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Abstract

Detection of continuous and connected edges is very important in many

applications, such as detecting oil slicks in remote sensing and detecting

cancers in medical images. The detection of such edges is a hard problem

particularly in noisy images and most edge detection algorithms suffer

from producing broken and thick edges in such images. The main goal of

this thesis is to reduce broken edges by proposing an optimisation model

and a solution method in order to detect edges in noisy images.

This thesis suggests a new approach in the framework of particle swarm

optimisation (PSO) to overcome noise and reduce broken edges through

exploring a large area and extracting the global structure of the edges. A

fitness function is developed based on the possibility score of a curve be-

ing fitted on an edge and the curvature cost of the curve with two con-

straints. Unlike traditional algorithms, the new method can detect edges

with greater continuity in noisy images. Furthermore, a new truncation

method within PSO is proposed to truncate the real values of particle po-

sitions to integers in order to increase the diversity of the particles.

This thesis also proposes a local thresholding technique for the PSO-

based edge detection algorithm to overcome the problem of detection of

edges in noisy images with illuminated areas. The local thresholding tech-

nique is proposed based on the main idea of the Sauvola-Pietkinen method

which is a way of binarisation of illuminated images. It is observed that

the new local thresholding can improve the performance of the PSO-based

edge detectors in the illuminated noisy images.

Since the performance of using static topologies in various applications

and in various versions of PSO is different , the performance of six differ-

ent static topologies (fully connected, ring, star, tree-based, von Neumann



and toroidal topologies) within three well-known versions of PSO (Canon-

ical PSO, Bare Bones PSO and Fully Informed PSO) are also investigated

in the PSO-based edge detector. It is found that different topologies have

different effects on the accuracy of the PSO-based edge detector.

This thesis also proposes a novel dynamic topology called spatial ran-

dom meaningful topology (SRMT) which is an adoptation version of a

gradually increasing directed neighbourhood (GIDN). The new dynamic

topology uses spatial meaningful information to compute the neighbour-

hood probability of each particle to be a neighbour of other particles. It

uses this probability to randomly select the neighbours of each particle at

each iteration of PSO. The results show that the performance of the pro-

posed method is higher than that of other topologies in noisy images in

terms of the localisation accuracy of edge detection.



Produced Publications

1. M. Setayesh, M. Zhang, and M. Johnston, “A novel particle swarm

optimisation approach to detecting continuous, thin and smooth edges

in noisy images,” Information Sciences, 2012, accepted with minor

changes.

2. M. Setayesh, M. Zhang, and M. Johnston, “A spatial random-meaningful

neighbourhood topology in PSO for edge detection in noisy images,”

in Proceedings of the 14th Annual Conference on Genetic and Evolutionary

Computation, 2012, pp. 1403–1404.

3. M. Setayesh, M. Zhang, and M. Johnston, “Effects of static and dy-

namic topologies in particle swarm optimisation for edge detection

in noisy images,” in Proceedings of the 2012 IEEE Congress on Evolu-

tionary Computation. IEEE Press, 2012, pp. 8–15.

4. M. Setayesh, M. Zhang, and M. Johnston, “A novel local threshold-

ing technique in PSO for detecting continuous edges in noisy im-

ages,” in Proceedings of the 26th International Conference on Image and

Vision Computing, New Zealand. IEEE Press, 2011, pp. 333–339.

5. M. Setayesh, M. Zhang, and M. Johnston, “Investigating particle swarm

optimisation topologies for edge detection in noisy images,” in Pro-

ceedings of 24th Australasian Joint Conference on Artificial Intelligence,

ser. Lecture Notes in Computer Science, vol. 7106. Springer, 2011,

pp. 609–618.

iii



iv

6. M. Setayesh, M. Zhang, and M. Johnston, “Detection of continuous,

smooth and thin edges in noisy images using constrained particle

swarm optimisation,” in Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation, 2011, pp. 45–52.

7. M. Setayesh, M. Zhang, and M. Johnston, “Edge detection using

constrained discrete particle swarm optimisation in noisy images,”

in Proceedings of the 2011 IEEE Congress on Evolutionary Computation.

IEEE Press, 2011, pp. 246–253.

8. M. Setayesh, M. Zhang, and M. Johnston, “Improving edge detection

using particle swarm optimisation,” in Proceedings of the 25th Interna-

tional Conference on Image and Vision Computing, New Zealand. IEEE

Press, 2010, pp. 1–8.

9. M. Setayesh, M. Johnston, and M. Zhang, “Edge and corner extrac-

tion using particle swarm optimisation,” in AI 2010: Advances in Ar-

tificial Intelligence, ser. Lecture Notes in Computer Science, J. Li, Ed.

Springer Berlin / Heidelberg, 2011, vol. 6464, pp. 323–333.

10. M. Setayesh, M. Zhang, and M. Johnston, “A new homogeneity-

based approach to edge detection using PSO,” in Proceedings of the

24th International Conference on Image and Vision Computing, New Zealand.

IEEE Press, 2009, pp. 231–236.



Acknowledgments

It is time to express my highest thanks to my surpervisor, Prof. Megnjie

Zhang for his non-stop and relentless support in helping me succeed in

completing my PhD studies in computer science at Victoria University of

Wellington. I also extend my highest appreciation to my second supervi-

sor, Dr. Mark Johnston. I greatly appreciate their patience and hard work

in the past three years while I was finishing my thesis.

I must acknowledge the financial assistance of Victoria University of

Wellington (Victoria PhD Scholarships) during these three years.

I was so privileged to be next to my wife who has been helping me

morally and intellectually during these three years. I would also like to of-

fer my special thanks to my parents and my family-in-law who supported

me in every step of this process to reach to this excellence.

v



vi



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Why Particle Swarm Optimisation? . . . . . . . . . . . . . . . 4

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 13

2.1 Image Processing and Image Analysis . . . . . . . . . . . . . 13

2.2 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Image Differentiation . . . . . . . . . . . . . . . . . . . 18

2.3.2 2D Discrete Differentiation . . . . . . . . . . . . . . . 20

2.3.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Smoothing using Convolution . . . . . . . . . . . . . 25

2.3.5 Edge Labelling . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Edge Detection Algorithms . . . . . . . . . . . . . . . . . . . 30

2.4.1 First Derivative-based Edge Detectors . . . . . . . . . 31

2.4.2 Zero Crossing Edge Detectors . . . . . . . . . . . . . . 31

2.4.3 Gaussian-based Edge Detectors . . . . . . . . . . . . . 32

2.4.4 Multi-scale based Edge Detectors . . . . . . . . . . . . 36

vii



viii CONTENTS

2.4.5 Statistical-based Edge Detectors . . . . . . . . . . . . 38

2.4.6 Transform-based Edge Detectors . . . . . . . . . . . . 40

2.4.7 Soft Computing Approaches . . . . . . . . . . . . . . 42

2.4.8 Coloured Edge Detectors . . . . . . . . . . . . . . . . 44

2.4.9 Edge Linking Techniques . . . . . . . . . . . . . . . . 44

2.4.10 Objective Evaluation of Edge Detectors . . . . . . . . 45

2.5 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . 48

2.5.1 Computational Intelligence and Evolutionary Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Swarm-based Algorithms . . . . . . . . . . . . . . . . 52

2.5.3 Particle Swarm Optimisation . . . . . . . . . . . . . . 54

2.6 Swarm Intelligence for Edge Detection . . . . . . . . . . . . . 56

2.6.1 ACO-based Edge Detectors . . . . . . . . . . . . . . . 57

2.6.2 Gravitational Approach to Edge Detection . . . . . . 59

2.6.3 PSO-based Edge Detectors . . . . . . . . . . . . . . . 59

2.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . 60

3 Image Sets 63

3.1 Real Image Set of South Florida University . . . . . . . . . . 63

3.2 Standard Artificial and Real Image Set of University of Cor-

doba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Images with Impulse and Gaussian Noise . . . . . . . . . . . 64

3.3.1 Additive Noise . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Impulse Noise . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Edge Detection using PSO 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Edge Detection Algorithms . . . . . . . . . . . . . . . . . . . 73

4.2.1 Revised Versions of the Canny Algorithm . . . . . . . 73

4.2.2 Robust Rank Order-based Edge Detector . . . . . . . 75



CONTENTS ix

4.3 The New PSO-Based Approaches . . . . . . . . . . . . . . . . 78

4.3.1 Encoding Scheme . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 A Fitness Function . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Otsu’s Method for Estimation of TH . . . . . . . . . . 88

4.4 Two Proposed PSO-based Algorithms . . . . . . . . . . . . . 89

4.4.1 Truncation Method for Discrete PSO . . . . . . . . . . 92

4.4.2 Preservation of Feasible Continuous Edges . . . . . . 93

4.4.3 Penalising Infeasible Continuous Edges . . . . . . . . 93

4.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.1 Image Sets . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2 Quantitative Performance Measure . . . . . . . . . . 99

4.5.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . 99

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 Subjective/Qualitative Comparison . . . . . . . . . . 102

4.6.2 Objective/Quantitative Comparison . . . . . . . . . . 104

4.6.3 Discussion on Parameter Values . . . . . . . . . . . . 106

4.6.4 Comparison of the Two Proposed Algorithms . . . . 111

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 A Local Thresholding Technique in PSO 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Thresholding Techniques . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Global Thresholding Techniques . . . . . . . . . . . . 117

5.2.2 Local Thresholding Techniques . . . . . . . . . . . . . 119

5.3 New Local Thresholding Technique . . . . . . . . . . . . . . 120

5.3.1 Different Degrees of Integral Images . . . . . . . . . . 121

5.3.2 Calculation of Local Features using Different Degrees

of Integral Images . . . . . . . . . . . . . . . . . . . . 122

5.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Image Sets . . . . . . . . . . . . . . . . . . . . . . . . . 123



x CONTENTS

5.4.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . 123

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 125

5.5.1 Subjective/Qualitative Comparison . . . . . . . . . . 125

5.5.2 Objective/Quantitative Comparison . . . . . . . . . . 125

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Static Topologies for PSO-based Method 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Three Well-Known PSO Methods . . . . . . . . . . . . . . . . 133

6.2.1 Canonical PSO (CanPSO) . . . . . . . . . . . . . . . . 133

6.2.2 Bare Bones PSO (BBPSO) . . . . . . . . . . . . . . . . 134

6.2.3 Fully Informed Particle Swarm (FIPS) . . . . . . . . . 134

6.3 A Classification of PSO Neighbourhood Topologies . . . . . 135

6.4 Static Topologies . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5.1 Image Set . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5.2 Parameter Values . . . . . . . . . . . . . . . . . . . . . 142

6.6 Results and Quantitative Comparison . . . . . . . . . . . . . 142

6.6.1 Results on Static Topologies within CanPSO . . . . . 142

6.6.2 Results on Static Topologies within BBPSO . . . . . . 143

6.6.3 Results on Static Topologies within FIPS . . . . . . . . 147

6.6.4 Comparison of CanPSO, BBPSO and FIPS with the

Best Topology . . . . . . . . . . . . . . . . . . . . . . . 151

6.7 Example of Detected Edge Maps . . . . . . . . . . . . . . . . 157

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Spatial Random-Meaningful Topology 159

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Dynamic Neighbourhood Topologies . . . . . . . . . . . . . . 161

7.2.1 Random Topology . . . . . . . . . . . . . . . . . . . . 161



CONTENTS xi

7.2.2 Gradually Increasing Directed Neighbourhood (GIDN)162

7.3 Novel Dynamic Topology . . . . . . . . . . . . . . . . . . . . 164

7.3.1 New Spatial Random-Meaningful Topology (SRMT) 164

7.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.1 Image Set . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.2 Parameter Values . . . . . . . . . . . . . . . . . . . . . 168

7.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 168

7.5.1 Results on Dynamic Topologies . . . . . . . . . . . . . 168

7.5.2 Comparison Between Static and Dynamic Topologies 173

7.5.3 Examples of Detected Edge Maps . . . . . . . . . . . 173

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Conclusions and Future Work 177

8.1 Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . . 177

8.2 PSO for Edge Detection . . . . . . . . . . . . . . . . . . . . . . 179

8.3 Local Thresholding Technique . . . . . . . . . . . . . . . . . . 180

8.4 Static Topologies for the PSO-based Method . . . . . . . . . . 181

8.5 Dynamic Spatial Random-Meaningful Topology . . . . . . . 182

8.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.6.1 Edge Detection in Coloured Images . . . . . . . . . . 183

8.6.2 Low Speed of the PSO-based Edge Detector . . . . . 184

8.7 Future Research Directions . . . . . . . . . . . . . . . . . . . . 184

8.7.1 PSO-based Edge Detector for Coloured Images . . . . 185

8.7.2 Handling the Constraints in the Proposed Optimisa-

tion Solution . . . . . . . . . . . . . . . . . . . . . . . . 185

8.7.3 A Topology with Weighted Connections . . . . . . . . 186

8.7.4 Further Investigation with More Images . . . . . . . . 186

A Sigmoid Function 211

B Detailed Results from Chapters 6 and 7 213



xii CONTENTS



Chapter 1

Introduction

In many computer vision systems, orientation and intensity information

about edges in images are used as inputs for further processing to detect

objects. Precise information about edges is vital to the success of such sys-

tems [1]. Information about edges is widely used in image segmentation,

image registration, image classification and pattern recognition. Hence,

detection of exact edges is a very important part of image processing algo-

rithms [2].

From an application-level view, an edge detection algorithm is one

which could be able to provide continuous contours of the object bound-

aries [1]. However, the computations required to establish these continu-

ous contours would be very time consuming and complex. From a pixel-

level view, the edges are the areas of an image where the pixel intensities

undergo a sharp change. These areas shape the contours which represent

the boundary of objects. Although many edge detection algorithms have

been proposed in the literature over the past three decades to improve pre-

cision of recognized edges, they still suffer from producing broken edges

[3]. Noise phenomena is the most important obstacle to the detection of

continuous edges [4]. It causes some variation of pixel intensities and ac-

cordingly reduces the performance of an edge detection algorithm in noisy

images. Another important barrier which complicates the operation of

1
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(a) (b) (c) (d)

(e) (g) (h) (i)

Figure 1.1: Some results of traditional and soft computing-based edge

detectors applied to Lena image (a) original Lena image, (b) fuzzy-

based edge detector [6], (c) ant colony-based edge detector [7], (d) neural

network-based edge detector [8], (e) genetic-based edge detector [9], (f)

Sobel edge detector, (g) Canny edge detector [10] and robust rank-order

[11].

edge detection is illumination phenomena which causes the magnitude of

the edges in the illuminated areas to become weak [5]. Since most edge

detection algorithms utilise a thresholding technique to classify a pixel as

an edge or non-edge based on its magnitude, a pixel with a weak magni-

tude may be recognised as non-edge and accordingly the edges become

broken.

Traditional edge detection algorithms are very fast but they cannot per-

form well on noisy images and usually produce broken edges or noise

spots. Advanced edge detection algorithms, which usually utilise soft

computing techniques such as neural networks and support vector ma-

chines for edge detection, are highly problem-dependent and domain spe-
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cific [12]. Examples of edge maps resulting from some edge detection al-

gorithms are illustrated in Figure 1.1. These algorithms are applied to the

Lena image (a) which is clean without any noise. There are several illumi-

nated areas in this image. As can be seen from this figure, although their

performance is acceptable in the areas highlighted by green ovals, they

cannot perform well and generate broken edges and speckles in the areas

highlighted by red ovals. If noise is added to the Lena image, the number

of broken edges and speckles is increased.

This thesis proposes a novel optimisation methodology that uses a

Particle Swarm Optimisation (PSO) algorithm for edge detection in noisy

images. The new methodology addresses the problem of broken edges

in noisy images through developing fitness functions, particle encoding

schemes and information exchanging mechanisms among particles.

1.1 Motivation

In spite of human knowledge about the edge concept, there is no compre-

hensive definition for it. The edge can have different meanings in various

contexts. Accordingly, different edge detection algorithms can recognise

edges in different forms of representation and each of them can be con-

sidered as a genuine edge detection algorithm based on the definition of

their interest. For example, in an edge detection algorithm, an edge can

be (1) a single pixel with a local discontinuity in intensity [1], (2) a contour

which links such edge pixels and shapes the boundary of an object [13] or

(3) a boundary which divides an area of an image into two regions [2]. Ac-

cording to these definitions, the complexity of an edge detection algorithm

varies, and the way by which the edges are recognised is different.

Most edge detection algorithms process a single pixel on an image at a

time and calculate a value which shows the edge magnitude of the pixel,

and the edge orientation. Then a thresholding technique is utilised to

recognise whether or not the pixel is an edge. After applying the thresh-
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olding technique, the result will be a binary image which indicates the lo-

cation of all existing edges on the original image. The resulting edge maps

are usually examined either by an objective index measure through com-

paring with ground truth images [14] or by human eyes through compar-

ing with original images [2]. Since the edges detected by these algorithms

are not usually linked and accordingly there is no relation among the edge

pixels, most applications utilise a linking technique, e.g., the Hough trans-

form. However, the linking process in such techniques cannot be perfect

except for the edges on simple shapes such as circles or lines. If the main

goal of an edge linking technique is to join edge pixels and remove all iso-

lated edge pixels which are usually created by noise or digitising images,

existing edge linking techniques are sufficient to address this problem.

However, if the goal is to detect an edge to be as continuous as possible,

traditional edge linking techniques are not a good choice because very few

of them can effectively utilise any characteristics of the edge pixels other

than their position, orientation and magnitude [15].

Most recent research papers in the area of edge detection have been

devoted to developing algorithms that could overcome the noise phenom-

ena. Unfortunately, most of these algorithms have a side effect of pro-

ducing broken edges [3]. Therefore, an edge detector is required to de-

tect the edges with greater continuity in noisy images and reduce the

shortcomings of traditional edge detectors such as the Gaussian-based and

statistical-based edge detection algorithms.

1.2 Why Particle Swarm Optimisation?

Most edge detection algorithms use the information from a small area to

detect a pixel as an edge. This means that a limited area is considered

in these algorithms to mark a pixel of an image as an edge. Area size

has a strong effect on accuracy: the larger the area, the less the sensitivity

to noise, but at the same time, the localisation accuracy is lower. If we
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want to increase the localisation accuracy of the algorithm, we need to

consider all edge patterns. However, this increases the computation time

exponentially [16]. Therefore a heuristic algorithm is required to explore

a large area to overcome the noise and consider the global structure of

the edges to reduce broken edges in a reasonable time. Particle Swarm

Optimisation (PSO) as a heuristic algorithm has good potential for edge

detection, but has so far never been applied.

There are some general and particular advantages in using PSO for

edge detection in comparison with other heuristic algorithms. The most

important general advantages of PSO, which make it attractive for re-

searchers, are:

1. High speed of convergence: there are two main reasons which make

PSO faster than other heuristic algorithms. The first is the use of the

topology that defines how particles are connected to each other as an

information sharing mechanism. Once a better position is found by

a particle, the information of the better position is quickly transfered

to the other particles which are connected through the topology. This

allows all particles to rapidly converge to a local optimum. The sec-

ond is the use of the velocity concept to calculate the new position of

each particle. For these reasons, the PSO algorithm has a higher rate

of convergence compared to other heuristic algorithms.

2. The ease of the implementation: PSO is easy to implement due to

simplicity of its process.

3. Fewer operators: PSO has one simple operator, the velocity calcula-

tion. Other heuristic algorithms have often more than one operator.

4. A limited memory for each particle: there are two types of memory,

cognitive and social, which influence the movement of the particles.

The cognitive memory saves the best previous position visited by

each particle and the social memory keeps the position of the best
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point in search space visited by all swarm particles. These two mem-

ory types allow the particles to retain knowledge acquired so far in

spite of being updated periodically.

Particular advantages of the use of PSO for edge detection in noisy

images include:

1. The speed of an edge detection algorithm is important in many ap-

plications. Therefore edges as low-level features must be detected in

a reasonable time. An edge detection algorithm also needs to explore

a large area of an image to overcome noise and consider all edge pat-

terns to increase edge localisation accuracy. The high speed of PSO

in convergence makes it a good candidate for edge detection.

2. Since PSO does not use the gradient information of the functions be-

ing optimised, it has a high capability to optimise noisy functions

[17]. Parsopoulos and Vrahatis [18] experimentally showed that PSO

in the presence of noise is very stable and efficient. The results in-

dicated that the presence of noise can help PSO to avoid local opti-

mum and detect the global optimum of an objective function. They

also showed that even in the cases where the noise level is high, PSO

may move closer to the position of the global optimum. PSO has

been successfully applied to many problems in noisy environments,

such as noise cancellation in images [19], vision tracking [20] and im-

age segmentation [21]. It is very likely that PSO can deal with noise

in edge detection.

1.3 Goals

The overall goal of this thesis is to investigate the capability of PSO for

edge detection. We will develop a particle swarm optimisation-based (PSO)
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approach to improving edge detection to deal with noise and reduce bro-

ken edges. This thesis aims to investigate a novel approach to the detection

of edges with greater continuity in noisy images using PSO.

This thesis concentrates on using the PSO algorithm to handle the edge

detection better than conventional vision approaches in noisy environ-

ments through exploring a large area and extracting the global structure

of the edge without any pre-processing (such as using a smoothing tech-

nique as a noise removal filter) or post-processing algorithms (such as a

linking technique).

To achieve the overall goal stated above, this thesis focuses on five ma-

jor aspects within the PSO system:

1. Developing a new PSO-based approach to detecting edges with greater

continuity in noisy images and comparing it with conventional edge

detection methods.

2. Developing a constrained PSO-based algorithm for edge detection.

3. Improving efficiency of the newly developed algorithm through de-

veloping a novel local thresholding technique.

4. Investigating the effects of different static topologies in PSO for edge

detection in noisy images.

5. Developing a novel dynamic topology in PSO in order to improve

the effectiveness of the new PSO-based edge detector.

To achieve these goals, this thesis focuses on finding answers to the

following research question:

How can PSO be used to explore a large area in order to over-

come noise and extract the global structure of an edge in or-

der to detect edges with greater continuity?
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To address the goal of developing a novel PSO approach, we intend to

focus on developing a new fitness function and a new encoding scheme for

edge detection in noisy images. When the goal is to use a constrained PSO,

we need to use constraint handling methods in PSO in order to improve

the efficiency and effectiveness of the PSO-based edge detector. When the

goal is to develop a novel local thresholding technique, we intend to fo-

cus on local features to estimate a threshold value for the PSO-based edge

detector. In the two last goals, we aim to investigate the effect of using

different static and dynamic topologies in PSO as a mechanism of infor-

mation sharing among particles and develop a novel dynamic topology to

increase the effectiveness of the algorithm.

1.4 Major Contributions

The major contributions of this thesis are:

1. The thesis proposes a novel optimisation approach to detecting edges

with a greater continuity in noisy images. Unlike many existing edge

detection algorithms that usually process a single pixel at a single

run without considering the global structure of the edges, the pro-

posed system recognises a continuous edge as a sequence of con-

nected pixels in order to decrease the number of broken edges and

explore a larger area in comparison to the traditional edge detection

algorithms in order to reduce the effect of noise. A collection of fit-

ness functions along with different encoding schemes are proposed

for PSO and applied to different synthetic and real noisy images. Our

results show that the proposed algorithm significantly improves the

accuracy of edge detection in noisy images in comparison to the tra-

ditional methods. The results have been published in [22][23][24].

2. The thesis proposes two constrained PSO-based algorithms in order

to increase the accuracy of edge detection in noisy images. Two con-



1.4. MAJOR CONTRIBUTIONS 9

straint handling methods are investigated, and their performance is

compared with each other in terms of efficiency and effectiveness.

The results show that the PSO-based edge detector with a penalising

method is more efficient than when it is equipped with a preserva-

tion method [25][26].

3. The thesis proposes a novel local thresholding technique which is

used inside the PSO-based edge detector. The novel technique is

based on an existing image binarisation method with a high perfor-

mance in illuminated noisy images. The results show that the per-

formance of the PSO-based edge detector equipped with the local

thresholding technique is higher than when it uses a global thresh-

olding technique [27].

4. The thesis investigates the effect of using different static topologies

in three well-known versions of PSO when they are applied to edge

detection in noisy images. The results show that different topolo-

gies have different effects on the accuracy of three versions of PSO

which use different information sharing mechanisms among parti-

cles [28][29].

5. The thesis finally proposes a novel dynamic topology as an infor-

mation sharing mechanism in order to increase the accuracy of the

PSO-based edge detector. The novel topology is compared with sev-

eral existing static and dynamic topologies. The results show that

the novel topology can share information among particles in a more

effective way in comparison to other existing topologies and accord-

ingly increase the accuracy of the PSO-based edge detector [30].
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1.5 Thesis Organisation

1.5.1 Structure

The main contribution chapters of this thesis are presented in Chapters

4–7. Each chapter in this thesis correspondingly addresses a major goal

(aspect) described in Section 1.3 (except that Chapter 4 addresses the first

two aspects). Each chapter follows a similar high-level structure. Each

chapter starts with an introduction and background followed by the pro-

posed algorithms. Then the proposed algorithm is examined against the

traditional algorithms followed by a discussion on the empirical results.

1.5.2 Outline

The outline of this thesis is as follows:

• Chapter 2: Literature Review

This chapter reviews important existing edge detection algorithms

followed by a discussion of their strengths and limitations. The fun-

damental concepts of edge detection are covered followed by the

main concepts of optimisation and swarm intelligence. It also covers

the main concepts of particle swarm optimisation and its applica-

tions in image processing and computer vision.

• Chapter 3: Image Sets

This chapter presents the image sets which are used in all experi-

ments throughout this thesis. In this chapter, impulse and Gaussian

noise generators are described in detail.

• Chapter 4: Novel Edge Detection Algorithms Robust to Noise using PSO

In this chapter, a novel edge detection algorithm is introduced and

designed to be robust to noise and reduce the broken edges. The

newly developed algorithm is compared to the state-of-the art edge

detectors by subjective and objective methods. This chapter shows
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how PSO explores a large area to consider the global structure of

the edges and detect them with greater continuity through a suitable

particle encoding and an effective fitness function. The sensitivity of

the new PSO-based algorithm to noise (Gaussian noise and impulse

noise in different noise levels) is tested and compared with that of

traditional edge detectors. In this chapter, two well-known appli-

cable constraint handling methods are used within the PSO-based

edge detector and their performance is examined in terms of effi-

ciency and effectiveness.

• Chapter 5: Novel Thresholding Technique for the PSO-based Edge Detector

This chapter proposes a novel local thresholding technique which

uses local features extracted from an area of an image to estimate a

required threshold value for the PSO-based edge detector. The accu-

racy of the PSO-based edge detector equipped with the novel local

topology is compared with a well-known global thresholding tech-

nique as the state-of-the-art.

• Chapter 6: Investigating Effects of Static Topologies on Accuracy

In this chapter, the effects of using different static topologies within

three well-known versions of PSO are investigated. This chapter

shows how the information sharing mechanism among particles can

affect the accuracy of the PSO-based edge detector when it uses the

mechanisms proposed in these three versions.

• Chapter 7: A Novel Spatial-Random Dynamic Topology

This chapter proposes a novel topology which uses spatial infor-

mation in order to more effectively share information among par-

ticles. The novel topology is compared with well-known dynamic

and static topologies in terms of the accuracy of the PSO-based edge

detector.

• Chapter 8: Conclusions and Future Work
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The conclusions from the experiments are reviewed and overall con-

clusions are drawn in this chapter. Future research directions are also

discussed in this chapter.



Chapter 2

Literature Review

This chapter reviews some general concepts of image processing, image

analysis and computer vision followed by the fundamental concepts of

feature and edge detection related to this thesis. This chapter also gives

a brief introduction to edge detection algorithms which have been devel-

oped in different frameworks, the importance of edge detection in image

analysis and computer vision, and then an overview of evolutionary com-

putation techniques as well as swarm intelligence and particle swarm op-

timisation. This chapter will also give a brief introduction to some edge

linking techniques and some common objective approaches to assessing

the edge detection algorithms. This chapter also discusses the limitations

of existing methods for edge detection in noisy images and supports the

motivation of the thesis.

2.1 Image Processing, Image Analysis and Com-

puter Vision

Vision is the most significant of the human senses. It is obvious that im-

ages play an important role in human perception. However, human vision

can only cover visual bands of the electromagnetic spectrum, whereas ma-

13
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chine vision covers the whole of the electromagnetic range from gamma

to radio waves such as X-ray images in medicine and gamma-ray images

taken by satellites. Therefore, computer imaging encompasses wide and

various domains of applications [2].

The field of digital image processing usually refers to processing of a

digital image through a digital computer. A digital image is composed

of some finite image elements each of which has a particular value and

location. These elements are named image elements, pels (sub-pixels) or

picture elements (pixels) [2]. Pixel is the common term that is widely used

to indicate elements of the image.

There is no general agreement among researchers where the image pro-

cessing boundary starts and the boundary of other related research areas

such as computer vision and image analysis stops. Some authors define

image processing as a discipline in which both input and output of a pro-

cess are an image. This definition is a limiting and somewhat artificial

boundary [1]. For example, even the average intensity of an image, which

yields a single number, would therefore not be considered an image pro-

cessing operation. Another definition divides all related processes in these

areas into three different levels: low, mid and high-levels. Low-level pro-

cesses include low-level tasks such as image preprocessing to decrease

the noise, image sharpening and enhancing. In this level, processes are

characterised by the fact that both input and output are images. Mid-

level processes involve operations such as segmentation (partitioning an

image into objects and region) and the description of those objects to re-

duce them to a suitable form for classification and object recognition tasks.

These sorts of processes are characterised by the fact that inputs of the pro-

cesses are usually images, but their outputs are attributes which are ex-

tracted from the images. These attributes can be information about edges,

contours or individual and simple objects. High-level processes include

operations in which the object of interest is completely recognised based

on those attributes [31]. Under this definition, image processing involves
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Figure 2.1: Computer imaging.

all low-level operations and some mid-level tasks, whereas computer vi-

sion includes some mid-level tasks along with all high-level operations. In

fact, image analysis has a considerable overlap with image processing and

computer vision as shown in Figure 2.1.

Image processing includes some operations for image enhancement

and low-level feature detection. Outputs of all image enhancement algo-

rithms are images which can be seen by human eyes. Low-level features

are features which are detected by image processing algorithms. These

features can be basic features such as edges, lines, curvatures, corners and

other kinds of interest points which can be used as inputs in mid or high-

level processing algorithms.

The aim of image analysis is to extract meaningful features from image

data in order to reduce computational processing cost in higher level pro-

cesses. Image analysis can be considered as a data reduction process and

its operations usually focus on reducing image data [2]. Its operations are

divided into two categories: global operations and local operations. The

local operations are those that operate locally and extract data based on a

smaller area. Global operations are those that operate globally and extract

data based on all pixels of an image [32]. The image analysis process can

be broken into three steps as shown in Figure 2.2.

Computer vision is the highest level of the computer imaging process

[13]. It is used widely in a variety of real world applications, which include
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Figure 2.2: Three steps of the image analysis process.

the following examples (edge detection algorithms have been utilised in

these chosen samples).

• Optical character recognition (OCR): widely used in digital library

in order to digitise documents and books [33], in detection of vehi-

cle number plates [34], and in recognition of handwritten characters

[35].

• Machine inspection: fast machine-based inspection used for quality

assurance without human participation, e.g., defect detection in steel

casting using X-ray vision [36].

• Automated checkout lane: in many shops (e.g. supermarkets), there

are automated checkout lanes in which an object recognition system

is applied to identify items bought by a customer [13].

• Photogrammetry: one of the widely used computer vision applica-

tions is 3D model building, e.g., Bing maps (http://www.bing.com)

[13].

• Medical imaging: registering pre-operative and intra-operative im-

agery, or performing long-term studies of human brain morphology

with ageing [37]

• Safety in automotive industries: detection of unexpected objects such

as a pedestrian or any other obstacle while driving, where active vi-

sion techniques like radar do not work well [38][39].
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• Surveillance: monitoring pedestrians, vehicles on highways, or peo-

ple in shops [40].

• Fingerprint recognition and biometric-based security systems: used

for automatic access control systems, as well as forensic identifica-

tion [41].

2.2 Feature Detection

The initial input of a computer vision system is an image. This image often

includes too much data to be processed, so meaningful features need to be

extracted from the image to reduce the size of the data to be processed. Ex-

tracted features from an image might be low-level or high-level. In com-

puter vision and image processing, low-level feature detection refers to

methods which are utilised to compute an abstraction of image data and

making a decision at each point whether or not there is a specified image

feature in that point. Low-level features are basic features that are auto-

matically extracted from an image without having any information about

existing shapes in the image [42]. High-level features refer to those fea-

tures which contain information about shapes and components of objects

occurring in an image. These components and shapes could be eyes, nose,

and ears in a face detection system [43] or wheels, headlights and tail-

lights in a vehicle detection system [44]. These features are typically used

for high-level tasks such as object classification.

2.3 Edge Detection

Edge detection as low-level feature detection is one of the critical elements

in image processing, because there is a high proportion of image informa-

tion on edges. The main function of edge detection is to find the bound-

aries of image regions, based on properties such as intensity and texture
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[11]. While applying an edge detector to an image considerably reduces

the amount of the data to be processed, it still preserves the main shape

of the objects present in an image. The shape of edges depends on many

parameters, such as geometrical and optical properties of an image, illu-

mination conditions and noise level in the image [45]. The edge detection

process typically results in a edge map which is usually a binary image.

This image describes the classification of each pixel of the image, as well

as some other edge attributes such as magnitude and orientation [46].

Edge detection algorithms often utilise three different operations in

order to generate an edge map. These operations generally include (1)

smoothing and noise reduction, (2) image differentiation (calculating edge

magnitudes and their orientations) and (3) labelling steps. At the first step,

a smoothing technique is used to reduce noise and regularise the image for

numerical differentiation. At the second step, discrete image differentia-

tion is often applied to the image to calculate desired derivatives. Finally,

a labelling operation is used to classify the pixels on the image as edges

or non-edges. This section presents the background knowledge necessary

for the reader to understand the main concepts of these three operations

in edge detection.

2.3.1 Image Differentiation

The calculation of the first and second order derivatives of an image are

the most popular image differentiation techniques in edge detection [47].

Let G(x, y) : R × R → R be a function to represent the image intensity

of a pixel on an analogue image at location (x, y). To calculate the first

derivative of G along direction ~r, the partial derivatives of G with respect

to x and y are used as:

∂G

∂r
=
∂G

∂x

∂x

∂r
+

∂G

∂y

∂y

∂r
= Gxcos(ϕ) +Gysin(ϕ)

Gx =
∂G

∂x
, Gy =

∂G

∂y
(2.1)
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where r is a parameter along the direction represented by ~r and ϕ is the

angle between ~r and axis x. So x = rcos(ϕ) and y = rsin(ϕ). The gra-

dient of G (∇G ), by definition, is a vector with the same direction as the

maximum directional derivative for which

∂

∂ϕ

(

∂G

∂r

)

= 0.

So its direction and magnitude are computed as follows [48]:

ϕ∇ = arctan(
Gy

Gx

) (2.2)

|∇G| =
√

Gx
2 +Gy

2 (2.3)

According to the definition of the gradient, edge pixels are where their

modulus of the gradient is maximum and the gradient direction is orthog-

onal to the direction of the contour on these pixels. Since the edge de-

tection algorithms based on the definition of gradient give the maximum

response when they are aligned with the orthogonal direction of the edges,

these algorithms are directional.

Edge detection algorithms based on second order derivatives utilise

one of two frequently used operators, i.e, the second derivative along the

direction of the gradient and the Laplacian operator. The second deriva-

tive of G along direction ~r is calculated as:

∂2G

∂r2
=

Gx
2Gxx + 2GxGyGxy +Gy

2Gyy

Gx
2 +Gy

2 (2.4)

Gxx =
∂2G

∂x2
, Gyy =

∂2G

∂y2
, Gxy =

∂2G

∂x∂y

The Laplacian of G (∇2G), which is defined as Equation (2.5), is an

approximation of the second order derivative along the direction of the

gradient [47].

∇2G = Gxx +Gyy (2.5)
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There are at least three main advantages of using the Laplacian in com-

parison to the second derivative along the gradient direction. First, the

computation of the Laplacian is simple because it is sum of its two sec-

ond order derivatives. Second, in opposite to ∂/∂r2 which is non-linear,

the Laplacian operator is linear. Finally, it is a non-directional operator.

Accordingly, the Laplacian operator does not need to determine the most

appropriate direction which is required by most operators [2].

2.3.2 2D Discrete Differentiation

All 2D digital images are represented by 2D arrays of pixels which are

quantified samples. When the differentiation concepts are applied to the

digital images, we encounter at least two problems. The first problem is

how to calculate image differentiation in the digital images. In these im-

ages, we need to calculate a discrete approximation of the differential op-

erators. The second problem is the amplification of high frequency noise

when a differentiation operator is applied to the digital images [2]. Several

solutions have been proposed to address these two problems. This section

presents some of these solutions.

A digital image, obtained from sampling and quantization of an ana-

logue image G, is defined as function I which is a mapping X × Y
I−→ P

where X = {0, 1, . . . , Nc−1}, Y = {0, 1, . . . , Nr−1} and P = {0, 1, . . . , Np}.
Here, Nc is the number of columns in the image, Nr is the number of its

rows and Np is the maximum intensity level of the pixels of the image.

The calculation of the first differences along the main axes, x and y is one

of easiest ways to estimate the first order derivatives Gx and Gy [42]:

Gx(c, r) ≅ Ix(c, r) = I(c, r)− I(c+ 1, r) (2.6)

Gy(c, r) ≅ Iy(c, r) = I(c, r)− I(c, r + 1)

where Ix(c, r) and Iy(c, r) are the approximations of Gx(c, r) and Gy(c, r)
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respectively. These operators are often denoted as masks, such as:

Ix = Mx

[

I(c, r)

I(c+ 1, r)

]

, Iy =
[

I(c, r) I(c, r + 1)
]

My

Mx =
[

1 −1
]

, My =

[

1

−1

] (2.7)

As can bee seen in Equation (2.7), this operator is not symmetric. In

this equations, the bold value shows the origin of the masks. To avoid this

problem, an odd number of mask elements is usually used to define the

mask as:

Mx =
[

1 0 −1
]

, My =







1

0

−1







Roberts, Prewitt, Sobel and Frei-Chen are four other commonly used

first order derivative approximations along two main perpendicular axes

[49][50][1] which are defined as follows:

Roberts:

M1 =

[

0 +1

−1 0

]

, M2 =

[

+1 0

0 −1

]

(2.8)

Prewitt:

Mx =







−1 0 +1

−1 0 +1

−1 0 +1






, My =







+1 +1 +1

0 0 0

−1 −1 −1






(2.9)

Sobel:

Mx =







−1 0 +1

−2 0 +2

−1 0 +1






, My =







+1 +2 +1

0 0 0

−1 −2 −1






(2.10)
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Frei-Chen:

Mx =







−1 0 +1

−
√
2 0 +

√
2

−1 0 +1






, My =







+1 +
√
2 +1

0 0 0

−1 −
√
2 −1






(2.11)

Except the mask in Equation (2.7), all other masks above are odd and

approximate the first derivative along two perpendicular axes [42]. The

Roberts operator estimates the first derivative along the axes rotated 45

degrees with respect to the usual orientation of the column and row. To

apply these operators, an internal product between the mask of interest

(Mα) and image I is used as follows:

Mα(c, r) =
∑

i

∑

j

I(c+ i, r + j). Hαji
(2.12)

Here, α is the direction of interest which is either 1 or 2 for the Robert

operator, and either x or y for all other operators; Hαji is element of row

j and column i of mask mα. Note that the element, being represented in

bold in mask Mα, corresponds to element (i = 0, j = 0).

Although two directional derivatives are enough to calculate the gra-

dient, there are several operators which use more than two directional

derivatives for noise suppression reasons. In these operators, the gradient

is approximated by the directional derivative with the highest magnitude.

The Kirsch operator [51] is one of the most well-known operators which

have more than two masks as follows:

ME → =







−3 −3 +5

−3 0 +5

−3 −3 +5






, MNE ր =







−3 +5 +5

−3 0 +5

−3 −3 −3







MN ↑ =







+5 +5 +5

−3 0 −3
−3 −3 −3






, MNW տ =







+5 +5 −3
+5 0 −3
−3 −3 −3







(2.13)
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Here, ME , MNE , MN and MNW denote the masks in direction east, north

east, north and north west respectively (see the arrows in Equation (2.13).

Masks MNE and MNW are generated by the rotation of 45 degrees of masks

ME and MN correspondingly.

Second differences can be used to approximate the second order deriva-

tives in a similar way as first differences for the estimation of the first order

derivatives [42]. The second differences along the main axes are defined

as:

Gxx ≅ Ixx(c, r) = Ix(c− 1, r)− Ix(c, r) (2.14)

= I(c− 1, r)− 2I(c, r) + I(c+ 1, r)

Gyy ≅ Iyy(c, r) = Iy(c, r − 1)− Iy(c, r)

= I(c, r − 1)− 2I(c, r) + I(c, r + 1)

These approximations can be represented by the following masks:

Mxx =







0 0 0

+1 –2 +1

0 0 0






, Myy =







0 +1 0

0 –2 0

0 +1 0






(2.15)

According to the definition of the Laplacian in Equation (2.5), its dis-

crete approximation can be calculated as:

Mxx+yy = Mxx +Myy =







0 +1 0

+1 –4 +1

0 +1 0






(2.16)

2.3.3 Convolution

Convolution is generally operated on two signals, and measures the over-

lap of one signal (G) with another delayed or shifted signal (H) [2]. The

continuous version of the 2D convolution operator ⋆ is defined as:

[G ⋆ H](s, t) =

∫ +∞

−∞

∫ +∞

−∞
G(c, r)H(s− c, t− r)dcdr. (2.17)
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Figure 2.3: Discrete 2D Convolution (adapted from [2]).

In the field of image processing, the convolution operator is a multi-purpose

filter which can produce different effects by various convolution kernels.

Convolving an image with different kernels or masks produces different

results. For example, a uniform kernel behaves as a box filter, averaging,

smoothing or noise removal filter. The convolution operator with a differ-

ence kernel acts as an edge detector (compare Equations (2.12) and (2.18)).

A discrete version of the convolution operator in 2D for functions I and h

is given by

[I ⋆ h](s, t) =
W−1
∑

c=0

H−1
∑

r=0

I(c, r)h(s− c, t− r) (2.18)

Here, I is the function representing the original image and h is the convo-

lution kernel; W and H is the width and height of the image. The convo-

lution calculates a new value for each pixel by adding the weighted values

of all its surrounding pixels together as can be seen in Figure 2.3.

Since most edge detection operators are sensitive to noise, they typi-

cally need to use an image from which noise has been removed or reduced.

As depicted in Figure 2.4, the first derivative of a function corrupted by
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f(x)

d
dx
f(x)

Figure 2.4: First derivative of a function corrupted by noise adapted from

[2].

noise cannot localise a step edge within the function.

To reduce or remove noise from function f as shown in Figure 2.5, an

appropriate convolution kernel such as a Gaussian function (see function

h in this figure) need to be applied.

2.3.4 Smoothing using Convolution

The convolution operator is usually used to smooth an image in order to

remove or reduce noise. A simple-looking way is to simply average the

intensity of neighbouring pixels through a convolution kernel with the

size of (2n+ 1)× (2n+ 1) where each element of the kernel has a value of
1

(2n+1)2
. This kernel is called a box filter. For example, a five by five version

of such a mask would be:

h =

















1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25
















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f

h

h ⋆ f

∂
∂x
(h ⋆ f)

Figure 2.5: Convolution of a noisy function with a Gaussian function in

order to reduce noise adapted from [2].

The convolution of this kernel with an image computes the average value

of all neighbouring pixels by simply summing 1/25 of each of 25 values.

When this kernel mask is applied to a noisy image, the Gibbs phenomena

may be occurred and ringing artifacts are resulted [52]. This phenomena

is caused by the box filter when there is a sharp discontinuity in an area of

an image. A weighted mask, such as a triangle or Gaussian filter is usually

used to avoid this problem. Gaussian filters use the canonical bell-shaped

or normal distribution to weight each element of the convolution mask.

Unlike the box and triangle filters, the Gaussian filters perform reasonably

well in practice. The two dimensional version of this filter is defined as:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.19)

Gσ(r) =
1

2πσ2
e−

r2

2σ2

where r is the distance of point (x, y) from the origin.
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Since
∫ ∫

Gσ(x, y)dxdy = 1,
∫ ∫

Gσ(x, y)⋆f(x, y)dxdy =
∫ ∫

f(x, y)dxdy.

In other words, convolving a Gaussian filter with a function preserves the

area under the function. While the analog version of the Gaussian filter is

defined across the entire domain [−∞,+∞], in its discrete version we can

truncate it after some point because the value of the Gaussian function

becomes very small beyond the point. Since the value of Gσ(4σ) is very

close to zero, we generally use the Gaussian filter in the range of −4σ and

+4σ. If we truncate the Gaussian filter too quickly (for example at ±σ),

the Gibbs phenomena occurs like in the boxing filter. That is because the

values of the filter near its edge are relatively large. Accordingly, the filter

produces a large amount of high frequency noise when the filter is moved

from one position to the next. The discrete version of the filter should be

truncated such that the sum of the weights in this filter is equal to 1 like its

analog version. The simplest way to calculate the discrete versions of the

Gaussian filter with different σ, is to compute the unnormalised Gaussian

function as:

Gσ(i, j) = e−
i2+j2

2σ2 (2.20)

where (i, j) is an integer grid point ranging from −4σ to +4σ. The centre

of the filter is the origin (0, 0). After calculating the unnomalised value

of each element of the filter, the value of the element is divided by the

total sum of all elements of the filter in order to normalise its value. So,

Gσ(i, j) = Gσ(i,j)∑∑
Gσ

[47]. For example, when σ = 0.5, the filter should be a

5 × 5 mask where its centre is at (0, 0), and the range of i and j is from

−4 × 0.5 to +4 × 0.5. The sum of its elements equals to 1 and the mask is

symmetric around the origin as the following:
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If i and j range from−4σ to +4σ (in the example above from−2 to +2),

the general discrete convolution of the Gaussian filter with digital image

I is given by

Is(x, y) =
4σ
∑

i=−4σ

4σ
∑

j=−4σ

Gσ(i, j)I(x− i, y − j) (2.21)

where Is is the smoothed version of image I . In the Gaussian filter, there is

a trade-off between the size of the filter (σ) and its ability to locate an edge.

If its size is large, edges will be smoothed and accordingly edge detection

algorithms cannot perform well in these areas.

2.3.5 Edge Labelling

Edge labeling is the process of the localisation of edges. This process de-

pends on the edge operator convolved on an image. For example, in the

gradient-based edge detectors, the localisation of edges is performed by

thresholding the gradient magnitude of the edges. The edges resulting

from a simple thresholding technique are usually thick and consequently

a skeletonisation technique should be utilised. One of the commonly used

techniques is non-maximum suppression (NMS) which was proposed by

Canny [53]. This technique finds the local maxima along the direction of

the gradient vector. For the localisation of zero-crossing in the second-

order derivative-based edge detectors, the output for a given pixel is com-

pared with the output for its neighbours at its left and below. If the outputs

for these three pixels do not have the same sign, a zero-crossing exists at

this pixel. Chen and Medioni showed that the localisation ability of an op-

erator can be improved by considering more than two principal directions

(horizontal and vertical) [54].

Non-Maximum Suppression (NMS)

NMS is used as a post processing technique to essentially locate the high-

est points in the edge magnitude data by the use of edge direction infor-
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Figure 2.6: Interpolation in NMS [42].

mation. This method checks whether or not points are at the peak of a

ridge. In a 3 × 3 area, a point is a local maxima if the gradient magnitude

on both sides of it are less than its gradient. Generally, we need to consider

all points along a line which is normal to the edge at the point. Figure 2.6

shows the neigbours of point Px,y, its edge direction and the normal to the

edge direction at Px,y. If the gradient magnitude of point Px,y is larger than

the gradient at point M1 and M2, point Px,y is marked as a local maxima

by the NMS technique. Since we have a discrete neighbourhood in digital

images, M1 and M2 can be those neighbours that the angle between the

neighbourhod vector and the normal is the smallest among other angles

between other neighbours and the normal. In some NMS techqniues, M1

and M2 are interpolated by first-order interpolation using the gradient at

point Px,y in direction x (Mx) and y (My) as follows [42]:

M1 =
My

Mx

M(x+ 1, y − 1) +
Mx −My

Mx

M(x, y − 1) (2.22)

M2 =
My

Mx

M(x− 1, y + 1) +
Mx −My

Mx

M(x, y + 1) (2.23)
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Thresholding Techniques

The output of most edge detection operators is a floating point value which

shows the magnitude of edges. A high value is where there is a strong

edge and a low value is where there is a weak edge or no edge. Thresh-

olding techniques are often used to remove unwanted weak edges. The

output of a threshold technique is a binary edge map that shows which

pixels are edges and which ones are not. In some thresholding techniques,

a single threshold value is used to determine the plausibility values of

true edges. The threshold value is the minimum acceptable value for the

plausibility value of true edges. Due to the variation of this value from

an image to another image, the edges resulting from such a threshold-

ing technique are usually broken. Therefore, Canny proposed a hysteresis

thresholding technique to improve the continuity of edges [10].

In the hysteresis thresholding technique, two threshold values are used:

high and low. Since important edge pixels are along continuous curves, we

can easily follow a weak segment of a given line which is along a strong

segment of it and suppress a few noisy spots that do not belong the line

but have a large gradient [55]. This technique starts from the points whose

magnitudes exceeds the high threshold and then traces edges from these

points using the edge orientation information estimated by an edge de-

tection operator. While tracing the edges, the low threshold value is ap-

plied to trace weak segments as long as another point, whose magnitude

exceeds the high threshold, is found. All strong and weak edges are pro-

cessed to provide a binary image map whose pixels are marked as either

an edge or or a non-edge.

2.4 Edge Detection Algorithms

In the past three decades, many edge detection algorithms have been pro-

posed with specific applications. This section provides a summary of edge
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detection algorithms which have been proposed in different frameworks.

This section contains a brief overview of edge detectors based on first and

second derivatives, Gaussian filters, statistics, soft computing techniques

and different transforms followed by a discussion of their advantages and

disadvantages. These algorithms are closely related to this thesis, and

some of them are used for comparison purposes.

2.4.1 First Derivative-based Edge Detectors

This category of edge detection algorithms uses first derivatives to detect

the edges of an image. These operators are based on the gradient oper-

ator ∇ [48]. The gradient magnitude indicates the strength of the edge

and the orientation gives the direction of the greatest change or the di-

rection of the edge as early shown in Equation (2.2). Robert, Sobel, Pre-

witt, Kirsch, Robinson, Frei-Chen, Deatsch and Fram, Nevatia and Babu,

Ikonomopoulos, Davies, Kitchen and Malin, Hancook and Kittler, Wood-

hall and Linquist, and Young-Won and Udpa are all examples of the first

derivative-based edge detectors [49][50][45][1] (see section 2.3.2).

The main advantages of these algorithms are their simplicity, ability to

estimate edge orientation, and speed. The most important of their disad-

vantages are their sensitivity to noise and inaccuracy to localise the edges

[56]. Since these algorithms do not utilise any preprocessing and post-

processing techniques, such as NMS, the recognised edges are often thick

[56].

2.4.2 Zero Crossing Edge Detectors

This category of edge detection algorithms uses the second derivatives to

detect edges. The edges are where the values of the second derivative of

the image are zero. For two dimensional functions, the second derivative

can be approximated by the Laplacian as in Equation (2.5). The Laplacian

equation has an interesting property that it is rotationally invariant, i.e.,
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the chosen direction does not matter as the sum of the second derivatives

is the same in any two orthogonal directions. An early second derivative-

based edge detection algorithm is the Marr-Hildreth edge detector [57].

Its major advantage over the first-derivative-based edge detectors is its

good localisation ability. The main disadvantage of this algorithm is its

sensitivity to noise and also its inability to calculate edge orientation which

is required by most edge thinning and linking techniques [56]. Therefore,

the edges produced by the algorithm are often broken or thick.

2.4.3 Gaussian-based Edge Detectors

The edge detectors in this category use the Gaussian filter as a noise re-

moval operator. The Gaussian filter was originally proposed by Marr

and Hildreth in 1980 [57], however it was used as a smoothing opera-

tor by Shen and Castan to reduce the noise for the first time in 1993 [58].

The Laplacian of Gaussian (LoG) operator was the first edge detector that

utilised the Gaussian filter. If an image is first blurred by use of this filter

and then the Laplacian operator is applied, the resulted algorithm will be

the LoG operator. This algorithm is less sensitive to noise than the first

and second derivative-based edge detectors but it cannot detect edge ori-

entation because of using second derivatives [59]. In LoG, the Gaussian

and the Laplacian operators are usually implemented by a single operator

which is the Laplacian of the Gaussian function as follows:

∇2Gσ(x, y) = −
1

πσ4

(

1− x2 + y2

2σ2

)

e−
x2+y2

2σ2 (2.24)

Canny [10] proposed an edge detector which is widely considered as

a standard edge detection algorithm and still outperforms many recently

developed algorithms [60]. The Canny edge detector [10] determines the

edges of an image based on an optimisation process to find a maxima

of the gradient magnitude of an image which has been smoothed by the

Gaussian filter. Equation (2.25) shows an example of a 5×5 Gaussian filter

with standard deviation σ = 1.4:
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G1.4(x, y) =
1
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















2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

















(2.25)

In the Canny algorithm, after applying the Gaussian filter, an edge

detector (for example Roberts, Prewitt or Sobel) is used to calculate the

first derivative of the image in the horizontal and the vertical directions.

The edge orientation estimated by a first derivative-based edge detector

is rounded to one of four directions, i.e, vertical, horizontal and two diag-

onals. Then NMS and hysteresis thresholding techniques are applied for

a good localisation. The Canny algorithm has been revised many times

since it was proposed. Typical steps of the Canny edge detector are as

follows [10]:

1. Smoothing an image to reduce the noise using the Gaussian filter;

2. Calculating the gradient magnitude and direction for each pixel in

the image;

3. Using non-maxima suppression (NMS) algorithm to suppress non-

maxima edges through which there is no pixel among its two neigh-

bours in the gradient direction with larger gradient magnitude. If

there is not such pixel, the pixel is marked as an edge, otherwise as

the background; and

4. Applying hysteresis thresholding.

A revised version of the Canny edge detector introduced the concept of

minor and major edges and it changed step three of the original algorithm

[61]. In this method, after determination of the gradient magnitude and

gradient direction at each pixel, the following steps are pursued:
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1. If the gradient magnitude of a pixel is larger than those of its two

neighbours in the gradient direction, the pixel will be marked as a

major edge. If the gradient magnitude of the pixel is larger than

those of all neighbours in any direction, it will be marked as a minor

edge. Otherwise, it will be marked as a background pixel.

2. Partition the minor edges at the branch or connection points.

3. Remove all edges in a partition if there is no major edge in that par-

tition; then rename the minor edges that are adjacent to a major edge

as major edges.

4. Removing the weak major edges by hysteresis thresholding.

This algorithm is very popular because of its good detection, good lo-

calisation, and single response to an edge. However this algorithm suffers

from the detection of the edges at the junction points because of using a

Gaussian filter [62][61]. In Figure 2.7, an example with this problem is

shown.

Unfortunately, the Canny edge detector cannot detect the high fre-

quency edges either, such as the edges on a one pixel width line, and so

double edges appear in these areas as shown in Figure 2.8 [63].

Jeong and Kim [64] proposed a method to automatically determine the

optimum size or scale of the Gaussian filter for each pixel. In the proposed

method, the scale of the Gaussian filter is determined by minimising a

predefined energy function. This method sets the scale of the Gaussian

filter at a large value in uniform intensity regions and at a small value in

ridges where the intensity sharply changes.

The Gaussian-based edge detectors have been used widely to date be-

cause of their desirable features in noisy environments, however some re-

searchers have demonstrated that the edge detectors that use this filter

do not give satisfactory results. They suffer from edge displacement, re-

moved edges, and also false edges [62].
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Figure 2.7: Applying the Canny edge detector to an image with four well-

defined homogeneous regions after smoothing with a Gaussian filter (with

standard deviation 11)

Figure 2.8: Double and speckle edges. (a) a simple image with high fre-

quency edge information, (b) detected edges by the Canny edge detector

and (c) detected edges by Sobel.
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2.4.4 Multi-scale based Edge Detectors

Multi-scale methods generate several scales of an image using different

scales of the Gaussian filter to improve the detection of edges in noisy

images. These methods are based on multi-scale theory [65]. The main

challenges in these methods are how to select a proper range for the scale,

how to combine the resulting outputs corresponding to different scales,

and how to adapt to the level of noise in an image. There are many works

in this area, but we only briefly review those closely related to this thesis

in this subsection.

Some approaches based on the Canny edge detector have been pro-

posed in the literature that use multi-scale theory [65] to detect the edges

[66] [67]. Schunck [68] proposed an edge detection algorithm which utilised

the Gaussian filters at multiple scales of resolution. The first step of this

algorithm is based on the Canny algorithm. In this step, the Canny algo-

rithm is first applied with a large scale of the Gaussian filter. The edge

map resulting from this step contains large ridges corresponding with the

strong and major edges. Then, the scale of the Gaussian filter decreases

and the Canny algorithm is applied again. The edge map resulting from

this step will contain both large and small ridges which correspond to the

major and weak edges. In this step, a few unwanted edges may appear

in the edge map. The gradient magnitude maps resulting from different

scales from the chosen range are multiplied together to produce a compos-

ite edge magnitude image.

The ridges at the smallest scale corresponding to major edges will be

strengthened by the ridges at larger scales. The strength of ridges, which

do not appear at the smallest scale, will be reduced because of their ab-

sence at larger scales. Accordingly, in the composite edge magnitude im-

age, the strength of the ridges corresponding to major edges are much

higher than that of the ridges corresponding to weak edges. Then, the

NMS technique is applied using the gradient orientation obtained from

the largest scale. The scales of the filters in this algorithm are different by
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a factor of two. However, this algorithm is insensitive to noise, but it is

sensitive to the number of filters. Furthermore, this algorithm may lose

the important details which appear at smaller scales [62].

Bergholm [69] used the scale space theory and an edge focusing tech-

nique to combine edge information resulting from a coarse-to-fine scale.

This algorithm uses a rule-based method for estimating scale parameters.

Both the Canny and Marr-Hildreth edge-detectors can be used in edge fo-

cusing. In this algorithm, a Gaussian filter with a large scale is first used

to smooth and then an edge detector is applied followed by an adaptive

thresholding technique. Since edges are displaced by at most two pixels

per a unit change in the scale, the edges can be precisely localiased by

tracking them over decreasing scales. Accordingly, the output resulting

from an edge detector with a specified scale is used to forecast the location

of the edges resulting from the edge detector with the next smaller scale.

A Gaussian filter causes an image to be blured and, accordingly, the lo-

calisation ability of an edge detector becomes poor. The main goal of this

algorithm utilising the edge focusing technique is to reverse the effect of

bluring. This algorithm first starts with the edges recognised at the coarse

scale and then gradually focuses them back to their exact locations in the

fine scale. The edge focusing technique encounters several problems. The

most important problem of this algorithm is that how the starting and

ending scales are determined for the Gaussian filter. Although Bergholm

suggested a range between 3 and 6 for the starting scale, he did not discuss

the end scale. Additionally, this algorithm produces broken and discon-

tinuous edges [62].

Lacroix [70] proposed another scale space-based edge detector which

tracks edges from a fine scale to a coarse scale. This method is based on

the Canny algorithm and considers three different scales: σ0 (the smallest

and the detection scale), σ1 (the intermediate scale), and σ2 (the largest and
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the bluing scale). The intermediate resolution, σ1 is computed as follows:

σ1 = σ0 +
σ2 − σ0

3
(2.26)

This method suffers from poor localisation as it determines the location

of the edges in the coarsest resolution. This method also does not explain

how the smallest and largest scale should be determined.

Goshtasby [71] proposed an algorithm to modify the scale-space rep-

resentation of an image. In this representation, an image is created by

recording the signs of pixels after applying the LoG operator. In this

method, the scale-step size is determined by an adaptive way as follows.

The results of convolution of an image at two scales are layed on each

other. If more than two regions with the same sign lay on top of each other,

some edges between these two scales are missing. Accordingly, an inter-

mediate scale between these two scales must be considered. Otherwise,

there is no need to consider an intermediate scale. In this way, Goshtasby’s

method solves the problem of choosing the step size but needs a large

amount of memory in order to store the three-dimensional (3D) edge im-

ages and still produces broken edges [62].

2.4.5 Statistical-based Edge Detectors

Several edge detection methods have been proposed in the framework of

statistics. Bovik et al. [72] proposed a statistical-based edge detector based

on several non-parametric tests for edge detection in noisy images without

any objective assessments. To understand how an statistical-based edge

detector works, a brief overview of the method proposed by Bovik et al. is

summarised here. In this method, two n × n square neighbourhoods are

considered for each pixel where n is odd as shown in Figure 2.9. Most edge

detection algorithms first compute a quantity which measures the edge

magnitude and then compare this quantity to a threshold value. In statis-

tical methods, another parameter, δ is used for sensitivity control which is

called the minimum allowable edge height. For the mask in Figure 2.9, let
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Figure 2.9: The window mask for detecting vertically oriented edges in the

method of Bovik et al. [72]

AL be the set of the intensity of pixels in the left neighbourhood and AR be

the set of the intensity of pixels in the right neighbourhood:

AL = {X1, X2, . . . , Xn2} (2.27)

AR = {Xn2+1, Xn2+2, . . . , X2n2} (2.28)

Let αi and βi be defined as

αi =

{

Xi + δ Xi ∈ AL

Xi Xi ∈ AR

(2.29)

βi =

{

Xi − δ Xi ∈ AL

Xi Xi ∈ AR

(2.30)

This method arranges different hypothesis tests based on different as-

sumptions about the two sets, {αi} and {βi} in order to decide whether

there is any gray level difference (or edge). This edge detector rejects the

edges with a height less than δ. Bovik et al. defined a test statistic as a

function of δ-modified observations ({αi} and {βi}) which its value is com-

pared with a threshold value, T . Based on this comparsion, the method

classifies the pixel as an edge or not. In this method, the Wilcoxon and

linear rank tests, as two non-parametric statstical tests, are used.

Huang and Tseng [73] proposed a statistical-based edge detector es-

tablished upon the likelihood ratio test. This edge detector is computa-

tionally expensive and sensitive to noise. Aron and Kurz [74] utilised
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the analysis of variance (ANOVA) tests for their proposed edge detec-

tor. Hou and Koh [75] proposed an edge detector including two steps:

detection and localisation. In the detection step, a robust one-way analy-

sis of variance is used to detect edges and then a robust contrast test are

used to localise them. Lim and Jang [76] quantitatively compared the per-

formance of three edge detection algorithms based on the Kolmogorov-

Smirnov, Wilcoxon, t-tests. They showed that the localisation accuracy of

the algorithm is higher in synthetic images corrupted by impulse noise

when the Kolmogorov-Smirnov test is applied. However, the algorithm

performs better in the images corrupted by a small amount of Gaussian

noise when the Wilcoxon test and t-test are used.

Another algorithm was proposed by Lim [11] based on the rank-robust

order (RRO) test. This method considers eight possible r × r windows

which are spatially partitioned into two regions. The RRO test is used by

this method to decide whether there are any significant differences in gray

level value between two adjacent pixel neighbourhoods around a given

pixel. Lim showed that the localisation accuracy of his proposed algo-

rithm is higher than other statistical-based methods and more robust to

two different types of noise, i.e., Gaussian and impulse noise.

Although statistical-based edge detectors are often insensitive to noise,

the recognised edges are often thick. These methods are often data-driven

unlike traditional methods which are model-driven. Therefore, they are

not able to find the orientation and magnitude of edges. Accordingly, edge

thinning techniques cannot be applied to the resulting edge maps.

2.4.6 Transform-based Edge Detectors

Two major types of this category of edge detectors are based on the Fourier

and wavelet transforms. To describe the wavelet transform, we first re-

view the differences between these two transforms. Let f(t) be a signal

in the time domain and t be a moment in time. When the Fourier trans-
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form is applied to the signal, a function F (ω) is obtained which takes an

input as a frequency and returns a complex number. This number shows

the strength of the frequency in the original signal f . The strength of the

cosine and sine parts of the frequency are shown by the real and imag-

inary parts of this complex number respectively. To obtain the Fourier

transform of an input signal, it should repeatedly be correlated to the co-

sine and sine waves. In the Fourier transform, its coefficients will be high

when the signal is high valued. If the signal is close to zero, the Fourier

transforms coefficients will be low. Since the domains of the sine and co-

sine functions are between −∞ and +∞, the Fourier analysis encounters

a big problem. The effect of a frequency is analysed as if it was spread

over the entire original signal while this is not the case for most signals.

Fourier analysis can determine which frequencies exist in a signal, but not

where they are [77]. The wavelet transform addresses this problem. The

output of the wavelet transform is a set of functions Wsf(t). These func-

tions describe the strength of a wavelet which is scaled by factor s at time

t. Since a wavelet covers only a short period, its effects are restricted to a

small interval of time surrounding t. The output of the wavelet transform

will contain the strengths of the frequencies of a signal at time t unlike the

Fourier transform that will give information about the strength of a fre-

quency in the whole of a signal. A wavelet is defined as a function, Ψ(t)

whose average is zero between −∞ and +∞:

∫ +∞

−∞
Ψ(t)dt = 0 (2.31)

A wavelet function can be expanded by a scale factor s and translated by

parameter u giving: Ψs,u(t) =
1√
s
Ψ( t−u

s
). Wavelet functions, unlike the sine

and cosine functions, quickly move toward zero as time t approach−∞ or

+∞. For a 2D signal, a wavelet function can be defined as:

Ψs,ux,uy
(x, y) =

1

s2
Ψ

(

x− ux

s
,
y − uy

s

)

(2.32)
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Mallat and Zhong [78] showed that the multi-scale Canny edge detec-

tor is equivalent to the detection of local maxima of the wavelet transform

of an image. In fact, the first derivative of the Gaussian filter, ∇G is a

wavelet function which is known as the first derivative Gaussian wavelet

(Ψ(x, y) = ∇G). So,

WsI(x, y) = I ⋆ Ψs(x, y) = s(∇(I ⋆ Gs(x, y)) (2.33)

where I(x, y) ∈ L2(R2).

Heric and Zazula [79] proposed an edge detection algorithm which

uses the Haar wavelet transform. Shih and Tseng [80] presented an algo-

rithm which is a combination of a gradient-based edge detector to detect

edges and a wavelet multi-scale operator to track them. Despite the suc-

cess of wavelet transform edge detectors, they have a limited ability in

dealing with directional information [81] and produce broken edges [82].

2.4.7 Soft Computing Approaches

In this section, some of the most important soft computing techniques such

as fuzzy sets, artificial neural networks, genetic algorithm and ant colony

optimisation, which have been used to solve edge detection problem, are

briefly reviewed.

A fuzzy-based edge detector was introduced by Kim et al. [83] to auto-

matically adjust the threshold value which is used to remove weak edges.

This method is faster than the Canny edge detector, but false edges may

be detected. The quality of detected edges was comparable to the conven-

tional gradient-based edge detectors. The competitive fuzzy edge detector

(CFED) [6] is another fuzzy-based edge detector which classify the edges

into six different classes and then determines which class an edge belongs

to. This method usually generates speckles in a particular texture area. It

can be used to enhance the detected edges.

An artificial neural network-based edge detector was proposed by Pinho
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Figure 2.10: Some local features are extracted to be used as input values of

an ANN (adapted from [84]).

and Almeida [84]. In this method, some local features are first extracted

and then these features are used as the input values of the neural net-

works. As shown in Figure 2.10, an inter-pixel “crack” (as shown by

black and orange rectangles in Figure 2.10) is used to represent an edge.

This kind of representation is unambiguous in representing the edges. In

this method, eight pixels generate nine different inter-pixel cracks which

form the input of the ANN which classifies the central black crack. This

crack can be either horizontal or vertical as can be seen in Figure 2.10.

A training set must be constructed to train the ANN. This method can

extract the edges more smoothly than other methods, but some edges

may be missed. Another method based on cellular neural networks was

proposed by citeauthorEfficientedgedetectionindigitalimagesusingacellu-

larneuralnetworkoptimizedbydifferentialevolutionalgorithm [8]. This method

considers a wider area in comparison to other methods, but it needs to be

trained.

Furthermore, Bhandarkar et al. [9] applied a genetic algorithm (GA) to

detect edges. This method represents the chromosomes in the population

as a binary array. Zero or one represents a non-edge pixel or an edge pixel

respectively in the chromosome’s gene. Figure 1.1(e) shows the resulting
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edge map when the GA-based edge detector is applied to the Lena image.

As can be seen from this figure, there are thick and broken edges in the

edge map.

2.4.8 Coloured Edge Detectors

Most of the edge detectors reviewed in the previous sections cannot be ap-

plied to coloured images, because these images represent a pixel through

a vector in their colour space. The colour space can be modelled by many

models, such as RGB (red, green, blue), CMYK (cyan, magenta, yellow,

and key or black), YIQ ( Y luma information, in-phase, and quadrature),

and HSL (hue, saturation, and lightness). Each of these models has its

own properties in colour science [1]. Some of the coloured edge detec-

tors use an extension of a gray level edge detector for colour images [85].

In these detectors, an edge may not be detected when it is located in the

neighbourhood of the pixels which have the same value in any of colour

components. Vector order statistics colour edge detectors, such as VR (vec-

tor range), vector dispersion (VD), minimum vector range (MVR), were

proposed to detect edges in colour images [86]. The vector order statistics

colour edge detectors are famous methods for processing coloured images.

They utilise order statistics which play a significant role in signal analysis.

2.4.9 Edge Linking Techniques

One of the most serious drawbacks of traditional edge detection algo-

rithms is broken edges. Therefore, many edge linking methods as post-

processing algorithms have been proposed to improve this disadvantage

of the algorithms. The edges in a broken area may contain important in-

formation. A few techniques have been proposed to compensate for the

broken edges. These techniques are listed as follows:

1. Mask-based edge linking techniques: they draw some reasonable

lines between the endpoints of the broken edges. Hajjar and Chen
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[87] proposed a method which uses a mask to obtain these lines. This

method is very fast and simple, but the extraction of incomplete edge

structure is its main disadvantage. Accordingly, these techniques are

very inaccurate [3].

2. The Hough transform: one of the most commonly used techniques

is the Hough transform [88][1]. The Hough transform is an image

transform technique to detect geometric features, such as straight

lines, circles, ellipses, and generally some fixed shapes [89].

3. Sequential edge linking (SEL): an application of a sequential search-

ing technique is to link the broken edges [90]. Multi-resolution se-

quential edge linking (M-SEL) technique is also commonly used as

an edge linking technique [91]. This technique uses a multi-resolution

image pyramid to better guide the SEL technique at higher resolu-

tion through global edge information obtained in lower resolutions.

These two techniques consider at most two endpoints of the broken

edges to be compensated and also the local information of the orig-

inal image is not well analysed to link the broken edges. Therefore,

the accuracy of these algorithms is low [3].

4. ACO-based linking techniques: Some other proposed techniques use

ant colony optimisation to solve this problem [3]. Although, this

method is very slow and takes a long time (around 60 seconds) only

for the edge linking step in the edge detection algorithms, their ac-

curacy is often low because of producing false edges.

2.4.10 Objective Evaluation of Edge Detectors

Until 1999, there was no objective method for the evaluation of edge de-

tectors and they were often compared to each other through a subjective

assessment method. Shin et al. used an object recognition system for an

objective comparison of edge detectors [92]. The Hausdorff distance [93]
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was utilised to recognise an object in this system. The Hausdorff distance

is defined as follows:

H(A,B) = max(h(A,B)), h(B,A)) (2.34)

h(A,B) = maxa∈Aminb∈B||a− b|| (2.35)

where A = {a1, a2, ..., ap} and B = {b1, b2, ..., bq} are two finite sets of

points, and ai and bj correspond to the locations of two edges in two im-

ages A and B. Here, ||a − b|| is the distance between two points a and b.

The function h(A,B) is called the directed Hausdorff distance from A to

B.

Since 1999, many measures have been proposed to objectively evaluate

the performance of edge detectors. Ground truth images are required for

most of these measures. The receiver operating characteristic curve (ROC

curve) is one of the commonly used techniques for an objective evaluation.

This technique was used by Bowyer et al. [94]. The ROC curve in an edge

detection problem is a plot of the fraction of true positive edges (TPR =

true positive rate) versus the fraction of false positives edges (FPR = false

positive rate). In this method, area under the curve (AUC) is the traditional

metric for comparing ROC curves resulting from different edge detectors.

Martin et al. presented another method which is called precision vs re-

call curves (PR) [95]. The precision (vertical axis) means the proportion of

the edges resulting from an edge detector which are true positives rather

than false positives and the recall rate (horizontal axis) means the propor-

tion of true positives that are recognised rather than missed. F -measure is

a measurement to be extracted from these curves as Equation (2.36).

Fβ =
precision× recall

(1− α)precision+ αrecall
(2.36)

where α = 0.5.

Pratt’s figure of merit (PFOM) is another objective measure proposed
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by Pratt [14]. It is defined as:

RPFOM =
1

max(II , IA)

IA
∑

i=1

1

1 + βd(i)2
(2.37)

where II and IA indicate the number of ideal and actual edge points in the

ground truth and the actual images respectively, d(i) is the distance of the

pixel i in the actual edge map from nearest ideal edge point in the ideal

edge map, and β is a constant scale factor which is equal to 1
9
. This mea-

sure is an index to compute the localisation accuracy of an edge detection

algorithm. This measure is commonly used for an objective comparison

[11].

Another approach was proposed by Shin et al. [96]. In this method,

the performance of edge detection algorithms was compared when they

were applied to a motion detection task. This method is called an indirect

method for the assessment of edge detectors.

Moreno et al. [97] presented four other measures, namely, complete-

ness, discrimination ability, precision, and robustness ability of an edge

detector. The completeness is a measure that shows the ability of an edge

detector to detect all possible edges in noiseless images. Equation (2.38)

shows how to calculate this measure.

R =
1

m

m
∑

i=1

φ(di)) (2.38)

where φ is a radial decaying function ranging from 0 to 1, and m is the

number of ideal edges, di is the distance of the pixel i in the actual edge

maps from the nearest ideal edge point in the ground truth.

The discriminability is the ability of an edge detector to discriminate

between important and not important edges [97]. The measure is com-

puted as:

DS =

n
∑

i=1

eiφ(di)

m
∑

i=1

φ(di)
−

n
∑

i=1

ei(1− φ(di))

n
∑

i=1

(1− φ(di))
(2.39)
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where DS is the discriminability measure of an edge detector, n is the

number of detected edges and ei is the edge magnitude of edge i in the

edge map.

The false alarm rejection measure (precison measure) is the ability of

an edge detector to detect edges as close as possible to ideal edges [97].

This measure (FAR) is as follows:

FARmeasurement =
1

n

n
∑

i=1

φ(di) (2.40)

where n is the number of the edges in the resulted edge maps.

Finally, the robustness measure is the ability of an edge detector to re-

ject the noise. This measure can be calculated by Equation (2.41).

MSEmeasurement =
1

rc

r
∑

i=1

c
∑

j=1

(eij − e′)
2

(2.41)

where r and c are the dimensions of the edge map, and eij and e′ij are

the magnitude of an edge at location i, j of noisy and noiseless images

respectively.

2.5 Particle Swarm Optimisation

The main goal of this section is to review particle swarm optimisation

(PSO) as a global optimisation method and some of its concepts, such as

position and velocity update equations, and topology as an information

sharing mechanism. This section provides a brief overview of evolution-

ary computation algorithms, such as evolution strategy, evolutionary pro-

gramming, genetic algorithms and genetic programming followed by sev-

eral swarm-based algorithms, such as ant colony optimisation, stochastic

diffusion search and gravitational search algorithms.



2.5. PARTICLE SWARM OPTIMISATION 49

Computational 

Intelligence 

Paradigms 

Neural 

Networks 
Fuzzy Systems 

Evolutionary 

Computation 

Evolutionary 

Algorithms 

Swarm 

Intelligence 

Figure 2.11: Computational intelligence paradigms [98].

2.5.1 Computational Intelligence and Evolutionary Algo-

rithms

Computational Intelligence (CI) is a successor of artificial intelligence. CI

experts mainly consider biological, psychological and evolutionary inspi-

rations from nature for implementation [98]. Figure 2.11 shows three pri-

mary branches of CI, i.e., neural networks, fuzzy systems and evolution-

ary computing including swarm intelligence and evolutionary algorithms.

Neural networks are developed based on biological counterparts in the

human nervous system. Evolutionary computing similarly heavily draws

on the principles of Darwinian evolution observed in nature. Human rea-

soning using fuzzy, is modelled by fuzzy systems.

Evolutionary computation (EC) encompasses a number of problem-

solving methods designed to simulate evolution. These methods are all

population-based and rely on a combination of random variation and se-

lection to solve problems. Several different approaches exist within EC, in-

cluding evolution strategy (ES), evolutionary programming (EP), genetic

algorithms (GAs) and genetic programming (GP) [99]. These algorithms

have been inspired by the theory of Charles Darwin who first popularised
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the modern theory of evolution. The fundamental principle underlying

evolution is optimisation, where the goal is survival of the species. How-

ever, it does not mean that the EC methods can be applied only to optimi-

sation problems. The EC paradigms help to solve problems which were

previously hard to solve.

The term of evolutionary algorithms refers to a category of algorithms

that can all work in the general evolutionary framework [100]. The ex-

act form of the representations and operators, as well as the relationship

between the sizes of parent and offspring populations, define the specific

instance of EA, e.g. EP, ES, GA, or GP.

Consider a population of n individuals, P (t) = (x1(t), x2(t), ..., xn(t)) at

time t, where each xi ∈ S represents a potential solution of a problem in

the search space S. Let f(x) be a function that determines the quality of

a solution, called the fitness function. The fitness of the whole population

can thus be expressed as F (t) = (f(x1(t)), f(x2(t)), ..., f(xn(t))). Given ar-

bitrary parameters n, λ, Θr, Θm and Θs, the general EA framework is as

Algorithm 2.1. The parameters Θr, Θm and Θs (called strategy parame-

ters) are the recombination, mutation and selection operators respectively.

The parameter n is the size of the parent population; n + λ denotes the

total population size (parents plus offspring) after the recombination and

mutation operators are applied.

Evolutionary programming was introduced by Fogel in the context of

evolving finite state-machines to use in the prediction of time series [101].

This algorithm did not use recombination; it exclusively relied on muta-

tion. Later evolutionary programming was extended to include more gen-

eral representations, including ordered lists (to solve the Travelling Sales-

man Problem) and real-valued vectors for continuous function optimisa-

tion [102]. Modern EPs are characterised as EAs without recombination,

thus relying exclusively on mutation and selection. When EPs are applied

to real-valued optimisation problems, they use normally-distributed mu-

tations and usually evolve their strategy parameters concurrently.
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Algorithm 2.1 Pseudo code for the general framework for describing EAs

[98]
1: t = 0

2: P (t)=initialise(n)

3: F (t)=evaluate(P (t), n)

4: repeat

5: P ′(t)=recombine(P (t), Θr)

6: P ′′(t)=mutate(P ′(t), Θm)

7: F (t)=evaluate(P ′′(t), λ)

8: P (t+ 1)=select(P ′′(t), F (t), n, Θs)

9: t = t+ 1

10: until stopping criterion is met

Evolutionary strategy (ES), introduced in 1968, are usually applied to

real-valued optimisation problems [103]. The ES individuals use both mu-

tation and recombination operators, and search both the search space and

the strategy parameter space simultaneously. The parent and offspring

population sizes usually differ (the offspring population at least as large

as the parent population).

The genetic algorithm (GA) was originally described by Holland [104].

It is another instance of EAs. The emphasis of GA is usually recombi-

nation, with mutation treated as a background operator. Only a brief

overview of the GA will be presented here; the reader could refer to [105]

for an in-depth treatment of the subject.

The canonical GA uses a binary format to represent the genotypes. The

genotype is converted using a mapping function into the equivalent phe-

notype, which is an element in the search space. A simple example will

clarify this process. Assume that GA is used to locate the minimum of

function f(x) = x2 − 10x+ 25. It is known that the minimiser is located in

the interval [0, 10). Assume that a 16-bit representation is used to represent

the values of x, so that the genotypes of the elements in the population are
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16-bit strings. Given such a 16-bit representation, b, the equivalent pheno-

type can be obtained using

x = 10× 1

216

15
∑

i=0

2ibi

where bi denotes the value of bit i in the bit string b. The factor 10 is to

scale the value from its initial range [0, 1) to the range [0, 10). The min-

imiser of this function is 5, so the genotype representation, using 16 bits, is

1000000000000000. Although the minimiser has an exact representation in

this example, this is not always the case. By increasing the number of bits

in the genotype greater accuracy can be obtained.

The notion of using separate genotypic and phenotypic representations

used to be one of the defining differences between GAs and other type

of evolutionary algorithms. This difference has blurred somewhat with

the advent of non-binary coded GAs. For example, a GA could use real-

valued numbers to represent population members [106], using arithmetic

crossover [107] instead of binary crossover. Other possible representation

include permutations and tree-based representations, usually utilised in

GP. GP is another EA-based method to find a computer program that per-

forms a desired task [108]. This method has been applied to a variety of

areas from scheduling to evolving classification systems.

2.5.2 Swarm-based Algorithms

Swarm intelligence was inspired by collective behaviours which exist in

nature, e.g., fish schooling, ant colonies, birds flocking and animal herd-

ing. These kinds of behaviours were introduced and employed in artifi-

cial intelligence by Beni and Wang [109] in 1989, in the context of cellular

robotic systems. It is a well-known fact that an ant is not clever (and al-

most blind) but it can do striking things in a colony when it cooperates

with other ants. An agent like an ant cannot do big jobs but if some ants
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can work together, they will be able to do remarkable jobs, for example

building a big colony.

Several swarm-based algorithms have been proposed in the literature.

Ant colony optimisation [110], particle swarm optimisation [111], stochas-

tic diffusion search [112] and gravitational search algorithms [113] are ex-

amples of them. A main difference between them is the method of infor-

mation transfer and sharing among agents or individuals of the swarm,

but all of them are inspired based on collective behaviours available in

nature.

A category of swarm-based algorithms is ant colony optimisation (ACO)

which is based on simulating the activities of an ant colony. This method

was invented by Colorni et al. [114]. The ant colony optimisation method

is suitable for problems which need to look for paths to goals. In this

method, there are some finite artificial ants that as agents locate optimal

solutions by moving through a search space including all possible solu-

tions. Real ants produce pheromones to direct each other toward resources

while moving in their environment. The simulated ants or agents similarly

register their locations and best solutions that they find, so that more ants

can locate better solutions in the next iterations [110]. ACO has been ap-

plied to many combinatorial optimisation problems, ranging from folding

proteins to routing vehicles [110].

Another swarm-based method for optimisation problems is stochas-

tic diffusion search (SDS) which is a population-based probabilistic global

search [112]. This method suits problems whose objective functions can

be separated into multiple independent partial functions. In this method,

each agent maintains a hypothesis which is iteratively examined by evalu-

ating a randomly selected partial objective function encoded by the agent’s

current hypothesis. This algorithm consists of two phases: test and dif-

fusion. In the first phase, each agent tests its hypothesis. In the second

phase, the agents exchange information about hypotheses via one-to-one

communication [112].
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The gravitational search algorithm (GSA) is inspired based on New-

ton’s Gravity law and the idea of mass interactions. The GSA algorithm

uses Newtonian physics theory and its agents are a collection of masses.

In GSA, all agents are considered as separated and independent masses.

Based on the gravitational force, each mass in the system can see the lo-

cation and situation of other masses. Thus, the gravitational force is a

method of transferring information among different masses [113].

Particle swarm optimisation (PSO) is a global optimisation algorithm

for dealing with problems in which a best solution can be represented as a

point in an n-dimensional space. All particles are randomly placed in this

space and initialised with an initial velocity, as well as a communication

channel between the particles [115][18]. The particles then move through

the solution space and are evaluated according to some fitness criterion

after each iteration. Their positions are adjusted based on their velocity to

move towards those particles within their communication grouping which

have better fitness values. In the next section, particle swarm optimisation

will be described in more detail as it is directly used in this thesis.

2.5.3 Particle Swarm Optimisation

PSO is a global optimisation method, proposed by Kennedy and Eberhart

in 1995 [116]. This method was inspired by social behaviors of animals

and biological populations [116]. In fact, it is a simulation of a simplified

social model like bird flocking and fish schooling. PSO was originally an

optimisation method for continuous nonlinear functions, i.e., the search

space is continuous and decision variables are encoded into real numbers.

However, several discrete versions of the algorithm have been proposed

in literature [117][118][119]. In PSO, there is a population of finite individ-

uals which are called particles. Some advantages of PSO in comparison

to other heuristic search algorithms such as GA are ease of its implemen-

tation, its fewer parameters for adjustment, its fewer operators and high
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rate of its convergence [120]. PSO has been utilised in many areas, such

as training neural networks [121], optimising power systems [120], fuzzy

control system [120], robotics [122], radio and antenna design [123] and

computer games [124].

In the basic PSO (BPSO), there is a population containing m poten-

tial solutions which are represented as m particles. These particles move

through n-dimensional search space. The position of the ith particle is rep-

resented as vector ~Xi = (xi1, xi2, ..., xin) in an n-dimensional search space.

The position of each particle is changed according to its own experience

and that of its neighbours. Let ~Xi(t) denote the position of particle Pi at

time t. The position of Pi is changed in each iteration of the BPSO algo-

rithm by adding a velocity ~Vi(t) to determine a new position as shown in

equation (2.42).

~Xi(t+ 1) = ~Xi(t) + ~Vi(t+ 1) (2.42)

The velocity vector is updated based on three values: the effect of cur-

rent motion or velocity, particle memory influence, and swarm influence

[125].

~Vi,j(t+1) = w~Vi,j(t)+C1Rand1j( ~Xpbesti,j− ~Xi,j(t))+C2Rand2j( ~Xleader,j− ~Xi,j(t))

(2.43)

where Rand1,j , and Rand2,j are random variables with uniform distribu-

tions. Here, w denotes inertia weight which is employed by the BPSO

algorithm to control the impact of the previous velocity of particle Pi; pa-

rameters C1 and C2 are learning factors that represent the attraction of

a particle toward either its own success or that of its neighbours respec-

tively. Coefficients C1 and C2 are called self and swarm confidences re-

spectively. In equation (2.43), ~Xpbesti denotes the best position of the ith

particle. ~Xleader is the position of a particle which is used to guide other

particles toward better regions of the search space. This particle called

the leader. The leader of each particle is specified based on a neighbour-
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Figure 2.12: Depiction of the position and velocity in PSO algorithm

adopted from [126].

hood structure [115]. In this equation, w~Vi(t), C1Rand1j( ~Xpbesti,j − ~Xi,j(t)),

and C2Rand2j( ~Xleader,j − ~Xi,j(t)) are correspondingly called current mo-

tion, particle memory influence, and swarm influence. Figure 2.12 depicts

the position and velocity in PSO algorithm.

BPSO has been designed in two steps, i.e., randomly initializing a pop-

ulation, and iteratively updating velocities and positions as shown in Al-

gorithm 2.2.

2.6 Swarm Intelligence for Edge Detection

As mentioned earlier, there are four main categories in swarm intelligence,

i.e., Ant Colony Optimisation (ACO) [110], Particle Swarm Optimisation

(PSO) [111], Stochastic Diffusion Search (SDS) [112], and Gravitational

Search Algorithms (GSA) [113]. There are a number of researches on using

ACO and GSA for edge detection [7][127] but there are only a few works

on edge detection by PSO and SDS. The main goal of this section is to

provide a brief overview of swarm-based edge detection algorithms.
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Algorithm 2.2 Pseudo code for the BPSO algorithm

1: Initialise PSO population randomly (position and velocity of each par-

ticle)

2: repeat

3: for all particles do

4: Evaluate the fitness value of the particle

5: Find in the particle neighbourhood, the leader particle

6: Calculate particle velocity according to (2.43)

7: Update particle position according to (2.42)

8: end for

9: Update leader or leaders

10: until maximum iterations exceeded or minimum error criteria at-

tained

11: Select best particle in the population and decode it as the best solution

2.6.1 ACO-based Edge Detectors

The ACO-based edge detectors [7] use a number of ants which move on an

image to make a pheromone matrix. Each entry of the pheromone matrix

in ACO shows an amount of food to be found by ants. In these methods,

each entry of the pheromone represents the edge information at each pixel

of the image. The ants move on the image based on local intensity values

and after several iterations the final edge map is constructed based on the

pheromone matrix.

Zhuang et al. [128] proposed an ACO-based feature extraction algo-

rithm in 2008. In this algorithm, a perceptual graph is used to represent

the relationship between neighbouring pixels. The algorithm utilises this

graph in order to extract image features. This graph is built by an ant

colony system. The results showed that the ant colony-based system can

effectively extract features in simple and semi-complex digital images.

Ouadfel [129] presented an edge detector which utilises Markov Ran-

dom Fields (MRF) together with an ant colony-based segmentation method
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in order to detect edges on magnetic resonance images (MRI). He com-

pared the results with genetic algorithm and a simulated annealing based

method and showed that the performance of his proposed method is higher

in the MRI images.

Lakehal [130] proposed a new method to detect interest points in an

image. This method utilises an ACO-based system to detect the objects’

centres as the interest points. This algorithm first uses an agent-based edge

detection algorithm to detect edges and then applies an ACO method to

extract features and classify the objects. This algorithm depends on the

agent based system and accordingly, cannot be used alone for feature ex-

traction.

Mirzayans et al. [131] utilised another ant colony-based system for fea-

ture extraction in the images containing simple shapes, such as rectangles,

squares, triangles, crosses and circles. They showed that although the al-

gorithm is efficient in noisy images, it is not applicable to extract features

in real images and requires more investigation.

Wang [132] presented another method in which ants have a lifetime

and reproduce. The main idea in this method is that there are a large num-

ber of ants in the areas which are close to image features. In this method,

there are two classes of ants. The first class of ants are fixed at the points of

interest in an image and the second class of ants are mobile on the image.

The proposed method performs well in noiseless images but noise reduces

its performance in comparison to the Sobel edge detector [133].

Etemad and White [133] presented a swarm-based technique for fea-

ture extraction and segmentation. In this algorithm, two different types

of pheromone are used to share information among ants. They compared

the performance of the algorithm with the Sobel and Canny algorithms

in the images corrupted by impulse noise. The results showed that their

proposed method outperforms Sobel and Canny in such images.

Wong et al. [7] improved the performance of the Canny algorithm to

compensate for broken edges. This method first utilises the Canny algo-



2.6. SWARM INTELLIGENCE FOR EDGE DETECTION 59

rithm to detect edges and then applies an ant colony-based system to find

the shortest path between two endpoints of broken edges. This algorithm

has many parameters which must be tuned for every image. Although

this algorithm can enhance weak edges very well, it is very slow and there

are many false edges in the resulting edge maps [12]. Wong et al. did not

investigate the performance of the algorithm in the images corrupted by

Gaussian noise.

2.6.2 Gravitational Approach to Edge Detection

Lopez-Molina et al. [127] proposed a gravitational search-based approach

to detecting edges. In this method, each pixel in an image is considered as

a celestial body with a mass represented by its gray level. Therefore, ac-

cording to the law of universal gravity, each pixel as a celestial body puts

forces onto its neighbours and receives forces from its neighbours. The

sums of all these forces along the vertical and horizontal directions are

used to compute the edge magnitude and orientation. They examined the

proposed algorithm and compared with Sobel and Canny in a few stan-

dard clean and noisy images corrupted Gaussian noise. Its performance

was comparable to the Sobel and Canny in the images with Gaussian noise

but there are many noise spots when the algorithm applies to the images

with impulse noise.

2.6.3 PSO-based Edge Detectors

The first PSO-based edge detector has been developed during this thesis

in 2009. In [22], we developed a PSO-based edge detector which utilised

a homogeneity edge detection operator to estimate the magnitude of the

edges along a continuous curve. In this paper, an encoding scheme and

a fitness function was developed to evaluate a continuous curve lying on

the edges in several real and synthetic images. We subjectively compared

it with the Sobel edge detector. Although the results showed that the pro-
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posed method performed better than Sobel in clean and noisy syntactic

images corrupted by impulse noise, it could not perform well in real im-

ages and was very slow. In [24], we developed another fitness function

and encoding scheme in order to apply PSO to the detection of edges in

real noisy images. The performance of the PSO-based edge detector was

good in comparison with Sobel and Canny in the images corrupted by

Gaussian and impulse noise. However, the comparison showed that its

performance is lower than a statistical-based edge detector proposed by

Lim [11].

Alipoor et al. [134] used PSO to find an optimum edge filter. A syn-

thetic image and its edge map are used for training. The proposed method

was applied to a simple synthetic image and subjectively compared with

the Sobel edge detector. The results showed that the proposed method can

perform well in simple synthetic clean and noisy images. The authors did

not investigate its performance on real images.

Aghamohammadi et al. [135] applied our proposed algorithm in [24] to

detect the cracks on solar cell panels which convert the energy of light into

electrical energy. Since the cracks on the surface of the solar cell panels

cause the performance of the panels to reduce, they proposed an auto-

mated inspection system based on our proposed method [24] in order to

detect the cracks.

2.7 Summary and Discussion

As described in this chapter, there are two main categories of edge detec-

tion algorithms, i.e., soft computing and non-soft computing-based algo-

rithms. The most important non-soft computing-based algorithms include

first and second derivative-based, Gaussian filter-based, statistical-based,

scale space-based and transform-based edge detectors. First derivative-

based edge detectors are very simple and can calculate edge orientation,

but they are very sensitive to noise and are inaccurate. The main advan-
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tage of the second derivative-based edge detectors is their high accuracy in

edge localisation. However, they perform poorly at corners and they can-

not find the orientation of the edges. Accordingly, the recognised edges are

thick. The Gaussian-based edge detectors utilise Gaussian filters to reduce

noise. These algorithms are rather insensitive to noise, but often displace

or remove the edges. These algorithms also usually produce false edges

and malfunction at corners. The statistical- based detectors are somewhat

insensitive to noise, but cannot find edge orientations. The scale space

based edge detectors work based on the scale space theory. They can per-

form well in noisy images and are rather fast. However, they have diffi-

culty in choosing filter size and in combining edge information from dif-

ferent scales. Although the transform-based edge detectors, such as the

wavelet-based edge detection algorithms, precisely detect edges in noisy

images, they suffer from producing broken edges.

There are many edge detectors based on soft computing techniques,

such as fuzzy sets, ant colony optimisation, genetic algorithms, and neu-

ral networks. Fuzzy-based algorithms perform well in noisy images and

have few parameters. However, these parameters should manually be set

for every image. False edges are also frequent in these algorithms. ACO-

based edge detectors can enhance weak edges and work well in noisy

images. However, these algorithms are very slow and require many pa-

rameters to be set manually. Artificial neural network-based detectors suit

noisy images and are almost accurate, but they need to be trained for a par-

ticular domain, which means they are domain specific. Genetic algorithm-

based edge detectors are accurate but sensitive to noise and very slow.

Particle swarm optimisation (PSO) is a population-based meta-heuristic

method for solving global optimisation problems based on social-psychological

principles. Compared with some heuristic methods such as genetic algo-

rithms, the most important advantages of PSO are ease of its implementa-

tion, fewer operators, a limited memory for each particle and high speed

of convergence. As PSO has a high capability to optimise noisy functions
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[108][17], it has been successfully applied to many problems in noisy envi-

ronments, such as image segmentation [21] and vision tracking [20]. Sur-

prisingly, PSO was not applied to tackling the edge detection problem be-

fore this thesis started in 2009, and still has not suficiently analysed for

edge detection. The execution time of an edge detection algorithm is very

important in many applications. Since PSO does not use the gradient in-

formation of the function being optimised, it has a high capability to opti-

mise noisy functions. These features of PSO make it to be a good candidate

for edge detection in noisy images. This thesis will investigate the capacity

and potential of PSO for edge detection.



Chapter 3

Image Sets

This chapter presents the image sets used in the experiments arranged

during this research, and our justification for their inclusion in the exper-

iments. This project will use two noiseless benchmark image sets along

with their ground truth images (pre-defined edge map of the images) and

one image set including synthetic shapes generated specially for this project.

All images will be corrupted through adding noise (impulse and Gaus-

sian) to their noiseless images. These image sets have been selected based

on their frequent usage for the comparison of edge detectors in noisy and

illuminated images from the literature. The first set has been provided

by South Florida University [136]. The well-known Lena and rubbish-bin

images are included in this set. The second set has been provided by Uni-

versity of Cordoba (UCO) and includes some artificial images and their

artificial ground truth [137].

3.1 Real Image Set of South Florida University

This set contains 28 images that have been provided by South Florida Uni-

versity [136]. Some samples of this image set are shown in Figure 3.1. They

are usually used for a subjective comparison of edge detectors in the lit-

erature. These images will be used in our experiments in different noise
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levels. All of these images are noiseless. They are corrupted by two dif-

ferent kinds of noise, Gaussian and impulse noise as will be described in

Section 3.3. In this image set, there are several images with illuminated

areas. Since the illumination phenomena causes edges to become weak,

most edge detection algorithms cannot perform well in such areas. For

example, the Lena image in Figure 3.1(a) has several illuminated areas on

the hat and the bar in left side of the image. For the egg and rubbish-bin

images as can be seen in Figure 3.1(b) and (d), there are illuminated areas

around the boundary of the egg and the rubbish-bin. For the car image in

Figure 3.1(e), the edges around the car are illuminated.

3.2 Standard Artificial and Real Image Set of Uni-

versity of Cordoba

This set contains some artificial and real images and their artificial ground

truth images which have been provided by University of Cordoba (UCO)

[137]. Some examples of this image set with illuminated areas are shown

in Figure 3.2. These images are commonly used in literature to investigate

the localisation accuracy of edge detectors. Their ground truth images

contain thin and single pixel width edges. These images are usually used

for objective comparison.

3.3 Images with Impulse and Gaussian Noise

An image may be contaminated by noise in its transmission or acquisition.

In fact, noise is any unwanted information that corrupts an image. Noise

comes into an image from different resources. There are many different

types of noise which can be classified into three classes: additive noise,

multiplicative noise and impulse noise. Since additive noise and impulse
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(a) (b)

(c) (d)

Figure 3.1: Example images from South Florida University database for

a subjective comparison [136] (a)-(d) the original Lena, egg, coffee maker

and rubbish bin images which are commonly used for a subjective com-

parison of edge detection algorithms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: (a)-(d) Some samples from UCO university database and (e)-(h)

their ground truth images provided by the university [137].
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noise are more commonly used in image processing and analysis, we pro-

vide a brief overview of these two types of noise in this section. These two

types of noise are also used in this thesis.

3.3.1 Additive Noise

Let I(x, y) be the original intensity of pixel (x, y) in image I , and let IN(x, y)

be the corrupted version of the pixel intensity. Additive noise can be mod-

elled as:

IN(i, j) = I(i, j) + η(i, j) (3.1)

where η(i, j) is a noise function which returns a random value generated

by an arbitrary distribution. This function is independent of the intensity

of pixels in the original image. Typically, the noise function is a symmet-

ric function about zero, namely, this function does not alter the average

brightness of the image. This model is usually used to model the thermal

noise in photo-electronic sensors. For the Gaussian noise in image pro-

cessing, η(i, j) = σε(i, j) where ε(i, j) is a Gaussian random variable with

zero mean and unit variance, and σ2 is the variance of the Gaussian noise.

3.3.2 Impulse Noise

In impulse noise, the intensity of a pixel is altogether replaced by a random

variable (with probability Pn) or is unmodified (with probability 1−Pn). In

salt-and-pepper noise, this random variable is either 0 (black) or 1 (white)

with a same probability (0.5). The impulse noise can be modelled as fol-

lows:

f(i, j) =

{

r2 r1 < Pn

I(i, j) otherwise
(3.2)

where Pn is the probability of noise occurrence, r1 is a uniform random

variable between 0 and 1, r2 is a uniform random variable in the range of
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pixel gray levels.

Since all images described in the last two sections are clean, we add

impulse and Gaussian noise in various levels to the noiseless images in

order to investigate the performance of edge detection algorithms.

3.3.3 Summary

In this chapter, we presented the image sets which will be used in our ex-

periments. These image sets includes noiseless benchmark images which

are commonly used in edge detection. Some of these images are illumi-

nated which causes edge detection algorithms cannot perform well and

broken edges are appeared in the resulted edge maps. Therefore, we will

use these images in our experiments to examine the performance of our

newly developed algorithms. Since these images are noiseless and our

main goal in this research is to detect edges in noisy images, we will cor-

rupt all images by two different types of noise model, i.e., Gaussian and

impulse noise model which are commonly used to simulate noise in image

processing.



Chapter 4

Novel Edge Detection Algorithm

Robust to Noise using PSO

This chapter firstly proposes a novel constrained optimisation model for

detecting continuous edges in noisy images. Then two PSO-based algo-

rithms are developed to find good solutions. These two algorithms use

two different constraint handling methods: penalising and preservation.

They are compared with a revised version of Canny as a Gaussian filter-

based edge detector and the robust rank order (RRO)-based algorithm as

a statistical-based edge detector on two sets of images with different types

and levels of noise.

4.1 Introduction

The edges of objects in an image contain important information that can be

used as low-level features in image analysis and computer vision systems

[2]. The main goal of an edge detection algorithm is to provide the con-

tinuous contours of the object boundaries. In practice, accurately detect-

ing these continuous contours is very hard and time consuming especially

when noise exists in the image [1].

Many algorithms have been proposed using various different paradigms
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such as curve fitting [138], optimization of a criterion [10][139], image

transforms [82][140] statistical testing [11] and soft computing [141][8] to

detect edges for different applications. The selection of an edge detection

algorithm for a particular application depends on its performance in a va-

riety of environmental conditions (such as illumination and noise) and the

requirements of the system of interest (such as real time ability, continuity

of edges, thinness of edges and scale insensitivity).

The commonly used algorithms for detecting edges in noisy images

include Gaussian-based [62], statistical-based [11], and scale space-based

[142] edge detectors. The Gaussian-based algorithms often malfunction

at corners and curves [56] and establish double edges in areas with high

frequencies of information. They also displace edges and produce false

edges [62]. These methods use a Gaussian filter as a smoothing technique

to reduce noise, which often causes edges to be weak and broken as a side

effect [61][15]. Although there are several algorithms that utilise sharp-

ening techniques to reduce these side effects, they suffer from producing

jagged edges [143].

Several statistical-based methods have been proposed to detect edges

in noisy images, such as the t-detector, Wilcoxon detector, and robust rank-

order (RRO) detector [11]. These methods are insensitive to noise because

of considering a large neighbourhood for each pixel in comparison to other

edge detection methods. They use a statistical test to check whether an

r × r window can be divided into two subregions with significant differ-

ences in intensities. If there is a significant difference between them, the

pixel is classified as an edge otherwise a non-edge. These algorithms are

data-driven and do not function based on an edge model, thus they can-

not recognise edge magnitudes which are required for edge thinning and

linking. Therefore the produced edges are often thick [144].

Another group of algorithms use the scale space theory [65] to gener-

ate different scales of an image and produce an image pyramid. These

methods operate on a large area of an image through generating different
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scales of the image. While the operation on the low resolution images al-

lows them to be very fast, the difficulty of choosing the size of the filters

with combining edge information from different scales restricts their ap-

plication. Some of these methods such as wavelet-based edge detectors

utilise an image transform to detect edges. Although these methods are

insensitive to noise, they suffer from producing broken and jagged edges

[82] [62].

Several techniques have been proposed to compensate for broken edges,

such as sequential edge linking (SEL) [90], multi-resolution SEL (M-SEL)

[91] and the Hough transform. The simplicity and high speed are the main

advantages, but they are not necessarily accurate due to not considering

the global structure of edges. While the Hough transform can operate

well on the images containing just simple shapes (such as straight lines

or circles), it often does not deal well with objects having complicated

shapes [3]. Snake-based methods are another type of these techniques.

They utilise an active contour model to detect an object boundary [145].

These methods need to have a priori knowledge about the boundary and

are very slow [146].

Most of the edge detection algorithms described above use a convolu-

tion of an image with an n × n matrix, where usually n ≤ 5 to reduce the

computation time. This means that the information from a limited area is

considered in these algorithms to mark a pixel as an edge. The area size

has a strong effect on accuracy such that if the area size is increased, the al-

gorithm will be less sensitive to noise but at the same time, the localisation

accuracy will be lower. If we want to increase the localisation accuracy of

the algorithm, we need to consider all edge patterns. However, this will

substantially increase the computation time (t(n) = (n2−1)n

2
= O(n2n)) [16].

Therefore a heuristic algorithm is required to explore a large area to over-

come the noise and consider the global structure of the edges to reduce

broken edges in a reasonable time.

Particle Swarm Optimisation (PSO) is a population-based meta-heuristic
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method for solving global optimisation problems based on social-psychological

principles, introduced by Kennedy and Eberhart in 1995 [116]. Compared

with some heuristic methods, such as genetic algorithms, the most impor-

tant general advantages of PSO are ease of its implementation, few oper-

ators, a limited memory for each particle and high speed of convergence

[120]. PSO is very stable and efficient in noisy environments [147]. Its

comparison with evolutionary algorithms has shown that PSO has a high

capability to optimise noisy functions [148][108][17] and it has been suc-

cessfully applied to many problems in noisy environments, such as im-

age segmentation [21] and vision tracking [20]. PSO has good potential

for edge detection in noisy images, but surprisingly, it has not been suffi-

ciently analysed for tackling edge detection problems.

4.1.1 Chapter Goals

This chapter aims to develop new PSO based approaches to edge detection

in noisy images with the goal of extracting continuous edges and reducing

the number of broken edges. The main goals of this chapter are as follows:

• Developing a fitness funtion and a particle encoding for PSO to de-

tect edges in noisy images

• Exploring a large area and examine all possible edge patterns in or-

der to increase the localisation accuracy of edge detection and ex-

tracting the global structure of edges in order to detect the edges

with greater continiuity

• Comparing the new PSO-based method with the modified version of

the Canny algorithm proposed in [60] and the RRO algorithm pro-

posed in [11] on two sets of noisy images.

The rest of this chapter is organised as follows. Section 4.2 describes

a revised version of Canny along with the RRO-based edge detector. The
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new PSO-based algorithms are presented in Sections 4.3 and 4.4. Sections

4.5 and 4.6 presents discussion on experimental results followed by a sum-

mary in Section 4.7.

4.2 Edge Detection Algorithms

Edge detection as low-level feature detection is one of the critical elements

in image processing. The main function of edge detection is to find the

boundaries of image regions based on properties such as intensity and

texture [11]. Although many algorithms have been proposed to detect

edges in noisy images, this section only briefly reviews a modified version

of Canny [61] and RRO [11] as they are very commonly used in edge de-

tection in noisy images and will be compared with the new approaches

proposed in this chapter.

4.2.1 Revised Versions of the Canny Algorithm

The Canny edge detector as a Gaussian filter-based algorithm operates as

an optimisation process to find the maxima of the gradient magnitude of

an image after the image is smoothed by a Gaussian filter to reduce noise

[10]. This algorithm is very popular because it has a complete process

of edge detection and has good localisation. This edge detector has been

revised many times since it was first proposed. Its typical steps include

applying a Gaussian filter to reduce noise, estimating the gradient magni-

tude and edge direction for each pixel of an image, using a non-maxima

suppression (NMS) algorithm to suppress non-maxima edges, and apply-

ing a hysteresis thresholding technique to identify edges and link broken

edges.

The size of the filter is very important in reducing noise and its size

depends on the noise level. The Canny algorithm was revised by Jeong

and Kim [64] by proposing an adaptive method in order to determine the
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optimal filter size in noisy images. They suggested a standard and adap-

tive method to determine filter scale for edge detection for each area of

an image. This method was extended from the optimal filter concept pro-

posed by Poggio et al. [149] and the scale-space theory proposed by Witkin

[150]. This method adaptively finds optimal filter scales for each pixel be-

fore extracting edge maps. Jeong and Kim defined an energy function as a

function over continuous scale space as follows:

E(σ) =

∫ ∫
(

(f −G ⋆ f)2 + λ

∣

∣

∣

∣

∇ 1

σ(x, y)

∣

∣

∣

∣

2)

dxdy

=

∫ ∫
(

(

f −
[
∫ ∫

1

2πσ2
e−

α2+β2

2σ2 f(x− α, y − β)dαdβ

]

)2

+λ((−σx

σ2
)2 + (−σy

σ2
)2)

)

dxdy (4.1)

where f is a signal, G is a Gaussian function and λ = 60 is a constant to

control the smoothness ability of the Canny algorithm. It is obvious that

when σ → 0, the first term, i.e, f − G ⋆ f tends to a small value and when

σ → +∞, it tends to a large value. This is reverse for the second term.

Therefore, this energy function is minimised at somewhere in the search

space, 0 < σ(x, y) < ∞. The discrete form of this energy function can be

estimated as follows:

E =
∑

i

∑

j







(

I(x, y)−
[

∑

α

∑

β

1

2πσ2(i, j)
e
− α2+β2

2σ2(i,j)f(i− α, j − β)

])2

+
λ

σ4(i, j)

[

(σ(i+ 1, j)− σ(i, j))2 + (σ(i, j + 1)− σ(i, j))2
]

}

(4.2)

Jeong and Kim used a simple iterative successive over-relaxation method

to obtain the optimal scale for each pixel on an image.

After applying the Gaussian filter and estimating the magnitude of the

edges, the NMS technique is used as an edge thinning algorithm [151].

The NMS technique proposed by Canny chooses a pixel as an edge only
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when the edge magnitude at that pixel is larger than the edge magnitude

of the pixels in the direction of the gradient. Canny also proposed that it

can be used as a post-processing algorithm along with any gradient oper-

ator to detect edges with a single pixel width. Most edge detection algo-

rithms utilise a thresholding technique to identify edges and non-edges.

The problem of producing broken edges is very common when a single

global threshold value is used for edge thresholding [60]. Canny proposed

the hysteresis thresholding technique, inspired by biological mechanisms,

for detecting edges with greater continuity [152]. This technique usually

utilises two threshold values (high and low) to tackle the problem of bro-

ken edges [10]. The hysteresis thresholding technique includes two main

steps. In the first step, only the pixels whose gradient magnitudes are

greater than the high threshold value are chosen as edges. In the second

step, the pixels are detected whose gradient magnitudes are greater than

the low threshold value and are adjacent to other edge pixels [55]. Man-

ual determination of these two threshold values is very time consuming.

Therefore, many unsupervised techniques have been proposed to deter-

mine these values [60]. Sen and Pal [60] proposed an automatic way in

order to estimate these two threshold values. The low and high threshold

values are computed as follows:

ThresholdHigh = 2σ
√

fuln2 (4.3)

ThresholdLow =
1

2
ThresholdHigh (4.4)

where fu = s − l, s =
∑N

i=1

∑N
j=1 a

2
ij and l =

∑N
i=1

∑N
j=3 aijaij−2 where the

coefficients aij correspond to the kernel of the Gaussian filter.

4.2.2 Robust Rank Order-based Edge Detector

Many edge detection algorithms have been proposed to deal with noise

within the framework of statistics. These algorithms utilise a statistical test

to detect an edge. An algorithm was recently developed by Lim based on
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the robust rank-order (RRO) test [11]. This algorithm performs better than

other statistical-based edge detectors such as Wilcoxon and t-test-based

edge detectors [153][72] in terms of accuracy. The RRO algorithm consid-

ers eight different edge patterns for each pixel, each of which partitions the

neighbourhood of the pixel into two sub-regions (gray and white) as can

be seen in Figure 4.1. Lim considered the intensity of neighbours of each

pixel on an image as 24 independent observations which are partitioned

into G = {g1, g2, . . . , g12} and W = {w1,w2, . . . ,w12} corresponding with

the gray (G) and the white (W) subregions as shown in Figure 4.1. At least

one of the window partitions shown in Figure 4.1 will be matched on an

edge if there is an edge passing from the central pixel. The samples in G

and W come from two continuous distributions, A(g− µg) and B(w− µw)

with shifted parameters µg and µw. Lim did not make any assumption

about the nature of these two distribution. He defined the modified obser-

vations, αi and βi as follows:

αi =

{

gi + δ gi ∈ G

wi wi ∈W
(4.5)

βi =

{

gi − δ gi ∈ G

wi wi ∈W
(4.6)

where δ is a parameter to define the minimum gray-level differential for

the detection of an edge. In this method, the following hypothesises are

tested:

H↑
0 : µg + δ ≥ µw versus H↑

1 : µg + δ < µw (4.7)

and

H↓
0 : µg − δ ≤ µw versus H↓

1 : µg − δ > µw (4.8)

Lim showed that since the distributions A and B are not identical in

real world images, the Wilcoxon test is not an appropriate test. Accord-

ingly, he considered the the RRO test on the modified observations, αi

and βi to determine the existence of a significant difference in gray level
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Figure 4.1: Partitioning the neighbourhood of a pixel in eight different

ways where a gray sub-region represents partition G and a white sub-

region represents partition W [11].
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between them. Lim’s method first considers the diagonal edge shown in

Figure 4.1(a) and then the RRO statistic is obtained for testing H↑
0 against

H↑
1 on αi. In order to obtain the statistic, for each gi+δ, the number of wi in

W, which is smaller than gi+δ, is counted. This number shows the position

of gi + δ and is denoted by U(W, gi + δ). Similarly, the position of each wi

in W, U(G+ δ,wi) is found. Let U(W,G+ δ) be the mean of U(W, gi + δ),

U(G + δ,W) be the mean of U(G + δ,wi), VG+δ =
∑

gi∈G(U(W, gi + δ) −
U(W,G+ δ)) and VW+δ =

∑

wi∈W(U(G+ δ,wi)−U(G+ δ,W)). So, the RRO

statistic can easily be computed as:

Uα =
12(U(G+ δ,W)− U(W,G+ δ))

2
√

VG+δ + VW+δ + U(G+ δ,W)U(W,G+ δ)
(4.9)

Similarly, the RRO statistic can be obtained for testing H↓
0 against H↓

1

on βi. So,

Uβ =
12(U(W,G− δ)− U(G− δ,W))

2
√

VG−δ + VW−δ + U(G− δ,W)U(W,G− δ)
(4.10)

The null hypothesis, H↑
0 (or H↓

0 ) is rejected if U∗ = max(Uα, Uβ) has a

large value. In the RRO-edge detector, a pixel is recognised as an edge

when U∗ is larger than a predefined threshold value, Tsl at a specified sig-

nificant level sl.

The number of edge patterns used in this algorithm is more than that

of the Canny edge detector which usually uses two or four edge patterns.

Therefore, the localisation accuracy of these algorithms is often higher

than that of Gaussian-based edge detectors in the images corrupted by

noise. This algorithm also has only a few parameters that can be easily

tuned by the user in order to detect edges in noisy images.

4.3 The New PSO-Based Approaches

The new methods proposed here are based on heuristically solving an op-

timisation problem. We wish to search for the best curve segment of a
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given length which can be fitted on a continuous edge. This curve sep-

arates a region of an image into two subregions. All possible edge pat-

terns would need to be examined in order to find the best curve such

that it maximises the dissimilarity of pixel intensities of two subregions

and maximises the similarities of the pixel intensities inside of each subre-

gion. Therefore the search space in this optimisation problem is all possi-

ble curves which partition this region into two subregions. An encoding

scheme is developed to represent these curves in this search space. To eval-

uate each curve, a fitness function is formulated to measure the dissimilar-

ity between two subregions and the similarities of the pixels within each

subregion. In this formulation, there are two simple constraints which

should be satisfied. Two different PSO-based algorithms are proposed to

handle the constraints. As will be shown, these algorithms have different

efficiency in speed and effectiveness in accuracy. This section provides the

details about the encoding scheme and the fitness function with the two

constraints, followed by two PSO-based algorithms proposed in Section

4.4.

4.3.1 Encoding Scheme

Most edge detection algorithms convolve a convolution matrix on an im-

age to calculate the edge magnitude only for a single pixel at a time and

then utilise a thresholding technique to classify the pixel as an edge or non-

edge. Therefore, a large number of pixels which have weak magnitudes

may be falsely classified as non-edges or a few pixels which have high

magnitudes may be falsely recognised as edges. It may cause a real con-

tinuous edge to be broken or some speckles to appear on a resulting edge

map especially in noisy images. For that reason, the proposed method

processes a collection of pixels at a time instead of a single pixel in order

to extract the global structure of the real edge and considers a large area

rather than a small one in order to attempt to overcome noise.
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(a) (b)

3 3 1 1 0 1 1 4 4 5 5 4

(c)

Figure 4.2: The particle encoding scheme. (a) An example of a curve with

two regions; (b) eight movement directions from a pixel P ; (c) the particle

representing the curve with L = 5.
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A continuous edge is a collection of consecutive pixels which divide

an area of an image into two regions: the light and dark regions in Fig-

ure 4.2(a). The goal is to maximise the interset distance between the pixel

intensities of the two regions and minimise the intraset distances within

both regions. These consecutive pixels can be represented by a group of

directional arrows (see the arrows in Figure 4.2(a)). Let pixel C be the

middle pixel of the consecutive pixels on the continuous edge and 2L + 1

be the number of the pixels on it. The red square in Figure 4.2(a) is the

area which pixel C can be located in. The number of pixels along one side

of this square is SqrSize. The relative position of pixel C with respect to

pixel A (the upper left pixel of the red square) shows the offset of pixel C.

With regard to the points explained above, a continuous edge can be rep-

resented by three components: the offset of pixel C and two sequences of

movement direction sequences from pixel C representing the consecutive

pixels. Let 〈o1, o2〉 be the offset where o1 and o2 are integers ranging from

0 to SqrSize − 1, and 〈m1,m2, . . . ,mL〉 and 〈mL+1,mL+2, . . . ,m2L〉 be two

sequences of movement direction sequences away from pixel C where mi

are integers ranging from 0 to 7. Each mi shows the direction of movement

from a pixel to one of the eight possible adjacent pixels in its neighbour-

hood along the continuous edge as shown in Figure 4.2(b). By changing

the values of these components in the range of interest, all possible contin-

uous edges sited inside of a region with the area of (2L+SqrSize)2 can be

represented by this encoding.

For example, the edge passing through pixel C, which is located inside

the square in Figure 4.2(a), is encoded as shown in Figure 4.2(c). In this

example, SqrSize = 4, L = 5, and 〈m1,m2, . . . ,m5〉 show the movement

directions from the point C towards the top and 〈m6,m7, . . . ,m10〉 towards

the bottom. In this example, all striped pixels enclosed by the green lines

are used to evaluate the curve, as follows.
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4.3.2 A Fitness Function

The encoding scheme can represent all possible continuous edges with a

minimum specified length (2L+1) located in a specified area of an image.

To evaluate each edge in this search space, a fitness function is introduced

in this subsection. As illustrated later, the fitness value of each continuous

edge is based on the average edge magnitude of all pixels along the edge.

In this subsection, an edge magnitude measure and a curvature cost mea-

sure are also formulated followed by two constraints to detect continuous,

smooth and thin edges in the images corrupted by noise.

Edge Magnitude Measure

Most edge detection algorithms use variant edge operators which have

been developed based on different order derivatives to calculate edge mag-

nitude, such as the first [10], second [57] and fourth derivatives [154].

These algorithms are often very sensitive to noise. However some of these

operators work well in clean images. For this reason, we introduce a new

approach to calculating edge magnitude in noisy images. The main idea

is the optimisation of the interset distance between the regions separated

by a continuous edge, and the intraset distances within the regions.

We propose eight ways of dividing the neighbourhood of each pixel of

an image into two regions according to the eight possible movement direc-

tions, as shown in Figure 4.3. In each edge pattern in Figure 4.3, let D and

L be the two sets of pixels corresponding to the dark and light regions re-

spectively. It is obvious that if the interset distance between these two sets

is great and their intraset distances are small, the edge magnitude will be

great; and also if the interset distance is small and their intraset distances

are great, the edge magnitude will be small. Hence, edge magnitude can

be modelled as a function of these distances. We expect that the pixels of

each region are close in intensity (low intraset distance), and the pixels of

these two regions have the highest possible difference in intensity (high in-
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Figure 4.3: Eight ways of moving from pixel P to a neighbouring pixel.

terset distance). Therefore, we formulate the edge magnitude at pixel P in

movement direction m, EdgeMagm(P ) as Equation (4.11) to maximise the

interset distance (InterDism(P )) between the regions and minimise the

intraset distance (IntraDism(P )) within the regions. To avoid dividing by

zero, the denominator is increased by 1.

EdgeMagm(P ) =
InterDism(P )

1 + IntraDism(P )
(4.11)

Here P is a single pixel on a continuous edge and m is the movement

direction from the pixel P to the next adjacent pixel on the edge. The

interset distance is calculated based on Equation (4.12).

InterDism(P ) = min (1, |avgm,d(P )− avgm,l(P )|/w1) (4.12)

Here avgm,d(P ) and avgm,l(P ) are the average intensities of the dark and
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light regions corresponding to movement direction m for pixel P (see Fig-

ure 4.3), as calculated in avgm,d(P ) = 1
n

∑

Pi∈D IPi
and avgm,l(P ) = 1

n

∑

Pi∈L IPi
;

n = |L| = |D| (n = 9 in Figure 4.3); IPi
is the intensity of the ith pixel in the

corresponding set; and w1 is a weight factor.

The intraset distance IntraDism(P ) is a sum of pairwise subtractions

of pixel intensities in a region as shown in Equation (4.13):

IntraDism(P ) =
1

(n2)

(

∑

Pi,Pj∈D
i>j

min
(

1, |IPi
− IPj

|/w2

)

+
∑

Pi,Pj∈L
i>j

min
(

1, |IPi
− IPj

|/w2

)

)

(4.13)

where w2 is a weight factor.

NMS Factor for Edge Thinning

Non-maxima suppression (NMS) is one of the most important edge thin-

ning techniques [2]. It extracts a local maximum of the edge magnitude

along the direction of the gradient vector and suppresses non-maximal

edges. Here, the EdgeMagm of a pixel on a continuous edge for each di-

rection m is compared to the EdgeMagm of pixels P1, P2, . . . , P6 (as shown

in Figure 4.3) on both sides of the edge. The NMS factor in each direction

is the number of these neighbouring pixels whose edge magnitudes in the

same direction are lower than the edge magnitude of the pixel:

NMSm(P ) = |{Pi|i ∈ {1, . . . , 6}, EdgeMagm(Pi) < EdgeMagm(P )}| (4.14)

where | · | is the cardinality of a set and {P1, . . . , P6} are the particular

neighbours of the pixel P as shown in Figure 4.3. The value of NMS is an

integer ranging from 0 to 6. The NMS factor in direction m is larger when

P is a local maxima in that direction.

The NMS factor in conjunction with EdgeMagm(P ) is used to indicate

the total edge magnitude of a pixel lying on a thin edge in direction m. If



4.3. THE NEW PSO-BASED APPROACHES 85

the edge direction is not estimated accurately, it may cause some real edge

pixels to be removed by the NMS algorithm and broken edges to appear

on the edge map. Therefore, a non-maxima edge should not necessarily be

removed. The proposed method does not remove the non-maxima edge,

but reduces the edge magnitude of the non-maxima edge by multiplying

by a number less than 1; for the edges with high NMS factor values, this is

close to 1 and for those with the low values, this is close to zero. Therefore

we use a sigmoid function to scale a NMS factor value between 0 and 1

and generate this number. Thus the total edge magnitude of each pixel in

direction m is calculated as Equation (4.15).

TotalEdgeMagm(P ) = EdgeMagm(P )× 1

1 + e−2(NMSm(P )−4)
(4.15)

Most edge detection algorithms utilise thresholding techniques to iden-

tify edges after calculation of edge magnitudes. These techniques use one

or more threshold values to decide whether or not a pixel is an edge ac-

cording to its edge magnitude. An edge pixel with an edge magnitude

less than the threshold values may be wrongly recognised as a non-edge.

For this reason, thresholding techniques often cause broken edges in the

edge detection. Therefore, we use another sigmoid function to minimise

the side effect of using these techniques. The total edge magnitude of each

pixel is scaled by the sigmoid function between 0 and 1 in order to esti-

mate a possibility score of the pixel P lying on an edge, as can be seen in

Equation (4.16):

PScorem(P ) =
1

1 + e−
3.317
TH

(TotalEdgeMagm(P )−0.6229TH)
(4.16)

where PScorem(P ) is the possibility score of the pixel P lying on an edge

in the direction of m; and TH is a threshold value between 0 and 1 which

can be estimated by Otsu’s method for image segmentation [155] as will

be described in subsection 4.3.3. We use Equation (4.16) to minimise the
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side effect of using the thresholding techniques and improve the detec-

tion of the weak edges. This equation is formulated such that TH is the

threshold point of the sigmoid function at which the third derivative of

the sigmoid function is zero, so its saturation point is 0.246TH at which

the third derivative of the function is also zero. By this way, the possibil-

ity scores of the strongest edges will be higher than the threshold point

TH and close to 1, those of the weak edges will be about 0.5, and those of

weakest edges will be lower than the value corresponding to the satura-

tion point. We aim that all weak edges are given a chance to be detected

as edges if they are located on a continuous edge along with some strong

edges. More information about the sigmoid function is available in the

appendix.

Possibility Score of a Curve on a Continuous Edge

The proposed model considers a collection of pixels located on a continu-

ous edge instead of considering only a single pixel as most edge detection

algorithms operate. Since the pixels along a continuous edge have simi-

lar intensities, the pixel intensity of the broken edges are very similar to

the intensities of their adjacent edge pixels. Therefore, in addition to the

edge magnitude of the pixels on the continuous edge, the intensities of

the pixels are also used to evaluate each curve. We introduce the unifor-

mity factor of curve C fitting on a continuous edge in order to calculate

the similarity of the pixels on the curve in intensity:

U(C) =
1

255× 2L

2L
∑

i=1

|IPi+1 − IPi
| (4.17)

where IPi
is the intensity of the ith pixel on curve C. Here U(C) is a real

number between 0 and 1 and a low value of this factor for a curve implies

a better fit on the actual edge, as pixel intensities are similar along the

curve. In the denominator of Equation (4.17), 255 is the maximum distance
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between two pixels in an image with a resolution of 8 bits per pixel.

The average of the possibility scores of the pixels on a continuous edge

in conjunction with the uniformity factor of the edge are used to estimate

the total possibility score of the curve being on a continuous edge. The

possibility score of the curve C is formulated as Equation (4.18) such that

it maximises the possibility of the pixels on the curve and minimises its

uniformity factor.

PScore(C) =

∑

Pi∈C PScoremi
(Pi)/(2L+ 1)

1 + UC
(4.18)

Curvature Cost of Continuous Edges

All adjacent pixels on a smooth edge usually have almost the same edge

orientation, i.e., the difference between the edge orientation of two ad-

jacent pixels is low and their edge directions are similar. Therefore, we

propose a curvature cost of a continuous edge in order to reduce the ef-

fect of producing jagged edges. The curvature cost (CC) of an edge pixel

is introduced here to show a local measure of curvature followed by the

curvature cost of a continuous edge. The local curvature measure is de-

fined based on a movement direction from a pixel to its adjacent pixels, as

shown in Equation (4.19).

CC(mi,mi+1) =

{

|mi −mi+1|/w3 |mi −mi+1| ≤ 4

(8− |mi −mi+1|)/w3 otherwise
(4.19)

Here mi is the ith movement direction according to the encoding and w3 is

a weight factor.

The curvature cost of curve C is calculated by Equation (4.20) which is

the average of the curvature cost of all single pixels on the curve.
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CCost(C) =
1

2L− 2

( L−1
∑

i=1

CC(mi,mi+1) +

2L−1
∑

i=L+1

CC(mi,mi+1)

)

(4.20)

Fitness Function with Two Constraints

Since the possibility score of a curve should be maximised to fit more ac-

curately on a continuous edge and its curvature cost should be minimised

to be smooth, we propose the following fitness function to evaluate curve

C:

Fitness(C) = PScore(C)− CCost(C) (4.21)

subject to two constraints:

Cross(C) = 0 and PScore(C) > HP

where Cross(C) counts how many times the curve C crosses itself and HP

is a threshold value that is defined by the user. The curves, represented by

the encoding, may sometimes intersect themselves, so we set a constraint

Cross(C) = 0. On the other hand, PScore(C) > HP as another constraint

should be satisfied to reduce false alarms.

4.3.3 Otsu’s Method for Estimation of TH

Otsu’s method [155] is a very common nonparametric approach to deter-

mining a global threshold value for binarisation of the resulting image

after applying an edge operator. It works in an optimum way to divide a

set of pixels into two subsets (edge and non-edge) where it maximises the

discriminating criteria of interset variance between the pixel intensities in
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these subsets [155]. The edge magnitudes of the pixels belonging to the

first subset are less than or equal to t and those of the pixels in the second

subset are greater than t. Let µ1(t) and µ2(t) be the average edge magni-

tude of the pixels in the first and second subsets, and N1(t) and N2(t) be

the number of the pixels in these subsets respectively. The average edge

magnitude of all pixels (µA(t)) can be calculated as follows.

µA(t) =
N1(t)µ1(t) +N2(t)µ2(t)

N1(t) +N2(t)

The interset variance between these two subsets δA(t) is

δA(t) = N1(t)[µ1(t)− µA(t)]
2 +N2(t)[µ2(t)− µA(t)]

2

To estimate TH in Equation (4.16), the local maximum of the edge mag-

nitude of each pixel LocalEdgeMag(P ) is first calculated using Equation

(4.22).

LocalEdgeMag(P ) =
8

max
i=1

(TotalEdgeMagi(P )) (4.22)

Applying this equation results in an edge magnitude map which can be

used as the input to the Otsu’s method in order to estimate the value of

parameter TH in Equation (4.16). Figure 4.4 shows how Otsu’s method

can be used in the proposed method for determination of the value of this

parameter. The value t corresponding to the maximum of δA(t) is consid-

ered as TH . As shown in Figure 4.4, the edge magnitudes of each pixel in

8 different direction are first calculated and then the local maximum edge

magnitude of each pixel is computed. The resulted local edge magnitude

maps is considered as the input of Otsu’s method to estimate TH .

4.4 Two Proposed PSO-based Algorithms

Two PSO-based algorithms are developed for the optimisation of the pro-

posed model to detect edges in noisy images. As can be seen in the overall
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Figure 4.4: Paradigm of PSO-based Edge Detector.

flowchart of the PSO-based algorithm in Figure 4.5, the red square in Fig-

ure 4.2 (a) first moves on the area in which exists at least one pixel with a

high edge magnitude. Then one of the PSO-based algorithms is applied

to the chosen area and find the best curve which can be fitted on a con-

tinuous edge passing inside the red square. After applying the PSO-based

algorithms, the red square moves to the next block.

Each particle in the PSO-based algorithms represents a curve in an area

of an image using the developed encoding scheme. In the proposed algo-

rithms, we move the red square (as shown in Figure 4.2(a)) over the image

from top left to bottom right. After each movement, we apply a PSO-

based algorithm to find the best curve which can be fitted on a real con-

tinuous edge. In each run of PSO, all possible curves, whose centres (pixel

C) are located inside of the SqrSize × SqrSize red square, are processed.

If the best curve is found by the PSO algorithm, the pixels on the curve

are marked as edges and the pixels within the rectangle are not marked

as processed pixels; otherwise all pixels within the square are marked as

processed pixels. Those pixels which are not marked as processed should

be considered in the next iteration of the main loop because the algorithm

may find another curve in this area. If SqrSize is set to a large value,

the speed of the algorithm will be increased because of processing a large
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Figure 4.5: The flowchart of the PSO-based algorithm

number of pixels by the PSO algorithm at a time. However, it may cause

that some details in the edge map are removed as will be shown later.

Also, if 2L + 1 is set to a small value, the execution time of the algorithm

will be decreased due to the reduction of the length of the particle en-

coding. However, it may cause that the number of the broken edges will

be increased. Therefore, these parameters should be adjusted by the user

carefully. We will further discuss about these parameters in Section 4.6.4.

As described Section 4.3.2, the PSO-based edge detector should op-

timise a function with two constraints. The selection of constraint han-

dling methods is very problem dependent. Several methods have been

proposed to handle constraints in PSO. These methods can be categorised

into four main groups. In the first group, all particles are initialised such

that the potential solutions fall within a feasible search space. These meth-

ods typically utilise a particular operator to preserve new solutions to not

violate existing constraints [156]. In the second group, the algorithms add

a penalty to the fitness of the particles which violate constraints [157]. The

third group (partitioning methods) divide all particles into a feasible set
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and an infeasible set that are operated on differently. Some of them ma-

nipulate and mend infeasible solutions or prioritise solutions based on

their feasibility [158][159]. In the last category, the optimisation problem

is transformed to another one such that either the constraints can be han-

dled in an easier way, or they can be eliminated. An example is using

homomorphous mappings on a problem with linear equality constraints

[160].

Two different but more commonly used methods are applied here. The

first is based on a preservation method and the second is based on a penal-

ising method. This section describes these two algorithms after explaining

the truncation method to convert the real values to integers in the PSO-

based algorithms.

4.4.1 Truncation Method for Discrete PSO

As the search space explored by the new PSO-based algorithms is discrete,

the particle positions must be truncated to integers after they are updated

by Equation (2.42). Many discrete versions of PSO use a simple truncation

method to convert real numbers to integers [119]. Instead of using a simple

truncation method, the following method is used to truncate the values of

particle positions to integers:

oi =

{

(⌊oi⌋+ 1) if oi − ⌊oi⌋ > R

⌊oi⌋ otherwise
(4.23)

mi =

{

(mi + 1) mod 8 if mi − ⌊mi⌋ > R

mi mod 8 otherwise

where R is a uniform random number ranging from 0 to 1. We expect

that this simple truncation method increases the diversity of the particles

in the population in the described discrete search space to avoid being

trapped in a local optima. Note that this rule is only applied to convert the

real values of the particle positions to integers but not used to update the
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particle velocities. In this equation, the decimal parts of the numbers mi

and oi show the probability of truncating to the largest integer numbers

which are smaller than them and the complementary probability shows

the probability of truncating to the smallest integer numbers which is at

least as large.

4.4.2 Preservation of Feasible Continuous Edges

Algorithm 4.1 summarises the first PSO-based algorithm (PSO1) which

aims to detect edges in noisy images using the optimisation method de-

scribed in the previous section. This algorithm utilises a preservation

method to handle the constraints.

We expect that this algorithm based on preservation can effectively

maximise the distances between pixel intensities in the two regions (in-

terset distance) separated by a continuous edge and minimise the distance

between the pixel intensities within each region (intraset distance), and

accordingly accurately detect continuous, thin and smooth edges in com-

plex images. The PSO algorithm could be initialised only once for all runs.

This increases the speed of the algorithm; however, it may prematurely

converge to local optima and reduce the accuracy of the algorithm. In the

proposed algorithm, the PSO-algorithm is initialised for each iteration of

the main loop. Since preservation methods suffer from low diversity of

particles, the constraints are examined in line 16 after updating the posi-

tion of each particle and applying the update rule in line 15.

4.4.3 Penalising Infeasible Continuous Edges

The second PSO-based algorithm (PSO2) uses a penalising method to han-

dle constraints. Although penalising methods require tuning for any con-

strained optimisation problem, their rapid convergence characteristic makes

them attractive [161]. We define a non-stationary and multi-stage penalty

fitness function adopted from [162] for edge detection to handle the two
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Algorithm 4.1 PSO-based edge detection algorithm based on a preserva-

tion method to handle the constraints (PSO1)

1: for all pixel P on an image with local edge magnitude larger than TH

do

2: if P is unprocessed and not marked as an edge then

3: Initialize PSO population in feasible search space randomly for

pixel P

4: repeat

5: for all Particle decoded as curve C in Population do

6: Evaluate U(C) (4.17), PScore(C) (4.18) and CCost(C)

(4.20)

7: Evaluate Fitness(C) (4.21)

8: if Fitness(C) is better than best fitness value in history

and C is feasible then

9: Update personal best position

10: end if

11: end for

12: Assign the best particle in the population to the leader

13: for all particle decoded as curve C in population do

14: Calculate particle velocity (2.43)

15: Update particle position (2.42) and apply update rule

(4.23)

16: if Cross(C) 6= 0 or PScore(C) ≤ HP then

17: Replace the particle with a new random feasible one

18: end if

19: end for

20: until maximum iterations exceeded or minimum error criteria

attained

21: Select best feasible particle in the population and decode it as

curve C∗

22: Mark all pixels on curve C∗ as an edge

23: if no feasible particle found then

24: Mark all pixels within the red rectangle as processed

25: end if

26: end if

27: end for



4.4. TWO PROPOSED PSO-BASED ALGORITHMS 95

constraints as shown in Equation (4.24). Since any optimisation problem

can be optimised by an easier way when it does not have any constraints,

we expect that the penalised PSO algorithm operates more efficiently than

the previous algorithm.

PenFit(C) = Fitness(C)−
√
K(Cross(C) + θ(q(C))q(C)) (4.24)

Here K is the current iteration number of the PSO algorithm, q(C) =

max(0, HP − PScore(C)), and θ(q(C)) is calculated as Equation (4.25):

θ(q(C)) =











1 if q(c) < 0.001

2 if q(c) < 0.1

10 otherwise

(4.25)

The second constrained discrete PSO-based algorithm utilising a pe-

nalising method is outlined in Algorithm 4.2. In each iteration of this al-

gorithm (lines 5–19), the uniformity factor, edge possibility and curvature

cost of each curve presented by each particle are calculated. The fitness

value of each particle is computed and then the best and the worst parti-

cles are found. The worst particle is replaced with a new random one in

line 15 in order to increase the diversity of the particles. After updating

the velocities and the positions of the particles, the stopping criteria are

checked, i.e., whether the maximum number of iterations is exceeded or

minimum error criterion is attained. Since the best continuous curve C∗

may violate the constraints, its penalised fitness value is checked not to be

less than HP . If the value is less than HP , all pixels on the curve C∗ are

marked as edges; otherwise all pixels inside of the red square are marked

as processed pixels (lines 21–25).



96 CHAPTER 4. EDGE DETECTION USING PSO

Algorithm 4.2 Constrained PSO-based edge detection algorithm based on

a penalising method to handle the constraints (PSO2)

1: for all pixel P on an image with a local edge magnitude larger than

TH do

2: if P is unprocessed and not marked as an edge then

3: Initialize PSO population randomly for pixel P

4: K = 0

5: repeat

6: Increment K

7: for all particle (decoded as curve C) do

8: Evaluate U(C), PScore(C) and CCost(C)

9: Evaluate q(C) and θ(q(C))

10: Evaluate Fitness(C) and PenFit(C)

11: if PenFit(C) is better than best fitness value then

12: Assign C to best particle

13: end if

14: end for

15: Replace the worst particle with a new random one

16: for all Particle decoded as curve C do

17: Calculate particle velocity

18: Update particle position and apply update rule (4.23)

19: end for

20: until maximum iterations exceeded or minimum error criteria

attained

21: Select best particle and decode it as curve C∗

22: if C∗ is feasible then

23: Mark all pixels on curve C∗ as an edge

24: else

25: Mark all pixels within red rectangle as processed

26: end if

27: end if

28: end for
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4.5 Experimental Design

To investigate the effectiveness of the new algorithms, we first compare

the first algorithm (PSO1) with a modified version of Canny [61] and RRO

[11] algorithms on two sets of benchmark images at different types and

levels of noise. Then we compare the efficiency and effectiveness of PSO1

which is based on a preservation method with those of the second new

algorithm (PSO2) which is based on a penalising method. We equip the

Canny algorithm with an unsupervised hysteresis thresholding technique

proposed in [163], with an adaptive method to estimate its filter scale pro-

posed in [64] and with a NMS technique proposed in [10] to improve its

performance. Note that these techniques are not applicable for the RRO

detector. This section also describes the image sets, performance measure,

and parameter settings, which are used in the experiments.

4.5.1 Image Sets

Two different image sets are used in our experiments. The first image set

includes five natural images which are commonly used as benchmarks for

edge detection: Lena, egg, coffee maker, rubbish bin and car (see Figure

4.6). As described in Chapter 3, to explore the performance of the new

algorithms in noisy environments, these images are corrupted by two dif-

ferent types of noise: impulse and Gaussian (see the images in Figure 4.6

in columns (b) and (c)). The probability of the impulse noise is 0.1 and the

peak-signal to noise ratio (PSNR) is 16dB for the Gaussian noise in these

noisy images. The reason for choosing these values is that a PSNR below

16dB and a probability above 0.1 are effective noise based on litrature[164].

As the ground truth of these images are not available, we will use them for

a subjective (qualitative) comparison.

The second image set includes one synthetic circle image and four real

images (Saturn, multi-cube, wall and road). The real images have been

provided by the University of Cordoba (Spain) and their ground truth
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(a) (b) (c)

Figure 4.6: Example images for subjective comparison. (a) Original images

Lena, egg, coffee maker, rubbish bin and car; (b) images with impulssive

noise (noise probability=0.1); (c) images with Gaussian noise (PSNR=16dB).
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edge maps are available from [137]. The size of each image is 256×256 pix-

els and the resolution of each is 8 bits per pixel. These images are shown

in Figure 4.7. To investigate the performance of the new algorithms in

noisy environments, we also add two different types of noise in different

noise levels. For the impulse noise, the noise probability ranges from 0.1 to

0.5 with a step size of 0.05. For the Gaussian noise, the PSNR value ranges

from 0 to 22dB with a step size of 2dB. As the ground truth of these images

are available, we used them for an objective (quantitative) comparison.

4.5.2 Quantitative Performance Measure

To evaluate the performance of the new algorithm, we use Pratt’s Figure

of Merit (PFOM) which is commonly used as a quantitative measure for

the objective comparison of the localisation accuracy of edge detection algo-

rithms [14]. This measure is defined by Equation (4.26).

RPFOM =
1

max(II , IA)

IA
∑

i=1

1

1 + βd(i)2
(4.26)

Here II and IA indicate the number of ideal and actual edge points in the

ground truth and the generated edge map images, d(i) is the distance be-

tween the pixel i in the generated edge map and the nearest ideal edge

point in the ideal edge map, and β is a constant scale factor which is typ-

ically set to 1
9
. This measure is an index to compute the localisation accu-

racy of edge detection algorithms. The ideal value of RPFOM is 1.0 and the

minimum could be very small. A larger value indicates stronger perfor-

mance.

4.5.3 Parameter Settings

The selection of a population size and the maximum number of iterations

is problem dependent. In PSO, the population size usually ranges from

20 to 50. In comparison to other evolutionary algorithms, PSO needs a
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Figure 4.7: Example images for objective comparision. (a)–(d) four real

image from the UCO university and their manual ground truth images

[137]; (e) one synthetic circle image and its ground truth.
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smaller population to find a high quality solution [165]. In the proposed

PSO algorithms, the population size is 50 and the maximum number of

iterations is 200 according to the chosen particle length [118]. The mini-

mum length of a continuous edge, 2L + 1 was set at 21, SqrSize at 6, n at

9, w1 = 90, w2 = 40, w3 = 40, TH at the value estimated by the Ostu’s

method [155], and HP at 0.5. We chose the value of the weight factors (w1,

w2 and w3) based on emprical search. We changed the values of w1 and

w2 and then calculated the local edge magnitude of each pixel on several

images. We subjectively compared the resulting edge magnitude images

with those provided by the Sobel edge detector [2] used in the Canny al-

gorithm to estimate edge magnitudes. The value of these two factors (w1,

w2) were adjusted such that the resulting edge magnitude images are suf-

ficiently similar. To estimate weight factor w3, we applied PSO1 on several

noisy images including simple shapes such as (circles, ellipses and rectan-

gles). We chose the value of this factor such that PSO1 could detect smooth

edges in this images. These three weight factors can be ideally determined

through a brute-force search on a large number of images with ground

truth. We used the values w = 0.7298, c1 = 1.4962, c2 = 1.4962 for the pa-

rameters in Equation (2.43). These values were chosen based on common

settings [166].

In order to make consistent and fair comparison of the proposed algo-

rithms with Canny and RRO, we used the following adaptive parameters

for the Canny edge detector: high threshold = 2σ
√
fuln2, low threshold =

1
2
high threshold with fu = s−l, s =∑N

i=1

∑N
j=1 a

2
ij and l =

∑N
i=1

∑N
j=3 aijaij−2

where the coefficients aij correspond to the kernel of the filter with which

the image has been smoothed [163], the filter size (σ) was set at the value

estimated from the approach proposed by Jeong and Kim [64]. The edge-

height parameter of the RRO detector, which defines the minimum gray-

level differential across an edge, was set to the value which gave a highest

PFOM value.
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4.6 Results and Discussion

This section presents the results of the subjective comparison of four al-

gorithms (Canny, RRO, PSO1 and PSO2) followed by the results of the

objective comparison. This section also provides a short discussion on the

parameters of the PSO-based edge detection algorithms.

4.6.1 Subjective/Qualitative Comparison

For a qualitative comparison of PSO1 and PSO2 with Canny and RRO, we

first applied PSO1 and PSO2 to the images in the first set. The resulting

images are shown in Figures 4.8 and 4.9 after applying the Canny [61], the

RRO [11] and PSO1 on the images in the first set (Figure 4.6) corrupted

by impulse and Gaussian noise respectively. Since the edge maps resulted

from PSO1 and PSO2 were very similar to each other, the edge maps re-

sulted only from PSO are shown in these figures.

The resulting images in Figure 4.8 show that PSO1 performed better

than the other two algorithms on the five images with impulse noise at

a noise probability level of 0.1. The Canny algorithm, even with post-

processing, did not work well for these noisy images and there are many

noise spots in the resulting images. This suggests that the Canny algo-

rithm is not suitable for detecting edges for the images corrupted by im-

pulse noise and is sensitive to this kind of noise. The RRO detector oper-

ated better than Canny, however the detected edges are thicker than those

detected by Canny. PSO1 detected edges much thinner than the RRO de-

tector and found edges with greater continuity. As can be seen from Figure

4.8, for the Lena image, there are some broken edges on Lena’s hat in the

resulting image by RRO, while PSO1 improved the detection of the edges

in this area and reduced the broken edges. The edges detected by PSO1

on the bar in the upper left corner of the image have been significantly

improved in comparison with other two algorithms. For the egg image,

RRO detected some false edges on the surface of the egg and also there are
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Original Images Canny [61] RRO [11] PSO1

Figure 4.8: Subjective results of edge detection produced by three al-

gorithms on the five images corrupted by impulse noise (noise probabil-

ity=0.1).
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several broken edges on the egg’s boundary. PSO1 operated much better

than RRO on the boundary of the egg. PSO1 reduced the broken edges

on the egg’s boundary especially at the bottom of the egg. RRO detected

edges well in the coffee maker image, however there are still some prob-

lems in the detection of the edges in the middle-right of the image. PSO1

detected more continuous and smoother edges in this region. RRO did not

operate well on the rubbish bin especially on the left and bottom sides of

the bin and there are many broken edges in the image produced by RRO,

while PSO1 improved the detection of the edges in this area. PSO1 also

improved the detection of the edges for the car image on the surface of the

street, the back wheel of the car and the trolley, while RRO did not work

well in these areas.

The resulting images are shown in Figure 4.9 after applying the three

algorithms on the five noisy images corrupted by Gaussian noise (PSNR=

16dB). The comparison of these results with those for the impulse noise

shows that Canny detected edges much better on the egg and coffee maker

images and the noise was almost removed, but there were still many noise

spots and broken edges on the Lena, car, and rubbish bin images. This im-

plies that Canny is less sensitive to Gaussian noise than to impulse noise.

The edges detected by RRO and PSO1 for these images have very similar

quality to those with the impulse noise, although PSO1 recognised edges

with greater continuity and smoother than Canny, and also detected edges

much thinner than RRO.

4.6.2 Objective/Quantitative Comparison

To objectively compare the first new algorithm (PSO1) with the other two

algorithms (RRO and Canny), the localisation accuracy (PFOM) was cal-

culated from the resulting images after applying the three algorithms to

the second set of images (Figure 4.7) at different noise levels. The PFOM

values are plotted at 11 different Gaussian noise levels and 9 impulse noise
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Original Images Canny [61] RRO [11] PSO1

Figure 4.9: Subjective results of edge detection produced by the three al-

gorithms on the five images with Gaussian noise (PSNR=16dB).
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levels as depicted in Figure 4.10. PSNR ranges from 0 to 22dB with step

of 2dB and the noise probability ranges from 0.1 to 0.5 with step of 0.05.

The number of pixels in each set in Equations (4.12) and (4.13), parameter

n, was set at 9 in all experiments in this subsection. The average of the

localisation accuracy of PSO was plotted after 30 runs for each image in

each noise level.

As can be seen from the resulting plots in Figure 4.10, PSO1 generally

outperformed the other two algorithms especially when a high level of

noise is present in the images. The Canny algorithm operated reasonably

well on the images with a low-level of Gaussian noise, but it did not work

well in the images even with a low-level of impulse noise in most cases

(see Figures 4.10(a), (b), (c) and (d)). These resulting plots also illustrate

that PSO1 outperformed RRO in the images with impulse and Gaussian

noise in most cases, however its performance is lower than RRO in a few

cases in the images corrupted by Gaussian noise (see Figure 4.10(e)). This

suggests that PSO1 is less sensitive to Gaussian noise and impulse noise

than RRO. Canny is more sensitive to impulse noise and also more sensi-

tive to high-levels of Gaussian noise than RRO. As expected, the accuracy

of most algorithms is decreased when noise level is increased. However,

PSO1 can overcome high-levels of noise and it is less sensitive to noise

than other methods in most cases.

4.6.3 Discussion on Parameter Values

As already described, PSO1 has several additional parameters in compar-

ison with Canny and RRO. The parameters are the weight of different fac-

tors (w1, w2 and w3), n, SqrSize and L. Variation of the values of the last

three parameters may have different influences on efficiency and effective-

ness of PSO1 and PSO2. This subsection considers the influences of these

parameters on the performance of PSO1.

Figure 4.11 shows the resulting images after applying PSO1 with differ-
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Figure 4.10: PFOM for the street, Saturn, wall and circle images in the

second image set. (a)–(d): with different impulse noise levels (the noise

probability ranging from 0.1 to 0.5); and (e)–(h) with different Gaussian

noise levels (PSNR ranging from 0 to 22dB).
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(a) ( b) (c)

Figure 4.11: Resulting images after applying PSO1 with different param-

eter values (a) L = 10 and SqrSize = 6 (b) L = 10 and SqrSize = 10 (c)

L = 15 and SqrSize = 6
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ent parameters on the rubbish-bin and egg images corrupted by impulse

noise whose probability is 0.1. As can be seen in the original images in

Figure 4.6, there are some illumination areas in the egg and rubbish-bin

images. The illumination phenomena makes it difficult for an edge detec-

tion algorithm to work well in these areas. The images shown in Figure

4.11(a) are the output of PSO1 with L = 10 and SqrSize = 6. The resulting

images in Figure 4.11(b) depict that when SqrSize is increased, some de-

tails of the objects in the images are lost. This happens especially when a

weak continuous edge is close to a strong edge and is almost parallel with

it such as the edges of the chairs and rubbish-bin in the first image and the

edges around the plate in the egg image. The images in Figure 4.11(c) are

the resulting images when L = 15 and SqrSize = 6. In these images, the

edges around the egg and rubbish-bin have been improved. In this case,

when the length of the curve represented by a particle is increased, the

length of broken edges is reduced but the algorithm is slower. Therefore,

the selection of a suitable particle length and the size of the square can

affect the accuracy and speed of the algorithm.

To illustrate the influence of parameter n (the number of the neighbour

pixels in Equations (4.12) and (4.13)) on the algorithm’s accuracy, the lo-

calization accuracy (PFOM) at different noise levels was calculated from

the resulting images after applying PSO1. The value of parameter n was

set at 6 and 9 and then the algorithm was applied to the street image in

the second image set which was corrupted by different types and levels of

noise. The average of the localisation accuracy of PSO1 was plotted after

30 runs in each noise level as can be seen in Figure 4.12. The plots shows

that when n = 9, the algorithm’s accuracy is higher than when n = 6 in

most cases.
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Figure 4.12: Comparing PFOM for the street image in the second image

set when n = 6 or n = 9 (a) with different impulse noise levels (the noise

probability ranging from 0.1 to 0.5the impulse noise) (b) with different

Gaussian noise levels (PSNR ranging from 0 to 22dB). Note horizontal axis

is 22−PSNR
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4.6.4 Comparison of the Two Proposed Algorithms

For the objective comparision of the two proposed algorithms (PSO1 and

PSO2), we use PFOM as a measure of localisation accuracy and the num-

ber of fitness function evaluations as a measure of time.

Table 4.1 shows PFOM estimated from the resulting images after apply-

ing Canny, RRO, PSO1 and PSO2. G6, G10, G14, G18 and G22 represent

PSNR from 6dB to 22dB for Gaussian noise and N0.1, N0.2, N0.3, N0.4

and N0.5 represent noise probability from 0.1 to 0.5 for impulse noise. The

columns “PSO1” and “PSO2” show the 95% confidence intervals for the

localisation accuracy of the two new algorithms after 30 runs for each im-

age in each noise level. To compare the accuracy means of PSO1 and PSO2,

t-tests were used (the alternative hypothesis was inequality of the means).

The statistical analysis showed that null hypothesis is accepted in almost

all cases, i.e, there is no significant difference between their localisation ac-

curacy, except for a few cases as shown in bold in Table 4.1 columns PSO1

and PSO2. However, the accuracy variance of the second PSO algorithm

is lower than that of the first one; this implies that the second algorithm

is more stable than the first one. Table 4.1 also shows that both PSO1 and

PSO2 are significantly better than Canny and RRO in most cases except for

a few cases with bold fonts.

Table 4.2 depicts the 95% confidence intervals for the number of fitness

function evaluations of the two new algorithms after 30 runs for each im-

age in each noise level. The alternative hypothesis was that the number of

fitness function evaluations of PSO2 is greater than that of PSO1. Statisti-

cal analysis showed that null hypothesis is rejected in all cases. Therefore,

the number of fitness function evaluations of PSO1 is 16% to 41% greater

than PSO2. It implies that PSO1 is slower than PSO2. The results in this ta-

ble also shows that the number of fitness function evaluation for the both

algorithms is reduced when the level of the noise is increased.

The execution time of PSO1 is usually between 50 and 70 seconds and

that of PSO2 is between 40 and 50 seconds for these images depending



112 CHAPTER 4. EDGE DETECTION USING PSO

Table 4.1: Comparison of accuracy of two proposed algorithms 4.1 and 4.2

with Canny and RRO

Image
Noise 95% Confidence Interval for Accuracy Standard deviation

Canny RRO
Level PSO1 PSO2 PSO1 PSO2

Circle G22 0.935478 ± 0.008350 0.931228 ± 0.001180 0.023335 0.003298 0.768116 0.835660

Circle G18 0.931387 ± 0.008350 0.929149 ± 0.002917 0.023335 0.008151 0.754445 0.816217

Cicle G14 0.935589 ± 0.009186 0.935650 ± 0.003156 0.025669 0.008821 0.751867 0.858205

Circle G10 0.929730 ± 0.009603 0.928105 ± 0.003227 0.026836 0.009017 0.769119 0.852699

Circle G6 0.932547 ± 0.010021 0.931485 ± 0.002688 0.028003 0.007511 0.749058 0.824651

Saturn G22 0.772790 ± 0.007515 0.772799 ± 0.003151 0.021002 0.008807 0.852345 0.812005

Saturn G18 0.851451 ± 0.008768 0.853361 ± 0.002623 0.024502 0.007330 0.822624 0.813742

Saturn G14 0.780282 ± 0.010021 0.784602 ± 0.002808 0.028003 0.007847 0.840852 0.824204

Saturn G10 0.885272 ± 0.010438 0.883163 ± 0.003215 0.029169 0.008985 0.841772 0.766146

Saturn G6 0.767548 ± 0.011273 0.767398 ± 0.002800 0.031503 0.007826 0.838813 0.828318

Cube G22 0.617938 ± 0.005845 0.618242 ± 0.003151 0.016335 0.008807 0.187473 0.401117

Cube G18 0.644613 ± 0.006680 0.646577 ± 0.002529 0.018668 0.007068 0.222038 0.360251

Cube G14 0.517665 ± 0.007933 0.516603 ± 0.002968 0.022169 0.008295 0.207251 0.406565

Cube G10 0.632640 ± 0.008768 0.633265 ± 0.002672 0.024502 0.007467 0.194032 0.399380

Cube G6 0.589924 ± 0.010021 0.589206 ± 0.002687 0.028003 0.007508 0.203340 0.395320

Wall G22 0.832500 ± 0.005428 0.746579 ± 0.002871 0.015168 0.008024 0.654331 0.680672

Wall G18 0.747364 ± 0.006263 0.746972 ± 0.003032 0.017502 0.008473 0.652029 0.673407

Wall G14 0.791053 ± 0.020088 0.791264 ± 0.003442 0.056135 0.009618 0.652318 0.675357

Wall G10 0.806529 ± 0.009269 0.806284 ± 0.002958 0.025902 0.008265 0.630157 0.669606

Wall G6 0.780092 ± 0.010605 0.780462 ± 0.002816 0.029636 0.007870 0.635119 0.671810

Street G22 0.810434 ± 0.004175 0.809075 ± 0.002740 0.011668 0.007656 0.652529 0.741287

Street G18 0.743296 ± 0.005845 0.743951 ± 0.003119 0.016335 0.008716 0.663258 0.698976

Street G14 0.746577 ± 0.007098 0.746826 ± 0.002906 0.019835 0.008120 0.591021 0.662430

Street G10 0.637710 ± 0.007933 0.641211 ± 0.003197 0.022169 0.008934 0.581495 0.664391
Street G6 0.750670 ± 0.008852 0.750181 ± 0.003453 0.024736 0.009649 0.638049 0.722894

Circle N0.1 0.959942 ± 0.012526 0.959575 ± 0.002985 0.035003 0.008342 0.416076 0.910307

Circle N0.2 0.919787 ± 0.014196 0.922108 ± 0.003108 0.039670 0.008684 0.128539 0.896144

Cicle N0.3 0.868376 ± 0.015448 0.872434 ± 0.002940 0.043171 0.008216 0.009316 0.863126

Circle N0.4 0.805718 ± 0.016283 0.805952 ± 0.002973 0.045504 0.008307 0.003783 0.551743

Circle N0.5 0.457309 ± 0.017536 0.453197 ± 0.002472 0.049004 0.006908 0.001893 0.019552

Saturn N0.1 0.419754 ± 0.011273 0.421777 ± 0.002676 0.031503 0.007479 0.374629 0.389246

Saturn N0.2 0.468760 ± 0.012943 0.470071 ± 0.002718 0.036170 0.007596 0.114122 0.394962

Saturn N0.3 0.484417 ± 0.014613 0.483590 ± 0.002852 0.040837 0.007969 0.008486 0.365243

Saturn N0.4 0.344146 ± 0.016283 0.191153 ± 0.003083 0.045504 0.008615 0.003533 0.249544

Saturn N0.5 0.191539 ± 0.016283 0.192462 ± 0.002698 0.045504 0.007539 0.001750 0.007544

Cube N0.1 0.570007 ± 0.012108 0.569811 ± 0.002997 0.033836 0.008375 0.238533 0.451012

Cube N0.2 0.534157 ± 0.012943 0.535551 ± 0.002924 0.036170 0.008171 0.066385 0.430736

Cube N0.3 0.535441 ± 0.013778 0.534368 ± 0.002878 0.038503 0.008043 0.005257 0.393973

Cube N0.4 0.406655 ± 0.015448 0.406561 ± 0.002501 0.043171 0.006988 0.002173 0.263651

Cube N0.5 0.291388 ± 0.016283 0.291420 ± 0.003122 0.045504 0.008724 0.001052 0.009412

Wall N0.1 0.474320 ± 0.006263 0.477228 ± 0.002531 0.017502 0.007074 0.612840 0.394115

Wall N0.2 0.485948 ± 0.007933 0.488712 ± 0.002757 0.022169 0.007705 0.116294 0.388994

Wall N0.3 0.581962 ± 0.008768 0.582185 ± 0.002954 0.024502 0.008256 0.005233 0.369926

Wall N0.4 0.438475 ± 0.009603 0.440016 ± 0.002716 0.026836 0.007589 0.003154 0.241493

Wall N0.5 0.254742 ± 0.010021 0.256399 ± 0.002995 0.028003 0.008369 0.002110 0.008363

Street N0.1 0.542130 ± 0.009186 0.542094 ± 0.002988 0.025669 0.008349 0.492784 0.384163

Street N0.2 0.503819 ± 0.012641 0.381383 ± 0.003045 0.035327 0.008508 0.147636 0.381919

Street N0.3 0.456459 ± 0.010922 0.456501 ± 0.002825 0.030521 0.007895 0.005876 0.364330

Street N0.4 0.413806 ± 0.013200 0.413252 ± 0.002178 0.036886 0.006086 0.004350 0.244949

Street N0.5 0.274330 ± 0.019822 0.275494 ± 0.003303 0.055392 0.009229 0.002438 0.008015
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Table 4.2: Comparison of number of fitness function evaluations of two

proposed algorithms

Image
Gaussian Number of Fitness Evaluations Impulse Number of Fitness Evaluations

Noise PSO1 PSO2 Noise PSO1 PSO2

Circle G22 323030 ± 1312 207800 ± 920 N0.1 400715 ± 991 219534 ± 432

Circle G18 327334 ± 1521 229185 ± 1212 N0.2 450759 ± 1235 252709 ± 672

Circle G14 353063 ± 1715 244257 ± 1589 N0.3 490668 ± 1331 304466 ± 1005

Circle G10 366924 ± 1777 243988 ± 2123 N0.4 539773 ± 1465 346415 ± 1226

Circle G6 373982 ± 1796 253840 ± 2546 N0.5 581010 ± 1544 386201 ± 1364

Saturn G22 476004 ± 902 345226 ± 414 N0.1 541637 ± 1102 354948 ± 589

Saturn G18 484546 ± 1117 346531 ± 715 N0.2 584619 ± 1375 385045 ± 1069

Saturn G14 524227 ± 1489 359331 ± 1002 N0.3 620979 ± 1629 419322 ± 1217

Saturn G10 532034 ± 1822 369737 ± 1135 N0.4 667164 ± 1934 471066 ± 1340

Saturn G6 545284 ± 2155 376747 ± 1319 N0.5 707622 ± 1822 528268 ± 1474

Cube G22 469166 ± 1512 340213 ± 1132 N0.1 508684 ± 512 345031 ± 361

Cube G18 496997 ± 1802 363181 ± 1345 N0.2 544439 ± 1013 374948 ± 612

Cube G14 509903 ± 1937 380805 ± 1717 N0.3 585330 ± 1977 421404 ± 1023

Cube G10 540693 ± 2158 381208 ± 1677 N0.4 631625 ± 2742 466059 ± 1408

Cube G6 556178 ± 2282 397107 ± 1753 N0.5 670429 ± 3363 502716 ± 2027

Wall G22 519792 ± 604 354213 ± 918 N0.1 562815 ± 1472 365010 ± 1239

Wall G18 523865 ± 1287 367963 ± 1392 N0.2 607663 ± 1813 394998 ± 1472

Wall G14 538217 ± 2380 386111 ± 1751 N0.3 651921 ± 2399 441756 ± 1851

Wall G10 554694 ± 2605 407519 ± 2082 N0.4 689938 ± 3311 504399 ± 1936

Wall G6 572290 ± 2757 407763 ± 2503 N0.5 734026 ± 4646 549808 ± 2066

Street G22 461291 ± 812 287938 ± 376 N0.1 450404 ± 771 294990 ± 503

Street G18 487904 ± 1172 282458 ± 710 N0.2 496485 ± 1326 324903 ± 693

Street G14 512448 ± 1518 295158 ± 1002 N0.3 535521 ± 1589 384105 ± 792

Street G10 526171 ± 1779 312752 ± 1627 N0.4 580484 ± 1989 428221 ± 947

Street G6 565901 ± 2002 336680 ± 2317 N0.5 614524 ± 2280 471332 ± 1148
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on the noise level. This is consistent with the number of fitness function

evaluations in Table 4.2.

4.7 Summary

Detection of continuous edges is a hard problem and most edge detection

algorithms produce broken edges in noisy images. This chapter firstly

presented a novel constrained optimisation model for detecting contin-

uous, thin and smooth edges in such images. Then two particle swarm

optimisation-based algorithms were applied to search for good solutions.

These two algorithms utilised two different constraint handling methods:

penalising and preservation. The algorithms were examined and com-

pared with a modified version of the Canny algorithm as a Gaussian filter-

based edge detector and the robust rank order (RRO)-based algorithm as

a statistical-based edge detector on two sets of images with different types

and levels of noise. Pratt’s figure of merit as a measure of localisation ac-

curacy was used for the comparison of these algorithms. Experimental

results showed that the proposed edge detectors are more robust under

noisy conditions and their performances are higher than the Canny and

RRO algorithms for the images corrupted by impulse and Gaussian noise.

The proposed algorithm based on the penalising method is faster than the

algorithm using the preservation method to handle the constraints.

In this chapter, Otsu’s method as a global thresholding technique was

used to estimate a threshold value required for the PSO-based algorithm.

In the next chapter, we will equip the PSO-based edge detector with a

local thresholding technique in order to improve its performance in the

illuminated noisy images.



Chapter 5

A Local Thresholding Technique

in PSO

In the previous chapter, Otsu’s method as a global binarisation method

was used to estimate a parameter of the PSO-based edge detector. This

method is considered as a state-of-the art global binarisation technique

and commonly used for thresholding edge magnitude images. Since it

extracts global features from the whole of an image to estimate a global

threshold value for the image binarisation, it often cannot perform well in

illuminated noisy images. Therefore, several local binarisation methods

have been proposed in the literature to binarise the illuminated images.

In this chapter, the PSO-based edge detector will be equipped with a local

binarisation technique to extract local features from the neighbourhood of

each pixel in order to estimate a local threshold value for each pixel.

5.1 Introduction

In chapter 4, we developed a new encoding scheme and a fitness func-

tion for a PSO-based algorithm in order to detect edges in noisy images

and compared its performance on real images corrupted by two differ-

ent types of noise (Gaussian and impulse). We compared its localisation

115
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accuracy with a modified version of the Canny algorithm as a Gaussian

filter-based edge detector equipped with an adaptive hysteresis thresh-

olding technique to detect continuous edges and applying a non-maxima

suppression (NMS) technique to detect thin edges. We demonstrated that

the PSO-based algorithm can work better than Canny and RRO while

Canny produced many speckles and broken edges in noisy images and

RRO recognised edges more thickly than the others. However Canny and

RRO operated better than PSO in a few cases. We equipped the PSO-based

algorithm with an adaptive method by use of Otsu’s method [155] to esti-

mate one of its parameters. For a fair comparison, we used a dynamic hys-

teresis thresholding proposed in [163] in order to have better connected

edges and an adaptive filter size proposed in [64] in order to overcome

noise for the Canny algorithm. We also set the edge-height parameter of

the RRO detector to the value which gave the highest localisation accuracy.

The results showed that the PSO-based algorithm generally outperforms

RRO and Canny in noisy images but there were still broken edges in the

noisy image with illuminated areas.

Since most edge detection algorithms consider the thresholding step as

a simple binarisation method, they utilise a binarisation method, such as

Otsu’s method to suppress false edges. Although Otsu’s method is better

than other global binarisation methods [167], it cannot work well in illumi-

nated images [168]. Many local binarisation methods have been proposed

to solve this problem by extracting local features for each pixel. Sauvola

and Peitikain proposed an adaptive local binarisation method for docu-

ment images [169]. Even though the performance of this method is higher

than other global and local binarisation methods for the illuminated noisy

images [168], it is not applicable for binarisation of edge magnitude im-

ages resulted by edge detection algorithms.
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5.1.1 Chapter Goals

The main goals of this chapter are as follows:

• Increasing the localisation accuracy of the PSO-based edge detector

in the illuminated noisy images

• Reducing the number of broken edges in such images

• Introducing a novel local thresholding technique by use of the Sauvola-

Pietkinen method for the PSO-based edge detection algorithm.

The rest of this chapter is organised as follows. Section 5.2 provides

background information on thresholding techniques including local and

global binarisation methods.The new local thresholding technique will be

introduced in Section 5.3. Sections 5.4 and 5.5 presents discussion on ex-

perimental results followed by a summary in Section 5.6.

5.2 Thresholding Techniques

Thresholding techniques in edge detection can be categorised into two

main groups: (a) global thresholding techniques, which apply the fea-

tures extracted from the whole of an image; and (b) local thresholding

techniques, which use local features to choose a threshold value for each

pixel on an image in order to identify edges. This section provides a brief

overview of global and local thresholding techniques in edge detection.

5.2.1 Global Thresholding Techniques

Most thresholding techniques operate as image binarisation methods in

the field of image segmentation. In these techniques, edge magnitude im-

ages are used as inputs to binarise. Global binarisation techniques use
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global features extracted from the whole image to estimate a single thresh-

old value for the image binarisation. Local thresholding techniques utilise

local features extracted from a small area around each pixel.

Many different methods have been developed to binarise greyscale im-

ages. Otsu [155] proposed a global binarisation method which first esti-

mates a single global threshold value for the binarisation of a greyscale

image and then uses this value to assign each pixel on the image either to

background or foreground. As described in Section 4.3.3, Otsu’s method is

a method based on maximisation of between-class variance. This method

chooses a threshold value for the binarisation of an image such that it max-

imises the interset variance between the intensity of background and fore-

ground pixels [155]. Ridler and Calvard [170] developed another method

based on an iterative selection method to minimise inter-class variance.

A global entropy-based thresholding technique was proposed by Kapur

[171]. This method uses the entropy of the greylevel histogram of an im-

age to estimate the global threshold value to binarise the image. Tsai [172]

presented a method to automatically select a global threshold value based

on the moment-preserving principle. In this method, the threshold value

is chosen such that the moments of the image of interest are preserved

in the binarised image. Rosin [173] proposed a thresholding algorithm

based on finding a corner in the greylevel histogram. Rosin compared his

proposed method with the methods proposed by Otsu [155], Ridler and

Calvard [170], and showed that his algorithm performs better than those

methods. However, the comparison was not comprehensive because of

not considering real images in his objective experiments. Medina-Carnicer

et al. [174] comprehensively evaluated the performance of seven different

state-of-the art global thresholding techniques, such as the methods pro-

posed by Otsu [155], Ridler and Calvard [170], Rosin [173] and Tsai [172]

in synthetic and real images. They showed that Otsu’s method generally

outperforms the other methods. Otsu’s method is more commonly used

for thresholding edge magnitude images resulting from edge detectors.
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5.2.2 Local Thresholding Techniques

Although global thresholding techniques are computationally fast and their

performance is good in greylevel images, they cannot perform well in illu-

minated noisy images. Therefore, several local binarisation methods have

been proposed to binarise the illuminated greylevel images.

In this category of thresholding algorithms, a threshold value is esti-

mated for each pixel. The local threshold value depends on some local

statistical features extracted from the neighbourhood of each pixel. These

statistical features can be range or variance. Nakagawa and Rosenfeld

[175] and Deravi and Pal [176] proposed two local thresholding techniques

for the first time. However, Niblack [177] showed that their performance

was not as good as the global shareholding techniques. He presented a

method which calculated a local threshold value for each pixel on an im-

age based on the local mean and variance inside a sliding window:

T (i, j) = m(i, j) + ks(i, j) (5.1)

where (i, j) is the pixel located on the centre of the sliding window, m(i, j)

and s(i, j) are the mean and the variance of intensity of all pixels in the

window, and k is a constant between 0 and 1. Niblack’s method does

not perform well in the images with the background containing light tex-

ture as the intensity of these undesirable details easily exceed the esti-

mated threshold values. Sauvola and Pietikinen [169] added a control

factor to Equation (5.1) in order to solve this problem. This factor con-

trols the dynamic range of variance in order to reduce the sensitivity of

the method in such images. Bukhari et al. [168] showed that the Sauvola-

Pietkinen method can enhance the illuminated areas better than other local

and global binarisation methods.
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5.3 New Local Thresholding Technique

The comparison of local binarisation methods experienced in [168] shows

that the Sauvola-Pietkinen method proposed in [169] operates better than

other types of local and global binarisation methods especially in images

with illuminated areas. This method considers a grey scale document im-

age as an array in which IP ′

x,y
∈ [0, 255] is the intensity of pixel P ′ at po-

sition (x, y). In this method, the local threshold THP ′

x,y
is estimated using

the local mean mP ′

x,y
and standard deviation sP ′

x,y
of the pixel intensities in

a W ×W window centred around pixel P ′
x,y:

THP ′

x,y
= mP ′

x,y

[

1 + k
(sP ′

x,y

R
− 1
)]

(5.2)

Here, R is the maximum value of the standard deviation whose value for a

8-bit grey level image is 128; k is a real parameter ranging from 0 to 1. This

parameter controls the threshold value for pixel P ′
x,y such that the lower

the value of k, the higher the threshold value from the local mean mP ′

x,y
.

To the best of our knowledge, the Sauvola-Pietkinen method has never

been applied for the binarisation of edge magnitude images. This is be-

cause of the different nature of document images and edge magnitude

images. Document images are always positive and their background is

white whereas edge magnitude images are negative and their background

is black. To solve this problem, we first invert the local edge magnitude

(LocalEdgeMag(Px,y)) and calculate its inverse as 1−LocalEdgeMag(Px,y),

and then scale the result in range [0, 255] by multiplying by 255. Let IP ′

x,y
=

(1− LocalEdgeMag(Px,y))× 255. Therefore, mP ′

x,y
= (1−mPx,y

)× 255 and

sP ′

x,y
= 255 × sPx,y

where mPx,y
and sPx,y

are the local features at pixel Px,y

in the edge magnitude image. Thus,

THPx,y
= (1−mPx,y

)

[

1 + k

(

255sPx,y

R
− 1

)]

(5.3)

where THPx,y
is in the range between 0 and 1. We use the threshold value

estimated by equation (5.3) in equation (4.16) to calculate the possibility
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score of each pixel. In this equation, the local mean and standard deviation

are used to adapt the value of the threshold according to the magnitude

of the edges inside of the local neighbourhood of each pixel. In the case of

the neighbourhoods with high edge magnitudes, the threshold THPx,y
is

almost equal to mPx,y
and in the case of the neighbourhoods with low edge

magnitudes, the threshold value is less than the local mean in order to

relatively increase the possibility score of the weak edges in these regions.

5.3.1 Different Degrees of Integral Images

In order to calculate THPx,y
, the local mean and standard deviation should

be computed for each pixel. We use the concept of integral image which is

an intermediate representation for an image in order to compute rectangle

features in computer vision using an efficient way [178]. We generalise

this concept to the different integral degrees of an image and show integral

degree i (Ωi) of an edge magnitude image as equation (5.4):

Ωi(x, y) =
x
∑

p=0

y
∑

q=0

LocalEdgeMagi(Pp,q) (5.4)

The integral image can be calculated in an efficient manner by equation

(5.5).

Ωi(x, y) = Ωi(x− 1, y) + Ωi(x, y − 1)− Ωi(x− 1, y − 1)

+LocalEdgeMagi(Px,y) (5.5)
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5.3.2 Calculation of Local Features using Different Degrees

of Integral Images

The local mean and standard deviation can be easily calculated as equa-

tions (5.6) and (5.7) once the integral images are computed.

mPx,y
= (Ω1(x+ (W − 1)/2, y + (W − 1)/2) +

Ω1(x− (W − 1)/2, y − (W − 1)/2)−
Ω1(x− (W − 1)/2, y + (W − 1)/2)−

Ω1(x+ (W − 1)/2, y − (W − 1)/2))/W 2 (5.6)

Since the variance of a variable is always equal to the expectation of

the square of the variable minus the square of the mean of the variable,

s2Px,y
= (Ω2(x+ (W − 1)/2, y + (W − 1)/2) +

Ω2(x− (W − 1)/2, y − (W − 1)/2)−
Ω2(x− (W − 1)/2, y + (W − 1)/2)−
Ω2(x+ (W − 1)/2, y − (W − 1)/2))/W 2

−m2
Px,y

(5.7)

5.4 Experimental Design

Although the proposed local thresholding technique can be applied to any

edge detector which can estimate edge magnitudes of the pixels of an im-

age such as different order derivatives [10][154], we apply this technique

to the PSO-based edge detector which is more insensitive to noise than

other edge detectors such as Canny and RRO. To examine the performance

of the new local thresholding technique, we compare our previous PSO-

based algorithm (PSO2) proposed in Chapter 4, utilising the sigmoid func-

tion with parameter TH estimated by Otsu’s method, with the improved

PSO-based algorithm (PSO3) utilising the same function with parameter
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THPx,y
estimated by the proposed method. This section provides the de-

tails on the two image sets, objective performance measure, and parameter

settings, which are used in the experiments.

5.4.1 Image Sets

We use two different image sets in the experiments. The images in the first

set are clean and easily accessible through the South Florida University

database as described in Chapter 3. Since the main goal of the algorithm

is the detection of continuous edges in noisy and illuminated images, we

first chose three images from this database with illuminated areas which

are commonly used as benchmarks for edge detection: Lena, egg and rub-

bish bin. Then these images are corrupted by two different types of noise:

impulse and Gaussian. The second image set includes the images which

were used for an objective (quantitative) comparison. This image set con-

tains four images (Saturn, multi-cube, wall and road) as shown in Chapter

3. In addition to those four images, we added two images (rubbish-bin

and egg) to the second image set. The ground truth images of these two

images are recently available to download from [179]. For the images cor-

rupted by the impulse noise, the noise probability ranges from 0.1 to 0.5

with a step size of 0.05. For the Gaussian noise, PSNR ranges from 0 to

22dB with a step size of 1dB.

5.4.2 Parameter Settings

In PSO2 and PSO3, the population size is 50 and the maximum number of

iterations was set at 200 according to the chosen particle length. We used

the values w = 0.7298, c1 = 1.4962, c2 = 1.4962 for the parameters in Equa-

tion (2.43) [166]. The minimum length of a continuous edge, 2L + 1 was

set at 21 and SqrSize at 6 [28]. The parameters of the novel thresholding

techniques, W and k, were respectively set at 21 and 0.05 [168]. The exper-

iments in [168] showed that a small value of k like 0.05 gives better results
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Example images for objective comparision. (a)–(d) four real

image from the UCO university and their manual ground truth images

[137], (e) and (f) two real images from the South Florida University and

their ground truth images [179].
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with fewer broken edges.

5.5 Results and Discussion

This section presents the results of the subjective and objective comparison

of PSO2 and PSO3 followed by a discussion.

5.5.1 Subjective/Qualitative Comparison

The resulting images are shown in Figures 5.2 and 5.3 after applying PSO2

and PSO3 in the first set (Figure 5.1) corrupted by impulse and Gaussian

noises respectively. As can be seen in Figure 5.2, the edges detected by

PSO3 were improved on Lena’s hat especially on the top which is an illu-

minated area and they are more connected than the edges recognised by

PSO2. For the egg image, PSO3 could operate better than PSO2 around

the egg. However, there are still broken edges in this area. This problem

may be solved by increasing parameter L. Although there are several false

edges and still broken edges, PSO3 improved the edges in the rubbish-bin

image particularly on its bottom-right corner. The results suggest that the

new local thresholding technique performs better than Otsu’s method in

the illuminated noisy images.

5.5.2 Objective/Quantitative Comparison

For an objective comparison of PSO2 and PSO3, the localisation accuracy

(PFOM) was calculated from the resulting images after applying both al-

gorithms to the images in the second set (Figure 5.1) at different noise

levels. Figure 5.4 depicts the graphs in which the average of the result-

ing PFOM values after 30 runs are plotted versus different noise levels for

each image corrupted by impulse noise. The noise probability ranges from

0.1 to 0.5 with step of 0.05. The plots in Figure 5.4 indicate that PSO3 gen-

erally performed better than PSO2. Statistical analysis showed that PSO3
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Figure 5.2: Subjective results of edge detection produced by PSO2 (top

row) and PSO3 (bottom row) on the three images corrupted by impulse

noise (noise probability=0.1).

has a higher accuracy in 34 cases out of 54. For the first four images, PSO3

could detect the edges more accurately than PSO2 in 31 cases out of 36

(see Figures 5.4(a), (b), (c) and (d)). For the last two images, its accuracy

is lower in 15 cases out of 18 (see Figures 5.4(e) and (f)). A reason is that

there are a few “false positive” edges which were recognised by PSO3 as

edges whereas they were actually incorrectly labelled as non-edges in their

ground truth images. This caused that the real improvements of PSO3

were considered “false”.

For each image corrupted by Gaussian noise, the average of the result-

ing PFOM values after 30 runs are plotted versus different noise levels in

Figure 5.5. PSNR ranges from 0 to 22dB with step of 1dB. The plots in
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Figure 5.3: Subjective results of edge detection produced by PSO2 (top

row) and PSO3 (bottom row) on the three images with Gaussian noise

(PSNR=16dB).

Figure 5.5 indicate that PSO3 has a higher accuracy than PSO2 in the most

images corrupted by Gaussian noise. Statistical analysis showed that its

accuracy is higher in 83 cases out of 138. For the first four images, PSO3

could detect the edges more accurately than PSO2 in 79 cases out of 92

(see Figures 5.5(a), (b), (c) and (d)). For the last two images, its accuracy is

lower in 42 cases out of 46 (see Figures 5.5(e) and (f)). A reason is again that

there are a few “false positive” edges which were recognised by PSO3. As

the objective results show, PSO3 generally performs better than PSO2. Fig-

ure 5.2 and 5.3 clearly show that PSO3 can even detect the difficult edges

in the boundary of the egg and rubbish-bin that were not labelled in the

ground truth images.
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Figure 5.4: PFOM vs. noise level for Saturn, cube, wall, street, rubbish-bin

and egg images in the second image set with different impulse noise levels

(the noise probability ranging from 0.1 to 0.5).
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Figure 5.5: PFOM vs. noise level for Saturn, cube, wall, street, rubbish-

bin and egg images in the second image set with different Gaussian noise

levels (PSNR ranging from 0 to 22dB).
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5.6 Summary

In this chapter, a novel local thresholding technique was proposed for a

particle swarm optimisation (PSO)-based algorithm to detect edges with

greater continuity. The new technique was based on the Sauvola-Pietkinen

method which is often used for binarising the illuminated document im-

ages but normally cannot be applied to edge magnitude images. This

method was equipped by an integral imaging technique for more effi-

ciency and adopted into the PSO-based algorithm to detect edges in grey

level illuminated noisy images. We compared the performance of the

new algorithm with our previous PSO-based edge detector utilising Otsu’s

method which is commonly used as a thresholding technique in edge de-

tection. Experimental results showed that the PSO-based algorithm utilis-

ing the new local thresholding technique performs better than the one that

uses Otsu’s method.

Since in all PSO-based edge detectors which have been proposed so

far, the fully connected graph has been chosen as a neighbourhood struc-

ture, the effects of static topologies in the PSO-based edge detector will be

investigated in the next chapter.



Chapter 6

Effects of Static Topologies in

PSO-based Edge Detector

In the previous chapter, we revised the PSO-based algorithm with a novel

local thresholding technique based on the Sauvola-Pietkinen method [169]

and improved the performance of the PSO-based algorithm in the illumi-

nated areas. In all PSO-based edge detectors which have been proposed

in this thesis so far, the fully connected graph has been chosen as a neigh-

bourhood structure. The effects of other static topologies in the PSO-based

edge detector will be investigated in this chapter.

6.1 Introduction

Since the basic PSO algorithm was developed by Kennedy and Eberhart

in 1995 [116], several versions of PSO have been proposed to improve the

performance of the basic algorithm [115, 180]. It has been shown that

the performance of the basic PSO algorithm strongly depends on the val-

ues of the self and swarm confidence coefficients and the inertia weight

[181, 182]. So other methods have been proposed to reduce the sensitiv-

ity of the basic PSO algorithm to such parameters [180]. The most recent

research has also shown that the chosen neighbourhood topology affects

131
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the performance of the PSO algorithm and its effect depends on the func-

tion (task) being optimised. A neighbourhood topology may perform well

for one function but could not work well for another function. Kennedy

[183] and Bratton and Kennedy [184] demonstrated that choosing an ideal

topology requires a complete experimentation for a particular problem.

There are two major types of topology in PSO: static and dynamic.

Since static topologies are very popular because of their speed and the

ease of their implementation, in this chapter, we concentrate on the static

topologies and in the next chapter, we will focus on dynamic topologies.

In order to widely study the performance of using different static topolo-

gies within PSO, six different well-known topologies, i.e., fully connected,

ring, star, tree-based, von Neumann (mesh) and toroidal topologies have

been selected to investigate their performances for the PSO-based edge

detectors. These topologies will be utilised within three PSO versions: the

Canonical or basic PSO algorithm (CanPSO) [181], the Bare Bones PSO

(BBPSO) [185] and the Fully Informed Particle Swarm (FIPS) [165].

6.1.1 Chapter Goals

Since the performance of static topologies is different in various applica-

tions and in various versions of PSO, in this chapter, we aim to:

• investigate the performance of three well-known versions of PSO

(Canonical PSO, Bare Bones PSO and Fully informed PSO) on the

detection of edges in noisy images;

• compare the accuracy of these three algorithms equipped with six

well-known static topologies (fully connected, ring, star, tree-based,

von Neumann and toroidal topologies);

The rest of this chapter is organised as follows. Sections 6.2 and 6.3 pro-

vide a detailed description of the three well-known versions of PSO and

the six neighbourhood topologies. Sections 6.5 and 6.6 present discussion

on the experimental results followed by a summary in Section 6.8.
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6.2 Three Well-Known PSO Methods

In the literature, several variant versions of PSO have been proposed.

Three of them, i.e., the canonical PSO, bare bones PSO and fully informed

particle swarm are very popular. Since the performance of these three ver-

sions are different for different problems when they are equipped with

different topologies, we briefly describe them in this section.

6.2.1 Canonical PSO (CanPSO)

The canonical (constricted) PSO was proposed by Clerc and Kennedy [181].

This method introduced the constriction factor, χ, in order to guarantee the

convergence of the PSO algorithm. This factor is calculated from the ex-

isting parameters of the PSO algorithm, i.e, the self (C1) and swarm (C2)

confidence learning factors as follows:

χ =
2

|2− φ−
√

φ2 − 4φ|
(6.1)

where φ = C1 + C2 > 4 to guarantee convergence. Clerc and Kennedy

showed that when φ < 4, the particles in the PSO algorithm would slowly

spiral toward the position of the best particle and there is no guarantee

to converge, while for φ > 4, the particles would quickly converge. The

constricted PSO algorithm uses the equal values for the confidence fac-

tors for the sake of simplicity. The velocity in the canonical PSO with the

constriction factor is computed as:

Vi,j(t+ 1) = χ[Vi,j(t) + C1r1j(Xpbesti,j −Xi,j(t))

+C2r2j(Xleader,j −Xi,j(t))] (6.2)

When φ = 4.1, χ = 0.72984 and C1 = C2 = 2.05. With this parameter

setting, the canonical PSO is equivalent with the standard PSO regarding

to the values of their parameters. In fact, the canonical PSO is a special

case of the standard PSO whose parameters have been chosen analytically

[186].
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6.2.2 Bare Bones PSO (BBPSO)

In 2002, Clerc and Kennedy [181] proved that all particles in the PSO pop-

ulation converge to a weighted average of their neighbourhood and per-

sonal best positions. According to this idea, Kennedy [185] proposed an

almost parameter free PSO algorithm which omits the influence of current

motion of each particle (velocity) and uses a simple Gaussian distribution

to compute the new position of each particle as in Equation (6.3). The dis-

tribution mean is the average of the personal best and leader positions,

and its standard deviation is the difference of their positions. This was

called Bare Bones PSO (BBPSO).

~Xi,j(t+ 1) ∼ N
(

µi,j = ( ~Xleader,j + ~Xpbesti,j)/2,

σ2
i,j = ( ~Xleader,j − ~Xpbesti,j)

2
)

(6.3)

In BBPSO, the particles move with a larger step towards their leader’s po-

sition if their personal best position is far from the position of their leader.

This may cause the personal best position to quickly move towards the

leader’s position. In such cases, the step size becomes small and accord-

ingly the exploration ability of PSO reduces in support of exploitation. We

expect that this feature of BBPSO along with different topologies would

affect its performance on the detection of edges in noisy images.

6.2.3 Fully Informed Particle Swarm (FIPS)

In CanPSO and BBPSO, each particle shares information just with the best

neighbour whereas in FIPS, each particle is influenced by all of its neigh-

bours specified by a neighbourhood topology. Therefore, in FIPS there is a

stronger swarm influence than the other versions [165]. The new velocity
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of each particle in this version is calculated as:

~Vi,j(t+ 1) = χ
(

~Vi,j(t)+

N
∑

n=1

U(0, φ)( ~Xnbr(n),j − ~Xi,j)

N

)

(6.4)

Here, N is the number of particles in the neighbourhood of each particle;

U(0, φ) is a uniform random variable between 0 and φ; and ~Xnbr(n) is the

position of its n-th neighbour. In FIPS, none of the particles in the popula-

tion is not influenced by their personal best position. Since each particle in

FIPS is usually influenced by a more local neighbourhood than the other

versions, its population usually has a higher diversity. Since the velocity

of each particle is influenced by the average between its neighbours’ posi-

tion and its current position, we hypothesise that this version of PSO can

deal with noisy images better than other versions.

6.3 A Classification of PSO Neighbourhood Topolo-

gies

An important feature of the PSO algorithm is a topology that defines how

particles are connected to each other and how they exchange or share the

information that they have found so far [115]. The neighbourhood topol-

ogy influences the speed of information flow among particles. Since the

exploration and exploitation abilities of the PSO algorithm can be con-

trolled by adjusting the speed of information flow, the topology can be

used as a mechanism to tune these abilities of the PSO algorithm.

A neighbourhood topology can be directed or undirected, static or dy-

namic, and regular, random or spatial (see Figure 6.1). A topology is di-

rected if the flow of information among particles is one way; otherwise it is

undirected. In a static topology, the neighbourhood structure among par-

ticles remains fixed throughout the PSO iterations whereas in a dynamic
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Information Flow

Structure one-way two-way

Static
Regular

Random

Dynamic
Spatial

Figure 6.1: A classification of PSO neighbourhood topologies.

one, it potentially changes at certain iterations. The neighbours of each

particle in the PSO population can be specified through a regular or a ran-

dom way. In the regular way, each particle is assigned a node in the graph

representing the structure of a neighbourhood topology according to its

index in the population. But in the random way, the particle is assigned

by chance. In a spatial topology, the particles use the spatial information

from the function or position space to choose their neighbours. Figure 6.1

shows a general classification of PSO topologies based on their character-

istics. Since the major goal of this chapter is to investigate the influence of

using static topologies within the PSO-based edge detector on its accuracy,

we focus on the static topologies here and leave the dynamic topologies to

the next chapter.

6.4 Static Topologies

Most static topologies are defined by a one-way (directed) or two-way

(undirected) graph in which each node represents a particle in a PSO pop-

ulation and edges depict which particles are connected to each other. After

initialisation of all particles, each node in the graph is assigned by a regu-

lar or a random way to a particle in the population and the neighbours of

each particle are defined based on the edge structure of the graph. In the
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literature, several typical neighbourhood topologies have been proposed

as follows:

• Fully connected graph (FCG). This topology is commonly used as a

neighbourhood structure in PSO because of its strong ability at ex-

ploitation and its high speed in convergence. However, it suffers

from being trapped in local optima in most applications. In this

topology, each particle is fully connected to the other particles [115]

and is influenced by the best particle of the entire swarm (gbest), as

well as its own past experience (pbest) in CanPSO and BBPSO and

by all connected particles in FIPS. In CanPSO and BBPSO, the leader

is global best particle (leader = gbest in equations (6.2) and (6.3)).

This topology is shown in Figure 6.2(a).

• Ring topology (RT). There are two immediate neighbours for each

particle in the graph [115] as shown in Figure 6.2(b). Therefore each

particle has a local best particle among two particles within its neigh-

bourhood. In this topology, each particle is influenced by a leader in

its local neighbourhood plus its own past experience (pbest). In this

case, the leader is called the local best (lbest) particle. The most im-

portant features of the ring topology are its low speed of information

sharing among particles and high exploration ability.

• Star graph (SG). In this case, one particle, which is called the focal

particle, is just connected to all other particles [187] as shown in Fig-

ure 6.2(c). In this topology, particles are isolated from each other and

they communicate through the focal particle. This topology is some-

times called the wheel topology. In this topology, leader = focal. The

focal particle is selected randomly before PSO iterations start. All

particles in the population move toward the focal particle at each it-

eration and its position is influenced by the best particle of its neigh-

bourhood. Since the focal particle adjusts its flight direction toward

its best neighbour particle in an iteration and the other particles tune
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Some well-known topologies used in PSO: (a) FCG (b) RT, (c)

ST, (d) TBG, (e) VNT and (f) TRO.
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their trajectories toward the focal particle and their personal best po-

sitions in the next iteration, the focal particle acts as a buffer or a

filter and slows down the transmission of information among parti-

cles. Thus the star topology can prevent PSO from becoming trapped

in a local optima. Another important feature of the topology is to

preserve the diversity of potential solutions but it may reduce the

information sharing ability among the particles.

• Tree-based graph (TBG). In this topology which is also known as a

hierarchical topology, there is a root particle at the top level of the hi-

erarchy and all particles in the second level of the tree are connected

to the root. These particles in the second level can also have sev-

eral children in their neighbourhoods [187] (see Figure 6.2(d)). The

leader of each particle is its parent in the tree in this topology. When-

ever each child particle finds a solution which is better than the best

particle found by its parent, the child and parent particles exchange

their best personal information. In this topology, leader = pbestparent

in equation (6.2). Note that the tree representing this topology may

be incomplete according to the number of particles in the popula-

tion. In this topology, each non-leaf particle behaves like the focal

particle in the star topology and filters out information. A good so-

lution can be propagated through the whole population at most in

⌈2 logm(N)− 1⌉ iterations where m is the branching factor (the max-

imum number of children for each node) of the tree topology.

• The von Neumann topology (VNT). In this case, each particle has up

to four neighbours within its neighbourhood and exchanges the in-

formation with them [187]. The graph representing the correspond-

ing topology can be 2-dimensional or generally n-dimensional. Each

node in the 2-dimensional graph has up to four neighbour nodes

in its four different directions (left, right, up and down). An exam-

ple of the 2-dimensional graph is shown in Figure 6.2(e). In the 2D
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graph which is most popular, each node located in the corner is just

connected to two nodes. Since each particle in the PSO population

is usually assigned to one node in the graph in a random way, the

particles corresponding to the nodes at the corners only have two

particles in their neighbourhoods. The particles, which are assigned

to the nodes at the boundaries of the graph, only have three neigh-

bouring particles.

• The toroidal topology (TRO). There are similarities between this topol-

ogy and VNT. All particles in this topology have four adjacent par-

ticles. The particles at the boundaries of the graph representing the

structure of VNT, have less than four particles in their neighbour-

hood. But these particles in the toroidal topology are connected to

the particles on the other side of the graph in order to have four

neighbours like other particles, as shown in Figure 6.2(f).

Mendes et al. [165] indicated that if the neighbourhood size (the num-

ber of neighbours) of a particle increases, the performance of PSO may

become worse. On the other hand, if it decreases, the run time of the al-

gorithm may be increased. Montes de Oca and Stützle [188] investigated

the convergence behaviour of different versions of PSO and showed that

their behaviour may be different from each other on different problems.

They also showed that there is a strong relationship between the chosen

topology and their robustness to premature convergence to optimise some

benchmark non-linear functions. Kennedy [183] presented that one of the

main causes of premature convergence in PSO is the kind of chosen topol-

ogy. Kennedy [183] showed that the effect of using different topologies in

FIPS is completely different from the two other versions of PSO. For ex-

ample, FCG in the CanPSO means that each particle is influenced by the

best information found by all particles, whereas in FIPS, each particle is in-

fluenced by all best solutions found by all other particles. Therefore, each

particle in FIPS is impacted by numerous and diverse particles rather than
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only one or two particles in CanPSO or BBPSO.

6.5 Experiment Design

This section presents the image set used in the experiments and parameter

settings.

6.5.1 Image Set

To compare the performance of CanPSO, BBPSO and FIPS with different

static topologies, we will apply these algorithms on a set of benchmark

images from chapter 3. The image set includes four real images (Saturn,

multi-cube, wall and street) with their ground trouth as shown in Figure

6.3.

(a) (b) (c) (d)

Figure 6.3: (a)-(d) Saturn, multi-cube, wall, street images and their ground

truth images from UCO university [137].
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6.5.2 Parameter Values

We use the values χ = 0.7298, C1 = 2.05, C2 = 2.05 for the PSO parameters

in Equations (6.2) and (6.3). The number of particles in the PSO was set

at 50 and the maximum number of iterations was 200. These parameters

were adjusted based on common settings [184]. The branching factor of

the tree-based topology was set at 3. The parameters of our PSO-based

edge detection algorithm were set at the values regarding to our experi-

ments in Chapters 4 and 5 for comparison purposes. In our experiments,

max+ 1 = 21, SqrSize = 6, and HP = 0.5.

6.6 Results and Quantitative Comparison

This section discusses statistical and quantitative results obtained from ap-

plying different static topologies in the three well-known versions of PSO.

In this section, we first present the results on using static topologies in the

CanPSO-based edge detector followed by the results on using them in the

BBPSO and FIPS-based edge detection algorithms. We then choose the

best topology for each algorithm and compare their performances with

each other when they are equipped with their own best topology. The

detailed results are available in the appendix.

6.6.1 Results on Static Topologies within CanPSO

For an objective comparison, we first carried out our experiments with

the CanPSO-based edge detection algorithm equipped with different static

topologies. Figures 6.4 and 6.5 show the box plots resulted from the 30 in-

dependent runs of CanPSO with each topology in the images corrupted

by Gaussian and impulse noise respectively. In these plots, the horizon-

tal axis is the chosen topology and the vertical axis is the accuracy of the

CanPSO-based edge detector. Here, G6, G10, G14, G18 and G22 represent

PSNR from 6dB to 22dB with step 4 for Gaussian noise and N0.1, N0.2,
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N0.3, N0.4 and N0.5 represent noise probability from 0.1 to 0.5 with step

0.1 for impulse noise. As can be seen in Figure 6.4, the accuracy of CanPSO

with the ring topology is equal or higher than other topologies in images

corrupted by Gaussian noise in most cases. Its accuracy is lower than other

topologies only in the Saturn image corrupted by G10 and G22, and in the

cube image corrupted by G10.

As can be seen in Figure 6.5, the accuracy of the CanPSO-based edge

detector with the ring topology is not lower than other topologies when

the images are corrupted by N0.4 and 0.5 but its accuracy is lower only

in the Saturn image with N0.1 and N0.2, the cube image with N0.2 and

0.3 and the street image with N0.1. This shows that CanPSO with RT

(CanPSO-RT) works better than other topologies when the images are cor-

rupted by a higher level of noise and its accuracy becomes lower in the

images with a lower level of impulse noise.

Table 6.1 shows the summary of the comparison of the accuracy of the

CanPSO-based algorithm with FCG, RT, SG, TBG, VNT and TRO. For a

fair and comprehensive comparison, we used a simple multiple compar-

ison procedure proposed by Holm [189] to adjust p-values resulted from

the Student two paired T -test to compare the pairwise accuracy means. As

we expected, CanPSO with RT can outperform CanPSO with other static

topologies in most cases and its accuracy with RT is higher or equal in 92%

of the cases (184 out of 200). The summary in Table 6.1 shows the number

of cases where each topology is statistically significantly same/better/worse

than CanPSO with the other topologies. The results also show that the

static topologies can be approximately ranked from highest accuracy to

lowest accuracy as RT, {TRO, VNT}, {TBG, SG} and FCG.

6.6.2 Results on Static Topologies within BBPSO

We also examined the performance of BBPSO with different static topolo-

gies. Figure 6.6 shows the box plots from the results of its 30 independent
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Figure 6.4: The box-plots drawn from the results of 30 independent runs

of CanPSO with static topologies in noisy images corrupted by Gaussian

noise.
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Figure 6.5: The box-plots drawn from the results of 30 independent runs

of CanPSO with static topologies in noisy images corrupted by impulse

noise.
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Table 6.1: The performance of the CanPSO-based algorithm with different

static topologies

Topology FCG RT SG TBG VNT TRO Worse Same Better

Worse – 22 3 10 17 18 70

FCG vs Same – 15 35 29 22 20 121

Better – 3 2 1 1 2 9

Worse 3 – 3 5 3 2 16

RT vs Same 15 – 23 25 30 33 126

Better 22 – 14 10 7 5 58

Worse 2 14 – 3 7 11 37

SG vs Same 35 23 – 35 30 26 149

Better 3 3 – 2 3 3 14

Worse 1 10 2 – 6 7 26

TBG vs Same 29 25 35 – 33 31 153

Better 10 5 3 – 1 2 21

Worse 1 7 3 1 – 1 13

VNT vs Same 22 30 30 33 – 39 154

Better 17 3 7 6 – 0 33

Worse 2 5 3 2 0 – 12

TRO vs Same 20 33 26 31 39 – 149

Better 18 2 11 7 1 – 39
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runs with static topologies in noisy images corrupted by Gaussian noise.

As can be seen in this figure, the BBPSO-based edge detector with RT per-

forms better than other topologies in images with a high level of Gaussian

noise (G6 and G10) in all cases whereas its accuracy decreases in images

with a low level of the noise in a few cases (see Sat-G14, Sat-G22, Cube-

G14, Street-G14 and Street G22 in Figure 6.6).

Figure 6.7 shows the box plots from the results of 30 independent runs

of BBPSO with static topologies in noisy images corrupted by impulse

noise. These plots indicate that the performance of BBPSO with RT (BBPSO-

RT) is equal or higher than other static topologies in the images with a low

level of impulse noise whereas its accuracy is lower in a few cases in the

images with a high level of noise (see Sat-N0.4, Cube-N0.3, Wall-N0.4 and

Street-N0.3 in Figure 6.7).

For a fair comparison, we again used Holm’s method to adjust p-values

resulted from the Student two paired T -test to compare the pairwise accu-

racy means. The results show that BBPSO with RT (BBPSO-RT) is more ac-

curate than BBPSO with other static topologies in most cases. The perfor-

mance of BBPSO with RT is statistically better or same in 86% of the cases

(172 out of 200). Table 6.2 show the number of the cases where BBPSO-

RT with each topology is same/better/worse than the other topologies.

For the BBPSO-based edge detection algorithm, the static topologies can

be approximately ranked as RT, TRO, {VNT, TBG} and {SG, FCG} from

highest accuracy to lowest accuracy.

6.6.3 Results on Static Topologies within FIPS

For FIPS, the box plots are drawn from the results of 30 independent runs

for each static topology in noisy images corrupted by Gaussian and im-

pulse noise as can be seen in Figures 6.8 and 6.9. The FIPS-based edge

detector performs better than other topologies in all noise level in all cases

except the wall image corrupted by impulse noise with the noise probabil-
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Figure 6.6: The box-plots drawn from the results of 30 independent runs

of BBPSO with static topologies in noisy images corrupted by Gaussian

noise.



6.6. RESULTS AND QUANTITATIVE COMPARISON 149

FCG RT SG TBG VNT TRO

0.
40

0.
50

0.
60

0.
70

Sat − N0.1

FCG RT SG TBG VNT TRO

0.
5

0.
6

0.
7

0.
8

0.
9

Cube − N0.1

FCG RT SG TBG VNT TRO0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Wall − N0.1

FCG RT SG TBG VNT TRO

0.
60

0.
65

0.
70

0.
75

0.
80

Street − N0.1

FCG RT SG TBG VNT TRO

0.
4

0.
5

0.
6

0.
7

Sat − N0.2

FCG RT SG TBG VNT TRO

0.
55

0.
60

0.
65

0.
70

Cube − N0.2

FCG RT SG TBG VNT TRO
0.

4
0.

5
0.

6
0.

7

Wall − N0.2

FCG RT SG TBG VNT TRO

0.
40

0.
50

0.
60

0.
70

Street − N0.2

FCG RT SG TBG VNT TRO0.
30

0.
40

0.
50

0.
60

Sat − N0.3

FCG RT SG TBG VNT TRO

0.
50

0.
55

0.
60

0.
65

0.
70

Cube − N0.3

FCG RT SG TBG VNT TRO

0.
50

0.
55

0.
60

0.
65

Wall − N0.3

FCG RT SG TBG VNT TRO
0.

38
0.

42
0.

46
0.

50

Street − N0.3

FCG RT SG TBG VNT TRO

0.
25

0.
35

0.
45

0.
55

Sat − N0.4

FCG RT SG TBG VNT TRO

0.
45

0.
50

0.
55

0.
60

Cube − N0.4

FCG RT SG TBG VNT TRO

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Wall − N0.4

FCG RT SG TBG VNT TRO

0.
2

0.
3

0.
4

0.
5

0.
6

Street − N0.4

FCG RT SG TBG VNT TRO

0.
05

0.
15

0.
25

0.
35

Sat − N0.5

FCG RT SG TBG VNT TRO

0.
35

0.
45

0.
55

Cube − N0.5

FCG RT SG TBG VNT TRO

0.
1

0.
2

0.
3

0.
4

0.
5

Wall − N0.5

FCG RT SG TBG VNT TRO

0.
2

0.
3

0.
4

0.
5

0.
6

Street − N0.5

Figure 6.7: The box-plots drawn from the results of 30 independent runs of

BBPSO with static topologies in noisy images corrupted by impulse noise.
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Table 6.2: The performance of the BBPSO-based algorithm with different

static topologies

Topology FCG RT SG TBG VNT TRO Worse Same Better

Worse – 19 3 4 12 16 54

FCG vs Same – 14 32 30 21 16 113

Better – 7 5 6 7 8 33

Worse 7 – 8 6 5 2 28

RT vs Same 14 – 18 21 26 33 112

Better 19 – 14 13 9 5 60

Worse 5 14 – 2 7 11 39

SG vs Same 32 18 – 33 25 21 129

Better 3 8 – 5 8 8 32

Worse 6 13 5 – 6 10 40

TBG vs Same 30 21 33 – 29 24 137

Better 4 6 2 – 5 6 23

Worse 7 9 8 5 – 3 32

VNT vs Same 21 26 25 29 – 34 135

Better 12 5 7 6 – 3 33

Worse 8 5 8 6 3 – 30

TRO vs Same 16 33 21 24 34 – 128

Better 16 2 11 10 3 – 42
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ity of 0.1.

The statistical results of applying the FIPS-based edge detection algo-

rithm with the static topologies are shown in Table 6.3. Unlike CanPSO

and BBPSO whose accuracies become higher when the ring topology is

chosen, the accuracy of FIPS is higher in most cases when the toroidal

topology is chosen as a neighbourhood structure. Table 6.3 shows the

number of the cases where FIPS with each topology is same/better/worse

than the other topologies. The performance of FIPS with TRO (FIPS-TRO)

is statistically better or equal in 99.5% of the cases (199 out of 200). The

static topologies for the FIPS-based edge detection algorithm can be ap-

proximately ranked as TRO, {VNT, RT}, {FCG, TBG} and SG from highest

accuracy to lowest accuracy.

6.6.4 Comparison of CanPSO, BBPSO and FIPS with the

Best Topology

Figures 6.10 and 6.11 shows the box plots from the results of 30 indepen-

dent runs of CanPSO-RT, BBPSO-RT and FIPS-TRO in images corrupted

by Gaussian and impulse noise. Generally, FIPS with the toroidal topol-

ogy has a higher accuracy than other methods except a few cases as can be

seen in these figures.

Table 6.4 shows the statistical results of the comparison of FIPS-TRO

with CanPSO-RT and BBPSO-RT. As we expected, the performance of the

PSO-based edge detector is improved when the FIPS model is used to up-

date the velocity of the particles and the chosen topology is TRO. The main

reason is that the particles in FIPS are influenced by the average of its

neighbours unlike two other versions and accordingly FIPS works better

than the canonical PSO and Bare Bones PSO. The performance of FIPS with

TRO is higher than or equal with that of CanPSO-RT and BBPSO-RT for

61 out of 80 cases (76%).

Our comparison also shows that the FIPS model with the toroidal topol-
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Figure 6.8: The box-plots drawn from the results of 30 independent runs of

FIPS with static topologies in noisy images corrupted by Gaussian noise.
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Figure 6.9: The box-plots drawn from the results of 30 independent runs

of FIPS with static topologies in noisy images corrupted by impulse noise.
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Table 6.3: The performance of the FIPS-based algorithm with different

static topologies

Topology FCG RT SG TBG VNT TRO Worse Same Better

Worse – 5 1 1 7 32 46

FCG vs Same – 35 36 39 33 8 151

Better – 0 3 0 0 0 3

Worse 0 – 1 1 1 8 11

RT vs Same 35 – 8 29 37 31 140

Better 5 – 31 10 2 1 49

Worse 3 31 – 5 36 39 114

SG vs Same 36 8 – 35 4 1 84

Better 1 1 – 0 0 0 2

Worse 0 10 0 – 3 28 41

TBG vs Same 39 29 35 – 37 12 152

Better 1 1 5 – 0 0 7

Worse 0 2 0 0 – 5 7

VNT vs Same 33 37 4 37 – 35 146

Better 7 1 36 3 – 0 47

Worse 0 1 0 0 0 – 1

TRO vs Same 8 31 1 12 35 – 87

Better 32 8 39 28 5 – 112

Table 6.4: Comparison of FIPS-TRO with CanPSO-RT, BBPSO-RT

Topology CanPSO-RT BBPSO-RT FIPS-TRO Worse Same Better

Worse – 14 13 27

CanPSO-RT vs Same – 6 17 23

Better – 20 10 30

Worse 20 – 16 36

BBPSO-RT vs Same 6 – 15 21

Better 14 – 9 23

Worse 10 9 – 19

FIPS-TRO vs Same 17 15 – 32

Better 13 16 – 29
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Figure 6.10: The box-plots drawn from the results of 30 independent runs

of CanPSO, BBPSO and FIPS with static topologies in noisy images cor-

rupted by Gaussian noise.



156 CHAPTER 6. STATIC TOPOLOGIES FOR PSO-BASED METHOD

CanPSO−RT BBPSO−RT FIPS−TRO

0.
50

0.
55

0.
60

0.
65

0.
70

Sat − N0.1

CanPSO−RT BBPSO−RT FIPS−TRO

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Cube − N0.1

CanPSO−RT BBPSO−RT FIPS−TRO

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Wall − N0.1

CanPSO−RT BBPSO−RT FIPS−TRO

0.
60

0.
65

0.
70

0.
75

Street − N0.1

CanPSO−RT BBPSO−RT FIPS−TRO

0.
45

0.
55

0.
65

0.
75

Sat − N0.2

CanPSO−RT BBPSO−RT FIPS−TRO

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Cube − N0.2

CanPSO−RT BBPSO−RT FIPS−TRO

0.
50

0.
60

0.
70

Wall − N0.2

CanPSO−RT BBPSO−RT FIPS−TRO0.
50

0.
55

0.
60

0.
65

Street − N0.2

CanPSO−RT BBPSO−RT FIPS−TRO

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Sat − N0.3

CanPSO−RT BBPSO−RT FIPS−TRO

0.
55

0.
60

0.
65

Cube − N0.3

CanPSO−RT BBPSO−RT FIPS−TRO

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Wall − N0.3

CanPSO−RT BBPSO−RT FIPS−TRO

0.
4

0.
5

0.
6

0.
7

Street − N0.3

CanPSO−RT BBPSO−RT FIPS−TRO

0.
35

0.
40

0.
45

0.
50

Sat − N0.4

CanPSO−RT BBPSO−RT FIPS−TRO

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Cube − N0.4

CanPSO−RT BBPSO−RT FIPS−TRO

0.
30

0.
40

0.
50

0.
60

Wall − N0.4

CanPSO−RT BBPSO−RT FIPS−TRO

0.
30

0.
40

0.
50

0.
60

Street − N0.4

CanPSO−RT BBPSO−RT FIPS−TRO

0.
15

0.
25

0.
35

0.
45

Sat − N0.5

CanPSO−RT BBPSO−RT FIPS−TRO0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Cube − N0.5

CanPSO−RT BBPSO−RT FIPS−TRO0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Wall − N0.5

CanPSO−RT BBPSO−RT FIPS−TRO

0.
3

0.
4

0.
5

0.
6

Street − N0.5

Figure 6.11: The box-plots drawn from the results of 30 independent runs

of CanPSO, BBPSO and FIPS with static topologies in noisy images cor-

rupted by impulse noise.
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ogy increases the accuracy over our previous CanPSO edge detection al-

gorithm equipped with FCG proposed in the previous chapter by approx-

imately 5% on average.

6.7 Example of Detected Edge Maps

Figure 6.12 shows the edge maps resulting from applying CanPSO-FCG

and FIPS-TRO based edge detectors to the Cube and Wall images. We en-

large them to be able to properly view their differences. As can be seen in

Figure 6.12, FIPS-TRO localises the edges better than CanPSO-FCG which

in the edges are displaced because of becoming trapped in local optima.

6.8 Summary

In this chapter, six different static topologies were implemented within

the three versions of PSO and their effects were investigated in the PSO-

based edge detector in noisy images. We arranged a statistical analysis to

compare the effectiveness of each topology in the three versions of PSO

and investigated their performance in images corrupted by Gaussian and

impulse noise. Computational experiments showed that FIPS with the

toroidal topology outperforms the canonical and bare bones PSO with var-

ious static topologies in most cases and is more robust to noise.
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CanPSO-FCG FIPS-TRO

Figure 6.12: The resulting images from applying CanPSO-FCG and FIPS-

TRO (the second and fourth rows show an enlarged version of a small

region of the images in the first and the third rows respectively)



Chapter 7

A Spatial Random-Meaningful

Neighbourhood Topology in PSO

for Edge Detection in Noisy

Images

As described in the previous chapter, there are two main categories of

neighbourhood topologies in PSO: static and dynamic. In the previous

chapter, the effects of using static topologies in the PSO-based edge de-

tection algorithm were investigated. The results showed that the fully in-

formed particle swarm with the toroidal topology performs better than

other versions and other static topologies. In this chapter, different ver-

sions of PSO will be equipped with different dynamic topologies and their

performance will be investigated, and then a novel dynamic topology will

be introduced.

159
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7.1 Introduction

The connections between particles, defined by a neighbourhood topology,

is an important unique feature of PSO. A topology can control the speed of

information flow among particles, which can affect the exploration and ex-

ploitation abilities of PSO. Therefore, a dynamic topology, which changes

the connection structure between particles over the PSO iterations, can

control the exploration and exploitation abilities of PSO [190]. In the fully

connected topology, all particles are connected to each other and accord-

ingly they share their acquired information among all others very quickly

in one iteration. The canonical PSO with the fully connected topology

has a strong exploitation ability but a weak exploration ability. There-

fore, it could encounter the premature convergence problem and be likely

trapped into local optima. As for the ring topology, each particle has an

information flow with its two neighbouring particles and therefore every

particle slowly shares its acquired information with other particles in the

PSO population. The ring topology could improve the exploration ability

of the PSO algorithm but it might reduce the the convergence speed of the

algorithm [115]. Therefore, a few dynamic topologies have been proposed

to effectively control the exploration and exploitation abilities of PSO over

its iterations [190].

7.1.1 Chapter Goals

Since the performance of dynamic topologies has not been investigated in

different versions of PSO, in this chapter, we aim to:

• investigate the performance of CanPSO, BBPSO and FIPS on the de-

tection of edges in noisy images when they are equipped with dif-

ferent dynamic topologies (gradually increasing directed neighbour-

hood (GIDN) [190] and random dynamic topology [191]), and

• improve the performance of the PSO-based edge detector through
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developing a novel dynamic topology which uses spatial-meaningful

information.

The rest of this chapter is organised as follows. Section 7.2 describes

two state-of-the art dynamic topologies, i.e., the random topology and

gradually increasing directed neighbourhood topology followed by in-

troducing a novel dynamic topology in Section 7.3. Sections 7.4 and 7.5

presents a discussion on experimental results followed by the summary in

Section 7.6.

7.2 Dynamic Neighbourhood Topologies

Different methods have been used to develop various dynamic topologies

such as restructuring a neighbourhood topology or dynamically chang-

ing the number of neighbours. In 1999, Suganthan [192] developed a dy-

namic neighbourhood by which exploration and exploitation abilities of

PSO were controlled. In this topology, a specified number of the closest

particles are chosen as the neighbours of each particle at each iteration.

The number of connections is gradually increased over iterations, i.e., at

the early iterations a small number of particles are selected as the neigh-

bours of each particle while at the final iterations the entire population is

chosen.

In this section, the dynamic topology proposed by Akat and Gazi [191]

is reviewed followed by the gradually increasing directed neighbourhood

topology proposed by Liu et al. [190].

7.2.1 Random Topology

Akat and Gazi [191] proposed a method to dynamically determine the par-

ticle neighbours in a random way. In this method, a threshold value, τ

should be defined before the PSO algorithm is initialised. In the first step
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of this topology, at each iteration, for every pair of particles (a, b), a uni-

form random variable, ǫab between 0 and 1 is generated. A random num-

ber for (b, a) is chosen independently from the random number for (a, b).

In this method, at each iteration, a total of N(N − 1) random numbers are

generated where N is the size of the PSO population. In the next step, the

neighbours of each particle a at iteration t are chosen as follows:

Na(t) = {b|a 6= b and ǫab < τ} (7.1)

If ǫab < τ , particle b is chosen as a neighbour of particle a at iteration t. This

topology adds one more random feature to the PSO algorithm in addition

to its other random features, such as the random uniform variables, r1 and

r2 in Equation (2.43) which allow particles to move toward local or global

best particles with a step of random length. This topology allows particles

to share information with a random subset of neighbours which may be a

different subset at another iteration. Therefore, the particles can search dif-

ferent directions in the search space which may increase the performance

of the PSO algorithm.

7.2.2 Gradually Increasing Directed Neighbourhood (GIDN)

Liu et al. [190] improved the method proposed by Suganthan by devel-

oping a mechanism that could more effectively balance between the ex-

ploration and the exploitation ability of PSO than other topologies. This

method was based on a gradually increasing directed neighbourhood (GIDN).

Algorithm 7.1 shows the outline of PSO with GIDN.

In GIDN, the number of connections are gradually increased as calcu-

lated in Equation (7.2) and these directed connections are randomly se-

lected. The number of the neighbours for particle Pi is calculated as:

|HK(Pi)| =
⌊

N

(

t

MaxIteri

)α

+ β

⌋

(7.2)

where HK(Pi) is the set of the neighbours of particle Pi at iteration K, ⌊.⌋
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Algorithm 7.1 PSO with GIDN [190]

1: Initialize PSO population

2: for all Particle Pi in Population do

3: HK=0(Pi)← ∅
4: end for

5: repeat

6: K ← 1

7: for all Particle Pi in Population do

8: Calculate desired |HK(Pi)| using Equation (7.2)

9: if |HK(Pi)| > |HK−1(Pi)| then

10: Randomly Select |HK(Pi)| − |HK−1(Pi)| distinct

particles that do not have any connection with Pi and add

them to its neighbourhood

11: end if

12: Evaluate fitness of Pi

13: if Fitness(Pi) is better than personal best then

14: Update personal best position

15: end if

16: end for

17: Assign the best particle in the population to the leader

18: for all Particle Pi in population do

19: Calculate particle velocity (6.2)

20: Update particle position (2.42)

21: end for

22: Increase K

23: until stopping criteria attained
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is the floor function, MaxIter is the maximum number of iterations, α

is a parameter to control the speed of information flow through increas-

ing the neighbourhood size, t is the iteration number, and β is the initial

neighbourhood size at the first iteration. In this model, each particle starts

with β neighbours and randomly adds |HK(Pi)| − |HK−1(Pi)| particles to

its neighbourhood without taking their spatial information into account.

To validate the GIDN model, Liu et al. [190] compared it with the dynamic

topologies developed by Suganthan [192], Kennedy [193] and Mohais et al.

[194]. The results were promising and the proposed method outperformed

the other dynamic approaches.

7.3 Novel Dynamic Topology for a PSO-based Edge

Detector

In this section, we introduce a novel dynamic topology based on GIDN

with the outline of our novel algorithm in order to improve the accuracy

of edge detection in noisy images.

7.3.1 New Spatial Random-Meaningful Topology (SRMT)

There are several versions of PSO that utilise spatial information to update

the velocity and position of the particles. For example, in fitness distance

ratio (FDR)-PSO [195] and fitness Euclidean ratio (FER)-PSO [196], spatial

information is used to update the velocity of particles and guide them

towards fitter points in their neighbourhood. Accordingly, they can more

effectively locate the global optima. Both versions of PSO use the position

of another particle in addition to the position of the personal best particle

and the leader. That is to say that there are three different terms in their

velocity update equations as follows:
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Vi,j(t+ 1) = χ[Vi,j(t) + C1r1j(Xpbesti,j −Xi,j(t))

+C2r2j(Xleader,j −Xi,j(t)) + C3r3j(Xm,j −Xi,j(t))]

where m is a particle that the value of its j-th dimention, Xm,j is the value

of the j-th dimension of the a-th particle’s personal best whose FDR(a, i, j)

in FDR-PSO or FER(a, i) in FER-PSO is the largest among all particles.

The fitness distance ratio for a maximisation problem is calculated as:

FDR(a, i, j) =
Fitness(Pa)− Fitness(Pi)

|Xaj −Xij|

and the Euclidean distance ratio is computed as:

FER(a, i) =

(

N

Fitness(leader)− Fitness(Pw)

)(

Fitness(Pa)− Fitness(Pi)

‖ ~Xa − ~Xi‖

)

where Pw is the worst particle in the PSO population and ‖.‖ is the Eu-

clidean distance of two particles in the search space.

To use spatial-meaningful information in order to more effectively se-

lect the neighbours of each particle in a random way and hopefully in-

crease the performance of the PSO-based edge detection algoritim, we pro-

pose the spatial random-meaningful topology (SRMT). To meaningfully

choose the neighbours of a particle (P ), we first assign a neighbourhood

score to each particle (Pn) in the PSO population at iteration K. We then

select |HK(P )| − |HK−1(P )| distinct particles which still do not currently

have any connection with P and add them to its neighbourhood. Since

we want the closest particles to a particle to have a higher score to be a

neighbour of the particle, we define this score as:

NScoreK(Pn is a neighbour of P ) = 1− DistK(P, Pn)
∑

Pi /∈HK−1(P )DistK(P, Pi)
(7.3)

where DistK(P, Pi) can be either the fitness or the Euclidean distance be-

tween particles P and Pi in either fitness or search space at iteration K.
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Since the calculation of a Euclidean distance in the search space is more

complex and time consuming than that of a fitness distance, we use the fit-

ness distance to calculate the space between particles. So, DistK(P, Pi) =

|Fitness(P ) − Fitness(Pi)|. In Equation (7.3), if particle Pn is closer to P

in the fitness space, its score of being a neighbour of particle P is higher

and if their distance is larger, the score is lower. The particles with a lower

score have a lower chance to be chosen as a neighbour of a particle and the

particles with a higher score have a higher chance.

Algorithm 7.2 shows the outline of our PSO-based edge detector with

SRMT. In this algorithm, the number of connections between the particles

is increased at each iteration. Their new neighbours are randomly added

based on their neighbourhood score as in Line 12 if the number of the

connections in the previous iteration is less than that of the current itera-

tion. Since the random selection of the new neighbours is based on spatial

meaningful information, we expect that the novel method can guide the

particles towards better areas in the search space and accordingly increase

the accuracy of the PSO-based edge detection algorithm.

7.4 Experiment Design

7.4.1 Image Set

To compare the performance of CanPSO, BBPSO and FIPS with different

dynamic topologies and validate the performance of the novel topology

(SRMT) in these algorithms, we will apply these algorithms on a set of

benchmark images from Chapter 3. The image set includes four real grey

level images (Saturn, multi-cube, wall and street) as can be seen in Figure

3.2. To compare the performance of the PSO-based edge detector with

different dynamic topologies, we use Pratt’s Figure of Merit.
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Algorithm 7.2 PSO-based edge detection algorithm with the spatial

random-meaningful topology

1: for all pixel P on an image with a local edge magnitude larger than a

predefined threshold do

2: if P is unprocessed and not marked as an edge then

3: Initialize PSO population randomly for pixel P

4: for all Particle Pi in population do

5: HK=0(Pi)← ∅
6: end for

7: repeat

8: Increment K

9: for all Particle Pi decoded as curve C do

10: Calculate |HK(Pi)| using Equation (7.2)

11: if |HK(Pi)| > |HK−1(Pi)| then

12: According to their scores, randomly select

|HK(Pi)| − |HK−1(Pi)| particles that do not have any

connection with Pi and add them to its neighbours

13: end if

14: Evaluate Fitness(C) and PenFit(C)

15: if PenFit(C) is better than personal best then

16: Update personal best position for Pi

17: end if

18: end for

19: for all Particle Pi decoded as curve C do

20: For CanPSO or FIPS, Calculate particle velocity

according to (2.43)

21: After Updating particle position according (2.42) for

CanPSO and FIPS, or (6.3) for BBPSO, apply update

rule (4.23)

22: end for

23: until stopping criteria attained

24: Select best particle and decode it as curve C∗

25: if C∗ is feasible then

26: Mark all pixels on curve C∗ as an edge

27: else

28: Mark all pixels within red rectangle as processed

29: end if

30: end if

31: end for
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7.4.2 Parameter Values

We use the values χ = 0.7298, C1 = C2 = 2.05 for CanPSO and FIPS pa-

rameters in Equations (6.2) and (6.4). The number of particles in the PSO is

set at 50 and the maximum number of iterations at 200. These parameters

are adjusted based on common settings [166][184]. The branching factor

of the tree-based topology is set at 3 [197]. For GIDN, both α and β are

set at 2 [190]. The parameters of our PSO-based edge detection algorithm,

2L + 1 = 21, SqrSize = 6, and HP = 0.5 as recommended the previous

chapters.

7.5 Results and Discussion

This section shows quantitative and qualitative results obtained from ap-

plying different dynamic topologies in the three well-known versions of

PSO. In this section, we first present the quantitative results on using dy-

namic topologies in the three versions of PSO and then compare the best

dynamic topology with other static topologies. We only present the overall

results here, and the detailed results are available in the appendix.

7.5.1 Results on Dynamic Topologies

For an objective comparison, we first carried out our experiments with

the three versions of PSO equipped with different dynamic topologies.

Figures 7.1 and 7.2 show the box plots resulting from 30 independent runs

of CanPSO, BBPSO and FIPS with the random topology, GIDN and SRMT

in the images corrupted by Gaussian and impulse noise correspondingly.

In these plots, the horizontal axis is the chosen topology and the vertical

axis is the localisation accuracy (PFOM) of the PSO-based edge detector.

Here, G6, G10, G14, G18 and G22 represent PSNR from 6dB to 22dB with

step 4 for Gaussian noise and N0.1, N0.2, N0.3, N0.4 and N0.5 represent

noise probability from 0.1 to 0.5 with step 0.1 for impulse noise. As can
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be seen in Figure 7.1, the accuracy of CanPSO with the novel topology

is equal or higher than other dynamic topologies in images corrupted by

Gaussian noise in most cases. Its accuracy is lower than at least one of

other topologies only in the Saturn image corrupted by G10, G18 and G22,

in the cube image corrupted by G10, in the wall image corrupted by G6

and G10, and in the street image corrupted by G6, G10, G4 and G18.

As can be seen in Figure 7.2, the accuracy of the CanPSO-based edge

detector with SRMT is lower than at least one of other topologies in the

Saturn image with N0.1, in the cube image with N0.1, N0.3 and 0.5, in the

wall image with N0.2, N0.4 and N0.5, and in the street image with N0.1,

N0.2 and N0.5. In other cases, its accuracy is equal or higher than other

topologies.

Table 7.1 summarises the results of applying CanPSO, BBPSO and FIPS

with the Random, GIDN and SRMT dynamic topologies. For a fair com-

parison, we used Holm’s method to adjust p-values resulted from the Stu-

dent two paired T -test to compare the pairwise accuracy means. This

table shows the number of the cases where each dynamic topology is

same/better/worse than the other dynamic topologies. The results show

that CanPSO with SRMT performs better than the other algorithms with

the dynamic topologies. The comparison shows that the accuracy of CanPSO-

SRMT is statistically higher or equal in 81.8% of the cases (262 out of 320).

The dynamic topologies can be approximately ranked as CanPSO-SRMT,

CanPSO-GIDN, FIPS-SRMT, CanPSO-Random, FIPS-GIDN, BBPSO-SRMT,

FIPS-Random, BBPSO-GIDN and BBPSO-Random from highest accuracy

to lowest accuracy. CanPSO with SRMT increases the accuracy over CanPSO-

Random, CanPSO-GIDN, BBPSO-Random, BBPSO-GIDN, BBPSO-SRMT,

FIPS-Random, FIPS-GIDN, FIPS-SRMT by approximatly 2.4%, 1.5%, 7.0%,

5.1%, 4.2%, 3.6%, 2.9% and 1.3%, on average respectively.
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Figure 7.1: The box-plots drawn from the results of 30 independent runs

of CanPSO, BBPSO, FIPS with dynamic topologies (CanPSO-Random,

CanPSO-GIDN, CanPSO-SRMT, BBPSO-Random, BBPSO-GIDN, BBPSO-

SRMT, FIPS-Random, FIPS-GIDN and FIPS-SRMT, from left to right cor-

respondingly in each plot) in noisy images corrupted by Gaussian noise.
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Figure 7.2: The box-plots drawn from the results of 30 independent runs

of CanPSO, BBPSO and FIPS with dynamic topologies (CanPSO-Random,

CanPSO-GIDN, CanPSO-SRMT, BBPSO-Random, BBPSO-GIDN, BBPSO-

SRMT, FIPS-Random, FIPS-GIDN and FIPS-SRMT, from left to right cor-

respondingly in each plot) in noisy images corrupted by impulse noise.
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Table 7.1: The performance of the PSO-based algorithm with dynamic

topologies

CanPSO BBPSO FIPS Total

Topology Rand GIDN SRMT Rand GIDN SRMT Rand GIDN SRMT Worse Same Better

Worse – 2 10 7 9 11 11 9 13 72

Random vs Same – 36 29 16 14 14 16 20 17 162

Better – 2 1 17 17 15 13 11 10 86

Worse 2 – 0 8 10 12 12 12 12 68

GIDN vs Same 36 – 40 12 11 11 13 17 18 158

Better 2 – 0 20 19 17 15 11 10 94

Worse 1 0 – 8 8 10 9 10 12 58

SRMT vs Same 29 40 – 11 13 11 16 17 17 154

Better 10 0 – 21 19 19 15 13 11 108

Worse 17 20 21 – 9 14 17 16 17 131

Random vs Same 16 12 11 – 29 25 13 16 17 139

Better 7 8 8 – 2 1 10 8 6 50

Worse 17 19 19 2 – 0 11 10 12 90

GIDN vs Same 14 11 13 29 – 40 20 24 22 173

Better 9 10 9 0 – 9 6 6 0 49

Worse 15 17 19 1 0 – 10 10 10 82

SRMT vs Same 14 11 11 25 40 – 19 21 24 165

Better 11 12 10 14 0 – 11 9 6 73

Worse 13 15 15 10 9 11 – 6 8 87

Random vs Same 16 13 16 13 20 19 – 31 31 159

Better 11 12 9 17 11 10 – 3 1 74

Worse 11 11 13 8 6 9 3 – 61

GIDN vs Same 20 17 17 16 24 21 31 – 40 186

Better 9 12 10 16 10 10 6 – 0 73

Worse 10 10 11 6 6 6 1 0 – 50

SRMT vs Same 17 18 17 17 22 24 31 40 – 186

Better 13 12 12 17 12 10 8 0 – 84
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Table 7.2: Comparison of CanPSO-SRMT with CanPSO-RT, BBPSO-RT and

FIPS-TRO

Statistically
CanPSO-SRMT vs

CanPSO-RT BBPSO-RT FIPS-TRO

Worse 0 7 7

Same 39 12 13

Better 1 21 20

7.5.2 Comparison Between Static and Dynamic Topologies

Since CanPSO and BBPSO-based edge detectors work well with the ring

topology and FIPS performs well with the toroidal topology, we com-

pared the accuracy of CanPSO-RT, BBPSO-RT, FIPS-TRO and CanPSO-

SRMT with each other. Table 7.2 shows the number of the cases where

CanPSO-SRMT is same/better/worse than CanPSO-RT, BBPSO-RT and

FIPS-TRO. The results show that CanPSO-SRMT performs better than CanPSO-

RT, BBPSO-RT and FIPS-TRO. The comparison shows that the accuracy of

CanPSO-SRMT is statistically higher or equal with CanPSO-RT in 100%

of the cases (40 out of 40) and is higher or equal with BBPSO-RT and

FIPS-TRO in 82.5% of the cases (33 out of 40). This implies that our novel

dynamic PSO-based edge detection algorithm outperforms CanPSO and

FIPS with FCG, RT, TRO, Random and GIDN.

Our comparison also shows that the novel dynamic topology increases

the accuracy by 11.3% on average over our previous CanPSO edge detec-

tion algorithm equipped with FCG proposed in the previous chapter and

by 1.5% over CanPSO equipped with GIDN as a dynamic topology.

7.5.3 Examples of Detected Edge Maps

Figure 7.3 shows several images resulting from CanPSO-FCG, FIPS-TRO,

FIPS-GIDN and CanPSO-SRMT for a subjective comparison. The original
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CanPSO-FCG FIPS-TRO FIPS-GIDN CanPSO-SRMT

Figure 7.3: The resulting images from applying CapPSO-FCG, FIPS-TRO,

FIPS-GIDN and CanPSO-SRMT.
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Saturn, cube and wall and street images were first corrupted by Gaussian

noise (peak signal to noise ratio (PSNR) is 16db) and then these algorithms

are applied to these images. We enlarge them to be able to properly view

their differences. The second, fourth, sixth and eighth rows show an en-

larged version of a small region of the resulting images in the first, third,

fifth and seventh rows respectively. For the Saturn image, the performance

of FIPS-TRO, CanPSO-RT and FIPS-GIDN are similar and there are only

a few displaced edges while CanPSO-SRMT performs better in terms of

continuity and curvature of the edges (see the right middle of the enlarged

version). In the edge maps of the cube and wall images, there are a few

displaced edges. The edges detected by CanPSO-SRMT are also smoother

than the edges detected by the other algorithms (see the centre of the en-

larged version of the cube image and the middle bottom area of the wall

image). For the street image, CanPSO-FCG does not work well on the ar-

eas in shadow on the road; the dynamic topologies perform better. These

areas are very cluttered. CanPSO-SRMT can deal with the detection of

edges in such areas better than the other two dynamic topologies (see the

bottom of enlarged versions for the street image and the edges in the areas

in shadow).

7.6 Summary

In this chapter, the performance of CanPSO, BBPSO and FIPS were investi-

gated for detecting edges in noisy images when they utilise different well-

known dynamic topologies. A novel spatial random-meaningful topology

was also developed and utilised within the PSO-based edge detection al-

gorithm. We arranged quantitative and qualitative experiments in order to

investigate the effects of dynamic topologies in the accuracy of PSO-based

edge detection algorithms. Experimental results indicated that the locali-

sation accuracy of the PSO-based edge detector with the novel topology is

higher than other static and dynamic topologies in most cases.
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Chapter 8

Conclusions and Future Work

The major goal of this thesis was to develop a PSO-based approach to de-

tecting edges with greater continuity in noisy images. The focus was on

using the PSO algorithm to detect edges better than traditional vision ap-

proaches in noisy images through considering a large area and extract-

ing the global structure of the edges. This was achieved by developing

the PSO-based edge detectors without utilising any preprocessing or post

processing techniques. The thesis demonstrated a set of novel ideas and

approaches which use PSO to extract the global structure of the edges in

order to compensate for the broken edges and exploring a large area in

order to overcome noise.

8.1 Achieved Objectives

In this thesis, the following objectives have been achieved:

1. A novel PSO-based method was proposed to detect a continuous

edge as a sequence of connected pixels while traditional edge de-

tectors are usually applied to one pixel at a single run without con-

sidering the global structure of the edges. The proposed algorithm

improved the localisation accuracy of edge detection in noisy images

177
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in comparison to the traditional methods.

2. A constrained PSO-based algorithm was developed to increase the

speed of the PSO-based algorithm. The performance of two well-

known constraint handling methods were compared with each other

in terms of efficiency and effectiveness. The results demonstrated

that the PSO-based edge detector with a penalising method is more

efficient than when it is equipped with a preservation method.

3. The thesis proposed a novel local thresholding technique which was

used inside the PSO-based edge detector. The novel technique was

based on an existing image binarisation method with a high perfor-

mance in illuminated noisy images. Our results showed that the per-

formance of the PSO-based edge detector equipped with the local

thresholding technique is higher than when it uses a global thresh-

olding technique.

4. The thesis investigated the effect of using different static topologies

in three versions of PSO when they are applied to edge detection

in noisy images. The results showed that different topologies have

different effects on the accuracy of three versions of PSO which use

different information sharing mechanisms among particles.

5. The thesis finally proposed a novel dynamic topology as an infor-

mation sharing mechanism in order to increase the accuracy of the

PSO-based edge detector. The novel topology was compared with

several existing static and dynamic topologies. The results showed

that the novel topology can share information among particles in a

more effective way in comparison to other existing topologies and

accordingly increase the accuracy of the PSO-based edge detector.
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8.2 PSO for Edge Detection

The main goal of the PSO-based edge detector was to reduce the number of

broken edges and to increase the localisation accuracy of edge detection in

noisy images. An optimisation solution was proposed in Chapter 4 in or-

der to detect edges in such images. The goal was successfully achieved by

developing a new approach in the framework of PSO to optimise the solu-

tion. To overcome noise and reduce brokenness, an encoding scheme and

a fitness function were developed based on the possibility score of a curve

being fitted on an edge and the curvature cost of the curve with two con-

straints. Two different methods were proposed to handle the constraints.

In addition to the position, orientation and magnitude of edges, the pro-

posed methods utilised other characteristics of the edge pixels, such as the

global structure of the edges, the smoothness of the edges, and the pixel

intensities to detect the edges.

The efficiency and effectiveness of the new PSO-based algorithms were

examined on two benchmark image sets corrupted by two different types

of noise at different levels and compared with Canny as a Gaussian filter-

based edge detector and RRO as a statistical-based edge detector based

on PFOM as a measure of accuracy. The objective and subjective results

showed that the new algorithms generally performed better than the Canny

and RRO edge detectors in the images corrupted by Gaussian and impulse

noise. Although the execution time of the new algorithms is longer than

Canny and RRO, the edges detected by them are more connected and more

accurate than Canny and RRO. Furthermore, the new algorithms do not

use any extra preprocessing or post processing techniques. These results

also showed that Canny could perform reasonably well for some images

with a low level of noise; however, its performance is worse than RRO in

most cases. The results also demonstrated that the localisation accuracy of

edge detection can be increased while a large area is considered in edge

detection to overcome noise and mark a pixel of an image as an edge. This
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was obtained in the PSO-based edge detectors by considering more edge

patterns in comparison to traditional edge detection algorithms.

8.3 A Local Thresholding Technique for the PSO-

based Edge Detector

The main goal of Chapter 5 was the development of a local thresholding

technique for the PSO-based algorithms to overcome the problem of de-

tection of edges in noisy images with illuminated area. Since the edges in

the illuminated areas are weaker than the edges in other areas, most edge

detection algorithms cannot perform well in the illuminated areas and the

resulting edges are usually broken after applying thresholding techniques.

To address the problem of detection of edges in the illuminated areas,

the threshold value estimated by thresholding techniques should be ad-

justed according to the edge magnitudes of the pixels in these areas. We

borrowed the main idea of the new local thresholding technique from the

Sauvola-Pietkinen method as a way of binarisation of illuminated docu-

ment images and adapting this method to the PSO-based algorithms. In

this method, a threshold value for each pixel is estimated based on the

mean and variance of local edge magnitudes of its neighbours. The local

threshold value for each pixel is higher when there are many strong edges

in its neighbourhood and it is lower when there are many weak edges in

its neighbourhood.

The experiments in Chapter 5 showed that the performance of the PSO-

based algorithm equipped by the proposed local thresholding technique is

better than the PSO-based algorithms utilising Otsu’s method in noisy im-

ages with illuminated area. The results showed that the local thresholding

technique reduces broken edges and accordingly increases the localisation

accuracy of edge detection in the noisy illuminated image.



8.4. STATIC TOPOLOGIES FOR THE PSO-BASED METHOD 181

8.4 Static Topologies for the PSO-based Edge De-

tector

The main goal of Chapter 6 was the investigation of the performance of

different static topologies in three versions of PSO, namely CanPSO, BBPSO

and FIPS to detect edges in noisy images. These versions of PSO use differ-

ent velocity and position equations to compute the new position of each

particle in the PSO population. The particles in CanPSO are influenced

by their current velocities, their personal best positions and the position

of their leaders based on a chosen topology. BBPSO is a parameter free

version which omits the influence of velocity of each particle and uses a

simple Gaussian distribution to compute the new position of each particle.

In this version of PSO, each particle is affected by its personal best posi-

tion and its leaders. In FIPS, the velocity of each particle is affected by the

average between the positions of its neighbours. The position of each par-

ticle in this version is influenced by its current velocity and the positions

of its neighbours based on a chosen topology. In this chapter, the effects of

these features of CanPSO, BBPSO and FIPS with different neighbourhood

topologies were investigated on their performance to detect edges in noisy

images.

The results showed that different topologies have different effects on

the accuracy of the various versions of PSO. The comparison of CanPSO

and BBPSO with different static topologies demonstrated that their be-

haviours are very similar with different topologies. CanPSO and BBPSO

perform better when they use the ring topology as a neighbourhood topol-

ogy and worse when they are equipped by the fully connected topology

in comparison to the other static topologies. The static topologies can be

approximately ranked as RT, TRO, VNT, TBG, SG and FCG. The results

showed that FIPS behaves differently when it is equipped with different

static topologies. Unlike CanPSO and BBPSO, the FIPS-based edge de-

tection algorithm with the toroidal topology has a higher accuracy than
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the other topologies. For FIPS, the static topologies can be approximately

ranked as TRO, VNT, RT, FCG and SG. The results showed that FIPS with

TRO has the highest accuracy among three versions of PSO with different

static topologies.

8.5 A Novel Dynamic Spatial Random-Meaningful

Neighbourhood Topology

In Chapter 7, the main goal was to investigate the performance of CanPSO,

BBPSO and FIPS on the detection of edges in noisy images when they use

different dynamic neighbourhood topologies, namely, the random and the

gradually increasing dynamic topologies. Since a topology can change the

speed of information flow among particles, it can affect the exploration

and exploitation abilities of PSO. Dynamic topologies change the connec-

tion structure between particles over the PSO iterations. Accordingly, they

can control the exploration and exploitation abilities of PSO and help it to

likely avoid being trapped into a local optima. In this chapter, the influ-

ence of dynamic topologies on the performance of the PSO-based edge de-

tector were investigated and a novel dynamic topology was also proposed

to improve its performance in the detection of edges in noisy images.

The results showed that different dynamic topologies have different

effects on the accuracy of the various versions of PSO. The experiments

showed that CanPSO, BBPSO and FIPS perform better when they use

the novel topology as a neighbourhood topology in comparison with the

other dynamic topologies and they perform worse when they use the ran-

dom topology. The dynamic topologies can be approximately ranked as

CanPSO-SRMT, CanPSO-GIDN, FIPS-SRMT, CanPSO-Random, FIPS-GIDN,

BBPSO-SRMT, FIPS-Random, BBPSO-GIDN and BBPSO-Random from high-

est accuracy to lowest accuracy.

In Chapter 7, a novel dynamic topology named SRMT was developed
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which was an improved version of a gradually increasing directed neigh-

bourhood (GIDN). Spatial meaningful information are used to compute

the neighbourhood probability of each particle to be a neighbour of an-

other particle. This probability was used to randomly choose the neigh-

bours of each particle at each iteration. This was the reason that the novel

topology was called the spatial random-meaningful topology (SRMT). Our

experiments showed that using SRMT improves the accuracy of the three

versions of PSO-based edge detection algorithms in comparison to other

static and dynamic topologies. Although the accuracy of CanPSO, BBPSO

and FIPS-based edge detection algorithms are improved when they utilise

a dynamic topology, that of FIPS-TRO is comparable with CanPSO-SRMT

in most cases and FIPS-TRO is computationally less expensive than CanPSO

with SRMT as a dynamic topology.

8.6 Limitations

This section briefly provides some important limitations of the PSO-based

edge detector.

8.6.1 Edge Detection in Coloured Images

Nowadays, coloured images are widely used in many applications, such

as remote sensing and medical images. Accordingly, edge detection in

coloured images is very important. Since the main goal of this thesis was

to develop a PSO-based edge detector for gray level images, we focused

on detecting edges in such images and did not consider multidimensional

data, such as color and multispectral images. However, the PSO-based

edge detector could easily be applied to coloured images by use of vector

order statistics.
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8.6.2 Low Speed of the PSO-based Edge Detector

The main disadvantage of the PSO-based edge detector is its low speed in

comparison to traditional edge detection algorithms. Although the edges

detected by the PSO-based edge detector are more connected and more

accurate than the edges detected by the tradition edge detectors in noisy

images, its execution time is much longer. The execution time of the PSO-

based edge detector is usually between 40 and 50 seconds depending on

the noise level in the images used in the experiments while the tradition

methods detect edges in a few seconds. Although the speed of the PSO-

based edge detection algorithm can be increased by the use of concurrency

or parallel programming, its efficiency can be also improved by decreasing

the number of times which PSO is applied to an image. For example, in

the proposed algorithm, we used a very simple condition which should be

satisfied before PSO is applied to a pixel. In Line 1 of Algorithms 4.1 and

4.2, PSO is applied to the pixels which have a larger local edge magnitude

than the estimated local threshold value. By improving this condition and

analysing the local edge magnitudes of the neighbours of each pixel of an

image, the execution time of the algorithm could be improved.

8.7 Future Research Directions

This section provides some possible future research directions in three as-

pects, developing a fitness function and an encoding scheme for coloured

images, constraint handling in the PSO-based edge detector, investigating

the performance of weighted neighbourhood topologies and applying the

new methods to more images to further investigate the performance of the

new methods.
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8.7.1 PSO-based Edge Detector for Coloured Images

One possible extension of this research is to develop a fitness function and

an encoding scheme for the PSO-based edge detector to apply to coloured

images. Since coloured images contain more information than gray level

images, more edge information is expected from colour edge detection. It

has been shown that 90% of the edges are about the same in gray level

and in coloured images [198]. Accordingly, 10% of the edges may not be

detected by edge detection algorithms in gray level images. These algo-

rithms have to adapt to multidimensional data, such as multispectral and

coloured images. The PSO-based edge detection algorithm cannot be cur-

rently applied to multispectral and coloured images and consequently a

fitness function and an encoding scheme are required to adapt the pro-

posed algorithm to such images. A new fitness function and an encoding

scheme may be developed by borrowing some ideas from vector order

statistics and their applications in traditional colour edge detectors.

8.7.2 Handling the Constraints in the Proposed Optimisa-

tion Solution

The constraint handling methods in PSO are categorised into four main

groups, namely, preservation, penalising, repairing and transferring. In

Chapter 4, the performance of a preservation and a penalising method

were investigated and shown that the penalising method has almost the

same accuracy as the preservation method but its speed is higher. Re-

cently, a few repairing and transferring methods have been proposed for

PSO to handle constraints [160]. It has been shown that the efficiency and

effectiveness of these methods are better than preservation and penalising

methods but they are very problem dependent and should be customised

for a particular problem. As an extension of this research, the performance

of the repairing and transferring methods can be investigated in the PSO-

based edge detector. For example, when a curve crosses itself, the particle
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representing the curve can be repaired such that it does not crosses itself.

This repairing technique may improve the efficiency and effectiveness of

the PSO-based edge detector in terms of the execution time and the locali-

sation accuracy.

8.7.3 A Topology with Weighted Connections

In Chapters 6 and 7, the effects of static dynamic topologies were inves-

tigated in the PSO-based edge detector. In all topologies, the connections

between particles were not weighted while assigning values as weights

to the connections would give a degree of importance to the neighbours

of the particles based on their positions and improve the performance of

the PSO-based edge detector. The weights can be changed over time de-

pending on how successful the particles are or have been in the past, e.g.,

a particle may increase the weight of a connection with a neighbour who

has found a better solution or may decrease it if the neighbour has not

found a better one. A dynamic change in the weights as a part of learn-

ing/evolution may allow the particles to improve the knowledge which

they obtain from their neighbours and accordingly improve the accuracy

of the PSO-based edge detectors.

8.7.4 Further Investigation with More Images

This thesis only used a small number of images from the selected image

sets as the test bed. A future work is to apply the new methods devel-

oped in this thesis to more images to further investigate and confirm the

performance of these methods. The source code is available to generate

results for all the remaining images from the chosen standard image sets

to demonstrate the extend to which the proposed method significantly ex-

ceeds the ground truth results on these image sets.
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Appendix A

Sigmoid Function

The general form of the sigmoid function is formulated as:

Y =
α1

1 + e−α2(x−α3)

where x is the input variable, α1 is the range of Y , α2 is the gain coeffi-

cient, and α3 is the point of maximum gain. The maximum gain is the

point at which the slope of the sigmoid function is maximum or at which

the value of the second derivative is zero. Therefore, the maximum gain

equals α1α2/4. The threshold and saturation points for the sigmoid func-

tion are defined as the values of x at which the third derivative of the

sigmoid function are zero, i.e.,

TH = α3 + 1.317/α2

SAT = α3 − 1.317/α2

where TH and SAT are the threshold and saturation points for the sig-

moid function. Therefore,

α2 =
2.634

TH − SAT

α3 =
SAT + TH

2
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Appendix B

Detailed Results from Chapters 6

and 7

In Tables B.1, B.2 and B.3, the columns FCG, RT, SG, TBG, VNT and TRO

show the 95% confidence intervals for the localisation accuracy of the CanPSO-

based algorithm with different static topologies after 30 independent runs

for each image at each noise level.

In Table B.4, the columns Random, GIDN and SRMT show the 95%

confidence intervals for the localisation accuracy of CanPSO and FIPS-

based edge detection algorithms after 30 independent runs for each image

at each noise level.
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214 APPENDIX B. DETAILED RESULTS FROM CHAPTERS 6 AND 7

Table B.1: The performance of the CanPSO-based algorithm with different

static topologies

Image
Noise 95% Confidence Interval for Accuracy

Level FCG RT SG TBG VNT TRO

Sat G22 0.9056±0.0020 0.8787±0.0184 0.8842±0.0070 0.9076±0.0056 0.9030±0.0032 0.8949±0.0101

Sat G18 0.8664±0.0085 0.8714±0.0029 0.8650±0.0199 0.8473±0.0059 0.8756±0.0107 0.8676±0.0057

Sat G14 0.9202±0.0062 0.9525±0.0159 0.9141±0.0173 0.9331±0.0022 0.9546±0.0156 0.9342±0.0112

Sat G10 0.8668±0.0186 0.8518±0.0034 0.8900±0.0078 0.8743±0.0167 0.8717±0.0004 0.8896±0.0108

Sat G6 0.8225±0.0180 0.8515±0.0135 0.8418±0.0073 0.8512±0.0047 0.8467±0.0165 0.8353±0.0157

Cube G22 0.7117±0.0131 0.8097±0.0189 0.7171±0.0171 0.7386±0.0193 0.7523±0.0237 0.7717±0.0160

Cube G18 0.7069±0.0256 0.7651±0.0066 0.7589±0.0194 0.7514±0.0139 0.7719±0.0040 0.7798±0.0153

Cube G14 0.7064±0.0197 0.7580±0.0106 0.7256±0.0246 0.7270±0.0110 0.7685±0.0048 0.7701±0.0146

Cube G10 0.7284±0.0003 0.7007±0.0205 0.6867±0.0085 0.7079±0.0111 0.7037±0.0083 0.7051±0.0104

Cube G6 0.7245±0.0169 0.7591±0.0088 0.7380±0.0067 0.7356±0.0220 0.7279±0.0120 0.7555±0.0127

Wall G22 0.8306±0.0196 0.8997±0.0143 0.8552±0.0118 0.8678±0.0063 0.8736±0.0207 0.8667±0.0168

Wall G18 0.8537±0.0216 0.9076±0.0148 0.8902±0.0053 0.9045±0.0089 0.8953±0.0141 0.8956±0.0179

Wall G14 0.8823±0.0220 0.9767±0.0169 0.9315±0.0061 0.9552±0.0131 0.9488±0.0151 0.9602±0.0188

Wall G10 0.7813±0.0069 0.7814±0.0154 0.7748±0.0071 0.7865±0.0028 0.7804±0.0188 0.7615±0.0113

Wall G6 0.8293±0.0015 0.8877±0.0038 0.8036±0.0174 0.7896±0.0235 0.8067±0.0227 0.8495±0.0027

Street G22 0.8343±0.0064 0.9002±0.0169 0.8272±0.0162 0.8468±0.0113 0.8617±0.0211 0.8662±0.0118

Street G18 0.8714±0.0127 0.8798±0.0145 0.8796±0.0088 0.8922±0.0073 0.8917±0.0057 0.8879±0.0135

Street G14 0.7748±0.0063 0.7819±0.0080 0.7667±0.0154 0.7628±0.0129 0.7741±0.0107 0.7802±0.0071

Street G10 0.8664±0.0137 0.8842±0.0006 0.8766±0.0121 0.8435±0.0054 0.8504±0.0224 0.8408±0.0073

Street G6 0.7727±0.0166 0.8115±0.0117 0.7868±0.0221 0.7914±0.0121 0.8232±0.0033 0.8283±0.0137

Sat N0.1 0.5513±0.0256 0.5351±0.0092 0.5800±0.0151 0.5754±0.0166 0.5821±0.0000 0.5913±0.0169

Sat N0.2 0.5315±0.0094 0.5682±0.0276 0.5271±0.0282 0.5685±0.0032 0.6080±0.0028 0.5888±0.0181

Sat N0.3 0.4506±0.0299 0.5882±0.0147 0.4919±0.0261 0.4980±0.0272 0.5250±0.0269 0.5561±0.0215

Sat N0.4 0.3655±0.0280 0.4141±0.0057 0.3918±0.0131 0.3783±0.0243 0.3786±0.0235 0.3970±0.0166

Sat N0.5 0.2604±0.0343 0.3659±0.0220 0.3096±0.0213 0.3236±0.0170 0.3352±0.0281 0.3406±0.0275

Cube N0.1 0.6439±0.0236 0.6951±0.0034 0.6716±0.0260 0.6541±0.0118 0.6991±0.0076 0.7010±0.0130

Cube N0.2 0.6330±0.0112 0.6345±0.0248 0.6334±0.0021 0.6648±0.0084 0.6414±0.0098 0.6367±0.0179

Cube N0.3 0.6198±0.0173 0.6076±0.0146 0.6312±0.0026 0.6374±0.0037 0.6160±0.0157 0.5992±0.0161

Cube N0.4 0.5089±0.0250 0.5893±0.0161 0.5337±0.0268 0.5422±0.0121 0.5746±0.0192 0.5753±0.0201

Cube N0.5 0.4329±0.0183 0.4252±0.0099 0.4423±0.0063 0.4375±0.0138 0.4258±0.0110 0.4279±0.0141

Wall N0.1 0.5780±0.0204 0.6491±0.0256 0.5945±0.0198 0.6317±0.0172 0.6474±0.0062 0.6589±0.0223

Wall N0.2 0.5436±0.0226 0.5919±0.0100 0.5638±0.0259 0.5613±0.0052 0.5921±0.0185 0.5787±0.0161

Wall N0.3 0.6052±0.0244 0.6560±0.0155 0.6330±0.0219 0.6419±0.0207 0.6638±0.0015 0.6830±0.0191

Wall N0.4 0.4909±0.0172 0.4957±0.0007 0.4994±0.0069 0.4643±0.0259 0.4544±0.0221 0.4795±0.0090

Wall N0.5 0.2822±0.0070 0.3157±0.0163 0.2707±0.0329 0.2749±0.0139 0.3133±0.0151 0.3134±0.0116

Street N0.1 0.6666±0.0188 0.6303±0.0091 0.6824±0.0012 0.6787±0.0057 0.6502±0.0065 0.6394±0.0141

Street N0.2 0.5433±0.0183 0.5395±0.0063 0.5549±0.0076 0.5442±0.0106 0.5365±0.0146 0.5346±0.0124

Street N0.3 0.5049±0.0216 0.5907±0.0246 0.5218±0.0187 0.5497±0.0230 0.5614±0.0161 0.5827±0.0226

Street N0.4 0.3943±0.0040 0.4116±0.0258 0.3763±0.0138 0.3991±0.0042 0.4004±0.0282 0.3828±0.0152

Street N0.5 0.3535±0.0168 0.3656±0.0124 0.3589±0.0144 0.3579±0.0217 0.3598±0.0087 0.3731±0.0145
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Table B.2: The performance of the BBPSO-based algorithm with different

static topologies

Image
Noise 95% Confidence Interval for Accuracy

Level FCG RT SG TBG VNT TRO

Sat G22 0.9057±0.0110 0.8494±0.0002 0.9108±0.0140 0.8677±0.0020 0.8800±0.0056 0.8580±0.0058

Sat G18 0.8681±0.0129 0.9151±0.0026 0.8767±0.0214 0.8582±0.0097 0.8966±0.0161 0.8979±0.0076

Sat G14 0.9246±0.0144 0.9296±0.0019 0.9383±0.0203 0.9201±0.0058 0.9590±0.0026 0.9515±0.0079

Sat G10 0.8740±0.0172 0.9314±0.0100 0.8935±0.0171 0.8969±0.0199 0.9168±0.0031 0.9475±0.0130

Sat G6 0.8092±0.0022 0.7893±0.0009 0.7875±0.0006 0.7572±0.0120 0.7232±0.0255 0.7274±0.0017

Cube G22 0.7203±0.0207 0.7308±0.0169 0.7427±0.0015 0.7564±0.0069 0.7303±0.0138 0.7236±0.0188

Cube G18 0.7150±0.0204 0.7827±0.0045 0.7363±0.0218 0.7235±0.0250 0.7503±0.0047 0.7954±0.0118

Cube G14 0.6924±0.0021 0.6394±0.0082 0.6693±0.0084 0.6638±0.0059 0.6592±0.0063 0.6488±0.0051

Cube G10 0.7302±0.0146 0.8058±0.0152 0.7389±0.0156 0.7508±0.0187 0.7618±0.0210 0.7803±0.0147

Cube G6 0.7368±0.0225 0.7811±0.0019 0.7665±0.0033 0.7432±0.0206 0.7258±0.0232 0.7491±0.0121

Wall G22 0.8303±0.0115 0.8301±0.0077 0.8348±0.0054 0.8310±0.0176 0.8214±0.0053 0.8401±0.0095

Wall G18 0.8531±0.0109 0.8852±0.0153 0.8568±0.0186 0.8715±0.0022 0.8943±0.0141 0.8731±0.0131

Wall G14 0.8684±0.0019 0.9383±0.0141 0.8457±0.0213 0.8592±0.0221 0.8929±0.0105 0.9346±0.0080

Wall G10 0.7959±0.0223 0.8664±0.0110 0.8301±0.0074 0.8343±0.0186 0.8297±0.0162 0.8514±0.0162

Wall G6 0.8405±0.0201 0.8585±0.0058 0.8677±0.0004 0.8596±0.0130 0.8232±0.0203 0.8316±0.0131

Street G22 0.8197±0.0017 0.7716±0.0137 0.7957±0.0000 0.8035±0.0085 0.7377±0.0238 0.7353±0.0080

Street G18 0.8718±0.0116 0.9353±0.0203 0.8776±0.0082 0.9166±0.0014 0.9146±0.0213 0.8891±0.0163

Street G14 0.7696±0.0074 0.7133±0.0022 0.7642±0.0222 0.7421±0.0006 0.7724±0.0018 0.7371±0.0049

Street G10 0.8729±0.0167 0.9014±0.0106 0.8909±0.0187 0.8951±0.0094 0.9204±0.0022 0.9216±0.0132

Street G6 0.7700±0.0097 0.8772±0.0030 0.7696±0.0245 0.7526±0.0192 0.8098±0.0234 0.8296±0.0062

Sat N0.1 0.5466±0.0093 0.5980±0.0189 0.5422±0.0166 0.5562±0.0260 0.5646±0.0130 0.5953±0.0139

Sat N0.2 0.5504±0.0282 0.5678±0.0028 0.5934±0.0054 0.5724±0.0217 0.5599±0.0060 0.5791±0.0152

Sat N0.3 0.4598±0.0253 0.5418±0.0014 0.4833±0.0256 0.4548±0.0294 0.4801±0.0249 0.5185±0.0129

Sat N0.4 0.3850±0.0315 0.3873±0.0021 0.4291±0.0053 0.4038±0.0178 0.3897±0.0072 0.3975±0.0167

Sat N0.5 0.2535±0.0086 0.2789±0.0178 0.2449±0.0212 0.2507±0.0299 0.2610±0.0089 0.2870±0.0131

Cube N0.1 0.6370±0.0067 0.7247±0.0244 0.6282±0.0260 0.6677±0.0068 0.7054±0.0225 0.6973±0.0157

Cube N0.2 0.6290±0.0094 0.6472±0.0122 0.6260±0.0141 0.6285±0.0172 0.6342±0.0118 0.6457±0.0108

Cube N0.3 0.6200±0.0141 0.5712±0.0001 0.6256±0.0132 0.5746±0.0084 0.5785±0.0106 0.5727±0.0073

Cube N0.4 0.5107±0.0170 0.5301±0.0183 0.5192±0.0078 0.5304±0.0122 0.5226±0.0159 0.5232±0.0176

Cube N0.5 0.4348±0.0179 0.4810±0.0212 0.4434±0.0225 0.4587±0.0176 0.4756±0.0104 0.4842±0.0192

Wall N0.1 0.5784±0.0147 0.5906±0.0067 0.5842±0.0225 0.5750±0.0152 0.5963±0.0054 0.6030±0.0105

Wall N0.2 0.5509±0.0222 0.6232±0.0234 0.5703±0.0096 0.5961±0.0143 0.5926±0.0238 0.5980±0.0227

Wall N0.3 0.5897±0.0017 0.5855±0.0161 0.5636±0.0190 0.5721±0.0125 0.5855±0.0103 0.5874±0.0089

Wall N0.4 0.4713±0.0008 0.4097±0.0214 0.4372±0.0007 0.4512±0.0152 0.4161±0.0068 0.4206±0.0110

Wall N0.5 0.2767±0.0100 0.3414±0.0161 0.2707±0.0332 0.2750±0.0283 0.3151±0.0156 0.3383±0.0129

Street N0.1 0.6726±0.0193 0.6941±0.0031 0.6896±0.0077 0.6708±0.0150 0.6651±0.0209 0.6733±0.0112

Street N0.2 0.5488±0.0205 0.5934±0.0098 0.5646±0.0236 0.5619±0.0162 0.5854±0.0113 0.5936±0.0148

Street N0.3 0.4954±0.0052 0.3984±0.0050 0.4815±0.0006 0.4663±0.0078 0.4305±0.0023 0.4223±0.0052

Street N0.4 0.3994±0.0222 0.4336±0.0027 0.4146±0.0251 0.3924±0.0023 0.4136±0.0309 0.3893±0.0126

Street N0.5 0.3489±0.0107 0.3995±0.0303 0.3447±0.0025 0.3821±0.0270 0.3585±0.0237 0.3828±0.0206
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Table B.3: The performance of the FIPS-based algorithm with different

static topologies

Image
Noise 95% Confidence Interval for Accuracy

Level FCG RT SG TBG VNT TRO

Sat G22 0.8960±0.0037 0.8975±0.0047 0.9098±0.0007 0.9235±0.0101 0.9285±0.0002 0.9478±0.0040

Sat G18 0.8765±0.0190 0.8945±0.0108 0.8484±0.0091 0.8682±0.0226 0.8861±0.0090 0.9282±0.0143

Sat G14 0.9079±0.0024 0.9450±0.0161 0.8978±0.0165 0.9235±0.0021 0.9489±0.0207 0.9585±0.0091

Sat G10 0.8819±0.0209 0.8961±0.0014 0.8498±0.0175 0.8577±0.0144 0.8834±0.0052 0.9061±0.0109

Sat G6 0.8281±0.0167 0.8335±0.0112 0.8036±0.0004 0.8232±0.0103 0.8261±0.0008 0.8449±0.0138

Cube G22 0.7124±0.0136 0.7304±0.0096 0.6918±0.0125 0.7093±0.0025 0.7289±0.0102 0.7385±0.0114

Cube G18 0.7199±0.0231 0.7420±0.0155 0.6895±0.0136 0.7119±0.0113 0.7322±0.0153 0.7510±0.0190

Cube G14 0.7060±0.0125 0.7165±0.0088 0.6863±0.0210 0.7031±0.0080 0.7298±0.0030 0.7458±0.0104

Cube G10 0.7320±0.0162 0.7586±0.0207 0.7091±0.0100 0.7369±0.0189 0.7546±0.0198 0.7799±0.0180

Cube G6 0.7226±0.0108 0.7624±0.0233 0.7041±0.0042 0.7368±0.0167 0.7489±0.0249 0.7722±0.0168

Wall G22 0.8375±0.0176 0.8581±0.0041 0.8120±0.0188 0.8246±0.0232 0.8511±0.0121 0.8889±0.0104

Wall G18 0.8463±0.0053 0.8726±0.0056 0.8322±0.0048 0.8469±0.0222 0.8602±0.0179 0.8945±0.0053

Wall G14 0.8707±0.0028 0.9018±0.0147 0.8600±0.0004 0.8835±0.0043 0.8869±0.0204 0.8999±0.0087

Wall G10 0.7769±0.0080 0.7836±0.0175 0.7604±0.0140 0.7851±0.0109 0.8064±0.0012 0.8254±0.0123

Wall G6 0.8302±0.0125 0.8496±0.0098 0.8095±0.0235 0.8280±0.0071 0.8657±0.0107 0.8816±0.0107

Street G22 0.8442±0.0194 0.8675±0.0078 0.8162±0.0187 0.8331±0.0061 0.8595±0.0151 0.8744±0.0133

Street G18 0.8818±0.0190 0.8994±0.0178 0.8535±0.0187 0.8805±0.0124 0.9077±0.0083 0.9287±0.0178

Street G14 0.7837±0.0197 0.8096±0.0073 0.7566±0.0180 0.7726±0.0162 0.7973±0.0185 0.8206±0.0132

Street G10 0.8595±0.0056 0.8791±0.0176 0.8450±0.0001 0.8713±0.0154 0.8692±0.0108 0.8930±0.0114

Street G6 0.7720±0.0116 0.7921±0.0143 0.7525±0.0022 0.7744±0.0107 0.7837±0.0123 0.8024±0.0128

Sat N0.1 0.5517±0.0150 0.5858±0.0135 0.5314±0.0147 0.5509±0.0133 0.5709±0.0275 0.5901±0.0140

Sat N0.2 0.5238±0.0066 0.5292±0.0258 0.5099±0.0074 0.5392±0.0002 0.5537±0.0010 0.5547±0.0159

Sat N0.3 0.4523±0.0175 0.4682±0.0157 0.4309±0.0109 0.4512±0.0089 0.4681±0.0094 0.4836±0.0164

Sat N0.4 0.3576±0.0071 0.3920±0.0297 0.3439±0.0207 0.3753±0.0294 0.3978±0.0309 0.4283±0.0179

Sat N0.5 0.2603±0.0173 0.2725±0.0267 0.2403±0.0024 0.2663±0.0007 0.2745±0.0057 0.2780±0.0219

Cube N0.1 0.6373±0.0069 0.6542±0.0009 0.6226±0.0151 0.6278±0.0042 0.6488±0.0094 0.6606±0.0039

Cube N0.2 0.6467±0.0248 0.6732±0.0133 0.6158±0.0004 0.6358±0.0052 0.6385±0.0215 0.6515±0.0191

Cube N0.3 0.6125±0.0064 0.6417±0.0022 0.5983±0.0237 0.6071±0.0236 0.6352±0.0239 0.6635±0.0042

Cube N0.4 0.4891±0.0007 0.5012±0.0162 0.4849±0.0151 0.5057±0.0220 0.5257±0.0048 0.5507±0.0082

Cube N0.5 0.4296±0.0116 0.4372±0.0117 0.4123±0.0224 0.4297±0.0045 0.4540±0.0019 0.4656±0.0114

Wall N0.1 0.5986±0.0275 0.6267±0.0118 0.5621±0.0007 0.5807±0.0005 0.5849±0.0239 0.5883±0.0199

Wall N0.2 0.5450±0.0161 0.5601±0.0103 0.5239±0.0013 0.5410±0.0053 0.5474±0.0079 0.5601±0.0131

Wall N0.3 0.6088±0.0179 0.6408±0.0209 0.5859±0.0125 0.6118±0.0219 0.6306±0.0255 0.6571±0.0189

Wall N0.4 0.4956±0.0205 0.5094±0.0126 0.4718±0.0159 0.4903±0.0292 0.5106±0.0065 0.5453±0.0160

Wall N0.5 0.2747±0.0079 0.3013±0.0307 0.2607±0.0228 0.2910±0.0201 0.3143±0.0269 0.3361±0.0188

Street N0.1 0.6728±0.0195 0.6902±0.0034 0.6478±0.0212 0.6587±0.0175 0.6850±0.0098 0.7081±0.0111

Street N0.2 0.5492±0.0209 0.5634±0.0061 0.5245±0.0155 0.5381±0.0281 0.5586±0.0068 0.5928±0.0131

Street N0.3 0.5227±0.0284 0.5530±0.0205 0.4885±0.0187 0.5129±0.0076 0.5353±0.0264 0.5500±0.0242

Street N0.4 0.3805±0.0027 0.4046±0.0285 0.3716±0.0028 0.4015±0.0139 0.4105±0.0221 0.4292±0.0153

Street N0.5 0.3518±0.0143 0.3698±0.0122 0.3331±0.0236 0.3506±0.0229 0.3750±0.0129 0.3990±0.0130
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Table B.4: The performance of the PSO-based algorithm with dynamic

topologies

Image

Noise 95% Confidence Interval for Accuracy

Level CanPSO BBPSO FIPS

GIDN SRMT GIDN SRMT GIDN SRMT

Sat G22 0.8989±0.0207 0.9088±0.0167 0.8594±0.0208 0.8694±0.0050 0.9580±0.0056 0.9680±0.0176

Sat G18 0.8913±0.0148 0.9012±0.0027 0.9250±0.0212 0.9350±0.0010 0.9385±0.0101 0.9485±0.0083

Sat G14 0.9726±0.0173 0.9826±0.0096 0.9396±0.0152 0.9497±0.0087 0.9685±0.0146 0.9786±0.0134

Sat G10 0.8719±0.0171 0.8819±0.0159 0.9414±0.0039 0.9513±0.0071 0.9161±0.0055 0.9260±0.0158

Sat G6 0.8714±0.0159 0.8814±0.0015 0.7992±0.0125 0.8091±0.0086 0.8549±0.0085 0.8648±0.0087

Cube G22 0.8297±0.0119 0.8397±0.0140 0.7408±0.0144 0.7509±0.0055 0.7485±0.0218 0.7584±0.0138

Cube G18 0.7851±0.0084 0.7953±0.0154 0.7927±0.0072 0.8025±0.0231 0.7609±0.0015 0.7709±0.0121

Cube G14 0.7779±0.0162 0.7881±0.0019 0.6493±0.0249 0.6593±0.0261 0.7560±0.0198 0.7659±0.0092

Cube G10 0.7209±0.0247 0.7310±0.0164 0.8158±0.0179 0.8259±0.0142 0.7900±0.0195 0.7998±0.0193

Cube G6 0.7790±0.0177 0.7890±0.0014 0.7910±0.0100 0.8009±0.0127 0.7822±0.0061 0.7922±0.0094

Wall G22 0.9197±0.0072 0.9297±0.0089 0.8401±0.0017 0.8500±0.0119 0.8988±0.0092 0.9088±0.0081

Wall G18 0.9276±0.0091 0.9374±0.0070 0.8952±0.0103 0.9051±0.0018 0.9045±0.0079 0.9146±0.0082

Wall G14 0.9968±0.0133 1.0067±0.0144 0.9483±0.0109 0.9584±0.0042 0.9099±0.0164 0.9199±0.0150

Wall G10 0.8013±0.0032 0.8113±0.0112 0.8764±0.0038 0.8865±0.0159 0.8353±0.0174 0.8453±0.0070

Wall G6 0.9077±0.0018 0.9176±0.0193 0.8686±0.0032 0.8787±0.0038 0.8915±0.0166 0.9016±0.0107

Street G22 0.9202±0.0135 0.9302±0.0063 0.7816±0.0169 0.7915±0.0141 0.8845±0.0057 0.8945±0.0102

Street G18 0.8998±0.0116 0.9099±0.0108 0.9453±0.0030 0.9554±0.0173 0.9386±0.0188 0.9486±0.0108

Street G14 0.8017±0.0011 0.8116±0.0077 0.7232±0.0045 0.7332±0.0039 0.8305±0.0101 0.8405±0.0043

Street G10 0.9041±0.0098 0.9142±0.0075 0.9114±0.0104 0.9212±0.0111 0.9030±0.0006 0.9128±0.0087

Street G6 0.8315±0.0112 0.8416±0.0154 0.8872±0.0007 0.8972±0.0139 0.8122±0.0159 0.8222±0.0135

Sat N0.1 0.5547±0.0077 0.5647±0.0002 0.6078±0.0182 0.6178±0.0110 0.6001±0.0163 0.6102±0.0038

Sat N0.2 0.5882±0.0096 0.5982±0.0147 0.5778±0.0077 0.5878±0.0167 0.5646±0.0139 0.5744±0.0124

Sat N0.3 0.6082±0.0229 0.6183±0.0052 0.5517±0.0004 0.5618±0.0228 0.4934±0.0225 0.5034±0.0151

Sat N0.4 0.4340±0.0082 0.4441±0.0151 0.3973±0.0319 0.4074±0.0233 0.4385±0.0242 0.4484±0.0116

Sat N0.5 0.3857±0.0021 0.3958±0.0176 0.2889±0.0291 0.2987±0.0254 0.2881±0.0010 0.2980±0.0104

Cube N0.1 0.7150±0.0153 0.7251±0.0089 0.7346±0.0245 0.7446±0.0159 0.6708±0.0100 0.6807±0.0125

Cube N0.2 0.6545±0.0079 0.6645±0.0126 0.6572±0.0114 0.6673±0.0197 0.6614±0.0233 0.6716±0.0102

Cube N0.3 0.6279±0.0250 0.6376±0.0244 0.5813±0.0028 0.5915±0.0002 0.6733±0.0259 0.6834±0.0238

Cube N0.4 0.6092±0.0220 0.6193±0.0031 0.5400±0.0172 0.5500±0.0246 0.5607±0.0189 0.5707±0.0129

Cube N0.5 0.4453±0.0283 0.4553±0.0113 0.4909±0.0180 0.5010±0.0233 0.4756±0.0196 0.4856±0.0193

Wall N0.1 0.6691±0.0104 0.6790±0.0138 0.6006±0.0182 0.6105±0.0113 0.5983±0.0106 0.6082±0.0127

Wall N0.2 0.6118±0.0192 0.6218±0.0054 0.6331±0.0125 0.6432±0.0134 0.5701±0.0183 0.5800±0.0126

Wall N0.3 0.6761±0.0177 0.6862±0.0198 0.5955±0.0097 0.6056±0.0196 0.6670±0.0175 0.6771±0.0188

Wall N0.4 0.5156±0.0043 0.5257±0.0144 0.4197±0.0245 0.4295±0.0251 0.5554±0.0026 0.5653±0.0091

Wall N0.5 0.3357±0.0088 0.3457±0.0251 0.3515±0.0024 0.3614±0.0197 0.3459±0.0083 0.3558±0.0168

Street N0.1 0.6501±0.0035 0.6601±0.0056 0.7040±0.0206 0.7140±0.0121 0.7182±0.0090 0.7283±0.0043

Street N0.2 0.5595±0.0104 0.5695±0.0130 0.6034±0.0240 0.6133±0.0167 0.6029±0.0032 0.6130±0.0113

Street N0.3 0.6105±0.0001 0.6205±0.0192 0.4085±0.0137 0.4185±0.0189 0.5600±0.0163 0.5700±0.0100

Street N0.4 0.4316±0.0085 0.4417±0.0238 0.4437±0.0197 0.4536±0.0290 0.4392±0.0140 0.4492±0.0161

Street N0.5 0.3856±0.0287 0.3955±0.0103 0.4095±0.0005 0.4194±0.0023 0.4088±0.0085 0.4188±0.0191


