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Abstract

Multimodal communication is an essential aspect of human perception,
facilitating the ability to reason, deduce, and understand meaning. Utilizing
multimodal senses, humans are able to relate to the world in many different
contexts. This dissertation looks at surrounding issues of multimodal
communication as it pertains to human-computer interaction. If humans rely on
multimodality to interact with the world, how can multimodality benefit the ways
in which humans interface with computers? Can multimodality be used to help
the machine understand more about the person operating it and what
associations derive from this type of communication?

This research places multimodality within the domain of musical
performance, a creative field rich with nuanced physical and emotive aspects.
This dissertation asks, what kinds of new sonic collaborations between musicians
and computers are possible through the use of multimodal techniques? Are there
specific performance areas where multimodal analysis and machine learning can
benefit training musicians? In similar ways can multimodal interaction or analysis
support new forms of creative processes?

Applying multimodal techniques to music-computer interaction is a
burgeoning effort. As such the scope of the research is to lay a foundation of
multimodal techniques for the future. In doing so the first work presented is a
software system for capturing synchronous multimodal data streams from nearly
any musical instrument, interface, or sensor system.

This dissertation also presents a variety of multimodal analysis scenarios for
machine learning. This includes automatic performer recognition for both string
and drum instrument players, to demonstrate the significance of multimodal
musical analysis. Training the computer to recognize who is playing an
instrument suggests important information is contained not only within the
acoustic output of a performance, but also in the physical domain. Machine
learning is also used to perform automatic drum-stroke identification; training
the computer to recognize which hand a drummer uses to strike a drum. There

are many applications for drum-stroke identification including more detailed
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automatic transcription, interactive training (e.g. computer-assisted rudiment
practice), and enabling efficient analysis of drum performance for metrics
tracking.

Furthermore, this research also presents the use of multimodal techniques in
the context of everyday practice. A practicing musician played a sensor-
augmented instrument and recorded his practice over an extended period of time,
realizing a corpus of metrics and visualizations from his performance. Additional
multimodal metrics are discussed in the research, and demonstrate new types of
performance statistics obtainable from a multimodal approach.

The primary contributions of this work include (1) a new software tool
enabling musicians, researchers, and educators to easily capture multimodal
information from nearly any musical instrument or sensor system; (2)
investigating multimodal machine learning for automatic performer recognition
of both string players and percussionists; (3) multimodal machine learning for
automatic drum-stroke identification; (4a) applying multimodal techniques to
musical pedagogy and training scenarios; (4b) investigating novel multimodal
metrics; (5) lastly this research investigates the possibilities, affordances, and
design considerations of multimodal musicianship both in the acoustic domain,
as well as in other musical interface scenarios. This work provides a foundation
from which engaging musical-computer interactions can occur in the future,

benefitting from the unique nuances of multimodal techniques.
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Chapter 1

Introduction

Motivation & Overview

“Futurist musicians should substitute for the limited variety of timbres that
the orchestra possesses today the infinite variety of timbres in noises,
reproduced with the appropriate mechanisms.”

—Luigi Russolo (Russolo 19806)
1.1 Noise and Inspiration

In the highly regarded manifesto, [.’Arte dei Rumori' (Russolo 1986), Italian
Futurist Luigi Russolo exalts in his 1913 letter to Futurist composer Francesco
Balilla, the idea that novel mechanisms must be created in order to facilitate a
new means of sonic expression. Russolo believed that humans had grown
accustomed to the sounds of the matured industrial landscape, and that this
mechanized urban environment presented an infinite spectrum of unheard
sonorities and sounds—far surpassing the reproducibility of traditional
instrumentation. Thus was born the A7# of Noises, a manifesto in which Russolo
first systematically describes a broad history of music; influenced by mans
growing desire for an increasingly complex nature in sound tonalities, thythm,
and musical relationships. Russolo then discusses his belief that the future of
music (at least as an attempt to convey truly “new’ sonorities, rhythms, and
emotion) was within the “noise-sound” of machines and nature. So much so that
the only way to achieve these new sounds would be to create new instruments,
mimicking these noise-sounds and learning to play and compose for them with

great virtuosity.

U ““The Art of Noises” translated from Italian to English.
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This research does not attempt to fulfill L’Arte dei Rumori’s goal of
investigating the noise-sound, however, it derives the following from Russolo’s
fundamental beliefs; (1) there exists a growing desire to investigate novel
relationships in sound phenomena, and (2) that new tools and methodologies are
necessary to usher forth a new era of expressivity in musical performance and
interaction. Specifically, this research investigates the use of novel wultimodal
techniques (a definition of multimodality is provided in section 1.3), and the
possibilities when applied to the pedagogical aspects of a musician’s practice, the
learning environment in which a musician grows, and the ways in which a
machine (computer) can affectively communicate and understand music and
performance. In addition to the creation of new tools and methodologies, this
research looks to principles emerging in other fields such as design, affective
computing, and human-computer interaction (HCI), to investigate the
implications and potential artistic freedoms gained from the research. Holistically,
this dissertation explores novel multimodal technologies that enable new sonic
engagements between musician and sound; an attempt to not only understand
the intricacies of music and the nuance of a musician’s technique, but to enrich
the emotive qualities of musical interaction and experiences—I. Arte di Interazione

Musicale (The Art of Musical Interaction).
1.2 On Human Interaction

Everyday human interaction relies on our ability to deduce emotion and intent
by simultaneously processing multiple channels of information from various
sensory modalities (e.g. hearing, sight, touch, smell, taste). In even the simplest
day-to-day interactions, our decisions and actions result from the evaluation of
our beliefs in non-verbal (e.g. facial expressions, body gestures) and verbal (e.g.
vocal tone/inflection, etc.) cues. A famous example that exploits this human
multimodal integration is the McGurk effect (McGurk and MacDonald 1976).
First published in 1976, the McGurk effect suggested the multimodal nature of

speech perception by demonstrating an experiment where participants were
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shown a video of an individual speaking one phoneme’, while the audio was
dubbed with another phoneme. Participants experienced a third intermediate
phoneme being spoken, and the experiment proved the interdependency
between hearing and vision in speech perception. Even when aware of the effect,
the participant’s perception often remained unchanged, further demonstrating

the potency of human multimodal integration.

human perception

visual /ga/

input modality

auditory /ba/

Figure 1: Example of the McGurk effect integrating /ga/ (visual) and /ba/ (auditory), results in
the perceived /da/

The McGurk effect can be illustrated by pairing the visual /ga/ with the
auditory /ba/; the viewer or listener often perceives the actual utterance as /da/.
This has been explained with various justifications. McGurk and MacDonald
believed that visible speech determines the perception of place of articulation
whereas the audible speech determines the perception of voicing. The Perceptual
Science Lab group at the University of California at Santa Cruz reasons the
human brain’s multimodal fusion mathematically using a fuzzy logic model of
perception (Figure 1). Using fuzzy degrees of support, each perceived output is
assigned a support value using multiplicative integration. In the example in
Figure 1, very much like = 0.9; somewhat like = 0.7; not much like = 0.3; and nothing
lifke = 0.1. One can see that /da/ would have almost twice as much support as

the other options. Support for ga = 0.9 * 0.3 = 0.27; support for ba =

2 Phonemes are the smallest segmental unit of sound used to form different utterances in
language.
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0.1+ 0.9 =0.09; support forda = 0.7 0.7 = 0.49 (Perceptual Science
Lab 2012).

The ability to process multimodal channels of information much like above
has become an essential part of human cognition, communication, and survival.
Humans and other living organisms also use multimodal integration to
compensate for one sense with another, when the environment places
constraints on a particular sense. For example, a person may rely more heavily on
their ears and sense of touch as they slowly navigate a dark room. If the lights
were on, they might rely more heavily on their sense of sight. This can be
thought of as a somewhat Bayesian approach, which says that a degree of belief
should rationally change when given new context or evidence (Bayes and Price
1763). This approach has been examined over the years in a number of
disciplines however to date it has been largely underexplored in physical musical-
computer interaction. Musical performance is rich in both physical and acoustic
relationships, thus this research reasons that multimodality can be highly
effective by offering the machine a more Bayesian vantage between the physical
and acoustical aspects of musical performance. This is supported by recent
applications of multimodal techniques in musical scenarios, and this research
shows some of the unique affordances and possibilities of multimodal musical
interaction. The remainder of this section describes the concept of multimodality
in further detail, its history as part of the greater human-computer interaction

field, and its relation to this research.
1.3 A Definition of Multimodality

In reviewing the published literature on multimodality (not only within music-
related research but also within HCI, the cognitive sciences, and other related
fields, see 2.1 for more history and related work) basic terms and concepts vary
in definition and scope. Thus, it is important to first clarify a few key concepts
and set up a taxonomy in which this research conforms. Firstly, a clarification of
basic terms is presented, in accord with the work and definitions of Laurence
Nigay and Joélle Coutaz, early HCI pioneers in multimodal interaction (Nigay
and Coutaz 1993):
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1. Modality: The type of communication channel used to express and
receive information, and to describe the interaction of communication.

2. Mode: The way/context in which the information is interpreted.

A modality defines the type of communication channel or data being
exchanged, and the mode describes the context in which the data is interpreted.
For example, the human auditory modality enables one to “hear”, while Bongers
and Veer say the mode (that is expressed or interpreted) can be symbolic (verbal
speech), iconic (non-speech), and expressive (non verbal, i.e. tone, etc.) (Bongers
and Veer 2007). Bongers elaborates that in fact, human communication tends to
use these modes at the same time, and that the modes are dependent on the
context in which they are used.

Thus, for a system to be multimodal, the system must support the capacity to
communicate with the user along these different (multi) channels (modalities and
modes) of information simultaneously. Particularly as is the interest of this
research, this is achieved by combining analysis of the acoustical output from an
instrument/petrformer (auditory modality), with mult-sensory information
obtained from various sensors measuring physical aspects of musical
performance.

Furthermore, there are at least two distinct agents involved in multimodal
interaction (the human and the machine), and multimodal interaction can be
further reduced into a human-centered view and a system centered view
(Schomaker et al. 1995). The human-centered view deals with perception and
communication channels while the system-centered view focuses on the modes
of computer input/output (Raisamo 1999). In general this research is in
accordance with (Schomaker et al. 1995) in that although physically separated, a
multimodal system is one that exchanges information through a number of
communication channels between both agents.

As this research is primarily concerned with multimodal human input (into
the system), for our purposes we define a unimodal system as a system that
makes use of only one input modality whereas a multimodal system makes use of

multiple input modalities. When making this distinction, it is important to note
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that although a unimodal system has only one input modality, it can very make

use of ‘n’ instances of a singular input modality (Figure 2).

input | mmmmmmmm e | mput | o __ |
. 'n' number . 'n' number

Unimodal N | Multimodal " |

Svstem of output ! A\ Svstem of output !

y modalities ¥ modalities

J

—fm e —— S ———

ontput ontput

Figure 2: Unimodal vs. Multimodal Musical Interfaces

To further illustrate this, imagine you would like to perform gesture analysis
on the performance of a dancer. One common approach in this type of scenario
is to use optical or vision based tracking methods. Setting up one camera in front
of the dance space might not be sufficient to capture the performance; perhaps
there are objects (scene/props) involved in the piece that might occlude the
dancer from the front of the space during certain movements, or the dancer
might go outside of the cameras field-of-view. One obvious solution would be to
position multiple cameras at different vantage points in the space, and to
combine the information captured from all cameras. This is a unimodal example
of having multiple input sources coming from a single input modality—and
while it may provide similar goals and benefit as true multimodal input,
fundamentally they are distinctly different approaches as we will see. By the
definition conformed to in this research, multimodal systems require multiple
(heterogeneous) communication channels between the agents.

It is also possible to have asymmetrical input and output modalities. This
simply means that the multimodal system is not constrained to being output in
the same modalities or communication channels of the input (and more generally
to the same number of information channels). In this way, multimodal systems
are also commonly feedback-based systems.

Additionally, two multimodal-related ideas that are elemental to this research
are concepts of complimentary modalities, and mmultimodal fusion. Oviatt says that the
“explicit goal [of multimodal interaction is] to integrate complementary
modalities in a manner that yields a synergistic blend such that each mode can be
capitalized upon and used to overcome weaknesses in the other mode” (Oviatt
2000). Lets take for a minute the example of the dancer described previously.

The vision-based tracking system might be well suited for tracking the location
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of the dancer within the space, as well as generalized movements and gesture,
however, affordable vision-tracking systems often exhibit less-than-ideal camera
resolution and frame rates (this is especially true in musical scenarios where
response times of less than 20ms are often desired). It could be useful to
compliment the system with other direct physical or biometric sensors. Although
the direct sensors might be better suited for capturing more precise physical
measurements (as they are intrinsically related directly to the body or biological
systems of the dancer), they may be insufficient in the higher-level performance
context, spatialization, and localization of the dancer. This scenario begins to
shed light on the power of complimentary modalities—the ability for disparate
modalities working together within a multimodal system to enable a broader

range of information to be obtained.

input data input data
Complimentary Multimodal
Modalities | ¥° Fusion
output ) \ output )

Figure 3: Overview diagram of Complementary Modalities vs. Multimodal Fusion

While Oviatt presents an interesting view of complimentary multimodality, it
is an important distinction from multimodal fusion. As in the McGurk effect
example described earlier, multimodal fusion is when information from separate
input modalities is combined into one final output. Similarly, Nigay and Coutaz
also describe this distinction (what they call “concurrent” vs. “synergistic”” uses
of modalities), as part of their design space for multimodal systems (Nigay and
Coutaz 1993). In their design space, they describe that fusion may also be
performed with or without weaning of the data streams. The distinction of “levels
of abstraction” in fusion (meaning/no meaning) is important to make, as the

actual implementation results in different fusion approaches, namely early and
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late-fusion. Eatly fusion (also called subsymbolic fusion) fuses data at the feature
level, and is typically suitable when there are strong (close) temporal bonds
between the input modalities (this is the primary technique used in 4.3, 4.4, and
5.4). Late fusion (also called symbolic fusion) fuses data at the semantic level
(after the feature data has been analyzed for meaning), and is typically suitable
when there are weak temporal bonds between the input modalities (although it
can also be useful when there are strong temporal relationships between
modalities, as will be seen in Chapter 6).

In real world scenarios, however, it is important to note that often the power
of multimodal systems emerges by exploiting both the possibilities of
complimentary modalities and multimodal fusion, often simultaneously,
depending on the desired outcomes. As such, this is one of the primary goals of
this work—to harness the potential of these two techniques on multimodal

musical input.

1.4 Overview

In order to examine multimodal musical interaction in this dissertation, it is
important to first understand what has already been explored. Chapter 2 presents
related work by other researchers in the field and is organized as follows. A brief
history of related work in HCI and musical multimodal systems is provided in
2.1, followed by a review of musical physical computing (that has informed this
work) in 2.2. In 2.3, related works in machine musicianship are presented, which
have directly influenced the data mining and metrics work used throughout this
research. Lastly, as a large portion of the work in this dissertation turns to
machine learning, a brief history of related machine learning in music is provided
in section 2.4.

The body of research contributions and experimental trials contained in this
dissertation are presented in Chapter 3 through Chapter 7. As illustrated in
Figure 4 the multimodal systems used throughout this research will first be
introduced (section 3.1). This includes descriptions of the instruments and

sensor systems employed in the research, as well as Nuance, the multimodal data
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recording software system custom created to support the research carried out in

this dissertation.

L'arte di Interazione Musicale:
New Musical Possibilities Through
Multimodal Techniques

v

Multimodal
Tools

Multimodal Recording
Framework

(Nuance)

Performer Drum-Stroke Multimodal Performance
Recognition Computing Onset Detection Metrics

Figure 4: Overview of Research

Chapter 4 through Chapter 7 investigates the possibilities of multimodal
musical interaction in a number of scenarios, which support a performer’s
musical practice, and creative processes. The individual research cases include
multimodal techniques for performer recognition (Chapter 4), drum-stroke
computing (Chapter 5), onset detection (Chapter 6), and performance metrics
tracking in musical learning environments (Chapter 7).

This research hopes to show that the “art of musical interaction”, today and
in the future, is a computer-mediated combination of effective musical practice,
and affective musical performance. To this end, the holistic goal of this research
is to investigate the role of multimodality in musical HCI. Specifically, this
research aims to show that multimodal approaches can in fact support a
musician’s craft, in terms of daily practice, analysis scenarios, and in the creative

processes.
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1.5 Summary of Contributions

The following list provides an overview of the multimodal contributions

presented in the dissertation, and is organized by order of appearance.

1. Nuance Software

a.

First cross-platform application specifically designed for
capturing multichannel, multimodal data streams in musical
scenarios.

Provides support for nearly any instrument, hyperinstrument,
and sensor system via serial, MIDI, Open-Sound-Control, and
audio channels.

Delivers sample-synchronous data capturing with high sampling
rates (up to 192kHz)

User-configurable with a drag-n-drop interface, designed to be
operated by researchers and musicians alike, without the need of

computer programming or patching.

2. Performer Recognition

a.

First research that quantitatively shows the significance of a
multimodal approach for performer recognition tasks over

previous audio-only based approaches.

b. Provides a test bed to experimentally look at the data and

C.

features extracted from the Esitar and snare drum performance
to support future investigations into performance metrics,
tracking, and musical pedagogy in the remainder of the
dissertation.

Can train the computer to recognize sitar and drum performers

from beginner to advanced skill levels.

3. Drum-stroke computing

a.

First work in automatic drum-hand recognition, which can be
used in many tasks ranging from performance metrics, to

automatic transcription, and rudiment recognition.
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b. Provides a multimodal look at drum performance metrics and
statistics, introducing multimodal features such as cross-modal
Onset Difference Time (ODT).

c. Uses multimodal surrogate data training to automatically label
training data in machine learning scenarios.

4. Multimodal Onset Detection

a. Novel algorithm for improving onset detection accuracy using
multimodal fusion.

b. Late-fusion technique is algorithm independent, meaning it can
be used with current (and future) onset detection functions.

5. Multimodal Performance Metrics and Musical Pedagogy

a. First focused investigation into the roles of multimodality for
musical practice and pedagogy scenarios.

b. Provides multimodal analysis into meaningful performance
metrics and statistics for practicing bowed string instrument
players, including tempo analysis, and bow articulation metrics.

c. Delivers first long-term performance study of bowed string

instrument performance using multimodal analysis.
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Related Work
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Chapter 2

Background and Motivation

The work in this dissertation combines concepts in multimodality, music related
physical computing, machine musicianship, and machine learning. As such, this
chapter begins by discussing related work in multimodality in 2.1. Multimodality
is presented both in its foundations in the greater field of human-computer
interaction, as well as in the field of Affective Computing, followed by eatly
examples of multimodal techniques in musical applications. In 2.2, a brief history
of music related physical computing is introduced, specifically focusing on
instruments and interfaces that influence this research. Finally, a general
overview of influential machine musicianship and machine learning research is
provided in sections 2.3 and 2.4 (respectively). While not exhaustive, this chapter
serves to provide an overview of related work (and areas) in which this research
draws upon or is inspired by, in its application of multimodal techniques to

musical interaction.
2.1 A Brief History of Multimodality and HCI

As human interaction is highly multimodal in nature, the perceptual and
cognitive sciences have explored multimodal theory and approaches’. As such,
related fields with computer driven mediums, such as HCI, have also adopted
multimodal approaches, and multimodality has now become an important aspect
of modern user experience and interaction design. Multimodality in HCI

emerged with Bolt’s “Put-That-There” voice and gesture system, developed at

3 This section does not go into depth regarding multimodality’s foundations in the cognitive
sciences. Dumas et. al. provide a good overview and historical context, specifically in cognitive
load theory, gestalt theory, and Baddeley's model of working memory in (Dumas, Lalanne, and
Opviatt 2009).

13
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the Architecture Machine Group at MIT in the early 1980’s. In this system, users
could issue commands for a large screen to display, by simultaneously pointing
and speaking. Pointing to a position on a large screen and saying “put a green
square there”, would fuse the location detected from a sensor measuring where
the users hand was pointed, with the recognition of the voice commands,
instructing the computer to create a green square at that particular location. This
was an early example showing the convergence of multiple modalities, and how
they can fuse to provide a natural interface with “increased precision in its power
to reference” (Bolt 1980). The point-and-speak method of multimodal
interaction set the tone for much of the subsequent multimodal HCI research,
such as the CUBRICON mouse-and-speech recognition system (Neal, J.G. and
Shapiro, S.C. 1991), and other notable early work such as a system that enabled
interacting with 2D and 3D maps by integrating speech, gaze, and hand gestures
(Koons, Sparrell, and Thorisson 1993). Generally speaking, Dix et al. concluded
in “Human-Computer Interaction” (first published in 1993), that multimodality

is an important aspect of HCI in that it enables

1. Increased bandwidth of interaction between the user and the computer,
and
2. Mote natural human-computer interaction (closer to everyday human-

human interaction),

while at the same time reducing the amount of overload which may occur on a
particular modality (e.g. visual) when a system and its behaviors become
increasingly complex (Dix et al. 2003).

In recent years, multimodal HCI has ventured outside the point-and-speech
paradigm that emerged from Bolt’s “Put-That-There” system, looking to other
modalities to further increase the bandwidth and richness of user interaction.
Other fields with strong connections to HCI have since also begun to investigate
multimodal integration, particularly Affective Computing, and also music and
interactive arts. In the following sections, additional historical references in the

aforementioned fields will be briefly discussed. For additional information on the
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history of multimodal HCI and other early examples of multimodal user

interfaces, please refer to (Raisamo 1999; Dumas, Lalanne, and Oviatt 2009).

2.1.1 DETECTING AFFECTIVE STATES

Multimodal theory and its application to human-computer interaction are also
deeply connected in the field of Affective Computing. Affective Computing, as
described by visionary pioneer Rosalind Picard, is “computing that relates to,
arises from, or deliberately influences [human] emotions.” Picard’s Affective
Computing Group at MIT Media Lab and other researchers in the field believe
that emotion plays an crucial role in the human experience; thus, affective
computing builds off the fundamental principle that everyday tasks such as
cognition, communication, decision-making, and learning, heavily rely on the
(human) ability to process multiple channels of affective information
simultaneously. In order to make human-computer interaction more meaningful,
affective computing explores the use of sensor-systems and technologies to
make computer systems more emotionally “intelligent”, or aware of its users.
Eatly research in affective computing has focused on unimodal analysis, for
example, detecting human emotional states using video-based motion capturing
systems (Asha Kapur et al. 2005). In recent years, however, the field has largely
moved towards multimodal signal processing for detecting affective states. In
“Multimodal Affect Recognition in Learning Environments”, Kapoor and Picard
present a framework for recognizing affective states while learning (Kapoor and
Picard 2005). The multimodal system designated in the research can detect
affective states by extracting non-verbal behaviors (features) from facial
expressions and postures. This is achieved using real-time face tracking and a
posture-sensing chair. Many other examples in affective computing exist are also
applying multimodal techniques. Busso et al. used decision and feature level
fusion (late-fusion and eatly-fusion) of motion capture (facial expressions) and
speech (acoustical) data to recognize four emotional states of a user (sadness,
anger, happiness, neutrality) (Busso et al. 2004). More recently, Kessous et al.

explored recognition of eight emotional states from ten participants, integrating
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multimodal data from facial expressions, body movement and gestures, and

speech (Kessous et al. 2010).

2.1.2 SELECTED EXAMPLES OF MULTIMODAIL MUSICAL SYSTEMS

While the above are examples from research showing the applications of
multimodality in the field of affective computing, multimodality has begun to
permeate musical research and performance. The Casa Paganini InfoMus Lab at
the University of Genova was established in 1984, and has long been interested
in human gesture recognition for musical and multimedia performance. As such
they have led many investigations in multimodal analysis for musical
performance; one example being a vision tracking and sensor-based performance
system used in the music theatre production Cronaca del Iuogo by Luciano Berio
(Berio 1999). The InfoMus Lab is also responsible for developing EyesWeb
(Camurri et al. 2007), a platform for research and applications in multimodal
analysis and gesture processing. Providing a patching environment where
multisensory inputs and gesture recognition blocks can be connected and
synchronized, EyesWeb has been used in many real-time performances and
research experiments. Additionally, features of EyesWeb motivated the
development of the Nuance system described in 3.2.

Hyperinstruments (discussed in in greater detail in section 2.2.2) are typically
multimodal in nature. One such hyperinstrument that has influenced many
aspects of this research is the Esitar (Ajay Kapur 2008). Using a variety of
sensors to measure various aspects of the performers technique and playing (e.g.
thumb pressure sensor, fret detection sensor, instrument tilt sensor), Kaput’s
work with the Esitar is an early musical example demonstrating the far-reaching
affordances of integrating multimodality and musical HCI. Motivating examples
which have inspired this research include transcription of multimodal
performance data for musical pedagogy (Ajay Kapur et al. 2007), late-fusion
tempo tracking for human-robot performance (Benning et al. 2007), among
others.

Another hyperinstrument that has influenced particular aspects of this

research is the Hyperbow (Young 2002). In addition to engaging with a violin (or
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cello) to produce its regular acoustic output, the Hyperbow streams multiple
channels of information to the computer from multiple modalities, making it
extremely expressive in both performance and data mining contexts. These
include various position measurements from the bow, as detailed in 2.2.2. The
sensing technologies can be used in a number of applications, from analyzing
player performance data, to controlling performance parameters and synthesis of
physical models in real-time.

In (Tanaka and Knapp 2002), a multimodal, multichannel musical control
system is implemented using Electromyogram (EMG) bio-signal sensing, and
relative position sensing (pictures in Figure 5). The authors describe the scenario
where an EMG on an individual’s bicep would report copious activity if the
individual were steadily holding a heavy weight, but not portraying active
movement to the audience. Because EMG sensing (which measures muscle
activity) may or may not reflect actual perceived muscle motion, a multimodal

approach integrating the EMG data with other motion sensing makes the system

more controllable, and expressive for the performer.

Figure 5: EMG biometric and gyro-based position controller (arm bands, headbands and base)
used in (Tanaka and Knapp 2002)

In this way, the authors intend position to serve as the primary musical
control, which is then further modified by the muscle-tension information

provided by the EMG (and vice-versa). The authors further warrant that due to



Chapter 2. Background and Motivation 18

the fact that both modalities can be multichannel, the system provides a highly
expressive, and fluid, multidimensional musical environment for performance.

Multimodal musical interfaces can also augment the performance space
(rather than the playable instrument directly). One example of this is the
Multimodal Music Stand (MMAMS) (Bell et al. 2007), which provides musicians an
untethered means of sensing continuous and discrete performance gestures for
real-time musical processing. Instead of creating a new interface or a
hyperinstrument for a musician to learn and perform, the MMMS enables hands
free augmentation for traditional electro-acoustic performance. This is realized
via a variety of capacitance sensors (sensing location in 3-dimensions), combined
with a microphone for incoming sound processing, and vision based tracking for
additional gesture recognition. Using multimodal fusion of all three modalities,
the accuracy of the MMMS gesture sensing is greatly increased, while
simultaneously providing complimentary steams of performance data. The idea
of creating systems that can multimodally augment traditional musical scenarios
(either by themselves or in combination) was one of the inspirations to create the
XXL system used throughout this research.

Other examples of music related multimodal research has appeared in recent
years, often extending multimodality out of the physical-space, and into the
symbolic. This is particular true in the field of Music Information Retrieval,
where multimodality has been applied to tasks such as genre classification. One
such example is in improving automatic genre classification systems using audio
(acoustic) features combined with social tags (Zhen and Xu 2010).

Another example is a system that combines audio features with song lyrics,
and visualizes the content using the self-organizing map metaphor. In this work,
users can navigate the musical material provided by the multimodal linking of the
audio library (Neumayer and Rauber 2008). Combing the two modalities (audio-
based features and symbolic lyrics) can lead to interesting outcomes, as both
modalities intrinsically provide different varieties of data. Whereas the audio
feature may provide information about the sonic qualities and content of the
music, the lyrics may relate more to the semantics of the content. Combining and
thinking about these channels in various ways can lead to interesting approaches

to musical navigation, appreciation, interaction, and experiences.
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2.1.3 SUMMARY

Multimodal HCI has shown promise in a variety of areas. As demonstrated by
systems presented as early as 1980, and other developments in related fields such
as affective computing, multimodal HCI can foster affective collaborations
between humans and computers. A large focus in the HCI community has been
in applying multimodality to every day computer interactions, as well as assistive
technologies; however, as exemplified in this section, multimodality has also
influenced musical interaction systems, performance, and analysis techniques.
This dissertation is primarily concerned with the latter, examining the design and
implementation of multimodal systems for capturing physical information from

musical performers, and the affordances and possibilities thereof.

2.2 A History of Related Physical Computing

Affording novel musical interactions through new
devices and sensor systems

Naturally the research presented requires new musical interface and sensor
systems to enable multimodal input, and so the following section provides a brief
history of related work in the realm of “Physical Computing” (O’Sullivan and
Igoe 2004). Physical Computing, a branch of HCI is a field that has significantly
influenced musical interactions in recent years, enabling expressive new modes
of interaction and sound sculpting to musicians and composers. This section
presents a general overview of hardware systems and techniques that are
influential to this research. Section 2.2.1 provides an overview of musical
interfaces that enable new modes of musical interaction, while not explicitly
augmenting acoustic instruments (although many draw influence in terms of
design, musical family, or playing technique). Contrastingly, an introduction to
hyperinstruments and other instruments that have been modified with sensor
systems can be found in section 2.2.2.

Musical physical computing is an extremely active field, as demonstrated by
the popularity of conferences such as the International Conference on New

Interfaces for Musical Expression (NIME), and developing communities such as
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Arduino®, CreateDigitalMusic’, and the Monome®’. As such it is out of the scope
of this dissertation to present an overview of the ever-expanding list of musical
interfaces and sensor systems currently being created. Rather, this section aims to
present a concise set of work that has significantly informed the goals and
considerations of this dissertation, specifically the enabling of multimodal

musical interaction.

2.2.1 NEW INTERFACES & CONTROLLERS: BUILDING ON AND

DIVERGING FROM EXISTING METAPHORS

Many musicians, technologists, and researchers have explored creating
completely new interfaces and controllers (often called NIMEs or new interfaces
for musical expression) in an attempt to enable new sonic engagements. One can
say that these interfaces and are new in the sense that they are built from the
ground up (as opposed to augmenting other traditional instruments). In terms of
interaction however, they can either provide completely new means of input
(diverging from existing metaphors), or build on top of existing metaphors
(input interactions). An early example of a “new interface” that made use of
existing musical metaphors is the percussion-based interface called the Radio
Baton (Mathews and Schloss 1989). Built at Bell Labs by Bob Boie, and further
improved by computer music pioneer Max Matthews, the Radio Baton measures
the individual capacitances between the tips of two batons, and five antennas
placed within a base-surface. The system is able to localize the batons in 3-
dimensions (providing x, y, and z dimensions of control). Similar to the Radio
Baton is the Buchla Lighting III', another baton-based digital interface which
also provides x, y, and z degrees of freedom, using infrared based optical
triangulation. Lastly, The Rhythm Tree (Paradiso 1999) is another example of an
interface utilizing common percussive striking techniques. One of the largest

electronic percussion instruments, the Rhythm Tree has over 300 drum pads,

4 http:/ /www.arduino.cc

5 http:/ /www.createdigitalmusic.com
¢ http://www.monome.otg

7 http:/ /buchla.com/lightning3.html
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sensitive to various kinds of striking (top, side, sharp, and dull), and is equipped

with LEDs providing visual feedback to the performer.

i
w

Head-
ones

Figure 6: Max Mathews and the Radio Baton (left) and the Buchla Lightning III (right)

All three of the examples provided (the Radio Baton, the Buchla Lightening
II, and the Rhythm Tree) are self-contained instruments (whether or not they
produce sound themselves, or send control signals to other sound producing
agents like a synthesizer or computer). With time they can be learned, composed
for, and performed. These three interfaces have been exemplified here not only
because they have been longstanding influential interfaces in the community, but
also because they build on top of existing musical [interaction| metaphors. The
benefit of building on top of traditional instrumental techniques is providing a
common access point for musicians and composers who have already spent
years learning a particular instrument and technique. The user input resembles
action paradigms that have been refined and proven effective over years. At the
same time, as demonstrated, they can afford new user engagements, both
sonically (as demonstrated by the added dimension of control in the baton
interfaces), and visually (visual feedback on the Rhythm Tree).

The idea of building on top of existing metaphors will be revisited again in a
discussion on hyperinstruments, and exemplified throughout the remainder of
the dissertation. However, diverging into completely new interactive domains
also poses great potential for new sonic exchanges. One example in particular
that has inspired certain aspects of this research is the work of Dutch composer,

inventor, and electronic musical instrument pioneer Michel Waisvisz. While at
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STEIM (the STudio for Electro Instrumental Music in Amsterdam, Netherlands)
Waisvisz created The Hands (Waisvisz 1985), a MIDI controller that converts
hand, finger and arm movements, and tilting gestures into musical gesture. The
use of gestural control is one that has been of great interest in recent years,
inspiring adaptive gestural systems in this research 3.1.4, and many other
examples in the greater NIME community. Other influential work includes early
non-contact based instruments such as the Theremin, created in the early 21
century by Russian inventor Léon Theremin (Glinsky 2000). While the in-air
playing technique of the Theremin is particularly hard to master, the Theremin is
one of the oldest examples of a radical electronic instrument which similarly to
acoustic instruments, can provide amazingly intricate and subtle musical
expressivities when mastered.

Thinking outside the typical sound-resonating box has led to the exploration
of various musical interactions including an emerging computing paradigm—
tabletop surface interaction. The Reactable (Jorda et al. 2005) is one such device
that uses an infrared vision-tracking system to track various objects (called
fiducials) and touch events on its surface. Much like the modular synthesizers of
the 1970’s, each object represents a separate module with the ability to interact
with other objects on the surface by manipulating its spatial location and rotation.
Some examples of object functions include sound generators (oscillators) and
audio modifiers (filters, sequencers, etc.). Another example of musical tabletop
surfaces which similarly convert the motion of the tracked objects and touch
events on the surface into musical gestures include the AudioPad (Patten, Recht,
and Ishii 2002). The (multi-user) interactions and visual feedback mechanisms
made possible by these large-scale tabletop surfaces can offer many unique

musical experiences, and have influenced this research in appendix A.4.

Figure 7: Collaborative music making on the Reactable (left), and Bricktable “Roots” (right)
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These examples are all influential to this research in a number of ways. In
particular, the question of building on top of or diverging from existing
performance metaphors and paradigms has greatly influenced the
implementations of the multimodal systems throughout this research. Examples
such as the Radio Baton inform this research by showing the affordances of
building on top of established interactions when designing new interfaces, while
adding completely new degrees of expressive musical freedoms such as in air
position sensing in 3 dimensions. Contrastingly, completely new interface
paradigms such as tabletop surfaces (tangible and multi-touch) enable completely
new modes of musical interactions, and encourage other interactions such as
collaborative music making. Others such as Waisvisz’s The Hands highlight how
the human body can be taken one step closer to the interface itself, and the
musical possibilities of controllers that enable highly physical, and gesticulated

performance.

2.2.2 HYPERINSTRUMENTS

Companions of the NIMEs discussed in the previous section are
Hyperinstruments (Machover and Chung 1989; Machover 1992)—instruments
designed with the goal of using technology to expand the possibilities of
traditional instrumentation. Commonly built upon traditional (or redesigned)
acoustic instruments, hyperinstruments are used extensively in this research, not
only to provide new channels of control for music parameters, but as windows
into performance data from human performance and gesture. The term
hyperinstrument was first coined by composer and inventor Tod Machover, of
the Hyperinstrument Group at MIT Media Lab. Hyperinstruments have been
embraced by a wide-range of notable performers and musicians, including Yo-
Yo Ma (hypercello), Prince, and many others. The following provides an
overview of the set of hyperinstruments in which this research draws upon.
Diana Young and the Hyperinstrument Group at the MIT Media Lab
developed the Hyperbow (Figure 8) to capture the intricate aspects of violin
bowing technique (Hyperviolin) from virtuosic players. Once captured, the

physical gesture data can be mapped to audio effects parameters to process the
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instrument’s sound, as well as to control real-time sound-synthesis and physical
models of the violin. The original Hyperbow work primarily focused on
providing information such as position of the player’s hand. However, Young
revisited the Hyperbow for her Masters and PhD theses at MIT Media Lab,
broadening the scope of the data capturing capabilities to include invaluable
information from all applied forces to the instrument by the player (articulation,
force, acceleration, changes in position, and changes in downward and lateral
movements) (Young 2007; Young 2002). This was achieved by augmenting an
electric violin (the RAAD violin designed by Richard Armin) with additional
sensors including strain gauges, accelerometers, a 6-degrees of freedom inertial
measurement unit, and an electromagnetic field measurement system for position.

Young’s work also investigates classification of six bowing techniques.

Figure 8: Final Hyperbow violin design by Diana Young

The Bowed-Sensor-Speaker-Array (BoSSA) (Trueman and Cook 2000) is an
amalgamation and extension of previous work by creators Dan Trueman and
Perry Cook. BoSSA combines the R-Bow hyperbow designed by Trueman and
Cook (providing motion data via a biaxial accelerometer and pressure data via a
force-sensing resistor) with sound-spatialization via a multidirectional 12-channel

speaker array embedded within a dodecahedron. Using the various sensor
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streams provided by the R-Bow, additional sensors on the violin itself (Trueman
and Cook 2000), and the 12-channel speaker array, BoSSA is a rich
hyperinstrument which not only provides interesting means of sound
manipulation beyond that of a traditional violin, but also concurrent sound-
diffusion, with the ability to simulate the directivity of many different
instruments.

Another influential hyperinstrument to this research is Curtis Bahn’s SBass. A
modified upright bass, Bahn’s sensor design was influenced by his signature
pizzicato playing, resulting in the decision to have various sensors on the bass
itself instead of focusing on the bow, like others designs (including Bahns own
Edilruba). While many of the hyperinstruments listed have focused primarily on
instruments from the western music tradition, together, Bahn and Ajay Kapur
have also explored hyperinstruments in non-western contexts, focusing on
North Indian Classical music (Ajay Kapur 2008). Kapur’s Esitar is used for
performer recognition in 4.3, and a description can be found in section 3.1.1.

Because hyperinstruments are typically traditional instruments (or
instrumental peripherals) modified with sensors, they can be played and
practiced as regular instruments—requiring little to no adjustments by the
performer. This allows musicians (even beginners) to easily engage with the
instrument, without having to become comfortable with an unfamiliar interface.
As the majority of this research is concerned with obtaining performance data
from traditional instruments, hyperinstrument are an essential element of this
research. They offer a nuanced vehicle to obtain performance data from
musicians, while enhancing traditional instruments with unparalleled means of
musical expressivity beyond their original designs. While hyperinstruments are
related to other NIMEs, particularly NIMEs that build on established
performance metaphors and techniques, both approaches (building on and
diverging from) can be appropriate depending on the task. Both approaches to
interface design possess great potentials for musical interaction. As this research
will show, both can benefit from and enable new musical interactions in the
practice room and performance space, by harnessing multimodal designs and

techniques.
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2.3 Towards Machine Musicianship

Can quantitative and qualitative tools give the
computer ears?

In his book Machine Musicianship (Rowe 2001), Associate Director of Music
Technology at New York University, Robert Rowe, details the idea that
computers must be programmed to recognize and reason about human musical
concepts. Just like humans, essential musicianship skills of listening, performance,
and composition are required if one wishes to engage with the computer in
(musically) meaningful ways. In doing so, it will be possible to create more useful
applications for composition, performance, and practice.

In this chapter, we will look at selected analysis and retrieval based methods
(many inspired by the work in the field of Music Information Retrieval, or MIR)
that inform the research carried out in this dissertation. These methods represent
higher-level features—algorithms that serve as descriptors in a musically
communicative sense. Examples of these higher-level features include note onset
(event) detection, pitch detection, melody extraction, key and chord recognition,
beat tracking, etc. The process of obtaining these musically minded higher level
features involves extracting various lower-level descriptors from a signal, which
may be related to “physical auditory models or to spectral models of sound, or
simply be mathematical quirks that happen to show some sort of promise as a
sound descriptor” (Collins 2010).

Section 2.3.1 focuses on selected state-of-the art research in determining
characteristics of rhythm from performers and section 2.3.2 focuses on pitch

detection and estimation techniques.

2.3.1 RHYTHM DETECTION

“Music is to a great extent an event-based phenomenon for both performer
and listener. We nod our heads or tap our feet to the rhythm of a
piece...without [rhythmic| change, there can be no musical meaning.” (Bello
¢t al. 2005)
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Whether tightly codified or free in structure, rhythm is a key aspect of musical
history, genre, and individual players’ unique style, technique, and proficiency. In
accord with Rowe’s idea of Machine Musicianship, a primary goal of this
research is to enable enhanced machine musicianship through multimodal
channels. Thus, having the computer understand the many facets of rhythm in
musical material is crucial to this research.

In many cases, making machines understand rhythm is really dealing with the
process of dividing a continuous signal (musical performance) into discrete and
musically significant events. Depending on the requirements of the task, there
are many different ways to go about mining the various characteristics of rhythm,
such as tempo tracking, meter tracking, beat deviation tracking, pattern
recognition, among others. Here, we will look at a few selected examples that
directly influence this research.

The first challenge in mining rhythm is accurately detecting when musical
events occur. Bello et al. describe the onset of a musical note as “a single instant
chosen to mark the temporally extended transient. In most cases, it will coincide
with the start of the transient, or the earliest time at which the transient can be
reliably detected.” (Bello et al. 2005) In Onset Detection Revisited (Dixon 2000),
Dr. Simon Dixon explores the use of spectral analysis to improve rhythm
detection in situations where the musical material lacks strong percussive
instruments.

Another challenge is not only detecting individual musical events in isolation,
but also how those events relate to one another in a musical sense. “Beat
tracking” is the process in which a machine determines locations of beats in
musical material. It is an innate part of human musical cognition, as
demonstrated by the tapping of a foot or the synchronization of musicians
performing together. In this way, beat tracking is extremely useful in assisting in
other lower level tasks, such as defining boundaries and the best way to segment
musical material for further feature extraction, like tempo, metric meter, etc.
BeatRoot is a system developed by Dixon to perform beat tracking and metrical
annotation of audio-based (recorded) and symbolic (MIDI) musical material
(Dixon, Simon 2007). BeatRoot builds upon fundamental techniques such as

onset detection, as discussed in (Dixon 2006; Dixon 2001).
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Researchers have also explored other means of rhythm detection. Examples
include Scheirer’s work in tempo and beat analysis using a small number of
bandpass filters and psychoacoustically inspired processing, to produce onset
trains which are fed into banks of comb-filters for tempo estimation (Scheirer
1998); and, Goto and Muraoka’s work on real-time rhythm tracking based on
chord-changes and higher level compositional structures (Goto and Muraoka
1999). The aforementioned tasks (onset detection and beat tracking) are
elemental in musical analysis, and are used throughout the research in this
dissertation. More in depth details on note onset detection can be found in

Chapter 6.

2.3.2 PI11TCH DETECTION

Pitch detection (often used to describe the estimation of a sound’s fundamental
frequency) is another important aspect of machine musicianship. Musical
applications of pitch detection are broad, from informing one about their
intonation, correcting out of tune vocals and instruments in recordings, or as an
expressive sound-processing tool’. While basic pitch detection is simple in theory
using techniques such as zero-crossing rate (the rate at which a signal changes
from negative to positive), these simple techniques prove unreliable in real-world
situations. This is attributed to a number of reasons, including the fact that even
basic signals can be highly complex waveforms (consisting of multiple sine waves
with varying periods), and that in many cases additional noise is present in the
signal. The aperiodicity of speech and music signals has led to a wide body of
interest and research into fundamental frequency (further referred to as F)
estimation.

Common methods of I, estimation utilize autocorrelation, an algorithm in
which a signal is cross-correlated against itself (compared to itself looking for
similarities), as a function of a time lag applied to one of the signals. In 1993,
Boersma introduced an autocorrelation-based algorithm for periodicity

estimation that proved to be considerably more accurate than traditional pitch-

8 Antares Auto-Tune (www.antarestech.com) & Melodyne (www.celemony.com)
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detection algorithms, even at low-registers where pitch detection algorithms tend
to have larger error rates (Boersma 1993). More recently, Alain de Cheveigné
from IRCAM presented an algorithm based on autocorrelation that offers many
interesting improvements (error rates up to three times lower than competing
algorithms) over traditional autocorrelation techniques in YIN, a Fundamental
Frequency Estimator for Speech and Music (De Cheveign’e and Kawahara 2002).
Additionally, Geoffroy Peeters has explored an approach for periodicity
estimation by combining both spectral and temporal representations (which also
make use of autocorrelation). This technique adequately estimates pitch and can
visualize signals with multiple pitch content, while reducing octave ambiguity
(errors) in pitch estimation. For a review on many different monophonic and
polyphonic pitch detection methods, please refer to (Cheveigné 20006).

Time and time again machine musicianship is at the core of musical HCI. It
is no surprise, as the aim of machine musicianship is to program the computer to
explicitly understand human musical concepts such as pitch, harmony, timbre,
intention, etc. As such, components of machine musicianship are present in
almost all areas of this research. Whereas traditional machine musicianship
approaches deduce musicalities by analyzing the acoustic signal of performances,
this research reasons that at the same time, it is important to extend machine
musicianship into the physical domain. In doing so, multimodal approaches are
proposed in which more nuanced channels of machine musicianship can be

established between the computer and human performers.

2.4 Music and Machine Learning

Teaching computers to learn complex musical
relationships

Machine learning is a science (stemming from “artificial intelligence”) in which
algorithms are composed to learn how to behave, without being explicitly
programmed to behave. It is teaching the computer to learn by experience, and
to infer the proper output by formulating ideas based on previous experiences.
In this way, machine learning can be thought of as emulating the ways in which

humans learn through every day encounters with the world. And when
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something in the world changes, people learn to adapt in their actions. This is
also true of machine learning algorithms—the ability for machine learning
algorithms to model complex relationships between data, and to refine or
optimize the model’s view in the light of new data.

The past decade has seen innumerable advancements as a result of machine
learning, from bioinformatics to robotics, gaming to computing. From speech
recognition to self-driving cars, machine learning is a field that is at the forefront
of modern innovation and industry. It is not surprising then that machine

learning has become increasingly relevant in answering today’s musical questions.

2.4.1 SUPERVISED LEARNING AND MODELING COMPLEX

RELATIONSHIPS IN MUSIC

Musical performance is rich in complex relationships in the physical, auditory,
and psychoacoustic domains. The way in which humans experience music is
through very complex interactions between the various physical, acoustical, and
affective properties and phenomena. As such, machine learning enables the
ability to model the complex relationships of high and low level musical features
(see 2.3 machine musicianship), unlocking a world of possibilities in musical
pedagogy, live performance, composition, and many other musical scenarios. A
brief primer on supervised machine learning and terminology is provided in
Appendix D.

Machine Learning has seen an explosion of interest in recent years,
particularly in the music information retrieval (MIR) community. For an
extensive review of the field please refer to (Orio 2006). The following section
details general trends and topics in the field, and how they relate to the
contributions of this research. Much of the musical focus of machine learning in
the field has been on music content retrieval, recommendation, and classification
tasks. An early example of this can be found in (Wold et al. 1996), but a review
of the field will show many more examples. Rather than recapitulate (Orio 2000),
this section will briefly mention a few active areas of machine learning in music.

One such active area is in automatic genre classification. Genre classification

attempts to label a piece of music with a music genre (tag), which can help in
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many tasks such as content browsing, organization, recommendation, etc. Many
approaches work on short time low-level and high-level features related to
rhythm, pitch, and timbre. An early example of this was proposed by Tzanetakis
and Cook in the classification of Classical, Country, Disco, Hip Hop, Jazz, Rock,
Blues, Reggae, Pop, and Metal genres in (G. Tzanetakis and Cook 2002). Many
other recent approaches have been proposed (Cataltepe, Yaslan, and Sonmez
2007; Seyerlehner and Schedl 2009), with some focusing on the difficult task of
automatic classification and browsing of musically similar sub-genres, such as
electronic music (Diakopoulos et al. 2009). Alternatives to traditional low-level
features have also been proposed, such as the use of explicit semantic analysis
(Aryafar and Shokoufandeh 2011); as well as other combinations of symbolic
data such as social tags (e.g. artist) (Zhen and Xu 2010), and lyrical content
(Mayer and Rauber 2011) to aid in classification.

Another active classification task that this research draws upon is in
recognition. One popular example that has gained considerable attention is in
bow stroke recognition of string players. This has been actively investigated in
the recent research of Diana Young, Fiebrink, and others (Young 2007; Fiebrink
2011; Rasamimanana, Flety, and Bevilacqua 2006; Peiper, Warden, and Garnett
2003). Other examples in gesture recognition have also been explored. Fiebrink
and collaborators have applied real-time gesture and feature extraction using a
tool called the Wekinator, for composition and performance in (Fiebrink 2011).
Brecht and Garnett, proposed work in recognizing beat patterns of a conductor
as early as 1995 (Brecht and Garnett 1995).

There are many other active areas where machine learning is being applied in
the domain of music. In recent years many approaches have been proposed for
automatic instrument identification, spanning acoustic instruments (Herrera,
Klapuri, and Davy 2006; Kitahara et al. 2007; Eggink and Brown 2003; Livshin
and Rodet 2004; Little and Pardo 2008) and even digital and synthesized
instruments (Somerville and Uitdenbogerd 2007). Dannenberg et al. proposed a
musical style classifier for interactive performance systems in (Dannenberg,
Thom, and Watson 1997). Automatic accompaniment systems have been
explored, for example, a system where a computer-driven orchestra learns from a

solo performer in (Raphael 2010). Other musical applications that are actively
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being researched include automatic playlist generation, musical fingerprinting,
automatic segmentation and transcription of music and instruments.
Recommendation systems have stirred great interest in recent years, and typically
use machine learning based on analysis of musical semantics and tags of a users
music collection (e.g. Cano, Koppenberger, and Wack 2005; Yoshii et al. 2000).
This research is particularly interested in the unique opportunities when
approaching musical machine learning from a multimodal perspective. To that
end, this research shows how multimodality can benefit machine learning tasks
such as performer recognition scenarios in Chapter 2, which further motivates a
multimodal approach for the other research presented in the dissertation. In
addition, multimodal machine learning is used for automatic drum stroke
recognition in 5.4, which can be useful in a number of scenarios such as
rudiment training and recognition, automatic transcription, and in live

performance.
2.5 Summary

Multimodal techniques have greatly influenced (and continue to influence) the
world of human-computer interaction. The field of affective computing has
made great efforts in adapting and establishing new multimodal techniques to
encourage more affective communication between humans and computers. As
demonstrated, this can lead to many interesting scenarios in HCI, from every day
interactions, to assistive technologies and learning. Because music itself
affectively engages both the performer and listener, multimodal techniques are a
natural extension of musical interaction. In fact, musical interaction normally
occurs across multiple modalities, including aspects in the physical, auditory, and
psychoacoustic domains. Thus, this chapter has provided examples of recent
work in multimodal musical interaction.

At the core of multimodal interaction is the physical input of the performer
(from multiple modalities). As such, this chapter also looked at “physical
computing” to investigate the ways in which musicians can input into the
computer. In relation to this research, physical computing is presented through

two approaches. These approaches either build on top of, or diverge from,
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existing performer interaction paradigms. Examples are provided which explore
these approaches both using novel performance interfaces or NIMEs, as well as
hyperinstruments.

Effective multimodal interaction however requires not only the ability for the
user to input data into the system, but also to enable the computer to understand
and reason meaningful musical qualities from human performance. As such this
chapter also introduced related fields and topics in machine musicianship and
machine learning. Machine musicianship attempts to program the computer to
explicitly understand musical traits and characteristics such as pitch, harmony,
rhythm, timbre, etc. By enabling the computer to deduce human musical
concepts, a world of possibilities opens up in musical HCIL.

This has been further investigated by recent applications of machine learning
in music. Using machine learning, the computer /larns to deduce complex
relationships between musical features and concepts. Popular topics and
examples were provided in this chapter in which machine learning is used in a
diverse set of musical tasks, from music recommendation and content browsing,
automatically labeling of music, bow stroke recognition, and other classification
scenarios such as genre and style classification.

In this chapter, an overview was provided of significant work in the
aforementioned fields. While the areas are related, they are often investigated
separately, or with loose relationships. It is the belief of this research however,
that it is through conscious exchanges between physical computing, machine
musicianship, and machine learning, that novel (multimodal) musical interactions
are possible. Thus, through the examples presented in this chapter, a foundation

emerges in which multimodal musical interaction can thrive.
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The Toolbox

Overview of the Multinsodal Instrmments and Sensor Systers Used in the
Researh

In pursuing this research a wide-range of multimodal instruments and sensor
systems have been custom designed. In doing so this research attempts to lay a
solid foundation from which multimodal musical interaction design can be
further investigated in the future. The musical universe is one that is immensely
complex, and the scope of this research cannot possibly reach all families of
instruments or musical contexts. However, it is a primary goal to explore the
affordances of multimodality in both western and non-western musical traditions,
and across a variety of instruments, from melodic to percussive. In the process,
practical design considerations for effective multimodal musical interaction
design have been identified, and are later discussed in section 8.3. Provided in
this section is an overview of the multimodal systems used throughout the

research, and which put these design principles to practice.
3.1 Instruments, Interfaces, and Sensor Systems

This section looks specifically at the various instruments and sensor systems that
have been used throughout the research. These systems range from custom built
hyperinstruments to auxiliary sensor systems, and have been used in a variety of
tasks investigating the role of multimodality for musical performance and

practice.

35
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3.1.1 ESITAR

The Esitar (Figure 9) is a multimodal hyperinstrument designed by Dr. Ajay
Kapur (Ajay Kapur 2008). Its unique sensor system is designed to capture the
performance actions of classical North Indian sitar technique. The Esitar
provides a fret-detection system implemented via a series-connected resistor
circuit. Essentially, when the performer plays a note, current flows through the
string and through every resistor between ground and the currently played fret,
resulting in a voltage drop (determined by the sum of the resistors in series up to
the played fret). While this provides a fairly robust measure of which fret was
played, because the sitar enables, and often requires, the performer to pull the

note up as much as a Major 6™ on any given fret, the Esitar typically fuses the

fret-detection data with real-time pitch detection for increased accuracy in pitch

tracking (Ajay Kapur et al. 2007).

Figure 9: Esitar sensor systems, close up of thumb sensor (left), and usb, standard audio jack,
knobs, buttons, and switches (right)

In addition to fret-detection, the Esitar employs a thumb-pressure sensor to
measure the amount of force applied by the player’s plucking hand. Traditional
sitar technique requires the player to place their right-hand in a specific location
on the neck of the instrument, and is elemental to proper playing technique of
the instrument. This is a prime example of how with careful design, a sensor can
become specifically embodied to represent elements of a particular instrument,
musical technique, and other performer attributes. In addition, a tri-axial

accelerometer is embedded into the headstock of the Esitar to measure the
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instrument’s angle and tilt. These sensors are combined with a series of switches,
buttons, and knobs, which enable the performer to engage in the musical
performance on many levels, including score following, event triggering, enabling
effect and signal processing, as well as algorithmic processes. Over one USB port,
the Esitar provides a high level of gestural control, while building off of existing
concepts of user interaction. The Esitar was used as part of the multimodal
performer recognition experiments found in 4.3 and has also influenced the

(research’s) established philosophies on multimodal design considerations.
3.1.2 EZITHER

The Ezither (Johnston and Kapur 2012) is a hyperinstrument designed and built
by collaborator Blake Johnston under the supervision of Ajay Kapur, Owen
Vallis, and the author. The Ezither (Figure 10) is a 10-string zither like
instrument that resembles other members of the citre family. The Ezither has a
force-sensing resistor placed either underneath or on the side of each bridge
(depending on the intended use), five buttons, and three potentiometers, that
send information back to the computer via USB MIDI. Additionally the Ezither
is played with a modified bow that connects directly to the instrument and sends
data from a triple-axis accelerometer to the computer as MIDI. The Ezither was
used for multimodal onset detection in Chapter 4, performance metrics tracking
of bowing technique in Chapter 7, and in the performance report presented in

appendix A.2.

Figure 10: Pictures of the Ezither hyperinstrument and bow
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3.1.3 ESULING

The Esuling (Figure 11) is a traditional Balinese ring flute (suling) that has been
retrofitted with a multimodal sensor system for real-time musical interaction and
data capturing (Erskine and Kapur 2011). The author co-advised the design and
build of the Esuling with Ajay Kapur, to create a highly flexible and capable
hyperinstrument. Near the air jet of the instrument is a microphone providing an
audio stream of the instrument’s output. A tri-axial accelerometer is also affixed
to the body of the instrument, converting the performer’s playing gesture into
real-time control signals. Attached ergonomically onto the shell of the instrument
are buttons that enable various performance tasks to be executed by the
performing musician, as well as a pressure (force-sensing resistor) sensor and
position sensor (linear soft-pot FSR). The Esuling is used in the performance

discussed in Appendix A.2.

Figure 11: Picture of the Esuling controller showing the two FSRs and buttons
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3.14 XXL

XXL (pronounced double-accel) is an all-purpose wireless accelerometer system
used to quickly capture gestural information from performers, instruments, or
anything else they can be attached to. XXL consists of two tri-axial
accelerometers that can be affixed to the desired object(s), and a wireless
communication system that transmits the accelerometer data to a receiver
module (connected to the computer via USB). This can be read directly in a
capturing system (e.g. Nuance, see section 3.2), or in any MIDI/OSC (Open
Sound Control) capable application via a serial-to-MIDI-and-OSC translator
application called XXI.Serial (Figure 12 right). XXLSerial provides a “map-
mode” function that bypasses data transmission, and enables individual MIDI or
OSC messages to be sent for easy parameter assignments. Additionally,
XXLSerial provides a calibration mode and sensitivity adjustment to customize
the response and feel to the user’s preference.

The transmitting device contains an Arduino Fio which samples the current
state of each accelerometer axis with 10-bit resolution (over two IDC ribbon
cables), and transmits each reading to a nearby computer over wireless XBee
(ZigBee) RF communication.

XXL is used for data collection during drum experiments in sections 4.4, 5.4,
5.5, and on a bow and dancer for gestural control in live performance in

appendices A.2 and A.3.

XXLSerial

MAPMODE  CALIBRATE

Figure 12: XXL sensor system (left) and screenshot of XXLSerial MIDI/OSC translator (right)
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3.2 Nuance: A Software Tool for Capturing Synchronous

Data Streams from Multimodal Musical Systems

The previous section discussed the various hardware systems used throughout
the research. In this section, the capabilities of a novel multimodal software
application called Nuance are presented. Nuance is a software application for
recording synchronous data streams from modern musical systems that involve
audio and gesture signals. The application currently supports recording data from
a number of input sources including real-time audio, and any instrument, musical
interface, or sensor system, which outputs serial, OSC, or MIDI. Nuance is
unique in that it is a highly customizable to the user and unknown musical
systems for music information retrieval (MIR), allowing virtually any multimodal
input sources to be recorded with minimal effort. Targeted toward musicians
working with MIR researchers, Nuance considerably minimizes the set-up and
running times of MIR data acquisition scenarios. Nuance attempts to eliminate
most of the software programming required to gather data from custom
multimodal systems, and provides an easy drag-and-drop user interface for

setting up, configuring, and recording synchronous multimodal data streams.

3.2.1 INTRODUCTION TO NUANCE

As described previously in related work, multimodal signal processing is a
fundamental aspect in every day human interaction. Humans process
information from a variety of senses to deduce meaning when engaging with
others (verbal communication, body language, etc.), or with their environment.
Humans and other living organisms can also compensate for one sense with
another, when the environment places constraints on a particular sense.

As such, processing information from a variety of channels is an emerging
area of research in computer and cognitive sciences; fields such as HCI and
affective computing have proven some of the benefits of multimodality for more
emotively aware interaction between humans and computers. As music is a
domain rich in information on many levels (from the score to the physical

attributes of a particular performance), researchers have begun to investigate
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applying multimodal techniques to musical analysis. While analyzing information
from both the acoustic output and the output from various sensors on
instruments, performers, and other kinds of systems is promising, there are many
challenges ahead, even for the simple task of acquiring the data.

Imagine a common scenario where a researcher is investigating some music
related problem. Whether the task is a classification problem, clustering, pattern
matching, query/tetrieval, musical perception and cognition problem, etc., all
tasks share the initial step of acquiring and preparing the data set. While this
point seems quite trivial, consider the following. Say the task is a performance
metrics problem and the data set is a collection of features extracted from
microphone recordings of a drummer. The researcher would like to perform a
similar experiment with a saxophonist. No problem, there are tools the
experimenter could easily use to record the audio, perform feature extraction,
and finally analysis. This scenario, however, becomes much more difficult when
the  experiment  involves custom  instruments,  interfaces, and
multimodal/multisensory input systems. Let’s say the drummer mentioned is
playing a drum modified with various sensors on the drumhead and stick, the
data of which is to be captured alongside the audio recording. Similarly, an
accelerometer and air-pressure sensor measures other characteristics of the
saxophone performance. Given the highly individualized nature of working with
different instruments and musical contexts, each problem requires a different
software tool to be written for acquiring the data set. Imagine being a recording
or live sound engineer and requiring a specific piece of hardware, or software
plug-in, to interface with each instrument being used in a performance. In this
section we describe a software tool called Nuance, which begins to address such
scenarios. Nuance aims to bring the task of gathering multimodal data sets for
MIR one step closer to the ease, usability, and productive workflow refined in
traditional Digital Audio Workstations (Duignan, Noble, and Biddle 2010).

The remainder of this section is as organized as follows. Section 3.2.2
describes the motivations behind Nuance, based on the shortcomings of other
available solutions. Section 3.2.3 describes the software architecture and
capabilities of Nuance, the program workflow is discussed in 3.2.4, and lastly

conclusions are discussed in section 3.2.5.
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3.2.2 BACKGROUND AND MOTIVATION

Before creating Nuance, a number of available software options were considered.
While not comprehensive, the tools discussed in this section were the most
ubiquitous tools that appeared to fit the required use cases. The main
requirement was to output synchronized recordings from a variety of input
sources including audio, MIDI, OSC, serial sensor interfaces, and
hyperinstruments. Figure 13 offers an input requirement comparison between
five of the available software and framework candidates studied.

The three candidates represented by fully dashed rectangles in Figure 13
(MARSYAS, ChucK, and the CREATE Signal Library or CSL) are popular
programming languages or frameworks that are capable of multimodal data
collection. Both MARSYAS (George Tzanetakis and Cook 1999) and ChucK
(Wang 2008), for example, have many features for performing data capturing,
analysis, machine learning, retrieval, and synthesis. While they are capable of
receiving audio, MIDI, and OSC input streams, they do not currently support
general purpose COM/Serial 1O. Serial communication is a significant factor as
many of the custom interfaces and sensor systems used in these types of
scenarios output serial messages. Another key factor in deciding not to use these
three candidates was that a major requirement was to use a tool that required
little to no programming to operate. With all three candidates, a custom
application would have to be written for each particular experimental setup, as
well as implementing a synchronization scheme from the ground up. We desired
an application that practicing musicians could run independently, and which
requires as little technical know-how and investment of time as possible. To do
so, the application would need to provide an easily navigable user interface

(GUD.
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Requirement
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Figure 13: Requirement comparison of other software and frameworks considered as of May 2012

CLAM (Amatriain, Arumi, and Garcia 2006) and EyesWeb XMI (Camurti et
al. 2007) (semi-dashed rectangles in Figure 13) are two frameworks that offer a
wide array of features and an interactive node-based patching environment.
CLAM includes a Data2Audio transformation module as well as a module to
export the audio stream to disk. EyesWeb supports all required input streams, as
well as providing support for additional input streams, like motion capture data.
Additionally EyesWeb XMI provides a configurable data synchronization
scheme. While both options seemed viable at first, they did not meet the
requirements in the following ways. Firstly CLAM does not support (to our
knowledge) OSC or serial input. Secondly we found that the node-based
patching environments of both CLAM and EyesWeb were powerful solutions
for configuring many complex scenarios and experimental systems. However, the
goal was to utilize a tool that focused solely on data capturing, which
unsupervised, could be easily configured and used by practicing musicians. In
our trials, having to patch and synchronize each instrumental setup individually
was found to be too labor intensive and a more tailored solution was desired.
Other common visual-based programming languages such as Max/MSP and
Pure Data are also capable of the desired tasks, and provide additional support
or accessing data from other inputs streams, but similarly required bespoke

software patching, synchronization, and configuration for each experiment.
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While the above tools all share the ability to capture data from various
sources, and some even provide additional machine learning capabilities under
one package, none fulfilled our requirements in dealing with the scenarios as
described in section 3.2.1.

The necessity for a highly adaptable multimodal data acquisition system is
growing as analysis tools continue to get better, and as multimodal strategies
become more reliable in solving MIR related problems (Benning et al. 2007;
Hochenbaum, Kapur, and Wright 2010; Hochenbaum and Kapur 2012; Ajay
Kapur et al. 2007; Tanaka and Knapp 2002). As previously stated, current
solutions require the time-consuming task of writing individualized programs or
patches for each instrument or sensor system. This is counter productive as
hyperinstruments continue to gain popularity, and as industry produces hybrid
digital instruments’. In this way, we aim Nuance towards the ultimate goal of
being a software solution that enables tapping into these types of instruments,
with the ease and usability achieved in the common audio-recording software
paradigm. We imagine that it is possible to work within an environment where
capturing multimodal musical data, whether during the sessions of an album
recording, or for MIR related research, is as easy as working with typical multi-

track audio recording software.

3.2.3 ARCHITECTURE AND IMPLEMENTATION

Nuance has been designed such that it can synchronize and record data from a
variety on inputs and modalities. This section provides an overview of the

Nuance recording system and its capabilities.

DESIGN OVERVIEW

As mentioned in section 3.2.2, the primary aim of Nuance was to develop a
recording application with a traditional DAW-like workflow. The software

should be intuitive to use by regular musicians, while providing a high degree of

9 E.g. Gibson HD.6X digital Les Paul Guitar, YouRock MIDI Electric Guitar, Rock Band 3
Stratocaster Pro, Fretlight Guitar



Chapter 3. The Toolbox 45

flexibility and support for a variety of heterogeneous input data streams. As such,

the following list provides an overview of the main software requirements:

e Support for a variety of input sources including audio, MIDI, OSC, and
serial sensor interfaces

e Minimal programming required (little to no programming or “patching”)
e The ability to save, load, and modify recording setups and sessions
e FHasily configurable user-interface
e Recording all data in .wav format for analysis
SYSTEM OVERVIEW

The general flow of the software system is detailed in Figure 14. A user provides
various multimodal input streams, which are recorded as audio files. By default,
all streams are recorded as 16-bit uncompressed .wav files, at a sample-rate of
44.1kHz. This can be adjusted in the program preferences panel, depending on
the requirements and capabilities of the uset’s system, up to 24-bit resolution,

and a 192kHz sample-rate.

SYNCHRONIZATION

Nuance implements a synchronization scheme driven by the computer audio
card’s sample-rate clock (Figure 14). Each sensor or input is responsible for
updating itself asynchronously at its own independent rate, and all data-streams
are read and recorded within a guaranteed synchronous and thread-safe audio
callback system. Whenever a new audio buffer'’is available, each recorder is
simultaneously notified to record its data. For an audio input, this simply means
writing its current block of audio. For serial, OSC, and MIDI data, the most
recent sample is copied into an array (of equal size as the audio-block) and
synchronously written to disk. This sample-and-hold and up-sampling of sensor
data happens at a much faster rate than common sensor systems supply new data,

and we have found it to be more than sufficient in terms of speed and resolution

for MIR applications. Other synchronization schemes are possible, and may be

10 Buffer-size is adjustable via the “preferences panel”



Chapter 3. The Toolbox 46

required in the future if additional data sources are added. Additionally, Nuance

has been written to support additional output formats (e.g. SDIF/GDIF") in the

future.
--Clock Signat '
SN T
Sensors -
o] S =
(serial) —--- Nuance -
=
""""""" g S P
------------- oo
Multimodal Input uncompressed .wav file (per
Streams input steram)
Figure 14: Overview of Nuance input synchronization and output scheme
MULTIMODAL INPUT

A primary concern with Nuance was to support heterogeneous input channels.
While the initial four supported input channels are audio, serial, OSC, and MIDI,
the Nuance codebase has been written with future extensions in mind. In the

following section we describe Nuance’s multimodal capabilities in greater detail.
AupIo

Mono audio recording is achieved in Nuance by adding an Audio Recorder track
to a Nuance session (Figure 15). Each Audio Recorder has the following
parameters: real-time waveform visualization, input channel selector, a gain slider,

and a record arm button.

11 Sound and Gesture Description Interchange Formats
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input 1 ¢+
1.00 Gain Audio Recorder

Figure 15: Audio Recorder object

SENSORS (SERIAL DATA)

As many projects in the community utlize Atmel/Arduino/PIC
microprocessors, supporting serial communication was a major design
consideration. For generalization purposes, Nuance currently supports serial

devices outputting data in the following serial format:

SensorStartMessage data (10-bit)

Figure 16: Serial Message Format

A typical use-case using an Arduino microcontroller with two force-sensing

resistors connected to analog inputs 0 and 1 might look something like Figure 17.

void loop() {

nt fsriValue = analogRead{d);
int fsr2Value = analogRead{1);

Serial.print{"fsri");
Serial.printin{fsriValue);
Serial.print("fsrp");
Serial.printIn{fsr2Value);
delay{10);

¥

Figure 17: Example Arduino serial out messages for two analog sensors

In this example, “fsr1” and “fsr2” would be the SensorStartMessages, which are
immediately appended by the data, and finally followed by a new line character
(via println). Nuance uses the new line character to delineate each serial message.
Once the serial messages are streaming in the correct format, the user must

provide an .xml file (Figure 18) to each sensor recorder object. The .xml file
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outlines the expected sensor start messages (“start”), paired with a human-
readable name (“ID”) to appear in the Sensor Recorder’s input selector. A built
in message configuration panel is being considered for a future release, enabling
start messages (and paired human-readable names) to be defined and
automatically available to all sensor recorders without having to load an .xml file.
The serial-protocol currently implemented was designed for simplicity; however,
other more optimized protocols are being considered in the future. For serial-
based interfaces that cannot conform to the supported protocol format however,

it is still possible to capture data via the OSC and MIDI recorder objects.

<TEST_PROTOCOL>

<DATA>
<ITEM ID= 1" start= />
<ITEM ID= 2" start= 2%/>
</DATA>

</TEST_PROTOCOL>

Figure 18: Example .xml configuration

Each Sensor Recorder has the following parameters: XML-Protocol loading
button, record arm button, serial-device selector (which connected serial-device
to acquire data from), input range for automatically normalizing incoming data,

and a real-time slider to visualize incoming sensor data.

OPEN SOUND CONTROL

Open Sound Control (OSC) is a versatile communication channel that allows
data to be streamed via external sources. The OSC Recorder greatly extends the
capabilities of Nuance, making it possible to record data streaming from other
applications on the host machine, and from applications and sensor systems
connected to networked or remote computers. Additionally, the OSC recorder
provides the ability to record sensor-systems or hyperinstruments that do not or
cannot follow the generic serial protocol (via a serial-to-OSC middleware).
Example external sources can be anything such as iPhones and mobile
devices, vision tracking and analysis systems, real-time feature extractors, and

other derived-data outputs. OSC support allows Nuance to support nearly any
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input modality or source natively, while keeping its feature set focused solely on
the task of providing high-quality, intuitive multimodal recording. Figure 19
shows the GUI elements associated with Sensor, OSC, and MIDI recorder

objects.

nanoKONTROL SLI...

usbserial-A600elGp }#4
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1024 |

Figure 19: Sensor (serial), OSC and MIDI Recorders
MIDI

The MIDI Recorder enables data from any native MIDI device to be captured in
Nuance. Each MIDI recorder can be configured to listen to individual MIDI
note or control change (CC) messages from specific devices, including MIDI-
over-network and IAC (InterApplication Control) Bus connections. As all data
in Nuance is treated as a continuous stream, when recording MIDI note
messages, Nuance does not differentiate between note-on and note-off messages.
During analysis however, the rising and falling edges where values transition
between zero and the value can be interpreted as note-on and note-off events
locations. In the future, when Nuance supports additional output schemes (such
as SDIF/GDIF), note-on and note-off events will be preserved in their normal

form.
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Figure 20: Nuance session main editor panel screenshot

3.2.4 WORKFLOW

A typical use scenario begins with a new empty session. Sessions can be thought
of as project files, or serializable experiment configurations. Figure 20 shows an
example Nuance session including several multimodal data-streams. Most of the
user-interaction happens in the session editor panel. Right clicking anywhere in
the panel brings up a contextual menu that enables various functions to be
performed. These functions include adding recorder objects, unlocking the
editor panel to resize and position recorder objects, and saving/reloading
sessions. Once a session has been configured, it can be saved for reuse at a later
time. Modifications to the session can be made any time during the process and
re-saved for future use. A built-in metronome and count-in can also be enabled
from the main transport bar, for experimental setups with tightly controlled
timing requirements. Lastly, a bar/beat counter is provided to give feedback to

the user about how long they have been recording.
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3.2.5 SUMMARY

This section described Nuance, a software tool for recording synchronous
multimodal data streams. Nuance currently supports high-resolution audio input,
as well as input from nearly any musical instrument or sensor system via serial,
OSC, and MIDI protocols. Nuance is different than other solutions in that it is a
no patching, near-codeless application. Nuance has been designed to be operated
by musicians and researchers alike, and has already been used in many real-world
scenarios including performer recognition, drum-stroke identification, and
performance metrics tracking as demonstrated in the remainder of this
dissertation. We look forward to a future where capturing multimodal data
streams are integrated into the general workflow of practicing, composing, and
performing musicians and composers. Working with multimodal musical
instruments enables many unique artistic possibilities, from directly manipulating
sound parameters, to extracting higher level features and using them as control
parameters. There currently exists just a small list of generalized tools which
begin to facilitate these interactions outside of the research laboratory (Fiebrink
2011), and we hope for Nuance to help guide the way in making this accessible
to today’s musicians and composers. With this in mind, we have written the core
of Nuance such that it would remain unchanged in the future if we were to
author a cross-platform version in VST/Audio Unit/AAX plug-in formats. Not
only can Nuance increase productivity in MIR scenarios, but we hope it points to
and establishes a foundation for other future musical endeavors, in the MIR-

laboratory, the studio, and the musical classroom.






Chapter 4

Performer Recognition

Can multimodal fusion make the computer
understand a human performer?

4.1 Background and Motivation

If one considers music as a temporal evolution of events, occurring within
various notions of tonality/atonality, form, harmony/inharmonicity, timbre-
space, (pseudo) random and other algorithmic processes, social contexts, etc.,
music is given function, meaning, or interpretation, when placed within the
intent of the composer and performer(s). In turn, this is perceived by the listener
when observing a performance (live or recorded), whether on an analytic or
purely affective level. Similarly to the ways humans connect on these levels with
a plece of music, this research imagines establishing a deeper understanding
between musicians and computers through a new multimodal language. In this
multimodal dialogue, the computer receives multiple channels of information
from the performer and interprets these data to derive meaningful information
and communication between the two agents (musician and computer). It is
important for the computer first to understand who is the performer, in order to
tailor a specific and meaningful interaction. Thus, the musician recognition
framework described in this chapter aims to (1) establish a foundational
multimodal language that fosters future interactive and educational experiences
between musicians and computers, and (2) begins to investigate features or
stylistic signifiers between multiple performers’ interpretations of musical
material.

The common approach to performer recognition uses audio-based

techniques to identify characteristics from a recording (Ramirez et al. 2008;
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Ramirez et al. 2007; Stamatatos, Efstathios and Widmer, Gerhard 2005;
Stamatatos, Efstathios 2002; Stamatatos and Widmer 2002; Stamatatos 20071;
Widmer 2001). Stamatatos and Widmer explored this approach to quantify
aspects of multiple players’ performance “styles” and classify/identify
performers using stylistic subtleties (Stamatatos, Efstathios and Widmer,
Gerhard 2005). Their use of simple audio-based classifiers to distinguish among
a small set of highly trained and stylistically polished players inspired our
approach for data capturing.

The approach of this research instead is multimodal in nature, combining
audio with data from sensors capturing aspects of a performer’s physical
performance. Past research on other tasks in the field of Music Information
Retrieval produced higher success rates through the use of multimodal
instruments as compared to traditional audio-only approaches, while still
maintaining transparency between user and instrument. An abundance of
musical information resides not only in the sound produced, but also within the
performer’s physical interaction with the instrument, and this research shows
that this physical information is beneficial to the difficult task of player
identification.

Two different instruments were used to test a multimodal approach. First, a
modified North Indian sitar was used as it is an extraordinarily difficult
instrument to master, and requires very specific and demanding techniques for
both the musician’s left and right playing hands. Additionally, the instrument is
rich in subtle expressivities and allows each musician to develop an individual
“style” of playing, adding individualized variability to the sitarist’s technique. This
makes the sitar a great candidate for an empirical study of a particular player’s
technique, because the musical literature and tradition ask for specific physical
actions to be performed by the musician, while the musician develops individual
characteristics of his/her own.

Secondly data was collected from ten drummers playing rudiments on a snare
drum to extend the task across both plucked string and percussion families of
instruments. Drummers also develop strong rhythmical personalities and groove,

which could possibly be significant identifiers exposed by multimodal analysis.
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4.2  Process

This section provides an overview of the various tools and methodologies used
in the experiments. For sitar performer recognition, this included the Esitar
hyperinstrument, as well as an early prototype of Nuance codenamed
SuperRecorder for capturing synchronous audio and sensor data. For the drum
experiments, this consisted of drummers playing a regular snare drum while
wearing gloves housing the XXL gesture system described in section 3.1.4.
Figure 21 shows a general overview of the data capturing scenario.
Performers play a modified instrument (in this research this is either a sitar as
pictured or a snare drum while wearing specialized gloves) and a computer
captures the audio output and sensor data. The computer then extracts features
from the performance and stores them in a feature vector that is used to train a

machine-learning algorithm for player classification/recognition.

Data Collection
2 Audio ) |—=>
:> Sensor % ,:{>

Machine

=>
:> Learning

Features

*Computer communicates back to each individual player

Figure 21: Overview of the performer recognition system (only sitar shown in figure)

The remainder of this chapter is divided into two sections. In section 4.3 sitar
performer recognition is discussed, followed by drum performer recognition in

4.4,
4.3 Sitar Performer Recognition

This section explores the task of performer recognition specifically for sitar
players. The remainder of this section is as follows. The different musical
material (data sets) gathered for the sitar performer recognition experiments is
described in 4.3.1. In 4.3.2 we describe the various features extracted from the

data sets, and an overview of specific windowing and classification details are
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provided in sections 4.3.3 and 4.3.4 respectively. Finally, results and findings are

discussed in section 4.3.5.

43,1 DATA COLLECTION

Using the system described in the overview, a group of five sitar performers
(beginner, intermediate, and expert) were recorded. Each player performed three
sitar performance data sets, ranging along a continuum from strictly codified
material to improvis