
On the Use of Model
Checking for the Bounded

and Unbounded Verification
of Nonblocking Concurrent

Data Structures

by

David Friggens

A thesis
submitted to Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Logic and Computation.

Victoria University of Wellington
2013

This work is licensed under the
Creative Commons Attribution 3.0 New Zealand License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by/3.0/nz/

or send a letter to Creative Commons,
444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by/3.0/nz/

Abstract
Concurrent data structure algorithms have traditionally been designed us-
ing locks to regulate the behaviour of interacting threads, thus restricting
access to parts of the shared memory to only one thread at a time. Since
locks can lead to issues of performance and scalability, there has been in-
terest in designing so-called nonblocking algorithms that do not use locks.
However, designing and reasoning about concurrent systems is difficult,
and is even more so for nonblocking systems, as evidenced by the number
of incorrect algorithms in the literature.

This thesis explores how the technique of model checking can aid the
testing and verification of nonblocking data structure algorithms. Model
checking is an automated verification method for finite state systems, and
is able to produce counterexamples when verification fails. For verifica-
tion, concurrent data structures are considered to be infinite state systems,
as there is no bound on the number of interacting threads, the number of
elements in the data structure, nor the number of possible distinct data
values. Thus, in order to analyse concurrent data structures with model
checking, we must either place finite bounds upon them, or employ an ab-
straction technique that will construct a finite system with the same prop-
erties.

First, we discuss how nonblocking data structures can be best repre-
sented for model checking, and how to specify the properties we are inter-
ested in verifying. These properties are the safety property linearisability,
and the progress properties wait-freedom, lock-freedom and obstruction-
freedom.

Second, we investigate using model checking for exhaustive testing, by
verifying bounded (and hence finite state) instances of nonblocking data
structures, parameterised by the number of threads, the number of dis-
tinct data values, and the size of storage memory (e.g. array length, or
maximum number of linked list nodes). It is widely held, based on anec-
dotal evidence, that most bugs occur in small instances. We investigate
the smallest bounds needed to falsify a number of incorrect algorithms,
which supports this hypothesis. We also investigate verifying a number

of correct algorithms for a range of bounds. If an algorithm can be veri-
fied for bounds significantly higher than the minimum bounds needed for
falsification, then we argue it provides a high degree of confidence in the
general correctness of the algorithm. However, with the available hard-
ware we were not able to verify any of the algorithms to high enough
bounds to claim such confidence.

Third, we investigate using model checking to verify nonblocking data
structures by employing the technique of canonical abstraction to con-
struct finite state representations of the unbounded algorithms. Canonical
abstraction represents abstract states as 3-valued logical structures, and
allows the initial coarse abstraction to be refined as necessary by adding
derived predicates. We introduce several novel derived predicates and
show how these allow linearisability to be verified for linked list based
nonblocking stack and queue algorithms. This is achieved within the stan-
dard canonical abstraction framework, in contrast to recent approaches
that have added extra abstraction techniques on top to achieve the same
goal.

The finite state systems we construct using canonical abstraction are
still relatively large, being exponential in the number of distinct abstract
thread objects. We present an alternative application of canonical abstrac-
tion, which more coarsely collapses all threads in a state to be represented
by a single abstract thread object. In addition, we define further novel de-
rived predicates, and show that these allow linearisability to be verified
for the same stack and queue algorithms far more efficiently.

Acknowledgements

I owe many thanks to my principal supervisor, Lindsay Groves. He sug-
gested this area of research, and has provided much guidance, advice and
proof reading. My initial secondary supervisor, Ray Nickson, also pro-
vided much appreciated guidance and advice.

Thanks to my examiners — Mooly Sagiv, Steve Reeves and David Pearce
— for their careful reading, kind words, and helpful suggestions.

Financially, I have been supported by a VUW Postgraduate Scholar-
ship and a VUW PhD Submission Scholarship. A grant from Sun Mi-
crosystems provided some travel funds, notably to attend the 17th Inter-
national School for Computer Science Researchers in Lipari, Italy.

This thesis was almost entitled “Model Checking for Godot”, so a spe-
cial thank you is due to Lindsay and all the VUW administrators who have
had to employ much patience. I hope you agree it was worth the wait.

I am grateful for the hospitality and understanding of the Department
of Computer Science and Library at the University of Waikato, including
the use of the “symphony” computing cluster.

Thanks to my parents for everything. Especially for not asking any
questions about my progress in the last two years — it was hard, but it
helped.

Finally, I can never thank Olivia enough for her love, encouragement
and support. Ultimately, this thesis only exists because of the sacrifices she
has made. Our co-publications, produced during the writing of the thesis,
are extremely well cited due to her input.

iii

iv ACKNOWLEDGEMENTS

Contents

Acknowledgements iii

Contents v

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Nonblocking Concurrency . 1
1.2 Model Checking . 2
1.3 Bounded Verification . 3
1.4 Unbounded Verification . 4
1.5 Outline . 5

I Background 7

2 Nonblocking Data Structures 9
2.1 Concurrent Data Structures 9
2.2 Linearisability . 11
2.3 Mutual Exclusion . 13
2.4 Nonblocking Progress Properties 15

2.4.1 Wait-freedom . 15
2.4.2 Lock-freedom . 15
2.4.3 Obstruction-freedom 16

2.5 Nonblocking Synchronization 16
2.5.1 Compare-and-Swap 16
2.5.2 Load-Linked, Store-Conditional 17

v

vi CONTENTS

2.5.3 ABA Problem . 18
2.5.4 Memory Management 18

2.6 Algorithms . 19
2.6.1 Lock-free Stack . 20
2.6.2 Lock-free Unbounded Queue 22

3 Model Checking 27
3.1 Systems . 28
3.2 Specifications . 29

3.2.1 CTL* . 29
3.2.2 LTL . 32
3.2.3 CTL . 32
3.2.4 Linear- versus Branching-time 32

3.3 Model Checking Paradigms 33
3.3.1 Explicit State Model Checking 34
3.3.2 BDD-Based Symbolic Model Checking 36
3.3.3 Bounded Model Checking 39

3.4 Tackling the State Explosion Problem 39
3.4.1 Bitstate hashing . 40
3.4.2 Partial order reduction 40
3.4.3 Slicing . 42
3.4.4 Symmetry reduction 42

3.5 Abstraction . 43
3.5.1 Constructing Abstract Models 44

3.6 Tools . 46
3.6.1 Spin . 46
3.6.2 SAL . 47
3.6.3 TVLA/3VMC . 47

4 Canonical Abstraction 49
4.1 Canonical Abstraction . 49

4.1.1 States as Logical Structures 50
4.1.2 Embeddings . 52

Canonical Abstraction 54
4.1.3 Properties . 55

Syntax . 55
Semantics . 56
Embedding Theorem 57

4.2 Refining Abstractions . 57

CONTENTS vii

4.2.1 Integrity Rules . 58
4.2.2 Instrumentation Predicates 59

4.3 Abstract Transitions . 65
4.3.1 Focus Operation . 66
4.3.2 Coerce Operation . 67

Compatibility constraints 69
Coerce algorithm . 70

4.3.3 Update . 70
New objects . 71

4.3.4 Example . 71
Initial State . 72
Focus . 73
Coerce . 74
Update . 75
Coerce . 76
Blur . 76

4.3.5 Computing the Best Abstract Transition 76
4.4 Concurrent Systems . 76

4.4.1 States . 77
4.4.2 Transitions . 77

Unschedule . 78
Schedule . 79

4.5 Improvements . 79
4.5.1 Summary Predicate . 79
4.5.2 Partially Disjunctive Analysis 80
4.5.3 Coerce . 80
4.5.4 Instrumentation Predicate Updates 81
4.5.5 Graph Decomposition 81

II Modelling and Testing 83

5 Model Checking Nonblocking Algorithms 85
5.1 Modelling Data Structures . 85

5.1.1 Transition Systems . 86
5.1.2 Creating Finite Systems 87

Bounded Parameters 87
Unbounded Abstract Models 87

5.1.3 Manual Statespace Reduction 88

viii CONTENTS

Resetting Unused Values 88
Reducing Interleaving 88

5.2 Specifying Linearisability . 90
5.2.1 Concurrent Specifications 90
5.2.2 Linearisation Points 92
5.2.3 Simulation . 93

Use of Simulation . 95
5.2.4 Direct Trace Inclusion 95
5.2.5 Future Nondeterminism 97

Backwards analysis . 97
Prophecy variables . 99
Multiple Linearisation Points 102

5.2.6 Merging the Specification 104
5.3 Specifying Nonblocking Properties 110

5.3.1 Wait-freedom . 110
5.3.2 Lock-freedom . 112

Thread-level view . 113
5.3.3 Obstruction-freedom 114
5.3.4 Related Work . 115

6 Bounded Verification 117
6.1 Checking Linearisability . 118

6.1.1 Example . 118
6.1.2 Minimal Counterexamples 121
6.1.3 Confidence in Bounded Verification 123
6.1.4 Verification Limits . 124

Spin Reduction . 127
Symmetry Reduction 127

6.2 Checking Nonblocking Properties 130
6.2.1 Example . 131
6.2.2 Minimal Counterexamples 133
6.2.3 Confidence in Bounded Verification 133
6.2.4 Verification Limits . 134

6.3 Related Work . 135
6.4 Conclusion . 136

CONTENTS ix

III Verification 137

7 Canonical Abstraction for Linearisability 139
7.1 Basic Stack Model . 141
7.2 Three-Valued Model . 143

7.2.1 Core Predicates . 145
7.2.2 Integrity Rules . 145
7.2.3 Instrumentation Predicates 146

Reachability and circularity 146
Has-a-field . 147
Referenced-by-field . 147
Shared . 148

7.3 Preserving Linearisability Information 148
7.3.1 Matching Values . 151
7.3.2 Ordered Values . 154
7.3.3 Hanging Head . 156

7.4 (Un)bounded Threads . 159
7.4.1 Bounded Threads . 161
7.4.2 Thread Field Properties 162

Snapshots . 162
Data Values . 164

7.5 Initial State . 167
7.6 Additional Compatibility Constraints 169

7.6.1 Reachability Predicates 169
7.6.2 Geometric Predicates 177

7.7 Stack Results . 179
7.8 Stack Variations . 181

7.8.1 TVLA Changes . 181
Isomorphic State Comparison 181
TVLA 2 . 182

7.8.2 Definitions . 183
Unnecessary Instrumentation Predicates 183
Pure Initial State . 184
Named Threads . 185
Thread Bounding Constraint 185

7.8.3 Full Interleaving . 186
7.9 Queue Models . 188

7.9.1 Three-Valued Models 188
Core Predicates . 188

x CONTENTS

Instrumentation Predicates 193
7.9.2 Results . 194

7.10 Related Work . 195
7.11 Conclusion . 196

8 Collapsing Threads Safely with Soft Invariants 199
8.1 Overview . 200

8.1.1 Instrumentation Predicates 200
8.1.2 Selection of Predicates 202
8.1.3 Compatibility Constraints 205

8.2 Stack Models . 206
8.2.1 Changes to the Model 206

Collapse . 206
Null Equivalence . 207

8.2.2 Soft Invariants . 209
Interleaved Locations 209
Non-interleaved Locations 213

8.2.3 Results . 213
8.2.4 Full Interleaving . 213

Soft Invariants . 214
Results . 214

8.2.5 Extra Predicates . 216
8.3 Queue Models . 217

8.3.1 Changes to the model 218
Full interleaving . 218
Ordered snapshots . 218

8.3.2 Soft Invariants . 224
Enqueue . 228
Simplified Dequeue 228
Original Dequeue . 228
Restricted Interleaving 229

8.3.3 Results . 229
8.4 Conclusion . 231

IV Conclusion 233

9 Conclusion 235
9.1 Bounded Verification . 235

CONTENTS xi

9.1.1 Future Research . 236
9.2 Unbounded Verification . 237

9.2.1 Future Research . 238

A Proofs of Canonical Abstraction Compatibility Constraints 239
A.1 Assumptions . 239
A.2 Soft Invariants . 241

A.2.1 Single predicate . 241
A.2.2 Conditional property 242

A.3 Linear . 243
A.3.1 To null . 243
A.3.2 Same 1 . 243
A.3.3 Same 2 . 244
A.3.4 Ordered . 245

A.4 Geometric . 246
A.4.1 Triangle 1 . 246
A.4.2 Triangle 2 . 247
A.4.3 Square 1 . 249
A.4.4 Square 2 . 250
A.4.5 Square 3 . 252

A.5 Reachability . 253
A.5.1 No self loop . 253
A.5.2 No loop back . 254
A.5.3 No loop to head . 255
A.5.4 Unreachable . 256
A.5.5 Chain . 256

Bibliography 259

xii CONTENTS

List of Figures

2.1 Basic counter implementation 10
2.2 Initial part of the counter execution graph 10
2.3 Two counter executions . 13
2.4 Counter algorithm with a lock 14
2.5 Pseudocode for Compare-and-Swap 17
2.6 Nonblocking counter increment operations 17

(a) Using CAS . 17
(b) Using LL/SC . 17

2.7 A lock-free stack algorithm 20
2.8 A lock-free linked list based queue 22

(a) Initialisation and enqueue operation 22
(b) Original dequeue operation 24
(c) Simplified dequeue operation 25

3.1 Example Kripke structure . 28
3.2 A Kripke structure and its computation tree 29
3.3 Two equivalent system representations 35

(a) Kripke structure . 35
(b) Büchi automaton . 35

3.4 A Büchi automaton for AGp 35
3.5 A binary decision tree for a two-bit comparator 37
3.6 OBDDs for a two-bit comparator 38
3.7 Independent transition execution 41

4.1 A list of length three . 50
4.2 Graph of concrete configuration 51
4.3 Graph of abstract configuration 53
4.4 Canonical abstraction of a non-functional field 59
4.5 Three different lists have the same canonical abstraction . . . 61

xiii

xiv LIST OF FIGURES

4.6 Using instrumentation predicates to distinguish three dif-
ferent list structures . 62
(a) Connected, acyclic . 62
(b) Disconnected, acyclic 63
(c) Connected, cyclic . 64

4.7 Focus on a single predicate: Focus(p(v1, v2)) 68
4.8 Graph of a stack algorithm state with concurrent threads . . 78

5.1 A lock-free stack algorithm with merged transitions 89
5.2 Diagram of thread i in the concurrent stack specification . . 91
5.3 Operations of thread i in the concurrent stack specification . 91
5.4 A lock-free linked list based queue with prophecy variables 101
5.5 Diagrams of Dequeue operation of Thread i of a concurrent

stack specification . 103
(a) Original . 103
(b) With multiple linearisation points 103

5.6 A lock-free stack algorithm with merged specification 105
5.7 A lock-free queue algorithm with merged specification . . . 107

(a) Enqueue operation . 107
(b) Original dequeue operation 108
(c) Simplified dequeue operation 109

6.1 Simplified execution of stack showing ABA error counter-
example . 120

6.2 Promela never claim for LTL formula WF-1 131
6.3 Simplified execution of stack showing wait-freedom coun-

terexample . 132

7.1 Instrumentation predicate structures 140
(a) Linear predicates . 140
(b) Geometric predicates . 140

7.2 Transitions of stack model . 142
7.3 Update actions used in stack model 144
7.4 Canonical abstraction of two lists: the property of matching

values is lost . 149
7.5 Stack specification update operations, incorporating the spec

relation . 150
7.6 Canonical abstraction of stack lists using the predicate matching:

the property of matching values is retained 152

LIST OF FIGURES xv

(a) All values match . 152
(b) Head values are different 153

7.7 Canonical abstraction with “crossed” spec predicates: the
property of ordered values is lost 155

7.8 Canonical abstraction using the commutes predicate: the
property of ordered values is retained 157
(a) Ordered values . 157
(b) Unordered values . 158

7.9 In between the implementation and specification push up-
dates the old implementation head node is abstracted with
the list body. 159

7.10 With the hasS[spec] predicate the old implementation head
node is distinguished. 160

7.11 Canonical abstraction of threads: the relationships between
fields’ values are lost . 163

7.12 Canonical abstraction using the succ[ss, ssnext] predicate:
the relationships between fields’ values are retained 165
(a) All next-successors . 165
(b) None next-successors 166

7.13 Initial state of the stack model (plain) 168
7.14 Initial state of the stack model (with “garbage” nodes) 168
7.15 Steps of a Pop update transition 170

(a) Initial state . 170
(b) After Focus (one of several states) 170
(c) After Coerce . 171
(d) Final state after Update, Coerce and Blur 171

7.16 Transition to an inconsistent state 173
(a) Initial state . 173
(b) After Focus (one of several states) 173
(c) After Coerce . 174
(d) After Update and Coerce 174
(e) Final state, after Blur . 175

7.17 Incomplete matching triangle 177
7.18 Transitions of stack model . 187
7.19 Transitions of queue models 189

(a) Enqueue operation . 189
(b) Original dequeue operation 190
(c) Simplified dequeue operation 191

7.20 Additional update operations used in queue models 192

xvi LIST OF FIGURES

8.1 Collapsing threads: loss of precision 201
(a) Three previously canonical thread objects 201
(b) Collapsed thread object 201
(c) Thread with different properties is concretised 201

8.2 Collapsing threads: properties preserved with soft invariants 203
(a) Three previously canonical thread objects 203
(b) Collapsed thread object 203

8.3 Collapsing threads: soft invariant for non-invariant property 204
(a) Three previously canonical thread objects 204
(b) Collapsed thread object 204

8.4 Concretised thread object to be sharpened 205
8.5 Property of null equivalence is lost when threads are collapsed208

(a) Before collapse . 208
(b) After collapse . 208

8.6 Soft invariant instrumentation predicates for interleaving
locations . 211

8.7 Concretising an unreachable state 212
(a) Abstract state . 212
(b) After Focus and Coerce 212
(c) After Update . 212

8.8 Transitions of queue models 219
(a) Enqueue operation . 219
(b) Original Dequeue operation 220
(c) Simplified Dequeue operation 221

8.9 Snapshot order not preserved 222
(a) Abstract state . 222
(b) After Focus and Coerce 223

List of Tables

4.1 Example integrity rules . 60
4.2 Example instrumentation predicates 65

6.1 Minimum parameters for counterexamples to linearisability 122
6.2 Treiber Stack Bounded Verification 124
6.3 MS Queue Bounded Verification 125
6.4 DGLM Queue Bounded Verification 125
6.5 LMS Queue Bounded Verification 126
6.6 Treiber Stack Bounded Verification With Symmetry Reduction128
6.7 Minimum parameters for counterexamples to nonblocking

properties . 133
6.8 Treiber Stack Bounded Verification 134
6.9 MS Queue Bounded Verification 134
6.10 DGLM Queue Bounded Verification 135
6.11 LMS Queue Bounded Verification 135

7.1 Stack verification results . 179
7.2 Canonical thread objects in unscheduled abstract stack states 181
7.3 Stack analyses using isomorphic state comparisons 182
7.4 Comparison with TVLA 2 . 182
7.5 Stack analyses with unnecessary referenced-by instrumen-

tation predicates . 183
7.6 Stack analyses with a pure initial state 184
7.7 Stack analyses with named threads 185
7.8 Stack verification results for bounded threads 186

(a) Resources . 186
(b) Statespace . 186

7.9 Stack verification results with no partial order reduction . . 187
7.10 Queue verification results . 194

xvii

xviii LIST OF TABLES

8.1 Invariant properties of stack model with restricted inter-
leaving . 210

8.2 Stack verification results for restricted interleaving 214
(a) Resources . 214
(b) Statespace . 214

8.3 Invariant properties of stack with full interleaving 215
8.4 Stack verification results for full interleaving 216

(a) Resources . 216
(b) Statespace . 216

8.5 Stack verification results for full interleaving with extra pred-
icates . 218
(a) Resources . 218
(b) Statespace . 218

8.6 Invariant properties . 225
(a) Enqueue operation . 225
(b) Original Dequeue operation 226
(c) Simplified Dequeue operation 227

8.7 Queue verification results for restricted interleaving 230
8.8 Queue verification results for full interleaving 230

(a) Resources . 230
(b) Statespace . 230

Chapter 1

Introduction

In this thesis we investigate ways in which certain types of concurrent
data structures can be verified using the formal technique called model
checking.

We are interested in data structures within the shared memory concur-
rency paradigm, where a collection of threads communicate by reading
and writing to a shared pool of memory. For correctness, we desire the al-
gorithms to satisfy the safety property linearisability [Herlihy and Wing,
1990], and say that a data structure is linearisable if (roughly speaking) any
execution has an equivalent execution in a given sequential specification
(see Section 2.2). We also desire the algorithms to satisfy one of a num-
ber of progress properties, collectively known as nonblocking properties,
that specify how threads can affect each other’s behaviour when there is
contention for shared resources.

1.1 Nonblocking Concurrency

It is easy for concurrent threads to interfere with one another, causing
race conditions. This can be avoided by synchronising threads using locks,
which permit only one thread at a time to access some or all of the shared
memory. However, locks have a number of issues that can affect their
efficiency and scalability. Alternatively, it is possible to design so-called
nonblocking algorithms that do not use locks, and that tend to scale much
better [see, e.g. Greenwald and Cheriton, 1996; Michael and Scott, 1998].
However, as may be expected, they are also harder to design and reason
about; many papers have been published containing algorithms with bugs

1

2 CHAPTER 1. INTRODUCTION

[e.g. Stone, 1990, 1992; Massalin and Pu, 1991; Valois, 1994, 1995; Detlefs
et al., 2000; Shann et al., 2000; Tsigas and Zhang, 2001], some with pseudo-
mathematical ‘proofs’.

A number of general methods have been proposed to construct non-
blocking implementations from sequential [Alemany and Felten, 1992; Bar-
nes, 1993; Herlihy, 1993; LaMarca, 1994] and lock-based [Prakash et al.,
1991; Turek et al., 1992] ones but the performance of the resulting algo-
rithms is very poor compared with the corresponding lock-based algo-
rithms. Also, some promising efforts have been made towards refinement-
based methods that produce correct implementations by construction [Ab-
rial and Cansell, 2005; Groves and Colvin, 2006; Groves, 2008a,b; Dongol
and Mooij, 2008; Dongol and Hayes, 2009].

A number of approaches have been employed for constructing deduc-
tive proofs of the correctness of nonblocking data structures using theo-
rem provers [Doherty et al., 2004b; Gao and Hesselink, 2004; Gao et al.,
2004, 2005; Colvin et al., 2005, 2006; Colvin and Groves, 2005, 2007; Der-
rick et al., 2007, 2008; Colvin and Dongol, 2007, 2009; Doherty and Moir,
2009; Doherty, 2010]. Verifications by theorem provers can, however, be
difficult and time-consuming. Furthermore, if a proof attempt has stalled
it is not always easy to tell whether it is due to a bug in the algorithm or
simply inexperience or mistakes on the part of the user [Doherty, 2003].

Some work has also begun using automated decision procedures for
separation logic [Reynold, 2002]. Preliminary results are promising [Vafeiadis,
2007, 2009], but the method is currently only applicable to a small range of
algorithms.

1.2 Model Checking

Model checking is an automated formal verification technique that works
by exploring the entire state space of a finite-state system M, checking
a specification property ϕ (traditionally formalised in a temporal logic).
Thus, it is able to determine the satisfiability of the property in the system
(M |= ϕ), returning “yes” if it is true, and “no” otherwise, along with a
counterexample — an execution trace leading from an initial state to an er-
ror state (for safety properties) or an infinite loop (for progress properties)
where the property is false.

Sometimes a system under consideration cannot be directly examined
by a model checker — either it has an infinite number of states, or the rep-

1.3. BOUNDED VERIFICATION 3

resentation of the finite state-space exceeds the finite memory resources
available. Technological advances (if it is possible to wait for their arrival)
and distributed model checking techniques [e.g. Grumberg, 2002b; Melatti
et al., 2006] may somewhat alleviate the latter situation by increasing the
memory resources available, but this is offset by the state explosion prob-
lem — a linear increase in the number of concurrent threads, or any other
parameter, results in an exponential increase in the state space. In both
situations it may be possible to construct a (smaller) finite-state abstract
system that preserves the property of interest. The framework of abstract
interpretation [Cousot and Cousot, 1977, 1979] enables an abstraction on
states to be used to construct an abstract system that preserves a particular
temporal logic.

The limitation of model checkers to finite state systems prevents them
from being applied directly to general representations of concurrent data
structures. These data structure algorithms typically have three unbounded
parameters as:

• there is no limit on the number of threads present;

• there is no limit on the size of the data structure (length of the list,
etc.); and

• data values may have an infinite (e.g. integer) type.

Thus they must be considered as infinite state systems.

1.3 Bounded Verification

One way of analysing concurrent data structures using model checking is
to construct a finite model with bounds on the parameters. This approach
has been used in an ad hoc way by a number of authors [e.g. Harris, 2001;
Fraser, 2003; Burckhardt et al., 2006, 2007; Colvin et al., 2006; Lamport,
2006; Fraser and Harris, 2007]. However, whilst it is a good approach for
finding bugs, if no bugs are found it does not necessarily give any indica-
tion of the correctness of the algorithm.

‘Folk wisdom’ holds that most bugs will appear in small instances of
systems [see, e.g. Jackson and Damon, 1996; Marinov et al., 2003; Dolby
et al., 2007; Jackson, 2012; Oetsch et al., 2012] This suggests that verifying
bounded models up to a “reasonable” size would give some confidence

4 CHAPTER 1. INTRODUCTION

in the correctness of the unbounded model. Several questions arise at this
point:

1. What size instances would need to be verified in order to give a rea-
sonable level of confidence in an algorithm?

2. What size instances are needed to trigger known bugs in existing
algorithms?

3. Is this approach equally applicable to both linearisability and the
nonblocking properties?

4. Is this approach worth doing before, or instead of, a full verification
(using a theorem prover, model checker with abstraction, etc.)?

These questions have not been comprehensively explored in the litera-
ture. In this thesis we aim to address all of the questions, by presenting a
range of case studies — of both correct and incorrect algorithms — check-
ing linearisability and nonblocking properties.

1.4 Unbounded Verification

A powerful approach for verifying large or infinite state systems with a
model checker is to construct a finite state abstraction that preserves the
property of interest, i.e. such that the property holds in the original if it
holds in the abstraction. Some information in the states is made less pre-
cise, allowing each abstract state to represent (infinitely) many concrete
states.

Since the verification of parametrised systems is undecidable in gen-
eral [Apt and Kozen, 1986], it is inevitable that any abstraction techniques
will be limited in applicability. Many such techniques have been proposed
for parametrised systems (see Section 3.5), though most only consider one
parameter (generally the number of threads) so are not applicable to con-
current data structures.

The more general technique of canonical abstraction [Sagiv et al., 2002]
is able to be applied to concurrent data structures, as it puts a finite bound
on the number of possible abstract states. Canonical abstraction repre-
sents abstract states as 3-valued logical structures over a fixed finite set
of predicates. It is possible to trivially abstract any system to an abstract
system consisting of a single state, which (perhaps spuriously) fails every

1.5. OUTLINE 5

property. Thus, the principal problem is not whether an abstraction can be
constructed, but whether we can construct an abstraction that is detailed
enough to allow the specified property to be verified, but not so detailed
that it is too large to be fully examined. This involves choosing the right
balance of formulas to be represented by additional instrumentation (or de-
rived) predicates, which are defined in terms of the other core predicates.

There are several questions that can be asked about canonical abstrac-
tion in this context:

1. Can canonical abstraction be used to verify linearisability for non-
blocking data structures, with unbounded instances of all three pa-
rameters?

2. Can canonical abstraction be used to verify nonblocking properties
for concurrent data structures, with unbounded instances of all three
parameters?

3. If so, for either of the above, are the abstractions efficient (i.e. are they
small enough to enable practical verification)? If not, is it possible to
improve them?

In this thesis I will answer the first question in the affirmative, at least
for linked list based stacks and queues. Independently, other researchers
have used canonical abstraction to achieve the same result, i.e. verify lin-
earisability for linked list based stacks and queues with unbounded lists
and data values but bounded threads [Amit et al., 2007], and then for un-
bounded threads also [Berdine et al., 2008]. One of the principal distinc-
tions is that these add additional layers on top of canonical abstraction to
achieve the results, whilst my approach is achievable purely within canon-
ical abstraction.

I will also address the third question, proposing a technique to more
effectively abstract threads than has been done before in canonical abstrac-
tion.

The second question is left for future work.

1.5 Outline

The remainder of the thesis is divided into three parts. The first part
contains background material. Chapters 2 and 3, covering nonblocking

6 CHAPTER 1. INTRODUCTION

concurrent data structures and model checking, respectively, are utilised
throughout. Chapter 4, covering canonical abstraction, is utilised in Part III.

The second part investigates modelling and testing nonblocking data
structures using model checking. Chapter 5 details how to

• represent nonblocking data structure algorithms,

• specify the safety property linearisability, and

• specify the nonblocking progress properties wait-, lock- and obstruction-
freedom

for model checking. Chapter 6 details the results of bounded verification
for a range of nonblocking data structures.

The third part investigates verifying nonblocking data structures using
model checking. Chapter 7 details how linearisability of linked list based
nonblocking data structures can be verified using canonical abstraction.
Chapter 8 details a method for more efficiently using canonical abstraction
by abstracting all of the threads together.

Finally, Chapter 9 is the conclusion, in which we directly address the
questions raised in this chapter.

Part I

Background

7

Chapter 2

Nonblocking Data Structures

In this chapter we introduce nonblocking data structures as used through-
out the thesis. Section 2.1 discusses the general representation of concur-
rent data structures used. Section 2.2 discusses the safety property linearis-
ability, which relates a concurrent algorithm to a sequential specification.
Section 2.3 discusses the use and problems of mutual exclusion to syn-
chronise access to shared information. Section 2.4 introduces the progress
properties wait-freedom, lock-freedom and obstruction-freedom (collec-
tively “nonblocking properties”1 that can apply to concurrent algorithms
that do not employ mutual exclusion, whilst Section 2.5 discusses some
atomic operations that can be used to achieve concurrent synchronisation
with these properties. Finally, Section 2.6 describes two data structure al-
gorithms that will be used as examples.

2.1 Concurrent Data Structures

In this thesis we consider concurrent data structure implementations, where
a fixed finite collection of sequential threads concurrently perform opera-
tions (push, pop, enqueue, dequeue, etc.) on a data structure represen-
tation. This representation consists of a (possibly dynamic) collection of
shared/global variables, which all threads can read and write to. Ad-
ditionally, each thread has a collection of local variables that only it can
read and write. The atomic operations that the threads perform consist

1Note that there are other uses of the terms “blocking” and “nonblocking” in the liter-
ature, such as for distinguishing whether transitions are defined as full or partial relations
[see e.g. Smith and Derrick, 2005].

9

10 CHAPTER 2. NONBLOCKING DATA STRUCTURES

Shared: c : integer := 0

1: operation INC()
2: a := c
3: b := a + 1
4: c := b
5: end operation

6: operation DEC()
7: a := c
8: b := a− 1
9: c := b

10: end operation

Figure 2.1: Basic counter implementation

9;idle

2;idle

3;73;2 7;87;3

7;2 7;7

7;idle

3;idle

8;2 8;7

idle;idle

8;idle

4;idle

2;7

idle;9

idle;82;2

2;3 idle;4

idle;7

2;8

idle;3

idle;2

Figure 2.2: Initial part of the counter execution graph

of primitive read and write type actions (and some less primitive actions,
discussed in Section 2.5). We use the interleaving model of concurrency, in
which the concurrent system is constructed by a nondeterministic asyn-
chronous composition of the threads. This means that every step of the
system is a single step of a single thread, and at every state the next step
could be performed by any of the active threads.

Example A basic counter algorithm is displayed in Figure 2.1. It has a
single shared variable c (initially 0) that records the counter’s value. There
are two operations that increment and decrement the counter, and which
utilise each thread’s local variables a (to store the ‘snapshot’ copy of c) and
b (to store the updated value).

Consider a system with two threads, each initially idle. The graph of
possible executions begins (for three steps) as shown in Figure 2.2, with
red indicating the first thread’s steps, and blue indicating the second thread’s
steps.

It may seem at first glance that the implementation in Figure 2.1 is un-
necessarily verbose — writing the increment for example as a single step

c := c + 1

2.2. LINEARISABILITY 11

is much more concise. However, this is generally not assumed to be an
atomic step: it contains three atomic steps — a read of c, an update, and a
write to c — each of which can be interleaved with the atomic steps of the
other threads. �

It is important when analysing concurrent algorithms that the atomic
steps are clear so that potential executions are not missed. Some systems
have atomic steps that can both read and write (see Section 2.5). Addi-
tionally, on some systems with relaxed memory models, reads and writes
are not necessarily atomic [see, e.g. Adve and Gharachorloo, 1996]. In this
thesis we assume that reads and writes are atomic steps.

2.2 Linearisability

The sequential approach to correctness is to consider the states of a data
structure at the invocation and response of an operation to determine whe-
ther it has been applied ‘correctly’. This is meaningless for concurrent data
structures though, as multiple operations can be occurring at the same
time. The intuitive notion of correctness that we adopt in this context is
that an operation must be seen to take effect atomically at some point be-
tween its invocation and response by an outside observer with no knowl-
edge of the internal state, and that the observed sequential behaviour is
‘correct’ with respect to a given sequential specification. This notion is
captured by the linearisability property, which was introduced by Herlihy
and Wing [1987, 1990].

A history of a concurrent system is a finite sequence of invocation and
response events. We write invocations as invp(OP, val∗) and responses as
respp(OP, val∗), where p is a process/thread name, OP is an operation, and
val∗ is a sequence of values that are arguments or results.2 A response
matches an invocation in a history if their process names agree. An invoca-
tion is pending if there is no subsequent matching response. For a history
H, complete(H) is the maximal subsequence of matching invocations and
responses. A process subhistory Hp of a history H is the subsequence of all
events for process p. Two histories H and H′ are equivalent if for every p,
Hp = H′p.

2Herlihy and Wing also parametrise these with the name of a concurrent object (data
structure). We will only discuss systems with one object, so leave this out for simplicity.

12 CHAPTER 2. NONBLOCKING DATA STRUCTURES

A history is sequential if the first event is an invocation, and (except for
the last event) every invocation is immediately followed by a matching
response and every response is immediately followed by an invocation. A
history that is not sequential is concurrent. A set of sequential histories S
is a sequential specification if it is prefix-closed, i.e. whenever H ∈ S, every
prefix of H is also in S.

A history H induces an irreflexive partial order <H on operations:

OP1 <H OP2 if resp(OP1) precedes inv(OP2) in H.

For sequential histories, the order is total. A history H is linearisable, with
respect to a sequential specification T, if it can be extended (by appending
zero or more response events) to some history H′ such that

• complete(H′) is equivalent to a history S in T, and

• <H⊆<S, i.e. the order of the non-concurrent operations in H is the
same in S.

Example Figure 2.3 shows two possible executions of the counter algo-
rithm in Figure 2.1. The execution on the left has the following trace of
invocations and responses:

inv1(INC), inv2(INC), resp1(INC, 1), inv1(DEC), resp1(DEC, 0), resp2(INC, 1)

This can be rearranged to the following valid sequential trace, showing
that the execution is linearisable:

inv1(INC), resp1(INC, 1), inv1(DEC), resp1(DEC, 0), inv2(INC), resp2(INC, 1)

The execution on the right has the following trace:

inv1(INC), inv2(INC), resp2(INC, 1), resp1(INC, 1)

There are two ways of sequentially rearranging this trace, both of the form

invi(INC), respi(INC, 1), invj(INC), respj(INC, 1)

neither of which is a valid counter trace. This means that the trace is not
linearisable. Hence the algorithm is not a linearisable concurrent counter
implementation, due to the possible interference between the threads (also
known as a race condition). �

2.3. MUTUAL EXCLUSION 13

Thread 1 Thread 2
inv1(INC)
a := 0
b := 1

inv2(INC)
a := 0
b := 1

c := 1
resp1(INC, 1)
inv1(DEC)
a := 1
b := 0
c := 0
resp1(DEC, 0)

c := 1
resp2(INC, 1)

Thread 1 Thread 2
inv1(INC)
a := 0
b := 1

inv2(INC)
a := 0
b := 1
c := 1
resp2(INC, 1)

c := 1
resp1(INC, 1)

Figure 2.3: Two counter executions

There are often many possible linearisations for an execution, but none
is more ‘correct’ or ‘desirable’. For some algorithms it may be possible
to label a specific step in an operation as the linearisation point, where it
is deemed to take effect. This is the approach that will be taken in this
thesis (see Chapter 5), but it is not necessarily so simple — there is no
requirement for an operation to be “linearised” at one of its own steps,
nor for only one operation being “linearised” in a single step.

2.3 Mutual Exclusion

One of the greatest concerns with concurrent software is how to synchro-
nize access to shared information. The algorithm in Figure 2.1 fails to
be correct because two or more threads are able to read and write to the
shared memory concurrently without regards to the changes made by the
others.

The traditional method for dealing with this issue is to ensure mutual
exclusion [Dijkstra, 1965] by the use of locks (or a similar mechanism such
as semaphores or Java’s synchronised keyword). Locks grant access to a
particular area of memory to only one thread at a time — a thread must

14 CHAPTER 2. NONBLOCKING DATA STRUCTURES

1: operation INC()
2: acquire(lock)
3: a := c
4: b := a + 1
5: c := b
6: release(lock)
7: end operation

8: operation DEC()
9: acquire(lock)

10: a := c
11: b := a− 1
12: c := b
13: release(lock)
14: end operation

Figure 2.4: Counter algorithm with a lock

first acquire the lock before it enters the critical section that accesses the
memory, and must release it afterwards.

Example Figure 2.4 shows a modified counter algorithm that uses a lock
for synchronisation. In this small example, the lock enforces sequential be-
haviour — when one thread has acquired the lock, all competing threads
must wait for it to be released — and avoids the race condition error. �

Locks do solve the synchronization problem — each thread is guar-
anteed that no other will alter the shared data whilst it holds the lock —
but locks can introduce additional problems [see, e.g., Herlihy and Shavit,
2008]. A deadlock can occur for a number of reasons, such as thread p hav-
ing acquired lock1 and now waiting to acquire lock2, with thread q having
acquired lock2 and now waiting to acquire lock1. Alternatively a thread
could be killed before releasing a lock, thus blocking all other threads that
require that lock from progressing.

Even if an algorithm is designed to avoid deadlocks, and no thread
holding a lock fails,3 mutual exclusion has some unavoidable performance
issues. Because the lock owner blocks all waiting threads, it can lead to
priority inversion, where a high priority thread is forced to wait for a low
priority one, and convoying, where a number of fast threads are forced to
closely follow a slower one through a series of locks — the overall perfor-
mance being determined by the slowest thread. For these reasons mutual
exclusion-based algorithms do not scale well — their efficiency decreases
with the number of concurrent threads.

3Though in this model an aborted thread is indistinguishable from a very slow one.

2.4. NONBLOCKING PROGRESS PROPERTIES 15

2.4 Nonblocking Progress Properties

Producing non-blocking behaviour is not as simple as avoiding explicit
calls to locks — there are many subtle ways of inducing starvation, where a
thread is prevented from completing its operation. Instead, we define a hi-
erarchy of progress properties that we might want an algorithm to satisfy.
They are, in descending order: wait-freedom, lock-freedom and obstruction-
freedom; an algorithm that satisfies any one of these is said to be nonblock-
ing.4

2.4.1 Wait-freedom

An algorithm is wait-free if every thread is able to complete an operation
within a finite number of its own steps. This property, due to Herlihy
[1991], ensures that every thread will make progress, independent of the
number and behaviour of other threads. Wait-freedom captures the ideal
notion of nonblocking behaviour, but in practice wait-free algorithms are
usually expensive to implement, and few algorithms have been proposed
that are deemed to be of practical significance.

2.4.2 Lock-freedom

An algorithm is lock-free if some thread is able to complete an operation
within a finite number of steps of the system. The first such algorithm was
given by Lamport [1977] (for a single-writer / multi-reader shared vari-
able) and the term “lock-free” was coined by Massalin and Pu [1991]. This
property ensures the absence of deadlocks and livelocks, so the system
will always make progress, independently of the number and behaviour
of individual threads. In contrast to wait-freedom, it sacrifices individ-
ual guarantees of progress for a system guarantee of progress. This is less
than ideal, but is often good enough in practice, as complete resource star-
vation is avoided — a thread is infinitely delayed only if other threads
make progress infinitely often. All wait-free algorithms are also lock-free.

4The nomenclature used here conforms to the current general consensus in the liter-
ature. There can be some ambiguity, notably with “nonblocking” and “lock-free” being
used interchangeably by some authors.

16 CHAPTER 2. NONBLOCKING DATA STRUCTURES

2.4.3 Obstruction-freedom

An algorithm is obstruction-free if every thread is able to complete within
a finite number of steps when it is running “in isolation”. This property,
due to Herlihy et al. [2003], ensures the absence of deadlocks, so individ-
ual threads will be able to complete, regardless of the failure or delay of
other threads. It does not rule out livelocks however, and allows conflict-
ing threads to mutually prevent any of them from progressing. In prac-
tice, a contention manager is engaged for these situations to resolve the
conflict and allow progress. The choice of contention manager employed
is orthogonal to the algorithm implementation, and can even be changed
on-the-fly.

Obstruction-freedom allows algorithms that are simpler to design and
are more efficient in the (common) cases of low contention, compared to
wait- and lock-freedom. Further, the separation of contention manage-
ment from the algorithm allows different solutions to be explored without
reverifying the algorithm. All lock-free algorithms are also obstruction-
free.

2.5 Nonblocking Synchronization

In mutual exclusion synchronization, conflict is avoided by blocking ac-
cess to resources. In nonblocking synchronization the key idea is to al-
low full access to resources and to detect conflict by atomically testing for
changes to a value when it is updated. Primitives that can be used to
implement this idea include compare-and-swap (CAS) and load-linked/store-
conditional (LL/SC).

2.5.1 Compare-and-Swap

Compare-and-swap, as illustrated by the pseudocode in Figure 2.5, takes
three values — an address, an old value and a new value — and returns a
boolean result. If the value at addr is the same as old then it is atomically
set to new, and true is returned; otherwise false is returned.

CAS is available on a number of modern processors, including x86,
ia64 and SPARC.

Example Figure 2.6a shows the increment operation of a counter algo-
rithm that uses CAS (the decrement is identical in structure). If there has

2.5. NONBLOCKING SYNCHRONIZATION 17

1: operation CAS(addr, old, new)
2: atomic
3: if addr = old then
4: addr := new
5: return true
6: else
7: return false
8: end if
9: end atomic

10: end operation

Figure 2.5: Pseudocode for Compare-and-Swap

1: operation INC()
2: repeat
3: a := c
4: b := a + 1
5: until CAS(c, a, b)
6: end operation

(a) Using CAS

1: operation INC()
2: repeat
3: a := LL(c)
4: b := a + 1
5: until SC(c, b)
6: end operation

(b) Using LL/SC

Figure 2.6: Nonblocking counter increment operations

been no interference from other threads then the CAS succeeds and the
operation terminates. Otherwise, the CAS fails (returns false) and the op-
eration retries.

Note that the algorithm is lock-free, but not wait-free, as a slow thread
could keep retrying indefinitely whilst a faster thread repeatedly performs
an update in between its read and CAS steps. �

2.5.2 Load-Linked, Store-Conditional

Load-linked (LL) and store-conditional (SC) are a pair of operations that
perform a similar function to CAS. An LL operation reads the value at an
address addr. A subsequent SC operation atomically replaces the value at
addr with a new one iff no SC operations have been performed on addr (by
any thread) since the previous LL (by the current thread), returning true if
successful and false otherwise.

18 CHAPTER 2. NONBLOCKING DATA STRUCTURES

However, it is often implemented in such a way that an SC can fail
spuriously when the location has not been modified, for example if an-
other value has been modified on the same cache line. This is known as
weak LL/SC and is less than ideal. A number of authors have investigated
implementing strong LL/SC operations using weak LL/SC or CAS [Moir,
1997; Anderson and Moir, 1999; Jayanti and Petrovic, 2003; Doherty et al.,
2004c; Jayanti and Petrovic, 2005].

Versions of LL/SC are also available on a number of modern proces-
sors, including MIPS, Alpha, ARM and PowerPC.

Example Figure 2.6b shows the increment operation of a counter algo-
rithm that uses LL/SC. The structure is almost identical to the CAS-based
version. �

2.5.3 ABA Problem

An SC operation is always able to determine when a value has changed,
but this is not always the case for CAS operations. This allows CAS-based
algorithms to suffer from the so-called “ABA Problem”. Suppose a process
p performs read(x) and receives the value A. Subsequently another pro-
cess q performs CAS(x, A, B) and later CAS(x, B, A). Now if p performs
CAS(x, A, Z) it will succeed, despite x having been modified since it was
last read. In some cases, such as the example counter algorithm, this does
not have any adverse effects. In other cases, particularly with memory
reuse, it can be a source of errors.

One approach to avoiding the ABA problem is to attach a version num-
ber to the values that are updated with CAS operations. The version num-
ber is incremented on each modification so, for example, p reads the value
〈A, 0〉, then q performs CAS(x, 〈A, 0〉 , 〈B, 1〉) and CAS(x, 〈B, 1〉 , 〈A, 2〉).
Now p’s CAS(x, 〈A, 0〉 , 〈Z, 1〉) operation will fail. Obviously, as comput-
ers use finite number representations that wrap around at the extremities,
it is still possible to encounter an ABA error. However, if the size of the
data type is large enough we can be confident that it is safe enough in
practice [Moir, 1997].

2.5.4 Memory Management

The allocation and deallocation of memory is a key issue in designing
linked-list based nonblocking data structures. The simplest approach is to

2.6. ALGORITHMS 19

assume the presence of a garbage collector and never explicitly free mem-
ory — memory is only freed by the system when it is no longer referenced,
and newly allocated memory is always “fresh”, avoiding the ABA prob-
lem for list node pointers.5 If there is no garbage collector then there is
an effective memory leak — the algorithm uses as much memory as the
number of nodes added during its lifetime.

When a garbage collector cannot be utilised, it is not possible for a
thread to free a node immediately after removing it — another thread may
still have a pointer to it and may attempt to access and modify it after the
memory has been reallocated to a different program! One solution to this
problem, introduced by Michael and Scott [1996], is to put removed nodes
in a “free list” or “memory pool”, never freeing them to the system. When
a “new” node is required, one is taken from the free list — new memory
is only allocated when the free list is empty. Thus the algorithm’s memory
use never decreases — the amount of memory used at any particular point
in time is the maximum needed up until that point. Note that the reuse of
nodes may allow the ABA problem to occur for node pointers, so it may
be necessary to add version numbers, as discussed above.

Alternatively, more sophisticated techniques due to Michael [2002, 2004]
and Herlihy et al. [2002a,b, 2005] can be used, which allow memory to be
freed to the system.

In this thesis, we will only consider linked-list based algorithms that
assume the presence of a garbage collector. The implementation of a non-
blocking garbage collector is an important but independent field of re-
search [see e.g. Herlihy and Moss, 1991, 1992; Gidenstam et al., 2005, 2009].

2.6 Algorithms

Below we describe three nonblocking data structure implementations that
will be used in later chapters as examples. Section 2.6.1 describes a lock-
free stack algorithm, and Section 2.6.2 describes two similar lock-free queue
algorithms.

20 CHAPTER 2. NONBLOCKING DATA STRUCTURES

Type: Node = {val : T; next : Node}
Shared: Head : Node := null

1: operation PUSH(lv:T)
2: n := new(Node)
3: n.val := lv
4: repeat
5: ss := Head
6: n.next := ss
7: until CAS(Head, ss, n)
8: end operation

9: operation POP()
10: repeat
11: ss := Head
12: if ss = null then
13: return empty
14: end if
15: ssnext := ss.next
16: lv := ss.val
17: until CAS(Head, ss, ssnext)
18: ss.next := null
19: ss.val := null
20: return lv
21: end operation

Figure 2.7: A lock-free stack algorithm

2.6.1 Lock-free Stack

Figure 2.7 gives the pseudocode for a linked-list based stack algorithm.
Each node of the list contains a value in the val field and a next field point-
ing to another node. A shared Head variable points to the first element
when the stack is non-empty, and is null when the stack is empty. The al-
gorithm assumes a garbage collector is present — popped nodes are not
explicitly freed. For this reason, the ABA problem cannot occur, so version
numbers are not necessary.

A push operation obtains a new node n and sets its value. It then takes
a “snapshot” of Head and points n’s next field at the snapshot. A CAS
operation is used to ensure that Head is updated to point to n only if it
has not been modified. If Head has been modified then there has been a
conflict with another (successful) operation so the loop is restarted.

A pop operation first takes a snapshot of Head and tests to see if the
snapshot is null; if so it returns “empty”. Otherwise it takes a snapshot of
this node’s next field and records the value in the val field. As for push,
a CAS is used to detect a conflict with another successful operation —

5Except for null pointers — see the discussion of the queue example in Section 2.6.2
on page 23.

2.6. ALGORITHMS 21

if Head has been modified it retries, otherwise it uses the snapshots to
advance Head along the list. The fields of the popped node can be reset
(lines 18–19) to increase the efficiency of garbage collection (and model
checking analyses, see Section 5.1) though this is not necessary.

This algorithm was first introduced by Treiber [1986] in IBM System/370
assembly, using version numbers. Pseudocode versions are given by Michael
and Scott [1998] with version numbers, and by Colvin et al. [2005] without.
Versions of the algorithm have been formally verified by several authors
[e.g. Colvin et al., 2005].

We can see that the algorithm is linearisable by determining the lineari-
sation points of the operations:

• A push operation takes effect at line 7, when the CAS is successful.

• A non-empty pop operation takes effect at line 17, when the CAS is
successful.

• An empty pop operation “takes effect” at line 11 when it reads a
null Head value. The linearisation point is not at line 12 when the
snapshot is tested, because Head may have been changed by other
threads, so the stack cannot be guaranteed to be empty at that point
in time.

For the first two, the successful CAS step is where the change of an added
or removed node becomes observable to the other threads, and it is the
trigger for leaving the loop, so cannot repeat. For the third, a null snapshot
causes the thread to execute lines 12–13 and exit the loop (and operation),
so the linearisation point cannot be repeated.

Each of these linearisation points occur exactly once for each operation.
In any history of the algorithm, the invocation and response of each op-
eration can be rearranged to the point where the operation’s linearisation
point occurred, resulting in a valid sequential stack history.

Regarding progress properties, both operations repeat the loop if they
detect conflict with another thread. Therefore it is possible for one thread
to loop indefinitely, detecting conflict each time, and never completing its
operation; thus the algorithm is not wait-free. However, these conflicts
occur when a thread executes a successful CAS step and leaves the loop,
allowing it to complete the operation without interference. Thus the algo-
rithm is lock-free, as it is always the case that some thread will complete
its operation — a thread is only delayed by repeating its loop if another
thread exits its loop.

22 CHAPTER 2. NONBLOCKING DATA STRUCTURES

Type: Node = {val : T; next : Node}
Shared: Head : Node := new(Node)
Shared: Tail : Node := Head

1: operation ENQUEUE(lv:T)
2: n := new(Node)
3: n.val := lv
4: loop
5: sstail := Tail
6: ssnext := sstail.next
7: if sstail = Tail then
8: if ssnext = null then
9: if CAS(sstail.next, ssnext, n) then

10: break
11: end if
12: else
13: CAS(Tail, sstail, ssnext)
14: end if
15: end if
16: end loop
17: CAS(Tail, sstail, n)
18: end operation

(a) Initialisation and enqueue operation

Figure 2.8: A lock-free linked list based queue

2.6.2 Lock-free Unbounded Queue

Figure 2.8 gives the pseudocode for (two versions of) a linked list based
queue algorithm, which is similar in form to the stack algorithm and also
assumes the presence of a garbage collector. This algorithm has shared
Head and Tail variables, and both are initialised to a new dummy node; a
queue of n elements is represented with a list of n + 1 nodes. Head always
points to the dummy node at the beginning of the list and its next field
points to the node that holds the first element in the queue; thus the queue
is empty iff Head.next = null. An enqueue operation contains two distinct
atomic updates — “add a new node to the end of the list” and “make Tail
point to the new node”. Because of this, Tail does not necessarily point to
the final node in the list — it may lag one node behind and point to the

2.6. ALGORITHMS 23

penultimate node. To avoid a mid-enqueue thread blocking other threads
from proceeding, the step of updating Tail may be performed by another
thread if it detects that the queue is in such a state.

An enqueue operation (see Figure 2.8a) begins by obtaining a new node
n and setting its value. It then begins a loop by reading a “snapshot” first
of Tail and then of the (snapshot’s) next field. It checks whether Tail has
changed (if so then restarts the loop) and then tests whether the second
snapshot is null. If ssnext is null then it is (or was) the end of the list, so
it attempts to append n to the list with a CAS; if this fails then the loop is
restarted, otherwise it leaves the loop and attempts to make Tail point to
n with a CAS. Alternatively, if ssnext is not null then there is another en-
queue operation that is in between the CAS updates and has not updated
Tail yet; thus it attempts to update Tail itself with a CAS before restarting
the loop. For both of the CAS steps that update Tail the success or fail-
ure of the CAS does not need to be checked — the CAS will only fail if
another thread has already performed the update, and it only needs to be
performed once.

Figures 2.8b and c show two different dequeue operations. The first
one begins by reading “snapshots” of Head and Tail and the Head snap-
shot’s next field. It checks whether Head has changed (if so restarts the
loop) and then checks whether (the snapshots of) Head and Tail are the
same. If Head and Tail are the same then either the queue is empty —
if ssnext is null — or another thread is mid-way through enqueuing the
first element in a singleton queue; the dequeue operation attempts to help
by updating Tail with a CAS before restarting the loop. Alternatively, if
Head and Tail are not the same then the queue is (or was) non-empty, so
a dequeue can be attempted. It reads the value of the first non-dummy
node (ssnext) and then attempts to increment Head with a CAS. If the CAS
succeeds then it returns the value, otherwise it restarts the loop.

As with the stack algorithm it is possible, but not necessary, for garbage
collection and model checking efficiency to reset the value of the new
dummy/Head node (line 33). It is not possible however, to reset the next
field of the dequeued node. Doing so allows an ABA error in an enqueu-
ing thread — the updating CAS is only able to check that Tail’s next field
remains unchanged (i.e. is null) and not whether Tail itself has changed.
If Tail has changed and the original node has been dequeued, then setting
its next field to null allows the enqueue operation to erroneously append
n to a node outside the list.

The second dequeue operation (see Figure 2.8c) is similar, but does not

24 CHAPTER 2. NONBLOCKING DATA STRUCTURES

19: operation DEQUEUE()
20: loop
21: sshead := Head
22: sstail := Tail
23: ssnext := sshead.next
24: if sshead = Head then
25: if sshead = sstail then
26: if ssnext = null then
27: return empty
28: end if
29: CAS(Tail, sstail, ssnext)
30: else
31: lv := ssnext.val
32: if CAS(Head, sshead, ssnext) then
33: ssnext.val := null
34: return lv
35: end if
36: end if
37: end if
38: end loop
39: end operation

(b) Original dequeue operation

Figure 2.8: A lock-free linked list based queue

read a snapshot of Tail at the beginning. Detecting an empty queue and
incrementing Head proceed otherwise the same, and it is only after the
successful CAS to increment Head that Tail is read and potentially incre-
mented after detecting an unfinished singleton enqueue.

The second dequeue operation appears to be more efficient, as Tail is
not read unnecessarily. It is only read at the end of a non-empty dequeue
— in contrast, the first dequeue operation reads it at least once every time
the loop is executed. This difference in behaviour also leads to a difference
in the structures the lists can take. Because the second dequeue operation
increments Head before checking whether there is a singleton queue with
Tail lagging behind, it allows Head and Tail to “cross over”, i.e. Tail.next =
Head. This behaviour is not possible with the first dequeue operation, as
it always increments the lagging Tail before incrementing Head.

This algorithm, with the first dequeue operation, was first introduced

2.6. ALGORITHMS 25

40: operation DEQUEUE()
41: loop
42: sshead := Head
43: ssnext := sshead.next
44: if sshead = Head then
45: if ssnext = null then
46: return empty
47: else
48: lv := ssnext.val
49: if CAS(Head, sshead, ssnext) then
50: ssnext.val := null
51: sstail := Tail
52: if sshead = sstail then
53: CAS(Tail, sstail, ssnext)
54: end if
55: break
56: end if
57: end if
58: end if
59: end loop
60: return lv
61: end operation

(c) Simplified dequeue operation

Figure 2.8: A lock-free linked list based queue

by Michael and Scott [1996, 1998] using version numbers and a “free list”
of nodes that never returns memory to the system. The algorithm was first
verified by Doherty et al. [2004b], who introduced the second dequeue
operation and assumed the presence of a garbage collector as we do here.

We can see that the algorithm is linearisable by determining the lin-
earisation points of the operations. For the operations that make changes
visible to other threads the linearisation points are relatively straightfor-
ward:

• For enqueue it is the CAS step at line 9 that adds the new node to the
end of the list.

• For non-empty dequeues it is the CAS step at lines 32 and 49 that
increment Head along the list.

26 CHAPTER 2. NONBLOCKING DATA STRUCTURES

For empty dequeues it is when the snapshot of sshead.next is read at lines
23 and 43 when entering the loop for the final time. It is not at lines 26
and 45 when ssnext is determined to be null — by this time other threads
may have modified the queue and it may not be empty anymore. For this
reason it is not possible to determine when the snapshot is taken whether
it will be the linearisation point for an empty dequeue or not — even if the
queue is empty, other threads may enqueue and dequeue nodes so that
Head is changed and the operation restarts the loop at lines 24 and 44.

For the same reasons as for the stack algorithm, this queue algorithm
is not wait-free but is lock-free. One thread can be infinitely delayed by
detecting conflict with other threads and restarting the loop, but the con-
flicting behaviour is a thread executing a CAS step (one of the linearisation
points) and exiting its loop, so it is always the case that some thread will
complete its operation within a finite number of steps.

Chapter 3

Model Checking

Model checking is an automated formal verification technique commonly
used for reactive systems [see e.g. Clarke et al., 1999; Bérard et al., 2001;
Clarke and Schlingloff, 2001; Holzmann, 2004; Baier and Katoen, 2008;
Grumberg and Veith, 2008]. Traditionally, temporal logic model checking
— developed independently by Clarke and Emerson [1981] in the USA
and Queille and Sifakis [1982] in France — is a method that investigates
whether a structureM, representing a system is a model of a temporal logic
formula ϕ, representing a specification of the system, in other words that
M satisfies ϕ, writtenM |= ϕ. However, the term “model checking” has
become broader to encompass other state-space exploration methods that
“check” a “model” of a system for errors, not necessarily involving tempo-
ral logic. For example, the Spin model checker (see Section 3.6.1) provides
options such as an assertion statement as a means of checking properties,
as well as a temporal logic.

All model checkers work by exploring the entire state space of the sys-
tem to verify the desired property — whether that be the satisfaction of
a temporal logic formula, the affirmation of all embedded assertions, the
absence of deadlock states, some other property, or a combination.

This chapter begins by introducing the formalisms used for systems
(Section 3.1) and specifications (Section 3.2). Then we describe the three
major paradigms: explicit state model checking (Section 3.3.1), BDD-based
symbolic model checking (Section 3.3.2), and bounded model checking
(Section 3.3.3).

In Section 3.4, we discuss methods commonly employed for reducing
the size of the state space explored, to tackle the state explosion problem.
In Section 3.5, we discuss the abstraction of systems for model checking

27

28 CHAPTER 3. MODEL CHECKING

x = 0
y = 2

,, x = 1
y = 1ll

,, x = 2
y = 0ll

Figure 3.1: Example Kripke structure

in general terms. Finally, in Section 3.6, we discuss a number of model
checking tools.

3.1 Systems

Systems are described abstractly by graph structures, with nodes repre-
senting states and arcs representing transitions. Plain directed graphs are
not expressive enough, so they are extended with annotations providing
more specific information. The most popular formalisms are Kripke struc-
tures, which annotate the nodes with atomic propositions, and labelled tran-
sition systems, which annotate the arcs with actions. The two formalisms
are equivalent, with translations from each to the other [De Nicola and
Vaandrager, 1990; Reniers and Willemse, 2011].

Kripke structures were introduced by Kripke [1959, 1963] as a model
theory for modal logics, of which temporal logics are a subset [Goldblatt,
1992]. A Kripke structure is defined over a set AP of atomic propositions
by a tuple 〈S, Init, R, L〉, where S is a set of states, Init ⊆ S is a set of ini-
tial states, R ⊆ S× S is a transition relation, and L : S → 2A is a labelling
function, or interpretation, that assigns all the propositions that are true at
each state. For model checking purposes, both S and AP are usually finite,
and R is often required to be total, i.e. every state has at least one successor.
Figure 3.1 [from Müller-Olm et al., 1999] shows an example Kripke struc-
ture where the propositions are of the form var = num and represents two
components, x and y, trading two resources back and forth.

In this chapter, we use Kripke structures to define the semantics of
specification logics. In later chapters we specify systems using the mod-
elling languages of the model checking tools used; these can be translated
to Kripke structures.

3.2. SPECIFICATIONS 29

GFED@ABCa b

����������

��7
7777777

GFED@ABCb c

BB��������
//?>=<89:;c
TT

GFED@ABCa b
�����

��???

GFED@ABCb c
�����

��???
?>=<89:;c

��????

GFED@ABCa b
������

��????
?>=<89:;c

��????
?>=<89:;c

��????

...
...

...
...

Figure 3.2: A Kripke structure and its computation tree

3.2 Specifications

Specification properties of the system are usually formalized in a temporal
logic, expressing properties of states at different points in time (where time
is relative to transitions). Temporal logics originate from the work of the
philosopher Arthur Prior [1957, 1967], and their use as a specification lan-
guage was first suggested by Amir Pnueli [1977, 1981]. They are a form of
modal logic and have been extensively studied [Emerson, 1990; Goldblatt,
1992; Stirling, 1992; Gabbay et al., 1994]. Many logics have been used for
model checking specifications, but the two most popular are propositional
linear temporal logic ([P]LTL) and computation tree logic (CTL). The first is of
the linear-time paradigm, where only linear executions of future states are
considered, and the second is of the branching-time paradigm, where all
possible future executions are considered at each state. First we define the
logic CTL*, which extends both.1

3.2.1 CTL*

CTL* is a powerful logic for describing properties of computation trees, i.e.
the tree of possible executions of a system. Figure 3.2 shows a simple
Kripke structure and part of its matching computation tree. In addition to
the standard propositional logic connectives, CTL* formulas contain path
quantifiers and temporal operators. There are two path quantifiers, which
refer to the paths that can possibly be taken from a state, A (“for all paths”)
and E (“for some path”). There are five temporal operators (three unary

1For an overview of the development of these three logics see the historical surveys of
Goldblatt [2003, 2006, §7.3] and Vardi [2008a,b].

30 CHAPTER 3. MODEL CHECKING

and two binary), which refer to the states in a path:

• X (“next”) requires a property to hold in the second state of the path;

• F (“eventually” or “in the future”) requires a property to hold in some
state of the path;

• G (“always” or “globally”) requires a property to hold in every state
of the path;

• U (“until”) is a binary operator that requires the first property to hold
in every state until the second holds;

• R (“release”) is the logical dual of U and requires the second property
to hold in every state up to and including one where the first holds
— i.e. when it is “released” by the first, which may never happen.

There are two types of formulas in CTL* — state formulas, which are
true or false for a specific state, and path formulas, which are true or false
for a specific path. The syntax of the logic is given by the following rules:

• If p ∈ AP, then p is a state formula.

• If ϕ and ψ are state formulas, then ¬ ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ→ ψ are
state formulas.

• If ϕ is a path formula, then Aϕ and Eϕ are state formulas.

• If ϕ is a state formula, then ϕ is a path formula also.

• If ϕ and ψ are path formulas, then ¬ ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, Xϕ,
Fϕ, Gϕ, ϕ U ψ and ϕ R ψ are path formulas.

CTL* is the set of state formulas defined by these rules.
The semantics of CTL* are defined with respect to a Kripke structure

〈S, Init, R, L〉 where R is total. A path in M is a sequence of states π =
s0, s1, s2, . . . such that for every i > 0, 〈si, si+1〉 ∈ R. This corresponds to
an infinite branch in the computation tree of the Kripke structure. The i-th
suffix of a path, πi, is the path that starts from the i-th state of π. For a state
formula ϕ, the notationM, s |= ϕ means that ϕ holds at state s inM. For
a path formula ϕ, the notation M, π |= ϕ means that ϕ holds along the

3.2. SPECIFICATIONS 31

path π inM. If p ∈ AP, ϕ and ϕ′ are state formulas, and ψ and ψ′ are path
formulas, then the relation |= is defined inductively as follows:

M, s |= p iff p ∈ L(s)
M, s |= ¬ ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ϕ′ iff M, s |= ϕ andM, s |= ϕ′

M, s |= Eψ iff ∃π = s, . . . • M, π |= ψ
M, s |= Aψ iff ∀π = s, . . . • M, π |= ψ
M, π |= ϕ iff M, s |= ϕ where π = s, . . .
M, π |= ¬ ψ iff M, π 6|= ψ
M, π |= ψ ∧ ψ′ iff M, π |= ψ andM, π |= ψ′

M, π |= Xψ iff M, π1 |= ψ
M, π |= Fψ iff ∃ i > 0 • M, πi |= ψ
M, π |= Gψ iff ∀ j > 0 • M, πj |= ψ

M, π |= ψ U ψ′ iff ∃ k > 0 • M, πk |= ψ′ and ∀ 0 6 j < k • M, πj |= ψ
M, π |= ψ R ψ′ iff ∀ j > 0 • ifM, πi 6|= ψ for every i < j

thenM, πj |= ψ′

The semantics of ∨ and→ are given by their standard definitions:

ϕ ∨ ψ ≡ ¬ (¬ ϕ ∧ ¬ ψ)

ϕ→ ψ ≡ ¬ ϕ ∨ ψ

Similarly, it would have been possible to define R, F, G and A in terms of
¬ , U and E:

ϕ R ψ ≡ ¬ (¬ ϕ U¬ ψ)

Fϕ ≡ true U ϕ

Gϕ ≡ ¬ F¬ ϕ

Aϕ ≡ ¬ E¬ ϕ

We say thatM is a model of ϕ,M |= ϕ, iffM, s0 |= ϕ for every s0 ∈ Init.
It is occasionally useful to refer only to universal or existential formu-

las. We define

ACTL* = {ϕ | ϕ does not contain E and is in NNF}
ECTL* = {ϕ | ϕ does not contain A and is in NNF}

where a formula is in negation normal form (NNF) iff all negation opera-
tors occur only before atomic propositions. NNF is required to ensure that
there are no implicit path quantifiers of the wrong kind, as ¬Aφ = E¬ φ
etc.

We are now able to define the logics LTL and CTL as subsets of CTL*.

32 CHAPTER 3. MODEL CHECKING

3.2.2 LTL

Linear temporal logic (LTL) is a logic for expressing properties that hold
for every execution; for this reason it is a useful logic for describing prop-
erties of a system’s behaviour. Time is treated as if each state has a unique
possible future. As such, there is only a single quantifier in each formula
— a universal quantifier at the beginning; in practice it is usually not writ-
ten explicitly.

The logic is obtained by restricting CTL* to formulas of the form Aϕ,
where ϕ is a path formula not containing any path quantifiers; thus it ex-
presses a subset of the properties expressed by ACTL*. The syntax can be
given in Backus normal form (BNF) as

LTL ::= Aφ

φ ::= AP | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ |
X φ | F φ | G φ | φ U φ | φ R φ

3.2.3 CTL

Computation tree logic (CTL) is a logic for expressing properties of a set
of executions; for this reason it is a useful logic for describing properties of
a system’s structure. Time is treated such that every possible future from
each state can be considered.

The logic is obtained by restricting CTL* so that every temporal oper-
ator is immediately preceded by a path quantifier (and vice versa). The
syntax can be given in BNF as

φ ::= AP | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ |
AX φ | EX φ | AF φ | EF φ | AG φ | EG φ |
A[φ U φ] | E[φ U φ] | A[φ R φ] | E[φ R φ]

3.2.4 Linear- versus Branching-time

There has been a significant amount of discussion in the literature over the
past several decades about the choice between CTL and LTL [e.g. Pnueli,
1977; Lamport, 1980; Emerson and Clarke, 1980; Ben-Ari et al., 1981, 1983;
Emerson and Halpern, 1983, 1986; Pnueli, 1985; Emerson and Lei, 1985,
1987; Clarke and Draghicescu, 1988; Vardi, 1998a,b, 2001; Nain and Vardi,

3.3. MODEL CHECKING PARADIGMS 33

2007].2 There are two main points of discussion — complexity and ex-
pressibility.

For a system of size n and formula of size m, a CTL model checking
algorithm will run in time O(nm) [Clarke et al., 1983, 1986], whilst an
LTL model checking algorithm will run in time n2O(m) [Lichtenstein and
Pnueli, 1985].3 This indicates that in the worst case, LTL model checking is
exponentially more expensive than CTL. This worst case behaviour occurs
infrequently in practice though, and most properties that are checked are
relatively small. As such, there is generally no notable difference in perfor-
mance between such model checkers. (Indeed, in some cases LTL model
checkers outperform CTL ones on the same problem [see e.g. Beaudenon
et al., 2010].)

It can be readily shown that LTL and CTL are expressively incompara-
ble — they express differing (though overlapping) sets of properties. CTL
can describe so-called ‘reset’ properties, which express that at every state
there is at least one possible execution that returns to an initial state. For
example, if p represents a property of an initial state, reset can be expressed
by the CTL formula AG(EF p), which has no equivalent in LTL. On the
other hand, LTL is able to describe fairness properties expressing that cer-
tain properties hold (or do not hold) infinitely often. For example, the LTL
formula AFG q requires q to hold in every state from some point in the
future, and has no equivalent in CTL.

In this thesis I prefer LTL when possible, as a more “natural” logic of
the two for reasoning about the behaviour of algorithms. However, in
Section 5.3 I define properties that can only be expressed in one of LTL or
CTL and thus use that particular logic for the definition.

3.3 Model Checking Paradigms

There are a great number of different algorithms for deciding the model
checking problem for temporal logics. As model checkers are fully au-
tomatic, a user can treat them as a ‘black box’ and use them success-
fully without understanding the underlying algorithm. It is useful how-
ever, to have a general understanding of the underlying approach. There
are three main paradigms of model checking algorithms — explicit state

2Appendix B of Holzmann’s Spin book [Holzmann, 2004] contains a brief and bal-
anced summary of this “debate”.

3See Schnoebelen [2003] for an overview of model checking complexity.

34 CHAPTER 3. MODEL CHECKING

model checking based on automata-theoretic methods, BDD-based sym-
bolic model checking, and SAT/SMT-based bounded model checking.

3.3.1 Explicit State Model Checking

The most straightforward approach for state space exploration is to per-
form a depth- or breadth-first search, explicitly storing each visited state
in memory. Temporal logic properties can be checked using automata-
based methods, first proposed by Vardi and Wolper [1986], to exploit the
fact that the logic LTL expresses a subset of the ω-regular properties, to
produce an on-the-fly model checking algorithm.4 The ω-regular proper-
ties are those that are accepted by ω-automata, i.e. finite automata over
infinite words such as Büchi automata [Perrin and Pin, 2004].

A finite automatonA over finite words is defined by a tuple 〈Σ, Q, ∆, Q0, F〉,
where Σ is an alphabet (a finite set of symbols), Q is a finite set of states,
∆ ⊆ Q× Σ × Q is the transition relation, Q0 ⊆ Q is a set of initial states,
and F ⊆ Q is a set of final or accepting states. If v ∈ Σ∗ is a word of length
|v|, then a run of A on v is a mapping ρ : {0, 1, . . . , |v|} 7→ Q such that
p(0) ∈ Q0 and, for all 0 6 i < |v|, 〈ρ(i), v(i), ρ(i + 1)〉 ∈ ∆. A run is ac-
cepting if ρ(|v|) ∈ F, i.e. it ends at an accepting state, and an automaton A
accepts a word v if, and only if, there exists an accepting run ofA on v. The
language of A, L(A) ⊆ Σ∗, consists of all the words accepted by A [Clarke
et al., 1999].

A Büchi automaton has the same components as a finite automaton;
a run of a Büchi automaton A on an infinite word v ∈ Σω is defined in
almost the same way, except that |v| = ω. A run is accepting if at least one
of the accepting states occurs infinitely often. Büchi automata are closed
under intersection and complementation [Büchi, 1962].

A Kripke structure M = 〈S, Init, R, L〉 can be represented by a Büchi
automaton AM = 〈Σ, S∪ {ι}, ∆, {ι}, S∪ {ι}〉 where

• Σ = 2AP,

• 〈s, α, s′〉 ∈ ∆ iff 〈s, s′〉 ∈ R and α = L(s′), and

• 〈ι, α, s〉 ∈ ∆ iff s ∈ Init and α = L(s).

4There has also been research on automata theoretic methods for branching time logics
[Bernholtz et al., 1994; Kupferman et al., 2000].

3.3. MODEL CHECKING PARADIGMS 35

�� ��

WVUTPQRSp, q ,,ONMLHIJKqll

��

ONMLHIJKp

``

(a) Kripke structure

��

ONMLHIJKGFED@ABCι

{p,q}
��

{q}

WVUTPQRSONMLHIJKs0

{q}
,, WVUTPQRSONMLHIJKs1

{p}
��

{p,q}
ll

WVUTPQRSONMLHIJKs2

{p,q}

``

(b) Büchi automaton

Figure 3.3: Two equivalent system representations

//GFED@ABC?>=<89:;s1

p

 ¬ p
//GFED@ABCs2

true

Figure 3.4: A Büchi automaton for AGp

36 CHAPTER 3. MODEL CHECKING

Figure 3.3 shows a simple Kripke structure and its corresponding Büchi
automaton [from Clarke et al., 1999, p. 123]. There also exist algorithms for
translating any LTL formula into a Büchi automaton [e.g. Gerth et al., 1995;
Gastin and Oddoux, 2001; Giannakopoulou and Lerda, 2002]. Figure 3.4
shows a Büchi automaton that corresponds to the invariant formula AGp.
The model checking problemM |= ϕ can be solved by the language inclu-
sion problem L(AM) ⊆ L(Aϕ), which is equivalent to checking whether
L(AM)∩L(Aϕ) = ∅. Complementing Büchi automaton is a complicated
procedure, so it is common to construct A¬ ϕ instead of Aϕ [Clarke et al.,
1999].

It is possible to construct the intersection automaton that accepts the
language L(AM) ∩ L(A¬ ϕ) directly, without first completely construct-
ing the two component automata separately. This results in “on-the-fly”
verification, as the emptiness of the language is checked as the automata
is constructed. If the language is found to be non-empty then a coun-
terexample falsifying the specification has been discovered and there is no
need to construct the rest of the automaton. Thus, this approach has the
advantage that finding bugs in even very large systems can be relatively
inexpensive in many cases. Additionally, if the automaton is too large to
be constructed with available resources, and no counterexample has been
encountered, then the property has at least been verified for some portion
of the statespace. The coverage can be increased by repeating the partial
verification with different strategies for constructing the automaton so that
different parts of the statespace are explored each time [Holzmann et al.,
2008].

3.3.2 BDD-Based Symbolic Model Checking

Explicit state model checking stores every reachable state in memory — as
a result the memory use increases linearly with the number of states that
are encountered. Alternative approaches instead store a symbolic repre-
sentation of the visited states; the symbolic representation can use much
less memory, leading to a reduction in overall memory use. Symbolic
model checking was first proposed by McMillan et al. [Burch et al., 1990,
1992; McMillan, 1992], exploiting the compact representation that can of-
ten be gained from the use of ordered binary decision diagrams (OBDDs).

A binary decision tree is a rooted, directed tree used for representing all
possible truth assignments of a boolean formula, akin to a truth table. The

3.3. MODEL CHECKING PARADIGMS 37

GFED@ABCa1

0

wwoooooooooooooooo
1

''OOOOOOOOOOOOOOOO

GFED@ABCb1

0

�����������
1

��?????????
GFED@ABCb1

0

�����������
1

��?????????

GFED@ABCa2

0
��������

1
��

//////
GFED@ABCa2

0
��������

1
��

//////
GFED@ABCa2

0
��������

1
��

//////
GFED@ABCa2

0
��������

1
��

//////

GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''
GFED@ABCb2

0
��������

1
��

''''''

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

Figure 3.5: A binary decision tree for a two-bit comparator

tree’s non-terminal nodes are labelled with a boolean variable and have a
low and high successor (corresponding to the assignment of false or true to
the variable, respectively), and the terminal nodes are labelled with either
0 or 1 (for false and true). The truth of a particular assignment to the
formula’s variables can be ascertained by following the appropriate path
through to the tree — it is true if the terminal node is 1. Figure 3.5 contains
a binary decision tree for a two-bit comparator given by the formula (a1 ↔
b1) ∧ (a2 ↔ b2).

A binary decision diagram (BDD) [Bryant, 1986] is a modification of a bi-
nary decision tree in a more compact form by merging duplicate terminal
nodes and isomorphic subgraphs, resulting in a rooted, directed acyclic
graph. Additionally, an ordered binary decision diagram (OBDD) requires
the variables to occur in a specific order, providing a canonical represen-
tation for boolean formulas. The size of an OBDD can depend critically
on the variable ordering — Figure 3.6 shows two OBDDs for the two-bit
comparator example; each has a different variable ordering, resulting in a
different number of nodes. Finding an optimal ordering is intractable, as
even checking that a given ordering is optimal is an NP-complete problem,
though several heuristics exist for finding good orderings [Bryant, 1992].

State space exploration is achieved by constructing OBDD representa-

38 CHAPTER 3. MODEL CHECKING

GFED@ABCa1

0

��~~~~~~~~~
1

��@@@@@@@@@

GFED@ABCb1

0
��

1

��
55555555555555555555555555555
GFED@ABCb11

wwooooooooooooooooo

0

��

GFED@ABCa2

0
��

1

''OOOOOOOOOOOOOOOOO

GFED@ABCb2

0
��

1

''OOOOOOOOOOOOOOOOO GFED@ABCb2

0
��

1

wwooooooooooooooooo

1 0

GFED@ABCa1

0

~~}}}}}}}}}
1

 AAAAAAAAA

GFED@ABCa2

0

��~~~~~~~~~

1
��

GFED@ABCa2

0
��

1

��@@@@@@@@@

GFED@ABCb1

1

��<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 0

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR GFED@ABCb1

0

���������������� 1

��
2222222222222222222222222222222
GFED@ABCb1

0

��

1

��
22222222222222
GFED@ABCb11

vvllllllllllllllllllllllllllllllllllll

0

����������������������������

GFED@ABCb2

1

��
33333333333333

0

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNN
GFED@ABCb2

0

xxpppppppppppppppppppppppppppp

1

����������������

1 0

Figure 3.6: OBDDs for a two-bit comparator

3.4. TACKLING THE STATE EXPLOSION PROBLEM 39

tions of the set of initial states and the transition relation. They are com-
posed to produce another OBDD representation of states, and the transi-
tion relation is repeatedly composed until a fixpoint is reached, indicating
that all reachable states have been found. This approach is most com-
monly used for checking CTL, though it can be applied to LTL as well
[Bérard et al., 2001].

3.3.3 Bounded Model Checking

Another approach to LTL symbolic model checking, introduced by Biere
et al. [1999a,b], uses efficient satisfiability (SAT) decision procedures to
search for counterexamples up to a bounded length. A boolean formula
is constructed in polynomial time that is satisfied iff there is a counterex-
ample of a given length k or less. For example, a formula expressing a
counterexample of length three to a safety property AGϕ has the form

I(s0) ∧ T(s0, s1) ∧ T(s1, s2) ∧ T(s2, s3) ∧
(¬ ϕ(s0) ∨ ¬ ϕ(s1) ∨ ¬ ϕ(s2) ∨ ¬ ϕ(s3))

where I(si) asserts that si is an initial state, T(si, sj) asserts that si and sj are
related by the transition relation, and ¬ ϕ(si) asserts that ϕ is false at si.

Bounded model checking is complete for finite-state systems as it is
sufficient to check up to the diameter of the system — the minimal path
length that can reach every state from the initial state. However, com-
puting the diameter is not a trivial problem — SAT is NP-complete and
LTL model checking is PSPACE-complete [Sistla and Clarke, 1985], so if it
could be found in polynomial time then NP = PSPACE. For this reason,
bounded model checking is generally used as a fast method for finding
counterexamples, rather than for verification.

An extension to this approach is to use a satisfiability modulo theories
(SMT) solver [de Moura et al., 2007] instead of a SAT solver, which enables
bounded model checking of certain infinite state systems, such as those
using real numbers [de Moura et al., 2002].

3.4 Tackling the State Explosion Problem

One of the most significant issues in model checking is the so-called “state
explosion problem” [Clarke and Grumberg, 1987]. The size of the state

40 CHAPTER 3. MODEL CHECKING

space of a system is exponential in the number of threads (and other pa-
rameters) and is thus a major factor in the size of models that can be ver-
ified with current computational resources.5 Much work has gone into
investigating ways of reducing the state space to counteract the state ex-
plosion problem. In this section mention bitstate hashing (3.4.1), partial
order reduction (3.4.2), slicing (3.4.3) and symmetry reduction (3.4.4).

3.4.1 Bitstate hashing

Bitstate hashing, due to Holzmann [1987, 1995, 1998], is a technique that
greatly increases the efficiency of explicit state model checking, though at
the cost of the guarantee of complete statespace coverage.

Most explicit state model checking tools store visited states in a hashtable.
Each element of the hashtable contains a list of states; when a new state is
visited, its hash value is computed and it is inserted into the list if not
already present.

An alternative approach is to simply have a boolean value at each el-
ement in the hashtable, which is initialised to false and set to true when
a state with that hash value is visited. This induces an equivalence re-
lation on states based on their hash values. The benefit is that memory
requirements are drastically reduced: each equivalence class of states only
requires one bit of storage in total, rather than tens, hundreds or even
thousands for each state. The downside is that for each equivalence class
only the successors of the first visited state will be explored — every sub-
sequently encountered state in the class will be treated as previously vis-
ited. The states in each equivalence class have no semantic relation, thus
arbitrary parts of the statespace may not be analysed.

Statespace coverage can be approximated by the ratio of visited states
to the size of the hashtable (collisions are more likely as the table gets
fuller); confidence can be improved by rerunning the analysis with dif-
ferent hash functions.

3.4.2 Partial order reduction

In most concurrent systems there are many places within the statespace
where a number of ‘independent’ transitions performed by different threads

5Demri et al. [2002, 2006] investigate the parametric complexity [Downey and Fellows,
1999] of model checking due to the state explosion problem.

3.4. TACKLING THE STATE EXPLOSION PROBLEM 41

{p}
τ1

xxqqqqqqqqqqq

τ2
��

τ3

&&LLLLLLLLLLL

{p, q}
τ2
��

τ3

&&MMMMMMMMMM
{p, r}

τ1

xxqqqqqqqqqq τ3

&&LLLLLLLLLL
{p, s}

τ1

xxrrrrrrrrrr
τ2
��

{p, q, r}

τ3 &&MMMMMMMMMM
{p, q, s}

τ2
��

{p, r, s}

τ1xxrrrrrrrrrr

{p, q, r, s}

Figure 3.7: Independent transition execution

are enabled at the same time. The interleaving concurrency model means
that all permutations of execution orderings will be explored in the state-
space, though it may only be necessary to consider a single one in order to
verify a property.

By ‘independent’, we mean that the transition sequences have the same
result, no matter which order the transitions are executed in. For exam-
ple, consider the execution fragment in Figure 3.7 of three independent
transitions, where the states consist of sets of independent propositional
variables. The transitions arrive at the same state, no matter which order
they are executed in, and 12 transitions, with 6 intermediate states, must
be considered. If the ordering of the transitions does not affect the prop-
erty being checked, which here is the case for AGp but is not for AGq,
then it is possible to reduce the statespace by considering only one inter-
leaving (say, τ1τ2τ3), so only 3 transitions and 2 intermediate states need
to be considered.

A reduced state graph, where only one from each set of equivalent tran-
sition sequences is present, can be automatically computed using the tech-
nique of partial order reduction [Peled, 1994, 1996; Holzmann and Peled,
1995; Godefroid, 1996]. The reduction can be computed on the fly, for both
explicit state and symbolic model checkers, whilst guaranteeing that the
property is valid in the original system iff it is valid in the reduced system.
Clarke et al. [1999, Chapter 10] provide a solid technical overview.

42 CHAPTER 3. MODEL CHECKING

3.4.3 Slicing

Slicing, or cone of influence reduction, is a technique with wide applica-
tions throughout computer science [Tip, 1995; Xu et al., 2005], and has been
applied successfully in model checking [e.g. Millett and Teitelbaum, 2000;
Vasudevan et al., 2005]. Slicing focusses on the variables in the property
being checked, by removing the variables from the system that do not in-
fluence the property variables. This can result in a smaller statespace to
verify.

3.4.4 Symmetry reduction

In many concurrent systems there are symmetries that can be exploited to
reduce the size of the models to be analysed, and there have been many
investigations on how this can be achieved [e.g. Clarke et al., 1993, 1996;
Emerson and Sistla, 1993, 1996; Ip and Dill, 1993, 1996; Emerson and Tre-
fler, 1999; Bos̆nac̆ki et al., 2000, 2002; Sistla et al., 2000; Iosif, 2001, 2002,
2004; Emerson and Wahl, 2003; Donaldson et al., 2005a,b; Sistla, 2004; Sistla
and Godefroid, 2004; Barner and Grumberg, 2005; Donaldson and Miller,
2005, 2006].

The underlying observation is that the symmetry implies the existence
of nontrivial permutation groups (Clarke et al. [1999, Chapter 14] provide
a general overview), which can be used to define an equivalence relation
on the statespace. Then a quotient model can be produced that has only
one state in each equivalence class; this model is smaller than the original
but they are bisimilar, so they have exactly the same CTL* properties.

Constructing this model is not easy though — determining whether
two states are in the same equivalence class, or orbit, is as hard as the
graph isomorphism problem, for which no polynomial time algorithm is
known [Clarke et al., 1996].

Certain symmetries can be identified by using the scalarset datatype
introduced by Ip and Dill [1993, 1996]. A scalarset is a finite unordered
set with restricted operations — notably that values can only be compared
for equality. Any two states that differ only by a permutation of scalarset
values are in the same equivalence class; the model checking procedure
is the same except that a canonical permutation function is used when
comparing the current state with the previously visited states.

3.5. ABSTRACTION 43

3.5 Abstraction

The techniques for addressing the state explosion problem described in
the previous section are all inherently aimed at finite state systems — they
can make a finite statespace smaller, but they cannot (generally) turn an
infinite statespace into a finite one. An alternative, and largely orthogonal,
approach is to apply some form of abstraction.

An abstraction involves “forgetting” some part of each state so that (of-
ten infinitely) many states are indistinguishable. Instead of asking whether
a (concrete) modelM satisfies a (concrete) specification ϕ, “M |= ϕ?”, we
construct an abstract modelMA and an abstract specification ϕA and ask
“MA |= ϕA?” Abstract models are constructed from techniques that map
individual concrete states to abstract states. An abstract specification is
constructed by applying the same state abstraction technique to the state
variables in the concrete specification.

There are many abstraction techniques in the literature, including:

• Data abstraction [Clarke et al., 1994], where individual data types are
mapped to abstract versions, e.g. from integers to the 3-element set
{negative, zero, positive}.

• Counter abstraction [Pnueli et al., 2002], where only one copy of
each thread configuration (based on the location and variable assign-
ments) is stored, along with a “0-1-∞” counter to record how many
copies there are.

• Predicate abstraction [Graf and Saı̈di, 1997], where abstract states
consist of boolean variables, each recording a property of the con-
crete state.

• Canonical abstraction [Sagiv et al., 2002], where abstract states are
3-valued logical structures, as described in Chapter 4.

Ideally, an abstraction will strongly preserve properties, i.e.

MA |= ϕA ⇔M |= ϕ

and the result (whether verification or refutation) is guaranteed to hold for
the original concrete system. It is usually necessary though to use abstrac-
tions that only weakly preserve properties, i.e.

MA |= ϕA ⇒M |= ϕ

44 CHAPTER 3. MODEL CHECKING

In these cases, if the abstract property is shown to hold in the abstract
model then the concrete property is guaranteed to hold in the concrete
model. If the abstract property does not hold in the abstract model then the
concrete property may or may not hold in the concrete model. However,
the model checker will provide a counterexample, which can be examined
against the concrete model to determine whether the error is genuine or
spurious. If the counterexample is spurious then it may be possible to
revise the abstraction and try again. This step ofter requires manual inter-
vention, but techniques exist to automate it in some contexts [Clarke et al.,
2000, 2003].

Properties of the logic ACTL* (recall from Section 3.2.1) can be weakly
preserved by constructing an abstract model that is an over-approximation
of the concrete model, i.e. that it contains more behaviours than the con-
crete model. In contrast, properties of the logic ECTL* can be weakly pre-
served by constructing an abstract model that is an under-approximation of
the concrete model, i.e. that it contains fewer behaviours than the concrete
model.

3.5.1 Constructing Abstract Models

Given an abstraction technique that can be used to construct abstract states,
it is not clear how the abstract transition relation should be constructed,
nor how properties are preserved. These issues can be dealt with by us-
ing the framework of abstract interpretation, which uses a Galois connec-
tion to relate the concrete and abstract states. Abstract interpretation was
originally developed for compiler optimization [Cousot and Cousot, 1977,
1979], and has been extended to handle properties of computations as well
as properties of states [Loiseaux et al., 1995; Dams et al., 1997]. We will
give a brief overview of the construction of abstract systems that weakly
preserve the logics ACTL* (and hence LTL), ECTL* and CTL*. For more
detail see e.g. Grumberg’s survey [2002a].

We first revise the definition of Kripke structures from Section 3.1 so
that states are labelled, not by atomic propositions, but by a set of literals,
Lit = AP ∪ {¬ p | p ∈ AP}. The Kripke structures are the same, except
that the labelling function L : S→ 2Lit is required to satisfy

p ∈ L(s)⇒ ¬ p 6∈ L(s) and ¬ p ∈ L(s)⇒ p 6∈ L(s)

Note that it is possible that neither p nor ¬ p at s.

3.5. ABSTRACTION 45

A Galois connection from a partially ordered set 〈C,6C〉 to another 〈A,6A〉
is a pair of functions α : C → A (the abstraction function) and γ : A → C
(the concretisation function) such that

• α and γ are total and monotonic,

• for all c ∈ C, γ(α(c)) >C c, and

• for all a ∈ A, α(γ(a)) 6A a.

Additionally, if 6A is defined by 6C such that

a 6A a′ iff γ(a) 6C γ(a′)

then 〈α, γ〉 is a Galois insertion.
For a given Kripke structureM, we use

〈
2S,⊆

〉
as the concrete domain.

A set of abstract states, Ŝ, is chosen and we use the Galois insertion so that
the partial order on Ŝ is determined by a 6 a′ iff γ(a) ⊆ γ(a′). To construct
the abstract Kripke structure, M̂, the set of initial states is defined as

Ŝ0 = {α({s}) | s ∈ S0}

and the labelling function is defined as

p ∈ L̂(a) iff ∀ s ∈ γ(a) • p ∈ L(s)

The transition relation is not so straightforward. First we define two
relations that will be used. For any A and B and relation R ⊆ A× B, the
relations R∀ ∃, R∃ ∃ ⊆ 2A × 2B are defined as

R∀ ∃ = {〈X, Y〉 | ∀ x ∈ X • ∃ y ∈ Y • x R y}
R∃ ∃ = {〈X, Y〉 | ∃ x ∈ X • ∃ y ∈ Y • x R y}

These relations can be used to define abstract systems that preserve dif-
ferent properties. The Kripke structure

〈
Ŝ, Ŝ0, R̂E, L̂

〉
preserves the logic

ACTL* and the Kripke structure
〈

Ŝ, Ŝ0, R̂A, L̂
〉

preserves the logic ECTL*,
where the transition relations are defined as

a R̂E b iff b ∈
{

α(Y)
∣∣∣Y ∈ min

{
Y′ | γ(a) R∀ ∃ Y′

}}
a R̂A b iff b ∈

{
α(Y)

∣∣∣Y ∈ min
{

Y′ | γ(a) R∃ ∃ Y′
}}

46 CHAPTER 3. MODEL CHECKING

In order to construct an abstract system that preserves the full logic CTL*
we define a Kripke structure with a mixed transition relation. The system is
defined as M̂ =

〈
Ŝ, Ŝ0, R̂A, R̂E, L̂

〉
and has two types of paths — A-paths,

defined along R̂A transitions, and E-paths, defined along R̂E transitions.
Finally, we modify the semantics of CTL* from Section 3.2.1 so that

M̂, s |= Eψ iff M̂, π |= ψ for some E-path π

M̂, s |= Aψ iff M̂, π |= ψ for every A-path π

3.6 Tools

In this section we describe three model checking tools — Spin (3.6.1), SAL
(3.6.2) and TVLA (3.6.3).

3.6.1 Spin

Spin6 [Holzmann, 1997, 2004], developed by Gerard Holzmann at Bell
Labs, is an explicit-state on-the-fly model checker that uses automata-theo-
retic methods. Its input language Promela7 is procedural, with visual sim-
ilarity with C, and is largely based on Dijkstra’s guarded command lan-
guage. It can check ω-automata properties, including translations of LTL
formulas, and allows embedded assertions.

Developed since 1989, Spin is a stable and widely used program with
active development and support, and was the winner of the 2001 ACM
System Software Award. Spin is written in C and runs on Unix and Win-
dows; its source code is freely available for noncommercial use.

Spin supports a number of statespace reduction techniques, includ-
ing partial order reduction, state compression (to reduce memory require-
ments at the expense of time), and bitstate hashing. Recent advanced fea-
tures include embedded C statements to aid model checking software, and
support for utilising multiple processors [Holzmann and Bos̆nac̆ki, 2007].

Spin has no provision for symmetry reduction. An extension based on
scalarsets, SymmSpin, was developed [Bos̆nac̆ki et al., 2000, 2002], but is
no longer available. Another extension, dSpin (dynamic Spin) [Demartini

6http://www.spinroot.com
7Promela was originally an acronym for PROcess MEta LAnguage; Spin was an

acronym of Simple Promela INterpreter.

http://www.spinroot.com

3.6. TOOLS 47

et al., 1999], was developed that allowed dynamic creation and deletion of
heap objects, and implemented garbage collection [Iosif and Sisto, 2000]
and symmetry reduction [Iosif, 2001, 2002, 2004]. dSpin was based on
version 3.2.0 (from April 1998) and the code it produces does not com-
pile with recent versions of gcc. The extension TopSpin [Donaldson and
Miller, 2006] automatically infers symmetry using a separate group the-
ory tool; this extension is compatible with recent versions of Spin and gcc

though it has restrictions on the Promela constructs that can be used.
Spin is used for the analyses in Chapter 6.

3.6.2 SAL

SAL,8 the Symbolic Analysis Laboratory from SRI International, comprises
a declarative language [de Moura et al., 2001] and toolset [de Moura et al.,
2004]. The tools include a deadlock checker, BDD-based symbolic model
checkers for both LTL and CTL, and both SAT- and SMT-based bounded
model checkers.

SAL 3.0 was released under the GPL licence in December 2006. It is
written in Scheme and runs on Unix systems (including Windows in the
Cygwin environment).

SAL was used for preliminary work, which is discussed at the start of
Chapter 6.

3.6.3 TVLA/3VMC

TVLA9 (Three Valued Logic Analyzer) [Lev-Ami and Sagiv, 2000; Lev-
Ami, 2000; Lev-Ami et al., 2004; Bogudlov et al., 2007a] is a prototype
static analysis tool developed at Tel Aviv University, implementing canon-
ical abstraction (see Chapter 4). It includes the extension 3VMC (3 Valued
Model Checker) [Yahav, 2001, 2004], though this has not been updated to
take advantage of recent improvements in TVLA (see Section 4.4).

As a prototype tool it has only had three alpha releases (2002-7), and
does not contain any additional reduction mechanisms such as partial or-
der reduction. TVLA is written in Java and bytecode is available for aca-
demic use.

TVLA is used for the analyses in Chapters 7 and 8.

8http://sal.csl.sri.com
9http://www.cs.tau.ac.il/˜tvla/

http://sal.csl.sri.com
http://www.cs.tau.ac.il/~tvla/

48 CHAPTER 3. MODEL CHECKING

Chapter 4

Canonical Abstraction

This chapter describes the technique of canonical abstraction [Reps et al.,
2004a; Sagiv et al., 2005], a powerful approachfor abstracting systems with
different degrees of granularity. Additionally, it allows reasoning about
properties involving transitive closure, and can be used for automated
analyses with the prototype TVLA tool (see Section 3.6.3). Canonical ab-
straction will be used in Part III to construct finite state abstract models
from infinite state models of nonblocking concurrent data structures. Sec-
tion 4.1 introduces the concept of representing concrete and abstract states
using 2- and 3-valued logical structures, and explains how they are related
by canonical abstraction. Section 4.2 describes integrity rules and instru-
mentation predicates as means of refining abstractions, and Section 4.3
describes how abstract transitions are constructed from concrete seman-
tics. Section 4.4 describes how threads can be abstracted to enable un-
bounded model checking. Finally, Section 4.5 outlines some improve-
ments in analysing canonically abstract systems.

4.1 Canonical Abstraction

Generalising previous work in shape analysis of programs [e.g. Jones and
Muchnick, 1979, 1982; Larus and Hilfinger, 1988; Horwitz et al., 1989; Chase
et al., 1990; Stransky, 1992; Aßmann and Weinhardt, 1993; Plevyak et al.,
1993; Wang, 1994; Sagiv et al., 1996, 1998] that represents the program
heap as a directed graph, Sagiv et al. [1999, 2002] represent states as log-
ical structures, where predicates describe relationships between objects.
Concrete states are represented using 2-valued structures. Abstract states

49

50 CHAPTER 4. CANONICAL ABSTRACTION

next next next

x

Figure 4.1: A list of length three

are represented using 3-valued structures, which allow multiple concrete
objects to be represented by a single abstract “summary object” (or “sum-
mary node” [Chase et al., 1990]). Since a summary object can represent
two or more concrete objects, an abstract state with summary objects can
represent an infinite number of concrete states.

4.1.1 States as Logical Structures

First, a finite set of predicates P = {eq, p1, . . . , pn} is fixed for the analy-
sis, and we define Pk to be the set of k-ary predicates in P (the equality
predicate eq has arity 2). Then, a concrete configuration S\ =

〈
U\, ι\

〉
has a

universe U\ that is a (finite or infinite) set of objects and an interpretation ι\

over the logical values true (1) and false (0). For each k-ary predicate p,

ι\(p) : (U\)k → {0, 1}

Additionally, for each u1, u2 ∈ U\ where u1 6= u2, ι\(eq)(u1, u1) = 1 and
ι\(eq)(u1, u2) = 0.

Example Consider a program that has a pointer variable x to a list of
Node objects that are linked by the Nodes’ next fields. We might use a
unary predicate node to indicate the type of Node objects, a unary pred-
icate x to indicate which object is pointed to by x, and a binary predicate
next to represent the relationship of the next field.

P = {eq, node, x, next}

Figure 4.1 shows a state with x pointing to a list of length 3. The con-
crete configuration of this state has three objects and an interpretation as

4.1. CANONICAL ABSTRACTION 51

node
x

node nodenext next

Figure 4.2: Graph of concrete configuration

follows, where in each case 1 6 i, j 6 3:1

U\ = {u1, u2, u3}
ι\(eq) = {

〈
ui, uj

〉
7→ 1 | i = j} ∪ {

〈
ui, uj

〉
7→ 0 | i 6= j}

ι\(node) = {ui 7→ 1}
ι\(x) = {u1 7→ 1, u2 7→ 0, u3 7→ 0}
ι\(next) = {〈u1, u2〉 7→ 1, 〈u2, u3〉 7→ 1} ∪ {

〈
ui, uj

〉
7→ 0 | 〈i, j〉 6∈ {〈1, 2〉 , 〈2, 3〉}}

�

It is often helpful for comprehension to represent logical structures us-
ing graphs. For concrete configurations we use:

• graph nodes to represent objects in the universe,2

• labels on nodes to represent unary predicates (present if true, absent
if false, for each object), and

• labelled arrows to represent binary predicates (present if true, absent
if false, for each pair of objects).

Additionally, the equality predicate eq is not explicitly represented. Fig-
ure 4.2 shows the graphical representation for the configuration in the
above example.

The definition of an abstract configuration S = 〈U, ι〉 is similar to that
of a concrete configuration, but the interpretation is over the truth values
true (1), false (0) and unknown (1

2). For each k-ary predicate p,

ι(p) : Uk → {1, 0, 1
2}

Note that a concrete configuration is also trivially an abstract configura-
tion.

1The names ui have no meaning other than for ease of identification.
2We will generally say “objects” of the graph, to avoid confusion with the nodes of

linked lists being represented.

52 CHAPTER 4. CANONICAL ABSTRACTION

An object u, for which ι(eq)(u, u) is unknown, is called a summary ob-
ject. As we will see in the next section, these may represent more than one
object in a given concrete state.

The graphical representation for abstract configurations is similar to
concrete ones, but:

• summary nodes (where ι(eq)(u, u) = 1
2) have a double line,

• unary predicates with an unknown interpretation have an addition
to the label (e.g. “x = 1

2”), and

• binary predicates with an unknown interpretation have dotted rather
than solid arrows.

4.1.2 Embeddings

Intuitively, an abstract configuration represents a concrete one if it contains
the same information, except for some conservative information loss. In
other words, it has the same universe of objects, though some may have
been merged together into summary objects, and it has the same pred-
icate interpretations, though some may have become unknown. This is
formalised by the notion of embedding, which relates configurations (con-
crete or abstract3) that are related by conservative information loss.

We say that a configuration S1 = 〈U1, ι1〉 embeds into an abstract con-
figuration S2 = 〈U2, ι2〉 if there exists a surjective function f : U1 → U2
such that for every k-ary predicate p, and u1, . . . , uk ∈ U1,

ι1(p)(u1, . . . , uk) v ι2(p)(f (u1), . . . , f (uk))

where, for l1, l2 ∈ {1, 0, 1
2}, l1 v l2 iff l1 = l2 or l2 = 1

2 .

Example One abstract configuration that is an embedding of the linked
list state in the previous example has two objects, one of which is a sum-
mary object, as shown in Figure 4.3. Since the summary object represents
the second two list nodes, the next predicate is unknown, as e.g. the x-
node’s next field points to one but not the other. Given the abstract con-
figuration’s universe as U = {u{1}, u{2,3}} and the embedding function

3Since 2-valued configurations are trivially 3-valued configurations also, we will as-
sume that configurations are 3-valued unless otherwise noted.

4.1. CANONICAL ABSTRACTION 53

node
x

nodenext

next

Figure 4.3: Graph of abstract configuration

f = {u1 7→ u{1}, u2 7→ u{2,3}, u3 7→ u{2,3}}, the interpretation is as follows:

ι(eq) =
{〈

u{1}, u{1}
〉
7→ 1,

〈
u{2,3}, u{2,3}

〉
7→ 1

2 ,〈
u{1}, u{2,3}

〉
7→ 0,

〈
u{2,3}, u{1}

〉
7→ 0

}
ι(node) =

{
u{1} 7→ 1, u{2,3} 7→ 1

}
ι(x) =

{
u{1} 7→ 1, u{2,3} 7→ 0

}
ι(next) =

{〈
u{1}, u{2,3}

〉
7→ 1

2 ,
〈

u{2,3}, u{2,3}

〉
7→ 1

2 ,〈
u{1}, u{1}

〉
7→ 0,

〈
u{2,3}, u{1}

〉
7→ 0

}
Note that not only is this 2-object list abstract configuration an embedding
of the previous 3-object list concrete configuration in Figure 4.2, it is an
embedding of many configurations with a list of two or more objects. The
latter n− 1 node objects get mapped to the summary node object, and the
next predicates are set to unknown — thus we can embed a wide range
of lists, whether or not they are connected or acyclic, though no node’s
next field can point to the x-node, as this would not be conservative infor-
mation loss. A 1-object list configuration cannot embed into this abstract
configuration, as a function between the universes would not be a surjec-
tion. �

Example Every configuration S = 〈U, ι〉 trivially embeds into the ab-
stract configuration S′ = 〈U′ = {u0}, ι′〉 with one object and universally
indefinite interpretation. For every u ∈ U, the embedding function maps
u 7→ u0; and for every predicate p, ι′(p)(u0, . . . , u0) =

1
2 . �

We further define a tight embedding to be one that minimises informa-
tion loss, i.e. a predicate interpretation only becomes unknown if two ob-
jects are being merged together, one which has a true interpretation and

54 CHAPTER 4. CANONICAL ABSTRACTION

the other a false interpretation. Formally, there exists a surjective function
f : U1 → U2 such that for every k-ary predicate p, and u1, . . . , uk ∈ U2,

ι2(p)(u1, . . . , uk) =

1 if ∀ u′1 ∈ f−1(u1), . . . , u′k ∈ f−1(uk) •

ι1(p)(u′1, . . . , u′k) = 1
0 if ∀ u′1 ∈ f−1(u1), . . . , u′k ∈ f−1(uk) •

ι1(p)(u′1, . . . , u′k) = 0
1
2 otherwise

Example The abstract configuration S in Figure 4.3 is actually a tight em-
bedding of the configuration S\ in Figure 4.2. However, if

ι(next)(u{2,3}, u{1}) =
1
2

then the information loss would not be minimal, as both

ι\(next)(u2, u1) = 0
ι\(next)(u3, u1) = 0

Thus it would still be an embedding, but not tight. �

Canonical Abstraction

Canonical abstraction is a method for constructing tight embeddings. Given
a subset of the unary predicates A ⊆ P1, called the abstraction predicates,
we map objects in the original configuration to the same abstract object
if they have the same interpretations over the abstraction predicates. The
interpretation in the abstract configuration is constructed as per the defini-
tion of tight embeddings above. We say that a configuration is canonically
abstract, with respect to A, if it is the canonical abstraction of itself.

One way of defining the unique embedding function from a struc-
ture S = 〈U, ι〉 to its canonical abstraction S′ = 〈U′, ι′〉 is to label ev-
ery object in U′ with the abstraction predicates that are true for it, i.e.
U′ ⊆

{
uA | A ⊆ 2A

}
. Now we can define the embedding function f as

follows:

f = {u 7→ uA | u ∈ U ∧ uA ∈ U′ ∧
(∀ p ∈ A • ι(p)(u) = 1) ∧
(∀ p ∈ A−A • ι(p)(u) 6= 1)}

4.1. CANONICAL ABSTRACTION 55

Example The abstract configuration in Figure 4.3 is the canonical abstrac-
tion of the concrete configuration in Figure 4.2, with A = P1. For both
u2, u3 ∈ U\, ι\(node)() = 1 and ι\(x)() = 0 so they are both mapped to
u{2,3} ∈ U. The object u1 ∈ U\ differs, as ι\(x)(u1) = 1, so it is mapped to
the different abstract object u{1}.

Following the above definition of the canonical abstraction embedding
function, we would label the abstract objects u{1} and u{2,3} as u{node,x}
and u{node}, respectively. �

Canonical abstraction has a number of important properties:

• Every configuration has a single canonical abstraction, as each object
has a single canonical mapping in the embedding function.

• Since there are a finite number of predicates, it follows that there is
a finite bound on the number of objects in the universe of a canoni-
cally abstract configuration, and thus a finite bound on the number
of potential states in an abstract system.

• Given the canonical abstraction function α for a set of abstraction
predicates, we can define a concretisation function

γ(S) = {S\ | α(S\) = S}

which maps an abstract configuration to the set of concrete configu-
rations that abstract to it. These two functions form a Galois inser-
tion.

4.1.3 Properties

We describe properties of configurations using first order logic with tran-
sitive closure (FOTC) [Sagiv et al., 2002].

Syntax

We define formulas over a set of predicates P and set of variables Var
inductively as follows:

• The logical literals 0 and 1 are atomic formulas with no free variables.

• For every predicate p ∈ Pk, p(v1, . . . , vk) is an atomic formula with
free variables {v1, . . . , vk} ⊆ Var.

56 CHAPTER 4. CANONICAL ABSTRACTION

• If ϕ1 and ϕ2 are formulas with sets of free variables V1 ⊆ Var and
V2 ⊆ Var respectively, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ ϕ1 are formulas
with free variables V1 ∪V2, V1 ∪V2 and V1 respectively.

• If ϕ1 is a formula with free variables {v1, . . . , vk} ⊆ Var, then ∃ v1 •
ϕ1 and ∀ v1 • ϕ1 are both formulas with free variables {v2, . . . , vk}.

• If ϕ1 is a formula with free variables V ⊆ Var, such that v1, v2 ∈ V
and v3, v4 6∈ V, then (TC v1, v2 • ϕ1)(v3, v4) is a formula with free
variables (V− {v1, v2}) ∪ {v3, v4}.

A closed formula is one with no free variables.

Semantics

Let S = 〈U, ι〉 be a configuration, and Z : {v1, . . . } → U be a mapping
from free variables to objects, called an assignment. The (3-valued) meaning
of a formula ϕ, relative to S and Z, is written JϕKS

3 (Z), and is defined
inductively below.

Atomic formulas If ϕ = l ∈ {1, 0}, then

JlKS
3 (Z) = l

If ϕ = p(v1, . . . , vk), for some p ∈ Pk, then

Jp(v1, . . . , vk)K
S
3 (Z) = ι(p)(Z(v1), . . . , Z(vk))

Logical connectives If ϕ is built from subformulas ϕ1 and ϕ2 then

Jϕ1 ∧ ϕ2K
S
3 (Z) = min(Jϕ1K

S
3 (Z), Jϕ2KS

3 (Z))
Jϕ1 ∨ ϕ2K

S
3 (Z) = max(Jϕ1K

S
3 (Z), Jϕ2KS

3 (Z))
J¬ ϕ1K

S
3 (Z) = 1− Jϕ1K

S
3 (Z)

Quantifiers If ϕ is built from subformula ϕ1 then4

J∀ v1 • ϕ1K
S
3 (Z) = minu∈U Jϕ1K

S
3 (Z[v1 7→ u])

J∃ v1 • ϕ1K
S
3 (Z) = maxu∈U Jϕ1K

S
3 (Z[v1 7→ u])

4The notation Z[vi 7→ u] is an assignment update, i.e. {vj 7→ u′ | j 6= i ∧ Z(vj) =

u′} ∪ {vi 7→ u}.

4.2. REFINING ABSTRACTIONS 57

Transitive closure If ϕ is built from subformula ϕ1 then

J(TC v1, v2 • ϕ1)(v3, v4)K
S
3 (Z) =

maxn>1; u1,...,un+1∈U; Z(v3)=u1; Z(v4)=un+1

minn
i=1 Jϕ1K

S
3 (Z[v1 7→ ui, v2 7→ ui+1])

We say that S and Z potentially satisfy ϕ, written S, Z |= ϕ, if JϕKS
3 (Z) = 1

or JϕKS
3 (Z) =

1
2 , and write S |= ϕ if S, Z |= ϕ for all Z.

We define the operators for implication, binary predicate transitive
closure, and binary predicate reflexive transitive closure in the following
ways:

ϕ1 → ϕ2 ≡ ¬ ϕ1 ∨ ϕ2

p+(v3, v4) ≡ (TC v1, v2 • p(v1, v2))(v3, v4)

p∗(v3, v4) ≡ eq(v3, v4) ∨ p+(v3, v4)

Embedding Theorem

The soundness of the canonical abstraction approach rests upon the Em-
bedding Theorem of Sagiv et al. [2002, Theorem 4.9]. Informally, this says
that if a structure S embeds into a structure S′, then any information ex-
tracted from S′ via a formula ϕ is a conservative approximation of the
information extracted from S via ϕ. Alternatively, if we prove a property
ϕ true or false in S′, then we know it has the same value in S.

To formalise this, we extend functions on objects to act on assignments.
If f : U→ U′ is a function over universes U and U′, and Z is an assignment
over U, then f ◦ Z is an assignment over U′, where (f ◦ Z)(v) = f (Z(v)).

Now, let S = 〈U, ι〉 and S′ = 〈U′, ι′〉 be structures, and f : U → U′ a
function that embeds S into S′. Then, for every formula ϕ and assignment
Z,

JϕKS
3 (Z) v JϕKS′

3 (f ◦ Z)

The inductive proof is given by Sagiv et al. [2002, Appendix B].

4.2 Refining Abstractions

Canonical abstraction is a very coarse approach, and many predicates are
lost on abstraction, i.e. they evaluate to unknown in the abstract state. This

58 CHAPTER 4. CANONICAL ABSTRACTION

can be addressed by making the abstraction less coarse, through the use of
integrity rules and derived instrumentation predicates. The former describe
properties of states, and are used to specify invariants that hold in the sys-
tem. The latter describe properties of objects: they allow such properties
to be explicitly recorded in an abstract state when they would otherwise
evaluate to unknown, and they can be used as additional abstraction pred-
icates to change the canonical abstraction.

4.2.1 Integrity Rules

Example In the running list example, the predicates x and next represent
a global variable and a field, respectively. As such, we expect various
properties to exist, for example that x is unique, and that next is functional.
We can see though that the functional property is lost, as the formula

∀ v1, v2, v3 • next(v1, v2) ∧ next(v1, v3)→ eq(v2, v3)

which evaluates to true in the concrete configuration in Figure 4.2, evalu-
ates to unknown in the abstract configuration in Figure 4.3. Indeed, Fig-
ure 4.4 shows a configuration S\ where next is not functional and has the
same canonical abstraction S as in Figure 4.3. Three objects are mapped
to the canonical object u{node} so it is a summary object, but only one is
mapped to u{x,node} so it is a non-summary object. Now

ι(next(u{x,node}, u{x,node}) = ι(next(u{node}, u{x,node}) = 0

because next is false for each of the relevant concrete pairings, and

ι(next(u{x,node}, u{node}) = ι(next(u{node}, u{node}) =
1
2

because next is true for some of the relevant concrete pairings and false for
others. Clearly, this situation will happen whenever next is unknown and
points to a summary object. �

We can address such situations by imposing global invariants on con-
figurations. We define a set F of bound FOTC formulas, called the integrity
rules, and only consider configurations that potentially satisfy these for-
mulas. Thus, we assume that concretisation is redefined as:

γ[F](S) = {S\ | α(S\) = S ∧ ∀ ϕ ∈ F • S\ |= ϕ}

Table 4.1 gives some example integrity rules that may be used to enforce
properties of a predicate p, including uniqueness and functionality.

4.2. REFINING ABSTRACTIONS 59

node
x

node node nodenext

next

next

next

next
S\

node
x

u{x,node}

node

u{node}

next

next

S

α

Figure 4.4: Canonical abstraction of a non-functional field

4.2.2 Instrumentation Predicates

An alternative way to refine the abstraction is to introduce additional pred-
icates that record properties derived from the other predicates.

Example Consider the example configurations from Figure 4.2, which we
will call S\

1, and Figure 4.3, which we will call S1. The concrete configu-
ration S\

1 represents a list of length 3, and the abstract configuration S1
represents all lists of length 3 or more.5 Connectedness and circularity are

5In Section 4.1.2 we said that lists of length 2 or more embed into S1. Here we are

60 CHAPTER 4. CANONICAL ABSTRACTION

uniqueness: ∀ v1, v2 • p(v1) ∧ p(v2)→ eq(v1, v2)
functionality: ∀ v1, v2, v3 • p(v1, v2) ∧ p(v1, v3)→ eq(v2, v3)

inverse functionality: ∀ v1, v2, v3 • p(v1, v3) ∧ p(v2, v3)→ eq(v1, v2)
symmetry: ∀ v1, v2 • p(v1, v2)→ p(v2, v1)

Table 4.1: Example integrity rules

often important properties to consider when analysing lists, so since S\
1

represents a connected acyclic list, we might expect that S1 similarly only
represents connected and acyclic lists. However, when we consider these
properties as logical formulas, we see that they have indefinite meanings
in S1, as the non-false next interpretations are all unknown. First, we check
that each object can be reached from an x object by following 0 or more next
fields:

J∀ v2 • ∃ v1 • x(v1) ∧ next∗(v1, v2)K
S\1
2 = 1

J∀ v2 • ∃ v1 • x(v1) ∧ next∗(v1, v2)K
S1
3 = 1

2

Second, we check that it is not possible to form a cycle of 1 or more next
fields:

q
∀ v1 • ¬ next+(v1, v1)

yS\1
2 = 1

q
∀ v1 • ¬ next+(v1, v1)

yS1
3 = 1

2

Indeed, we can see in Figure 4.5 that S1 is also the canonical abstraction of
an unconnected acyclic list (S\

2), and a connected cyclic list (S\
3). �

We can address such situations by introducing additional predicates
that are defined by a formula using other predicates. These instrumenta-
tion predicates (or derived predicates) add no new information to concrete
configurations, but may allow more definite information to be extracted
from abstract configurations. We partition the set of predicates P into sets
C, containing the (non-derived) core predicates, and I , containing the in-
strumentation predicates.

Example To the previous example we can add the following two instru-
mentation predicates, which are defined by the formulas we were unable

using “represent” to mean “is the canonical abstraction of”; a list of length 2 does not
tightly embed into S1.

4.2. REFINING ABSTRACTIONS 61

no
de x

no
de

no
de

ne
xt

ne
xt

S\ 1

no
de x

no
de

no
de

no
de

ne
xt

ne
xt

S\ 2

no
de x

no
de

no
de

ne
xt

ne
xt

ne
xt

S\ 3

no
de x

no
de

ne
xt

ne
xt

S 1

α α α

Fi
gu

re
4.

5:
Th

re
e

di
ff

er
en

tl
is

ts
ha

ve
th

e
sa

m
e

ca
no

ni
ca

la
bs

tr
ac

ti
on

62 CHAPTER 4. CANONICAL ABSTRACTION

node
reach[x, next]

x

node
reach[x, next]

node
reach[x, next]

next next
S\

1
′

node
reach[x, next]

x

node
reach[x, next]

next

next

S′1

α

(a) Connected, acyclic

Figure 4.6: Using instrumentation predicates to distinguish three different
list structures

to evaluate definitely:6

reach[x, next](v) = ∃ u • x(u) ∧ next∗(u, v)
circ[next](v) = next+(v, v)

Figure 4.6 (4.6a, 4.6b, 4.6c) shows the same concrete configurations
from Figure 4.5 augmented with these instrumentation predicates. With
these predicates added to the set of abstraction predicates these concrete
configurations all have different canonical abstractions. S′1 is similar to S1,
but since reach[x, next] is true for all nodes, we know that the list is con-
nected. Also, since circ[next] is false for all nodes, we know that the list is

6The square brackets have no meaning other than being a visual indicator of which
core predicates are used in the definition. (TVLA allows parametrised definitions of sets
of predicates in this way — e.g. to define reach[y, next] and reach[z, next] at the same
time.)

4.2. REFINING ABSTRACTIONS 63

node
reach[x, next]

x

node
reach[x, next]

node nodenext next
S\

2
′

node
reach[x, next]

x

node
reach[x, next]

nodenext

next

S′2

α

(b) Disconnected, acyclic

Figure 4.6: Using instrumentation predicates to distinguish three different
list structures

acyclic. Thus, S′1 represents all connected acyclic lists of length 3 or more.
Similarly, S′2 represents all acyclic lists with a connected part of length 2
and an unconnected part of length 2 or more; S′3 represents all connected
lists of length 3 or more with a cycle from the second node.

These three abstract configurations illustrate how instrumentation pred-
icates are able to reduce the amount of information loss that happens in
canonical abstraction. First, each instrumentation predicate records defi-
nite meanings for the defining formulas, which may still have an unknown
meaning when evaluated directly. For example in S′1, as with S1, if we eval-
uate the defining formulas directly, we still get an indeterminate result:

J∀ v2 • ∃ v1 • x(v1) ∧ next∗(v1, v2)K
S′1
3 = 1

2q
∀ v1 • ¬ next+(v1, v1)

yS′1
3 = 1

2

64 CHAPTER 4. CANONICAL ABSTRACTION

node
reach[x, next]

x

node
reach[x, next]

circ[next]

node
reach[x, next]

circ[next]

next

next

next

S\
3
′

node
reach[x, next]

x

node
reach[x, next]

circ[next]

next

next

S′3

α

(c) Connected, cyclic

Figure 4.6: Using instrumentation predicates to distinguish three different
list structures

However, if we evaluate the instrumentation predicates we discover that
these properties are in fact true:

J∀ v2 • reach[x, next](v2)K
S′1
3 = 1

J∀ v1 • ¬ circ[next](v1)K
S′1
3 = 1

Second, instrumentation predicates are able to be used as abstraction pred-
icates and can prevent certain objects being merged together, as happened
in S′2. �

Table 4.2 lists a number of instrumentation predicates that have been
defined by other authors [see Sagiv et al., 2002; Yahav, 2001; Yahav and
Sagiv, 2010]. Choosing the right instrumentation predicates is an impor-
tant part of using canonical abstraction, and is the basis of the approaches
described in Chapter 7 and Chapter 8.

4.3. ABSTRACT TRANSITIONS 65

Property Predicate Defining Formula
Does an object have a
non-null p field?

has[p](v) ∃ u • p(v, u)

Is an object pointed to by
a p field?

r by[p](v) ∃ u • p(u, v)

Is an object pointed to by shared[p](v) ∃ u1, u2 • p(u1, v) ∧ p(u2, v)
2 or more p fields? ∧ ¬ eq(u1, u2)
Is an object reachable
from a p-object, following
q fields?

reach[p, q](v, u) ∃ u • p(u) ∧ q∗(u, v)

Is an object on a cycle of p
fields?

circ[p](v) p+(v, v)

Table 4.2: Example instrumentation predicates

4.3 Abstract Transitions

Now we have seen how to use canonical abstraction to construct abstract
representations of individual states, we will explore how to construct ab-
stract representations of systems, which preserve ACTL* properties.7 Since
canonical abstraction induces a Galois insertion, it follows that it is an in-
stance of the abstract interpretation framework. In Section 3.5.1, we saw
how abstract interpretation can be used to construct an abstract transition
system that preserves ACTL* properties by defining a transition τα be-
tween two states S1 and S2 when each has a state in its concretisation (S′1
and S′2, respectively) that are related by the concrete transition τ, i.e.

S′1
τ // S′2

S1

γ

OO

S2

γ

OO

implies

S1
τ // S2

This does not, however, provide a practical algorithm for constructing the
abstract transitions, as the concretisation of an abstract state may contain
an infinite number of concrete states.

We can approximate this though by using an approach that constructs
a partial concretisation instead. In the partial concretisation, only the parts

7As far as I am aware, canonical abstraction has not been used in the literature to check
ECTL* properties; in Part III we only consider ACTL* properties.

66 CHAPTER 4. CANONICAL ABSTRACTION

of the state that are relevant to the transition are concretised, i.e. the state is
concretised only enough for the precondition and updates of the transition
to evaluate to definite values [Sagiv et al., 2002, §6]. The precise steps are:

• Focus, which performs an optimistic partial concretisation, so that a
given set of formulas all evaluate to definite values;

• Coerce, which removes the inconsistent states generated by the opti-
mistic Focus operation;

• Update, which applies the operational semantics of the concrete tran-
sition; and

• Blur, which performs canonical abstraction.

Focus and Coerce are semantic reductions [Cousot and Cousot, 1979],
which means that they take a set of abstract states and return a more pre-
cise set that represent the same set of concrete states. From this and the
Embedding Theorem, it follows that this approach is safe [Sagiv et al.,
2002, Theorem 6.29].

An abstract system based on canonical abstraction will always be finite,
as there is a finite bound on the number of abstract states (due to the finite
number of predicates used, as mentioned earlier in Section 4.1.2). Such an
abstract system constructed using the approach described here may not
be as precise as theoretically possible, i.e. by fully concretising an abstract
state, applying a concrete transition to each of the concrete states, and then
reabstracting the resulting states.

In the remainder of this section we examine in more detail the Focus
operation in Section 4.3.1, the Coerce operation in Section 4.3.2 and the
Update operation in Section 4.3.3. Section 4.3.4 contains an example of
an abstract transition, which shows how each of these steps is applied,
and demonstrates the potential imprecision. In Section 4.3.5 we discuss
computing the most precise abstract transitions.

4.3.1 Focus Operation

The first step is the Focus operation, which “focusses” some of the indef-
inite information in a structure. Given an abstract configuration S and a
set of logical formulas Φ (the focus formulas), it returns the minimum set
of abstract configurations that together represent the same set of concrete

4.3. ABSTRACT TRANSITIONS 67

configurations as the original, i.e. γ(S) = γ(Focus(S, Φ)), but in which all
the focus formulas evaluate to definite values. So for every configuration
S′ ∈ Focus(S, Φ), formula ϕ ∈ Φ and assignment Z:

JϕKS′
3 (Z) ∈ {0, 1}

Sagiv et al. [2002, §6.3.1] give an algorithm for a restricted class of for-
mulas. Lev-Ami [2000, §6] gives a general algorithm, with conservative
checks for the generation of an infinite number of structures. The basic
idea of Lev-Ami’s algorithm is to convert each formula into conjunctive
normal form, and then ‘focus’ each atomic component in turn. When a
predicate and assignment on free variables are encountered that evaluate
to unknown, Focus produces either two or three modified copies:

1. a configuration where the predicate is set to true;

2. a configuration where the predicate is set to false; and

3. if the predicate is binary and exactly one of the objects is a summary
object, then a configuration where there are two copies of the sum-
mary object — one with the predicate set to true and the other with
it set to false.

Figure 4.7 shows an example of focussing a binary predicate p, and the
three states that result. Note that focussing a binary predicate with two
summary objects could produce an infinite number of configurations —
the algorithm fails with an error in this case.

There is no set method for constructing focus formulas for each tran-
sition. In general, the intention is to concretise the parts of the structure
that are read or modified by (the precondition and update formulas of) the
transition — this is discussed by Sagiv et al. [2002, §6.3.2]. Any choice is
safe, but as expected if not enough information is focussed it may make
the analysis too coarse.

4.3.2 Coerce Operation

The Coerce operation “coerces” structures to be more precise. It takes an
abstract configuration and a set of constraints (defined below), and returns
either the empty set, or a singleton set containing the input configuration
with zero or more indefinite predicate interpretations set to definite values

68 CHAPTER 4. CANONICAL ABSTRACTION

A
B

p

q

A
Bq

A
B

p

q

A
B

B
p

q

q

q

q

Fo
cu

s

Fi
gu

re
4.

7:
Fo

cu
s

on
a

si
ng

le
pr

ed
ic

at
e:

Fo
cu

s(
p(

v 1
,v

2)
)

4.3. ABSTRACT TRANSITIONS 69

(true or false). Intuitively, the resulting configuration represents exactly
the same set of concrete configurations that the initial one does. In the
latter case, the indefinite interpretations have the same definite interpre-
tation in every embedding concrete configuration. In the former case, the
structure is logically inconsistent.

Compatibility constraints

A compatibility constraint is a formula of the form:

ϕ1 � ϕ2

where the head ϕ2 is an atomic FOTC formula (a literal or predicate) or the
negation of an atomic FOTC formula, and the body ϕ1 is an arbitrary FOTC
formula. The novel operator � is defined semantically as follows:

S, Z |= ϕ1 � ϕ2 iff Jϕ1K
S
3 (Z) = 1 implies Jϕ2KS

3 (Z) = 1

In 2-valued configurations, ϕ1 � ϕ2 has exactly the same meaning as
ϕ1 → ϕ2. In 3-valued configurations though it has a stronger meaning;
if Jϕ1K

S
3 (Z) = 1 and Jϕ2KS

3 (Z) =
1
2 then ϕ1 → ϕ2 is satisfied but ϕ1 � ϕ2 is

not.
The constraints used in an analysis come from the integrity rules and

instrumentation predicates, which were discussed in Section 4.2. To the set
of integrity rules, we add the following two formulas for each instrumen-
tation predicate p, where k is the arity of p and ϕp is its defining formula:

∀ v1 · · · vk • ϕp → p(v1, . . . , vk)
∀ v1 · · · vk • ¬ ϕp → ¬ p(v1, . . . , vk)

From these formulas we construct the set of constraints using the follow-
ing translation. Let ϕ be a closed formula, and a be an atomic formula or
the negation of an atomic formula. Then, the constraint generated from ϕ
is:

ϕ1 � a if ϕ = ∀ v1 · · · vk • ϕ1 → a
¬ ϕ � 0 otherwise

Additionally, we include the extended Horn clause closure of each constraint.
For every constraint of the form

a1 ∧ · · · ∧ an � a0

70 CHAPTER 4. CANONICAL ABSTRACTION

where each ai is an atomic formula or the negation of an atomic formula,
we also include the following constraints, for all 1 6 i 6 n:8

¬ a0 ∧ a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an � ¬ ai

Coerce algorithm

The Coerce algorithm given by Sagiv et al. [2002, §6.4.4] is fairly straight-
forward. Briefly, each constraint is evaluated for every assignment over
free variables. For each case where the body evaluates to true and the
head evaluates to unknown, the predicate in the head is set to true (or
false, if the head contains a negated predicate). If a case is reached where
the body evaluates to true and the head evaluates to false, then the struc-
ture is discarded and Coerce returns the empty set.

Coerce is performed in between Update and Blur, in order to ensure
that the structures are as precise as possible before re-abstracting them. In
practice it is more efficient to also perform it between Focus and Update,
so that unnecessary computation is not wasted performing updates on
inconsistent configurations.

4.3.3 Update

The Update operation that is performed during the construction of an ab-
stract transition is simply the application of the concrete transition to a
partially concretised state.

The concrete operational semantics of a transition are given in two
parts: the precondition formula ψpre and the set of update formulas Ψ.
The precondition ψpre can be any FOTC formula. The set Ψ contains a for-
mula of the form p(v1, . . . , vk) = ϕp for every predicate p, where k is the
arity of p and ϕp can be any FOTC formula with free variables that are a
subset of {v1, . . . , vk}.

We say that a transition τ =
〈
ψpre, Ψ

〉
holds between concrete states (2-

valued configurations) S\
1 to S\

2 iff their universes are the same, i.e. U\
1 =

U\
2, there is an assignment that makes the precondition true in the first

state S\
1, i.e.

∃Z •
q

ψpre
yS\1

2 (Z) 6= 0

8The construction is slightly more complicated, as we must ensure that the free vari-
ables of the body and head are the same; Sagiv et al. [2002, §6.4.2] have more details.

4.3. ABSTRACT TRANSITIONS 71

and every predicate has the same value in the second state S\
2 as its update

formula has in the first, i.e.

∀ p • ∀Z • Jp(v1, . . . , vk)K
S\2
2 (Z) =

q
ϕp

yS\1
2 (Z)

During the construction of of an abstract transition, we apply the con-
crete transition to partially concretised abstract states, rather than concrete
states. However, we can easily redefine the definition using 3-valued se-
mantics. We say that a transition τ hold between abstract states (3-valued
configurations) S1 and S2 iff

U1 = U2

∃Z •
q

ψpre
yS1

3 (Z) 6= 0
∀ p • ∀Z • Jp(v1, . . . , vk)K

S2
3 (Z) =

q
ϕp

yS1
3 (Z)

New objects

The requirements for the Update operation state that the universes of the
pre and post states must be identical, which would preclude transitions
that create or destroy objects. Such transitions can be represented with the
use of an additional predicate and operation.

For transitions that create a single object, the operation New is per-
formed immediately before Update. New makes two modifications to the
state — it adds an object to the universe and sets a unary predicate is New
to be true for (only) that object.

The new object can be specified in the update formulas of the succeed-
ing Update operation via the is New predicate. The update formula for
the predicate is always is New(v) = 0.

4.3.4 Example

To illustrate how abstract transitions are created using Focus and Coerce,
we will look at applying a transition to the running example. So far,
we have considered an abstract configuration that represents connected
acyclic lists of length 2 or more (see S′1 in Figure 4.6a). To this state we will
apply a transition that advances the variable x along the list, i.e.

x := x.next

72 CHAPTER 4. CANONICAL ABSTRACTION

First, let us consider the aspects that are not transition dependent. In
this simple example we use only four predicates — two core predicates
representing the global variable and the next field, and two instrumenta-
tion predicates recording circularity and reachability:

C1 = {x}
C2 = {next}
I1 = {circ[next], reach[x, next]}

There are eight constraints used with this abstraction. Four come from
the integrity rules that enforce the uniqueness of x and the functionality of
next (two directly from the rules, and two from their extended Horn clause
closures):

x(v1) ∧ x(v2) � eq(v1, v2) (C.1)
∃ v2 • ¬ eq(v1, v2) ∧ x(v2) � ¬ x(v1) (C.2)

∃ v1 • next(v1, v2) ∧ next(v1, v3) � eq(v2, v3) (C.3)
∃ v3 • ¬ eq(v2, v3) ∧ next(v1, v3) � ¬ next(v1, v2) (C.4)

The remaining four come from the definitions of the instrumentation pred-
icates:

next+(v1, v1) � circ[next](v1) (C.5)
¬ next+(v1, v1) � ¬ circ[next](v1) (C.6)

∃ v1 • x(v1) ∧ next∗(v1, v2) � reach[x, next](v2) (C.7)
∀ v1 • ¬ x(v1) ∨ ¬ next∗(v1, v2) � ¬ reach[x, next](v2) (C.8)

Initial State

The initial state we will apply the transition to is S′1 in Figure 4.6, and we
will label it S0 here. The universe has two objects, and the interpretation is

4.3. ABSTRACT TRANSITIONS 73

as follows:

U = {u1, u2}
ι u1 u2
x 1 0

circ[next] 0 0
reach[x, next] 1 1

next u1 0 1
2

u2 0 1
2

eq u1 1 0
u2 0 1

2

Focus

To apply the transition we require that the x node and its successor are
both concrete (see the Update operation), so we use the single focus for-
mula

x(v1) ∧ next(v1, v2)

Now Jx(u2)K
S0
3 = 0, so

Jx(u2) ∧ next(u2, v2)K
S0
3 (Z) = 0

for any Z, even though Jnext(u2, u2)K
S0
3 = 1

2 . Then

Jx(u1) ∧ next(u1, u1)K
S0
3 = 0

However,

Jx(u1) ∧ next(u1, u2)K
S0
3 = 1

2

when it is required to be a definite value. Since u2 is a summary node
(Jeq(u2, u2)K

S0
3 = 1

2) the Focus operation produces three modified states
where the focus formula evaluates only to definite values, as in Figure 4.7.
We will label these S1, S2 and S3.

States S1 and S2 are exactly the same as S0 except that the indefinite
predicate has been assigned a definite value, i.e.

Jnext(u1, u2)K
S1
3 = 1

Jnext(u1, u2)K
S2
3 = 0

74 CHAPTER 4. CANONICAL ABSTRACTION

thus for all Z

Jx(v1) ∧ next(v1, v2)K
S1
3 (Z) ∈ {0, 1}

Jx(v1) ∧ next(v1, v2)K
S2
3 (Z) = 0

For S3 the summary object gets duplicated so that each copy gets a differ-
ent definite value for the predicate:

U = {u1, u2, u3}
ι u1 u2 u3
x 1 0 0

circ[next] 0 0 0
reach[x, next] 1 1 1

next u1 0 1 0
u2 0 1

2
1
2

u3 0 1
2

1
2

eq u1 1 0 0
u2 0 1

2 0
u3 0 0 1

2

Now Jx(v1) ∧ next(v1, v2)K
S3
3 (Z) ∈ {0, 1} for all Z.

Coerce

First State In S1, all the constraint formulas are satisfied except for C.3,
as

J∃ v1 • next(v1, u2) ∧ next(v1, u2)K
S1
3 = 1

but

Jeq(u2, u2)K
S1
3 = 1

2

Coerce replaces S1 with a state S′1 that differs only by making the second
node non-summary, i.e. ι(eq(u2, u2)) = 1. Now all constraints are satis-
fied, notably

S′1 |= ∃ v1 • next(v1, v2) ∧ next(v1, v3) � eq(v2, v3)

4.3. ABSTRACT TRANSITIONS 75

Second State In S2, all the constraint formulas are satisfied except for
C.8, as

J∀ v1 • ¬ x(v1) ∨ ¬ next∗(v1, u2)K
S2
3 = 1

but

J¬ reach[x, next](u2)K
S2
3 = 0

There is no way to satisfy this constraint, so Coerce discards S2.

Third State In S3, as for S1, all the constraint formulas are satisfied except
for C.3. Again, as for S1, Coerce replaces S3 with a state S′3 that differs only
by making the second node non-summary, i.e. ι(eq(u2, u2)) = 1.

Update

The precondition of the transition is the formula

x(v1) ∧ next(v1, v2)

Both S′1 and S′3 satisfy this precondition with the assignment

[v1 7→ u1, v2 7→ u2]

The update formulas for x and the instrumentation predicate that uses
it are

x(v1) = ∃ v2 • x(v2) ∧ next(v2, v1)

reach[x, next](v1) = reach[x, next](v1) ∧ (¬ x(v1) ∨ circ[next](v1))

None of the other predicates are altered so their update formulas are of the
form p(v1, . . . , vk) = p(v1, . . . , vk).

New states S4 and S5 are constructed from S′1 and S′3, respectively, shar-
ing the same universes. The interpretations are constructed using the up-
date formulas and are the same as the previous states except for the fol-
lowing:

S5 ι u1 u2
x 0 1

reach[x, next] 0 1

S5 ι u1 u2 u3
x 0 1 0

reach[x, next] 0 1 1

76 CHAPTER 4. CANONICAL ABSTRACTION

Coerce

Both S4 and S5 satisfy all eight constraint formulas, so Coerce makes no
changes to either state.

Blur

Blur also makes no changes to either S4 or S5. Both states are already
canonically abstract, as all (respectively two and three) nodes have distinct
abstraction (unary) predicate interpretations.

4.3.5 Computing the Best Abstract Transition

As mentioned earlier in this section, the construction of abstract transi-
tions described here is not always as precise as is theoretically possible,
though it is practical and always terminates. An alternative approach has
been investigated [Reps et al., 2004b; Yorsh et al., 2004, 2007] that con-
structs the “best” abstract transitions (equivalent to fully concretising ab-
stract states, applying the concrete transition, and reabstracting). It follows
the approach from predicate abstraction [Graf and Saı̈di, 1997] of using an
automated theorem prover to construct the abstract transitions, and en-
codes 3-valued abstract states using 2-valued formulas. This approach has
the advantage of constructing more precise abstract systems, but has the
disadvantage that the procedure may not terminate, as first order logic is
undecidable. The results reported are currently slower than TVLA and do
not allow transitive closure, though further work has investigated first or-
der simulation of transitive closure in some circumstances [Lev-Ami et al.,
2009].

4.4 Concurrent Systems

Canonical abstraction can be extended from representing the heap of se-
quential systems to representing concurrent systems by treating threads in
a similar way to the heap objects. This approach was introduced by Yahav
for model checking Java programs [Yahav, 2001, 2004; Yahav and Sagiv,
2010].

4.4. CONCURRENT SYSTEMS 77

4.4.1 States

The key idea of this approach is to represent threads in the same way as
any other object. Each thread is represented by an object in the universe
and has the unary predicate is thread true. The fields of the threads are
represented by binary predicates, as for other objects’ fields.9 The threads
have a finite set of locations, which are represented by unary predicates
of the form at[label], for each location label. A further core predicate is
introduced, called tr scheduled, which records which thread object is per-
forming a transition.

Example Figure 4.8 shows the graph of the canonical abstraction of a pos-
sible state of the stack algorithm from Figure 2.7 (in fact, of an infinite
number of possible states). The stack contains three or more elements, and
is distinguished by the unary predicate (representing the global variable)
Head and the previously introduced instrumentation predicate reach[Head, next].
The data values are marked by the unary predicate is data, but there is
nothing further to distinguish them so they are all abstracted to a single
summary object. On the right, there are two or more threads performing a
pop operation, which have read a snapshot at line 11 that is now stale (i.e.
ss does not point to the node marked by Head) and which are waiting to
perform line 12. Note that because ss is unknown for these threads, the
stack snapshot could be either a node later in the list or it could be null
(i.e. if ss is false). On the left, there is a single thread performing a push
operation, which is about to perform the CAS step at line 7. This thread is
the next scheduled to perform a transition, as tr scheduled is true, and the
CAS will succeed because ss does point to the Head node. �

Yahav [2001, 2004] also discusses the representation of locks and threads
that can be created, destroyed, and made inactive; these are not used in
this thesis.

4.4.2 Transitions

Each algorithm transition operates on the thread that has the unique unary
predicate tr scheduled true. Nondeterministically assigning this predicate

9Yahav defines a predicate rv[fld] for each field fld, but we will just define them as fld.

78 CHAPTER 4. CANONICAL ABSTRACTION

is node
Head

reach[Head, next]

is node
reach[Head, next]is node

is thread
tr scheduled

at[push7]

is thread
at[pop12]

is data

n

ss ss

next next
next

val val val

Figure 4.8: Graph of a stack algorithm state with concurrent threads

(and hence thread execution order) is achieved by two additional tran-
sitions, which “unschedule” the thread that has just performed a transi-
tion by potentially scheduling every thread, and then “schedule” the suc-
ceeding thread by focusing. This process is handled implicitly by 3VMC
(see Section 3.6.3) or it can be explicitly implemented in a standard TVLA
model.

Unschedule

This transition is performed immediately after a thread transition. It sets
the value of tr scheduled to unknown for all threads based on the follow-
ing update formula:

tr scheduled(v) = is thread(v) ∧ 1
2

4.5. IMPROVEMENTS 79

Schedule

This transition is performed immediately before a thread transition. It per-
forms no update, and performs Focus with the formula tr scheduled(v).
The predicate tr scheduled has “unique” integrity rules, which ensure that
a single thread is identified to perform the next step.

4.5 Improvements

A number of techniques have been proposed and implemented to improve
the efficiency of analyses using canonical abstraction. In this section we
describe summary predicates (4.5.1), partially disjunctive analysis (4.5.2),
semi-naive evaluation and multi-constraints for Coerce (4.5.3), finite dif-
ferencing (4.5.4) and graph decomposition (4.5.5).

4.5.1 Summary Predicate

As explained above in Section 4.1, summary objects are represented using
the eq equality predicate. However, maintaining a binary predicate in or-
der to represent a unary property is more expensive than necessary. Sagiv
et al. [2002] define a unary summary predicate to use instead of eq, which
can be defined as an instrumentation predicate:

sm(v) = ¬ eq(v, v)

In an abstract state, sm(u) is unknown if u is a summary node, and is false
if u is a non-summary node.

However, if sm is used in place of eq, then it cannot be defined as a
standard instrumentation predicate to be used with canonical abstraction.
In any concrete state it is false for every object — in any canonically ab-
stract state it is therefore false for every object too, though it needs to be
unknown to denote the summary objects.

The predicate sm can be used if its behaviour is explicitly specified in
the theory. Sagiv et al. [2002] use this explicit extension in all of their def-
initions and proofs, showing that the summary predicate can be used as
a more efficient approach for implementing canonical abstraction. Imple-
menting this theory, the TVLA tool uses sm in place of eq.

80 CHAPTER 4. CANONICAL ABSTRACTION

4.5.2 Partially Disjunctive Analysis

Manevich et al. [2004] describe an approach for storing abstract states in
the statespace analysis that is less precise but in practice just as effective
and much more efficient than the original approach of Sagiv et al. [2002].
Rather than comparing to see whether a state is isomorphic to any stored
state they compare to see if it is “partially isomorphic” based on the no-
tion of universe congruence, which induces an equivalence class on abstract
states. Two states are universe congruent if they have the same universe
and have the same interpretation over the abstraction predicates.

If a state S1 is universe congruent with a previously visited state S2, the
two are merged to form a new state S3, where U1 = U2 = U3 and for every
k-ary predicate p with objects u1, . . . , uk

ι3(p)(u1, . . . , uk) =

ι1(p)(u1, . . . , uk) if ι1(p)(u1, . . . , uk) =

ι2(p)(u1, . . . , uk)
1
2 otherwise

I used partially disjunctive analysis in all the results in Chapters 7 and
8.

4.5.3 Coerce

The Coerce operation is expensive, as it has to evaluate all of the many
compatibility constraints. Bogudlov et al. [2007a,b] detail several improve-
ments that make Coerce much more efficient.

Most transition updates only affect a small part of the configuration.
Borrowing ideas from database theory, Bogudlov et al. define a semi-naive
evaluation for Coerce that only evaluates the constraints affected by pred-
icates that could have been changed by Focus or Update.

The compatibility constraints often include groups of formulas that are
symmetric, having the same atoms. Bogudlov et al. introduce the con-
cept of a multi-constraint, which can be used to represent such a set of
constraints, and can be used to evaluate all the constraints at once, at a
comparable cost to evaluating one alone.

These improvements are implemented in TVLA 3.0α, which I used for
all the results in Chapters 7 and 8.

4.5. IMPROVEMENTS 81

4.5.4 Instrumentation Predicate Updates

Defining the update formulas for instrumentation predicates adds an ex-
tra amount of manual effort to constructing a model. Reps et al. [2003,
2010] describe an algorithm called ‘finite differencing’ for automatically
computing an update formula for an instrumentation predicate based on
the definition formula of the predicate. The update is based on the defin-
ing formula of the instrumentation predicate and the update formulas of
the predicates used in the definition.

I did not use finite differencing in this thesis — all the instrumenta-
tion predicate updates in the analyses reported in Chapters 7 and 8 were
constructed by hand.

4.5.5 Graph Decomposition

Manevich et al. [2007, 2008] describe an alternative implementation of
canonical abstraction that stores manually specified subgraphs of each
state graph, rather than the entire state graph as a whole. This approach
exploits the insight that there can be many independent parts of a state
graph: the graph is decomposed into these parts, which are stored sepa-
rately. The subgraphs are not disjoint, so together the subgraphs use more
space than the full state graph, however large efficiencies can be gained
from only storing one copy of subgraphs that are found in multiple states.

I did not use graph decomposition for any of the analyses in this thesis.

82 CHAPTER 4. CANONICAL ABSTRACTION

Part II

Modelling and Testing

83

Chapter 5

Model Checking Nonblocking
Algorithms

In this chapter we examine how to represent the concepts presented in
Chapter 2 — data structures algorithms and their linearisability and non-
blocking properties — in the languages and logics of model checkers, as
presented in Chapter 3. In Section 5.1 we consider how to model the data
structures themselves. In Section 5.2 we consider how to specify linearis-
ability. In Section 5.3 we consider how to specify nonblocking properties.

The approaches described in Sections 5.1 and 5.2 are similar or identi-
cal to published approaches by other authors, though I arrived at much of
it independently. The novel contributions of this chapter are the formalisa-
tions of nonblocking properties in Section 5.3, and the survey presentation
of the approaches as a whole.

5.1 Modelling Data Structures

In this section, we will present the representation of nonblocking data
structures for model checking that is used through the rest of the thesis.
In Section 5.1.1, we discuss transition systems, relating the languages of
the model checkers to the underlying Kripke structures. In Section 5.1.2,
we discuss how to create finite sized models. In Section 5.1.3, we discuss
some approaches for manually reducing the statespace.

85

86 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

5.1.1 Transition Systems

In Section 3.1, we introduced Kripke structures as a formalism for describ-
ing systems. In this thesis we do not construct Kripke structures directly
— instead we use the language of each model checker to describe a sys-
tem; internally, the model checker uses this to construct a Kripke struc-
ture, or equivalent representation. Effectively, the states are labelled by
atomic propositions representing the global variables and the threads’ lo-
cal variables, including program counters. Some modelling languages
(e.g. Promela) define the program counters implicitly, whilst others require
them to be defined explicitly (e.g. SAL). We will assume, unless noted oth-
erwise, that the program counter is a variable called location. Thus, thread
t1 is at location ‘idle’ when t1.location = idle.

Each step of a thread does not (necessarily) represent a single transition
in the Kripke structure, but represents transitions between any two pairs
of states where the first state satisfies the step’s precondition — notably
considering the value of the program counter — and the second state is
the result of applying the step changes to the first.

We say that a step is enabled at a state if the precondition is satisfied.
We say that a thread is enabled at a state if at least one of the thread’s
steps is enabled. Thus, for concurrent data structures each thread is always
enabled, unless it is blocked.

One reason threads may be blocked is for a reduction in interleaving.
We may place some of the steps within an atomic block, which prevents
interleaving of steps from other threads. This behaviour can be imple-
mented implicitly by model checkers in one of two ways. Either, the tran-
sitions of the steps are merged into a single transition (operationally, the
intermediate states are not stored). Or, other threads are blocked until the
end of the atomic block. Promela provides options for both (d step and
atomic, respectively). TVLA only provides the latter approach to restrict
interleaving, but if desired, we can merge steps by manually defining an
equivalent step to replace the atomic block.

Later in this chapter we will consider “traces” of a system, a notion
from labelled transition systems (which we mentioned in Section 3.1 to be
equivalent to Kripke structures). For our purposes here, we will assume
that the “output” of the system is recorded by a shared variable trace. This
variable is updated by every step, containing a (possibly empty) sequence
from a fixed set of values. The trace of an execution is the sequence con-
catenating all of the sequences stored in trace along the execution.

5.1. MODELLING DATA STRUCTURES 87

For the remainder of the thesis we will not discuss Kripke structures
again, and will generally take a pseudocode-centric view of using “transi-
tion” interchangeably with “step” to refer to such meta-transitions of the
modelling language.

5.1.2 Creating Finite Systems

As mentioned in Chapter 1, model checking is a technique applicable to
finite state systems, yet models of nonblocking data structure algorithms
have infinite statespaces. In any real implementation there will be physical
constraints placed upon the size of the algorithm, however there are no a
priori limits on the number of threads, the number of distinct data values
that can be used, or the amount of memory that can be used for the list
structure (i.e. arrays or linked list nodes).

Bounded Parameters

In Chapter 6, I parameterise the algorithms so that each model has a fixed
number of threads, data values and memory locations. Every finite instan-
tiation of the parameters produces a finite model, which can be analysed
by a model checker.

An alternative approach is to place a bound on the number of opera-
tions, which in turn bounds the three parameters above. It also restricts
to finite executions, so is not suitable for checking progress properties.
Whilst the smaller statespace might make it quicker to find some bugs,
if no bugs are found it is harder to draw any general inferences.

Unbounded Abstract Models

In Chapters 7 and 8, I use canonical abstraction (see Chapter 4) to construct
an ‘equivalent’ finite state model, which allows ‘unbounded’ verification.
The models being abstracted have a fixed collection of threads and of data
values, and the sizes of these are not necessarily recorded explicitly. The
model is initialised with an empty data structure, and additional nodes for
the linked list may be created without bound. Again, the number of nodes
in a particular concrete state is not necessarily recorded explicitly in the
abstract state.

Since the numbers of threads, data values and nodes in a particular ab-
stract state may not be explicitly recorded, the abstract state may represent

88 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

an infinite number of concrete states. See Chapter 4 and Sections 7.1–7.2
for more details.

5.1.3 Manual Statespace Reduction

As a consequence of the state explosion problem (see Section 3.4), model
checking is very sensitive to the representation of the model — a linear
increase in the thread’s statespace has an exponential effect on the size
of the system’s statespace. I have employed two manual techniques to
reduce the size of the statespace — resetting unused values and merging
transitions.

Resetting Unused Values

Consider the stack algorithm from Figure 2.7 — when a Pop operation de-
tects conflict with other threads at line 17 (if the CAS fails) it restarts the
loop. Going through the loop a second (or subsequent) time the thread
rereads all of the local variables (ss, ssnext, lv) before using them again,
thus it is effectively in the same state as when it begins the operation.
However, a model checker does not necessarily see them as the same state
— when the operation is begun these variables are initialised as null; when
the loop is restarted they contain whatever values were read during the
loop. Not only will the model checker separately store states beginning
and restarting the loop, it will separately store many versions of states
restarting the loop, corresponding to each of the (probably exponentially
many) possible values that the local variables can take.

To address this problem I modify the Spin models in Chapter 6 to atom-
ically reset all local variables that are modified in the loop.

I do not make this modification to the TVLA models used in Chapters
7 and 8, as canonical abstraction can represent all such states with a single
abstract state.

Reducing Interleaving

In Section 3.4.2, we introduced partial order reduction, an automatic tech-
nique that reduces the size of the explored statespace by eliminating thread
interleavings that do not affect the property being checked. However,
some model checkers do not implement partial order reduction, and the

5.1. MODELLING DATA STRUCTURES 89

Type: Node = {val : T; next : Node}
Shared: Head : Node := null

1: operation PUSH(lv:T)
2: n := new(Node)
3: n.val := lv
4: repeat
5: atomic
6: ss := Head
7: n.next := ss
8: end atomic
9: until CAS(Head, ss, n)

10: end operation

11: operation POP()
12: repeat
13: atomic
14: ss := Head
15: if ss = null then
16: return empty
17: end if
18: end atomic
19: ssnext := ss.next
20: lv := ss.val
21: until CAS(Head, ss, ssnext)
22: ss.next := null
23: ss.val := null
24: return lv
25: end operation

Figure 5.1: A lock-free stack algorithm with merged transitions

range of possible partial order reduction algorithms that can be imple-
mented have varying effectiveness. Some of the benefits of partial order
reduction can be achieved manually by using atomic blocks to prevent
unnecessary interleaving.

The linearisability and nonblocking properties of concurrent data struc-
tures can be affected by the interleaving of thread steps that read or write
to shared variables and objects, but are not affected by the interleaving of
thread steps that only read or write to local variables and private objects.
Thus, we can group such local steps together for efficiency — the reduction
in transition interleavings reduces both the time and memory required for
analysis.

Figure 5.1 shows the stack algorithm from Figure 2.7 extended with
atomic blocks that group transitions to prevent unnecessary interleavings.
In each case, the transitions grouped are ones that only read or write to
local variables. For the Push operation, the initialisation of private node
n at lines 2 and 3 involves only the local variables n and lv, so can be
merged. Subsequently, line 7 assigns the local variable ss to a field of the

90 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

private node n so can be merged with the previous line that assigns ss.
Similarly, line 15 of the Pop operation tests the local variable ss and can be
merged with the previous line that assigns it. Line 19 cannot be merged as
well — whilst ss is a local variable it refers to a shared node.

5.2 Specifying Linearisability

In this section, we consider how to specify linearisability so that it can be
checked by a model checker. In Section 5.2.1, we discuss constructing con-
current specifications from sequential specifications. In Section 5.2.2, we
discuss identifying linearisation points for operations. In Section 5.2.3, we
discuss the use of simulation relations for determining trace inclusion of
the implementation with the concurrent specification. In Section 5.2.4, we
discuss checking the trace inclusion directly. In Section 5.2.5, we discuss
discuss cases where linearisation points may be determined by the future
behaviour of other threads. In Section 5.2.6, we discuss merging the spec-
ification and implementation systems together.

5.2.1 Concurrent Specifications

As explained in Section 2.2, a concurrent data structure implementation
is linearisable if every history of operation invocations and responses is a
permutation (with some ordering constraints) of a history of the sequential
specification. One way of determining this is to construct a concurrent spec-
ification — a system that is linearisable by construction — and show that
the set of invocation/response histories generated by the implementation
is a subset of the set of histories generated by the concurrent specification.
This turns linearisability into a language containment or trace inclusion
question.

Each operation of the concurrent specification consists of three transi-
tions: a call step, which invokes the operation; an apply step, which atom-
ically performs the entire operation; and a return step, which performs the
operation’s response. Figure 5.2 shows a diagram of the structure of the
stack concurrent specification’s ith thread, and Figure 5.3 enumerates the
possible operations, where {v1, . . . , vn} is the set of possible data values.
From the initial idle state, it nondeterministically invokes either a pop or a
push operation; there is only one pop call transition, but there is one push

5.2. SPECIFYING LINEARISABILITY 91

• returni

(PUSH(v),ok)

((QQQQQQQQQQQQQQ •returni

(POP,ok(v))

vvnnnnnnnnnnnnnn

•

applyi

(PUSH(v),ok)

OO

IDLE
calli(PUSH(v))
oo

calli(POP)
// •

applyi

(POP,ok(v))

OO

applyi

(POP,empty)��
•

returni

(POP,empty)

hhQQQQQQQQQQQQQQ

Figure 5.2: Diagram of thread i in the concurrent stack specification

calli(PUSH(v1)) − applyi(PUSH(v1), ok) − returni(PUSH(v1), ok)
...

...
...

calli(PUSH(vn)) − applyi(PUSH(vn), ok) − returni(PUSH(vn), ok)
calli(POP) − applyi(POP, empty) − returni(POP, empty)
calli(POP) − applyi(POP, ok(v1)) − returni(POP, ok(v1))

...
...

...
calli(POP) − applyi(POP, ok(vn)) − returni(POP, ok(vn))

Figure 5.3: Operations of thread i in the concurrent stack specification

call transition for every possible data value. Then it performs the specifi-
cation operation with an apply transition. For a push operation, the data
value of the apply transition must match that of the preceding call tran-
sition. For a pop operation, the apply transition taken — an empty pop,
or the pop of a value — depends on the contents of the stack. Finally, it
performs a return transition that matches the preceding apply transition,
and returns to the idle state.

Concurrent specifications are linearisable — every invocation-response
pair can be moved to the position where the operation is performed (the
apply step), constructing a correct sequential execution. Thus, the concur-
rent specification generates every possible linearisable invocation-response
history.

For both the concurrent specification and the implementation system,
we set trace at each transition as follows. For the first transition of an
operation, the output is a singleton containing the appropriate invoca-
tion (see Section 2.2). For example, the trace output of call2(PUSH(a)) is
〈inv2(PUSH, a)〉. For the final transition of an operation, the output is a

92 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

singleton containing the appropriate response. For example, the trace out-
put of return7(POP, empty) is 〈resp7(POP, empty)〉. For all other transi-
tions, the trace output is the empty sequence 〈〉. Then the implementation
is linearisable with respect to the specification iff its set of traces is a subset
of the set of traces of the concurrent specification.

Determining this trace inclusion is a complex problem, and cannot be
verified solely using CTL* model checking — Alur et al. [1996, 2000] have
shown that it is in EXPSPACE, whilst CTL* model checking is in PSPACE
[Sistla and Clarke, 1985]. Liu et al. [2009] have used FDR-style refinement
to allow model checking.

5.2.2 Linearisation Points

One of the principle causes of the complexity of the above approach is
the large number of permutation of orderings that have to be considered
for every set of concurrent operations. These permutations can be elimi-
nated if we can specify a point in the code where an operation can always
be assumed to take effect. This approach of using linearisation points re-
quires more human effort but is a tradeoff used in most formal linearisa-
tion analyses.

It is not always possible to pick one transition from each operation and
say “when this transition is executed it is the linearisation point for its
operation.” Linearisation points can be more complicated:

• An operation’s linearisation point may be a transition of another op-
eration [e.g. Colvin et al., 2006].

• One transition may be the linearisation point for many operations
[e.g. Colvin et al., 2006].

• A transition may be the linearisation point for an operation, depend-
ing on the future behaviour of other operations (see Section 5.2.5).

Choosing linearisation points can be quite challenging, as the vast majority
of points are not suitable. With automated analyses, incorrect choices will
always be identified; with manual analyses there is the risk that a mistake
could “prove” linearisability with incorrect linearisation points.1

1For example, Colvin et al. [2006] explain how one linearisation point choice of
Vafeiadis et al. [2006] in their manual analysis of the lazy list set algorithm [Heller et al.,
2005, 2007] is incorrect.

5.2. SPECIFYING LINEARISABILITY 93

We expand the set of values that can be output to trace to include lin-
earisation points, of the form lpp(OP, val∗), congruent with the invocations
and responses (see Section 2.2). These values are output at the linearisation
point transitions of the implementation system and the apply transitions
of the concurrent specification system; the latter will only write singleton
sequences to trace, but the implementation system transitions may write
longer sequences.

Including linearisation points in traces simplifies the analysis, as it de-
termines exactly one sequential ordering for each trace, though it does
require further effort to refute linearisability. If a particular implementa-
tion trace is shown to not be a specification trace, it does not necessarily
follow that the execution and system are not linearisable — the chosen lin-
earisation points may be incorrect, so the trace must be searched for other
linearisable orderings.

5.2.3 Simulation

One approach to verifying trace inclusion, and thus linearisability, is to
show that there is a simulation relation [Lynch and Vaandrager, 1995] be-
tween the implementation and specification. There are two types of sim-
ulations, for reasoning forwards and backwards through the statespace.
A relation R between the states of an implementation and a specification
system is a forward (or downward) simulation iff

• every initial state of the implementation is related to an initial state
of the specification; and

• given a transition τ between two implementation states s1 and s2,
and a specification state s′1 related to s1, i.e.

s1
τ //

R
��

s2

s′1

then there is a specification state s′2 related to s2, which is reachable
from s′1 by a sequence τ′ of 0 or more specification transitions that has
the same trace (of invocations, linearisation points and responses) as

94 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

the implementation transition, i.e.

s1
τ //

R
��

s2

R
��

s′1 τ′
+3 s′2

Alternatively, R is a backward (or upward) simulation iff

• every implementation state is related to a specification state;

• every specification state related to an implementation initial state is
a specification initial state; and

• given a transition τ between two implementation states s1 and s2,
and a specification state s′2 related to s2, i.e.

s′2

s1 τ
// s2

R
OO

then there is a specification state s′1 related to s1, which can reach s′2
via a sequence τ′ of 0 or more specification transitions that has the
same trace (of invocations, linearisation points and responses) as the
implementation transition, i.e.

s′1
τ′ +3 s′2

s1 τ
//

R
OO

s2

R
OO

It is important to note that the “states” referred to in the above definitions
are specifically the reachable states, not all possible states generated by per-
mutations of values that the state variables can take.

Neither forward nor backward simulation alone is complete for show-
ing trace inclusion — it may be necessary to construct an intermediate
system and show a forward simulation from the implementation to the
intermediate system and a backward simulation from the intermediate to
the specification system [He et al., 1986]. For nonblocking data structures
forward simulation is not sufficient in cases where a linearisation point
depends upon future behaviour of other threads, such as a non-empty De-
queue for the queue algorithm presented in Section 2.6.2.

5.2. SPECIFYING LINEARISABILITY 95

Use of Simulation

A number of algorithms have been verified using the theorem prover PVS
[Owre et al., 1998] by representing the implementation and specification
systems as input/output automata [Lynch, 1996] and showing that there
is a simulation relation between them [Doherty et al., 2004b; Colvin and
Groves, 2005; Colvin et al., 2005, 2006].

Hesselink [2007] describes an alternative approach, also using PVS.
Derrick et al. [2007, 2008, 2011a,b] have used a different proof approach,
using the theorem prover KIV [Balser et al., 1998], to show simulation re-
lations (and hence linearisability) between Z systems [Spivey, 1992].

Smith and Derrick [2005, 2006] have considered model checking simu-
lations of Z systems.2 Their approach encodes the simulation conditions
as relatively large CTL formulas (quantification over transitions must be
explicitly expanded as CTL is a propositional logic). Rather than initialis-
ing the model to initial states and exploring the combined statespace from
there, they initialise the model to any states of the implementation and
specification systems and explore only two transitions deep to check the
simulation conditions. This has the advantage of keeping the depth of the
analysis shallow, but the breadth of initialising to every possible state is in-
efficient. Smith and Derrick [2006] acknowledge that they have not yet in-
vestigated any optimisations that would make the approach more widely
applicable. They do not give results (e.g. memory or time) for the small
example they use, but it does appear that further optimisations would be
needed for the approach to be practically applicable to nonblocking data
structures.

5.2.4 Direct Trace Inclusion

Using simulation to show trace inclusion involves an extra layer of man-
ual work to define the relation R. Additionally, the relations required are
relatively verbose3 — the complexity of model checking is dependent on

2Their simulation definitions differ slightly from those presented here, primarily by
including an extra condition relating when implementation and specification transitions
are enabled. We assume that transitions are always enabled, so this is not necessary. They
also specify that an implementation transition is matched by a single specification tran-
sition (rather than a sequence) and by default do not restrict to reachable states (though
they do mention this issue in discussion).

3Colvin et al. [2005] explain in detail the forward simulation relation they use to verify
the stack from Section 2.6.1.

96 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

the size of the formula (see Section 3.2.4) and the approach of Smith and
Derrick [2005, 2006] requires R to be repeated several times in the CTL
formulas.

For model checking nonblocking data structures we can avoid this ad-
ditional complexity of defining a simulation relation if we ensure that at
every state in the concurrent specification, and for each output value, there
is at most one enabled transition that can write that value to trace. If this
is the case, then when trace inclusion holds, there is a single execution of
the specification system to match each execution of the implementation
system.

Simulation needs to account for nondeterminism in the trace. For ex-
ample, when we have the following situation:

s1
τ //

R
��

s2

s′1

there could be two specification transition sequences s′1
τ′1 +3s′2 and s′1

τ′2 +3s′3
with the same trace as the implementation transition, where R(s2, s′3) holds
but R(s2, s′2) does not. Potentially, both must be checked, which is why
Smith and Derrick [2005, 2006] use CTL’s existential path quantifiers.

Concurrent specifications would exhibit this behaviour too if we had
defined the values for trace more simply. For example, if the invocations,
linearisation points and responses did not contain the thread index or
data value, then e.g. the transitions call1(PUSH(a)), call2(PUSH(a)), and
call2(PUSH(b)) would all have the same output to trace: inv(PUSH). There
are other possible ways that a concurrent specification could have two en-
abled transitions with the same trace output, such as a nondeterministic
choice of ‘new’ nodes. We restrict our analyses to specifications where
such nondeterminism does not occur, or where it can be replaced with a
deterministic choice.

Now, the above observation — that each execution of the implementa-
tion has at most one concurrent execution with the same trace — means
that we can check trace inclusion by using the trace of the implementa-
tion as input to the specification, determining which transition will be per-
formed at each point in time. If trace inclusion holds, then the specification
will always be able to perform transitions to match the trace output that

5.2. SPECIFYING LINEARISABILITY 97

it receives as input from the implementation. Otherwise, if trace inclusion
does not hold, then there will be a state where the specification is not able
to perform a transition that produces the same trace as it received as input.

We combine the implementation and specification systems into a new
system. The implementation transitions write to trace as before, but the
preconditions are modified so that the transitions are only enabled when
trace is empty (i.e. contains 〈〉). The specification transitions’ preconditions
are modified to only be enabled when the sequence in trace is not empty,
and the first item matches the value that output to trace in the standalone
specification. In the combined system, trace is updated by removing the
first item in the sequence.

There are two ways to detect a failure of trace inclusion. As described
so far, the system will halt if the specification receives an input from trace
that it can’t match; some model checking tools have efficient deadlock de-
tectors so this may be preferable. Alternatively, an additional specification
transition can be defined that is enabled only if none of the others are.
We add an auxiliary boolean variable noerror, which is initialised to true,
and then set to false by this transition. Then the combined system can be
checked against the LTL/CTL formula AG noerror.

5.2.5 Future Nondeterminism

The approach outlined above in Section 5.2.4 is analogous to forward sim-
ulation; it does not account for cases where backward simulation is needed,
i.e. when the decision to output a linearisation point to trace depends upon
the future behaviour of other threads. I have explored three approaches
for addressing these cases: backward analysis analogous to backward sim-
ulation, which has a number of difficulties; prophesy variables, which are
an easier approach for model checking; and allowing more than one lin-
earisation point for some operations.

Backwards analysis

One possible approach to handling future nondeterminism is to apply the
same approach described in Section 5.2.4 but to examine the statespace in
reverse. For each transition τ in both the implementation and specification

systems, we construct a transition τr, such that s2
τr //s1 iff s1

τ //s2 . In
the combined system the (reverse) implementation outputs the trace of

98 CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

each transition to the (reverse) specification, which performs the unique
sequence of transitions that generate the same trace.

Constructing the reverse transition semantics is an extra layer of man-
ual work, though it could conceivably be automated. The process is not
immediately straightforward, as a naive approach would allow unreach-
able states that cause the reverse implementation system to deadlock (par-
ticularly important for some model checking algorithms that require the
transition relation to be total). This happens because the reverse systems
are not nonblocking — it is possible for a thread to become blocked, wait-
ing for actions of other threads to modify the shared memory. For exam-
ple, in the stack algorithm from Figure 2.7, a thread can perform a response
transition for a Push of any value whenever it is in the idle state, but it can
then perform the linearisation point CAS at line 7 only when the stack is
non-empty and the head node’s value matches the value from the previ-
ous response transition. If the stack is in some other configuration then
the thread is blocked, waiting for other threads to Push and Pop opera-
tions until the stack is in an appropriate configuration for it to proceed.
Consider then a state where the stack is empty and all threads are idle —
if every thread performs a Push response transition then each one will be
blocked and the system will deadlock as there is no other thread to per-
form a dequeue and make the stack non-empty. I addressed this problem
by defining auxiliary boolean variables that recorded whether there was
at least one other thread in an unblocked state — transitions that could
make a thread become blocked were modified to only be enabled when
the thread would not become blocked (e.g. for a Push response if the value
matched the head node’s value) or the auxiliary variables indicated that
there was at least one other unblocked thread.

An important aspect of this approach is that the backward analysis
must cover all of the (forward) reachable states. For a forward analysis
the (forward) reachable states are computed by constructing the transi-
tion graph from the initial state(s). For a backward analysis there is no
comparable final state(s) to begin the transition graph from, and the set of
(forward) reachable states is not easily computed by any other means. I
used the same initial states for the forward and backward systems, an ap-
proach that is only complete if the sets of backward reachable and forward
reachable states are the same. This is the case for many nonblocking data
structures — there is usually a sequence of Pop / Dequeue operations that
will return the system to the initial state, which has an empty list and idle
threads. However, it does exclude linked-list based implementations that

5.2. SPECIFYING LINEARISABILITY 99

do not free memory to the system — the set of backward reachable states
(where no memory is allocated, i.e. there have been no Push / Enqueue
operations) is a small subset of the forward reachable states. This prop-
erty can be determined by examining the (forward) implementation to see
whether every (forward) reachable state can return to the initial state, i.e.
model checking the CTL formula

AGEF init

where init is an auxiliary boolean variable that is only true in the initial
state.

As is the case for simulation, a forward or backward analysis alone
may not be sufficient for verifying trace inclusion — it may be necessary
to define an intermediate system and show trace inclusion of the imple-
mentation by the intermediate system using a forward analysis and trace
inclusion of the intermediate system by the specification using a backward
analysis. The definition of an intermediate system is another source of
manual effort, which requires a detailed understanding of the implemen-
tation algorithm.

I attempted to implement this approach in SAL to investigate its prac-
ticality, checking trace inclusion of the intermediate queue system that Do-
herty et al. [2004b] defined and a concurrent queue specification. The pre-
liminary implementation appeared promising but given the above men-
tioned extra costs of manual work required, and the availability of an al-
ternative approach, I did not pursue this approach any further.

Prophecy variables

An alternative technique for dealing with future nondeterminism is to
bring the nondeterministic choice forward by using prophecy variables, first
described by Abadi and Lamport [1991]. These auxiliary variables record
information about a future event, and the transitions are modified to en-
sure that the “prediction” comes true.

Example As described in Section 2.6.2, the queue algorithms from Fig-
ure 2.8 have a future nondeterministic choice at the linearisation point for
an empty Dequeue operation; let us consider the second algorithm, from
Figure 2.8c. The linearisation point occurs when the snapshot ssnext is
read at line 43 — more specifically, at the last such occurrence if the loop is
repeated. However, it is not possible when executing that step to know

100CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

whether the loop will be repeated again, as other threads may modify
Head before it is checked against sshead at the next step. Using prophecy
variables we can nondeterministically make the decision when reading
ssnext whether it is a linearisation point or not. If the step is decided to be
a linearisation point, we ensure that no other thread modifies Head until
it is tested against sshead. Otherwise the thread waits for another thread
to modify Head and then restarts the loop. Thus we need to record three
possibilities:

• the potential linearisation point has not been reached;

• the point has been reached and is not a linearisation point, so the
loop will be repeated; or

• the point has been reached and is a linearisation point, so the loop
will not be repeated.

Figure 5.4 contains the Dequeue operation from Figure 2.8c, augmented
with two boolean prophecy variables. The variables are initialised to false
at the start of the loop (lines 3 and 4). At the point where ssnext is read
(lines 6–14), and it is null, a nondeterministic choice is made as to whether
it is a linearisation point or not — if so then observedEmptyWontLoop is
set to true, and if not then observedEmptyWillLoop is set to true. In the
latter case the loop must be restarted so at line 15 the thread blocks until
Head is modified.4 In the former case, the loop must not be restarted, so
other threads must be prevented from modifying Head. This is achieved
by blocking the steps that modify Head — the successful CAS step at line
22 and the successful CAS in the Enqueue operation (not shown) — when
another thread has observedEmptyWontLoop true. After performing the
test at line 16, observedEmptyWontLoop is set to false as it is not possible
for a thread that has observed an empty queue to restart the loop from
here, and it is not necessary to block other threads from modifying Head.

�

Prophecy variables are a practical approach for model checking non-
blocking data structures with linearisation points that depend on the fu-
ture behaviour of other threads. Their implementation does require some
manual work, but less than constructing a backward analysis.

4The pseudocode “when φ τ” means that transition τ is only enabled when formula
φ is true.

5.2. SPECIFYING LINEARISABILITY 101

1: operation DEQUEUE()
2: loop
3: observedEmptyWontLoop := false
4: observedEmptyWillLoop := false
5: sshead := Head
6: atomic
7: ssnext := sshead.next
8: if sshead = Head then
9: either

10: observedEmptyWontLoop := true // LP
11: or
12: observedEmptyWillLoop := true // not LP
13: end if
14: end atomic
15: when ¬ (observedEmptyWillLoop ∧ Head = sshead)
16: if sshead = Head then
17: observedEmptyWontLoop := false
18: if ssnext = null then
19: return empty
20: else
21: lv := ssnext.val
22: when Head 6= sshead ∨

¬ ∃ t • t.observedEmptyWontLoop
23: if CAS(Head, sshead, ssnext) then
24: ssnext.val := null
25: sstail := Tail
26: if sshead = sstail then
27: CAS(Tail, sstail, ssnext)
28: end if
29: break
30: end if
31: end if
32: end if
33: return lv
34: end loop
35: end operation

Figure 5.4: A lock-free linked list based queue with prophecy variables

102CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

Multiple Linearisation Points

Some data structure operations, such as a push, modify the shared mem-
ory; others, such as an empty pop, have no global side effects. Both pos-
sibilities exist for operations that have future nondeterminism when de-
ciding the linearisation point — they may modify shared memory [e.g.
Harris et al., 2002; Hendler et al., 2004] or may, like the empty dequeue of
the example queues, have no side effects.

In the cases where there are no side effects, we can avoid the need to
use prophecy variables by relaxing the constraint in the specification that
there be exactly one linearisation point for these operations. We mark the
potential linearisation point every time it occurs, which allows it to oc-
cur more than once within the operation, and we allow the specification
to repeat the application of the operation multiple times. Repeating a lin-
earisation point that modifies the shared memory would have the incor-
rect effect of performing the operation twice, but this is not a concern for
operations that don’t modify shared memory — it simply provides sev-
eral points where the operation can be linearised, each of which is a valid
choice.

Example The future nondeterminism in the queue explored in the previ-
ous example (originally described in Section 2.6.2) occurs when deciding
the linearisation point for an empty Dequeue — an operation that does not
modify the shared memory. Using multiple linearisation points in the im-
plementation is straightforward — we mark the step where ssnext is read
(line 43 in Figure 2.8c) as the linearisation point when it is null, ignoring
the possibility that it may occur several times during the operation.

Figure 5.5a shows a diagram of the original Dequeue steps of thread i
in the concurrent queue specification (compare with the concurrent stack
specification in Figure 5.2).5 Figure 5.5b shows a diagram of the modi-
fied version to allow multiple linearisation points for an empty Dequeue
operation. Since the implementation is able to repeat the loop and out-
put the linearisation point to the trace more than once during and dur-
ing an empty Dequeue operation, the specification must be able to loop,
performing additional applyi(dequeue,empty) transitions before the re-
turn transition. Also, the implementation is able to perform the empty
Dequeue linearisation point and then after restarting the loop perform

5The two “IDLE” states in each diagram are the same state repeated for clarity.

5.2. SPECIFYING LINEARISABILITY 103

IDLE

calli(DEQUEUE)

��
•

applyi

(DEQUEUE,empty)

��
22222222222222

applyi

(DEQUEUE,ok(v))

����������������

•

returni

(DEQUEUE,ok(v))

��
22222222222222 •

returni

(DEQUEUE,empty)

����������������

IDLE

(a) Original

IDLE

calli(DEQUEUE)

��
•

applyi

(DEQUEUE,empty)

��
22222222222222

applyi

(DEQUEUE,ok(v))

����������������

•

returni

(DEQUEUE,ok(v))

��
22222222222222 •

returni

(DEQUEUE,empty)

����������������

applyi

(DEQUEUE,ok(v))
oo

applyi

(DEQUEUE,empty)ee

IDLE

(b) With multiple linearisation points

Figure 5.5: Diagrams of Dequeue operation of Thread i of a concurrent
stack specification

a non-empty Dequeue; thus the specification must be able to perform
applyi(DEQUEUE,ok(v)) after performing applyi(DEQUEUE,empty).

The modified concurrent specification can be simply argued to be lin-
earisable. There is exactly one applyi(ENQUEUE(v),ok) step in an (unmod-
ified) Enqueue operation and exactly one applyi(DEQUEUE,ok(v)) step in a
non-empty Dequeue operation; these are the linearisation points. A non-
empty Dequeue operation has at least one applyi(DEQUEUE,empty) step
and can be linearised at any of these, as they each observe an empty queue.

�

I applied prophecy variables successfully in preliminary work, but I
use multiple linearisation points for the models constructed in Chapters
6–8, as the future nondeterminism in the algorithms considered occurs
only in operations with no global side effects.

104CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

5.2.6 Merging the Specification

In the combined systems for checking trace inclusion, described in Sec-
tions 5.2.4 and 5.2.5, the operations in the specification system perform
their invocation, linearisation point and response actions immediately af-
ter the corresponding action in the implementation system. We make the
observation that effectively the specification system is ensuring that there
is exactly one sequential specification operation performed during each
implementation operation (or at least one, for side-effect free operations
when using the approach in the last part of Section 5.2.5). We can achieve
the same result by merging the specification system into the implementa-
tion system, gaining increased efficiency by removing extra overhead.

Since the specification invocations and responses make no modifica-
tions, the principal result is that the apply / linearisation point actions
(which are the sequential specification operations) are performed atomi-
cally at the linearisation points of the merged system. To ensure that ex-
actly one linearisation point is performed per operation we introduce an
auxiliary Boolean variable doneLP for each thread, which is set to false at
each invocation and true at each linearisation point. The system enters
an error state if it is already true at a linearisation point (unless multiple
linearisation points are allowed), or if it is false at a response.

Example Figure 5.6 contains the stack algorithm from Figure 2.7 with the
concurrent specification merged in. A notable difference in display is that
the conditional CAS steps have been expanded within atomic blocks to
allow the specification steps to be combined (Push lines 8–16; Pop lines 37–
45). To accommodate this the repeat. . . until structure has been rearranged
into a loop. . . break structure.

In the Push operation, the auxiliary variable doneLP is initialised to
false (line 2) and then checked to be true at the end (line 18). The checks
that may result in an error state are represented as assertions — these can
be expressed directly in some model checker languages (e.g. Promela) but
in other languages (e.g. SAL) it will be necessary to define separate error
transitions as described in Section 5.2.4.

At the Push linearisation point (lines 8–16), the successful CAS is per-
formed (lines 9–10) and then doneLP is checked to be false (line 11) before
being set to true (line 12). Finally a Push operation is performed on the
specification stack with the same value that was used in the implementa-
tion (line 13).

5.2. SPECIFYING LINEARISABILITY 105

1: operation PUSH(lv)
2: doneLP := false
3: n := new(Node)
4: n.val := lv
5: loop
6: ss := Head
7: n.next := ss
8: atomic
9: if Head = ss then

10: Head = n
11: assert(¬ doneLP)
12: doneLP := true
13: SPECPUSH(lv)
14: break
15: end if
16: end atomic
17: end loop
18: assert(doneLP)
19: end operation

20: operation POP()
21: doneLP := false
22: loop
23: atomic
24: ss := Head
25: if ss = null then
26: assert(¬ doneLP)
27: doneLP := true
28: assert(SPECISEMPTY())
29: end if
30: end atomic
31: if ss = null then
32: assert(doneLP ∧ lv = null)
33: return empty
34: end if
35: ssnext := ss.next
36: lv := ss.val
37: atomic
38: if Head = ss then
39: Head := ssnext
40: assert(¬ doneLP)
41: doneLP := true
42: assert(lv = SPECPOP())
43: break
44: end if
45: end atomic
46: lv := null
47: end loop
48: ss.next := null
49: ss.val := null
50: assert(doneLP ∧ lv 6= null)
51: return lv
52: end operation

Figure 5.6: A lock-free stack algorithm with merged specification

106CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

The Pop operation begins by initialising doneLP to false. The two lin-
earisation points (lines 23–30 and 37–45) both perform the implementation
steps, assert that doneLP is false, set doneLP to true and then perform the
specification operation. In both cases the result of the specification opera-
tion must be checked to make sure that it matches that of the implementa-
tion. Immediately before the response steps, doneLP is checked to be true
(lines 32 and 50), ensuring that a linearisation point has been performed,
and the value of lv is checked to ensure that the linearisation point (empty
or non-empty) matches the response. �

As well as ensuring that there is exactly one (or at least one) lineari-
sation point per operation, we must ensure that the linearisation point of
the implementation matches both the specification operation and the im-
plementation response, in terms of the types of operation and the value
consumed or returned. In the previous example we were able to do this
using the local thread variable lv, but in general it may be necessary to use
additional auxiliary variables.

Example Figure 5.7 contains the queue algorithm from Figures 2.8a and
2.8b, with the Dequeue operation modified to allow multiple empty lin-
earisation points, and with the concurrent specification merged in.

The Enqueue operation in Figure 5.7a is modified similarly to the stack
Push operation in Figure 5.6. The auxiliary variable doneLP is initialised
to false and checked to be true at the end. The linearisation point is a con-
ditional CAS step, which is expanded within an atomic block that checks
that doneLP is false, sets doneLP to true and performs the specification
Enqueue operation.

The Dequeue operation in Figure 5.7b has additional modifications —
because it allows multiple empty dequeue linearisation points we cannot
use the approach from the stack Pop operation of using the variable lv to
record whether a past linearisation point was empty or non-empty. In-
stead, we use the auxiliary variable doneLP to record non-empty lineari-
sation points and introduce another one called doneELP to record empty
linearisation points; both are initialised to false.

For an empty Dequeue, the linearisation point (lines 32–39) first checks
that doneLP is false, as it is not possible in the specification (see Figure 5.5)
to perform an empty linearisation point after performing a non-empty
one. The variable doneELP does not need to be checked as we allow mul-
tiple linearisation points to be performed. Then doneELP is set to true and

5.2. SPECIFYING LINEARISABILITY 107

1: operation ENQUEUE(lv:T)
2: doneLP := false
3: n := new(Node)
4: n.val := lv
5: loop
6: sstail := Tail
7: ssnext := sstail.next
8: if sstail = Tail then
9: if ssnext = null then

10: atomic
11: if sstail.next = ssnext then
12: sstail.next := n
13: assert(¬ doneLP)
14: doneLP := true
15: SPECENQUEUE(lv)
16: break
17: end if
18: end atomic
19: else
20: CAS(Tail, sstail, ssnext)
21: end if
22: end if
23: end loop
24: CAS(Tail, sstail, n)
25: assert(doneLP)
26: end operation

(a) Enqueue operation

Figure 5.7: A lock-free queue algorithm with merged specification

108CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

27: operation DEQUEUE()
28: doneLP, doneELP := false
29: loop
30: sshead := Head
31: sstail := Tail
32: atomic
33: ssnext := sshead.next
34: if ssnext = null then
35: assert(¬ doneLP)
36: doneELP := true
37: assert(SPECISEMPTY())
38: end if
39: end atomic
40: if sshead = Head then
41: if sshead = sstail then
42: if ssnext = null then
43: assert(doneELP ∧ ¬ doneLP)
44: return empty
45: end if
46: CAS(Tail, sstail, ssnext)
47: else
48: lv := ssnext.val
49: atomic
50: if Head = sshead then
51: Head := ssnext
52: assert(¬ doneLP)
53: doneLP := true
54: assert(lv = SPECDEQUEUE())
55: break
56: end if
57: end atomic
58: end if
59: end if
60: end loop
61: assert(doneLP)
62: return lv
63: end operation

(b) Original dequeue operation

Figure 5.7: A lock-free queue algorithm with merged specification

5.2. SPECIFYING LINEARISABILITY 109

64: operation DEQUEUE()
65: doneLP, doneELP := false
66: loop
67: sshead := Head
68: atomic
69: ssnext := sshead.next
70: if ssnext = null then
71: assert(¬ doneLP)
72: doneELP := true
73: assert(SPECISEMPTY())
74: end if
75: end atomic
76: if sshead = Head then
77: if ssnext = null then
78: assert(doneELP ∧ ¬ doneLP)
79: return empty
80: else
81: lv := ssnext.val
82: atomic
83: if Head = sshead then
84: Head := ssnext
85: assert(¬ doneLP)
86: doneLP := true
87: assert(lv = SPECDEQUEUE())
88: break
89: end if
90: end atomic
91: end if
92: end if
93: end loop
94: sstail := Tail
95: if sshead = sstail then
96: CAS(Tail, sstail, ssnext)
97: end if
98: assert(doneLP)
99: return lv
100: end operation

(c) Simplified dequeue operation

Figure 5.7: A lock-free queue algorithm with merged specification

110CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

the empty Dequeue specification operation is performed. Immediately be-
fore the empty response (line 43) we check that doneELP is true, ensuring
that at least one empty linearisation point has been performed, and that
doneLP is false, ensuring that no non-empty linearisation point has been
performed.

For a non-empty Dequeue, the linearisation point (lines 49–57), as for
the Pop operation in Figure 5.6, checks that doneLP is false before setting it
to true and performing the specification Dequeue operation, checking that
the value returned matches that for the implementation. At the end of
the operation doneLP is checked to be true (line 61). These checks ensure
that exactly one non-empty linearisation point is performed during the
operation. The value of doneELP does not need to be checked because an
empty linearisation point is allowed to occur before a non-empty one, and
the check at line 35 ensures that an empty linearisation point cannot occur
after a non-empty one. �

This same approach was taken by Vafeiadis [2008, 2009]. A similar
approach was taken by Gao and Hesselink [2004], though they counted
the number of linearisation points performed in each operation, checking
that it totalled 1 at the response — a strategy that does not catch erroneous
nonterminating operations.

5.3 Specifying Nonblocking Properties

In Section 2.4 we presented the three nonblocking properties wait-, lock-
and obstruction-freedom, and defined them informally with natural lan-
guage descriptions. In this section we formalise these definitions using the
logics LTL and CTL, and compare with the formalisations of other authors.

5.3.1 Wait-freedom

Recall that an algorithm is wait-free if every thread is able to complete its
operation in a finite number of (its own) steps. The core of this property
can be expressed as

if a thread is performing an operation, then it will eventually
complete it.

5.3. SPECIFYING NONBLOCKING PROPERTIES 111

A thread’s location is “idle” iff it is not performing an operation, so we can
formalise this as

t.location 6= idle→ F(t.location = idle)

We expect this property to hold in every state of the algorithm and for
every thread. Thus we construct the following (quantified) LTL formula:

AG(∀ i • ti.location 6= idle→ F(ti.location = idle))

To restrict this to propositional LTL we could explicitly expand the uni-
versal quantifier, though only if there is a finite bound on the number of
threads. However, noting that the threads are fully symmetric, we can
check the property for one thread only. Without loss of generality we
choose the first thread:

AG(t1.location 6= idle→ F(t1.location = idle)) (WF-1)

One important part of the definition is easy to miss — “of its own steps”.
An execution is a counterexample to wait-freedom when a thread takes
an infinite number of steps and does not complete an operation; an (infi-
nite) execution in which a thread takes only a finite number of steps and
does not complete an operation does not (necessarily) violate the prop-
erty. Thus, for model checking wait-freedom we must restrict analysis to
executions where the thread or threads take an infinite number of steps,
otherwise checking the formula WF-1 will capture spurious counterexam-
ples.

One approach to restricting the analysis is to impose weak fairness as-
sumptions [Manna and Pnueli, 1991]. These do not allow executions where
threads that can take steps do not, thus t1 will only stop executing indef-
initely if it is deadlocked. Some model checkers have built-in options to
restrict analysis to weak fairness executions, but some do not. If not, we
must alter the formula.

Without weak fairness assumptions, there are three possible futures
from a state where t1 is not idle: either it will eventually complete its
operation (consistent with wait-freedom), or it will never return to idle;
in the latter case, t1 will either take an infinite number of steps (a vio-
lation of wait-freedom) or take a finite number of steps (consistent with
wait-freedom). By defining an auxiliary variable called last step to record
which thread performed the immediately preceding step, then these fu-
tures can be specified by the following formulas:

112CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

• F(t1.location = idle)

• G(t1.location 6= idle) ∧ GF(last step = t1)

• G(t1.location 6= idle) ∧ FG(last step 6= t1)

Possibly t1 completes its operation, which is the desired wait-free behaviour.
Possibly t1 never completes its operation despite taking an infinite num-
ber of steps, which is not wait-free behaviour. Alternatively, t1 may never
complete its operation as it only takes a finite number of steps along the
infinite path; this is still classed as wait-free behaviour. Thus the wait-free
future behaviour can be described as

F(t1.location = idle) ∨ FG(last step 6= t1)

Note that the last step auxiliary variable increases the statespace by record-
ing which of the n threads lead to each state. Since we are only concerned
whether the last step was performed by t1 or not, it is much more efficient
to use an auxiliary boolean variable lastStepTOne instead. Thus the full
wait-free property is expressed in LTL as:

AG(t1.location 6= idle→ (F(t1.location = idle) ∨ FG(¬ lastStepTOne)))
(WF-2)

5.3.2 Lock-freedom

Recall that an algorithm is lock-free if some thread always completes an
operation after a finite number of steps of the system. The core of this
property is the completion of an operation, which can be specified by com-
paring the locations of each thread in successive states:

∃ i • ti.location 6= idle ∧ X(ti.location = idle)

However, we would have to explicitly expand the quantifier, as discussed
in the previous section. Instead, we can introduce an auxiliary boolean
variable was response that is set to true in response steps and false in all
others. Now we can very compactly specify lock-freedom:

AGF was response (LF-1)

5.3. SPECIFYING NONBLOCKING PROPERTIES 113

Thread-level view

The formula LF-1 specifies lock-freedom as a property of the system, but
it is also possible to specify it as a property of individual threads. Though
it yields a more complicated formula, there are two motivations for doing
so. First, it allows a more direct comparison with wait-freedom, which is
also specified as a property of individual threads. Second, for the prag-
matic reason that the formula LF-1 relies on the implicit assumption that
there are a finite number of active threads. Note that if there are an infi-
nite number of active threads then it is possible for each one to take only a
single (e.g. invocation) step during an infinite path, so that no operation is
ever completed. This assumption is reasonable, as such systems do not ex-
ist in practice; however, in canonical abstraction, a summary thread object
may represent an infinite number of threads, so this assumption is lost.

Lock-freedom sacrifices wait-freedom’s individual thread guarantees
of progress/completion for a system guarantee of progress. Thus a thread
in a lock-free algorithm generally proceeds unless it detects conflict and
retries. In order for the system guarantee to hold, the conflicting thread
must have completed, or be able to complete its operation — otherwise
two threads could mutually detect conflict and repeat forever, with nei-
ther completing an operation. Thus we can divide an operation into two
parts — the second part is wait-free, whilst the first part is only prevented
from transitioning to the second part if other threads make the transition
infinitely often.

An examination of the algorithms in Section 2.6 shows that the transi-
tions occur at the linearisation points of the operations. For the stack in
Figure 2.7 both operations may loop an infinite number of times, but the
linearisation points for a push (line 7) and a non-empty pop (line 17) are
the successful CAS steps that exit the loop, which are followed by 0 and
2 steps (respectively) before the operation completes. Comparatively, the
linearisation point for an empty pop (line 11) only occurs when Head is
null, so there are only two steps (lines 12–13) before the operation com-
pletes. Thus each operation is wait-free from the linearisation point. Be-
fore the linearisation points, the loop can only be restarted when the CAS
steps fail, which can only happen because successful CAS steps (i.e. lin-
earisation points) of other threads have modified Head. Thus the opera-
tions loop infinitely only if there are infinite linearisation points performed
by other threads.

We can reuse the auxiliary local boolean variable doneLP introduced in

114CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

Section 5.2.6, which is initialised to false and set to true at the linearisation
points. Using this we can specify that the operations are wait-free after the
linearisation points:6

AG(t1.location 6= idle ∧ t1.doneLP→ F(t1.location = idle)) (LF-2.1)

We introduce a global auxiliary boolean variable wasLP that is set to true
at steps that are linearisation points, and false at others. This allows us to
express that if an operation has not reached its linearisation point it will
either do so in the future, or others will an infinite number of times:

AG(t1.location 6= idle ∧ ¬ t1.doneLP→ F(t1.doneLP) ∨ GF(wasLP))
(LF-2.2)

As with the formula WF-1, these formulas implicitly rely on weak fairness
of the execution. This can be addressed explicitly, as was done for WF-2:

AG(t1.location 6= idle ∧ t1.doneLP→
F(t1.location = idle) ∨ FG(¬ lastStepTOne)) (LF-3.1)

AG(t1.location 6= idle ∧ ¬ t1.doneLP→
F(t1.doneLP) ∨ GF(wasLP) ∨ FG(¬ lastStepTOne)) (LF-3.2)

These pairs of formulas imply lock-freedom. They have the disadvantage
of being longer than LF-1 — and hence more expensive to verify — so
they are only preferable when the assumption of finite threads cannot be
relied upon. They also have the disadvantage of requiring linearisation
points to be determined, though this is required for the specification of
linearisability we have suggested, so is no further effort if linearisability
has already been verified.

5.3.3 Obstruction-freedom

Recall that an algorithm is obstruction-free if any operation is able to com-
plete in a finite number of steps if run in isolation. This means that at any
state there is a possible execution path for each non-idle thread where only

6As in the previous section, these are properties of all threads, but due to the thread
symmetry we are able to choose just one (the first: t1).

5.3. SPECIFYING NONBLOCKING PROPERTIES 115

that thread takes steps until its operation is complete. This is expressed by
the following CTL formula:

AG(t1.location 6= idle→ E[lastStepTOne U t1.location = idle]) (OF-1)

This formula has no direct equivalent in LTL, but we can construct some-
thing similar. The following LTL formula says that in every path, a non-
idle thread keeps taking steps until either it completes its operation or
another thread takes a step:

AG(t1.location 6= idle→
[lastStepTOne U (t1.location = idle ∨ ¬ lastStepTOne)]) (OF-2)

These formulas are similar, but not logically equivalent. There are two
types of bad (non-obstruction-free) behaviour that can occur when a thread
can not complete its operation in isolation:

1. A thread takes an infinite number of steps in isolation but never com-
pletes its operation.

2. A thread is only able to take a finite number of steps in isolation, and
does not complete its operation.

The first type of behaviour violates both formulas. The second type vio-
lates the formula OF-1 (a path is required to exist which does not) but it
does not violate the formula OF-2 (if p is false then p U (q ∨ ¬ p) is always
true). This second type of behaviour is caused by blocking steps, such as
“acquire lock”, which are to be avoided in the construction of nonblock-
ing algorithms for just this reason. Under the assumption that operations
consist only of steps that are always enabled (“read”, “write”, “CAS” etc.),
both OF-1 and OF-2 are equivalent for specifying obstruction-freedom.

5.3.4 Related Work

These nonblocking properties have been independently formalised by Don-
gol [2006], in a logic [Dongol and Goldson, 2006] not directly applicable to
(existing) model checkers. Dongol [2009] has expressed these in first or-
der LTL, which again is not directly applicable to most model checkers.
The general structure of these formalisations is similar to the ones I have
defined in this chapter, but there are a few differences.

116CHAPTER 5. MODEL CHECKING NONBLOCKING ALGORITHMS

The principal difference is that Dongol’s definitions are more general,
in particular regarding the concept of “progress”. I have followed the
common description [e.g. Herlihy, 1991; Colvin and Dongol, 2009] that a
thread “makes progress” when it completes an operation. Dongol gener-
alises this by allowing each thread state to have its own definition of what
state is required to be reached in order to “make progress”; the motivation
for this is that the progress properties can be defined without referring to
the programs themselves.

Additional differences exist regarding thread enabledness. For model
checking, I have assumed that a thread is always enabled by the system
when it has an enabled transition, and that a system-disabled thread is in-
distinguishable from a very slow one. Furthermore, I do not necessarily
assume weak fairness. Dongol [2006] does assume weak fairness in the
systems and explicitly represents whether a thread is enabled by the sys-
tem or not, independent of whether it has an enabled transition. Dongol
[2009] does not assume weak fairness, but does assume that systems are
“non-blocking”, i.e. in every state each thread necessarily has an enabled
transition.

The structure of Dongol’s wait-freedom formula is the same as WF-1.
The structure of the obstruction-freedom formula is logically equivalent to
OF-2, but is slightly simplified — it is equivalent to:

AG(t1.location 6= idle→ F(t1.location = idle ∨ ¬ lastStepTOne))

The structure of the lock-freedom formula is more detailed than LF-1 be-
cause of the generalised presentation, but is relatively equivalent. In con-
trast, Colvin and Dongol [2009] formalise lock-freedom with an LTL for-
mula directly equivalent to LF-1.

Gao and Hesselink [2007] formalise lock-freedom by counting the num-
ber of completed operations and ensuring that the number increases. With
an auxiliary variable completed that is incremented by the final step of each
operation, we could define lock-freedom as follows:

∀ n ∈N • AG(completed = n→ F(completed > n))

This approach is unsuitable for model checking, as the auxiliary variable
results an infinite statespace.

Chapter 6

Bounded Verification

In this chapter, we investigate bounded verification of linearisability and
nonblocking properties, using the approaches described in Chapter 5. This
chapter makes a novel contribution by analytically considering the small
scope hypothesis for nonblocking data structures, providing some evi-
dence towards it, and considering the question of how much confidence
we can have in an algorithm given a successful bounded verification.

In Section 5.1, we described how to represent concurrent data structure
algorithms using models that are parametrised by the number of threads,
the maximum number of elements, and the size of the data type. If any
one of these parameters is unbounded then the model has an infinite state-
space and cannot be analysed directly by a model checker; when all three
parameters are finite then the model has a finite statespace. In this chapter
we attempt to verify the models that result when all parameters have finite
bounds. Given the finite parameters nt, ns and nd, each data structure
model has nt threads, an array1 of length ns and uses the integer data type
{1 . . . nd}.

Initially, I performed preliminary work with the model checkers Spin
(see Section 3.6.1) and SAL (see Section 3.6.2), with the dual aims of com-
paring the tools and investigating different ways of specifying systems
and properties. The principal comparisons between Spin and SAL were
for statespace explorations that did not check any properties; these mod-
els did not perform any memory reuse, which additionally bounded the
statespaces. I found SAL’s SAT-based model checker to be faster and use
less memory than the BDD-based model checker. However, for the guar-

1The array is used directly for array based implementations, and is used to represent
the available memory for nodes in linked list based implementations.

117

118 CHAPTER 6. BOUNDED VERIFICATION

antees of verification required in this chapter we would need to know the
diameter of the model (see Section 3.3.3) — an easy way to find this would
be from the depth of the BDD-based analysis, but that would negate the
benefits gained from using the SAT-based approach. In turn, I found SAL’s
BDD-based model checker to be somewhat more efficient than Spin. How-
ever, I found Spin to be much more practical for implementing garbage
collection. The procedural language Promela allows all of the garbage col-
lection code to be wrapped in a d step block, so that it is performed by
a single transition. The declarative SAL language has no such feature, so
garbage collection may take several transitions each time, increasing the
size of the stored statespace. Consequently, I chose to use Spin for all of
the analyses in this chapter.

In Section 6.1 we explore bounded verification of linearisability, spec-
ifying the property as described in Section 5.2. We first discover (known)
bugs in some incorrect algorithms, and then verify to the largest possi-
ble bounds some correct algorithms. Similarly, in Section 6.2 we explore
bounded verification of nonblocking properties, specifying the properties
as described in Section 5.3. In both of the these sections we consider how
the results obtained could inform our confidence in a bounded verification
result. In Section 6.3, we discuss some related work. Finally, Section 6.4
provides a summary of the results.

6.1 Checking Linearisability

Spin models of algorithms can be adapted to check linearisability using the
approach presented in Section 5.2. An auxiliary specification data struc-
ture is added to each model, which performs its operations atomically at
the linearisation points.

6.1.1 Example

Let us consider the stack from Section 2.6.1 as presented in Figure 5.6
(page 105). Recall that the linearisation point for a push operation is at the
successful CAS step beginning at line 8; for a non-empty pop operation it
is at the successful CAS step beginning at line 37; and for an empty pop
operation it is at the read of the Head snapshot beginning at line 23. My
modified Spin model performs the specification operations atomically at
these linearisation points, as well as checking and updating the auxiliary

6.1. CHECKING LINEARISABILITY 119

variable doneLP. The variable is initialised at the start of each operation
and checked at the end.

The stack algorithm as presented is meant to be deployed in an envi-
ronment with a garbage collector. If memory is explicitly freed and reused
without a garbage collector, and there are at least two threads and two
data values, an ABA error can occur (see Section 2.5.3).

Suppose that we modify the algorithm in Figure 5.6 to include the line

48′: free(ss)

in place of the existing lines 48 and 49. Figure 6.1 shows an execution,
generated by Spin, of this modified algorithm with nt = 2, ns = 1 and nd =
2, where an ABA error is detected. For clarity and space, the output has
been simplified — the CAS steps are shown unified (unlike in Figure 5.6),
the data values are given as d1 and d2, and the steps modifying doneLP
are not shown. Additionally, the values of the variables at each step are
shown in annotations.

Initially, Thread 2 completes an uninterrupted Push operation of the
data value d1, using the (sole) memory location 0; the specification stack
has an entire Push(d1) operation completed after the successful CAS step.
Then Thread 2 continues and starts a Pop operation, where it reads a snap-
shot of the Head node’s memory location and its next and val fields.

Now Thread 1 begins execution and starts a Pop operation, reading a
snapshot of the Head node’s location.

Control then switches back to Thread 2, which completes its Pop op-
eration, with the specification stack having an atomic Pop(d1) operation
completed after the successful CAS step. Note that the value returned by
the specification pop (d1) matches the value returned by the implementa-
tion operation. At the end of this Pop operation the Head snapshot (mem-
ory location 0) is freed to the system to be reused, despite it still being the
Head snapshot of Thread 1.

Thread 1 then takes a few more steps in its Pop operation, checking
that the snapshot is not null and reading its next and val fields.

Then Thread 2 completes an entire Push operation of the data value
d2, using the free memory location 0. Again the specification stack has an
entire Push(d2) operation completed after the successful CAS step.

Finally, control switched back to the Thread 1, which performs the CAS
step of its Pop operation, as the value of the Head pointer now matches its
snapshot value. However, the value returned by the specification pop op-

120 CHAPTER 6. BOUNDED VERIFICATION

Thread 1 Thread 2
begin PUSH(d1)
3: n := new(Node)[0]
4: n.val := lv[d1]
6: ss := Head[null]
7: n.next := ss[null]
9: CAS(Head[null], ss[null], n[0])

13: SPECPUSH(lv[d1])
begin POP()
24: ss := Head[0]
31: ss[0] 6= null
35: ssnext := ss.next[null]
36: lv := ss.val[d1]

begin POP()
24: ss := Head[0]

38: CAS(Head[0], ss[0], ssnext[null])
42: assert(lv[d1] = SPECPOP()[d1])
48’: free(ss[0])
51: return lv[d1]

25: ss[0] 6= null
35: ssnext := ss.next[null]
36: lv := ss.val[d1]

begin PUSH(d2)
3: n := new(Node)[0]
4: n.val := lv[d2]
6: ss := Head[null]
7: n.next := ss[null]
9: CAS(Head[null], ss[null], n[0])

13: SPECPUSH(lv[d2])
38: CAS(Head[0], ss[0], ssnext[null])
42: assert(lv[d1] = SPECPOP()[d2])

Figure 6.1: Simplified execution of stack showing ABA error counter-
example

6.1. CHECKING LINEARISABILITY 121

eration (d2) does not match the value to be returned by the implementation
operation (d1); thus the assertion fails.

This counterexample is not sufficient to disprove linearisability on its
own — we must consider the possibility that the execution is correct but
we have chosen incorrect linearisation points. Recalling the original def-
inition of linearisability from Section 2.2, the execution has the following
concurrent history:

inv2(PUSH, d1), resp2(PUSH, ok), inv2(POP), inv1(POP),
resp2(POP, d1), inv2(PUSH, d2), resp2(PUSH, ok), resp1(POP, d1)

There are three corresponding linear histories, where the overlapping op-
erations have been permuted:

inv2(PUSH, d1), resp2(PUSH, ok), inv2(POP), resp2(POP, d1),
inv2(PUSH, d2), resp2(PUSH, ok), inv1(POP), resp1(POP, d1)

inv2(PUSH, d1), resp2(PUSH, ok), inv2(POP), resp2(POP, d1),
inv1(POP), resp1(POP, d1), inv2(PUSH, d2), resp2(PUSH, ok)

inv2(PUSH, d1), resp2(PUSH, ok), inv1(POP), resp1(POP, d1),
inv2(POP), resp2(POP, d1), inv2(PUSH, d2), resp2(PUSH, ok)

None of these linear histories is a legal history for a stack algorithm. Thus
the execution is not a linearisable stack execution and the algorithm is not
a linearisable stack.

6.1.2 Minimal Counterexamples

The above example of a stack error occurs in an instantiation of the algo-
rithm with nt = 2, ns = 1 and nd = 2, and occurs also in any instan-
tiation where the parameters are increased, as the set of histories of the
larger system is a superset of the smaller system’s. However, when any
of the parameters are decreased the error does not occur: when nt = 1
the behaviour is sequential and correct (hence linearisable); ns is already
the minimum possible value; when nd = 1 the correct value is returned as
there is only one possible value.

Searching for bugs in smaller instantiations is preferable to larger sys-
tems, as it is quicker to find bugs (if they exist) and often easier to compre-
hend the error that results.

122 CHAPTER 6. BOUNDED VERIFICATION

Algorithm Bug nt ns nd Reference
Stack ABA1 2 1 2 [Treiber, 1986]
Stack ABA1 2 2 1 [Treiber, 1986]
Queue ABA1 2 2 1 [Michael and Scott, 1996, 1998]
Queue ABA2 2 3 1 [Michael and Scott, 1996, 1998]
Queue “skip” 2 2 2 [Shann et al., 2000]
Queue ABA1 2 2 1 [Ladan-Mozes and Shavit, 2004, 2008]
Deque “empty” 2 3 1 [Detlefs et al., 2000]
Deque ABA3 3 4 1 [Detlefs et al., 2000]

Table 6.1: Minimum parameters for counterexamples to linearisability

I investigated the minimum instantiations needed to elicit errors in a
number of non-linearisable concurrent data structures. The numbers are
shown in Table 6.1 and were discovered by model checking instantiations
beginning with nt = ns = nd = 1 and incrementing parameters until an
error was detected. Most of the errors are some form of ABA error.

ABA1 is an error deliberately introduced for testing by using an imple-
mentation that frees and reuses memory without garbage collection. One
counterexample is detailed in Section 6.1.1 — a thread performing a Pop
operation detects that the Head node has remained “unchanged” but does
not detect that its value has changed, so returns an incorrect value; this
can be detected in the stack algorithm when nt = 2, ns = 1 and nd = 2.
An alternative counterexample occurs when a thread performing a Pop
operation detects a singleton list (i.e. Head.next is null) and later detects
that the Head has remained “unchanged”, despite the list now being non-
singleton, so transforms it to an empty list; this can be detected in the stack
algorithm when nt = 2, ns = 2 and nd = 1. It can be argued that the two
counterexamples are equally small for the stack algorithm, but for the two
queues the latter counterexample is smaller (with nd = 1) due to the fact
that the list always contains a dummy node.

ABA2 is the error that occurs when the the next field of a dequeued
node is set to null, as explained in Section 2.6.2 (page 23).

The bug “skip” occurs symmetrically in the Enqueue and Dequeue op-
erations of an array based queue. It was discovered by Colvin and Groves
[2005] and allows extra elements to be added or removed from the array-
based list due to insufficient checks when restarting the loop after a conflict
is detected.

6.1. CHECKING LINEARISABILITY 123

Both bugs of the deque were discovered by Doherty [2003] (see also
Doherty et al. [2004a]), and both appear symmetrically in the popLeft and
popRight operations. The “empty” bug allows a pop operation to return
empty when the list has never been empty — it insufficiently checks only
local variables before returning. ABA3 allows two pop operations to re-
turn the same value.

6.1.3 Confidence in Bounded Verification

When an instantiation of a parametrised model is verified, it provides a
guarantee of correctness for instantiations up to those limits. It provides
no general guarantee though — there is always the possibility that an error
may exist within a larger instantiation. It is a widely-held belief though
that most bugs can be exhibited with “small” instantiations — named
the small scope hypothesis by Jackson [2012]. If so, then we can claim
some level of confidence in an algorithm if the model can be verified with
“medium” parameters. What is classed as medium, and the level of confi-
dence that can be drawn (apart from it being less than 100%), can only be
a subjective assertion.

The numbers from Table 6.1 conform to the hypothesis of small min-
imum instantiations for many bugs of nonblocking data structure algo-
rithms. The parameters are all arguably “small”, especially compared with
practical uses, with 2 6 nt 6 3, 1 6 ns 6 4, and 1 6 nd 6 2.

Given these numbers, I would be mildly confident in the correctness
of an algorithm if it was verified with bounds 1–2 greater than these, i.e.
4 6 nt 6 5, 5 6 ns 6 6, and 3 6 nd 6 4. This would verify the absence
of the bugs identified in Section 6.1.2, and any others of a similar size. It is
tempting to say that most bugs would have been caught at this level, but
it does not leave very much margin to detect any potentially larger bugs.

With this amount of confidence, I would feel comfortable beginning
a formal verification attempt, knowing that many common bugs are not
present.

The corpus of bugs in Section 6.1.2 is relatively small, so more work
must be undertaken to strengthen and/or extend these ranges. Given the
importance of data structures within programs, it is hard to see how any-
thing short of a full verification could suffice for providing a very high
level of confidence in an algorithm.

124 CHAPTER 6. BOUNDED VERIFICATION

Parameters Spin −DCOLLAPSE −DMA
Th Mem Data RAM Time RAM Time RAM Time
3 4 3 2,983 59s 2,298 89s 1,471 10.4m
4 3 4 3,228 74s 2,392 115s 1,396 10.2m
2 6 2 3,256 46s 2,933 80s 957 12.6m
7 2 1 4,023 119s 3,214 191s 1,873 14.4m
6 2 4 4,282 122s 3,413 209s 1,547 14.0m
2 5 5 — — — — 2,865 80.5m
6 2 7 — — — — 2,896 39.7m
5 3 2 — — — — 3,153 24.0m
4 3 6 — — — — 3,390 37.2m
3 4 4 — — — — 3,596 38.5m
3 6 1 — — — — 3,755 28.3m

Table 6.2: Treiber Stack Bounded Verification

6.1.4 Verification Limits

Having considered what bounds on verification will give some level of
confidence in the correctness of an algorithm, it is natural to consider what
can be practically achieved. I investigated this question by verifying lin-
earisability for four algorithms to the largest bounds possible on a ma-
chine with a 4.5 GB RAM limit and a 3.33 GHz Intel Xeon processor. The
Spin models used mostly default options, with a notable addition being
the use of stack cycling (preprocessor macro −DSC), which uses the hard
disk instead of RAM for the majority of the depth-first search stack. This
option was used for all models, and proved beneficial in many, as the size
of the stack (depth × state size) exceeded 2 GB.

With three parameters, it is not always clear when comparing two dif-
ferent instantiations which one is the “biggest”. Comparing the number of
stored states could be a useful metric, but I chose to compare the physical
RAM use as it corresponds approximately with the statespace size and is
the principal constraint on the model checker. Selected results ranked by
RAM use are presented in the first pair of columns2 after the parameters
of Table 6.2 for the stack from Section 2.6.1 [Treiber, 1986], Table 6.3 for the
original queue from Section 2.6.2 [Michael and Scott, 1996, 1998], Table 6.4
for the modified queue from Section 2.6.2 [Doherty et al., 2004b], and Ta-

2The remaining columns are discussed in the next section.

6.1. CHECKING LINEARISABILITY 125

Parameters Spin −DCOLLAPSE −DMA
Th Mem Data RAM Time RAM Time RAM Time
2 4 5 3,050 48s 2,506 76s 1,493 19.3m
3 3 4 3,122 60s 2,230 95s 925 9.8m
5 2 1 3,249 75s 2,162 114s 876 9.9m
4 3 1 3,627 80s 2,422 123s 1,110 12.0m
4 2 7 3,880 83s 2,648 134s 650 10.9m
2 7 1 4,482 57s 3,205 95s 3,202 38.8m
3 3 7 — — — — 3,279 63.3m
3 4 2 — — — — 3,332 46.2m
3 5 1 — — — — 3,635 43.0m
5 2 3 — — — — 4,080 91.8m
2 5 3 — — — — 4,164 73.5m
2 4 7 — — — — 4,192 89.3m

Table 6.3: MS Queue Bounded Verification

Parameters Spin −DCOLLAPSE −DMA
Th Mem Data RAM Time RAM Time RAM Time
5 2 2 2,574 58s 1,728 90s 631 7.4m
3 3 5 2,911 61s 2,093 92s 1,086 9.7m
2 7 1 3,505 49s 2,518 70s 3,076 29.2m
2 4 6 4,194 66s 3,373 113s 2,852 34.5m
3 5 1 — — 3,082 145s 2,047 18.0m
3 3 6 — — 3,262 155s 1,628 17.8m
5 2 3 — — 3,335 197s 1,136 17.2m
3 4 2 — — 3,517 164s 2,202 21.5m
3 3 7 — — — — 2,307 29.7m
6 2 1 — — — — 2,632 47.7m
4 3 2 — — — — 2,806 34.5m
5 2 7 — — — — 3,126 97.0m

Table 6.4: DGLM Queue Bounded Verification

126 CHAPTER 6. BOUNDED VERIFICATION

Parameters Spin −DCOLLAPSE −DMA
Th Mem Data RAM Time RAM Time RAM Time
3 3 2 1,872 34s 1,231 50s 276 4.7m
2 4 4 3,279 46s 2,478 78s 1,598 20.0m
2 5 2 3,741 48s 2,652 78s 2,376 24.0m
5 2 3 4,487 102s 2,409 168s 41 14.1m
5 2 4 — — 4,093 241s 49 19.2m
3 3 3 — — 4,190 176s 733 17.8m
3 4 1 — — 4,381 177s 1,482 20.3m
6 2 7 — — — — 728 23.5h
4 3 1 — — — — 2,172 114.3m
7 2 1 — — — — 2,455 130.0h
2 4 5 — — — — 3,006 55.5m
3 3 6 — — — — 3,585 180.0m

Table 6.5: LMS Queue Bounded Verification

ble 6.5 for another linked-list based queue [Ladan-Mozes and Shavit, 2004,
2008]. All RAM results are in MB as reported by Spin, and time results are
in seconds, minutes or hours as indicated; analyses that ran out of memory
are indicated with dashes.

None of the algorithms are able to be verified with these constraints for
the minimum of the parameter ranges mentioned in the previous section
(nt = 4, ns = 5, nd = 3) and only the stack is able to be verified for the max-
imum values of each of the parameters in Table 6.1 (nt = 3, ns = 4, nd = 2).
There are verifiable instantiations that exceed these for one or two param-
eters, but not for all three. Hence we can conclude that model checking
under these restrictions is not sufficient to provide general confidence in
the correctness of a nonblocking data structure algorithm.

A first thought is that an increase in the RAM limitation could allow
much larger instantiations to be verified. Unfortunately the RAM usage
increases exponentially with each parameter increase, due to the state ex-
plosion problem. This means that a ten-fold increase in RAM may only
raise the maximum verification rates by 1 for each parameter. Thus to
make bounded verification practical for giving confidence in an algorithm
it is essential that we apply some statespace reduction techniques.

6.1. CHECKING LINEARISABILITY 127

Spin Reduction

Spin implements partial order reduction (see Section 3.4.2), which reduces
the number of states that have to be searched. However, this is enabled by
default and none of the Spin analyses used in this thesis explicitly disable
the feature. Spin also implements two optional techniques for losslessly
compressing the RAM used for storing states — collapse compression and
minimised automata compression [Holzmann, 2004, pp. 198–206].

Collapse compression is a hierarchical indexing method that stores dif-
ferent components of the state separately; it is invoked using the prepro-
cessor macro −DCOLLAPSE. The results of using this technique are given in
the next pair of columns in Tables 6.2–6.5. The analyses are more mem-
ory efficient, using on average 50–90% of the RAM originally used, with
the tradeoff of taking 140–175% of the time originally used. However, the
gains against the state explosion problem are minimal — for the first two
algorithms no further instantiations are able to be verified with the given
limits, and for the second two algorithms only a small number (four and
three, respectively) of additional instantiations are able to be verified.

Minimised automata compression uses a minimised finite state recog-
niser for state descriptors; it is invoked using the preprocessor macro−DMA.
The results of using this technique are given in the final pair of columns
in Tables 6.2–6.5. The analyses are even more memory efficient than for
collapse compression, though they are more variable and have a much
greater time tradeoff. The RAM usage varies from 1% to 90% of that orig-
inally used, and the time taken from 800% to 4,000% of the original. For
all algorithms a number of additional instantiations are able to be verified,
though again little progress is made against the state explosion problem —
for nt and ns the maximum increase in verified parameters is 2. Further-
more the extended time penalties of this technique (one result in Table 6.5
took over five days) may make it less practical to use in certain cases.

Neither of these techniques of RAM compression are effective enough
to combat the state explosion problem and engender a higher level of con-
fidence in the algorithm. Thus it is necessary to consider techniques that
reduce the statespace itself.

Symmetry Reduction

One of the most promising statespace reduction techniques for nonblock-
ing data structures is symmetry reduction, introduced in Section 3.4.4.

128 CHAPTER 6. BOUNDED VERIFICATION

Parameters Spin −DMA TopSpin
Th Mem Data RAM Time RAM Time RAM Time
3 4 3 2,983 59s 1,471 10.4m 607 10s
4 3 4 3,228 74s 1,396 10.2m 199 4s
2 6 2 3,256 46s 957 12.6m 1,945 24s
7 2 1 4,023 119s 1,873 14.4m 10 0s
6 2 4 4,282 122s 1,547 14.0m 30 1s
6 2 7 — — 2,896 39.7m 70 2s
5 3 2 — — 3,153 24.0m 107 3s
4 3 6 — — 3,390 37.2m 625 14s
3 4 4 — — 3,596 38.5m 1,856 30s
3 6 1 — — 3,755 28.3m 1,282 20s
7 3 3 — — — — 2,611 96s
3 5 2 — — — — 2,672 44s
2 5 4 — — 1,270 23.8m 3,225 42s
7 4 1 — — — — 3,359 110s
5 3 7 — — — — 3,389 93s
5 4 2 — — — — 3,746 525s
4 4 3 — — — — 3,847 79s
3 4 5 — — — — 3,849 68s
6 3 5 — — — — 3,981 127s

Table 6.6: Treiber Stack Bounded Verification With Symmetry Reduction

6.1. CHECKING LINEARISABILITY 129

The data values of many algorithms can be modelled using scalarsets.
Consider the stack algorithm from Section 2.6.1 — the only operations
involving data values within the algorithm are assignments, and in an
augmented model for checking linearisability there are additional compar-
isons of equality. Thus the data values can be represented using a scalarset.
Similarly, the thread ids are not explicitly used within the algorithm, and
in the augmented model for checking linearisability are only compared
for equality; thus the thread ids can be represented using a scalarset. Sim-
ilarly, the index of the array used for representing the linked list is only
used for assignments and comparisons on equality; thus it can be repre-
sented using a scalarset.3 Hence any two states that differ only by permu-
tations of the data values, thread ids and node array index can be consid-
ered equivalent for model checking linearisability.

I used the extension TopSpin [Donaldson and Miller, 2006] to inves-
tigate verifying the stack algorithm with symmetry reduction.4 TopSpin
does not use scalarsets to identify symmetry, and the automatic procedure
it uses was able to identify the symmetry of the threads only. Selected
results are presented in Table 6.6, compared with figures from Table 6.2.
The analyses are much more efficient, both in RAM and time. The reduc-
tion increases as the number of threads does — models with two threads
used 51-98% of the original RAM usage, whilst models with six or seven
threads used less than 2% of the original RAM usage. In contrast with the
Spin reduction techniques, the running times of the analyses are reduced.
The reductions are approximately the same as for the RAM use, which was
expected as the efficiency is gained by reducing the size of the statespace
to be explored, rather than the storage of the statespace.

Symmetry reduction does appear to combat the exponential state ex-
plosion problem, as the RAM reductions increase as nt increases. How-
ever, for these models TopSpin is only able to address one of the three
parameters — as ns and nd increase the statespace still increases exponen-
tially. As a result, the increase in instantiations that are able to be veri-
fied with the given physical constraints is modest. The parameter increase
ranges spanned 0–3 for nt, 0–1 for ns and 0–6 for nd. However, the mini-
mum instantiations mentioned in Section 6.1.3 were unable to be verified,
though several nearby instantiations were able to be verified:

3A scalarset could not be used for the array index in an array-based data structure, as
those algorithms must increment and decrement the values.

4The models of the queue algorithms were incompatible with TopSpin’s Promela re-
strictions so would need to be rewritten.

130 CHAPTER 6. BOUNDED VERIFICATION

• out of memory: nt = 4, ns = 5, nd = 3

• verified: nt = 2, ns = 5, nd = 3

• verified: nt = 4, ns = 4, nd = 3

• verified: nt = 4, ns = 5, nd = 1

The results indicate that symmetry reduction is an effective approach
for combating the state explosion problem for nonblocking data structures.
If the models were analysed with a tool capable of addressing the symme-
try of all three parameters (perhaps through the use of scalarsets) it ap-
pears highly likely that the resulting reductions would be large enough to
allow verification of instantiations in the ranges mentioned in Section 6.1.3.
The reductions may also be large enough to greatly exceed these ranges.
Additional work is needed to investigate this approach further.

6.2 Checking Nonblocking Properties

Spin models of algorithms can also be adapted to check nonblocking prop-
erties using the approaches presented in Section 5.3. In this section, we
consider a small number of algorithms that all happen to be wait-free or
lock-free (in part because there are relatively few published algorithms
that are obstruction-free but not lock-free).

For wait-freedom, I defined two formulas: WF-1 (page 111) implicitly
assumes weak fairness and WF-2 (page 112) is longer to account for the
possibility of weak fairness not being satisfied. Spin has a run-time option
for enforcing weak fairness [Holzmann, 2004, p. 538] so it would be sim-
pler to use this with the first formula. Spin transforms the formula to a
Büchi automaton described in Promela’s “never claim” syntax, as shown
in Figure 6.2. The label “IDLE” is given to the step (a do loop) that chooses
which operation to perform.

As well, Spin provides an alternative to using LTL formulas — both
WF-1 for wait-freedom and LF-1 for lock-freedom. It has an option to
check whether certain labelled “progress steps” occur infinitely often in
each execution path. For wait-freedom we label the last step of each of
the first thread’s operations, and utilise the weak fairness option in the
model checker. For lock-freedom we label the last step of every thread’s
operations, and do not need to require weak fairness.

6.2. CHECKING NONBLOCKING PROPERTIES 131

never { /* !G((!p) -> F(p)) */
T0_init : /* init */

if
:: (! (thread[1]@IDLE)) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4 : /* 1 */
if
:: (! (thread[1]@IDLE)) -> goto accept_S4
fi;

}

Figure 6.2: Promela never claim for LTL formula WF-1

6.2.1 Example

Let us again consider the stack from Section 2.6.1, as shown in Figure 2.7.
We can check this algorithm for wait-freedom using the formula WF-1 —
specifically in Spin by including the never claim in Figure 6.2. The never
claim attempts to prove the negation of 6.2

EF(¬ thread[1]@IDLE ∧ G¬ thread[1]@IDLE)

i.e. that there is a path where the first thread never returns to the IDLE

state.
Figure 6.3 shows a simplified execution displaying such a counterex-

ample, when nt = 2, ns = 1 and nd = 1. Thread 1 is instantiated at IDLE
and completes a push operation, returning to IDLE, and then begins a pop
operation by reading a snapshot of the Head. Control switches to Thread 2,
which performs an entire pop operation. Now Thread 1 continues and the
CAS step fails because Thread 2 has changed the value of Head. Control
switches again to Thread 2, which performs an entire push operation.

When Thread 1 retries the loop in its pop operation, reading a snap-
shot of the Head, the same behaviour occurs again. This results in an ex-
ecution where Thread 1 is never able to complete — between reading the
Head snapshot and attempting the CAS update the snapshot is obsoleted
by Thread 2 performing a pop operation. Since a thread can take an infi-
nite number of steps without completing an operation the algorithm is not
wait-free.

132 CHAPTER 6. BOUNDED VERIFICATION

Thread 1 Thread 2
begin PUSH(d1)
2: n := new(Node)[0]
3: n.val := lv[d1]
5: ss := Head[null]
6: n.next := ss[null]
7: CAS(Head[null], ss[null], n[0])

begin POP()
11: ss := Head[0]

—begin infinite loop—
12: ss[0] 6= null
15: ssnext := ss.next[null]
16: lv := ss.val[d1]

begin POP()
11: ss := Head[0]
12: ss[0] 6= null
15: ssnext := ss.next[null]
16: lv := ss.val[d1]
17: CAS(Head[0], ss[0], ssnext[null])
18: ss.next := null
19: ss.val := null
20: return lv[d1]

17: ¬ CAS(Head[null], ss[0], ssnext[null])
begin PUSH(d1)
2: n := new(Node)[0]
3: n.val := lv[d1]
5: ss := Head[null]
6: n.next := ss[null]
7: CAS(Head[null], ss[null], n[0])

11: ss := Head[0]
—end infinite loop—

Figure 6.3: Simplified execution of stack showing wait-freedom counterex-
ample

6.2. CHECKING NONBLOCKING PROPERTIES 133

Algorithm Property Th Mem Data Reference
Stack WF 2 1 1 [Treiber, 1986]
Queue WF 2 2 1 [Michael and Scott, 1996, 1998]
Queue WF 2 3 1 [Ladan-Mozes and Shavit, 2004, 2008]
Deque WF 2 3 1 [Detlefs et al., 2000]
Queue WF 1 1 1 [Shann et al., 2000]
Queue LF 1 1 1 [Shann et al., 2000]
Queue OF 1 1 1 [Shann et al., 2000]

Table 6.7: Minimum parameters for counterexamples to nonblocking
properties

6.2.2 Minimal Counterexamples

As is the case for linearisability (see Section 6.1.2) it is quicker to discover
counterexamples to nonblocking properties in smaller instantiations of a
model. In the above example, a counterexample to wait-freedom is found
when nt > 2, ns > 1 and nd > 1 but no smaller — with only one thread
there is no inter-thread conflict to cause an operation to restart.

Table 6.7 shows the minimum instantiations needed to produce coun-
terexamples to nonblocking properties in the algorithms used in Section 6.1.
The linked list based algorithms are all lock-free, so we find counterexam-
ples to wait-freedom. All of these algorithms require only two threads and
one data value, but different values for ns depending on the algorithm de-
sign.

The original array based queue of Shann et al. [2000] is intended to be
lock-free, however the enqueue and dequeue operations wait for the list
to change when the queue is full or empty (respectively); thus wait-, lock-
and obstruction-freedom can all be disproved when nt = ns = nd = 1.

This table appears to indicate that minimal nonblocking counterexam-
ple instantiation sizes are similar to or smaller than those for linearisabil-
ity. However, the selection is small and limited so further work would be
needed to draw any firm conclusions.

6.2.3 Confidence in Bounded Verification

The results from Table 6.7 are too few to draw any general conclusions
about counterexamples to wait-freedom, and do not address counterex-
amples to lock- or obstruction-freedom. However, whilst further work

134 CHAPTER 6. BOUNDED VERIFICATION

Parameters Spin
Th Mem Data RAM Time
3 4 2 3,210 42s
6 2 1 3,279 51s
2 4 6 3,867 57s
3 3 7 4,083 76s
5 2 5 4,184 97s
5 3 1 4,254 87s
4 4 1 4,294 91s
7 1 6 4,364 116s

Table 6.8: Treiber Stack Bounded Verification

Parameters Spin
Th Mem Data RAM Time
4 3 1 3,164 46s
4 2 7 3,264 52s
2 4 4 3,315 40s
2 5 2 3,347 36s
3 3 4 3,695 64s
5 2 2 4,129 100s

Table 6.9: MS Queue Bounded Verification

will be needed to investigate these questions, the results do appear to indi-
cate that counterexamples to nonblocking properties are of a similar order
of magnitude to those for linearisability.

6.2.4 Verification Limits

I investigated the limits of verifying lock-freedom for the four algorithms
above, using the same machine and constraints (notably 4.5 GB RAM) as
in Section 6.1.4. Tables 6.8–6.11 present selected results ordered by RAM
usage. Again, the numbers are of a similar magnitude to those for linearis-
ability.

Further work is required to investigate these questions across all non-
blocking properties, but my preliminary results suggest that the answers
may be similar to those for linearisability. If so, then symmetry reduction
will be needed to combat the state explosion problem and allow verifica-

6.3. RELATED WORK 135

Parameters Spin
Th Mem Data RAM Time
2 5 2 3,143 29s
3 3 5 3,815 68s
6 2 1 4,237 118s
5 2 4 4,378 112s
2 4 5 4,443 74s

Table 6.10: DGLM Queue Bounded Verification

Parameters Spin
Th Mem Data RAM Time
4 2 7 3,007 63s
2 4 3 3,336 50s
2 6 1 3,565 56s
3 3 2 3,639 77s

Table 6.11: LMS Queue Bounded Verification

tion up to sufficient bounds to supply confidence in an algorithm. TopSpin
only supports verifying safety properties, but future work may extend it
combine techniques for supporting LTL properties [e.g. Bos̆nac̆ki, 2003].

6.3 Related Work

A number of authors report model checking attempts on single algorithms
[e.g. Harris, 2001; Colvin et al., 2006; Lamport, 2006]. Analyses were lim-
ited in the number of operations that were performed, and the largest in-
stances able to be checked were all quite small.

Vechev et al. [2009] report checking linearisability for a range of algo-
rithms (though only a lazy list algorithm is mentioned specifically) us-
ing Spin. They use a similar approach to mine for identified linearisation
points, but can also analyse models without identified linearisation points.
In the latter case, they record the history within the state and search for
valid interleavings; the number of operations must be bounded or oth-
erwise the statespace would be infinite. For the lazy list algorithm with
identified linearisation points and 16 GB of RAM they can only verify lin-
earisability for 2 threads and 2 keys.

136 CHAPTER 6. BOUNDED VERIFICATION

A number of algorithms have had linearisability checked [Liu et al.,
2009; Zhang et al., 2009; Zhang and Liu, 2010] with the PAT model checker
[Sun et al., 2009]. These analyses use FDR-style refinement to show trace
inclusion of the implementation and specification, and do not require lin-
earisation points to be identified. For analyses with identified linearisation
points, their results appear to be similar to mine, giving no greater degree
of confidence. It is hard to compare directly though, as they only report the
number of threads and the size of the list, but not the number of distinct
data values. For the stack algorithm, they used 2 GB of RAM and report
verifying a model with 2 threads and list of size 14, one with 3 threads and
list of size 2, and one with 4 threads and list of size 2. For the (original)
queue algorithm, they report verifying a model with 2 threads and list of
size 8. The analyses without identified linearisation points are naturally
larger and slower. For a lazy list algorithm they are able to verify a model
with 2 threads and 1 key, but for any larger parameters must limit each
thread to only 1 operation, despite using 32 GB of RAM.

6.4 Conclusion

In this chapter I investigated bounded verification of linearisability and
nonblocking properties. For linearisability, I determined that bounded
verification under current physical constraints, even using Spin’s memory
compression techniques, is not sufficient to provide much general confi-
dence in an algorithm’s correctness.

When symmetry reduction was applied to the threads the results im-
proved. I hypothesise that if this technique is also applied to the linked list
memory elements and the data values then the possible bounds on verifi-
cation could be large enough to engender some level of confidence in an
algorithm’s correctness from bounded verification alone.

I performed some preliminary investigations, which indicate that the
same conclusions may be found for nonblocking properties; however fur-
ther data is needed.

For both types of properties, my results provide some evidence to sup-
port the small scope hypothesis for nonblocking data structures, though
they do not (and cannot) prove it.

Part III

Verification

137

Chapter 7

Canonical Abstraction for
Linearisability

In this chapter we explore how canonical abstraction can be used to ab-
stract linked list based data structures to finite sized models with enough
precision to allow linearisability to be verified, and introduce several novel
instrumentation predicates.

For verifying linearisability, we add a specification data structure to the
model as described in Section 5.2. In an abstract state we need to be able to
infer properties such as whether the implementation and specification lists
are the same length, and whether they contain the same data values in the
same order. This information cannot be retained in canonically abstract
states using only the instrumentation predicates introduced in Chapter 4;
indeed, previous work on using canonical abstraction for verifying lin-
earisability invented another abstraction technique to solve this problem
(see Section 7.10).

The instrumentation predicates from Table 4.2 can be classified as lin-
ear. Figure 7.1a illustrates the linear nature of these predicates — some
relate two or three objects joined by one or two binary predicates; some re-
late a line of objects of unbounded length (circ is a line that begins and ends
at the same point). I propose several novel geometric predicates, which
have a triangle or square shape, as illustrated in Figure 7.1b. Such predi-
cates allow information about important “two-dimensional” relationships
between objects to be retained in canonically abstract states.

With the addition of a core binary predicate to relate the nodes of the
implementation and specification lists, these geometric predicates can be
used to refine canonical abstraction sufficiently to enable linearisability to

139

140 CHAPTER 7. C. A. FOR LINEARISABILITY

has[p]
p

r by[p]
p

shared[p]
p p

· · · · · · reach[p, q]
p q q

circ[p] · · · · · ·
p p

p

(a) Linear predicates

tri1[p, q]
p

q q

sq[p, q]
p

q q

p

tri2[p, q, r]

p
q

r

(b) Geometric predicates

Figure 7.1: Instrumentation predicate structures

7.1. BASIC STACK MODEL 141

be verified for unbounded threads.
This chapter uses the stack algorithm from Section 2.6.1 as a running

example. Section 7.1 restates the stack model from Section 5.2.6 in a for-
mat that more closely resembles the operational semantics used for canon-
ical abstraction. Section 7.2 presents the elements needed for representing
states as 3-valued logical structures — core predicates, integrity rules, and
instrumentation predicates from Chapter 4. Section 7.3 discusses the prop-
erties of the linked lists that need to be retained by an abstraction for ver-
ifying linearisability; it introduces a new core predicate and defines two
geometric instrumentation predicates. Section 7.4 discusses how to repre-
sent more than one thread, and which properties of threads’ fields need
to be retained by an abstraction for verifying linearisability; it defines four
more geometric instrumentation predicates. Section 7.5 describes the ini-
tial state that I used for the stack model. Section 7.6 describes some addi-
tional compatibility constraints that were added to aid the concretisation
of abstract states. Section 7.7 presents the results of verifying linearisabil-
ity of the stack algorithm. Section 7.8 discusses several less efficient vari-
ations of the stack model, including alternative instrumentation predicate
definitions and less restrictive ad hoc partial order reductions. Section 7.9
explains how the model of the stack can be adapted to verify linearisabil-
ity of the unbounded queue algorithms from Section 2.6.2. Finally, Sec-
tion 7.10 discusses some related work, and Section 7.11 summarises the
results.

7.1 Basic Stack Model

We begin by considering the stack algorithm from Section 2.6.1, as de-
scribed in Section 5.2.6 and Figure 5.6, with the sequential specification
merged in. In Figure 7.2 we present a different representation of the al-
gorithm that more closely resembles the operational semantics used for
canonical abstraction (see Section 4.4.2).

Each transition contains a “from” thread location, where it is enabled,
an update action, and a “to” thread location; the thread locations are named
to match the line numbers from Figure 5.6. The transitions are wrapped
in atomic blocks, which prevent interleaving with transitions from other
threads. These include the atomic blocks present in Figure 5.6, and some
are expanded to include transitions on local variables in a form of ad hoc

142 CHAPTER 7. C. A. FOR LINEARISABILITY

atomic {
idle beginPush() push3
push3 newNode(n) push4
push4 assign(n.val, lv) push6
push6 assign(ss, Head) push7
push7 assign(n.next, ss) push9

}
atomic {

push9 CASfail(Head, ss) push6
push9 CASsucc(Head, ss, n) push11
push11 specPush() push18
push18 endPush() idle

}

atomic {
idle beginPop() pop24
pop24 assign(ss, Head) pop25
pop25 isNotNull(ss) pop35
pop25 isNull(ss) pop26
pop26 specPopEmpty() pop48

}
atomic {

pop35 assign(ssnext, ss.next) pop36
pop36 assign(lv, ss.val) pop38

}
atomic {

pop38 CASfail(Head, ss) pop24
pop38 CASsucc(Head, ss, ssnext) pop40
pop40 specPop() pop48
pop48 endPop() idle

}

Figure 7.2: Transitions of stack model

7.2. THREE-VALUED MODEL 143

partial order reduction, as discussed in Section 5.1.3.1

The update actions are detailed in Figure 7.3. Each action has the form

guard −→ updates

where guard is a boolean formula that must be true for the action to be ap-
plied, and updates is a sequence of assignments. The most notable actions
are for the CAS tests — we have separated them into disjoint success and
failure actions.

In order to discover linearisation errors, some alarm must be raised
if the response (endPush, endPop) and specification (specPush, specPop,
specPopEmpty) action guards are not met. One option would be to define
a complementary action for each action, using the negation of the orig-
inal guard and add alternative transitions that execute these actions and
move to an error state. For example, to complement the response of a push
operation, we could define action

endPushError() ¬ doneLP −→
and transition

push18 endPushError() lin fail
However, it is easier in TVLA to halt the analysis during the original tran-
sition, by using the “message” mechanism [see Lev-Ami, 2000, Section
C.3]. We remove the guard from the transition’s precondition, and use
the negation of the guard as the trigger for a message that will halt the
analysis before the update is performed. For example, we redefine the
action endPush in Figure 7.3 as

endPush() true −→
lv, ss, n := null

and have it trigger a message ¬ doneLP before the update is performed.

7.2 Three-Valued Model

In order to represent the states of this model using logical structures, we
define the core predicates necessary for 2-valued structures (7.2.1), and
some integrity rules (7.2.2) necessary for concretising from 3-valued struc-
tures. We then define a selection of instrumentation predicates from those
introduced in Chapter 4, for refining abstractions from 2- to 3-valued struc-
tures (7.2.3).

1Section 7.8 contains a discussion of models with different partial order reduction.

144 CHAPTER 7. C. A. FOR LINEARISABILITY

newNode(x) true −→
x := newNode(null, null)

assign(x,y) true −→
x := y

isNull(x) x = null −→

isNotNull(x) x 6= null −→

CASfail(loc,old) loc 6= old −→

CASsucc(loc,old,new) loc = old −→
loc := new

beginPush() true −→
doneLP := false; lv ∈ DATA

specPush() ¬ doneLP −→
doneLP := true; spec.Head := newNode(lv, spec.Head)

endPush() doneLP −→
lv, ss, n := null

beginPop() true −→
doneLP := false

specPopEmpty() ¬ doneLP ∧ spec.Head = null −→
doneLP := true

specPop() ¬ doneLP ∧ spec.Head 6= null ∧ spec.Head.val = lv −→
doneLP := true; spec.Head := spec.Head.next

endPop() doneLP −→
lv, ss, ssnext := null

Figure 7.3: Update actions used in stack model

7.2. THREE-VALUED MODEL 145

7.2.1 Core Predicates

I use core predicates to describe the types of objects — threads, nodes and
data values — so we use the following three unary predicates:

is thread, is node, is data

To reduce clutter and make diagrams of structures clearer, we will not
represent these predicates textually. Instead we use different shapes for
each of the types — circles for nodes, hexagons for threads and squares
for data values.

One could choose to represent the implementation and specification
stacks explicitly as objects in the universe, with the head fields as binary
predicates. However, since they are the only data structures in the model it
is simpler to just define the heads as global variables. Thus we use the fol-
lowing unary predicates, using subscripts to denote the Implementation
and Specification heads:

HeadI, HeadS

For the threads we define a unary predicate for each location:

at[idle], at[push3], at[push4], at[push6],
at[push7], at[push9], at[push11], at[push18],
at[pop24], at[pop25], at[pop26], at[pop35],
at[pop38], at[pop40], at[pop48]

Finally, the fields of the threads and nodes are represented by binary pred-
icates and the boolean variables by unary predicates:

next, val, n, lv, ss, ssnext, doneLP

7.2.2 Integrity Rules

The integrity rules that are needed for refining the abstraction come from
the properties we expect from pointer fields and global variables. The two
stack head variables are unique, so we include the following rules:

∀ v1, v2 • HeadI(v1) ∧ HeadI(v2)→ eq(v1, v2)
∀ v1, v2 • HeadS(v1) ∧ HeadS(v2)→ eq(v1, v2)

146 CHAPTER 7. C. A. FOR LINEARISABILITY

Additionally, the node and thread fields are functional, so we include
the following rules:

∀ v1, v2, v3 • next(v1, v2) ∧ next(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • val(v1, v2) ∧ val(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • n(v1, v2) ∧ n(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • lv(v1, v2) ∧ lv(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • ss(v1, v2) ∧ ss(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • ssnext(v1, v2) ∧ ssnext(v1, v3)→ eq(v2, v3)

7.2.3 Instrumentation Predicates

As expected, several instrumentation predicates are needed to record in-
formation that gets lost by the abstraction on core predicates, notably about
the values of fields and the connectedness of the list. However, it is possi-
ble to define additional instrumentation predicates that are not necessary
for the property being verified and serve only to increase the statespace.
Here I describe not only which instrumentation predicates I chose to de-
fine, but also why I chose not to define certain others for verifying linearis-
ability.

These decisions were arrived at through a process of experimentation
with different inputs to TVLA. When the abstraction was too coarse then
a (spurious) error was encountered; examining the counterexample I was
able to determine (first that it was actually spurious, then) what instru-
mentation predicate(s) could be used to refine the abstraction enough to
prevent the spurious execution from occurring.

It was not so easy, however, to determine when the abstraction was too
fine — the algorithm could still be verified, just not as efficiently. I initially
used too many instrumentation predicates, and was puzzled that small
models (e.g. with just one or two threads) were much more expensive to
verify than I expected. When I realised that the abstraction was too fine I
looked at each instrumentation predicate and considered whether it was
necessary for verification.

Reachability and circularity

This model contains two distinct acyclic lists — the implementation stack
and the specification stack. As discussed in Section 4.2.2, we can preserve

7.2. THREE-VALUED MODEL 147

these facts using one circularity and two reachability predicates:2

circ(v)⇔ next+(v, v)
reachI(v)⇔ ∃ u • HeadI(u) ∧ next∗(u, v)
reachS(v)⇔ ∃ u • HeadS(u) ∧ next∗(u, v)

Has-a-field

For every field it is important at some point in the algorithm to distinguish
whether it is null or not, e.g.:

• val is always non-null, as we only push non-null values into the list.

• At location push9, the next field of a thread’s n node is null if and
only if the thread’s ssnext field is null.

• Push operations only have non-null values for n and lv after they are
assigned.

• In a non-empty pop operation, ss is always non-null after it is as-
signed.

When the value of a field predicate is unknown, it may be focussed to ei-
ther false (null) or true (non-null). For this reason we use instrumentation
predicates of the following form to record when a field is non-null:

has[field](v)⇔ ∃ u • field(v, u)

Referenced-by-field

It is possible to distinguish the objects that are pointed to by the various
field predicates using the r by[field] predicate defined in Section 4.2.2. For
the field predicates next, ss, ssnext and lv, the additional information re-
tained in a canonical abstraction by such a predicate is not necessary in
order to verify linearisability, so only serves to inflate the abstract states-
pace. (This assertion is quantified in Section 7.8.)

This instrumentation predicate would be beneficial for the n field pred-
icate, as it is necessary to distinguish the nodes that have yet to be added

2For brevity, we remove the “parameters” of these predicates, as used in Chapter 4,
and use subscripts to identify reachability from the Implementation and Specification
Heads.

148 CHAPTER 7. C. A. FOR LINEARISABILITY

to the lists from the nodes that have been removed (the nodes currently
in the lists are distinguished by the reachability predicates). However,
r by[n] would also distinguish between nodes in the implementation list
that are pointed to by an n field and those that aren’t — this is not needed
for verifying linearisability so unnecessarily inflates the statespace.

Since a thread’s n node is appended to the stack at the linearisation
point, we can uniquely distinguish the “unpushed” nodes with the fol-
lowing instrumentation predicate:

waiting(v)⇔ ∃ u • n(u, v) ∧ ¬ doneLP(u)

Shared

An important property of a push operation is that each thread’s n node is
unique and not pointed to by another thread’s n field. This property can
be lost by canonical abstraction, but can be retained by using the “shared”
predicate:

shared[n](v)⇔ ∃ u1, u2 • n(u1, v) ∧ n(u2, v) ∧ ¬ eq(u1, u2)

None of the other fields have a similar property, so defining this instru-
mentation predicate for them would again only serve to inflate the abstract
statespace.

7.3 Preserving Linearisability Information

The predicates defined so far are not sufficient to preserve enough infor-
mation for verifying linearisability. Consider Figure 7.4, which shows the
abstraction of (the lists of) two states where the implementation and spec-
ification stacks have length 3 — in S\

1 the lists have the same values in the
same order, and in S\

2 the lists’ head values differ. Both states have the
same canonical abstraction and the information about the values is lost.

A consequence of this is that if the algorithm is linearisable, a spuri-
ous counterexample will be generated during a Pop operation. The states
S\

1 and S\
2 are in the same equivalence class, even though S\

1 is reachable
and S\

2 is not; thus S\
2’s unreachable (and erroneous) successors are treated

as being reachable from S\
1. Specifically, abstract state S1, representing S\

1,

7.3. PRESERVING LINEARISABILITY INFORMATION 149

HeadI
reachI

reachI reachI

HeadS
reachS

reachS reachS

next next

next next

val

val

val

val

val

val

S\
1

HeadI
reachI

reachI

HeadS
reachS

reachS

next
next

next
next

val

val

val
val

S1

HeadI
reachI

reachI reachI

HeadS
reachS

reachS reachS

next next

next next

val

val

val

val

val

val

S\
2

α

α

Figure 7.4: Canonical abstraction of two lists: the property of matching
values is lost

150 CHAPTER 7. C. A. FOR LINEARISABILITY

specPush(x) ¬ doneLP −→
doneLP := true; spec.Head := newNode(x, spec.Head);
spec(Head, spec.Head) := true

specPop(x) ¬ doneLP ∧ spec.Head 6= null ∧ spec.Head.val = x −→
doneLP := true; spec(, spec.Head) := false;
spec.Head := spec.Head.next

Figure 7.5: Stack specification update operations, incorporating the spec
relation

can be concretised by Focus into S\
2, which will lead to a failure of linearis-

ability when the values returned by the implementation and specification
Pop operations do not match. Thus it is necessary to preserve information
about the relationship between the two lists’ values — namely whether
they have the same values in the same order.

In order to define instrumentation predicates that capture that informa-
tion, we need to be able to relate the i-th pair of nodes in the two lists. This
is easy for the head nodes, but for the remaining nodes it is not possible to
do in first order logic with transitive closure We would need to extend the
logic in order to define an instrumentation predicate of the form:

ipair(n1, n2)⇔ ∃ n3, n4 •
HeadI(n3) ∧ HeadS(n4) ∧
∃ i • nexti(n3, n1) ∧ nexti(n4, n2)

Instead, we introduce an additional core binary predicate that relates
nodes in the two lists. We call it spec to indicate that the target (a specifi-
cation node) is the “specification” of the source (an implementation node).
This relation changes the semantics of the specification operations: it is set
in the specPush step and unset in the specPop step as shown in Figure 7.5.

The new core predicate spec records a one-to-one correspondence be-
tween nodes, so we include integrity rules for functionality and inverse
functionality:

∀ v1, v2, v3 • spec(v1, v2) ∧ spec(v1, v3)→ eq(v2, v3)
∀ v1, v2, v3 • spec(v1, v3) ∧ spec(v2, v3)→ eq(v1, v2)

7.3. PRESERVING LINEARISABILITY INFORMATION 151

Additionally, it is important to record in an abstraction whether a partic-
ular node is the source or target of a spec relation. This can be achieved
with the instrumentation predicates has[spec] and r by[spec]. The former
is implied by the predicate matching, defined below, so we only define:

r by[spec](v)⇔ ∃ u • spec(u, v)

7.3.1 Matching Values

The first property that is lost by the abstraction, but which we wish to pre-
serve, is whether each pair of related nodes in the two lists have the same
data value. This property can be recorded by defining an instrumentation
predicate for the implementation list nodes that expresses:

“This node has a value that is shared by its specification coun-
terpart.”

I defined such a predicate and called it matching:

matching(n1)⇔ ∃ n2, d1 • spec(n1, n2) ∧ val(n1, d1) ∧ val(n2, d1)

The predicate records a “triangular” relationship between nodes and data
values, as shown in the following diagram:

matching

spec

val

val

In Figure 7.6 we add matching (and spec) to the concrete states from
Figure 7.4, and see that they now have different canonical abstractions. In
Figure 7.6a, all of the implementation nodes have matching true, so even

152 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec spec spec

val

val

val

val

val

val

S\
3

HeadI
reachI

matching

reachI
matching

HeadS
reachS

reachS

next
next

next
next

spec spec

val val

val val

S3

α

(a) All values match

Figure 7.6: Canonical abstraction of stack lists using the predicate
matching: the property of matching values is retained

7.3. PRESERVING LINEARISABILITY INFORMATION 153

HeadI
reachI

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec spec spec

val

val

val

val

val

val

S\
4

HeadI
reachI

reachI
matching

HeadS
reachS

reachS

next
next

next
next

spec spec

val val

val val

S4

α

(b) Head values are different

Figure 7.6: Canonical abstraction of stack lists using the predicate
matching: the property of matching values is retained

154 CHAPTER 7. C. A. FOR LINEARISABILITY

in S3 the two lists necessarily contain the same values. In Figure 7.6b,
S4 differs from S3 because the head node has matching false; the bodies
of two lists necessarily contain the same values and the two head nodes
necessarily have different values.

The predicate matching alone is not a sufficient addition to verify lin-
earisability however. Consider the two concrete states in Figure 7.7 — they
both have three elements, and matching is true for all the implementation
list nodes. In S\

5, the spec relations have “crossed”, so after a Pop opera-
tion the head nodes will have different values — another Pop from both
lists will trigger a linearisability error. We see that these two states have
the same canonical abstraction, so analysis of a linearisable stack can still
provide spurious errors.

7.3.2 Ordered Values

The second property that is lost by abstraction, but which we wish to pre-
serve, is whether the nodes in both lists have the same ordering with re-
spect to the spec predicate. This property can be recorded using an instru-
mentation predicate on the implementation list nodes that expresses:

“This node’s successor’s specification is the same as its specifi-
cation’s successor.”

I defined such a predicate and called it commutes:

commutes(n1)⇔ ∃ n2, n3, n4 •
next(n1, n2) ∧ spec(n1, n3) ∧ next(n3, n4) ∧ spec(n2, n4)

The predicate records a “square” relationship between nodes, as shown in
the following diagram:

commutes
next

spec spec

next

7.3. PRESERVING LINEARISABILITY INFORMATION 155

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec spec spec

val

val

val

val

val

val

S\
3

HeadI
reachI

matching

reachI
matching

HeadS
reachS

reachS

next
next

next
next

spec spec

val val

val val

S3

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec

spec specval

val

val

val

val

val

S\
5

α

α

Figure 7.7: Canonical abstraction with “crossed” spec predicates: the
property of ordered values is lost

156 CHAPTER 7. C. A. FOR LINEARISABILITY

In Figure 7.8 we add commutes to the concrete states from Figure 7.7,
and see that they now have different canonical abstractions, in which the
orderedness or otherwise of the spec predicates is recorded. In Figure 7.8a,
commutes is true for the first two implementation nodes, so the specifica-
tion list in S6 has the same values in the same order as the implementation
list. In Figure 7.8b, commutes is false for all nodes, so the two lists contain
the same values but in different orders. Note that S\

7 has the same dia-
gram as S\

5, but it is a different and more precise state because commutes
is explicitly false for all objects.

7.3.3 Hanging Head

Finally, it is necessary to distinguish the old implementation head node
in between the transitions that perform the implementation Push update
(CASsucc at location push9) and the specification Push update (specPush
at location push11). Figure 7.9 shows a potential configuration of the lists
in between these two transitions, where the old implementation head node
(the second node in the list) has been abstracted with the body.3 Logically,
because of the values of the matching and commutes, this abstract state
only represents concrete states where the second implementation node is
paired with the specification head node. Unfortunately, this fact cannot
be established using Focus and Coerce without concretising the whole list,
which would focus to an infinite number of states. Hence we must use an
instrumentation predicate to distinguish the node object in the abstraction.

I defined a new instrumentation predicate to record the node that is
paired with the specification head node:

hasS[spec](v1)⇔ ∃ v2 • HeadS(v2) ∧ spec(v1, v2)

This predicate distinguishes the old implementation head node for the
specification update transition, as shown in Figure 7.10. In every other
situation it is true only for the implementation head node, so does not
otherwise affect the abstraction.

3The data values are not shown, in order to make the diagram clearer.

7.3. PRESERVING LINEARISABILITY INFORMATION 157

HeadI
reachI

matching
commutes

reachI
matching
commutes

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec spec spec

val

val

val

val

val

val

S\
6

HeadI
reachI

matching
commutes

reachI
matching
commutes

reachI
matching

HeadS
reachS

reachS

next next

next
next

spec spec
spec

val val val

val val

S6

α

(a) Ordered values

Figure 7.8: Canonical abstraction using the commutes predicate: the prop-
erty of ordered values is retained

158 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

spec

spec specval

val

val

val

val

val

S\
7

HeadI
reachI

matching

reachI
matching

HeadS
reachS

reachS

next
next

next
next

spec spec

val val

val val

S7

α

(b) Unordered values

Figure 7.8: Canonical abstraction using the commutes predicate: the prop-
erty of ordered values is retained

7.4. (UN)BOUNDED THREADS 159

HeadI
reachI

reachI
matching
commutes

reachI
matching

reachS
r by[spec]

HeadS
reachS

r by[spec]

next

next

next

next

next

spec
spec

spec

Figure 7.9: In between the implementation and specification push updates
the old implementation head node is abstracted with the list body.

7.4 (Un)bounded Threads

As we have constructed the model so far, the abstraction is fine enough
to preserve sufficient information about the structure of the two lists for
verifying linearisability, but we have not yet considered how to handle
multiple threads.

The simplest approach is to introduce a unique unary predicate for
each thread, and to define instrumentation predicates to distinguish the
objects pointed to by the fields of each thread. Effectively, the threads and
other objects are prevented from being abstracted. This is the approach
taken by Amit et al. [2007] — e.g. for two threads they define unique unary
predicates threadA and threadB, and for each thread field fld the instru-
mentation predicates:

r by[fld, threadA](v) ⇔ ∃ t • threadA(v) ∧ fld(t, v)
r by[fld, threadB](v) ⇔ ∃ t • threadB(v) ∧ fld(t, v)

Whilst this approach works for models with a fixed number of threads,

160 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

reachI
matching
commutes
hasS[spec]

reachI
matching
commutes

reachI
matching

HeadS
reachS

r by[spec]

reachS
r by[spec]

next next

next

next

next

next

spec spec
spec

Figure 7.10: With the hasS[spec] predicate the old implementation head
node is distinguished.

it cannot handle models with unbounded threads. Additionally, the fact
that each thread is uniquely distinguished means that the symmetry of
the threads is not exploited, resulting in a much larger statespace than
necessary due to the exponential number of interleavings.

Better results would be achieved by allowing threads to be abstracted
normally (i.e. without the unique naming predicates) but we must first
solve two problems:

• how to bound the number of threads without affecting the implicit
symmetry reduction of canonical abstraction; and

• what instrumentation predicates to define in order to retain proper-
ties of the threads’ fields that would otherwise be lost in canonical
abstraction.

7.4. (UN)BOUNDED THREADS 161

7.4.1 Bounded Threads

By default, the canonical abstraction of threads gives the option of either
one or unbounded threads, depending on whether the thread object in the
initial state is a non-summary or summary object, respectively.4 It is useful
to consider models with a thread bound greater than one, and to do so
without losing the implicit symmetry reduction that canonical abstraction
offers due to having unnamed threads (and other objects).

This can be achieved by including an additional compatibility con-
straint (recall from Section 4.3.2) that ensures that there are not bound + 1
thread objects. E.g. for a bound of 2:

∃ t1, t2, t3 • is thread(t1) ∧ is thread(t2) ∧ is thread(t3)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) ∧ ¬ eq(t1, t3) � 0

and for a bound of 3:

∃ t1, t2, t3, t4 •
is thread(t1) ∧ is thread(t2) ∧ is thread(t3) ∧ is thread(t4)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) ∧ ¬ eq(t3, t4)
∧ ¬ eq(t1, t3) ∧ ¬ eq(t2, t4) ∧ ¬ eq(t1, t4) � 0

These constraints can be optimised further. Instead of expressing:

“Any state with bound + 1 threads is invalid”,

we can express that

“in any state with bound distinct thread objects, each thread
object must be non-summary”.

E.g. for a bound of 2:

∃ t1, t2, t3 • is thread(t1) ∧ is thread(t2) ∧ is thread(t3)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) � eq(t1, t3)

and for a bound of 3:

∃ t1, t2, t3, t4 •
is thread(t1) ∧ is thread(t2) ∧ is thread(t3) ∧ is thread(t4)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) ∧ ¬ eq(t3, t4)
∧ ¬ eq(t1, t3) ∧ ¬ eq(t2, t4) � eq(t1, t4)

4Or, more generally in the latter case, if the initial state has more than one thread
object.

162 CHAPTER 7. C. A. FOR LINEARISABILITY

The latter forms ensure that any state with bound thread objects has no
summary thread objects. In contrast, the previous forms allow such states
to contain summary thread objects, which will result in unnecessary com-
putation as Focus creates states with more than bound thread objects that
are then discarded by Coerce.

Note, however, that the latter form implicitly assumes that the num-
ber of thread objects can only increase by one during the Focus function,
which is the case for the models constructed in this chapter. If the fo-
cus formulas are such that bound− 1 thread objects could be focussed to
bound + 1 (or more) objects, then this constraint will coerce them all to be
non-summary but not discard the state, effectively increasing the bound.

7.4.2 Thread Field Properties

When the threads and their fields are abstracted, the relationships between
some of the fields’ values can be lost. The relationships can be retained
through the used of geometric instrumentation predicates.

Snapshots

In the stack’s Pop operation, the ssnext field is the next-successor of the
ss field when it is read. This property is assumed to persist, so it is not
checked before the CAS step at location pop38 that attempts to set HeadI
to ssnext.

Figure 7.11 shows that this property is not retained in canonical ab-
straction using the predicates defined so far. Both states (shown without
the data values and specification lists) have two threads performing a Pop
operation — in S\

8, both ssnext predicates are the next-successors of the
respective ss predicates, but this is not the case in S\

9; nevertheless, both
states have the same canonical abstraction (S8). As a consequence, the CAS
transition can remove an arbitrary prefix of the list because ssnext can be
concretised at any point.

This information can be preserved using a geometric instrumentation
predicate on threads that expresses:

“This thread’s fld1 and fld2 fields are non-null and fld2 is the
next-successor of fld1”.

7.4. (UN)BOUNDED THREADS 163

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]

at[pop38]
has[ss]

has[ssnext]

next next

ss
ssnext

ss
ssnextS\

8

HeadI
reachI

reachI

at[pop38]
has[ss]

has[ssnext]

next
next

ss

ss

ssnext
S8

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]

at[pop38]
has[ss]

has[ssnext]

next next

ss

ssnext

ss ssnext

S\
9

α

α

Figure 7.11: Canonical abstraction of threads: the relationships between
fields’ values are lost

164 CHAPTER 7. C. A. FOR LINEARISABILITY

I defined such a predicate:

succ[fld1, fld2](t1)⇔ ∃ n1, n2 • fld1(t1, n1) ∧ fld2(t1, n2) ∧ next(n1, n2)

This predicate records a “triangular” relationship between threads and
nodes, as shown in the following diagram:

succ[fld1, fld2]

fld1
fld2

next

In Figure 7.12, we add succ[ss, ssnext] to the states from Figure 7.11 and
can see that they now have different canonical abstractions. Note that S11
has the same diagram as S8, but is a different and more precise state, as
succ[ss, ssnext] is explicitly false for all threads (and other objects). Now
the CAS step at location pop38 will only remove the first node from the
stack, as ssnext will always be concretised to the next-successor of ss.

A similar issue arises in the Push operation, as it is implicit at the
CAS step at location push9 that the next field of the n node still points
to the same node as ss; this can be resolved by including the predicate
succ[n, ss].

Data Values

In the stack’s push operation, the lv data value that is being pushed is
assigned to n.val in the third transition, and is not used again until the
specification push operation is performed. At this point, lv is implicitly
assumed to still be the same value as n.val, but as with the snapshots, this
property is not retained in canonical abstraction.

This property can be retained by introducing an instrumentation pred-
icate that expresses:

7.4. (UN)BOUNDED THREADS 165

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next next

ss
ssnext

ss
ssnext

S\
10

HeadI
reachI

reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next
next

ss

ss

ssnext
S10

α

(a) All next-successors

Figure 7.12: Canonical abstraction using the succ[ss, ssnext] predicate: the
relationships between fields’ values are retained

166 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]

at[pop38]
has[ss]

has[ssnext]

next next

ss

ssnext

ss ssnext

S\
11

HeadI
reachI

reachI

at[pop38]
has[ss]

has[ssnext]

next
next

ss

ss

ssnext
S11

α

(b) None next-successors

Figure 7.12: Canonical abstraction using the succ[ss, ssnext] predicate: the
relationships between fields’ values are retained

7.5. INITIAL STATE 167

“this thread’s field node has the same data value (val) as the
thread does (lv)”.

I defined such a predicate:

opval[field](v)⇔ ∃ u1, u2 • field(v, u1) ∧ val(u1, u2) ∧ lv(v, u2)

This predicate records a “triangular” relationship between threads, nodes
and data values, as shown in the following diagram:

opval[field]

field
lv

val

I included the predicate opval[n], which records the relationship through-
out a push operation between the n and lv fields.

A similar need arises in the pop operation, when lv is assigned to be the
ss node’s val field before the linearisation point. This relationship is im-
plicitly assumed to be unchanged at the linearisation point, and the value
popped from the specification stack is expected to be the same as lv. To en-
sure that the relationship between ss and lv is retained in the abstraction,
I included the predicate opval[ss].

7.5 Initial State

The initial states of the models in Chapter 6 simply contain an empty data
structure and a number of idle threads. Such a canonically abstract state
for the stack, with all possible data values explicitly represented, is shown
in Figure 7.13.

Since no garbage collection is performed in the model, the abstract
states record the history of whether a pop operation’s linearisation point

168 CHAPTER 7. C. A. FOR LINEARISABILITY

at[idle]
tr scheduled = 1

2

Figure 7.13: Initial state of the stack model (plain)

at[idle]
tr scheduled = 1

2

has[val]
has[next]

has[val]
next

next

val val

Figure 7.14: Initial state of the stack model (with “garbage” nodes)

7.6. ADDITIONAL COMPATIBILITY CONSTRAINTS 169

has ever been performed or not, indicated by the presence or absence of
“garbage” nodes.

To reduce the abstract statespace further, I included garbage nodes in
the initial state. As shown in Figure 7.14, there are two summary nodes,
distinguished by the has[next] instrumentation predicate. The efficiency
of this approach is quantified in Section 7.8.

7.6 Additional Compatibility Constraints

The predicates we have defined so far are theoretically sufficient for per-
forming a canonically abstract verification of the stack algorithm. How-
ever, in the Focus/Coerce/Blur approach of TVLA, which only approxi-
mates the best transformer (see Section 4.3), the compatibility constraints
automatically generated from the instrumentation predicates and integrity
rules (see Section 4.3.2) are not always comprehensive enough to sharpen
structures or eliminate inconsistent structures.

I have added additional compatibility constraints for the reachability
predicates (7.6.1) and the geometric predicates (7.6.2).

7.6.1 Reachability Predicates

Example Consider the steps of a Pop update shown in Figure 7.15 (with
the data values, other threads and the specification list removed for sim-
plicity). The initial state (7.15a) has a single thread and a list with a non-
summary head and summary body. Using the focus formula

HeadI(n1) ∧ next(n1, n2) ∧ ss(t1, n3) ∧ ssnext(t1, n4)

the Focus operation produces a state where the summary node has been
split in two (7.15b).5

When Coerce is applied, the result is the same, except that the second
node in the list is non-summary due to the functionality integrity rules
(7.15c). However, the state is not as precise as possible: circ is false for the
second node of the list, so the two unknown next predicates that point to
it can only be false. Coerce is not able to sharpen these — the next values

5Only one of several focussed states is shown, as the unknown next and ssnext predi-
cates can be concretised in several ways.

170 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next
next

ss
ssnext

(a) Initial state

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next

next

next

next

next

ss
ssnext

(b) After Focus (one of several states)

Figure 7.15: Steps of a Pop update transition

7.6. ADDITIONAL COMPATIBILITY CONSTRAINTS 171

HeadI
reachI

reachI reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next

next

next

next

next

ss
ssnext

(c) After Coerce

HeadI
reachI

reachI

at[pop40]
has[ss]

has[ssnext]
succ[ss, ssnext]

next

next

next

next

next

ss
ssnext

(d) Final state after Update, Coerce and Blur

Figure 7.15: Steps of a Pop update transition

172 CHAPTER 7. C. A. FOR LINEARISABILITY

are unknown, so next+, and hence the entire bodies of circ’s compatibility
constraints (recall from Section 4.3.2), evaluate to unknown:

∃ u • v = u ∧ next+(v, u) � circ(v)
∀ u • v 6= u ∨ ¬ next+(v, u) � ¬ circ(v)

The HeadI predicate is advanced along the list by the Update step
(7.15d), which is also the final state as Coerce is still unable to sharpen
the unknown next predicates, and the state is already canonically abstract.

�

This example may seen fairly benign — a subsequent transition that fo-
cusses the next predicate from HeadI will Coerce the two redundant ones
to false — but these unnecessary imprecisions can adversely affect the
analysis. In the worst case they can allow the discovery of otherwise un-
reachable spurious counterexamples. More generally they induce greater
computation effort, both by increasing the number of structures that Focus
creates and Coerce examines, but also in allowing inconsistent states to be
stored and explored.

Example Figure 7.16 shows an example of how a completely inconsistent
state can be reached, because of the weakness of the circ constraints. The
transition is the assignment of ssnext from location pop35 to pop38; for
simplicity, we leave out the data values, the specification list and other
threads from the diagram.

In the initial state (7.16a) the list has redundant next predicates pointing
at the head node, as created in the previous example; the thread’s ss field
points to somewhere in the body of the list.

Using the focus formula

ss(t1, n1) ∧ next(n1, n2)

the Focus operation produces a state where the summary node has been
split, and the next-successor of ss is the head node (7.16b).6 This state is
inconsistent because circ is false for the head node, so ideally it would be
discarded by Coerce.

However, Coerce is not able to discard this state, due to the weakness of
the circ compatibility constraints, as before. Coerce instead just sharpens
the ss node to be non-summary (7.16c).

6Again, this is only one of several states produced by Focus, as the unknown ss and
next predicates can be concretised in several ways.

7.6. ADDITIONAL COMPATIBILITY CONSTRAINTS 173

HeadI
reachI

reachI

at[pop35]
has[ss]

next

next

next

next

ss

(a) Initial state

HeadI
reachI

reachI

reachI

at[pop35]
has[ss]

next

next

next

next

next

next

next

ss

(b) After Focus (one of several states)

Figure 7.16: Transition to an inconsistent state

174 CHAPTER 7. C. A. FOR LINEARISABILITY

HeadI
reachI

reachI

reachI

at[pop35]
has[ss]

next

next

next

next

next

next

next

ss

(c) After Coerce

HeadI
reachI

reachI

reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next

next

next

next

next

next

next

ss

ssnext

(d) After Update and Coerce

Figure 7.16: Transition to an inconsistent state

7.6. ADDITIONAL COMPATIBILITY CONSTRAINTS 175

HeadI
reachI

reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

next

next

next

next

ss

ssnext

(e) Final state, after Blur

Figure 7.16: Transition to an inconsistent state

The Update step sets ssnext as expected (7.16d), and Coerce is unable
to discard the state or sharpen any values. Blur merges the two non-head
nodes (7.16e).

Thus we end up with a final state (7.16e) that is inconsistent — the
predicate succ[ss, ssnext] implies that there is a node reachable from HeadI
whose next field points to HeadI, but circ implies that HeadI is not part of
a next cycle. �

There are three possible means for addressing these problems:

• adding further focus formulas to certain transitions, or

• adding further instrumentation predicates, or

• adding further compatibility constraints.

The first option, adding focus formulas, is the least attractive as it is an
ad hoc approach that is not readily transferable to other models, and the
performance of Focus can be exponential in the size of the focus formu-
las. Adding further instrumentation predicates has the advantage of be-
ing fully automatic, but adds more explicit information in order to discern
information that is already logically available. Adding compatibility con-
straints is often the best approach, as they deal systematically with the

176 CHAPTER 7. C. A. FOR LINEARISABILITY

logical information stored in the structure. Constructing constraints is in
some sense ad hoc, and can be a source of human error if an invalid rule
is chosen, but they can easily be reused in other models that use the same
instrumentation predicates.

I chose to define additional compatibility constraints, as I encountered
similar or identical issues in the different models, and the constraints could
be reused in all of them. When I encountered situations like those in Fig-
ure 7.15 and Figure 7.16, I defined a constraint to allow Coerce to sharpen
the structure further. I have included the following compatibility con-
straints in the stack model:

• next is not true reflexively on non-circular nodes:7

¬ circ(n1) ∧ n1 = n2 � ¬ next(n1, n2)

• For non-circular nodes, next is not symmetric:

¬ circ(n1) ∧ next(n1, n2) � ¬ next(n2, n1)

• A node in a non-circular list cannot point back to the head:

HeadI(n1) ∧ ¬ circ(n1) ∧ reachI(n2) � ¬ next(n2, n1)
HeadS(n1) ∧ ¬ circ(n1) ∧ reachS(n2) � ¬ next(n2, n1)

• A node in a list cannot point to a node that is not in the list:

reachI(n1) ∧ ¬ reachI(n2) � ¬ next(n1, n2)
reachS(n1) ∧ ¬ reachS(n2) � ¬ next(n1, n2)

The additional compatibility constraints I have defined (here, and later
in the thesis) are all relatively small, and appeared to be straightforward
consequences of the instrumentation predicate definitions and the predi-
cate properties such as functionality. However, to avoid any risk of mis-
takenly defining an invalid constraint, I proved their 2-valued validity by
hand — see Appendix A.

7Note that formulating the rule as ¬ circ(v) � ¬ next(v, v) would remove unknown
loops on summary nodes.

7.6. ADDITIONAL COMPATIBILITY CONSTRAINTS 177

matching

spec

val

val

Figure 7.17: Incomplete matching triangle

7.6.2 Geometric Predicates

The automatically generated compatibility constraints (see Section 4.3.2)
for the geometric predicates are also not comprehensive enough.

Example Consider the diagram in Figure 7.17 showing a “matching tri-
angle” with one val predicate undefined, and the compatibility constraints
generated for matching:

∀ n2, d1 • ¬ spec(n1, n2) ∨ ¬ val(n1, d1) ∨ ¬ val(n2, d1) � ¬ matching(n1)

∃ n2, d1 • spec(n1, n2) ∧ val(n1, d1) ∧ val(n2, d1) � matching(n1)

∃ d1 • ¬ matching(n1) ∧ val(n1, d1) ∧ val(n2, d1) � ¬ spec(n1, n2)

∃ n2 • ¬ matching(n1) ∧ spec(n1, n2) ∧ val(n2, d1) � ¬ val(n1, d1)

∃ n1 • ¬ matching(n1) ∧ spec(n1, n2) ∧ val(n1, d1) � ¬ val(n2, d1)

If Coerce could sharpen the indefinite val to true it would make the analy-
sis more efficient by removing redundant information. However, none of
the compatibility constraints are sufficient to allow this, as their bodies all
evaluate to 1

2 or 0.
I defined the following two compatibility constraints, the first of which

can be used by Coerce to sharpen the diagram in Figure 7.17, and the sec-
ond of which can be used to sharpen the corresponding diagram where it

178 CHAPTER 7. C. A. FOR LINEARISABILITY

is the other val predicate that is indefinite:

∃ n1 • matching(n1) ∧ spec(n1, n2) ∧ val(n1, d1) � val(n2, d1)
∃ n2 • matching(n1) ∧ spec(n1, n2) ∧ val(n2, d1) � val(n1, d1)

Note that these compatibility constraints rely on the fact that spec and val
are functional predicates. However, val is not inversely functional, so the
following constraint rule — to sharpen when it is spec that is indefinite —
is incorrect, and if added to the analysis could cause a state to be altered
or discarded incorrectly, thus preventing part of the statespace from being
analysed.

∃ d1 • matching(n1) ∧ val(n1, d1) ∧ val(n2, d1) � spec(n1, n2)

�

The same problem occurs for the other geometric predicates, so I de-
fined the following compatibility constraints:

∃ t1 • succ[ss, ssnext](t1) ∧ ss(t1, n1) ∧ ssnext(t1, n2) � next(n1, n2)
∃ n1 • succ[ss, ssnext](t1) ∧ ss(t1, n1) ∧ next(n1, n2) � ssnext(t1, n2)
∃ t1 • succ[n, ss](t1) ∧ n(t1, n1) ∧ ss(t1, n2) � next(n1, n2)
∃ n1 • succ[n, ss](t1) ∧ n(t1, n1) ∧ next(n1, n2) � ss(t1, n2)
∃ t1 • opval[n](t1) ∧ n(t1, n1) ∧ lv(t1, d1) � val(n1, d1)
∃ n1 • opval[n](t1) ∧ n(t1, n1) ∧ val(n1, d1) � lv(t1, d1)
∃ t1 • opval[ss](t1) ∧ ss(t1, n1) ∧ lv(t1, d1) � val(n1, d1)
∃ n1 • opval[ss](t1) ∧ ss(t1, n1) ∧ val(n1, d1) � lv(t1, d1)
∃ n1, n2 • commutes(n1) ∧

next(n1, n2) ∧ spec(n1, n3) ∧ spec(n2, n4) � next(n3, n4)
∃ n1, n3 • commutes(n1) ∧

next(n1, n2) ∧ spec(n1, n3) ∧ next(n3, n4) � spec(n2, n4)
∃ n3, n4 • commutes(n1) ∧

spec(n1, n3) ∧ next(n3, n4) ∧ spec(n2, n4) � next(n1, n2)

These also rely on the functionality of spec, ss, ssnext, next, nand lv, and
the inverse functionality of spec. As with matching, each has one potential
constraint that would be incorrect to define, because next and val are not
inversely functional.

7.7. STACK RESULTS 179

Heap Ave Max
Limit Time RAM RAM Uns. Stored Total

Th. (MB) (s) (MB) (MB) States States States Breaches
1 800 1 4 6 14 86 209 431
2 800 18 94 252 129 1,312 4,271 20,903
3 800 102 173 336 440 6,493 21,676 121,166
4 800 535 255 479 915 18,564 67,264 394,264
5 2,048 6,409 502 1,184 1,398 36,749 134,991 826,696
6 2,048 143,302 480 1,052 1,727 55,069 203,029 1,264,353
7 4,096 2,625,113 1,182 2,633 1,870 67,334 249,034 1,552,497
∞ 1,024 6,524 647 1,057 1,910 74,056 273,610 1,680,866
∞ 2,048 1,934 849 1,603 1,910 74,056 273,742 1,680,866

Table 7.1: Stack verification results

7.7 Stack Results

I analysed thread-bounded and unbounded models of the stack algorithm
using TVLA 3.0α on a machine with an Intel Core 2 3.0 GHz processor and
4 GB of RAM, running Java 1.6.0 on a 32-bit GNU/Linux operating system.
The results are contained in Table 7.1, showing that each model is verified
to be a linearisable stack, with an unbounded length and unbounded data
values.

The first two columns are the inputs to TVLA — the number of threads
and the maximum size of the Java memory allocation pool; the remainder
are numbers reported by TVLA’s output.

The figures for time and RAM use are largely indicative in general.
The Spin model checker uses the same amount of RAM every time a par-
ticular analysis is performed; the time varies only based on the processor
speed and parallel system activity. In contrast, the time and memory use
in TVLA can vary by additional factors, such as how much RAM is avail-
able (demonstrated in Table 7.1) and whether a 32-bit or 64-bit platform is
used.

Three columns record the numbers of states. The first column records
the number of states (outside atomic blocks) where no thread is explicitly
scheduled; this is analogous to the states that Spin stores and is perhaps
ideally the number of states that would need to be stored in a canonical
abstraction analysis. The second column records the number of states that
are actually stored by TVLA, including the states during atomic blocks, af-

180 CHAPTER 7. C. A. FOR LINEARISABILITY

ter the “schedule” transition and before the “unschedule” transition, when
one thread is explicitly scheduled. The third column records the total num-
ber of states that TVLA reports encountering, including states merged due
to the partially disjunctive analysis; this value can vary slightly between
different runs of each analysis. The final column in Table 7.1 records the
number of constraint breaches, i.e. the number of times a state was altered
or discarded by Coerce.

The principal result of Table 7.1 is that the linearisability of the stack
model is able to be verified for unbounded numbers of threads and data
values, and for lists of unbounded length. This is the first verification of a
nonblocking data structure algorithm using only canonical abstraction.

Each of the thread-bounded models shown is larger than the previous
one, but the relative increases in the numbers of states are smaller. How-
ever, the time taken for each analysis increases exponentially, indicating
that the compatibility constraints used to bound the threads become in-
creasingly inefficient.

I expect that the unbounded model is identical in its statespace to the
model bounded to 11 thread objects, though it was impractical for me to
verify the models with a thread bound of eight or more, due to the time
requirements.8 Examining the statespace of the unbounded model, the
maximum number of thread objects that can occur together in a state is
10 — there can be up to nine thread objects in an unscheduled state, and
states within atomic blocks will have an extra thread object because of the
different location predicates. However, in a model bounded to 10 threads
the bounding compatibility constraint will ensure that whenever 10 thread
objects occur together in a state they are non-summary, which will differ
from the unbounded model.

Table 7.2 shows the nine canonical thread objects that can occur in an
unscheduled state, distinguished by a location predicate and the values
of the other abstraction predicates. As might be expected, there are idle
states, threads at push9 with null and non-null head snapshots (ss), and
threads at pop38 with null and non-null next snapshots (ssnext). For the
location pop35 there are threads executing the loop for the first time —
these have non-null head snapshots (ss) only. There are also threads ex-
ecuting the loop a subsequent time without the fields being reset — they
additionally have non-null lv values, and null or non-null next snapshots

8Six threads took 40 minutes to complete; seven threads took 30 days. The model with
eight threads was manually killed after 10 months.

7.8. STACK VARIATIONS 181

doneLP
has[lv

]

has[n
]
has[s

s]
has[s

snext]

opval[n]

opval[ss]

succ[n
, ss]

succ[s
s, ssnext]

at[idle] 0 0 0 0 0 0 0 0 0
at[push9] 0 1 1 0 0 1 0 0 0
at[push9] 0 1 1 1 0 1 1

2 1 0
at[pop35] 0 0 0 1 0 0 0 0 0
at[pop35] 0 1 0 1 0 0 1

2 0 0
at[pop35] 0 1 0 1 1 0 1

2 0 0
at[pop35] 0 1 0 1 1 0 1

2 0 1
2

at[pop38] 0 1 0 1 0 0 1 0 0
at[pop38] 0 1 0 1 1 0 1 0 1

Table 7.2: Canonical thread objects in unscheduled abstract stack states

(ssnext); the predicates opval[ss] and succ[ss, ssnext] are either false or
unknown because the transition that reads the snapshot value does not
focus the state sufficiently to determine when these predicates are true.

7.8 Stack Variations

In addition to the model and analyses described so far in this chapter, I
constructed and analysed several differing models of the stack algorithm.
Some were constructed experimentally, in order to evaluate two or more
alternatives; others were constructed deliberately in order to quantify the
differences with an approach that was known to be less efficient. They
cover variations to TVLA (7.8.1), variations to logical definitions (7.8.2)
and variations to the thread interleaving restrictions (7.8.3).

The analyses in this section used the same hardware and software as
in Section 7.7 unless specified.

7.8.1 TVLA Changes

Isomorphic State Comparison

The analyses in Section 7.7 used a partially isomorphic comparison be-
tween states (see Section 4.5.2). Manevich et al. [2004] report this approach
providing reductions between 0 and 99.6% in the number of stored states.

182 CHAPTER 7. C. A. FOR LINEARISABILITY

States States States
Th. (uns.) % (stored) % (total) %
1 7,037 50,264 38,550 44,826 38,550 18,445
2 >32,166 >24,935 >261,000 >19,893 >261,500 >6,123

Table 7.3: Stack analyses using isomorphic state comparisons

Heap Ave Max
Limit Time RAM RAM

Th. (MB) (s) % (MB) % (MB) %
1 800 6 406 4 88 7 131
2 800 518 2,839 38 40 104 41
3 800 4,221 4,138 59 34 183 54
4 800 26,380 4,931 118 46 278 58
∞ 2,048 195,733 10,123 421 50 956 60

Table 7.4: Comparison with TVLA 2

For comparison, I attempted to verify the stack models using an iso-
morphic comparison between states (called a “relational join” in TVLA).
Table 7.3 contains the results — the numbers of states along with a per-
centage comparison with the figures in Table 7.1. For the single-thread
model, the partially isomorphic approach provides a 99.8% reduction in
the number of stored states. For two threads, TVLA runs out of memory,
but even with this limit the reduction provided by the partially isomorphic
approach is more than 99.5%.

Clearly, the partially isomorphic approach is necessary to make canon-
ical abstraction a practical technique for verifying nonblocking data struc-
ture algorithms.

TVLA 2

Section 4.5.3 discusses some of the enhancements introduced in TVLA 3
for improving Coerce. Bogudlov et al. [2007a] report reductions in time
between 35.6% and 98.0% using TVLA 3 compared to TVLA 2, and report
nothing about the effects on memory use.

I verified some of the models from Section 7.7 in TVLA 2α. Table 7.4
shows the time and memory results along with percentage comparisons
with Table 7.1. Note that the tables display the figures rounded to the

7.8. STACK VARIATIONS 183

States States States
Th. (uns.) % (stored) % (total) %
1 56 400 326 379 904 433
2 >20,240 15,690 >160,168 12,208 >374,000 8,757

Table 7.5: Stack analyses with unnecessary referenced-by instrumentation
predicates

nearest second or megabyte, but the percentage comparisons use the un-
rounded figures reported by TVLA. The time reduction of TVLA 3 over
TVLA 2 is 75.3% for a single thread, and then increases with each bound
increase, from 96.5% to 99.0%. Conversely, TVLA 3 increases memory use,
with the non-single thread models using 1.7–2.9 times as much as TVLA 2.

These results indicate that TVLA 3 is vastly more practical for verify-
ing nonblocking data structure algorithms. The analyses are an order of
magnitude or more faster, and though they use more memory the increase
is a manageable tradeoff.

7.8.2 Definitions

Unnecessary Instrumentation Predicates

In Section 7.2.3, I discussed my selection of the instrumentation predicates
used, and how unneeded instrumentation predicates can make the ab-
straction too fine. To quantify this I analysed a model that further included
the instrumentation predicates:

r by[ss], r by[ssnext], r by[n], r by[next], r by[val]

Additionally, I defined the following compatibility constraint, which was
needed for the implementation list:

∃ n1 • reachI(n1) ∧ reachI(n2) ∧ ¬ circ(n2) ∧
next(n1, n2) ∧ reachI(n3) ∧ ¬ eq(n1, n3)

� ¬ next(n3, n2)

By recording, in particular, which fields are pointing to each node, the
number of canonical node objects the list can contain is increased, and the
permutations of these result in an increase in the statespace.

Table 7.5 shows that for one thread the extra instrumentation predi-
cates quadruple the statespace. For two threads TVLA runs out of memory

184 CHAPTER 7. C. A. FOR LINEARISABILITY

States States States
Th. (uns.) % (stored) % (total) %
1 54 386 320 372 602 288
2 407 316 4,037 308 9,936 233
3 1,271 289 18,347 283 49,825 230
4 2,494 273 49,358 266 137,571 205
∞ 4,847 254 179,246 242 532,515 195

Table 7.6: Stack analyses with a pure initial state

after examining an 87-fold increase in states, and storing over 120 times
more.

This example shows that instrumentation predicates that refine the ab-
straction more than necessary for verification can cause an exponential
increase in the statespace. Thus the choice of instrumentation predicates
can be critical to the success of verification.

Pure Initial State

As described in Section 7.5, I included “garbage” nodes in the initial state
to reduce the statespace. For comparison I also verified models with an
initial state that contained no node objects. As a result, the presence or ab-
sence of garbage nodes (further distinguished by the has[next] predicate)
effectively records some of the history of each state, namely whether

• no non-empty pop operations have been performed,

• only non-empty pop operations on singleton stacks have been per-
formed,

• only non-empty pop operations on non-singleton stacks have been
performed, or

• non-empty pop operations have been performed on both singleton
and non-singleton stacks.

Table 7.6 shows that this produces a statespace roughly two to four times
larger.

7.8. STACK VARIATIONS 185

States States States
Th. (uns.) % (stored) % (total) %
2 234 181 2,364 180 6,769 158
3 2,472 562 34,305 528 101,470 468
4 >10,206 >1,115 >196,410 >1,058 >366,000 >544

Table 7.7: Stack analyses with named threads

Named Threads

In Section 7.4, I described two approaches for bounding the number of
threads — using a compatibility constraint (which I used in my models)
and assigning each thread a unique unary predicate to distinguish them in
the abstraction (as used by Amit et al. [2007]). To quantitatively compare
the two, I analysed variations of my stack model that had n threads, each
with a unique unary predicate. Note that I did not uniquely distinguish
the objects pointed to by each of the threads’ fields, as Amit et al. [2007]
also do.

Table 7.7 shows the results and comparisons. As expected, prevent-
ing the threads from being abstracted, and naming the threads to prevent
object symmetry from being exploited, produces an exponential increase
in the statespaces. For two threads, the statespace is nearly doubled; for
three threads it is increased by more than five times; for four threads it is
increased by more than 10 times, but TVLA runs out of memory.

Thread Bounding Constraint

In Section 7.4.1, I defined two versions of the compatibility constraint used
to bound the number of threads. Table 7.8 shows the results of using the
original version (“a state with bound + 1 thread objects is invalid”) com-
pared to the results from Table 7.1, which used the optimised version (“if
there are bound thread objects they must be non-summary”). The results
show that the optimised version does in general make the models slightly
more efficient, though the difference is very minor. There is generally
a slight increase in time and memory use, along with a larger number
of states examined and constraints breached; in contrast, the numbers of
states stored are virtually identical, with no more than a 0.05% increase.

186 CHAPTER 7. C. A. FOR LINEARISABILITY

Heap Ave Max
Limit Time RAM RAM

Th. (MB) (s) % (MB) % (MB) %
2 800 18 96 108 114 282 112
3 800 108 106 172 100 342 102
4 800 568 106 256 100 463 98
5 2,048 6,532 102 522 104 1,095 93

(a) Resources

Unsch. Stored Total
States States States

Th. (uns.) ± (stored) ± (total) % Breaches %
2 129 +0 1,312 +0 4,569 107 23,302 111
3 440 +0 6,498 +5 24,669 114 140,510 116
4 915 +0 18,573 +9 72,822 108 443,955 113
5 1,398 +0 36,756 +7 140,677 104 881,964 107

(b) Statespace

Table 7.8: Stack verification results for bounded threads

7.8.3 Full Interleaving

The stack model as presented in Section 7.1 and Figure 7.2 uses manu-
ally specified ad hoc partial order reduction to reduce the interleavings
between the threads, and thus to reduce the size of the statespace. To
quantify the effect that this has, I analysed a model of the stack with the
original full interleaving, i.e. the only atomic groups are to ensure that the
specification transitions are performed immediately after the linearisation
point of the implementation, as shown in Figure 7.18.

Table 7.9 shows that the model with full interleaving is exponentially
larger than the model with restricted interleaving, and runs out of mem-
ory with a bound of four threads. Restricting the interleaving provided a
statespace reduction of 83.2% for two threads and 96.2% for three threads,
indicating that this practice is in general likely to be necessary for verifica-
tion of unbounded threads unless other approaches are used in conjunc-
tion.

7.8. STACK VARIATIONS 187

idle beginPush() push3
push3 newNode(n) push4
push4 assign(n.val, lv) push6
push6 assign(ss, Head) push7
push7 assign(n.next, ss) push9
push9 CASfail(Head, ss) push6

atomic {
push9 CASsucc(Head, ss, n) push11
push11 specPush() push18

}
push18 endPush() idle

idle beginPop() pop24
atomic {

pop24 assign(ss, Head) pop25
pop25 isNotNull(ss) pop35
pop25 isNull(ss) pop26
pop26 specPopEmpty() pop48

}
pop35 assign(ssnext, ss.next) pop36
pop36 assign(lv, ss.val) pop38
pop38 CASfail(Head, ss) pop24

atomic {
pop38 CASsucc(Head, ss, ssnext) pop40
pop40 specPop() pop48

}
pop48 endPop() idle

Figure 7.18: Transitions of stack model

States States States
Th. (uns.) % (stored) % (total) %
1 45 321 148 172 338 162
2 1,511 1,171 7,731 589 25,498 597
3 21,107 4,797 148,191 2,282 567,500 2,618
4 >28,849 >3,153 >282,441 >1,521 >460,800 >685

Table 7.9: Stack verification results with no partial order reduction

188 CHAPTER 7. C. A. FOR LINEARISABILITY

7.9 Queue Models

The queue algorithms from Section 2.6.2 are very similar in structure to the
stack algorithm, so the model constructed previously in this chapter can
be adapted straightforwardly. We describe briefly the three-valued models
used for the queues (7.9.1) and the verification results obtained (7.9.2).

7.9.1 Three-Valued Models

We consider the queue algorithms as described in Section 5.2.6 and Fig-
ure 5.7, with the sequential specification merged in. Figure 7.19 shows an
alternative representation to more closely match the operational semantics
used for canonical abstraction; the locations are named to match the line
numbers in Figure 5.7. As with the stack model in Section 7.1, some of the
atomic blocks have been expanded to effect ad hoc partial order reduction.
Figure 7.20 shows the additional update actions used for the invocation,
response and specification transitions.

Core Predicates

The queue algorithms are very similar to the stack algorithm, so we use
the same, or equivalent, predicates for the list objects and thread fields:

is data,
is node, next, val, HeadI, TailI, HeadS, TailS,
is thread, doneLP, doneELP, lv, n, sshead, sstail, ssnext

For both algorithms we define the following location predicates:

at[idle], at[enq3], at[enq4], at[enq6], at[enq7], at[enq8],
at[enq9], at[enq11], at[enq13], at[enq20], at[enq24], at[enq25]

For the original algorithm only we define the following location predi-
cates:

at[deq30], at[deq31], at[deq33], at[deq34], at[deq35],
at[deq40], at[deq41], at[deq42], at[deq43], at[deq46],
at[deq48], at[deq50], at[deq52], at[deq61]

7.9. QUEUE MODELS 189

atomic{
idle beginEnqueue() enq3
enq3 newNode(n) enq4
enq4 assign(n.val, lv) enq6
enq6 assign(sstail, Tail) enq7

}
atomic{

enq7 assign(ssnext, sstail.next) enq8
}
atomic{

enq8 isEqual(sstail, Tail) enq9
enq8 isNotEqual(sstail, Tail) enq6
enq9 isNull(ssnext) enq11
enq9 isNotNull(ssnext) enq20

}
atomic{

enq20 CASfail(Tail, sstail) enq6
enq20 CASsucc(Tail, sstail, ssnext) enq6

}
atomic{

enq11 CASfail(sstail.next, ssnext) enq6
enq11 CASsucc(sstail.next, ssnext, n) enq13
enq13 specEnqueue() enq24

}
atomic{

enq24 CASfail(Tail, sstail) enq25
enq24 CASsucc(Tail, sstail, n) enq25
enq25 endEnqueue() idle

}
(a) Enqueue operation

Figure 7.19: Transitions of queue models

190 CHAPTER 7. C. A. FOR LINEARISABILITY

atomic{
idle beginDequeue() deq30
deq30 assign(sshead, Head) deq

}
atomic{

deq31 assign(sstail, Tail) deq33
}
atomic{

deq33 assign(ssnext, sshead.next) deq34
deq34 isNull(ssnext) deq35
deq34 isNotNull(ssnext) deq40
deq35 specDequeueEmpty() deq40

}
atomic{

deq40 isEqual(sshead, Head) deq41
deq40 isNotEqual(sshead, Head) deq30
deq41 isEqual(sshead, sstail) deq42
deq41 isNotEqual(sshead, sstail) deq48
deq42 isNull(ssnext) deq43
deq42 isNotNull(ssnext) deq46
deq43 endDequeueEmpty() idle

}
atomic{

deq46 CASfail(Tail, sstail) deq30
deq46 CASsucc(Tail, sstail, ssnext) deq30

}
atomic{

deq48 assign(lv, ssnext.val) deq50
deq50 CASfail(Head, sshead) deq30
deq50 CASsucc(Head, sshead, ssnext) deq52
deq52 specDequeue() deq61
deq61 endDequeue() idle

}
(b) Original dequeue operation

Figure 7.19: Transitions of queue models

7.9. QUEUE MODELS 191

atomic{
idle beginDequeue() deq67
deq67 assign(sshead, Head) deq69

}
atomic{

deq69 assign(ssnext, sshead.next) deq70
deq70 isNull(ssnext) deq71
deq70 isNotNull(ssnext) deq76
deq71 specDequeueEmpty() deq76

}
atomic{

deq76 isEqual(sshead, Head) deq77
deq76 isNotEqual(sshead, Head) deq67
deq77 isNull(ssnext) deq78
deq77 isNotNull(ssnext) deq81
deq78 endDequeueEmpty() idle

}
atomic{

deq81 assign(lv, ssnext.val) deq83
deq83 CASfail(Head, sshead) deq67
deq83 CASsucc(Head, sshead, ssnext) deq85
deq85 specDequeue() deq94

}
atomic{

deq94 assign(sstail, Tail) deq95
deq95 isEqual(sshead, sstail) deq96
deq95 isNotEqual(sshead, sstail) deq98

}
atomic{

deq96 CASfail(Tail, sstail) deq98
deq96 CASsucc(Tail, sstail, ssnext) deq98
deq98 endDequeue() idle

}
(c) Simplified dequeue operation

Figure 7.19: Transitions of queue models

192 CHAPTER 7. C. A. FOR LINEARISABILITY

beginEnqueue() true −→
doneLP := false; lv ∈ DATA

specEnqueue() ¬ doneLP −→
doneLP := true;
spec.Tail.next := newNode(lv, null);
spec.Tail := spec.Tail.next

endEnqueue() doneLP −→
lv, sstail, ssnext, n := null

beginDequeue() true −→
doneLP, doneELP := false; lv := null

specDequeueEmpty() ¬ doneLP ∧ spec.Head = spec.Tail −→
doneELP := true

specDequeue() ¬ doneLP ∧ spec.Head 6= spec.Tail ∧ spec.Head.next.val = lv −→
doneLP := true; spec.Head := spec.Head.next

endDequeueEmpty() doneELP ∧ ¬ doneLP −→
lv, sshead, sstail, ssnext := null

endDequeue() doneLP −→
lv, sshead, sstail, ssnext := null

Figure 7.20: Additional update operations used in queue models

For the simplified algorithm only we define the following location predi-
cates:

at[deq67], at[deq69], at[deq70], at[deq71], at[deq76],
at[deq77], at[deq78], at[deq81], at[deq83], at[deq85],
at[deq94], at[deq95], at[deq96], at[deq98]

We also define the spec predicate for relating nodes in the specification
and implementation lists.

Additionally, I defined the same, or equivalent, integrity rules and
compatibility constraints as in Sections 7.2.2 and 7.6.

7.9. QUEUE MODELS 193

Instrumentation Predicates

The same properties of the two lists are required to verify the queue algo-
rithm as for the stack, so I defined the same instrumentation predicates for
these:9

has[val], has[next], reachI, reachS, circ,
r by[spec], matching, commutes, hasS[spec]

For the thread fields, I defined the same or equivalent linear predicates.
For each field, it is necessary to know at some point whether it is null or
not. The other properties of n in Enqueue are the same as in Push. Thus:

has[lv], has[n], waiting, shared[n],
has[sshead], has[sstail], has[ssnext]

The queues have similar properties that require geometric predicates
to preserve sufficient information in the abstract states. In the CAS steps
at locations enq20, enq24, deq46, deq50, deq83 and deq96, the old and new
values are implicitly assumed to be next-successors. Thus I defined the
predicates:

succ[sshead, ssnext], succ[sstail, ssnext], succ[sstail, n]

In the specification actions for enqueues and non-empty dequeues, the
value of lv is assumed to remain the same as the val of the node pointed to
by n or ssnext, respectively. Thus, I defined the predicates:

opval[n], opval[ssnext]

One property requires a novel predicate not defined so far. After the
comparison at locations deq41/deq95 the equality or otherwise of sshead
and sstail is lost by the abstraction. I defined the following instrumenta-
tion predicate, which allows the property to be retained in the canonically
abstract states.

same[sshead, sstail](t)⇔ ∃ n • sshead(t, n) ∧ sstail(t, n)

9The reachability predicates are, as before, recording reachability from the head nodes.
Since the tail nodes are always the final or penultimate nodes in the list it was not neces-
sary to define additional reachability predicates from these.

194 CHAPTER 7. C. A. FOR LINEARISABILITY

Heap Ave Max
Limit Time RAM RAM Uns. Stored Total

Deq Th. (MB) (s) (MB) (MB) States States States Breaches
O 1 800 1 13 30 26 115 227 345
O 2 800 393 260 476 3,770 24,271 73,874 849,174
O 3 2,048 >25k >235k >564k
S 1 800 1 14 33 26 117 228 361
S 2 800 83 189 354 1,506 10,746 28,856 147,080
S 3 2,048 >22k >230k >632k

Table 7.10: Queue verification results

As for most of the other instrumentation predicates (see Section 7.6) the
automatically generated compatibility constraints for this predicate are
not comprehensive enough. I defined the following two constraint for-
mulas:

same[sshead, sstail](t) ∧ sshead(t, n) � sstail(t, n)
same[sshead, sstail](t) ∧ sstail(t, n) � sshead(t, n)

7.9.2 Results

I analysed the queue algorithms using the same software and hardware
as for the stack in Section 7.7. The results for the queues with the origi-
nal (O) and simplified (S) dequeue operations are contained in Table 7.10,
showing that linearisability has been verified for unbounded lists and data
values, and one or two threads. For three or more threads, TVLA runs out
of RAM. Clearly, the queue models are much larger than the stack model;
this is due to the greater number of list configurations, thread locations
and thread properties.

One interesting, and probably unexpected, observation is that the two-
thread model with the original dequeue operation is much larger than the
model with the simplified dequeue operation. The single-thread models
are very similar in size, and the simplified dequeue allows HeadI and TailI
to “cross over” (recall from Section 2.6.2), resulting in a larger number of
list configurations.

However, because the simplified dequeue only reads TailI at the end,
there are fewer ways to distinguish its thread objects — the instrumenta-
tion predicates defined using sstail are all false for the 11 locations deq67

7.10. RELATED WORK 195

to deq94. In contrast, the model with the original dequeue may have
has[sstail] either true or false at locations deq30 and deq31 (depending
whether or not the loop is being repeated) and may have succ[sstail, ssnext]
and same[sshead, sstail] either true or false in the six locations deq30 to
deq34 and deq40 to deq41. This results in the model having a larger number
of canonical thread objects. An examination of the statespaces of the two
models reveals that there are 104 distinct canonical thread objects among
the 3,770 unscheduled states of the original dequeue model, but only 38
among the 1,506 unscheduled states of the simplified dequeue model.

The disparity between the models’ numbers of canonical thread objects
indicates that not only will the original dequeue model be larger than the
simplified model for higher thread bounds, but that the difference will
increase exponentially with each thread bound increase.

7.10 Related Work

The first use of canonical abstraction for analysing nonblocking data struc-
tures was by Yahav and Sagiv [2003], who attempted to verify the five
safety properties that Michael and Scott [1996] state in their informal ar-
gument for correctness of their queue algorithm. These properties do not
prove linearisability; furthermore, the formalisations of the properties are
incorrect and mutually inconsistent.10

Amit et al. [2007] analysed the same nonblocking data structures as
I have (plus two lock-based data structures), verifying linearisability for
the stack algorithm with three threads and the queue algorithms with two
threads (limiting to 1.5 GB of RAM). They combine canonical abstraction
with an additional approach called “delta heap abstraction”: the relation-
ship between each pair of implementation and specification nodes and
their identical value is represented in the state graph by a single object.
Delta heap abstraction requires each push/enqueue etc. to be for a unique
value, whereas my approach can represent data values being entered into
the list multiple times. Their analyses use unique predicates to distinguish
each thread and its field values (see Section 7.4); as shown in Section 7.8.2,
this is exponentially more expensive than using the geometric instrumen-
tation predicates I have defined.

10For example, one property asserts that the Head node is never pointed to by a next
field, and another asserts that at the end of a Dequeue operation the next field of the
thread’s head snapshot points to the new Head node.

196 CHAPTER 7. C. A. FOR LINEARISABILITY

Manevich et al. [2008] combine canonical abstraction with graph de-
composition (see Section 4.5.5). Adapting the approach of Amit et al.
[2007], they are able to verify linearisability for the stack algorithm with
20 threads (limiting to 2 GB of RAM), and for the (simplified) queue algo-
rithm with 15 threads (limiting to 16 GB of RAM). Graph decomposition is
an orthogonal approach, and could be applied to my models to make the
analyses more efficient; this is left for future work.

Berdine et al. [2008] combine the above approaches with an additional
approach called “quantified canonical abstraction” to verify linearisability
for unbounded threads. Like graph decomposition, the approach splits
the state into (overlapping) subgraphs, each containing the data structure
and one non-summary thread. Unlike graph decomposition, each sub-
graph can represent an unbounded number of identical subgraphs, thus
the bounded number of subgraphs together can represent states with un-
bounded numbers of threads. By partitioning each thread into a separate
subgraph, they do not need to define instrumentation predicates, such as
the ones I introduced in Section 7.4.2, in order to preserve information lost
when threads are abstracted together. Extending the models of Amit et al.
[2007], and limiting to 2 GB of RAM, Berdine et al. [2008] were able to ver-
ify linearisability for the stack algorithm, but ran out of memory for the
queue. Extending the models of Manevich et al. [2008], using graph de-
composition to create smaller subgraphs, they were able to verify linearis-
ability for both the stack algorithm (with an 80% reduction in statespace)
and queue algorithm. This is the first published work to verify linearis-
ability for unbounded threads using canonical abstraction, though it uses
two additional approaches to do so.

7.11 Conclusion

In this chapter I have, for the first time, verified linearisability for a concur-
rent data structure using only canonical abstraction. That this is possible
was not previously known, and in order to achieve this, I defined several
novel instrumentation predicates to preserve information about “geomet-
ric” relationships between objects in each state. These types of instrumen-
tation predicates are not unique to concurrent data structures so could well
be useful for analysing other types of systems with canonical abstraction.

I applied the approach to analysing a stack and two queue algorithms,
but it will be adaptable to other linked list based data structure algo-

7.11. CONCLUSION 197

rithms. Some additional instrumentation predicates that would be needed
for different types of data structures have been investigated by other au-
thors. For example, Sagiv et al. [2002, Section 5] provide some instrumen-
tation predicates for preserving the structure of doubly linked lists (used
by Detlefs et al. [2000] and Ladan-Mozes and Shavit [2004, 2008]), and
Lev-Ami et al. [2000] discuss some predicates for preserving properties of
ordered data values (used by Heller et al. [2005, 2007]).

The models produced by this approach do appear to be relatively large
— the stack model could be verified comfortably with 2 GB of RAM, but
the queues required more RAM for three threads or more. The greatest
factor in the size of a model’s statespace is the number of canonical thread
objects required, due to the exponential number of permutations of these
that are stored. One option to address these permutations would be to
employ graph decomposition [Manevich et al., 2008]; with this approach,
I think that the analyses of my models would be competitive with those
of Berdine et al. [2008]. In Chapter 8, I introduce an alternative approach
to reducing these permutations, by abstracting all the thread objects into a
single summary object.

198 CHAPTER 7. C. A. FOR LINEARISABILITY

Chapter 8

Collapsing Threads Safely with
Soft Invariants

In Chapter 7, we saw that canonical abstraction can be used to verify lin-
earisability of nonblocking linked-list based data structures. The state-
spaces of the models, whilst finite, are still relatively large, and the queue
models were too large to be verified with 2 GB of RAM. One of the largest
factors in the size of the statespace is the number of canonical thread ob-
jects — the various permutations of these that can be present in a state
contribute exponentially to the total number of states stored. This state-
space explosion can be countered by removing all of the unary predicates
on threads from the set of abstraction predicates A— all of the thread ob-
jects will be abstracted (or “collapsed”) to a single summary object. Of
course, doing this naively would make the abstraction too coarse, as the
act of distinguishing the thread objects preserves information that is lost
when the threads are abstracted together. This information can still be
preserved in the collapsed thread object however, by defining appropriate
instrumentation predicates.

I have defined instrumentation predicates with the intent of recording
invariant properties of the threads at each location. I have called them
“soft invariants” as they do not impose the invariant properties on the
model like integrity rules (thus requiring independent verification that the
properties are actually invariant), but merely record, through statespace
exploration, whether each property is invariant in the system or not.

This chapter begins in Section 8.1 with an overview of the soft invariant
instrumentation predicates. In Section 8.2, I apply the approach to the
stack models from Chapter 7 (Sections 7.1–7.7 and 7.8.3). In Section 8.3,

199

200 CHAPTER 8. COLLAPSING THREADS SAFELY

I apply the approach to the queue models from Section 7.9. Finally, in
Section 8.4, I conclude and discuss some related work.

8.1 Overview

The canonical objects in an abstract state can implicitly record a variety
of properties, thus preserving the properties during abstraction. Recall
Table 7.2 on page 181, which records the canonical thread objects present
in the unscheduled states of the stack model with restricted interleaving.
From this we can infer a number of properties, e.g. at location push9:

• has[n] is always true

• has[ssnext] is always false

• succ[n, ss] is true if has[ss] is true

In this chapter, we reduce the statespace of each model by removing all
of the thread predicates from the set of abstraction predicates A (except
for is thread and tr scheduled). When we do this though, the above three
properties are not preserved by the abstraction. Figure 8.1a shows part of
a state with three formerly canonical abstract thread objects. With the new
abstraction they are merged into a single canonical thread object where
each predicate is unknown (8.1b). From this object it is possible to concre-
tise a thread at push9 that contradicts each of the three properties observed
above (8.1c).

8.1.1 Instrumentation Predicates

The properties noted above may be explicitly recorded within an abstract
state by defining specific instrumentation predicates. We can record, for
each thread:

“if this thread is at locX, then property ϕ holds”.

Thus, I defined instrumentation predicates, called soft invariants, of the
form:

if[locX, p](v)⇔ is thread(v) ∧ (at[locX](v)→ ϕp(v))

8.1. OVERVIEW 201

at[push9]
tr scheduled = 1

2
has[n]
has[ss]

succ[n, ss]

at[push9]
tr scheduled = 1

2
has[n]

at[pop35]
tr scheduled = 1

2
has[ss]

has[ssnext]

(a) Three previously canonical thread objects

at[push9] =
1
2

at[pop35] =
1
2

tr scheduled = 1
2

has[n] = 1
2

has[ss] = 1
2

has[ssnext] = 1
2

succ[n, ss] = 1
2

(b) Collapsed thread object

at[push9] =
1
2

at[pop35] =
1
2

has[n] = 1
2

has[ss] = 1
2

has[ssnext] = 1
2

succ[n, ss] = 1
2

at[push9]
tr scheduled

has[ss]
has[ssnext]

(c) Thread with different properties is concretised

Figure 8.1: Collapsing threads: loss of precision

202 CHAPTER 8. COLLAPSING THREADS SAFELY

To record the above three properties, I defined the following three soft
invariant instrumentation predicates:

if[push9, has[n]](v)⇔
is thread(v) ∧ (at[push9]→ has[n](v))

if[push9, has[ssnext]](v)⇔
is thread(v) ∧ (at[push9]→ ¬ has[ssnext](v))

if[push9, succ[n, ss]](v)⇔
is thread(v) ∧ (at[push9]→ (has[ss](v)→ succ[n, ss](v)))

The conditional form of these predicates means that they are true for
all threads at other locations. Thus the predicate will record the invariant
property in all thread objects. Figure 8.2a shows the three thread objects
from Figure 8.1a with the new instrumentation predicates all true. Now
when the threads are collapsed (8.2b), the new instrumentation predicates
are still all true, which prevents a thread being concretised that contradicts
any of the properties.

Figure 8.3a shows the state of Figure 8.1a with the following instru-
mentation predicate defined:

if[push9, has[ss]](v)⇔ is thread(v)→ (at[push9](v)→ has[ss](v))

I do not include the soft invariant predicates inA, so when the threads are
collapsed (8.3b), if[push9, has[ss]] becomes unknown, because the prop-
erty it is trying to preserve is not actually invariant. Consequently, when
a thread at push9 is concretised, has[ss] can be either true or false.

8.1.2 Selection of Predicates

I defined soft invariant predicates for a property consisting of a unary
predicate, the negation of a unary predicate, or the implication between
two of the same. They could also be defined for more complicated formu-
las, but it is almost certainly simpler and easier to use the formula as the
definition of a new instrumentation predicate, which in turn is used for
the definition of the soft invariant.

Identifying the values that every predicate can take at each location,
to determine which soft invariant predicates are required to refine the ab-
straction, can be achieved by careful examination of the model’s transi-
tions, coupled with some trial and error. Defining soft invariants is a safe
practice — as shown above, if the property is not actually invariant then

8.1. OVERVIEW 203

at[pop35]
tr scheduled = 1

2
has[ss]

has[ssnext]
if[push9, has[n]]

if[push9, has[ssnext]]
if[push9, succ[n, ss]]

at[push9]
tr scheduled = 1

2
has[n]
has[ss]

succ[n, ss]
if[push9, has[n]]

if[push9, has[ssnext]]
if[push9, succ[n, ss]]

at[push9]
tr scheduled = 1

2
has[n]

if[push9, has[n]]
if[push9, has[ssnext]]
if[push9, succ[n, ss]]

(a) Three previously canonical thread objects

at[push9] =
1
2

at[pop35] =
1
2

tr scheduled = 1
2

has[n] = 1
2

has[ss] = 1
2

has[ssnext] = 1
2

succ[n, ss] = 1
2

if[push9, has[n]]
if[push9, has[ssnext]]
if[push9, succ[n, ss]]

(b) Collapsed thread object

Figure 8.2: Collapsing threads: properties preserved with soft invariants

204 CHAPTER 8. COLLAPSING THREADS SAFELY

at[pop35]
tr scheduled = 1

2
has[ss]

has[ssnext]
if[push9, has[ss]]

at[push9]
tr scheduled = 1

2
has[n]
has[ss]

succ[n, ss]
if[push9, has[ss]]

at[push9]
tr scheduled = 1

2
has[n]

(a) Three previously canonical thread objects

at[push9] =
1
2

at[pop35] =
1
2

tr scheduled = 1
2

has[n] = 1
2

has[ss] = 1
2

has[ssnext] = 1
2

succ[n, ss] = 1
2

if[push9, has[ss]] = 1
2

(b) Collapsed thread object

Figure 8.3: Collapsing threads: soft invariant for non-invariant property

8.1. OVERVIEW 205

at[push9]
tr scheduled
has[n] = 1

2
has[ss]

has[ssnext] = 1
2

succ[n, ss] = 1
2

if[push9, has[n]]
if[push9, has[ssnext]]
if[push9, succ[n, ss]]

Figure 8.4: Concretised thread object to be sharpened

the predicate will become unknown during the analysis and not affect the
correctness of the model. However, having an unnecessary instrumenta-
tion predicate will make the model less efficient, both by increasing the
storage cost of each state and by adding extra constraints for Coerce to
evaluate. Other reasons for soft invariant predicates being unnecessary
and inefficient are when they record a property that is already being pre-
served in the abstraction by other predicates, and when the property be-
ing preserved is not needed for verification. These issues will be discussed
further in later sections.

8.1.3 Compatibility Constraints

As was the case for the instrumentation predicates defined in Chapter 7
(see Section 7.6), the compatibility constraints generated for the soft invari-
ant instrumentation predicates are not comprehensive enough for TVLA
to sharpen (or discard) states sufficiently. Consider the thread object in
Figure 8.4. We can logically deduce that all of the unknown predicates can
have only a specific definite value, but the compatibility constraints gener-
ated by TVLA cannot deduce this, as their bodies all evaluate to unknown:

is thread(v) ∧ (at[push9](v)→ has[n](v))
� if[push9, has[n]](v)

¬ (is thread(v) ∧ (at[push9](v)→ has[n](v)))
� ¬ if[push9, has[n]](v)

206 CHAPTER 8. COLLAPSING THREADS SAFELY

is thread(v) ∧ (at[push9](v)→ ¬ has[ssnext](v))
� if[push9, has[ssnext]](v)

¬ (is thread(v) ∧ (at[push9](v)→ ¬ has[ssnext](v)))
� ¬ if[push9, has[ssnext]](v)

is thread(v) ∧ (at[push9](v)→ (has[ss](v)→ succ[n, ss](v)))
� if[push9, succ[n, ss]](v)

¬ (is thread(v) ∧ (at[push9](v)→ (has[ss](v)→ succ[n, ss](v))))
� ¬ if[push9, succ[n, ss]](v)

I defined compatibility constraints of the following forms:

if[push9, has[n]](v) ∧ at[push9](v) � has[n](v)
if[push9, has[ssnext]](v) ∧ at[push9](v) � ¬ has[ssnext](v)
if[push9, succ[n, ss]](v) ∧ at[push9](v) ∧ has[ss](v) � succ[n, ss](v)

For each of these, the body evaluates to true, which allows the unknown
predicates to be coerced to true, false and true, respectively.

8.2 Stack Models

In this section, I apply the approach of collapsing thread objects and defin-
ing soft invariants to the stack models from Chapter 7. Section 8.2.1 dis-
cusses the changes that need to be made to the model before soft invariants
are introduced. Section 8.2.2 outlines the soft invariants I chose to define
for the model with restricted interleaving. Section 8.2.3 presents the re-
sults of analysing the model. Section 8.2.4 presents the soft invariants and
results for the model with full interleaving. Section 8.2.5 adds additional
soft invariants to the latter model to investigate the tradeoff between man-
ual precision and automatic efficiency.

8.2.1 Changes to the Model

Collapse

The first change to the stack model constructed in Sections 7.1–7.7 is to
remove all thread predicates — including every location predicate — from
the set of abstraction predicates A, except is thread and tr scheduled. As
a consequence of removing the location predicates from A, we need to

8.2. STACK MODELS 207

define integrity rules to ensure that they are mutually exclusive, i.e. for all
locations loc1 and loc2, where loc1 6= loc2:

at[loc1](v)→ ¬ at[loc2](v)

These constraints could have been defined in the original models in Chap-
ter 7, but I chose not to as they were not necessary for verification — the
model did not contain any states that violated them — and it would have
made the model less efficient.

Null Equivalence

Two extra instrumentation predicates are required to record properties not
preserved by the abstraction after the threads have been collapsed. Im-
plicitly at the CAS update steps at push9 and pop38, the algorithm as-
sumes that one field (ss and ssnext, respectively) is the next-successor
of another (n and ss, respectively). When both fields are non-null, this
is explicitly recorded by the instrumentation predicates succ[n, ss] and
succ[ss, ssnext]. But when one of the fields is null the property is recorded
in the state implicitly.

Consider Figure 8.5a, which shows two summary thread objects at lo-
cation pop38. In the left-hand thread object, with has[ssnext] true, the
predicate succ[ss, ssnext] records that ssnext = ss.next. In the right-hand
thread object, with has[ssnext] false, the distinction of the thread objects
and the values of the ss predicate record that ssnext = ss.next (i.e. null).
Indeed, in every state of the model, a thread at pop38 with has[ssnext]
false has an ss predicate that points to a node with has[next] false.

In Figure 8.5b, the thread objects are collapsed, and both of these prop-
erties are lost. As we have seen, the properties can be preserved by defin-
ing soft invariants. The properties we wish to use are:

has[ssnext](t)→ succ[ss, ssnext](t)
¬ has[ssnext](t)→ ∃ n • ss(t, n) ∧ ¬ has[next](n)

To make the soft invariant instrumentation predicates simpler and more
efficient, I used the latter property to define a new instrumentation predi-
cate for the model:

tonull[ss](v)⇔ ∃ u • ss(v, u) ∧ ¬ has[next](u)

208 CHAPTER 8. COLLAPSING THREADS SAFELY

HeadI
reachI

has[next]

reachI
has[next]

reachI

at[pop38]
has[ss]

has[ssnext]
succ[ss, ssnext]

at[pop38]
has[ss]

next

next

next

ss
ss

ssnext

ss

(a) Before collapse

HeadI
reachI

has[next]

reachI
has[next]

reachI

at[pop38]
has[ss]

has[ssnext] = 1
2

succ[ss, ssnext] = 1
2

next

next

next

ss
ss ssnext ss

(b) After collapse

Figure 8.5: Property of null equivalence is lost when threads are collapsed

8.2. STACK MODELS 209

For the same reasons at push9, I also defined an equivalent instrumenta-
tion predicate:

tonull[n](v)⇔ ∃ u • n(v, u) ∧ ¬ has[next](u)

Both of the new instrumentation predicates require additional compatibil-
ity constraints:

∃ t • tonull[ss](t) ∧ ss(t, n) � ¬ has[next](n)
∃ t • tonull[n](t) ∧ n(t, n) � ¬ has[next](n)

8.2.2 Soft Invariants

Interleaved Locations

To begin selecting soft invariants for the stack model, let us initially con-
sider only locations outside of atomic blocks. There can be at most one
thread in a state that is at a location within an atomic block, and if present
it is scheduled, so is not collapsed due to the tr scheduled predicate. Thus,
any single predicate invariant property will be preserved implicitly, as was
the case for all threads without the “collapse” approach.

Recall that Table 7.2 displays the possible values of instrumentation
predicates for all such thread objects, obtained from the set of states out-
put by TVLA. This information is reformulated in Table 8.1, with inferred
data for the new tonull[n] and tonull[ss] predicates, to show the invariant
properties. For each predicate at each state, the table records:

• 1 if it is always true;

• 0 if it is always false;

• p if it is always true when predicate p is true;

• ¬ p if it is always true when predicate p is false; and

• 1
2 otherwise, i.e. it is sometimes true and sometimes false.

The highlighted entries are the ones I determined were necessary to record
and preserve in the abstraction. For example, if doneLP can be sharpened
to true at push9 or pop38, then the specification step after the CAS will give
an error; if doneLP can be sharpened to true at pop35, then it can be true

210 CHAPTER 8. COLLAPSING THREADS SAFELY

idle push9 pop35 pop38

doneLP 0 0 0 0
has[lv] 0 (1) 1

2 (1)
has[n] 0 (1) 0 0

opval[n] 0 1 0 0
tonull[n] 0 ¬ has[ss] 0 0

succ[n, ss] 0 has[ss] 0 0
has[ss] 0 1

2 1 (1)
opval[ss] 0 1

2
1
2 1

has[ssnext] 0 0 1
2

1
2

tonull[ss] 0 1
2

1
2 ¬ has[ssnext]

succ[ss, ssnext] 0 0 1
2 has[ssnext]

Table 8.1: Invariant properties of stack model with restricted interleaving

at pop38. Thus, I defined the soft invariant instrumentation predicates in
Figure 8.6.

The entries of Table 8.1 in parentheses are properties that need to be
preserved in the abstraction, but do not need to be explicitly recorded
because they are implied by other properties. For example, has[lv] and
has[n] are logical consequences of opval[n], so the definition of the soft in-
variant if[push9, opval[n]] means that additionally defining if[push9, has[lv]]
and if[push9, has[n]] is unnecessary.

The remaining entries are properties that do not need to be preserved
by the abstraction. For example, has[ssnext] is false throughout a push op-
eration, but this is because the operation does not assign or use the ssnext
field. Thus, even if it was concretised to true, it would not affect the cor-
rectness of the model. Similarly, since beginPush and beginPop both ini-
tialise all fields used in the operation, there is no need to record that every
predicate for an idle thread is false.

One important exception is for the field n. This field is only used in the
push operation, so we might expect that it is unnecessary to record that
has[n] is false at idle and during a pop operation. However, recall from
Section 7.2.3 that the instrumentation predicate waiting is defined using n:

waiting(v)⇔ ∃ t • n(t, v) ∧ ¬ doneLP(t)

Thus, whenever doneLP is updated for a thread, the value of waiting must

8.2. STACK MODELS 211

if[idle, has[n]](v)⇔ is thread(v) ∧ (at[idle](v)→ ¬ has[n](v))
if[push9, doneLP](v)⇔ is thread(v) ∧ (at[push9](v)→ ¬ doneLP(v))
if[push9, opval[n]](v)⇔ is thread(v) ∧ (at[push9](v)→ opval[n](v))
if[push9, succ[n, ss]](v)⇔

is thread(v) ∧ (at[push9](v)→ (has[ss](v)→ succ[n, ss](v)))
if[push9, tonull[n]](v)⇔

is thread(v) ∧ (at[push9](v)→ (¬ has[ss](v)→ tonull[n](v)))
if[pop35, doneLP](v)⇔ is thread(v) ∧ (at[pop35](v)→ ¬ doneLP(v))
if[pop35, has[n]](v)⇔ is thread(v) ∧ (at[pop35](v)→ ¬ has[n](v))
if[pop35, has[ss]](v)⇔ is thread(v) ∧ (at[pop35](v)→ has[ss](v))
if[pop36, succ[ss, ssnext]](v)⇔

is thread(v) ∧ (at[pop36](v)→ (has[ssnext](v)→ succ[ss, ssnext](v)))
if[pop36, tonull[ss]](v)⇔

is thread(v) ∧ (at[pop36](v)→ (¬ has[ssnext](v)→ tonull[ss](v)))
if[pop38, doneLP](v)⇔ is thread(v) ∧ (at[pop38](v)→ ¬ doneLP(v))
if[pop38, has[n]](v)⇔ is thread(v) ∧ (at[pop38](v)→ ¬ has[n](v))
if[pop38, opval[ss]](v)⇔ is thread(v) ∧ (at[pop38](v)→ opval[ss](v))
if[pop38, succ[ss, ssnext]](v)⇔

is thread(v) ∧ (at[pop38](v)→ (has[ssnext](v)→ succ[ss, ssnext](v)))
if[pop38, tonull[ss]](v)⇔

is thread(v) ∧ (at[pop38](v)→ (¬ has[ssnext](v)→ tonull[ss](v)))

Figure 8.6: Soft invariant instrumentation predicates for interleaving loca-
tions

be updated for all nodes that the thread’s n field points to. If has[n] is
not preserved as false by a soft invariant, then it is possible to concretise
unreachable states when pop and idle threads have n-nodes, which in turn
will orphan these nodes when n is set to null. For example, in Figure 8.7 we
see a collapsed thread object representing threads at locations idle, push3
and push4 (8.7a). If one of the idle threads begins a push operation then
one outcome of performing Focus with the formula

tr scheduled(v1) ∧ at[idle](v1) ∧ n(v1, v2)

is that the concretised idle thread has an n-node (8.7b). Then the update
is applied, which sets n to null and the node is orphaned (8.7c). To avoid
these unreachable states, I defined soft invariants to preserve the value of
has[n] at each of the interleaving locations.

212 CHAPTER 8. COLLAPSING THREADS SAFELY

waiting

at[idle] = 1
2

at[push3] =
1
2

at[push4] =
1
2

doneLP = 1
2

has[n] = 1
2

n

(a) Abstract state

at[idle] = 1
2

at[push3] =
1
2

at[push4] =
1
2

doneLP = 1
2

has[n] = 1
2

tr scheduled
at[idle]
has[n]

waiting waiting

n n

(b) After Focus and Coerce

at[idle] = 1
2

at[push3] =
1
2

at[push4] =
1
2

doneLP = 1
2

has[n] = 1
2

tr scheduled
at[push3]

waiting

n

(c) After Update

Figure 8.7: Concretising an unreachable state

8.2. STACK MODELS 213

Non-interleaved Locations

As mentioned above, the invariant property of a single predicate does not
need to be explicitly recorded at a location that occurs within an atomic
block, as the property will be recorded by the distinguished (scheduled)
thread object. However, for conditional invariant properties, the property
is lost when states are merged together in a partially isomorphic analysis.

I defined two pairs of conditional soft invariants for the interleaving
locations: recording n.next = ss at push9 and ss.next = ssnext at pop38.
The properties at push9 do not need to be preserved at any other location
— they are only set during the transition from push7 to push9, and after the
CAS step (whether successful or not) the property is not assumed again.

In contrast, the properties at pop38 are set during the transition from
pop35 to pop36, which is within an atomic block. Thus I needed to define
the same soft invariants for pop36 too:

if[pop36, succ[ss, ssnext]](v)⇔
is thread(v) ∧ (at[pop36](v)→ (has[ssnext](v)→ succ[ss, ssnext](v)))

if[pop36, tonull[ss]](v)⇔
is thread(v) ∧ (at[pop36](v)→ (¬ has[ssnext](v)→ tonull[ss](v)))

8.2.3 Results

I analysed the modified stack model using the same hardware and soft-
ware as in Chapter 7, successfully verifying linearisability for unbounded
threads, data values and list lengths. Table 8.2 shows the results, with
comparisons against the equivalent figures in Table 7.7. Table 8.2b shows
that collapsing the thread objects results in a large reduction of the states-
pace, with 99.4% reduction in states stored. Table 8.2a shows that the ap-
proach is far more practical, taking 25 seconds and less than 300 MB of
RAM, rather than over half an hour and more than 1 GB of RAM.

Overall, the analysis is less efficient, in terms of the seconds per state
and MB per state averages, but this is expected as there are a greater pro-
portion of the states merged by the partially isomorphic analysis.

8.2.4 Full Interleaving

I modified the stack model with full interleaving, from Section 7.8.3, to
collapse the thread objects. Previously, the model was exponentially larger

214 CHAPTER 8. COLLAPSING THREADS SAFELY

Heap Ave Max
Limit Time RAM RAM

Th. (MB) (s) % (MB) % (MB) %
∞ 800 25 1.3 115 17.8 280 26.5
∞ 2,048 24 1.2 190 29.3 663 62.7

(a) Resources

Unsch. Stored Total
States States States

Th. (uns.) % (stored) % (total) % Breaches %
∞ 16 0.8 447 0.6 2,526 0.9 27,256 1.6

(b) Statespace

Table 8.2: Stack verification results for restricted interleaving

than when interleaving was restricted and the analysis ran out of memory.
When the threads are collapsed, the model can be verified with a relatively
small memory increase.

Soft Invariants

Table 8.3 extends Table 8.1 to include the additional locations that are now
interleaved, i.e. everything except for push11, pop25, pop26 and pop40. The
unbounded model was too large to analyse previously (see Section 7.8.3),
so I was unable to rely on output from TVLA to determine these proper-
ties. Instead, I examined the transitions of the model, inferring predicate
values in conjunction with those in Table 8.3.

As before, the highlighted values are the ones I determined to be es-
sential for verification, and required soft invariant instrumentation pred-
icates. For push3–push7, pop24 and pop36 the properties are the same as
for push9 and pop38, from when they are first set. For push18 and pop48,
only the values of doneLP and has[n] need to be preserved: the former to
avoid errors in endPush and endPop, the latter to preserve the value of the
predicate in pop locations as discussed above.

Results

Table 8.4 shows the results of verifying linearisability with full interleaving
and collapsed threads, with the figures compared against the results in

8.2. STACK MODELS 215

id
le

pu
sh

3 pu
sh

4 pu
sh

6 pu
sh

7
pu

sh
9

pu
sh

18
po

p2
4 po

p3
5

po
p3

6
po

p3
8

po
p4

8

do
ne

LP
0

0
0

0
0

0
1

0
0

0
0

1
ha

s[
lv
]

0
1

1
(1

)
(1

)
(1

)
1

1 2
1 2

1 2
(1

)
1 2

ha
s[

n]
0

0
1

(1
)

(1
)

(1
)

1
0

0
0

0
0

op
va

l[n
]

0
0

0
1

1
1

1
0

0
0

0
0

to
nu

ll[
n]

0
0

1
1 2

1 2
¬

ha
s[

ss
]
¬

ha
s[

ss
]

0
0

0
0

0
su

cc
[n

,s
s]

0
0

0
1 2

1 2
ha

s[
ss
]

ha
s[

ss
]

0
0

0
0

0
ha

s[
ss
]

0
0

0
1 2

1 2
1 2

1 2
1 2

1
(1

)
(1

)
1 2

op
va

l[s
s]

0
0

0
1 2

1 2
1 2

1 2
1 2

1 2
1 2

1
1 2

ha
s[

ss
ne

xt
]

0
0

0
0

0
0

0
1 2

1 2
1 2

1 2
1 2

to
nu

ll[
ss
]

0
0

0
1 2

1 2
1 2

1 2
1 2

1 2
¬

ha
s[

ss
ne

xt
]

¬
ha

s[
ss

ne
xt
]

1 2
su

cc
[s

s,
ss

ne
xt
]

0
0

0
0

0
0

0
1 2

1 2
ha

s[
ss

ne
xt
]

ha
s[

ss
ne

xt
]

1 2

Ta
bl

e
8.

3:
In

va
ri

an
tp

ro
pe

rt
ie

s
of

st
ac

k
w

it
h

fu
ll

in
te

rl
ea

vi
ng

216 CHAPTER 8. COLLAPSING THREADS SAFELY

Heap Ave Max
Limit Time RAM RAM

Th. (MB) (s) % (MB) % (MB) %
∞ 800 141 572 149 130 295 105
∞ 2,048 142 594 255 134 685 103

(a) Resources

Unsch. Stored Total
States States States

Th. (uns.) % (stored) % (total) % Breaches %
∞ 32 200 932 209 5,596 222 264,375 970

(b) Statespace

Table 8.4: Stack verification results for full interleaving

Table 8.2.
The model stores more than twice the number of states compared to

when interleaving is restricted. This is a great improvement over the re-
sults from Table 7.9, where the increase was nearly six times with two
threads and nearly 23 times with three threads.

The amount of memory used by TVLA only increases slightly, but the
analysis takes nearly six times as long. However, the analysis is still 13
times faster than the model with restricted interleaving and without col-
lapsed threads.

8.2.5 Extra Predicates

Collapsing thread objects provides an exponential reduction in the size
of the statespace, as evidenced by the results in Tables 8.2 and 8.4 (and
below in Tables 8.7 and 8.8). One drawback is that defining soft invariant
predicates to refine the abstraction sufficiently adds an extra amount of
time-consuming and error-prone manual effort to the approach.

However, we can mitigate this somewhat by exploiting the “soft” prop-
erty of the soft invariants. The predicates remain true in all thread objects
and states only if the property in question is actually invariant, thus, a soft
invariant can safely be defined even if we are not sure of its validity.

One consequence is that the selection of soft invariant predicates can
begin more quickly with rough guesses of properties required, and be re-

8.3. QUEUE MODELS 217

fined as needed. If a required property is missing, then analysing the re-
sulting error should indicate what to define additionally. If superfluous
properties are defined — whether redundant or non-invariant — the anal-
ysis will still complete successfully.1

Extrapolating the idea of superfluous predicates, we could instead de-
fine a wide range of soft invariants without investigating which ones were
actually correct and necessary. The extra predicates would make the anal-
ysis less efficient, but would reduce the amount of manual effort required.

To confirm and quantify this idea, I modified the stack model with full
interleaving from Section 8.2.4 and defined two soft invariants for every
thread predicate p at every location locX:

if[locX, p](v)⇔ is thread(v) ∧ (at[locX](v)→ p(v))
nif[locX, p](v)⇔ is thread(v) ∧ (at[locX](v)→ ¬ p(v))

I kept the six conditional soft invariants, prefixing them with a ‘c’:

cif[push9, tonull[n]], cif[push9, succ[n, ss]],
cif[pop36, tonull[ss]], cif[pop36, succ[ss, ssnext]],
cif[pop38, tonull[ss]], cif[pop38, succ[ss, ssnext]]

Table 8.5 shows the results of the analysis, with comparisons against
the figures in Table 8.4. The number of states stored is actually reduced
by 22%, but the reduction is only in the states that have been focussed
to have a single non-summary thread object. The number of constraint
breaches reduces by 41%, but the number of constraints to be considered
by each application of Coerce more than doubles, from 453 to 1,164. As
a consequence, the amount of RAM used increases slightly and the time
taken nearly doubles.

8.3 Queue Models

In this section, I apply the approach of collapsing thread objects and defin-
ing soft invariants to the queue models from Section 7.9. Section 8.3.1 in-
troduces an additional instrumentation predicate that is needed for the
models when threads are collapsed. Section 8.3.2 outlines the soft invari-
ants I chose to define. Section 8.3.3 presents the results of analysing both
queue algorithms, with and without restricting interleaving.

1Assuming the property is correct.

218 CHAPTER 8. COLLAPSING THREADS SAFELY

Heap Ave Max
Limit Time RAM RAM

Th. (MB) (s) % (MB) % (MB) %
∞ 800 278 197 202 136 338 115
∞ 2,048 264 186 375 147 764 111

(a) Resources

Unsch. Stored Total
States States States

Th. (uns.) % (stored) % (total) % Breaches %
∞ 32 100 726 78 5,850 104 155,518 59

(b) Statespace

Table 8.5: Stack verification results for full interleaving with extra predi-
cates

8.3.1 Changes to the model

Full interleaving

In Chapter 8, I only analysed models of the queue algorithm with re-
stricted interleaving. In this chapter, I have additionally analysed models
with full interleaving, as shown in Figure 8.8. As with the stack models,
only the transitions at linearisation points are left in atomic blocks.

Ordered snapshots

As with the stack model, an extra instrumentation predicate is required
to preserve a property that is lost when the thread objects are collapsed,
but only for the model with the original dequeue operation (see below).
However, the predicate tonull[p] is not required for the queue models. This
was needed for the stack models because a CAS could be performed when
the successor value was null; the queues use a dummy node, so the CAS
steps are only performed when the successor is non-null.

Example Consider the partial state with collapsed threads shown in Fig-
ure 8.9a. One enqueuing thread has appended a node to the end of the list
but not yet advanced TailI, which is lagging. Other dequeuing threads are
about to attempt the CAS step at deq50 to advance HeadI. At this location
we assume that sshead and sstail differ, given the test at deq41, and that

8.3. QUEUE MODELS 219

idle beginEnqueue() enq3
enq3 newNode(n) enq4
enq4 assign(n.val, lv) enq6
enq6 assign(sstail, Tail) enq7
enq7 assign(ssnext, sstail.next) enq8
enq8 isEqual(sstail, Tail) enq9
enq8 isNotEqual(sstail, Tail) enq6
enq9 isNull(ssnext) enq11
enq9 isNotNull(ssnext) enq20
enq20 CASfail(Tail, sstail) enq6
enq20 CASsucc(Tail, sstail, ssnext) enq6
enq11 CASfail(sstail.next, ssnext) enq6

atomic{
enq11 CASsucc(sstail.next, ssnext, n) enq13
enq13 specEnqueue() enq24

}
enq24 CASfail(Tail, sstail) enq25
enq24 CASsucc(Tail, sstail, n) enq25
enq25 endEnqueue() idle

(a) Enqueue operation

Figure 8.8: Transitions of queue models

220 CHAPTER 8. COLLAPSING THREADS SAFELY

idle beginDequeue() deq30
deq30 assign(sshead, Head) deq
deq31 assign(sstail, Tail) deq33

atomic{
deq33 assign(ssnext, sshead.next) deq34
deq34 isNull(ssnext) deq35
deq34 isNotNull(ssnext) deq40
deq35 specDequeueEmpty() deq40

}
deq40 isEqual(sshead, Head) deq41
deq40 isNotEqual(sshead, Head) deq30
deq41 isEqual(sshead, sstail) deq42
deq41 isNotEqual(sshead, sstail) deq48
deq42 isNull(ssnext) deq43
deq42 isNotNull(ssnext) deq46
deq43 endDequeueEmpty() idle
deq46 CASfail(Tail, sstail) deq30
deq46 CASsucc(Tail, sstail, ssnext) deq30
deq48 assign(lv, ssnext.val) deq50
deq50 CASfail(Head, sshead) deq30

atomic{
deq50 CASsucc(Head, sshead, ssnext) deq52
deq52 specDequeue() deq61

}
deq61 endDequeue() idle

(b) Original Dequeue operation

Figure 8.8: Transitions of queue models

8.3. QUEUE MODELS 221

idle beginDequeue() deq67
deq67 assign(sshead, Head) deq69

atomic{
deq69 assign(ssnext, sshead.next) deq70
deq70 isNull(ssnext) deq71
deq70 isNotNull(ssnext) deq76
deq71 specDequeueEmpty() deq76

}
deq76 isEqual(sshead, Head) deq77
deq76 isNotEqual(sshead, Head) deq67
deq77 isNull(ssnext) deq78
deq77 isNotNull(ssnext) deq81
deq78 endDequeueEmpty() idle
deq81 assign(lv, ssnext.val) deq83
deq83 CASfail(Head, sshead) deq67

atomic{
deq83 CASsucc(Head, sshead, ssnext) deq85
deq85 specDequeue() deq94

}
deq94 assign(sstail, Tail) deq95
deq95 isEqual(sshead, sstail) deq96
deq95 isNotEqual(sshead, sstail) deq98
deq96 CASfail(Tail, sstail) deq98
deq96 CASsucc(Tail, sstail, ssnext) deq98
deq98 endDequeue() idle

(c) Simplified Dequeue operation

Figure 8.8: Transitions of queue models

222 CHAPTER 8. COLLAPSING THREADS SAFELY

HeadI
TailI

reachI

reachI

tr scheduled = 1
2

at[enq24] =
1
2 , at[deq34] =

1
2

at[deq50] =
1
2 , has[sshead] = 1

2
has[sstail] = 1

2 , has[ssnext] = 1
2

succ[sshead, ssnext] = 1
2

same[sshead, sstail] = 1
2

if[deq50, succ[sshead, ssnext]]
if[deq50, same[sshead, sstail]]

if[deq50, has[sstail]]

next

next next

sshead
sstail

ssnext sshead

sstail

ssnext

n
ssnext

(a) Abstract state

Figure 8.9: Snapshot order not preserved

ssnext is the next-successor of sshead; soft invariants are defined appro-
priately.

However, one possible outcome of focussing a scheduled dequeuing
thread is shown in Figure 8.9b. Now sstail is pointing to a ‘garbage’ node
and sshead is pointing to HeadI; thus the CAS will succeed and HeadI will
“cross” TailI — not expected behaviour! �

The property that is being lost in the above example is that sshead and
sstail never “cross”, alternatively that sstail is reachable from sshead:

∀ v1, v2 • sshead(t, v1) ∧ sstail(t, v2)→ next∗(v1, v2)

8.3. QUEUE MODELS 223

HeadI
TailI

reachI

reachI

at[enq24] =
1
2 , at[deq34] =

1
2

at[deq50] =
1
2 , has[sshead] = 1

2
has[sstail] = 1

2 , has[ssnext] = 1
2

succ[sshead, ssnext] = 1
2

same[sshead, sstail] = 1
2

if[deq50, succ[sshead, ssnext]]
if[deq50, same[sshead, sstail]]

if[deq50, has[sstail]]

tr scheduled
at[deq50]

has[sshead]
has[sstail], has[ssnext]
succ[sshead, ssnext]

if[deq50, succ[sshead, ssnext]]
if[deq50, same[sshead, sstail]]

if[deq50, has[sstail]]

next

next

next

next

next next

sshead
sstail

ssnext

sshead
sstail

ssnext

sshead

sstail

ssnext

n
ssnext

sstail sshead ssnext

(b) After Focus and Coerce

Figure 8.9: Snapshot order not preserved

224 CHAPTER 8. COLLAPSING THREADS SAFELY

Such a property would be difficult to use for sharpening with Coerce. Since
it is only of concern when both fields are in the list (i.e. not ‘garbage’) we
can use a corollary — that if sshead is in the list then sstail is too. Thus, I
defined the following new instrumentation predicate:

ordered[sshead, sstail](v1)⇔ ∃ v2, v3 •
sshead(v1, v2) ∧ sstail(v1, v3) ∧
(reachI(v2)→ reachI(v3))

Additionally, I defined the following compatibility constraint:

∃ v1, v2 • ordered[sshead, sstail](v1) ∧ sshead(v1, v2) ∧
sstail(v1, n3) ∧ reachI(v2) � reachI(n3)

With ordered[sshead, sstail] defined, the state in Figure 8.9b would be dis-
carded.

In the simplified dequeue operation (Figure 8.8c), sstail is not read until
after the CAS step at deq83, and HeadI and TailI are actually allowed to
cross at this point (see Section 2.6.2). Thus, ordered[sshead, sstail] is not
needed for these models.

8.3.2 Soft Invariants

Let us first consider the models with full interleaving. There is no output
from TVLA to extract statespace information — the restricted model in
Section 7.8.3 was too large to be fully analysed. Instead, I examined the
transitions in Figure 8.8 and inferred the possible values of the predicates
at each location, and determined which properties would be required for
verification. The latter involved a small amount of trial and error, as one
or two required properties were not included and had to be deduced from
the error output of TVLA.

The properties I determined are shown in Table 8.6. As with the stack
tables (8.1 and 8.3), the highlighted values are the required properties
I defined soft invariant instrumentation predicates for, and the values in
parentheses are the required properties that do not need to be preserved
explicitly.

The queue models use the instrumentation predicate waiting, so as with
the stack models I defined soft invariants for has[n] at idle and throughout
the dequeue operations.

8.3. QUEUE MODELS 225

id
le

en
q3

en
q4

en
q6

en
q7

en
q8

en
q9

en
q1

1 en
q2

0 en
q2

4 en
q2

5

do
ne

LP
0

0
0

0
0

0
0

0
0

1
1

do
ne

E
LP

0
0

0
0

0
0

0
0

0
0

0
ha

s[
lv
]

0
1

1
(1

)
(1

)
(1

)
(1

)
(1

)
(1

)
1

1
ha

s[
n]

0
0

1
(1

)
(1

)
(1

)
(1

)
(1

)
(1

)
1

1
op

va
l[n

]
0

0
0

1
1

1
1

1
1

(1
)

1
ha

s[
ss

he
ad

]
0

0
0

0
0

0
0

0
0

0
0

ha
s[

ss
ta

il]
0

0
0

1 2
1

1
1

1
(1

)
(1

)
1

sa
m

e[
ss

he
ad

,s
st

ai
l]

0
0

0
0

0
0

0
0

0
0

0
ha

s[
ss

ne
xt
]

0
0

0
1 2

1 2
1 2

1 2
0

(1
)

0
0

su
cc
[s

st
ai

l,
n]

0
0

0
0

0
0

0
0

0
1

1
su

cc
[s

sh
ea

d,
ss

ne
xt
]

0
0

0
0

0
0

0
0

0
0

0
su

cc
[s

st
ai

l,
ss

ne
xt
]

0
0

0
1 2

1 2
ψ

1
ψ

1
0

1
0

0
op

va
l[s

sn
ex

t]
0

0
0

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

or
de

re
d[

ss
he

ad
,s

st
ai

l]
0

0
0

0
0

0
0

0
0

0
0

ψ
1
=

ha
s[

ss
ne

xt
]

(a
)E

nq
ue

ue
op

er
at

io
n

Ta
bl

e
8.

6:
In

va
ri

an
tp

ro
pe

rt
ie

s

226 CHAPTER 8. COLLAPSING THREADS SAFELY

de
q3

0 de
q3

1 de
q3

3
de

q3
4

de
q4

0
de

q4
1

de
q4

2
de

q4
3 de

q4
6 de

q4
8 de

q5
0 de

q6
1

do
ne

LP
0

0
0

(0
)

0
0

0
0

0
0

0
1

do
ne

E
LP

1 2
1 2

1 2
1 2

1 2
∨
¬

ψ
1

1 2
∨
¬

ψ
1

1 2
∨
¬

ψ
1

1
1 2

1 2
1 2

1 2
ha

s[
lv
]

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

(1
)

1
ha

s[
n]

0
0

0
(0

)
0

0
0

0
0

0
0

0
op

va
l[n

]
0

0
0

0
0

0
0

0
0

0
0

0
ha

s[
ss

he
ad

]
1 2

1
1

(1
)

1
1

(1
)

1
1

(1
)

(1
)

1
ha

s[
ss

ta
il]

1 2
1 2

1
(1

)
1

1
(1

)
1

(1
)

1
1

1
sa

m
e[

ss
he

ad
,s

st
ai

l]
1 2

1 2
1 2

1 2
1 2

1 2
1

1
1

0
0

0
ha

s[
ss

ne
xt
]

1 2
1 2

1 2
1 2
∨
¬

ψ
2

1 2
∨
¬

ψ
2

1 2
∨
¬

ψ
2

1 2
0

(1
)

(1
)

(1
)

1
su

cc
[s

st
ai

l,
n]

0
0

0
0

0
0

0
0

0
0

0
0

su
cc
[s

sh
ea

d,
ss

ne
xt
]

1 2
1 2

1 2
ψ

1
ψ

1
ψ

1
ψ

1
0

1
1

1
1

su
cc
[s

st
ai

l,
ss

ne
xt
]

1 2
1 2

1 2
(ψ

1
∧

ψ
2)

(ψ
1
∧

ψ
2)

(ψ
1
∧

ψ
2)

(ψ
1)

0
1

0
0

0
op

va
l[s

sn
ex

t]
1 2

1 2
1 2

1 2
1 2

1 2
1 2

0
1 2

1 2
1

1
or

de
re

d[
ss

he
ad

,s
st

ai
l]

1 2
1 2

1
(1

)
1

1
1

1
1

1
1

1
ψ

1
=

ha
s[

ss
ne

xt
]

ψ
2

=
sa

m
e[

ss
he

ad
,s

st
ai

l]
(b

)O
ri

gi
na

lD
eq

ue
ue

op
er

at
io

n

Ta
bl

e
8.

6:
In

va
ri

an
tp

ro
pe

rt
ie

s

8.3. QUEUE MODELS 227

de
q6

7 de
q6

9 de
q7

0
de

q7
6

de
q7

7
de

q7
8 de

q8
1 de

q8
3 de

q9
4

de
q9

5
de

q9
6 de

q9
8

do
ne

LP
0

0
(0

)
0

0
0

0
0

1
1

1
1

do
ne

E
LP

1 2
1 2

1 2
1 2
∨
¬

ψ
1

1 2
∨
¬

ψ
1

1
1 2

1 2
1 2

1 2
1 2

1 2
ha

s[
lv
]

1 2
1 2

1 2
1 2

1 2
1 2

1 2
(1

)
1

1
1

1
ha

s[
n]

0
0

(0
)

0
0

0
0

0
0

0
0

0
op

va
l[n

]
0

0
0

0
0

0
0

0
0

0
0

0
ha

s[
ss

he
ad

]
1 2

1
(1

)
1

1
1

(1
)

(1
)

(1
)

(1
)

1
1

ha
s[

ss
ta

il]
0

0
0

0
0

0
0

0
0

1
(1

)
1

sa
m

e[
ss

he
ad

,s
st

ai
l]

0
0

0
0

0
0

0
0

0
1 2

1
1 2

ha
s[

ss
ne

xt
]

1 2
1 2

1 2
1 2

1 2
0

(1
)

(1
)

(1
)

(1
)

(1
)

1
su

cc
[s

st
ai

l,
n]

0
0

0
0

0
0

0
0

0
0

0
0

su
cc
[s

sh
ea

d,
ss

ne
xt
]

1 2
1 2

ψ
1

ψ
1

ψ
1

0
1

1
1

1
1

1
su

cc
[s

st
ai

l,
ss

ne
xt
]

0
0

0
0

0
0

0
0

0
(ψ

2)
1

ψ
2

op
va

l[s
sn

ex
t]

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1

1
1

1
1

ψ
1

=
ha

s[
ss

ne
xt
]

ψ
2

=
sa

m
e[

ss
he

ad
,s

st
ai

l]
(c

)S
im

pl
ifi

ed
D

eq
ue

ue
op

er
at

io
n

Ta
bl

e
8.

6:
In

va
ri

an
tp

ro
pe

rt
ie

s

228 CHAPTER 8. COLLAPSING THREADS SAFELY

Enqueue

For the enqueue operation (Table 8.6a), the properties are the same for
both algorithms, except that ordered[sshead, sstail] is not defined for the
simplified one (see Section 8.3.1).

The required properties are similar to those for the stack: notably doneLP
must be preserved throughout the operation, and the predicates only used
in dequeues — doneELP and anything defined with sshead — can be ig-
nored.

At enq8 and enq9 there are conditional properties, as succ[sstail, ssnext]
is true when has[ssnext] is true; the transitions from enq9 test whether
ssnext is null, so succ[sstail, ssnext] is unconditionally true at enq11 and
false at enq20.

Simplified Dequeue

There are two notable features of Table 8.6c, recording properties of the
simplified dequeue operation. The first is the inclusion of a location within
an atomic block, deq70, due to the presence of a conditional property. The
second is the disjunction in the properties of doneELP at deq76 and deq77.

By way of comparison, the conditional properties of succ[sshead, ssnext],
and those for the enqueue operation and the stack models are actually bi-
conditional. This is due to each antecedent being entailed by the conse-
quent, e.g.

∀ v • succ[sshead, ssnext](v)→ has[ssnext](v)

There is no such relationship between doneELP and has[ssnext] however.
At deq76, if has[ssnext] is false then the thread’s previous transition will
instead have been specDequeueEmpty from deq71, which sets doneELP to
true. If has[ssnext] is true, the thread’s previous transition will have been
isNotNull from deq70 so doneELP may be false; however, doneELP may
also be true after being set by specDequeueEmpty in a previous iteration of
the loop. In both cases, we need only to preserve the conditional property.

Original Dequeue

Most of the predicate values and conditional properties for the original
dequeue (Table 8.6b) are relatively straightforward, following from the as-
signments and comparisons of the transitions, but the value of has[ssnext]

8.3. QUEUE MODELS 229

between deq34 and deq42 is more subtle, relying on the structure of the
list. When HeadI and TailI are equal, the list may be empty, in which case
HeadI has no next-successor; alternatively the list may have size one and
have TailI lagging, in which case HeadI has a next-successor. Whenever
HeadI and TailI are not equal then the list is non-empty, and HeadI has a
next-successor.

Thus, at deq34 after ssnext has been assigned, if same[sshead, sstail] is
true then has[ssnext] could be either true or false, but if same[sshead, sstail]
is false then has[ssnext] has to be true. The latter property is essential to
preserve because after same[sshead, sstail] is checked to be false at deq41,
ssnext is assumed to be non-null (e.g. at deq48 and deq50) but not explicitly
tested for.

Restricted Interleaving

The models with restricted interleaving could use exactly the same soft in-
variant instrumentation predicates. However, the single-predicate proper-
ties of the locations within atomic blocks are preserved anyway, so defin-
ing soft invariants would serve only to make the model less efficient. Thus,
I did not define soft invariants for enq3–enq6, enq9, enq25, deq30, deq41–
deq43, deq50–deq61, deq67, deq77, deq78, deq83, deq95, and deq98, except
for the highlighted conditional properties.

8.3.3 Results

The models in Section 7.9 with restricted interleaving quickly ran out of
memory if there were more than three threads. Modifying these models,
by collapsing their thread objects, allowed me to verify linearisability for
unbounded threads, data values and list lengths. The results are contained
in Table 8.7, showing that both verifications require only 310 MB of RAM.
The statespace of the model with the simplified dequeue operation (S) is
slightly larger than for the model with the original dequeue operation (O);
this is not unexpected, as it admits additional behaviour in allowing HeadI
and TailI to “cross”. The simplified model also has 2.8 times the number of
constraint breaches, which contributes to the analysis taking 2.5 times as
long as the original model — 3.2–3.6 minutes, compared to 1.3 minutes.

The models with full interleaving were also able to be verified comfort-
ably within resource limits, needing only 730 MB of RAM. Table 8.8 shows
the results, with comparisons against Table 8.7. The statespaces increase

230 CHAPTER 8. COLLAPSING THREADS SAFELY

Heap Ave Max
Limit Time RAM RAM Uns. Stored Total

Deq Th. (MB) (s) (MB) (MB) States States States Breaches
O ∞ 800 81 151 309 12 523 2,994 89,869
O ∞ 2,048 79 296 717 12 523 3,001 89,869
S ∞ 800 216 181 310 14 591 3,254 248,223
S ∞ 2,048 194 363 699 14 591 3,255 248,223

Table 8.7: Queue verification results for restricted interleaving

Heap Ave Max
Limit Time RAM RAM

Deq Th. (MB) (s) % (MB) % (MB) %
O ∞ 800 3,109 3,838 304 201 727 235
O ∞ 2,048 2,810 3,557 581 196 1,691 236
S ∞ 800 2,887 1,337 290 160 731 236
S ∞ 2,048 2,658 1,370 515 142 1,537 220

(a) Resources

Unsch. Stored Total
States States States

Deq Th. (uns.) % (stored) % (total) % Breaches %
O ∞ 96 800 4,148 793 24,378 814 2,375,953 2,644
S ∞ 112 800 4,604 779 27,422 843 2,315,936 933

(b) Statespace

Table 8.8: Queue verification results for full interleaving

8.4. CONCLUSION 231

by a factor of eight, with that of the simplified model again being slightly
larger. The number of constraint breaches are roughly equal, and the anal-
yses took 44–48 minutes for the simplified model and 47–52 minutes for
the original model.

8.4 Conclusion

In this chapter, I have presented a novel approach to canonical abstraction,
which exponentially reduces the statespace size by collapsing all thread
objects into a single summary object. This has allowed me to verify lin-
earisability of the stack and queue algorithms for unbounded threads, data
values and list lengths whilst placing no restriction on the interleaving be-
tween threads. The analyses required only 310 MB and 750 MB of RAM, re-
spectively, whereas the approach of Chapter 7 alone required much more
than 2 GB.

The coarse abstraction on threads is refined by defining “soft invari-
ant” instrumentation predicates, which preserve properties of the threads
at specific locations. The identification of sufficient soft invariants is a
manual process, requiring some insight and knowledge of the algorithm,
which is a disadvantage by decreasing automation. However, the “soft
invariants” are safe — correctness is not affected if the properties are not
actually invariant (see Section 8.2.5) — so they can be “over defined” to
reduce the manual effort.

The quantified canonical abstraction approach of Berdine et al. [2008] is
also effective at reducing the statespace, compared to the models in Chap-
ter 7. However, the reduction is caused by decomposing states into sub-
graphs and only storing one copy of subgraphs that are common to more
than one state — the number of canonical thread objects is still a factor in
the size of the statespace. My approach removes the thread objects as a
factor in the statespace size, so I expect that the size of the statespace will
scale better for larger algorithms.

This approach is not limited to linked list based data structures, and
could conceivably be applied to many other types of models.

232 CHAPTER 8. COLLAPSING THREADS SAFELY

Part IV

Conclusion

233

Chapter 9

Conclusion

In this thesis I have presented an approach for representing nonblocking
data structure algorithms and their properties, and investigated bounded
and unbounded verifications.

The representations were detailed in Chapter 5, with algorithm mod-
els (5.1) and specifications of linearisability (5.2) being similar to previous
work. The main contributions of the chapter are the specifications of non-
blocking properties (5.3). The formalisation of these for model checking is
novel, though similar to independent formalisations.

9.1 Bounded Verification

In Chapter 1, I raised four questions about bounded verification that I at-
tempted to answer in Chapter 6.

1. What size instances would need to be verified in order to give a rea-
sonable level of confidence in an algorithm?

2. What size instances are needed to trigger known bugs in existing
algorithms?

In Section 6.1.2, I investigated the minimum sized instances for a number
of known linearisability errors and used these results in Section 6.1.3 to
formulate two ranges of instances that, if used for bounded verification,
would give me different levels of confidence in the correctness of an algo-
rithm.

235

236 CHAPTER 9. CONCLUSION

3. Is this approach equally applicable to both the correctness properties
and the progress properties?

The approach I have used is as applicable to nonblocking properties as to
linearisability, and I attempted to answer the same questions in Section 6.2.
However, the algorithms investigated (a subset of those from Section 6.1)
are too few to draw any conclusion from. Further work is needed to an-
swers Questions 1 and 2 for nonblocking properties.

4. Is this approach worth doing before, or instead of, a full verification
(using a theorem prover, model checker with abstraction, etc.)?

The results in Sections 6.1.2 and 6.2.2 show that model checking is very
effective for finding small bugs. I highly recommend bounded verification
of algorithms before any deeper analysis. The cost of setting up model
checking and discovering such bugs is likely to be far less than the cost
of beginning an unsuccessful full verification attempt, and diagnosing the
existence of the bug from the failure.

If a full verification is not practical, bounded verification provides some
degree of confidence in the algorithm. However, given current resources,
the practically verifiable instances in Section 6.2.4 are too small to engen-
der a high degree of confidence.

I was able to increase the range of practically verifiable instances by us-
ing symmetry reduction on the number of threads. If symmetry reduction
was able to be applied to the other two parameters also, I think it likely
that the bounds identified to answer Question 1 would be practically ver-
ifiable.

9.1.1 Future Research

There are a number of avenues of research that can be explored from this
point:

• The instance ranges in Section 6.1.3 could be strengthened by inves-
tigating even more incorrect algorithms.

• The bounded verification results presented in Section 6.1.4 could be
extended by using a tool that is able to apply symmetry reduction to
all three parameters (most likely through the use of scalarsets).

9.2. UNBOUNDED VERIFICATION 237

• The results in Section 6.2 for nonblocking properties could be ex-
tended as thoroughly as for the linearisability results in Section 6.1.
Notably, it would be interesting to see if the ranges of confidence dif-
fer markedly from those for linearisability, and if they differ between
different nonblocking properties.

9.2 Unbounded Verification

In Chapter 1, I raised three questions about using canonical abstraction to
verify nonblocking data structures.

1. Can canonical abstraction be used to verify linearisability for non-
blocking data structures, with unbounded instances of all three pa-
rameters?

I answered this question affirmatively in Chapter 7, introducing several
novel instrumentation predicates that allowed two algorithms to be ver-
ified using canonical abstraction. My approach differs from other verifi-
cations of nonblocking data structures using canonical abstraction [Amit
et al., 2007; Berdine et al., 2008] as I have not added another abstraction
technique on top, showing that canonical abstraction is sufficient for this
task.

2. Can canonical abstraction be used to verify nonblocking properties
for concurrent data structures, with unbounded instances of all three
parameters?

I was unable to model check progress properties in canonical abstraction,
partly due to TVLA’s limitations. TVLA is only able to verify safety prop-
erties, but research has begun on the combination of canonical abstraction
and temporal properties [e.g. Yahav et al., 2001, 2003, 2006].

3. If so, for either of the above, are the abstractions efficient (i.e. are they
small enough to enable practical verification)? If not, is it possible to
improve them?

I found the canonically abstract model of the queue algorithm to still be
too large to practically verify, primarily due to the exponential permuta-
tions of thread properties. In Chapter 8, I described a technique for more

238 CHAPTER 9. CONCLUSION

aggressively abstracting the threads in each state, thus reducing the state-
space, whilst still being able to verify linearisability. Again, this differs
from other similar approaches [e.g. Berdine et al., 2008] as it is achieved
entirely within the framework of canonical abstraction.

9.2.1 Future Research

There are a number of avenues of research that can be explored from this
point:

• The verified algorithms given in Chapters 7 and 8 are a stack and
a queue algorithm — both similar implementations using a singly
linked list. Some modifications and further instrumentation pred-
icates will almost certainly be needed to verify other types of data
structures and other implementations of stacks and queues.

• Investigate using canonical abstraction to verify nonblocking prop-
erties.

• The additional instrumentation predicates used in the verifications
in Chapter 8 were determined by hand. For practicality and effi-
ciency it would be useful if they could be derived automatically. One
possibility would be to adapt existing abstraction refinement tech-
niques [Loginov et al., 2005]. Alternatively, it may be efficient to over
define the soft invariants, as in Section 8.2.5, and automatically iden-
tify a subset of the non-invariant properties (such as those that are
false in the initial state).

Appendix A

Proofs of Canonical Abstraction
Compatibility Constraints

In Chapters 7 and 8, I manually defined some additional compatibility
constraints, to improve the precision of Coerce (see Section 7.6). These are
relatively simple, but if any was invalid it could undermine the verifica-
tion results. To give confidence in the results, I have manually determined
the 2-valued validity of the formulas using natural deduction.

The proofs use the operator→ rather than �, as they are identical with
2-valued semantics (recall from Section 4.3.2). For most of the compati-
bility constraints there are other constraints that have the same structure;
here we show the proof for only one in each group. For example, the proof
given for:

if[push9, has[n]](v) ∧ at[push9](v) � has[n](v)

is exactly the same, with renaming, for:

if[deq31, has[sshead]](v) ∧ at[deq31](v) � has[sshead](v)

The chapter begins by listing assumptions that are used in the proofs
(A.1). The proofs are categorised as soft invariants (A.2), linear instrumen-
tation predicates (A.3), geometric instrumentation predicates (A.4), and
reachability instrumentation predicates (A.5).

A.1 Assumptions

The following assumptions are used for the scope of the proofs, listed here
for space reasons:

239

240 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

{ Uniqueness of HeadI }

[A1] ∀ v1, v2 • HeadI(v1) ∧ HeadI(v2)→ v1 = v2

{ Functionality of n }

[A2] ∀ v1, v2, v3 • n(v1, v2) ∧ n(v1, v3)→ v2 = v3

{ Functionality of ss }

[A3] ∀ v1, v2, v3 • ss(v1, v2) ∧ ss(v1, v3)→ v2 = v3

{ Functionality of sshead }

[A4] ∀ v1, v2, v3 • sshead(v1, v2) ∧ sshead(v1, v3)→ v2 = v3

{ Functionality of sstail }

[A5] ∀ v1, v2, v3 • sstail(v1, v2) ∧ sstail(v1, v3)→ v2 = v3

{ Functionality of next }

[A6] ∀ v1, v2, v3 • next(v1, v2) ∧ next(v1, v3)→ v2 = v3

{ Functionality of spec }

[A7] ∀ v1, v2, v3 • spec(v1, v2) ∧ spec(v1, v3)→ v2 = v3

{ Inverse Functionality of spec }

[A8] ∀ v1, v2, v3 • spec(v1, v3) ∧ spec(v2, v3)→ v1 = v2

{ Definition of if[push9] }

[A9] ∀ v1 • if[push9, has[n]](v1)→

is thread(v1) ∧ (at[push9](v1)→ has[n](v1))

{ Definition of if[push9, succ[n, ss]] }

[A10] ∀ v1 • if[push9, succ[n, ss]](v1)→

is thread(v1) ∧ (at[push9](v1)→ (has[ss](v1)→ succ[n, ss](v1)))

{ Definition of tonull[ss] }

[A11] ∀ v1 • tonull[ss](v1)→ ∃ v2 • ss(v1, v2) ∧ ¬ has[next](v2)

{ Definition of same[sshead, sstail] }

A.2. SOFT INVARIANTS 241

[A12] ∀ v1 • same[sshead, sstail](v1)→ ∃ v2 • sshead(v1, v2) ∧ sstail(v1, v2)

{ Definition of succ[n, ss] }

[A13] ∀ v1 • succ[n, ss](v1)→ ∃ v2, v3 • n(v1, v2) ∧ next(v2, v3) ∧ ss(v1, v3)

{ Definition of commutes }

[A14] ∀ v1 • commutes(v1)→

∃ v2, v3, v4 • next(v1, v2) ∧ spec(v1, v3) ∧ next(v3, v4) ∧ spec(v2, v4)

{ Definition of ordered[sshead, sstail] }

[A15] ∀ v1 • ordered[sshead, sstail](v1)→

∃ v2, v3 • sshead(v1, v2) ∧ sstail(v1, v3) ∧ (reachI(v2)→ reachI(v3))

{ Definition of circ }

[A16] ∀ v1 • circ(v1)→ next+(v1, v1)

{ Definition of circ }

[A17] ∀ v1 • next+(v1, v1)→ circ(v1)

{ Definition of reachI }

[A18] ∀ v1 • reachI(v1)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, v1)

{ Definition of reachI }

[A19] ∀ v1 • (∃ v2 • HeadI(v2) ∧ next∗(v2, v1))→ reachI(v1)

A.2 Soft Invariants

A.2.1 Single predicate

if[push9, has[n]](v) ∧ at[push9](v) � has[n](v)

(1) if[push9, has[n]](t1) ∧ at[push9](t1)

(2) if[push9, has[n]](t1) (1), ∧E

242 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(3) if[push9, has[n]](t1)→ is thread(t1)

∧ (at[push9](t1)→ has[n](t1))

[A9], ∀E

(4) is thread(t1) ∧ (at[push9](t1)→ has[n](t1)) (2), (3),→E

(5) at[push9](t1)→ has[n](t1) (4), ∧E

(6) at[push9](t1) (1), ∧E

(7) has[n](t1) (5), (6),→E

(8) if[push9, has[n]](t1) ∧ at[push9](t1)→ has[n](t1) (1), (7),→I

A.2.2 Conditional property

if[push9, succ[n, ss]](v) ∧ at[push9](v) ∧ has[ss](v) � succ[n, ss](v)

(1) if[push9, succ[n, ss]](t1) ∧ at[push9](t1) ∧ has[ss](t1)

(2) if[push9, succ[n, ss]](t1) (1), ∧E

(3) if[push9, succ[n, ss]](t1)→ is thread(t1) ∧

(at[push9](t1)→ (has[ss](t1)→ succ[n, ss](t1)))

[A10], ∀E

(4) is thread(t1) ∧ (at[push9](t1)→ (has[ss](t1)→ succ[n, ss](t1))) (2), (3),→E

(5) at[push9](t1)→ (has[ss](t1)→ succ[n, ss](t1)) (4), ∧E

(6) at[push9](t1) (1), ∧E

(7) has[ss](t1)→ succ[n, ss](t1)) (5), (6),→E

(8) has[ss](t1) (1), ∧E

(9) succ[n, ss](t1) (7), (8),→E

(10) if[push9, succ[n, ss]](t1) ∧ at[push9](t1) ∧ has[ss](t1)→

succ[n, ss](t1)

(1), (9),→I

A.3. LINEAR 243

A.3 Linear

A.3.1 To null

∃ t • tonull[ss](t) ∧ ss(t, n) � ¬ has[next](n)

(1) ∃ v1 • tonull[ss](v1) ∧ ss(v1, n1)

(2) tonull[ss](t1) ∧ ss(t1, n1)

(3) tonull[ss](t1) (2), ∧E

(4) tonull[ss](t1)→ ∃ v2 • ss(t1, v2) ∧ ¬ has[next](v2) [A11], ∀E

(5) ∃ v2 • ss(t1, v2) ∧ ¬ has[next](v2) (3), (4),→E

(6) ss(t1, n2) ∧ ¬ has[next](n2)

(7) ss(t1, n1) ∧ ss(t1, n2)→ n1 = n2 [A3], ∀E

(8) ss(t1, n1) (2), ∧E

(9) ss(t1, n2) (6), ∧E

(10) ss(t1, n1) ∧ ss(t1, n2) (8), (9), ∧I

(11) n1 = n2 (7), (10),→E

(12) ¬ has[next](n2) (6), ∧E

(13) ¬ has[next](n1) (12), =E

(14) ¬ has[next](n1) (5), (6), (13), ∃E

(15) ¬ has[next](n1) (1), (2), (14), ∃E

(16) (∃ v1 • tonull[ss](v1) ∧ ss(v1, n1))→ ¬ has[next](n1) (1), (15),→I

A.3.2 Same 1

same[sshead, sstail](t) ∧ sshead(t, n) � sstail(t, n)

(1) same[sshead, sstail](t1) ∧ sshead(t1, n1)

(2) same[sshead, sstail](t1) (1), ∧E

244 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(3) same[sshead, sstail](t1)→

∃ v2 • sshead(t1, v2) ∧ sstail(t1, v2)

[A12], ∀E

(4) ∃ v2 • sshead(t1, v2) ∧ sstail(t1, v2) (2), (3),→E

(5) sshead(t1, n2) ∧ sstail(t1, n2)

(6) sshead(t1, n1) ∧ sshead(t1, n2)→ n1 = n2 [A4], ∀E

(7) sshead(t1, n1) (1), ∧E

(8) sshead(t1, n2) (5), ∧E

(9) sshead(t1, n1) ∧ sshead(t1, n2) (7), (8), ∧I

(10) n1 = n2 (6), (9),→E

(11) sstail(t1, n2) (5), ∧E

(12) sstail(t1, n1) (10), (11), =E

(13) sstail(t1, n1) (4), (5), (12), ∃E

(14) same[sshead, sstail](t1) ∧ sshead(t1, n1)

→ sstail(t1, n1)

(1), (13),→I

A.3.3 Same 2

same[sshead, sstail](t) ∧ sstail(t, n) � sshead(t, n)

(1) same[sshead, sstail](t1) ∧ sstail(t1, n1)

(2) same[sshead, sstail](t1) (1), ∧E

(3) same[sshead, sstail](t1)→

∃ v2 • sshead(t1, v2) ∧ sstail(t1, v2)

[A12], ∀E

(4) ∃ v2 • sshead(t1, v2) ∧ sstail(t1, v2) (2), (3),→E

(5) sshead(t1, n2) ∧ sstail(t1, n2)

(6) sstail(t1, n1) ∧ sstail(t1, n2)→ n1 = n2 [A5], ∀E

A.3. LINEAR 245

(7) sstail(t1, n1) (1), ∧E

(8) sstail(t1, n2) (5), ∧E

(9) sstail(t1, n1) ∧ sstail(t1, n2) (7), (8), ∧I

(10) n1 = n2 (6), (9),→E

(11) sshead(t1, n2) (5), ∧E

(12) sshead(t1, n1) (10), (11), =E

(13) sshead(t1, n1) (4), (5), (12), ∃E

(14) same[sshead, sstail](t1) ∧ sstail(t1, n1)

→ sshead(t1, n1)

(1), (13),→I

A.3.4 Ordered
∃ t1, n1 • ordered[sshead, sstail](t1) ∧ sshead(t1, n1)

∧ sstail(t1, n2) ∧ reachI(n1) � reachI(n2)

(1) ∃ v1, v2 • ordered[sshead, sstail](v1) ∧ sshead(v1, v2)

∧ sstail(v1, n2) ∧ reachI(v2)

(2) ordered[sshead, sstail](t1) ∧ sshead(t1, n1)

∧ sstail(t1, n2) ∧ reachI(n1)

(3) ordered[sshead, sstail](t1) (2), ∧E

(4) ordered[sshead, sstail](t1)→ ∃ v2, v3 • sshead(t1, v2)

∧ sstail(t1, v3) ∧ (reachI(v2)→ reachI(v3))

[A15], ∀E

(5) ∃ v2, v3 • sshead(t1, v2) ∧ sstail(t1, v3)

∧ (reachI(v2)→ reachI(v3))

(3), (4),→E

(6) sshead(t1, n3) ∧ sstail(t1, n4)

∧ (reachI(n3)→ reachI(n4))

246 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(7) sshead(t1, n1) ∧ sshead(t1, n3)→ n1 = n3 [A4], ∀E

(8) sshead(t1, n1) (2), ∧E

(9) sshead(t1, n3) (6), ∧E

(10) sshead(t1, n1) ∧ sshead(t1, n3) (8), (9), ∧I

(11) n1 = n3 (7), (10),→E

(12) sstail(t1, n2) ∧ sstail(t1, n4)→ n2 = n4 [A5], ∀E

(13) sstail(t1, n2) (2), ∧E

(14) sstail(t1, n4) (6), ∧E

(15) sstail(t1, n2) ∧ sstail(t1, n4) (13), (14), ∧I

(16) n2 = n4 (12), (15),→E

(17) reachI(n3)→ reachI(n4) (6), ∧E

(18) reachI(n1) (2), ∧E

(19) reachI(n3) (11), (18), =E

(20) reachI(n4) (17), (19),→E

(21) reachI(n2) (16), (20), =E

(22) reachI(n2) (5), (6), (21), ∃E

(23) reachI(n2) (1), (2), (22), ∃E

(24) (∃ v1, v2 • ordered[sshead, sstail](v1) ∧ sshead(v1, v2)

∧ sstail(v1, n2) ∧ reachI(v2))→ reachI(n2)

(1), (23),→I

A.4 Geometric

A.4.1 Triangle 1

∃ t1 • succ[n, ss](t1) ∧ n(t1, n1) ∧ ss(t1, n2) � next(n1, n2)

(1) ∃ v1 • succ[n, ss](v1) ∧ n(v1, n1) ∧ ss(v1, n2)

A.4. GEOMETRIC 247

(2) succ[n, ss](t1) ∧ n(t1, n1) ∧ ss(t1, n2)

(3) succ[n, ss](t1) (2), ∧E

(4) succ[n, ss](t1)→ ∃ v2, v3 • n(t1, v2)

∧ next(v2, v3) ∧ ss(t1, v3)

[A13], ∀E

(5) ∃ v2, v3 • n(t1, v2) ∧ next(v2, v3) ∧ ss(t1, v3) (3), (4),→E

(6) n(t1, n3) ∧ next(n3, n4) ∧ ss(t1, n4)

(7) n(t1, n1) ∧ n(t1, n3)→ n1 = n3 [A2], ∀E

(8) n(t1, n1) (2), ∧E

(9) n(t1, n3) (6), ∧E

(10) n(t1, n1) ∧ n(t1, n3) (8), (9), ∧I

(11) n1 = n3 (7), (10),→E

(12) ss(t1, n2) ∧ ss(t1, n4)→ n2 = n4 [A3], ∀E

(13) ss(t1, n2) (2), ∧E

(14) ss(t1, n4) (6), ∧E

(15) ss(t1, n2) ∧ ss(t1, n4) (13), (14), ∧I

(16) n2 = n4 (12), (15),→E

(17) next(n3, n4) (6), ∧E

(18) next(n1, n2) (11), (16), (17), =E

(19) next(n1, n2) (5), (6), (18), ∃E

(20) next(n1, n2) (1), (2), (19), ∃E

(21) (∃ v1 • succ[n, ss](v1) ∧ n(v1, n1) ∧ ss(v1, n2))

→ next(n1, n2)

(1), (20),→I

A.4.2 Triangle 2

∃ n1 • succ[n, ss](t1) ∧ n(t1, n1) ∧ next(n1, n2) � ss(t1, n2)

248 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(1) ∃ v1 • succ[n, ss](t1) ∧ n(t1, v1) ∧ next(v1, n2)

(2) succ[n, ss](t1) ∧ n(t1, n1) ∧ next(n1, n2)

(3) succ[n, ss](t1) (2), ∧E

(4) succ[n, ss](t1)→ ∃ v2, v3 • n(t1, v2)

∧ next(v2, v3) ∧ ss(t1, v3)

[A13], ∀E

(5) ∃ v2, v3 • n(t1, v2) ∧ next(v2, v3) ∧ ss(t1, v3) (3), (4),→E

(6) n(t1, n3) ∧ next(n3, n4) ∧ ss(t1, n4)

(7) n(t1, n1) ∧ n(t1, n3)→ n1 = n3 [A2], ∀E

(8) n(t1, n1) (2), ∧E

(9) n(t1, n3) (6), ∧E

(10) n(t1, n1) ∧ n(t1, n3) (8), (9), ∧I

(11) n1 = n3 (7), (10),→E

(12) next(n1, n2) ∧ next(n1, n4)→ n2 = n4 [A6], ∀E

(13) next(n1, n2) (2), ∧E

(14) next(n3, n4) (6), ∧E

(15) next(n1, n4) (11), (14), =E

(16) next(n1, n2) ∧ next(n1, n4) (13), (14), ∧I

(17) n2 = n4 (12), (16),→E

(18) ss(t1, n4) (6), ∧E

(19) ss(t1, n2) (17), (18), =E

(20) ss(t1, n2) (5), (6), (19), ∃E

(21) ss(t1, n2) (1), (2), (20), ∃E

(22) (∃ v1 • succ[n, ss](t1) ∧ n(t1, v1) ∧ next(v1, n2))

→ ss(t1, n2)

(1), (21),→I

A.4. GEOMETRIC 249

A.4.3 Square 1

∃ n1, n2 • commutes(n1) ∧
next(n1, n2) ∧ spec(n1, n3) ∧ spec(n2, n4) � next(n3, n4)

(1) ∃ v1, v2 • commutes(v1) ∧ next(v1, v2)

∧ spec(v1, n3) ∧ spec(v2, n4)

(2) commutes(n1) ∧ next(n1, n2) ∧ spec(n1, n3)

∧ spec(n2, n4)

(3) commutes(n1) (2), ∧E

(4) commutes(n1)→ ∃ v2, v3, v4 • next(n1, v2)

∧ spec(n1, v3) ∧ next(v3, v4) ∧ spec(v2, v4)

[A14], ∀E

(5) ∃ v2, v3, v4 • next(n1, v2) ∧ spec(n1, v3)

∧ next(v3, v4) ∧ spec(v2, v4)

(3), (4),→E

(6) next(n1, n5) ∧ spec(n1, n6) ∧ next(n6, n7)

∧ spec(n5, n7)

(7) next(n1, n2) ∧ next(n1, n5)→ n2 = n5 [A6], ∀E

(8) next(n1, n2) (2), ∧E

(9) next(n1, n5) (6), ∧E

(10) next(n1, n2) ∧ next(n1, n5) (8), (9), ∧I

(11) n2 = n5 (7), (10),→E

(12) spec(n1, n3) ∧ spec(n1, n6)→ n3 = n6 [A7], ∀E

(13) spec(n1, n3) (2), ∧E

(14) spec(n1, n6) (6), ∧E

(15) spec(n1, n3) ∧ spec(n1, n6) (13), (14), ∧I

(16) n3 = n6 (12), (15),→E

250 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(17) spec(n2, n4) ∧ spec(n2, n7)→ n4 = n7 [A7], ∀E

(18) spec(n2, n4) (2), ∧E

(19) spec(n5, n7) (6), ∧E

(20) spec(n2, n7) (11), (19), =E

(21) spec(n2, n4) ∧ spec(n2, n7) (18), (20), ∧I

(22) n4 = n7 (17), (21),→E

(23) next(n6, n7) (6), ∧E

(24) next(n3, n4) (16), (22), (23), =E

(25) next(n3, n4) (5), (6), (24), ∃E

(26) next(n3, n4) (1), (2), (25), ∃E

(27) (∃ v1, v2 • commutes(v1) ∧ next(v1, v2) ∧ spec(v1, n3)

∧ spec(v2, n4))→ next(n3, n4)

(1), (26),→I

A.4.4 Square 2

∃ n1, n3 • commutes(n1) ∧
next(n1, n2) ∧ spec(n1, n3) ∧ next(n3, n4) � spec(n2, n4)

(1) ∃ v1, v2 • commutes(v1) ∧ next(v1, n2)

∧ spec(v1, v2) ∧ next(v2, n4)

(2) commutes(n1) ∧ next(n1, n2) ∧ spec(n1, n3)

∧ next(n3, n4)

(3) commutes(n1) (2), ∧E

(4) commutes(n1)→ ∃ v2, v3, v4 • next(n1, v2)

∧ spec(n1, v3) ∧ next(v3, v4) ∧ spec(v2, v4)

[A14], ∀E

A.4. GEOMETRIC 251

(5) ∃ v2, v3, v4 • next(n1, v2) ∧ spec(n1, v3) ∧ next(v3, v4)

∧ spec(v2, v4)

(3), (4),→E

(6) next(n1, n5) ∧ spec(n1, n6) ∧ next(n6, n7)

∧ spec(n5, n7)

(7) next(n1, n2) ∧ next(n1, n5)→ n2 = n5 [A6], ∀E

(8) next(n1, n2) (2), ∧E

(9) next(n1, n5) (6), ∧E

(10) next(n1, n2) ∧ next(n1, n5) (8), (9), ∧I

(11) n2 = n5 (7), (10),→E

(12) spec(n1, n3) ∧ spec(n1, n6)→ n3 = n6 [A7], ∀E

(13) spec(n1, n3) (2), ∧E

(14) spec(n1, n6) (6), ∧E

(15) spec(n1, n3) ∧ spec(n1, n6) (13), (14), ∧I

(16) n3 = n6 (12), (15),→E

(17) next(n3, n4) ∧ next(n3, n7)→ n4 = n7 [A6], ∀E

(18) next(n3, n4) (2), ∧E

(19) next(n6, n7) (6), ∧E

(20) next(n3, n7) (16), (19), =E

(21) next(n3, n4) ∧ next(n3, n7) (18), (20), ∧I

(22) n4 = n7 (17), (21),→E

(23) spec(n5, n7) (6), ∧E

(24) spec(n2, n4) (11), (22), (23), =E

(25) spec(n2, n4) (5), (6), (24), ∃E

(26) spec(n2, n4) (1), (2), (25), ∃E

252 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(27) (∃ v1, v2 • commutes(v1) ∧ next(v1, n2) ∧ spec(v1, v2)

∧ next(v2, n4))→ spec(n2, n4)

(1), (26),→I

A.4.5 Square 3

∃ n3, n4 • commutes(n1) ∧
spec(n1, n3) ∧ next(n3, n4) ∧ spec(n2, n4) � next(n1, n2)

(1) ∃ v1, v2 • commutes(n1) ∧ spec(n1, v1)

∧ next(v1, v2) ∧ spec(n2, v2)

(2) commutes(n1) ∧ spec(n1, n3) ∧ next(n3, n4)

∧ spec(n2, n4)

(3) commutes(n1) (2), ∧E

(4) commutes(n1)→ ∃ v2, v3, v4 • next(n1, v2)

∧ spec(n1, v3) ∧ next(v3, v4) ∧ spec(v2, v4)

[A14], ∀E

(5) ∃ v2, v3, v4 • next(n1, v2) ∧ spec(n1, v3)

∧ next(v3, v4) ∧ spec(v2, v4)

(3), (4),→E

(6) next(n1, n5) ∧ spec(n1, n6) ∧ next(n6, n7)

∧ spec(n5, n7)

(7) spec(n1, n3) ∧ spec(n1, n6)→ n3 = n6 [A7], ∀E

(8) spec(n1, n3) (2), ∧E

(9) spec(n1, n6) (6), ∧E

(10) spec(n1, n3) ∧ spec(n1, n6) (8), (9), ∧I

(11) n3 = n6 (7), (10),→E

(12) next(n3, n4) ∧ next(n3, n7)→ n4 = n7 [A6], ∀E

(13) next(n3, n4) (2), ∧E

A.5. REACHABILITY 253

(14) next(n6, n7) (6), ∧E

(15) next(n3, n7) (11), (14), =E

(16) next(n3, n4) ∧ next(n3, n7) (13), (15), ∧I

(17) n4 = n7 (12), (16),→E

(18) spec(n2, n4) ∧ spec(n5, n4)→ n2 = n5 [A8], ∀E

(19) spec(n2, n4) (2), ∧E

(20) spec(n5, n7) (6), ∧E

(21) spec(n5, n4) (17), (20), =E

(22) spec(n2, n4) ∧ spec(n5, n4) (19), (21), ∧I

(23) n2 = n5 (18), (22),→E

(24) next(n1, n5) (6), ∧E

(25) next(n1, n2) (23), (24), =E

(26) next(n1, n2) (5), (6), (25), ∃E

(27) next(n1, n2) (1), (2), (26), ∃E

(28) (∃ v1, v2 • commutes(n1) ∧ spec(n1, v1) ∧ next(v1, v2)

∧ spec(n2, v2))→ next(n1, n2)

(1), (27),→I

A.5 Reachability

The compatibility constraints in this section use transitive closure. The
proof steps marked “TC” combine several natural deduction steps. For
the first four proofs these are fairly straightforward, from the definitions
of p+ and p∗, but the fifth proof takes much larger leaps, indicated by the
ellipses.

A.5.1 No self loop

¬ circ(n1) ∧ n1 = n2 � ¬ next(n1, n2)

254 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(1) ¬ circ(n1) ∧ n1 = n2

(2) n1 = n2 (1), ∧E

(3) next(n1, n2)

(4) next(n1, n1) (2), (3), =E

(5) next+(n1, n1) (4), TC

(6) next+(n1, n1)→ circ(n1) [A17], ∀E

(7) circ(n1) (5), (6),→E

(8) ¬ circ(n1) (1), ∧E

(9) ⊥ (7), (8), ⊥I

(10) ¬ next(n1, n2) (3), (9), ¬ I

(11) ¬ circ(n1) ∧ n1 = n2 → ¬ next(n1, n2) (1), (10),→I

A.5.2 No loop back

¬ circ(n1) ∧ next(n1, n2) � ¬ next(n2, n1)

(1) ¬ circ(n1) ∧ next(n1, n2)

(2) next(n1, n2) (1), ∧E

(3) next(n2, n1)

(4) next+(n1) (2), (3), TC

(5) next+(n1)→ circ(n1) [A17], ∀E

(6) circ(n1) (4), (5),→E

(7) ¬ circ(n1) (1), ∧E

(8) ⊥ (6), (7), ⊥I

(9) ¬ next(n2, n1) (3), (8), ¬ I

(10) ¬ circ(n1) ∧ next(n1, n2)→ ¬ next(n2, n1) (1), (9),→I

A.5. REACHABILITY 255

A.5.3 No loop to head

HeadI(n1) ∧ ¬ circ(n1) ∧ reachI(n2) � ¬ next(n2, n1)

(1) HeadI(n1) ∧ ¬ circ(n1) ∧ reachI(n2)

(2) reachI(n2) (1), ∧E

(3) reachI(n2)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, n2) [A18], ∀E

(4) ∃ v2 • HeadI(v2) ∧ next∗(v2, n2) (2), (3),→E

(5) HeadI(n3) ∧ next∗(n3, n2)

(6) HeadI(n1) ∧ HeadI(n3)→ n1 = n3 [A1], ∀E

(7) HeadI(n1) (1), ∧E

(8) HeadI(n3) (5), ∧E

(9) HeadI(n1) ∧ HeadI(n3) (7), (8), ∧I

(10) n1 = n3 (6), (9),→E

(11) next∗(n3, n2) (5), ∧E

(12) next∗(n1, n2) (10), (11), =E

(13) next(n2, n1)

(14) next+(n1, n1) (12), (13), TC

(15) next+(n1, n1)→ circ(n1) [A17], ∀E

(16) circ(n1) (14), (15),→E

(17) ¬ circ(n1) (1), ∧E

(18) ⊥ (16), (17), ⊥I

(19) ¬ next(n2, n1) (13), (18), ¬ I

(20) ¬ next(n2, n1) (4), (5), (19), ∃E

(21) HeadI(n1) ∧ ¬ circ(n1) ∧ reachI(n2)→ ¬ next(n2, n1) (1), (20),→I

256 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

A.5.4 Unreachable

reachI(n1) ∧ ¬ reachI(n2) � ¬ next(n1, n2)

(1) reachI(n1) ∧ ¬ reachI(n2)

(2) reachI(n1) (1), ∧E

(3) reachI(n1)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, n1) [A18], ∀E

(4) ∃ v2 • HeadI(v2) ∧ next∗(v2, n1) (2), (3),→E

(5) next(n1, n2)

(6) ∃ v2 • HeadI(v2) ∧ next∗(v2, n2) (4), (5), TC

(7) (∃ v2 • HeadI(v2) ∧ next∗(v2, n2))→ reachI(n2) [A19], ∀E

(8) reachI(n2) (6), (7),→E

(9) ¬ reachI(n2) (1), ∧E

(10) ⊥ (8), (9), ⊥I

(11) ¬ next(n1, n2) (5), (10), ¬ I

(12) reachI(n1) ∧ ¬ reachI(n2)→ ¬ next(n1, n2) (1), (11),→I

A.5.5 Chain

∃ n1 • reachI(n1) ∧ reachI(n2) ∧ ¬ circ(n2) ∧
next(n1, n2) ∧ reachI(n3) ∧ ¬ eq(n1, n3) � ¬ next(n3, n2)

(1) ∃ v1 • reachI(v1) ∧ reachI(n2) ∧ ¬ circ(n2) ∧

next(v1, n2) ∧ reachI(n3) ∧ v1 6= n3

(2) reachI(n1) ∧ reachI(n2) ∧ ¬ circ(n2) ∧

next(n1, n2) ∧ reachI(n3) ∧ n1 6= n3

(3) reachI(n1) (2), ∧E

(4) reachI(n2) (2), ∧E

A.5. REACHABILITY 257

(5) reachI(n3) (2), ∧E

(6) reachI(n1)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, n1) [A18], ∀E

(7) reachI(n2)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, n2) [A18], ∀E

(8) reachI(n3)→ ∃ v2 • HeadI(v2) ∧ next∗(v2, n3) [A18], ∀E

(9) ∃ v2 • HeadI(v2) ∧ next∗(v2, n1) (3), (6),→E

(10) ∃ v2 • HeadI(v2) ∧ next∗(v2, n2) (4), (7),→E

(11) ∃ v2 • HeadI(v2) ∧ next∗(v2, n3) (5), (8),→E

(12) next(n1, n2) (2), ∧E

(13) n1 6= n3 (2), ∧E

. . .

(14) next+(n3, n1) ∨ next∗(n2, n3) [A1], [A6], (9)–(13), TC

(15) next(n3, n2)

(16) ¬ circ(n2) (2), ∧E

(17) next+(n2, n2)→ circ(n2) [A17], ∀E

(18) next+(n3, n1)

. . .

(19) next∗(n2, n1) (15), (18), [A6], TC

(20) next+(n2, n2) (12), (19), TC

(21) circ(n2) (17), (20),→E

(22) ⊥ (16), (21), ⊥I

(23) next∗(n2, n3)

(24) next+(n2, n2) (15), (23), TC

(25) circ(n2) (17), (24),→E

(26) ⊥ (16), (25), ⊥I

258 APPENDIX A. PROOFS OF C. A. COMPATIBILITY CONSTRAINTS

(27) ⊥ (14), (18), (22), (23), (26), ∨E

(28) ¬ next(n3, n2) (15), (27), ¬ I

(29) ¬ next(n3, n2) (1), (2), (28), ∃E

(30) ∃ v1 • reachI(v1) ∧ reachI(n2) ∧ ¬ circ(n2) ∧

next(v1, n2) ∧ reachI(n3) ∧ v1 6= n3

→ ¬ next(n3, n2)

(1), (29),→I

Bibliography

Jean-Raymond Abrial and Dominique Cansell. Formal construction of a
non-blocking concurrent queue algorithm. Journal of Universal Computer
Science, 11(5):744–770, 2005. (p. 2).

Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991. (p. 99).

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, 1996. (p. 11).

Juan Alemany and Edward W. Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In Proceedings of
the 11th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 10–12 August 1992, Vancouver, British Columbia, Canada, pages
125–134. ACM Press, 1992. (p. 2).

Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking
of correctness conditions for concurrent objects. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS), 27–30 July
1996, New Brunswick, NJ, USA, pages 219–228. IEEE Computer Society
Press, 1996. (p. 92).

Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking
of correctness conditions for concurrent objects. Information and Compu-
tation, 160(1–2):167–188, 2000. (p. 92).

Daphna Amit, Noam Rinetzky, Thomas Reps, Mooly Sagiv, and Eran Ya-
hav. Comparison under abstraction for verifying linearizability. In
Werner Damm and Holger Hermanns, editors, Proceedings of the 19th In-
ternational Conference on Computer Aided Verification (CAV), 3–7 July 2007,
Berlin, Germany, volume 4590 of Lecture Notes in Computer Science, pages
477–490. Springer-Verlag, 2007. (pp. 5, 159, 185, 195, 196, 237).

259

260 BIBLIOGRAPHY

James H. Anderson and Mark Moir. Universal constructions for large ob-
jects. IEEE Transactions on Parallel and Distributed Systems, 10(12):1317–
1332, 1999. (p. 18).

Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification
of finite-state concurrent systems. Information Processing Letters, 22(6):
307–309, 1986. (p. 4).

Uwe Aßmann and Markus Weinhardt. Interprocedural heap analysis
for parallelizing imperative programs. In Wolfgang K. Giloi, Stefan
Jähnichen, and Bruce Shriver, editors, Proceedings of the 1st Conference
on Programming Models for Massively Parallel Computers, 20–23 September
1993, Berlin, Germany, pages 74–82. IEEE Computer Society Press, 1993.
(p. 49).

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008. (p. 27).

Michael Balser, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel. KIV
3.0 for provably correct systems. In Dieter Hutter, Werner Stephan,
Paolo Traverso, and Markus Ullmann, editors, Proceedings of the Interna-
tional Workshop on Current Trends in Applied Formal Methods (FM-Trends),
7–9 October 1998, Boppard, Germany, volume 1641 of Lecture Notes in Com-
puter Science, pages 330–337. Springer-Verlag, 1998. (p. 95).

Greg Barnes. A method for implementing lock-free shared data structures.
In Lawrence Snyder, editor, Proceedings of the 5th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA), 30 June – 2 July 1993,
Velen, Germany, pages 261–270. ACM Press, 1993. (p. 2).

Sharon Barner and Orna Grumberg. Combining symmetry reduction and
under-approximation for symbolic model checking. Formal Methods in
System Design, 27(1–2):29–66, 2005. (p. 42).

Vincent Beaudenon, Emmanuelle Encrenaz, and Sami Taktak. Data de-
cision diagrams for Promela systems analysis. International Journal on
Software Tools for Technology Transfer, 12:337–352, 2010. (p. 33).

Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic
of branching time. In John White, Richard Lipton, and Patricia C.

BIBLIOGRAPHY 261

Goldberg, editors, Proceedings of the 8th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), 26–28 January 1981,
Williamsburg, VA, USA, pages 164–176. ACM Press, 1981. (p. 32).

Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic
of branching time. Acta Informatica, 20:207–226, 1983. (p. 32).

Beatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine
Petit, Laure Petrucci, and Philippe Schnoebelen. Systems and Software
Verification: Model-Checking Techniques and Tools. Springer-Verlag, 2001.
(pp. 27, 39).

Josh Berdine, Tal Lev-Ami, Roman Manevich, Ganesan Ramalingam, and
Mooly Sagiv. Thread quantification for concurrent shape analysis. In
Aarti Gupta and Sharad Malik, editors, Proceedings of the 20th Interna-
tional Conference on Computer Aided Verification (CAV), 7–14 July 2008,
Princeton, NJ, USA, volume 5123 of Lecture Notes in Computer Science,
pages 399–413. Springer-Verlag, 2008. (pp. 5, 196, 197, 231, 237, 238).

Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic
approach to branching-time model checking. In David L. Dill, editor,
Proceedings of the 6th International Conference on Computer Aided Verifica-
tion (CAV), 21–23 June 1994, Stanford, CA, USA, volume 818 of Lecture
Notes in Computer Science, pages 142–155. Springer-Verlag, 1994. (p. 34).

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita,
and Yunshan Zhu. Symbolic model checking using SAT procedures in-
stead of BDDs. In Mary Jane Irwin, editor, Proceedings of the 36th Con-
ference on Design Automation (DAC), 21–25 June 1999, New Orleans, LA,
USA, pages 317–320. ACM Press, 1999a. (p. 39).

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor,
Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), 22–28 March 1999, Amster-
dam, The Netherlands, volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer-Verlag, 1999b. (p. 39).

Igor Bogudlov, Tal Lev-Ami, Thomas Reps, and Mooly Sagiv. Revamp-
ing TVLA: Making parametric shape analysis competitive. In Werner

262 BIBLIOGRAPHY

Damm and Holger Hermanns, editors, Proceedings of the 19th Interna-
tional Conference on Computer Aided Verification (CAV), 3–7 July 2007,
Berlin, Germany, volume 4590 of Lecture Notes in Computer Science, pages
221–225. Springer-Verlag, 2007a. (pp. 47, 80, 182).

Igor Bogudlov, Tal Lev-Ami, Thomas Reps, and Mooly Sagiv. Revamping
TVLA: Making parametric shape analysis competitive. Technical Report
TR-2007-01-01, Tel Aviv University, 2007b. (p. 80).

Dragan Bos̆nac̆ki. A light-weight algorithm for model checking with sym-
metry reduction and weak fairness. In Thomas Ball and Sriram K. Ra-
jamani, editors, Proceedings of the 10th International SPIN Workshop, 9–10
May 2003, Portland, OR, USA, volume 2648 of Lecture Notes in Computer
Science, pages 89–103. Springer-Verlag, 2003. (p. 135).

Dragan Bos̆nac̆ki, Dennis Dams, and Leszek Holenderski. Symmetric
Spin. In Klaus Havelund, John Penix, and Willem Visser, editors, Pro-
ceedings of the 7th International SPIN Workshop, 30 August – 1 September
2000, Stanford, CA, USA, volume 1885 of Lecture Notes in Computer Sci-
ence, pages 1–19. Springer-Verlag, 2000. (pp. 42, 46).

Dragan Bos̆nac̆ki, Dennis Dams, and Leszek Holenderski. Symmetric
Spin. International Journal on Software Tools for Technology Transfer, 4(1):
92–106, 2002. (pp. 42, 46).

Randal E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, 35(8):677–691, 1986. (p. 37).

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992. (p.
37).

J. Richard Büchi. On a decision method in restricted second order arith-
metic. In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, Pro-
ceedings of the 1st International Congress for Logic, Methodology and Philos-
ophy of Science, 24 August – 2 September 1960, Stanford, CA, USA, pages
1–11. Stanford University Press, 1962. (p. 34).

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states and beyond.
In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer

BIBLIOGRAPHY 263

Science (LICS), 4–7 June 1990, Philadelphia, PA, USA, pages 428–439. IEEE
Computer Society Press, 1990. (p. 36).

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2):142–170, 1992. (p. 36).

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Bounded
model checking of concurrent data types on relaxed memory models:
A case study. In Thomas Ball and Robert B. Jones, editors, Proceedings
of the 18th International Conference on Computer Aided Verification (CAV),
16–21 August 2006, Seattle, WA, USA, volume 4144 of Lecture Notes in
Computer Science, pages 489–502. Springer-Verlag, 2006. (p. 3).

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence:
Checking consistency of concurrent data types on relaxed memory mod-
els. In Jeanne Ferrante and Kathryn S. McKinley, editors, Proceedings of
the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 11–13 June 2007, San Diego, CA, USA, pages 12–
21. ACM Press, 2007. (p. 3).

David Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Bernard N. Fischer, editor, Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 20–22 June 1990, White Plains, NY, USA, pages 296–310. ACM
Press, 1990. (pp. 49, 50).

Edmund M. Clarke and I. Anca Draghicescu. Expressibility results for
linear-time and branching-time logics. In Jaco W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, Proceedings of the REX
School/Workshop on Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, 30 May – 3 June 1988, Noordwijkerhout, The
Netherlands, volume 354 of Lecture Notes in Computer Science, pages 428–
437. Springer-Verlag, 1988. (p. 32).

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Dex-
ter C. Kozen, editor, Proceedings of the Workshop on Logic of Programs, 1
May 1981, Yorktown Heights, NY, USA, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer-Verlag, 1981. (p. 27).

264 BIBLIOGRAPHY

Edmund M. Clarke and Orna Grumberg. Avoiding the state explo-
sion problem in temporal logic model checking. In Fred B. Schnei-
der, editor, Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing (PODC), 10–12 August 1987, Vancouver, British
Columbia, Canada, pages 294–303. ACM Press, 1987. (p. 39).

Edmund M. Clarke and Bernd-Holger Schlingloff. Model checking. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume II, pages 1367–1447. Elsevier, 2001. (p. 27).

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
verification of finite state concurrent system using temporal logic spec-
ifications: A practical approach. In John R. Wright, Larry Landwe-
ber, Alan Demers, and Tim Teitelbaum, editors, Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 24–26 January 1983, Austin, TX, USA, pages 117–126.
ACM Press, 1983. (p. 33).

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logic spec-
ifications. ACM Transactions on Programming Languages and Systems, 8(2):
244–263, 1986. (p. 33).

Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. Exploiting symme-
try in temporal logic model checking. In Costas Courcoubetis, editor,
Proceedings of the 5th International Conference on Computer Aided Verifica-
tion (CAV), 28 June – 1 July 1993, Elounda, Greece, volume 697 of Lecture
Notes in Computer Science, pages 450–462. Springer-Verlag, 1993. (p. 42).

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, 1994. (p. 43).

Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha.
Exploiting symmetry in temporal logic model checking. Formal Methods
in System Design, 9(1/2):77–104, 1996. (p. 42).

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999. (pp. 27, 34, 36, 41, 42).

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement. In E. Allen

BIBLIOGRAPHY 265

Emerson and A. Prasad Sistla, editors, Proceedings of the 12th International
Conference on Computer Aided Verification (CAV), 15–19 July 2000, Chicago,
IL, USA, volume 1855 of Lecture Notes in Computer Science, pages 154–
169. Springer-Verlag, 2000. (p. 44).

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the Association for Computing Machinery, 50(5):
752–794, September 2003. (p. 44).

Robert Colvin and Brijesh Dongol. Verifying lock-freedom using well-
founded orders. In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, edi-
tors, Proceedings of the 4th International Colloquium on Theoretical Aspects of
Computing (ICTAC), 26–28 September 2007, Macau, China, volume 4711 of
Lecture Notes in Computer Science, pages 124–138. Springer-Verlag, 2007.
(p. 2).

Robert Colvin and Brijesh Dongol. A general technique for proving lock-
freedom. Science of Computer Programming, 74(3):143–165, 2009. (pp. 2,
116).

Robert Colvin and Lindsay Groves. Formal verification of an array-based
nonblocking queue. In Carlo Ghezzi, Yuxi Fu, Shaoying Liu, and Jim
Woodcock, editors, Proceedings of the 10th International Conference on En-
gineering of Complex Computer Systems (ICECCS), 16–20 June 2005, Shang-
hai, China, pages 507–516. IEEE Computer Society Press, 2005. (pp. 2, 95,
122).

Robert Colvin and Lindsay Groves. A scalable lock-free stack algorithm
and its verification. In Proceedings of the 5th International Conference on
Software Engineering and Formal Methods (SEFM), 10–14 September 2007,
London, UK, pages 339–348. IEEE Computer Society Press, 2007. (p. 2).

Robert Colvin, Simon Doherty, and Lindsay Groves. Verifying concurrent
data structures by simulation. In John Derrick and Eerke A. Boiten, edi-
tors, Proceedings of the BCS FACS Refinement Workshop (REFINE), 12 April
2005, Guildford, England, UK, volume 137.2 of Electronic Notes in Theoret-
ical Computer Science, pages 93–110. Elsevier, 2005. (pp. 2, 21, 95).

Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal
verification of a lazy concurrent list-based set algorithm. In Thomas Ball

266 BIBLIOGRAPHY

and Robert B. Jones, editors, Proceedings of the 18th International Confer-
ence on Computer Aided Verification (CAV), 16–21 August 2006, Seattle, WA,
USA, volume 4144 of Lecture Notes in Computer Science, pages 475–488.
Springer-Verlag, 2006. (pp. 2, 3, 92, 95, 135).

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approxima-
tion of fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi
Sethi, editors, Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL), 17–19 January 1977, Los
Angeles, CA, USA, pages 238–252. ACM Press, 1977. (pp. 3, 44).

Patrick Cousot and Radhia Cousot. Systematic design of program anal-
ysis frameworks. In Alfred V. Aho, Stephen N. Zilles, and Barry K.
Rosen, editors, Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL), 29–31 January 1979, San
Antonio, TX, USA, pages 269–282. ACM Press, 1979. (pp. 3, 44, 66).

Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation
of reactive systems. ACM Transactions on Programming Languages and
Systems, 19(2):253–291, 1997. (p. 44).

Leonardo de Moura, Sam Owre, and Natarajan Shankar. The SAL lan-
guage manual. Technical Report SRI-CSL-01-02, Computer Science Lab-
oratory, SRI International, 2001. Revised August 2003. (p. 47).

Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem prov-
ing for bounded model checking over infinite domains. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Au-
tomated Deduction (CADE), 27–30 July 2002, Copenhagen, Denmark, vol-
ume 2392 of Lecture Notes in Computer Science, pages 438–455. Springer-
Verlag, 2002. (p. 39).

Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, Natarajan
Shankar, Maria Sorea, and Ashish Tiwari. SAL 2. In Rajeev Alur and
Doron A. Peled, editors, Proceedings of the 16th International Conference on
Computer Aided Verification (CAV), 13–17 July 2004, Boston, MA, USA, vol-
ume 3114 of Lecture Notes in Computer Science, pages 496–500. Springer-
Verlag, 2004. (p. 47).

BIBLIOGRAPHY 267

Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A tutorial on
satisfiability modulo theories. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided
Verification (CAV), 3–7 July 2007, Berlin, Germany, volume 4590 of Lecture
Notes in Computer Science, pages 20–36. Springer-Verlag, 2007. (p. 39).

Rocco De Nicola and Frits W. Vaandrager. Action versus state based logics
for transition systems. In Irène Guessarian, editor, Semantics of Systems
of Concurrent Processes. Proceedings of the LITP Spring School on Theoretical
Computer Science, 23–27 April 1990, La Roche Posay, France, volume 469 of
Lecture Notes in Computer Science, pages 407–419. Springer-Verlag, 1990.
(p. 28).

Claudio Demartini, Radu Iosif, and Riccardo Sisto. dSpin: A dynamic
extension of Spin. In Dennis Dams, Rob Gerth, Stefan Leue, and
Mieke Massink, editors, Proceedings of the 5th and 6th International SPIN
Workshops, 5 July 1999, Trento, Italy and 21–24 September 1999, Tolouse,
France, volume 1680 of Lecture Notes in Computer Science, pages 261–276.
Springer-Verlag, 1999. (p. 46).

Stéphane Demri, François Laroussinie, and Philippe Schnoebelen. A para-
metric analysis of the state explosion problem in model checking. In
Helmut Alt and Afonso Ferreira, editors, Proceedings of the 19th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS), 14–16
March 2002, Antibes Juan-les-Pins, France, volume 2285 of Lecture Notes in
Computer Science, pages 620–631. Springer-Verlag, 2002. (p. 40).

Stéphane Demri, François Laroussinie, and Philippe Schnoebelen. A para-
metric analysis of the state-explosion problem in model checking. Jour-
nal of Computer and System Sciences, 72(4):547–575, 2006. (p. 40).

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Proving lineariz-
ability via non-atomic refinement. In Jim Davies and Jeremy Gibbons,
editors, Proceedings of the 6th International Conference on Integrated For-
mal Methods, 2–5 July 2007, Oxford, UK, volume 4591 of Lecture Notes in
Computer Science, pages 195–214. Springer-Verlag, 2007. (pp. 2, 95).

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Mechanizing a
correctness proof for a lock-free concurrent stack. In Gilles Barthe and
Frank S. de Boer, editors, Proceedings of the 10th IFIP WG 6.1 International
Conference on Formal Methods for Open Object-Based Distribution Systems

268 BIBLIOGRAPHY

(FMOODS), 4–6 June 2008, Oslo, Norway, volume 5051 of Lecture Notes in
Computer Science, pages 78–95. Springer-Verlag, 2008. (pp. 2, 95).

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Mechanically
verified proof obligations for linearizability. ACM Transactions on Pro-
gramming Languages and Systems, 33(1), 2011a. (p. 95).

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying lin-
earisability with potential linearisation points. In Michael J. Butler and
Wolfram Schulte, editors, Proceedings of the 17th International Symposium
on Formal Methods (FM), 20–24 June 2011, Limerick, Ireland, volume 6664
of Lecture Notes in Computer Science, pages 323–337. Springer-Verlag,
2011b. (p. 95).

David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite, Paul A.
Martin, Nir N. Shavit, and Guy L. Steele, Jr. Even better DCAS-based
concurrent deques. In Maurice P. Herlihy, editor, Proceedings of the
14th International Conference on Distributed Computing (DISC), 4–6 Octo-
ber 2000, Toledo, Spain, volume 1914 of Lecture Notes in Computer Science,
pages 59–73. Springer-Verlag, 2000. (pp. 2, 122, 133, 197).

Edsger W. Dijkstra. Cooperating sequential processes. http://www.cs.
utexas.edu/users/EWD/ewd01xx/EWD123.PDF, September 1965.
(p. 13).

Simon Doherty. Modelling and verifying non-blocking algorithms that
use dynamically allocated memory. M.Sc. thesis, Victoria University of
Wellington, 2003. (pp. 2, 123).

Simon Doherty. The Design and Verification of Dynamic-Sized Nonblocking
Data Structures. Ph.D. thesis, Victoria University of Wellington, 2010. (p.
2).

Simon Doherty and Mark Moir. Nonblocking algorithms and backward
simulation. In Idit Keidar, editor, Proceedings of the 23rd International
Symposium on Distributed Computing (DISC), 23–25 September 2009, Elche,
Spain, volume 5805 of Lecture Notes in Computer Science, pages 274–288.
Springer-Verlag, 2009. (p. 2).

Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H. Flood, Vic-
tor Luchangco, Paul A. Martin, Mark Moir, Nir N. Shavit, and Guy L.

http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

BIBLIOGRAPHY 269

Steele, Jr. DCAS is not a silver bullet for nonblocking algorithm design.
In Phillip B. Gibbons and Micah Adler, editors, Proceedings of the 16th
Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 27–30 June 2004, Barcelona, Spain, pages 216–224. ACM Press,
2004a. (p. 123).

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. For-
mal verification of a practical lock-free queue algorithm. In David
de Frutos-Escrig and Manuel Núñez, editors, Proceedings of the 24th IFIP
WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE), 27–30 September 2004, Madrid, Spain, vol-
ume 3235 of Lecture Notes in Computer Science, pages 97–114. Springer-
Verlag, 2004b. (pp. 2, 25, 95, 99, 124).

Simon Doherty, Maurice P. Herlihy, Victor Luchangco, and Mark Moir.
Bringing practical lock-free synchronization to 64-bit applications. In
Soma Chaudhuri and Shay Kutten, editors, Proceedings of the 23rd An-
nual ACM Symposium on Principles of Distributed Computing (PODC), 25–
28 July 2004, St John’s, Newfoundland, Canada, pages 31–39. ACM Press,
2004c. (p. 18).

Julian Dolby, Mandana Vaziri, and Frank Tip. Finding bugs efficiently with
a SAT solver. In Ivica Crnkovic and Antonia Bertolino, editors, Proceed-
ings of the 11th European Software Engineering Conference (ESEC) and the
15th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 3–7 September 2007, Dubrovnik, Croatia, pages 195–204.
ACM Press, 2007. (p. 3).

Alastair F. Donaldson and Alice Miller. Automatic symmetry detection for
model checking using computational group theory. In John Fitzgerald,
Ian J. Hayes, and Andrzej Tarlecki, editors, Proceedings of the International
Symposium of Formal Methods Europe (FME), 18–22 July 2005, Newcastle
upon Tyne, England, UK, volume 3582 of Lecture Notes in Computer Science,
pages 481–496. Springer-Verlag, 2005. (p. 42).

Alastair F. Donaldson and Alice Miller. A computational group theoretic
symmetry reduction package for the Spin model checker. In Michael
Johnson and Varmo Vene, editors, Proceedings of the 11th International
Conference on Algebraic Methodology and Software Technology (AMAST), 5–
8 July 2006, Kuressaare, Estonia, volume 4019 of Lecture Notes in Computer
Science, pages 374–380. Springer-Verlag, 2006. (pp. 42, 47, 129).

270 BIBLIOGRAPHY

Alastair F. Donaldson, Alice Miller, and Muffy Calder. Finding symme-
try in models of concurrent systems by static channel diagram analysis.
In Michael Huth, editor, Proceedings of the 4th International Workshop on
Automated Verification of Critical Systems (AVoCS), 4 September 2004, Lon-
don, England, UK, volume 128.6 of Electronic Notes in Theoretical Computer
Science, pages 161–177. Elsevier, 2005a. (p. 42).

Alastair F. Donaldson, Alice Miller, and Muffy Calder. Spin-to-Grape: A
tool for analysing symmetry in Promela models. In Irek Ulidowski, edi-
tor, Proceedings of the 6th AMAST Workshop on Real-Time Systems (ARTS),
12 July 2004, Stirling, Scotland, UK, volume 139.1 of Electronic Notes in
Theoretical Computer Science, pages 3–23. Elsevier, 2005b. (p. 42).

Brijesh Dongol. Formalising progress properties of non-blocking pro-
grams. In Zhiming Liu and Jifeng He, editors, Proceedings of the 8th Inter-
national Conference on Formal Engineering Methods (ICFEM), 1–3 November
2006, Macao, China, volume 4260 of Lecture Notes in Computer Science,
pages 284–303. Springer-Verlag, 2006. (pp. 115, 116).

Brijesh Dongol. Progress-Based Verification and Derivation of Concurrent Pro-
grams. Ph.D. thesis, University of Queensland, 2009. (pp. 115, 116).

Brijesh Dongol and Doug Goldson. Extending the theory of Owicki and
Gries with a logic of progress. Logical Methods in Computer Science, 2(1),
2006. (p. 115).

Brijesh Dongol and Ian J. Hayes. Enforcing safety and progress proper-
ties: An approach to concurrent program derivation. In Proceedings of
the 20th Australian Software Engineering Conference (ASWEC), 14–17 April
2009, Gold Coast, Australia, pages 3–12. IEEE Computer Society Press,
2009. (p. 2).

Brijesh Dongol and Arjan J. Mooij. Streamlining progress-based deriva-
tions of concurrent programs. Formal Aspects of Computing, 20(2):141–
160, 2008. (p. 2).

Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999. (p. 40).

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, pages 995–1072. Elsevier, 1990. (p. 29).

BIBLIOGRAPHY 271

E. Allen Emerson and Edmund M. Clarke. Characterizing correctness
properties of parallel programs using fixpoints. In Jaco W. de Bakker
and Jan van Leeuwen, editors, Proceedings of the 7th International Collo-
quium on Automata, Languages and Programming (ICALP), 14–18 July 1980,
Noordweijkerhout, The Netherlands, volume 85 of Lecture Notes in Computer
Science, pages 169–181. Springer-Verlag, 1980. (p. 32).

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
revisited: On branching versus linear time. In John R. Wright, Larry
Landweber, Alan Demers, and Tim Teitelbaum, editors, Proceedings of
the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), 24–26 January 1983, Austin, TX, USA, pages 127–140.
ACM Press, 1983. (p. 32).

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
revisited: On branching versus linear time temporal logic. Journal of the
Association for Computing Machinery, 33(1):151–178, 1986. (p. 32).

E. Allen Emerson and Chin-Laung Lei. Modalities for model checking:
Branching time strikes back. In Mary S. Van Deusen, Zvi Galil, and
Brian K. Reid, editors, Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), 14–16 January
1985, New Orleans, LA, USA, pages 84–96. ACM Press, 1985. (p. 32).

E. Allen Emerson and Chin-Laung Lei. Modalities for model checking:
Branching time logic strikes back. Science of Computer Programming, 8(3):
275–306, 1987. (p. 32).

E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking.
In Costas Courcoubetis, editor, Proceedings of the 5th International Confer-
ence on Computer Aided Verification (CAV), 28 June – 1 July 1993, Elounda,
Greece, volume 697 of Lecture Notes in Computer Science, pages 463–478.
Springer-Verlag, 1993. (p. 42).

E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking.
Formal Methods in System Design, 9(1/2):105–131, 1996. (p. 42).

E. Allen Emerson and Richard J. Trefler. From asymmetry to full sym-
metry: New techniques for symmetry reduction in model checking. In
Laurence Pierre and Thomas Kropf, editors, Proceedings of the 10th IFIP

272 BIBLIOGRAPHY

WG 10.5 Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME), 27–29 September 1999, Bad Her-
renalb, Germany, volume 1703 of Lecture Notes in Computer Science, pages
142–156. Springer-Verlag, 1999. (p. 42).

E. Allen Emerson and Thomas Wahl. On combining symmetry reduction
and symbolic representation for efficient model checking. In Daniel
Geist and Enrico Tronci, editors, Proceedings of the 12th IFIP WG 10.5
Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME), 21–24 October 2003, L’Aquila, Italy, vol-
ume 2860 of Lecture Notes in Computer Science, pages 216–230. Springer-
Verlag, 2003. (p. 42).

Keir Fraser. Practical Lock-freedom. Ph.D. thesis, University of Cambridge,
2003. Also available as Fraser [2004]. (p. 3).

Keir Fraser. Practical lock-freedom. Technical Report 579, Computer Lab-
oratory, University of Cambridge, 2004. (p. 272).

Keir Fraser and Timothy L. Harris. Concurrent programming without
locks. ACM Transactions on Computer Systems, 25(2), 2007. (p. 3).

Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic:
Mathematical Foundations and Computational Aspects, Volume 1. Claren-
don Press, 1994. (p. 29).

Hui Gao and Wim H. Hesselink. A formal reduction for lock-free parallel
algorithms. In Rajeev Alur and Doron A. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification (CAV), 13–
17 July 2004, Boston, MA, USA, volume 3114 of Lecture Notes in Computer
Science, pages 44–56. Springer-Verlag, 2004. (pp. 2, 110).

Hui Gao and Wim H. Hesselink. A general lock-free algorithm using
compare-and-swap. Information and Computation, 205(2):225–241, 2007.
(p. 116).

Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Almost wait-free re-
sizable hashtable. In Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS), 26–30 April 2004, Santa Fe, NM,
USA. IEEE Computer Society Press, 2004. (p. 2).

BIBLIOGRAPHY 273

Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Lock-free dynamic
hash tables with open addressing. Distributed Computing, 18(1):21–42,
2005. (p. 2).

Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings
of the 13th International Conference on Computer Aided Verification (CAV),
18–22 July 2001, Paris, France, volume 2102 of Lecture Notes in Computer
Science, pages 53–65. Springer-Verlag, 2001. (p. 36).

Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Piotr Dem-
binski and Marek Sredniawa, editors, Proceedings of the 15th IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification
(PSTV), 13–16 June 1995, Warsaw, Poland, volume 38 of IFIP Conference
Proceedings, pages 3–18. Chapman and Hall, 1995. (p. 36).

Dimitra Giannakopoulou and Flavio Lerda. From states to transitions:
Improving translation of LTL formulae to Büchi automata. In Doron A.
Peled and Moshe Y. Vardi, editors, Proceedings of the 22nd IFIP WG 6.1
International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE), 11–14 November 2002, Houston, TX, USA, volume 2529
of Lecture Notes in Computer Science, pages 308–326. Springer-Verlag,
2002. (p. 36).

Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philip-
pas Tsigas. Efficient and reliable lock-free memory reclamation based
on reference counting. In Proceedings of the 8th International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN), 7–9 December
2005, Las Vegas, NV, USA, pages 202–207. IEEE Computer Society Press,
2005. (p. 19).

Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philip-
pas Tsigas. Efficient and reliable lock-free memory reclamation based on
reference counting. IEEE Transactions on Parallel and Distributed Systems,
20(8):1173–1187, 2009. (p. 19).

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, volume 1032 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1996. (p. 41).

274 BIBLIOGRAPHY

Robert Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lec-
ture Notes. CSLI Publications, Stanford University, 2nd edition, 1992.
(pp. 28, 29).

Robert Goldblatt. Mathematical modal logic: A view of its evolution. Jour-
nal of Applied Logic, 1(5–6):309–392, 2003. (p. 29).

Robert Goldblatt. Mathematical modal logic: A view of its evolution. In
Dov M. Gabbay and John Woods, editors, Handbook of the History of Logic,
Volume 7: Logic and the Modalities in the Twentieth Century, pages 1–98.
Elsevier, 2006. (p. 29).

Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with
PVS. In Orna Grumberg, editor, Proceedings of the 9th International Con-
ference on Computer Aided Verification (CAV), 22–25 June 1997, Haifa, Israel,
volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer-
Verlag, 1997. (pp. 43, 76).

Michael Greenwald and David R. Cheriton. The synergy between non-
blocking synchronization and system design. In Karin Petersen and
Willy Zwaenepoel, editors, Proceedings of the 2nd USENIX Symposium
on Operating System Design and Implementation (OSDI), 29 October – 1
November 1996, Seattle, WA, USA, pages 123–136. ACM Press, 1996. (p.
1).

Lindsay Groves. Trace-based derivation of a lock-free queue algorithm. In
Eerke A. Boiten, John Derrick, and Graeme Smith, editors, Proceedings
of the BCS-FACS Refinement Workshop (REFINE), 2 July 2007, Oxford, UK,
volume 201 of Electronic Notes in Theoretical Computer Science, pages 69–
98. Elsevier, 2008a. (p. 2).

Lindsay Groves. Verifying Michael and Scott’s lock-free queue algorithm
using trace reduction. In James Harland and Prabhu Manyem, editors,
Proceedings of Computing: The Australasian Theory Symposium (CATS), 22–
25 January 2008, Wollongong, Australia, volume 77 of Conferences in Re-
search and Practice in Information Technology, pages 133–142. Australian
Computer Society, 2008b. (p. 2).

Lindsay Groves and Robert Colvin. Derivation of a scalable lock-free stack
algorithm. In Bernhard K. Aichernig, Eerke A. Boiten, John Derrick, and

BIBLIOGRAPHY 275

Lindsay Groves, editors, Proceedings of the International Refinement Work-
shop (REFINE), 31 October 2006, Macau, volume 187 of Electronic Notes in
Theoretical Computer Science, pages 55–74. Elsevier, 2006. (p. 2).

Orna Grumberg. Abstractions and reductions in model checking. In Hel-
mut Schwichtenberg and Ralf Steinbrüggen, editors, Proceedings of the
NATO Advanced Study Institute on Proof and System-Reliability, 24 July – 5
August 2001, Marktoberdorf, Germany, volume 62 of NATO Science Series
II, pages 289–322. Springer-Verlag, 2002a. (p. 44).

Orna Grumberg. Different directions in parallel and distributed model
checking. In Luboš Brim and Orna Grumberg, editors, Proceedings of
the 1st International Workshop on Parallel and Distributed Model Checking
(PDMC), 19 August 2002, Brno, Czech Republic, volume 68.4 of Electronic
Notes in Theoretical Computer Science, page 485. Elsevier, 2002b. (p. 3).

Orna Grumberg and Helmut Veith, editors. 25 Years of Model Checking: His-
tory, Achievements, Perspectives, volume 5000 of Lecture Notes in Computer
Science, 2008. Springer-Verlag. (pp. 27, 291).

Timothy L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Jennifer L. Welch, editor, Proceedings of the 15th International Con-
ference on Distributed Computing (DISC), 3–5 October 2001, Lisbon, Por-
tugal, volume 2180 of Lecture Notes in Computer Science, pages 300–314.
Springer-Verlag, 2001. (pp. 3, 135).

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word
Compare-and-Swap operation. In Dahlia Malkhi, editor, Proceedings of
the 16th International Conference on Distributed Computing (DISC), 28–30
October 2002, Toulouse, France, volume 2508 of Lecture Notes in Computer
Science, pages 265–279. Springer-Verlag, 2002. (p. 102).

Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In
Bernard Robinet and Reinhard Wilhelm, editors, Proceedings of the Euro-
pean Symposium on Programming (ESOP), 17–19 March 1986, Saarbrücken,
Federal Republic of Germany, volume 213 of Lecture Notes in Computer Sci-
ence, pages 187–196. Springer-Verlag, 1986. (p. 94).

Steve Heller, Maurice P. Herlihy, Victor Luchangco, Mark Moir, Nir N.
Shavit, and William N. Scherer, III. A lazy concurrent list-based set al-
gorithm. In James H. Anderson, Giuseppe Prencipe, and Roger Watten-
hofer, editors, Proceedings of the 9th International Conference on Principles of

276 BIBLIOGRAPHY

Distributed Systems (OPODIS), 12–14 December 2005, Pisa, Italy, volume
3974 of Lecture Notes in Computer Science, pages 3–16. Springer-Verlag,
2005. (pp. 92, 197).

Steve Heller, Maurice P. Herlihy, Victor Luchangco, Mark Moir, William N.
Scherer, III, and Nir N. Shavit. A lazy concurrent list-based set algo-
rithm. Parallel Processing Letters, 17(4):411–424, 2007. (pp. 92, 197).

Danny Hendler, Nir N. Shavit, and Lena Yerushalmi. A scalable lock-free
stack algorithm. In Phillip B. Gibbons and Micah Adler, editors, Proceed-
ings of the 16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 27–30 June 2004, Barcelona, Spain, pages 206–215.
ACM Press, 2004. (p. 102).

Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 11(1):124–149, 1991. (pp. 15, 116).

Maurice P. Herlihy. A methodology for implementing highly concurrent
data objects. ACM Transactions on Programming Languages and Systems,
15(5):745–770, 1993. (p. 2).

Maurice P. Herlihy and J. Eliot B. Moss. Lock-free garbage collection for
multiprocessors. In Proceedings of the 3rd Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 21–24 July 1991, Hilton Head,
CA, USA, pages 229–236. ACM Press, 1991. (p. 19).

Maurice P. Herlihy and J. Eliot B. Moss. Lock-free garbage collection for
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 3
(3):304–311, 1992. (p. 19).

Maurice P. Herlihy and Nir N. Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann Publishers, 2008. (p. 14).

Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL), 21–23 January 1987, Munich, West
Germany, pages 13–26. ACM Press, 1987. (p. 11).

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems, 12(3):463–492, July 1990. (pp. 1, 11).

BIBLIOGRAPHY 277

Maurice P. Herlihy, Victor Luchangco, Paul A. Martin, and Mark Moir.
Dynamic-sized lock-free data structures. In Aleta Ricciardi, editor, Pro-
ceedings of the 21st Annual Symposium on Principles of Distributed Comput-
ing (PODC), 21–24 July 2002, Monteray, CA, USA, page 131. ACM Press,
2002a. (p. 19).

Maurice P. Herlihy, Victor Luchangco, and Mark Moir. The repeat offender
problem: A mechanism for supporting dynamic-sized, lock-free data
structures. In Dahlia Malkhi, editor, Proceedings of the 16th International
Conference on Distributed Computing (DISC), 28–30 October 2002, Toulouse,
France, volume 2508 of Lecture Notes in Computer Science, pages 339–353.
Springer-Verlag, 2002b. (p. 19).

Maurice P. Herlihy, Victor Luchangco, and Mark Moir. Obstruction-
free synchronization: Double-ended queues as an example. In Jack
Stankovic, Wei Zhao, Philip McKinley, and Sol Shatz, editors, Proceed-
ings of the 23rd International Conference on Distributed Computing Sys-
tems (ICDCS), 19–22 May 2003, Providence, RI, USA, pages 522–529. IEEE
Computer Society Press, 2003. (p. 16).

Maurice P. Herlihy, Victor Luchangco, Paul A. Martin, and Mark Moir.
Nonblocking memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems, 23(2):146–196, 2005.
(p. 19).

Wim H. Hesselink. A criterion for atomicity revisited. Acta Informatica, 44
(2):123–151, 2007. (p. 95).

Gerard J. Holzmann. On limits and possibilities of automated protocol
analysis. In Harry Rudin and Colin H. West, editors, Proceedings of the
7th IFIP WG6.1 International Conference on Protocol Specification, Testing
and Verification (PSTV), 5–8 May 1987, Zürich, Switzerland, pages 339–
344. North-Holland, 1987. (p. 40).

Gerard J. Holzmann. An analysis of bit-state hashing. In Piotr Dembinski
and Marek Sredniawa, editors, Proceedings of the 15th IFIP WG6.1 Interna-
tional Symposium on Protocol Specification, Testing and Verification (PSTV),
13–16 June 1995, Warsaw, Poland, volume 38 of IFIP Conference Proceed-
ings, pages 301–314. Chapman and Hall, 1995. (p. 40).

Gerard J. Holzmann. The model checker Spin. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997. (p. 46).

278 BIBLIOGRAPHY

Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods in
System Design, 13(3):289–307, 1998. (p. 40).

Gerard J. Holzmann. The Spin Model Checker: Primer and reference manual.
Addison-Wesley, 2004. (pp. 27, 33, 46, 127, 130).

Gerard J. Holzmann and Dragan Bos̆nac̆ki. The design of a multicore ex-
tension of the SPIN model checker. IEEE Transactions on Software Engi-
neering, 33(10):659–674, 2007. (p. 46).

Gerard J. Holzmann and Doron A. Peled. An improvement in formal ver-
ification. In Dieter Hogrefe and Stefan Leue, editors, Proceedings of the
7th IFIP WG6.1 International Conference on Formal Description Techniques
(FORTE), 4–7 October 1994, Berne, Switzerland, volume 6 of IFIP Confer-
ence Proceedings, pages 197–211. Chapman and Hall, 1995. (p. 41).

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Tackling large verifica-
tion problems with the Swarm tool. In Klaus Havelund, Rupak Majum-
dar, and Jens Palsberg, editors, Proceedings of the 15th SPIN Workshop on
Model Checking Software, 10–12 August 2008, Los Angeles, CA, USA, vol-
ume 5156 of Lecture Notes in Computer Science, pages 134–143. Springer-
Verlag, 2008. (p. 36).

Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis for
pointer variables. In Richard L. Wexelblat, editor, Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 21–23 June 1989, Portland, OR,USA, pages 28–40. ACM Press,
1989. (p. 49).

Radu Iosif. Exploiting heap symmetries in explicit-state model checking of
software. In Debra J. Richardson, Martin Feather, and Michael Goedicke,
editors, Proceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE), 26–29 November 2001, San Diego, CA, USA,
pages 254–261. IEEE Computer Society Press, 2001. (pp. 42, 47).

Radu Iosif. Symmetry reduction criteria for software model checking. In
Dragan Bos̆nac̆ki and Stefan Leue, editors, Proceedings of the 9th Inter-
national SPIN Workshop, 11–13 April 2002, Grenoble, France, volume 2318
of Lecture Notes in Computer Science, pages 22–41. Springer-Verlag, 2002.
(pp. 42, 47).

BIBLIOGRAPHY 279

Radu Iosif. Symmetry reductions for model checking of concurrent dy-
namic software. International Journal on Software Tools for Technology
Transfer, 6(4):302–319, 2004. (pp. 42, 47).

Radu Iosif and Riccardo Sisto. Using garbage collection in model checking.
In Klaus Havelund, John Penix, and Willem Visser, editors, Proceedings
of the 7th International SPIN Workshop, 30 August – 1 September 2000, Stan-
ford, CA, USA, volume 1885 of Lecture Notes in Computer Science, pages
20–33. Springer-Verlag, 2000. (p. 47).

C. Norris Ip and David L. Dill. Better verification through symmetry. In
David Agnew, Luc J. M. Claesen, and Raul Camposano, editors, Proceed-
ings of the 11th IFIP WG10.2 International Conference on Computer Hardware
Description Languages and their Applications (CHDL), 26–28 April 1993, Ot-
tawa, Ontario, Canada, volume A-32 of IFIP Transactions, pages 97–111.
North-Holland, 1993. (p. 42).

C. Norris Ip and David L. Dill. Better verification through symmetry. For-
mal Methods in System Design, 9(1/2):41–75, 1996. (p. 42).

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2nd edition, 2012. (pp. 3, 123).

Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a soft-
ware design feature with a counterexample detector. IEEE Transactions
on Software Engineering, 22(7):484–495, 1996. (p. 3).

Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions
of LL/SC variables. In Elizabeth Borowsky and Sergio Rajsbaum, edi-
tors, Proceedings of the 22nd Annual Symposium on Principles of Distributed
Computing (PODC), 13–16 July 2003, Boston, MA, USA, pages 285–294.
ACM Press, 2003. (p. 18).

Prasad Jayanti and Srdjan Petrovic. Efficient wait-free implementation of
multiword LL/SC variables. In Ten H. Lai and Anish Arora, editors,
Proceedings of the 25th International Conference on Distributed Computing
Systems (ICDCS), 6–10 June 2005, Columbus, OH, USA, pages 59–68. IEEE
Computer Society Press, 2005. (p. 18).

Neil D. Jones and Steven S. Muchnick. Flow analysis and optimization of
LISP-like structures. In Alfred V. Aho, Stephen N. Zilles, and Barry K.

280 BIBLIOGRAPHY

Rosen, editors, Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL), 29–31 January 1979, San
Antonio, TX, USA, pages 244–256. ACM Press, 1979. (p. 49).

Neil D. Jones and Steven S. Muchnick. A flexible approach to interpro-
cedural data flow analysis and programs with recursive data structures.
In Richard DeMillo, editor, Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 25–27 January
1982, Albuquerque, NM, USA, pages 66–74. ACM Press, 1982. (p. 49).

Saul A. Kripke. Semantic analysis of modal logic (abstract). Journal of
Symbolic Logic, 24:323–324, 1959. (p. 28).

Saul A. Kripke. Semantical analysis of modal logic I. Normal modal propo-
sitional calculi. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 9:67–96, 1963. (p. 28).

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the As-
sociation for Computing Machinery, 47(2):312–360, 2000. (p. 34).

Edya Ladan-Mozes and Nir N. Shavit. An optimistic approach to lock-free
FIFO queues. In Rachid Guerraoui, editor, Proceedings of the 18th Interna-
tional Conference on Distributed Computing (DISC), 4–7 October 2004, Ams-
terdam, The Netherlands, volume 3274 of Lecture Notes in Computer Science,
pages 117–131. Springer-Verlag, 2004. (pp. 122, 126, 133, 197).

Edya Ladan-Mozes and Nir N. Shavit. An optimistic approach to lock-free
FIFO queues. Distributed Computing, 20(5):323–341, 2008. (pp. 122, 126,
133, 197).

Anthony LaMarca. A performance evaluation of lock-free synchronization
protocols. In James H. Anderson, David Peleg, and Elizabeth Borowsky,
editors, Proceedings of the 13th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 14–17 August 1994, Los Angeles, CA, USA,
pages 130–140. ACM Press, 1994. (p. 2).

Leslie Lamport. Concurrent reading and writing. Communications of the
ACM, 20(11):806–811, 1977. (p. 15).

Leslie Lamport. “Sometime” is sometimes “Not Never”. In Paul Abra-
hams, Richard Lipton, and Stephen Bourne, editors, Proceedings of the 7th

BIBLIOGRAPHY 281

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 28–30 January 1980, Las Vegas, NV, USA, pages 174–185.
ACM Press, 1980. (p. 32).

Leslie Lamport. Checking a multithreaded algorithm with +CAL. In
Shlomi Dolev, editor, Proceedings of the 20th International Symposium
on Distributed Computing (DISC), 18–21 September 2006, Stockholm, Swe-
den, volume 4167 of Lecture Notes in Computer Science, pages 151–163.
Springer-Verlag, 2006. (pp. 3, 135).

James Larus and Paul N. Hilfinger. Detecting conflicts between struc-
ture accesses. In Richard L. Wexelblat, editor, Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 20–24 June 1988, Atlanta, GA, USA, pages 24–31. ACM Press,
1988. (p. 49).

Tal Lev-Ami. TVLA: A framework for Kleene logic based static analyses.
M.Sc. thesis, Tel-Aviv University, 2000. (pp. 47, 67, 143).

Tal Lev-Ami and Mooly Sagiv. TVLA: A system for implementing static
analyses. In Jens Palsberg, editor, Proceedings of the 7th International Sym-
posium on Static Analysis (SAS), 29 June – 1 July 2000, Santa Barbara, CA,
USA, volume 1824 of Lecture Notes in Computer Science, pages 280–301.
Springer-Verlag, 2000. (p. 47).

Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting
static analysis to work for verification: A case study. In Debra J. Richard-
son and Mary Jean Harold, editors, Proceedings of the ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA), 21–24 Au-
gust 2000, Portland, OR, USA, pages 26–38. Association for Computing
Machinery, ACM Press, 2000. (p. 197).

Tal Lev-Ami, Roman Manevich, and Mooly Sagiv. TVLA: A system for
generating abstract interpreters. In René Jacquart, editor, Building the
Information Society, IFIP 18th World Computer Congress, Topical Sessions,
22–27 August 2004, Toulouse, France, pages 367–376. Kluwer, 2004. (p.
47).

Tal Lev-Ami, Neil Immerman, Thomas Reps, Mooly Sagiv, Siddharth Sri-
vastava, and Greta Yorsh. Simulating reachability using first-order logic
with applications to verification of linked data structures. Logical Meth-
ods in Computer Science, 5(2:12), 2009. (p. 76).

282 BIBLIOGRAPHY

Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Mary S. Van Deusen, Zvi
Galil, and Brian K. Reid, editors, Proceedings of the 12th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 14–
16 January 1985, New Orleans, LA, USA, pages 97–107. ACM Press, 1985.
(p. 33).

Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking lin-
earizability via refinement. In Ana Cavalcanti and Dennis Dams, edi-
tors, Proceedings of the 2nd World Congress on Formal Methods (FM), 2–6
November 2009, Eindhoven, The Netherlands, volume 5850 of Lecture Notes
in Computer Science, pages 321–337. Springer-Verlag, 2009. (pp. 92, 136).

Alexey Loginov, Thomas Reps, and Mooly Sagiv. Abstraction refinement
via inductive learning. In Kousha Etessami and Sriram K. Rajamani,
editors, Proceedings of the 17th International Conference on Computer Aided
Verification (CAV), 6–10 July 2005, Edinburgh, Scotland, volume 3576 of
Lecture Notes in Computer Science, pages 239–249. Springer-Verlag, 2005.
(p. 238).

Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Sad-
dek Bensalem. Property preserving abstractions for the verification of
concurrent systems. Formal Methods in System Design, 6(1):11–44, 1995.
(p. 44).

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
1996. (p. 95).

Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simula-
tions I: Untimed systems. Information and Computation, 121(2):214–233,
1995. (p. 93).

Roman Manevich, Mooly Sagiv, Ganesan Ramalingam, and John Field.
Partially disjunctive heap abstraction. In Roberto Giacobazzi, editor,
Proceedings of the 11th International Symposium on Static Analysis (SAS),
26–28 August 2004, Verona, Italy, volume 3148 of Lecture Notes in Com-
puter Science, pages 265–279. Springer-Verlag, 2004. (pp. 80, 181).

Roman Manevich, Josh Berdine, Byron Cook, Ganesan Ramalingam, and
Mooly Sagiv. Shape analysis by graph decomposition. In Orna Grum-
berg and Michael Huth, editors, Proceedings of the 13th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems

BIBLIOGRAPHY 283

(TACAS), 24 March – 1 April 2007, Braga, Portugal, volume 4424 of Lecture
Notes in Computer Science, pages 3–18. Springer-Verlag, 2007. (p. 81).

Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and
Josh Berdine. Heap decomposition for concurrent shape analysis. In
Marı́a Alpuente and Germán Vidal, editors, Proceedings of the 15th In-
ternational Symposium on Static Analysis (SAS), 16–18 July 2008, Valencia,
Spain, volume 5079 of Lecture Notes in Computer Science, pages 363–377.
Springer-Verlag, 2008. (pp. 81, 195, 196, 197).

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, 1991. (p. 111).

Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid,
and Martin Rinard. An evaluation of exhaustive testing for data struc-
tures. Technical Report MIT-LCS-TR-921, MIT Computer Science and
Artificial Intelligence Laboratory, September 2003. (p. 3).

Henry Massalin and Calton Pu. A lock-free multiprocessor OS ker-
nel. Technical Report CUCS-005-01, Computer Science Department,
Columbia University, October 1991. (pp. 2, 15).

Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Ph.D. thesis, Carnegie Mellon University, 1992. (p.
36).

Igor Melatti, Robert Palmer, Geoffrey Sawaya, Yu Yang, Robert M. Kirby,
and Ganesh Gopalakrishnan. Parallel and distributed model checking in
Eddy. In Antti Valmari, editor, Proceedings of the 13th SPIN Workshop on
Model Checking Software, 30 March – 1 April 2006, Vienna, Austria, volume
3925, pages 108–125. Springer-Verlag, 2006. (p. 3).

Maged M. Michael. Safe memory reclamation for dynamic lock-free ob-
jects using atomic reads and writes. In Aleta Ricciardi, editor, Proceed-
ings of the 21st Annual Symposium on Principles of Distributed Computing
(PODC), 21–24 July 2002, Monteray, CA, USA, pages 21–30. ACM Press,
2002. (p. 19).

Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):
491–504, 2004. (p. 19).

284 BIBLIOGRAPHY

Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In James E. Burns
and Yoram Moses, editors, Proceedings of the 15th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), 23–26 May 1996,
Philadelphia, PA, USA, pages 267–275. ACM Press, 1996. (pp. 19, 25, 122,
124, 133, 195).

Maged M. Michael and Michael L. Scott. Non-blocking algorithms and
preemption-safe locking on multiprogrammed shared memory multi-
processors. Journal of Parallel and Distributed Computing, 51(1):1–26, 1998.
(pp. 1, 21, 25, 122, 124, 133).

Lynette I. Millett and Tim Teitelbaum. Issues in slicing Promela and its ap-
plications to model checking, protocol understanding, and simulation.
International Journal on Software Tools for Technology Transfer, 2(4):343–349,
2000. (p. 42).

Mark Moir. Practical implementations of non-blocking synchronization
primitives. In James E. Burns and Hagit Attiya, editors, Proceedings of
the 16th Annual Symposium on Principles of Distributed Computing (PODC),
21–24 August 1997, Santa Barbara, CA, USA, pages 219–228. ACM Press,
1997. Correction in Moir [2001]. (p. 18).

Mark Moir. Correction: “Practical implementations of non-blocking syn-
chronization primitives”. In Ajay Kshemkalyani and Nir N. Shavit,
editors, Proceedings of the 20th Annual Symposium on Principles of Dis-
tributed Computing (PODC), 26–29 August 2001, Newport, RI, USA, page
323. ACM Press, 2001. (p. 284).

Markus Müller-Olm, David A. Schmidt, and Bernhard Steffen. Model-
checking: A tutorial introducton. In Agostino Cortesi and Gilberto Filé,
editors, Proceedings of the 6th International Symposium on Static Analysis
(SAS), 22–24 September 1999, Venice, Italy, volume 1694 of Lecture Notes
in Computer Science, pages 330–354. Springer-Verlag, 1999. (p. 28).

Sumit Nain and Moshe Y. Vardi. Branching vs linear time: Semantical per-
spective. In Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and
Yoshio Okamura, editors, Proceedings of the 5th International Symposium
on Automated Technology for Verification and Analysis (ATVA), 22–25 Octo-
ber 2007, Tōkyō, Japan, volume 4762 of Lecture Notes in Computer Science,
pages 19–34. Springer-Verlag, 2007. (p. 32).

BIBLIOGRAPHY 285

Johannes Oetsch, Michael Prischink, Jörg Pührer, Martin Schwengerer,
and Hans Tompits. On the small-scope hypothesis for testing answer-
set programs. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIl-
raith, editors, Proceedings of the 13th International Conference on Principles
of Knowledge Representation and Reasoning (KR), 10–14 June 2012, Rome,
Italy, pages 43–53. AAAI Press, 2012. (p. 3).

Sam Owre, John Rushby, Natarajan Shankar, and David W. J. Stringer-
Calvert. PVS: An experience report. In Dieter Hutter, Werner Stephan,
Paolo Traverso, and Markus Ullmann, editors, Proceedings of the Interna-
tional Workshop on Current Trends in Applied Formal Methods (FM-Trends),
7–9 October 1998, Boppard, Germany, volume 1641 of Lecture Notes in Com-
puter Science, pages 338–345. Springer-Verlag, 1998. (p. 95).

Doron A. Peled. Combining partial order reductions with on-the-fly
model-checking. In David L. Dill, editor, Proceedings of the 6th Interna-
tional Conference on Computer Aided Verification (CAV), 21–23 June 1994,
Stanford, CA, USA, volume 818 of Lecture Notes in Computer Science,
pages 377–390. Springer-Verlag, 1994. (p. 41).

Doron A. Peled. Combining partial order reductions with on-the-fly
model-checking. Formal Methods in System Design, 8(1):39–64, 1996. (p.
41).

Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups,
Logic and Games. Elsevier, 2004. (p. 34).

John Plevyak, Andrew A. Chien, and Vijay Karamcheti. Analysis of dy-
namic structures for efficient parallel execution. In Utpal Banerjee,
David Gelernter, Alexandru Nicolau, and David A. Padua, editors, Pro-
ceedings of the 6th International Workshop on Languages and Compilers for
Parallel Computing (LCPC), 12–14 August 1993, Portland, OR, USA, vol-
ume 768 of Lecture Notes in Computer Science, pages 37–56. Springer-
Verlag, 1993. (p. 49).

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS), 31 Octo-
ber – 2 November 1977, Providence, RI, USA, pages 46–57. IEEE Computer
Society Press, 1977. (pp. 29, 32).

Amir Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981. (p. 29).

286 BIBLIOGRAPHY

Amir Pnueli. Linear and branching structures in the semantics and logics
of reactive systems. In Wilfried Brauer, editor, Proceedings of the 12th In-
ternational Colloquium on Automata, Languages and Programming (ICALP),
15–19 July 1985, Nafplion, Greece, volume 194 of Lecture Notes in Computer
Science, pages 15–32. Springer-Verlag, 1985. (p. 32).

Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, ∞)-
counter abstraction. In Ed Brinksma and Kim G. Larsen, editors, Pro-
ceedings of the 14th International Conference on Computer Aided Verification
(CAV), 27–31 July 2002, Copenhagen, Denmark, volume 2404 of Lecture
Notes in Computer Science, pages 107–122. Springer-Verlag, 2002. (p. 43).

Sundeep Prakash, Yann Hang Lee, and Theodore Johnson. Non-blocking
algorithms for concurrent data structures. Technical Report 91-002, Uni-
versity of Florida, July, 1991. (p. 2).

Arthur N. Prior. Time and Modality. Oxford University Press, 1957. (p. 29).

Arthur N. Prior. Past, Present and Future. Clarendon Press, Oxford, 1967.
(p. 29).

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini and
Ugo Montanari, editors, Proceedings of the 5th International Symposium on
Programming, 6–8 April 1982, Torino, Italy, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer-Verlag, 1982. (p. 27).

Michel A. Reniers and Tim A. C. Willemse. Folk theorems on the cor-
respondence between state-based and event-based systems. In Ivana
Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav
Královic, Marko Vukolić, and Stefan Wolf, editors, Proceedings of the 37th
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), 22–28 January 2011, Nový Smokovec, Slovakia, volume 6543 of
Lecture Notes in Computer Science, pages 494–505. Springer-Verlag, 2011.
(p. 28).

Thomas Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of
logical formulas for static analysis. In Pierpaolo Degano, editor, Proceed-
ings of the 12th European Symposium on Programming (ESOP), 7–11 April
2003, Warsaw, Poland, volume 2618 of Lecture Notes in Computer Science,
pages 330–398. Springer-Verlag, 2003. (p. 81).

BIBLIOGRAPHY 287

Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Static program anal-
ysis via 3-valued logic. In Rajeev Alur and Doron A. Peled, editors,
Proceedings of the 16th International Conference on Computer Aided Verifi-
cation (CAV), 13–17 July 2004, Boston, MA, USA, volume 3114 of Lecture
Notes in Computer Science, pages 15–30. Springer-Verlag, 2004a. (p. 49).

Thomas Reps, Mooly Sagiv, and Greta Yorsh. Symbolic implementation of
the best transformer. In Bernhard Steffen and Giorgio Levi, editors, Pro-
ceedings of the 5th International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI), 11–13 January 2004, Venice, Italy, vol-
ume 2937 of Lecture Notes in Computer Science, pages 252–266. Springer-
Verlag, 2004b. (p. 76).

Thomas Reps, Mooly Sagiv, and Alexey Loginov. Finite differencing of
logical formulas for static analysis. ACM Transactions on Programming
Languages and Systems, 32(6), 2010. Article 24. (p. 81).

John C. Reynold. Separation logic: A logic for shared mutable data struc-
tures. In Samson Abramsky and Gordon D. Plotkin, editors, Proceedings
of the 17th IEEE Symposium on Logic in Computer Science (LICS), 22–25 July
2002, Copenhagen, Denmark, pages 55–74. IEEE Computer Society Press,
2002. (p. 2).

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. In Hans-
Juergen Boehm and Guy L. Steele, Jr, editors, Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 21–24 January 1996, St Petersburg Beach, FL, USA, pages
16–31. ACM Press, 1996. (p. 49).

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. ACM Trans-
actions on Programming Languages and Systems, 20(1):1–50, 1998. (p. 49).

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In Andrew Appel and Alex Aiken, editors,
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 20–22 January 1999, San Antonio, TX,
USA, pages 105–118. ACM Press, 1999. (p. 49).

288 BIBLIOGRAPHY

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming Languages
and Systems, 24(3):217–298, 2002. (pp. 4, 43, 49, 55, 57, 64, 66, 67, 70, 79,
80, 197).

Mooly Sagiv, Thomas Reps, Reinhard Wilhelm, and Eran Yahav. On the
utility of canonical abstraction. In Manfred Broy, Johannes Gruenbauer,
David Harel, and C. A. R. Hoare, editors, Proceedings of the NATO Ad-
vanced Study Institute on Engineering Theories of Software Intensive Systems,
3–15 August 2004, Marktoberdorf, Germany, volume 195 of NATO Science
Series II, pages 215–253. Springer-Verlag, 2005. (p. 49).

Philippe Schnoebelen. The complexity of temporal logic model checking.
In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Za-
kharyaschev, editors, Advanced in Modal Logic 4, pages 393–436. King’s
College Publications, 2003. (p. 33).

Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. A practical non-
blocking queue algorithm using Compare-and-Swap. In Masatoshi
Miyazaki and Makoto Takizawa, editors, Proceedings of the 7th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), 4–7 July
2000, Iwate, Japan, pages 470–475. IEEE Computer Society Press, 2000.
(pp. 2, 122, 133).

A. Prasad Sistla. Employing symmetry reductions in model checking.
Computer Languages, Systems and Structures, 30(3–4):99–137, 2004. (p. 42).

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional
linear temporal logics. Journal of the Association for Computing Machinery,
32(3):733–749, 1985. (pp. 39, 92).

A. Prasad Sistla and Patrice Godefroid. Symmetry and reduced symme-
try in model checking. ACM Transactions on Programming Languages and
Systems, 26(4):702–734, 2004. (p. 42).

A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: A symmetry-
based model checker for verification of safety and liveness properties.
ACM Transactions on Software Engineering and Methodology, 9(2):133–166,
2000. (p. 42).

Graeme Smith and John Derrick. Model checking downwards simula-
tions. In John Derrick and Eerke A. Boiten, editors, Proceedings of the

BIBLIOGRAPHY 289

BCS FACS Refinement Workshop (REFINE), 12 April 2005, Guildford, Eng-
land, UK, volume 137.2 of Electronic Notes in Theoretical Computer Science,
pages 205–224. Elsevier, 2005. (pp. 9, 95, 96).

Graeme Smith and John Derrick. Verifying data refinements using a model
checker. Formal Aspects of Computing, 18(3):264–287, 2006. (pp. 95, 96).

J. Michael Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd
edition, 1992. (p. 95).

Colin Stirling. Modal and temporal logics. In Samson Abramsky, Dov M.
Gabbay, and Thomas S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, Volume 2. Background: Computational Structures, pages 477–
563. Oxford University Press, 1992. (p. 29).

Janice M. Stone. A simple and correct shared-queue algorithm using
Compare-and-Swap. In Joanne L. Martin, editor, Proceedings of the 1990
ACM/IEEE Conference on Supercomputing (SC), 12–16 November 1990, New
York, NY, USA, pages 495–504. IEEE Computer Society Press, 1990. (p.
2).

Janice M. Stone. A nonblocking Compare-and-Swap algorithm for a
shared circular queue. In Spyros G. Tzafestas, Pierre Borne, and Lucio
Grandinetti, editors, Proceedings of the IMACS/IFAC International Sympo-
sium on Parallel and Distributed Computing in Engineering Systems, 23–28
June 1991, Corfu, Greece, pages 147–152. North-Holland, 1992. (p. 2).

Jan Stransky. A lattice for abstract interpretation of dynamic (LISP-like)
structures. Information and Computation, 101(1):70–102, 1992. (p. 49).

Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexi-
ble verificaton under fairness. In Ahmed Bouajjani and Oded Maler,
editors, Proceedings of the 21st International Conference on Computer Aided
Verification (CAV), 26 June – 2 July 2009, Grenoble, France, volume 5643 of
Lecture Notes in Computer Science, pages 709–714. Springer-Verlag, 2009.
(p. 136).

Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995. (p. 42).

290 BIBLIOGRAPHY

R. Kent Treiber. Systems programming: Coping with parallelism. Techni-
cal Report RJ 5118, IBM Almaden Research Centre, April 1986. (pp. 21,
122, 124, 133).

Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems. In
Arnold Rosenberg, editor, Proceedings of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 4–6 July 2001, Heraklion,
Greece, pages 134–143. ACM Press, 2001. (p. 2).

John Turek, Dennis Shasha, and Sundeep Prakash. Locking without block-
ing: Making lock based concurrent data structure algorithms nonblock-
ing. In Proceedings of the 11th ACM Symposium on Principles of Database
Systems (PODS), 2–4 June 1991, San Diego, CA, USA, pages 212–222.
ACM Press, 1992. (p. 2).

Viktor Vafeiadis. Modular Fine-Grained Concurrency Verification. Ph.D. the-
sis, University of Cambridge, 2007. Available as Vafeiadis [2008]. (p.
2).

Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical
Report 726, Computer Laboratory, University of Cambridge, 2008. (pp.
110, 290).

Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In
Neil D. Jones and Markus Müller-Olm, editors, Proceedings of the 10th In-
ternational Conference on Verification, Model Checking and Abstract Interpre-
tation (VMCAI), 18–20 January 2009, Savannah, GA, USA, volume 5403 of
Lecture Notes in Computer Science, pages 335–348. Springer-Verlag, 2009.
(pp. 2, 110).

Viktor Vafeiadis, Maurice P. Herlihy, C. A. R. Hoare, and Marc Shapiro.
Proving correctness of highly-concurrent linearisable objects. In Josep
Torrellas and Siddhartha Chatterjee, editors, Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 29–31 March 2006, New York City, NY, USA, pages 129–136.
ACM Press, 2006. (p. 92).

John Valois. Implementing lock-free queues. In Proceedings of the 7th Inter-
national Conference on Parallel and Distributed Computing Systems (PDCS),
6–8 October 1994, Las Vegas, NV, USA, pages 64–69. International Society
for Computers and their Applications, 1994. (p. 2).

BIBLIOGRAPHY 291

John Valois. Lock-free linked lists using Compare-and-Swap. In James H.
Anderson, editor, Proceedings of the 14th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 20–23 August 1995, Ottawa, On-
tario, Canada, pages 214–222. ACM Press, 1995. (p. 2).

Moshe Y. Vardi. Linear vs branching time: A complexity-theoretic perspec-
tive. In John Mitchell and Vaughan Pratt, editors, Proceedings of the 13th
IEEE Symposium on Logic in Computer Science (LICS), 21–24 June 1998, In-
dianapolis, IN, USA, pages 394–405. IEEE Computer Society Press, 1998a.
(p. 32).

Moshe Y. Vardi. Sometimes and Not Never re-revisited: On branching ver-
sus linear time. In Davide Sangiorgi and Robert de Simone, editors, Pro-
ceedings of the 9th International Conference on Concurrency Theory (CON-
CUR), 8–11 September 1998, Nice, France, volume 1466 of Lecture Notes in
Computer Science, pages 1–17. Springer-Verlag, 1998b. (p. 32).

Moshe Y. Vardi. Branching vs linear time: Final showdown. In Tiziana
Margaria and Wang Yi, editors, Proceedings of the 7th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2–6 April 2001, Genova, Italy, volume 2031 of Lecture Notes in
Computer Science, pages 1–22. Springer-Verlag, 2001. (p. 32).

Moshe Y. Vardi. From Church and Prior to PSL. In Grumberg and Veith
[2008], pages 150–171. (p. 29).

Moshe Y. Vardi. From monadic logic to PSL. In Arnon Avron, Nachum
Dershowitz, and Alexander M. Rabinovich, editors, Pillars of Computer
Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages
656–681. Springer-Verlag, 2008b. (p. 29).

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the 1st Symposium on
Logic in Computer Science (LICS), 16–18 June 1986, Cambridge, MA, USA,
pages 332–344. IEEE Computer Society Press, 1986. (p. 34).

Shobha Vasudevan, E. Allen Emerson, and Jacob A. Abraham. Efficient
model checking of hardware using conditioned slicing. In Michael
Huth, editor, Proceedings of the 4th International Workshop on Automated

292 BIBLIOGRAPHY

Verification of Critical Systems (AVoCS), 4 September 2004, London, Eng-
land, UK, volume 128.6 of Electronic Notes in Theoretical Computer Science,
pages 279–294. Elsevier, 2005. (p. 42).

Martin T. Vechev, Eran Yahav, and Greta Yorsh. Experience with model
checking linearizability. In Corina S. Păsăreanu, editor, Proceedings of the
16th International SPIN Workshop on Model Checking Software, 26–28 June
2009, Grenoble, France, volume 5578 of Lecture Notes in Computer Science,
pages 261–278. Springer-Verlag, 2009. (p. 135).

Edward Yan-Bing Wang. Analysis of Recursive Types in an Imperative Lan-
guage. Ph.D. thesis, University of California, Berkeley, 1994. (p. 49).

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
A brief survey of program slicing. ACM SIGSOFT Software Engineering
Notes, 30(2), March 2005. (p. 42).

Eran Yahav. Verifying safety properties of concurrent Java programs us-
ing 3-valued logic. In Chris Hankin and David A. Schmidt, editors,
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 17–19 January 2001, London, England,
UK, pages 27–40. ACM Press, 2001. (pp. 47, 64, 76, 77).

Eran Yahav. Property-Guided Verification of Concurrent Heap-Manipulating
Programs. Ph.D. thesis, University of Tel-Aviv, 2004. (pp. 47, 76, 77).

Eran Yahav and Mooly Sagiv. Automatically verifying concurrent queue
algorithms. In Byron Cook, Scott Stoller, and Willem Visser, editors,
Proceedings of the 2nd Workshop on Software Model Checking (SoftMC), 14
July 2003, Boulder, CO, USA, volume 89.3 of Electronic Notes in Theoretical
Computer Science, pages 450–463. Elsevier, 2003. (p. 195).

Eran Yahav and Mooly Sagiv. Verifying safety properties of concurrent
heap-manipulating programs. ACM Transactions on Programming Lan-
guages and Systems, 32(5), 2010. Article 18. (pp. 64, 76).

Eran Yahav, Thomas Reps, and Mooly Sagiv. LTL model checking for sys-
tems with unbounded number of dynamically created threads and ob-
jects. Technical Report 1424, Computer Sciences Department, University
of Wisconsin, Madison, March 2001. (p. 237).

BIBLIOGRAPHY 293

Eran Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verify-
ing temporal heap properties specified via evolution logic. In Pierpaolo
Degano, editor, Proceedings of the 12th European Symposium on Program-
ming (ESOP), 7–11 April 2003, Warsaw, Poland, volume 2618 of Lecture
Notes in Computer Science, pages 204–222. Springer-Verlag, 2003. (p. 237).

Eran Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verifying
temporal heap properties specified via evolution logic. Logic Journal of
the Interest Group in Pure and Applied Logics, 14(5):755–783, 2006. (p. 237).

Greta Yorsh, Thomas Reps, and Mooly Sagiv. Symbolically computing
most-precise abstract operations for shape analysis. In Kurt Jensen and
Andreas Podelski, editors, Proceedings of the 10th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 29 March – 2 April 2004, Barcelona, Spain, volume 2988 of Lec-
ture Notes in Computer Science, pages 530–545. Springer-Verlag, 2004. (p.
76).

Greta Yorsh, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Logical
characterizations of heap abstractions. ACM Transactions on Computa-
tional Logic, 8(1), 2007. (p. 76).

Shao Jie Zhang and Yang Liu. Model checking a lazy concurrent list-based
set algorithm. In Proceedings of the 4th International Conference on Secure
Software Integration and Reliability Improvement (SSIRI), 9–11 June 2010,
Singapore, pages 43–52. IEEE Computer Society, 2010. (p. 136).

Shao Jie Zhang, Yang Liu, Jun Sun, Jin Song Dong, Wei Chen, and Yan-
hong A. Liu. Formal verification of Scalable NonZero Indicators. In
Proceedings of the 21st International Conference on Software Engineering and
Knowledge Engineering (SEKE), 1–3 July 2009, Boston, MA, USA, pages
406–411, Skokie, IL, USA, 2009. Knowledge Systems Institute. ISBN 1-
891706-24-1. (p. 136).

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Nonblocking Concurrency
	Model Checking
	Bounded Verification
	Unbounded Verification
	Outline

	I Background
	Nonblocking Data Structures
	Concurrent Data Structures
	Linearisability
	Mutual Exclusion
	Nonblocking Progress Properties
	Wait-freedom
	Lock-freedom
	Obstruction-freedom

	Nonblocking Synchronization
	Compare-and-Swap
	Load-Linked, Store-Conditional
	ABA Problem
	Memory Management

	Algorithms
	Lock-free Stack
	Lock-free Unbounded Queue

	Model Checking
	Systems
	Specifications
	CTL*
	LTL
	CTL
	Linear- versus Branching-time

	Model Checking Paradigms
	Explicit State Model Checking
	BDD-Based Symbolic Model Checking
	Bounded Model Checking

	Tackling the State Explosion Problem
	Bitstate hashing
	Partial order reduction
	Slicing
	Symmetry reduction

	Abstraction
	Constructing Abstract Models

	Tools
	Spin
	SAL
	TVLA/3VMC

	Canonical Abstraction
	Canonical Abstraction
	States as Logical Structures
	Embeddings
	Canonical Abstraction

	Properties
	Syntax
	Semantics
	Embedding Theorem

	Refining Abstractions
	Integrity Rules
	Instrumentation Predicates

	Abstract Transitions
	Focus Operation
	Coerce Operation
	Compatibility constraints
	Coerce algorithm

	Update
	New objects

	Example
	Initial State
	Focus
	Coerce
	Update
	Coerce
	Blur

	Computing the Best Abstract Transition

	Concurrent Systems
	States
	Transitions
	Unschedule
	Schedule

	Improvements
	Summary Predicate
	Partially Disjunctive Analysis
	Coerce
	Instrumentation Predicate Updates
	Graph Decomposition

	II Modelling and Testing
	Model Checking Nonblocking Algorithms
	Modelling Data Structures
	Transition Systems
	Creating Finite Systems
	Bounded Parameters
	Unbounded Abstract Models

	Manual Statespace Reduction
	Resetting Unused Values
	Reducing Interleaving

	Specifying Linearisability
	Concurrent Specifications
	Linearisation Points
	Simulation
	Use of Simulation

	Direct Trace Inclusion
	Future Nondeterminism
	Backwards analysis
	Prophecy variables
	Multiple Linearisation Points

	Merging the Specification

	Specifying Nonblocking Properties
	Wait-freedom
	Lock-freedom
	Thread-level view

	Obstruction-freedom
	Related Work

	Bounded Verification
	Checking Linearisability
	Example
	Minimal Counterexamples
	Confidence in Bounded Verification
	Verification Limits
	Spin Reduction
	Symmetry Reduction

	Checking Nonblocking Properties
	Example
	Minimal Counterexamples
	Confidence in Bounded Verification
	Verification Limits

	Related Work
	Conclusion

	III Verification
	Canonical Abstraction for Linearisability
	Basic Stack Model
	Three-Valued Model
	Core Predicates
	Integrity Rules
	Instrumentation Predicates
	Reachability and circularity
	Has-a-field
	Referenced-by-field
	Shared

	Preserving Linearisability Information
	Matching Values
	Ordered Values
	Hanging Head

	(Un)bounded Threads
	Bounded Threads
	Thread Field Properties
	Snapshots
	Data Values

	Initial State
	Additional Compatibility Constraints
	Reachability Predicates
	Geometric Predicates

	Stack Results
	Stack Variations
	TVLA Changes
	Isomorphic State Comparison
	TVLA 2

	Definitions
	Unnecessary Instrumentation Predicates
	Pure Initial State
	Named Threads
	Thread Bounding Constraint

	Full Interleaving

	Queue Models
	Three-Valued Models
	Core Predicates
	Instrumentation Predicates

	Results

	Related Work
	Conclusion

	Collapsing Threads Safely with Soft Invariants
	Overview
	Instrumentation Predicates
	Selection of Predicates
	Compatibility Constraints

	Stack Models
	Changes to the Model
	Collapse
	Null Equivalence

	Soft Invariants
	Interleaved Locations
	Non-interleaved Locations

	Results
	Full Interleaving
	Soft Invariants
	Results

	Extra Predicates

	Queue Models
	Changes to the model
	Full interleaving
	Ordered snapshots

	Soft Invariants
	Enqueue
	Simplified Dequeue
	Original Dequeue
	Restricted Interleaving

	Results

	Conclusion

	IV Conclusion
	Conclusion
	Bounded Verification
	Future Research

	Unbounded Verification
	Future Research

	Proofs of Canonical Abstraction Compatibility Constraints
	Assumptions
	Soft Invariants
	Single predicate
	Conditional property

	Linear
	To null
	Same 1
	Same 2
	Ordered

	Geometric
	Triangle 1
	Triangle 2
	Square 1
	Square 2
	Square 3

	Reachability
	No self loop
	No loop back
	No loop to head
	Unreachable
	Chain

	Bibliography

