 

However, models are simplifications of complex real world processes fed by 

imperfect data and estimated parameter values and as such their output is often 

subject to considerable uncertainty. If not adequately addressed, relatively large 

errors can accumulate, even in the short term. If decisions are to be made based on 

the output from such models it is imperative that this uncertainty is reduced to 

acceptable levels.  

In this study, a semi-distributed conceptual model with an underlying physical basis 

is developed to forecast inflows to Lake Taupo. Various approaches are adopted to 

incorporate some of the regulation related to the three power schemes in the 

catchment. Classic Monte Carlo sampling methods are used for model calibration 

allowing quantification of parametric uncertainty. In conjunction with data 

assimilation through state-updating, all sources of uncertainty are addressed, 

resulting in more accurate model output. Further, it is demonstrated that by 

constraining the state updates, the reliability of forward predictions is improved. 

This is essential if model output is to be relied upon in decision making processes. 

At present, there are no reported examples in the literature where state-updating is 

applied in a predictive hydrological model for a highly regulated catchment. 

Previous research has been largely theoretical or experimental with the aim to 

further advance the application of data assimilation in hydrology. Of the papers 

relating to operational examples (He et al., 2012; Komma et al., 2008; Madsen and 

Skotner, 2005; Seo et al., 2009; Seo et al., 2003; Vrugt et al., 2006), application has 

not been to highly regulated and complex catchments like Lake Taupo. Further, 

there are currently only a few examples in the hydrological literature where state 

constraints are considered (Pan and Wood, 2006; Wang et al., 2009). This study 

will, therefore, provide a practical application of a constrained state-updating 

technique. More generally, this body of work will contribute to existing knowledge of 

the hydrologic behaviour in the Lake Taupo catchment. 

It was originally intended that a real-time, continuous predictive model would be 

developed. However, in April 2011 it was agreed that due to issues with obtaining 

the necessary input rainfall and flow data in "real time", the model could not be set 
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up to operate in real-time. However, it would remain suitable for such operation, 

and have its capacity for forward prediction evaluated using historical data.  

The predictive model used in this study has therefore been developed as a 

computationally efficient model to allow its use operationally, if desired. It should 

be relatively straightforward to modify the code to allow use of real-time data, if this 

can be provided as model input. Recalibration would be required if real-time input 

data was different to the data used to set up the model (i.e., if different rainfall 

and/or flow time series were used to drive the model).  

1.4 Aims of the study 

To date, inflows to Lake Taupo have not been explicitly modelled. The predictive 

model developed in this study is computationally efficient and can be used 

operationally. Its structure closely represents the hydrological characteristics of the 

catchment. Determining the model structure requires assessment of the physical 

and hydrological properties of the catchment and the variation of these properties 

between different sub-catchments. These structures cannot be determined without 

this hydrological analysis and may vary from sub-catchment to sub-catchment. 

Hence, using an existing model with predefined structures and parameters would be 

inappropriate. With this in mind, the aims of the present research are to: 

 Investigate the physical processes controlling the movement of water through 

the Lake Taupo catchment by undertaking a thorough hydrological assessment 

of catchment physiographic, climatic and hydrologic characteristics; 

 Predict the inflows to Lake Taupo and consequent changes in lake level by 

developing a rainfall-runoff model that accounts for the data available and 

modifications to river flows given the extensive hydro power development in 

the catchment; and  

 Quantify the improvement in accuracy and reliability of model output through 

the use of data assimilation. 

These aims are addressed by two distinct, but interacting, sets of objectives – a 

hydrological component and a modelling component which includes the 

development of the model and application of a data assimilation routine to reduce 

predictive uncertainty. 
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1.5 Research questions and objectives 

1.5.1 Hydrological objectives 

The overall aim of this set of objectives is to provide a thorough hydrological 

assessment of the physical processes controlling the movement of water through the 

Lake Taupo catchment. This includes an analysis of each sub-catchment in terms of 

their specific hydrological regime with respect to catchment physical characteristics. 

More specifically, the questions to be addressed include: 

 Based on the literature and analysis of hydrological data, what are the likely 

flow pathways in the Lake Taupo catchment and how do these relate to 

catchment soils, geology and vegetative cover? 

 What does the sub-catchment‟s flow regime suggest about its response to 

rainfall and potential dominant flow pathways? 

 How does groundwater contribute to sub-catchment flow regimes and inflows 

to Lake Taupo? 

 What is the impact of hydro power schemes on river regimes and how do these 

affect the amount and timing of inflows to Lake Taupo? 

 How can the information obtained above be used to guide the development of 

models predicting inflows from other catchments, both gauged and ungauged? 

1.5.2 Modelling objectives 

The overall aim of this set of objectives is to develop a rainfall-runoff model for the 

Lake Taupo catchment. For such a model to be useful operationally, it must be 

computationally efficient whilst producing accurate and reliable predictions. 

Therefore, as part of this objective an investigation of the sources of model output 

uncertainty and techniques for addressing these uncertainties is undertaken. Data 

assimilation is a significant component of this analysis and is used in conjunction 

with calibration routines to explicitly deal with model structure, parameter and data 

uncertainty. The performance of the model is evaluated against gauge observations 

and the accurate prediction of lake level. The questions to be addressed in the 

modelling component of the study include: 
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 Can traditional models be used to represent highly regulated catchments such 

as Lake Taupo? What modifications may be required to improve their 

application in these contexts? 

 How does parameter uncertainty impact on model output and how does data 

assimilation improve the accuracy of predictions?  

 Can placing constraints on the data assimilation process improve the reliability 

of model output? 

 To what extent can the process of model development provide further 

information and detail on the dominant flow paths, and hence model structure, 

within each sub-catchment given available data? 

 What is the quality and reliability of the data available to model the catchment 

and where/how can it be improved? 

1.5.3 Objective interactions 

It is important to note that while the hydrological and modelling objectives are quite 

distinct in their aims they will also be used interactively to provide a more 

comprehensive understanding of the physical controls on runoff generation in the 

Lake Taupo catchment. Using information from existing literature and analysis of 

hydrological data the potentially significant physical processes will be identified and 

used to build a perceptual model of the Lake Taupo catchment and develop initial 

sub-catchment model structures. Conversely, the results from the process of model 

development and calibration will further inform the understanding of catchment 

hydrologic function and will provide more detail on the physical processes 

controlling the movement of water through the catchment.  

1.6 Structure of thesis  

Following on from this introductory chapter, Chapter Two provides a description of 

the study area. It begins with an overview of the tectonic and volcanic history of the 

catchment which has had a significant role in forming and shaping the catchment 

we see today. It also describes the soils and geology that are a result of this activity 

as well as vegetation and land cover. All of these have an influence on the hydrologic 

regimes within the catchment. The climatology and hydrology of the catchment is 
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also covered in this chapter including a description of the various inflows from 

surface water (regulated and unregulated) and groundwater, lake level and outflow 

to the Waikato River. The individual sub-catchments are introduced providing a 

brief overview of their hydrological and physical characteristics. 

Chapter Three provides the theoretical context of this study, providing a review of 

the relevant findings from the literature and previous research on rainfall-runoff 

models, uncertainty and data assimilation.  

Chapter Four describes the various data available from the Lake Taupo catchment 

for analysis, model input, calibration and data assimilation. It discusses the 

strategies used to assess the quality and reliability of this data and some of the 

specific data issues overcome, in order to identify reliable periods for calibration, 

analysis and prediction. 

Chapter Five provides an assessment of catchment hydrologic function and is the 

principal chapter for addressing the hydrological objectives. It includes a review of 

previous research and investigates the relationships between climatic and physical 

characteristics and a number of hydrologic attributes. The results of the analysis are 

used to build a perceptual model of the catchment and guide development of initial 

sub-catchment model structures and parameter estimation. 

Chapter Six outlines the conceptual rainfall-runoff model structure used to model 

sub-catchments and the development of the Lake Taupo Inflow Model (LTIM). 

Inflow is categorised into four groups according to whether the catchment is 

regulated or not, and the length and quality of available data. Each group is 

modelled accordingly. Parametric and model structure uncertainty is addressed. 

Modelled inflows are then combined to estimate changes in lake level. A constrained 

Ensemble Kalman Filter approach is used to further improve model predictions by 

updating states with real-time observations of flow for each catchment for improved 

inflow and lake level predictions.  

The remaining chapters provide an analysis and discussion of the developed model. 

The results from the calibrations and sensitivity analysis are presented in Chapter 

Seven. This information provides additional information about catchment 

hydrologic behaviour. The LTIM and assimilation framework is examined and 

evaluated in Chapter Eight. This includes a discussion of the model‟s performance, 

strengths and limitations, future work (including ways to refine model) and 
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implications for hydrologic rainfall-runoff modelling of complex regulated 

catchments.  

The performance of this model is evaluated over a number of events between 1998 

and 2011. These results are presented and discussed in Chapter Nine.  

The main findings, future research recommendations and research conclusions are 

provided in Chapter Ten.  

1.7 Terminology 

In this study, ‘regulation’ and ‘regulated’ refers to the flow of rivers which have been 

directly modified by hydro-electric power schemes. ‘Unregulated’ catchments are 

those which have not been affected or modified by hydro power schemes. „Gauged’ 

catchments are those in which the water levels have been monitored and 

subsequently converted to flow estimates using a stage-discharge rating curve. The 

terms ‘discharge’, ‘streamflow’ and ‘flow’ are used interchangeably and refer to the 

volume of water transported per unit of time, as defined in Harding et al. (2004). It 

may be reported in cumecs (m3/s) or millimetres (mm per time step) in which 

streamflow is normalised by catchment area. Precipitation/rainfall depths are also 

reported in mm per time step. State volumes and fluxes are reported in millimetres 

depth and millimetres depth/time step, respectively, so they can be easily compared 

to rainfall data; actual volumes can be determined by multiplying by the catchment 

area. The terms ‘states’ and ‘stores’ are used to describe the four sub-surface flow 

pathways in a catchment, namely the soil state or store where water is initially 

absorbed before draining to the fastflow, interflow or baseflow stores. The term 

‘reservoir’ is reserved for the artificially dammed lakes of hydro power schemes. The 

study aims to provide reliable predictions of inflows to and lake level of Lake Taupo. 

„Reliability‟ refers to the confidence with which the model output can be used for 

decision–making purposes, and is primarily concerned with the „accuracy‟ and 

„precision‟ of model output. Following the definition presented in Bogner and Kalas 

(2008), ‘accuracy’ relates to the correctness of model predictions in relation to the 

magnitude and timing of flow. „Precision‟ refers to the uncertainty associated with 

the model output.  



 

10 | Introduction 
 

 



 

 Physical setting and hydrology | 11  
 

2 Physical setting and hydrology 

The Lake Taupo catchment is a result of a series of tectonic and volcanic events, 

including some of the most violent volcanic eruptions in the last 30,000 years 

(Manville and Wilson, 2004; Wilson et al., 1995). As a result most of the geology and 

soils derive from the region‟s volcanic origins, influencing sub-catchment 

hydrological characteristics and runoff response patterns. A comprehensive 

assessment of these factors is important for creating a robust understanding of the 

hydrology of the area.  

This chapter describes the physical setting and hydrology of the Lake Taupo 

catchment. Section 2.1 provides an overview of the active tectonic and volcanic 

history of the catchment that has been pivotal in its formation. It describes the soils 

and geology of the catchment which result from this history and other factors which 

contribute to catchment hydrologic response and behaviour. The climatology of the 

catchment is discussed in Section 2.2 and covers the main factors controlling the 

amount of water available to runoff. Finally, the hydrological aspects of the 

catchment are discussed in Section 2.3. This section considers the direct inflows to 

the lake from surface water and groundwater. Lake level and outflow are also 

discussed. To aid clarity throughout this chapter, surface waters have been classified 

as regulated or unregulated. Where the natural river flow has been modified by an 

upstream hydro power scheme it is considered to be regulated. Natural inflows are 

referred to as unregulated and may be gauged or ungauged. Groundwater 
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contributions to Lake Taupo refer to the direct contribution of groundwater into the 

lake through the lake bed.   

Results from specific analysis of flow records for each sub-catchment are provided. 

Much of this information provides the basis for further analysis of catchment 

hydrologic function which informs the development of the perceptual model for the 

catchment and initial parameter estimates. 

2.1 Physical Setting 

2.1.1 Location 

The Lake Taupo catchment is situated in the central North Island, New Zealand. The 

lake has a mean elevation of 356.7 m a.s.l and has an area of 611 km2. The 

surrounding natural catchment covers over 2829 km2 (excluding the lake), 

extending from Taupo, on the northern shores of the lake, south to the northern 

slopes of Mt Ruapehu (Figure 2.1). It is bounded to the west and east by the 

Hauhungaroa and Kaimanawa Ranges, respectively. The catchment rises steeply 

toward the summits of Mt Ruapehu (2797m a.s.l), Mt Ngauruhoe (2291m a.s.l) and 

Mt Tongariro (1968m a.s.l) in the south and to over 1500m in the Kaimanawa 

ranges. Within this catchment there are over 30 tributaries that drain directly to the 

lake. In addition, diverted water taken from catchments outside of the natural Lake 

Taupo catchment also enter Lake Taupo via the TPS located south and south-west of 

the Lake Taupo catchment adding some 1200 km2 to the catchment‟s land area (see 

Section 2.3.1). 

2.1.2 Tectonic setting and volcanic history 

The hydrological characteristics of the Lake Taupo catchment are fundamentally 

linked to its active tectonic and volcanic history. The catchment is located in the 

central part of the 300 km long and 60 km wide Taupo Volcanic Zone in the central 

North Island, New Zealand. The TVZ is a broad structural depression formed as a 

result of back-arc rifting and westward sub-duction of the Pacific Plate in the last 

two million years (Wilson et al., 1984) and denoted by a SSW-NNE trending zone of 

volcano-tectonic activity represented by a chain of volcanoes from Ohakune to 

White Island (Davy and Caldwell, 1998; Houghton et al., 1995; Smith, 1991a; Smith 

et al., 1993; Wilson et al., 1995).  
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Figure 2.1. The natural Lake Taupo catchment is shown by the darker grey shaded area of the map. The 

beige areas represent the additional ‘foreign water’ catchments from which water is diverted into Lake 

Taupo via the TPS 
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The formation and shape of Lake Taupo is a result of a series of volcanic and 

tectonic events. Tectonic processes of faulting and warping have shaped the 

catchment to the south and the Waihi fault scarp is visible along the south-western 

shoreline of Lake Taupo (Wilson et al., 1984). Although, the three andesitic 

volcanoes of Mt Ruapehu, Mt Ngauruhoe and Mt Tongariro are a prominent feature 

of the landscape in the south, activity from these volcanoes has not had a major 

influence on the forming and shaping of the Lake Taupo catchment. Instead it is the 

violent rhyolitic events of the last 65,000 years that Lake Taupo owes much of its 

existence (Davy and Caldwell, 1998; Manville and Wilson, 2004; Wilson et al., 

1995). 

The Oruanui eruption 25,400 years ago (Vandergoes et al., 2012, in review) was the 

most significant event in the formation of Lake Taupo. It is widely accepted that a 

large lake filled the Taupo-Reporoa basin for some time before the Oruanui eruption 

(Grange, 1937; Manville and Wilson, 2004; Smith et al., 1993). During the Oruanui 

event, a substantial caldera and collapse collar formed and large volumes of volcanic 

material was emplaced to create a barrier between the northern and southern 

portions of the pre-existing lake, forming the outline of the modern Lake Taupo. 

Davy and Caldwell (1998) located this caldera in the northern part of Lake Taupo 

from seismic reflection, magnetic and gravity surveys of Lake Taupo. Tectonic and 

volcanic activity continued over the next 25,000 years. Examination of fall deposit 

stratigraphies by Wilson (1993) have identified 28 eruptions since Oruanui, most of 

which occurred from vents along the eastern part of the Oruanui caldera. The Taupo 

eruption, 1800 years ago, was the largest of these and has been described as one of 

the most violent eruptions of the Holocene (Smith, 1991b; Wilson, 1985; Wilson and 

Walker, 1985). This event caused further caldera collapse and is responsible for the 

eastern shoreline of the present Lake Taupo (Davy and Caldwell, 1998; Wilson et al., 

1997). 

Vast amounts of volcanic material were erupted from both the Oruanui and Taupo 

eruptions modifying the surrounding catchment substantially. The volume of 

material erupted during the Oruanui eruption has been calculated by Wilson (2001). 

Using deposit stratigraphies, Wilson estimates approximately 530 km3 of material 

(magma equivalent) was generated from this event. Some ignimbrite deposits from 

this eruption are greater than 200 m thick in proximal places (Wilson, 2001). On a 

comparatively smaller scale, but by no means insignificant, the Taupo event radially 

emplaced 100 km3 volcanic material including 30 km3 of ignimbrite across 20,000 

km2, mainly to the east of the vent (Wilson et al., 1995; Wilson and Walker, 1985). 
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Vegetation was destroyed and valleys, basins and river networks were filled with up 

to 70m of unconsolidated pumice material (Wilson, 1985). 

On several occasions during its evolution, the lake was enclosed as eruption material 

emplaced from these eruptions blocked any outlet. The most notable was after the 

Oruanui eruption when lake levels rose to around 500m above sea level (a.s.l). At 

this height, the lake overtopped and drained initially through Waihora Bay, north 

west of the Lake, before a catastrophic outbreak flood established the modern outlet 

(Manville and Wilson, 2004). Manville & Wilson (2004) suggest evidence of this 

lake level height can be seen in the north and west of the catchment by a series of 

highstand terraces.  

During the Taupo eruption, the lake outlet was blocked again. During this event 

most of the water that filled the lake was expelled (Smith, 1991b; Wilson et al., 

1997). Using modern inflow rates, Wilson et al. (1997) estimate it took 

approximately 15 years for the lake to refill to 390m a.s.l (+34m above present lake 

level) but quickly dropped with another outbreak flood, leaving behind a complex 

sequence of shoreline terraces and deposits, most obvious along the eastern margin 

of the lake (Wilson et al., 1997).  

Since the Taupo eruption, evolution of the catchment has continued largely though 

tectonic processes and the reworking and transport of sediment through rivers into 

the lake and along the shoreline (Hicks et al., 2000). 

2.1.3 Geomorphology 

The geomorphic and sedimentary response of the Lake Taupo catchment to the 

Oruanui and Taupo eruptions has been documented by Manville and Wilson 

(2004), Manville et al. (1999), Manville (2002), Smith (1991a) and Smith (1991b).  

Large volumes of material were erupted during the Oruanui and Taupo events 

destroying vegetation and hydrologic networks as valleys, basins and rivers were 

filled with the unconsolidated material. Intense erosion and deposition is likely to 

have occurred since the lack of vegetation and erodible nature of the volcanic 

deposits would have increased sediment yields and surface runoff until hydrologic 

networks stabilized and vegetation was re-established (Manville, 2002). 

Consequently, post-eruption erosion and sedimentation activity along with littoral 

processes played a considerable role in the shaping of the surrounding catchment 

and shoreline of Lake Taupo.  
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Lake Taupo‟s western bays are dominated by steep cliffs that form the topographic 

rim of the Oruanui caldera basin. Manville and Wilson (2004) suggest mass wasting 

and scarp retreat from post-eruption erosion by reforming streams back to more 

resistant ignimbrite lithologies have created the arcuate embayments characteristic 

of this area. Along the northern margin, ryholitic domes from pre-Oruanui activity 

form the headlands of a series of bays which are intersected by NNE-striking faults 

of the Taupo Fault Belt (Manville and Wilson, 2004).  

In contrast, the eastern shoreline is characterised by volcanic sediments, largely 

from the Taupo eruption, 1.8ka. In a study of the lakeshore geomorphic processes of 

the Lake Taupo catchment, Hicks et al. (2000) suggest that as a consequence of the 

abundance of material available to erosion and deposition, there are more 

sedimentary segments along the eastern shoreline. This material has been 

transported out of the rivers and into the lake which has been reworked by littoral 

processes along the eastern shoreline, forming a series of cuspate forelands.  

In the south of the catchment, the Tongariro delta is a prominent shoreline feature. 

The delta has formed from the continued remobilsation and deposition of material 

into Lake Taupo by the Tongariro River. Hicks et al. (2000) suggest low wave energy 

in the area has limited dispersion of this sediment further along the coast, allowing 

the delta to prograde or extend further lakeward. The eastern flank of the delta is 

fronted by beach ridges due to its exposure to 30km of northerly fetch. The western 

flank is more sheltered and is dominated by fluvial processes (Hicks et al., 2000).  

There are also a series of terraces around the catchment reflecting higher lake levels 

since the Taupo eruption, 1.8 ka. Particularly evident in the Waitahanui area is a 

highstand terrace approximately 35m above current lake levels (Wilson et al., 1997). 

This level reflects the highest lake level immediately after the Taupo eruption when 

the outflow to the lake was blocked. Wilson et al. (1997) suggest that drainage was 

rapid and the level of the lake dropped to around 2-5m above current levels. Low-

level terraces of this lake level are also evident in the Waitahanui area and in the 

southeast areas of the Tauranga-Taupo and Waimarino Rivers (for map showing the 

locations of these rivers, refer to Figure 2.5).  

2.1.4 Geology  

Not surprisingly, most of the soils and geology in the Lake Taupo catchment derive 

from the region‟s volcanic origins (Figure 2.2). The geology of the area has been 

reported by Froggatt (1981), Grange (1937), Grindley (1960), Hadfield et al. (2001) 
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and the Institute of Geological and Nuclear Sciences (2008). Ignimbrites from the 

Oruanui and Taupo events can be found in most areas of the catchment while older 

Whakamaru ignimbrite is mainly found in the west with rhyolitic pyroclastics and 

lava domes along the northern margin. In the south, andesitic ashes and lava which 

mantle Mt Ruapehu, Mt Ngauruhoe and Mt Tongariro are surrounded by post-

glacial alluvium and lahar deposits. Mesozoic indurated sediments (greywacke) and 

tertiary marine sediments flank the catchment to the east and west (Hadfield et al., 

2001; Houghton et al., 1995; Wilson et al., 1995). Figure 2.2 maps the main 

geological units across the catchment; each of the main geological lithologies (not 

shown in Figure 2.2) is briefly described below. 

Ignimbrite: The ignimbrite lithologies that are found on the Taupo catchment 

range in degree of welding and permeability. The oldest ignimbrites are of the 

Whakamaru group (320-340 ka), found largely found in western areas of the Lake 

Taupo catchment and forming the topographic rim of the lake itself along the

 

 

Figure 2.2. The geology of the Lake Taupo catchment is dominated by volcanic lithologies with basement 

greywacke found in the higher elevation areas of the catchment in the south-east and smaller amounts 

in the west. Source: New Zealand Land Resource Inventory (Landcare Research - Manaaki Whenua (NZ), 

2008). 
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western margins. Whakamaru ignimbrite is also found in the north-east of the 

catchment, north of the Waitahanui River headwaters. Whakamaru ignimbrite is the 

least permeable and more welded than the younger Oruanui (25.4 ka) and Taupo 

ignimbrites (1.8 ka) (Hadfield et al., 2001). Oruanui ignimbrite is found in the 

lowland areas of the western and northern areas of the catchment and in large areas 

of the east and south-east. Taupo ignimbrite, emplaced during the Taupo eruption, 

is most prevalent in the eastern parts of the catchment, although is also found in 

areas of the south west and north. Both of these two lithologies are of an unwelded 

nature, but it is the Taupo ignimbrite which has the highest permeability as the 

Oruanui ignimbrite is characterised by much finer grain size (Hadfield et al., 2001).  

Rhyolitic domes and pyroclastics flows: Rhyolitic domes (3-320 ka) mainly 

appear in the north and south-west of the Lake Taupo catchment. Most lie in the age 

range 100-300ka and some have associated pyroclastics materials (Hadfield et al., 

2001). Two groups of rhyolitic pyroclastics are exposed in the northern bays and in 

the western headland of Tapuaeharuru Bay. The older series (150-320 ka) are more 

welded and indurated than the younger formations (25.4-320 ka) which are have 

higher permeability (Hadfield et al., 2001).  

Andesites: There are five andesitic volcanoes that make up the Tongariro volcanic 

centre – Ruapehu, Ngauruhoe, Tongariro, Kakaramea and Pihanga (Grindley, 

1960). The volcanoes are surrounded by a ring-plain of lahar material. Vant and 

Smith (2004) note that these andesites have low water storage. Pre-Quaternary 

(>1.6 Ma) Hauhungaroa lahars overlay Urewera greywacke in the east of the 

catchment. Hadfield et al. (2001) state that these formations have lower 

permeability than the younger formations discussed above.  

Greywacke and schist: The oldest of these lithologies is the Kaimanawa Schist 

(Permian-Mesozoic) which crosses the Kaimanawa Ranges from the south-east in a 

north-east direction and is flanked by Kaimanawa greywacke (Grindley, 1960). This 

upthrust greywacke block, fronted by Kaimanawa Fault, is the most extensive in the 

catchment. Kaweka greywacke extends east and north-east of the Kaimanawa 

greywacke block to form the headwaters of the Waitahanui River. To the west of the 

catchment, the Hauhungaroa Fault fronts an upthrusted block of Urewera 

greywacke to the west. Hadfield et al. (2001) note that these pre-Quaternary rocks 

are likely to be of lower permeability than any younger formations.  
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2.1.5 Soils  

Most of the soils around the Lake Taupo catchment derive from the tephra and 

ashes from the Taupo eruption (Gibbs, 1968; Molloy, 1998; Rijkse, 1987). The soils 

of the catchment have a significant influence on its runoff response to rainfall. The 

volcanic ash and pumice readily absorb water that falls on them allowing 

percolation to groundwater which feeds many of the rivers and streams in the 

catchment (Roper, 2001; White, 2001). A detailed analysis of the soils in the Taupo 

region was undertaken by the Department of Scientific and Industrial Research 

(Rijkse, 1987)2. Pumice soils are most prevalent (Figure 2.3) but are covered by 

Ngauruhoe and Ruapehu ashes from more recent activity in the south of the 

catchment. The generally sandy or gravelly texture of pumice soils means they are 

porous and well-draining, allowing rapid movement of air and water while still 

capable of storing large amounts of water for plants (Molloy, 1998). Development of 

soils on the volcanoes of the Tongariro Volcanic Centre is constrained by frequent 

volcanic eruptions (Schouten et al., 1981) resulting in mostly raw and recent soils in 

this area. Smaller amounts of podzols and allophonic soils are found predominantly 

in the south west while organic/gley soils have developed in marsh and wetland 

areas (for example, around the Tongariro delta). The following is a brief overview of 

the different soil types (by order) found in the Lake Taupo catchment. 

Pumice Soils: These soils mostly derive from the Taupo eruption 1.8 ka and cover 

most of the Lake Taupo catchment. They are sandy or gravelly soils dominated by 

pumice, or pumice sand with a high content of natural glass (Hewitt, 1993). Clay 

contents are generally low (Hewitt, 1998). These soils are highly porous allowing 

excess water to be drained rapidly while still capable of storing large amounts of 

water for plants. The potential for erosion by water is high (Hewitt, 1998). 

Podzols soils: Found in the higher altitude and higher precipitation areas of the 

catchment, podzols soils are strongly acidic. They tend to coincide with areas of 

forest cover which produce an acid litter (Hewitt, 1998). These soils have generally 

slow permeability (<4 mm per hour (Clayden and Webb, 1994)) and limited root 

depth (Hewitt, 1993). 

Allophanic Soils: These soils are dominated by allophane minerals and generally 

occur in North Island volcanic ash where rainfall is greater than 1000 mm/a. They

                                                             
2 A soils portal is also available online at Landcare Research. This portal provides detailed maps of soil 

patterns across New Zealand,  http://www.landcareresearch.co.nz 



 

20 | Physical setting and hydrology 
 

 

Figure 2.3. Pumice soils are most prevalent in the Lake Taupo catchment although substantial areas of 

podzols are found in forested areas. In the south recent and raw soils are found on the slopes of the three 

volcanoes of the Tongariro National Park. Source: New Zealand Land Resource Inventory (Landcare 

Research - Manaaki Whenua (NZ), 2008) 

are characterised by rapid permeability (72 – >288 mm per hour (Clayden and 

Webb, 1994)) and high water retention and are generally well drained (Rijkse, 

1987). Clay content generally ranges between 10% and 25% (Hewitt, 1998). There is 

little resistance to root growth and erosion (Hewitt, 1993). 

Raw Soils: Raw soils are predominantly found in the andesitic areas of the 

Tongariro Volcanic Centre and areas of active erosion or deposition (Rijkse, 1987). 

This continued activity allows the raw soils in these areas to remain young (Hewitt, 

1993). Vegetation cover on these soils is generally sparse due to their low bulk 

density and water-holding capacity (Molloy, 1998). 

Recent Soils: Like pumice soils, recent soils have high plant–available water 

capacity. However, they are generally weakly developed and occur mainly on young 

land surfaces such as the lower steep slopes of the three volcanoes of the Tongariro 

National Park and areas of alluvial floodplains (Hewitt, 1993). They generally have 

deep rooting depths and good drainage but can be susceptible to flooding or erosion 

(Rijkse, 1987).  
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Organic Soils: Formed in the partly decomposed remains of wetland plants (peat) 

or forest litter where the water table is permanently high (Gibbs, 1968), organic soils 

have high total available-water capacity but poor drainage (Hewitt, 1993; Rijkse, 

1987). 

Gley Soils: These poorly drained soils are strongly affected by waterlogging. They 

generally occur in areas with high groundwater-tables and can remain saturated for 

prolonged periods of time (Rijkse, 1987). Together with organic soils, they represent 

the original extent of New Zealand wetlands (Hewitt, 1993).  

2.1.6 Vegetation and land use 

The Oruanui and Taupo eruptions obliterated vegetation in the area, hence having a 

substantial impact on catchment hydrologic budgets, sedimentation and erosion. 

After the Taupo eruption, native vegetation was re-established and by the time the 

first people arrived 700 years ago, podocarp/hardwood forest was widespread in the 

Taupo basin (Leathwick et al., 1995).  

Maori settled largely around lakes and bush edges (Williams and Walton, 2003). 

While there was a wide range of local resources at the time, by the 16th century fire 

was used to clear land for bracken and cultivation. McGlone (1983) argues land 

clearance also allowed Maori to move more freely around the catchment, allowed 

expansion of settlements and improved settlement security and also promoted 

hunting. However, despite modification land cover was still dominated by 

indigenous species that were able to regenerate, in some cases rapidly, in the 

absence of subsequent burning. Clearance of natural vegetation accelerated with the 

arrival of the European settlers in the early to mid-19th century.  

Clearance by Maori is also thought to have increased at this time with the 

introduction of new crops, tools and animals (Williams and Walton, 2003). 

However, Leathwick et al. (1995) conclude that the impact of European 

modifications were more severe with greater intensification and introduction of 

exotic species. Leathwick et al. (1995) have mapped current and historic (c1840) 

natural vegetation coverage of the Waikato Region from early aerial photographs 

and data from a number of historic sources. They found that indigenous forestry was 

reduced to 25% of its original area in the Waikato Region by the early 1990s. 

However, they concluded that the extent of primary forest and scrub in the Taupo 

basin was still 70% of its original area over the same period. The amount of 

secondary forest and scrub was reduced by nearly 85%, probably due the 
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widespread conversion to exotic plantation (Leathwick et al., 1995). Figure 2.4 

illustrates the vegetative land use in the catchment. The south of the catchment 

remains largely undeveloped. A large portion of this area is encompassed in the 

Tongariro National Park, a UNESCO World Heritage site for its cultural and 

ecological values. Active volcanism still continues. The majority of this area is lightly 

vegetated with some tussock grassland on the slopes of the three volcanoes that 

dominate this part of the catchment. Indigenous forestry is present in the eastern 

side of this area. Most of the active land use is on the rhyolitic lowlands which are 

permeable and well-draining. Pastoral farming systems were introduced but the 

Lake Taupo catchment did not become a productive pastoral region until cobalt was 

added to the nutrient poor pumice soils in the 1930s (McKinnon, 2007). Pasture is 

widespread in the north and west of the catchment (Schouten et al., 1981). In more 

recent years concerns are being raised regarding water quality, as farming practices 

involve the application of nitrogen and other chemicals which could impact Lake 

Taupo‟s oligotrophic3 status. 

 

Figure 2.4. Vegetative land use of the Lake Taupo catchment from the New Zealand Land Resource 

Inventory. Indigenous forests are mainly restricted to higher elevation areas. Pastoral areas are mostly 

found in the west and east. Exotic forestry is common in the east. Source: New Zealand Land Cover 

Database 2 (Ministry for the Environment, 2004) 

                                                             
3  ‘Oligotrophic’ is defined as water that is low in nutrients, hence with a relatively low organic productivity 

(Harding et al., 2004). As a result, Lake Taupo has low algal production, and consequently, very clear 

water. 
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Large tracts of lowland areas of the Lake Taupo catchment, previously covered in 

scrub or primary forest, have been converted to exotic plantations and pastoral 

farming. Consequently, native forestry has been confined largely to the higher 

elevation areas, more specifically, the less permeable greywacke but higher rainfall 

regions of the Hauhungaroa and Kaimanawa Ranges (Schouten et al., 1981). This 

transformation from forest to pasture (and vice versa) can have a significant impact 

on the soils and hydrologic characteristics of catchments. 

In pumiceous catchments, like Lake Taupo, the effect can be considerable (Selby, 

1972). Some vegetation cover, such as forest and scrub, increases interception, 

reduces sediment yield and lowers runoff acting to stabilise the landscape. In a 

study of the relationship between land use and erosion on the pumice soils of the 

Otutira catchment (a tributary catchment of Lake Taupo), Selby (1972) conducted 

experiments on the runoff, infiltration and erodibility characteristics from scrub, 

ungrazed pasture and grazed pasture. Using a purpose-built rainfall-simulating 

infiltrometer, Selby was able to assess the infiltration of precipitation into the soil 

over various vegetation covers and on slopes with angles between 0° and 30° 

without disturbance. The analysis highlighted that infiltration was higher for soils 

that already had high moisture levels at the start of the experiment. Runoff plots in 

the same catchment were used to determine the surface water runoff characteristics 

under various vegetation covers. Runoff from pasture was higher than from less 

developed scrub and ungrazed grass vegetation. In particular, Selby noted that 

under intense precipitation events, the resistance to infiltration under dry soil 

moisture conditions can increase surface runoff until the soil is wetted up. Selby 

(1972) concludes that while plant roots and organic matter can act to inhibit erosion, 

it is the low density and easy entrainment of soil particles that allows these soils to 

be eroded. 

2.2 Climatology 

Major influences on the Lake Taupo climate are its location, elevation, and 

topography. The Hauhungaroa Ranges rise to around 1000m a.s.l doing little to 

block the prevailing westerly wind. As these air masses approach the higher 

Kaimanawa Range they are forced to ascend and consequently release precipitation 

to the west of this divide (Thompson, 1984). From the south and east, air masses are 

blocked by the Kaimanawa Ranges and the volcanoes of Mt Ruapehu, Mt Ngauruhoe 

and Mt Tongariro. The catchment‟s inland location and the sheltering conditions of 
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the surrounding topography make the lowland areas of the catchment some of the 

least windy areas of New Zealand, while the existence of the cooler lake surface 

inhibits convection to descending cold air masses, producing frequent clear, calm 

conditions (Thompson, 1984).  

Rainfall in the catchment is strongly influenced by topography and is consequently 

unevenly distributed. Rainfall is highest in the mountainous regions to the south 

and east with an annual average of >4000 mm recorded on the flanks of Mt 

Ruapehu. Taupo township experiences the least rainfall with an annual average 

rainfall of less than 1200 mm. Rainfall is, however, fairly uniformly distributed 

throughout the year, with slightly more (30%) falling in winter months. It is 

generally lowest in the summer months and early autumn (January-March) 

although Thompson (1984) notes this period is also characterised by the highest 

variability. More frequent and intense rain is experienced in the mountainous 

regions of the catchment (Thompson, 1984). 

Snow is considerable in the higher elevations of the south. Fitzharris et.al. (1999) 

estimate winter snowlines can be as low as 1400m a.s.l in the North Island. Snow 

can fall on the mountains at any time during the year but is less common at lower 

elevations (Thompson, 1984). Most of the snowfall occurs in the Tongariro 

Catchment.  

Potential evapotranspiration rates are calculated by NIWA using the Penman-

Monteith potential evapotranspiration (PE) method (see Burman and Pochop 

(1994), as cited on NIWA‟s National Climate Database). Annual average PE for 

Turangi is 852 mm (2003-2008) and 823mm for Taupo (1970-1994). There are 

obvious seasonal fluctuations in PE in the catchment. PE rates are highest in 

summer and the maximum amount recorded in any one day was 8 mm, recorded at 

Turangi in January 2006. In winter, PE has been as low as zero and often less than 

one millimetre per day. Schouten et al. (1981) suggest evapotranspiration rates will 

be higher for areas of exotic forestry but lower in the cooler mountainous areas of 

the catchment. 

Due to its inland location away from the effects of the Pacific Ocean and Tasman Sea 

the climate of this catchment is also characterised by large fluctuations in 

temperature and extremes (Thompson, 1984). Annual average daily temperatures in 

lowland areas of the catchment are approximately 12°C, although mean daily 

temperatures can range between 0°C and 24°C. Temperatures during winter months 
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can drop below -4°C and have reached over 30°C in summer. At higher elevations 

average daily temperatures are 7°C, ranging between -1°C and 20°C. Cloud cover at 

higher elevations can dampen temperature ranges (Thompson, 1984). 

Sunshine hours have been recorded in the Lake Taupo catchment since 1949, 

although there is only one station currently operating. The Turangi site records 

around 2000 bright sunshine hours per annum. Comparatively, Thompson (1984) 

suggests the mountainous regions of the catchment are exposed to 1600-1700 hours 

of bright sunshine per annum. Not surprisingly, the summer months record the 

highest number of bright sunshine hours with over 30% of bright sunshine hours 

recorded between December and February. Only 20% of the annual sunshine hours 

are recorded in winter months. 

2.3 Hydrology 

2.3.1 Surface water inflows to Lake Taupo 

Water is received from over 30 rivers and streams (with numerous other smaller 

tributaries) that enter Lake Taupo (Mighty River Power Ltd, 2007). Most originate 

in the highlands surrounding the catchment and converge toward Lake Taupo in a 

centripetal drainage pattern. Despite the importance of Lake Taupo to the Waikato 

Power Scheme and its reliance on the inflows to the lake, there have been relatively 

few detailed studies of sub-catchment surface water inputs to Lake Taupo.  

The largest body of work was undertaken in the late 1970s by the Water and Soil 

Division of the Ministry of Works (Schouten et al., 1981). During this time, 17 rivers 

directly draining into Lake Taupo (89% of the land area of the catchment) were 

gauged for streamflow and water quality. Most of these stations were operated for a 

short period between 1976 and 1982. Mean streamflow from these catchments 

totalled 131 m3/s or the equivalent of 85% of outflow from Lake Taupo. Their main 

aim was to determine water quality and mass sediment transport for Lake Taupo 

inflows, but the study also provided detailed information of the hydrology of the 

individual sub-catchments of Lake Taupo. Schouten et al. (1981) characterised the 

hydrology of each catchment by assessing the flow duration curves and calculating 

various flow statistics. A variability index based on the standard deviations of the 

logarithms of specific discharge values for each sub-catchment was used to illustrate 

the differences in streamflow variability between major lithologies. Schouten et al. 
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(1981) found that catchments with less permeable geology had the highest 

variability with a variability index of between 0.3 and 0.4, while the index for those 

draining volcanic deposits ranged between 0.04 and 0.16. Schouten et al. (1981) also 

noted that floods produce 30% of the annual streamflow in rivers draining 

greywacke geology, with as much as 75% of the annual runoff taking place in the 

winter half year. Schouten et al. (1981) defined a flood as any event in which 

streamflow which exceeds the 5th percentile on the flow duration curve. 

Excluding the discharge from the TPS, only six catchments are currently gauged. Of 

these, three are controlled or affected by hydro power schemes (Hinemaiaia River, 

Kuratau River and Tongariro River). The inflows from these seven sources are 

equivalent to 70% of the lake outflow and 66% of the catchment‟s natural land area. 

The following sections describe the hydrology of the historically gauged regulated 

and unregulated catchments of Lake Taupo (Figure 2.5). Table 2.1 lists sub-

catchment information. More detailed information can be found for each sub-

catchment in Appendix B. 

While this section deals with the hydrological inputs to Lake Taupo, another 

significant source is direct lake rainfall. This is not explicitly dealt with here, but is a 

considerable inflow – an average input of 22 m3/s (1152 mm/a). The net 

contribution when direct lake evaporation is accounted for is 5.57 m3/s (287 mm/a).  

It is noted that catchment records cover different periods and lengths. Although 

comparisons are made, it is recognised that more rigorous analysis could be 

undertaken. Ideally, streamflow records would be „normalised‟ to account for 

climate variability. However, time constraints and other priorities in this study did 

not allow this to be undertaken. The results should be viewed with this in mind.  
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Figure 2.5. The natural Lake Taupo catchment. The individual sub-catchments used for analysis are shown. 

The map does not include the foreign water catchment areas of the TPS. 

 

Figure 2.6 Flow duration curves for unregulated catchments. The time series for the Kuratau and 

Hinemaiaia catchments above the scheme are used. The time series for the Tongariro River prior to the 

TPS is also included  
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Table 2.1. Summary of sub-catchment hydrological data and information  

Catchment Site No. Start End Duration Gaps* Area Median Flow Mean flow Mean Ann. Runoff Spec discharge Outflow 

  (dd/mm/yyyy) (dd/mm/yyyy) (years) (%) (km2) (m3/s) (m3/s) (mm/a) (m3/s per km2) (%) 

Waitahanui 1543411 21/01/1976 13/01/1981 4.98 5.6 196.07 6.90 6.82 1097 0.0348 4.5239 

Hinemaiaia above dam 1543412 29/04/1981 12/04/1987 5.95 13.0 125.38 3.41 4.02 1012 0.0317 2.7463 

Hinemaiaia above dam 2743464 13/04/1987 12/12/2000 13.67 0.4 125.38 4.68 5.52 1389 0.0435 3.3896 

Hinemaiaia above (combined)  29/04/1981 12/12/2000 19.63 4.2 125.38 4.29 5.11 1285 0.0407 3.2255 

Hinemaiaia below dam 3043471 20/06/2000 24/01/2009 8.60 0.3 153.26 4.64 5.53 1139 0.0361 3.5765 

Tauranga-Taupo 1543413 11/02/1976 18/07/2008 32.45 2.2 197.10 6.91 9.67 1547 0.0491 6.2560 

Waimarino 1543420 24/09/1976 24/01/2009 32.35 31.4 63.63 2.30 3.46 1714 0.0544 2.1877 

Waipakihi 1043461 1/01/1960 1/07/2008 49.10 0.0 179.98 8.25 11.91 2087 0.0662 7.8511 

Waihohonu 1043466 1/08/1961 24/01/2009 47.51 1.8 96.06 5.77 6.30 2067 0.0655 4.2113 

Waihi 3043481 12/02/2003 18/01/2006 2.93 0.0 9.84 0.33 0.39 1261 0.0400 0.2499 

Kuratau (above scheme) 1043468 14/11/1978 21/07/2008 30.21 0.1 119.26 3.34 4.28 1132 0.0359 2.7384 

Kuratau (below scheme) 1543443 17/06/1976 16/02/1979 2.67 2.9 194.18 5.48 6.58 1068 0.0339 4.9114 

Whareroa 1243461 26/09/1977 20/08/1980 2.90 0.0 59.35 1.01 1.24 661 0.0209 0.7828 

Whareroa 1243461 8/05/2002 18/07/2008 6.20 8.3 59.35 1.06 1.25 664 0.0210 0.8021 

Whanganui 1543427 2/07/1976 29/09/1980 4.32 1.9 31.59 1.07 1.55 1546 0.0490 0.9160 

Waihaha 1543424 26/05/1976 3/05/1995 18.95 4.8 133.66 4.40 5.60 1321 0.0419 3.6927 

Tutaeuaua 3043485 14/10/2004 14/01/2010 5.25 15.0 3.29 0.06 0.08 723 0.0229 0.0517 

Otaketake 1543410 19/09/1977 22/09/1980 3.01 0.0 16.31 0.10 0.12 223 0.0071 0.0815 

Tongariro pre 1974 1043459 2/01/1957 28/12/1973 16.99 0.0 784.15 45.13 52.59 2115 0.0671 39.5820 

Tongariro post 1974 1043459 2/01/1975 1/04/2008 33.27 0.0 784.15 27.83 32.13 1292 0.0410 20.7890 

Waikato outflow 1143444 23/09/1969 15/07/2008 39.56 0.7 3445 151.33 150.64 1379 0.0437 100.0000 

*This column refers to the percentage of the 15 minute time series record for which there is no data. 
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Unregulated catchment inflows to Lake Taupo 

Unregulated inflows to Lake Taupo are defined as those natural inflows which have 

not be modified by hydro power schemes. They are equivalent to approximately 40% 

of the average outflow from Lake Taupo and come from over 60% of the catchment‟s 

land area. Historic records exist for 11 unregulated catchments in total, of which 

only three are currently gauged. Thirty-four percent of the Lake Taupo catchment 

land area has never been gauged. For comparison, the flow duration curves for all 

unregulated sub-catchments are shown in Figure 2.6. 

Waitahanui River  

The Waitahanui River catchment (196 km2) is located on the eastern side of the 

catchment, south of Taupo township. The geology of the catchment is 

predominantly Taupo ignimbrite which is the most permeable of lithologies in the 

Lake Taupo catchment. This ignimbrite is overlain by pumice soils which are also 

very permeable. Mean discharge is 6.8 m3/s (Site No. 1543411) for the period 

January 1976 to January 1981. This equates to a specific discharge of 0.03 m3/s per 

km2 or 1097 mm/a. Discharge for this catchment is evenly dispersed throughout the 

year despite more precipitation falling in winter months. It is also characterised by 

low variability and a high baseflow index. 

Tauranga-Taupo & Waimarino Rivers  

The Tauranga-Taupo River and Waimarino River catchments are located on the 

south-eastern side of Lake Taupo. The catchment of the Tauranga-Taupo River (Site 

No. 1543413) covers an area of 197 km2. Streamflow has been recorded in the 

catchment since 1976. Mean flow for the Tauranga-Taupo River is 9.7 m3/s which is 

equivalent to 6% of the average outflow from Lake Taupo for the corresponding 

period and 1547 mm/a. The Waimarino catchment (Site No. 1543420), on the 

southern side of the Tauranga-Taupo River, has an area of 64 km2. Discharge was 

recorded between September 1976 and March 1983 and then from December 1993 

to the present. Mean flow is 3.5 m3/s (1714 mm/a) 

In terms of flow per unit area, the specific discharge for both catchments is 0.05 

m3/s per km2. Land cover is also similar (largely indigenous and planted forestry). 

Both catchments are long and narrow and drain the steep and impermeable 

greywacke areas of the Kaimanawa Ranges. During winter months, some 
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Figure 2.7. Above: Time series of rainfall (mm/15 minutes) as measured at Tauranga-Taupo (Site No. 

960010). Below: Time series of the Tauranga-Taupo River and Waitahanui River in mm/15 minutes. The 

Waitahanui River displays very little flow variability and has a considerable baseflow contribution. The 

Tauranga-Taupo River has much greater variability as shown by its very flashy response to rainfall events, 

and lower baseflow volume. 

precipitation falls as snow at higher elevations. This snow melts during the warmer 

spring months. There is evidence of this in the monthly flow pattern for both 

catchments (see Appendix B).  

In contrast to the Waitahanui catchment further north, the Tauranga-Taupo and 

Waimarino catchments have some of the highest flow variability and lowest 

baseflow index of the Lake Taupo catchments. Figure 2.7 illustrates the contrasting 

hydrologic behaviour of the Tauranga-Taupo River catchment with the Waitahanui 

River catchment further north.  

Waihi Stream  

The Waihi Stream catchment (9.8 km2) is located toward the southern end of Lake 

Taupo. This relatively small catchment drains the slopes of the andesitic Kakaramea 

volcano. The relief ratio of the catchment is high reflecting the large change in 

altitude relative to the length of the catchment. The overall contribution of this 

catchment to Lake Taupo outflow is small but because of its size and steepness it has 

one of the highest specific discharges in the Lake Taupo catchment. Mean flow for 

the Waihi Stream (Site No. 3043481) is 1.3 m3/s with an annual runoff of 1216 

mm/a and a specific discharge of 0.13 m3/s per km2. The record for the Waihi 

Stream covers a period of less than three years between February 2003 and 

January 2006. 
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Whareroa Stream  

The Whareroa catchment (59 km2) is located on the south-western side of Lake 

Taupo. This catchment is covered primarily in pasture and grassland. There are two 

discharge records for the Whareroa Stream from the same gauging location (Site No. 

1243461). The first was recorded over a three year period in the late 1970s. Gauging 

of this river started again in 2002 and is still operating. Annual runoff from this 

catchment is approximately 660 mm per annum, with a mean flow over the two 

records is 1.2 m3/s (0.02 m3/s per km2). 

Whanganui Stream & Waihaha River  

The headwaters of the Waihaha River (133.7 km2) and Whanganui Stream (31.6 

km2) are found in the higher elevation and steeper areas of the Hauhungaroa 

Ranges. Both catchments drain areas of impermeable basement greywacke but are 

predominantly volcanic. Whakamaru ignimbrite, which is less permeable than the 

younger Oruanui and Taupo ignimbrites, make up a considerable proportion of the 

catchment. Both gauges are located inland from the lake near State Highway 32. 

Above the gauges the land cover is predominantly forested (mostly native) with 

pastoral land cover below the gauges.  

The Waihaha River (Site No. 1543424) was gauged between May 1976 and May 

1995. Mean flow during this period was 5.6 m3/s which equates to a specific 

discharge of 0.04 m3/s per km2. Mean annual runoff is over 1320 mm/a. The 

Whanganui Stream (Site No. 1543427) has a much shorter record covering a period 

of just over 4 years between July 1976 and September 1980. Mean flow for this 

period was 1.5 m3/s (0.05 m3/s per km2). Mean annual runoff is 1546 mm/a. These 

sub-catchments have different physiographic features. The Whanganui catchment is 

narrow and has the highest drainage density of catchments studied. Conversely, the 

Waihaha catchment is wider and rounder and is generally steeper. Due to the more 

impermeable nature of these catchments, baseflow contribution is relatively low and 

flow variability is moderately high. 

Tutaeuaua Stream and Otaketake River  

These three catchments are all located in the northern part of the Lake Taupo 

catchment. The largest of the three catchments is the Otaketake River (Site No. 

1543410) which has a catchment area of 16.3 km2. It has mostly pumice soils 
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although there is a substantial amount of podzols present. Geology is predominantly 

Oruanui ignimbrite which is less permeable than the younger Taupo ignimbrite. 

Mean flow for the Otaketake River was 1.2 m3/s, for the period September 1977 to 

September 1980. In terms of flow per unit area, the catchment generates 0.07 m3/s 

per km2 on average and has a mean annual runoff of only 223 mm/a. It has 

moderate flow variability and a relatively high baseflow index. 

The Tutaeuaua Stream (Site No. 3043485) is a small catchment with an area of 3.3 

km2. It is a predominantly pastoral catchment with a relatively high drainage 

density. The mean flow for the Tutaeuaua River is 1 m3/s (0.3 m3/s per km2 and 723 

mm/a), for the period October 2004 to January 2010. The site was closed in 

July 2010.  

Ungauged catchments 

Approximately 34% of the Lake Taupo catchments land area has never been gauged. 

These ungauged areas are mostly located downstream of gauged catchments and 

around the northern part of the catchment where very little gauging has occurred. 

On the western side of the catchment, these ungauged areas are largely pastoral 

areas, whereas in the east planted exotic forest is widespread. Soils are 

predominantly pumice soils although there are areas of recent, gley and organic 

soils toward the south and podzols at upstream parts of ungauged areas. 

Although there are historic flow records for approximately 61% of the catchment‟s 

land area, at present 49% of the catchment is ungauged. 

Exclusion of Tokaanu Stream and Otutira Stream 

The Tokaanu Stream catchment (Site No. 2143409) has been historically gauged but 

the observation record is deemed unreliable due to evidence of physically 

inconsistent flow responses. This may be largely due to the modifications, 

interventions and development in the catchment which has affected the natural flow 

regime (Opus International Consultants Limited, 2012). The Otutira catchment has 

been used as an experimental basin during the 1970s, with gauging sites located at 

flumes and weirs. It is uncertain how much of the streamflow has been modified. 

Examination of streamflow data also indicated some significant water balance issues 

which also prevented this catchment from being included in any subsequent 

analysis.  
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Regulated inflows to Lake Taupo 

Since the early 1950s, parts of the Lake Taupo catchment have been developed for 

hydro-electric power generation. There are three schemes in the catchment, varying 

in size, generation capacity and complexity. The largest and most complex of the 

three schemes is the TPS. The TPS diverts water from outside the natural Lake 

Taupo catchment via the western and eastern diversions for generation at Rangipo 

(120MW) and/or Tokaanu (240MW) Power Stations. The scheme also modifies the 

natural flow of the Tongariro River. After generation at Tokaanu Power Station, the 

scheme discharges directly to Lake Taupo. The Hinemaiaia Power Scheme 

(Hinemaiaia River catchment) generates approximately 30 GWh per annum with an 

installed capacity of 6.6MW. The Kuratau Power Scheme is the smallest of the three 

schemes, having a generation capacity of 6 MW. 

The most significant discharge to Lake Taupo is from the highly regulated and 

complex TPS. Inflows from three other catchments is also controlled or affected by 

hydro power schemes – the Hinemaiaia River, Kuratau River and Tongariro River 

(as part of the TPS). Each of these catchments and the schemes modifying their flow 

are described below.  

Hinemaiaia River  

Located along the eastern side of Lake Taupo, this catchment is made up of mostly 

volcanic geology with an area of less permeable greywacke in its headwaters. It is 

covered by indigenous forest in the higher elevation areas and planted exotic 

forestry elsewhere. Podzols and pumice soils are widespread. Recent soils are found 

along some river reaches.  

This catchment has been developed for power generation since the 1950s. While it is 

a relatively small hydro scheme it consists of three power stations and three dams 

with a capacity of 6.6 MW generating around 30GWh per annum (TrustPower Ltd, 

2008). The scheme is largely run-of-river with relatively little storage in the three 

reservoirs. The lake at Hinemaiaia A holds the largest volume of water with just 16.6 

hours of storage with average inflow. Hinemaiaia C is located 2km downstream of 

Hinemaiaia A and is the smallest of the lakes covering an area of 2 ha and has 

negligible storage. Hinemaiaia B is located a further 3km downstream. The lake at 

Hinemaiaia B (12.1 ha) has 7 hours of storage with average inflow. A minimum flow 

of 3 m3/s below Hinemaiaia B station is required (where inflows into the 
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Figure 2.8. Streamflow from the Hinemaiaia River has been modified by the Hinemaiaia Power Scheme 

since the 1950s. The flow duration curves (upper) shows that the power scheme has had little impact on 

the natural flow regime of the catchment. The lower figure shows the difference between streamflow 

above and below the power scheme for an overlapping period of record between June 2000 and 

December 2000. 

Hinemaiaia A Lake permit) to address trout migration and erosion issues 

(TrustPower Ltd, 2008).  

The scheme is operated by TrustPower Ltd. There are two records for locations 

above the scheme (Site Nos. 1543412 & 2743464). Because of the close proximity of 

these sites, the records are combined to provide a long-term record from April 1981 

to December 2000. One record has been provided below the scheme (Site No. 

3043471, June 2000 – present). The following analysis uses these sites to describe 

and compare the hydrological characteristics of the catchment. 

Between Hinemaiaia A and Hinemaiaia B the catchment is described as a narrow 

ignimbrite gorge 27 m deep (TrustPower Ltd, 2008). There are very few additional 

tributaries along this section so mean flow is not largely modified. 

Flow duration curves for both sites are similar (Figure 2.8, upper) and the time 

series (Figure 2.8, lower) shows very little impact on natural inflows (correlation 

coefficient of 0.96). For an overlapping period of record (June 2000 to January 
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2001) the mean flow above and below the scheme was 5.78 m3/s , indicating that 

there is very little additional streamflow added between the two gauging sites. Flow 

variability and baseflow contribution is similar at both sites. For the corresponding 

period of record, the discharge from this catchment was equivalent to 3.6% of 

outflow from Lake Taupo. 

Kuratau River  

The Kuratau River catchment is located in the south-western region of Lake Taupo. 

It drains an area of mixed volcanic geology. Land use is primarily pastoral but there 

are also large areas of planted forestry throughout the catchment and pockets of 

indigenous forestry at higher elevations. There is a wide variety of soil types in the 

catchment and drainage density is also relatively low.  

The Kuratau Hydroelectric Power Scheme was commissioned in 1962 and has a 

generation capacity of 6MW. The Kuratau River was dammed by an earth dam to 

form Lake Kuratau and a power station built for electricity generation. Lake levels 

are maintained between 442.46 m a.s.l and 445.08 m a.s.l (Taupo-nui-a-Tia, 2011). 

The lake covers an area of 100 ha. It has relatively little storage and does little to 

impede the passage of flood peaks moving downstream (Opus International 

Consultants Limited, 2011). The maximum discharge from the power station is 16 

m3/s and sufficient streamflow must be maintained in the river (downstream of the 

tailrace) to allow for the unimpeded passage of fish at all times (Taupo-nui-a-Tia, 

2011).  

The scheme is operated by King Country Energy. This analysis uses data from two 

sites in the catchment – one situated upstream of the power scheme (Site No. 

1043468, 119.3 km2) and one downstream of the power scheme (Site No. 1543443, 

194.2 km2). The mean flow recorded at the upstream gauging site is 4.3 m3/s (0.04 

m3/s per km2 or 1132 mm/a) between 1978 and 2011. Over a much shorter time 

period from 1976 to 1979, the mean flow downstream from the power station of 6.6 

m3/s, which equates to a specific discharge of 0.03 m3/s per km2 and a mean annual 

runoff of 1068 mm/a. This catchment accounted for 4.9% of Lake Taupo outflow for 

the corresponding period of record. Flow variability and baseflow index were both 

higher at the downstream location.  

The operation of the power station has an effect on downstream flow. While there is 

relatively little storage in the system, the lake can be used to hold water for 
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generation at peak demand times. Although there is little available information 

about the operation of this scheme, the effect on the pattern of flow below the 

Kuratau River is evident. Figure 2.9 illustrates the diurnal fluctuations of flow 

during “normal” operating conditions. There appears to be little effect on 

streamflow during flood events. 

There is a greater impact on flow regimes compared to the Hinemaiaia Scheme. The 

larger lake and storage of the Kuratau Hydroelectric Power Scheme allows for more 

regulation as the water is stored overnight to meet peak demand the following day. 

Figure 2.10 illustrates the effect of regulation by comparing the time series for a 

period where records overlap and the flow duration curves for both sites. The 

correlation between the upstream and downstream sites for this overlapping period 

is only 0.68. This correlation is improved when mean daily flow is compared (0.97). 

The power scheme can affect the flow pattern at the upstream site. The daily diurnal 

fluctuations from the storage of water in Lake Kuratau and its subsequent release to 

the power scheme can produce a backwater effect (pers comm., NIWA 2010) which 

can be seen in the hydrograph for this site (Figure 2.11, left). More frequent 

oscillations (Figure 2.11, right) are thought to be due to the influence of an upstream 

power generator at Moerangi Station. This generator runs off and on according to 

demand of the station (pers comm., NIWA 2010).  

 

Figure 2.9 Streamflow of the Kuratau River downstream of Kuratau Power Scheme (top) is influenced by 

the operation of the scheme. The diurnal fluctuations in streamflow (lower left) mimic the typical load 

profile of daily energy use (lower right).  
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Figure 2.10. Streamflow from the Kuratau River has been modified by the Kuratau Power Scheme since 

1962. The top figure shows the difference between streamflow above and below the power scheme for 

an overlapping period of record between November 1978 and February 1979. The flow duration curves 

illustrate the effect of the regulation on the natural flow regime. 

 

 

Figure 2.11. Time series of the Kuratau River as recorded above the Kuratau Power Scheme at SH41. The 

left figure shows the diurnal fluctuations of flow as a result of the backwater effect from Lake Kuratau. 

More frequent oscillations (right) are likely to be due to an upstream generator at Moerangi Station. 
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Tongariro River  

The Tongariro River is the largest natural sub-catchment of Lake Taupo, covering an 

area of 784 km2. Its headwaters stem from two significant areas. The western part of 

the Tongariro catchment drains the volcanoes of the Tongariro National Park. This 

side of the catchment is lightly vegetated with some tussock grassland. Raw or 

recent soils are prevalent. In the east, the catchment drains the greywacke areas of 

the Waipakihi catchment located in the Kaimanawa Ranges. Pumice soils are 

widespread and the catchment is covered by large tracts of indigenous forest. In the 

lower reaches of the Tongariro River catchment, large areas of planted forest exist 

on predominantly pumice soils.  

Prior to the TPS, streamflow in this river (as recorded at Turangi (Site No. 1043459) 

between 1957 and 1973) ranged between 20 m3/s and 1461 m3/s. The mean flow was 

52.59 m3/s which equates to 0.07 m3/s per km2 and a mean annual runoff of 2115 

mm/a. Approximately 40% of the outflow from Lake Taupo could be attributed to 

the unregulated Tongariro River during this period. As part of the TPS there has 

been significant modification to the streamflow of the Tongariro River. Since 1973, 

water has been diverted from the river through the Poutu Intake. From the late 

1970s, streamflow has been augmented by water from Lake Moawhango, as part of 

the eastern diversion. The construction of the Rangipo Dam by 1983 allowed further 

diversion of water to the Rangipo Power Station (for more detail, refer to the 

following section). There are two minimum flow restrictions along the Tongariro 

River. The first is a 0.6 m3/s requirement below Rangipo Dam. Further downstream 

below the Poutu Intake a minimum flow of 16 m3/s is required. By the time this 

reaches the gauging location at Turangi flow is approximately 27 m3/s, depending 

on other tributary contributions downstream (pers comm. Genesis Energy Ltd, 

2010). The purpose of these minimum flows is for aquatic habitat, recreation and to 

enhance natural character (Genesis Energy Ltd, 2008). The regulation of the 

Tongariro River (as part of the TPS) is controlled by Genesis Energy Ltd.  

Figure 2.12 shows the flow duration curves and time series for the Tongariro River 

before and after the diversions were started. The range of streamflow at the Turangi 

gauging site has not been greatly affected since the principal effect of the TPS on the 

Tongariro River has been during normal streamflow conditions (Stephens, 1989). 

Natural flow conditions prevail during natural low flow (<16.3 m3/s) and flood 

conditions (>160 m3/s), as recorded downstream of Poutu Intake. Between these 
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Figure 2.12. The impact of the TPS on flow regime. The flow duration curve (top) illustrates the effect of the 

diversions on the Tongariro River. The range of flows has not been greatly affected (lower figures). 

two flow rates up to 80 m3/s can be taken from the river via the Poutu Intake for 

power generation. 

Mean flow at Turangi since the development of the TPS is 32.13 m3/s (reduced from 

52.7 m3/s prior to the development of the TPS) with a corresponding drop in the 

catchment‟s specific discharge and mean annual runoff to 0.04 m3/s per km2 and 

1292 mm/a, respectively. As a result of the regulation, the variability of flow has 

been reduced. All of the water from the Tongariro River eventually ends up in Lake 

Taupo either directly or indirectly via the TPS.  

The Tongariro Power Scheme 

The TPS draws water from the mountains of the central volcanic plateau, diverting 

water from outside of the natural Lake Taupo catchment area for generation at 

Rangipo (120MW) and/or Tokaanu (240MW) Power Stations. There are four 

sections to the TPS which are described in more detail below and illustrated in 

Figure 2.13. On average the Tongariro Power Scheme generates approximately 3.5% 

of New Zealand electricity generation (Genesis Energy Ltd, 2010). 

Western Diversion: The western diversion diverts water from the Whakapapa 

River, Whanganui River and four other smaller tributaries into Lake Te Whaiau and 
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Lake Otamangakau before being routed into Lake Rotoaira via the Wairehu Canal 

(Genesis Energy Ltd, 2011). There are six intakes along the diversion. The largest of 

these intakes is from the Whakapapa River which has a maximum intake of is 35 

m3/s. Any flow above the maximum continues down its natural course. This 

diversion accounts for a significant proportion of the 42 m3/s capacity of the 

Wairehu canal (Genesis Energy Ltd, 2011). Downstream of the intake there is a 

minimum flow requirement set to 3 m3/s although there are also periodic 

recreational flow releases from the intake. Further downstream at Te Maire a 

minimum flow for the Whanganui River is 29 m3/s is required (Genesis Energy Ltd, 

2011). To meet this requirement typically means that for two months during 

summer/autumn no water is diverted from this segment of the scheme (Genesis 

Energy Ltd, 2008). 

Eastern Diversion: The eastern diversion diverts water via the Wahianoa 

Aqueduct on the southern flanks of Mt Ruapehu, eastward to the Moawhango Dam, 

a man-made storage lake (Genesis Energy Ltd, 2011). Lake Moawhango has a 15m 

operating range. Water is routed through the Moawhango Tunnel north to Rangipo 

Dam on the Tongariro River. The eastern diversion has a maximum capacity of 22 

m3/s to Rangipo Dam.  

The volume of „foreign‟ water diverted (from both western and eastern diversions 

equates to approximately 20% of the outflow from Lake Taupo (Mighty River Power 

Ltd, 2007). 

Tongariro Section: Water from the eastern diversion is discharged into Rangipo 

dam where streamflow from the Waihohonu Stream is also diverted, before being 

transported to the Rangipo Power Station (Genesis Energy Ltd, 2011). Rangipo 

Power Station is located south of Turangi 63m underground and has an operating 

capacity of 120MW. After generation at Rangipo, water is released back into the 

Tongariro River before the Poutu Intake routes water through the Poutu Canal to 

the Poutu Dam. The Poutu Intake has a capacity of 80 m3/s (Smart, 2005). Once 

flow reaches 160 m3/s no water is diverted via the Poutu Intake due to turbidity 

(pers comm. Genesis Energy Ltd, 2009).  

Below the Rangipo dam, consent conditions require a minimum flow of 0.6 m3/s for 

ecological reasons (Genesis Energy Ltd, 2011). The minimum flow of the Tongariro 

River below the Poutu Intake in 1973 was 11.3 m3/s; this was revised to its current 

rate of 16 m3/s in 1994 (Smart, 2005). By the time it enters Lake Taupo it is over   
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Figure 2.13. Schematic diagram of the Tongariro Power Scheme.  
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27 m3/s, depending on the contribution from other tributaries (pers comm. Genesis 

Energy Ltd, 2010). Recreational releases of 30 m3/s in the Tongariro River are also 

part of consent conditions for the scheme (Genesis Energy Ltd, 2008). 

Rotoaira Section: Once the water has passed through the Wairehu and Poutu 

canals it is discharged into Lake Rotoaira which is the storage lake for the Tokaanu 

Power Station. The natural outflow from Lake Rotoaira is at the eastern end of the 

lake via the Poutu Stream (Stephens, 1989). Since the development of the TPS, the 

lake now discharges through a 6km tunnel through Mt Tihia to the Tokaanu Power 

Station which has an operating capacity of 240MW. After generation at Tokaanu, 

the water is discharged directly to Lake Taupo. On average, the TPS generates 

approximately 3.5% of New Zealand‟s electricity generation (Genesis Energy Ltd, 

2010). A minimum compensation flow is provided for the Poutu Stream of 0.6 m3/s 

(Stephens, 1989).  

Data for the discharge from the Tokaanu Station has been made available by Genesis 

Energy Ltd. For the period January 1998 to November 2008, the average discharge 

from the Tokaanu Power Station was 46.6 m3/s. This equates to approximately 0.03 

m3/s per km2 based on a catchment area of 1364 km2. However, it should be noted 

that Tokaanu Power Station is a peaking plant, only generating electricity during 

New Zealand‟s peak demand periods (pers comm. Genesis Energy Ltd, 2009). 

Hence, there are often zero discharges to Lake Taupo. When there is flow from the 

station, it averages 65 m3/s. In addition, during periods when the level of Lake 

Taupo enters its flood storage range, generation at (and therefore discharges from) 

Tokaanu Power Station ceases (Genesis Energy Ltd, 2008). 

2.3.2 Groundwater 

The unwelded and fractured nature of volcanic deposits is favourable to the 

movement of water through the subsurface and the development of a considerable 

groundwater resource. The presence of significant groundwater in the catchment is 

evidenced by the sustained, moderated baseflows throughout the year. Assessing the 

flow duration curves of 17 sub-catchments of Lake Taupo, Schouten et al., (1981) 

estimated that as much as 95% of annual discharge from the rivers draining the 

permeable areas of the Lake Taupo could be derived from groundwater. Their 

estimated baseflow proportion of annual runoff from catchments draining less 

permeable lithologies was as low as 74%.  
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Although groundwater and surface water catchments do not always coincide 

(Gusyev et al., 2012), groundwater in the Lake Taupo catchment generally flows in 

the direction of the lake and is recharged by rainfall (Hadfield et al., 2001). The time 

it takes to move through the groundwater system is described by its residence time 

and largely influenced by catchment soils and geology. Residence times provide an 

insight into surface and groundwater interaction, the vulnerability of the resource to 

contamination, flow rates and paths, buffering against drought and resource 

sustainability (Stewart and Morgenstern, 2001). Residence times in the northern 

(Mapara, Whangamata, Kawakawa, Otaketake and Omoho) and western (Waihora, 

Waihaha, Whanganui, Whareroa, Kuratau and Omori) catchments of Lake Taupo 

have been estimated using tritium dating techniques by Hadfield et al. (2001), 

Morgenstern (2008), Piper (2004), and Vant and Smith (2004). All four studies 

found mean residence times ranged between 20-35 years up to 75-87 years. Mean 

residence times were greatest in the northern catchments where the Oruanui and 

rhyolitic pyroclastics predominate. These lithologies are more permeable and 

capable of storing more water deep in the groundwater system than the older 

Whakamaru ignimbrites of the western catchments which contribute more rapidly 

to surface water flow (Hadfield, 2007; Morgenstern, 2008). The youngest water 

(lowest mean residence times) was found in the Kuratau and Omori catchments by 

Vant and Smith (2004) who note that these catchments drain largely andesitic 

geology which has lower water storage. Tritium analyses undertaken by 

Morgenstern (2008) indicated that the western catchments streams largely have 

very young water of less than three years. 

Most water held in the groundwater system exits either directly to the stream or 

directly to the lake. The volume of groundwater discharging directly to Lake Taupo 

has been estimated in a number of ways but still remains a relatively unknown 

quantity. White and Downes (1977) arbitrarily rated the groundwater contribution 

to be 1% of total inflows (1.2 m3/s). Schouten (1983) was able to further deduce the 

direct groundwater contribution by substituting all of the measured and estimated 

components of the water balance resulting in an average groundwater contribution 

of 8 m3/s, although the error margin was ±5 m3/s.  

Many studies relating to the groundwater resource have been undertaken in the 

western and northern catchments, since these areas have the greatest potential for 

agricultural intensification (Hadfield, 2007). Using a water balance approach, where 

the groundwater contribution is determined by the difference between net recharge 

(residual precipitation after evapotranspiration and surface runoff) and annual 
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mean streamflow, Piper (2004) estimated the groundwater discharge from nine 

sub-catchments in northern (Mapara, Whangamata, Otaketake and Tutaeuaua) and 

western (Waihora, Waihaha, Whanganui, Whareroa and Omori) areas of Lake 

Taupo. The groundwater contribution from these sites ranged between 0.105 m3/s 

and 0.835 m3/s with direct groundwater discharge to the lake from northern 

catchments generally considerably greater than from catchments along the western 

bays.  The Waihora and Omori catchments, however, were not consistent with this 

finding. Morgenstern (2008) notes the Waihora catchment (north-western margin) 

is  located in the boundary zone of the different lithologies which separate the two 

regions. This may result in similar discharge patterns to the northern catchments. 

The Omori catchment, south of Kuratau, has more permeable Taupo ignimbrite 

close to the lake which may allow greater direct groundwater seepage to the lake 

than other western areas (Morgenstern, 2008). 

Direct seepage of groundwater to Lake Taupo in the northern catchments of 

Whangamata Bay and Whakaipo Bay has been investigated by Gibbs et al. (2005). 

Building on the results of an MSc thesis by Ross Hector in 2004, they surveyed 

water temperature to a depth of 10m and found that groundwater enters Lake Taupo 

through the bed down to a depth of 6.5m. The majority of this inflow is between 2-

6m depth. These seepages totalled approximately 0.50 m3/s and 0.25 m3/s in 

Whangamata Bay and Whakaipo Bay, respectively, although the authors noted these 

estimates may potentially have considerable uncertainty due to the variability of 

seepage within the groundwater zone and the extrapolation of data from four sites of 

0.25 m2 to a wider lake bed area of 200,000 m2.  

These estimates are less than those determined by Piper (2004). For the 

Whangamata Bay, Piper (2004) estimated the direct groundwater contribution from 

the Otaketake Stream and Whangamata Stream were 0.835 m3/s and 0.413 m3/s, 

respectively. In Whakaipo Bay, Piper (2004) estimated a groundwater discharge to 

the lake of 0.320 m3/s from the Mapara Stream alone. It should be noted that the 

work of Gibbs et al. (2005) was undertaken after a long dry period before the survey 

which may account for the lower discharge rates. 

Fewer studies have been undertaken in the eastern catchments. Murphy (2006) 

used a water balance approach (similar to Piper (2004)) to estimate the 

groundwater contribution from the Tauranga-Taupo River catchment. The 

contribution from this catchment was estimated to be 4.4 m3/s. Exchanges between 

surface and groundwater in the eastern catchments of Lake Taupo were modelled 
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using a three-dimensional finite-element groundwater model by Bou (2007). 

Preliminary results indicate that the groundwater contribution to Lake Taupo from 

catchments draining from the eastern side of Lake Taupo totalled 15.4 m3/s, with 

individual sub-catchment contributions ranging between 0 m3/s and 2.72 m3/s. 

Calibration of the model is based on four of the ten sub-catchments representing 

83% of the baseflow discharge. The groundwater contribution from the Tauranga-

Taupo catchment was 0.38 m3/s, significantly less than estimate provided by 

Murphy (2006). Results should be used with caution as Bou (2007) notes further 

work is required to improve the correspondence of modelled streamflow to observed 

streamflow.  

Based on the findings of Piper (2004) and Bou (2007) eastern areas appear to have, 

on average, a greater direct contribution to Lake Taupo per unit area than northern 

and western catchments. The total direct groundwater contribution to Lake Taupo 

from all study catchments is over 18 m3/s, although neither paper provides a margin 

of error. This figure, which represents the contribution from 50% of the catchment‟s 

land area, is significantly greater than the estimates from both White and Downes 

(1977) and Schouten (1983). Excluding the average foreign water input to Lake 

Taupo of 29 m3/s, the estimate indicates that the total direct groundwater 

contribution could be as much as 20% of total inflow to Lake Taupo.  

2.3.3 Outflow  

While there are many rivers directly entering Lake Taupo, the Waikato River is its 

only outflow. This lakes outflow has been recorded since 1969 (Site No. 1143444). 

Mean discharge from the lake to the Waikato River is 150.6 m3/s. Since 1941 when 

the Taupo Control Gates were constructed the outflow from Lake Taupo has been 

controlled. This control is a balance between lake level operating ranges, energy 

generation demands and also flow requirements downstream through the Waikato 

Power Scheme. 

Current flood rules include a minimum outflow of 50 m3/s (Opus International 

Consultants Limited, 2009). In drought conditions, if lake level drops below the 

minimum control level outflow from Lake Taupo must equal the inflows to the Lake, 

so outflow could be below 50 m3/s. This situation has not yet occurred (pers comm. 

MRP 2011). 

During flood events, Environment Waikato can request the outflow from Lake 

Taupo to be at or below this minimum to prevent flooding of settlements along the 
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Waikato River. In July 1998, severe flooding and intense rainfall in the region 

resulted in Environment Waikato requesting Mighty River Power to reduce outflow 

to 33 m3/s4 to prevent flooding down the Waikato River (Freestone et al., 1998). 

Lake levels rose above the consented operating range during this period (as is 

allowed under these conditions).  

The maximum consented outflow from Lake Taupo is related to the lake level height 

and ranges between 305 m3/s (at 357.3 m a.s.l) up to 343 m3/s (at 357.8 m a.s.l). 

During the 1998 flood event, when the requirement to reduce outflow was lifted the 

Taupo Control gates were fully opened, releasing an outflow of 312 m3/s to reduce 

lake level to normal operating conditions. The highest outflow recorded from Lake 

Taupo since September 1969 was in September 2010 when an outflow of 321.2 m3/s 

was recorded. 

2.3.4 Lake level 

The level of Lake Taupo has been recorded since 1905. The installation of the Taupo 

Control Gates by 1941 allowed the outflow from the lake to be regulated. Lake Taupo 

is currently managed over a 1.4m operating range (355.85 – 357.25m a.s.l) in order 

to mimic natural fluctuations. On average, Lake Taupo has a storage capacity of 8-9 

weeks (Mighty River Power Ltd, 2007). 

Historically, lake level has been recorded at four sites on Lake Taupo. There are 

currently two lake level recording sites on Lake Taupo, located at opposite ends of 

the lake. The gauge at Acacia Bay (Site No. 1543478) is located in the northern 

region of the lake toward Taupo township. The second gauge is located toward the 

southern end on the lake near Tokaanu (Site No. 1143420). Figure 2.14 shows the 

time series of lake level for both sites. Between December 1978 and July 2008 the 

highest level recorded for Lake Taupo at Acacia Bay was 357.5m a.s.l in July 1998 

and the lowest was 355.9 m a.s.l in May 2010. However, the lake level was reported 

to drop as low as 355.7 m a.s.l in July 1946 while the highest lake level was 357.72 m 

a.s.l recorded in October 1909 (Mighty River Power Ltd, 2007). 

Time series data of Lake Taupo level as recorded at Acacia Bay (Site No. 1543478) 

displays significant fluctuations not only from the direct input of rainfall from the 

passage of weather systems across the catchment but also from various natural 

oscillations caused by tectonic, wind and barometric effects. Taupo is a tectonically 

                                                             
4 Flood rules in 2004 included a minimum outflow of 30 m3/s. 
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Figure 2.14. Lake levels as recorded at Acacia Bay (light blue) and Tokaanu (dashed dark blue). Lake 

level operating margins are indicated by the black dashed horizontal lines at 355.85 m a.s.l and 357.25 m 

a.s.l. The two time series fluctuations follow a similar pattern. The correlation between the two sites is 

0.9925. 

active area and as such the accuracy of lake levels can be affected by earth 

movements of downwarping and upthrusting. Otway (1986) investigated the 

deformation associated with an earthquake swarm in 1983 and found there was up 

to up 50mm of upward movement of the land at the northern end of the lake. Lake 

level observation points, therefore, need to be frequently checked and calibrated. 

Seiche effects cause the surface of the lake to be higher at one end than another and 

are largely due to wind or barometric pressure exerting a force over the water 

(ECNZ, unknown). When the force ceases, the pressure is released and results in the 

water slopping back and forth. The seiche characteristics of Lake Taupo have been 

reported by Gilmour (1991), Gilmour and Butcher (1987), and Gilmour and Heath 

(1989). There are several seiches in effect on Lake Taupo with periods of 30 minutes 

(wind seiche) up to several hours (barometric seiche) (Gilmour and Butcher, 1987; 

Gilmour and Heath, 1989), the combined effect of which can be several centimetres 

(ECNZ, unknown). 

2.4 Summary 

A description of the Lake Taupo catchment in terms of its physical setting is 

outlined in this chapter. The catchment covers 3445 km2 plus additional catchment 
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areas associated with the TPS. It is New Zealand‟s largest lake (611 km2) and the 

effective source of the Waikato River.  

Climatic and physiographic characteristics are the major influences on catchment 

flow regimes, controlling how much water enters the catchment and the movement 

of this water once it reaches the ground (Duncan and Woods, 2004). The climate of 

the Lake Taupo catchment is influenced by its location, elevation and topography. 

Rainfall and evapotranspiration are particularly important, in terms of rainfall-

runoff modelling, as they determine the amount of water made available for 

catchment water storage and runoff. Rainfall is unevenly distributed throughout the 

catchment and snow can be considerable in the higher elevations of the south. There 

are obvious seasonal fluctuations in evapotranspiration in the catchment. Rates of 

evapotranspiration and calm weather typical of Taupo result in a generally humid 

climate for the Lake Taupo catchment (Timperley, 1983). 

The hydrological characteristics of the Lake Taupo catchment are fundamentally 

linked to its active tectonic and volcanic history. The lake is a result of a series of 

tectonic and violent volcanic events. Not surprisingly the geology and soils of the 

catchment derive from the volcanic material produced from these major events and 

have a significant influence on the catchment‟s runoff response to rainfall. Land use 

in the catchment is a mixture of both exotic and native forestry in the east with 

pastoral activities in lowland areas of the west. In the south, active volcanism as well 

as its National Park and UNESCO World Heritage status leaves this large area 

relatively undeveloped. Development of three hydro power schemes in the 

catchment have further modified catchment physiographic attributes and have also 

altered catchment flow regimes. 

In terms of catchment hydrology, inflows to Lake Taupo are sourced from regulated, 

unregulated, gauged and ungauged basins. Streamflow has been recorded in many 

catchments historically but only six catchments are currently gauged plus the 

discharge from the Tokaanu Power Stations. Streamflow in three of these gauged 

catchments is modified by hydro power schemes. The largest direct inflow is from 

the TPS (46 m3/s) which, combined with the Tongariro River (which is modified as 

part of the TPS) is equivalent to over 50% of the outflow from Lake Taupo.  

Direct groundwater contribution to the lake may be significant, but no robust 

quantification of the total direct contribution has been achieved. Based on the 

findings from various reports, the direct groundwater contribution to Lake Taupo is 
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estimated at 18 m3/s from 50% of the catchment‟s land area. Total groundwater 

input could be in the order of 20% of outflow from Lake Taupo. 

Knowledge of the amount and timing of inflows to Lake Taupo are important for the 

operation of the Taupo Control Gates and the Waikato Power Scheme. Lake level 

has been managed between a 1.4m operating to mimic natural fluctuations. The lake 

holds 93% of the storage for the scheme and is used to moderate flows throughout 

the year and for reducing the effects downstream of flooding and drought. 

This information gathered in this chapter provides the basis for further analysis of 

catchment hydrologic function which, in turn, informs the development of the 

perceptual model for the catchment and initial parameter estimates. 
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3 Rainfall-runoff modelling for 

reservoir inflow forecasting 

This chapter begins with an overview of rainfall-runoff modelling (Section 3.1). This 

is followed by a discussion of modelling approaches with respect to reservoir inflow 

forecasting, commenting on their suitability for adoption in this study (Section 3.2). 

Section 3.3 summarises the sources of uncertainty and reviews the development of 

various techniques to reduce this uncertainty to within reasonable limits. Particular 

attention is paid to data assimilation (via state updating) as a general framework for 

dealing with uncertainty. This section also discusses the implications of traditional 

unconstrained state updating for producing reliable model predictions.  

3.1 General overview of rainfall-runoff models 

Hydrological (rainfall-runoff) models have evolved as our understanding of 

hydrological processes has increased and as computers have been able to handle 

more complex model structures (Beven, 2001). Today, computer-based rainfall-

runoff models allow relatively quick predictions to be made about a catchment‟s 

response to a given input of rainfall given specific antecedent conditions. These 

predictions are based on various sources of information, including field data and 
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observations as well as detail about the interactions and processes of the rainfall-

runoff relationship (Mulligan and Wainwright, 2004). The output from such models 

is widely used in decision-making processes, whether for hydro-electricity 

generation, erosion control, flood management or reservoir design (Moradkhani and 

Sorooshian, 2008; Todini, 1988; Wagener et al., 2004b).  

There are several ways to classify rainfall-runoff models (Becker and Serban, 1990; 

Kampf and Burges, 2007; Mulligan and Wainwright, 2004). Becker and Serban 

(1990) categorise rainfall-runoff models according to their degree of spatial 

resolution (lumped/semi-distributed/ distributed) and by the degree to which they 

represent real world processes (empirical/conceptual/physics-based). A lumped 

model assumes spatial homogeneity, ignoring spatial variation of the rainfall-runoff 

response by using average or single point data to represent the whole of the 

catchment (Wagener et al., 2004b). Semi-distributed models allow for some spatial 

variation, delineating the larger lumped catchment by smaller units such as sub-

catchment boundaries. Distributed models aim to more fully represent the 

heterogeneity of the catchment accounting for the spatial variation of processes and 

properties over the entire area (Mulligan and Wainwright, 2004).  

How well a model represents real world processes will depend on the approach. 

Empirical (or metric) models are strongly observation oriented, extracting 

information from existing data to determine the response of a catchment to rainfall 

inputs (Kokkonen and Jakeman, 2001). The foundation of empirical models is the 

unit hydrograph approach developed by Sherman in 1932 (Beven, 2001; Kokkonen 

and Jakeman, 2001; Todini, 1988). Other examples include the IHACRES model 

(Jakeman et al., 1990) and artificial neural network models (Dawson and Wilby, 

2001; Minns and Hall, 2005).  

In contrast to empirical models, physics-based models aim to represent all 

significant physical processes of the hydrological cycle relevant to the problem of 

interest using mathematical partial differential equations (Moradkhani and 

Sorooshian, 2008; Young, 2001). These models are commensurate with a high 

degree of discretisation. One of the most widely known models of this type is the 

Système Hydrologique Europèen (SHE) model, developed as a joint project between 

the Institute of Hydrology (UK), the Danish Hydraulics Institute and SOGREAH in 
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France. Others include HILLFLOW (Bronstert and Plate, 1997), IHDM5 (Calver and 

Wood, 1995) and Topog (Vertessy et al., 1993).  

Conceptual models provide a balance between the „top-down‟ empirical and 

„bottom-up‟ physics-based models and can be applied at lumped or distributed 

spatial scales. Conceptual models incorporate knowledge and theory of hydrological 

processes but generally approximate these processes into a simpler model structure. 

The rainfall-runoff relationship is often represented by a number of internal stores 

connected by a series of component processes controlling their recharge and 

depletion (Beven, 2001; Kitanidis and Bras, 1980; Kokkonen and Jakeman, 2001; 

Young, 2001). The model structure is generally determined a priori based on the 

perceived importance of the rainfall-runoff mechanisms. Determining the 

boundaries and interactions between reservoirs is, therefore, a subjective process 

and calibration is required to ensure the simulations closely match the observed 

response (Beven, 2001). Numerous conceptual models have been developed that 

vary in the number of storage elements, exchanges between these elements and 

model parameters reflecting the modeller‟s perception of the relative importance of 

the rainfall-runoff mechanisms in the system. The Sacramento Soil Moisture 

Accounting Model (Burnash, 1995), ARNO model (Todini, 1996) and the HBV6 

model (Bergström, 1995) are examples of conceptual type models.  

While physically-based conceptual models should, in theory, incorporate the 

important hydrological components of the rainfall-runoff process, these processes 

are generally only represented by approximations rather than actual physical 

representations of the processes themselves (Todini, 1988). The parameters of some 

conceptual models can, consequently, lack any physical meaning. Hybrid 

conceptual/physics-based models combine the simplicity of the conceptual 

approach with the physical interpretation of the „bottom-up‟ physics-based 

approaches. These models provide a balance between the detail of physical 

catchment processes and data and computational requirements. TOPMODEL 

(Beven and Kirkby, 1979) is an example of a hybrid model which identifies units 

with similar soils and topography that will have a corresponding hydrological 

response. The model structure is simplified while retaining the physical meaning of 

parameters within a distributed parameter space. One of the limitations of 

TOPMODEL is that it has been developed for small watersheds (Bandaragoda et al., 

2004). To counter this limitation, the National Institute of Water and Atmospheric 

                                                             
5 Institute of Hydrology distributed model, United Kingdom 
6 Hydrologiska Byråns Vattenbalansavdelning model 
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Research (NIWA), New Zealand, developed TopNet (Ibbitt and Woods, 2004), a 

rainfall-runoff model which combines TOPMODEL with a kinematic wave channel 

routing algorithm which allows larger watersheds to be modelled using smaller sub-

catchments as elements (Bandaragoda et al., 2004). NIWA have applied TopNet to a 

number of New Zealand catchments of various sizes and climate regimes (Clark et 

al., 2008a; Ibbitt et al., 2005; Poyck et al., 2011). It‟s structure, however, does not 

allow for catchments where there are multiple runoff-generating stores (McMillan et 

al., 2010). 

The models outlined above can be classified further into deterministic or stochastic. 

Deterministic models take a given a set of inputs and parameter values and generate 

a single possible response or outcome for a corresponding point in time and space 

from a simulation (Beven, 2001). Stochastic models, on the other hand, require the 

uncertainty to be quantified in some manner as part of the modelling process 

(Young, 2001). Stochastic models are particularly useful where inadequate data 

prevents actual (deterministic) estimates of flow from being obtained. For example, 

where only streamflow data exists (or is available) probabilistic approaches can be 

used to consider all possible flow values and to assign a probability to each of them 

being the right one (Maidment, 1993).  

The distinction between deterministic and stochastic models is not always clear cut. 

Some deterministic models, such as the probability distributed model (PDM) of 

Moore (2007), will characterise a particular aspect of the hydrological system using 

a stochastic approach. The PDM groups the catchment into a series of stores with 

different storage capacities. Each store represents a dynamic contributing area for 

runoff generation, and the response of each store to rainfall is represented by a 

probability distribution function (Moore, 2007). As is common with empirical 

models, the distribution of responses has been determined with little consideration 

to the physical processes and characteristics of the store‟s response. 

3.2 Rainfall-runoff modelling for reservoir inflow forecasting 

The type of model suitable for any given application will depend on the desired 

outcome of the project, model assumptions and resource constraints (Beven, 2001). 

In reservoir inflow forecasting applications, where short-term predictions are the 

main aim, computational efficiency is imperative as well as the accuracy and 

reliability of model output. 
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Although physics-based models are of value to the understanding of catchment 

hydrological processes, their application to forecasting problems has been limited 

due to their heavy data and computational requirements (Daniel et al., 2011; 

Graham and Butts, 2005). To run such models at the appropriate resolution 

requires considerable computational resources, and in some cases even modern 

computers (and supercomputers) are unable to meet these requirements. Large 

amounts of data are required which can also be prohibitively costly (Pechlivanidis et 

al., 2011).  

There are numerous data driven techniques which have been applied to reservoir 

inflow forecasting including empirical regression, fuzzy-rule based systems and 

artificial neural network models (Coulibaly et al., 2000; Harte and Thomson, 2007; 

Lohani et al., 2012; Taghi Sattari et al., 2012; Xu and Li, 2002). Empirical models 

can be parametrically efficient, but in their development they give little 

consideration to the physical processes that generate the system‟s runoff response 

(Kokkonen and Jakeman, 2001; Xu and Li, 2002). This can restrict their utility 

when seeking further understanding of catchment hydrological processes and 

extrapolating beyond the observation set or to other catchments.  

Conceptual models provide the necessary computational efficiency while 

maintaining an underlying physical basis. For this reason, they have been 

extensively applied for reservoir inflow forecasting to derive reservoir operation 

policies, improve existing operational procedures, simulate climate change, assess 

the impact on flow regimes, and predict short-term inflows (Amenu and Killingtveit, 

2001; Collischonn et al., 2007; Druce, 2001; Hotchkiss et al., 2000; Welsh et al., 

2012, in review; Yang et al., 2005). They can also be applied at a range of spatial 

(lumped/semi-distributed/distributed) and temporal scales and are suitable for 

estimating inflows from ungauged basins. Wagener et al. (2004b) state that 

conceptual models are likely to perform just as well as physics-based models 

without the intensive data and computational requirements. 

The HBV hydrological model (Bergström, 1995; Lindström et al., 1997), was 

originally developed to forecast streamflow in hydro-power generation regions of 

Scandinavia and has since been applied in numerous countries world-wide (Amenu 

and Killingtveit, 2001; Yang et al., 2005). In another example, the conceptual UBC 

watershed model has been used to forecast seasonal inflows to Kinbasket Lake 

(storage capacity: 14.8 km3) and Mica Dam (drainage basin area: 21500 km2) on the 

Columbia River for more than 20 years (Druce, 2001). Outflow from the Mica Dam 
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is regulated based on these forecasts. Collischonn et al. (2005) also used a 

conceptual model to forecast hourly inflows to the Machadinho dam and reservoir 

located on the Uruguay River, southern Brazil. This same model was also used to 

model daily inflows between Itumbiara and Sāo Simāo power plants (drainage basin 

between the two power plants: 76,746 km2) on the Paranaíba River basin in Brazil 

(Collischonn et al., 2007).  

In the majority of examples found in the literature, it is principally the unregulated 

inflows to regulated systems that are simulated. The problem of reservoir inflow 

forecasting is more complicated when regulated inflows need to be modelled. This 

requires the incorporation of specific reservoir operational information into the 

traditional model structure.  

Although there are numerous examples where regulated catchments have been 

modelled, (Bulygina et al., 2012; Hotchkiss et al., 2000; Sayama et al., 2006; Zhang 

et al., 2011, amongst others) the success of these applications relies on obtaining 

extensive data and information pertinent to the schemes operation. In the Lake 

Taupo catchment, three competing power companies control approximately 60% of 

the inflows through three hydro power schemes, while Mighty River Power Ltd 

manages lake level and outflow. Although some streamflow data is available, there is 

little information relating to the control of water storage and release for the 

respective power schemes. The challenge is, therefore, to find alternative ways in 

which this regulation can be quantified. This thesis, therefore, sets out to provide 

some guidance on how some of this regulation (using various physical and 

legislative constraints) can be incorporated into a conceptual model structure in the 

absence of direct operational information. 

3.3 Reducing uncertainty for more accurate and reliable 

model output 

Predictive models require adequate characterisation of the underlying system, 

accurate parameter estimations and sound state variables. However, since models 

are simplifications of real world processes, fed by imperfect data and estimated 

parameter values, their output can be subject to considerable uncertainty (Kitanidis 

and Bras, 1980; Wagener and Gupta, 2005). Uncertainty arises from natural 

randomness (which cannot be corrected for (Melching, 1995)), subjective 

interpretation of the relative importance of physical processes, simplifications and 
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approximations in the model structure, estimation of parameter values and 

collection and interpretation of data for input (Wagener and Gupta, 2005). 

Therefore, the key to providing more accurate model predictions is to reduce the 

uncertainties associated with the model structure, parameterisation and data issues 

to within acceptable ranges for more reliable and robust decision-making. 

Model structure uncertainties stem from the inability of models to truly represent 

the complex reality of a hydrological system (Liu and Gupta, 2007). Rainfall-runoff 

models are an assembly of simplifications and approximations of the real world. For 

these approximations to be made correctly, sufficient data and computer resources 

are required. In addition, the modeller is required to have knowledge of the 

important rainfall-runoff generating mechanisms and processes within the 

catchment. This is particularly relevant in conceptual models in which the model 

structure is based on the modeller‟s perceived understanding of catchment 

hydrologic processes. Key processes may be mistakenly omitted or given less 

consideration than some less influential components on the system, resulting in 

uncertainty in model output (Liu and Gupta, 2007; Wagener and Gupta, 2005). 

Defining the model structure, therefore, involves selecting appropriate and accurate 

representations of the hydrological processes and the relationship between model 

inputs, parameters, states and outputs (Liu and Gupta, 2007). 

Attempts to reduce the effects of model structure uncertainty have generally 

involved multi-model approaches in which a suite of plausible and independent 

model structures are employed to provide a more realistic approximation of the 

underlying system (Beven and Binley, 1992; Duan et al., 2007; Neuman, 2003; 

Vrugt and Robinson, 2007). More recently, research has also focussed on 

diagnosing differences in hydrological behaviour between model structures (Clark et 

al., 2008b). Neuman (2003) states that hydrological analysis derived from a single 

hydrologic model (as is common in hydrologic modelling) can lead to statistical bias 

and underestimation of uncertainty. Multi-model approaches, however, can be 

computationally demanding (Liu and Gupta, 2007). 

Parameter estimation has received much attention in the last few decades in relation 

to reducing uncertainty, but generally assumes the model itself is true and correct 

and ignores state conditions (Liu and Gupta, 2007; Vrugt et al., 2005). Parameters 

characterise the real world properties of a hydrologic system (Liu and Gupta, 2007; 

Wagener and Gupta, 2005). However, they are often aggregated in space and time 

and applied at scales much different to those they represent. In addition, they are 
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often approximated if corresponding field observations are unavailable. These 

parameters therefore can lose a degree of spatial representativeness and direct 

physical interpretation. A lack of correlation between model parameters and the real 

world can often result in predictive uncertainty (Wagener and Gupta, 2005).  

Calibration (manual and automatic) essentially aims to improve this correlation by 

optimising the parameter set in order to effect a closer matched simulation of the 

real world. The subjective and time-consuming nature of manual methods led to the 

development of automatic calibration procedures with the aim of speeding up the 

calibration process and providing an objective strategy for parameter estimation and 

optimisation (Boyle et al., 2000; Wagener et al., 2001). Multi-criteria routines were 

borne out of the inability of early automatic methods to evaluate the performance on 

more than one aspect of the hydrograph (Boyle et al., 2000; Gupta et al., 2009; 

Gupta et al., 1998; Kavetski et al., 2002; Wagener et al., 2003).  

Monte Carlo methods offer a flexible and robust method for estimating parametric 

uncertainty by being able to efficiently sample across a wide parameter space and 

provide an objective assessment of model performance (Pechlivanidis et al., 2011). 

Numerous parameter sets are generated from which optimal parameter sets can be 

found (Beven, 1993). An objective function is used to describe the correspondence 

between the simulation and observed system behaviour. Depending on the 

computing resources available, many thousands of calibration runs can be achieved 

in a much shorter time than traditional manual calibration routines. In the absence 

of sufficient computational resources, optimisation methods can be used alongside 

Monte Carlo methods to  fine tune  parameter sets (Duan et al., 1992). The 

Generalised Likelihood Uncertainty Estimation (GLUE) method of Beven and Binley 

(1992) is an example of a method that uses Monte Carlo simulations to identify 

behavioural parameter sets; it can also be used to identify behavioural model 

structures. 

Adequate characterisation of this parametric uncertainty is essential for robust 

decision making, but does not overcome the problem of biases in the model states – 

where cumulative effects of data errors and/or incorrect model assumptions lead to 

internal discrepancies (e.g. in groundwater levels, soil moisture) that then cause 

large errors in predicted water fluxes and other essential model outputs.  

Data assimilation is a method that has been used to address uncertainties of data 

and model output, by updating state conditions with real-time or near real-time 
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observations. State conditions are used as a proxy to storage in the catchment which 

is a major moderator of flows. Data uncertainty arises not only directly from its 

measurement but also from its interpretation, data processing and spatial 

representativeness (Bulygina, 2007; Kitanidis and Bras, 1980; Liu and Gupta, 2007; 

Moradkhani and Sorooshian, 2008; Wagener and Gupta, 2005). Methods for 

collecting data may not be perfect and can result in measurement uncertainty. An 

example is if the instrumentation has not been calibrated appropriately. The human 

component of data uncertainty is introduced in the interpretation of the 

observations, for example, radar rainfall estimates and the conversion of stage data 

to flow data. In addition, observed data is often applied at scales very different to 

those they directly represent in the field (Blöschl and Sivapalan, 1995; Wagener et 

al., 2004a). Soil hydraulic conductivity, for example, can vary within metres of a 

measurement (Hopmans and Schoups, 2005) but a single observation may be 

applied to a much wider area.  

Data assimilation assumes that neither the model output nor the field observations 

are perfect and instead aims for consistency with real world processes by merging 

models and data (Reichle, 2008). Observations are used to correct for errors in 

driving data by updating states to better characterise catchment water storage. 

These updated states are then used to forecast streamflow over the next prediction 

interval. Consequently, the short–term biases associated with this source of 

uncertainty can be reduced (McLaughlin, 2002; Reichle, 2008; Wagener and Gupta, 

2005). This is particularly relevant in operational modelling when short-term 

predictions are the main aim and a balance needs to be achieved between 

computational efficiency and predictive accuracy. 

Model states can be updated directly using remote sensing or satellite information 

and field data such as snowpack water equivalent. The successful assimilation of 

remote sensing data into land surface models has been widely reported (Aubert et 

al., 2003; Dunne and Entekhabi, 2005; McLaughlin, 2002; Reichle, 2008; Reichle 

et al., 2002). However, there are some significant drawbacks. The temporal and 

spatial resolution of remotely sensed data is often very coarse compared to the 

model which they are used to inform and they can have inherently more uncertainty 

than in situ observations (Liu et al., 2012; Pauwels and De Lannoy, 2006).  

Streamflow can also be used to update states. Streamflow represents an integrated 

catchment response to rainfall and is an indicator of catchment water storage 

(Kirchner, 2009; Pauwels and De Lannoy, 2006). This data is generally available at 
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high temporal resolution and across different spatial scales (Pauwels and De 

Lannoy, 2006). As such, the assimilation of discharge observations to update states 

in rainfall-runoff models has been the focus of a number of studies in the last decade 

(Clark et al., 2008a; DeChant and Moradkhani, 2012; Pauwels and De Lannoy, 

2009; Seo et al., 2009; Vrugt et al., 2006; Weerts and El Serafy, 2006; Xie and 

Zhang, 2010) and is also a focus of this research. 

Increasingly, the use of data assimilation through state-correction is being 

recognised as an essential part of any forecasting application (Liu et al., 2012, in 

review). Without it, relatively large errors can accumulate in the model output, even 

over the short term (Collischonn et al., 2007). However, the success of state-

updating in terms of improving predictive accuracy is dependent on obtaining 

accurate parameter estimates. The inclusion of an (unbiased) error term in the 

model transition equation allows input, output and model structure error to be 

explicitly dealt with in the update procedure, but parameter uncertainty is largely 

ignored (Liu and Gupta, 2007; Moradkhani et al., 2005a; Vrugt et al., 2005). 

To overcome this problem, Moradkhani et al. (2005b) proposed a dual state-

parameter assimilation method which allows parameters to vary over time. States 

and parameters are updated simultaneously at each update step. However, Liu and 

Gupta (2007) point out that while parameters may vary over time they will generally 

vary at a much slower rate than state variables. They note that problems of 

instability could arise from both values being updated in the same time step and 

conclude that careful consideration should be given to identifying appropriate 

timescales which should be integrated into the data assimilation procedure. In 

another example, Vrugt et al. (2005) combine a data assimilation routine in a batch 

calibration method (Simultaneous Optimization and Data Assimilation (SODA)) to 

improve not only the predictive capabilities but also to more explicitly account for 

all sources of uncertainty. They note that the parameter values found will only have 

meaning in combination with a data assimilation method. In the absence of state-

correction, these parameters will not provide the best forecasts. This has 

implications for periods when observations may not be available to assimilate. 

These two state-parameter assimilation methods are based on adjusting a single 

optimal parameter set to ascertain the uncertainty bounds associated with the 

parameter set. While effective, the computational burden of these approaches can be 

limiting (Liu and Gupta, 2007; Xie and Zhang, 2010). Alternatively, Monte Carlo 

routines (described above) can account for the parametric and model structure 
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uncertainty by sampling the entire feasible parameter set and allowing more than 

one optimal parameter set to be identified. State updating applied to each time step 

for each parameter set can account explicitly for some of this parametric 

uncertainty. The model output for each parameter set reflects the range of potential 

outcomes and hence the uncertainty in the estimated parameters.  

With all sources of uncertainty accounted for, state-updating can significantly 

improve the accuracy of model predictions. However, although parameter and states 

are generally constrained either physically or mathematically in hydrological 

modelling, they are generally not constrained in the state updating process. In 

conceptual hydrological modelling, parameter ranges are usually determined a 

priori. State volumes are required to be non-negative and changes to states between 

time steps are based on mathematical representations of the interactions between 

stores and the processes controlling their recharge and depletion (Beven, 2001; 

Kitanidis and Bras, 1980; Kokkonen and Jakeman, 2001; Young, 2001). Conversely, 

the aim of state updating is to minimise the mean square error, irrespective of 

physical laws (Simon and Tien Li, 2002; Wang et al., 2009). While this can increase 

the possibility of successful forecasting (Weerts and El Serafy, 2006), it can also 

result in erratic streamflow simulations (Clark et al., 2008a). Pan and Wood (2006) 

found that although standard operation of a land surface model satisfied the 

requirement for closure of the water balance when state and flux observations were 

assimilated, the water balance was often broken because updates made to the 

various states were done without constraint. Clark et al. (2008a) note that in 

situations where the difference between the modelled streamflow and observed 

streamflow is large, state updates can be exceptionally large, resulting in unrealistic 

streamflow simulations. By constraining states to be consistent with physical laws 

the accuracy and reliability of model output can be improved (Wang et al., 2009).  

There are few examples in the hydrological literature where constraints have been 

applied. Reportedly, this is because of difficulties in incorporating them into the 

assimilation framework (Simon and Tien Li, 2002; Wang et al., 2009). However, 

Pan and Wood (2006) applied constraints to assure closure of the water balance in a 

land-surface model with relative ease. In another example, Wang et al. (2009) 

compared three approaches to constrain simultaneous state correction and 

parameter updating in a conceptual hydrologic model. To the best of the author‟s 

knowledge, constraints have not been applied in an operational forecasting context. 

Nevertheless, it should be considered an integral part of any state-updating 
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procedure, especially if the model output is being relied upon in decision making 

processes.  

3.4 Summary 

The purpose of this study is to develop a predictive rainfall-runoff model specifically 

for the Lake Taupo catchment. Inflow data are combined to provide accurate and 

reliable short-term predictions of lake level for robust decision making relating to 

the operation of the Waikato Power Scheme. Such a model needs to be 

computationally efficient and able to incorporate the complexities of the Lake Taupo 

catchment pertaining to the various regulated inflows and data/information issues. 

In addition, it is desirable that the model will provide enough information to 

contribute to the overall understanding of catchment hydrologic function. 

Internationally, empirical neural network models have received considerable 

attention for inflow applications in the last decade (Coulibaly et al., 2000; Dawson 

and Wilby, 2001; Jain et al., 1999; Xu and Li, 2002). Although operationally 

efficient, they can lack a physical basis. Extrapolation of the model beyond the range 

of hydrological conditions contained in the calibration data, or to other catchments, 

is therefore inappropriate. Physics-based models can provide a more detailed and 

accurate description of the hydrological processes within a catchment but their 

heavy data and computational requirements limit their usefulness.  

Physically-based conceptual models provide sufficient information about the 

catchment‟s response to rainfall as well as generate inflow predictions (model 

output) without necessarily being computationally demanding. They have been 

widely applied to reservoir inflow forecasting and are also suitable for extrapolation 

to ungauged areas. Conceptual models are also capable of incorporating regulation 

into the model structure, although there is little guidance in the literature as to how 

this can be achieved in the absence of direct operational information.  

To produce accurate and reliable model output, predictive models require adequate 

representation of the underlying system and accurate estimates of parameters and 

state variables. Errors associated with these sources of uncertainty need to be 

reduced to acceptable levels. Model calibration routines can deal with some of the 

uncertainty associated with the model structure and estimated parameters, but data 

errors (which determine state variables) are more difficult to assess. Data 

assimilation through state updating can deal with data uncertainties and, when used 
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in conjunction with Monte Carlo methods to explicitly address parameter 

uncertainty, can also be used as a general framework to address uncertainty from all 

sources. Because of this, state-updating is starting to be recognised as an integral 

part of any forecasting application. 

However, state-updating usually takes place with little, if any, consideration of 

physical laws. Without constraints, updated states may compromise the integrity 

and reliability of model output. This issue has received relatively little consideration 

in the hydrologic literature, but is an area that deserves further attention, 

particularly if model output is to be relied upon in decision making processes. 

In this dissertation, Monte Carlo sampling is used in conjunction with a constrained 

state updating approach to address all sources of uncertainty. State-updating is 

applied to catchments for which streamflow observations are available. 

Perturbations to states are constrained to improve the reliability of model output to 

enable more robust decision-making in the Lake Taupo catchment. 
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4 Data availability, processing and 

preparation 

The value of any model is dependent on the quality of the data that goes into it. This 

chapter summarises the data collected, analysed and used in the development and 

calibration of the conceptual rainfall-runoff model and subsequent data assimilation 

and prediction of lake level. Section 4.1 discusses the rainfall data available, the 

quality of that data and describes how gaps are infilled and catchment areal 

estimates are obtained. Section 4.2 explains the process for obtaining a long-term 

continuous record of potential evapotranspiration (PE), and lake evaporation, from 

the few observation points in and around Taupo. The availability and reliability of 

streamflow observations are discussed in Section 4.3 and includes the outflow from 

Lake Taupo. In the final section, seiche effects on lake level time series are described 

and the method used to reduce these effects explained. 

4.1 Rainfall 

Seventeen rainfall records are used in this study. These were selected based on 

temporal resolution, availability and proximity to catchments for model calibration 

and suitability as model driving data. Only eight of these gauging stations are 

currently operational (Figure 4.1). The location of these gauges is shown in Figure 
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4.2. Table 4.1 lists the rainfall gauges used, their respective locations, elevation and 

mean annual rainfall. Rainfall stations are located at elevations ranging between 

350 m a.s.l and over 1360 m a.s.l. The shortest record covers just 2.5 years at 

Turangi (Site No. 12432) followed by 3.5 years for Waitahanui (Site No. 869210). 

The longest record covers the period 1976-2001 (Tauranga-Taupo catchment, Site 

No. 960010).  

Errors and gaps in the data associated with rainfall records are generated from a 

number of sources including its measurement artefacts, transfer problems and 

processing issues. The majority of these rainfall records have been maintained by 

NIWA. The quality of these records is generally good, with gaps commented and 

files available that record where issues have been identified and/or resolved. 

Records provided by Environment Waikato have been quality checked and the 

reliability of the data given a code. Periods of data which are not considered of good 

quality from either the comment files or quality codes have been removed from the 

analysis. For the purpose of this study, rainfall data is interpolated to 15 minute time 

steps. 

4.1.1 Infilling missing data 

Rainfall data is an important input to hydrological models. Gaps sometimes occur in 

these records which may need to be infilled in order to generate a continuous long 

term record. These gaps may be isolated occurrences or cover lengthy periods. 

Approaches to infill these gaps include station-average, normal-ratio, inverse 

distance weighted and isohyetal methods. These methods all use observations from 

multiple nearby gauges to infill the missing data. The choice of method suitable for 

application in the Lake Taupo catchment is limited due to the sparse network of 

gauges and, in many cases, a lack of overlapping data between sites. Gauges are 

often located several kilometres (or more) apart and show only a small degree of 

correlation. As a result, finding more than one gauge to estimate a missing data 

point can be difficult.  

In this study, gaps in rainfall records are infilled using the normal-ratio method. The 

normal-ratio method weights the observations by their respective annual average 

volumes. It is suitable for use where differences between the annual catch at the 

gauge with the missing data and the gauge being used to infill the gap is greater than 

10%, which is a limitation of the station-average method (McCuen, 1998).  
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Figure 4.1 The duration and timing of rainfall records for the Lake Taupo catchment vary. The light blue 

bars indicate records stations which are closed. The dark blue bars represent currently operational gauge 

stations. 

 

Figure 4.2 Location of rainfall gauges used in this dissertation 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Taupo Aws (1858) 

Waitahanui (869210) 

Tauranga-Taupo (960010) 

Tauranga-Taupo (960010) 

Waimarino (859804) 

Ruatahuna (951903) 

Waipakihi (952710) 

Turangi 2 Ews (25643) 

Turangi Ews (12432) 

Kuratau (858701) 

Whareroa (858710) 

Waihaha (855710) 

Waihaha (855711) 

Otaipuhi (19137) 

Otaketake (856910) 

Mangakino (856736) 

Wairakei (866101) 
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Table 4.1 Rainfall gauging sites in the Lake Taupo catchment used in this study 

Agent Station Name Start Date 

  

End Date 

 

Mean Annual 

Rain (mm/a) 

Elevation 

(m a.s.l) 

Easting Northing Status Source 

1858 Taupo AWS 26-Jan-1996 24-Aug-2011 779 400 2778000 6269000 Open NIWA 

869210 Waitahanui at Collins Farm 9-Mar-1976 1-Jun-1979 1230 589 2785595 6251595 Closed NIWA 

960010 Tauranga-Taupo at Kiko Rd 9-Mar-1976 25-Jul-2001 1923 671 2769500 6239320 Open Waikato Regional Council 

960010 Tauranga-Taupo at Kiko Rd 29-Jul-2001 1-Aug-2011 1800 720 2768900 6238925 Open Genesis Energy Ltd 

859804 Waimarino at Kepa Rd 20-Jan-1994 1-Sep-2011 1469 418 2761104 6242603 Open Genesis Energy Ltd 

951903 Ruatahuna 15-Jul-2001 15-Oct-2009 1817 1360 2765100 6228690 Open Genesis Energy Ltd 

952710 Tongariro R. at Waipakihi 12-Dec-1987 1-Aug-2011 2386 880 2749375 6216555 Open Genesis Energy Ltd 

25643 Turangi 2 EWS 7-Mar-2003 1-Jun-2011 1397 350 2751859 6244085 Open NIWA 

12432 Turangi EWS 14-Sep-2000 1-Aug-2003 1449 375 2753626 6241844 Closed NIWA 

858701 Kuratau SH41 2-Jan-1994 1-Aug-2011 1475 500 2742650 6254700 Open King Country Energy Ltd 

855710 Waihaha at Forest Boundary 31-May-1976 21-Sep-1988 1502 540 2741290 6274100 Closed Waikato Regional Council 

855711 Waihaha at Farm House 22-Sep-1988 25-Apr-1995 1605 549 2742310 6273780 Closed Waikato Regional Council 

19137 Otupoto at Otaipuhi 14-Oct-2004 29-Nov-2011 1495 575 2744200 6278600 Open Waikato Regional Council 

856910 Otaketake at Otake Rd 18-Oct-1973 3-Jun-1980 1398 580 2761410 6285520 Closed NIWA 

866101 Wairakei 1-Jul-1998 1-Jul-12001 1319 340 2781400 6281500 Open Contact Energy Ltd 

856736 Mangakino at Kakaho Rd 20-Jun-2001 3-Feb-2011 1635 470 2748700 6288500 Closed NIWA 
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Following Dingman (2008) and McCuen (1998), the normal–ratio method is 

formulated as follows: 

      

 

   

   
Eqn 4.1 

where    is the missing point rainfall estimated by the weight,   , given to the depth 

of rainfall    at station  . The sum of the weighted rainfall calculated for    gauges is 

used to infill the missing data point. The weight for each station   is given by  

    
 

 
 
   

  
   

Eqn 4.2 

in which     is the average annual rainfall at the station with the missing data point, 

   is the average annual rainfall of the „donor‟ station and where   is the number of 

gauges used in the estimation of the missing data point. While average annual 

rainfall is used here to determine the relative weights, it would also be possible to 

define these weights using climatological monthly rainfall to account for the 

temporal variability of rainfall throughout the year. Data and time constraints 

prevented from this approach being used in this study. 

Where only one gauge in used to infill the missing data point, Eqn 4.2 simply 

becomes 

    
   
  

 
Eqn 4.3 

Correlation analysis is used to identify gauges suitable for estimating the missing 

data point. Correlations of daily and hourly rainfall depths are used in this process. 

Over a longer period a number of different rain gauges may be used to infill missing 

data points over different periods of the record. 

Infilled data will have greater uncertainty associated with it, especially if infilling is 

required over extended periods. For the purpose of model evaluation, gaps are 

infilled irrespective of length in order to obtain an uninterrupted data set for the 

period 1998-2011. Outside of this period, missing data is infilled only where 

necessary to achieve a suitable amount of time for model calibration and validation, 

avoiding periods of extensive missing data. Table 4.2 lists the percentage of rainfall 

records which have been infilled over calibration and evaluation periods as well as 

the 1998-2010 period. 
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Table 4.2. Percentage of rainfall records infilled 

Catchment Rain gauge Calibration period Evaluation period 1998-2010 

Waitahanui Waitahanui 0.00% - - 

Hinemaiaia Tauranga-Taupo 0.00% 0.00% 4.07% 

Tauranga-Taupo Tauranga-Taupo 0.00% 0.00% 4.07% 

Waimarino Waimarino 0.00% 0.00% 2.34% 

Lower Tongariro Waipakihi 0.00% 0.00% 0.00% 

Poutu Waipakihi 0.00% 0.00% 0.00% 

Waipakihi Waipakihi 0.00% 0.00% 0.00% 

Waihohonu Waipakihi 0.00% 0.00% 0.00% 

Waihi Turangi 0.00% - - 

Kuratau Kuratau 0.03% 0.00% 2.51% 

Whareroa Kuratau 0.00% - - 

Whanganui Waihaha 0.00% 0.87% - 

Waihaha Waihaha 0.00% 0.00% - 

Tutaeuaua Mangakino 0.00% - - 

 

4.1.2 Estimation of catchment areal rainfall 

Gauge data provides point values of rainfall only. Hydrological models require 

estimates of catchment areal volumes. There are several methods available to extend  

this point information to the area being modelled, the most common being area-

weighted and surface fitting methods. 

Area weighted methods (such as Thiessen polygons and inverse distance weighting) 

are suited to catchments in which the gauge network is well distributed and where 

topography does not have a strong influence on precipitation (Dingman, 2008). 

They are not used for the gauged sub-catchments of Lake Taupo since there is often 

only one gauge located in or near a catchment in question and there are few at 

elevation. Using the Thiessen polygons method in four sub-catchments of Lake 

Taupo did little to improve the error in estimation of catchment water balances 

compared to the single gauge observation (Table 4.3) since it does not take into 

account increased rainfall with elevation. 

The Thiessen polygons method, however, is used to estimate rainfall for ungauged 

areas which are spread around the lowland parts of the catchment because there 

would be no similarly simple method that would do better. Similarly, it is also used 

for estimating direct lake rainfall.   

Surface fitting methods use observations to derive a precipitation surface 

representative of the area of interest but can require significant computational 

resources (Dingman, 2008). Such a surface has been developed for New Zealand 
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(including Taupo) by Tait et al. (2006) who used a thin plate smoothing spline 

interpolation approach using latitude, longitude, and a mean annual precipitation 

surface (1951-1980) to estimate daily rainfall for the period 1960-2004. Woods et al. 

(2006) found that there were regional discrepancies in this surface. Runoff was 

underestimated in catchments where flow was less than 400 mm/a and over- 

estimated in catchments where flow was greater than 1200 mm/a. They proposed a 

bias correction surface to improve mean flow predictions (Woods et al., 2006). It 

can be used to either adjust modelled flow volumes or improve rainfall estimation, if 

it is thought most of the error is in catchment rainfall estimation (pers comm. 

Woods 2009).  

While the generated time series provides daily gridded rainfall from 1960, this study 

requires high resolution data for the 1998 to 2011 period. Therefore, estimates of 

input rainfall are determined by relating gauge volumes to estimates of total 

catchment rainfall at each time step. This relationship is based on annual average 

rainfall estimates for the observation point and the catchment as a whole. To 

determine a suitable estimate of catchment rainfall, annual average rainfall based on 

gauge observations, Theissen polygons, the surface derived by Tait et al. (2006) and 

corrected (for rainfall) by Woods et al. (2006) are compared using a simple water 

balance approach,  

        Eqn 4.4 

where   is annual average precipitation (mm/a),   is mean annual runoff (mm/a) 

and    is actual evapotranspiration (mm/a). Since    is not easily determined, it is 

calculated as the residual between rainfall and potential evapotranspiration (mean 

annual average as calculated for Turangi). Using the Budyko curve (Figure 4.3) to 

assess the expected partitioning between  ,   and   , ratios of    to potential 

evapotranspiration (    and   to   are used to evaluate the performance of each 

method for providing sensible estimates of catchment areal rainfall. 

Assuming    is correct, or has less uncertainty associated with it than the rainfall 

estimates, the ratios indicate that catchment rainfall is under-estimated in all sub-

catchments. Although the bias corrected rainfall from Woods et al. (2006) provides 

the most sensible results, these estimates are generally too low for the sub-

catchments of Lake Taupo. All methods are based on the observations from gauge 

locations and, therefore, may not be able to adequately account for all of the 

temporal and spatial variability of rainfall in areas (like Lake Taupo) where the 

network is sparse and rainfall gauges are located several kilometres apart. 
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As a result, in this study the amount by which the observations are scaled is included 

as a parameter for calibration. Initial parameter ranges are based on equalising 

catchment water balances for the calibration period. 

 

Figure 4.3 Budyko curve, adapted from Sivapalan (2005). In humid environments (such as Lake Taupo and 

New Zealand catchments, in general), evaporative demand is greater than can be satisfied by the 

energy limited environment. In the Lake Taupo catchments and climatic dryness index of between 0.4-0.6 

would suggest that 40-50% of rainfall is actually lost to evapotranspiration. 

Table 4.3. Annual Average Catchment Water Balance Analysis 

Tauranga-Taupo mm/a PE/P WB AE AE/PE Q/P AE/P 

Flow 1558      

PE 892      

Rain Observed 1908 0.47 350 0.39 0.82 0.18 

Rain Thiessen 1861 0.48 303 0.34 0.84 0.16 

Rain Tait 1883 0.47 325 0.36 0.83 0.17 

Rain Woods 2274 0.39 716 0.80 0.69 0.31 

Waimarino mm/a PE/P WB AE AE/PE Q/P AE/P 

Flow 1706      

PE 892      

Rain Observed 1474 0.61 -232 -0.26 1.16 -0.16 

Rain Thiessen 1853 0.48 147 0.16 0.92 0.08 

Rain Tait 1828 0.49 122 0.14 0.93 0.07 

Rain Woods 2139 0.42 433 0.49 0.80 0.20 

Kuratau mm/a PE/P WB AE AE/PE Q/P AE/P 

Flow 1175      

PE 892      

Rain Observed 1481 0.60 306 0.34 0.79 0.21 

Rain Thiessen 1784 0.50 609 0.68 0.66 0.34 

Rain Tait 1734 0.51 559 0.63 0.68 0.32 

Rain Woods 2139 0.42 964 1.08 0.55 0.45 

Waihaha mm/a PE/P WB AE AE/PE Q/P AE/P 

Flow 1321      

PE 892      

Rain Observed 1552 0.57 231 0.26 0.85 0.15 

Rain Thiessen 1492 0.60 171 0.19 0.89 0.11 

Rain Tait 1599 0.56 278 0.31 0.83 0.17 
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Rain Woods 1678 0.53 357 0.40 0.79 0.21 

4.2 Evapotranspiration 

Daily PE data is obtained from NIWA‟s National Climate Database 7  which is 

calculated using the Penman-Monteith potential evapotranspiration (PE) method 

(see Burman and Pochop  (1994), as cited on NIWA‟s National Climate Database). 

PE has been recorded at three sites within the Lake Taupo catchment. PE recorded 

at Taupo (Site No, 1841) was calculated between 1972 and 1993. Annual average PE 

for this record is 815 mm/yr. There are two records at Turangi. The first (Site No. 

12432) covers a short period between April 2002 and September 2002 and is 

therefore not considered in this analysis. Since March 2004, PE has been calculated 

in Turangi (Site No. 25643). Annual average PE at this site is 889 mm/yr. Outside of 

the Lake Taupo catchment, there are a number of other locations calculating PE. 

The Taumaranui site (Site No. 2250) is most proximal to the Lake Taupo catchment 

and has an annual average PE rate of 735 mm/yr.  

To obtain a long-term PE record for the Lake Taupo catchment, a combination of  

records are used to extend the Turangi PE time series back further in time. Since 

there is no overlapping record between the Taupo and Turangi sites it is difficult to 

ascertain the relationship between these two datasets. However, there is a high 

correlation (Table 4.4) between the daily Taupo and Turangi records with the 

Taumaranui site. Prior to March 2003, the Taumaranui PE record is used to extend 

the PE record at Turangi back to 1975 (the earliest data requirement for sub-

catchment model calibration). A multiplier is determined by the relative difference 

between the annual average PE rates for both sites and the Taumaranui values 

adjusted accordingly. 

Table 4.4. Correlation coefficients of daily PE rates between the Taumaranui station and the two records 

from the Taupo and Turangi stations.  

Station Name Correlation Coefficient (to Taumaranui (2250) 

Taupo (1841) 0.943 

Turangi (25643) 0.925 

 

The record provides an extended daily PE record from 1975 to present. However, 

finer temporal resolution data is needed to drive the model. This requires some form 

of data disaggregation. Evapotranspiration rates are a function of energy (e.g. direct 

                                                             
7 The National Climate Database: http://cliflo.niwa.co.nz/ 

http://cliflo.niwa.co.nz/
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radiation) and will typically follow a diurnal cycle. Approximations of this diurnal 

cycle are used by Liu (2005) and Van Den Bos et al. (2006). In their studies a simple 

sinusoidal function between sunrise and sunset is applied to approximate the daily 

temperature pattern. In other studies, this diurnal cycle is more directly estimated 

using sunshine duration (Drogue et al., 2002). 

This dissertation also approximates this diurnal cycle by fitting a sinusoidal function 

based on hourly mean global radiation as measured at Turangi, corrected for 

periods with high (>90%) humidity and minimal mean global radiation. The daily 

PE volume is then disaggregated accordingly. Missing daily data are replaced with 

the mean daily PE for the month in question. Hourly values are uniformly 

disaggregated to 15 minute intervals. 

Direct lake evaporation is obtained from NIWA‟s Climate Database using the open 

water evaporation time series recorded at Turangi. Using this method to estimate 

evaporation from large expanses of water like Lake Taupo may over-estimate 

evaporation by approximately 10-15 percent (Shuttleworth, 1993). Disaggregation of 

this time series was also undertaken using the same method described above.  

4.3 Streamflow and Outflow 

Historical discharge records have been obtained for 17 sub-catchments of Lake 

Taupo including the discharge time series for the TPS. Many of the records for these 

catchments are not publically available and have been obtained with permission 

from respective companies, including King Country Energy Ltd, Trustpower Ltd and 

Genesis Energy Ltd.  

Table 4.5 lists the time series data used in this study. All records are interpolated to 

15 minute time step resolution. These historical time series are of varying quality 

and length. Many catchments were gauged for a short period in the late 1970s as 

part of a study on the inflows to Lake Taupo (Schouten et al., 1981). Figure 4.4 

shows the timing and duration discharge records for the sub-catchments of this 

study and indicates which sites are still currently open. The location of these gauges 

is shown in Figure 4.5. During the 1970s and 1980s, the average time step length 

was several hours. As a result, flood peaks may be missed, leading to 

misrepresentation of the catchment‟s rainfall-runoff response.  Today, automatic 

gauging stations have improved data collection; average time step lengths since 

2000 are in the order of several minutes. 
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Errors in the observed streamflow records arise from the interpretation, 

measurement and processing of river flow data. For example, rating curves are used 

to relate stage (river height) and flow. However, if rating curves are not reviewed 

frequently enough changes in bed form can alter the stage-flow relationship. For 

some records, quality codes have been assigned to each observation, providing an 

indication of the reliability of the records. For other records, comment files indicate 

gaps in the record and ratings measurements. Observations that are deemed to be of 

poor quality are removed from the analysis. In the case of streamflow data, missing 

values are not infilled since calibration and evaluation can occur on available 

observations. In terms of data assimilation, state-updating does not occur where 

observations do not exist. 

Outflow from Lake Taupo has been recorded directly since 1969, and has been 

indirectly inferred from lake level records since 1905. Streamflow downstream of the 

Taupo Control Gates (as recorded at Reid‟s Farm, Site No. 1143444), has been 

supplied by NIWA for the period September 1969 to July 2011. Although discharge 

from the Taupo Control Gates is available, it is considered less accurate than the 

Reid‟s Farm site to which it is calibrated (pers Comm., Mighty River Power 2013).  

The information from this gauge is used as the estimate of outflow from the Taupo 

Control Gates between 1998 and 2010. Fortunately, over this period the record is 

complete. Outside of this period, gaps could be infilled using the inflow data to the 

Wairakei Power Station downstream. 
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Table 4.5 Hydrological gauging sites in the Lake Taupo catchment used in this study 

Catchment Site No. Start date End date  

 

Area 

 

Duration 

 

Median 

Flow 

Mean 

Flow 

Mean Ann  

Runoff 

Easting Northing Status Source 

    (km2) (years) (m3/s) (m3/s) (mm/a)     

Waitahanui 1543411 21-Jan-1976 13-Jan-1981 196.1 4.98 6.90 6.82 1097 2777854 6262966 Closed Waikato Regional Council 

Hinemaiaia above scheme 1543412 29-Apr-1981 12-Apr-1987 125.4 5.95 3.41 4.02 1012 2779618 6250935 Closed Waikato Regional Council 

Hinemaiaia above scheme 2743464 13-Apr-1987 12-Dec-2000 125.4 13.67 4.68 5.52 1389 2779600 6250900 Closed Trustpower Ltd 

Hinemaiaia below scheme 3043471 20-Jun-2000 24-Jan-2009 153.3 8.60 4.64 5.53 1139 2774800 6255600 Open Trustpower Ltd 

Tauranga-Taupo 1543413 11-Feb-1976 18-Jul-2008 197.1 32.45 6.91 9.67 1547 2763601 6247272 Open Waikato Regional Council 

Waimarino 1543420 24-Sep-976 24-Jan-2009 63.6 32.35 2.30 3.46 1714 2761088 6242496 Open SCION 

Waipakihi 1043461 1-Jan-1960 1-Jul-2008 180.0 49.10 8.25 11.91 2087 2749288 6216582 Open NIWA 

Waihohonu 1043466 1-Aug-1961 24-Jan-2009 96.1 47.51 5.77 6.30 2067 2746291 6217307 Open NIWA 

Waihi 3043481 12-Feb-2003 18-Jan-2006 9.8 2.93 0.33 0.39 1261 2747400 6247500 Closed NIWA 

Kuratau above scheme 1043468 14-Nov-1978 21-Jul-2008 119.3 30.21 3.34 4.28 1132 2742682 6254632 Open King Country Energy Ltd 

Kuratau below scheme 1543443 17-Jun-1976 16-Feb-1979 194.2 2.67 5.48 6.58 1068 2748343 6254288 Closed King Country Energy Ltd 

Whareroa 1243461 26-Sep-1977 20-Aug-1980 59.4 2.90 1.01 1.24 661 2750708 6257057 Closed Waikato Regional Council 

Whareroa 1243461 8-May-2002 18-Jul-2008 59.4 6.20 1.06 1.25 664 2750708 6257057 Open Waikato Regional Council 

Whanganui 1543427 2-Jul-1976 29-Sep-1980 31.6 4.33 1.07 1.55 1546 2742196 6266535 Closed Waikato Regional Council 

Waihaha 1543424 26-May-1976 3-May-1995 133.7 18.95 4.40 5.60 1321 2743434 6274731 Closed Waikato Regional Council 

Tutaeuaua 3043485 14-Oct-2004 14-Jan-2010 3.3 5.25 0.06 0.08 723 2753600 6280700 Closed NIWA 

Otaketake 1543410 19-Sep-1977 22-Sep-1980 16.3 3.01 0.10 0.12 223 2763110 6281674 Closed NIWA 

Tongariro d/s Poutu Intake 1643445 15-Dec-1987 23-Mar-2009 442.6 21.29 16.26 19.2 1369 2754061 6226873 Open Genesis Energy Ltd 

Tongariro pre 1974 1043459 2-Jan-1957 28-Dec-1973 784.2 17.00 45.13 52.59 2115 2753749 6241697 - Genesis Energy Ltd 

Tongariro post 1974 1043459 2-Jan-1975 1-Apr-2008 784.2 33.27 27.83 32.13 1292 2753749 6241697 Open Genesis Energy Ltd 

TPS  2-Jan-1998 30-Jun-2011 - 13.49  46.64 - - - Open Genesis Energy Ltd 

Waikato outflow 1143444 23/09/1969 15-Jul-2008 3445 39.56 151.33 150.64 1379 2778271 6277678 Open Mighty River Power Ltd 
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Figure 4.4 The duration and timing of river discharge records for the Lake Taupo catchment vary. The light 

blue bars indicate records stations which are closed. The dark blue bars represent currently operational 

gauge stations. 

 

Figure 4.5 Location of streamflow gauges used in this dissertation. 
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Hinemaiaia above dam (2743464) 
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Tauranga-Taupo (1543413) 

Waimarino (1543420) 

Waihi (3043481) 

Kuratau (1043468) 

Kuratau below (1543443) 

Whareroa1 (1243461) 

Whareroa2 (1243461) 

Whanganui (1543427) 

Waihaha (1543424) 

Tutueaua (3043485) 

Otaketake (1543410) 

Tongariro (1043459) 

Waipakihi (1043461) 

Waihohonu (1043466) 

Waikato outflow (1143444) 

Tokaanu Power Scheme 
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4.4 Lake level 

There are two lake level gauging sites– Tokaanu (Site No. 1143420) and Acacia Bay 

(Site No. 1543478) – located at opposites ends of the Lake Taupo (Figure 4.6). The 

average of these two records is used to provide lake level time series. Where there 

are gaps, the station with the data is the sole contributor. 

As discussed in Section 2.3.4, Lake Taupo is affected by a number of seiche and 

other oscillatory fluctuations that can at times be several centimetres. There are 

several seiches in effect on Lake Taupo with periods of 30 minutes (wind seiche) up 

to several hours (baroclinic seiche) (Gilmour and Butcher, 1987; Gilmour and 

Heath, 1989). These effects make measuring the level of Lake Taupo difficult. 

Removal of these seiche effects allows the genuine lake level response to be 

identified for easier assessment of the Lake Taupo Inflow Model performance and 

more accurate determination of inflows from ungauged areas. 

 

 

Figure 4.6 Location of lake gauges used in this dissertation. 
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Early attempts to address this issue are based on averaging lake level over a suitable 

interval. For example, Thompson and Ibbitt (1978) concluded that a smoothing 

interval of 3 hours is required to remove the effect of wind seiches on Lake Tekapo. 

Gilbert (1978) found that this method often „blurred‟ too much detail in the time 

series and proposed a method based on an exponential decay function for lake 

inflows. Inflow is calculated for each time step based on knowledge the current and 

previous days inflow, with a minimum inflow value for the lake. Similarly, NIWA 

use a method based on the conservation of volumes in which data is smoothed and 

inflow/outflow volumes are adjusted for physically consistent lake level recessions. 

Inflows are allowed to rise rapidly, but the rate of recession is limited. These 

smoothing methods often mean that the inflow data set generated may not be 

consistent with actual measured inflows.  

In this dissertation, a low-pass Butterworth filter is used to remove the high 

frequency oscillations while preserving the lower frequency rise and fall of the lake. 

Butterworth filters have their origins in signal processing applications. The filter is 

created in Matlab using the butter function, which requires two parameters to be 

specified – the order number and the normalised cutoff frequency. The higher the 

filter order, the longer the passband flatness and the wider the transition between 

signals that are accepted and rejected (Narasimhan and Veena, 2005). The passband 

is the range of frequencies or wavelengths that are allowed to pass through a filter 

(Lyons, 2001). A low-pass filter passes low frequency signals, and rejects signals at 

higher frequencies.  

The second parameter is the normalised cutoff frequency. This parameter is related 

to the period of the oscillations and while it is precise, because discrete data is used 

some of the slightly higher frequencies will remain in the filter signal. In this study 

the normalised cutoff frequency is determined by dividing the resolution of the data 

(i.e. 15 minutes) by the length of the period below which the filter will aim to 

remove. For example, a normalised cutoff of half an hour (2 time steps) results in a 

cutoff frequency of 0.5 (1/2). Similarly, a cutoff of 1 hour (4 time steps) results in a 

cutoff frequency of 0.25 hours (1/4). Figure 4.7 shows the effect of different cutoff 

frequencies on lake level for Lake Taupo. Taking a cutoff frequency of 6 hours 

(Figure 4.7a) removes too much of the frequency domain while with a cutoff of 0.5 

hour (Figure 4.7b) too much of the noise remains. In this study, a 4th order 

Butterworth filter is applied with a cut-off frequency of 2.5 hours (Figure 4.7c). This 

cutoff value removes a large amount of the high frequency oscillations while 

preserving the rise and fall of the lake. Oscillations with lower frequency, such as 
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Figure 4.7. The effect of different cutoff frequency values on reducing high frequency oscillations in the 

lake level time series for Lake Taupo. A 6 hour cutoff frequency (a) removes too much of the frequency 

domain. Not enough of the high frequency oscillations are removed with a cutoff frequency of 0.5 hours. 

A cutoff frequency of 2.5 hours (c) appears to remove most of the high frequency oscillations while 

preserving the more natural rise and fall of the lake. 

 

barometric seiches, would remain. Removing these longer period effects may also 

remove some of the genuine lake level change. The time series is run through the 

filter twice (forwards and backwards) to ensure any phase distortions are removed 

(de Goffau, 2006). 

4.5 Data uncertainty 

The methods described in the previous sections relating to creating serially complete 

records, estimation of catchment volumes and addressing lake seiche effects, 

generate some uncertainty in the data sets which can have flow-on effects to 

modelled output. In this study, no attempt is made to rigorously analyse this 

uncertainty from the various data sources. While a synthetic study comparing „raw‟ 

and „synthetic‟ data to show their effect on model simulation may have been useful, 

time constraints prevented this from being undertaken. Fortunately, the data 

assimilation routine used later in this dissertation does account for all sources of 

uncertainty (and specifically the uncertainty associated with data), although does 

not separate these errors out (refer Section 6.5). 
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4.6 Summary 

A model is only as good as the data used to drive it. Rainfall, evapotranspiration, 

streamflow, TPS discharge data, outflow and lake level data have been made 

available from a number of sources for the purpose of this study. The data has been 

collected and assessed for quality, gaps and inconsistencies. 

Gaps in rainfall are infilled using the normal-ratio method. Although other methods 

(e.g. isohyetal and inverse distance weighted methods) may provide more reliable 

estimates of missing rainfall  (McCuen, 1998), the low density of rain gauges and a 

lack of overlapping data sets limited their application. Approaches to extend these 

point estimates to catchment volumes are compared in terms of their ability to close 

the water balance. While the precipitation surface of Tait et al. (2006), and 

subsequent bias corrected surface of Woods et al. (2006), improved water balances 

there is still some discrepancy. Estimation of catchment areal volumes are therefore 

left as a parameter for calibration. Thiessen polygons are used to derive catchment 

rainfall for ungauged areas and direct lake rainfall. 

A long-term continuous PE record is obtained for the Lake Taupo catchment 

through back-filling gaps with a highly correlated record. This time series of daily 

PE is disaggregated using a sinusoidal function based on mean global radiation and 

corrected for periods of high humidity and minimal mean global radiation. A similar 

process is used to obtain a long-term continuous time series for lake evaporation. 

Streamflow data is obtained for 17 sub-catchments. The length and quality of 

records vary. Missing data is ignored as model calibration and state-updating occur 

only where observations are available. Outflow from Lake Taupo is available from 

September 1969. This time series is continuous over the period 1998-2010 in which 

it is used in the Lake Taupo Inflow Model to predict lake level and derive residual  

inflow for ungauged areas. 

Finally, the lake level time series for Lake Taupo presents significant oscillations 

resulting from various seiches. Removal of the high frequency oscillations (wind 

seiches) while maintaining the genuine rise and fall of the lake is achieved by using a 

Butterworth filter. Some of the longer period (barometric seiche) oscillations remain 

and may be difficult to remove without losing some information about actual lake 

level change. 
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The rigorous analysis undertaken allows selection of suitable data sets and data 

periods for model calibration and evaluation, providing valuable information about 

the reliability of the data used to drive the conceptual rainfall-runoff model.  
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5 Catchment hydrologic behaviour 

Conceptual model structures simplify the complex rainfall-runoff relationship (refer 

Chapter 3). The model structure is generally determined a priori based on the 

perceived importance of the rainfall-runoff mechanisms by the modeller (Beven, 

2001). Development of a suitable conceptual model, therefore, entails identification 

of the main factors relevant to the rainfall-runoff response in the catchment. This 

requires some understanding of catchment hydrologic function, particularly with 

respect to the climatic and physiographic attributes which control how much water 

enters the catchment and the movement of this water once it reaches the ground 

(Duncan and Woods, 2004). Quantification of the relative importance of each of 

these factors is useful for determining the dominance of a process or attribute in 

terms of the catchment‟s hydrologic response.  

The objective of this chapter is to examine the rainfall-runoff relationships in the 

Lake Taupo catchment. These relationships are used, along with a fundamental 

understanding of hydrologic principles, to build a perceptual model of the 

catchment8 and guide development of initial sub-catchment model structures and 

parameter estimation. It is the principal chapter for addressing the hydrological 

objectives of the study. Section 5.1 provides a review of the effect of climatic and 

physiographic attributes on catchment hydrologic response. Section 5.2 outlines the 

                                                             
8 A perceptual model is defined by Beven (2001) as ‘a qualitative description of the processes thought to 

be controlling the hydrological response of an area’ (Beven, K.J., 2001. Rainfall-Runoff Modelling: The 

Primer. John Wiley & Sons.).  
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indices and method used in this dissertation to examine these relationships while 

Section 5.3 discusses the results from this analysis. Finally, Section 5.4 presents a 

summary of the key findings and implications for model development. Detailed 

catchment data analysis can be found in Appendix B. 

5.1 Catchment hydrologic response and behaviour 

Flow represents the catchment integrated response to a rainfall event and to the 

catchment antecedent conditions (or soil moisture conditions) just prior to that 

rainfall event (Kirchner, 2009; Pauwels and De Lannoy, 2006). The way in which 

this response changes over time is known as a river‟s flow (or hydrological) regime.  

Examination of flow regimes can provide information about the likely response of a 

catchment to a rainfall event, susceptibility to low flows and flood flows, monthly, 

seasonal and annual patterns of flow, impact assessment and whether it is 

potentially useful (Duncan and Woods, 2004). Climatic and physiographic 

attributes specific to the catchment are major influences shaping this flow regime, 

providing an insight to the dominant processes that may control the catchment‟s 

runoff response.   

5.1.1 Effect of climatic attributes on catchment flow regimes 

The climatic attributes of a catchment influence the amount of water entering the 

catchment. Runoff generally follows the seasonal distribution of rainfall unless snow 

accumulates in large enough quantities to affect runoff regimes (Riggs, 1985). At 

shorter timescales, catchment-to-catchment variations in precipitation and PE 

influence the amount of water available at the surface for runoff. Along with 

topography and other catchment attributes, climatic attributes broadly control the 

frequency of flood flows and low flows (Snelder and Biggs, 2002). 

Rainfall depths depend on the size, location and topographic characteristics of the 

catchment, the interaction of the catchment with the passage of weather systems 

over the area and the precipitation-generating mechanisms of these systems. In the 

Lake Taupo catchment, the temporal and spatial variability of rainfall is 

considerable. In mountainous areas (i.e., the Kaimanawa Ranges and the volcanoes 

of the Tongariro National Park), precipitation is generally greater (>2000 mm/a) 

than in lowland parts of the catchment (i.e. Taupo and Turangi, <1200 mm/a). In 
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addition, at higher elevations lower temperatures result in more of this precipitation 

falling as snow and lower evapotranspiration rates (Snelder and Biggs, 2002).  

5.1.2 Effect of physiographic attributes on catchment flow regimes 

The transformation from precipitation to streamflow is dependent on many 

variables (Riggs, 1985). Catchment physical attributes influence the ability of a 

catchment to store water and the timing and magnitude of the runoff response. The 

relative importance of each of the physiographic attributes in the estimation of 

hydrological behaviour varies from catchment to catchment, and is reflected in the 

hydrographs from which two principal components can be identified – the fastflow 

response and the baseflow (groundwater) response (Duncan and Woods, 2004). The 

hydrological response in terms of the timing and volume of the flood flow and 

baseflow response is strongly influenced by catchment physical properties which 

control the movement of water once it reaches the ground (Duncan and Woods, 

2004; Snelder and Biggs, 2002)  

The type of vegetative cover influences water yield, surface interception of rainfall 

and evaporation rates. Consequently, vegetative cover influences the amount of 

water available to reach the river and the frequency and duration of low flow periods 

(Snelder and Biggs, 2002). Over 55 % of the Lake Taupo catchment (by land area) is 

forested. Forested areas tend to have higher interception rates (Kelliher et al., 1993) 

and lower annual water yields (Fahey et al., 2004) relative to grassland and pasture. 

Conversely, pastoral catchments (19% of catchments land area) generally have 

higher annual yields and peak flows and can be more responsive (higher quickflows) 

than comparable forested catchments (Fahey et al., 2004). 

Water retention and conductivity characteristics of soils determine soil water 

storage and movement (Kelliher and Scotter, 1992), acting as a buffer in the 

hydrological cycle. These characteristics vary depending on the type of soil in a 

catchment and are important because they affect evaporation, surface runoff, 

groundwater recharge and stream flow through infiltration, redistribution and 

drainage processes (Kelliher and Scotter, 1992). Most of the soils around the Lake 

Taupo catchment derive from the tephra and ashes from the Taupo eruption (Gibbs, 

1968; Molloy, 1998; Rijkse, 1987). Pumice soils are most prevalent (Rijkse, 1987). 

The generally sandy or gravelly texture of pumice soils means they are porous and 

well-draining, allowing rapid movement of air and water while still capable of 

storing large amounts of water for plants (Molloy, 1998).  
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The presence of groundwater is related to catchment geology, controlling storage 

and transmissivity (Snelder and Biggs, 2002) and significantly influences patterns 

of discharge, variability and flashiness (Rosen and Coshell, 1998). The volcanic ash, 

pumice and ignimbrite found in the Lake Taupo catchment readily absorb water that 

falls on them allowing percolation to groundwater which feeds many of the rivers 

and streams in the catchment (Roper, 2001; White, 2001). Groundwater acts as a 

buffer between the rainfall event and streamflow response by dampening flood 

response and reducing overall flow variability. Areas of more permeable lithologies 

(Oruanui and Taupo ignimbrite, and rhyolitic pyroclastics) generally have lower 

mean flows and specific discharges (Morgenstern, 2008). These types of catchments 

tend to have higher and more persistent baseflows, more groundwater storage and 

respond less rapidly to rainfall (Duncan and Woods, 2004). Schouten et al., (1981) 

estimate that as much as 95% of annual discharge from the rivers draining the 

permeable areas of the Lake Taupo could be derived from groundwater. In less 

permeable areas (Whakamaru ignimbrite) specific discharge and mean flows are 

comparatively higher. These catchments respond more quickly to rainfall events 

with steep recessions and lower baseflow volumes (Duncan and Woods, 2004). The 

baseflow proportion of annual runoff from catchments draining less permeable 

lithologies is less than 80% (Schouten et al., 1981).  

The time it takes for water to reach the river and be transported from the catchment 

is influenced by geomorphic characteristics including the catchment‟s size, shape, 

slope and drainage density (Chow, 1964; Post and Jakeman, 1996; Schumm, 1956). 

It is widely accepted that streamflow is directly related to the size of the catchment 

(Beven, 2001; Chow, 1964). In larger catchments, more water can be captured and 

discharged. In terms of shape, a long narrow basin is more likely to have a more 

rapid response to rainfall events, shorter recessions and larger peak flows than a 

catchment which is rounder (Chow, 1964). In a study of 17 small mountain 

catchments (0.04-0.65 km2), Post and Jakeman (1996) conclude that wider 

catchments drain more slowly and have longer quickflow recession time constants. 

Gently sloping catchments tend to have more subdued and delayed flow response 

(longer baseflow recessions) than catchments with higher gradients and steeper 

slopes because it takes longer for precipitation to reach drainage channels. 

Catchments with higher drainage densities showed more attenuated quickflow 

response periods, since water is able to reach drainage channels more quickly. In 

catchments with lower drainage density, water needs to travel through a larger area 

of the catchment before it reaches the river, reducing catchment response times.  
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5.1.3 Effect of regulation on natural flow regimes 

Hydro power schemes and the dams associated with them can alter natural flow 

regimes by physically blocking the river, storing excess runoff, or releasing water 

according to human needs. Effectively, hydro power schemes and dams modify the 

magnitude and timing of catchment runoff (Poff and Hart, 2002). This can result in 

flood responses downstream of infrastructures being dampened and flood peaks 

attenuated (Bednarek, 2001). Stored water can be released to augment low flows 

and can provide more uniform monthly flow distributions (Duncan and Woods, 

2004). While the variability of flow over longer periods is often less, over shorter 

time frames fluctuations can be significant in response to electricity spot prices and 

electricity demands (Bednarek, 2001; Young et al., 2004).  

The TPS is the largest and most complex of hydro schemes in the Lake Taupo 

catchment. The impact on the flow regime of the Tongariro catchment is significant. 

Streamflow during „normal‟ conditions is most affected. Up to 80 m3/s can be 

diverted from the river for generation at Tokaanu Power Station, between 16 m3/s 

(minimum flow condition) and 160 m3/s (maximum turbidity level). Stephens 

(1989) reports the operation of the scheme has resulted in reduced normal flow, less 

seasonal variations in normal flow, reduced frequency of small flood („freshes‟), 

truncated recessions and minimum flows soon after rain, higher flows during 

drought and artificially induced surges (for example, those associated with required 

recreational releases).  

In the Kuratau catchment, the release of water follows the typical diurnal energy 

demand profile (Figure 5.1) and water is held back in the lake for generation at peak 

times. Peak demand periods are during early morning and evening; demand is less 

overnight. Short term flow variability is increased. The Hinemaiaia Power Scheme is 

largely run-of-river which means it has relatively limited storage volume and short 

residence time (EPA, 2010). Although there is some fluctuation related to the daily 

energy demand profile, there is relatively little modification to the unmodified 

streamflow entering the system above the scheme (refer Figure 2.8).  



 

 88 | Catchment hydrologic behaviour 
 

 

Figure 5.1. Typical load profile of daily energy use. Note the two peak demand periods during day and 

lower demand overnight. Source: Transpower New Zealand Ltd (2010) 

5.1.4 Summary 

The assessment of the climatic physiographic and hydrologic attributes can provide 

some insight into the important processes and mechanisms for the rainfall-runoff 

response in the Lake Taupo catchment. The seasonality of streamflow (including 

high and low flow regimes) is largely controlled by climatic attributes (Snelder and 

Biggs, 2002) while physiographic attributes mainly influence the movement of 

water once it reaches the ground. The type of vegetation affects surface interception 

of rainfall and evapotranspiration and can consequently affect catchment water 

yield. Of the water that reaches the ground, the transmissivity of the soils and 

geology of the groundwater system play a significant role in determining the rate at 

which water passes through the catchment. Geomorphic attributes are also 

important factors controlling the speed at which water reaches the river and is 

transported out of the catchment. The development of hydro power schemes has 

modified the downstream magnitude and timing of flow. In the following sections, 

the relationships between these physical attributes and various hydrologic 

characteristics are investigated for a number of sub-catchments of Lake Taupo. 

Further, the effects of hydro power schemes on natural flow regimes are identified. 
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5.2 Assessment of catchment physical attributes in relation 

to hydrologic characteristics 

Based on the information above, a number of indices are selected to describe the 

various attributes of the catchment. These attributes have been categorised into 

hydrologic, climatic and physiographic. A list of the indices used is provided in 

Table 5.1. 

 

Table 5.1. Hydrologic, climatic and physiographic attributes used for analysis 

Category Attributes Method of measurement units 

Hydrologic    

 Mean Annual Flow Average annual flow m3/s 

 Specific discharge Mean flow per unit area m3/s per km2 

 Baseflow index Chapman (1991) - 

 Variability Index Lane and Lei (1950) - 

 Low flows  Q50/Q95 (Davie 2003) - 

 Flood flows Q10/Q30 (Davie 2003)  

Climatic    

 Wetness Ratio  P/PE mm/a 

 Runoff Coefficient P/Q mm/a 

Physiographic    

 Volcanic geology Proportion of catchment % 

 Basement geology Proportion of catchment % 

    

 Pumice soils  Proportion of catchment % 

    

 Forest cover Proportion of catchment % 

    

 Area NIWA km2 

 Elongation Ratio Circle diameter†/catchment length‡ - 

 Relief Ratio ReliefŦ/catchment length‡ - 

 Mean Slope Average slope degrees 

 Slopes >26° Proportion of catchment % 

 Drainage density Total channel length/catchment area km/km2 

† diameter of a circle with the same area as the catchment; ‡ length of main drainage line extended to 

catchment boundary;  Ŧ elevation difference between the highest point and lowest (or outlet) point in 

the catchment. 
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5.2.1 Hydrologic indices 

In this study, six hydrological indices have been selected for analysis: mean flow, 

specific discharge, baseflow contribution, flow variability and indices of flood flows 

and low flows. These have been selected because together they represent a wide 

range of hydrological aspects of catchment flow regimes. Each of these attributes is 

described in the following sections.  

Mean flow and specific discharge 

Mean flow is defined as the arithmetic mean of all the individual average annual 

discharge over the length of the record. Specific discharge describes flow generated 

per unit area. It can be used for individual hydrograph response analysis or as an 

average over the entire hydrologic time series. Unlike mean flow, the use of specific 

discharge allows for more direct comparisons between catchments of different sizes 

and can be easily converted into depth of runoff in millimetres for comparison to 

rainfall and evapotranspiration (Duncan and Woods, 2004). 

Baseflow contribution 

The analysis of baseflows and flood flows requires some form of separation between 

these two flow components of the hydrograph. Graphical techniques such as that of 

Hewlett and Hibbert (1967) generally aim to separate the baseflow and quickflow 

proportion of individual event hydrographs. These techniques are less convenient 

when separations are required over long continuous time series (Chapman and 

Maxwell, 1996). This has led to the use of numerical algorithms for baseflow 

separation.  

Two common continuous separation techniques include the Institute of Hydrology 

(UK) smoothed minima method and those based on Lynne and Hollick‟s recursive 

digital filter, both described in Nathan and McMahon (1990). The smoothed minima 

technique finds the minima over five day non-overlapping periods over the entire 

record. The minima values which are less than a defined threshold are connected to 

produce the baseflow hydrograph. The recursive digital filter separates the low 

frequency, high magnitude flood flow signal in the time series from the high 

frequency, low magnitude baseflow signal. These approaches aim to derive an 

objective index of baseflow response rather than simulate actual baseflow conditions 

and can, therefore, lack a physical basis (Szilagyi, 2004). Nathan and McMahon 
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(1990) argue that the approach is no more unrealistic than approaches based on a 

series of straight lines. 

In a comparison of the two approaches, Nathan and McMahon (1990) found that the 

smoothed minima technique did not perform as well as the recursive digital filter, 

particularly during periods of negligible baseflow contribution. Output statistics 

suggest the digital filter is also less variable; it is also more strongly correlated to 

other low flow indices. 

The recursive digital filter can be written 

                  
     

 
              

Eqn 5.1 

where       is the filtered quickflow response at time step   or the previous time step 

   ,      is the total streamflow at time step  , and    is the filter parameter. 

Nathan and McMahon (1990) suggest that    should be between 0.9 and 0.95. They 

also note that the filter should be passed through more than once. The filter 

parameter affects the degree of attenuation but the number of passes of the filter 

determines the degree of smoothing. Nathan and McMahon (1990) recommend 

three passes (forward, backward and forward again). Arnold et al. (1995) show that 

when applied to 11 catchments in the USA, the baseflow proportion decreased with 

each pass of the filter. The second pass reduced baseflow by 17% and a further 10% 

for the third pass. The greater the number of iterations the more smoothing of the 

data resulting in lower baseflow estimates. Chapman (1991) notes that plausible 

results could be achieved with just two passes of the filter.  

There is another effect of passing the filter through more than once that is not 

discussed in the original papers. A single pass of the filter can add a phase distortion 

to the data affecting the timing of the baseflow response. Spongberg (2000) 

concludes that the filter should be passed an even number of times to minimise any 

phase distortion of the data due to the forward (odd numbered) pass of the filter.  A 

subsequent third pass would smooth the baseflow response further but any phase 

distortion would also reappear.  

The filter in the form of Eqn 5.1 assumes that baseflow remains constant during 

periods of no direct runoff, which is generally not the case (Chapman, 1991). 

Chapman (1991) reformulated the approach to be consistent with conventional 

recession theory, so that: 



 

 92 | Catchment hydrologic behaviour 
 

          
      

    
            

 

    
                   

Eqn 5.2 

where   now becomes a recession constant, the ratio of flow to the preceding flow 

during a period of no direct runoff (Chapman, 1991). Eqn 5.2 can be rewritten in 

terms of baseflow and simplified so that, 

          
 

    
            

    

    
       

Eqn 5.3 

The baseflow index represents the proportion of the total stream volume over the 

length of the time series. A further development of this filter is proposed by 

Eckhardt (2005) in which an additional parameter,       , constrains the 

maximum value of the baseflow index, which will change depending on the 

permeability of the catchment. This filter is written 

         
                                    

            
 

Eqn 5.4 

where            . The value of        varies depending on the hydrological and 

hydro-geological conditions of the catchment (Eckhardt, 2008), reflecting the 

assumption that baseflow is linearly proportional to storage (Partington et al., 

2012). Since        is not measureable, it adds some subjectivity to the process 

(Eckhardt, 2005). 

There are a number of assumptions involved in using digital filters that may not 

hold in hydrological applications. These filters generally assume that the low 

frequency (baseflow) signal and the higher frequency (direct runoff) signal can be 

isolated. In a review of the use of digital filters for baseflow separation, Spongberg 

(2000) concludes that perfect separation cannot be achieved because of overlapping 

frequency content. Some information may, therefore, be lost in the filtering 

processes that may affect the reliability of filter results (Spongberg, 2000). 

Further, time series based algorithms such as the filters described above generally 

assume stationarity in the data. That is, the statistical parameters of the data set 

such as the mean and variance remain constant through time (Chow, 1964; 

Maidment, 1993). Over timescales less than a year, a time series is non-stationary 

due to seasonality. On an annual scale hydrologic time series will generally be 

stationary where there have been no significant changes (for example, extensive 

changes to vegetation cover, human-induced modification such as hydro power 

development etc.). Removing non-stationarity for data series can be complex, and in 

most cases stationarity is assumed (Chow, 1964).  
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In this study, the approach of Chapman (1991) is selected to provide an index of 

baseflow contribution to streamflow using two passes of the filter to minimise any 

phase distortion. The recession constant is determined by evaluating consecutive 

flow values in recession periods (defined as flow values between Q95 and Q30 of the 

flow duration curve) and taking the average of these ratios. This approach is selected 

for its simplicity, and is deemed sufficient to detect the relative differences between 

catchments.  

Variability 

Flow duration curves are a convenient and informative way of displaying the range 

of flow for a catchment by presenting the relationship between streamflow and the 

percentage of time it is exceeded (Gordon et al., 2004). They can be used to 

understand catchment runoff response characteristics by assessing the shape of the 

curve, which is influenced by catchment climatic and physical attributes (Peters, 

1994). Flow duration curves are particularly useful when comparing the runoff 

response between catchments or the effect of, for example, climatic changes, land 

use modifications and the effect of regulation from hydro power schemes. 

In this study, flow duration curves of mean hourly flow are used to ascertain an 

overall measure of variability. Following Lane and Lei (1950), the standard 

deviations of the logarithmic values of flow at 10% intervals of the flow duration 

curve (between the 5th and 95th percentile) are computed. This is done by taking the 

mean of the logarithms and computing the difference of each of the ten logarithms 

from the mean. These differences are then squared, summed together, then divided 

by 9. The square root of this value is the variability index. Using this approach 

Schouten et al. (1981) determined the variability index for sub-catchments of Lake 

Taupo based on mean daily flow. Index values ranged between 0.04 and 0.40 with 

higher index values coinciding with areas of less permeable geology.  

Flood flows and low flows  

Indices of flood flow and low flows are also examined. A useful statistic for low flow 

analysis is value of flow exceeded 95% of the time (Davie, 2003). The ratio of the 

median flow and this value (Q50/Q95) provides an index of the slope (steepness) of 

the flow duration curve over this range, and can essentially be considered as an 

alternative index of baseflow contribution (Gordon et al., 2004). The ratio also 

allows direct comparison between catchments (Davie, 2003). It can also be used to 
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interpret the effect of the underlying geology on groundwater storage and release 

(Peters, 1994). A high index value would be reflected in the curve dropping off 

quickly toward the end of the low flow range. Groundwater storage is less likely to be 

influential in this context than a catchment which has a very flat slope over the same 

flow range (Gordon et al., 2004). 

The flow value which is exceeded only 10% of the time (Q10), is an index of high 

flows and flooding (Davie, 2003). The shape and steepness of the flow duration 

curve between this value and Q30 reflects the variability over this range of high flow. 

A low index value would be illustrated by a flatter slope at the higher end of the 

curve and may indicate the effect of lakes that may be present in the catchment 

(Gordon et al., 2004). 

5.2.2 Climatic indices  

Two climatic indices are used to describe the climatic attributes of the sub-

catchments. The annual wetness ratio is a measure of the potential runoff for a 

catchment. It is a measure of atmospheric supply and demand of moisture and 

represents the moisture available at the surface for evaporation and runoff (Berger 

and Entekhabi, 2001). It is defined by the ratio of annual rainfall to annual potential 

evapotranspiration. Essentially, the higher the index the more water there is 

potentially available to reach rivers as runoff.  Analysed on a month-to-month basis, 

the wetness index is likely to be highest during the winter months when evaporative 

demand is less and rainfall is generally higher. 

The second climatic index is the runoff coefficient which is a measure of how much 

catchment precipitation is converted to runoff given evaporative efficiency and 

catchment physiographic features (Berger and Entekhabi, 2001). As an annual 

index, physiographic attributes would be less influential as catchment storage 

changes would balance out. Discharge and evapotranspiration outputs would also be 

expected to largely balance with precipitation inputs. 

Since over the course of a year the change in storage is essentially zero, annual 

catchment rainfall is estimated using a water balance approach so that it is equal to 

the sum of mean annual flow and mean annual potential evapotranspiration. 
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5.2.3 Catchment physiographic indices 

Based on the literature review, ten physiographic indices are determined for each 

sub-catchment in this study. Catchment geology and soils is obtained from the New 

Zealand Land Resource Inventory (Landcare Research - Manaaki Whenua (NZ), 

2008), while land use is based on the New Zealand Land Cover Database 2 (Ministry 

for the Environment, 2004). 

The lithologies present in the catchment, and individual sub-catchments are 

numerous, each having a different influence on catchment hydrologic response. For 

the purpose of this study, the geologies are divided into two main types: volcanic 

and basement. The proportion of each within sub-catchment is ascertained. 

Similarly, there are several soil types (orders) covering the Lake Taupo catchment, 

although pumice soils are the most common soils in the catchment. Pumice soils are 

also the most permeable and well-draining and are, therefore, assumed to be 

indicative of overall soil permeability. The percentage of pumice soils in each 

catchment  is used as a physiographic index. 

The sub-catchments of Lake Taupo are predominantly covered by forest. Tussock 

grasslands and shrub are common in the Tongariro catchment, on the slopes of the 

three volcanoes. Areas of pastoral grassland are also common but are largely found 

on lowland areas of western Lake Taupo catchment below most gauge locations. For 

simplicity, the proportion of the catchment covered by forest is assumed to be 

indicative of vegetative influence in sub-catchments. 

The size of a catchment as measured by the catchment area (km2) has been provided 

by NIWA. To describe catchment shape, the elongation ratio is used. While caution 

should be used with quantitative indices that are referenced to a particular form or 

shape (in this case, a circle), the elongation ratio is widely used (Goudie, 1994). The 

elongation ratio is defined by Schumm (1956) as the ratio between the diameter of a 

circle with the same area as the catchment and the maximum length of the 

catchment. The length of the catchment can be defined as the horizontal distance 

between the outlet to the highest point; the distance along the longest dimension of 

the basin parallel to the principal drainage line; or distance to the most distant point 

in the catchment (Chow, 1964; Maidment, 1993; Schumm, 1956). Given the unusual 

shape of many catchments, McCuen (1998) suggests a more appropriate measure 

would be the length of main drainage line extended to catchment boundary. This 

definition by McCuen (1998) is used in this study. 
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The slope of the catchment influences the speed at which water reaches a stream 

network and can also affect the energy of the stream with implications for erosion 

and sedimentation. While some parts of the catchment will have much steeper 

slopes than others, the mean slope can provide a good indication of the overall 

influence of this catchment characteristic. Another measure of slope used is the 

proportion of the catchment with steep slopes (>26°, Landcare Research – Manaaki 

Whenua Ltd, (2008)). Alternatively, the relief ratio, defined by the ratio of relief 

(elevation difference between the highest point and lowest (or outlet) point in the 

catchment) to catchment length, measures the overall steepness or gradient of the 

catchment and can provide an indication of the potential energy of a drainage 

system (Chow, 1964). The relief ratio also allows comparison of the relative relief of 

any basin regardless of topography. The final physiographic attribute is the density 

of the drainage network which is defined as the ratio of total stream length to total 

catchment area (Schumm, 1956). 

It is noted that the single value assigned to each attribute for each sub-catchment 

does not necessarily reflect the spatial variability of the attribute. As a result, its 

influence on catchment runoff response may be affected. For example, a catchment 

may be covered in forest but its canopy may not be continuous. Cyclical rotation of 

exotic forestry means different parts of the forest will be at different stages of 

planting (Fahey et al., 2004) so that a single descriptor of forest cover at a point in 

time may not be representative for another period. This non-uniformity affects how 

much rainfall is intercepted and, consequently, how much water reaches the surface. 

While soil permeability is measured by its hydraulic conductivity, this value is 

spatially variable. Soil attributes may also be affected by land use activities. For 

example, soil compaction from livestock can affect the drainage characteristics of a 

soil and hence influence direct runoff to streams (Selby, 1972).  

5.2.4 Statistical analysis of relationships 

Regression analysis and correlation coefficients have been widely used in the 

literature to relate catchment physical characteristics to hydrological response 

(Berger and Entekhabi, 2001; Post and Jakeman, 1996; Sefton and Howarth, 1998). 

Conclusions generated from regression analysis should be treated with caution 

where there are cross-correlations between variables (Zecharias and Brutsaert, 

1988). This is often not the case with geomorphic attributes. Higher elevation areas, 

for example, are often steeper. Schumm (1956) also found that as drainage density 
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increases so too does relief ratio. Similarly, as the relief ratio increases catchments 

become more elongated. 

Zecharias and Brutsaert (1988) overcame this problem by applying principal 

components analysis to determine the relationship between catchment physical 

properties and groundwater response characteristics. The above two approaches are 

commonly used in applications of prediction from ungauged basins or to determine 

the casual relationship between attributes.  

For the purpose of simply relating catchment climatic and physiographic attributes 

to hydrological response characteristics, correlation coefficients provide an easy and 

convenient way to describe strength of the relationship between two variables. 

(  and  ). The resulting coefficients describe the covariability between variables but 

do not imply a causal relationship (Gordon et al., 2004).  

The correlation coefficients (     ) are calculated as  

       
                      

                        
 

Eqn 5.5 

The coefficients have a significance level associated with them. Unless otherwise 

stated, any relationships identified are treated as significant at the 95% confidence 

level. Following Devore (1982), a correlation is considered strong if            

and moderate if            . Between ±0.5 the correlation is considered weak.  

5.2.5 Impacts of regulation 

In terms of assessing the impact of regulation on natural flow regimes, flow duration 

curves for overlapping records above and below the schemes of the Kuratau and 

Hinemaiaia sub-catchments are compared. For the Tongariro River, observations at 

Turangi extend back to 1957, prior to the development of the TPS. In this catchment 

the data set is separated into two periods. „Before diversions‟ covers the period 

1957 to 1973 and „After diversions‟ covers the period from 1975 to present. As a 

separate assessment the hydrological indices for the modified sub-catchments are 

also compared to the corresponding unmodified sub-catchment, although it is noted 

that different data periods may be affected by different climatological regime which 

may influence results.  
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5.3 Hydrological behaviour and response of the Lake Taupo 

catchment 

As discussed in previous sections, a range of indices have been selected to describe 

the hydrologic, climatic and physiographic attributes of 14 sub-catchments of Lake 

Taupo. These sub-catchments range in size from 3.3 km2 to 784.2 km2. Six 

hydrological descriptors are used in this study, including mean flow, specific 

discharge, baseflow index (Chapman, 1991), variability index (following Lane and 

Lei (1950)), and indices of flood flows and low flows. Fifteen minute interpolated 

time series data is used for hydrological and climatic descriptors, except for the 

baseflow index in which hourly flow is used. Climatic descriptors include the runoff 

coefficient (the ratio of annual runoff to annual precipitation) and wetness ratio (the 

ratio of annual precipitation to annual potential evapotranspiration). Physiographic 

descriptors include area, relief ratio and elongation ratio (where catchment length is 

defined as the length of main drainage line extended to catchment boundary), mean 

slope, proportion of catchment with steep slopes, drainage density, percentage of 

catchment covered by forest, pumice (well-draining) soils, basement (impermeable) 

geology and volcanic geology.  

5.3.1 Natural flow regimes 

The distribution of precipitation and flow throughout the year for each catchment is 

shown in Figure 5.2. Streamflow in all catchments generally follows a similar 

pattern to rainfall over the year, except for a few notable exceptions. The Waitahanui 

catchment shows a consistent flow throughout the year despite fluctuations in 

rainfall. Streamflow in this catchment is spring-fed providing even flow throughout 

the year. In the Waimarino catchment, a rise in flow which does not correspond with 

a sharp rise in rainfall during October may be indicative of meltwater from winter 

snow accumulation in higher elevation areas of the catchment. Evidence of this 

possible meltwater response is less evident in the Tauranga-Taupo catchment which 

is located next to the Waimarino catchment. The headwaters of both catchments are 

also in the same general area of high elevation. The two catchments in the northern 

region also do not show a strong correlation between flow and rainfall. The rainfall 

record used for the Tutaeuaua catchment is from a gauge located several kilometres 

away and may not be representative of the rainfall over this small catchment. A 

significant number of gaps in the Otaketake rainfall record have, for some months, 

reduced the number of monthly rainfall values to only a few observations, making 

these monthly averages unreliable.  
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Figure 5.2 Distribution of flow and rainfall over the year for each catchment based on monthly averages. 



 

 100 | Catchment hydrologic behaviour 
 

Rainfall and streamflow in many of the sub-catchments appear to diverge in 

December. Mean monthly rainfall appears to increase while mean monthly 

streamflow decreases. This may be due to a combination of factors. Warmer 

temperatures during this time increase evaporative demand and the drier catchment 

conditions may result in more of the precipitation being soaked up by the soil and 

sub-surface rather than reaching the waterway. 

Not surprisingly, mean flow is strongly positively correlated to catchment size (  

 0.9897). It is also positively correlated to relief (    0.7917) and negatively 

correlated to elongation ratio (   -0.6057). Smaller catchments of Lake Taupo tend 

to be more elongated than larger catchments and generally have lower relief. 

However, it is noted that if the Tongariro catchment is removed there appears to be 

little relationship between the shape of the catchment and mean flow. Figure 5.3 

shows the relationship between mean flow and catchment size and relief. It should 

be noted that the relationship between mean flow and relief is skewed by the 

Tongariro catchment. If this catchment is not included, the coefficient would be 

considerably less (   0.5502). 

Specific discharges in the Lake Taupo catchment range between 0.007 m3/s per km2 

to 0.067 m3/s per km2. Specific discharge is positively correlated to catchment size 

(   0.5417), average slope (   0.7178), steepness of the catchment (% steep slopes: 

   0.6843) and geology (volcanic:    -0.5487; basement:    0.5962). It is also 

strongly correlated to both climatic indices (wetness ratio:    0.9577; runoff 

coefficient:    0.9306), as shown in Figure 5.4. This is not surprising since these 

attributes are measures of the amount of water available for runoff generation. The 

Tongariro River has the highest specific discharge with similar values at the higher 

end for the Waipakihi and Waihohonu Rivers.  

 

Figure 5.3 Mean flow versus catchment size (left) and relief (right).  
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Figure 5.4 Relationship between climatic indices and specific discharge. 

The Otaketake River has the lowest specific discharge and is considerably lower than 

all other catchments. This catchment is relatively small (16.3 km2), long and narrow 

with around 1.9% of slopes classified as steep and is primarily covered in pastoral 

grassland. With these features combined a higher specific discharge may be 

expected. This catchment, however, also has the lowest wetness ratio (1.21) and 

runoff coefficient (0.17) of all catchments studied.  

Catchment wetness ratio values and runoff coefficients are strongly correlated to 

each other (   0.9334) and to catchment relief with   values of 0.8018 and 0.7112, 

respectively (Figure 5.5, top). These areas with higher climatic indices tend to be in 

areas that are generally steeper. Both mean slope and steep slopes were significantly 

correlated to wetness index (   0.6201 and    0.5519, respectively) and runoff 

coefficients (    0.6203 and    0.5380, respectively) as shown in Figure 5.5.  

 

Figure 5.5 Climatic indices are positively correlated to catchment relief (upper) and mean slope (lower). 
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Areas of steeper slopes coincide with some of the highest elevation areas of the Lake 

Taupo catchment. Elevation can affect how much precipitation falls in the 

catchment and hence the water available for runoff generation. In the Lake Taupo 

catchment, the higher (and steeper) elevations of the eastern areas tend to block the 

passage of weather systems forcing more precipitation to fall within catchment 

boundaries (Thompson, 1984). With increasing slope steepness, this water is able to 

reach the river more quickly. 

The presence of groundwater is related to catchment geology (Figure 5.6). 

Catchments underlain by more permeable volcanic lithologies tend to have greater 

baseflow volumes (   0.8310) and be less variable (   -0.6620). With increasing 

basement greywacke geology variability is increased (   0.6410) and baseflow 

contribution reduced (   -0.8158). This is consistent with Schouten et al. (1981) 

who found that flow variability is higher in areas of less permeable geology. 

Baseflow contribution and flow variability are strongly negatively correlated with an 

  value of -0.8520. Flow variability in the 14 catchments studied range between 0.24 

for the Waitahanui catchment and 0.70 for the Waimarino catchment. These two 

catchments also have the lowest and highest baseflow index values, respectively. 

 

 

Figure 5.6. With increasing amount of volcanic geology baseflow contribution tends to increase and 

variability decreases (left). The presence of basement greywacke geology decrease baseflow 

contribution and increases variability (right). 
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This is not unexpected since groundwater (baseflow) acts as a buffer to rainfall 

events dampening flood response, moderating and sustaining river flows throughout 

the year and reducing flow variability. 

In the Lake Taupo catchment, baseflow index values range between 0.695 and 

0.765. The highest baseflow proportion is in the Waitahanui River. This figure may, 

however, be under-estimated. Visual inspection of the time series reveals there is 

evidence of some non-stationarity in the data. Although this can be explicitly tested, 

this record is of short duration and has many gaps. Only two years had complete 

data. The lack of any strong correlations to any other catchment prevented these 

gaps from being infilled.  

Although there is a significant correlation between catchment geology and baseflow 

index, over the range of low flows this correlation is weaker. In addition, the low 

flow index is only weakly correlated to other physiographic attributes. This suggests 

that groundwater is likely to be a significant presence in the flow for all of the Lake 

Taupo catchments. 

A moderate correlation is found between volcanic geology with variability index (  = 

-0.6620). Some catchments of predominantly volcanic geology have relatively high 

variability. Flow variability in the Whanganui and Waihaha catchments is generally 

high (0.600 and 0.580, respectively) despite consisting of predominantly volcanic 

lithologies. The type of volcanic geology may be important. The volcanic geology in 

these catchments is largely made up of older Whakamaru ignimbrite which is more 

welded and less permeable than the younger Oruanui and Taupo ignimbrites which 

are also common around the Lake Taupo catchment (Hadfield et al., 2001). More 

definitive relationships may be realised by using a better index of geologic influence 

which can account for the varying permeabilities of the volcanic lithologies in the 

catchment. 

Other factors are also influential. Positive correlations are found between flood flow 

regime (the part of the flow duration curve which is more likely to contain most of 

the direct runoff portion of the hydrograph) and catchment steepness (mean slope 

(   0.6085) and steep slopes (   0.5827). Mean slope and the proportion of steep 

slopes are higher in areas of basement greywacke geology, with correlations of 

0.9165 and 0.9664, respectively. These areas include the headwaters of the Waihaha 

catchment in the west and Tauranga-Taupo, Waimarino, Waipakihi catchments in 
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the south-east. With increasing steepness, more water is able to find its way to 

streams more directly. These relationships are illustrated in Figure 5.7. 

In the Whanganui catchment, while overall variability is high (0.600) the catchment 

is less steep than the Waihaha catchment with only 2.2% of slopes greater than 26° 

and an average slope of 8°. This higher variability may be influenced by the shape of 

the catchment. The elongation ratio is positively correlated to the variability of low 

flows and negatively correlated to catchment area. The Whanganui catchment is 

relatively small (31.6 km2) but is relatively long and narrow. It also has one of the 

highest drainage densities allowing water to reach drainage channels more quickly, 

increasing direct runoff volumes. 

The Kuratau catchment (above the scheme) also has relatively high variability 

(0.548) and baseflow index (0.747), despite being underlain by predominantly 

volcanic geology. Like the Whanganui catchment it has a low average slope (6°) and 

only 2% of the catchment is classified as steep. Over 47% of the catchment is covered 

in pastoral grasslands, reducing interception and increasing water yields. In 

addition, although the catchment has a relatively high elongation ratio, its unusual 

shape gives way to three main branches allowing water to reach main drainage 

channels more quickly.  

 

Figure 5.7  Catchment steepness is positively correlated to the variability of flow in the high (flood flow) 

portion of the flow duration curve (upper). It is also strongly correlated to the type of underlying geology 

(middle and lower). 
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In the sub-catchments studied, forest cover has very little influence on catchment 

hydrologic behaviour with only weak correlations found between this descriptor and 

hydrologic attributes. A correlation of    0.3620 is found between forest cover and 

specific discharge, which is contrary to Fahey et al. (2004) who states that forested 

areas tend to reduce water yields. Forest cover is common in most of the sub-

catchments analysed. It is, however, most prevalent in high elevation (and often 

steeper) areas of Lake Taupo catchment which coincide with areas which are 

generally steeper (mean slope:   0.5011) and have higher runoff coefficients 

(  0.5161). These factors would therefore result in higher specific discharges. 

The amount of permeable pumice soil in a catchment seemed to have very little 

influence on catchment hydrologic response, although drainage density appeared to 

decrease with increasing coverage of pumice soils. Stronger relationships may be 

found if a better index of soil permeability is used. 

5.3.2 Impact of regulation on catchment runoff response 

The impact of regulation on catchment flow regimes and runoff response 

characteristics varied between catchments due to the difference in catchment areas, 

amount of storage and the type of regulation involved.  

In the Hinemaiaia catchment, the effect of the hydro power scheme is assessed by 

analysing data from above the scheme (1981-2001) and data below the scheme 

(2000-2009). Variability (below: 0.4653 and above: 0.4399) and baseflow (below: 

0.7450 and above: 0.7449) over these periods are similar between locations. There 

is also little difference between high flow and low flow regimes. Comparison of flow 

duration curves for the Hinemaiaia catchment (June-December 2000) show that the 

largest effect is in the lower flow range of the flow duration curve (Figure 5.8, top).  

In the Kuratau catchment (Figure 5.8, middle), regulation has increased the 

baseflow index to 0.8249. Flow variability, however, has also increased (above: 

0.5479 and below: 0.6078) and is likely to be due to the short term fluctuations that 

coincide with peak generation demand (refer to Section 2.3.1). These results may 

also be affected by the length of records being compared (3 years (below) versus 32 

years (above)) and the possible climatological differences of the two periods. 
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Figure 5.8. Flow duration curves for the three regulated sub-catchments of Lake Taupo. The light blue lines 

show the natural flow regime without modification. The dark blue line shows the flow regime after 

regulation. 

Regulation of the Tongariro River largely affects normal flow conditions. As such, 

the variability index is reduced (before: 0.5908 and after: 0.4547) and baseflow 

index values remain largely unchanged. While high flows (>160 m3/s) remain 

unmodified by the scheme flow below this value is affected by the various 

diversions. Over the range of low flows the slope of the flow duration curve is flatter 

indicating more constant low flows (Figure 5.8, lower). The index of flood flows has 

decreased from 1.4533 to 1.2915, indicating that the amount of time the catchment 

experiences larger floods is less. This is largely a result of the diversions which takes 

up to 80 m3/s out of the Tongariro River, extending the length of time at which flow 

is in its lower range. The flow duration curve shows a flatter slope after the 

diversions for the majority of the time. 

5.4 Conclusions 

Hydrologic function is a response to the climatic inputs (precipitation) and outputs 

(evapotranspiration) to the catchment as well as the physical factors controlling the 

movement of water once it reaches the ground. Analysis of these catchment specific 

physical attributes is undertaken and compared to catchment hydrologic 

characteristics. The relationships between the various indices not only provide an 
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overview of catchment hydrologic behaviour but also contribute to the development 

of the perceptual model of the catchment and guidance on initial sub-catchment 

model structures and parameter estimation. 

Groundwater is a significant contributor to flow in all catchments of Lake Taupo and 

as such initial parameter ranges should reflect this. Variability is highest in areas of 

basement greywacke which also tend to coincide with the higher elevation and 

steeper parts of Lake Taupo. These catchments also appear to be more elongated. As 

such, water is able to reach the stream network more quickly. In addition, these 

steeper catchments are also in the higher elevation areas of the catchment which 

receive greater precipitation volumes and therefore more water is available for 

runoff. The analysis could be further improved if more descriptive indices of 

catchment geology and soils are used.  

In the Lake Taupo catchment, the effect of regulation on natural flow regimes 

depends on the amount of storage within the scheme, its operation (i.e. the storage 

and release of water) and any resource consent conditions under which it is required 

to operate. The Hinemaiaia catchment has little storage and therefore the impact on 

natural flow regimes has been limited. The operation of the Kuratau Power Schemes 

has increased baseflow and variability in the upper range of flows, although the 

limited data available for below the scheme may influence this result. Streamflow in 

the modified Tongariro River is largely affected during normal operating conditions, 

reducing flow variability overall.  

This information has confirmed the significance of groundwater in all catchments of 

Lake Taupo and provides some indication of parameter ranges suitable for each 

catchment. Initial parameter ranges reflect these results. Parameter ranges for the 

proportion of flow draining to the baseflow store should be highest for baseflow 

dominated catchments such as the Waitahanui and Waihohonu catchments. In 

terms of the fastflow response, the ability of water to reach the stream quickly is 

important. Quick flow residence times are therefore likely to be shorter in steeper 

catchments than those which are more gently sloping, rounder and more permeable. 
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Table 5.2. Sub-catchment hydrologic, climatic and physiographic information 
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Waitahanui 196.07 6.9135 0.035 1.182 1.048 0.241 0.7652 2.29 0.56 818 31.71 1.63 6.08 2.7% 1.70 70.30 95.00 5.00 99.00 

Hinemaiaia 125.38 5.1407 0.041 1.766 1.469 0.465 0.7450 2.43 0.59 824 41.54 1.57 10.23 10.3% 2.23 53.30 69.00 31.00 98.60 

Taur-Taupo 197.1 9.7391 0.049 2.131 1.834 0.667 0.7173 2.71 0.63 1191 35.40 2.12 17.33 27.5% 2.34 66.20 51.00 49.00 97.60 

Waimarino 63.63 3.3872 0.053 2.556 1.974 0.703 0.6953 3.02 0.67 1159 56.79 2.27 18.07 31.0% 1.81 47.40 46.60 53.40 98.50 

Tongariro pre 1974 784.15 52.6731 0.067 1.612 1.453 0.591 0.7427 3.41 0.71 2304 80.19 0.91 13.20 18.6% 2.19 56.20 69.80 28.10 67.30 

Waipakihi 179.98 11.9023 0.066 2.291 1.612 0.699 0.7012 3.24 0.69 881 31.37 1.86 20.19 37.6% 2.44 70.30 27.30 72.70 78.50 

Waihohonu 96.06 6.2808 0.065 1.546 1.317 0.374 0.7496 4.00 0.75 1592 112.83 1.28 9.93 8.5% 3.08 0.10 100.00 0.00 14.00 

Waihi 9.84 0.3934 0.040 2.390 1.458 0.520 0.7375 2.88 0.65 942 133.86 1.99 10.69 5.6% 1.75 43.30 100.00 0.00 92.20 
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Tutaeuaua 3.29 0.0761 0.023 1.848 1.526 0.562 0.7349 1.59 0.37 102 37.72 1.32 4.33 0.1% 2.32 16.60 83.40 0.00 2.10 

Otaketake 16.31 0.1134 0.007 1.838 1.324 0.491 0.7488 1.21 0.17 292 32.57 1.97 5.96 1.9% 1.83 56.60 100.00 0.00 24.60 
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Table 5.3. Correlation coefficients relating hydrologic, climatic and physiographic attributes 
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Area (km2) 1                   

Mean (m3/s) 0.9897 1                  

Spec yield 

(m3/s per km2) 
0.5417 0.5717 1 

                

Low flows -0.3349 -0.2674 0.1402 1                

Flood flows -0.0828 -0.0478 0.2878 0.7956 1               

Variability 0.1114 0.1772 0.3569 0.7893 0.8875 1              

Baseflow 0.0387 -0.0244 -0.4645 -0.7184 -0.7950 -0.8520 1             

Wetness Ratio 0.4289 0.4657 0.9577 0.1057 0.1768 0.2022 -0.3465 1            

Runoff Coeff. 0.3975 0.4041 0.9306 0.1883 0.2797 0.2354 -0.3517 0.9334 1           

Relief (m) 0.7917 0.8049 0.7855 -0.1851 0.0383 0.0882 -0.1209 0.8018 0.7112 1          

Relief Ratio 0.1143 0.1829 0.3908 0.0341 -0.1525 -0.1197 0.0291 0.5955 0.4629 0.5337 1         

Elong. Ratio -0.6057 -0.6123 -0.2936 0.6639 0.4484 0.2835 -0.3940 -0.2725 -0.1673 -0.4328 -0.2420 1        

Mean Slope  

(degrees) 
0.2901 0.3179 0.7178 0.4716 0.6085 0.6652 -0.8082 0.6201 0.6203 0.4746 0.0802 0.2009 1 

      

Slope >26 (%) 0.3207 0.3450 0.6843 0.3821 0.5827 0.6599 -0.8340 0.5519 0.5380 0.4466 -0.0387 0.1543 0.9746 1      

Drng. density -0.0322 0.0205 0.3810 0.2988 0.1716 0.2236 -0.1295 0.3700 0.3309 0.0517 0.0429 -0.0481 0.0840 0.0229 1     

%pumice 0.2376 0.1803 -0.1388 -0.1872 -0.1086 -0.0631 -0.0734 -0.2281 -0.1654 0.0953 -0.2829 0.2639 0.1949 0.2824 -0.6673 1    

%volcanics -0.2795 -0.2969 -0.5487 -0.3258 -0.5648 -0.6620 0.8310 -0.3579 -0.3871 -0.2723 0.2258 -0.1033 -0.8691 -0.9399 0.0197 -0.3423 1   

%basement 0.2930 0.3035 0.5962 0.3452 0.5545 0.6410 -0.8158 0.4241 0.4508 0.3303 -0.1911 0.1595 0.9165 0.9664 -0.0056 0.3632 -0.9835 1  

%forest 0.1559 0.1032 0.3620 0.4000 0.3371 0.2788 -0.3149 0.2905 0.5161 0.1802 -0.0729 0.3651 0.5011 0.4107 0.0776 0.1742 -0.3653 0.4654 1 
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6 A rainfall-runoff model for the 

Lake Taupo catchment 

The development of a rainfall-runoff model specifically for the Lake Taupo 

catchment is described in this chapter. Section 6.1 outlines the model, its inputs, 

structure and outputs. The semi-distributed conceptual model is used for the 

purpose of adding to the existing knowledge of catchment hydrologic function 

through calibration of historically gauged catchments.  The process for identifying 

suitable periods of data for calibration and evaluation is discussed in Section 6.2, 

with model identification (parameter estimation and sensitivity analysis) described 

in Section 6.3. 

The conceptual model described in Section 6.1 is also the basis for the Lake Taupo 

Inflow Model (Section 6.4) from which lake level predictions are made. It is applied 

to five currently gauged catchments and ungauged areas of Lake Taupo. For the 

complex TPS, a statistical probability analysis is used to estimate discharge due to 

availability of data and complexity of the scheme. Section 6.5 outlines the data 

assimilation approach used in the study and the constraints applied. The combined 

model output provides quantitative predictions of inflow to Lake Taupo (Section 

6.6). This inflow is then used to predict lake level changes out to 15 days. The 

process for model evaluation is described in Section 6.7. The model is 

computationally efficient to allow its use operationally when coupled with 
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meteorological forecasts. The information obtained as a result of the modelling 

approach adds to the current understanding of the physical processes that control 

the movement of water within the catchment. 

6.1 Conceptual model structure 

In this dissertation, a conceptual model structure is selected to simulate the rainfall-

runoff response in the Lake Taupo catchment because it provides the necessary 

computational efficiency while maintaining some underlying physical basis. Rather 

than use an existing „off-the-shelf‟ model, which would have a predefined structure 

and parameters, the model developed is specific to the physical and hydrological 

properties for the Lake Taupo catchment.  

The structure is typical of most conceptual models (Beven, 2001; Clark et al., 2008a; 

Moore, 2007). It uses a number of storage elements representing important 

flowpaths in the catchment. Each of these stores is connected by mathematical 

functions describing their respective storage and depletion. The time delay between 

system inputs and the timing of the response observed at the gauge is accounted for.  

The aim in model development is to be parametrically parsimonious while still 

retaining some physical meaning. A number of alternative structures were tested 

during the formulation of the model structure. Initially, the model structure 

included two (fastflow and baseflow) linear stores and drainage to the sub-surface 

occurred only once the whole catchment reached field capacity. Simulations based 

on this structure indicated that better characterisation of rising and recession limbs 

was required. A third store was added. Since it is uncommon for there to be more 

than three sub-surface stores in hydrological models, more attention was given to 

achieving appropriate thresholds and release functions such as the variable source 

area and relationship between potential and actual evapotranspiration.  

The following sections describe the final conceptual model structure used in this 

dissertation, although in subsequent chapters (Chapters 7 to 9), potential areas of 

improvement are suggested. Figure 6.1 illustrates the basic conceptual model 

structure, based on effective rainfall infiltrating the soil layer before draining to 

three (fastflow, interflow and baseflow) linear stores before entering the river or 

stream. Accounting for the concept of a variable source area, where soil becomes 

saturated at different times across the catchment (Dunne and Black, 1970; 

Steenhuis et al., 1995), some drainage is allowed to occur between a minimum soil 
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Figure 6.1. Simple conceptual model structure of the Taupo Rainfall-Runoff Model. Effective rainfall 

infiltrates the soil layer and drains to three linear stores before discharging to the river. Overland flow 

occurs if the infiltration rate is exceeded or if the soil layer becomes saturated.  

water content threshold and field capacity. The relationship between the amount of 

water draining to the stores and soil water content is defined by a power law 

relationship. Table 6.1 lists the main parameters/variables used in the model, their 

associated symbol and unit dimensions. 

6.1.1 Model Inputs 

Precipitation ( ) and potential evapotranspiration (  ) are the two inputs used to 

drive the model. As stated in Section 1.7, the units for these two variables are mm 

depth per time step (mm/15 minutes). The surface water flux, denoted by   (mm/15 

minutes), is the difference between these two inputs and is written 

        Eqn 6.1 

  is estimated catchment areal precipitation based on observed rainfall (see Section 

4.1.2). Potential evapotranspiration (   ) is the demand for water from the
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Table 6.1 List of model parameters/variables, associated symbol and unit dimension 

Parameter/Variable Symbol Unit 

Model state variables   

Soil water volume       mm 

Baseflow store volume       mm 

Interflow store volume        mm 

Throughflow/fastflow store volume       mm 

Total runoff   mm/15 min 

Baseflow runoff       mm/15 min 

Interflow runoff        mm/15 min 

Throughflow/fastflow runoff       mm/15 min 

Overland flow           mm/15 min 

Hortonian overland flow        mm/15 min 

Saturation excess overland flow             mm/15 min 

Saturation zone    - 

Model Fluxes and Inputs   

Precipitation   mm/15 min 

Potential Evapotranspiration PET mm/15 min 

Actual Evapotranspiration AET mm/15 min 

Surface water flux   mm/15 min 

Maximum infiltration rate      mm/15 min 

Drainage   mm/15 min 

Maximum drainage rate to subsurface      mm/15 min 

Model parameters   

Baseflow      - 

Interflow       - 

Throughflow/fastflow      - 

Interflow proportion        - 

Baseflow proportion       - 

Throughflow/fastflow proportion       - 

Interflow residence time        days 

Baseflow residence time       days 

Throughflow/fastflow residence time       days 

Field capacity     mm 

Maximum saturation capacity         mm 

Critical point   mm 

Minimum release threshold      mm 

Power function for contributing area   - 

Lag time     # time steps 
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atmosphere and plants, assuming ample water supply. The loss of water to 

evapotranspiration is a function of the water available in the system to meet this 

evaporative demand. When   exceeds    the surface flux is positive. That is, 

infiltration through the soil layer occurs. A negative surface flux occurs when 

evaporative loss is greater than  . The model uses the surface flux to determine 

actual evapotranspiration (  ). When   is greater than   , the demand from    

can be satisfied entirely by   and, therefore,    equals   . When    is greater than 

 , moisture is extracted from   and the soil layer in order to satisfy   .  

6.1.2 Surface soil layer 

How easily water is extracted from the soil by plants and the atmosphere is 

dependent on the availability of water in the soil (Hillel, 2004). As soil water content 

(     , mm) decreases water becomes more tightly bound in the soil particles and 

more difficult to extract (Davie, 2004). In this study, it is assumed that water is 

readily available (easily extracted) below field capacity9 (mm) to a critical point 

(Figure 6.2). Beyond this point the availability of water is not as easily extracted. 

The level at which this critical point ( ) occurs varies between and within soils and 

crops. It is commonly represented as a fraction of total available water and is 

generally between 0.3 and 0.7, depending on depth of rooting (Allen et al., 1998). A 

value of 0.5 is commonly used. In the absence of information on specific soil 

hydraulic properties and since it is not considered a vital model parameter,   is also 

defined in this application to be as a proportion (50%) of field capacity (   ), that is, 

            Eqn 6.2 

Following Rushton et al. (2006), if        is greater than   then the water in the soil is 

sufficient to meet the demand of   , and   , therefore, equals   . However, when 

      is not enough to meet the demand from    (i.e.         ),    is only a 

proportion of   , as determined by 

      
     
 

                                

                            

Eqn 6.3 

                                                             
9 Field capacity is defined as the amount of water held in the soil after water has drained away by gravity 

Harding, J., Mosley, P., Pearson, C., Sorrell, B., 2004. Freshwaters of New Zealand. New Zealand 

Hydrological Society and New Zealand Limnological Society, Christchurch. 
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Figure 6.2. Schematic diagram of the soil layer with regard to moisture available for evapotranspiration. 

The availability of water to plants and the atmosphere in the soil is illustrated. Water above a critical point 

is readily available and easily extracted. There is enough water readily available in the system to meet 

evaporative demand. Below the critical point, only a proportion of the evaporative demand is can be 

met. 

The rate at which    can infiltrate the surface and enter the soil layer is limited by a 

maximum infiltration rate denoted by      (mm/15min). In the pumice soils of the 

Otutira catchment, northern Lake Taupo catchment, Selby (1972) found infiltration 

rates ranged widely between 60-600 mm per hour. In situations where      is 

exceeded or the soils maximum saturation capacity (    , mm) is exceeded, overland 

flow (     , mm per timestep) is generated. Under the first scenario Hortonian 

overland flow (      , mm/15 minutes) is determined as 

                Eqn 6.4 

If the volume of water in the soil reaches saturation and     exceeds the maximum 

rate of drainage from the soil (    , mm/15 minutes) then saturation excess 

overland flow (     , mm /15 minutes) occurs, where  

                           Eqn 6.5 

and  

                        Eqn 6.6 
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6.1.3 Drainage to subsurface  

The amount and timing of water released from the soil layer into the subsurface 

stores is also controlled by the volume of water in the soil. In this conceptual model, 

the soil layer is lumped as a single homogeneous layer throughout the whole 

catchment.  

Drainage from the soil layer to the subsurface (Figure 6.1) occurs when field capacity 

is reached. This is likely to occur at different times for different parts of the 

catchment. Following Steenhuis et al. (1995) the rate of subsurface runoff 

generation is proportional to the fraction of the catchment under saturation (  ) 

assuming that in the unsaturated zone, all rain is able to infiltrate the soil and that 

once the soil profile becomes saturated any additional rain contributes to runoff via 

overland flow or subsurface flow. Valley bottoms and riparian zones, for example, 

are more likely to saturate sooner than areas further away from the waterway 

(Dunne and Black, 1970; Steenhuis et al., 1995). Consequently, these parts of the 

catchment start contributing to runoff earlier than other areas. These saturated 

zones are likely to expand and contract with rainfall (Dunne and Black, 1970). This 

is the basis for the variable source area or contributing area concepts of Hewlett and 

Hibbert (1967), Dunne and Black (1970) and references therein. 

There are a number of approaches for incorporating the variable source area into 

hydrological models reported in the literature. Some of these are topographically-

driven (Beven and Kirkby, 1979; Clark et al., 2008a; Pradhan and Ogden, 2010), 

while others consider the catchment as a set of partial areas of different capacities 

from which runoff is generated as each capacity is met (Boughton, 2004; Moore, 

2007). For simplicity, the lumped soil layer approach of this model uses the increase 

in       to represent the expansion of the   . This is because       is the average soil 

water content in the catchment and includes areas which have reached saturation 

earlier than other areas. This relationship is described by the following equation: 

                               Eqn 6.7 

where      is a minimum threshold (mm) below which saturation, and contributing 

area, is assumed negligible. From this it can be seen that as            ,     . 

That is, at field capacity it is assumed all flow pathways are activated and all soil 

water is moving toward the stream.    is then used to calculate drainage to the 

subsurface. Drainage is calculated as a fraction of the infiltrated rainfall (  ) given 

the proportion of the catchment under saturation, so that  
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           Eqn 6.8 

where   is the exponent of a power law function relating    to drainage volumes 

and is specific to the physical properties and characteristics of each catchment. It is 

included as a parameter for calibration in this study. The effect of this power law 

function is illustrated in Figure 6.3. 

6.1.4 Subsurface stores 

Water from the soil layer is released into three linear stores – fastflow (      , 

interflow (      ), and baseflow (     ), as shown in (Figure 6.1). These stores 

represent different pathways in which water can move through the subsurface. Each 

store has a specific residence time associated with it; fastflow is the quickest 

pathway and baseflow the slowest. Interflow is somewhere in between these two 

stores. The relative proportions ( ) draining to each store is determined as follows:

 

 

Figure 6.3 Relationship between volume of water in the soil (y-axis) and the proportion of rainfall draining 

to the subsurface (x-axis). The dashed line shows a linear relationship; a power law relationship of 1. The 

dotted line shows a power law relationship of 0.5 and the third line represents a power law relationship 

of 2.  
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             Eqn 6.9 

                      Eqn 6.10 

                         Eqn 6.11 

and where the following condition must be satisfied, 

                       Eqn 6.12 

The volume of water entering each store is determined by multiplying the amount of 

water draining the soil layer by the relative proportion for each store. The new 

volume of water (mm) in the soil and the three sub-surface stores are calculated by 

adding the amount of water draining into the store at time   to the store volume at 

the previous time step (   ) and subtracting any „losses‟ to runoff. These „losses‟ 

are determined by dividing the store volume (mm), at time  , by the respective store 

residence times, denoted by      ,        and      , so that 

          
        

     
   

Eqn 6.13 

           
         

      
 

Eqn 6.14 

          
        

     
     

Eqn 6.15 

where          is the runoff (mm/15 minutes) from the baseflow store at time 

 ,           is the runoff (mm) from the interflow store at time  , and          is the 

runoff (mm) from the fastflow store at time  . 

The new volumes of each store are then calculated by the following: 

                                          Eqn 6.16 

                                               Eqn 6.17 

                                            Eqn 6.18 

 

6.1.5 Model Output 

Runoff ( ) is determined by the relative contributions of flow from the respective 

stores and any overland flow that may have occurred, that is 

                                                 Eqn 6.19 
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Direct rainfall to and evaporative losses from the river itself are assumed negligible. 

Abstractions from the lake for municipal supply are relatively small (based on 

monthly figures received from the Taupo District Council) and not included in the 

model. The data assimilation approach described in Section 6.5 is able to address 

some of the errors associated with these assumptions. 

6.1.6 Numerical implementation 

Numerical implementation refers to the discretisation method used to solve the 

governing equations of the model. While this is not a new area of research, with 

many excellent mathematical texts on the subject (see for example, Burden and 

Faires (1993)), best practice has been often overlooked in past hydrological 

applications, as recently highlighted in the literature by Kavetski and Clark 

(2010, 2011). It is acknowledged that this dissertation does not utilise a robust 

integration approach; the model is implemented using a fixed step (15 minutes) 

numerical integration method, driven by the time step of the information available. 

It is recognised that this may degrade the reliability of model predictions because of 

numerical approximation errors (Kavetski and Clark, 2011). These numerical errors 

can lead to sub-optimal parameter estimation and inconsistent inference of model 

states (Kavetski and Clark, 2010). Recent studies have shown that adaptive explicit 

time-stepping routines constrain numerical approximation errors for more robust 

model output (Kavetski and Clark, 2011) and is recommended in future 

development of the model. It has not been used here due to time constraints and the 

importance of other areas of this research.  

6.1.7 Summary 

The conceptual rainfall-runoff model described above is developed specifically for 

sub-catchments within the Lake Taupo catchment. It consists of three linear stores 

– fastflow, interflow and baseflow – and a soil store for water held below field 

capacity. The amount of water draining to these reservoirs is related to the size of 

the catchment area under saturation, following the variable source area concept. 

The model is computationally efficient to allow its use operationally when coupled 

with meteorological forecasts. It can easily accommodate regulation and is suitable 

for estimating inflows from ungauged basins because of its underlying physical 

basis. The application of this model in terms of the different types of inflows to Lake 

Taupo is described in the following section. 
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6.2 Calibration and evaluation data selection 

Model calibration is the process of adjusting parameter values to effect a closer 

matched simulation of the real world. Model performance is evaluated by how well it 

provides acceptable representations of the real world (Refsgaard and Henriksen, 

2004; Wagener, 2003). The term „evaluation‟ is used in this study since the 

commonly used term „validation‟ implies some degree of „truth‟ or legitimacy in the 

model (Oreskes et al., 1994), which is difficult to achieve with models which are 

made up of simplified representations of the complex reality (Beven, 2009). 

Past observations of discharge, precipitation and potential evapotranspiration are 

used for calibration of this hydrological model. Successful calibration requires the 

identification of model parameters that can reliably simulate the catchment‟s 

hydrological response over a range of conditions (Singh and Bárdossy, 2012). The 

data is often split for calibration and evaluation periods, with the location of the 

split between the two selected subjectively. Although there have been a number of 

attempts to quantify a suitable length of time for model calibration, it is commonly 

accepted that it is the information content of the data used rather than the length of 

data that is more important for parameter identification (Gupta and Sorooshian, 

1985; Liu and Han, 2010; Singh and Bárdossy, 2012). The information content of 

hydrological data is, however, largely unknown (Singh and Bárdossy, 2012) 

The calibration period should ideally represent the range of phenomena experienced 

in the catchment including periods of floods, drought and normal flow conditions 

(Gupta and Sorooshian, 1985; Singh and Bárdossy, 2012). In the Lake Taupo 

catchment, however, many of the records for the sub-catchments are over relatively 

short periods (often less than five years). The corresponding rainfall record may be, 

in some cases, longer but may have lengthy gaps in the record limiting the selection 

of suitable calibration periods. Where data permits, calibration periods are selected 

from the longest continuous period of rainfall data for which there is a 

corresponding flow record. One third of the calibration data length up to a 

maximum of one year is used for model warm-up, to minimise effect of initial 

conditions (Madsen, 2003). At least one year is kept for model evaluation. In 

catchments for which suitable calibration and evaluation data is limited, calibration 

is undertaken on as much information as possible to identify model parameters 

(Singh and Bárdossy, 2012). Evaluation is not performed. 



 

 122 | A rainfall-runoff model for the Lake Taupo catchment 
 

For those catchments used in the Lake Taupo Inflow Model (LTIM), the periods 

selected have undergone extensive analysis in terms of their suitability for model 

calibration. The periods are assessed in terms of the range of hydrological responses 

represented in the period selected and the consistency between the rainfall and 

discharge records. Four separate analyses of the data are undertaken. First, periods 

of no rainfall (and evapotranspiration) are plotted and negative recessions (rising 

streamflow) highlighted with the aim of ascertaining the representative of the 

rainfall gauges for capturing the majority of events in the hydrograph. 

Secondly, flow duration curves for the calibration data and the entire record are 

compared. Thirdly, residual mass curves are used to identify periods where there is 

consistency between the period in terms of the cumulative departure of rainfall and 

flow from their respective means. Finally, the rainfall data for the period is assessed 

for catchment representativeness in terms of how adequately it captures the events 

that are observed in the hydrograph. 

Optimal parameters are evaluated on a separate and non-overlapping set of data.  

They are also evaluated over the 1998-2011 period as this is the critical period for 

evaluating the performance of the model in terms of predicting lake level over 

certain events. This 14 year period overlaps with many of the calibration data 

periods; any gaps are infilled irrespective of length.  

Identifying negative recessions 

The consistency between the rainfall and streamflow records is undertaken by 

identifying periods of no rainfall and or evapotranspiration and highlighting where 

streamflow is significantly rising during these recession periods (Figure 6.4). This 

assessment aims to show how representative the selected rainfall gauge is by 

illustrating how adequately it captures the events that are observed in the 

hydrograph. This analysis helps to identify suitable periods of data for calibration 

and evaluation purposes. 

Representativeness of calibration period 

To compare the representativeness of the calibration period selected, flow duration 

curves are compared of the calibration data and the entire record. Ideally the 

calibration period would reasonably cover the main range of flows that are seen in 

the whole record, as shown in Figure 6.5, although it is noted that depending on the 
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Figure 6.4. Plot of recession periods (light blue dots). Negative recessions (rising streamflow during periods 

of no rain or evapotranspiration) are highlighted (dark blue dots) (a) Entire record and (b) corresponding 

rainfall (mm/15 minutes). (c) Calibration period and (d) corresponding rainfall. 

 

 

Figure 6.5 Comparison of flow duration curves for calibration period and entire record. This calibration 

period represents the range of hydrological responses reasonably across the entire range of flow.  
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length of the record there may be more extreme responses that have not been 

observed. 

Residual mass curves 

Residual mass curves are used to identify abnormalities in the monthly and annual 

records of individual rainfall and runoff records. They show the departure of the 

monthly (and annual) values to the mean. Comparison of residual mass curves for 

both rainfall and flow may indicate if a rainfall record is suitable for input to the 

model for a particular sub-catchment. Ideally both would follow a similar pattern. In 

Figure 6.6 (top), the monthly rainfall and stream flow show significant differences in 

the residual mass plots, indicating that the rainfall record is not suitable as model 

input for this catchment. Conversely, in Figure 6.6 (lower) the residual mass plots 

show little difference between the monthly rainfall and streamflow curves, 

suggesting this rainfall record is appropriate for model calibration for this particular 

catchment. It should be noted that in catchments where precipitation falls as snow 

there may be some discrepancies in the rain and flow residual mass curves during 

periods of snowfall and subsequent snowmelt.  

 

 

Figure 6.6 Residual mass curves compare monthly rainfall and streamflow data to provide an indication of 

suitability for rainfall-runoff modelling. The top chart shows a catchment where there is considerable 

divergence between the time series indicating that the rainfall record should not be used for calibrating 

this catchment. Conversely, in the lower chart both time series show consistency in the curves suggesting 

that this catchment can be calibrated using this rainfall time series as input.  
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Rainfall-runoff event analysis  

Residual mass curves can identify periods of record which are suitable for model 

calibration in general. The next stage is to assess whether the rainfall record over the 

period is able to capture the majority of events in the catchment. Corresponding 

event rainfall and flow observations are reviewed to find inconsistencies between 

event rainfall and runoff. For example, small scale intense convective events may 

occur over the gauge itself, resulting in observed rainfall but only a small (if any) 

response in the hydrograph. Similarly, rainfall in areas away from the gauge would 

result in a hydrograph response but no observed rainfall. Figure 6.7 shows an 

example of such an occurrence which has resulted in a hydrograph in the flow time 

series for the event but no corresponding rainfall for the period. If numerous 

instances of such inconsistencies are evident, then the rainfall record may not be 

suitable for representing the spatial and temporal rainfall over the catchment. 

 

 

Figure 6.7 A rainfall event is observed a number of days before the response is seen at the outlet of the 

catchment. This is unlikely to be a lag time issue. The rainfall event recorded may not be representative of 

catchment areal rainfall. In addition, the response in the hydrograph suggests that there may have been 

a significant event in the catchment which was not adequately captured at the rainfall gauge site. Many 

occurrences of these may render the rainfall record unsuitable for model calibration in this catchment.  
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6.3 Model identification and calibration 

Following Wagener and Kollat (2007), model identification is defined as  

“…the identification of all models (parameter sets) within a given model structure, that 

can be considered feasible (behavioral) representations of the natural system under 

study.” 

In this study, model identification has two components – parameter estimation and 

sensitivity analysis. These two aspects of model identification are performed 

together as an iterative process. Parameter estimation is undertaken through classic 

Monte Carlo simulations from which optimal parameter sets are obtained. These 

simulations are also the basis for sensitivity analysis from which the most sensitive 

parameters are identified, allowing more focus to be given to refining these 

parameters for improved model identifiability. This process also provides insights 

into the dominant processes controlling runoff response and hence may provide 

further information about the catchment‟s hydrologic function. 

Model identification and calibration is undertaken for all modelled catchments 

excluding the TPS. Stochastic models such as the one used to predict the discharge 

from the TPS require the uncertainty to be quantified in some manner as part of the 

modelling process (Young, 2001). There are no parameters in this model and, 

therefore, calibration is not required. 

6.3.1 Monte Carlo simulations 

Using the Victoria University Science Faculty High-Performance Computing 

Facility, classic Monte Carlo sampling is used to randomly generate parameter sets 

from a feasible and pre-defined parameter space. The parameter space is sampled 

using a uniform distribution so that the entire range of the parameter space is given 

equal priority or weighting. Each simulation generates a parameter set, the 

performance of which is described by an objective function or goodness-of-fit 

measure (see following section).  

Parameter ranges are formed by selecting minimum and maximum parameter 

values based on the relationships between catchment physical and hydrologic 

attributes obtained in Chapter 5 and empirical information from previous studies. 

Table 6.2 lists the ranges for each of the parameters used in this study. Typically, at 

least one million calibrations are obtained for each catchment (although for various 
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Table 6.2 Initial parameter ranges for each of the sub-catchments for model calibration 
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Waitahanui 50-500 0.2-2.5 4-30 500-2500 0.8-1 0-0.2 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.4-1.5 1-24 

TaurTaupo 10-80 0.05-1.5 2-20 50-250 0.1-0.5 0.15-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.15-1.5 1-24 

Waimarino 20-150 0.05-0.9 1.1-15 50-250 0.1-0.5 0.15-0.7 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.5-2 1-24 

L. Tongariro 10-500 0.2-2.5 3-50 50-1200 0.05-0.8 0-0.4 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-3 1-24 

Poutu 20-150 0.2-2.5 3-35 50-250 0.2-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.3 1-24 

Waipakihi 20-150 0.2-2.5 3-35 50-250 0.2-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.3 1-24 

Waihohonu 10-300 0.2-2.5 3-30 200-1200 0.6-1 0-0.4 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.45 1-24 

Kuratau 40-350 0.2-2.99 3-35 50-250 0.2-0.7 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.25-1.5 1-24 

Waihi 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Whareroa 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Whanganui 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Waihaha 10 -100 0.2-2.5 3-35 50-250 0.2-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.05-0.9 0.01-6 1-1.4 1-24 

Tutaeuaua 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Ungauged 10-500 0.2-2.99 3-45 50-1500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.25-2 1-24 
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Table 6.3 Final parameter ranges for each of the sub-catchments for model calibration 
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Waitahanui 50-800 0.2-2.5 2-30 500-2500 0.8-1 0-0.2 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.5 1-24 

Hinemaiaia 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

TaurTaupo 10-80 0.05-1.5 2-20 50-250 0.1-0.5 0.15-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.15-1.5 1-24 

Waimarino 20-200 0.05-0.9 1.1-15 50-250 0.1-0.5 0.15-0.7 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1.5-2 1-24 

L. Tongariro 10-600 0.2-2.5 3-39 40-1200 0.05-0.8 0-0.4 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.25-3 1-24 

Poutu 20-300 0.2-2.5 2.5-35 50-250 0.5-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.3 1-24 

Waipakihi 20-150 0-1 1-35 50-250 0.05-0.6 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.3 1-24 

Waihohonu 10-300 0-0.5 3-30 50-200 0.6-1 0-0.4 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.8-1.45 1-24 

Waihi 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Kuratau 40-600 0.2-3.5 3.6-35 50-250 0.2-0.7 0-0.5 10-100 2-20 0 –FC 10-150 0.05-0.9 0.01-6 1.25-1.5 1-24 

Whareroa 10-200 0.2-2.5 3-35 50-500 0.1-0.95 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Whanganui 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Waihaha 10 -150 0.2-2.5 3-35 50-250 0.1-0.8 0-0.65 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 1-1.4 1-24 

Tutaeuaua 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Otaketake 10-200 0.2-2.5 3-35 50-500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.5-2 1-24 

Ungauged 10-500 0.2-2.99 3-45 50-1500 0.1-0.8 0-0.5 10-100 2-20 0 –FC 10-150 0.1-0.9 0.01-6 0.25-2 1-24 
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reasons, four catchments had fewer (see Section 7.1). Although this is extensive, it 

cannot comprehensively sample the entire parameter space given the number of 

parameters (13) to be calibrated. However, this number of calibrations does provide 

a balance between statistical accuracy and computational constraints. 

From the results of the Monte Carlo simulations, scatterplots of parameter values 

against their corresponding objective function value are generated for each 

calibrated parameter. The top 1000 parameter sets are plotted, with the five highest 

highlighted (Figure 6.8, left). A parameter with high identifiability would show a 

clear relationship between objective function value and parameter value. Low 

identifiability is characterised by similar objective function values across the entire 

parameter range. 

These plots not only provide information on how well a particular parameter can be 

identified based on the selected performance index but can also be used to refine 

parameter ranges if it appears these ranges may not have been adequately defined. 

6.3.2 Objective function 

Model performance is evaluated by how well it provides acceptable representations 

of the real world (Refsgaard and Henriksen, 2004; Wagener, 2003). Automatic 

calibration routines make use of a goodness-of-fit measure (also referred to as 

performance measure, objective function, or likelihood measure) to determine the 

performance of the model compared to the observations (Boyle et al., 2000; 

Wagener et al., 2001).  

The choice of objective function is subjective. However, selection of an appropriate 

objective function for application is imperative since this is what reflects the 

intended hydrologic characteristics (McCuen, 1973). Many objective functions 

emphasise fitting to a specific region of the hydrograph, preferentially reducing the 

errors in these areas at the expense of other parts of the hydrograph. This may result 

in an inappropriate solution (Boyle et al., 2000; Jain and Sudheer, 2008).  

The Nash Sutcliffe Efficiency (NSE) index is one of the most common criterion used 

in hydrological modelling (Gupta et al., 2009; Jain and Sudheer, 2008; Schaefli and 

Gupta, 2007).  It is based on a normalisation of the summation of squared errors, 

and can be written (following Gupta et al. (2009)) 
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Figure 6.8. Three types of visualisation tools are used for parameter estimation and sensitivity analysis in this study. Scatterplots of parameter values versus objective function (a) show 

how well a parameter can be identified. Regionalised sensitivity analysis identifies the most influential parameters which can then be the focus of refining parameter ranges and 

can provide further information on catchment hydrologic behaviour. Scatterplots are again used to identify two-way parameter interactions which may not be identified in the 

regionalised sensitivity analysis. 
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Eqn 6.20 

where   is the total number of time steps,      is the simulated value at time step  , 

     is the observed value at time step  , and        is the mean of the observed values. 

The numerator is equivalent to the mean squared error (MSE) and the denominator 

is essentially the standard deviation of the observed values. The index is sensitive to 

extreme values since the values of paired differences between the observation and 

the baseline mean (      ) are squared (Harmel and Smith, 2007; Schaefli and Gupta, 

2007). This can result in over-estimation of  model performance for highly seasonal 

time series (Gupta et al., 2009).  

Although the NSE has generally been viewed as a single criterion approach to 

calibration, it can be applied within a multi-criteria framework by computing the 

NSE for different aspects of the simulated response. Weglarczyk (1998) notes, 

however, that the selection of evaluation criteria and their interrelations and 

consequences should be carefully considered. Murphy (1988) and Weglarczyk 

(1998) were able to show that the NSE is made up of three distinct components. 

These three components are represented by the correlation, a measure of relative 

variability and a bias. The NSE in a decomposed form (as outlined by Gupta et al. 

(2009) is written 

                  Eqn 6.21 

where   is a measure of relative variability in the simulated and observed values, 

defined as  

    
  
  
   Eqn 6.22 

where    and    are the standard deviations of the simulated and observed values, 

respectively. The linear correlation coefficient between simulated (  ) and observed 

(  ) values is denoted by  .    is equal to the bias normalized by   , and is written 

    
       

  
   

Eqn 6.23 

where    (i.e.      ) and    (i.e.       ) are the respective means of the simulated and 

observed values. 
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The three components of the decomposed NSE effectively represent the overall 

volume of flow ( ), the variability or spread of flows ( ) and the timing and shape of 

the hydrograph ( ) (Gupta et al., 2009). It also allows for further diagnoses of where 

the weaknesses of this index lie. However, using    to normalise the bias can lead to 

an imbalance of this component in highly variable time series, essentially giving less 

weight to the bias component in the overall model performance (Gupta et al., 2009). 

Gupta et al. (2009) also suggest that the NSE will give a higher performance index 

for parameter sets which under-estimate the variability of flows due to the interplay 

between   and  . 

To overcome these issues, Gupta et al. (2009) propose the Kling-Gupta Efficiency 

(KGE) index – a reformulation of the decomposed NSE giving equal weighting to the 

individual components of the criterion. The KGE is written 

                               Eqn 6.24 

where   represents the bias and is defined as  

  
  
  

   Eqn 6.25 

Ideally, an optimal parameter set would be able to achieve a good fit to all three 

components of the index. However, given the simplifications of complex 

hydrological processes that are made in conceptual models and the uncertainty 

resulting from the model structure, parameter estimation and input data, there is 

still likely to be trade-offs between some parts of the hydrograph.  

Initial applications of the KGE are promising. Gupta et al. (2009) found that the 

KGE improved the bias and variability components with only a small decrease in the 

correlation when used to assess the performance of a simple conceptual rainfall-

runoff model applied to 49 Austrian catchments. Pechlivanidis et al. (2010) 

compared the performance of the NSE and KGE for the 46.6 km2 Mahurangi 

catchment, New Zealand. They found that the KGE was able to match variability and 

mean flows better than the NSE while still maintaining a high correlation coefficient 

and decreasing errors in mass balance and peak runoff volumes. However, they also 

note that while the KGE is able to better represent high and low flows, the fit to 

medium flows is less satisfactory. Conversely, the NSE is able to match medium 

flows better at the expense of high and low flow regions of the flow regime. Given 

questions around the suitability of the NSE index and limited application of the 
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KGE, both of these indices were investigated for appropriateness for application in 

this study. 

As a result of the analysis undertaken in Appendix A, the KGE index is selected for 

this application in this study. It is chosen based on its performance in two sub-

catchments of Lake Taupo, identifying parameter sets which provided a better 

overall fit to the observations than the NSE. A multi-criteria approach is used - 

optimal parameters must fit well to both the time series and flow duration curves. 

KGE performance values can range between -∞ and 1, with a perfect simulation 

having a KGE value of 1. 

6.3.3 Sensitivity Analysis 

A regionalised sensitivity analysis, based to the Hornberger-Spear-Young (HSY) 

method (Hornberger and Spear, 1981), is used to search the entire feasible 

parameter space because of its ease of implementation and low computational 

demand. This approach is a form of global sensitivity analysis which partitions 

model simulations into behavioural (defined by Beven (2001) as simulations which 

provide an acceptable reproduction of the observed system) and non-behavioural 

according to the given criterion. The similarity (or dissimilarity) between the 

distributions of the two sub-samples indicates the sensitivity of the parameter in 

question (Yang, 2011).  

The results of the Monte Carlo simulations are used for this process. Parameter sets 

are categorised according to whether they are deemed behavioural or non-

behavioural with regard to the objective function. The definition of bins is 

subjective. For the purpose of this study, behavioural parameter sets are considered 

to be those that generate an objective function (KGE) greater than or equal to 0.7, 

while non-behavioural parameters are those below 0.7. Taking the values of the 

parameters within each of the bins, a comparison of the corresponding cumulative 

distributions provides an indication of the sensitivity of each of the parameters. 

Insensitive parameters would show little difference between the two classes. 

Sensitive parameters would show some difference.  

To quantify the sensitivity of the binned parameters, the Kolmogorov-Smirnov (KS) 

test is used as a measure of sensitivity. This test compares the empirical cumulative 

distribution functions of behavioural ( ) and non-behavioural (  ) samples (Figure 

6.8, middle). The maximum distance,  , between the two distributions essentially 

measures the sensitivity of a parameter   (Massey, 1951). The formula for   is: 
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                    Eqn 6.26 

The KS   statistic has associated with it a significance level which can be used to 

rank the parameters providing an indication of the relative importance of the 

parameter on model output (Saltelli et al., 2004). This approach should be used with 

caution, however, since when there are many samples the power of the KS test can 

begin to degenerate (Beven, 2009; Saltelli et al., 2004) and may suggest small 

differences in distributions may be significant (Beven, 2001). 

Despite this, the value of the   statistic still provides a relative measure of global 

sensitivity for parameters (Hornberger and Spear, 1981). Harlin and Kung (1992) 

classify the parameter sets by their   value, where  

                  Eqn 6.27 

                                 Eqn 6.28 

                    Eqn 6.29 

Fenicia et al. (2008) notes that a lack of sensitivity can indicate model over-

parameterisation; this can lead to a lack of confidence that the model is suitably 

describing catchment hydrologic processes. The problem of over-parameterisation 

can be overcome somewhat by the elimination of insignificant parameters from the 

final model (Chan et al., 1997) or by reducing them to constant values, improving 

calibration efficiency. However, some sensitivity analyses (including the analysis 

used here) are unable to identify parametric interdependence or interaction. This 

can result in non-identification of an influential parameter (Wagener and Kollat, 

2007). In addition, Seibert (Seibert, 2000) notes that reducing the number of model 

parameters can transform conceptual models toward more black-box empirical 

descriptions. Some physical meaning can, therefore, be lost. 

In this study, insensitive parameters are not eliminated from the calibration 

process. Further investigation of parameter sensitivity and parameter interaction is 

undertaken. Scatterplots are again used to identify the two-way parameter response 

surface with respect to the performance measure used (Figure 6.8, right). The values 

of two selected parameters are plotted against each other. The top 1000 (unless 

fewer are obtained) behavioural parameter sets are plotted with the five highest 

highlighted. If these behavioural parameter sets are observed across the entire 

parameter space then there is little, if any, interaction between the two parameters.  
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If the plots show some (positive or negative) relationship between the corresponding 

parameter sets, some form of parameter interaction can be assumed. 

6.4 Lake Taupo Inflow Model 

The LTIM is used to predict inflows to Lake Taupo as well as subsequent lake level 

change. In the following sections, the LTIM is described in terms of the various 

components which make up the inflow predictions. Five currently gauged 

catchments are explicitly modelled using optimal parameter sets based on the 

conceptual model structure and model identification/calibration routines described 

above. These include both unregulated (Section 6.4.1) and regulated (Section 6.4.2) 

catchments. Statistical probability analysis is used to determine the possible range 

of discharge from the Tongariro Power Scheme (Section 6.4.3). Regionalisation is 

used to estimate the inflow from ungauged areas (Section 6.4.4). Inflow from each 

of these areas is combined to generate a single inflow volume to Lake Taupo.  

Table 6.4 lists each of the areas included in the LTIM, classifying them according to 

whether the catchment is regulated, gauged, and data availability. While there are 

numerous other unregulated catchments which have been historically gauged, for 

the purpose of the LTIM they are included in the „Ungauged‟ category. These 

catchments include the Waitahanui, Waihi, Whanganui, Waihaha, Tutaeuaua and 

Otaketake.  

6.4.1 Unregulated Gauged Catchments  

Unregulated gauged catchments include those catchments whose flow are not 

modified by any hydro power scheme and are currently gauged. Only two 

catchments under this category are currently operational and used directly to 

predict inflows to Lake Taupo. The combined mean flow of these two catchments 

(Tauranga-Taupo and Waimarino) is equivalent to 8.7% of the mean outflow from 

Lake Taupo. The location of these catchments is illustrated in Figure 6.9. It should

Table 6.4. Classification of sub-catchments based on whether flow is modified by hydro power 

schemes and the availability of relevant data and information.  

Unregulated Gauged Regulated Gauged TPS Ungauged 

Tauranga-Taupo Kuratau TPS All other areas 

Waimarino Tongariro   

 Hinemaiaia   
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be noted that although the Whareroa catchment is currently gauged it has not been 

included in this operational model because gauging only began again in 2002 (after 

it was stopped in 1980) and due to the large number of gaps in the record 

complicating model calibration. A suitable rainfall record has also not been 

identified. 

6.4.2 Regulated Gauged catchments 

Regulated catchments are defined as those which are directly affected by hydro 

power schemes and include the modified flows of the Hinemaiaia, Kuratau and 

Tongariro Rivers (Figure 6.10). The effect of hydro generation on these inflows is 

influenced by specific decision-making criteria based around system storage, 

predicted inflows, forecast rainfall, electricity demand profile and price. While some 

data is available downstream of each system much of the dam operation and 

scheduling information is unavailable given the competitive nature of the hydro-

schemes within the Lake Taupo catchment. The Hinemaiaia Power Scheme has very 

little storage and is largely run-of-river. A minimum flow below the lower dam is in 

place. In terms of the Kuratau River very little information is available although 

some operational information can be obtained from inspection of streamflow time 

series below the scheme. With regard to the TPS resource consent conditions 

provide some information relating to operating constraints (such as minimum 

flows) and relevant design capacities of the hydro power scheme that directly affect 

the Tongariro River. This information supplies some boundary conditions under 

which the scheme is operated and can be easily incorporated in the traditional 

conceptual model structure.  

Hinemaiaia River  

Flow is gauged on the Hinemaiaia River above and below the Hinemaiaia Power 

Scheme. Streamflow time series below the scheme has been provided by NIWA with 

permission from Trustpower Ltd who operates the scheme. Two records are 

available above the scheme and have been provided by Environment Waikato.  

Daily rainfall was recorded in the catchment between 1965 and 2005. An attempt to 

disaggregate this record into hourly volumes by using the temporal pattern from a 

nearby gauge was unsuccessful. Instead, the nearby Tauranga-Taupo rainfall gauge, 

which showed a good correlation (  = 0.7015) to the Hinemaiaia rainfall gauge at 

daily resolution was used as model input for this catchment. 
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Figure 6.9. Unregulated catchments explicitly modelled as part of the  LTIM  Figure 6.10 Regulated catchments explicitly modelled as part of the LTIM.  
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Figure 6.11 Comparison of streamflow above and below the Hinemaiaia Power Scheme 

There is relatively little regulation from the scheme, due the limited storage in the 

three reservoirs. The only known regulation is a minimum flow of 3 m3/s below the 

scheme, where inflows into the Hinemaiaia A Lake permit (TrustPower Ltd, 2008). 

Mean flow below the scheme is 5.53 m3/s which is only slightly higher than the 

mean flow above the scheme (5.11 m3/s) indicating that there is very little additional 

flow added to the river between the two gauging sites. A comparison of these two 

records over a short overlapping period of data is shown in Figure 6.11. For this 

period, the correlation between the two sites is high (  = 0.9622). Since little is 

known of the storage and release of water from the scheme, and the fact that it is 

essentially run-of-river, streamflow is modelled without regulation. The minimum 

flow is not enforced since a low inflow above the scheme would correspond to a 

naturally low flow below the scheme as well.  

Kuratau River 

Flow is gauged on the Kuratau River above and below the Kuratau Power Scheme 

with a rainfall gauge located near the flow gauging site above the scheme. 

Streamflow time series for both locations have been provided by NIWA with 

permission from King Country Energy Ltd who operates the scheme. 

There is little guidance available about specific operation of the scheme except that 

the maximum discharge from the scheme is 16 m3/s and that lake level should be 

maintained between 442.46 m a.s.l and 445.08 m a.s.l (Taupo-nui-a-Tia, 2011). 

However, analysis of the time series from below the scheme (June 1976 to February 

1979) shows evidence of a diurnal flow pattern that is consistent with typical energy 

demand profiles for New Zealand (refer Figure 5.1). This diurnal pattern is less 

apparent for flows greater than 10 m3/s.  
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Based on this information, regulation is incorporated into the model in the following 

way. The unmodified inflow as observed above the scheme (Site No. 1043468) is 

modelled using the conceptual model described in Section 6.1. This output is scaled 

to account for the increase in flow downstream by comparing the mean flow above 

and below the scheme for all flow values. Depending on the hour of the day a 

multiplier is applied to the modelled output to reflect the diurnal pattern of flow to 

be consistent with the regulated discharge from the scheme. This multiplier is 

calculated by taking mean hourly flow values up to 10 m3/s (above which the diurnal 

profile is less evident) and dividing these values by mean daily flow. This 

relationship is plotted in Figure 6.12 (a). Natural conditions are assumed above 10 

m3/s. A comparison of the modelled output and observed flow downstream of the 

power station is shown in Figure 6.12 (b) for a short overlapping period of data. 

Over this period, the modelled output was able to predict the diurnal pattern well 

but underestimated maximum river flow and overestimated minimum flows in the 

earlier part of the time series. This period, however, is characterised by greater 

variability of flow than earlier in the record. 

 

 

Figure 6.12 (a) The diurnal flow profile as a proportion of mean daily flow shows that there are two 

discharge peaks during the day which coincides with peak energy demand. (b) This diurnal profile is 

imposed on the natural inflow as observed above the power scheme to predict flow downstream of the 

station.  
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Tongariro River 

The Tongariro River is modified as part of the TPS. It is a significant contributor 

(>20%) to inflows (Mighty River Power Ltd, 2008). For the Tongariro River, the 

catchment can be divided into two parts. Above the Poutu Intake is the modified 

Tongariro River flow. Below the Poutu Intake natural inflows are received from a 

largely unmodified part of the catchment. The only modified inflow to this section is 

the release of water from the Poutu Dam to the Poutu Stream, formerly the outlet to 

Lake Rotoaira. A minimum compensation flow of 0.6 m3/s has been provided for 

this stream. Both parts of the catchment have been modelled separately.  

The lower section of the Tongariro River is modelled using the conceptual model, 

with no regulation. The modelled flow is calibrated to the Tongariro record at 

Turangi minus the observations from below the Poutu Intake. The lag time between 

the two sites is estimated by comparing the two time series and calibrating for the 

lag time only.  

In terms of the modified section, resource consent conditions require a minimum 

flow downstream of the Poutu Intake of 16 m3/s, unless natural flow conditions fall 

below this level. In these periods natural flow conditions prevail. However, there are 

few instances of this occurring. This may possibly be due to the effect of the Rangipo 

Power Station which discharges to the Tongariro River immediately upstream of the 

Poutu Intake. This additional water may obscure the natural low flow condition in 

the observations downstream of the intake. As such, in this model a blanket 

minimum flow condition of 16 m3/s is applied to the modelled output.   

A second constraint is related to the design capacity of the Poutu Intake itself which 

has a maximum capacity of 80 m3/s. To account for this, any flow between 16 m3/s 

and 96 m3/s is diverted. Above 96 m3/s it is assumed the full 80 m3/s is taken from 

the river, up to 160 m3/s. Once streamflow reaches 160 m3/s, no water is diverted 

due to turbidity.  

There is an additional element in the operation of the scheme that is not accounted 

for in the model. Resource consent conditions require continuous releases of 30 

m3/s from both Rangipo Dam and Poutu Intake for periods of 6-8 hours (Genesis 

Energy Ltd, 2011) to be provided periodically for recreational purposes. If these 

recreational release schedules are known in advance, they can be incorporated into 

the model structure. 
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The modelled output from both the Poutu and lower Tongariro catchments is 

combined to provide an overall streamflow prediction at Turangi.  

6.4.3 Tongariro Power Scheme 

The TPS (Figure 6.13) is the single most important inflow to Lake Taupo as it 

accounts for over 30% of the inflows to the lake. However, while a discharge time 

series from the scheme has been provided (1998-2011), there is limited information 

and data available in relation to the various diversions, system regulations and 

storage which influence discharge from the scheme. The conceptual model above is, 

therefore, not suitable for estimating flow for this catchment. Instead a stochastic 

modelling approach is used to estimate the discharge from the station.  

 

 

Figure 6.13 The TPS includes areas outside of the natural Lake Taupo catchment from which water is 

diverted to Lake Taupo via the eastern and western diversion. 
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Aside from Lake Moawhango (eastern diversion), there is very little storage 

available in the TPS and it essentially operates as a run-of-river scheme. As a result 

the pattern of discharge throughout the day generally follows the typical daily load 

profiles of electricity demand (refer Section 5.1.3). Peak demand periods are during 

early morning and evening. Demand is less overnight. The day-to-day demand 

profiles vary depending on the weather (for example, temperature), day of the week 

(weekend demand differs from working week days) and as the seasonal climatic 

pattern evolves throughout the year. 

Discharge from the TPS has been made available for the period 1998-2011, with a 

resolution of 30 minute intervals. This data is used to assess the probability or 

likelihood of a discharge volume ( ) given the time of the year ( ), day of the week 

( ) and time of day ( ). Two probability scenarios are generated, as shown in Figure 

6.14. The TPS is operated mainly to meet peak demand periods so discharge is often 

not continuous and zero discharge may occur at any time throughout the year. The 

 

 

Figure 6.14  Example of the results from the statistical probability for a week in July. (upper) The probability 

of a particular discharge depends on the time of the day as well as day of the week and month of the 

year. Note the difference in discharge profile between week days and weekends. The lighter shaded 

regions represent the range of flow between the 10th and 90th percentile with the 25th and 75th 

percentiles show in the darker shaded areas. The median flow (50th percentile) is represented by the dark 

blue line. (lower) The TPS is a peaking plant and will often have zero discharge generally coinciding with 

periods of lower demand. The probability that there is flow for the corresponding period is represented by 

the blue line. 
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likelihood that flow is being discharged from the scheme is determined by the 

following: 

             
 

 
 Eqn 6.30 

where        is the observed discharge values for the time in question,   is the 

number of observations of non-zero discharge,   , and   is the total number of 

observations of       . When there is discharge, a cumulative distribution function of 

       (where          ) is used to determine the likelihood of flow at selected 

percentile levels,     For example, the discharge value at     represents the 50th 

percentile at which there is a 50% likelihood discharge is above or below this value. 

The range of flow between     and     provide an indication of uncertainty in the 

estimation and reflects the range of potential operational decisions of the scheme. 

6.4.4 Ungauged catchments 

The remaining areas are considered ungauged (Figure 6.15). This large area is made 

up of catchments which have been gauged historically but are currently not gauged 

and areas which have never been gauged (Figure 6.15). Regionalisation is used to 

estimate the inflow from these areas. Regionalisation essentially applies calibrated 

parameter sets from gauged catchments to ungauged areas. The selection of an 

appropriate catchment is generally achieved by determining a relationship between 

the physical characteristics of the gauged catchment to the ungauged areas (Croke 

and Norton, 2004; Seibert, 1999). Parameter values can be adjusted based on the 

relationships found. If the gauged catchment is too dissimilar to the ungauged area 

then the modelled output will be prone to error (Blöschl and Sivapalan, 1995). 

As a first step, streamflow time series for all historically gauged catchments are 

correlated. Catchments which show significantly strong relationships (    0.8) are 

assessed for their hydrologic and physical similarities. This provides an indication of 

possible suitable parameter sets for estimation of streamflow in currently ungauged 

areas. 

Significantly high streamflow cross-correlations (Table 6.5) are found between the 

four catchments of the western bays. Despite high streamflow correlations, the 

Whareroa displayed some hydrologic dissimilarity to the other three catchments. 

The Whareroa catchment had lower variability, lower climatic indices and specific 

discharge. The Kuratau, Whanganui and Waihaha catchments, on the other hand, 

show some hydrological similarity in terms of wetness ratio, runoff coefficients and 
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Figure 6.15 Ungauged areas of the Lake Taupo catchment.  The Waihaha and 

Whanganui catchments are estimated directly using the parameters of the Kuratau 

catchment.  

Figure 6.16 Ungauged areas estimated using the regionalised Kuratau parameters and 

regionalised Tauranga-Taupo parameters. 
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Table 6.5 Cross-correlations of streamflow data between the Kuratau, Whareroa, Whanganui 

and Waihaha catchments.  

 Kuratau Whareroa Whanganui Waihaha 

Kuratau 1    

Whareroa 0.8661 1   

Whanganui 0.9542 0.8839 1  

Waihaha 0.8589 0.7947 0.9684 1 

 

specific discharges. Flow variability is also similar between the three but over the 

low flow conditions, the Kuratau is less variable. For these reasons, the parameters 

of the Kuratau catchment are used to estimate inflow from the currently ungauged 

Whanganui and Waihaha catchments. The Whareroa catchment is included in the 

larger ungauged area of Lake Taupo.  

Streamflow from the remaining ungauged areas (1287 km2, Figure 6.16) is estimated 

from regionalised parameters of calibrated catchments which are the most 

physically similar to the ungauged areas. Based on this, the ungauged areas are 

divided into two sub-areas. The first area includes the northern bays and the 

remaining ungauged section of western areas. The area south of Taupo township 

and the Waitahanui catchment are included in this area. This accounts for 

approximately 75% (1003 km2) of the remaining ungauged areas. The parameters of 

the Kuratau catchment are regionalised for this area. The Kuratau parameters are 

chosen because this catchment is quite representative of the diverse land cover and 

soils across this area. For the area south of the Hinemaiaia catchment around to and 

including the Waihi catchment, the parameters of the Tauranga-Taupo catchment 

are selected for regionalisation. This ungauged area (284 km2) drains some of the 

steep slopes of the Kaimanawa Ranges and smaller volcanoes (e.g. Pihanga) near 

Turangi. The geology of the area is very similar to the Tauranga-Taupo catchment, 

which is considered a significant influence on runoff generation (see Chapter 5). 

While these parameter sets would normally be adjusted to account for differences 

between the sub-catchments, it is assumed that the parameter sets used are 

adequate for the purpose of this study, although this is an area that could benefit 

from further study. The only parameters that are calibrated are the rainfall 

multiplier and lag times. Calibration, however, requires a streamflow time series. In 

this study, this time series is derived from the residual between the change in lake 
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level (     ), outflow (        ), gauged inflows (       ), lake evaporation (     ) 

and direct lake rainfall (     ) so that  

                                                

where       is derived from the lake level time series generated using a Butterworth 

filter to remove unwanted seiche and other oscillatory effects, as described in 

Section 4.4. However, while the filter has removed many of the high frequency 

oscillations, many other longer period oscillations still exist. As a result, the filtered 

lake level still shows some considerable fluctuations in lake level which correspond 

to considerable negative fluxes that are not physically realistic. This is reflected in 

the derived ungauged time series illustrated in Figure 6.17 (top).  

Closer inspection of the filtered average lake level time series show that these 

oscillations generally balance out over time. These „see-saw‟ oscillations (Thompson 

and Ibbitt, 1978) are a result of changes in the driving force of the seiches (Figure 

6.17, lower). For example, a change in wind direction will release water which has 

been pushed toward a certain direction causing some „sloshing‟ back and forth. 

Similarly, barometric changes alter lake levels as the pressure gradient passes over 

the lake, after which normal levels return (Thompson and Ibbitt, 1978).  

 

Figure 6.17  Upper: Ungauged inflow time series derived from known inflows, outflow, lake level change 

and direct precipitation and potential evapotranspiration. Lower: these oscillations generally balance out 

as a flux in one direction is often followed by a corresponding flux in the opposite direction. Most 

oscillations are within ±0.5 mm. 
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Since the model in this study is not permitted to predict negative inflow to Lake 

Taupo there will be some discrepancy between simulated and „observed‟ inflow from 

ungauged areas. Calibration is undertaken on the cumulative distribution of 

modelled and observed time series to ensure the overall mass balance is achieved. 

Since these ungauged areas cover some considerable distances, rainfall is based on 

area averaged volumes using Thiessen polygons.  

6.5 Hydrologic state-updating 

Hydrologic state-updating uses state conditions as a proxy to catchment water 

storage, which is a major moderator of streamflow. Updating state variables with 

real-time observations reduces errors in determining catchment water content. 

Model states can be updated directly using remote sensing or satellite information, 

field data (such as snowpack water equivalent) and streamflow. Streamflow 

represents an integrated catchment response to rainfall and is an indicator or 

catchment water storage (Kirchner, 2009; Pauwels and De Lannoy, 2006). The 

assimilation of discharge observations to update states in rainfall-runoff models has 

been the focus of a number of studies in the last decade (Aubert et al., 2003; Clark et 

al., 2008a; Moradkhani et al., 2005b; Pauwels and De Lannoy, 2009; Seo et al., 

2009; Seo et al., 2003; Weerts and El Serafy, 2006) and is also a focus of this 

research. 

There are three main approaches used to update states in real-time hydrologic 

forecasting applications: variational data assimilation (VAR), Kalman filter (and its 

variants) and particle filtering. VAR methods are applied widely in atmospheric 

applications because they can be applied to large scale processes at relatively little 

cost (Liu and Gupta, 2007). VAR methods operate in batch processing manner over 

a given assimilation window, but do not explicitly consider model errors (Clark et 

al., 2008a; Liu and Gupta, 2007; Seo et al., 2003). VAR is less appropriate for 

hydrological applications due the continual expansion of the observation vector as 

new data arrives (Liu and Gupta, 2007; McLaughlin, 2002). Despite this, Seo et al. 

(2009; 2003) assimilated streamflow, precipitation and potential evapo-

transpiration to update soil moisture states of the conceptual Sacramento soil 

moisture accounting model using VAR with some success.  

The Kalman Filter and its variants are the most commonly applied method in 

hydrologic data assimilation. The Kalman filter (KF) was developed in the 1960s for 
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linear systems and became popular in hydrology during the 1970s and 1980s 

(Weerts and El Serafy, 2006). The KF was easy to implement and effective in the 

case of linear hydrologic systems, but since hydrologic systems are generally non-

linear its use is limited. The extended Kalman filter (EKF) was designed to deal with 

this problem by requiring a linearisation of the forecast variance around the non-

linear model predictions (Beven, 2009). However, its application is not widespread 

due to update instability issues in strongly non-linear systems and additional 

computational requirements (McLaughlin, 2002; Moradkhani et al., 2005b; Reichle 

et al., 2002; Vrugt et al., 2005).  

Ensemble methods offer a solution to the problems of non-linearity. Particle 

filtering methods assign an importance weight to ensemble (particle) members 

which are then used to produce a probability distribution of model predictions. The 

particle weights are updated as new observations become available. Complications 

arise when particles are found to have negligible weights in subsequent iterations, 

making little contribution to the final representation of the probability distribution 

(Liu and Gupta, 2007). One of the advantages of the approach is that Gaussian 

model errors are not required (Clark et al., 2008a). Assuming non-Gaussian errors 

can improve model accuracy but increase computational run times. Examples of 

particle filters include sequential importance resampling (Moradkhani et al., 2005a; 

Weerts and El Serafy, 2006) and residual resampling (Weerts and El Serafy, 2006). 

The Ensemble Kalman Filter (EnKF) developed by Evensen (1994) is another 

extension of the Kalman Filter. Monte Carlo methods are utilised to generate an 

ensemble of model trajectories. State variables are updated taking into account the 

relative error in both the observation and the model (Clark et al., 2008a; Reichle, 

2008; Salamon and Feyen, 2009; Vrugt et al., 2005). The EnKF is easy to 

implement and feasible in an operational short-term forecasting context. Examples 

of applications of the EnKF can be found in Reichle et al. (2002) and Vrugt and 

Robinson (2007). The EnKF has also been applied to New Zealand river catchments 

by NIWA using the TopNet model (Clark et al, 2008a). One of the drawbacks with 

the KF approaches is that Gaussian model errors are assumed. Clark et al. (2008a) 

note that this rarely holds in hydrological systems and has the potential to reduce 

the accuracy of model output. Despite this assumption, most applications report 

success. McLaughlin (2002) suggests this may be in part due to the error 

covariances used to update the model states reflecting the effects of non-linearities 

in the state and measurement equations.  
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The performance of two particle filters and the EnKF are compared by Weerts and 

El Serafy (2006). Applied to the Nahe River, Germany, the EnKF outperformed the 

particle filters, particularly during low flows. They argue that the EnKF is less 

sensitive to misspecification of the model and input uncertainties, concluding that it 

was more robust than the particle filter. The particle filter method was, however, 

more accurate in terms of the root-mean-square error (RMSE). Weerts and El 

Serafy (2006) also note that in an operational context the EnKF may be preferred 

since it is computationally less demanding. 

In this study, a constrained EnKF is used to assimilate streamflow observations and 

update model states to be consistent with the physical reality. The filter is applied to 

modelled catchments of the operational model (Tauranga-Taupo, Waimarino and 

Whareroa catchments) and the modelled inflows of regulated catchments (Kuratau 

and Tongariro catchments). For the TPS, modelled predictions of flow are corrected 

with observations directly. 

6.5.1 The Ensemble Kalman Filter 

The EnKF is a two-step sequential data assimilation routine which uses Monte Carlo 

methods to generate an ensemble of model states. Errors in both the model states 

and observations are quantified and used to update model states. The EnKF 

formalised below broadly follows the notation presented in Clark et al. (2008a) and 

Gillijns et al. (2006). In the forecast step, an ensemble of model states is propogated 

forward in time, 

      
         

   Eqn 6.31 

where    is a background matrix of model states ( ) of size        x       where 

       is the number of states,      is the number of ensemble members and 

  
         

  are the vectors of all model states. As a balance between statistical 

robustness and computational efficiency, an ensemble size of 100 is selected. Since 

the true state is not known, the mean of the ensemble (  ) is used as a best estimate 

of the actual state („truth‟), where 

    
 

    
   

 

    

   

 
Eqn 6.32 

where   is the  th ensemble member and the spread of the ensemble members 

around the mean representing the error variance is 
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    Eqn 6.33 

The output from the model, given the ensemble of model states, is the model 

equivalent of the observation with a mean of    and forecast error statistics (  
 ).  

    
 

    
   

 

    

   

 
Eqn 6.34 

  
       

     
          

        
      Eqn 6.35 

The relationship between the relative uncertainties between the model states and 

model output is described by error covariances. The model error covariance is 

computed directly so that 

   
    

 

      
     

     
    

Eqn 6.36 

   
    

 

      
     

     
    

Eqn 6.37 

where   denotes the matrix transposition,    
  is the forecasted cross-covariance of 

modelled states and modelled streamflow and    
  is the forecasted output error 

covariance. 

In the analysis step, the Kalman gain ( ) is used to determine the amount of update 

made to the states, given the error (difference) between the observations and model 

output. The Kalman gain is a weight matrix describing the relative uncertainties in 

model states determined by the forecast error covariances obtained in the forecast 

step, 

      
     

        Eqn 6.38 

The update step then becomes 

      
              

    Eqn 6.39 

where   is the forward model which is used to equate the model equivalent of the 

observations. Since it is the hydrological model which is used the forward model in 

this application, this term essentially becomes the model output given the ensemble 

of states. That is, 

    
      

    Eqn 6.40 

To map the observations ( ) into state-space, the modelled unrouted discharge is 

compared to the observation a number of time steps ahead, allowing for the time it 
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Figure 6.18 Comparison of the effect of different levels of measurement error on model output.  

takes for the input to the system to reach the outlet. In this application, catchment 

lag times are used for this comparison. The observations are not considered perfect 

and are treated as random variables with a mean of the actual observation and the 

variance ( ) representing the measurement error. This measurement error is often 

unknown, so a parallel assimilation cycle is run where   is the number of ensembles, 

so that  

         Eqn 6.41 

where the measurement error is generated as a random variable with a zero-mean 

normal distribution. In this study, the standard deviation is defined as 0.005 mm as 

it provided a realistic amount of error around the observations. It was obtained by 

comparing the effect of different error levels on model output (Figure 6.18). A 

standard deviation of 0.05 mm would generate too much uncertainty, while a lower 

standard deviation of 0.0005 mm generates too little. However, if the measurement 

error of streamflow is known or obtained then it can be easily included in the 

assimilation code.  

6.5.2 Perturbations to model states 

The final part is the quantification of error statistics in the forecast step based on the 

error variance between multiple ensemble members. These ensembles are generated 

by stochastically perturbing model states ( ) so that  

      
           

  Eqn 6.42 
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where for each state     , the mean of the perturbed states       from the previous 

time step is considered „truth‟ and model error (  
 ) is generated as a random 

number with a zero mean normal distribution with covariance of the ensemble 

members, to produce the ensemble forecast at the next time step. In the following 

section, constraints are placed on these perturbations to ensure physically 

consistent updating. 

6.5.3 Constraints 

The above formulation (Eqn 6.42) places no restrictions on the amount a state is 

perturbed by and as a result allows the filter to adjust state values to beyond what is 

physically possible. To overcome this, some simple constraints are placed on the 

filter to encourage more realistic state updating. Approaches for incorporating 

constraints into data assimilation routines can be found in Julier and LaViola 

(2007), Han et al. (2012), Pan and Wood (2006), Simon and Simon (2006), Simon 

and Tien Li (2002), and Thacker (2007). Many of these applications have been in 

areas outside of hydrology.  

Wang et al. (2009) provide the only comprehensive assessment of constraint 

techniques related to hydrological modelling. They test three methods for 

constraining state (and parameter) updating in an EnKF framework. Catchment 

runoff is simulated with the HyMOD conceptual model which has five state 

variables and five parameters. Linear inequality constraints are applied to both 

states (non-negativity) and parameters (bound by parameter ranges). A non-linear 

inequality constraint is also applied to soil water content.  

The naïve, projection and accept/reject methods for constraining the filter are 

compared. Ensemble members are constrained after applying the unconstrained 

EnKF. The naïve method treats constraints in a simple way. If the constraint is 

violated then the ensemble member value is replaced to ensure it conforms to the 

feasible space. For example, if an ensemble member has a negative value it can be 

replaced with zero in order to satisfy a non-negativity constraint. In the projection 

method, the updated states which violate constraints are projected into the feasible 

space through a projection operator. The third approach is the accept/reject 

method, which checks for violation of the forecasted and updated states and 

regenerates the model error until the states obey the specified constraints. This 

approach may require a large number of samples which can be computationally 

demanding (Wang et al., 2009). To overcome this, a stopping threshold of the 
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maximum number of rejections is set to each possible ensemble member at each 

time step. If this threshold is reached and the updated states still violate the 

constraints, the soft inequality constraints are skipped and hard (non-negativity) 

constraints enforced.  

Wang et al. (2009) conclude that while the naïve method performs reasonably well, 

the projection and accept/reject methods show a general improvement in 

performance. The trade-off is an increase in computational burden. Although it is 

noted that this application has been for dual state and parameter updating, the 

computational efficiency and satisfactory performance of the naïve method indicates 

that it is suited to high-resolution forecasting applications. For these reasons the 

naïve method is used in this dissertation in which both mass and flux constraints are 

applied.  

The four mass and flux constraints are described in the following sections. They are 

relatively simple and straightforward to implement but allow state-updating to be 

consistent with physical laws.  

Mass constraints  

 Non-negativity of state variables. If this constraint is violated the ensemble 

member value is replaced with a zero, so that 

        

        

         

        

 In addition, the soil state is constrained to a maximum volume based on field 

capacity, so that  

              

Flux constraints 

 If there has been no rain in 12 hours, no updates can be made to       or      . 

 State perturbations are constrained to be within the maximum state volume 

change simulated in the unfiltered model output over the 1998-2010 
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evaluation period. This will vary between catchments and each of the four 

states.  

During the analysis step, the Kalman gain is used to update the ensemble of model 

states, the mean of which is used as the state value at the next time step. However, 

depending on the covariance between the modelled states and output this can 

sometimes result in negative state values leading to unreliable state estimates. In 

this study, only those ensembles where all state values are non-negative are used for 

estimating the state at the next time step. Where there are few or no acceptable state 

ensembles, then all negative values are replaced with zero and included in state 

forecasting. In this study, a minimum of 20 ensembles are deemed necessary for 

state forecasting. For the period 2008-2010 (104,673 time steps) this threshold is 

achieved at least 85% of the time (Table 6.6). In the Tauranga-Taupo and 

Waimarino catchments, at least 90 accepted ensembles were obtained 90% of the 

time. In the Kuratau and lower Tongariro catchments at least 90 ensemble members 

were achieved 84% and 81% of the time, respectively. 

6.6 Prediction of lake level changes  

The model output from the various sub-catchments, the TPS and the ungauged 

areas are combined and the total inflow converted into a corresponding lake level 

change given direct rainfall to and evaporation from the lake itself. Sub-catchment 

inflows are treated instantaneously. That is, it is assumed there is no lag 

 

Table 6.6 Percentage of time number of acceptable ensemble members was reached for the 

period 2008-2010. 

Catchment  Parameter sets 

>90 members  1 2 3 4 5 

Tauranga-Taupo 90.8% 90.8% 90.8% 90.7% 90.9% 

Waimarino 90.2% 90.3% 90.1% 90.2% 90.3% 

Kuratau 84.0% 84.0% 83.9% 83.8% 83.8% 

Lower Tongariro 81.5% 81.5% 81.5% 81.4% 81.5% 

<20 members 1 2 3 4 5 

Tauranga-Taupo 2.0% 2.1% 2.1% 2.1% 2.0% 

Waimarino 2.7% 2.7% 2.7% 2.7% 2.6% 

Kuratau 10.3% 10.2% 10.3% 10.5% 10.4% 

Lower Tongariro 14.3% 14.4% 14.3% 14.4% 14.3% 
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between the gauge and the river mouth at the lake. The implications of this are 

discussed in Section 9.4. Outflow from the lake is also required. Three scenarios are 

presented which relate to various outflow rates from Lake Taupo and include 

maximum outflow (320 m3/s), minimum outflow (30-50 m3/s) and mean outflow 

(150 m3/s) scenarios. In addition, observed outflow is also compared. 

It was originally intended that a real-time, continuous predictive model would be 

developed. However, in April 2011 it was agreed that due to issues with obtaining 

the necessary input rainfall and flow data in "real time", the model could not be set 

up to operate in real-time. However, it would remain suitable for such operation, 

and have its capacity for forward prediction evaluated using historical data.  

The predictive model used in this study has therefore been developed as a 

computationally efficient model to allow its use operationally, if desired. It should 

be relatively straightforward to modify the code to allow use of real-time data, if this 

can be provided as model input. However, it is note that recalibration would be 

required if real-time input data was different to the data used to set up the model 

(i.e., if different rainfall and/or flow time series were used to drive the model).  

As discussed previously, the filtered time series of observed lake level change shows 

some considerable fluctuations (Figure 6.19, top) which balance out over time (see 

Section 6.4.4). Most of the oscillations are within ±1 mm. To close the water 

balance, negative inflow fluxes would be required, which is physically inconsistent 

and not permitted in the model. As a result, there is some error between simulated 

and observed lake level, which can accumulate. This error is accounted for by setting 

a tolerance limit. When modelled lake level deviates by more than 2 mm (±1 mm) 

from the observation, the modelled value is replaced with the observed lake level for 

more reliable lake level predictions. While 2 mm may not seem a large deviation, it 

corresponds to over 1.2 million m3 of water. A lower tolerance would allow seiche 

effects to be assimilated which do not represent the genuine lake level fluctuations. 

6.7 Model evaluation 

The combined model is evaluated in terms of its ability to predict changes in the 

level of Lake Taupo during eight events between 1998 and 2011. The events are 

listed in Table 6.7. The events selected provide a range of meteorological,  
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Figure 6.19  Upper: Lake level change in mm/15 minutes. Lower: these oscillations generally balance out 

as a flux in one direction is often followed by a corresponding flux in the opposite direction. Most 

oscillations are within ±1 mm. 

hydrological and operating conditions in the catchment including dry/drought 

conditions when lake levels were nearing minimum operating levels, „normal‟ 

operating conditions, and flood conditions during which lake levels exceeded 

operating levels. 

For each event the model is run historically. Lake level is forecasted at various times 

before, during and after the event to show the progression of the predictions and the 

improvement in the model output when observations are assimilated as part of the 

modelling procedure. At each point in time, lake level is projected forward 15 days.  

Model performance over these specific events is evaluated given known lake 

outflow. To understand the various sources of uncertainty in the modelled response, 

the individual components that make up this modelled response are analysed and  

include the uncertainty associated with the TPS and modelled inflows from gauged 

and ungauged areas.  

Table 6.7 Events over which the model is evaluated in terms of predicting lake level 

Dry/drought periods ‘Normal’ conditions Flood Events 

August 2001 November 2006 July 1998 

August 2003 March 2007 February 2004 

May 2010  September 2010 

2005 2006 2007 2008
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In the final analysis, model output is presented for each event given different 

operational scenarios. These scenarios are based on outflow rates from the lake and 

display the output from the model for decision making purposes. These scenarios 

are also compared against observed lake outflow for the event. 

6.8 Summary 

The Lake Taupo catchment is a complex regulated catchment in which both 

regulated and unregulated inflows discharge directly to the lake. Unregulated flows 

may be gauged or ungauged. Regulated flows may be from modified or highly 

modified systems. Modelling these inflows requires a model that is computationally 

efficient while still being physically realistic and capable of incorporating aspects of 

regulation as well as the varying amounts of data and information.  

A physically consistent semi-distributed conceptual rainfall-runoff model is 

developed and used for modelling both unregulated gauged catchments and 

regulated catchments (excluding the TPS). The structure of this conceptual model is 

relatively simple. Rainfall infiltrating the soil layer drains to three linear stores, 

based on the assumption of a variable source area, before discharging to the river. 

Overland flow occurs if the infiltration rate is exceeded or if the soil layer becomes 

saturated. This structure is modified to incorporate physical and legislative 

constraints relating to the regulation of some catchments. Due to insufficient data 

and information to apply the conceptual model, a statistical probability analysis is 

undertaken to estimate inflow from the TPS. Regionalisation is used to estimate 

inflows from ungauged areas.  

Parameter estimation and sensitivity analysis are undertaken as an iterative process 

using the results of Monte Carlo simulations. Model performance is evaluated using 

the Kling-Gupta Efficiency index. To improve the accuracy and reliability of model 

output, real-time observations of streamflow are used to update model states using 

the EnKF. Mass and flux constraints are applied to the filter. States volumes must be 

non-negative and the soil storage state must not exceed field capacity. Perturbations 

to states are constrained to be within reasonable ranges. State-updates are not 

allowed to the soil storage and fastflow stores after a period of no rainfall.  

Predicted inflows are combined and converted into a corresponding lake level rise. 

The model is evaluated for its ability to accurately and reliably predict lake level over 

a number of events between 1998 and 2011. 
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7 Model calibration and  

sensitivity analysis  

This chapter presents the results of the sensitivity analysis and sub-catchment 

model calibration. Fourteen sub-catchments of Lake Taupo are modelled. The 

Otaketake catchment is not included due to a lack of suitable rainfall data for 

calibration. A regionalised sensitivity analysis (Section 7.1) is used for refinement of 

parameter ranges and for identifying dominant flow pathways. Model calibration 

results for both regulated and unregulated sub-catchments are presented and 

discussed in Section 7.2. The complete results for all sub-catchments can be found 

in Appendix C.  

7.1 Sensitivity analysis   

In this study, sensitivity analysis is used to identify which parameters are most 

influential in determining catchment hydrologic response, and therefore which ones 

should receive more attention in parameter refinement.  

Adjustments were made to some parameter ranges to improve model calibrations. 

For example, in the Waitahanui catchment the range of values for field capacity 

were widened from a maximum of 800 mm and the rainfall multiplier was reduced 
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to 0.4. KGE values for the fit to the time series increased from 0.88 to over 0.91 (an 

improvement of 4%).  

Identifiable parameters present a clear relationship between objective function 

value and parameter value. Those that are well-defined (in the parameter space, 

refer Section 6.3.1) converge toward a narrow range of values for which the highest 

objective function values are found. The most identifiable parameters also tend to be 

the most sensitive in each of the sub-catchments. Table 7.1 lists sensitive parameters 

in order of importance for each of the modelled sub-catchments. The four most 

sensitive and identifiable parameters are the rainfall multiplier, lag time, fastflow 

proportion and baseflow proportion. Scatterplots (Figure 7.1 to Figure 7.4) of the 

respective parameters demonstrate that these four parameters are well defined 

within the parameter space for most catchments. It is not unexpected that the 

catchment lag time and rainfall multiplier are sensitive. The rainfall multiplier 

converts the observed rainfall into a catchment areal estimate. This is based on 

achieving mass balance (minimising the overall bias) in each sub-catchment. The 

fact that such high calibration values have been obtained in a number of catchments 

suggests that the inputs to the system are representative of overall dynamics, if not 

the magnitude of catchment rainfall which the rainfall multiplier accounts for.  

Although sensitive, the rainfall multiplier parameter is less identifiable in the lower 

Tongariro, Whanganui, Tutaeuaua and Poutu catchments. The first three 

catchments use observations from gauges several kilometres away which may lack 

some representativeness. In terms of the lower Tongariro catchment the rainfall 

multiplier is not only used to adjust for mass balance and areal rainfall estimates but 

also for the area of the catchment which now drains through the Tokaanu Power 

Station rather than to the Tongariro River. A lack of identifiability for this parameter 

in the Poutu catchment is most likely to be a result of the complex regulation which 

is difficult to model. More information on the regulation of the catchment, 

particularly in regard to the discharge from the Rangipo Station would improve 

overall performance. 

It is not surprising that catchment lag times are also generally well-defined and 

sensitive, particularly in some of the more flashy catchments. Catchment lag times 

account for the time it takes for input rainfall to move through the catchment and be 

measured at the gauge. Adjusting the timing of the modelled output for this time 

difference allows a closer fit to the observations. 
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Table 7.1 Results of sub-catchment sensitivity analyses. Parameters are in order of descending   statistic value. The darker shading indicates parameters which 

are classified as sensitive and lighter shading for moderately sensitive parameters. Insensitive parameters are not shaded. Insensitive parameters that are still 

significant (at the 5% level) are in italics. 

Waitahanui Hinemaiaia TaurTaupo Waimarino L. Tongariro Poutu Waipakihi Waihohonu Waihi Kuratau Whareroa Whanganui Waihaha Tutaeuaua 

Baseflow Rain mult. Rain mult. Rain mult. Rain mult. Baseflow Lag time TB Tf Rain mult. Lag time Rain mult. Rain mult. rain mult 

Rain mult. Lagtime Fastflow Fastflow Lag time Rain mult. Tf Tf Fastflow Lag time Rain mult. Fastflow Lag time Tf 

Lag time Baseflow Baseflow Lag time Fastflow Fastflow Rain mult. rain mult Rain mult. Baseflow Fastflow Lag time Fastflow lagtime 

Interflow Fastflow Lag time Interflow Baseflow Tf Fastflow baseflow Baseflow Fastflow Baseflow Baseflow Baseflow fastflow 

TB Interflow Tf Baseflow Tf Interflow Baseflow fastflow Field cap TB Interflow TB Interflow baseflow 

Fastflow Tf Field cap Tf TB Lag time Interflow interflow Curve  Interflow Tf Ti Tf Field cap. 

Field cap TB Interflow Ti Field cap Ti Min. release lagtime Interflow Tf TB Tf TB Curve  

Ti Ti Ti Curve  Interflow Field cap Field cap Field cap. Lag time Field cap Curve  Interflow Min. release Min. release 

Curve  Field cap Curve  Min. release Min. release Min. release FC to sat Ti Ti Curve  Max. infiltr. Max. infiltr. Curve  Ti 

Min. release FC 2 sat FC to sat TB Curve  Curve  Curve  Max. infiltr. Min. release Min. release Min. release Field cap Field cap interflow 

Max. infiltr. Max. drain. Max. infiltr. Max. infiltr. FC to sat Max. infiltr. Max. infiltr. Min. release TB Ti Field cap Curve  Ti TB 

Max. drain. Max. infiltr. Min. release FC to sat Max. infiltr. TB Max. drain. Curve  FC to sat Max. drain. Ti Min. release FC to sat Max. drain 

Tf Curve  Max. drain. Field cap Max. drain. FC to sat TB Max. drain Max. drain. Max. infiltr. Max. drain. FC to sat Max. drain. Max. infiltr. 

FC to sat Min. release TB Max. drain. Ti Max. drain. Ti FC to sat Max. infiltr. FC to sat FC to sat Max. drain. Max. infiltr. FC to sat 
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Figure 7.1 Scatterplot of rainfall parameter – most sensitive parameter over all 
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Figure 7.2 Scatterplot of lag parameter – most sensitive parameter over all 
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Figure 7.3 Scatterplot of fastflow parameter – most sensitive parameter over all 
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Figure 7.4 Scatterplot of baseflow parameter – most sensitive parameter over all 



 

  166 | Model calibration and sensitivity analysis 

In catchments which have a more defined flood peak, it may be easier for this 

parameter to be identified. In catchments with longer residence times and less 

direct runoff (such as the baseflow dominated Waitahanui), flood response may be 

dampened. Lag times in these catchments are less easily obtained because there is 

often no well-defined peak to fit to. 

In terms of dominant flow pathways, the fastflow and baseflow proportions are the 

most sensitive. There is strong bivariate sensitivity between all three store 

proportions as they are directly constrained by the physical requirement that 

together they must not exceed one. The fastflow parameter is vital for simulating the 

flood (direct runoff) response of a catchment.  

Baseflow is a considerable contributor to flow in all catchments, regardless of their 

physiographic attributes. This is consistent with the findings in Chapter 5 in which 

the range of baseflow index values is relatively small (0.69 – 0.76). Although the 

range of parameter values for baseflow proportion are wider, it is still very 

identifiable. Baseflow residence time is sensitive in only five catchments. This does 

not undermine the importance of this and other less sensitive parameters. 

Univariate sensitivity analyses are unable to identify parametric interaction, which 

can result in the non-identification of influential parameters (Wagener and Kollat, 

2007). Bivariate sensitivity analysis directly compares the sensitivity of one 

parameter to another. In this study, baseflow residence times are sensitive to 

baseflow proportion in five catchments. It is least sensitive in catchments which are 

more variable and have lower baseflow volumes.  

In the Waihi, Tutaeuaua and Tongariro catchments, the residence time for the 

fastflow store is one of the most sensitive and identifiable parameters found. This 

parameter influences flood peak attenuation. The shorter the residence time, the 

flashier the flood response. The Tutaeuaua and Waihi catchments are the smallest 

sub-catchments studied, allowing water to exit quickly. The steeper nature of the 

Waihi catchment reduces the amount of time water remains in the stores while the 

rounder shape and higher drainage density of the Tutaeuaua catchment has a 

similar effect.  

Fastflow residence time is also important in the sub-catchments of the Tongariro as 

well, despite being much larger in size compared to the Waihi and Tutaeuaua 

catchments. Although the Waihohonu, Waipakihi, Poutu and lower Tongariro 

catchments are generally steep, draining the higher elevation areas of the Lake 
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Taupo catchment, there are some clear differences. The Waihohonu catchment is 

largely covered in tussock grassland so there is less interception than would be 

expected in the Waipakihi catchment. Further, a large proportion of its soils consist 

of weakly developed raw soils with little water holding capacity. It also has one of 

the highest drainage densities. Despite a high baseflow contribution, these factors 

allow water to run through the fastflow reservoir more quickly. In contrast, the 

Waipakihi catchment is more elongated but also has a relatively high drainage 

density. Baseflow contribution is one of the lowest. The steepness of this catchment, 

in conjunction with the underlying geology and density of the drainage network, 

results in a flashy and responsive catchment.  

It is not surprising that the fastflow residence time is also sensitive in the Poutu 

catchment, given that the Waipakihi and Waihohonu both drain into the Tongariro 

River upstream of the Poutu Intake. This time governing constant of fastflow 

recession is also important in the lower Tongariro catchment, albeit to a lesser 

extent. This sub-catchment is, in general, less steep which means that water travels 

through the catchment more slowly than steep catchments. It also has a large 

amount of permeable pumice soils and a range of vegetation types. This parameter 

is least sensitive in the spring fed Waitahanui catchment where baseflow is the 

highest of all sub-catchment of Lake Taupo.  

Although not classified as sensitive in the Tauranga-Taupo and Waimarino 

catchments the fastflow residence time is significant in terms of the Kolmogorov-

Smirnoff (KS) statistic. These two catchments (plus the Waipakihi catchment) have 

the highest streamflow variability index values and flood flow variability values of all 

catchments studied. Bivariate sensitivity analysis revealed that the catchment lag 

time is sensitive to this parameter. As the fastflow residence time increased the lag 

time also increased. Longer residence times tend to delay or subdue the peak 

response. 

Finally, field capacity is sensitive in catchments that tend to have higher baseflow, 

such as the Waitahanui, Kuratau and Waihohonu catchments. Field capacity reflects 

the permeable and water holding capacity of the soil. However, field capacity 

parameter values are wide ranging and there is little interaction between this 

parameter and other parameters of the model, with the exception of the rainfall 

multiplier. The rainfall multiplier tended to increase as field capacity increased in 

eight sub-catchments, most of which tend to have a more variable and flashy 

response (Tauranga-Taupo, Waimarino, Waihi, Waipakihi and Tutaeuaua).  
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It was hoped that correlation analysis of parameter values against the physiographic 

attributes used in Chapter 5 would be able to provide further insight into catchment 

hydrologic behaviour. While this analysis has been undertaken, many relationships 

could not be discerned with certainty because of a lack of identifiability (in a 

univariate sense) for some model parameters of some catchments. Multi-variate 

analyses, such as Sobol‟s global sensitivity analysis, would provide a more robust 

analysis of individual parameter influence and parameter interactions, but can be 

computationally expensive (Yang, 2011). Although the results of the correlation 

analysis are not included in this chapter, they are presented in Appendix E. 

7.2 Model calibration and parameter estimation results 

The conceptual rainfall-runoff model described in Chapter 6 is used to calibrate all 

historically gauged sub-catchments of Lake Taupo for the purpose of providing 

additional information on catchment hydrologic behaviour. The five best performing 

parameter sets in terms of both fit to the time series and the fit to the flow duration 

curve are presented. Calibrated parameter sets are evaluated over a non-overlapping 

period of data for all catchments (refer Section 6.2), where adequate data permits. 

Evaluation could not be reliably undertaken for Waihi, Whareroa, Waitahanui and 

Tutaeuaua catchments due to various issues relating to the short duration of some 

time series and problems with poor quality rainfall and/or streamflow data. Since 

these catchments are used for providing further information on catchment 

hydrologic behaviour, and not in the operational model, calibration (and evaluation) 

of these catchments is undertaken on as much of the streamflow record as the data 

permitted so as to include a wide range of possible hydrologic responses to identify 

suitable model parameters. 

In this study, the aim is to achieve one million calibration runs per catchment. 

Although it is recognised that this is not sufficient to sample the entire parameter 

space given the number of model parameters, it does provide a balance between 

statistical accuracy and computational constraints. 

Four catchments have less than one million. For the Waihohonu and Waipakihi 

catchments, 800,000 and 700,000 calibration runs are obtained, respectively, due 

to issues with some of the computing nodes in the Science Facilities High 

Performance Computing Facility. The Hinemaiaia catchment was first calibrated 

using a disaggregated rainfall record using the temporal (sub-hourly) distribution of 
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rainfall from a nearby highly correlated station, with little success. As such, the 

catchment is calibrated using the Tauranga-Taupo rainfall record. A total of 

500,000 calibrations have been obtained for this catchment (below the scheme). 

Initially, the Tutaeuaua catchment was calibrated using a rainfall gauge located to 

the south west of the catchment. Model calibrations (1 million) were not strong. A 

further 500,000 calibrations were undertaken for this catchment using an 

alternative rainfall record (located north of the catchment) which produced much 

higher KGE values. It is the results of this latter calibration that are included in this 

chapter. Despite the lower number of calibration runs, high performance index 

values for the majority of catchments are achieved. 

7.2.1 Unregulated catchments 

For the majority of unregulated catchments, the model is able to simulate the runoff 

response of the catchment reasonably well. Objective function values for respective 

calibration and evaluation periods are summarised in Table 7.2. KGE values are 

generally above 0.80 and as high as 0.92 for the fit to the time series, and greater 

than 0.95 for fit to the flow duration curve. These KGE values indicate that the 

model does a good job of simulating streamflow in the majority of catchments, 

indicating that the structure of the model is representative of most of the hydrologic 

responses in the Lake Taupo catchment. Visual inspection of modelled and observed 

streamflow shows that, in general, low flow and recession periods are modelled 

reasonably closely but peak events are often under- or over-estimated. 

The Tauranga-Taupo catchment, for example, is a flashy catchment with 

considerable flow variability, a result of its steep topography, impermeable 

underlying geology and elongated shape. The proportion of streamflow routed to the 

fastflow store is as much as 25% and the associated residence times are less than 

half a day. Recession periods are simulated well, as are the timing and duration of 

events (Figure 7.5b). Peak events, however, are generally over-estimated, indicated 

by the negative residual flow in Figure 7.5c. Conversely, in the Waitahanui 

catchment (Figure 7.6), flow variability is low with the range of streamflow over the 

calibration period less than 3.5 m3/s, despite some reasonable rainfall events. This is 

a highly baseflow dominated catchment; calibrated parameter sets ignore the 

fastflow store, apportioning subsurface flow between baseflow (0.97) and interflow 

(0.03) only. Direct runoff is not accounted for. In this catchment, peak flow events 

tend to be under-estimated (Figure 7.6b), although the error is small (Figure 7.6c).  
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Table 7.2 Top five parameter sets and corresponding calibration and evaluation period KGE 
values for unregulated catchments  

  Top 5 Parameter Sets 

Catchment KGE criterion 1 2 3 4 5 

Waitahanui Calibration (Time) 0.9166 0.9207 0.9184 0.9192 0.9180 

 Calibration (FDC) 0.9752 0.9828 0.9814 0.9841 0.9757 

Tauranga-Taupo Calibration (Time) 0.9049 0.9070 0.9052 0.9052 0.9049 

 Calibration (FDC) 0.9879 0.9864 0.9799 0.9805 0.9882 

 Evaluation (Time) 0.8038 0.8042 0.8035 0.7988 0.8008 

 Evaluation (FDC) 0.8367 0.8397 0.8397 0.8330 0.8348 

Waimarino Calibration (Time) 0.8222 0.8215 0.8214 0.8220 0.8216 

 Calibration (FDC) 0.9765 0.9809 0.9739 0.9735 0.9834 

 Evaluation (Time) 0.7994 0.7891 0.7994 0.7947 0.7938 

 Evaluation (FDC) 0.9205 0.9224 0.9029 0.9114 0.9123 

Waipakihi Calibration (Time) 0.8450 0.8451 0.8442 0.8448 0.8462 

 Calibration (FDC) 0.9609 0.9604 0.9512 0.9610 0.9583 

 Evaluation (Time) 0.8655 0.8647 0.8796 0.8660 0.8674 

 Evaluation (FDC) 0.9375 0.9341 0.9765 0.9385 0.9358 

Waihohonu Calibration (Time) 0.8178 0.8206 0.8180 0.8189 0.8168 

 Calibration (FDC) 0.9819 0.9676 0.9679 0.9694 0.9532 

 Evaluation (Time) 0.6856 0.6657 0.6880 0.6770 0.7085 

 Evaluation (FDC) 0.7942 0.7777 0.7847 0.7882 0.8259 

Waihi Calibration (Time) 0.7466 0.7511 0.7596 0.7528 0.7538 

 Calibration (FDC) 0.8364 0.8411 0.8606 0.8546 0.8525 

Whareroa Calibration (Time) 0.8679 0.8694 0.8583 0.8567 0.8512 

 Calibration (FDC) 0.9584 0.9535 0.9605 0.9617 0.9529 

Whanganui Calibration (Time) 0.9138 0.9163 0.9148 0.9144 0.9149 

 Calibration (FDC) 0.9784 0.9796 0.9766 0.9746 0.9701 

 Evaluation (Time) 0.8238 0.8557 0.8366 0.8072 0.8035 

 Evaluation (FDC) 0.8679 0.8957 0.8644 0.8530 0.8347 

Waihaha Calibration (Time) 0.9160 0.9153 0.9180 0.9158 0.9153 

 Calibration (FDC) 0.9713 0.9616 0.9714 0.9657 0.9679 

 Evaluation (Time) 0.8736 0.8654 0.8793 0.8431 0.8488 

 Evaluation (FDC) 0.9110 0.9005 0.9171 0.8715 0.8768 

Tutaeuaua Calibration (Time) 0.8388 0.8472 0.8380 0.8543 0.8388 

 Calibration (FDC) 0.9043 0.9654 0.9363 0.9313 0.9327 
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Figure 7.5 Modelled versus observed streamflow and corresponding rainfall for the Tauranga-Taupo 

catchment. 

 

 

Figure 7.6 Modelled versus observed streamflow (mm/15 minutes) and corresponding rainfall (mm/15 

minutes) for the Waitahanui. 
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In general, KGE values for evaluation periods are generally lower than the 

calibration periods but still above 0.78 for the time series and, in most cases, above 

0.80 for the flow duration curve. In the Waipakihi catchment, the parameter sets 

produced higher KGE values for the evaluation period in terms of fit to the time 

series with only a slight reduction in KGE values for the fit to the flow duration 

curve.  

Parameter sets for two catchments did not perform as well as other sub-catchments. 

For the Waihi catchment (9.8 km2), the best performing parameter sets had KGE 

values for the fit to the time series from 0.7466 to 0.7596. The corresponding fits to 

the flow duration curve are between 0.8364 and 0.8606. The rainfall record used for 

this catchment is located several kilometres away in Turangi. Residual mass curves 

for the streamflow and rainfall records show relatively good correspondence 

although there are some months where the two records deviate (see Appendix C). 

Using this rainfall record, recession and baseflow response is captured reasonably 

well but the fastflow response is generally over-estimated except during very large 

events where it is under-estimated (Figure 7.7). The Waihi catchment is one of the 

smallest catchments studied. It is relatively steep and has a reasonably low drainage 

density, compared to other sub-catchments of Lake Taupo. A significant fastflow 

response could, therefore, be expected. However, observed responses appear to be 

dampened or even missed entirely given the corresponding rainfall input, indicating 

that a more suitable rainfall record may be required. 

In the Waihohonu catchment (96 km2), despite relatively high KGE values for the 

calibration period (>0.81 fit to time series and >0.95 fit to flow duration curve), the 

model does not seem to be able to adequately simulate the timing of either the 

baseflow or peak flood flow response (Figure 7.8). The Waipakihi rainfall gauge is 

used as input for model calibration. It is located outside of the catchment, although 

relatively close to the catchment outlet. The representativeness of this gauge may be 

an issue. The Tukino rainfall gauge, located on the flanks of Mt Ruapehu, was 

initially used for calibration but generated poor KGE values (KGE (time) <0.3, 

based on 500,000 calibration runs), so is not used for further calibration. 

In addition, given its location on the slopes of Mt Ruapehu, for much of the year a 

considerable part of this catchment is covered in snow. In warmer spring and 

summer months, snow melt may raise water levels during periods when rainfall may 

be less, making it more difficult for the model to accurately simulate the baseflow 

response. This appears to be evident in Figure 7.8. During late 2002 (spring/



 

Model calibration and sensitivity analysis | 173  
 

 

Figure 7.7 Modelled versus observed streamflow (mm/15 minutes) and corresponding rainfall (mm/15 

minutes) for the Waihi catchment. Note: maximum flow truncated for easier visual inspection. 

 

 

 

Figure 7.8 Modelled versus observed streamflow (mm/15 minutes) and corresponding rainfall (mm/15 

minutes) for the Waihohonu catchment. 
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summer), modelled streamflow is lower than observed, when melt water may be 

contributing to streamflow. During winter 2003, a time when a large amount of 

precipitation would fall as snow, modelled streamflow is higher than observed. 

Model performance may be improved if a snowmelt routine is included. This routine 

may also be useful in other high elevation areas of the catchment (namely, 

Tauranga-Taupo, Waimarino and Waipakihi catchments) where snow may 

accumulate.  

7.2.2 Regulated catchments 

Simulating the response of regulated catchments is challenging and a number of 

approaches are used to model the inflow from these sub-catchments. Despite the 

limited availability of data and information specific to dam operation and 

scheduling, enough information on this regulation has been incorporated into the 

model structure to allow reasonable predictions to be made.  

Objective function values for both calibration and evaluation periods for each sub-

catchment are summarised in Table 7.3. The unmodified Kuratau catchment (above 

the scheme) is included here because it is part of the larger regulated catchment 

(below the scheme) and its output is used to estimate the regulated discharge 

downstream. The Hinemaiaia catchment (below the scheme) is modelled because it 

is currently gauged and there is a high correlation between the two gauging stations 

above and below the scheme. The Tongariro catchment has been modelled in two 

parts – the regulated catchment above the Poutu Intake and the lower section 

between the Poutu Intake and Turangi. These two modelled outputs are combined 

to generate a streamflow prediction for the downstream Turangi location. 

Tongariro River 

The streamflow of the lower Tongariro catchment (between Poutu Intake and 

Turangi) is largely unmodified, although there have been some changes to the 

catchment as a result of the TPS. Prior to the TPS, Lake Rotoaira drained into the 

Tongariro River. As part of the scheme, most of its outflow has been redirected 

through the Tokaanu Power Station. A large part (over 140 km2) of the „natural‟ 

Tongariro catchment no longer drains to the Tongariro River (see Section 2.3.1). A 

minimum compensation flow (0.6 m3/s) is retained through the natural outlet 

(Poutu Stream) which  has been used in the past to augment the Tongariro River 

flow to meet a previous minimum flow requirement at Turangi (Stephens, 1989).



 

Model calibration and sensitivity analysis | 175  
 

Table 7.3 Top five parameter sets and corresponding calibration and evaluation period KGE 
values for regulated catchments  

  Top 5 Parameter Sets 

Catchment KGE criterion 1 2 3 4 5 

Natural Tongariro Calibration (Time) 0.7925 0.7912 0.7817 0.7783 0.7796 

 Calibration (FDC) 0.9554 0.9540 0.9502 0.9630 0.9536 

 Evaluation (Time) 0.6445 0.6553 0.6661 0.6433 0.6406 

 Evaluation (FDC) 0.6968 0.7021 0.7380 0.6952 0.6982 

Poutu Calibration (Time) 0.7572 0.7570 0.7567 0.7574 0.7580 

 Calibration (FDC) 0.9011 0.9002 0.9033 0.9008 0.9002 

 Evaluation (Time) 0.6198 0.6020 0.5847 0.5684 0.6012 

 Evaluation (FDC) 0.6819 0.6799 0.6820 0.6838 0.6980 

Kuratau Calibration (Time) 0.8880 0.8888 0.8873 0.8890 0.8883 

 Calibration (FDC) 0.9703 0.9693 0.9689 0.9614 0.9707 

 Evaluation (Time) 0.3209 0.4029 0.3289 0.2382 0.3762 

 Evaluation (FDC) 0.3295 0.4166 0.3377 0.2440 0.3879 

 Hinemaiaia (Below) Calibration (Time) 0.8417 0.8381 0.8419 0.838 0.8479 

 Calibration (FDC) 0.9506 0.9530 0.9642 0.9606 0.9538 

 Evaluation (Time) 0.8310 0.8315 0.7962 0.8243 0.8426 

 Evaluation (FDC) 0.9245 0.9097 0.8845 0.9265 0.9210 

 

Although this consent condition no longer exists, it is difficult to know without 

further information whether additional flow is released into this stream and at what 

time and in what quantities. 

The rainfall multiplier implicitly accounts for these changes in catchment area, 

overcoming any bias resulting from the reduced streamflow. It cannot compensate 

for other effects such as changes in catchment dynamics (for example, additional 

streamflow through the Poutu Stream) without further system information which 

may not be easily obtained. 

A number of issues also arise in the generation of a streamflow time series for this 

part of the catchment. Streamflow is estimated by removing the observed flow 

recorded downstream of the Poutu intake from that observed at Turangi, taking into 

account an estimated 1.5 hour lag time. There is often a mismatch between the 

timing of peak events which leads to sudden increases and decreases in inferred 

streamflow for the lower Tongariro sub-catchment which is inconsistent with typical 

hydrological behaviour. This is evident in Figure 7.9 where the inferred streamflow 
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Figure 7.9 Issues with estimating the lag time between the observed Tongariro and Poutu catchments 

results in some physically inconsistent spikes in the inferred time series for the lower Tongariro catchment.  

 

record oscillates briefly where the peak streamflow recorded at Poutu does not 

coincide with the peak observed at Turangi, even with the lag time applied. Further, 

because of this issue in some situations the streamflow at Poutu is higher than the 

corresponding flow at Turangi, resulting in a negative flow in the time series for the 

lower Tongariro catchment. During these times the negative flow values are replaced 

with mean flow values of the lower Tongariro section.  

Despite these issues, the model does reasonably well in capturing the main 

hydrological response of the catchment. The top-performing KGE values are 0.7725 

to 0.7848 for the time series and 0.9502 to 0.9630 for fit to the flow duration curve. 

KGE values for the evaluation period range between 0.6406 and 0.6661 for the time 

series and 0.6961 and 0.7369 for the flow duration curve. However, as shown in 

Figure 7.10, peak flows are generally over-estimated. 

Model performance could be improved through better characterisation of the lag 

response between the Poutu Intake and Turangi. The lag time applied between the 

Poutu catchment and Turangi is set at 1.5 hours, calibrated to the overall best fit 

between the two observed time series. It does not take into account the fact that the 

speed at which water will reach the Turangi observation point will change 

depending on the volume of water in the river. It also assumes that the shape of the 

flood wave remains unchanged between the two observation points. Inclusion of a 

kinematic wave model would allow the flood wave to be propagated downstream
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Figure 7.10  Modelled versus observed streamflow (mm/15 minutes) and corresponding rainfall (mm/15 

minutes) for the lower Tongariro catchment.  

taking into account the variation of discharge with time and distance (Singh, 2002). 

The timing and volume of water to arrive at Turangi from the upstream Poutu sub-

catchment would likely be more accurately predicted. 

In terms of the Tongariro catchment above Poutu Intake, the model is unable to 

fully capture the complexity and regulation of this part of the Tongariro catchment 

(Figure 7.11). Constraints were applied to account for minimum flow, intake capacity 

and turbidity. These constraints make a number of assumptions that may not always 

hold. For example, the model assumes that at all times the Poutu Intake diverts the 

maximum amount of flow that can be taken given the constraints above. This may 

not always be the case. The TPS generally is a peak demand station and typically 

generates more power during peak demand times of the day. There is little storage 

in the scheme outside of Lake Moawhango (eastern diversion); Lake Rotoaira is 

operated within a 0.39 m operating range. The amount and timing of water diverted 

may correspond to peak demand times and may also be affected by how much 

storage there is in the various lakes of the scheme.  

Model calibration is also complicated by the regulation upstream at the Rangipo 

Dam and the discharge from the Rangipo Power Station above Poutu Intake. Water 
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Figure 7.11 Modelled versus observed streamflow (mm/15 minutes) and corresponding rainfall (mm/15 

minutes) for the Poutu Catchment.  

from Rangipo Dam is diverted through the Rangipo Power Station before being 

discharged immediately above the Poutu Intake. Streamflow recessions are often 

interrupted as a result of the regulation so that they often do not follow natural 

recession patterns (Stephens, 1989). Nearly all water from Rangipo Dam is diverted 

through to Rangipo Power Station, but when this diversion/flow ceases 

unexpectedly water is spilled over the Rangipo Dam, resulting in an artificially 

induced surge in streamflow (Stephens, 1989). In addition, the recreational releases 

which occur at various times of the year present a hydrological response when there 

is no corresponding rainfall event. Unless the release schedules are known in 

advance, modelling these releases operationally would be difficult. With more 

information, the calibration and corresponding evaluation objective function values 

could be improved.  

In terms of the LTIM (see Section 6.4.2), the modelled output from the two sub-

catchments of the Tongariro are combined to produce a single streamflow 

prediction at Turangi. This combined output is shown in Figure 7.12c. 
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Figure 7.12 Modelled versus observed streamflow (mm/15 minutes) for the (a) Lower Tongariro and (b) 

Poutu catchments. (c)The combined streamflow is compared against observed streamflow as recorded 

at Turangi.  

Kuratau River 

Despite relatively high calibration values for the Kuratau catchment (above the 

scheme), model performance over the evaluation period is significantly reduced to 

between 0.2382 and 0.4029 (fit to time series). Similar results were found for other 

periods in the record over which the parameter sets were evaluated. Figure 7.13 

shows the modelled and observed streamflow for one of the evaluation periods. 

While the model seems to over-estimate peak flows, recessions and baseflow 

characteristics appear to be fairly consistent with the observations, suggesting that 

the KGE in this case is under-estimating the model‟s performance. The flow 

duration curve of the calibration period captured a wide range of hydrological 

responses at the higher and lower end of the curve, although mid-high range flows 

were less adequately characterised (Figure 7.14a). Residual mass curves of rainfall 

and streamflow for the calibration period were generally similar. However, during 

the middle part of the record, there are some inconsistencies between the two, 

indicating that rainfall is generally lower than the corresponding streamflow 

indicates (Figure 7.14b). This suggests that there is some seasonality in the rainfall 
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Figure 7.13 Modelled versus observed streamflow (mm/15 minutes) for (a) the Kuratau catchment over 

the evaluation period and corresponding rainfall (b). While the modelled output overestimates peak flows 

it appears to capture the recession and baseflow characteristics relatively well despite low KGE values. 

 

 

 

 

Figure 7.14 Flow duration curve and residual mass curve for calibration period for Kuratau Catchment 

(above the scheme) 
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runoff relationship for which rainfall multiplier cannot account for. A rainfall 

multiplier based on the time of the year would improve model performance in many 

of the sub-catchments where a changing bias occurs (for example, the Waihohonu 

where some winter precipitation falls as snow and streamflow is augmented by melt 

water in warmer spring and summer months). Analysis of this bias by assessing 

seasonal or monthly mass balances would provide valuable information that could 

be included in the model structure. 

To account for the downstream regulation of streamflow in the Kuratau catchment, 

a diurnal pattern consistent with the regulated discharge from the scheme is 

imposed on the modelled output for the unregulated section of the Kuratau River 

(above the scheme). The diurnal pattern is derived from the time series for the 

Kuratau River below the scheme between June 1976 and February 1979, and is 

described in Section 6.4.2. 

It is difficult to evaluate the performance of the model in capturing the regulation in 

this catchment due to a lack of available data. The only comparative analysis can be 

undertaken over a three month period of overlapping observed data between 

November 1978 and February 1979. Over this period, the modelled output is able to 

predict the diurnal pattern well but under-estimated maximum river flow and over-

estimated minimum flows in the earlier part of the period (Figure 7.15). With a 

longer discharge time series (and, ideally, a more recent period of time to account 

for any shifts in climate) the diurnal pattern of discharge from the scheme could be 

 

 

Figure 7.15 Modelled streamflow for Kuratau below the scheme compared to observed record. 
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determined for each day and month of the year – similar to the statistical probability 

analysis for the TPS. Further, lag effects between the streamflow observed above the 

scheme and the discharge below the scheme could be included. Any specific data 

and information relating to the operation of the Kuratau Power Scheme would also 

be of benefit. 

Hinemaiaia River 

Of the three catchments, the Hinemaiaia is the least modified in terms of 

streamflow. The Hinemaiaia Power Scheme is a relatively small system with very 

little storage. There is little additional water contributing to the river between the 

two gauges above and below the scheme (mean flow for these two gauge locations is 

similar). There is, therefore, a high correlation between the streamflow recorded 

above and below scheme. The only known regulation is a minimum flow below 

Hinemaiaia B of 3 m3/s, where inflows into the Hinemaiaia A Lake permit 

(TrustPower Ltd, 2008). Since little is known of the storage and release of water 

from the scheme, and the fact that it is essentially run-of-river, streamflow is 

modelled without regulation. The minimum flow is not enforced since a low inflow 

above the scheme would correspond to a naturally low flow below the scheme as 

well. Using the Tauranga-Taupo rainfall record as input, the inflow from this 

catchment is modelled, with no regulation in place, except for the downstream 

minimum flow. KGE performance index values are relatively high, ranging between 

0.838 and 0.848 for the fit to the time series and 0.950 to 0.965 for the fit to the 

flow duration curve. Model performance over the evaluation period is only slightly 

weaker with KGE performance index values for the fit to the time series ranging 

between 0.796 and 0.843, and between 0.885 and 0.963 for the fit to the flow 

duration curve. 

Close inspection of the modelled output and the observations shows that the model 

simulates the overall baseflow and recession characteristics of the catchment 

reasonably well (Figure 7.16). The more frequent smaller flood peaks are, however, 

often over-estimated. In larger events, peaks are generally under-estimated. It is 

thought that a large part of this error is largely due to the Tauranga-Taupo 

catchment rainfall being used as input to the model. Until 2005 a rain gauge 

collecting daily rainfall depths had been operational in the Hinemaiaia catchment 

for 40 years. Attempts to disaggregate this record into a higher resolution time 

series for calibration were not able to generate any satisfactory performance index 

values for the catchment. 
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Figure 7.16 Modelled versus observed streamflow (mm/15 minutes) for (b) the Hinemaiaia catchment 

below the scheme and (a)corresponding rainfall (mm/15 minutes) Residual streamflow (mm/15 minutes) is 

plotted in (c). 

Toward the end of the time series shown (and beyond), more frequent oscillations 

appear in the record indicating greater regulation of discharge from the scheme. 

These oscillations begin in late 2008 and tend to follow daily energy demand 

profiles. 

7.3 Conclusions  

Calibration and sensitivity analysis results for thirteen historically gauged sub-

catchments are presented. Classic Monte Carlo sampling is used to randomly 

generate parameter sets from a feasible and pre-defined parameter space. 

Performance is determined using the Kling-Gupta Efficiency index.  

One of the purposes of the model calibration process is to add to the existing 

knowledge of catchment hydrologic behaviour. Model identification and sensitivity 

analyses have confirmed that the amount of water distributed to the baseflow and 

fastflow stores is most important, hydrologically, in all catchments. This is not 

surprising since baseflow is a significant component of streamflow in all catchments 

despite considerable variability of catchment flood flow responses. 
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Overall, the model simulates unregulated catchments reasonably well. In 

catchments where snow accumulates, incorporating a snowmelt module may 

improve model performance. A number of issues have been identified regarding the 

suitability and reliability of various rainfall records for model calibration. Obtaining 

long-term continuous rainfall records is often difficult. Records of short duration or 

with many (sometimes lengthy) gaps limit the amount of data available for model 

calibration. While performance may be good, it is difficult to know if the model 

parameters can simulate a wider range of hydrological conditions outside of this 

calibration period. Gaps could be infilled with observations from other gauging 

stations, but these are often several kilometres away. The temporal variability of 

rainfall at these locations may be quite different to the catchment they are being 

used to represent. Seasonality of some parameters has also been identified as an 

issue for which the current rainfall multiplier cannot account for. Allowing the 

rainfall multiplier to change with time (i.e. seasonally) could improve model 

performance, especially outside of the calibration period. 

Despite a number of challenges, enough of the regulation associated with the three 

hydro power schemes in the Lake Taupo catchment is incorporated into the 

traditional conceptual model structure to produce reasonable simulations of 

streamflow. Model performance could be enhanced with additional information and 

data in relation to specific dam operation and scheduling in the Kuratau, 

Hinemaiaia and Tongariro catchments. 
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8 Lake Taupo Inflow Model 

The Lake Taupo Inflow Model (LTIM) is used to predict the overall inflow to Lake 

Taupo. It is designed so that, if needed, it can be used operationally (requiring 

coupling with meteorological forecasts and recalibration based on forecast inputs). 

Only those sub-catchments which are currently gauged are explicitly modelled, 

namely: Hinemaiaia, Tauranga-Taupo, Waimarino, Tongariro and Kuratau 

catchments. A statistical probability analysis estimates the inflow from the TPS. All 

other areas are considered ungauged and are estimated through regionalisation.  

Since the previous chapter presents the model calibration results for the five sub-

catchments used in the LTIM, they are not presented here. This chapter presents the 

results of the regionalisation (Section 8.1) and the statistical probability analysis for 

the TPS (Section 8.2). The combined inflows from all sources are presented and 

evaluated over three events, representing a range of flow conditions (Section 8.3). 

To further improve the accuracy of model predictions, a constrained EnKF is the 

applied to gauged catchments (Section 8.4). Streamflow observations are used to 

correct for errors in state conditions for improved model performance. Mass and 

flux constraints are applied to each state to ensure perturbations are physically 

consistent. Without these constraints it is shown that the reliability of forward 

predictions is compromised; this has not been demonstrated in the literature before.  
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Table 8.1 Lake Taupo Inflow Model catchments and data/parameters sets used 

Catchments Data/Parameters used 

Unregulated catchments  

Tauranga-Taupo Own parameters and data 

Waimarino Own parameters and data 

Regulated Catchments  

Hinemaiaia Own parameters, Tauranga Taupo rainfall 

Kuratau Own parameters and data 

Tongariro Own parameters and data 

Ungauged areas  

Waihaha Kuratau parameters and rainfall 

Whanganui Kuratau parameters and rainfall 

Remaining ungauged areas:  

North/west Kuratau parameters 

South Tauranga-Taupo 

 

The performance of the filter is compared to the non-filtered model over the same 

three events used in Section 8.3 for each sub-catchment. A number of issues relating 

to the application of the filter are identified and possible solutions suggested. For 

clarity, Table 8.1 lists each of the sub-catchments of the LTIM and associated data 

and parameter sets used. 

8.1 Regionalisation 

For areas which are not currently gauged or have never been gauged, calibrated 

parameter sets from a gauged („donor‟) catchment are applied through 

regionalisation. The donor catchment should show some hydrological similarity to 

the catchment being estimated.  

In catchments with historical streamflow records, correlation analysis is used to 

determine hydrologic similarity. Based on these correlations, the parameters of the 

Kuratau catchment are used to predict streamflow from the Waihaha and 

Whanganui catchments. Streamflow from the remaining ungauged areas (1287 

km2), where observations are not available, is estimated by identifying areas that 

have some degree of physical similarity available (using the information obtained in 

Chapter 5). In this study, the optimised parameters of the Kuratau catchment are 

used to estimate the flow from the remaining ungauged areas of the western and 

northern bays as well as the area around Taupo including the Waitahanui 

Catchment. This accounts for approximately 78% (1003 km2) of the remaining 
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ungauged areas. The remaining areas (284 km2) are estimated from the parameters 

of the Tauranga-Taupo catchment.  

In all cases, the rainfall multiplier and catchment lag time are the only parameters 

that are calibrated. Calibration is undertaken against existing historic streamflow 

records in the case of the Whanganui and Waihaha catchments. An inferred 

streamflow record for the two remaining ungauged areas is estimated from known 

inputs, outputs and changes in lake level, as described in Section 6.4.4. Calibration 

of these time series is based on cumulative distributions due to the oscillatory effects 

in the lake level that persist in the inferred ungauged streamflow time series.  

8.1.1 Catchment specific regionalisation 

Although the Kuratau, Whanganui and Waihaha catchment are hydrologically 

similar, there are a number of differences in the physical characteristics of the sub-

catchments which may affect the performance of the Kuratau parameters in these 

areas. The Whanganui and Waihaha catchments drain areas of older Whakamaru 

ignimbrites which are less permeable than the andesitic and sedimentary lithologies 

prominent in the Kuratau catchment. Basement greywacke is also present in the 

headwaters of the Waihaha catchment. The Kuratau catchment is covered mainly by 

pumice soils, reflected in the model calibration by higher field capacity values than 

the Whanganui and Waihaha catchments.  

Catchment size and shape also varies. The Whanganui is the most elongated 

(elongation ratio: 0.44) and smallest of the three (31.6 km2) and has the highest 

drainage density. The Waihaha has an elongation ratio of 0.65, while the Kuratau is 

0.55. The Waihaha catchment is the steepest as it drains the higher elevated and 

steeper areas of the Hauhungaroa Ranges.  

With these characteristics it is not unreasonable to expect the Whanganui and 

Waihaha catchments to respond more quickly than the Kuratau catchment. 

Residence times are similar between the Waihaha and Kuratau catchments, 

although considerably different to the Whanganui. Interestingly, there is little 

difference in proportion of flow routed through the fastflow store between these 

three catchments. Baseflow proportion is generally higher in the Kuratau but the 

Whanganui and Waihaha have higher interflow proportions.  

Performance of the Kuratau parameters is compared against respective catchment 

calibrated parameter sets (Table 8.2). Despite the physiographic differences, the 
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Table 8.2  Performance results for regionalisation of Whanganui and Waihaha catchments 
using Waihaha rainfall record and for the Waihaha using the Kuratau rainfall record.  

  Top 5 Parameter Sets 

Catchment KGE criterion 1 2 3 4 5 

Whanganui KGE (time) 0.8345 0.8799 0.8918 0.7929 0.8563 

 KGE (fdc) 0.8697 0.9211 0.9435 0.8182 0.8942 

Waihaha KGE (time) 0.9003 0.8944 0.9025 0.9018 0.8950 

 KGE (fdc) 0.9627 0.9426 0.9590 0.9627 0.9505 

Waihaha KGE (time) 0.8435 0.7844 0.7018 0.9148 0.7841 

(using Kuratau rain) KGE (fdc) 0.8693 0.8048 0.7137 0.9652 0.8043 

 

 

Kuratau parameters are able to simulate streamflow reasonably well using Waihaha 

catchment rainfall 10 . It is concluded, therefore, that a combination of different 

factors are working together to give a similar hydrologic response. 

Operationally, the rainfall recorded in Kuratau is used as model input for these two 

catchments. It is important, therefore, that the performance of the parameters are 

analysed with respect to the rainfall data that will be used to drive the operational 

model. Since there is no overlapping data between the Whanganui streamflow and 

Kuratau rainfall records, this analysis can only be undertaken on a short period of 

overlapping data for the Waihaha catchment. For the period July 1994 - April 1995, 

the Kuratau parameters and rainfall record produced KGE values between 0.702 to 

0.915 for the fit to the time series and between 0.714 and 0.965 for the fit to the flow 

duration curve (Table 8.2). This suggests that the Kuratau parameters are suitable 

for estimating streamflow from these catchments. 

Figure 8.1 compares the observed Waihaha streamflow with the modelled 

streamflow using the Kuratau parameters and rainfall, calibrated for the rainfall 

multiplier and lag time only. Over this relatively short period of evaluation, peak 

flood flows are under-estimated by the model and baseflow conditions are slightly 

higher. However, recession characteristics are consistent with the observations. 

Improvements could be made if a more suitable rainfall gauge could be found or the 

rainfall gauge was reinstalled. There is a rainfall gauge located closer to the Waihaha 

catchment than the Kuratau but this record only begin in 2004 and its suitability as 

                                                             
10 Waihaha rainfall is also used to calibrate the Whanganui River sub-catchment as it is the closest station 

to this catchment. 
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Figure 8.1 Calibration of Waihaha catchment using Kuratau rainfall record and Kuratau parameters. Units 

are mm/15 minutes. 

input for the Waihaha catchment cannot be determined since there is no overlap 

between this rainfall record and the Waihaha streamflow record.  

Given the relatively small contribution of these two catchments to Lake Taupo 

inflows, and the relatively good performance of the Kuratau parameters in 

estimating their respective inflows (notwithstanding their physical differences), 

these parameters and rainfall record are deemed suitable for estimating the inflow 

from the Waihaha and Whanganui catchments.  

8.1.2 Regionalisation of remaining ungauged areas and direct 

groundwater contribution 

The remaining ungauged areas of the Lake Taupo catchment are divided into two 

areas (refer Section 6.4.4). The Kuratau parameters are used for a large part of the 

ungauged areas north and west of the Lake Taupo catchment, from the Waihi 

catchment (in the south-west) around to the Hinemaiaia catchment in the east. The 

physical attributes of the Kuratau catchment are most representative of a large part 

of these ungauged areas in terms of land cover, geology and soils. From Hinemaiaia 

catchment south around to (and including) the Waihi catchment, parameters from 

the Tauranga-Taupo catchment are applied. Parts of this ungauged area drain the 
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steeper areas of the Kaimanawa Ranges, from which the Tauranga-Taupo catchment 

also drains.  

Initial calibration of these two parameter sets for the respective areas of the 

catchment provided substantially higher rainfall multipliers than expected. For the 

ungauged time series estimated from the Kuratau parameters the rainfall multiplier 

was 3.1 while for the area estimated from the Tauranga-Taupo parameters the 

rainfall multiplier was around 2. Given that these ungauged areas are generally in 

the lowland areas of the catchment coinciding with areas of lower rainfall, these 

rainfall multipliers would suggest that there is some water that has not been 

accounted for. The answer may be in the direct groundwater discharge to the lake. 

Based on existing literature (Bou, 2007; Gibbs et al., 2005; Murphy, 2006; Piper, 

2004), direct groundwater seepage to Lake Taupo could be as much as 20% of the 

inflow to Lake Taupo. This equates to approximately 30m3/s (refer Section 2.3.2). 

Removing this amount from the ungauged time series reduces the rainfall multiplier 

to 2.05-2.32 for the area estimated by the Kuratau parameters and 0.77-0.85 for the 

area estimated by the Tauranga-Taupo parameters. KGE values of the cumulative 

distribution of these results are shown in Table 8.3 and the cumulative distributions 

for both areas are shown in Figure 8.2.  

In both distributions modelled streamflow is higher than the observations around 

1998 and 2000, shown by the change in slope for the modelled output relative to the 

observations. In the areas modelled by the Tauranga-Taupo parameters there is 

another deviation from the observations in 2000. Between 2004 and 2007 the 

reverse is seen. Toward the end of the calibration period, the areas modelled by the 

Tauranga-Taupo parameters show good correspondence with the observations. In 

the areas modelled by the Kuratau parameters, the period from 2003 to 2004 shows 

less modelled inflow than is observed, indicated by the steeper slope of the observed 

cumulative distribution than the modelled cumulative distribution. The slopes of the 

cumulative distributions are similar for the period 2005-2007 but then deviate in 

2006. Modelled output again over-estimates the inflow from these areas at this 

time.  

Table 8.3 Performance results for regionalisation of ungauged areas.  

Ungauged Calibration Period 1 2 3 4 5 

Kuratau Jan 1998 – Dec 2010 0.9753 0.9887 0.9055 0.9883 0.9769 

Tauranga-Taupo Jan 1998 – Dec 2010 0.8775 0.8787 0.8727 0.8779 0.8754 
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Figure 8.2 Cumulative distributions of modelled versus observed streamflow for ungauged areas. The 

areas estimated by the Tauranga-Taupo parameters (a) show relatively good correspondence but over-

estimate inflow between 2000 and 2005. The areas estimated by the Kuratau parameters (b) generally 

over-estimate inflow except for a period between 2005 and 2007. Units are mm/15 minutes. 

It should be noted that the Kuratau parameters are used to estimate a much larger 

area of the catchment (than the Tauranga-Taupo parameters) and may be less 

representative of the hydrology of the northern bays and around Taupo. Dividing 

the large area of the north and west into smaller sub-areas and undertaking a more 

detailed investigation into utilising parameter sets from other historically gauged 

catchments would be of value. 

There is also more spread in the cumulative distributions of the parameter sets 

indicating more uncertainty in this ungauged section of the Lake Taupo catchment. 

The rainfall multiplier for the northern/western areas is still higher than might be 

expected. Testing possible groundwater input values may reduce the multiplier 

further. In this study, the groundwater contribution is added to total lake inflow in 

the process of deriving the ungauged inflow time series. In doing so a number of 

assumptions are made. Firstly, direct groundwater input is assumed constant, 

irrespective of catchment conditions. Secondly, the  rate of inflow from this source is 

based on reported estimated inputs from some sub-catchments of Lake Taupo. 

These estimated inputs are scaled to account for the total catchment area. 

Consequently, there is likely to be considerable error in this estimation. To reduce 

this uncertainty, the direct groundwater component could be added to the existing 

model structure as an additional linear store to be modelled. This is discussed 

further in Chapter 9. 
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As a consequence of some of the issues identified above, the accuracy of lake level 

predictions is affected. These issues are, therefore, considered when evaluating 

model performance. 

8.2 Tongariro Power Scheme (TPS) Statistical Probability 

Analysis  

The inflow from the TPS is estimated using a statistical probability analysis based on 

the discharge time series from the Tokaanu Power Station. Analysis of the data 

indicates that the typical daily discharge profile follows the general pattern of energy 

demand (see Section 6.4.3). Figure 8.3 also illustrates how discharge from the 

scheme also changes with the time of year and day of the week. As this is a peak 

demand station, there is often zero discharge from the scheme, especially during 

lower demand periods overnight. The statistical probability analysis therefore 

predicts the likelihood of a discharge given the time, day and month. The calculated 

probability that water is discharged from the station given the hour, day and month 

is presented in Figure 8.4. As expected, the probability of zero discharge is highest at 

night when demand is lowest. During winter months, the probability of zero 

discharge is generally less. 

During summer months water is not diverted via the western diversion in order to 

meet minimum flow requirements at Te Maire. During this time, there is a greater 

probability that there will be zero discharge from the Tokaanu Power Station, 

especially over weekends.  

Figure 8.5 shows the likelihood of a discharge from the scheme for each hour, day 

and month. The light blue shaded region shows the range of flow between the 10th 

and 90th percentiles. The dark blue solid line shows the median flow (Q50). The 

largest discharges occur on weekdays during winter months, when demand is 

generally highest. During drier summer months, discharge from the scheme is at its 

lowest. Lowest discharges are predicted for the months of March and April, which 

also coincides with the period of lowest rainfall and also the period in which the 

western diversion is shut off. During this period, water may be stored for generation 

at peak demand periods when the price of water and generation may be at their 

highest.  
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Figure 8.3 Probabilities associated with TPS in terms of whether water is flow and the mean flow of flowing 

water. 

 

 

Figure 8.4 Probability that water is not discharged from the TPS given the time of day, day of the week 

and month of the year. 
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In terms of prediction, the shaded region in Figure 8.5 demonstrates the range of 

flows possible for a given period, and hence the uncertainty associated with the 

probability. Given the significance of the TPS to the inflows to Lake Taupo, the 

accuracy of inflow predictions (and, therefore, lake level forecasts) could be 

significantly improved with more reliable predictions relating to the discharge from 

the TPS. 

In the absence of information specific to dam operation and scheduling, storage and 

diversions, there are other external aspects of the system that may influence the 

amount and timing of discharge from the scheme that could be incorporated into 

the analysis to further reduce uncertainty. This may include information on the 

market price of hydro generation and weather.  

In New Zealand electricity generators submit „offers‟ to produce a certain amount of 

electricity for a specified payment for each future half hour generation period. These 

offers are ranked (by the System Operator), with the lowest cost offers selected first 

until demand is satisfied. The payment received by the generators selected is based 

on the highest priced offer required to meet demand (Electricity Commission, 

unknown). The payment associated with the offer will change with demand and 

supply. During dry periods, when storage lakes are low, generators may want to 

conserve their supply. To do this, they would place a higher value (price) on hydro 

generation making it less likely to be accepted for generation in the market. 

Conversely, the price of water may be reduced during winter periods when there is a 

lot of water in the system. This price of hydro-generation can, therefore, affect the 

amount and timing of discharge from the TPS.  

The demand for electricity is also affected by weather, in particular temperature. 

There may be less demand for power during a mild winter than in a cold winter. 

Similarly, a cooler summer may increase demand.  

As is common in time series data, the discharge from the TPS exhibits some 

temporal coherence (serial autocorrelation). That is, data points of the discharge 

time series located near each other are likely to be similar. For example, during a 

flood event consecutive data points may be high for a period of time. Similarly, the 

price of water is less likely to suddenly increase/decrease between consecutive 

observation points. Serial autocorrelation analysis can be included in statistical 

probability analysis to improve the predictions from this approach.  
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Figure 8.5 Results of the statistical probability analysis showing the possible range of discharges from the TPS given the time of day, day of the week and month of the year. The blue 

shaded region encompasses the range of possible discharges between the 10th and 90th percentiles. The dark blue line indicates the discharge at the 50th percentile. 
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8.3 Lake Taupo Inflow Model performance 

Model output is combined to generate an inflow volume to Lake Taupo. This 

combined inflow is compared against observations over three events between 1998 

and 2010. These events represent a range of flow conditions including a flood event 

(July 1998), „normal‟ operating conditions (November 2006) and period of drought 

(May 2010). These events were chosen because they show a range of inflow 

conditions to the lake, including two of the severest but opposing events of the 1998-

2010 period. Figure 8.6 presents the total inflow from gauged and ungauged areas 

plus the predicted discharge from the TPS. Modelled output follows the general 

trend in the observations for all events, despite the erratic oscillations (a result of 

using residual inflows to derive streamflow from ungauged areas, refer 

Section 6.4.4). However, modelled inflows over the July 1998 event tend to be over-

estimated for the majority of the period. Since there are no direct observations from 

ungauged areas, improvements to the estimation of inflows from this source relate 

to refining regionalised parameter ranges and/or more direct observations to reduce 

the size of the ungauged area to be modelled. These issues are discussed further in 

Section 9.4. 

 

 

Figure 8.6 Lake Taupo Inflow Model performance: modelled versus observed inflows from gauged and 

ungauged areas plus predicted discharge from the TPS. 
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Figure 8.7 Lake Taupo Inflow Model performance: modelled versus observed inflows from gauged areas 

including the predicted discharge from the TPS. 

Removing the inflows from ungauged areas gives a clearer picture of known inflows 

to Lake Taupo (Figure 8.7). Observed inflow generally falls within the range of 

inflows predicted for each event, given the uncertainty associated with the TPS. Peak 

flood events remain under-estimated. Strategies to reduce the uncertainty 

associated with the TPS can be found in Section 8.2. 

Figure 8.8 shows the modelled inflows from gauged catchments (namely, 

Hinemaiaia, Tauranga-Taupo, Waimarino, Tongariro and Kuratau). Compared to 

the observed inflows, the model output simulates the flood event in July 1998 well, 

although peak flood events are under-estimated. This is also the case in the smaller 

events seen in November 2006. During drier conditions, recession and baseflow 

conditions are closely approximated but (smaller) flood responses tend to be over-

estimated. Parametric uncertainty is relatively low, indicated by the relatively small 

range of inflows predicted by the model output. 

Differences between the observed and modelled streamflow stem from 

simplifications in the model structure, estimated parameters and imperfect data. 

The cumulative effects of data errors and/or incorrect model assumptions lead to 

internal discrepancies (e.g. in groundwater levels, soil moisture) that then cause 

large errors in predicted water fluxes and other essential model outputs. This has 

implications for the accuracy and reliability of model predictions. In the following  
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Figure 8.8 Lake Taupo Inflow Model performance: modelled versus observed inflows from gauged areas. 

sections a constrained EnKF is applied to gauged catchments of the LTIM model to 

account for these areas and improve model performance.  

8.4 Constrained Ensemble Kalman Filter (EnKF) 

As shown in the previous section, the LTIM does a relatively good job of simulating 

inflow given considerable uncertainty associated with the inflow from the TPS and 

ungauged areas. However, it is apparent that even over the short term errors can 

accumulate due to imperfect data, simplified model structure and estimated 

parameters. To address this issue, a constrained EnKF is applied to the currently 

gauged catchments of the LTIM. The filter adjusts states using observations of 

streamflow (Section 8.4.1). Perturbations made to model states are constrained to 

ensure they are consistent with physical laws (Section 8.4.2). Without these 

constraints we show that the reliability and accuracy of model predictions can be 

compromised. Filter performance is evaluated over three events for each sub-

catchment it is applied to (Section8.4.3). A number of issues in the use of the filter 

have been identified and possible solutions are suggested (Section 8.4.4). 
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8.4.1 Filter performance 

A constrained EnKF is used to update model states for more accurate and reliable 

model output. Retrospectively, the constrained EnKF is able to improve m0del 

performance in all catchments with most catchments showing an improvement over 

the evaluation period by at least 10% in terms of the fit to the time series. KGE 

performance index values for all catchments for both filtered and non-filtered model 

output for the evaluation period (January 1998 – December 2010) are provided in 

Table 8.4.  

To illustrate the improvement made by the filter, Figure 8.9 compares the non-

filtered (a) and filtered (c) time series for the Tauranga-Taupo catchment. Figure 

8.9b and Figure 8.9d show the difference between the model output and the 

observations. While the non-filtered model is able to closely simulate the baseflow 

and recession characteristics reasonably well it is often over-estimating peak flood 

flows. There are also instances where a modelled response is seen but there is no

 

Table 8.4 KGE performance index values for filtered and non-filtered model output for 1998-
2010 evaluation period. 

Catchment  Parameter set 1 2 3 4 5 

Hinemaiaia KGE (time) Non-Filtered 0.7916 0.7920 0.7920 0.7913 0.7913 

  Filtered 0.9798 0.9768 0.9798 0.9794 0.9794 

 KGE (fdc) Non-Filtered 0.9129 0.9129 0.9129 0.9129 0.9129 

  Filtered 0.9817 0.9817 0.9817 0.9817 0.9817 

Tauranga-Taupo KGE (time) Non-Filtered 0.8208 0.8208 0.8208 0.8199 0.8199 

  Filtered 0.9697 0.9703 0.9703 0.9700 0.9700 

 KGE (fdc) Non-Filtered 0.9337 0.9337 0.9337 0.9340 0.9340 

  Filtered 0.9698 0.9706 0.9706 0.9709 0.9709 

Waimarino KGE (time) Non-Filtered 0.7134 0.7134 0.7132 0.7132 0.7134 

  Filtered 0.9832 0.9832 0.9834 0.9834 0.9832 

 KGE (fdc) Non-Filtered 0.8539 0.8539 0.8539 0.8539 0.8539 

  Filtered 0.9834 0.9834 0.9834 0.9834 0.9834 

Kuratau KGE (time) Non-Filtered 0.8054 0.8054 0.8054 0.8054 0.8053 

  Filtered 0.9864 0.9864 0.9864 0.9864 0.9864 

 KGE (fdc) Non-Filtered 0.8593 0.8592 0.8593 0.8592 0.8594 

  Filtered 0.9872 0.9873 0.9872 0.9873 0.9872 

Natural Tongariro KGE (time) Non-Filtered 0.6242 0.6226 0.6240 0.6248 0.6229 

  Filtered 0.9782 0.9616 0.9781 0.9792 0.9695 

 KGE (fdc) Non-Filtered 0.7005 0.7011 0.7006 0.7011 0.7005 

  Filtered 0.9791 0.9795 0.9791 0.9795 0.9791 

Poutu KGE (time) Non-Filtered 0.6879 0.6890 0.6907 0.6856 0.6902 

  Filtered 0.9914 0.9914 0.9914 0.9914 0.9914 

 KGE (fdc) Non-Filtered 0.8795 0.8773 0.8853 0.8800 0.8826 

  Filtered 0.9921 0.9921 0.9921 0.9921 0.9921 
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corresponding hydrograph in the observations. This is largely due to errors in the 

input rainfall used for this catchment which is not always representative of 

catchment-wide rainfall for all events.  

The filtered model, on the other hand, can account for errors in input rainfall. 

Consequently, it does a better job at simulating streamflow because it is able to 

adjust model states given real time observations for more accurate model output. 

The EnKF assumes the observations are not perfect adding an error term to the 

observations resulting in the frequent oscillations about zero in the residual 

streamflow (Figure 8.9d).  

Similarly, in the Kuratau catchment the non-filtered model output is also able to 

simulate baseflow and recession characteristics reasonably well (Figure 8.10a). 

Although some events are missed entirely, flood peaks are generally over-estimated 

(Figure 8.10b). It should be noted that the Kuratau parameters did not perform well 

outside of the calibration period (see Section 7.2.2), which may account for some of 

the error in the non-filtered model output. Despite this, the constrained filter is able 

to account for some of the data and model structure (and parameter estimation) 

error resulting in a much closer simulation to observed streamflow (Figure 8.10c). 

The problem of inaccurate input data is highlighted in Figure 8.11 and Figure 8.12. 

In the first figure, the small amount of rainfall recorded is not enough to generate a 

hydrologic response due to modelled antecedent catchment conditions. There is, 

however, a hydrologic response in the observations indicating that in other areas of 

the catchment rainfall is likely to have been much greater and antecedent catchment 

conditions more saturated. Conversely, in Figure 8.12 a modelled response to input 

rainfall is shown. However, there is no significant corresponding event in the 

observed hydrograph. This event may have been localised around the gauge location 

leading to an over-estimation of catchment areal rainfall at this time. In both 

situations, the constrained EnKF is able to adjust the states to correct for errors in 

the driving data, allowing better characterisation of catchment water storage. These 

updated states are then used to forecast streamflow over the next prediction 

interval, reducing short–term biases. 

Although the filter is able to deal with a large amount of the error in the input data, a 

smaller more attenuated flood peak is still evident in the filtered model output in 

Figure 8.12. Like the unfiltered model, the filter is responding to the input rainfall 

data which is, in this case, obviously over-estimated. This is an unavoidable trade- 
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Figure 8.9 The constrained EnKF is able to improve the simulation of streamflow in the Tauranga+--Taupo catchment over 2010. (a) Non-filtered streamflow versus observations and 

(b) corresponding residual streamflow (observations minus modelled streamflow); (c) Filtered streamflow versus observations and (d) corresponding residual streamflow 

(observations minus modelled streamflow). Units are mm/15 minutes. 

Jan10 Apr10 Jul10 Oct10 Jan11
0

0.2

0.4

0.6

0.8

S
tr

e
a

m
fl
o

w

(m
m

)

(a) Non-filtered streamflow versus Observations

 

 

Non-Filtered Streamflow

Observation

Jan10 Apr10 Jul10 Oct10 Jan11
-0.5

0

0.5

R
e

si
d

u
a

l  
  
  
 

st
re

a
m

fl
o

w
 (

m
m

)

(b) Difference between non-filtered modelled streamflow and observations(mm)

Jan10 Apr10 Jul10 Oct10 Jan11
0

0.2

0.4

0.6

0.8

S
tr

e
a

m
fl
o

w

(m
m

)

(c) Filtered streamflow versus Observations

 

 

Filtered Streamflow

Observation

Jan10 Apr10 Jul10 Oct10 Jan11
-0.2

0

0.2

R
e

si
d

u
a

l  
  
  
 

st
re

a
m

fl
o

w
 (

m
m

)

(d) Difference between filtered modelled streamflow and observations(mm)



 

   202 | Lake Taupo Inflow Model 

 

 

Figure 8.10 The constrained EnKF is able to improve the simulation of streamflow in the Kuratau catchment over 2010. (a) Non-filtered streamflow versus observations and (b) 

corresponding residual streamflow (observations minus modelled streamflow); (c) Filtered streamflow versus observations and (d) corresponding residual streamflow (observations 

minus modelled streamflow). Units are mm/15 minutes. 
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Figure 8.11 Filtered streamflow given errors in rainfall record. Estimated catchment rainfall (upper) and 

filtered, non-filtered model output compared to observed streamflow (lower). The filter is able to adjust for 

imperfect rainfall data. In this example, an observed hydrologic response is not seen in the modelled 

output due to inaccurate input rainfall. The filter can adjust modelled output to account for these data 

errors for a closer matched simulation with the real world. Units are mm/15 minutes. 

 

 

Figure 8.12 Filtered streamflow given errors in rainfall record. Estimated catchment rainfall (upper) and 

filtered, non-filtered model output compared to observed streamflow (lower). In this example, a modelled 

hydrologic response is not reflected in the observations indicating input rainfall is under-estimated. Again 

the filter is able to adjust for these errors in driving data for more accurate model output. Units are mm/15 

minutes. 
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off due to the need to constrain state updates. Better estimates of catchment rainfall 

would improve filter performance. Operationally, the model would be coupled with 

meteorological forecasts of catchment precipitation and evapotranspiration. As new 

forecasts arrive the LTIM would be updated with the new information for more 

reliable decision making over the coming few days.  

8.4.2 Physically consistent state updating 

While the filter performs well retrospectively, in an operational context its success 

should be measured in terms of the improvement to the accuracy and reliability of 

model predictions. Standard implementation of the EnKF allows model states to be 

updated with little regard for physical laws. Constraining the states simply by 

ensuring perturbations are within realistic ranges and that state volumes are 

physically consistent (non-negative), improves the accuracy and reliability of model 

predictions.  

Without these constraints, the reliability of forward predictions can be 

compromised. This problem is demonstrated in Figure 8.13 and Figure 8.14. During 

this period, modelled soil storage drops below -20mm (for one parameter set) and 

there is also a significant increase in the volume of the baseflow state. At this point 

in time the filter reduced the volume of the soil state by 61 mm. The baseflow state is 

increased by up to 4100 mm, with the range of innovations (updates made to model 

states) between 2100 mm and 4100 mm for all parameter sets. Outside of this event 

and over the 6 month period shown, perturbations ranged between ± 10 mm for the 

soil state and ± 200 mm for the baseflow state. Figure 8.14 shows the corresponding 

hydrograph and prediction given the updated state volumes. Because the states have 

been adjusted to unrealistic ranges, the unconstrained filter also presents some 

unrealistic streamflow responses, indicated by the large streamflow response by one 

of the parameter sets. At the time of projection, due to the considerable volume of 

water in the baseflow state, the modelled flow remains high and flat over the 

projected period. The observed response shows streamflow is receding over the 

same period. 

Once the filter is constrained, the states are updated to be consistent with physical 

laws (Figure 8.15). For the same period (and event) the states remain in positive 

territory. Perturbations to state volume are within realistic ranges as shown by the 

smaller range in the innovations over time (±4 mm for the soil state and ±5 mm for 
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Figure 8.13 Model states when an unconstrained EnKF is applied. Model states can often be perturbed to 

physically inconsistent volumes. Units are mm/15 minutes. 

 

 

Figure 8.14 Estimated catchment rainfall (a) and modelled versus observed streamflow (b). Where model 

states are physically inconsistent can lead to unreliable forward prediction of streamflow. Units are mm/15 

minutes. 
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Figure 8.15 When the constrained EnKF is applied, state perturbations are kept within realistic ranges and 

state volumes remain within realistic ranges. Units are mm/15 minutes. 

 

 

Figure 8.16 States which are constrained to be within physically consistent ranges result in more accurate 

and reliable forward predictions of streamflow. Units are mm/15 minutes. 
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the baseflow state). In terms of forward prediction, model output is improved since 

the states are being updated to more realistic values. The model output now predicts 

streamflow will recede which is more consistent with the observations (Figure 8.16). 

Further out, streamflow is predicted to drop below the observed response. As more 

observations arrive, however, state values will continue to be adjusted so that the 

simulated response will more closely match actual streamflow. 

8.4.3 Improving the accuracy of model predictions 

Filtered and non-filtered model output is compared to streamflow observations for 

all four of the sub-catchments to which the filter is applied. Performance is assessed 

by visual inspection and the KGE performance index. The three events presented in 

Section 8.3 are also presented in this section; the first is the July 1998 flood event, 

the second represents „normal‟ operating conditions (November 2006) and third, 

the drought event in May 2010. As noted earlier, these events are selected because 

they represent a range of inflow conditions to the lake including two of the severest 

but opposing events of the 1998-2010 period. 

July 1998: Flood Event 

In general, the filter is shown to be of particular benefit during the flood peak when 

either the inputs to the system are not perfect and/or the model structure and 

estimated parameters are under-estimating or, in the case of the Kuratau 

catchment, over-estimating the flood peak. 

Prior to the peak of the event, both the filtered and non-filtered model output for the 

Tauranga-Taupo catchment (Figure 8.17) have KGE values of no better than 0.62. 

As the peak arrives the filter is able to adjust the model states to reflect the actual 

conditions of the catchment and, consequently, generate more reliable forward 

predictions in the short-term. The non-filtered model output at this point is 

achieving KGE values of no more than 0.66 while the modelled output based on the 

updated states ranges from 0.74 to 0.98. Closer inspection of the modelled output at 

various times during the recession period indicates that the filtered and non-filtered 

response is similar. However, it should be noted that as more observations become 

available, states will continue to be updated for more precise streamflow 

estimations.  
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Similarly in the Waimarino catchment (Figure 8.18), filtered and non-filtered model 

output show similar KGE values leading up to the peak flow event. As the event 

arrives, errors in state conditions are corrected through the constrained EnKF and 

KGE values for the filtered model output are better than the non-filtered output.  

Streamflow is generally over-estimated in the Kuratau catchment over the entire 

period (Figure 8.19). As observations are assimilated, errors are corrected and 

streamflow predictions simulate the observed response more closely. KGE (fit to 

time series) values from the various projection points are considerably higher for the 

filtered model output (maximum KGE of 0.9445) than for the non-filtered output 

(maximum KGE 0.6949) for the majority of the period. From 13 July, the non-

filtered model fit improves. 

Of particular note is the offset between the filtered model output and the projected 

inflow at the time of projection for the Tongariro catchment. Projected streamflow 

combines the output from the lower Tongariro and Poutu catchments to provide a 

forecast of streamflow at Turangi. The EnKF is applied to the lower Tongariro 

catchment, but not to the Poutu catchment due to the imposed regulation, instead 

using the non-filtered model output for prediction. Because of the lag time between 

the Poutu and Turangi sites, the historical simulation combines the filtered model 

output for the lower Tongariro section and observed streamflow from the Poutu 

catchment (refer Section 6.4.2). At the point of prediction, however, the non-filtered 

model output from the Poutu catchment is used. If this is substantially different to 

the observations, a noticeable „jump‟ in streamflow between the historical and 

projection periods is seen.  

November 2006: ‘Normal’ operating conditions 

In this study, „normal‟ operating conditions relate to periods when lake level is well 

within lake level operating margins. Overall, there is relatively little difference 

between the filtered and non-filtered model output over the projection period, 

especially since most of the projection times have been during recession periods 

when there has been little difference in filtered and non-filtered output.  

In both the Tauranga-Taupo (Figure 8.21) and Waimarino (Figure 8.22) catchments 

the response to rainfall events is largely under-estimated, although recession 

periods are simulated well. KGE values for the period were similar but generally low 

(<0.6 for Tauranga-Taupo and <0.5 for Waimarino). As observations arrive and are  
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Figure 8.17 Filtered and non-filtered model output versus streamflow observations from various projection times for the July 1998 flood event: Tauranga-Taupo catchment. 
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Figure 8.18 Filtered and non-filtered model output versus streamflow observations from various projection times for the July 1998 flood event: Waimarino catchment.  
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Figure 8.19 Filtered and non-filtered model output versus streamflow observations from various projection times for the July 1998 flood event: Kuratau catchment. 
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Figure 8.20 Filtered and non-filtered model output versus streamflow observations from various projection times for the July 1998 flood event: Tongariro catchment.
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assimilated the filtered response more closely fits to the observations, in the short 

term.  

The events seen in the Tauranga-Taupo and Waimarino catchments are less 

significant in the Kuratau which shows very little response over the period (Figure 

8.23). Although both the filtered and non-filtered model output is very similar, KGE 

values indicate that the non-filtered model output provides a better simulation than 

the filtered model output. This is probably due to the short period of data over which 

the KGE is applied and the smaller range in flows from which it is estimated. In this 

situation, a smaller difference in streamflow can impact on the performance rating 

of the KGE.  

While the minimum flow conditions of the Tongariro catchment are simulated well, 

events are generally under-estimated (Figure 8.24). The effect of the regulation is 

generally well captured given the data and information available to model it. There 

is some improvement in predictive accuracy around 19 November, although the 

jump between the historical and the projected streamflow is again evident. KGE 

values over each of the four projection periods are similar, with slightly higher KGE 

values for the filtered output. 

 May 2010: drought conditions 

Over the drought period observed in early 2010, the filter performance is more 

varied. In the Tauranga-Taupo catchment low flow conditions are well simulated by 

both filtered and non-filtered model output (Figure 8.25). Small rainfall events are 

simulated reasonably well, with only a small over-estimation of discharge. As state 

conditions are corrected, predicted model output improves. KGE values for the 

filtered model output are generally above 0.7 for the period. KGE values for the non-

filtered model output never rose above 0.7 in this event. 

In the Waimarino catchment, projected streamflow is slightly less than observed 

streamflow for most of the low flow period. Rainfall events later in May are over-

estimated. KGE values are low over the four time periods (generally <0.6) for both 

filtered and non-filtered output, although the filtered model output is slightly better.  

In the Kuratau catchment, low flow conditions are generally under-estimated and 

rainfall events are not predicted well, if at all (Figure 8.27). There is little difference 

between the non-filtered and filtered model output over this event and KGE values
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Figure 8.21 Filtered and non-filtered model output versus streamflow observations from various projection times for the November 2006 ‘normal’ operating conditions: Tauranga-

Taupo catchment. 
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Figure 8.22 Filtered and non-filtered model output versus streamflow observations from various projection times for the November 2006 ‘normal’ operating conditions: Waimarino 

catchment. 
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Figure 8.23 Filtered and non-filtered model output versus streamflow observations from various projection times for the November 2006 ‘normal’ operating conditions: Kuratau 

catchment. 
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Figure 8.24 Filtered and non-filtered model output versus streamflow observations from various projection times for the November 2006 ‘normal’ operating conditions: Tongariro 

catchment.
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are generally low. As discussed in Section 7.2.2, the Kuratau parameters did not 

perform well outside of the calibration period and therefore predictive accuracy is 

reduced. However, the filter is able to adjust state conditions to account for these 

errors resulting in slightly better short-term predictive accuracy. This is evidenced 

by the improvement in short-term prediction from 14 May 2010 when states are 

adjusted given an event which the model did not represent. 

Although modelled streamflow is generally over-estimated in the Tongariro 

catchment, the filtered model output is able to simulate the low flow and recession 

characteristics reasonably well (Figure 8.28). Most of this error is associated with 

the lower Tongariro catchment since at the time of projection filtered streamflow is 

very close to the observed record. There is no offset from the Poutu input, indicating 

that modelled streamflow at this time is relatively good. During the small event on 

13 May, one parameter set over-estimates the peak flow, but as observations arrive 

and are assimilated this error is dealt with and model predictions are improved. 

Without the assimilation, the model would continue to over-estimate streamflow in 

the Tongariro catchment for the entire period.  

Overall, the constrained EnKF is able to improve the accuracy of model output by 

adjusting states to account for errors in the model structure, estimated parameters 

and data. Without state-updating, errors can accumulate, reducing the accuracy and 

reliability of model output. Although filtered and non-filtered model output was able 

to simulate low flow conditions reasonably well in most catchments, the filter is of 

real benefit during rainfall events when inaccurate data leads to errors in the 

estimation of catchment water content and, subsequently, streamflow. 

8.4.4 Issues and possible improvements to the constrained EnKF 

In the following sections, we discuss a number of issues identified in the application 

of the constrained EnKF and suggest possible improvements to its use. 

Further investigation of possible state constraints 

In the examples shown above, the constrained EnKF is shown to improve model 

forecast accuracy and reliability through more realistic state updating. In this study, 

the constraints imposed are fairly simple. State volumes are required to be non- 

negative and the perturbations made to states need to be within sensible ranges. 

Perturbations could also be constrained based on the time of year, antecedent
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Figure 8.25 Filtered and non-filtered model output versus streamflow observations from various projection times for the May 2010 drought event: Tauranga-Taupo catchment. 
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Figure 8.26 Filtered and non-filtered model output versus streamflow observations from various projection times for the May 2010 drought event: Waimarino catchment.  
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Figure 8.27 Filtered and non-filtered model output versus streamflow observations from various projection times for the May 2010 drought event: Kuratau catchment. 
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Figure 8.28 Filtered and non-filtered model output versus streamflow observations from various projection times for the May 2010 drought event: Tongariro catchment. 
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conditions, rainfall event intensity and state volumes. Optimisation of the filter 

algorithm could also improve filter performance. For example, in this study 100 

ensembles are used. In some cases, where constraints are violated, some of these 

ensembles are excluded and can, in some instances, leave only a small number of 

ensemble members for state updating. Although this does not occur frequently 

(refer Section 6.5.3), it may affect the reliability of state estimation at these times. 

The EnKF updates model states based on a minimisation of the mean square error. 

Essentially, the model is trying to find state conditions that will better represent the 

antecedent conditions to provide a closer simulation to the observations. There may, 

however, be many realistic approximations of state values within the constraints 

that could provide a physically consistent hydrologic response. The constrained 

filter would, therefore, be improved if updated states are required to produce 

good/realistic solutions to not only the current observation but also to subsequent 

observation(s) as well. In doing so, state updating could become even more 

consistent with physical laws. Model output accuracy could be increased with more 

observations used but such updating would also add to computational run times and 

would reduce the lead time for which the model predictions would be valid. The 

increase in computational burden needs to be weighed against the improvement in 

model output reliability and accuracy. Another issue is the temporal resolution of 

the available data. If only hourly (or longer) data is available, the predictions may 

become of less use, especially at times when high resolution forecasts are required 

(i.e. flood forecasting). 

Potential as a diagnostic tool for checking consistency of parameter 

sets 

The performance of the filter is also reliant on accurate estimates of parameters. In 

the example presented in Figure 8.29, one of the parameter sets for the Kuratau 

catchment far exceeds the observed response. This occurs in both the filtered and 

non-filtered model output. The likely cause is in the estimated parameter set itself. 

The performance of Kuratau parameters is much weaker in terms of the KGE 

objective function values outside of the calibration period (refer Section 7.2.2). This 

could impact on the reliability of future predictions. This highlights the importance 

of having a robust parameter estimation routine as part of the modelling process.  
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Figure 8.29  (a) Estimated catchment areal rainfall. (b) Filtered and non-filtered model output for the 

Kuratau catchment (above the scheme). Although not shown here, the unfiltered model output reaches 

3.1 mm while the filtered output extends to a maximum flow of 135 mm. Units are mm/15 minutes. 

Sensible observations for assimilation 

It is important that the observations being assimilated are sensible and consistent 

with the physical reality. In the lower Tongariro catchment, observed streamflow is 

determined by removing the flow as observed at Poutu (taking into account an 

estimated 1.5 hour lag time) from the streamflow time series observed at Turangi 

(refer Section 6.4.2). As discussed in the previous chapter, there are a number of 

issues with this approach and, as a result, the time series for the lower Tongariro 

catchment often displays erratic, hydrologically inconsistent, streamflow responses. 

The filter is often forced to perturb states by large amounts given the observations 

despite the constraints. This is clearly evident during March 2004, when sudden 

increases and/or decreases in the observed hydrograph are seen (Figure 8.30a). The 

filter responds by adjusting the states to sometimes unrealistic values to account for 

the irregular behaviour (Figure 8.30b). In this example, although other states are 

also affected, the largest impact is in the interflow state. During this time, this state 

is perturbed by up to 305 mm (Figure 8.30c). Improvements could be achieved if a 

more accurate method for determining the streamflow time series for the lower 

Tongariro catchment is used. As suggested in Section 7.2.2, a kinematic wave model 

would reduce some of this error. Additional information relating to the regulation of 

the Tongariro River, in particular, the discharge from the Rangipo Station and any 

recreational releases may also be of value.  
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Figure 8.30(a) Filtered model output versus observed streamflow for the lower Tongariro catchment. (b) 

Given the problems with deriving a sensible streamflow time series for this catchment the filter is often 

forced to violate constraints resulting in unreliable model output. (c) Updates made to states can be 

considerable to account for irregularities in streamflow time series. Units are mm/15 minutes. 

The filter also relies on continuous/regular reliable observations to be available for 

assimilation. For various reasons, there may be times when these observations are 

unavailable. Infilling gaps in the streamflow time series with observations from 

other catchments can be problematic. In the example shown in Figure 8.31, the gap 

in the original time series has been infilled using the observations from a nearby 

catchment, scaled according to the mean flows of each catchment. Although the two 

catchments have a relatively high correlation in terms of streamflow, they are 

significantly different in many physical, climatic and hydrologic attributes. Ideally, 

catchments would be hydrologically similar. However, a lack of other gauged 

catchments for which corresponding observations are available limits the choice of 

data to use. It is clear that the „donor‟ catchment is not suitable for infilling these 

gaps. There are significant and inconsistent jumps in the time series where the 

observed and infilled data meet. The filter tries to adjust to the large increases/ 

decreases in streamflow by adjusting model states to unrealistic volumes in order to 

provide a solution that fits the „observed‟ response (Figure 8.32). Consequently, the 

filtered response of one of the parameter sets is an order of magnitude higher than 

the observed or other parameter sets (Figure 8.31) and the reliability of predictions 

from this parameter set at this time are compromised. 

1-Mar-2004 2-Mar-2004 3-Mar-2004 4-Mar-2004 5-Mar-2004 6-Mar-2004 7-Mar-2004 8-Mar-2004 9-Mar-2004
0

100

200

300

400

500

V
o

lu
m

e
 (

m
m

)

 

 

01-Mar-2004 02-Mar-2004 03-Mar-2004 04-Mar-2004 05-Mar-2004 06-Mar-2004 07-Mar-2004 08-Mar-2004 09-Mar-2004
-500

0

500

In
n

o
v

a
ti
o

n
 (

m
m

)

Interflow State - No Filter

InterflowState - Filter

1-Mar-2004 2-Mar-2004 3-Mar-2004 4-Mar-2004 5-Mar-2004 6-Mar-2004 7-Mar-2004 8-Mar-2004 9-Mar-2004
0

50

100

150

St
re

a
m

fl
o

w
 (

c
u

m
e

c
s)

 

 

Filtered model output

Observed Streamflow

(a) Filtered model output versus Observations

(c) Innovations over time

(b) Interflow State (Filtered and Non-filtered Response)



 

  226 | Lake Taupo Inflow Model 
 

 

Figure 8.31 Filtered and non-filtered model output versus infilled observation time series for the Kuratau 

catchment. Missing observations are infilled with observations from another catchment. The suitability of 

these ‘donor’ observations is evident in the resulting hydrologically inconsistent streamflow response. Note 

that one of the parameter sets filtered response is as high as 26.5mm. This plot has been truncated for 

easier visual inspection. Units are mm/15 minutes. 

 

 

Figure 8.32 Corresponding state volumes over the same period show that at this time all states 

experienced a significant increase in volumes to account for the sudden increase in flow resulting from 

unsuitable data for infilling. Units are mm/15 minutes. 
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Figure 8.33 The unfiltered model is used to estimate streamflow from the last known updated state 

volumes during period of missing data. Assuming accurate input rainfall data, the model relies on 

accurate estimated parameters and representative model structure to ensure reliable model output.   

Units are mm/15 minutes. 

 

 

 

Figure 8.34 While an adjustment is required when observations resume, state updating is generally kept to 

within physically consistent ranges for more reliable model predictions. Units are mm/15 minutes. 
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The filter performs better when the infilled data is not used. In Figure 8.33, 

streamflow predictions are determined from running the model without state 

updating for the period of missing data. Although an adjustment is still required 

when the observations resume, this is less significant, resulting in more consistent 

streamflow and state estimations (Figure 8.33 and Figure 8.34). Over large events or 

longer periods of missing records, the performance of the model is dependent on 

how well the model structure and estimated parameters can simulate a realistic 

response. It is also dependent on the representativeness of the rainfall data used to 

drive the model. Assimilating rainfall observations, in the absence of hydrological 

observations (or indeed at all times), could also improve the accuracy and reliability 

of the filtered model response. 

In this dissertation, rather than using infilled data, updating only occurs when 

observations are available. During periods where there are no observations to 

assimilate, the unfiltered model is applied until observations resume. In doing so, it 

is assumed the model structure and estimated parameters are a close enough 

representation of the actual catchment response. Again, this highlights the 

importance of having accurate parameter estimates and a representative model 

structure. 

Assimilation of streamflow observations in regulated catchments 

In the regulated Hinemaiaia and Poutu catchments, the current constraints are not 

consistent with the regulation imposed. The filter is required to not only account for 

errors in the driving data but also any irregularities and regulation in the streamflow 

observations. As such the regulation imposed in the Hinemaiaia and Poutu 

catchments also affects the ability for the filter to keep within constraints.  

In the Hinemaiaia catchment, streamflow is modelled without regulation. Despite 

reasonable KGE values (0.7913 – 0.7920), the modelled output in unable to capture 

the regulation in the observations. The filter is also adjusting for this regulation and 

not necessarily a change in state which the model is unable to represent. While it is 

able to do this successfully (Figure 8.35a), the filter is often required to adjust states 

beyond constraint limits. Of particular note are the considerable fluctuations 

evident in the interflow state (Figure 8.35b). Interflow state volume innovations are 

generally much higher than constraints would allow because the filter is trying to fit 

to the regulation imposed, resulting in erratic changes in state values. Constraints 

are guided by the maximum state volume changes identified in the unfiltered model 
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output. For the interflow state of the Hinemaiaia catchment, this is in the order of 

±10mm. As can be seen in Figure 8.35c, this is often exceeded, although volumes 

stay within what would be considered physically realistic ranges. At these times, 

there is greater uncertainty associated with model predictions. Since these 

fluctuations are a direct result of the controlled storage and release of water from 

the scheme and do not reflect changes in state volumes, improvements could be 

made if the impact of this regulation on the natural streamflow was removed from 

the time series. Averaging the streamflow over the previous day would achieve this 

but would not be suitable operationally. With further investigation it may be 

possible to identify particular times when the streamflow change is likely to be due 

to the regulation rather than to a change in catchment conditions. Further 

information on the operation of the scheme could allow the associated regulation to 

be included in the assimilation framework. Alternatively, baseflow volumes could be 

assimilated directly if groundwater level data is available. A relationship between 

the groundwater level and baseflow fluctuations could be obtained and an algorithm 

to incorporate this relationship included in the data assimilation framework.  

Despite the heavy regulation of the Poutu catchment, the filter does a good job of 

updating states to effect a good fit to the observations (Figure 8.36a). However, the 

filter is again required to adjust states to account for not only errors in driving data 

but also for the impact of the regulation which may not be adequately represented

 

 

Figure 8.35 Filtered model output versus observed streamflow for the Hinemaiaia catchment. (a) The 

streamflow time series shows some diurnal fluctuations as a result of the regulation in the catchment. (b) 

Although interflow state volumes are generally within physically realistic ranges, (c) innovations indicate 

that constraints are often violated in order to account for the regulation which is not specifically 

modelled. Units are mm/15 minutes. 
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Figure 8.36 Filtered model output versus observed streamflow for the Poutu catchment. (a) the 

constrained EnKF is able to simulated observed streamflow well but (b) states are adjusted to account for 

errors in driving data and to account for regulation. (c) Innovations to state volume are generally within 

constraints, although two parameter sets tend to consistently violate these constraints in the interflow and 

baseflow states. Units are mm/15 minutes. 

 

in the model output. Similar to the Hinemaiaia catchment, considerable fluctuations 

in some states are seen (Figure 8.36b and Figure 8.36c). Most commonly, state 

constraints are exceeded during significant flood events when diversions through 

the Poutu Intake are shut out. This can result in sudden increases in streamflow, 

leading to large updates to state volumes. 

In both the Hinemaiaia and Poutu catchments the filter is able to effect a closer 

matched simulation to the observations historically. However, since the filter 

struggles to keep state perturbations within the constraints, the model predictions 

from these catchments are more uncertain. For this reason, the filter is not applied 

to these catchments in the operational model for the prediction of lake level. 

Innovation analysis 

Assimilation innovations provide additional information that could be used to 

further improve parameter estimation. The cumulative sum of innovations for each 

state shows where water is being added or removed. A representative parameter set 

would present little bias over the long term. Assuming state updates are sensible this 

information could be used to refine parameter estimation further. In the example 

shown (Figure 8.37), for the Tauranga-Taupo catchment the soil storage state shows 
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little bias over the 1998-2010 evaluation period. In the baseflow state, three of the 

parameter sets seem to be doing reasonably well, with less than 1000 mm added or 

removed over the 13 year period. This equates to less than 0.009 mm per hour on 

average. Conversely, a large amount of water is taken out of the fastflow and 

interflow states indicating that the relative proportions for these states may be too 

high. Respective parameter values could be adjusted downwards as a result.  

A preliminary analysis of cumulative innovations was undertaken in this 

dissertation for the Tauranga-Taupo sub-catchment using the standard 

implementation of the EnKF (no constraints), with the aim of using the information 

to refine parameter sets. Parameter sets were adjusted and re-calibrated on a test 

period of data. Of note, is that in order to use the information in the innovation 

analysis the relationship between the innovations and model state parameters needs 

to be identified. Time-constraints prevented any further progress with this aspect of 

the filter. More of a focus was the application of constraints for improving the 

reliability of model output. The potential for the filter to be used to improve model 

calibration and structural evaluation, therefore, remains an area of future work. 

 

 

Figure 8.37 Cumulative sum of innovations for the (a) soil storage state; (b) fastflow state; (c) interflow 

state; and (d) baseflow state. Units are mm/15 minutes. 

 

1998 2000 2002 2004 2006 2008 2010
-8

-6

-4

-2

0

2
x 10

4

C
u

m
u

la
ti
v

e
 I
n

n
o

v
a

ti
o

n
s 

(m
m

) (b) Throughflow State

1998 2000 2002 2004 2006 2008 2010
-8

-6

-4

-2

0

2
x 10

4

C
u

m
u

la
ti
v

e
 I
n

n
o

v
a

ti
o

n
s 

(m
m

) (c) Interflow State

1998 2000 2002 2004 2006 2008 2010
-2000

-1000

0

1000

2000

3000

C
u

m
u

la
ti
v

e
 I
n

n
o

v
a

ti
o

n
s 

(m
m

) (d) Baseflow State

 

 

1998 2000 2002 2004 2006 2008 2010
-150

-100

-50

0

50

100

C
u

m
u

la
ti
v

e
 I
n

n
o

v
a

ti
o

n
s 

(m
m

) (a) Soil Storage State



 

 232 | Lake Taupo Inflow Model 
  

8.5 Conclusions  

The LTIM is made up of modelled inflows from five currently gauged catchments, 

discharge from the TPS and inflows from ungauged areas. The largest and most 

complex of the hydro power schemes is the Tongariro Power Scheme. A statistical 

probability analysis is used to estimate the discharge for the scheme providing a 

possible range of discharges based on the time, day and month. The discharge from 

this scheme accounts for approximately 20% of the outflow from Lake Taupo. It is 

therefore important that the uncertainty associated with this catchment is reduced 

further. Other than obtaining further information relating to the operation of the 

scheme (especially around the diversions and storages), this could be achieved by 

incorporating autocorrelation into the analysis and information pertaining to 

various price controls and climatic influences, such as air temperature. 

Correlation analysis identified areas of hydrologic similarity between historically 

gauged catchments. The Kuratau parameters are used to estimate streamflow from 

nearby Whanganui and Waihaha catchments. All remaining areas of the catchment 

are considered ungauged. Because of the diverse characteristics of these areas, this 

catchment is divided into two regions (refer Section 6.4.4). Southern and eastern 

ungauged areas are modelled using the regionalised parameters of the Tauranga-

Taupo catchment. The remaining areas of the north and west are modelled by the 

regionalised parameters of the Kuratau catchment. Compared to the residual inflow 

time series (proportional to respective ungauged catchment areas), these parameter 

sets did reasonably well, although it is noted that there are periods where the 

modelled output over-estimates inflow from these areas. Further investigation into 

appropriate parameter sets or refinement of existing parameter ranges would be 

appropriate. The ungauged areas of the north and west may also benefit from being 

discretised into smaller sub-catchments.  

Calibration of ungauged areas is improved when direct groundwater contribution is 

accounted for. Currently, a constant rate is assumed. Including this direct input as 

an additional linear store in the model structure would improve model performance 

and account for the temporal variability of this inflow. It would require some data 

collection or inference from existing studies to represent this inflow adequately and 

to define reasonable parameter ranges for calibration.  

Although the model does a reasonable job of simulating inflows, there is still 

considerable uncertainty in the model output, especially during flood events. State-



 

Lake Taupo Inflow Model | 233  
 

updating via a constrained EnKF is used to improve model output accuracy and 

reliability for catchments which are explicitly modelled in the LTIM. Streamflow 

observations are used to update soil storage, fastflow, interflow and baseflow states 

reducing errors in determining catchment water content. It is, therefore, not applied 

to the TPS or ungauged areas of the catchment. With storage biases corrected more 

accurate predictions of streamflow can be made. 

The reliability of these predictions is improved when the filter is constrained so that 

states are updated to be consistent with physical laws. It is demonstrated that 

without these constraints the integrity of model predictions can be compromised. 

This has not been shown in the literature before.  

Simple constraints have been applied in this study but there is scope for a wide 

range of possibilities to improve this aspect of the filter by allowing the constraints 

to vary depending on saturation levels, state volumes and/or rainfall intensities. The 

EnKF updates model states to better reflect catchment antecedent conditions and 

water content. Although in this study constraints are placed on the filter to ensure 

more realistic state updating occurs, these updates are based on fitting to a single 

observation. There may, however, be many realistic approximations of state values 

within the constraints that could provide a physically consistent hydrologic 

response. Investigation into ways in which multiple observations could be used to 

further improve state updating would be of benefit, although we note that the 

complex regulation in some catchments may still prevent this from improving 

predictive performance. 

Overall, the filter performs well in the unregulated catchments of Lake Taupo. Over 

two significant events, the benefit of the filter is most evident at times when 

inaccurate driving data results in under-estimated peak flood flows. As streamflow 

observations are assimilated, and states adjusted accordingly, the prediction of 

streamflow is significantly improved, reducing short term biases. 

In the regulated Poutu and Hinemaiaia catchments, the filter perturbs states not 

only to account for errors in driving data but also for any regulation that is not 

adequately modelled. However, constraints are often violated because the regulation 

imposed results in hydrologically inconsistent streamflow which can increase or 

decrease suddenly. States are adjusted accordingly but these updates are a response 

to the management of the streamflow rather than necessarily a change in states. 

Consequently, the reliability of predictions from these catchments is undermined. 
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For these reasons, the filter is not applied in the operational model for predicting 

lake level of Lake Taupo. As an area of future work, investigation into the potential 

for using groundwater levels to relate changes in baseflow conditions could be 

useful, allowing the natural rise and fall of river levels to remain and ignoring short 

term fluctuations resulting from the regulation. This requires a groundwater level 

monitoring site(s) in or near the catchment being modelled. Streamflow 

observations could still be permitted when regulation does not occur.  

The importance of obtaining robust and accurate parameters sets is highlighted in 

the Kuratau catchment, where one parameter set does not perform as well outside of 

the calibration period. In this case, the filter is unable to reduce the uncertainty 

associated with these estimated parameters, indicating that further work to improve 

parameter estimation for this catchment would be worthwhile. The value of 

assimilating realistic and sensible observations to improve the reliability of model 

predictions is highlighted. Unless a suitable, hydrologically similar catchment can be 

used to provide accurate estimations of streamflow at times when observations may 

not be available, state-updating should not occur. In the case of the lower Tongariro 

catchment, overcoming the problems with deriving a sensible streamflow record 

would improve filter performance.  

An outcome from this analysis is the potential for the constrained EnKF to be used 

as part of the model calibration process. As noted above, the filter can be used to 

check for consistency of parameter sets. It can also be used to refine parameter 

ranges through analysis of state updates (innovations) time series. The value of this 

information is enhanced when state updates respect physical laws. 
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9 Predicting changes in lake level 

In the previous two chapters, the results of model calibration and constrained EnKF 

are presented. In this chapter, the performance of the LTIM is evaluated over a wide 

range of hydrological and meteorological conditions. In this chapter, an in-depth 

critical evaluation is undertaken on eight events chosen a priori as representation of 

both extreme and „usual‟ conditions. For each event, the combined output for the 

Lake Taupo Inflow Model (LTIM) is converted into a corresponding lake level 

change and its performance evaluated over three dry/drought conditions (Section 

9.1), two „normal‟ operating conditions (Section 9.2) and three flood events (Section 

9.2) between 1998 and 2010. These events are of particular interest because they 

represent a range of hydrological and meteorological conditions including some of 

the most extreme events/periods experienced in the catchment. By applying the 

LTIM to these events its performance can be evaluated over a wide range of 

hydrological conditions.  

Model output from the five explicitly modelled catchments in the LTIM are 

combined with predictions of inflow from the TPS and regionalised ungauged areas. 

Sub-catchment inflows are assumed instantaneous; no lag is accounted for between 

the gauge and the river mouth. Although the model could not be developed in real-

time (due to data issues), its capacity for forward prediction is evaluated using 

historical (gauge) rainfall and potential evapotranspiration data to drive the model. 

The total inflow from all sources is converted into a corresponding lake level change. 
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Modelled lake level is compared against the (smoothed) observed lake level and 

performance evaluated. Lake level is projected 15 days ahead from various forecast 

times over the events/periods. The most critical time is in the first five days of the 

forecast, since many management decisions are likely to be based on reliable model 

output for these short-term periods. Between 5 and 15 days, the model output 

provides an indication of the persistence of a particular pattern and can indicate the 

arrival of any significant events that can be planned for in advance.  

To understand the various sources of uncertainty in the modelled response, the 

individual components that make up this response are analysed. The uncertainty 

associated with the TPS is removed (by using observed discharge) to illustrate the 

potential improvement in model output if more information about this system is 

obtained. Modelled inflows from gauged and ungauged areas are compared against 

the observations, leaving direct lake rainfall, potential evapotranspiration and 

groundwater contribution as other sources of error.  

In the final analysis, model output is presented for each event under different 

operational scenarios. These scenarios relate to various outflow rates from the lake. 

For the purpose of this study, the maximum outflow is set at 320 m3/s although it is 

recognised that this rate varies depending on height of the lake (pers comm. Mighty 

River Power 2011). The minimum outflow is set to 50 m3/s. The average outflow is 

based on the mean outflow from the lake between 1969 and 2011. In an operational 

context, such output is useful for decision-making purposes.  
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9.1 Dry/Drought Conditions 

9.1.1 August 2001 

During August 2001, Lake Taupo receded to its lowest level within the 1998-2010 

period. On 17 August, a minimum lake level of 355.93 m a.s.l was observed (Figure 

9.1). Lake level had steadily decreased from the beginning of the year. Turangi 

experienced its warmest May on record and August was also warm and dry (NIWA, 

2002). Rainfall was particularly low for the first four months of the year (Figure 

9.2).  

Overall, the model does a good job of predicting lake level over this dry event. 

Observed lake level falls within the range predicted by the model (Figure 9.3) for all 

four forecast periods. Model predictions are reasonable out to five days with 

increasing uncertainty to 15 days. Replacing the statistical estimates of discharge 

from the TPS with actual observations allows inspection of model performance with 

this source of uncertainty removed. Model performance is greatly improved, with 

more closely simulated estimates of lake level for the majority of the period (Figure 

9.4).  

Lake level is over-estimated as it reaches its lowest level of the period. There could 

be three reasons for this: a) groundwater input b) groundwater seepage and/or c) 

estimation of direct evaporation and inflows from gauged and ungauged 

catchments. Given this is a lengthy period of low lake level reflecting an extended 

 

Figure 9.1 Observed (filtered) lake level: January – December 2001. 
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Figure 9.2 Observed rainfall for a selection of gauges in the Lake Taupo catchment: January – October 

2001. Units are mm/15 minutes. 

period of drier conditions, it would be reasonable to assume the direct groundwater 

input may be substantially less. In the absence of detailed information, Figure 9.5 

demonstrates the effect of halving this input on the accuracy of lake level 

predictions. The model simulates lake level more closely over this minimum level 

but then tends to under-estimate lake level thereafter. In this model, groundwater 

seepage is not specifically simulated; a constant influx of 30 m3/s is assumed. This 

inflow source could be included in the model structure, possibly as an additional 

store to be calibrated separately or within the existing calibration framework. This is 

discussed further in Section 9.4. 

Other sources of error include the estimation of direct evaporation and inflows from 

gauged and ungauged areas. NIWA calculates PE using the Penman Monteith 

method based on a wind function which tends to over-estimate open water 

evaporation by 10-15% (Valiantzas, 2006). Further, while gauged inflows are fairly 

well simulated (Figure 9.6), ungauged areas of the north and west (estimated using 

the Kuratau parameters) are generally under-estimated for this period (Figure 9.7).   

The scenarios presented in Figure 9.8 show that the minimum consented level 

would have been breached with maximum outflow within the first five days of each 

forecast. The model indicates that outflow from the lake should be less than the 

mean outflow to remain above the minimum consented level, with lower outflow 

resulting in an increase in lake level for the forecast period.  
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Figure 9.3 August 2001dry conditions: modelled output from four forecast times leading up to the minimum lake level recorded on 17 August 2001. 
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Figure 9.4 August 2001dry conditions: modelled output when uncertainty associated with TPS is removed. 
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Figure 9.5 August 2001dry conditions: modelled response when TPS uncertainty removed and groundwater contribution reduced by half.  
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Figure 9.6 August 2001dry conditions: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments.  
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Figure 9.7 August 2001dry conditions: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.8 Predicted lake level based on three lake outflow scenarios for the August 2001 dry period.  
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9.1.2 August 2003 

The first five months of 2003 were characterised as a very dry period for south-

western areas of the North Island (NIWA, 2004a). Although May was particularly 

wet for the Tongariro and Taupo region, Taupo and Turangi both experienced their 

second warmest June on record (NIWA, 2003c). June was followed by below 

average rainfall during both July and August (NIWA, 2003a, b), reflected in Figure 

9.9. Correspondingly, lake level is shown to be receding from January, increasing 

from May then lowering again over the drier July and August months to its low 

point at the end of August (Figure 9.10).  

Lake level for the period is slightly over-estimated out to five days in the first three 

forecast periods, with improved performance from the end of August for the entire 

forecasted period (Figure 9.11). When the uncertainty associated with the TPS is 

removed, short-term model predictions (out to five days) follow the observed 

response closely through to 28 August (Figure 9.12). By the end of August, the over-

estimation is reduced through the constrained EnKF and correction of lake levels 

outside of the tolerance limit (refer Section 6.6). As a result, model performance is 

improved.  

 

Figure 9.9 Observed rainfall for a selection of gauges in the Lake Taupo catchment: January – October 

2003. Units are mm/15 minutes. 
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Figure 9.10 Observed (filtered) lake level: January – December 2003. 

Once again, it is possible that the rate of inflow from direct groundwater seepage 

may be reduced during these drier periods. Halving the rate of input improves the 

simulation for the majority of the period, although lake level tends to be under-

estimated from early September (Figure 9.13). This coincides with an under-

estimated  inflow around 2 September from gauged areas (Figure 9.14). It is also 

worth noting that ungauged areas regionalised using the Tauranga-Taupo 

parameters are producing good simulations over the period. However, inflows from 

the remaining ungauged areas tend to be under-estimated in late August (Figure 

9.15).  

The operational scenario plots shown in Figure 9.16 indicate that under a maximum 

outflow rate, lake level would drop below the minimum consented level 5-10 days 

from each of the forecast points. Outflow rates below this would keep lake level 

above the operating margin over the entire period. 

Overall, the level of Lake Taupo is closely simulated over this event given the 

uncertainties associated with the TPS and errors in determining groundwater input. 

An under-estimation of catchment and direct lake rainfall resulted in lake level 

being slightly under-estimated from early September but, again, this could be 

resolved with more accurate estimations of these inputs over these periods.  
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Figure 9.11 August 2003 dry conditions: modelled output from four forecast times leading up to the minimum lake level recorded toward the end of August 2001. 
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Figure 9.12 August 2003 dry conditions: modelled output when uncertainty associated with TPS is removed. 
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Figure 9.13 August 2003 dry conditions:  modelled response when TPS uncertainty removed and groundwater contribution reduced by half. 
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Figure 9.14 August 2003 dry conditions: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. 
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Figure 9.15 August 2003 dry conditions: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.16 Predicted lake level based on three lake outflow scenarios for the August 2003 dry period. 
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9.1.3 May 2010 

NIWA‟s Annual Climate Summary for 2010 characterises this year by above average 

mean sea level pressures and an increased prevalence of anticyclones near New 

Zealand (NIWA, 2011). Drought was declared in January for the Waikato (and other 

areas of New Zealand) and was not broken until May (NIWA, 2011). Rainfall over 

the period was generally low (Figure 9.17), with Turangi recording only 12% of its 

normal monthly rainfall for March, its second lowest on record (NIWA, 2010a). 

Significant soil moisture deficits developed (NIWA, 2011). Lake level steadily 

decreased from February, dropping to 355.97 m a.s.l on 12 May 2010, its second 

lowest level of the evaluation period (Figure 9.18). 

For the period of 2010 leading up to the observed minimum lake level (mid-May 

2010), the model is applied and results analysed. The receding lake level is reliably 

predicted for the entire period; a rise in lake level around 13 May is also adequately 

reflected in the simulated results (Figure 9.19). Discharge from the TPS was again 

low over this time. Minimum flow requirements in various parts of the system and a 

requirement for natural river flows to be maintained in drought conditions results in 

some diversions being stopped. Using the observed inflow data from the scheme 

illustrates that with further information model output uncertainty is reduced 

(Figure 9.20). Lake level forecasts are improved, with good simulations out to 15 

days for the entire period. 

 

Figure 9.17 Observed rainfall for a selection of gauges in the Lake Taupo catchment: January – July 2010. 

Units are mm/15 minutes. 
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Figure 9.18 Observed (filtered) lake level: January – July 2010. 

Reducing the direct groundwater input by half produces more precise lake level 

simulations up until mid-May (Figure 9.21). A small event is slightly under-

predicted in the gauged inflows on 13 May (Figure 9.22), resulting in lake level being 

under-estimated thereafter. This is also the case in the ungauged areas predicted by 

the Kuratau parameters. Other sources of error include the possible under-

estimation of direct lake rainfall or over-estimation of lake evaporation over this 

period. 

Maintaining average outflow would keep lake level above the minimum operating 

margin, although lake level continues to drop over the forecast period (Figure 9.24). 

A maximum outflow rate would result in lake level reaching the operating minimum 

within a week. Minimum outflow from Lake Taupo would maintain lake level 

initially, only slightly increasing it thereafter.  

As with other dry events in this analysis, the model is doing a good job of closely 

simulating observed lake level for most of the period. Reducing the groundwater 

input slightly improves performance but more importantly reveals the effect of 

under-estimated inflows from ungauged areas. More accurate estimates of driving 

data as well as better representation of the ungauged areas around the west and 

north of the catchment would prove beneficial to the performance of the model 

overall.  
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Figure 9.19 May 2010 drought conditions: modelled output from four forecast times leading up to the minimum lake level recorded in mid May 2010. 
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Figure 9.20 May 2010 drought conditions: modelled output when uncertainty associated with TPS is removed. 
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Figure 9.21 May 2010 drought conditions:  modelled response when TPS uncertainty removed and groundwater contribution reduced by half.  
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Figure 9.22 May 2010 drought conditions: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. 
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Figure 9.23 May 2010 drought conditions: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.24 Predicted lake level based on three lake outflow scenarios for the May 2010 drought. 
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9.2 Normal operating conditions 

9.2.1 November 2006 

This period is characterised by „normal‟ operating conditions in which lake level is 

well within lake level operating margins (refer Section 2.3.4). During November 

2006, lake level did not exceed 357 m a.s.l (Figure 9.25). While there were frequent 

rainfall events, none were exceptional over the period (Figure 9.26). The synoptic 

weather maps show a low bringing rainfall to the area around 17-19 November 

(Figure 9.27).  

Overall, the model does a good job of simulating lake level over this period. 

Modelled lake level corresponds well with the observations over the entire period, as 

shown in Figure 9.28. Lake level predictions are more precise given more 

information about the discharge from the TPS (Figure 9.29). The response to the 

rainfall event around 17-19 November is under-estimated in gauged catchments, but 

this error is accounted for as observations are assimilated (Figure 9.30). Modelled 

inflow from ungauged areas is good, especially for the first five days of each forecast 

period (Figure 9.31). 

For decision-making purposes, the scenarios presented in Figure 9.32 show that a 

mean outflow is required to maintain lake level. The maximum consented level 

would be exceeded from early December if the minimum outflow is allowed. 

 

 

Figure 9.25 Observed (filtered) lake level: October – December 2006. 
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Figure 9.26 Observed rainfall for a selection of gauges in the Lake Taupo catchment: October – 

December 2007. Units are mm/15 minutes. 

 

 

 (a) 12:00 am 18 November 2006 (UTC) (b) 12:00 pm 18 November 2006 (UTC) 

  

Figure 9.27 A selection of MetService synoptic weather maps for November 2006. 
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Figure 9.28 November 2006 ‘normal’ operating conditions: modelled output from four forecast times over November 2006.  
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Figure 9.29 November 2006 ‘normal’ operating conditions: modelled output when uncertainty associated with TPS is removed.  
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Figure 9.30 November 2006 ‘normal’ operating conditions: Modelled versus observed streamflow for combined inflows from the five currently  gauged catchments. 
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Figure 9.31 November 2006 ‘normal’ operating conditions: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.32 Predicted lake level based on three lake outflow scenarios for November 2006. 
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9.2.2 March 2007 

Lake level in the early part of 2007 was generally declining so that by March it was 

below 356.8 m a.s.l (Figure 9.33). There had been very little rainfall over February 

2007 (Figure 9.34) and most of March. As shown in the synoptic weather maps in 

Figure 9.35, a high pressure system sat over the area for the first part of March. This 

system begins to dissipate in mid-March. Around 18 March, a front moved up the 

country bringing rain to much of the catchment. 

The model does an effective job of simulating lake level response, with observed lake 

level within the range of modelled lake level over the entire period (Figure 9.36). 

The slight over-estimation of lake level, evident when the uncertainty with the TPS 

is removed (Figure 9.37), may be a result of a lower groundwater input during this 

relatively dry period than the constant 30 m3/s input assumed in the model. Both 

gauged and ungauged inflows do not show a significant over-estimation at this time 

(Figure 9.38 and Figure 9.39, respectively). As mentioned previously, specifically 

modelling the groundwater input to the lake may add value. This is discussed 

further in Section 9.4. Inaccurate estimations of PE at this time may also be 

contributing to this small error. 

To maintain lake level, outflow from the lake would need to be less than the average 

outflow. The scenario based on maximum outflow shows a relatively steep decline of 

lake level toward the minimum consented level over the period. 

 

Figure 9.33 Observed (filtered) lake level: February – April 2007 
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Figure 9.34 Observed rainfall for a selection of gauges in the Lake Taupo catchment: February – April 

2006. Units are mm/15 minutes. 

(a) 12:00 am 1 March 2007 (UTC) (b) 12:00 am 10 March 2007 (UTC) 

  

 (a) 12:00 pm 17 March 2007 (UTC) (b) 12:00 am 18 March 2007 (UTC) 

  

Figure 9.35 A selection of MetService synoptic weather maps for March 2007 
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Figure 9.36 March 2007 ‘normal’ operating conditions: modelled output from four forecast times over March 2007.  
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Figure 9.37 March 2007 ‘normal’ operating conditions: : modelled output when uncertainty associated with TPS is removed. 
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Figure 9.38  March 2007 ‘normal’ operating conditions:  Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. 
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Figure 9.39 March 2007 ‘normal’ operating conditions:  Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.40 Predicted lake level based on three lake outflow scenarios for March 2007. 
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9.3 Flood Events 

9.3.1 July 1998 

The flood of July 1998 was one of the largest rainfall periods in the Waikato on 

record (as cited in Dravitzki, 2009). This was a long-duration multi-peaked event 

resulting from a series of cyclones which moved across the region in first 20 days of 

July. Rainfall for the period from three gauges in the catchment is shown in Figure 

9.41. Prior to July, antecedent conditions and lake level had been relatively low for 

several months (Waugh et al., 1999). The first event was a mid-latitude cyclone 

which brought significant rain around 2 July (Figure 9.42 a-b). This saturated the 

catchment so that when the main event arrived on the 9/10 July (Figure 9.42 c-d) it 

caused widespread flooding (Waugh et al., 1999). The final event was a shallow 

cyclone with an associated warm front (Figure 9.42 e-f), bringing light but 

widespread rainfall as it passed over New Zealand (Dravitzki, 2009). During these 

events, lake level rose to 357.48 m a.s.l (Figure 9.43). The largest event was on 8-9 

July with the maximum control level (MCL) exceeded on 12 July 1998.  

For the most part, the model is substantially over estimating lake level with 

increasing divergence as each rainfall event arrives (Figure 9.44). From 12 July 

predictions are improved as observations are assimilated to reflect actual antecedent 

conditions. However, lake level is still over-estimated for the remainder of the 

 

 

Figure 9.41 Observed rainfall for a selection of gauges in the Lake Taupo catchment: May- August 1998. 

Units are mm/15 minutes. 
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(a) 12:00 am 1 July 1998 (UTC) (b) 6:00 am 1 July 1998 (UTC) 

  

(c) 12:00 am 9 July 1998 (UTC) (d) 6:00 am 9 July 1998 (UTC) 

  

(e) 12:00 am 14 July 1998 (UTC) (f)12:00 pm 14 July 1998(UTC) 

  

Figure 9.42 A selection of MetService synoptic weather maps for the July 1998 multi-peaked flood event. 
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Figure 9.43 Observed (filtered) lake level: June – September 1998. 

period. Discharge from the TPS during this period was low because diversions 

ceased over the event (Freestone et al., 1998). When this source of uncertainty is 

removed, the extent of error by other inputs to the lake is revealed (Figure 9.45). 

The largest error in determining lake level over this event is from the estimation of 

inflows from ungauged areas (Figure 9.46). Although this event falls within what 

would be considered the warm-up period for the model, adjustment of initial 

conditions does little to reduce the over-estimation. The warm-up period minimises 

the effect of initial state variables. The length of this period is generally in the order 

of a year, although does vary between applications (Aubert et al., 2003; Madsen, 

2003; Vrugt et al., 2003). 

The model is predicting an inflow response from ungauged areas given the input 

rainfall used to drive the model. The ungauged time series is showing a general 

negative inflow during this time (Figure 9.47). This time series is derived from 

known inputs, outputs and changes in lake level. The negative inflow occurs because 

net inputs (excluding ungauged inflows) are larger than the corresponding change in 

observed lake level. There is a potential lag between the timing of net inputs and 

lake level change which has not been accounted for. Net inputs include inflows from 

gauged catchments, some of which are located several kilometres upstream from the 

lake. The extra travel time between the gauge and the lake would have an influence 

on the magnitude and timing of inflows to the lake and lake level response. This 

could be partially resolved by applying a kinematic wave model to propagate the 

flood wave downstream for a more accurate estimation of the shape and timing of 

the hydrograph as it enters the lake.   
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Barometric forcing may also influence lake level. The Butterworth filter, used to 

smooth the lake level, removes the high frequency oscillations (refer Section 4.4) but 

does not remove the longer period oscillations, part of which may be due to 

barometric pressure perturbations. A reduction in atmospheric pressure can create a 

water level rise, in what is termed the „inverted barometer effect‟ (Dingman and 

Bedford, 1984, an references therein).  As a pressure gradient passes over a lake, the 

surface of the lake can tilt toward the area of higher pressure (Thompson and Ibbitt, 

1978). While it has been noted that this effect may be measureable in Lake Taupo 

(James et al., 2002), it has not been quantified. Investigation into the effect of these 

pressure differences cannot be undertaken without further data and information. 

Currently, there is only one station within the Lake Taupo catchment which 

measures pressure. 

Other sources of error include other modelled inflows and direct lake inputs. Errors 

in lake evaporation are unlikely to be significant, given the rainfall and time of year. 

Although recession characteristics are well represented, peak flood flow is under-

estimated (Figure 9.48). It is thought that this is due to errors in the model structure 

and/or imperfect driving data. An over-estimation of lake rainfall (and groundwater 

seepage) would contribute to an over-estimation of lake level. More accurate driving 

data would improve the overall performance of the model and the reliability of 

model predictions.  

As a result of the issues identified in this event, the scenarios presented in Figure 

9.49 are unreliable. Based on the model output, the scenarios suggest that even with 

a maximum outflow rate, lake level would continue to increase for the majority of 

the period shown. To reduce flooding downstream, however, outflow from the lake 

was minimal for much of this period. As such, the model suggest that with a lower 

outflow rate, lake level would be considerably higher than the observed.  

The performance of the model in this event highlights the importance of obtaining 

more accurate input data and gaining a better understanding of the inflow-lake level 

response relationship of Lake Taupo. It also suggests that, given most of the over-

estimation in ungauged areas is in the areas of the north and west, substantial gains 

would be achieved if this area was discretised into small sub-areas, more suitable 

parameter sets identified and/or existing parameter values further refined 

(discussed further in Section 9.4). 
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Figure 9.44 July 1998 flood event: modelled output from four forecast times before, during and after the event on 9/10 July 1998. 
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Figure 9.45 July 1998  flood event: modelled output when uncertainty associated with TPS is removed. 
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Figure 9.46  July 1998 flood event: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.47  July 1998 flood event: Lake level change and derived inflow time series for the July 1998 flood event. (a) derived ungauged inflow time series compared to change in 

lake level for same period. (b) Total inflows, total outflows and corresponding net inflow for period. (c) Gauged inputs and direct lake rainfall. All values have been converted to 

cubic metres per second for comparison. 
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Figure 9.48 July 1998 flood event: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. 
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Figure 9.49 Predicted lake level based on three lake outflow scenarios for the July 1998 flood event.  
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9.3.2 February 2004 

The February 2004 event is another significant event which caused considerable 

flooding. Rainfall was heavy in the Lake Taupo catchment (Figure 9.50) with both 

Taupo and Turangi recoding their highest February rainfall on record (NIWA, 

2004b). This was a high intensity event over a short duration on already saturated 

conditions. The event on 28 February 2004 was caused by the simultaneous arrival 

of frontal bands from a mid-latitude cyclone and ex-tropical cyclone (Dravitzki, 

2009), as shown in Figure 9.51. Most rain fell on 28 February with associated 

flooding on 29 February. Antecedent conditions had been moderately wet leading 

up to February (Waugh and Freestone, 2004). Saturation levels increased as a 

number of events occurred through the month. Most of the rainfall fell in the 

western and southern parts of the catchment (Waugh and Freestone, 2004), as 

shown by the much greater rainfall for the Waipakihi catchment than the Tauranga-

Taupo and Kuratau catchments (Figure 9.50). Although mitigation measures were 

taken (Waugh and Freestone, 2004), lake level exceeded the MCL on 29 February, 

reaching a maximum level of 357.36 m a.s.l on 3 March 2004 (Figure 9.52). 

The results show that the model is able to simulate the general characteristics of lake 

level change well, with errors reduced as observations are assimilated. Up until 29 

February projected lake level is under-estimated (Figure 9.53). From 4am 29 

February, diversions through the TPS ceased, in accordance with the 1977 Tongariro 

 

 

Figure 9.50 Observed rainfall for a selection of gauges in the Lake Taupo catchment: January – March 

2004. Units are mm/15 minutes. 
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 (a) 12:00 am 28 February 2004 (UTC) (b) 6:00 am 28 February 2004 (UTC) 

  

Figure 9.51 A selection of MetService synoptic weather maps for the February 2004 flood event. 

Offset Works Agreement (Waugh and Freestone, 2004). A four month gap in the 

Tokaanu Station discharge time series between January and April 2004 does not 

allow comparison with observations. However, is it likely that discharge from the 

TPS would be at the lower end of the projected range shown in Figure 9.53.  

In light of this information, the model is doing a good job of predicting lake level 

from 29 February. Prior to this, lake level is under-estimated. Gauged inflows over 

this period are closely simulated except during the peak flood event which appears 

under-predicted, despite a gap in the observations (Figure 9.54). This error could be 

a result of simplifications in the model structure and/or inadequate driving data. 

Inaccurate driving data has implications for other parts of the catchment as well. 

 

 

Figure 9.52 Observed (filtered) lake level: January – March 2004. 
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Rainfall estimation for ungauged areas and direct rainfall to the lake is based on the 

observations at a number of the same stations used to predict rainfall in the gauged 

sub-catchments. In gauged areas, the constrained EnKF adjusts model states to 

account for these errors. However, in areas where data assimilation does not occur, 

this error can accumulate. This would partly explain the under-estimation of inflow 

from ungauged areas (particularly from the areas estimated by the Kuratau 

parameters) for the period (Figure 9.55). 

Similar to the July 1998 event, the derived ungauged time series shows a general 

negative trend over the peak event on 29 February 2004 (Figure 9.56). The model is 

predicting inflow from these ungauged areas, which would account for the 

improvement in model performance around the time of this peak event.  

The scenarios shown in Figure 9.57 show that outflow from the lake needed to be 

close to the maximum outflow rate for the entire period to reduce the amount of 

time lake level is above the maximum consented level. This is consistent with the 

observed outflow from the lake which, aside from a short period between 27-29 

February, was at this higher rate until 12 March. Lower outflow rates would have 

resulted in lake level exceeding the maximum control level sooner and remain above 

this operating margin well into March. 

Overall, the model gives reasonable predictions of lake level. Recession 

characteristics are well captured, and the assimilation of observations improves the 

accuracy and reliability of model output.  
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Figure 9.53 February 2004 flood event: This figure shows the modelled output from four forecast times before, during and after the event on 29 February 2004. 
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Figure 9.54 February 2004 flood event: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. 
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Figure 9.55 February 2004 flood event: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.56 February 2004 flood event: Lake level change and derived inflow time series for the February 2004 flood event. (a) derived ungauged inflow time series compared to 

change in lake level for same period. (b) Total inflows, total outflows and corresponding net inflow for period. (c) Gauged inputs and direct lake rainfall. All values have been 

converted to cubic metres per second for comparison 
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Figure 9.57 Predicted lake level based on three lake outflow scenarios for the February 2004 flood event. 
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9.3.3 September 2010 

September 2010 was characterised by wet and windy conditions for the Waikato 

catchment and, more generally, extremely low pressure over New Zealand (NIWA, 

2010b). This is a period of considerably unsettled weather following an extended 

period of drought in the first half of the same year. Lake levels had been 

considerably low for the first half of the year and steadily increased from August. 

Frequent low pressure systems tracked across the country early in September 

(Figure 9.59 a-d). A deep low which developed in the Southern Ocean pushed a 

succession of fronts up the country in mid-September (Figure 9.59 e-f). The result 

was frequent rainfall (Figure 9.58) which fell on an increasingly saturated 

catchment. During this period Turangi experienced its highest September rainfall on 

record (NIWA, 2010b). Lake level exceeded the MCL of 357.25 m a.s.l on 14 

September (Figure 9.60). A maximum level of 357.37 m a.s.l was reached on 23 

September 2010. Another significant event on 1 October kept lake levels high 

through to 8 October 2010. The analysis undertaken for this flood event covers the 

period over which the MCL was exceeded. 

The model simulates the rise and fall of the lake well, with observed lake level at the 

higher end of the projected range (Figure 9.63). Up until 14 September, when the 

MCL was reached, the model is slightly under-estimating lake level. Discharge from

 

Figure 9.58 Observed rainfall for a selection of gauges in the Lake Taupo catchment: July- November 

2010. Units are mm/15 minutes. 
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(a) 12:00 am 2 Sep 2010 (UTC) (b) 12:00 pm 6 Sep 2010 (UTC) 

  

(c) 12:00 pm 11 Sep 2010 (UTC) (d) 6:00 am 14 Sep 2010 (UTC) 

  

(e) 6:00 am 17 Sep 2010 (UTC) (f) 6:00 am 18 Sep 2010 (UTC) 

  

Figure 9.59 A selection of MetService synoptic weather maps for the September 2010 flood event. 
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Figure 9.60 Observed (filtered) lake level: August – October 2010. 

the TPS up to this time was high and often exceeded the projected range of inflow 

(Figure 9.62). Known in advance, this information can be incorporated into the 

model operationally for improved model performance. This is demonstrated in 

(Figure 9.64) when the observed TPS discharge is used, resulting in a close 

approximation to lake levels until 19 September.  

The divergence between modelled and observed lake level on 19 September is a 

result of a significant under-prediction of a peak flood event in the gauged 

catchments (Figure 9.65). Most sub-catchments under-predict this event, but the 

under-estimation in the Tongariro catchment is significant – almost 200 m3/s 

(Figure 9.61). From the time series of TPS discharge it would appear that diversions 

at this time ceased, so it is unlikely that this error is from a substantial release of 

water from the Moawhango dam which the model could not simulate (Figure 9.62). 

This frontal event arrived from the south and observations across the region 

indicate that rainfall was heaviest and most persistent in the southern part of the 

catchment. It is probable that catchment rainfall for this event is not adequately 

represented. 

In addition, while the ungauged area of the catchment estimated by the Tauranga-

Taupo parameters show no overall bias, the areas predicted by the Kuratau 

parameters tend to be under-estimated (Figure 9.66). These combined issues would 

affect the accuracy of lake level predictions around the time of this event and would 

keep lake level forecasts lower until observations are assimilated and/or when 

modelled lake level exceeds the tolerance limit and is adjusted accordingly (refer 

Section 6.6).  
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Figure 9.61 Observed versus model output for the Tongariro catchment September 2010. 

Operationally, the model indicates that the maximum consented level would be 

exceeded during this event. Average outflow from the lake from 7 September keeps 

lake level below the operating margin until 12 September when the maximum rate of 

outflow is required to reduce lake level. Given that the outflow from the TPS is 

generally high during this event and that outflow from the lake was also at its 

maximum level, the model is providing reliable scenarios for robust decision 

making. This is particularly important for downstream flood mitigation.  

For this considerably wet period, the model is doing a good job of producing reliable 

estimates of lake level for the majority of the period. The under-prediction of lake 

level around 19 September emphasises the need for better driving data but also 

further supports the use of data assimilation in predictive modelling to correct for 

these errors. 

 

 

Figure 9.62 Comparison of observed discharge from the TPS against the results of statistical probability 

analysis for September 2010. 
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Figure 9.63 September 2010 flood event: modelled output from four forecast times over the period when lake level exceeded the MCL .  



 

 298 | Predicting changes in lake level 

 

 

Figure 9.64 September 2010 flood event: modelled output when uncertainty associated with TPS is removed. 
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Figure 9.65 September 2010 flood event: Modelled versus observed streamflow for combined inflows from the five currently gauged catchments. Note; the jump in streamflow 

between the hindcast and forecast observed on 7 September is a result of streamflow prediction in the Tongariro catchment. This issue is discussed in Section 8.4.3. 
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Figure 9.66 September 2010 flood event: Modelled versus observed cumulative inflows from ungauged areas. Units are mm/15 minutes. 
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Figure 9.67 Predicted lake level based on three lake outflow scenarios for the July 1998 flood event. 
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9.4 Discussion and Conclusions 

This chapter presents the results of the Lake Taupo Inflow Model, as applied to eight 

events between 1998 and 2010. While the performance of the LTIM is evaluated 

over a wide range of hydrological and meteorological conditions, these eight events 

have been selected a priori for in-depth critical evaluation as representation of both 

extreme and „usual‟ conditions. The events selected provide a range of hydrological 

and meteorological conditions experienced in the catchment.  

In most cases, the model does a good job of simulating the rise and fall of lake level, 

given the data and information available. Observed lake level generally falls within 

the range projected by the model for the majority of the 15-day forecast periods, 

with most accurate and reliable estimates out to five days. Parametric uncertainty is 

relatively small across all events, compared to the uncertainty associated with the 

TPS. In all cases, with more information about the operation of the scheme, model 

performance would be substantially improved to give more precise lake level 

predictions. In the absence of such information, uncertainty would be reduced by 

incorporating auto-correlation into the analysis and by including some relationships 

to external factors such as price controls and air temperature (this is discussed in 

further in Chapter 7). 

Model performance is most reliable during the three dry/drought periods and two 

„normal‟ operating periods analysed. Event simulations of gauged catchments show 

that the model does a good job of simulating recessions and low flows in all events. 

During very dry conditions, minimum observed lake level is slightly over-estimated 

by the model. It is thought that errors in determining the direct groundwater input 

to the lake may be partially responsible for this. In this study, groundwater seepage 

is not explicitly modelled; it is assumed temporally constant at a rate of 30 m3/s. 

Reducing this rate of inflow is shown to effect a closer approximation to lake level 

during dry events, indicating that the current assumption of a constant inflow is not 

representative. Explicitly including groundwater seepage as an additional store in 

the current model structure would allow this source of inflow to be better 

characterised. Although there have been a few attempts to estimate the groundwater 

seepage to the lake, these have been localised studies over small areas and over 

short time frames (Gibbs et al., 2005) or modelled at larger scales based on steady-

state or annual water balance approaches (Bou, 2007; Murphy, 2006; Piper, 2004). 

More detailed information would need to be collected in order to ascertain suitable 
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parameter ranges or identify characteristics of this inflow source for inclusion in the 

model. 

In all three flood events, lake level recession is simulated well. Peak inflow events 

are under-estimated from gauged areas, probably from inaccurate estimates of 

catchment areal rainfall and possibly from errors in the model structure. 

Fortunately, the assimilation of observations reduces these short term biases. 

However, these errors can accumulate in the model predictions for ungauged areas 

and direct lake inputs. 

During large rainfall events, the model is predicting inflow from ungauged areas, 

corresponding to the estimated rainfall depths. However, this does not correspond 

to the derived inflow time series which often shows a negative inflow trend. This 

time series is derived from known inputs and output from the lake and fluctuations 

in lake level. During these flood events, inputs sometimes exceed the corresponding 

volume change in the lake resulting in negative inflows from ungauged catchments 

to close the water balance.  

A potential source of error is related to the timing of arrival of water from gauged 

catchments. Streamflow is often observed at locations several kilometres upstream 

from the lake. A lag effect between the streamflow observed at the gauging sites and 

its arrival at the lake may partially account for some of this error. A kinematic wave 

model, similar to that proposed for the Tongariro catchment (discussed in Section 

7.2.2) would be appropriate. It would allow the flood wave to be propagated 

downstream given slope and channel characteristics and would be able to simulate 

any change in form/amplitude as it moves toward the lake. Other sources of error 

include the estimation of direct lake rainfall, the interpretation of river stage data 

and barometric effects on lake level, where the water surface responds to 

atmospheric pressure perturbations. As the pressure gradient passes over the area, 

lake level is often tilted so that under the area of higher pressure lake level is lower  

(Thompson and Ibbitt, 1978). In larger lakes like Lake Taupo, this could have a 

measureable effect (James et al., 2002). However, this effect may be difficult to 

discern given available data.  

While this issue is evident in all three flood events simulated, it is most severe in the 

(9-10) July 1998 event. The reasons for this are unclear but may be due to a 

combination of effects described above (i.e., inflow timing, barometric data). 

Compared to the other flood events analysed, rainfall and streamflow during the 
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July 1998 event is generally greater and persisted over a longer period of time. 

Streamflow observations may be over-estimating inflows at this time, an artefact of 

interpretation of stage height data during high flow conditions. 

There is scope for improvement in the estimation of inflows from the ungauged 

areas of the north and west of the catchment. The Kuratau parameters are applied to 

this large area (1003 km2), which extends from south of the Kuratau catchment 

clockwise around to the Waitahanui catchment in the north-east. Although deemed 

the most appropriate parameter set to be applied to this vast area based on 

physically attributes, there are considerable differences between the modelled and 

derived time series, especially during flood events. There are several ways in which 

this uncertainty could be reduced. At present, the Kuratau parameters are applied 

with only the rainfall multiplier and catchment lag time calibrated. Dividing this 

large area into smaller sub-areas and adjusting these parameters based on the 

physical relationships found may reduce some of the error. Alternatively, there are a 

number of other historically gauged catchments which may be more representative 

of some of these smaller sub-areas, particularly in the north. Secondly, if more of the 

Lake Taupo catchment was gauged, more sub-catchments could be explicitly 

modelled and the constrained EnKF applied. This would reduce the area left 

ungauged and, hence, the uncertainty from this input. 

In most events, the ungauged areas of the south appear to be well characterised by 

the Tauranga-Taupo parameters. This is a much smaller area (284 km2) covering a 

more localised portion of the catchment. There is often very little difference between 

the cumulative distributions of the „observation‟ and modelled output for this area. 

In addition, the rainfall multiplier is more realistic, given that the gauges used to 

estimate rainfall in this area are generally located at higher elevations than most of 

the area it is being used to represent. 

In summary, given the uncertainties associated with the TPS, the model does a good 

job of predicting lake level in most cases. Model output is most reliable during low 

flows and recessions as the model structure appears to represent these periods well. 

Flood flows tend to be under-estimated, reducing the reliability of forward 

predictions over these events. However, as observations arrive and are assimilated, 

states are adjusted to better reflect catchment antecedent conditions. 

The predictive capability of the model is dependent on the accuracy and reliability of 

data used to drive the model and calculate respective inflows. Data assimilation can 
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address some of the errors, reducing short-term bias for those catchments to which 

it is applied. Significant improvements would be achieved with more reliable driving 

data for the estimation of catchment areal volumes and better characterisation of 

inflows from ungauged areas. However, with knowledge of these shortcomings, and 

the strategies to account for them, the model significantly improves our ability to 

reliably assess lake level for decision-making purposes. 
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10 Conclusions 

Lake Taupo is a highly regulated lake, located in the central North Island, New 

Zealand. It is managed between a 1.4 m operating range (<1%, 0.855 km3, of its 

volume) to reflect natural lake level fluctuations. The amount and timing of inflows 

to the lake effectively determine the amount of water available to generation. Three 

competing power companies control 60% of the inflows to the lake, while Mighty 

River Power Ltd manages lake level and outflow. Water is also received from areas 

outside of the natural Lake Taupo catchment, diverted as part of the Tongariro 

Power Scheme (TPS). A large portion of the catchment is also currently ungauged. 

This dissertation sets out to develop a rainfall-runoff model to forecast inflows to, 

and lake level of, Lake Taupo. There are three principal aims: 

 Investigate the physical processes controlling the movement of water through 

the Lake Taupo catchment by undertaking a hydrological assessment of 

catchment physiographic, climatic and hydrologic characteristics; 

 Predict the inflows to Lake Taupo and consequently changes in lake level by 

developing a rainfall-runoff model that accounts for the data available and 

modifications to river flows given the extensive hydro power development in 

the catchment; and  
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 Quantify the improvement in accuracy and reliability of model output through 

the use of data assimilation. 

To achieve the first aim, a range of physiographic attributes are related to various 

hydrologic descriptors for each sub-catchment. Results from the model sensitivity 

analysis and calibration are also used to provide a general assessment of catchment 

hydrologic behaviour.  

For the second aim, outcomes from the assessment above are used to build a 

perceptual model of the Lake Taupo catchment and to provide guidance on initial 

parameter ranges. The Lake Taupo Inflow Model (LTIM) developed is a semi-

distributed physically consistent conceptual model with soil moisture accounting 

and three linear stores. Drainage to these stores is related to the size of the 

saturation zone, reflecting the concept of a variable source area. The model 

incorporates some of the regulation of three catchments given the limited 

information and data available. Classic Monte Carlo sampling is used to identify 

optimal parameter sets from suitably chosen pre-defined parameter ranges. The 

Kling-Gupta Efficiency Index is used to measure performance. Regionalised 

parameters are used to model the inflow from ungauged areas. Inflow from the 

highly complex regulated Tongariro Power Scheme is estimated using a statistical 

probability analysis based on the time of day, day of the week and time of year.  

While the model simulates the inflows from the various sub-catchments reasonably 

well, the simplified model structure, estimated parameters and imperfect driving 

data result in error accumulating, particularly when catchments are partially  

saturated, affecting predictive accuracy and reliability. To overcome this, the final 

aim of the thesis is to apply a constrained Ensemble Kalman Filter (EnKF) to 

explicitly account for model structure and data errors. Used in conjunction with the 

Monte Carlo simulations for parameter estimation, all three sources of uncertainty 

are addressed. The filter is constrained to ensure that updates to states are 

physically realistic. Although there is substantial scope for further development, 

particularly in relation to the constraints used and application to regulated inflows, 

the results show that the accuracy and reliability of model predictions are greatly 

improved when the constraints are applied.  

This chapter presents the conclusions on the main findings of this work. Section 10.1 

notes the specific contributions made to the stakeholders of the Lake Taupo 

catchment and more generally to the field of reservoir inflow modelling. Section 
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10.2.1 comments on the quality of the data set used and notes implications for 

robust model calibration and predictive accuracy. Section 10.2.2 discusses the major 

controls on the movement of water through the Lake Taupo catchment obtained 

from correlation analysis and model calibration/sensitivity analysis steps. Section 

10.2.3 considers the role of the constrained EnKF in improving predictive accuracy 

of the Lake Taupo Inflow Model, while Section 10.2.4 discusses the overall 

performance of the model in terms of predicting the lake level of Lake Taupo. 

Recommendations for future work are listed in Section 10.3. A final summary is 

given in Section 10.4. 

10.1 Main Contributions 

This dissertation has made a number of original contributions to the stakeholders 

and decision makers in the Taupo region, and more generally to the problem of 

reservoir inflow forecasting. These are: 

 Robust analysis of the quality and reliability of data obtained for the 

Lake Taupo catchment: A model is only as good as the data used to drive it. 

In this study, the data is subject to rigorous analysis in order to identify 

inconsistencies and errors so that suitable data sets and data periods for model 

calibration and evaluation can be selected. This analysis provides valuable 

information for others intending to work and use similar data in the Lake 

Taupo catchment.  

 Development of a predictive rainfall-runoff model for the highly 

regulated Lake Taupo catchment: Previously, inflows to Lake Taupo have 

not been modelled in any detail. The LTIM developed in this dissertation is the 

first to effectively and efficiently quantify sub-catchment contributions to total 

inflow and lake level change. This model has potential value for a variety of 

organisations in the Waikato region and, more generally, New Zealand. 

 General guidance on how to incorporate regulation into traditional 

model structures: Sixty percent of the inflows to Lake Taupo are from 

regulated catchments. This research provides general guidance as to how some 

of this regulation can be incorporated into traditional model structures using 

available information and data relating to scheme operation, resource consent 

conditions and other physical and legislative constraints. These outcomes have 

potential value for other regulated catchments in New Zealand and overseas. 
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 Demonstration of how physically-consistent state-updating via a 

constrained EnKF can improve model performance for robust 

decision making: Data assimilation via state-updating is increasingly 

recognised as an essential part of any hydrological forecasting application (Liu 

et al., 2012, in review). Data assimilation via state updating has received 

considerable attention in recent years, but there are few examples where it has 

been applied in a highly regulated catchment like Lake Taupo. Further, most 

studies ignore the challenge of physically consistent state-updating. Only one 

study in the hydrological literature provides any detail on constraint methods 

for state-updating. To the best of the author‟s knowledge, constraints have not 

been applied in an operational context. In this study, it is demonstrated that by 

constraining the filter to be consistent with physical laws, the reliability of 

forward predictions is improved allowing more robust decision making.  

10.2   Main Conclusions 

10.2.1 Dataset implications 

Streamflow, rainfall and other data obtained for this study are assessed for quality, 

reliability and applicability for model calibration, data assimilation and use in the 

LTIM. While many records are of decent quality, well-commented and have gaps 

adequately noted, a number of inconsistencies in observations (for example, rapid 

rises in streamflow with no associated rainfall, hydrologically inconsistent patterns) 

were identified that prevented some periods of data or, in some cases, whole records 

from being used. In addition, many of the records obtained are of short duration 

(less than five years), and contain many gaps. In some catchments, these issues 

significantly limit the amount of data available for calibration/evaluation purposes 

and undermine the reliability of parameter sets obtained. In these instances, 

extrapolation beyond the calibration period may not be appropriate and may yield 

unsatisfactory performance results. 

One of the major challenges in the Lake Taupo catchment, as in many others, is the 

estimation of catchment rainfall. The catchment is sparsely populated with rainfall 

gauges, and few are at elevation. In most cases there is only one rain gauge within or 

near the catchment being modelled. In other cases a rainfall gauge located several 

kilometres away is the nearest available gauge. Hence, in this study, observations 
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from a single gauge located in or near the catchment are used to represent 

catchment volumes. 

Observed rainfall is adjusted by a rainfall multiplier (parameterised during model 

calibration) so that mass balance is achieved. This accounts for the overall bias but 

not differences in catchment dynamics. Rainfall gauges are selected on their 

proximity to the area being modelled and representativeness from event based 

analysis. There are instances where localised rainfall events around the gauge result 

in over-estimated catchment areal rainfall, while rainfall in higher (ungauged) 

elevation areas may be missed entirely. Further, the multiplier is constant, which 

may not be a reasonable assumption. An investigation into the seasonality of this 

bias through monthly or seasonal mass balance analyses as well as better estimates 

of catchment areal rainfall and potential evapotranspiration to drive the model 

would be beneficial. 

Lake level is affected by a number of seiches acting on the surface of the lake making 

it difficult to get an accurate lake level record. Previous studies have smoothed this 

record over coarse resolution and often required inflows and outflows to be adjusted 

in order to deliver a smooth lake level record. Because of the high resolution 

requirements of this study, a Butterworth filter is applied to raw lake level so that 

high resolution oscillations are removed but the genuine rise and fall of the lake is 

maintained. Although successful, some longer duration seiche effects are still 

evident. Removal of these low frequency oscillations is difficult because some of the 

genuine signal may also be removed. This has implications for the reliability of 

model calibration of ungauged areas, a time series for which is based on the residual 

inflow from known inputs, outputs and lake level changes.  

10.2.2 Catchment hydrologic function 

Correlation analysis is undertaken on six physiographic, two climatic and six 

hydrologic attributes obtained from observations for 14 sub-catchments of Lake 

Taupo (Chapter 5). The results, along with information obtained from data analysis, 

previous literature and an understanding of fundamental hydrologic principles, 

inform the development of the perceptual model of the Lake Taupo catchment, and 

provide guidance on initial parameter ranges. These results combined with the 

regional sensitivity analysis undertaken in Chapter 7 provide further information 

about the most important flow pathways in the Lake Taupo catchment.  
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The main findings of the initial correlation analysis (Chapter 5) are consistent with 

Schouten et al. (1981). Baseflow is the dominant source of streamflow in most 

catchments influencing the shape of flow duration curves. Although the range of 

values for the baseflow index is relatively small (0.695 – 0.765), those with more 

baseflow are generally less variable and have flatter flow duration curves. Steeper 

catchments underlain with less permeable geology are variable, and generally have 

less baseflow contributing to streamflow.  

Based on the sound understanding of catchment hydrologic function obtained, 

initial parameter ranges are guided by the information obtained from the 

correlation analysis, previous research and knowledge of catchment hydrologic 

processes. The proportion of streamflow draining to the sub-surface store reflects 

sub-catchment baseflow levels while store residence times varied depending on the 

underlying geology and overall steepness of the catchment.  

The process of model identification (parameter estimation and sensitivity analysis) 

confirmed that the relative proportions of water entering different pathways 

(particularly baseflow and fastflow) and associated residence times are very 

influential in shaping catchment flow regimes. Identification of the most influential 

parameters for each sub-catchment allowed more attention to be given to these 

more important parameters in refinement of parameter ranges. It was hoped that 

modelled sub-catchment parameter values would provide further insight into 

catchment hydrologic behaviour. However, correlations between physiographic 

attributes and model parameters were generally weak. Some potentially strong 

relationships could not be discerned with certainty because of a lack of identifiability 

(in a univariate sense) for some model parameters of some catchments. Multi-

variate analysis may be worthwhile extension to this analysis. Although 

computationally expensive, analyses such as Sobol‟s global sensitivity method can 

reveal the individual parameter influence and parameter interactions from the 

model output (Yang, 2011), providing a more robust analysis of parameter 

sensitivities and influence on hydrologic response.  

Three catchments have been modified for hydro generation. The impact of these 

schemes on river regimes varies. The Hinemaiaia scheme has limited storage and 

there is relatively little modification of natural streamflow behaviour with similar 

flow duration curves for gauging sites above and below the scheme. There is an 

obvious diurnal fluctuation in the discharge time series for the Kuratau scheme 

which coincides with the release of water which has been held back for generation at 
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peak times. The TPS is the largest and most complex of the three hydro schemes in 

the Lake Taupo catchment. Its impact on the flow regime on the Tongariro River is 

significant. Streamflow between 16 m3/s  and 160 m3/s is most affected as up to 80 

m3/s can be diverted through the Poutu Intake. A comparison between hydrologic 

characteristics before and after the development of the TPS reveals that baseflow 

contribution remains largely unchanged, but flow variability is substantially 

reduced.  

10.2.3 Constrained Ensemble Kalman Filter 

A constrained EnKF is applied to the model output of the gauged catchments in the 

LTIM. Chapter 8 describes how observations of streamflow are used to update soil 

storage, fastflow, interflow and baseflow states to improve the accuracy and 

reliability of streamflow predictions.  

States are updated to account for errors in driving data (as well as the model 

structure and estimated parameters). Simple mass and flux constraints are applied 

to encourage physically consistent state-updating. Without these constraints, it is 

demonstrated that states can be perturbed beyond what is physically possible, in 

turn, affecting the reliability of subsequent model predictions. To the author‟s 

knowledge, this has not been demonstrated in any previous literature.  

The constrained filter performs well in the unregulated sub-catchments of Lake 

Taupo. States are kept within physically consistent levels, improving the reliability 

of model predictions. Streamflow assimilation in regulated catchments is less 

appropriate since streamflow response is due not only to changes in states but also 

to the regulation imposed on streamflow. With further investigation it may be 

possible to identify particular times when the streamflow change is likely to be due 

to the regulation rather than to a change in catchment conditions. Further 

information on the operation of the scheme could allow the associated regulation to 

be included in the assimilation framework. The assimilation of direct state 

observations (where available) would also allow the natural rise and fall of river 

levels to remain, ignoring the short term small scale diurnal effect of the regulation. 

Assimilation of streamflow could still be permitted during periods when regulation 

does not occur, for example during extreme low flow or flood flow events. These 

observations could also be useful in unregulated catchments to further constrain 

updates to model states. The most obvious way forward is to use groundwater level 

to infer changes in the baseflow state. This requires a groundwater level monitoring 
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site(s) in or near the catchment being modelled. Groundwater level monitoring sites 

are extensive in the western and northern areas of the Lake Taupo catchment but 

none currently exist in eastern and southern areas where they may be most 

beneficial to this study.  

The filter has the potential to be used, iteratively, as part of the model calibration 

process. In its application in this study, the filter highlighted inconsistent parameter 

sets that were subsequently removed and replaced by a more robust parameter set. 

The time series of state innovations also provided clues as to where parameter 

ranges could be further refined for improved predictive accuracy. Ensuring state 

updates are physically realistic is central to the practical application of the filter in 

this sense. This is an area worthy of further research as it extends the practical use 

of the filter as part of the calibration process.  

10.2.4 Lake Taupo Inflow Model 

This study has developed a semi-distributed conceptual rainfall-runoff model 

capable of incorporating some of the regulation associated with some of the inflows 

to the Lake Taupo catchment. The model is used to predict inflows to the lake and, 

subsequently, changes in lake level.  

The model simulates changes in lake level well given the information and data 

available. It performs particularly well during low flow and recession periods during 

drought and „normal‟ operating conditions, generally providing robust forward 

predictions at these times. It is thought that inclusion of an additional store in the 

model structure to model direct groundwater seepage would improve predictions, 

especially over very dry periods when inflow from this source is likely to be less than 

the temporally constant inflow of 30 m3/s currently used.  

The model also does reasonably well during flood events, although peak flood flows 

tend to be under-estimated. Simplifications in the model structure and/or 

inaccurate estimation of catchment areal rainfall are likely causes. Despite best 

efforts to obtain a representative model structure and accurate parameter estimates, 

there is often a trade-off between some parts of the hydrograph. Data assimilation 

can deal with some of these issues for more reliable model output, especially in the 

near term (out to five days) when it matters most for decision making purposes.  

In all large flood events, the model is predicting a substantial inflow from ungauged 

areas which is not consistent with the derived inflow time series determined from 
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the residual of known inputs, outputs and lake level change. It is thought this is 

partially due to errors in the timing of arrival of inflows to the lake. Allowing for the 

lag between streamflow observed at the gauge and its subsequent arrival at the lake 

would allow greater consistency between inflows and lake level response and better 

representation of the inflows from ungauged areas for improved model calibration. 

Other sources of error include the estimation of direct lake rainfall, interpretation of 

river stage data for flood events and barometric effects on lake level, where the 

water surface responds to atmospheric pressure perturbations.  

Using historical rainfall data as predictions, the model generates reasonable 

forecasts of lake level over most events. The majority of uncertainty is associated 

with the discharge from the TPS. Reducing this source of uncertainty would provide 

decision makers with greater confidence in model output. In the absence of direct 

operational information this uncertainty could be reduced by incorporating the 

temporal coherence and discharge relationships with external controls into the 

analysis. The recent extension of the radar network over the Taupo region ought to 

provide additional opportunities for nowcasting precipitation and assimilation 

purposes.  

Operational use of the LTIM requires forecast rainfall and potential evapo-

transpiration for the whole Lake Taupo catchment. Global weather models are 

useful for predicting the overall behaviour of synoptic-scale weather, but do not 

account for the smaller scale processes which depend on local geography (Henry, 

2003). Meso-scale models consider these local effects and can be run with grid 

resolution as small as 1 km for determination of local weather conditions (Henry, 

2003). MetService runs such a model operationally every six hours over a forecasted 

period of 72 hours. Although model recalibration would be required, meso-scale 

model output for each grid point in the region of interest can be used to estimate 

catchment areal rainfall and potential evapotranspiration for input to the model for 

the forecast period over which it is valid. As new forecasts arrive the LTIM model 

would be updated with the new information for more reliable decision making over 

the coming few days.  

10.3 Recommendations for future research 

The following is a list of recommendations for future research in light of the 

outcomes from this dissertation.  
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Develop a sub-model for estimating direct groundwater seepage to Lake 

Taupo: At present, the direct groundwater contribution is kept at a constant 30 

m3/s rate estimated from results in various literature. Including a sub-model to 

estimate the temporal and spatial variability would be of value. It could be 

incorporated into the conceptual model structure as an additional sub-surface store 

or directly linked in series to the baseflow store to mimic groundwater dynamics in 

the catchment. 

Investigate the seasonality of model parameters: Of particular importance is 

the rainfall multiplier which scales observed rainfall for catchment wide estimates. 

In this study, this model parameter is assumed constant. However, in some 

catchments there is evidence that this multiplier may vary over the course of the 

year (refer Section 7.2.2).  A comparison of monthly and seasonal mass balances 

may provide some insight into the temporal variability of this parameter, which 

could then be included in the model structure. 

Incorporate additional information in the statistical probability analysis 

for the TPS: The discharge from the TPS is a considerable input to Lake Taupo but 

there is little information available specific to its operation. Currently, inflow is 

estimated for the time of day, day of the week and time of the year but additional 

information could be included to reduce the uncertainty associated with these inflow 

predictions further. Aside from information specific to the various diversions, 

regulations and storage within the catchment, additional external factors may affect 

operational decisions of the scheme. For example, discharge from the scheme may, 

to some extent, be influenced by price controls and/or fluctuations in air 

temperature. An investigation into the relationships between these factors and 

discharge as well as temporal coherence of the time series and development of an 

algorithm that includes these in the prediction would be of value.  

Identify ways in which filter performance can be improved in regulated 

catchments: Streamflow response in regulated catchments is, in large part, due to 

the controlled storage and release of water from the scheme rather than necessarily 

a change in state. A relationship between upstream (unmodified) observations could 

be used to update modelled states below the scheme through a relationship between 

streamflow at both sites. This could be relatively easily undertaken in the 

Hinemaiaia catchment if upstream data was available or if the historic gauging site 

was reinstalled. In the Tongariro catchment, significant modification to the natural 

streamflow and diversion of foreign water into the river complicates this approach 
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and would possibly require more information about the regulation of the Tongariro 

River to be included. Alternatively, assimilation of direct state observations through 

a relationship between groundwater level data and modelled baseflow would be 

advantageous. Although groundwater levels are extensively monitored in western 

areas of the catchment, it is not monitored in the east and south, where it would be 

most beneficial (for this study). To collect this information would require additional 

groundwater level monitoring sites to be established in the areas of interest. 

Optimise state-updating constraints by testing a range of flux and mass 

constraints in the model: While the simple constraints applied in this 

dissertation go some way to ensure reliable state updating, further improvements 

could be made. Currently, flux constraints are temporally constant. These 

constraints could be altered to allow them to vary according to the time of the year, 

antecedent conditions or state volumes. In addition, if updated states were required 

to provide reasonable predictions of streamflow over multiple observations, states 

may be more representative of actual conditions and provide more reliable model 

output.  

Use the constrained Ensemble Kalman Filter as part of the model 

calibration process: There is considerable scope for using the constrained EnKF 

as part of the model calibration process. As shown in this dissertation, the filter can 

be used to check for consistency of model parameter sets, identifying parameter sets 

which are unreliable, allowing for a more robust parameter set to be selected. 

Further, time series of state updates (innovations) can be used to identify potential 

model structure errors. These innovations represent the errors in unfiltered 

modelled states. Errors in estimated parameters and/or model structure are 

reflected in the cumulative distribution of these innovations; this information can 

then be used to refine parameter sets further for improved model performance. The 

reliability and practical application of the information obtained is dependent on 

states being updated in a physically consistent manner. 

Investigate the use of radar information for input to the model: Radar has 

the potential to provide estimates of the spatial distribution and intensity of rainfall 

over the Lake Taupo catchment. The recent extension of the radar network over the 

region should provide an opportunity for nowcasting precipitation and assimilation 

purposes. The usefulness of this information is dependent on the accuracy of the 

conversion between reflectivity data and rainfall rate, as well as the timeliness in 
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receiving the data for input to the model. Calibration to the ground network is 

required.  

Finally, and most critically for operational purposes, obtain meteo-

rological forecasts to drive the model, and recalibrate as appropriate: 

The model developed and applied in this study has shown its potential for 

application to real-time forecasting for Lake Taupo. The model would require 

meteorological forecasts out to, at least, a few days ahead to provide the necessary 

output required for decision making and planning. The model can be run as new 

updated forecasts arrive. Meso-scale meteorological models can provide small-scale 

estimates of rainfall and other climatological information at sub-catchment scale. 

Model recalibration would be required since the existing model is calibrated to 

historic gauge point rainfall data, which are scaled to catchment estimates.  

10.4  Final Summary 

The Lake Taupo Inflow Model provides reasonable predictions of lake level given 

uncertainties associated with the TPS, ungauged areas and driving data. The 

constrained EnKF lessens some of this error as observations are assimilated, 

reducing short-term bias so that states better reflect antecedent conditions. 

In conclusion, this dissertation has successfully developed a predictive model for the 

highly regulated Lake Taupo catchment. General guidance with regard to the 

incorporation of regulation in the absence of direct operational information is 

provided. It is demonstrated that the application of a constrained EnKF improves 

the accuracy and reliability of model output. Although there is scope for further 

improvement, the model performs particularly well in dry conditions but also does a 

good job during rainfall events in light of errors associated with driving data. 

However, for real-time operational use the integration of the model with 

meteorological forecasts is required. Model recalibration would be required due to 

the issue of moving from point estimation to areal rainfall data. Once this is 

achieved, this operational model would allow robust decision-making and efficient 

management of the water resource for the Waikato Power Scheme.  More generally, 

there is considerable potential for the constrained EnKF and methods for 

incorporating regulation to be applied in other catchments in New Zealand and 

internationally. 



 

References | 319  
 

11 References 

Allen, R., Pereira, L.S., Raes, D., Smith, D., 1998. Crop evapotranspiration: 
guidelines for computing crop water requirements, in: FAO (Ed.), Irrigation and 
Drainage Paper 56, Rome, Italy. 

Amenu, G.G., Killingtveit, Å., 2001. Real-time inflow forecasting for Gilgel-Gibe 
reservoir, Ethiopia, in: Honningsvåg, B., Midttømme, G.H. (Eds.), Hydropower in 
the New Millennium: Proceedings of the 4th International Conference on 
Hydropower Development. Swets & Zeitliner B.V., Lisse, The Netherlands, Bergen, 
Norway. 

Arnold, J.G., Allen, P.M., Muttiah, R., Bernhardt, G., 1995. Automated base flow 
separation and recession analysis techniques. Ground Water 33, 1010-1018. 

Aubert, D., Loumagne, C., Oudin, L., 2003. Sequential assimilation of soil moisture 
and streamflow data in a conceptual rainfall-runoff model. Journal of Hydrology 
280, 145-161. 

Bandaragoda, C., Tarboton, D.G., Woods, R., 2004. Application of TOPNET in the 
distributed model intercomparison project. Journal of Hydrology 298, 178-201. 

Becker, A., Serban, P., 1990. Hydrological models for water-resources system design 
and operation, World Meteorological Organization, Operational Hydrology Report 
No. 34, WMO No. 740. 

Bednarek, A.T., 2001. Undamming rivers: A review of the ecological impacts of dam 
removal. Environmental Management 27, 803-814. 

Berger, K.P., Entekhabi, D., 2001. Basin hydrologic response relations to distributed 
physiographic descriptors and climate. Journal of Hydrology 247, 169-182. 



 

 320 | References 
 

Bergström, S., 1995. The HBV model, in: Singh, V.P. (Ed.), Computer Models of 
Watershed Hydrology. Water Resources Publications. 

Beven, K., 1993. Prophecy, reality and uncertainty in distributed hydrological 
modelling. Advances in Water Resources 16, 41-51. 

Beven, K.J., 2001. Rainfall-Runoff Modelling: The Primer. John Wiley & Sons. 

Beven, K.J., 2009. Environmental modelling: An uncertain future? Routledge. 

Beven, K.J., Binley, A., 1992. The future of distributed models: Model calibration 
and uncertainty prediction. Hydrological Processes 6, 279-298. 

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model 
of basin hydrology. Hydrological Sciences - Bulletin 24, 43-69. 

Blöschl, G., Sivapalan, M., 1995. Scale issues in hydrological modelling: A review. 
Hydrological Processes 9, 251-290. 

Bogner, K., Kalas, M., 2008. Error-correction methods and evaluation of an 
ensemble based hydrological forecasting system for the Upper Danube catchment. 
Atmospheric Science Letters 9, 95-102. 

Bou, A., 2007. Groundwater model of the eastern Lake Taupo catchment. GNS 
Science Consultancy Report 2007/01. 

Boughton, W., 2004. The Australian water balance model. Environmental Modelling 
& Software 19, 943-956. 

Boyle, D.P., Gupta, H.V., Sorooshian, S., 2000. Toward improved calibration of 
hydrologic models: Combining the strengths of manual and automatic methods. 
Water Resources Research 36, 3663-3674. 

Bronstert, A., Plate, E.J., 1997. Modelling of runoff generation and soil moisture 
dynamics for hillslopes and micro-catchments. Journal of Hydrology 198, 177-195. 

Bulygina, N., 2007. Model structure estimation and correction through data 
assimilation, Department of Hydrology and Water Resources. PhD Thesis, The 
University of Arizona. 

Bulygina, N., Ballard, C., McIntyre, N., O'Donnell, G., Wheater, H., 2012. 
Integrating different types of information into hydrological model parameter 
estimation: Application to ungauged catchments and land use scenario analysis. 
Water Resources Research 48, W06519. 

Burden, R.L., Faires, J.D., 1993. Numerical analysis, 5th ed. PWS Publishing 
Company, Boston, MA. 

Burman, R., Pochop, L.O., 1994. Evaporation, evapotranspiration and climatic data. 
Developments in Atmospheric Science 22. 

Burnash, R.J.C., 1995. The NWS river forecast system: Catchment modeling, in: 
Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources 
Publications. 



 

References | 321  
 

Calver, A., Wood, W.L., 1995. The Institute of Hydrology distributed model, in: 
Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resource 
Publications, Highlands Ranch, CO, pp. 595-626. 

Chan, K., Saltelli, A., Tarantola, S., 1997. Sensitivity analysis of model output: 
variance-based methods make the difference, in: Andradóttir, S., Healy, K.J., 
Withers, D.H., Nelson, B.L. (Eds.), Winter Simulation Conference. 

Chapman, T.G., 1991. Comment on "Evaluation of automated techniques for 
baseflow and recession analyses" by R.J. Nathan and TA. McMahon. Water 
Resources Research 27, 1783-1784. 

Chapman, T.G., Maxwell, A., 1996. Baseflow separation - comparison of numerical 
methods with tracer experiments, in: Engineers, I.o. (Ed.), Hydrology and Water 
Resources Symposium, Hobart, Australia. 

Chow, V.T., 1964. Handbook of applied hydrology: A compendium of water-
resources technology. McGraw-Hill, New York. 

Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, 
J., Uddstrom, M., 2008a. Hydrological data assimilation with the Ensemble Kalman 
filter: use of streamflow observations to update states in a distributed hydrological 
model. Advances in Water Resources 31, 1309-1324. 

Clark, M.P., Slater, A.G., Rupp, D.E., Woods, R.A., Vrugt, J.A., Gupta, H.V., 
Wagener, T., Hay, L.E., 2008b. Framework for Understanding Structural Errors 
(FUSE): A modular framework to diagnose differences between hydrological 
models. Water Resources Research 44. 

Clayden, B., Webb, T.H., 1994. Criteria for defining the soilform - the fourth 
category of the New Zealand Soil Classification, in: Ltd, M.W.L.R. (Ed.), Landcare 
Research Science Series No.3. 

Collischonn, W., Haas, R., Andreolli, I., Tucci, C.E.M., 2005. Forecasting River 
Uruguay flow using rainfall forecasts from a regional weather-prediction model. 
Journal of Hydrology 305, 87-98. 

Collischonn, W., Tucci, C.E.M., Clarke, R.T., Chou, S.C., Guilhon, L.G., Cataldi, M., 
Allasia, D., 2007. Medium-range reservoir inflow predictions based on quantitative 
precipitation forecasts. Journal of Hydrology 344, 112-122. 

Coulibaly, P., Anctil, F., Bobée, B., 2000. Daily reservoir inflow forecasting using 
artificial neural networks with stopped training approach. Journal of Hydrology 
230, 244-257. 

Croke, B.F.W., Norton, J.P., 2004. Regionalisation of rainfall-runoff models, in: 
Pahl-Wostl, C., Schmidt, S., Rizzoli, A.E., Jakeman, A.J. (Eds.), Complexity and 
Integrated Resources Management. Trans. Second Biennial Meeting of the Int. 
Environmental Modelling and Software Society, iEMSs. 2004, Manno, Switzerland, 
pp. 1201-1207. 

Daniel, E.B., Camp, J.V., LeBoeuf, E.J., Penrod, J.R., Dobbins, J.P., Abkowitz, M.D., 
2011. Watershed modeling and its applications: A state-of-the-art review. The Open 
Hydrology Journal 5, 26-50. 

Davie, T., 2003. Fundamentals of Hydrology. Routledge. 



 

 322 | References 
 

Davie, T., 2004. Soil water, runoff and streamflow generation, in: Harding, J., 
Mosley, P., Pearson, C., Sorrell, B. (Eds.), Freshwaters of New Zealand. New Zealand 
Hydrological Society & New Zealand Limnological Societ, Christchurch. 

Davy, B.W., Caldwell, T.G., 1998. Gravity, magnetic and seismic surveys of the 
caldera complex, Lake Taupo, North Island, New Zealand. Journal of Volcanology 
and Geothermal Research 81, 69-89. 

Dawson, C.W., Wilby, R.L., 2001. Hydrological modelling with artificial neural 
networks. Progress in Physical Geography 25, 80-108. 

de Goffau, J.E.J., 2006. The measurability of hydrological processes by means of 
gravimetric measurements, Faculty of Civil Engineering. Delft University of 
Technology, Netherlands. 

DeChant, C.M., Moradkhani, H., 2012. Examining the effectiveness and robustness 
of sequential data assimilation methods for quantification of uncertainty in 
hydrologic forecasting. Water Resources Research 48, W04518. 

Devore, J.L., 1982. Probability and statistics for enginnering and the sciences. 
Brooks/Cole, Monterey CA. 

Dingman, C.L., Bedford, K.W., 1984. The Lake Erie response to the January 26, 
1978, Cyclone. Journal of Geophysical Research 89, 6427-6445. 

Dingman, L., 2008. Physical Hydrology, Second Edition ed. Long Grove, IL : 
Waveland Press Inc 2008, c2002 . 

Dravitzki, S., 2009. Precipitation in the Waikato River catchment, School of 
Geography, Environment and Earth Sciences. PhD Thesis, Victoria Univeristy of 
Wellington, New Zealand. 

Drogue, G., Leviandier, T., Pfister, L., Idrissi, A.E., Iffly, J.F., Hoffmann, L., Guex, 
F., Hingray, B., Humbert, J., 2002. The applicability of a parsimonious model for 
local and regional prediction of runoff, Hydrological Sciences Journal. Taylor & 
Francis, pp. 905-920. 

Druce, D.J., 2001. Insights from a history of seasonal inflow forecasting with a 
conceptual hydrologic model. Journal of Hydrology 249, 102-112. 

Duan, Q., Ajami, N.K., Gao, X., Sorooshian, S., 2007. Multi-model ensemble 
hydrologic prediction using Bayesian model averaging. Advances in Water 
Resources 30, 1371-1386. 

Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and efficient global optimization 
for conceptual rainfall-runoff models. Water Resources Research 28, 1015-1031. 

Duncan, M.J., Woods, R., 2004. Flow Regimes, in: Harding, J., Mosley, P., Pearson, 
C., Sorrell, B. (Eds.), Freshwaters of New Zealand. New Zealand Hydrological 
Society & New Zealand Limnological Society, Christchurch. 

Dunne, S., Entekhabi, D., 2005. An ensemble-based reanalysis approach to land 
data assimilation. Water Resources Research 41, W02013. 

Dunne, T., Black, R.D., 1970. Partial area contribution to storm runoff in a small 
New England watershed. Water Resources Research 6, 1296-1311. 



 

References | 323  
 

Eckhardt, K., 2005. How to construct recursive digital filters for baseflow 
separation. Hydrological Processes 19, 507-515. 

Eckhardt, K., 2008. A comparison of baseflow indices, which were calculated with 
seven different baseflow separation methods. Journal of Hydrology 352, 168-173. 

ECNZ, unknown. Lake Taupo: Lake Levels. 

Electricity Commission, unknown. About the New Zealand Electricity Market. 

EPA, 2010. Management Measure for Erosion and Sediment Control - III. Dams 
Management Measures, in: EPA Office of Water (Ed.). U.S. Environmental 
Protection Agency. 

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic 
model using Monte Carlo methods to forecast error statistics. Journal of 
Geophysical Research 99, 10. 

Fahey, B.D., Duncan, M., Quinn, J., 2004. Impacts of forestry, in: Harding, J., 
Mosley, P., Pearson, C., Sorrell, B. (Eds.), Freshwaters of New Zealand. New Zealand 
Hydrological Society and New Zealand Limnological Society. 

Fenicia, F., McDonnell, J.J., Savenije, H.H.G., 2008. Learning from model 
improvement: On the contribution of complementary data to process 
understanding. Water Resources Research 44, W06419. 

Field, A., 2005. Discovering Statistics using SPSS, Second ed. SAGE Publications. 

Fitzharris, B., Lawson, W., Owens, I., 1999. Research on glaciers and snow in New 
Zealand. Progress in Physical Geography 23, 469-500. 

Freestone, H.J., Ong, K.S.W., Waugh, J.R., Lynch, R., 1998. Waikato Power Scheme 
Operational Audit - Flood July 1998. Opus Consultants Ltd. 

Froggatt, P.C., 1981. Stratigraphy and nature of Taupo Pumice Formation. New 
Zealand Journal of Geology & Geophysics 24, 231-248. 

Genesis Energy Ltd, 2008. Tongariro Power Scheme: Environmental Report 2007-
2008. Genesis Energy Ltd. 

Genesis Energy Ltd, 2010. Tongariro Power Scheme. 

Genesis Energy Ltd, 2011. Tongariro Power Scheme: Environmental Report 2010-
2011. Genesis Energy Ltd. 

Gibbs, H.S., 1968. Volcanic-ash soils in New Zealand, Information Series No. 65, 
Soil Bureau Publication 386. New Zealand Department of Scientific and Industrial 
Research. 

Gibbs, M., Clayton, J., Wells, N., 2005. Further investigation of direct groundwater 
seepage to Lake Taupo, Technical Report 2005/34. Environment Waikato. 

Gilbert, D.J., 1978. Calculating lake inflow (Note). Journal of Hydrology (NZ) 17, 39-
43. 



 

 324 | References 
 

Gillijns, S., Mendoza, O.B., Chandrasekar, J., De Moor, B.L.R., Bernstein, D.S., 
Ridley, A., 2006. What is the ensemble Kalman filter and how well does it work?, 
American Control Conference, 2006, p. 6 pp. 

Gilmour, A.E., 1991. Seiche characteristics in Lake Taupo, New Zealand (Note). New 
Zealand Journal of Marine and Freshwater Research 25, 163-166. 

Gilmour, A.E., Butcher, C.N., 1987. Free oscillations in Lake Taupo - a triangular 
lake, DMFS Reports Division of Marine and Freshwater Science, Department of 
Scientific and Industrial Research, pp. 11-14. 

Gilmour, A.E., Heath, R.A., 1989. Barotropic and baroclinic waves in Lake Taupo. 
New Zealand Journal of Marine and Freshwater Research 23, 189-194. 

Gordon, N.D., McMahon, T.A., Finlayson, B.L., Grippel, C.J., Nathan, R.J., 2004. 
Stream hydrology: an introduction for ecologists, 2nd Edition ed. John Wiley & Sons 
Ltd, Chichester, West Sussex, England. 

Goudie, A., 1994. Geomorphological Techniques, 2nd Edition ed. Edited for the 
British Geomorphological Research Group, Routledge. 

Graham, D.N., Butts, M.B., 2005. Flexible, integrated watershed modelling with 
MIKE SHE, in: Singh, V.P., Frevert, D.K. (Eds.), Watershed Models. CRC Press, pp. 
245-272. 

Grange, L.I., 1937. The geology of the Rotorua-Taupo Subdivision. Bulletin No. 37, 
Geological Survey Branch, Department of Scientific and Industrial Research. 

Grindley, G.W., 1960. Sheet 8: Taupo, Geological Map of New Zealand, 1:250 000. 
Department of Scientific and Industrial Research. 

Gupta, H., Sorooshian, S., 1985. The relationship between data and the precision of 
parameter estimates of hydrologic models. Journal of Hydrology 81, 57-77. 

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the 
mean squared error and NSE performance criteria: Implications for improving 
hydrological modelling. Journal of Hydrology 377, 80-91. 

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of 
hydrologic models: Multiple and noncommensurable measures of information. 
Water Resources Research 34, 751-763. 

Gusyev, M.A., Toews, M., Morgenstern, U., Stewart, M., Daughney, C., Hadfield, J., 
2012. Calibration of a transient transport model to tritium measurements in rivers 
and streams in the Western Lake Taupo catchment, New Zealand. Hydrol. Earth 
Syst. Sci. Discuss. 9, 9743-9765. 

Hadfield, J., 2007. Groundwater flow and nitrogen transport modelling of the 
northern Lake Taupo catchment. Environment Waikato Technical Report 2007/39. 

Hadfield, J., Nicole, J., Rosen, M.R., Wilson, C.J.N., Morgenstern, U., 2001. 
Hydrogeology of Lake Taupo Catchment -- Phase 1. Environment Waikato. 

Han, X., Li, X., Hendricks Franssen, H.-J., Vereecken, H., Montzka, C., 2012. Spatial 
horizontal correlation characteristics in the land data assimilation of soil moisture. 
Hydrology and Earth System Sciences 16, 1349-1363. 



 

References | 325  
 

Harding, J., Mosley, P., Pearson, C., Sorrell, B., 2004. Freshwaters of New Zealand. 
New Zealand Hydrological Society and New Zealand Limnological Society, 
Christchurch. 

Harlin, J., Kung, C.-S., 1992. Parameter uncertainty and simulation of design floods 
in Sweden. Journal of Hydrology 137, 209-230. 

Harmel, R.D., Smith, P.K., 2007. Consideration of measurement uncertainty in the 
evaluation of goodness-of-fit in hydrologic and water quality modeling. Journal of 
Hydrology 337, 326-336. 

Harte, D., Thomson, P., 2007. Hidden Markov models for New Zealand hydro 
catchment inflows: a preliminary analysis. New Zealand Electricity Commission. 

He, M., Hogue, T.S., Margulis, S.A., Franz, K.J., 2012. An integrated uncertainty and 
ensemble-based data assimilation approach for improved operational streamflow 
predictions. Hydrology and Earth System Sciences 16, 815-831. 

Henry, N., 2003. Numerical weather prediction, in: Management, M.o.C.D.a.E. 
(Ed.), Tephra. 

Hewitt, A.E., 1993. Methods and rationale of the New Zealand soil classification, 
Landcare Research Science Series ; No. 2. Science Series No. 2, Manaaki Whenua-
Landcare Research New Zealand Ltd. 

Hewitt, A.E., 1998. New Zealand Soil Classification, in: Press, M.W. (Ed.), Landcare 
Research Science Series No.1, Second ed. 

Hewlett, J.D., Hibbert, A.R., 1967. Factors affecting the response of small 
watersheds to precipitation in humid areas, in: Sopper, E.W., Lull, H.W. (Eds.), 
Forest Hydrology. Pergamon, Oxford, pp. 272-290. 

Hicks, M., McKerchar, A., O'Brien, R., 2000. Lakeshore geomorphic processes, Lake 
Taupo, Client Report. National Institute of Water and Atmospheric Research, NZ. 

Hillel, D., 2004. Introduction to environmental soil physics. Elsevier Academic 
Press. 

Hopmans, J.W., Schoups, G.H., 2005. Soil water flow at different spatial scales, in: 
Anderson, M. (Ed.), Encyclopedia of Hydrological Sciences. John Wiley & Sons Ltd. 

Hornberger, G.M., Spear, R.C., 1981. Approach to the preliminary analysis of 
environmental systems. Journal of Environmental Management (United States) 12, 
7-18. 

Hotchkiss, R.H., Jorgensen, S.F., Stone, M.C., Fontaine, T.A., 2000. Regulated river 
modelling for climate change impact assessment: the Missouri River. Journal of the 
American Water Resources Association 36, 375-386. 

Houghton, B.F., Wilson, C.J.N., McWilliams, M.O., Lanphere, M.A., Weaver, S.D., 
Briggs, R.M., Pringle, M.S., 1995. Chronology and dynamics of a large silcic 
magmatic system: Central Taupo Volcano Zone, New Zealand. Geology 23, 13-16. 

Hughes, D.A., 1992. A monthly time step, multiple reservoir water balance 
simulation model. Water SA 18, 279-286. 



 

 326 | References 
 

Ibbitt, R., Thompson, C., Turner, R., 2005. Skill assessment of a linked precipitation 
runoff flood forecasting system. Journal of Hydrology (NZ) 44, 91-104. 

Ibbitt, R., Woods, R., 2004. Re-scaling the topographic index to improve the 
representation of physical processes in catchment models. Journal of Hydrology 
293, 205-218. 

Institute of Geological and Nuclear Sciences, 2008. Earth Beneath our Feet: 3D 
Geological Models for New Zealand. 

Jain, S.K., Das, A., Srivastava, D.K., 1999. Application of ANN for reservoir inflow 
prediction and operation. Journal of Water Resources Planning and Management 
125, 263-271. 

Jain, S.K., Sudheer, K.P., 2008. Fitting of hydrologic models: A close look at the 
Nash-Sutcliffe Index. Journal of Hydrologic Engineering 13, 981-986. 

Jakeman, A.J., Littlewood, I.G., Whitehead, P.G., 1990. Computation of the 
instantaneous unit hydrograph and identifiable component flows with application to 
two small upland catchments. Journal of Hydrology 117, 275-300. 

James, M., Mark, A., Single, M., 2002. Lake Managers' Handbook: Lake Level 
Management, in: Ministry for the Environment (Ed.). 

Julier, S.J., LaViola, J.J., 2007. On Kalman filtering with nonlinear equality 
constraints. Signal Processing, IEEE Transactions on 55, 2774-2784. 

Kampf, S.K., Burges, S.J., 2007. A framework for classifying and comparing 
distributed hillslope and catchment hydrologic models. Water Resources Research 
43. 

Kavetski, D., Clark, M.P., 2010. Ancient numerical daemons of conceptual 
hydrological modeling: 2. Impact of time stepping schemes on model analysis and 
prediction. Water Resources Research 46, W10511. 

Kavetski, D., Clark, M.P., 2011. Numerical troubles in conceptual hydrology: 
Approximations, absurdities and impact on hypothesis testing. Hydrological 
Processes 25, 661-670. 

Kavetski, D., Franks, S.W., Kuczera, G., 2002. Confronting input uncertainty in 
environmental modelling, in: Duan, Q., Gupta, H., Sorooshian, S., Rousseau, A.N., 
Turcotte, R. (Eds.), Calibration of Watershed Models. AGU Water Science and 
Applications, pp. 49-68. 

Kelliher, F.M., Leuning, R., Schulze, E.D., 1993. Evaporation and canopy 
characteristics of coniferous forests and grasslands. Oecologia 95, 153-163. 

Kelliher, F.M., Scotter, D.R., 1992. Evaporation, soil and water, in: Mosley, P. (Ed.), 
Waters of New Zealand. New Zealand Hydrological Society. 

Kirchner, J.W., 2009. Catchments as simple dynamical systems: Catchment 
characterization, rainfall-runoff modeling, and doing hydrology backward. Water 
Resources Research 45. 

Kitanidis, P.K., Bras, R.L., 1980. Real-time forecasting with a conceptual hydrologic 
model 1. Analysis of uncertainty. Water Resources Research 16, 1025-1033. 



 

References | 327  
 

Kokkonen, T.S., Jakeman, A.J., 2001. A comparison of metric and conceptual 
approaches in rainfall-runoff modeling and its implications. Water Resources 
Research 37, 2345-2352. 

Komma, J., Blöschl, G., Reszler, C., 2008. Soil moisture updating by ensemble 
Kalman filtering in real-time flood forecasting. Journal of Hydrology 357, 228-242. 

Landcare Research - Manaaki Whenua (NZ), 2008. New Zealand Land Resource 
Inventory. 

Lane, E.W., Lei, A.K., 1950. Streamflow variability. American Society of Civil 
Engineers, Transactions 115, 1089. 

Leathwick, J.R., Clarkson, B.D., Whaley, P.T., 1995. Vegetation of the Waikato 
Region: Current and historical perspectives. Manaaki Whenua - Landcare Research. 

Lindström, G., Johansson, B.o., Persson, M., Gardelin, M., Bergström, S., 1997. 
Development and test of the distributed HBV-96 hydrological model. Journal of 
Hydrology 201, 272-288. 

Liu, J., Han, D., 2010. Indices for calibration data selection of the rainfall-runoff 
model. Water Resources Research 46, W04512. 

Liu, S., Graham, W.D., Jacobs, J.M., 2005. Daily potential evapotranspiration and 
diurnal climate forcings: Influence on the numerical modelling of soil water 
dynamics and evapotranspiration. Journal of Hydrology 309, 39-52. 

Liu, T., Willems, P., Feng, X.W., Li, Q., Huang, Y., Bao, A.M., Chen, X., 
Veroustraete, F., Dong, Q.H., 2012. On the usefulness of remote sensing input data 
for spatially distributed hydrological modelling: case of the Tarim River basin in 
China. Hydrological Processes 26, 335-344. 

Liu, Y., Gupta, H.V., 2007. Uncertainty in hydrologic modeling: Toward an 
integrated data assimilation framework. Water Resources Research 43, 18. 

Liu, Y., Weerts, A.H., Clark, M.P., Hendricks Franssen, H.-J., Kumar, S., 
Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A.I.J.M., van 
Velzen, N., He, M., Lee, H., S.J., N., Rakovec, O., Restrepo, P., 2012, in review. 
Advancing data assimilation in operational hydrologic forecasting: progresses, 
challenges, and emerging opportunities. Hydrology and Earth System Sciences 
Discussion 9, 3415-3472. 

Lohani, A.K., Kumar, R., Singh, R.D., 2012. Hydrological time series modeling: A 
comparison between adaptive neuro-fuzzy, neural network and autoregressive 
techniques. Journal of Hydrology 442–443, 23-35. 

Lyons, R.G., 2001. Understanding digital signal processing. Prentice Hall, Upper 
Saddle River, NJ. 

Madsen, H., 2003. Parameter estimation in distributed hydrological catchment 
modelling using automatic calibration with multiple objectives. Advances in Water 
Resources 26, 205-216. 

Madsen, H., Skotner, C., 2005. Adaptive state updating in real-time river flow 
forecasting - a combined filtering and error forecasting procedure. Journal of 
Hydrology 308, 302-312. 



 

 328 | References 
 

Maidment, D.R., 1993. Handbook of hydrology. McGraw-Hill, New York. 

Manville, V., 2002. Sedimentary and geomorphic responses to ignimbrite 
emplacement: Readjustment of the Waikato River after the A.D. 181 Taupo 
eruption, New Zealand. The Journal of Geology 110, 519-541. 

Manville, V., White, J.D., Houghton, B.F., Wilson, C.J.N., 1999. Paleohydrology and 
sedimentology of a post-1.8 ka breakout flood from intracaldera Lake Taupo, North 
Island, New Zealand. Geological Society of America Bulletin 111, 1435-1447. 

Manville, V., Wilson, C.J.N., 2004. The 26.5 ka Oruanui eruption, New Zealand: a 
review of the roles of volcanism and climate in the post-eruptive sedimentary 
response. New Zealand Journal of Geology & Geophysics 47, 525-547. 

Massey, F.J., Jr., 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal of 
the American Statistical Association 46, 68-78. 

McCuen, R.H., 1973. The role of sensitivity analysis in hydrologic modeling. Journal 
of Hydrology 18, 37-53. 

McCuen, R.H., 1998. Hydrologic Analysis and Design, 2nd Edition ed. Prentice Hall, 
Upper Saddle River, New Jersey 07458. 

McGlone, M.S., 1983. Polynesian deforestation of New Zealand: a pre-liminary 
synthesis. Archaeology in Oceania 18., 11-25. 

McKinnon, M., 2007. Volcanic Plateau, Encyclopedia of New Zealand. 

McLaughlin, D., 2002. An integrated approach to hydrologic data assimilation: 
interpolation, smoothing, and filtering. Advances in Water Resources 25, 1275-1286. 

McMillan, H., Clark, M.P., Woods, R., Duncan, M., Western, A., Goodrich, D., 2010. 
Improving perceptual and conceptual hydrological models using data from small 
basins, Status and Perspectives of Hydrology in Small Basins. IAH Publ., Goslar-
Hahnenklee, Germany, pp. 336-308. 

Melching, C.S., 1995. Reliability estimation, in: Singh, V.P. (Ed.), Computer Models 
of Watershed Hydrology. Water Resources Publications. 

Mighty River Power Ltd, 2007. Lake Taupo: Lake Levels. Mighty River Power Ltd, 
Hamilton, NZ. 

Mighty River Power Ltd, 2008. Lake level graphs - Overview, in: Mighty River 
Power Ltd (Ed.). 

Ministry for the Environment, 2004. New Zealand Land Cover Database 2. 

Minns, A.W., Hall, M.J., 2005. Artifical neural network concepts in hydrology in: 
Andersen, M.G. (Ed.), Encyclopedia of Hydrological Sciences. John Wiley & Sons, 
Ltd. 

Molloy, L., 1998. Soils in the New Zealand landscape: a living mantle, 2nd ed. New 
Zealand Society of Soil Science. 

Moore, R.J., 2007. The PDM rainfall-runoff model. Hydrology and Earth System 
Sciences 11, 483-499. 



 

References | 329  
 

Moradkhani, H., Hsu, K., Gupta, H., Sorooshian, S., 2005a. Uncertainty assessment 
of hydrologic model states and parameters: Sequential data assimilation using the 
particle filter. Water Resources Research 41. 

Moradkhani, H., Sorooshian, S., 2008. General review of rainfall-runoff modeling: 
Model calibration, data assimilation, and uncertainty analysis, in: Sorooshian, S., 
Hsu, K., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G. (Eds.), 
Hydrological modelling and the water cycle. Coupling the atmospheric and 
hydrological models. Springer. 

Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R., 2005b. Dual state-
parameter estimation of hydrological models using ensemble Kalman filter. 
Advances in Water Resources 28, 135-147. 

Morgenstern, U., 2007. Lake Taupo streams – Water age distribution, fraction of 
landuse impacted water, and future nutrient load. GNS Science Consultancy Report 
2007/150  

Morgenstern, U., 2008. Lake Taupo catchment groundwater age distribution and 
implications for future land-use impacts. Environment Waikato Technical Report 
2007/49. 

Mulligan, M., Wainwright, J., 2004. Modelling and model building, in: Wainwright, 
J., Mulligan, M. (Eds.), Environmental modelling: Finding simplicity in complexity. 
John Wiley & Sons. 

Murphy, A.H., 1988. Skill scores based on the mean square error and their 
relationships to the correlation coefficient. Monthly Weather Review 116, 2417-
2424. 

Murphy, B., 2006. Hydrogeology and groundwater quality of the Tauranga-Taupo 
settlement, Lake Taupo, School of Geography, Geology and Earth Sciences. Masters 
Dissertation (MSc), Victoria University of Wellington, New Zealand. 

Narasimhan, S.V., Veena, S., 2005. Signal Processing. Alpha Science International 
Ltd., Harrow, U.K. 

Nathan, R.J., McMahon, T.A., 1990. Evaluation of automated techniques for base 
flow and recession analysis. Water Resources Research 26, 1465-1473. 

Neuman, S.P., 2003. Maximum likelihood Bayesian averaging of uncertain model 
predictions. Stochastic Environmental Research and Risk Assessment 17, 291-305. 

NIWA, 2002. Annual Climate Summary - 2001. 

NIWA, 2003a. National Climate Summary: August 2003. 

NIWA, 2003b. National Climate Summary: July 2003. 

NIWA, 2003c. National Climate Summary: June 2003. 

NIWA, 2004a. Annual Climate Summary - 2003. 

NIWA, 2004b. National Climate Summary: February 2004  



 

 330 | References 
 

NIWA, 2010a. National Climate Summary – March 2010: Very dry in the northeast, 
Otago, Canterbury. 

NIWA, 2010b. National Climate Summary: September 2010. 

NIWA, 2011. New Zealand National Climate Summary 2010: Settled and warm. 

Opus International Consultants Limited, 2009. Lake level history. 

Opus International Consultants Limited, 2011. Taupo District Flood Hazard Study - 
Kuratau River. 

Opus International Consultants Limited, 2012. Taupo District Flood Hazard Study – 
Tokaanu Stream. 

Oreskes, N., Shrader-Frechette, K., Belitz, K., 1994. Verification, validation and 
confirmation of numerical models in earth sciences. Science 263, 641-646. 

Otway, P.M., 1986. Vertical deformation associated with the Taupo earthquake 
swarm, June 1983. Royal Society of New Zealand Bulletin 24, 187-200. 

Pan, M., Wood, E.F., 2006. Data assimilation for estimating the terrestrial water 
budget using a constrained ensemble Kalman Filter. Journal of Hydrometeorology 
7, 534-547. 

Partington, D., Brunner, P., Simmons, C.T., Werner, A.D., Therrien, R., Maier, H.R., 
Dandy, G.C., 2012. Evaluation of outputs from automated baseflow separation 
methods against simulated baseflow from a physically based, surface water-
groundwater flow model. Journal of Hydrology 458–459, 28-39. 

Pauwels, V.R.N., De Lannoy, G.J.M., 2006. Improvement of modeled soil wetness 
conditions and turbulent fluxes through the assimilation of observed discharge. 
Journal of Hydrometeorology 7, 458-477. 

Pauwels, V.R.N., De Lannoy, G.J.M., 2009. Ensemble-based assimilation of 
discharge into rainfall-runoff models: A comparison of approaches to mapping 
observational information to state space. Water Resources Research 45. 

Pechlivanidis, I.G., Jackson, B., McMillan, H., 2010. The use of entropy as a model 
diagnostic in rainfall-runoff modelling, in: Swayne, D.A., Yang, W., Voinoy, A.A., 
Rizzoli, A., Filatova, T. (Eds.), 2010 International Congress of Environmental 
Modelling and Software. Modelling for Environment's Sake, Fifth Biennial Meeting. 
International Environmental Modelling and Software Society (iEMSs), Ottawa, 
Canada. 

Pechlivanidis, I.G., Jackson, B.M., McIntyre, N.R., Wheater, H.S., 2011. Catchment 
scale hydrological modelling: a review of model types, calibration approaches and 
uncertainty analysis methods in the context of recent developments in technology 
and applications. Global NEST Journal 13, 193-214. 

Peters, N.E., 1994. Hydrologic Processes, in: Molden, B., Černý, J. (Eds.), 
Biochemistry of Small Catchments: A Tool for Environmental Research. John Wiley 
& Sons Ltd. 



 

References | 331  
 

Piper, J.J., 2004. Surface water/groundwater interaction and catchment influence 
on waters entering Lake Taupo, New Zealand, School of Geography, Geology and 
Earth Sciences. Masters Dissertation (MSc), Victoria University of Wellington. 

Poff, N.L., Hart, D.D., 2002. How dams vary and why it matters for the emerging 
science of dam removal. BioScience 52, 659-668. 

Post, D.A., Jakeman, A.J., 1996. Relationships between catchment attributes and 
hydrological response characteristics in small Australian mountain ash catchments. 
John Wiley & Sons, Ltd, pp. 877-892. 

Poyck, S., Hendrikx, J., McMillan, H., Hreinsson, E.O., Woods, R., 2011. Combined 
snow and streamflow modelling to estimate impacts of climate change on water 
resources in the Clutha river, New Zealand. Journal of Hydrology (NZ) 50, 293-311. 

Pradhan, N.R., Ogden, F.L., 2010. Development of a one-parameter variable source 
area runoff model for ungauged basins. Advances in Water Resources 33, 572-584. 

Refsgaard, J.C., Henriksen, H.J., 2004. Modelling guidelines - terminology and 
guiding principles. Advances in Water Resources 27, 71-82. 

Reichle, R.H., 2008. Data assimilation methods in the Earth sciences. Advances in 
Water Resources 31, 1411-1418. 

Reichle, R.H., McLaughlin, D.B., Entekhabi, D., 2002. Hydrologic data assimilation 
with the ensemble Kalman Filter. Monthly Weather Review 130, 103-114. 

Riggs, H.C., 1985. Streamflow characteristics. Elsevier Science Publishers B.V. 

Rijkse, W.C., 1987. Soils, agriculture and forestry of Taupo Region, North Island, 
New Zealand. Landcare Research. 

Roper, D., 2001. Taupo Waikato resource consents assessment of environmental 
effects. Mighty River Power. 

Rosen, M.R., Coshell, L., 1998. Influence of eruptive lithologies on surface and 
groundwwater chemical compositions, Lake Taupo, New Zealand, in: Arehart, G.B., 
R, H.J. (Eds.), Water-Rock Interaction. Balkema Rotterdam. 

Rushton, K.R., Eilers, V.H.M., Carter, R.C., 2006. Improved soil moisture balance 
methodology for recharge estimation. Journal of Hydrology 318, 379-399. 

Salamon, P., Feyen, L., 2009. Assessing parameter, precipitation, and predictive 
uncertainty in a distributed hydrological model using sequential data assimilation 
with the particle filter. Journal of Hydrology 376, 428-442. 

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity analysis in 
practice: A guide to assessing scientific models. John Wiley & Sons Ltd, Chichester, 
West Sussex, England. 

Sayama, A., Tachikawa, Y., Takara, K., Ichikawa, Y., 2006. Development of a real-
time distributed flood prediction system in a flow regulated river basin, Proceedings 
of the 3rd APHW Conference on "Wise Water Resources Management toward 
Sustainable Growth and Poverty Reduction", Bangkok, Thailand. 



 

 332 | References 
 

Schaefli, B., Gupta, H.V., 2007. Do Nash values have value? Hydrological Processes 
21, 2075-2080. 

Schouten, C.J., 1983. Budget of water and its constituents for Lake Taupo (New 
Zealand), Dissolve Loads of Rivers and Surface Water Quantity/Quality 
Relationships. IAHS Publ No. 141. 

Schouten, C.J., Terzaghi, W., Gordon, Y., 1981. Summaries of water quality and 
mass transport data for Lake Taupo catchment, New Zealand. Ministry of Works 
and Development. 

Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth 
Amboy, New Jersey. Bulletin of the Geological Society of America 67, 597-646. 

Sefton, C.E.M., Howarth, S.M., 1998. Relationships between dynamic response 
characteristics and physical descriptors of catchments in England and Wales. 
Journal of Hydrology 211, 1-16. 

Seibert, J., 1999. Regionalisation of parameters for a conceptual rainfall-runoff 
model. Agricultural and Forest Meteorology 98-99, 279-293. 

Seibert, J., 2000. Multi-criteria calibration of a conceptual runoff model using a 
genetic algorithm. Hydrology & Earth System Sciences 4, 215-224. 

Selby, M.J., 1972. The relationships between land use and erosion in the central 
North Island, New Zealand. Journal of Hydrology 11, 73-87. 

Seo, D.-J., Cajina, L., Corby, R., Howieson, T., 2009. Automatic state updating for 
operational streamflow forecasting via variational data assimilation. Journal of 
Hydrology 367, 255-275. 

Seo, D.-J., Koren, V., Cajina, N., 2003. Real-time variational assimilation of 
hydrologic and hydrometeorological data into operational hydrologic forecasting. 
Journal of Hydrometeorology 4, 627-641. 

Shuttleworth, W.J., 1993. Evaporation, in: Maidment, D.R. (Ed.), Handbook of 
Hydrology. McGraw Hill Inc. 

Simon, D., Simon, D.L., 2006. Kalman filtering with inequality constraints for 
turbofan engine health estimation. Control Theory and Applications, IEE 
Proceedings - 153, 371-378. 

Simon, D., Tien Li, C., 2002. Kalman filtering with state equality constraints. 
Aerospace and Electronic Systems, IEEE Transactions on 38, 128-136. 

Singh, S.K., Bárdossy, A., 2012. Calibration of hydrological models on hydrologically 
unusual events. Advances in Water Resources 38, 81-91. 

Singh, V.P., 2002. Is hydrology kinematic? Hydrological Processes 16, 667-716. 

Sivapalan, M.S., 2005. Pattern, Process and Function: Elements of a Unified Theory 
of Hydrology at the Catchment Scale, Encyclopedia of Hydrological Sciences. 

Smart, G., 2005. The higher lower Tongariro. Environment Waikato Technical 
Report 2005/49. 



 

References | 333  
 

Smith, R.C.M., 1991a. Landscape response to a major ignimbrite eruption, Taupo 
Volcanic Center, New Zealand, in: Fisher, R.V., Smith, G.A. (Eds.), Sedimentation in 
Volcanic Settings. SEPM (Society for Sedimentary Geology), pp. 123-137. 

Smith, R.C.M., 1991b. Post-eruption sedimentation on the margin of a caldera lake, 
Taupo Volcanic Centre, New Zealand. Sedimentary Geology 74, 89-138. 

Smith, R.C.M., Smith, I.E.M., Browne, P.R.L., Hochstein, M.P., 1993. Volcano-
tectonic controls on sedimentation in the Taupo Volcanic Zone, New Zealand, in: 
Balance, P.F. (Ed.), South Pacific Sedimentary Basins, Sedimentary Basins of the 
World 2. Elselvier Science Publishers B.V., Amsterdam, pp. 143-156. 

Snelder, T.H., Biggs, B.J.F., 2002. Multi-scale river environment classification for 
water resources management. Journal of the American Water Resources Association 
38, 1225-1239. 

Spongberg, M.E., 2000. Spectral analysis of base flow separation with digital filters. 
Water Resources Research 36, 745-752. 

Steenhuis, T.S., Winchell, M., Rossing, J., Zollweg, J.A., Walter, M.F., 1995. SCS 
runoff equation revisited for variable-source runoff areas, Journal of Irrigation & 
Drainage Engineering. American Society of Civil Engineers, p. 234. 

Stephens, R.T.T., 1989. Flow management in the Tongaririo River. Science and 
Research Series No. 16. Department of Conservation, Wellington, New Zealand. 

Stewart, M.K., Morgenstern, U., 2001. Age and source of groundwater from isotope 
traces, in: Rosen, M.R., White, P.A. (Eds.), Groundwaters of New Zealand. New 
Zealand Hydrological Society Inc. , Wellington, pp. 161-183. 

Szilagyi, J., 2004. Heuristic continuous base flow separation. ASCE Journal of 
Hydrologic Engineering 9, 311-318. 

Taghi Sattari, M., Yurekli, K., Pal, M., 2012. Performance evaluation of artificial 
neural network approaches in forecasting reservoir inflow. Applied Mathematical 
Modelling 36, 2649-2657. 

Tait, A., Henderson, R., Turner, R., Zheng, X., 2006. Thin plate smoothing spline 
interpolation of daily rainfall for New Zealand using a climatological rainfall surface. 
International Journal of Climatology 26, 2097-2115. 

Taupo-nui-a-Tia, 2011. 2020 Taupo-nui-a-Tia Action Plan. 

Thacker, W.C., 2007. Data assimilation with inequality constraints. Ocean 
Modelling 16, 264-276. 

Thompson, C.S., 1984. The weather and climate of the Tongariro Region. New 
Zealand Meteorological Service. 

Thompson, S.M., Ibbitt, R., 1978. Smoothing permanent records of lake level (Note). 
Journal of Hydrology (NZ) 17, 44-49. 

Timperley, M.H., 1983. Climate and hydrology, in: Forsyth, D.J., Howard-Williams, 
C. (Eds.), Lake Taupo: ecology of a New Zealand lake. DSIR, pp. 45-54. 



 

 334 | References 
 

Todini, E., 1988. Rainfall-runoff modeling - Past, present and future. Journal of 
Hydrology 100, 341-352. 

Todini, E., 1996. The ARNO rainfall--runoff model. Journal of Hydrology 175, 339-
382. 

Transpower New Zealand Ltd, 2010. Annual Planning Report. 

TrustPower Ltd, 2008. Hinemaiaia Scheme, in: TrustPower Ltd (Ed.). 

Valiantzas, J.D., 2006. Simplified versions for the Penman evaporation equation 
using routine weather data. Journal of Hydrology 331, 690-702. 

Van Den Bos, R., Hoffmann, L., Juilleret, J., Matgen, P., Pfister, L., 2006. Regional 
runoff prediction through aggregation of first-order hydrological process 
knowledge: a case study, Hydrological Sciences Journal. Taylor & Francis, pp. 1021-
1038. 

Vandergoes, M.J., Hogg, A.G., Lowe, D.J., Newnham, R.M., Dentone, G.H., 
Southon, J., Barrell, D.J.A., Blaauwh, M., Wilson, C.J.N., McGlone, M.S., Allan, 
A.S.R., Almond, P.C., Petchey, F., Dabell, K., Dieffenbacher-Krallk, A.C., 2012, in 
review. A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last 
Glacial Maximum in New Zealand. Quaternary Science Reviews (Intimate Special 
Issue). 

Vant, B., Smith, P., 2004. Inflows to Lake Taupo - nutrients and water ages. 
Environment Waikato. 

Vertessy, R.A., Hatton, T.J., O'Shaughnessy, P.J., Jayasuriya, M.D.A., 1993. 
Predicting water yield from a mountain ash forest catchment using a terrain analysis 
based catchment model. Journal of Hydrology 150, 665-700. 

Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., Verstraten, J.M., 2005. 
Improved treatment of uncertainty in hydrologic modeling: Combining the 
strengths of global optimization and data assimilation. Water Resources Research 
41. 

Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S., 2003. A shuffled complex 
evolution metropolis algorithm for optimization and uncertainty assessment of 
hydrologic model parameters. Water Resources Research 39. 

Vrugt, J.A., Gupta, H.V., Nualláin, B.Ó., Bouten, W., 2006. Real-time data 
assimilation for operational ensemble streamflow forecasting. Journal of 
Hydrometeorology 7, 548-565. 

Vrugt, J.A., Robinson, B.A., 2007. Treatment of uncertainty using ensemble 
methods: Comparison of sequential data assimilation and Bayesian model 
averaging. Water Resources Research 43. 

Wagener, T., 2003. Evaluation of catchment models. Hydrological Processes 17, 
3375-3378. 

Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H., Sorooshian, S., 2001. 
A framework for development and application of hydrological models. Hydrology 
and Earth System Sciences 5, 13-26. 



 

References | 335  
 

Wagener, T., Gupta, H.V., 2005. Model identification for hydrological forecasting 
under uncertainty. Stochastic Environmental Resource Risk Assessment 19, 378-
387. 

Wagener, T., Kollat, J., 2007. Numerical and visual evaluation of hydrological and 
environmental models using the Monte Carlo analysis toolbox. Environmental 
Modelling & Software 22, 1021-1033. 

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V., 2003. Towards 
reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability 
analysis. Hydrological Processes 17, 455-476. 

Wagener, T., Sorooshian, S., Gupta, H., 2004a. Stochastic formulation of a 
conceptual hydrologic model. Hydrology: Science and Practice for the 21st Century 
1, 398-405. 

Wagener, T., Wheater, H.S., Gupta, H.V., 2004b. Rainfall-runoff modelling in 
gauged and ungauged catchments. Imperial College Press. 

Wang, D., Chen, Y., Cai, X., 2009. State and parameter estimation of hydrologic 
models using the constrained Ensemble Kalman filter. Water Resources Research 
45, W11416. 

Waugh, J.R., Freestone, H.J., 2004. Flood Management Audit: 29 February 2004 
Flood on the Waikato River. Opus Consultants Ltd. 

Waugh, J.R., Lew, D.D., Frampton, M., 1999. Waikato catchment floods and 
flooding history. Opus International Consultants Limited,. 

Weerts, A.H., El Serafy, G.Y.H., 2006. Particle filtering and ensemble Kalman 
filtering for state updating with hydrological conceptual rainfall-runoff models. 
Water Resources Research 42. 

Weglarczyk, S., 1998. The interdependence and applicability of some statistical 
quality measures for hydrological models. Journal of Hydrology 206, 98-103. 

Welsh, W.D., Vaze, J., Dutta, D., Rassam, D., Rahman, J.M., Jolly, I.D., Wallbrink, 
P., Podger, G.M., Bethune, M., Hardy, M.J., Teng, J., Lerat, J., 2012, in review. An 
integrated modelling framework for regulated river systems. Environmental 
Modelling & Software. 

White, E., Downes, M.T., 1977. Preliminary assessment of nutrient loads on Lake 
Taupo, New Zealand. New Zealand Journal of Marine and Freshwater Research 11, 
341-356. 

White, P.A., 2001. Groundwater resources in New Zealand, in: Rosen, M.R., White, 
P.A. (Eds.), Groundwaters of New Zealand. New Zealand Hydrological Society Inc., 
pp. 45-76. 

Williams, A., Walton, T., 2003. Early landuse patterns in the Lake Taupo area. 
Department of Conservation. 

Wilson, C.J.N., 1985. The Taupo Eruption, New Zealand II. The Taupo Ignimbrite. 
Philosophical Transactions of the Royal Society of London. Series A, Mathematical 
and Physical Sciences 314, 229-310. 



 

 336 | References 
 

Wilson, C.J.N., 1993. Stratigraphy, chronology, styles and dynamics of late 
Quaternary eruptions from Taupo Volcano, New Zealand. Philosophical 
Transactions: Physical Sciences and Engineering 343, 205-306. 

Wilson, C.J.N., 2001. The 26.5 ka Oruanui eruption, New Zealand: an introduction 
and overview. Journal of Volcanology and Geothermal Research 112, 133-174. 

Wilson, C.J.N., Houghton, B.F., McWilliams, M.O., Lanphere, M.A., Weaver, S.D., 
Briggs, R.M., 1995. Volcanic and structural evolution of Taupo Volcanic Zone, New 
Zealand: a review. Journal of Volcanology and Geothermal Research 68, 1-28. 

Wilson, C.J.N., Riggs, N.R., Ort, M.H., White, J.D.L., Houghton, B.F., 1997. An 
annotated atlas of post-1.8 ka shoreline features at Lake Taupo, New Zealand. 
Institute of Geological and Nuclear Sciences Limited. 

Wilson, C.J.N., Rogan, A.M., Smith, I.E.M., Northey, D.J., Nairn, I.A., Houghton, 
B.F., 1984. Caldera volcanoes of the Taupo Volcanic Zone, New Zealand. Journal of 
Geophysical Research 89, 8463-8484. 

Wilson, C.J.N., Walker, G.P.L., 1985. The Taupo Eruption, New Zealand I. General 
Aspects. Philosophical Transactions of the Royal Society of London. Series A, 
Mathematical and Physical Sciences 314, 199-228. 

Woods, R., Hendrikx, J., Henderson, R., Tait, A., 2006. Estimating mean flow of 
New Zealand rivers. Journal of Hydrology (NZ) 45, 95-110. 

Xie, X., Zhang, D., 2010. Data assimilation for distributed hydrological catchment 
modeling via ensemble Kalman filter. Advances in Water Resources 33, 678-690. 

Xu, Z.X., Li, J.Y., 2002. Short-term inflow forecasting using an artifical neural 
network model. Hydrological Processes 16, 2423-2439. 

Yang, J., 2011. Convergence and uncertainty analyses in Monte-Carlo based 
sensitivity analysis. Environmental Modelling & Software 26, 444-457. 

Yang, T., Yu, P., Chen, C., 2005. Long-term runoff forecasting by combining 
hydrological models and meteorological records. Hydrological Processes 19, 1697-
1981. 

Young, P.C., 2001. Data-based mechanistic modelling and validation of rainfall-flow 
processes, in: Anderson, M.G., Bates, P.D. (Eds.), Model Validation: Perspectives in 
Hydrological Science. J. Wiley & Sons, Chichester, UK, pp. 117-161. 

Young, R., Smart, G., Harding, J., 2004. Impacts of hydro-dams, irrigation schemes 
and river control works, in: Harding, J., Mosley, P., Pearson, C., Sorrell, B. (Eds.), 
Freshwaters of New Zealand. New Zealand Hydrological Society & New Zealand 
Limnological Society, Christchurch. 

Zecharias, Y.B., Brutsaert, W., 1988. The influence of basin morphology on 
groundwater outflow. Water Resources Research 24, 1645-1650. 

Zhang, Y., Arthington, A.H., Bunn, S.E., Mackay, S., Xia, J., Kennard, M., 2011. 
Classification of flow regimes for environmental flow assessment in regulated rivers: 
The Huai River Basin, China. River Research and Applications. 

 



 

Appendix A | 337  
 

Appendix A:  

Performance Measures 

A.1 Background 

The work outlined in this Appendix compares the performance of the commonly 

used Nash-Sutcliffe Efficiency (NSE) index to the recently developed Kling Gupta 

Efficiency (KGE) index in two sub-catchments of Lake Taupo. The purpose is to 

determine which index is able to provide a better objective fit for model calibration 

and will be subsequently used in this study (see Section 6.3.2). 

The Tauranga-Taupo and Waihaha River catchments are chosen because they 

represent some of the main physiographic and climatic differences in the Lake 

Taupo catchment. The Tauranga-Taupo catchment is a narrow basin draining a 

large area of impermeable basement geology in the south-eastern part of the 

catchment. It is moderately steep, has a relatively low baseflow component and high 

flow variability. Conversely, the Waihaha catchment (western bays) is rounder and 

is underlain by predominantly volcanic geology. It has higher baseflow and lower 

variability than the Tauranga-Taupo catchment.  

Using the conceptual rainfall-runoff model developed in this study (refer Chapter 6), 

classic Monte Carlo sampling of pre-defined parameter ranges is undertaken for 

100,000 model calibration runs. For the Tauranga-Taupo catchment the calibration 

period is from June 2003 to May 2008 (five years) and for a period of 3.5 years for 

the Waihaha catchment (May 1989 – October 1992). The model generates 15 minute 

time step output, but it is the hourly volumes that are used for calibration.  



 

 338 | Appendix A 
 

A multi-criteria framework is applied where behavioural parameters sets are defined 

as those which fit well to the time series (objective function value >0.7) and the flow 

duration curve (objective function value >0.95). The multi-criteria application aims 

to find the top five parameter sets which are able to sufficiently simulate the 

hydrograph response in terms of timing of response and recession characteristics 

while also adequately capturing the variability and range of flow for the catchment. 

Performance is evaluated on how well these indices can simulate various observed 

catchment response characteristics. 

A.2 Results and discussion 

The top five parameter sets identified by the NSE and KGE are compared. The 

results are plotted and the respective performance assessed in terms of the multi- 

criteria calibration approach and ability to simulate various observed catchment 

response characteristics outlined in Table A.2.1. 

In the Tauranga-Taupo catchment, the KGE optimal parameter sets generated 

higher performance index values than those of the NSE (Table A.2.2). Visual 

inspection of the modelled streamflow against observed streamflow for both the 

KGE (Figure A.3.1) and NSE (Figure A.3.2) parameter sets show little difference, 

although the KGE tends to over-estimate peak flood responses more than the NSE. 

Statistics of the hydrological response characteristics generally show that the KGE is 

doing a better job of simulating different aspects of the hydrograph, although the 

NSE decreases errors in flow variability more efficiently (Table A.2.3). However, 

these estimates of variability may be underestimated (Gupta et al., 2009).  

 

Table A.2.1 Time series characteristics for model evaluation 

Time series 

characteristics 

 

Mean Flow Mean of observations 

Standard deviation Standard deviation of observations 

Coefficient of variation Standard deviation/mean flow 

Mean of high flows Mean of flows Q30 and Q95, as defined by the flow duration curve† 

Mean of medium flows Mean of flows Q5 and Q30, as defined by the flow duration curve 

Mean of low flows Mean of flows above Q5, as defined by the flow duration curve 

† The lowest 5 (Q95) percent of flow values are excluded from this analysis due to data collection errors 
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Table A.2.2 Comparison of KGE and NSE performance index values for the Tauranga-Taupo 

catchment.  

Index 1 2 3 4 5 

KGE 0.8596 0.8605 0.8602 0.8636 0.8599 

NSE 0.7328 0.7319 0.7329 0.7317 0.7311 

Table A.2.3 Comparison of results for the KGE and NSE performance indexes for the Tauranga-

Taupo catchment. Table shows the departure from the observed value. 

Index Par. 

Set 

Mean Std. Dev. COV Low Mid High 

KGE 1 0.0095 -0.0079 -0.0176 -0.0076 0.0837 -0.0054 

 2 -0.0008 -0.0261 -0.0253 -0.0212 0.0772 -0.0087 

 3 0.0268 -0.0179 -0.0459 0.0151 0.0931 -0.0078 

 4 0.0263 0.0081 -0.0187 0.0078 0.0980 0.0299 

 5 -0.0057 0.0130 0.0186 -0.0273 0.0712 0.0032 

NSE 1 0.0639 0.0741 0.0109 0.0478 0.1313 0.0649 

 2 0.0482 0.0378 -0.0109 0.0299 0.1229 0.0252 

 3 0.1010 0.0613 -0.0441 0.0883 0.1675 0.0767 

 4 0.0481 0.0217 -0.0278 0.0353 0.1174 0.0167 

 5 0.0723 0.0815 0.0100 0.0547 0.1448 0.0592 

 

 

Table A.2.4 Comparison of KGE and NSE performance index values for the Waihaha 

catchment.  

Index 1 2 3 4 5 

KGE 0.8652 0.8681 0.8646 0.8637 0.8617 

NSE 0.7439 0.7494 0.7418 0.7459 0.7446 

Table A.2.5 Comparison of results for the KGE and NSE performance indexes for the Waihaha 

catchment. Table shows the departure from the observed value. 

Index Par. Set Mean Std. Dev. COV Low Mid High 

KGE 1 0.0098 0.0142 0.0044 0.0395 0.0199 -0.3136 

 2 0.0470 0.0151 -0.0334 0.0719 0.0532 -0.2347 

 3 -0.0002 0.0150 0.0152 -0.0005 0.0292 -0.2392 

 4 -0.0167 -0.0027 0.0138 0.0082 -0.0099 -0.2934 

 5 -0.0014 -0.0416 -0.0401 0.0116 0.0348 -0.3377 

NSE 1 0.0470 0.0151 -0.0334 0.0719 0.0532 -0.2347 

 2 0.0955 0.0515 -0.0486 0.1039 0.1139 -0.1450 

 3 0.0555 0.0783 0.0242 0.0599 0.0791 -0.1816 

 4 0.0668 0.0997 0.0352 0.1006 0.0648 -0.2365 

 5 0.0098 0.0142 0.0044 0.0395 0.0199 -0.3136 

 

 



 

 340 | Appendix A 
 

In the less variable Waihaha catchment, the KGE is also generating much higher 

performance index values than the NSE (Table A.2.4). The KGE captures the 

variability of flow more precisely than the NSE in four of the five parameter sets, 

although errors in high flow volumes were reduced further with the NSE (Table 

A.2.5). One of the parameter sets responded better under the NSE than the KGE. 

Figure A.3.3  shows that the parameters identified by the KGE do a better job of 

simulating the smaller floods („freshes‟), recession and low flow periods than the 

NSE parameter sets (Figure A.3.4). The statistics suggest that the NSE is able to 

better represent higher flows in this catchment.  

A.3 Conclusions 

Using the conceptual rainfall-runoff model developed in this study a comparative 

analysis of two objective functions is undertaken with the aim of determining which 

is more suitable for model calibration in the Lake Taupo catchment. Two 

catchments are selected. The Tauranga-Taupo catchment is relatively steep 

underlain by a large area of impermeable basement greywacke. It is characterised by 

lower baseflow volumes and higher variability. The Waihaha catchment is 

predominantly volcanic and rounder than the Tauranga-Taupo catchment. It drains 

some steeper areas of the Hauhungaroa ranges but is generally less steep the 

Tauranga-Taupo catchment.  

While there is little difference visually between the KGE and NSE indexes for each 

catchment, based on the statistics the KGE is able to generate parameter sets which 

provide a better representation of the hydrological response characteristics of both 

catchments. Where the NSE did perform better the corresponding KGE value tends 

to be much closer the NSE value compared to areas where the KGE outperforms the 

NSE. It is therefore concluded that the KGE is a more suitable objective function to 

use in the Lake Taupo catchment. 
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Figure A.3.1 Calibration results of the top five parameter sets identified by the KGE performance index for 

the Tauranga-Taupo catchment.  

 

 

Figure A.3.2 Calibration results of the top five parameter sets identified by the NSE performance index for 

the Tauranga-Taupo catchment. 
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Figure A.3.3 Calibration results of the top five parameter sets identified by the KGE performance index for 

the Waihaha catchment. 

 

 

Figure A.3.4 Calibration results of the top five parameter sets identified by the NSE performance index for 

the Waihaha catchment. 
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Appendix B:  

Sub-catchment  

hydrological analyses  

In this Appendix, the physical and hydrological characteristics of each sub-

catchment are summarised. A brief description of catchment attributes is provided 

and draws on the data analysis undertaken in this study. The physical characteristics 

of each catchment (catchment area, altitude range, geology, soils, slopes and 

vegetative cover) are described. The description of land cover is based on the New 

Zealand Land Cover Database 2 (Ministry for the Environment, 2004). The 

delineation of soils and geology shown in the relevant figures are based on the New 

Zealand Land Resource Inventory (Landcare Research - Manaaki Whenua (NZ), 

2008). More detailed information on the different lithologies is obtained from 

various literature including Bou (2007) and Morgenstern (2008) and the 1960 

geological map by Grindley (1960).  

The hydrological characteristics for the duration of the record are reported and also 

presented in the relevant charts for each sub-catchment. An analysis of time step 

lengths and distribution are included, with comments relating to the quality of the 

data obtained (where information is available). In this dissertation, a „time step‟ is 

defined as the length of time between subsequent observations, whereas a „gap‟ is a 

break in the record due to instrument or other errors.  

The results of this analysis can be found on the disc at the back of this thesis.
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Appendix C:  

Sub-catchment model calibration and 

sensitivity analyses 

The information provided in this Appendix can be found on the disc at the back of this 

dissertation and supports the results presented in Chapter 8 and Chapter 9. For each sub-

catchment analysis of the time series is used to identify periods of reliable rainfall and 

streamflow data for model calibration and evaluation (for more detailed information of what 

this analysis shows and how to interpret the respective charts, please refer to Section 6.2). 

The selection of suitable data periods is based on three separate analyses. The consistency 

between the rainfall and streamflow records is undertaken by identifying periods of no 

rainfall and or evapotranspiration and highlighting where streamflow is significantly rising 

during these recession periods. This assessment aims to show how representative the 

selected rainfall gauge is by illustrating how adequately it captures the events that are 

observed in the hydrograph. 

Secondly, flow duration curves for the selected calibration period and the entire record are 

compared. Ideally, the calibration period would represent the range of hydrological 

phenomena experienced in the catchment including periods of floods, drought and normal 

flow conditions (Gupta and Sorooshian, 1985; Singh and Bárdossy, 2012). If the two curves 

are similar, then the calibration data is considered to be suitable for representing a wide 
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range of hydrological responses experienced in the catchment. It is noted, however, that even 

with very long records not all possible hydrological responses may be represented.  

Finally, residual mass curves are used to identify periods where there is inconsistency 

between the rainfall and streamflow records. This comparison is made using the cumulative 

departures from the respective means, using monthly data. The use of rainfall data which 

shows a significant difference to streamflow could result in poorer performance in terms of 

model calibration.  

Once a suitable calibration period has been identified, the model is run and the five top-

performing five parameter sets based on the results of the multi-criteria Kling-Gupta 

Efficiency index obtained (refer Section 6.3 and Appendix B). Modelled and observed 

streamflow are compared. The performance of each parameter set over calibration and 

evaluation periods is provided, as are corresponding parameter values. Parameters are then 

classified by degree of sensitivity and their corresponding   statistic shown (refer Section 

6.3.2). These results are also presented graphically in a series of scatterplots, sensitivity plots 

and calibration time series. 
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Appendix D:  

Bivariate Sensitivity Analysis 

This Appendix presents Scatterplots showing two-way parameter response surfaces 

with respect to the performance measure used. The values of two selected 

parameters are plotted against each other. Again, the top 1000 (unless fewer are 

obtained) behavioural parameter sets are plotted with the five highest highlighted. If 

these behavioural parameter sets are observed across the entire parameter space 

then there is little, if any, interaction between the two parameters. If the plots show 

some (positive or negative) relationship between the corresponding parameter sets, 

some form of parameter interaction can be assumed. 

This bivariate sensitivity analysis is undertaken for each sub-catchment can be 

found on the disc at the back of this thesis. 
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Appendix E:  

Correlation Analysis: 

physiographic attributes and 

parameter values 

E.1 Correlation analysis 

Relationships between sub-catchment physical features and modelled parameter 

values provide additional information about the hydrological response and 

behaviour in the Lake Taupo catchment. Similar to the methodology outlined in 

Chapter 5, correlation coefficients are used to describe the strength of these 

relationships. Correlation coefficients provide an easy and convenient way to 

describe the strength of the relationship between two variables but do not imply a 

causal relationship (Gordon et al., 2004). The results of the analysis can found on 

the disc at the back of this dissertation.  


