Population genetics of the teleost orange roughy,

Hoplostethus atlanticus, and insights into their

 visual adaptations to the deep-sea environmentBy

Andrea Isabel Varela Nayar

A thesis
submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Conservation Biology

Victoria
 UNIVERSITY OF WELLINGTON
 Te Whare Wänanga
 o te UIpoko o te Ika a Māui

Victoria University of Wellington
Te Whare Wānanga o te Ūpoko o te Ika a Māui

This thesis was conducted under the supervision of:

Dr. Peter A. Ritchie (Primary Supervisor)
 Victoria University of Wellington
 Wellington, New Zealand

and

Dr. Peter J. Smith (Secondary Supervisor)
Museum Victoria
Melbourne, Australia

Abstract

The orange roughy, Hoplostethus atlanticus, has been one of the main targeted species in deep-sea fisheries worldwide. It occurs at depths of $450-1800 \mathrm{~m}$ and is abundant off the coasts of New Zealand, Australia, Namibia, Chile, and in the Northeast Atlantic Ocean. Like many other deep-sea fishes, orange roughy is vulnerable to over exploitation because they grow slow reaching maturity at about 30 years and live for more than 100 years. Their fecundity is low, which means they have low productivity. The individuals form predictable and dense spawning aggregations close to seamounts, plateaus and canyons. The trawl fishery for orange roughy started in seamounts around New Zealand in the late 1970s and progressively expanded off the coast of other countries and to the high seas (out of any Economic Exclusive Zone). Most stocks have been fished down to or below 30% pre-exploitation levels; as a consequence, fisheries have been closed or catches largely reduced. Currently, the only large scale fisheries operate off New Zealand.

For effective fisheries management it is essential to define real biological units or "stocks". There has been considerable research into the levels of population differentiation of orange roughy using a range of techniques at different geographic scales to attempt to differentiated stocks. However, there is no consensus about the level of connectivity among populations. In the present study, I investigated the levels of population differentiation in orange roughy using two types of neutral molecular markers at a global and fine-scales. Both markers revealed high levels of genetic diversity which is likely related with historically large population sizes. The analyses of 546 cytochrome c oxidase subunit I (COI) sequences revealed a lack of global genetic differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation was found between the Southern hemisphere sites and two Northeast Atlantic sites. Mismatch distribution and Bayesian analyses indicated the occurrence of expansion events in orange roughy during the Pleistocene period. A data set of nine microsatellite DNA loci genotyped from 812 individuals, showed a predominant lack of significant genetic differentiation across the Tasman Sea and at a fine-scale around New Zealand. At a global scale, differentiation was low but significant across the Southern hemisphere; and the highest values of differentiation were detected between the Southern hemisphere sites and the Northeast

Atlantic Ocean. The predominant lack of differentiation at the regional and fine-scale and the low differentiation within the Southern hemisphere is probably the result of stepping-stone dispersal of long-lived adults that are able to spawn many times in their life.

Most orange roughy studies have been oriented to fisheries aspects, but other kind of studies as the genetic divergence and phylogenetic relationships among Hoplostethus species are lacking. Using available COI sequences, I conducted a phylogenetic study including H. atlanticus, H. crassispinus, H. gigas, H. japonicus H. latus, and H. mediterraneus. As expected, the inter species divergence was much higher than the intra species divergence. Phylogenetics analyses showed that H. latus, H. crassispinus, H. japonicus, and H. mediterraneus form a separate clade from H. atlanticus and H. gigas. The position of H. gigas was not well defined with the nucleotide data. However, at the amino acid level, non-synonymous substitutions differentiated H. atlanticus from all the other species. This was correlated with morphological characteristics presented elsewhere.

A candidate gene approach was attemped using the rhodopsin gene; however, there was almost no variation among partial sequences of individuals from distant sites. Instead, this gene was used to investigate the molecular basis for visual adaptations in orange roughy to the bathypelagic light environment. It is known that certain amino acid replacements in the rhodopsin gene of vertebrates shift the $\lambda_{\max }$ value of the pigment to perceive different light conditions. To compare and identify critical amino acid sites that are known to be involved in spectral tuning, I obtained partial rhodopsin sequences of other 18 marine teleost habiting at different depths ($1-1,175 \mathrm{~m}$) and, thus, different light environments. A phylogenetic analysis was conducted to determine whether particular rhodopsin gene sequences correlate with the depths occupied by the species. I identified four critical amino acid replacements that have been involved in the spectral tuning of rod pigments. Orange roughy presented the same amino acid combination at two critical sites already reported for the deep-sea congener silver roughy, which was not found in any of the other species. This likely reflects an adaptation to the light available (i.e. bioluminescence) in the bathypelagic environment. The phylogeny was weakly related to the maximum depth of the species, probably because there are selectively neutral (i.e. inherited by ancestry) and non-neutral changes (i.e. influenced by natual selection) among the rhodopsin sequences of the species being considered.

Acknowledgements

I most thank to my primary supervisor Dr. Peter Ritchie who welcomed me to come to New Zealand to conduct my PhD studies under his guidance. I am grateful for his support and help over all the development of this project and for his positive feedback and advice. I am also deeply grateful for the support and feedback of my secondary supervisor Dr. Peter Smith. His expertise in marine fish genetics was an invaluable input for the study of genetic structure in orange roughy.

I would like to thank to Milan Barbarich and Khush Mistry from Anton's Seafoods Ltd, and Jim Fitzgerald from Sanford Ltd for their financial support and assisting with sample collection in Northern New Zealand. I express my gratitude to Dave Banks and the New Zealand Seafood Industry Council Ltd. for their assistance and help during the first stage of this project. Also to Kris Ramm, Ministry of Fisheries Observer, for collection of samples in Northern New Zealand. I am most grateful for all the persons and institutions that made possible to extent this study across the Southern hemisphere and to the Northeast Atlantic Ocean resulting in a valuable global-scale study. Dr. Peter Smith and NIWA (National Institute of Water and Atmospheric Research, New Zealand) gave all the facilities to obtain samples from around central and southern New Zealand, South Australia and from Namibia that were from a frozen tissue collection held at NIWA. I thank to Edwin Niklitschek, Universidad Austral de Chile for samples from the Juan Fernández Archipelago, Chile; and to Jamie Coughlan, University College Cork, Ireland and Sergio Stefanni, University of the Azores, Portugal who provided samples from the Northeast Atlantic Ocean.

Thanks to all former and current persons in Peter's lab group that I have luckily met. I especially thank Elizabeth Hegg, Sebastien Rioux Paquette and Monica Gruber for their help in laboratory stuff and analyses at the beginning of my PhD. Sebastien was of most help in my introduction to the microsatellite DNA world. Many thanks to the lab partners who let me used some of their fish samples to develop the comparative rhodopsin gene study, to Hayden (who provided most of the samples), Heather, Sebastien, Jack, Henry, David and Brenton.

CONICYT (Comisión Nacional de Investigación Científíca y Tecnológica, Gobierno de Chile) and Victoria University of Wellington (VUW) Scholarships made possible to carry out my PhD studies in Wellington. Thanks also to Faculty Strategic Research Grants (VUW) and to the First Overseas Conference Travel Fund (New Zealand Marine Sciences Society), for their financial support to attend and present my PhD project in the Australian Society for Fish Biology Conference 2011, Australia.

This journey would not been possible without the company of my husband Sergio. His love, partnership and support have made this time in New Zealand a great and unforgettable experience. His dedication to marine sciences and the constant day by day sharing of difficulties and achievements were a great motivation and help to develop my project.

I also thanks to all my office mates with whom I have shared space and experiences during the past four years; particularly to Roz for being such a nice, easy-going and supportive person. Thanks to the big group of Chilean (and other Latin Americans!) friends for all the friendship, help and for make this a unique experience. To Daniela, Ursula, Sebastián, Erasmo, Alejandro, Enrique, Alejandra, Benjamín, Marcela, Cristian, Marisol, Gelant, Mariana, Mauro, Fernanda, and Alfonso.

Last but not less, my most lovely thanks goes to mum Aileen and to my sister and brothers Claudia, Pepe and Carlitos. Their infinitive support and love have been fundamentals pillars to be here and to live this experience far from them.

Publications from this Thesis ${ }^{1}$

Published Articles

Varela AI, Ritchie PA, Smith PJ (2012) Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences. Marine Biology 159:1049-1060.

Author contribution: AI Varela, PA Ritchie and PJ Smith developed the theoretical framework of the project. AI Varela conducted the laboratory work, analyzed the data and wrote the manuscript. PA Ritchie and PJ Smith gave comments and edited the manuscript.

Varela AI, Ritchie PA, Smith PJ (2013) Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fisheries Research 140:83-90

Author contribution: AI Varela, PA Ritchie and PJ Smith developed the theoretical framework of the project. AI Varela conducted the laboratory work, analyzed the data and wrote the manuscript. PA Ritchie and PJ Smith gave comments and edited the manuscript.

[^0]
Article in Preparation

Varela AI, Ritchie PA, Smith PJ (In Preparation) Critical amino acid replacements in the rhodopsin gene of the deep-sea teleost orange roughy (Hoplostethus atlanticus): comparison with other teleost species occupying different light environments. Intended for submission to New Zealand Journal of Marine and Freshwater Research

Author contribution: AI Varela and PA Ritchie developed the theoretical framework of the project. AI Varela conducted the laboratory work, analyzed the data and wrote the manuscript. PA Ritchie and PJ Smith gave comments and edited the manuscript.

Table of Contents

Abstract i
Acknowledgements iii
Publications from this Thesis v
List of Figures vii
List of Tables viii
Chapter 1 General Introduction 1
1.1 Biology and distribution of orange roughy 2
1.2 Deep-sea fisheries 3
1.3 Fisheries management and population genetics 4
1.4 Population differentiation studies in orange roughy 6
1.5 Deep-sea environment and visual adaptations 8
1.6 Demographic history and DNA sequence analyses 9
1.7 The aims and structure of this thesis 10
Chapter 2 Low levels of global genetic differentiation and population expansion in the deep-seateleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences11
2.1 Abstract 11
2.2 Introduction 12
2.3 Materials and methods 14
2.3.1 Sampling and DNA extractions 14
2.3.2 PCR amplification, sequencing and alignment 16
2.3.3 Data analyses 17
2.4 Results 18
2.4.1 Genetic diversity and population structure 18
2.4.2 Demographic history 24
2.5 Discussion 28
2.5.1 Genetic diversity and structure 28
2.5.2 Implications for fisheries management in New Zealand 30
2.5.3 Demographic history 31
2.6 Conclusion 32
Chapter 3 Global and fine-scale population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) 33
3.1 Abstract 33
3.2 Introduction 34
3.3 Materials and methods 36
3.3.1 Sampling and DNA extraction 36
3.3.2 PCR and genotyping 38
3.3.3 Data analyses 38
3.4 Results 41
3.4.1 Spatial analyses 41
3.4.2 Temporal analyses. 49
3.5 Discussion 52
3.5.1 Microsatellite DNA diversity 52
3.5.2 Global scale population structure 52
3.5.3 Fine-scale population structure and implications for fisheries management in New Zealand 54
3.6 Conclusion 56
Chapter 4 Genetic divergence and phylogenetic relationships of six species of the genus Hoplostethus based on Cytochrome c Oxidase I (COI) sequences 57
4.1 Abstract 57
4.2 Introduction 58
4.3 Materials and methods 61
4.3.1 Data collection. 61
4.3.2 DNA sequence analyses 62
4.4 Results 62
4.4.1 Genetic divergence 62
4.4.2 Phylogenetic relationships. 63
4.5 Discussion 67
4.5.1 Genetic divergence 67
4.5.2 Phylogenetic relationships 68
4.6 Conclusions 69
Chapter 5 Critical amino acid replacements in the rhodopsin gene of the deep-sea teleost orangeroughy (Hoplostethus atlanticus): comparison with other teleost species occupying differentlight environments71
5.1 Abstract 71
5.2 Introduction. 72
5.3 Materials and methods 74
5.3.1 Sampling and DNA extractions 74
5.3.2 PCR amplification, sequencing and alignment 76
5.3.3 Data analyses 76
5.4 Results 78
5.5 Discussion 84
5.6 Conclusion 86
Chapter 6 General Discussion 87
6.1 Genetic diversity in orange roughy 87
6.2 Population structure in orange roughy 87
6.3 Implications for fisheries management in New Zealand 91
6.4 Demographic history of orange roughy 92
6.5 Genetic divergence and phylogenetic relationships of Hoplostethus spp 95
6.6 Visual adaptations of orange roughy to the bathypelagic light environment 95
6.7 Concluding remarks and future research 97
References 99
Appendix A COI haplotype frequencies in each sampling site 119
Appendix B Cyt b haplotype frequencies in each area 122
Appendix C Genotypes of each individual for the spatial analyses 123
Appendix D Genotypes of each individual for eight sampling sites from the ORH1 area sampled in a second season 135
Appendix E Genetic statistics for each microsatellite DNA locus in all sampling sites 139
Appendix F Cover page of articles published in Marine Biology (Chapter 2) and in Fisheries Research (Chapter 3) 143

List of Figures

Fig. 2.1 Map showing the sampling sites surveyed for orange roughy using Cytochome c
Oxidase I (COI) sequences ... 1515
Fig. 2.2 Haplotype genealogy from Maximum Likelihood (ML) tree of the COI sequences performed in the software Haploviewer 23
Fig. 2.3 Mismatch distribution graphic of the COI sequences 25
Fig. 2.4 Bayesian skyline plot of the COI sequences 27
Fig. 3.1 Map showing the sampling sites surveyed for orange roughy using microsatellite DNA loci. 37
Fig. 3.2 Plot of the first two principal components axes of microsatellite DNA variation 46
Fig. 3.3 Graphic obtained from STRUCTURE HARVESTER indicating the best numbers of K groups from STRUCTURE analyses 47
Fig. 3.4 Population structure plot inferred by STRUCTURE 48
Fig. 4.1 Kimura 2-Parameter distance neighbour-joining phylogram of COI sequences from six Hoplostethus species and representatives from other three genera 64
Fig. 4.2 Maximum Likelihood phylogram of COI sequences from six Hoplostethus species and representatives from other three genera 66

Fig. 5.1 Bayesian phylogram of rhodopsin gene sequences from 19 teleost species using amino acidic data and the bovine sequence as outgroup82
Fig. 6.1 Relationship between haplotype diversity (h) and nucleotide diversity (π) for marinefishes. Reconstructed following Grant and Waples (2000)94

List of Tables

Table 2.1 Sample sizes for each site surveyed for orange roughy and genetic diversity indices of the Cytochome c Oxidase I (COI) gene
Table 2.2 Sample sizes for the five regions and genetic diversity indices of the cytochrome b (cyt b) gene. 20
Table 2.3 Pairwise $\Phi_{\text {ST }}$ values for the COI gene between sampling sites 21
Table 2.4 Pairwise $\Phi_{\text {ST }}$ values for the COI gene between regions 22
Table 2.5 Values and probabilities of Tajima's D and Fu's F s for COI sequences for all the sampling sites 24
Table 2.6 Mismatch distribution values for COI sequences for all the sampling sites 26
Table 3.1 Summary statistics for the levels of genetic variation across nine microsatellite DNA loci for all the sampling sites sampled on one season 42
Table 3.2 Pairwise $F_{\text {ST }}$ and $D_{\text {est }}$ values for microsatellite DNA loci between sampling sites sampled on one season 44
Table 3.3 Pairwise F_{ST} and $D_{\text {est }}$ values for microsatellite DNA loci between regions 45
Table 3.4 Summary statistics for the levels of genetic variation across nine microsatellite DNA loci for eight sampling sites from Northern New Zealand sampled in a second season 50
Table 3.5 Pairwise F_{ST} and $D_{\text {est }}$ values between sites sampled in two seasons 51
Table 4.1 Maximum length, depth range and distribution of valid Hoplostethus species 60
Table 4.2 K2P (\%) distances within and among Hoplostethus species 63
Table 5.1 Sample size and sampling area of 19 teleots species used for partial amplification of the rhodopsin gene 75
Table 5.2 Depth range and geographic distribution of the 19 teleost species used for partial amplification of the rhodopsin gene 77

Table 5.3 Heterozygote positions in the rhodopsin nucleotide fragment.................................. 78

Table 5.4 Variable amino acid sites among the 19 teleost species analysed using the bovine
rhodopsin sequence as a reference.. 79

Table 5.5 Grouping of the species according to the combination of two critical sites .83

Chapter 1

General Introduction

The orange roughy, Hoplostethus atlanticus Collet 1889 (Teleostei: Trachichthyidae), has been one of the main targeted species in deep-sea fisheries worldwide (Pitcher 2010). Its biological characteristics and their aggregating behaviour, makes orange roughy vulnerable to over exploitation (Clark 1996; Branch 2001; Baker et al. 2009). The fishery for orange roughy started around New Zealand in the late 1970s (Clark 1996) and progressively expanded off the coast of other countries and to the high seas (out of any Economic Exclusive Zone) (reviewed by Branch 2001). Many stocks have been over-fished; consequently, fisheries have been closed or catches largely reduced (see Clark 2009; Niklitscheck et al. 2010; Foley et al. 2011). Currently, the only large scale fisheries operate off New Zealand (Clark 2009; Dunn and Forman 2011).

There are 28 valid species within the genus Hoplostethus, one of them has been recently described (Moore and Dodd 2010). The orange roughy is the only Hoplostethus species with commercial value. The silver roughy, H. mediterraneus is caught as bycatch in bathyal trawling and has low commercial value (Madurell and Cartes 2005). While there has been extensive research on orange roughy, less attention has been given to the other Hoplostethus species, with the only exception of the silver roughy, H. mediterraneus. Studies on this species have been mainly focused in the diet, feeding habits and bathymetric distribution (e.g. Madurell and Cartes 2005; Jones 2009; Katsanevakis and Maravelias 2009; Fanelli and Cartes 2010). There are no studies about the molecular phylogeny of Hoplostethus species (Moore and Dodd 2010). Kotlyar (1986) proposed a phylogenetic tree for the subgenera of Hoplostethus, but this was based on geographic distribution and morphology only.

Most studies of orange roughy have been orientated to fisheries aspects. There are no studies about their adaptation to the light environment of the deep-sea, except by Pankhurst (1987), who studied the retinal morphology of orange roughy and other mesopelagic and demeresal teleost. It has been reported that orange roughy have a pronounced lateral line (Paulin 1979) and functional eyes with highly specialized retina
(Pankhurst 1987), these characteristics may allow them to detect movement of conspecifics in aggregations in almost complete darkness to respond quickly, displaying avoidance behaviour to predators and fishing gear (Koslow 1996; Branch 2001). The high degree of retinal specialization of orange roughy has been correlated with a visual adaptation to dim-light (Pankhurst 1987). However, the molecular basis for this visual adaptation to the light environment of the deep-sea has never been studied.

1.1 Biology and distribution of orange roughy

The orange roughy is a widely distributed deep-sea fish. The species is found along continental slopes and seamounts at depths of $450-1,800 \mathrm{~m}$ across the Southern hemisphere and in the Northeast Atlantic Ocean (Horn et al. 1998; Branch 2001). They form dense aggregations on seamounts for spawning and feeding (Clark et al. 2000). It has been suggested that dense aggregations may also form adjacent to the bottom in areas with low currents acting as "resting sites" (Lorance et al. 2002). Orange roughy are opportunistic feeders, juveniles fed mainly on bentho and meso-pelagic crustaceans and mature individuals consume predominately fish and squid (Bulman and Koslow 1992). Rates of food consumption are high in orange roughy and their metabolism is substantially higher than the typical non-migratory deepwater fishes, and similar to mesopelagic migratory species (Bulman and Koslow 1992; Koslow 1996). The bodily composition is also similar to that of active mesopelagic fishes, high in lipid and protein and low in water (Koslow 1996). The high metabolic costs for orange roughy have been related to its exceptionally slow growth (Bulman and Koslow 1992) and with its strong locomotory performance to maintain position around seamounts; an environment characterized by strong and variable currents (Koslow 1996).

As other deep-sea fishes, the orange roughy is a " K-selected" species (Koslow 1996). They grow slowly, reaching maturity at about 30 years (Fenton et al. 1991; Francis and Horn 1997) and living for more than 100 years (Mace et al. 1990; Fenton et al. 1991). The fecundity is low, and therefore, they have low productivity (Pankhurst and Conroy 1987). Because of its long life span, orange roughy individuals may spawn many times; however, intermittent spawning in females has been reported related to low food availability coupled with the cost of participating in spawning migrations and
aggregations around seamounts (Bell et al. 1992). Egg development takes ~ 10 days and they sink at the end of their development hatching near the bottom (Zeldis et al. 1995; Zeldis et al. 1998), which likely results in low passive dispersal.

1.2 Deep-sea fisheries

The collapse and depletion of many inshore and shelf fish stocks in the 1900s and the increasing technology over the past decades increased the development of deep-sea fisheries, targeting, in particular, seamount-associated teleost species (Morato et al. 2006; Pitcher et al. 2010). The most widely used method to catch fishes on seamounts is bottom trawling, where a net with heavy rollers is dragged along certain areas of the seamounts having a major effect over the seafloor and its fauna (see Clark 2010). Fisheries for teleosts mainly occur on and around seamounts in the North Pacific Ocean along the Emperor and Hawaiian Ridges, in the Southwest Pacific around New Zealand, New Caledonia and Australia, in the Southeast Pacific off Chile, in the Northeast Atlantic Ocean around the Azores and on the Mid Atlantic Ridge, and in the South Atlantic (Smith 2007). Recently, Pitcher (2010) identified eight major targeted seamount fish species worldwide. One of the first and most exploited deep-sea fishes is the orange roughy. The others are the alfonsino Beryx splendens, the cardinalfish Epigonus telescopus, the oilfish Ruvettus pretiosus, the black scabbard fish Aphanopus carbo, the armorhead Pseudopentaceros wheeleri, the abyssal grenadier Coryphaenoides armatus and the smooth oreo Pseudocyttus maculatus. Other exploited seamount-associated fishes include the roundnose grenadier Coryphaenoides rupestris, the black oreo Allocyttus niger, the spiky oreo Neocyttus rhomboidalis, the toothfish Dissostichus spp. and Sebastes spp. (Smith 2007).

The extraction of seamount fish species by large-scale fisheries increased rapidly reaching a peak on catches of about 1.2 million tonnes per year in the mid 1990s, then catches decreased sharply showing a key feature of deep-sea fisheries termed "boom-and-bust" (reviewed by Pitcher et al. 2010). The un-sustainability and risk of depletion of most deep-sea fisheries is explained by the general characteristics of exploited deepsea species. They are usually " K-selected" exhibiting slow grow, extreme longevity, late maturity and low fecundity; which coupled with their aggregating behaviour around
seamounts, explain their lack of resiliency and vulnerability to overexploitation (Koslow et al. 2000; Watson and Morato 2004; Morato et al. 2006; Smith 2007). The management of fish resources should ensure the preservation of genetic diversity as this is the basis for all the others levels of diversity and it is essential for the evolutionary adaptation of the species to environmental changes and other pressures (Laikre et al. 2005). This is particularly relevant for deep-sea exploited species as they are less resilient than shelf species (Smith et al. 2007).

1.3 Fisheries management and population genetics

For fisheries management and conservation plans it is crucial to determine the connectivity among populations to attempt to differentiate stocks (Begg et al. 1999; Grant and Waples 2000). There are several definitions of the term "stock" in fisheries management, but it usually refers to biological units large enough to be self-recruiting (Hilborn and Walters 1992). Several techniques have been used to study the connectivity among marine fish populations such as tag-recapture studies (e.g. Hurst et al. 1999), morphometrics (e.g. Mamuris et al. 1998), parasites (e.g. Moore et al. 2011), otoliths (e.g. Correia et al. 2011), and population genetics analyses using neutral molecular markers (e.g. Broderick et al. 2011). Laikre et al. (2005) stressed the importance of determining the genetic population structure of exploited fish species; this is the distribution of genetic variation within and between populations. According to these authors, knowledge of this structure may reduce the risk of depletion of genetic resources by considering groups of genetically homogenous individuals as the basic units for management. Based on the amount of genetically effective migration (gene flow) Laikre et al. (2005) defined three types of genetic structure for the identification of biological (genetics) units for fisheries management, 1) distinct populations: gene flow is small enough to generate genetic divergence among geographically close populations; 2) continuous change: genetic composition change over space. Gene flow is larger among geographically close populations resulting in an isolation by distance (IBD) pattern; and 3) no differentiation: gene flow is extensive and the species behaves as a single panmictic unit over the geographic region under consideration. Some species may present a combination of these three types of genetic structure.

Most studies to determine the genetic structure of marine (and terrestrial) species have been conducted using selectively neutral molecular markers, since they have a great potential to estimate gene flow (see Holderegger et al. 2006). More recent studies have also incorporated or used loci under selection to estimate differentiation due to local adaptation (e.g. Fevolden and Pogson 1997; Hemmer-Hansen et al. 2007; André et al. 2011). To date, the most commonly employed neutral markers have been mitochondrial DNA (mtDNA) sequences and microsatellite DNA loci (Hellberg 2009). Since mitochondrial DNA is usually transmitted maternally, does not recombine and evolves faster than nuclear (encoding) DNA, mtDNA sequences have been widely used in phylogenetic and phylogeographic studies (Avise 1998a). For population genetics analyses, one advantage of mtDNA over microsatellite DNA analyses is that the population size of mtDNA is about one quarter of the nuclear DNA, and therefore, it is expected to be more sensitive to genetic drift. On the other hand, microsatellite DNA loci have a higher resolution and power to detect genetic differentiation than others multilocus markers (i.e. AFLPs, RAPDs, allozymes); the main advantages of microsatellites respect to mtDNA sequences is that they are multiple independent loci and have a higher mutation rate allowing estimations of levels of genetic structure on ecological/contemporary time scales (reviewed by Selkoe and Toonen 2006).

Marine fish species typically exhibit higher genetic diversity than freshwater and anadromous fish species as measured with molecular markers; a pattern that has been related to larger evolutionarily effective population sizes of marine fishes and to the existence of fewer barriers to dispersal in the marine realm compared to freshwater systems (Ward et al. 1994; DeWoody and Avise 2000; McCusker and Bentzen 2010). However, the general pattern of high genetic diversity in many marine fish species does not imply that fishing has not affected the levels of genetic variation of populations since changes in this measure will be apparent only after several generations for species with large population sizes. This is particularly relevant for long-lived species, because they would have slow genetic drift and any reductions in genetic diversity are unlikely to be detected yet. For example, Chapman et al. (2011) suggested that one of the main hypotheses to explain the absence of genetic bottleneck in the critically endangered smalltooth sawfish Pristis pectinata is the longevity of this elasmobranch.

Genetic techniques provide an indirect measure of population connectivity and have been widely used because it is difficult to measure dispersal directly, particularly in the marine environment (Avise 1998b; Lowe and Allendorf 2010). The limitation of genetic
approaches is that genetic connectivity does not necessarily reflect demographic connectivity, and the later is of most interest for fisheries management. As defined by Lowe and Allendorf (2010), genetic connectivity is "the degree to which gene flow affects evolutionary processes within populations" and demographic connectivity is "the degree to which population growth and vital rates are affected by dispersal". Therefore, genetic estimates should be combined with inferences from other techniques, especially with tag-recapture studies (Lowe and Allendorf 2010). However, tag-recapture studies are very difficult to conduct for deep-sea species and a holistic approach using available techniques should be applied to effectively define stocks (Begg and Waldman 1999) as performed for the pelagic horse mackerel Trachurus trachurus (Abaunza et al. 2008). Dunn and Devine (2010) followed a holistic approach to determine the stock structure of orange roughy on the Chatham Rise, a complex topographic system located off the east coast of New Zealand. Using catch data, differences in life history characteristics and genetic data among others, Dunn and Devine (2010) determined the existence of two stocks on the Chatham Rise. The application of a holistic approach to other areas would likely results in better management for this species.

1.4 Population differentiation studies in orange roughy

There have been several population differentiation studies in orange roughy to attempt to differentiate management units or "stocks" using a range of techniques applied at different geographical scales. Lester et al. (1988) using parasite analyses discriminated a number of stocks among New Zealand and Australian samples. Similarly, morphometrics and otolith micro-chemistry analyses found significant differentiation among Australian populations (Elliott et al. 1995; Edmonds et al. 1991). However, genetic studies have reported contradictory results for orange roughy. The first population genetic studies for orange roughy were conducted with allozymes. Smith (1986) found high levels of genetic connectivity among samples from New Zealand and the Northeast Atlantic Ocean. Similarly, Elliott and Ward (1992) reported lack of differentiation among New Zealand and Australian samples. In contrast, using restriction enzyme analysis of mtDNA, Smolenski et al. (1993) found genetic differentiation among samples from New Zealand and Australia. Later, significant genetic structure was also reported among sites around New Zealand with RFLP and
allozyme analyses (Smith et al. 1996; Smith and Benson 1997). Covering a higher geographical scale and using microsatellite DNA markers, Oke et al. (2002) found lack of genetic differentiation among samples from New Zealand, Australia, and the Northeast Atlantic Ocean, although there was a pattern of IBD. Genetic homogeneity has been also reported with microsatellite DNA loci at a lower geographical scale among Northeastern Atlantic samples (White et al. 2009a). However, significant differentiation was reported using microsatellite DNA loci and otolith analyses in a complex topographic system located in the Northeast Atlantic Ocean (Carlsson et al. 2011). Considering all the above, a broad study about levels of population differentiation in orange roughy at global and fine-scales using one technique and a large sampling size would be highly valuable to help to determine the levels of connectivity among populations.

Therefore, this study used two types of neutral molecular markers, mtDNA sequences and microsatellite DNA loci, to investigate the genetic structure of orange roughy using samples from most of its distribution range (global-scale) including multiple sites around New Zealand (fine-scale). A candidate gene approach (i.e. genes subject to natural selection) was also attempted to investigate adaptive population divergence in orange roughy, since there are several examples of population differentiation at candidate genes without differentiation at neutral markers in marine fishes (e.g. Pogson and Fevolden 2003; Hemmer-Hansen et al. 2007; André et al. 2011). The only candidate gene that was successfully amplified for orange roughy samples was the rhodopsin gene, which is involved in visual adaptations at inter and intra-specific levels in marine fishes (e.g. Yokoyama and Takenaka 2004; Yokoyama 2008; Larmuseau et al. 2009b, 2010, 2011). However, there was almost no variation among partial rhodopsin sequences in orange roughy (i.e. only one site presented a transition and there were no transversions), even for samples from distant regions (e.g. New Zealand and the Northeast Atlantic Ocean). Given this, partial sequences of the rhodopsin gene were instead used to study the molecular basis for visual adaptations of this species to the bathypelagic light environment. As stated before, the high degree of retinal specialization of orange roughy has been correlated with a visual adaptation to dim-light (Pankhurst 1987); however, the molecular basis for this visual adaptation has never been studied in orange roughy. This is important to understand how deep-sea species have adapted to the light available in the bathypelagic environment (Yokoyama 2008).

1.5 Deep-sea environment and visual adaptations

Orange roughy habits the largest ecosystem on Earth. The deep-sea extends over the 65% of the World's surface (Sverdrup et al. 1942). It is commonly considered that the deep-sea begin at the shelf break, which occurs at a depth of 200 m in most of the Oceans, marking a transition between shallow to deep-sea fauna (Thistle 2003). The deep-sea ocean is characterized by extreme environmental conditions. Salinity and pressure are high, while temperature and food availability are low (Sanders et al. 1965; Thistle 2003). However, topographic features, as most seamounts, have a complex topography and are biological "hot-spots" characterized by high production due to Taylor columns (parcels of water that retain microorganisms) and upwelling of nutrient rich water (Rogers 1994). They provide habitat to support a range of epifaunal and suspension-feeding invertebrates (Ramirez-Llodra et al. 2010), attracting high abundance and diversity of top-level predators as fishes (Dower and Brodeur 2004). Early studies (e.g. Sanders 1968) considered that the deep-sea was a physically stable environment. However, over the past decades increasing technology and sampling efforts have shown that the deep-sea is a complex and dynamic environment (Stuart et al. 2003). There are gradients, habitat shifts, and high species diversity (Rex et al. 1993; Levin et al. 2001; Ramirez-Llodra et al. 2011).

One striking difference of the deep-sea environment respect to the sea surface is the lack of photosynthetically-usable light below about 250 m , which results in lack of primary production in most deep-sea ecosystems (Thistle 2003). Light intensity decreases exponentially with depth because photons are absorbed or scattered by the water column (Levine and MacNichol 1982). Many marine organisms, therefore, have developed visual adaptations to the spectral quality of the deep-sea (reviewed by Crescitelli 1991), while others lack of vision and have evolved other senses as chemoreception and mechanoreception (Thistle 2003). To adapt to the dim-light and bioluminescence of the deep-sea, many visual fish species have lost cone photoreceptors and have only rod photoreceptors (see Hunt et al. 2001), because rods mediate vision at low light intensities (reviewed by Yokoyama 2008). Visual pigments consist of an opsin protein and a chromophore, and are characterized by the wavelengths of maximal absorption $\left(\lambda_{\max }\right)$ (Bowmaker 1995). Rhodopsin pigments $\left(\lambda_{\max }=\sim 500 \mathrm{~nm}\right)$ are usually expressed in rods (Yokoyama et al. 1999) and certain amino acid replacements in the opsin protein explain changes in the $\lambda_{\max }$ of the pigment to perceive different light
environments, a phenomenon known as spectral tuning (reviewed by Yokoyama 2008). The molecular basis for spectral tuning has been studied in several shallow and deep-sea fish species, allowing the identification of critical amino acid sites, called "tuning sites" (e.g. Hope et al. 1997; Yokoyama et al. 1999; Hunt et al. 2001; Yokoyama and Takenaka 2004).

1.6 Demographic history and DNA sequence analyses

The analyses of DNA sequences are also suited to make inferences about the past demographic history of the species (Rogers and Harpending 1992; Drummond et al. 2005). The molecular clock hypothesis assumes that DNA sequences change at a near constant rate through time at intra-specific levels. Demographic events and the timeframe when they occurred can be inferred from DNA sequences analyses (Grant and Waples 2000). Glaciations events during the Pleistocene period (~ 1.6 Myr to 10,000 years before present) resulted in major demographic changes, which in turn had a great influence in the intra-specific genetic diversity in many marine and freshwater species (reviewed by Grant and Waples 2000). Two measures of diversities among intraspecific DNA sequences have been used to categorize marine fishes into four groups depending on different combinations of small and large values of haplotype and nucleotide diversity (Grant and Bowen 1998). Low values for both measures are characteristic of species that have had catastrophic reductions in population's sizes (bottleneck events or founder events). Low nucleotide diversity and medium-high levels of haplotype diversity are expected for species that have suffered bottleneck events followed by sudden expansion in populations that have rapidly grown. When both measures are high it is assumed that populations have been large and stable over long periods of time or that isolated and divergent populations have become into contact. Finally, low levels of haplotype diversity and high nucleotide diversity is typical of large ancient populations, which suffered drastic reductions in size or that have become isolated. Marine fishes are usually within one the first three categories and the last group may be most common in inshore or freshwater species, since gene flow is more restricted than in coastal or oceanic environments (reviewed by Grant and Waples 2000).

1.7 The aims and structure of this thesis

The aims of this thesis were to: (i) use neutral molecular markers to study the genetic diversity, differentiation and past demographic history of orange roughy populations using large sample sizes at a global and fine-scales, (ii) conduct a phylogenetic study of Hoplostethus species, and (iii) study the molecular basis for visual adaptation of orange roughy to the bathypelagic light environment.

In Chapter 2, I present my results about levels of global genetic differentiation and demographic history of orange roughy using mitochondrial DNA sequences. In Chapter 3, I show the results of microsatellite DNA analyses that were conducted to determine the genetic structure of orange roughy at a global and fine-scales. In Chapter 4, I show the results of phylogenetic analyses of Hoplostethus species using the mitochondrial DNA sequences obtained by me for orange roughy and silver roughy (H. mediterraneus) and sequences of congener species available from a public data base (GenBank). In Chapter 5, I present the findings of critical amino acid sites replacements in the rhodopsin gene of orange roughy, which are known to be involved in spectral tuning. Rhodopsin sequences were also obtained for other 18 species to compare to other teleost species habiting different light environments. Each chapter has been written as independent manuscripts, and hence there is some repetition in the introductions and methodological sections. Finally, in Chapter 6, I conclude with a summary and general discussion of the main findings of this thesis.

Chapter 2

Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences

2.1 Abstract

The orange roughy Hoplostethus atlanticus is a well known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. I used cytochrome c oxidase subunit I (COI) and cytochrome b (cyt b) sequences to study genetic connectivity at a global scale. Pairwise $\Phi_{\text {ST }}$ analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation ($\Phi_{\mathrm{ST}}=0.02-0.13 P<0.05$) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.

2.2 Introduction

Deep-sea fishes (i.e. > 200 m) live in the largest habitat on Earth. Many deep-sea fishes are widely distributed, and have a circumglobal distribution, e.g. the alfonsino Beryx decadactylus. Some bathyal fishes inhabit continental slopes, the slopes of oceanic islands, and seamounts that are separated by extensive areas of deep ocean. The dispersal of deep-sea fishes may be less constrained by their habitat than that of coastal fishes. However, while there are few obvious barriers in the deep-sea, migration of individuals could be limited by ocean currents and bathymetric features, as reported for the demersal fish Brosme brosme (Knutsen et al. 2009). There are several examples of genetic differentiation among deep-sea fish populations at different geographical scales, including the spikey oreo Neocyttus rhomboidalis (Elliott et al. 1998), the bluemouth Helicolenus dactylopterus (Aboim et al. 2005), the Patagonian toothfish Dissostichus eleginoides (Smith and McVeagh 2000; Rogers et al. 2006), and the Cape hake Merluccius paradoxus (von der Heyden et al. 2007). However, there are also species that exhibit panmixia at regional, oceanic, and inter-oceanic scales such as the armorhead Pseudopentaceros wheeleri, the wreckfish Polyprion americanus, the alfonsino Beryx splendens, and the oreos Allocytus niger and Pseudocyttus maculatus (Martin et al. 1992; Sedberry et al. 1996; Hoarau and Borsa 2000; Smith et al. 2002b).

The orange roughy, Hoplostethus atlanticus, has a cosmopolitan distribution (Paulin 1979). It occurs at depths of $450-1800 \mathrm{~m}$ and is locally abundant off the coasts of New Zealand, Australia, Namibia, and in the Northeast Atlantic Ocean (Horn et al. 1998; Branch 2001) and off Chile (Labbé and Arana 2001). Orange roughy aggregate near prominent topographic features such as seamounts, plateaus and canyons, especially during spawning and feeding periods (Clark et al. 2000). It is thought that adults migrate hundreds of kilometres to spawn, as mature fish are widespread, but spawning occurs in just a few specific areas (Francis and Clark 1998). Orange roughy fisheries started in 1979 around New Zealand (Clark 1996) and later developed off Australia (1980s), South Africa (Namibia), and in the Northeast Atlantic Ocean in the 1990s (Branch 2001), and in the South Indian Ocean and off Chile in 1999 (Branch 2001; Labbé and Arana 2001). Orange roughy grow slowly, live longer (100+ years) (Mace et al. 1990; Fenton et al. 1991), mature later (~ 30 years) than most other marine teleosts (Fenton et al. 1991; Francis and Horn 1997; Horn et al. 1998) and has low productivity due to its low fecundity (Pankhurst and Conroy 1987). All these life history
characteristics make orange roughy vulnerable to over-exploitation. Most orange roughy stocks have been fished down to or below 30% of pre-exploitation levels and most fisheries have shown a pattern of rapidly decreasing catches (reviewed by Branch 2001). As part of the management for this species, which is found in several Economic Exclusive Zones and occurs in international waters, it is important to determine levels of connectivity among populations.

A range of indirect techniques have been applied to estimate connectivity among orange roughy populations, as tag-recapture studies have been unsuccessful in this deep-sea species (Branch 2001). In general, studies using morphometrics, otolith microchemistry, and parasite analyses have found differences between populations of orange roughy within ocean basins (e.g. Elliott et al. 1995; Edmonds et al. 1991; Lester et al. 1988). On the other hand, genetic studies, with different molecular markers applied at different geographical scales, have reached contrary conclusions about differentiation among populations, and wide scale connectivity among populations has not been rejected. Smith (1986) using allozyme analyses found low genetic differentiation among samples from the Tasman Sea, Southwest Pacific Ocean, and Northeast Atlantic Ocean. Similarly, Elliott and Ward (1992) showed a lack of genetic subdivision among six sites off southern Australia and one site off the eastern coast of New Zealand. Using a restriction enzyme analysis of mitochondrial DNA, Smolenski et al. (1993) surveyed samples from seven locations in Australia, New Zealand and South Africa, and found evidence for genetic separation among southeastern Australian and New Zealand samples. Genetic structure was found among different sites off the coast of New Zealand by Smith et al. (1996) using RFLP analysis and by Smith and Benson (1997) with allozyme loci. In another study based on multiple techniques, Smith et al. (2002a) also found evidence for differentiation among populations off the west coast of New Zealand with the analysis of otolith shape, fish size, and restriction digest of the whole mitochondrial genome. However, mitochondrial DNA polymorphism of the control region and two microsatellite loci revealed lack of differentiation among New Zealand sites (Smith et al. 2002a). A study by Oke et al. (2002) using microsatellite markers showed no significant differentiation within Australian waters, and no evidence of genetic differentiation between samples from Australia and New Zealand, and Australia and the Northeast Atlantic, although both regional comparisons revealed a significant pattern of isolation by distance (Oke et al. 2002). Recently, White et al. (2009a) used 14 microsatellite loci to test the hypothesis that the life-history characteristics of orange
roughy should generate philopatry and the evolution of population genetic structure at a relatively small geographical scale. However, they found panmixia among five samples from the Northeast Atlantic, with some sampling sites separated by over 2000 km , but significant differentiation between the pooled Northeast Atlantic samples and one sample from Namibia. Contrary to White et al. (2009a), Carlsson et al. (2011) recently reported low but significant differentiation within a complex topographic system in the Northeast Atlantic, mainly due to genetic differences between samples from a flat area and seamount sites. The authors suggested that differences in seafloor structures (seamounts and flats) may provide discrete spawning structures with limited gene flow between them.

The application of molecular markers allows not only inferences about levels of genetic connectivity among populations, but they also enable the study of the demographic history of species, in which expansion and contraction events can be related to global climatic changes (e.g. Larmuseau et al. 2009a).

The main goal of this study was to use molecular markers to determine levels of genetic variation within and differentiation among orange roughy populations at a global scale. The second goal was to determine the demographic history of the species and to relate this to past climatic events. I used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) and cytochrome b (cyt b) genes and samples collected from New Zealand, Australia, Namibia, Chile, and the Northeast Atlantic. Large samples from multiple locations around New Zealand were used to determine within region variation.

2.3 Materials and Methods

2.3.1 Sampling and DNA extractions

Tissue samples were obtained from 546 orange roughy specimens from 13 sites in five regions: New Zealand, Australia, Namibia, Chile, and the Northeast Atlantic Ocean (Fig. 2.1). Muscle samples were collected from fresh fish and frozen at $-20^{\circ} \mathrm{C}$. Samples from northern New Zealand and from Lord Howe Rise (outside the Economic Exclusive Zone (EEZ) of New Zealand, were taken by New Zealand Ministry of Fishery

Observers. Samples from all other sites in New Zealand, Australia and from Namibia were from a frozen tissue collection held at NIWA (National Institute of Water \& Atmospheric Research Ltd., New Zealand). Samples from Chile and the Northeast Atlantic Ocean were supplied by researchers undertaking studies in their respective locations.

Fig. 2.1 Map showing the 13 sampling sites across the five regions surveyed for orange roughy. Codes as follow: Por = Porcupine Bank, Sed = Sedlo (Northeast Atlantic), Nam = Namibia, Alb = Albany, NTas = North Tasmania (Australia), JF = Juán Fernández Archipelago (Chile), ORH1 = Northern New Zealand

DNA extractions were performed using proteinase K digestion followed by salt extraction. The remaining pellet was washed twice with ethanol and resuspended in 100 $\mu \mathrm{L}$ TE buffer. DNA samples were stored at $4^{\circ} \mathrm{C}$.

2.3.2 PCR amplification, sequencing and alignment

A 630 bp fragment of the cytochrome c oxidase subunit I (COI) gene was amplified by PCR using the primers developed by Ward et al. (2005) with the modification of two bases in the reverse primer based on the complete mitochondrial sequence of Hoplostethus japonicus (GenBank: AP002938.1). The primers used were: FishF1-5'-TCAACCAACCACAAAGACATTGGCAC-3' and FishR1(a)-5'-TATACTTCGGGG TGGCCAAAGAATCA-3'. A 416 bp fragment of the cytochrome b gene (cyt b) was amplified in 95 individuals from the five regions. The forward and reverse primers (Palumbi et al. 1991 and Kocher et al. 1989, respectively) were modified based on the complete mitochondrial sequence of H. japonicus. The primers used were tGludg(a)-5'-TGACTTGAAAAACCACCGTTG-3' and Cyb2(a)-5’-CCCTCAAAAGGATATTTGT CCTCA-3'.

Reactions of $10 \mu \mathrm{~L}$ total volume for partial amplification of both genes consisted of $\sim 20 \mathrm{ng}$ of DNA, 1 X PCR buffer $\left(160 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 670 \mathrm{mM}\right.$ Tris-HCl, 0.1% stabilizer), $2 \mathrm{mM} \mathrm{MgCl} 2,0.6 \mu \mathrm{M}$ of each primer, 0.2 mM of each dNTPs, 1.5 U of Taq polymerase and $0.4 \mathrm{mg} \mathrm{mL}^{-1}$ of Bovine Serum Albumin (BSA). PCR cycles were performed on a Eppendorf Mastercycler ep gradient S , as follow: $95^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 57^{\circ} \mathrm{C}$ for COI and $48^{\circ} \mathrm{C}$ for cyt b for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 10 min . PCR products were purified with ExoSAP-IT following manufacturer's instructions. The DNA sequences of the purified products were determined using an ABI3730 Genetic Analyzer. Initially, DNA sequences were obtained in both directions which resulted in high quality sequences, subsequently only the forward primer direction was sequenced for both the COI and cyt b genes. Sequences were aligned using the software Geneious 5.1.7 (Biomatters Ltd.) using the Geneious alignment option (Drumond et al. 2010). Alignments were verified through translation into amino acid sequences.

2.3.3 Data analyses

Genetic diversity indices, the number of polymorphic (segregating) sites (S), the number of haplotypes (N_{h}), haplotype diversity (h), and nucleotide diversity (π), were calculated in DnaSP 5.10 (Librado and Rozas 2009) for both genes. The software ARLEQUIN 3.11 (Excoffier et al. 2005) was used to estimate pairwise genetic divergence between populations using the fixation index $\Phi_{\text {ST }}$. The significance of the $\Phi_{\text {ST }}$ values was evaluated by 20,000 permutations. Further analyses were only performed for COI sequences. The pattern of Isolation By Distance (IBD) was evaluated for New Zealand sites using a Mantel Test with 10,000 permutations comparing linearized $\Phi_{\text {ST }}$ with the shortest marine distances (ln m) between sites. Geographic distances were estimated using Google Earth v.4.3. ARLEQUIN 3.11 was also used to perform an AMOVA analysis with pairwise difference as the distance method and 20,000 permutations.

A haplotype network was first constructed using the median-joining approach implemented in the NETWORK 4.6 software (Bandelt et al. 1999). The resulting network had many loops that were only resolved using both, the Frequency >1 criterion and the criteria based on coalescent theory (Crandall and Templeton 1993). However, only haplotypes present in two or more individuals were represented in the network. The alternative method described by Salzburger et al. (2011) was implemented to obtain a complete haplotype genealogy without reticulations. A phylogenetic reconstruction was estimated with a Maximum Likelihood (ML) approach implemented in the program PhyML 3.0 (Guindon et al. 2010) using default settings and the best fit model obtained with jModelTest (Posada 2008). The ML tree was then converted into a haplotype genealogy using the Haploviewer software (Salzburger et al. 2011).

A mismatch distribution analysis was performed in ARLEQUIN and DnaSP to infer the demographic history. A unimodal distribution is indicative of a sudden population expansion in the past whereas a multimodal curve is most typical of populations in equilibrium whose sizes have been constant over a long period of time (Rogers and Harpending 1992). The demographic parameters τ, θ_{0} and θ_{1} were obtained from the mismatch distribution analysis. The time since the last expansion (t) can be estimated from $\tau=2 u t$ where τ is an index of time since expansion expressed in units of mutational time and u is the mutation rate considering $u=\mu k$ (μ is the mutation rate per nucleotide and k is the number of nucleotides obtained by PCR) (Rogers and Harpending 1992). Two mutations rates were applied for the COI sequences, the one
proposed by Brown et al. (1979) of $2 \% / \mathrm{Myr}$ for the vertebrate mitochondrial genome based on mammalian data and that calibrated by Bermingham et al. (1997) of $1.2 \% / \mathrm{Myr}$ for the COI gene in marine fishes. The parameters θ_{0} and θ_{1} correspond to the mutation parameter before and after population growth and is defined as 2 Nu for mitochondrial loci, where N is the effective female population size and u is the mutation rate per generation. ARLEQUIN was also used to obtain the sum of square deviations (SSD) between the observed and the expected distribution of pairwise differences and to calculate the Harpending's raggedness index $\left(H_{\mathrm{r}}\right)$ (Harpending 1994). Both statistics were used to test the null hypothesis of population expansion. Tajima's (D) (Tajima 1989) and Fu's (F_{S}) (Fu 1997) neutrality tests were also performed in ARLEQUIN. Negative and significant D and F_{S} values are also indicative of population expansion.

I also performed Bayesian skyline analyses to infer changes in effective population size (N) through time. This analysis allows the discovery of complex demographic signatures that are not possible to recover with simple demographic models (Drummond et al. 2005). The settings to construct the skyline plot were implemented in BEAST v1.6.1 (Drummond and Rambaut 2007). All analyses were run under the HKY+I+G model that was selected by jModelTest (Posada 2008) using both, the Bayesian and the Akaike information criterion. The analyses were run for $100,000,000$ iterations sampled every 10,000 iterations with a burn-in of 10%. The parameter m that represents the number of grouped intervals was set to 10 . The mutation rate used was $1.2 \% / \mathrm{Myr}$ (Bermingham et al. 1997) with an uncorrelated lognormal relaxed clock model (Drummond et al. 2006). All operators were optimized automatically. Two independent runs were combined using LogCombiner v.1.6.1 (Drummond and Rambaut 2007). The skyline plot was then visualized in TRACER v1.5 (Rambaut and Drummond 2007).

2.4 Results

2.4.1 Genetic diversity and population structure

Analyses of the COI gene sequences for 546 individuals revealed very high levels of diversity. In the 630 bp fragment, 82 sites were polymorphic and produced 114 haplotypes of which 71 were unique (recorded in one individual only). The haplotype
and nucleotide diversities ranged from 0.810 to 0.940 and from 0.0034 to 0.0049 respectively in each site (Table 2.1). Analyses of the cyt b gene sequences for 95 individuals also showed high levels of variation. In the 416 bp fragment, 37 sites were polymorphic and there were 37 haplotypes of which 24 were unique. The haplotype and nucleotide diversities ranged from 0.819 to 0.965 and from 0.0063 to 0.0099 respectively (Table 2.2). Sequences of all haplotypes were deposited in GenBank under Accession Numbers: JN580075- JN580188 for the COI gene and JN580189-JN580225 for the cyt b gene. The haplotype frequencies in each sampling site/area are provided in Appendixes A and B for the COI and cyt b genes, respectively.

Table 2.1 Sampling sites grouped in five regions and COI genetic diversity indices. n : number of samples, S : number of segregating sites, N_{h} : number of haplotypes, h : haplotype diversity, π : nucleotide diversity. The standard deviations of haplotype and nucleotide diversity values are given between brackets

Regions	Sampling sites	Code	n	S	N_{h}	h	Π
New Zealand	Northern New Zealand	ORH1	41	23	23	$0.926(0.028)$	$0.00430(0.00036)$
	Ritchie Bank	Rit	40	23	22	$0.931(0.026)$	$0.00466(0.00039)$
	Chatham Rise	Chat	46	31	24	$0.926(0.025)$	$0.00406(0.00044)$
	Puysegur	Puy	48	25	21	$0.890(0.030)$	$0.00408(0.00040)$
	Challenger Plateau	Cha	30	24	19	$0.926(0.034)$	$0.00494(0.00051)$
	Lord Howe Rise	LHR	40	27	23	$0.940(0.023)$	$0.00420(0.00044)$
	Louisville Ridge	Lou	40	21	22	$0.933(0.022)$	$0.00399(0.00038)$
Australia	North Tasmania	NTas	25	11	10	$0.810(0.056)$	$0.00342(0.00035)$
	Albany	Alb	46	25	23	$0.916(0.024)$	$0.00411(0.00035)$
Namibia	Namibia	Nam	45	19	16	$0.872(0.032)$	$0.00413(0.00038)$
Chile	Juan Fernández	JF	52	19	14	$0.839(0.035)$	$0.00403(0.00036)$
Northeast	Porcupine Bank	Por	51	16	12	$0.831(0.038)$	$0.00466(0.00043)$
Atlantic	Sedlo	Sed	42	19	13	$0.837(0.039)$	$0.00445(0.00049)$
	Total		546	82	114	$0.902(0.008)$	$0.00433(0.00012)$

Table 2.2 Samples sizes for the five regions and genetic diversity indices of the cyt b gene. n : number of samples, S : number of segregating sites, N_{h} : number of haplotypes, h : haplotype diversity, π : nucleotide diversity. The standard deviations of haplotype and nucleotide diversity values are given between brackets

Regions	N	S	N_{h}	H	π
New Zealand	19	15	10	$0.819(0.083)$	$0.00628(0.00126)$
Australia	19	17	14	$0.965(0.028)$	$0.00922(0.00072)$
Namibia	18	15	9	$0.863(0.057)$	$0.00817(0.00111)$
Chile	19	15	12	$0.936(0.037)$	$0.00922(0.00099)$
Northeast Atlantic	20	15	8	$0.821(0.072)$	$0.00998(0.00100)$
Total	95	37	37	$0.907(0.020)$	$0.00863(0.00045)$

None of the pairwise $\Phi_{\text {ST }}$ values showed significant differentiation for the cyt b gene ($P>0.05$, data not shown). The pairwise Φ_{ST} analysis of the COI sequences between sites resulted in low values revealing a lack of significant genetic differentiation for most comparisons (Table 2.3). However, $\Phi_{\text {ST }}$ values were highest for comparisons between the Northeast Atlantic sites and all the other sites and all were significant ($P<$ $0.05)$. Significant differences after Bonferroni correction between few pairs of sites are shown in Table 2.3.Within regions, the only significant differentiation was between Chatham Rise and Puysegur in New Zealand ($\Phi_{\mathrm{ST}}=0.031, P=0.027$) and there was an absence of IBD for New Zealand sites (Mantel test, $P=0.853$). In the absence of significant differentiation within the regions, sites were pooled by region to perform a new $\Phi_{\text {ST }}$ analysis. The revised analysis on pooled samples showed significant differentiation (after Bonferroni correction) among the Northeast Atlantic region and all other regions (Table 2.4).

The AMOVA for the COI data revealed that almost all the variation was within sites (97.88\%) with a significant overall Φ_{ST} value among sites $\left(\Phi_{\mathrm{ST}}=0.021, P=0.0003\right)$, which is influenced by the slight differentiation between the Northeast Atlantic sites and all the others sites. This was confirmed performing a new AMOVA without the Northeast Atlantic sites, which showed that the overall $\Phi_{\text {ST }}$ among sites was very low and non significant $\left(\Phi_{\mathrm{ST}}=0.0003, P=0.425\right)$.
Table 2.3 Pairwise $\Phi_{\text {ST }}$ values for the COI gene between sampling sites (below diagonal) and P values (above diagonal). Codes as in Table 2.1. Significant
Φ_{ST} values $(P<0.05)$ are shown in bold. Values with * indicate significant differentiation after Bonferroni correction $(P<0.0006)$. The pairwise difference was the distance method and 20,000 permutations were performed

Table 2.4 Pairwise $\Phi_{\text {ST }}$ values for the COI gene between regions (below diagonal) and P values (above diagonal). Significant $\Phi_{\text {ST }}$ values after Bonferroni correction $(P<0.005)$ are shown in bold. The pairwise difference was the distance method and 20,000 permutations were performed

	New Zealand	Australia	Namibia	Chile	Northeast Atlantic
New Zealand		0.4534	0.6956	0.1049	0.0001
Australia	-0.001		0.6036	0.5508	0.0016
Namibia	-0.004	-0.006		0.3676	0.0050
Chile	0.008	-0.005	-0.001		0.0046
Northeast Atlantic	$\mathbf{0 . 0 7 1}$	$\mathbf{0 . 0 4 6}$	$\mathbf{0 . 0 4 7}$	$\mathbf{0 . 0 4 7}$	

Haplotypes from the different sites were grouped by region to construct the haplotype genealogy. A star-like genealogy was obtained showing three main haplotypes of high frequency present in all five regions (Fig. 2.2). Most of the derived haplotypes were shared by more than one region. However, considering the haplotypes of frequency >1, four haplotypes were only present in the Northeast Atlantic (frequency 4-8). Five haplotypes were restricted to New Zealand (frequency 2-5), but the New Zealand region included the greatest number of sites (7) and individuals (285) compared to two sites and 93 individuals from the Northeast Atlantic. Therefore, the finding of four haplotypes restricted to the Northeast Atlantic is more meaningful than five haplotypes restricted to the New Zealand area.

Fig. 2.2 Haplotype genealogy from Maximum Likelihood (ML) tree of the COI sequences performed in the software Haploviewer, which shows the relationship among haplotypes of the five regions. The model of nucleotide substitution for ML was HKY $+G(0.744)+I(0.654)$. The circles represent the haplotypes. The scale shown on the upper left side of the figure indicates the relationship between circle sizes and the frequency of the haplotypes. Lines connecting the circles indicate a mutational step and dots in the lines represent putative mutational steps between haplotypes

2.4.2 Demographic history

High levels of haplotype diversity (mean 0.902 for COI and 0.907 for cyt b) and low nucleotide diversity (mean 0.0043 for COI and 0.0086 for cyt b) are indicative of a population bottleneck followed by rapid population growth and accumulation of mutations (Grant and Bowen 1998). This interpretation was supported by negative and significant Tajima's D and Fu's F s values in each site. Few sites showed negative but not significant values (Table 2.5). The overall Tajima's D statistic was negative but not significant ($D=-1.49, P=0.078$). However, the overall Fu's $F s$ s, which is more sensitive to population demographic expansion, was significantly negative $(F \mathrm{~s}=-11.94$, $P=0.033$) (Table 2.5).

Table 2.5 Values and probabilities of Tajima's D and Fu's F s for all the sampling sites

Regions	Sampling sites	Tajima's D	P	Fu's $F \mathrm{~s}$	P
New Zealand	Northern New Zealand	-1.66	0.028	-18.58	<0.001
	Ritchie Bank	-1.54	0.034	-15.77	<0.001
	Chatham Rise	-2.15	0.003	-19.92	<0.001
	Puysegur	-1.79	0.022	-13.75	<0.001
	Challenger Plateau	-1.73	0.017	-12.98	<0.001
	Lord Howe Rise	-1.99	0.004	-19.29	<0.001
	Louisville Ridge	-1.63	0.037	-17.97	<0.001
Australia	North Tasmania	-0.87	0.204	-3.39	0.031
	Albany	-1.80	0.016	-17.73	<0.001
Namibia	Namibia	-1.29	0.082	-6.73	0.004
Chile	Juan Fernández	-1.25	0.098	-4.08	0.056
Northeast Atlantic	Porcupine Bank	-0.54	0.359	-1.73	0.258
	Sedlo	-1.19	0.110	-3.30	0.076
	Mean	-1.49	0.078	-11.94	0.033

The mismatch analysis produced a unimodal distribution (Fig. 2.3) consistent with a population expansion event. This was also supported by the sum of square distributions values and low levels of Harpending's raggedness indexes in all sites without exceptions (mean SSD $=0.009, P=0.431$ and mean $H_{r}=0.042, P=0.503$, Table 2.6). Additional evidence for population expansion in orange roughy was the star-like shape of the haplotype genealogy (Fig. 2.2) and the values of θ_{0} and θ_{1} for all populations that ranged from zero to 0.05 and from 5.85 to 99999 respectively (Table 2.6). The values of θ_{0} and θ_{1} also suggest that there was a major reduction before the expansion. The mean value of τ was 3.19 and the time since the last expansion was estimated between 211,000 and 126,000 years ago (Middle - Late Pleistocene). Interestingly, the skyline plot revealed two expansion events (Fig. 2.4). According to the plot, a fast population growth occurred between $\sim 150,000$ and 75,000 years ago (Late Pleistocene) and a second but smaller expansion event took place less than 25,000 years ago (end of Pleistocene).

Fig. 2.3 Mismatch distribution graphic of the COI sequences. The solid line indicates the expected frequency of the pairwise differences between sequences under the sudden expansion model. The dotted line indicates the observed frequency and the dashed lines the 95% confidence intervals $(\mathrm{CI}) . \mathrm{SSD}=0.00941, P=0.431 . F_{S}=-11.94, P=0.033$
Table 2.6 Mismatch distribution values for all the sites. τ : Time since expansion expressed in units of mutational time, θ_{0} :
population size before expansion, θ_{1} : population size after expansion, SSD: Sum of squared distribution and H_{r} : Harpending's raggedness index

Regions	Sampling sites	Mismatch distribution				Goodness-of-fit	
		$\tau(95 \% \mathrm{CI})$	θ_{0}	θ_{1}	$\operatorname{SSD}(P)$	$H_{r}(P)$	
New Zealand	Northern New Zealand	$2.97(1.54-3.65)$	$0(0-0.92)$	$379.38(12.07-99999)$	$0.007(0.160)$	$0.039(0.312)$	
	Ritchie Bank	$3.36(1.38-4.62)$	$0(0-1.24)$	$27.50(7.47-99999)$	$0.005(0.335)$	$0.029(0.538)$	
	Chatham Rise	$2.63(1.38-4.62)$	$0(0-0.89)$	$48.44(6.51-99999)$	$0.006(0.210)$	$0.043(0.362)$	
	Puysegur	$2.94(0.87-4.32)$	$0.02(0-0.87)$	$12.66(4.36-5.68)$	$0.001(0.829)$	$0.020(0.868)$	
	Challenger Plateau	$3.64(1.47-4.91)$	$0(0-1.35)$	$35.00(9.17-99999)$	$0.022(0.083)$	$0.071(0.075)$	
	Lord Howe Rise	$2.69(1.63-3.29)$	$0(0-0.70)$	$2515.00(8.59-99999)$	$0.001(0.607)$	$0.034(0.561)$	
	Louisville Ridge	$2.55(1.53-3.25)$	$0.02(0-0.38)$	$99999(9.61-99999)$	$0.001(0.776)$	$0.038(0.466)$	
	Australia	North Tasmania	$2.88(0.60-4.76)$	$0(0-59)$	$8.36(3.20-99999)$	$0.031(0.150)$	
	Albany	$2.79(1.28-3.81)$	$0.05(0-0.99)$	$38.13(7.94-99999)$	$0.002(0.641)$	$0.027(0.697)$	
Namibia	Namibia	$3.21(0.96-5.04)$	$0.01(0-0.91)$	$10.49(4.09-99999)$	$0.006(0.499)$	$0.026(0.701)$	
Chile	Juan Fernández	$3.63(0.64-6.26)$	$0(0-0.83)$	$6.02(2.88-99999)$	$0.009(0.526)$	$0.027(0.759)$	
Northeast	Porcupine Bank	$4.75(0.79-7.92)$	$0(0-1.06)$	$5.85(3.06-99999)$	$0.010(0.599)$	$0.023(0.832)$	
Atlantic	Sedlo	$3.52(0.79-5.79)$	$0.01(0-1.08)$	$8.65(4.06-99999)$	$0.021(0.182)$	$0.075(0.147)$	
	Mean	$3.19(1.12-4.69)$	$0(0-0.91)$	$7930.34(6.39-99999)$	$0.009(0.431)$	$0.042(0.503)$	

Fig. 2.4 Bayesian skyline plot showing change of population size through time using a mutation rate of $1.2 \% / \mathrm{Myr}$. The thick line indicates the median estimate and the thin lines denote the 95% upper and lower confidence limits (95% HPD). The verticals dotted lines indicate the maximum time when the root height is the lower 95\% HPD and the upper 95\% HPD

2.5 Discussion

2.5.1 Genetic diversity and structure

Analyses of the COI and cyt b sequences in orange roughy revealed high haplotype diversity which is indicative of a large historical effective population size (McCusker and Bentzen 2010). This pattern of high haplotype diversity is common in marine fishes and consistent with previous reports for cyt b sequences in orange roughy by Baker et al. (1995) and in the bluemouth Helicolenus dactylopterus by Aboim et al. (2005). Similarly, high values of diversity have been reported for mtDNA d-loop sequences in other deep-sea fishes such as the thornyhead rockfishes Sebastolobus alascanus, S. altivelis and S. macrochir, the cape hake Merluccius capensis, the Alaskan Pacific halibut Hippoglossus stenolepis, and the alfonsino Beryx decadactylus (Stepien et al. 2000; von der Heyden et al. 2007; Nielsen et al. 2010; Friess and Sedberry 2011).

The lack of genetic differentiation among orange roughy populations from the South Atlantic Ocean and South Pacific Ocean is surprising given the large geographic distances between the regions surveyed in this study. Genetic homogeneity among distant orange roughy populations was also found by Smith (1986), Elliott and Ward (1992) and Oke et al. (2002) with different molecular markers. At a regional scale (i.e. within New Zealand) and between regions, our results are consistent with those reported in a study of microsatellite markers (White et al. 2009a), which found panmixia in orange roughy within the Northeast Atlantic, but significant differentiation between samples from the Northeast Atlantic and one sample from Namibia. A lack of genetic differentiation has been also reported for other deep-sea fishes, as the armorhead Pseudopentaceros wheeleri in the North Pacific Ocean (Martin et al. 1992; Yanagimoto et al. 2008). The larvae of the armorhead remain pelagic for 1.5 to 2.5 years and have a neustonic distribution with high potential for dispersion by wind-driven currents (Boehlert and Sasaki 1988; Mundy and Moser 1997). Similarly, genetic homogeneity was reported among populations of the wreckfish Polyprion americanus in the North Atlantic (Sedberry et al. 1996), which is probably related to the long period that juvenile stages spend in the pelagic environment. Several other deep-sea species show genetic homogeneity among populations and have pelagic larval and juvenile stages, that last for several months and could be passively transported by ocean currents (Hoarau and Borsa 2000; von der Heyden et al. 2007; Friess and Sedberry 2011).

In contrast, orange roughy have a relatively short larval period of ~ 10 days (Zeldis et al. 1998), and coupled with spawning around seamounts, where Taylor columns (closed circulation cells) can retain eggs and larvae (Rogers 1994), long distant juvenile dispersal is unlikely. The characteristics of orange roughy that might contribute to panmixa over such large distances might relate to their longevity and active adult dispersal. It is generally recognized that some deepwater teleosts (e.g. Coryphaenoides spp., Sebastolobus altivelis) have reduced bone and musculature for neutral buoyancy and low metabolism as an adaptation to the deep-sea environment (Koslow 1996). However, the metabolism of orange roughy is substantially higher than the typical nonmigratory deepwater fishes, and similar to shallow water active species (Koslow 1997), suggesting a high capacity for active migration of adults. Based on this fact, I agree with White et al. (2009a) that there is potential for gene flow under a stepping stone model, especially considering the longevity of orange roughy and the opportunity to spawn many times in a lifetime. Rogers et al. (2006) reported that the lack of differentiation between two Southern Ocean sites in the Patagonian toothfish could be due to stepping stone links via oceanic ridge systems and seamounts. Although the geographic distance among orange roughy sites surveyed here is much larger than between the two sites considered by Rogers et al. (2006), there could be systems connecting ridges or seamounts were orange roughy is found that may promote dispersal of adults.

Nevertheless, the two Northeast Atlantic sites $\left(41^{\circ} \mathrm{N}\right.$ and $\left.50^{\circ} \mathrm{N}\right)$ showed some degree of genetic differentiation from all the other regions. Oceanographic characteristics may be important for explaining this pattern. Tsuchiya et al. (1992) reported an abrupt watermass boundary at $41^{\circ} \mathrm{N}$ at the Azores-Biscay Rise. It is possible that this oceanographic boundary restricts the north-south dispersal of orange roughy $\sim 41^{\circ} \mathrm{N}$ and may help explain our findings. Low but significant differentiation between sites in the Azores region $\left(38-39^{\circ} \mathrm{N}\right)$ and one site off Madeira $\left(33^{\circ} \mathrm{N}\right)$ was detected for the deep-sea species Pagellus bogaraveo with mitochondrial DNA sequences (Stockley et al. 2005). Further studies are needed to determine if oceanographic characteristics at the Azores-Biscay Rise around $41^{\circ} \mathrm{N}$ represent a barrier for dispersal of deep-sea teleosts.

When considering a fine scale of comparison, it is notable that Carlsson et al. (2011) using microsatellites and otolith chemistry found shallow but significant genetic differentiation in orange roughy samples within a complex topographic system in the Northeast Atlantic. The contrast between our results (lack of genetic differentiation at a regional scale, i.e within New Zealand) and the results of Carlsson et al. (2011) could be
explained by the different signals revealed by different types of DNA markers. Although, as mentioned before, White et al (2009a) using microsatellites markers found no significant differentiation in a fine scale study in the Northeast Atlantic. It is possible that the findings of Carlsson et al. (2011) are related to differences in the particular topographic system, as the genetic differences were largely between one flat site and seamount sites.

The genetic structure of orange roughy, as measured here with mtDNA markers, suggest that homogeneity prevails over large geographic areas and there is no measurable genetic divergence among populations. However, this does not necessarily mean that populations are demographically connected. Genetic differentiation may not be detected with selectively neutral markers especially when population sizes are large, and when populations have recently diverged. Indeed the COI gene typically shows low divergence among widely distributed populations in marine fishes (Ward et al. 2009). The genetic homogeneity found in this study may result from 1) panmixia; 2) recent differentiation that is undetected with mitochondrial markers; 3) few migrants per generation that maintain genetic connectivity, but not necessarily demographic connectivity. Nevertheless, the mitochondrial DNA markers employed here have clearly shown high genetic diversity, which is related with historical large population size (McCusker and Bentzen 2010), and genetic connectivity among orange roughy populations in the past, even though more recent events may have changed these patterns.

2.5.2 Implications for fisheries management in New Zealand

Currently there are five areas that are treated separately for assessment and management of orange roughy in New Zealand. Each area (ORH) may consist of one or more stocks. In this study I included samples from Northern New Zealand (ORH1), Ritchie Bank (ORH2A), Chatham Rise and Puysegur (ORH3B), Challenger Plateau (ORH7A) and two sites outside the EEZ, Lord Howe Rise and Louisville Ridge. I found no significant differences among sites and no pattern of IBD. The COI data did not reject a single genetic-stock model for orange roughy in New Zealand waters. However, there was one exception; the Chatham Rise sample (east of central New Zealand) was significantly different to the Puysegur sample (south of New Zealand) at the 5% level $\left(\Phi_{\text {ST }}=0.031\right.$,
$P=0.027$), but not after Bonferroni correction. While additional markers are desirable to determine the extent of differentiation among these sites, the data presented here provide additional genetic support for management of the Puysegur stock as a separate unit to the Chatham Rise stock within ORH3B. It is notable that earlier studies of mtDNA RFLPs's found significant divergence between these sites (Smith et al. 1996; 1997).

2.5.3 Demographic history

The pattern of high haplotype diversity versus low nucleotide diversity found in all the sites and for the total pooled sites indicates that there was a drastic reduction in population size in the past followed by sudden expansion (Grant and Bowen 1998). Similar results have been found in other fishes, Helicolenus dactylopterus, Merluccius capensis, and Glyptocephalus stelleri (Aboim et al. 2005; von der Heyden et al. 2007; Xiao et al. 2010).

Taking into account both, mismatch distribution and skyline analyses and the mutation rates of 2% and $1.2 \% / \mathrm{Myr}$ (Brown et al. 1979; Bermingham et al. 1997), two expansion events were detected for orange roughy. The first was estimated to have occurred between 200,000 to 75,000 years ago during the Middle - Late Pleistocene period and the second of lower magnitude less than 25,000 years ago at the end of the Pleistocene. The timing of the population expansion events largely depends on the mutation rate used, therefore the precise timing of these events is uncertain, but they most likely occurred during the Pleistocene period which span from ~ 1.6 Myr to 10,000 years before present. The Pleistocene was punctuated by a series of large glacialinterglacial changes (Imbrie et al. 1992). Over the last $\sim 175,000$ years, marine ecosystems responded to the climatic events, with changes in species distributions and abundances and changes in productivity (Webb and Bartlein 1992). There were also changes in oceanic circulation, for example, Rasmussen et al. (2003) found that during a period 160,000 to 10,000 years ago the Labrador Sea -one of the main areas for deep water formation in the North Atlantic Ocean today- underwent rapid variations in deep and surface water circulation coinciding with ice rafting events. It has been inferred that glaciations-interglaciations events and associated changes in the marine environment may have had great effects in the demographic history of many marine fishes as the
coastal species Glyptocephalus stelleri and Pennahia argentata (Xiao et al. 2010; Han et al. 2008) and the deep-sea species as Beryx decadactylus (Friess and Sedberry 2011).

2.6 Conclusion

Using mitochondrial DNA sequences I found little evidence of genetic differentiation at both global (between Oceans) and local (within New Zealand) scales. Only the Northeast Atlantic sample showed some degree of genetic differentiation from all other regions. This pattern of historical genetic homogeneity may be explained by dispersal of adults under the stepping-stone model. These findings provide new evidence supporting previous studies that have reported high levels of connectivity in deep-sea species. On the other hand, demographic analyses indicated that there were two population expansion events in orange roughy, one during the Middle-Late Pleistocene and the second at the end of the Pleistocene period.

Chapter 3

Global and fine-scale population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus)

3.1 Abstract

The widely distributed teleost orange roughy, Hoplostethus atlanticus, has been one of the main species targeted in deep-sea fisheries. While morphometric, parasite and otolith analyses have generally found differentiation among populations within ocean basins, genetic techniques have shown contradictory results at different geographical scales. Here, I used nine microsatellite DNA loci to study genetic diversity and differentiation in orange roughy at a global scale using samples from New Zealand, Australia, Namibia, Chile, and the Northeast Atlantic Ocean. Additionally, temporal genetic variation was assessed for eight sites in Northern New Zealand sampled in two different years. The expected heterozygosity was high in all the sites, suggesting high levels of genetic diversity in orange roughy. Overall, I detected low but significant differentiation at the global scale: across the Southern hemisphere and between the Southern hemisphere regions and the Northeast Atlantic Ocean. However, genetic homogeneity was found between New Zealand and Australia. The present data does not showed temporal variation in orange roughy from Northern New Zealand. A pattern of isolation by distance at the global scale suggests stepping-stone migration, which is likely the result of active adult dispersal. This study revealed levels of genetic differentiation at the global scale that were undetected with mitochondrial DNA sequences analyses.

3.2 Introduction

The marine environment was once considered a largely "open" system with few boundaries to dispersal of marine organisms. However, increasing research has revealed that many marine species are not panmictic. Despite the potential for widespread dispersal of swimming adults and/or pelagic early life stages, many studies have reported restricted gene flow at different geographic scales in marine fishes. Oceanographic and topographic features, coupled with behavioural characteristics provide barriers for dispersal in marine species. For example, Fauvelot and Borsa (2011) found high levels of genetic divergence in the widely-distributed Spanish mackerel Scomberomorus commerson and suggested that the high migrating ability of this fish may be associated with phylopatric behaviour rather than promoting wide-scale dispersal. In contrast, there are examples of species with genetically homogeneous populations over wide geographical scales; Wu et al. (2010) found that the yellowfin tuna Thunnus albacares exhibits no genetic differentiation between populations from the Western Pacific and Western Indian Oceans. For commercial marine fishes rates of migration are important to determine the boundaries of a "stock", which is typically considered a population or unit large enough to be self-reproducing (Hilborn and Walters 1992). Stock delineation is of major importance for stock assessment and effective fisheries management, but it is complex and usually requires a multidisciplinary approach (see Begg et al. 1999). One widely used technique to assist in the study of stock structure is the application of neutral molecular markers (e.g. González-Wangüemert et al. 2010; Broderick et al. 2011; Schunter et al. 2011). Genetic studies are particularly useful for deep-sea species for which tag-recapture techniques are difficult to apply. Population genetics studies have been conducted on deep-sea fishes such as the wreckfish Polyprion americanus (Ball et al. 2000), the tusk Brosme brosme (Knutsen et al. 2009) and the alfonsino Beryx decadactylus (Friess and Sedberry 2011) among others. While dispersal by larval stages and swimming adults was related to the finding of a single genetic stock in B. decadactylus in the North Atlantic Ocean (Friess and Sedberry 2011), genetic differentiation among North Atlantic samples of B. brosme was related to bathymetric barriers (Knutsen et al. 2009). At a wider scale including samples from the North and South Atlantic Ocean, the Mediterranean Sea, and the South Pacific Ocean, Ball et al. (2000) found three genetic stocks in the wreckfish P. americanus.

Many deep-sea fishes are K-selected: they are long-lived, have late maturation and low fecundity. The increased fishing pressure on deep-sea species over the last three decades (see Pitcher et al. 2010) coupled with their life history characteristics make them vulnerable to over exploitation (reviewed by Baker et al. 2009). One such species is the widely distributed deep-sea teleost orange roughy, Hoplostethus atlanticus, which is found between 450 and $1,800 \mathrm{~m}$ in the Indian Ocean, South Pacific Ocean, and the Northeast Atlantic Ocean (Horn et al. 1998; Branch 2001; Labbé and Arana 2001). Like other deep-sea fish species, orange roughy occur around seamounts especially during spawning and feeding events. It has been suggested that they could migrate hundreds of kilometres to spawn (Bell et al. 1992; Francis and Clark 1998), but they also disperse to flat areas close to seamounts (Clark 1996). Orange roughy have been one of eight major target species in global seamount fisheries (Pitcher 2010). Fisheries for orange roughy started off New Zealand in 1979 and progressively expanded to Australia, Namibia, the Northeast Atlantic Ocean, the Indian Ocean and Chile (reviewed by Branch 2001). Many stocks have been fished down to or below 30% of initial levels, and some fisheries have been closed or quotas largely reduced (see Clark 2009; Niklitscheck et al. 2010; Foley et al. 2011). Currently, the only remaining large-scale fisheries for orange roughy are around New Zealand (Clark 2009; New Zealand Ministry of Fisheries 2011).

Several studies using parasite, phenotypic traits, and genetic markers have identified population differentiation in orange roughy over a range of geographical scales (Lester et al. 1988; Edmonds et al. 1991; Smolenski et al. 1993; Elliott et al. 1995; Smith et al. 1996; Smith and Benson 1997; Smith et al. 1997; Smith et al. 2002a). Some earlier genetic studies found little differentiation at regional and global scales (Smith 1986; Elliott and Ward 1992; Oke et al. 2002). Using mitochondrial DNA sequences and large sample sizes, I found genetic homogeneity between orange roughy from sites off New Zealand, Australia, Namibia, and Chile, but low levels of genetic differentiation between these regions and the Northeast Atlantic Ocean (Chapter 2). Contrasting levels of genetic differentiation have been detected with microsatellite DNA markers among populations in the Northeast Atlantic Ocean. White et al. (2009a) detected panmixia among five sites between $\sim 40^{\circ} \mathrm{N}$ and $56^{\circ} \mathrm{N}$, some separated by over $2,000 \mathrm{~km}$, while Carlsson et al. (2011) detected low but significant differentiation at a smaller spatial scale within the Porcupine Bank (a complex topographic system $\sim 50^{\circ} \mathrm{N}$), mostly in comparisons between one flat site and seamount sites.

The main goal of the present study was to use microsatellite DNA markers over the same geographic range surveyed with mitochondrial DNA sequences (Chapter 2) to determine levels of nuclear variation and to test for global levels of genetic differentiation that might have been undetected with the mtDNA marker. The second goal was to conduct a fine-scale study around New Zealand to provide new genetic data for local stock discrimination and fisheries management. Samples from a second season for some sites in Northern New Zealand were included to assess temporal variation.

3.3 Materials and methods

3.3.1 Sampling and DNA extraction

Tissue samples from 812 individuals were available from 22 sites in five regions, New Zealand (16 sites), Australia (2 sites), Namibia (1 site), Chile (1 site) and the Northeast Atlantic Ocean (2 sites) (Fig. 3.1). Around northern New Zealand (fishery management area ORH 1), eight sites were sampled in both 2008 and 2010 (Fig. 3.1). Muscle tissue samples were taken from fresh fish and frozen at $-20^{\circ} \mathrm{C}$, or stored in 95% ethanol. Samples from ORH 1 were obtained by New Zealand Ministry of Fishery Observers. Samples from all other sites around New Zealand, Australia, and Namibia were made available from a frozen tissue collection held at NIWA (National Institute of Water and Atmospheric Research Ltd., New Zealand). Samples from Chile and the Northeast Atlantic Ocean were provided from tissue collections held at Universidad Austral de Chile, University College Cork, Ireland and University of the Azores, Portugal.

A small piece of tissue ($\sim 2 \mathrm{~mm}^{3}$) was used for DNA extractions. Genomic DNA was obtained using a salt extraction protocol with proteinase K digestion. The remaining pellet was washed two times with ethanol and resuspended in $100 \mu \mathrm{~L}$ TE buffer. DNA samples were stored at $4^{\circ} \mathrm{C}$.

Fig. 3.1 Map showing the 22 sampling sites across the five regions surveyed. Sites sampled in both, 2008 and 2010 are indicated by (2). Codes for New Zealand sites are: Kai = Kaipara Flats, Tau $=$ Tauroa Knoll, Exp $=$ Explorer Hill, Ton $=$ Tony B, Yas $=$ Yasmin's, Bir $=$ Birdflue, Bou = Boulder Ridge, Mil = Milan's, Nuk = Nukuhou Knoll, Col = Colville Knoll, Mer = Mercury Knoll, $\mathrm{Cla}=$ Clark, Rit $=$ Ritchie Bank, Chat $=$ Chatham Rise, Puy $=$ Puysegur, Cha $=$ Challenger Plateau. Codes for sites outside New Zealand are as follow: Por = Porcupine Bank, Sed $=$ Sedlo (Northeast Atlantic), Nam $=$ Namibia, Alb $=$ Albany, NTas $=$ North Tasmania (Australia), JF = Juán Fernández Archipelago (Chile).

3.3.2 PCR and genotyping

Fourteen published microsatellite DNA loci (Oke et al. 1999; White et al. 2009b) were assessed in preliminary trials to determine amplification success by polymerase chain reaction (PCR) and genotyping errors. Five loci were discarded due to technical difficulties; four of them showed a consistent presence of null alleles and one locus presented a high proportion of missing data (i.e. alleles were not possible to determine for more than 80% of the individuals). I used nine loci: Hat2a, Hat3, Hat7, Hat9a, Hat45 (Oke et al. 1999), HopAt2, HopAt4, HopAt5 and HopAt11 (White et al. 2009b) across all 812 samples. Forward primers were synthesised by Applied Biosystems (Foster City, USA) with the $5^{\text {' }}$-labelled with a florescent tag: VIC, 6FAM, NED or PET. Reverse primers were synthesised by Invitrogen (Auckland, New Zealand). Final PCR reactions of $15 \mu \mathrm{~L}$ total volume consisted of $\sim 20 \mathrm{ng}$ of DNA, 1X PCR buffer $\left(160 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 670 \mathrm{mM}\right.$ Tris- $\mathrm{HCl}, 0.1 \%$ stabilizer), $2 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mu \mathrm{M}$ of each primer, 0.2 mM of each dNTPs, 1.5 U of Taq polymerase and $0.4 \mathrm{mg} \mathrm{mL}^{-1}$ of Bovine Serum Albumin (BSA). PCR cycles were performed in an Eppendorf Mastercycler ep gradient S using 96 well plates. The profile for primers Hat2a, Hat3, Hat7, Hat9a and Hat 45 was: $94^{\circ} \mathrm{C}$ for 3 min , then 10 cycles of denaturing at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $50^{\circ} \mathrm{C}$ for 30 s , extension at $72^{\circ} \mathrm{C}$ for 30 s followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 30 s and a final extension at $72^{\circ} \mathrm{C}$ for 10 min . For primers HopAt2, HopAt4, HopAt5 and HopAt11 the profile was: $95^{\circ} \mathrm{C}$ for 15 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 63^{\circ} \mathrm{C}$ for $90 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $60^{\circ} \mathrm{C}$ for 10 min . Final PCR products of each locus were pooled together for genotyping (three pool plexes each one with three loci). Samples were analyzed on a capillary ABI3730 Genetic Analyser (Applied Biosystems Inc.) using LIZ 500 (-250) size standard by Massey Genome Service (Palmerston North, New Zealand). Alleles were scored using GENEMAPPER 3.7 (Applied Biosystems).

3.3.3 Data analyses

The total data set (812 specimens) was used for spatial and temporal analyses of genetic differentiation. The spatial analyses were performed for 620 individuals collected from the 22 sites (Table 3.1). For the temporal analyses eight sites in northern New Zealand (ORH 1) were sampled in both 2008 and 2010, and 192 individuals were available from

2010 (Table 3.4). MICROCHECKER 2.2.3 (van Oosterhout et al. 2004) was used to detect possible scoring errors and the presence of null alleles. Pairwise tests of linkage disequilibrium (Slatkin 1994; Slatkin and Excoffier 1996) were performed running 10,000 permutations in ARLEQUIN 3.11 (Excoffier et al. 2005). Deviations from Hardy-Weinberg Equilibrium (HWE) for each locus were tested using GENEPOP 4.0 (Rousset 2008). A Bayesian approach implemented in the program BAYESCAN (Foll and Gaggiotti 2008) was used to detect loci under selection.

3.3.3.1 Spatial analyses

Diversity indices were calculated for each of the 22 sites (including the New Zealand sites sampled on 2008). The average number of alleles per locus $\left(N_{\mathrm{a}}\right)$, allelic richness $\left(A_{\mathrm{r}}\right)$, observed number of private alleles $\left(P_{\mathrm{a}}\right)$ and the inbreeding coefficient $\left(F_{\mathrm{IS}}\right)$ were calculated in FSTAT 2.9.3.2 (Goudet 1995; 2001). Allelic richness calculates the number of alleles independent of sample size. The observed $\left(H_{\mathrm{O}}\right)$ and expected $\left(H_{\mathrm{E}}\right)$ heterozygosities were determined with ARLEQUIN and HWE tests were performed using 100,000 steps in Markov Chain and 10,000 dememorisation steps.

The pairwise genetic divergence between sites using the fixation index F_{ST} was estimated with ARLEQUIN. The software POWSIM 4.1 (Ryman and Palm 2006) was used to estimate the statistical power of the loci to detect population differentiation at $F_{\text {ST }}$ level of 0.005 using Chi-squared and Fisher's exact tests. Two combinations of settings were used to generate the desired F_{ST} value, $N_{\mathrm{e}}=2,000, t=20$ and $N_{\mathrm{e}}=10,000$, $t=100$; using 1,000 and 100 replicates, respectively, and the sampling sizes of each of the 22 sites. Estimates of the statistical α (type I) error were generated using samples drawn directly from the base population, omitting the drift steps $(t=0)$ and using 1,000 replicates. Another measure that is able to detect differentiation even when diversity is high is the estimator of actual differentiation, $D_{\text {est }}$ (Jost 2008). $D_{\text {est }}$ was calculated for pairwise comparisons using 1,000 bootstrap replicates in SMOGD 1.2.5 (Crawford 2010). ARLEQUIN was also used to perform AMOVA and Mantel tests. For $F_{\text {ST }}$ and AMOVA 10,000 permutations were implemented. The Mantel tests were performed to determine the occurrence of the isolation by distance (IBD) pattern at a global scale (with sites from ORH 1 pooled together), and at a fine-scale within New Zealand, where all the sites were considered separate. Correlation between genetic differentiation
$F_{\mathrm{ST}} /\left(1-F_{\mathrm{ST}}\right)$ and geographic distance (ln m) between sites, was assessed performing 1,000 permutations. The shortest distance between sites was estimated using Google Earth 4.3.

To visualize patterns of population differentiation, a Principal Component Analysis (PCA) was performed in P.C.A.-GEN 1.2 (http://www2.unil.ch/popgen/softwares/ pcagen.htm). The program tests the significance of total inertia as well as individual axes inertia. Population structure was also evaluated with STRUCTURE 2.3.3 (Pritchard et al. 2000). The program CONVERT 1.31 (Glaubitz 2004) was used to obtain the STRUCTURE file. STRUCTURE assigns individuals probabilistically to K groups maximizing HWE and linkage equilibrium. Sample location was used as a prior as this improves the performance of the analysis when the $F_{\text {ST }}$ values are low (Hubisz et al. 2009). The no admixture model and correlated allele frequencies (Falush et al. 2003) were implemented. Ten independent runs were performed for each K ($K=$ two to 22) with 100,000 iterations and a burn-in length of 100,000 . The program STRUCTURE HARVESTER (Earl and vonHoldt 2011) was used to apply the Evanno method (Evanno et al. 2005) to detect the value of K (number of genetic groups) that best fit the data.

3.3.3.2 Temporal analyses

Temporal analyses were conducted for the eight sampling sites around Northern New Zealand (ORH 1) sampled in 2008 and 2010 (see Fig. 3.1). The diversity indices, average number of alleles per locus $\left(N_{\mathrm{a}}\right)$, allelic richness $\left(A_{\mathrm{r}}\right)$, observed number of private alleles $\left(P_{\mathrm{a}}\right)$, inbreeding coefficient $\left(F_{\mathrm{IS}}\right)$, and observed $\left(H_{\mathrm{O}}\right)$ and expected $\left(H_{\mathrm{E}}\right)$ heterozygosities were calculated for each of the eight sites sampled in 2010. An AMOVA was conducted to compare samples nested from both seasons within sampling sites to evaluate the variation among sampling sites relative to variation among seasons within sampling sites. To further explore the data, variability among temporal samples was assessed with pairwise F_{ST} and $D_{\text {est }}$ analyses. Pairwise F_{ST} values were calculated in ARLEQUIN using 10,000 permutations and $D_{\text {est }}$ pairwise comparisons were calculated in SMOGD using 1,000 bootstrap replicates. POWSIM 4.1 was used to evaluate the statistical power of the loci to detect population differentiation at F_{ST} level of 0.005 for the temporal data set. The settings were the same as with the spatial analysis, two
combinations of settings were used, $N_{\mathrm{e}}=2,000, t=20$ and $N_{\mathrm{e}}=10,000, t=100$; with 1,000 and 100 replicates, respectively, and the sampling sizes of each of the 16 samples (eight sites per season).

3.4 Results

The genotypes of each individual for the spatial and temporal analyses are found in Appendixes C and D. MICROCHECKER analyses found no scoring errors. Five loci showed an excess of homozygotes suggesting the presence of null alleles, but none were consistent across sites (i.e. in two to four sites from the total 22). No tests for linkage disequilibrium were significant after Bonferroni correction ($\alpha=0.001$). According to GENEPOP, two loci (Hat2a and Hat7) showed deviations from Hardy-Weinberg expectations but only at single sites. No loci were identified as outliers under selection, although locus Hat 3 showed higher F_{ST} values in comparison with the other eight loci. Statistics per locus for each sampling site are found in Appendix E.

3.4.1 Spatial analyses

Summary statistics for each site across all loci are reported in Table 3.1. The largest number of samples was obtained from New Zealand (430), with 16 sites surveyed with 22 to 37 samples per site. The sample sizes for the other four regions, Australia, Namibia, Chile, and the Northeast Atlantic, ranged from 46 to 49 . The average number of alleles per locus $\left(N_{\mathrm{a}}\right)$ ranged from 10.8 to 16.9 and allelic richness $\left(A_{\mathrm{r}}\right)$ from 9.2 to 11.2. The Porcupine Bank in the Northeast Atlantic had the lowest allelic diversity as indicated by both, N_{a} and A_{r}. The highest allelic diversity was obtained for two sites in New Zealand, where Milan's presented the highest N_{a} and A_{r}. The A_{r} was equally high in the Challenger Plateau. A few private alleles (between 1 and 3) were detected at 12 sites. The observed and expected heterozygosities were similar across all sites, ranging from 0.79 to 0.88 and from 0.85 to 0.88 , respectively. There were no significant departures from Hardy-Weinberg equilibrium in any of the sites and concordantly, none of the $F_{\text {IS }}$ values were significantly different from zero after Bonferroni correction ($\alpha=$ $0.00025, P>0.01)$.

Table 3.1 Summary statistics for the levels of genetic variation across all loci for 22 sampling sites grouped in five regions. ORH 1 sites (see note below table) were sampled on 2008. Sample size (n), average number of alleles per locus (N_{a}), allelic richness $\left(A_{\mathrm{r}}\right)$, observed number of private alleles $\left(P_{\mathrm{a}}\right)$, observed heterozygosity $\left(H_{\mathrm{O}}\right)$, expected heterozygosity $\left(H_{\mathrm{E}}\right)$, HardyWeinberg probability (P_{HWE}) and the inbreeding coefficient $\left(F_{\text {IS }}\right) . P>0.01$ for all $F_{\text {IS }}$ values (Bonferroni correction $\alpha=0.00025$). Total $n=620$

Region	Sampling sites*		Code	N	$N_{\text {a }}$	A_{r}	$P_{\text {a }}$	H_{0}	$H_{\text {E }}$	$P_{\text {HWE }}$	$F_{\text {IS }}$
New Zealand	Kaipara Flats	1A	Kai	37	15.3	10.4	-	0.85	0.86	0.446	0.013
	Tauroa Knoll	1B	Tau	24	12.6	10.1	1	0.79	0.85	0.329	0.075
	Explorer Hill	1B	Exp	24	13.8	10.8	1	0.81	0.86	0.412	0.059
	Tony B	1B	Ton	24	12.7	10.3	-	0.87	0.86	0.550	-0.019
	Yasmin's	1B	Yas	24	13.7	10.6	1	0.81	0.86	0.469	0.060
	Birdflue	1 C	Bir	36	16.0	10.9	3	0.83	0.87	0.412	0.038
	Boulder Ridge	1 C	Bou	22	12.7	10.4	-	0.85	0.87	0.529	0.022
	Milan's	1 C	Mil	36	16.9	11.2	-	0.84	0.86	0.458	0.030
	Nukuhou Knoll	1D	Nuk	22	13.7	11.0	2	0.83	0.86	0.365	0.040
	Colville Knoll	1D	Col	24	13.8	11.1	1	0.85	0.86	0.560	0.018
	Mercury Knoll	1D	Mer	24	14.1	11.0	-	0.88	0.87	0.615	-0.013
	Clark	1D	Cla	24	14.0	10.9	-	0.84	0.88	0.344	0.046
	Ritchie Bank	2 A	Rit	24	13.4	10.6	-	0.86	0.86	0.467	0.006
	Chatham Rise	3B	Chat	24	13.0	10.6	1	0.84	0.86	0.464	0.013
	Puysegur	3B	Puy	36	15.7	10.9	1	0.83	0.85	0.578	0.018
	Challenger Plateau	7A	Cha	25	14.9	11.2	1	0.87	0.87	0.497	0.000
Australia	North Tasmania		NTas	22	11.4	9.8	-	0.84	0.87	0.478	0.033
	Albany		Alb	25	13.8	10.8	1	0.86	0.86	0.498	0.000
Namibia	Namibia		Nam	48	14.7	10.0	3	0.82	0.86	0.436	0.037
Chile	Juan Fernández		JF	46	14.7	10.2	1	0.83	0.86	0.371	0.039
Northeast	Porcupine Bank		Por	23	10.8	9.2	-	0.81	0.86	0.460	0.054
Atlantic	Sedlo		Sed	26	12.0	9.7	-	0.83	0.85	0.359	0.028

*For New Zealand sampling sites, reference to main management areas for orange roughy as defined by the Ministry of Fisheries is indicated by: $1 \mathrm{~A}-1 \mathrm{D}=$ subareas within ORH $1,2 \mathrm{~A}=$ ORH 2A, 3B $=$ ORH 3 B and $7 \mathrm{~A}=\mathrm{ORH} 7 \mathrm{~A}$

At a global scale, the $F_{\text {ST }}$ analysis revealed a lack of differentiation in most comparisons between New Zealand and Australian sites. A few $F_{\text {ST }}$ values were significant ($P<0.05$), and $D_{\text {est }}$ values between sites in these two regions ranged from 0.000 to 0.039 (Table 3.2). In general, comparisons of New Zealand sites with North Tasmania resulted in higher F_{ST} and $D_{\text {est }}$ values than comparisons with Albany; and the $F_{\text {ST }}$ value between North Tasmania and Albany was low but significant ($P<0.05$, Table 3.2). On the other hand, most F_{ST} values showed significant differentiation $(P<0.05)$ between the New Zealand/Australian sites and those from Namibia, Chile, and the Northeast Atlantic (Table 3.2). The results of the POWSIM analysis for the two combinations of settings showed that the power to detect population differentiation at $F_{\text {ST }} 0.005$ was 1.0 (100% of the tests with both, Chi-squared and Fisher's exact tests) suggesting that the number of loci and sample sizes were sufficient to detect differentiation with a high degree of confidence. The estimates of the statistical α (type I) error were 0.062 and 0.090 with the Chi-squared and Fisher's exact test, respectively. Some comparisons were also significant after correction for multiple tests $(P<0.0002)$. $D_{\text {est }}$ values between sites in the different regions ranged from 0.000 to 0.114 (Table 3.2). Sites were pooled by region to perform new F_{ST} and $D_{\text {est }}$ analyses. The revised analyses on pooled samples showed significant F_{ST} values $(P<0.005)$ between regions, but not between New Zealand and Australia (Table 3.3). Similarly, $D_{\text {est }}$ values of pooled samples ranged from 0.0125 to 0.1031 between regions, but was 0.0016 between New Zealand and Australia (Table 3.3). The F_{ST} analysis showed a lack of genetic differentiation at a fine-scale around New Zealand (Table 3.2) with only eight comparisons (out of 120) showing significant differentiation ($F_{\mathrm{ST}}=0.006-0.010, P<$ 0.05), and most of these corresponded to comparisons between the Northern sites and the Chatham Rise or Puysegur sites (see Fig. 3.1). Similarly, $D_{\text {est }}$ values were low within New Zealand, ranging from 0.000 to 0.024 , with a mean value of 0.002 . The highest $D_{\text {est }}$ values (0.012-0.024) were obtained in comparisons with the Chatham Rise or Puysegur sites.
Table 3.2 Pairwise $F_{\text {ST }}$ values (below diagonal) and $D_{\text {est }}$ values (above diagonal) between sampling sites. Codes and reference to each
management area for New Zealand sites are found in Table 3.1. F_{ST} values shown in bold indicate statistically significant differences considering
$P<0.05$. Values with * indicate significant differentiation after Bonferroni correction for multiple tests $(P<0.0002)$

	New Zealand																Australia		Nam	Chile JF	NE Atlantic	
	Kai	Tau	Exp	Ton	Yas	Bir	Bou	Mil	Nuk	Col	Mer	Cla	Rit	Chat	Puy	Cha	NTas	Alb	Nam		Por	Sed
Kai		0.00	0.000	0.000	-0.004	0.000	0.000	-0.002	000	0.000	-0.001	0.002	. 003	0.000	0.000	-0.010	0.012	0.004	0.008	0.047	0.048	0.056
Tau	0.001		0.009	0.003	0.000	0.002	0.000	0.001	0.001	0.001	0.001	0.013	0.005	0.000	0.021	0.000	0.004	-0.004	0.028	0.064	0.042	0.025
Exp	-0.002	-0.001		0.001	0.000	0.000	-0.009	-0.002	0.000	0.000	0.000	0.000	-0.002	0.001	0.001	0.007	0.008	0.000	0.017	0.029	0.046	0.046
Ton	-0.002	-0.002	0.003		0.000	-0.002	0.000	0.000	0.000	-0.005	0.000	-0.001	0.000	0.012	0.020	-0.008	0.007	0.000	0.010	0.060	0.026	0.035
Yas	-0.005	-0.007	-0.005	-0.007		-0.002	0.000	0.000	0.002	0.000	0.000	0.003	0.001	0.000	0.016	-0.007	0.005	-0.005	0.005	0.057	0.046	0.045
Bir	-0.004	0.001	-0.008	-0.008	-0.010		-0.001	0.000	0.000	0.000	-0.002	0.004	0.000	0.012	0.000	-0.003	0.015	0.000	0.013	0.036	0.026	0.072
Bou	-0.001	-0.004	-0.007	-0.001	-0.002	-0.009		0.000	0.000	0.000	-0.004	0.000	0.000	0.008	0.000	-0.019	0.000	-0.001	0.012	0.013	0.022	0.027
Mil	-0.004	-0.003	-0.001	-0.002	-0.001	-0.008	0.002		0.003	0.000	0.000	0.002	0.006	0.001	0.002	0.000	0.030	0.000	0.019	0.046	0.066	0.070
Nuk	0.002	-0.001	-0.001	-0.001	0.002	-0.005	-0.001	0.008		0.003	0.000	0.000	0.005	0.000	0.002	0.000	0.025	-0.001	0.020	0.065	0.010	0.020
Col	-0.006	-0.005	-0.012	-0.017	-0.018	-0.001	-0.015	-0.018	-0.006		-0.003	0.003	-0.002	0.001	0.001	0.000	0.008	0.002	0.016	0.027	0.024	0.044
Mer	-0.005	-0.003	-0.001	-0.001	-0.006	-0.009	-0.005	-0.004	-0.001	-0.018		0.000	-0.001	0.012	-0.001	-0.012	0.007	0.000	0.005	0.028	0.000	0.002
Cla	0.001	0.005	0.001	-0.003	0.002	-0.004	-0.002	0.004	0.005	-0.010	-0.002		0.009	0.024	0.013	0.000	0.001	0.006	0.033	0.076	0.044	0.037
Rit	0.002	-0.001	-0.003	-0.001	-0.003	-0.004	0.001	0.003	0.003	-0.015	-0.001	0.003		0.001	0.006	-0.004	0.025	0.000	0.008	0.053	0.063	0.065
Chat	-0.001	-0.008	0.001	0.007	-0.003	-0.001	0.005	0.001	0.003	-0.012	0.010	0.010	0.001		0.017	0.000	0.022	0.000	0.027	0.041	0.056	0.079
Puy	-0.002	0.003	-0.002	0.006	0.002	-0.008	0.001	0.002	0.001	-0.012	-0.004	0.008	0.004	0.007		0.000	0.039	0.001	0.015	0.016	0.067	0.083
Cha	-0.003	-0.001	0.003	-0.005	-0.005	-0.008	-0.005	0.005	0.004	-0.017	-0.003	-0.003	-0.002	0.007	0.005		0.008	0.000	0.007	0.041	0.022	0.024
NTas	0.004	0.001	0.008	0.003	0.004	-0.001	-0.003	0.008	0.007	-0.007	0.004	0.001	0.006	0.011	0.010	0.001		0.011	0.036	0.063	0.050	0.055
Alb	0.002	-0.008	-0.005	0.001	-0.005	-0.005	-0.002	0.001	-0.001	-0.016	-0.001	0.007	-0.004	-0.004	0.001	0.002	0.006		0.011	0.039	0.073	0.037
Nam	0.005	0.009	0.008	0.007	0.004	0.001	0.010	*0.011	0.008	-0.005	0.007	0.012	0.008	0.008	*0.010	0.011	0.010	0.007		0.056	0.041	0.055
JF	*0.013	*0.015	0.010	*0.015	0.012	0.006	0.009	*0.017	0.013	-0.003	0.015	*0.016	*0.020	*0.013	*0.012	*0.021	*0.017	0.011	*0.011		0.080	0.114
Por	0.009	0.004	0.013	0.012	0.009	0.001	0.008	0.010	0.006	-0.003	-0.002	0.006	0.011	*0.019	0.014	0.011	0.014	0.011	0.014	*0.020		0.000
Sed	0.013	0.004	0.011	0.008	0.011	0.007	0.009	*0.015	0.010	-0.004	0.003	0.011	0.014	*0.018	*0.015	0.011	0.011	0.010	*0.019	*0.026	-0.003	

Table 3.3 Pairwise $F_{\text {ST }}$ values (below diagonal) and $D_{\text {est }}$ values (above diagonal) between the five regions. Values shown in bold indicate statistically significant differences considering Bonferroni correction ($P<0.005$)

	New Zealand	Australia	Namibia	Chile	Northeast Atlantic
New Zealand		0.0016	0.0125	0.0418	0.0667
Australia	0.0002		0.0135	0.0461	0.0574
Namibia	$\mathbf{0 . 0 0 8 2}$	$\mathbf{0 . 0 0 6 4}$		0.0559	0.0487
Chile	$\mathbf{0 . 0 1 4 0}$	$\mathbf{0 . 0 1 1 9}$	$\mathbf{0 . 0 1 0 9}$		0.1031
Northeast Atlantic	$\mathbf{0 . 0 1 1 1}$	$\mathbf{0 . 0 1 0 3}$	$\mathbf{0 . 0 1 7 4}$	$\mathbf{0 . 0 2 3 6}$	

An AMOVA over all sites showed that most of the variation (99\%) was within sites. A significant but weak pattern of IBD was detected within New Zealand (Mantel test, r $=0.25, P=0.02$), driven by the consistent differentiation of the Chatham Rise and Puysegur sites from the Northern sites. A clear pattern of IBD was detected at the global scale (Mantel test, $r=0.62, P=0.001$). In the PCA most of the variation was explained by axis PC1 (Fig. 3.2). In the plot, Australian sites were next to New Zealand sites and sites from Namibia, Chile and the Northeast Atlantic appeared distant from New Zealand/Australia, with the site from Chile being the most distant.

Interestingly, STRUCTURE revealed three genetic groups ($K=3$ was the best K obtained with STRUCTURE HARVESTER, Fig. 3.3). In concordance with the analyses above, one group included all the New Zealand and Australian sites, and a second group corresponded to the Northeast Atlantic sites. However, despite the significant differentiation detected between Namibia and Chile ($F_{\mathrm{ST}}=0.011 P<0.0002, D_{\text {est }}$ $=0.056$), the third group included the sites from Namibia and Chile (Fig. 3.4). In the PCA plot the closest site to the Chilean site was Namibia.

Fig. 3.2 Plot of the first two principal components axes of microsatellite DNA variation. Each symbol corresponds to one of the 22 sampling sites. \diamond : sites from the ORH 1 area in New Zealand (see Table 3.1) sampled on 2008, \diamond : other sites around New Zealand, O : Australian sites, 米: Namibia, + : Chile, : Northeast Atlantic sites. The axe PC1 explains most of the variation. $P=0.01$

Fig. 3.3 Evanno et al. (2005) plot obtained from STRUCTURE HARVESTER. The modal value of this distribution is the best number of K groups for the data
Fig. 3.4 Population structure inferred by STRUCTURE for $K=3$ (see Fig. 3.3) among the 22 sampling sites (Codes as in Table 3.1). Each colour
represents a genetic group defined by STRUCTURE. Individuals are represented as thin vertical lines partitioned into coloured segments according
to their probability of assignment to each genetic cluster

3.4.2 Temporal analyses

Analyses were conducted for eight sites in ORH 1 that were sampled in both 2008 and 2010 (see Fig. 3.1). A summary of the genetic indexes per site surveyed on 2010 are shown in Table 3.4 (genetic indexes for sites surveyed on 2008 are shown in Table 3.1). The mean number of alleles per locus $\left(N_{\mathrm{a}}\right)$ and the allelic richness $\left(A_{\mathrm{r}}\right)$ for each site were similar between years, particularly for the allelic richness that is independent of the sample size. The observed and expected heterozygosities were also very similar between the two years, ranging from 0.80 to 0.87 and from 0.85 to 0.87 , respectively for the sites sampled on 2010. All the sites were in Hardy-Weinberg equilibrium in both years and none of the $F_{\text {IS }}$ values were significant after Bonferroni correction (sites sampled on 2010: $\alpha=0.00069, P$ values >0.01).

The AMOVA revealed a lack of spatial and temporal differentiation, since no variation was found among sites nor between seasons within each site sampled in 2008 and 2010. Similarly, most pairwise F_{ST} and $D_{\text {est }}$ values were low and not significant ($P>$ 0.05) (Table 3.5). None of the F_{ST} values were significant after Bonferroni correction (P >0.0004). POWSIM result for the temporal data set was the same as for the spatial data set: the power to detect population differentiation at $F_{\text {ST }} 0.005$ was also $1.0(100 \%$ of the tests with both, Chi-squared and Fisher's exact tests). The four F_{ST} comparisons that were significant at $P<0.05$, also showed some of the highest $D_{\text {est }}$ values (0.012-0.031) and six other comparisons showed $D_{\text {est }}$ values ≥ 0.010 (see Table 3.5). It is worth noting that two sites, Milan's and Colville Knoll, showed $D_{\text {est }}$ values ≥ 0.010 between years.

Table 3.4 Summary statistics for the levels of genetic variation across all loci for eight sampling sites from the ORH 1 area sampled in 2010. Sample size (n), average number of alleles per locus $\left(N_{\mathrm{a}}\right)$, allelic richness $\left(A_{\mathrm{r}}\right)$, observed number of private alleles $\left(P_{\mathrm{a}}\right)$, observed heterozygosity $\left(H_{\mathrm{O}}\right)$, expected heterozygosity $\left(H_{\mathrm{E}}\right)$, Hardy-Weinberg probability (P_{HWE}) and the inbreeding coefficient $\left(F_{\text {IS }}\right) . P>0.01$ for all $F_{\text {IS }}$ values (Bonferroni correction $\alpha=0.00069$). Total $n=192$

Sampling sites	n	N_{a}	A_{r}	H_{O}	H_{E}	P_{HWE}	$F_{\text {IS }}$
Kaipara Flats	24	13.9	11.4	0.85	0.87	0.568	0.017
Tauroa Knoll	24	12.4	10.6	0.87	0.86	0.644	-0.006
Explorer Hill	24	13.1	10.9	0.82	0.85	0.460	0.035
Tony B	24	13.9	11.1	0.85	0.87	0.564	0.020
Birdflue	24	13.1	10.6	0.80	0.85	0.374	0.057
Boulder Ridge	24	13.8	11.3	0.82	0.85	0.471	0.035
Milan's	24	12.8	10.8	0.87	0.87	0.336	0.005
Colville Knoll	24	13.8	11.1	0.84	0.86	0.582	0.027

Table 3.5 Pairwise $F_{\text {ST }}$ values (below diagonal) and $D_{\text {est }}$ values (above diagonal) between ORH 1 sites sampled in 2008 (1) and 2010 (2). Codes and
reference to each subarea are found in Table 3.1. F_{ST} values shown in bold indicate statistically significant differences considering $P<0.05$. None of the
F_{ST} values were significant after Bonferroni correction for multiple tests ($P>0.0004$)

	Kai (1)	Kai(2)	Tau (1)	Tau (2)	Exp (1)	Exp (2)	Ton (1)	Ton (2)	$\operatorname{Bir}(1)$	Bir (2)	Bou (1)	Bou (2)	Mil (1)	Mil (2)	Col (1)	Col (2)
Kai (1)		-0.0040	0.0006	0.0000	0.0004	-0.0045	0.0002	0.0000	0.0000	0.0292	0.0001	0.0038	-0.0017	0.0018	0.0000	0.0005
Kai (2)	-0.0029		0.0001	0.0000	0.0001	0.0000	-0.0001	-0.0117	-0.0001	0.0000	-0.0039	0.0000	-0.0216	0.0108	0.0002	-0.0004
Tau (1)	0.0014	-0.0001		0.0000	0.0091	-0.0033	0.0034	0.0142	0.0021	0.0048	0.0001	0.0027	0.0007	0.0178	0.0005	0.0011
Tau (2)	-0.0014	0.0019	-0.0046		-0.0040	-0.0100	0.0000	0.0000	-0.0151	0.0008	-0.0061	-0.0130	-0.0003	0.0000	0.0002	0.0012
Exp (1)	-0.0023	0.0009	-0.0003	-0.0048		0.0000	0.0015	-0.0002	0.0000	0.0026	-0.0091	-0.0006	-0.0023	0.0001	0.0003	0.0023
Exp (2)	-0.0058	-0.0007	-0.0062	-0.0086	-0.0048		-0.0001	0.0028	0.0000	0.0000	0.0000	-0.0037	0.0000	0.0010	0.0004	-0.0012
Ton (1)	-0.0019	0.0003	-0.0019	-0.0001	0.0028	-0.0017		-0.0003	-0.0024	-0.0048	0.0000	0.0000	-0.0002	0.0002	-0.0054	0.0069
Ton (2)	-0.0018	-0.0039	0.0029	0.0023	-0.0025	-0.0002	-0.0036		0.0021	0.0006	0.0000	0.0038	0.0001	0.0043	0.0004	0.0009
Bir (1)	-0.0038	-0.0066	0.0012	-0.0094	-0.0077	-0.0070	-0.0085	-0.0039		0.0074	-0.0015	-0.0002	0.0000	0.0006	0.0000	0.0000
Bir (2)	$\mathbf{0 . 0 0 8 1}$	0.0012	-0.0006	0.0047	0.0037	-0.0001	-0.0047	0.0015	-0.0008		0.0010	0.0015	0.0128	0.0082	0.0070	0.0107
Bou (1)	-0.0014	-0.0046	-0.0038	-0.0028	-0.0067	-0.0026	-0.0008	-0.0016	-0.0088	0.0042		0.0001	0.0001	-0.0025	0.0000	0.0000
Bou (2)	0.0009	0.0003	-0.0040	-0.0058	-0.0050	-0.0046	-0.0004	0.0055	-0.0075	0.0069	-0.0002		0.0000	0.0315	-0.0002	0.0173
Mil (1)	-0.0042	-0.0046	-0.0030	0.0004	-0.0073	-0.0055	-0.0023	0.0043	-0.0078	$\mathbf{0 . 0 0 7 2}$	0.0020	0.0016		0.0215	0.0000	0.0054
Mil (2)	-0.0070	-0.0029	-0.0074	-0.0090	-0.0057	0.0006	-0.0095	-0.0090	-0.0094	-0.0017	-0.0158	$\mathbf{0 . 0 0 8 8}$	-0.0023		0.0003	0.0037
Col (1)	-0.0065	-0.0073	-0.0046	-0.0146	-0.0124	-0.0122	-0.0170	-0.0135	-0.0001	-0.0063	-0.0153	-0.0146	-0.0182	-0.0211		0.0266
Col (2)	-0.0006	-0.0014	0.0001	0.0031	0.0023	-0.0024	0.0034	0.0006	-0.0078	0.0037	-0.0023	$\mathbf{0 . 0 0 8 9}$	0.0026	-0.0051	-0.0048	

3.5 Discussion

3.5.1 Microsatellite DNA diversity

Levels of genetic variation were high and similar among all the sites, with a mean expected heterozygosity $\left(H_{\mathrm{E}}\right)$ of 0.86 ; similar, but slightly lower mean values were reported for orange roughy by White et al. (2009a) $\left(H_{\mathrm{E}}=0.72\right)$ and Carlsson et al. (2011) $\left(H_{\mathrm{E}}=0.77\right)$. Considerably lower diversity was reported by Oke et al. (2002) (mean $H_{\mathrm{E}}=0.40$), which is probably related to the fact that of the six loci used by Oke et al. (2002) three have low heterozygosities and were not used in this study. High levels of genetic diversity for microsatellite DNA markers are typical of commercially exploited deep-sea teleosts, such as the redfish Sebastes mentella (Roques et al. 2002, $H_{\mathrm{E}}=0.87$), the roundnose grenadier Coryphaenoides rupestris (White et al. 2010, $H_{\mathrm{E}}=$ 0.77), and the blue hake Antimora rostrata (White et al. 2011, $H_{\mathrm{E}}=0.83$). A positive relationship between genetic diversity and abundance in fishes has been determined by McCusker and Bentzen (2010), especially for microsatellite DNA markers. However, the high levels of genetic diversity in orange roughy detected here and in other studies with microsatellite DNA markers (White et al. 2009a; Carlsson et al. 2011) and mtDNA markers (Chapter 2), does not rule out the possibility that commercial exploitation has impacted on the genetic composition and abundance of orange roughy populations. Fisheries for the species begun just ~ 30 years ago, and because of the long-life span of orange roughy (more than 100 years, Mace et al. 1990; Fenton et al. 1991) and late maturity (~ 30 years, Fenton et al. 1991; Francis and Horn 1997) it is unlikely that reduction in levels of genetic diversity would be detected at this early stage with selectively neutral markers, as inferred previously for orange roughy (Baker et al. 1995; Carlsson et al. 2011).

3.5.2 Global scale population structure

Overall, I detected low but significant levels of differentiation at the global scale, within the Southern hemisphere, and between the Southern hemisphere sites and the Northeast Atlantic Ocean. Genetic homogeneity prevailed between orange roughy samples from around New Zealand and Australia, although there was some differentiation between
few sites. The general lack of differentiation among sites around New Zealand and Australia was reported with allozymes, microsatellite DNA, and mitochondrial DNA sequence analyses (Elliott and Ward 1992; Oke et al. 2002; Chapter 2). However, using mtDNA RFLP's Smolenski et al. (1993) found evidence of genetic differentiation between Southeastern Australian and New Zealand samples. In another deep-sea fish, microsatellite DNA analyses showed no differentiation between New Zealand and Australian samples of the wreckfish Polyprion americanus (Ball et al. 2000). Significant differentiation between orange roughy sites in the Northeast Atlantic Ocean and the Southern hemisphere was also detected with mitochondrial DNA COI gene sequences (Chapter 2), and here the highest values of differentiation were between pooled sites in the Northeast Atlantic Ocean and Southern hemisphere regions $\left(F_{\mathrm{ST}}=\right.$ $0.010-0.023$ and $D_{\text {est }}=0.049-0.103$). It is possible that oceanographic characteristics at $41^{\circ} \mathrm{N}$ restrict the north-south dispersal of orange roughy (see Discussion section in Chapter 2). The present study revealed levels of genetic differentiation within the Southern hemisphere (Australia/New Zealand, Namibia, and Chile) that were undetected with the COI gene sequences (Chapter 2). Similarly, in the deep-sea wreckfish P. americanus a clear pattern of differentiation between sites in the Northern and Southern hemisphere was detected with microsatellite DNA markers (Ball et al. 2000), but little evidence of genetic divergence was found with mtDNA markers (Sedberry et al. 1996).

Low, but significant values of microsatellite DNA differentiation at the global scale (pooled sites, $F_{\mathrm{ST}}=0.006-0.023$ and $D_{\text {est }}=0.012-0.103$) indicate a lack of panmixia, as might be expected given the large geographic distances between the regions ($\sim 8,000$ to $\sim 20,000 \mathrm{~km}$). Genetic distance was correlated with geographic distance (Mantel test, r $=0.62, P=0.001)$. These findings suggest a restriction to gene flow at the global scale and some fidelity to specific regions. However, it is probable that some degree of dispersal occurs, particularly, within the Southern hemisphere. Long distance dispersal is unlikely to occur during the early life-history stages because eggs and larvae are probably retained around seamounts (Rogers 1994), and the pelagic larval period is extremely short (~ 10 days, Zeldis et al. 1998). The predominant lack of differentiation found between New Zealand and Australia, and the low levels of differentiation within the Southern hemisphere, most likely result from active stepping-stone dispersal of long-lived adults that are able to spawn many times during their life (Elliott et al. 1994; White et al. 2009a).
3.5.3 Fine-scale population structure and implications for fisheries management in New
Zealand Zealand

In New Zealand orange roughy fisheries have been divided into different areas (code ORH) for assessment and management. This is the first genetic study to include samples from sites around Northern New Zealand (ORH 1, 12 sites); and considering the other 4 sites sampled around New Zealand, this study included samples from most of the orange roughy fishing grounds inside the New Zealand Economic Exclusive Zone (see Table 3.1), except for the area ORH 7B (off the west coast of the South Island). In general, I found a lack of differentiation within New Zealand as revealed by STRUCTURE and PCA analyses. The spatial F_{ST} analysis showed that only 6.7% of the comparisons were significant $(P<0.05)$ among New Zealand sites. Similarly, in the spatial $D_{\text {est }}$ analysis only 10% of the comparisons showed values higher than 0.01 . Significant differentiation was found between the Chatham Rise and Puysegur sites (F_{ST} $=0.007, P=0.02, D_{\text {est }}=0.017$), and most other examples of significant differentiation involved these two sites (see Table 3.2). Previous studies using mtDNA RFLPs's (Smith et al. 1996; 1997), and mitochondrial DNA sequences (Chapter 2) found significant divergence between Chatham Rise and Puysegur; while an allozyme study detected significant differentiation between samples from the east coast of New Zealand and samples of the Chatham Rise (Smith and Benson 1997). Together these combined studies indicate that there is a restriction to dispersal among these sites supporting the current management of the Chatham Rise and Puysegur as separate stocks within ORH 3B. In the spatial F_{ST} analysis only one comparison showed significant differentiation ($P<0.05$) that did not include the Chatham Rise or Puysegur sites, this was the comparison between Milan's from ORH 1C and Nukuhou Knoll from ORH 1D.

The temporal analyses conducted for eight sites within ORH 1 showed a lack of significant differentiation between sites and years, suggesting temporal stability in genetic variation and panmixia for orange roughy at this fine-scale. Genetic homogeneity in orange roughy has been also found at a fine-scale in the Northeast Atlantic Ocean (White et al. 2009a). However, the present findings should be treated carefully because it may be the result of highly variable loci and sample sizes of less than 50 specimens per site. Temporal differentiation in orange roughy has been detected in previous studies. Smith and Benson (1997) found spatial and temporal differentiation at one allozyme locus among multiple samples from the Chatman Rise surveyed in
winter and summer seasons in the same year. Some degree of temporal differentiation was also detected at one site off South Australia with mtDNA RFLP's, that corresponded with biological, reproductive and catch-rate data (Smolenski et al. 1993). The subtle temporal differentiation detected by Smith and Benson (1997) and Smolenski et al. (1993) may be related with the inference that mature females are able to spawn many times in their life time, but they do not spawn every year, and may not participate in annual migrations to spawning sites (Bell et al. 1992; Zeldis et al. 1997). A pattern of temporal variation in orange roughy cannot be ruled out by the present data and should be further explored in studies including larger sample sizes.

There is some uncertainty about the current levels of dispersal among sites and the general lack of genetic differentiation that I have detected among New Zealand sites and between New Zealand and Australian sites. These findings could be explained by high levels of gene flow by adults actively dispersing around New Zealand and across the Tasman Sea. However, they could also be explained by low levels of dispersal, since genetic connectivity can be maintained by the dispersal of only a few individuals, but populations are not considered demographically coupled until about 10% of the individuals are regularly exchanged (see Lowe and Allendorf 2010). Another possibility is that distinct populations have recently diverged, and it is too early to detect the lack of gene flow with microsatellite DNA markers, particularly considering that genetic drift has probably been very weak in orange roughy populations due to their historically large sizes, and because of the species' longevity and late maturation. Future research applying higher resolution markers such as single nucleotide polymorphisms (SNPs) and/or studies investigating genes under selection may help to disentangle the degree of population connectivity at a fine-scale (around New Zealand) and at a regional scale (between New Zealand and Australia).

3.6 Conclusion

In the present study I found high levels of microsatellite DNA diversity in orange roughy populations, which likely reflect large historical population sizes. Low, but significant differentiation was detected at the global scale, with the highest values of differentiation between the Northeast Atlantic Ocean and the Southern hemisphere sites. No significant divergence was found in most comparisons between New Zealand and Australia. At a fine-scale within New Zealand, there was a lack of spatial divergence, but low levels of differentiation were detected between few sites off Northern New Zealand and two sites off the east and south coast of the South Island. Temporal analyses also revealed a predominant pattern of genetic homogeneity. Overall, the high levels of diversity and the low levels of genetic differentiation detected in this study simile findings for other deep-sea fishes.

Chapter 4

Genetic divergence and phylogenetic relationships of six species of the genus Hoplostethus based on Cytochrome c Oxidase I (COI) sequences

4.1 Abstract

The genetic divergence and the molecular phylogenetic relationships among Hoplostethus species have not been proposed yet. Using available COI sequences within the barcode region, I conducted a phylogenetic study including H. atlanticus, H. crassispinus, H. gigas, H. japonicus H. latus, and H. mediterraneus. Representatives of other three genera, Aulotrachichthys prosthemius, Gephyroberyx darwinni and Paratrachichthys macleayi were added to the analysis to place the phylogenetic position of the genus Hoplostethus within the family Trachichthyidae. The inter species divergence ($7.37-13.57 \%$) was much higher than the intra species divergence ($0.0-$ 0.65\%). Kimura 2-Parameter (K2P) distance, Maximum Likelihood (ML) and Bayesian analyses showed that H. latus, H. crassispinus, H. japonicus, and H. mediterraneus form a separate clade from H. atlanticus and H. gigas. The position of H. gigas was not well defined with the nucleotide data. With K2P distance H. gigas was sister to H. atlanticus, but not with ML and Bayesian analyses. At the amino acid level, nonsynonymous substitutions clearly differentiated H. atlanticus from all the other species. This was correlated with morphological characteristics presented elsewhere. The genus Hoplostethus was monophyletic. According to ML and Bayesian analyses, the Hoplostethus clade was a derived group respect to the other three genera considered here.

4.2 Introduction

The marine fishes within the family Trachichthyidae are represented by eight genera, Aulotrachichthys, Gephyroberyx, Hoplostethus, Optivus, Parinoberix, Paratrachichthys, Sorosichthys and Trachichthys (www.fishbase.org), with most of the species belonging to the genus Hoplostethus. Currently, there are 28 valid species of Hoplostethus (Moore and Dodd 2010), which are commonly called roughies or slimeheads. They mainly inhabit the continental slope and seamounts in tropical, subtropical, and temperate waters of the Atlantic, Indian, and Pacific oceans (Kotlyar 1996 in Kotlyar 2010; Table 4.1). Some of the main characteristics of the species in the genus Hoplostethus are a high body ($1 / 3-1 / 2$ standard body length), a large head with bony crests covered with fine spines, large eyes, large transverse mouth, fine seta-like teeth in the jaws and presence or absence of a keel on the abdomen, among others (Kotlyar 1986). The pigmentation of the body is either light (red, orange or brownish) or dark (black and grey) (Kotlyar 1986). Hoplostethus specimens are of relatively small size, the maximum length recorded among the species range from 7.5 cm (H. rifti) to 75 cm (H. atlanticus) (Table 4.1). All Hoplostethus are deep-sea species (i.e. maximum depth recorded $>300 \mathrm{~m}$, Table 4.1).

The amount of scientific research on each Hoplostethus species typically corresponds to their commercial value. As stated in the previous chapters, many studies have been conducted in the highly valuable species H. atlanticus (orange roughy) and a few others on H. mediterraneus (silver roughy) which has lower commercial value. Published studies are generally lacking for the other Hoplostethus species. Moreover, there are no studies on the genetic divergence among Hoplostethus species; and phylogenetic relationships within the genus Hoplostethus or the family Trachichthyidae have not been proposed yet (Moore and Dodd 2010). Kotlyar (1986) considered that Hoplostethus species were grouped in four subgenera and proposed a phylogenetic tree for the subgenera based in geographic distribution and a few morphological characters (Kotlyar 1986).

A suitable molecular marker to determine genetic divergence and phylogenetic relationship among species is the Cytochrome c Oxidase I (COI) gene. In a specific region of the COI gene, the inter species variation is much greater than the intra species variation and is the marker most often used for species identification ("DNA barcoding") in fish (e.g. Ward et al. 2005; Cawthorn et al. 2011; Lakra et al. 2011;

Zhang 2011; Zhang and Hanner 2011) and in many other animal groups (see Bucklin et al. 2011).

The first goal of the present study was to determine intra and inter species genetic divergence and to propose phylogenetic relationships for some of the Hoplostethus species using available Cytochrome c Oxidase I (COI) sequences. The species included in the analyses were H. atlanticus, H. crassispinus, H. gigas, H. japonicus H. latus, and H. mediterraneus. The second goal was to place the phylogenetic position of the genus Hoplostethus within the Trachichthyidae family using available COI sequences. Representatives from three other genera were included, Aulotrachichthys prosthemius, Gephyroberyx darwinni and Paratrachichthys macleayi.
Table 4.1 Valid Hoplostethus species to date

Scientific name	Author	$\begin{aligned} & \text { Max length } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Depth range or recorded depth (m)			Distribution
H. abramovi	Kotlyar, 1986	19.0		300		Western Indian Ocean
H. atlanticus	Collet, 1889	75.0	450	-	1800	South Pacific, Indian and Northeast Atlantic Ocean
H. cadenati	Quéro, 1974	30.0	70	-	1000	Eastern Atlantic and Western Indian Ocean
H. confinis	Kotlyar, 1980	12.3	290	-	330	Eastern Indian Ocean
H. crassispinus	Kotlyar, 1980	25.4	280	-	600	Northwest Pacific Ocean
H. druzhinini	Kotlyar, 1986	13.1	330	-	445	Western Indian Ocean
H. fedorovi	Kotlyar, 1986	15.9	500	-	520	Western Central Pacific Ocean
H. fragilis	(de Buen, 1959)	-	250	-	300	Southeast Pacific Ocean
H. gigas	McCulloch, 1914	52.0	237	-	311	Eastern Indian and Southwest Pacific Ocean
H. intermedius	(Hector, 1875)	18.0	200	-	680	Indo-West Pacific Ocean
H. japonicus	Hilgendorf, 1879	12.6	336	-	605	Northwest Pacific Ocean
H. latus	McCulloch, 1914	53.0	146	-	586	Eastern Indian Ocean
H. marisrubri	Kotlyar, 1986	12.2	510	-	520	Western Indian Ocean
H. mediterraneus	Cuvier, 1829	42.0	100	-	1175	Mediterranean Sea, Northeast Atlantic, Indian and South Pacific Ocean
H. melanopterus	Fowler, 1938	14.0	600	-	1500	Western Central Pacific, Eastern Atlantic and Western Indian Ocean
H. melanopus	(Weber, 1913)	25.0	400	-	914	Indo-West Pacific and Southeast Atlantic Ocean
H. mento	(Garman, 1899)	12.0	-		-	Eastern Pacific Ocean
H. metallicus	Fowler, 1938	-	55	-	550	Western Central Pacific Ocean
H. mikhailini	Kotlyar, 1986	14.7	273	-	525	Southeast Atlantic and Western Indian Ocean
H. occidentalis	Woods, 1973	17.3	485	-	550	North and South Atlantic Ocean
H. pacificus	Garman, 1899	-		703		Southeast Pacific Ocean
H. ravurictus	Gomon, 2008	14.1	250	-	1000	Eastern Indian Ocean
H. rifti	Kotlyar, 1986	7.5	480	-	500	Western Indian Ocean
H. robustispinus	Moore and Dood, 2010	34.0	648	-	660	Pacific Ocean
H. rubellopterus	Kotlyar, 1980	10.5	800	-	875	Indian Ocean
H. shubnikovi	Kotlyar, 1980	20.3	800	-	875	Indian Ocean
H. tenebricus	Kotlyar, 1980	21.0	825	-	885	Western Indian Ocean
H. vniro	Kotlyar, 1995	19.6	1050	-	1080	Eastern Central Atlantic Ocean

Note: Valid names as in Moore and Dodd (2010). Max length, depth range and distribution obtained from FishBase (www.fishbase.org). The symbol (-) indicates that no value has been recorded for max length or depth range.

4.3 Materials and methods

4.3.1 Data collection

The 114 COI haplotypes produced by 546 orange roughy specimens (see Chapter 2) were included in the phylogenetic analyses.

Tissue samples of H. mediterraneus were obtained from a total of 45 specimens from New Zealand (21), Portugal (8), France (8) and Italy (8). Samples were from a frozen tissue collection held at NIWA. DNA extractions were performed using proteinase K digestion followed by salt extraction. The remaining pellet was washed twice with ethanol and resuspended in $100 \mu \mathrm{~L}$ TE buffer. DNA samples were stored at $4^{\circ} \mathrm{C}$. COI sequences of H. mediterraneus were obtained following the same primers and protocol used for H. atlanticus (see subsection 2.3.2 PCR amplification, sequencing and alignment of Materials and methods, Chapter 2). The 45 samples produced 12 haplotypes (GenBank Accession Numbers: JX049153-JX049164).

Five COI sequences of H. crassispinus were available (supplied by PJ Smith) and resulted in two haplotypes. A GenBank search on March 2012 was conducted to obtain all the available COI sequences of Hoplostethus species. Sequences of other three Hoplostethus species were found on GenBank. The used haplotypes were two of H. gigas (DQ108107.1, DQ108106.1), two of H. latus (DQ108099.1, DQ108097.1) and one of H. japonicus obtained from the complete mitochondrial sequence (NC_003187.1). In total, 133 COI haplotypes of H. atlanticus, H. mediterraneus, H. crassispinus, H. gigas, H. latus and H. japonicus were aligned using the software Geneious 5.1.7 and the Geneious alignment option (Drummond et al. 2010). COI sequences of Aulotrachichthys prosthemius (DQ648438), Gephyroberyx darwinni (DQ108114) and Paratrachichthys macleayi (EF609430) were added to the alignment to place the phylogenetic position of the genus Hoplostethus within Trachichthyidae. The alignment was truncated at each extreme to generate equal length sequences. Geneious was also used to translate the nucleotide sequences into amino acid sequences using the vertebrate mitochondrial genetic code. The translation was performed to determine synonymous and non-synonymous changes and the percentages of variation at each codon position. The amino acid sites were numbered according to the bovine sequence (Bos taurus, AAQ06595.1).

4.3.2 DNA sequence analyses

Pairwise distance among haplotypes was determined by the Kimura 2-Parameter (K2P) method (Kimura 1980) using the software MEGA 5.05 (Tamura et al. 2011).

A neighbour-joining (NJ) phylogram was constructed in MEGA using the K2P method to compute the evolutionary distances. The robustness of the topology was evaluated with 10,000 bootstrap replications. Phylograms were also constructed using Maximum Likelihood (ML) and Bayesian criterions in MEGA and MrBayes3.1.2 (Ronquist and Huelsenbeck 2003), respectively. The software jModelTest (Posada 2008) was used to obtain the model of molecular substitution that best fit the data. The selected model under the Akaike information criterion (AIC) was TVM+G. The Hasegawa-Kishino-Yano model with a proportion of invariable sites and a gamma distribution (HKY+I+G) was used in the ML and Bayesian analyses since it was ranked $3^{\text {rd }}$ among the 88 models compared with the AIC criterion and was available in MEGA and MrBayes. For ML analyses, support for the nodes was obtained from 1,000 bootstrap replications. Bayesians analyses were performed using 1,000,000 iterations and sampling every 10 generations ensuring that the average standard deviation of split frequencies was <0.01. The first 25% of the saved trees were discarded as burn-in.

4.4 Results

4.4.1 Genetic divergence

The proportion of A, C, G, and T bases over all 133 Hoplostethus COI sequences was $23.5 \%, 30.0 \%, 17.8 \%$ and 28.7%, respectively. The GC content of the sequences was 47.8%. The total length of the nucleotide sequences was 609 bp (within the barcode region of $\sim 655 \mathrm{bp}$) and this region codes for 203 amino acids. Considering the bovine sequence as reference, the Hoplostethus amino acid sequences obtained started at site 32 and ended at site 234.

The total length of the nucleotide sequences contained 151 variable sites. From the total of variable sites, 93.38% were synonymous changes at the third codon positions and 6.62% of the changes occurred at the first codon positions. No changes were
observed in the second codon positions. From the total of 10 changes at the first codon positions, three were non-synonymous. At one of those nucleotide sites, H. atlanticus had guanine giving the codon GTT and the amino acid Valine at the amino acid site 83. All the other species had adenine giving the codon ATT and the amino acid Isoleucine at site 83. In the two other first codon positions that were variable, H. atlanticus presented timine resulting in the codon TCC and in the amino acid Serine at sites 114 and 187. All the other species instead had guanine which resulted in the codon GCC and the amino acid Alanine in sites 114 and 187.

The K2P distance within species ranged from zero to 0.65% and among species ranged from 7.37% (between H. japonicus and H. crassispinus) to 13.57% between (H. crassispinus and H. gigas) (Table 4.2).

Table 4.2 K2P (\%) distances within species (diagonal) and among species (below diagonal)

	H. gig.	H. atla.	H. lat.	H. cras.	H. jap.	H. med.
H. gigas	0.00					
H. atlanticus	7.74	0.65				
H. latus	9.29	12.89	0.33			
H. crassispinus	13.57	14.48	7.94	0.30		
H. japonicas	11.20	10.10	7.73	7.37	---	
H. mediterraneus	10.26	12.55	9.77	10.45	9.19	0.40

4.4.2 Phylogenetic relationships

The phylogenetic analyses performed using K2P distance, ML and Bayesian criterions resulted in similar topologies (Fig. 4.1 and 4.2). The NJ phylogram obtained with K2P distance showed that H. atlanticus and H. gigas form a separate clade, which was well supported by bootstrap analysis (81\%). A good supported clade (92\%) was composed by the other four Hoplostethus species. Within this clade, H. latus and H. crassispinus
grouped together with H. japonicus closer to H. latus/H. crassispinus than to H. mediterraneus. The representative species of other three genera, A. prosthemius, G. darwinni and P. macleayi, grouped together and where clearly separated from Hoplostethus species, with A. prosthemius sister to G. darwinni (Fig. 4.1).

Fig. 4.1 Kimura 2-Parameter distance neighbour-joining phylogram of COI sequences from six Hoplostethus species and representatives from other three genera, Paratrachichthys macleayi, Aulotrachichthys prosthemius, Gephyroberyx darwinni. Numbers at nodes indicate bootstrap values (\%)

The phylograms obtained with ML and Bayesian criterions resulted in a similar topology (only the ML tree is shown with Bayesian posterior probabilities [PP] included in the corresponding nodes). The only difference between ML and Bayesian phylograms was that A. prosthemius and P. macleayi were grouped as sister taxa in the ML tree (Fig. 4.2); however, the phylogenetic relationship between these species was not resolved with the Bayesian analysis (Bayesian tree not shown).

There were few differences between ML/Bayesian phylograms (Fig. 4.2), compared to the K2P phylogram (Fig. 4.1). First, in the ML/Bayesian trees G. darwinni appeared in a basal position separated from all the other species; in the K2P tree instead, G. darwinni was a sister taxa to A. prosthemius. The second difference is related with the relationship between Hoplostethus species. In the K2P tree H. atlanticus and H. gigas were sister taxa (bootstrap $=81 \%$), but in the ML/Bayesian trees, H. atlanticus and H. gigas were not grouped together, which had a medium-low support value (bootstrap = 38%, $\mathrm{PP}=0.78$). In the ML/Bayesian trees H. gigas appeared closer to the other Hoplostethus species, however, this relationship had a low support value (bootstrap $=$ $22 \%, \mathrm{PP}=0.52$). The phylogenetic relationships among H. latus, H. crassispinus, H. japonicus, and H. mediterraneus were the same in K2P, ML and Bayesian analyses (Fig. 4.1 and 4.2).

Fig. 4.2 Maximum Likelihood phylogram of COI sequences from six Hoplostethus species and representatives from other three genera, Paratrachichthys macleayi, Aulotrachichthys prosthemius, Gephyroberyx darwinni. Numbers above and below the branches indicate bootstrap values (\%) and Bayesian posterior probabilities (PP), respectively

4.5 Discussion

4.5.1 Genetic divergence

Most of the variation across the COI sequences occurred in third codon positions, which is consistent with the expectation of a degenerated genetic code. Few variable sites occurred at first codon positions and none at second codon positions. This pattern was also reported by Ward and Holmes (2007) for many species of marine fishes. Considering the three non-synonymous changes at first codon positions, it is notable that only H. atlanticus presented different amino acids respect to the other five Hoplostethus species. The amino acidic site 83 was reported as a high variable site by Ward and Holmes (2007). In that study, it was also determined that site 83 have valine or isoleucine, both aliphatic amino acids. In the present study, the two other nonsynonymous sites produced the amino acids Serine or Alanine at sites 114 and 187, which are hydroxyl and aliphatic amino acids, respectively. As pointed out by Ward and Holmes (2007), amino acid substitutions are most common among physicochemical similar amino acids than among dissimilar amino acids. As only H. atlanticus had amino acids of different physicochemical characteristics at sites 114 and 187 compared to the other species, there may be a particular adaptation in the expression of the COI gene in H. atlanticus. This could be related to a unique characteristic in H. atlanticus in respect to the other Hoplostethus species considered here, for example, H. atlanticus is the only one able to occur deeper than $1,200 \mathrm{~m}$.

The analysis of the genetic distance as measured by the K2P method among the COI haplotypes of Hoplostethus species showed that the intra-species divergence was much lower than the inter-species divergence (intra-species divergence was not possible to estimate for H. japonicus as there was only one haplotype available). The marked difference between intra and inter-species divergence is widely recognized for a specific region of COI gene making this of one the main characteristics for the generalized use of the COI gene as the molecular marker for DNA barcoding (Hebert et al. 2003). Although only two haplotypes per species were available to estimate intra-specific divergence in H. gigas, H. latus and H. crassispinus, the marked difference between intra-species divergence respect to inter-species divergence was also found in H. mediterraneus (12 haplotypes) and H. atlanticus (114 haplotypes). The intra-species divergence in H. mediterraneus was 0.40% and the divergence respect to the other
species ranged from 9.19 to 12.55%. Similarly, the intra-species divergence in H. atlanticus was 0.65%, diverging from the other species in 7.74 to 14.48%. The average intra (five species) and inter (six species) divergence among Hoplostethus species were 0.34% and 10.30%, respectively. These values are within the ranges reported for marine fishes: $0.10-0.39 \%$ and $4.58-17.6 \%$ for the intra and inter-species divergence, respectively (Ward et al. 2005; Cawthorn et al. 2011; Lakra et al. 2011; Zhang 2011; Zhang and Hanner 2011).

4.5.2 Phylogenetic relationships

All the phylogenetic analyses based on K2P distance, Maximum Likelihood and Bayesian criterions showed that H. latus, H. crassispinus, H. japonicus, and H. mediterraneus form a separate clade from H. atlanticus and H. gigas. Within the former, H. latus and H. crassispinus were sister taxa and H. japonicus was close to H. latus and H. crassispinus with H. mediterraneus being the most divergent species in the clade. The position of H. gigas was not well defined with the nucleotide data. With the K2P distance criterion this species was sister to H. atlanticus with a good support value. Instead Maximum Likelihood and Bayesian analyses showed that H. gigas was a separate taxa from H. atlanticus. On the other hand, and as stated before, at the amino acid level, non-synonymous substitutions at three sites in first codon positions clearly differentiated H. atlanticus from all the other species with H. gigas presenting the same amino acids at those positions than H. latus, H. crassispinus H. japonicus and H. mediterraneus. The differentiation of H. atlanticus from all the other five species at the amino acid level and the clear differentiation H. atlanticus from H. latus, H. crassispinus, H. japonicus, and H. mediterraneus at the nucleotide level could be correlated with morphological characteristics. Kotlyar (1986) considered that H. atlanticus was part of the subgenus Macrohoplostethus and that H. gigas, H. crassispinus H. japonicus, and H. mediterraneus were part of the subgenus Hoplostethus (H. latus was not recognized in that study). According to Kotlyar (1986) these two subgenera were morphological differentiated by the size and thickness of the scales in the ventral keel, the number of soft rays in the dorsal fin, the number of vertebrae, the morphology of the pyloric caeca, and the number of terminal appendages.

Therefore, I found a correlation between the results of the phylogenetic analyses presented here for six Hoplostethus species and general morphologic characteristics presented elsewhere.

The analyses conducted here support the monophyly of the genus Hoplostethus. Also, Maximum Likelihood and Bayesian analyses showed that the Hoplostethus clade seems to be a derived group respect to the phylogenetic positions of other three genera, Aulotrachichthys, Gephyroberyx and Paratrachichthys.

4.6 Conclusions

A specific region of the COI gene is widely used to differentiate species (reviewed by Bucklin et al. 2011) even congeneric species (Hebert et al. 2003). In this study I found that this COI region is highly effective in differentiate species of the genus Hoplostethus given the marked difference between intra and inter-species divergence. The COI marker was also useful to determine the phylogenetic relationships of the species under study. Overall, taking into account the different methods employed, the phylogenetic relationship among H. atlanticus, H. latus, H. crassispinus H. japonicus, and H. mediterraneus was well defined. However, the phylogenetic position of H. gigas respect to the others species was uncertain. Future studies using nuclear molecular markers may help to determine the phylogenetic position of H. gigas.

This is the first study conducted to determine the genetic divergence and the molecular phylogenetic relationship among species of the genus Hoplostethus. Nevertheless, the un-availability of samples of other congeners resulted in the inclusion of only six out of 28 valid Hoplostethus species. A further study using the barcode region of the COI gene in combination with nuclear markers and including all the species within the genus is needed to resolve the evolutionary relationship among these deep-sea congeners.

Chapter 5

Critical amino acid replacements in the rhodopsin gene of the deep-sea teleost orange roughy (Hoplostethus atlanticus): comparison with other teleost species occupying different light environments

5.1 Abstract

Critical amino acid replacements in opsin proteins shift the maximal absorbance of visual pigments to perceive different photic environments (spectral tuning). Here I studied the molecular basis for spectral tuning of the rhodopsin (RH1) pigment in the deep-sea fish orange roughy, which is important to understand how deep-sea species have adapted to the dim-light available in the bathypelagic environment. To compare and identify critical amino acid changes I also obtained partial rhodopsin sequences of 18 species of marine teleost habiting different light environments. I identified replacements at four critical amino acid sites that have been numbered according to the bovine RH1 pigment: 194, 195, 292 and 299. All the species had the substitutions P194R and H195A. The combination 292S/299A was only found in the deep-sea congeners silver roughy and orange roughy. This likely reflects an adaptation of these species to the bathypelagic light environment. All the epipelagic species studied and the epi-mesopelgic species blue cod, had the combination 292A/299S, except the red gurnard (292A/299A) and the spotty (292S/299S). It is possible that the combination $292 \mathrm{~A} / 299 \mathrm{~S}$ is an adaptation to longer wavelengths of light in comparison with the deeper species. This is the first study in determine partial rhodopsin in all the species under study, except by the hoki and silver roughy. Further studies are needed to determine all the critical amino acid replacements in the rhodopsin gene of these species and to measure the maximal absorbance $\left(\lambda_{\max }\right)$ of the corresponding RH1 pigments.

5.2 Introduction

Many animal groups have evolved visual pigments that are often specialized and enable them to perceive their surrounding environment. A diverse range of visual pigments have arisen, which indicate the adaptive significance that light sensitive molecules have for organisms living in different photic environments (see Yokoyama 2008). Visual pigments consist of an opsin protein attached to a chromophore via a Schiff base linkage and a conserved lysine residue. The opsin protein in vertebrates is composed of a single polypeptide chain of $340-370$ amino acids that forms seven α-helical transmembrane (TM) regions connected by cytoplasmic and luminal loops (Dratz and Hargrave 1983). Each pigment shows a characteristic peak of maximal absorbance ($\lambda_{\max }$); the location of this peak depends on the chromophore (11-cis-retinal or 11-cis-3,4-dehydroretinal) and the interactions between the chromophore and the specific amino acid sequence of the opsin protein (Bowmaker 1995). In most vertebrates, rod photoreceptors are highly sensitive to dim-light and cone photoreceptors mediate vision at higher light intensities (reviewed by Yokoyama 2008).

In terrestrial environments and in the surface of the Oceans the sun radiation is dominated by photons of the visual spectrum from ultraviolet with wavelengths of \sim 300 nm , to infrared with wavelengths of $\sim 1,100 \mathrm{~nm}$ (Levine and MacNichol 1982; Bowmaker 1995). In the Oceans, the intensity and spectral composition of the light decreases with depth due to absorption by water molecules and suspended particles; the light becomes monochromatic towards blue ($\sim 470 \mathrm{~nm}$), while ultraviolet and infrared light are reduced (Bowmaker 1995; Warrant and Locket 2004). The epipelagic zone up to $\sim 150-200 \mathrm{~m}$ receives bright sunlight, further down to about $1,000 \mathrm{~m}$ the mesopelagic zone is characterized by dim-light bioluminescence (Douglas et al. 1998). After $1,000 \mathrm{~m}$, in the dark bathypelagic zone, the light comes from point-source bioluminescent flashes (Warrant and Locket 2004). Over 80% of the marine species living deeper than 200 m produce bioluminescence for diverse functions such as intra and inter-specific communication, camouflage, startling predators and attracting prey (Douglas et al. 1998). Organisms usually produce blue/green bioluminescence; however, some produce far-red illumination (Douglas et al. 1998; Turner et al. 2009). Deep-sea fishes (i.e. > 200 m) have visual systems adapted to perceive the limited spectrum of light; one typical feature is the loss of cone photoreceptors resulting in rodonly retina (see Hunt et al. 2001).

The opsin genes were first isolated and characterized in bovines and later in humans (Nathans and Hogness 1983, 1984). Since then, many opsin genes from a variety of vertebrate species have been studied including the measure of the $\lambda_{\max } s$ of the corresponding visual pigments (see Yokoyama 2008). Modifications of the $\lambda_{\max } S$ values have allowed organism to adapt to diverse light environments. These pigments are divided into five groups: rhodopsins (RH1, $\lambda_{\max }=\sim 500 \mathrm{~nm}$), RH1-like (RH2, $\lambda_{\max }=$ $470-510 \mathrm{~nm}$), short wavelength-sensitive type 1 (SWS1, $\lambda_{\max }=360-420 \mathrm{~nm}$), SWS type 2 (SWS2, $\lambda_{\max }=440-455 \mathrm{~nm}$), and middle and long wavelength-sensitive $\left(\mathrm{M} / \mathrm{LWS}, \lambda_{\max }=510-570 \mathrm{~nm}\right)$ (Yokoyama 1999 and references therein). RH1 pigments are usually expressed in rods and the four other classes of pigments in cones (Yokoyama et al. 1999). Certain amino acid changes in the opsin protein shift the $\lambda_{\max }$ values of the visual pigments making possible a phenomenon known as "spectral tuning" in which a chromophore attains different absorption spectra when attached to different opsins (Yokoyama 2008). The critical amino acid sites (tuning sites) that shift $\lambda_{\max }$ values have been identified according to the site numbers of the bovine RH1 pigments and specific replacements in many marine fishes shift the $\lambda_{\max }$ values of the RH1 pigments towards the blue (e.g. Yokoyama 1999; Yokoyama et al. 1999; Hunt et al. 2001; Yokoyama and Takenaka 2004; Yokoyama 2008). Hunt et al. (2001) studied the rhodopsin gene sequence of 28 deep-sea fish species; most of the $\lambda_{\text {max }}$ values of the rod pigments of those species vary from 490 to 477 nm .

The molecular basis for spectral tuning of rod pigments has never been studied in the teleost orange roughy, Hoplostethus atlanticus. This deep-sea fish inhabit depths of 450 - 1,800 m between the mesopelagic and the bathypelagic zones. It is likely that orange roughy exhibits visual adaptations to dim-light and bioluminescence. Studying retinal morphology of mesopelagic and demersal teleost, Pankhurst (1987) found that orange roughy have retinal adaptations that maximise visual sensitivity. Hunt et al. (2001) identified tuning sites in the congener species H. mediterraneus that occurs at $100-$ $1,175 \mathrm{~m}$ and reported that the rod visual pigment of this species have a $\lambda_{\max }$ value of 479 nm , likely an adaptation to the blue-light environment and blue luminescence.

The first goal of this study was to determine whether orange roughy have critical amino acid replacements that are known to cause a shift in the $\lambda_{\max }$ value of RH1 pigments. To achieve this, I sequenced a partial sequence of the rhodopsin gene of orange roughy. To compare and identify critical amino acid changes I also sequenced the rhodopsin sequence of 18 species of marine teleost habiting at different depths ($1-$
$1,175 \mathrm{~m})$ and, therefore, different light environments. The second goal was to conduct a phylogenetic analysis of partial sequences of the rhodopsin gene among all the species under study. I hypothesized that, 1) the species would have amino acid replacement that are known to be implicated in shift the $\lambda_{\max }$ of RH1 pigments towards the blue; 2) orange roughy would have particular set of amino acid replacements that is not found in the shallower species due to an adaptation to the bathypelagic light environment; and 3) the arrangement of the phylogenetic tree would correspond with the depths occupied by species.

5.3 Materials and methods

5.3.1 Sampling and DNA extractions

Tissue samples from a total of 127 specimens were obtained from 19 teleost species belonging to 16 families (Table 5.1). Sample size per species ranged from two to 19 and sampling areas included New Zealand, Australia, Namibia, Chile, the Mediterranean Sea and the Northeast Atlantic Ocean (Table 5.1). Muscle samples were collected from fresh fish and frozen at $-20^{\circ} \mathrm{C}$ or stored in 95% ethanol.

DNA extractions were performed using proteinase K digestion followed by salt extraction. The remaining pellet was washed twice with ethanol and resuspended in 100 $\mu \mathrm{L}$ TE buffer. DNA samples were stored at $4^{\circ} \mathrm{C}$.

Table 5.1 Sample size (n) and sampling area of 19 teleots species used for partial amplification of the rhodopsin gene. The common names of each species are those used in New Zealand. Total $n=127$

Common names	Scientific name (Family)	n	Sampling area
Butterfish	Odax pullus (Odacidae)	5	New Zealand
Kahawai	Arripis trutta (Arripidae)	2	New Zealand
Yellowbelly flounder	Rhombosolea leporina (Pleuronectidae)	3	New Zealand
Sand flounder	Rhombosolea plebeia (Pleuronectidae)	3	New Zealand
Sole	Peltorhamphus latus (Pleuronectidae)	3	New Zealand
Blue moki	Latridopsis ciliaris (Latridae)	5	New Zealand
Spotty	Notolabrus celidotus (Labridae)	10	New Zealand
Red gurnard	Chelidonichthys kumu (Triglidae)	4	New Zealand
Snapper	Pagrus auratus (Sparidae)	10	New Zealand
Jack mackerel	Trachurus murphyi (Carangidae)	10	Chile
Blue cod	Parapercis colias (Pinguipedidae)	13	New Zealand
Tarakihi	Nemadactylus macropterus (Cheilodactylidae)	4	New Zealand
Blue warehou	Seriolella brama (Centrolophidae)	4	New Zealand
Hapuku	Polyprion oxygeneios (Polyprionidae)	5	New Zealand
Hoki	Macruronus novaezelandiae (Merlucciidae)	12	New Zealand, Australia, Chile
Giant stargazer	Kathetostoma giganteum (Uranoscopidae)	5	New Zealand
Red cod	Pseudophycis bachus (Moridae)	5	New Zealand
Silver roughy	Hoplostethus mediterraneus (Trachichthyidae)	5	New Zealand, Mediterranean Sea, Northeast Atlantic
Orange roughy	Hoplostethus atlanticus (Trachichthyidae)	19	New Zealand, Australia, Namibia, Chile, Northeast Atlantic

5.3.2 PCR amplification, sequencing and alignment

Six primers pairs developed for teleost species (Chen et al. 2003) were tested for partial amplification of the rhodopsin gene. Un-specific DNA fragments were observed in gel electrophoresis for all primer pairs. Successful optimization was obtained for one primer pair. The primers used were: Rh545-5'- GCAAGCCCATCAGCAACTTCCG3' and Rh1073r -5’- CCRCAGCACARCGTGGTGATCATG-3' (Chen et al. 2003).

Final PCR reactions of $10 \mu \mathrm{~L}$ total volume consisted of $\sim 20 \mathrm{ng}$ of DNA, 1X PCR buffer (160 mM (NH4)2SO4, 670 mM Tris- $\mathrm{HCl}, 0.1 \%$ stabilizer), $1.5 \mathrm{mM} \mathrm{MgCl} 2,0.6$ $\mu \mathrm{M}$ of each primer, 0.2 mM of each dNTPs, 1.5 U of Taq polymerase and $0.4 \mathrm{mg} \mathrm{mL}^{-1}$ of Bovine Serum Albumin (BSA). PCR cycles were performed on a Eppendorf Mastercycler ep gradient S , as follow: initial denaturing at $95^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of denaturing at $95^{\circ} \mathrm{C}$ for 30 s , annealing at $58^{\circ} \mathrm{C}$ for 1 min , extension at $72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 5 min . PCR products were purified with ExoSAP-IT following manufacturer's instructions. The nucleotide sequences were determined using an ABI3730 Genetic Analyzer. The software Geneious 5.1.7 (Biomatters Ltd.) was used to align the sequences using the Geneious alignment option (Drumond et al. 2010). Each species had a unique nucleotide sequence (except for within orange roughy), with few heterozygotes sites (see results). The nucleotide sequence of each species was translated into amino acid sequences in Geneious using the standard genetic code. The amino acid sequences of the 19 species were aligned to the bovine rhodopsin sequence (Bos taurus, GenBank accession number: NP_001014890) to determine potential sites for spectral tuning.

5.3.3 Data analyses

A phylogenetic analysis was performed to determine if the phylogeny of the partial sequences of the rhodopsin gene was related with the depth range of the species (Table 5.2). A Bayesian analysis was conducted with MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) using the bovine sequence as the outgroup. The program was set to determine the best fixed-rate model for the amino acid sequences during the analysis. The analysis was performed using $5,000,000$ iterations and sampling every 10
generations. The standard deviation of split frequencies index fall to 0.004 . The 25% of the trees were discarded as burn-in.

Table 5.2 Depth range and geographic distribution of the 19 teleost species. The information was obtained from FishBase (www.fishbase.org) and the literature as indicated. Scientific names of the species can be found in Table 5.1

Species	Depth range (m)	Distribution	References
Butterfish	$0-40$	New Zealand	Trip et al. (2011) Ministry of Fisheries (2011)
Kahawai	$30-40$	New Zealand and southern Australia New Zealand	Duffy and Patherick (1999) Yellowbelly flounder
Sand flounder	$1-50$	$22-100$	New Zealand
Sole	$1-100$	New Zealand	Ayling and Cox (1982) Glova and Sagar (2000)
Blue moki	$10-120$	New Zealand and southern Australia Spotty	New Zealand Red gurnard and Cox (1982)
Snapper	$10-145$	Slova and Sagar (2000)	

5.4 Results

A 477-bp nucleotide fragment was obtained for all 127 individuals analyzed (Table 5.1). Sequences were deposited in GenBank under Accession Numbers: JX049165JX049193. There were 177 variable sites among all the samples, but intra-specific variation was low. Aside of few heterozygote positions in seven species (Table 5.3), there was not nucleotide variation within each species, except by the orange roughy at site 190. From the total number of orange roughy samples, at site 190 two individuals had cytosine, 11 had thymine (homozygotes) and six were heterozygotes (see Table 5.3). The translation of the nucleotide sequences into amino acids resulted in a unique amino acid sequence for each species, with a total length of 158 amino acids. An alignment with the bovine amino acidic sequence as a reference to identified potential sites for spectral tuning, showed that the amino acid sequences obtained started at site 161 and ended at site 318 , from the α-helix IV to the luminal loop after α-helix VII. In the total length of the amino acid sequences, 60 sites were variable (Table 5.4). Among these variable sites, four are known to be involved in shift the $\lambda_{\text {max }}$ value of RH1 pigments. The potential sites for spectral tuning were P194R, H195A, A292S and A299S (the letters represent the code of the amino acid in the bovine/teleost species sequences and the number indicates the site according to the site number of the bovine RH1 pigment). The critical amino acid changes P194R and H195A were determined for all the teleost species. The change A292S occurred only in spotty, silver roughy and orange roughy. The replacement A299S was identified in nine species: butterfish, kahawai, yellowbelly flounder, sand flounder, sole, blue moki, spotty, snapper and blue cod (Table 5.4).

Table 5.3 Heterozygote positions in the 477-bp nucleotide fragment identified in 14 individuals of seven species. The number of individuals with heterozygote position per species is indicated by (n). Scientific names of the species can be found in Table 5.1

Species (n)	Positions	Bases
Yellowbelly flounder (1)	166	$\mathrm{~A} / \mathrm{G}$
Sand flounder (2)	$130-307$	$\mathrm{C} / \mathrm{T}-\mathrm{G} / \mathrm{T}$
Jack mackerel (1)	37	C / T
Blue cod (2)	$97-208$	$\mathrm{C} / \mathrm{T}-\mathrm{C} / \mathrm{T}$
Hoki (1)	121	C / T
Red cod (1)	205	C / T
Orange roughy (6)	190	C / T

Table 5.4 Variable amino acid sites among the 19 teleost species analysed using the bovine sequence as a reference. The site numbers are
those of the bovine RH1 pigment. Highlighted sites indicate changes that are known to cause a shift in the $\lambda_{\max }$ value of the RH1 pigments. Scientific names of the species can be found in Table 5.1

Species	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	6	6	6	6	6	6	7	8	8	9	9	9	9	9	0	0	1	1	1	1	1	1	1	2	2	2	2	2	3	4
	2	3	5	7	8	9	3	6	9	4	5	6	7	8	5	9	0	3	4	6	7	8	9	0	5	7	8	9	6	1
Bovine	V	M	L	C	A	A	V	S	I	P	H	E	E	T	I	V	V	I	I	L	I	V	I	F	Q	V	F	T	Q	A
Butterfish	L	M	L	C	S	V	V	S	V	R	A	E	G	F	I	T	C	L	I	L	T	I	V	F	R	L	C	A	A	E
Kahawai	V	M	S	C	A	V	V	S	I	R	A	E	G	F	I	V	C	L	I	L	L	V	V	F	R	L	C	A	A	E
Yellowbelly flounder	F	G	C	C	A	V	L	S	V	R	A	E	G	F	I	T	C	C	I	L	C	I	V	G	R	L	C	A	A	E
Sand flounder	F	G	S	C	A	V	F	S	V	R	A	E	G	F	I	T	C	C	I	L	C	I	V	A	R	L	C	A	A	E
Sole	F	G	C	C	A	V	V	S	V	R	A	E	G	F	V	V	C	C	I	L	I	I	V	G	R	L	C	A	A	E
Blue moki	L	M	S	C	A	V	V	S	V	R	A	E	G	F	V	V	C	L	T	L	T	I	V	F	R	L	C	A	A	E
Spotty	F	M	S	C	A	V	V	S	V	R	A	E	G	F	V	T	C	L	I	M	A	I	V	F	R	L	C	A	A	E
Red gurnard	T	M	L	C	S	V	V	S	V	R	A	E	G	F	I	T	C	M	T	L	T	I	I	F	R	L	C	A	A	E
Snapper	T	M	M	C	A	A	V	S	I	R	A	E	G	F	V	T	C	L	T	L	T	I	V	F	R	L	C	A	A	E
Jack mackerel	F	M	S	C	A	V	V	S	I	R	A	E	G	F	L	S	C	C	I	L	V	I	V	F	R	L	C	A	A	E
Blue cod	L	M	N	C	A	V	V	S	V	R	A	E	G	F	I	C	C	M	T	L	T	V	V	F	R	L	C	A	A	E
Tarakihi	L	M	C	C	A	V	V	S	V	R	A	E	G	F	V	I	C	S	I	L	T	I	V	F	R	L	C	A	A	E
Blue warehou	L	M	S	C	A	V	V	S	V	R	A	E	G	F	V	C	C	C	I	L	I	V	I	F	R	L	C	A	A	E
Hapuku	L	M	S	C	A	V	V	S	V	R	A	E	G	F	I	I	C	S	I	L	T	V	V	F	R	L	C	A	A	E
Hoki	I	M	N	S	A	A	V	S	I	R	A	A	G	Y	V	T	C	C	V	L	V	V	V	F	R	L	C	A	A	E
Giant stargazer	L	M	C	C	A	V	V	S	V	R	A	E	G	F	V	T	C	L	I	L	T	I	V	F	R	L	C	A	A	E
Red cod	V	M	N	C	A	F	V	S	V	R	A	P	G	I	I	V	C	T	V	L	T	V	I	F	R	L	C	A	A	E
Silver roughy	L	M	C	C	S	V	V	A	I	R	A	P	G	V	I	V	C	S	I	L	T	I	I	F	R	L	C	A	A	E
Orange roughy	L	M	L	C	S	V	F	S	I	R	A	P	G	V	V	V	C	S	I	L	T	I	I	F	R	L	C	A	A	E

$\mathrm{A}=$ alanine, $\mathrm{C}=$ cysteine, $\mathrm{D}=$ aspartic acid, $\mathrm{E}=$ glutamic acid, $\mathrm{F}=$ phenylalanine, $\mathrm{G}=\mathrm{glycine}, \mathrm{H}=$ histidine, $\mathrm{I}=$ isoleucine, $\mathrm{K}=$ lysine, $\mathrm{L}=$ leucine, $\mathrm{M}=\mathrm{methionine}$, $\mathrm{N}=$ asparagine, $\mathrm{P}=$ proline, $\mathrm{Q}=$ glutamine, $\mathrm{R}=$ arginine, $\mathrm{S}=$ serine, $\mathrm{T}=$ threonine, $\mathrm{V}=$ valine, $\mathrm{W}=$ tryptophan, $\mathrm{Y}=$ tyrosine
Table 5.4 Continued

Species	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	4	4	4	5	5	5	5	6	6	6	7	7	7	7	7	8	8	8	9	9	9	9	9	0	0	0	0	1	1	1
	2	5	8	1	5	6	9	0	3	6	0	3	4	7	8	1	2	6	0	2	7	8	9	0	4	8	9	1	5	8
Bovine	T	K	K	T	I	I	I	A	I	L	G	F	Y	T	H	S	D	I	I	A	T	S	A	V	V	M	M	K	N	V
Butterfish	T	R	R	T	V	I	V	G	V	C	G	W	W	T	H	S	E	V	L	A	S	S	S	I	M	C	M	K	H	I
Kahawai	T	R	R	T	V	I	I	A	V	V	S	W	W	T	H	S	D	V	L	A	S	S	S	I	M	C	M	K	Q	I
Yellowbelly flounder	T	R	R	T	V	I	I	A	V	V	S	W	Y	I	N	S	D	L	I	A	S	S	S	I	L	L	M	K	H	I
Sand flounder	T	R	R	T	V	I	I	A	V	V	S	W	Y	I	N	S	D	L	I	A	S	S	S	I	L	L	M	K	H	I
Sole	T	R	R	T	V	I	I	A	V	V	S	W	Y	I	N	S	D	L	I	A	S	S	S	I	L	F	M	K	H	I
Blue moki	T	R	R	T	V	L	I	A	V	C	G	W	Y	T	H	S	E	V	F	A	S	S	S	I	M	C	M	K	H	I
Spotty	T	R	R	T	V	I	I	A	V	V	G	W	W	T	H	S	E	V	I	S	S	S	S	I	M	C	M	K	N	I
Red gurnard	T	R	R	S	V	I	I	A	V	V	S	W	Y	L	N	S	E	V	I	A	S	S	A	V	M	C	M	K	T	I
Snapper	T	R	R	T	V	L	I	A	V	I	S	W	W	T	H	S	E	V	I	A	S	S	S	I	M	C	M	K	H	I
Jack mackerel	T	R	R	T	V	I	V	A	V	C	G	W	F	T	H	S	E	V	I	A	S	S	A	I	M	C	M	K	H	I
Blue cod	T	R	R	T	V	L	I	A	V	C	G	W	W	T	H	S	E	V	I	A	S	S	S	I	M	C	M	K	H	I
Tarakihi	T	R	R	T	V	I	I	G	V	C	G	W	F	T	H	S	E	V	F	A	S	S	A	I	M	C	M	K	H	I
Blue warehou	T	R	R	T	V	I	I	G	V	V	S	W	F	T	H	S	E	V	V	A	S	S	A	I	M	C	M	K	N	I
Hapuku	T	R	R	S	V	L	V	A	V	L	G	W	W	T	H	S	E	V	V	A	S	S	A	I	M	C	M	K	H	I
Hoki	T	R	R	T	I	I	I	G	I	C	G	W	F	T	H	I	T	L	V	A	A	A	A	V	M	C	L	K	H	I
Giant stargazer	T	R	R	T	V	L	I	A	V	L	G	W	W	T	N	S	E	V	1	A	S	S	A	I	M	C	M	K	N	I
Red cod	T	R	R	T	I	I	V	G	V	C	G	W	F	T	H	S	T	V	I	A	S	A	A	I	M	C	L	K	H	I
Silver roughy	S	R	R	T	V	L	I	A	I	L	S	W	Y	T	H	S	E	V	L	S	S	S	A	I	M	C	M	K	N	I
Orange roughy	S	R	R	S	V	L	I	A	I	L	G	W	Y	T	H	S	E	V	I	S	S	S	A	I	L	F	M	R	N	I

 $\mathrm{N}=$ asparagine, $\mathrm{P}=$ proline, $\mathrm{Q}=$ glutamine, $\mathrm{R}=$ arginine, $\mathrm{S}=$ serine, $\mathrm{T}=$ threonine, $\mathrm{V}=$ valine, $\mathrm{W}=$ tryptophan, $\mathrm{Y}=$ tyrosine

The Bayesian phylogeny of the rhodopsin sequences of 19 teleost species using the bovine sequence as outgroup resulted in four clades, here after referred as Clade A - D (Fig. 5.1). There was a weak relationship between clades composition and the maximum depths reported for the species (see Table 5.2 for depth range of each species). The sequences of butterfish, hapuku and giant stargazer were not part of any clade and their divergence from the rest of the species was supported by high posterior probabilities (PP) values $(\mathrm{PP}=0.87-0.99)$. Clades B, C and D were well supported $(\mathrm{PP}=0.78-$ $1.0)$; clade A had a lower support ($\mathrm{PP}=0.65$). Clade A was composed by epipelagic species that habitat at a maximum depth of $40-200 \mathrm{~m}$. Clade B was formed by species occupying epipelagic and mesopelagic environments, with a maximum depth of $300-$ $1,000 \mathrm{~m}$. Clade C was formed by only two species, the epipelagic species blue moki (maximum depth 120 m) and by Blue cod that is able to occupy epi and mesopelagic environments (maximum depth 360 m). Finally, clade D was composed by the two species able to occur in bathypelagic environments, the silver roughy (maximum depth $1,175 \mathrm{~m}$) and the orange roughy (maximum depth $1,800 \mathrm{~m}$). The species within clades B, C and D presented a unique combination at the critical sites 292 and 299. All the species in clade B had 292A/299A, the two species in clade C had 292A/299S, and the roughies, the only species in clade D, had the combination 292S/299A, which was not found in any other species. Instead, clade A was composed by species presenting the combinations 292A/299S, 292A/299A and 292S/299S (Fig. 5.1).

On the other hand, the grouping of the species according to the combination of the critical sites 292 and 299 shows a better relationship between the maximum depth of the species and the amino acids at these two sites (Table 5.5). However, the relationship is not clear for the species that have a maximum depth of 145-360 m (spotty, snapper, red gurnard, jack mackerel and blue cod).

Fig. 5.1 Bayesian phylogram of 19 teleost species using amino acidic data and the bovine sequence as outgroup (accession number: NP_001014890). The numbers above branches correspond to posterior probabilities (PP). The maximum (Max) depth range of each species is found in Table 5.2. The amino acids at the critical sites 292 and 299 are indicated for each species in the right side of the phylogram.

Table 5.5 Grouping of the 19 teleost species according to the combination at the critical sites 292 and 299. Scientific names of the species can be found in Table 5.1

Critical sites	Species	Max depth (m)
$292 \mathrm{~A} / 299 \mathrm{~S}$	Butterfish	40
	Kahawai	40
	Yellowbelly flounder	50
	Sand flounder	100
	Sole	100
	Blue moki	120
	Snapper	200
	Blue cod	360
292S/299S	Spotty	145
292A/299A	Red Gurnard	200
	Jack mackerel	300
	Tarakihi	400
	Blue warehou	600
	Hapuku	850
	Hoki	900
	Giant stargazer	1,000
	Red cod	1,000
292S/299A	Silver roughy	1,175
	Orange roughy	1,800

5.5 Discussion

As hypothesized, I detected amino acid replacement in the rhodopsin sequences of 19 marine teleost that are known to be involved in shift the $\lambda_{\text {max }}$ of RH1 pigments towards the blue light. Hunt et al. (2001), Yokoyama and Takenaka (2004) and Yokoyama (2008) summarized critical amino acid changes in marine fishes. I also detected conserved and functionally important amino acids identified by previous studies (data not shown): K296, C187 and W265 (reviewed by Hope et al. 1997 and by Hunt et al. 2001).

Hunt et al. (2001) determined that a specific $\lambda_{\max }$ value is not always explained by a particular set of amino acid substitutions; rather, the same $\lambda_{\max }$ value results from different combinations of amino acid at specific sites. In the present study, all the species had the substitution P194R, H195A; however, the combination of the replacements P194R, H195A and A292S was only found in three species: spotty, silver roughy and orange rough (but the spotty differed from the roughies in the critical amino acid site 299, which is discussed further below). The combination P194R, H195A, A292S decrease the $\lambda_{\max }$ value of the RH1 pigment by $14-20 \mathrm{~nm}$ (Yokoyama 2008); and for a conger species this combination resulted in a $\lambda_{\max }$ value of 486 nm (Yokoyama 2008). The same decrease in the $\lambda_{\max }$ value could be achieved by the combination D83N/A292S and by a unique replacement at site 122 (E122Q) (Yokoyama 2008). Because the sequences that I obtained started at site 161, it could not been ruled out that the same functional change is presented by some of the other species studied. The replacement A292S was already detected in silver roughy by Hope et al. (1997). Others marine fishes living at depths of more than 200 m had the substitution A292S, such as the coelacanth, Latimeria chalumnae (Yokoyama et al. 1999). Also, Hunt et al. (2001) detected this replacement in 18 deep-sea teleost from six different orders: Beryciformes, Ophidiiformes, Gadiformes, Aulopiformes, Stomiiformes and Osmeriformes. The same replacement has been also detected in shallower species. Yokoyama and Takenaka (2004) found the A292S change in three species of squirrelfishes habiting depths of less than 70 m , and it was also detected in the bottlenose dolphin, Tursiops truncatus (Fasick and Robinson 1998). Mutation experiments in the bovine rod pigment performed by Fasick and Robinson (1998) indicated that the change A292S alone is capable of shift the $\lambda_{\max }$ value by 10 nm towards the blue. Another site involved in shortwave shifts is the site 299 (Fasick and Robinson 1998; Hunt et al. 2001). Hunt et al. (2001) noted that
the combination $292 \mathrm{~S} / 299 \mathrm{~A}$ in the silver roughy was related to a $\lambda_{\max }$ value of 479 nm , but a larger $\lambda_{\max }$ value of 485 nm was detected in Anoplogaster cornuta, which has the combination $292 \mathrm{~S} / 299 \mathrm{~S}$. In this study, I found that orange roughy has the same 292S/299A combination than silver roughy; instead, the spotty has 292S/299S. Considering the findings of Hunt et al. (2001), it is possible that the amino acids found at the critical sites 292 and 299 result in a shorter $\lambda_{\max }$ value of the RH1 pigments in the orange roughy in comparison with the spotty; supporting the hypothesis that orange roughy would present a set of amino acid changes that is not found in the shallower species, related to an adaptation to the bathypelagic light environment. Nonetheless, and as stated before, other un-detected critical amino acid sites may influence the $\lambda_{\max }$ value of the rhodopsin pigment in these species.

Interestingly, I found that all the epipelagic species and the epi-mesopelgic species blue cod, had the combination $292 \mathrm{~A} / 299$ S. The exceptions were the red gurnard (292A/299A), and, as stated, the spotty (292S/299S). The combination 292A/299S plus the site 83 D was detected in the rhodopsin sequence of the sheep and the freshwater eel; with a $\lambda_{\max }$ value of 502 nm in the later species (see Table 2 in Fasick and Robinson 1998). Since the epipelagic species under study inhabit at minimum depth of $0-30 \mathrm{~m}$ (see Table 5.2), where green light (wavelength of $\sim 500 \mathrm{~nm}$) is available, it is likely that the combination 292A/299S detected here in most of the epipelagic species is related with an adaptation to longer wavelengths of light in comparison with the deeper species.

I found a weak relationship between the phylogeny of the partial rhodopsin sequences and the maximum depth of the species, giving a low support for the third hypothesis. The composition of the clades was not completely explained by depth. The species blue moki and blue cod formed a separated clade even though they occupy the same depths that the species in clades A and B, respectively. Similarly, butterfish, hapuku, and giant stargazer did not grouped with other species according to their depth range. It is possible that a better defined phylogeny would be achieved by using the complete rhodopsin sequence of the species included in this study. On the other hand, it is likely that not all the amino acid sites in the sequences under study are correlated with an adaptation to light conditions. Some sites must be neutral to selection and inherited by ancestry. Therefore, phylogenetic relationships of rhodopsin sequences would reflect selectively neutral and non-neutral changes. On the other hand, the pooling of the species according to the combination at the critical sites 292 and 299 showed a better, but still not complete, relationship with the maximum depth of the species.

To the best of my knowledge, this is the first study in determine partial rhodopsin sequences in all the species under study, except by the hoki (Prado et al., unpublished data, GenBank number: FR832604) and the silver roughy (Hope et al. 1997; Chen et al. 2003). Further studies about the molecular basis of rod pigments in these species should attempt to obtain a larger or complete rhodopsin sequence to identify if there are other replacements at critical sites that have been shown to be involved in spectral tuning in marine fishes (e.g. sites 83, 122, 124, 132). These kinds of studies will also allow to investigate if the combination at different critical sites can be completely related with depth distribution.

To better understand how these and potentially other critical amino acid replacements are involved in the visual adaptations of these species, it is also necessary to determine the $\lambda_{\max }$ value of their rod pigments.

5.6 Conclusion

In summary, I identified four critical amino acid changes in partial rhodopsin sequences of 19 teleost species that have been involved in the spectral tuning of rod pigments. Orange roughy presented the same amino acid combination in two sites already reported for silver roughy, which was not found in any of the other species. This likely reflects an adaptation to the dim-light available in the bathypelagic environment. I found that the phylogeny of the partial rhodopsin sequences of these species was weakly related to depth distribution.

Chapter 6

General Discussion

6.1 Genetic diversity in orange roughy

The DNA sequence and microsatellite DNA analyses presented in Chapters 2 and 3, respectively, showed a high genetic diversity in orange roughy as indicated by the values of the haplotype diversity of the COI and Cyt b sequences and by the expected heterozygosity of the microsatellite data. This pattern has been reported before for orange roughy using DNA sequences (Baker et al. 1995) and microsatellite loci (White et al. 2009a; Carlsson et al. 2011). High levels of genetic diversity for both types of molecular markers are common among marine fishes including deep-sea fishes (Stepien et al. 2000; Roques et al. 2002; von der Heyden et al. 2007; Nielsen et al. 2010; White et al. 2010; Friess and Sedberry 2011; White et al. 2011), and the most common explanation for this pattern has been related to large historical effective population sizes (McCusker and Bentzen 2010). As discussed in Chapter 3, these estimates probably do not reflect current population sizes and do not rule out the possibility the fisheries have reduced the population sizes of exploited marine fishes. This would be particularly difficult to detect with molecular markers in K-selected species, as orange roughy, because they have late maturity and long-life span and, therefore, only a few generations and overlapped generations may have elapsed since the beginning of commercial exploitation (Baker et al. 1995; Carlsson et al. 2011; Chapman et al. 2011).

6.2 Population structure in orange roughy

The levels of migration (gene flow) are often suggested to be higher in the marine realm than in terrestrial and freshwater habitats because of the lack of obvious barriers in the sea and the high potential for dispersal of marine species. Genetic panmixia has been found in marine species at a range of geographic scales. For example, in the gastropod Crepipatella fecunda (Guzmán et al. 2011), the crustacean Panulirus argus (Naro-

Maciel et al. 2011), the mammal Cephalorhynchus heavisidii (van Vuuren et al. 2002), the fish Caffrogobius caffer (Neethling et al. 2008), and also in deep-sea fish species (e.g. Pseudopentaceros wheeleri, Martin et al. 1992; Beryx splendens, Hoarau and Borsa 2000; Antimora rostrata, White et al. 2011) among others. However, there are barriers for dispersal in the oceans such as oceanographic discontinuities, bathymetric features, and behavioural characteristics (e.g. homing), that effectively limit the levels of gene flow among populations; even for marine fishes with high potential for passive (larval transport) and/or active (swimming adults) dispersal (e.g. Serranus cabrilla, Schunter et al. 2011; Brosme brosme, Knutsen et al. 2009; Scomberomorus commerson, Fauvelot and Borsa 2011). The life-history of the species plays a key role in determining the levels of differentiation among populations; however, simple assumptions as a direct correlation between pelagic larval duration (PLD) and levels of connectivity have been largely challenged. For example, Riginos et al. (2011) reviewed the effects of geography and life history traits on genetic differentiation in benthic marine fishes and found that PLD does not often explain genetic population structure. They found that transitions between biogeographic regions and egg type significantly affect genetic population structure in benthic marine fishes. It seems that there are no general rules regarding levels of connectivity in marine species and, on the contrary, this may be highly depend on the species being considered and on the type of molecular marker used. For example, using mtDNA markers, Sedberry et al. (1996) found genetic homogeneity among samples of the deep-sea wreckfish Polyprion americanus collected in Brazil, Australia and New Zealand. However, using microsatellite DNA markers, Ball et al. (2000) found two genetic groups among samples of P. americanus, one from Brazil and the other one in Australia and New Zealand.

In this thesis, using two types of neutral molecular markers, I studied the population genetic structure of orange roughy, one of the most heavily exploited deep-sea fishes in the world (Pitcher 2010). Using DNA sequence data (Chapter 2), I found that orange roughy exhibit high-historical levels of connectivity at a global scale. Low but significant differentiation was only detected between sites in the Northeast Atlantic Ocean and all the sites in the Southern hemisphere and between the Chatham Rise and Puysegur off New Zealand. On the other hand, at an ecological/more recent time scale given by the higher mutation rate of the microsatellite DNA markers (Chapter 3), low but significant levels of differentiation were also detected within the Southern hemisphere. The pattern of differentiation between the Northeast Atlantic and the

Southern hemisphere revealed by the DNA sequence analyses was supported by the highest values of differentiation between sites of the two hemispheres with the microsatellite DNA data. The clear genetic differentiation between New Zealand and the Northeast Atlantic Ocean samples found in this study differs from the findings of Smith (1986), who reported genetic homogeneity between samples of these two regions using allozyme loci. This is probably explained by the higher resolution power of mtDNA sequences and microsatellite DNA loci compared to allozymes. On the other hand, using microsatellite DNA loci, Oke et al. (2002) reported a lack of differentiation between New Zealand/Australia and the Northeast Atlantic Ocean samples, which also differs from the results of the present study. This discrepancy may be due to the fact that of the six loci used by Oke et al. (2002) three had low heterozygosities and were not used in this study. Instead, all the nine loci used here had high heterozygosities, likely resulting in a higher resolution power of the present data. Regarding the prevalent lack of differentiation between New Zealand and Australia reported here, similar results have been found with allozymes (Elliott and Ward 1992), but disagree with the results of restriction enzyme analysis of mtDNA (Smolenski et al. 1993) and with parasite analyses (Lester et al. 1988). At a fine-scale around New Zealand, a panmictic pattern was revealed with both mtDNA sequences and microsatellite DNA loci. Significant differentiation was detected in only a few comparisons mostly involving the Chatham Rise and/or Puysegur. In contrast, previous studies using RFLPs, allozymes, otolith shape, fish size, and restriction digest of the whole mitochondrial genome have reported significant genetic structure around New Zealand (Smith et al. 1996; Smith and Benson 1997; Smith et al. 2002a). However, mitochondrial DNA polymorphism of the control region and two microsatellite loci revealed lack of differentiation among New Zealand sites (Smith et al. 2002a). As stated before, contrasting results at a fine-scale have been also reported within the Northeast Atlantic Ocean using microsatellite DNA loci (White et al. 2009a; Carlsson et al. 2011). The marked contradictions among population differentiation studies in orange roughy are most likely explained by different signals revealed by the different molecular markers/techniques that have been used. Moreover, each study has used a particular set of sampling sites and they have also differed in the number of individuals sampled in each location. On the other hand, techniques that are highly influenced by recent environmental conditions such as parasite, otolith and morphometrics analyses have showed population differentiation in orange roughy at regional and fine-scales (e.g. Lester et al. 1988; Edmonds et al. 1991; Elliott et al.
1995). However, the genome is not immediately affected by environmental conditions, since a number of generations are necessary to accumulate genetic differences that can be detected with molecular markers. The main advantage of the present study in comparison with previous studies is the high geographical coverage of the sampling squeme and the use of two neutral molecular markers, which revealed signals at different time scales. While the present data is not conclusive about levels of genetic differentiation at a fine-scale (i.e. around New Zealand) and across the Tasman Sea (between New Zealand and Australia), the main conclusion of this study is that orange roughy exhibits a significant genetic structure at a global scale.

The lack of differentiation (mtDNA) and low differentiation (microsatellite DNA) found across the Southern hemisphere (i.e. New Zealand, Australia, Chile, and Namibia) is likely the result of active adult dispersal under a stepping-stone model combined with long-life span and multiple spawning events (White et al. 2009a). However, the clear differentiation of the Northeast Atlantic from the Southern hemisphere and the consistent differentiation between the Chatham Rise and Puysegur off New Zealand with both markers, suggest that there might be oceanographic conditions that limit the dispersal of orange roughy at large and short spatial scales. As discussed in Chapter 2, an abrupt water-mass boundary at $41^{\circ} \mathrm{N}$ may be related with the differentiation of the Northeast Atlantic sites from all the other sites. As suggested by Smith et al. (1996), the differentiation of orange roughy samples from the Chatham Rise and Puysegur may be related with a major hydrological barrier between these sites. The Subtropical Convergence zone along the Chatham Rise marks the transition between the Subtropical Water (STW) and the Subantarctic Water (SAW). The STW has its origin in the central Pacific Ocean and is characterized by high temperature and salinity. In contrast, the SAW is cooler and less saline (Heath 1985). Another main water mass around New Zealand is called Antarctic Intermediate Water (AAIW) which sinks at the Convergence zone and travel northwards. The salinity minimum of the AAIW occurs at 700 m south of the Convergence zone and $1,000 \mathrm{~m}$ north of the Convergence (Heath 1985). There are pronounced changes in temperature at the surface and mid-depth waters at the Convergence zone, but the influence of these water masses over the temperature at depths inhabited by orange roughy is less documented (Smith et al. 1996). However, differences in temperature have been registered at 500 m depth (see Hadfield et al. 2007), showing a temperature of $8^{\circ} \mathrm{C}$ at the Convergence zone, $9-10^{\circ} \mathrm{C}$ north of the Convergence, and $6-7^{\circ} \mathrm{C}$ to the south. Thus, it is possible that different
water-masses limit the dispersal of orange roughy between the Chatham Rise and Puysegur, and may also explain the low but significant differentiation between few sites in Northern New Zealand and Chatham Rise and/or Puysegur.

Regarding the three types of genetic structure defined by Laikre et al. (2005) that were highlighted in the general introduction of this thesis, the present study suggests that a global scale orange roughy is within category 2 : genetic composition change over space (IBD pattern). At a finer scale (around New Zealand), orange roughy may be better represented by category 3: there is extensive gene flow. However, it is likely that oceanographic discontinuities and migratory behaviour (probably not all individuals join the annual migrations to spawning sites, Bell et al. 1992; Zeldis et al. 1997), limits the dispersal of orange roughy preventing the formation of a single panmictic unit.

6.3 Implications for fisheries management in New Zealand

Similar to other deep-sea fisheries, orange roughy fisheries have shown the typical pattern of "boom-and-bust" (reviewed by Pitcher et al. 2010), and most fisheries have been closed or quotas largely reduced (see Clark 2009; Niklitscheck et al. 2010; Foley et al. 2011). However, large-scale fisheries still operate off New Zealand (Clark 2009; New Zealand Ministry of Fisheries 2011) and an effective management is needed to prevent overfishing of stocks. Determining levels of connectivity among populations or stocks (stock structure) of exploited species is crucial for developing sustainable management and conservation plans (Begg et al. 1999; Grant and Waples 2000; Laikre et al. 2005). It has been suggested that the better approach to determine the stock structure of marine resources is to follow and holistic approach (Begg and Waldman 1999; Cadrin et al. 2005). The genetic data generated by this study should be considered in assessments studies as part of a multidisciplinary approach to determine the levels of connectivity among stocks in this species. The main results to consider are: 1) the high levels of genetic diversity in orange roughy found with both molecular markers indicate large past population sizes and do not reflect current population sizes that could have been impacted by fisheries activities; 2) there may be some levels of interchange by adult dispersal between New Zealand and Australian populations; however, levels of differentiation were detected in few comparisons; 3) significant differentiation was
detected between the Chatham Rise and Puysegur with both markers and between few Northern sites and Chatham Rise and/or Puysegur with the microsatellite DNA marker. Smith et al. (1996) and Smith et al. (1997) also found differentiation between the Chatham Rise and Puysegur. Considering all these studies, there is support from genetic data for the current management of these sites as two different stocks; and 4) temporal variation in orange roughy populations cannot be ruled out by the present data due to the high variability of the loci coupled with a low sample size for the temporal analyses and, therefore, this should be assessed in the future (about temporal variation see Smith and Benson 1997; Smolenski et al. 1993).

6.4 Demographic history of orange roughy

Different combinations of small and large levels of haplotype and nucleotide diversities have been used to define groups of species in relation to their demographic history (Grant and Bowen 1998). As reviewed by Grant and Waples (2000) (see Fig. 6.1 reconstructed following Grant and Waples 2000), most marine fishes are within category 2 ; these species have rapidly recovered from severe population reductions. Some species have not yet recovered from bottleneck events and are within category 1. Others, those in the category 3 , have had large and stable population sizes for long periods of time. None of the marine species considered by Grant and Waples (2000) or by some other studies (see legend in Fig 6.1) are in category 4, which is most common in inshore or freshwater species (Grant and Waples 2000).

In figure 6.1, orange roughy appears in the category 1 and 2 considering the values reported by Smolenski et al. (1993) using restriction enzyme analysis of mtDNA and by Baker et al. (1995) using Cyt b sequences, respectively (dot numbers 48 and 49 in Fig. 6.1). The demographic analyses conducted in Chapter 2 with COI sequences support that orange roughy is within the category 2 (dot number 51 in Fig. 6.1): there is a pattern of high haplotype diversity and low nucleotide diversity that can be related with a drastic reduction in population size in the past followed by sudden expansion. The analyses presented in Chapter 2 inferred two expansion events during the Pleistocene period, likely related with glaciations events. Taking into account the values of haplotype and nucleotide diversities for the Cyt b sequences shown in Chapter 2, orange
roughy falls into category 3 (dot number 50 in Fig. 6.1). The discrepancy between the COI and Cyt b signals may be because the Cyt b is generally more variable than the COI gene. However, using Cyt b sequences Baker et al. (1995) also found that orange roughy is within category 2 . On the other hand, the average nucleotide diversity in the Cyt b sequences was 0.86%, which is very close to the limit of 0.8% between low and high nucleotide diversity (see Fig. 6.1) as defined by Grant and Bowen (1998). Furthermore, the demographic analyses conducted with the COI sequences (mismatch distribution, Bayesian skyline analyses and the start-like shape of the haplotype genealogy) indicated the occurrence of expansion events. Thus, it is more likely that orange roughy is within category 2 defined by Grant and Bowen (1998).

Fig. 6.1 Relationship between haplotype diversity (h) and nucleotide diversity (π) for marine fishes. Reconstructed following Grant and Waples (2000). Values are from Grant and Bowen (1998) unless stated. Numbers represent species. 1-22: shallow-sea species (i.e. max. depth \leq 200 m), 23-51: deep-sea species (i.e. max. depth $>200 \mathrm{~m}$). 1, redlip blenny; 2, beaugregory damselfish; 3, slippery dick; 4, sergeant major; 5, weakfish; 6, red drum (Gulf of Mexico); 7, red drum (Atlantic); 8, bluehead; 9, goldspot goby; 10, menhaden (Atlantic); 11, menhaden (Gulf of Mexico); 12, french grunt; 13, stickleback; 14, longjaw squirrelfish; 15, red snapper; 16, bluefish (Atlantic); 17, bluefish (Australia); 18, blue marlin (Atlantic-Indo-Pacific); 19, blue marlin (Atlantic); 20, blue marlin (Pacific); 21, sailfish; 22, white/striped marlin; 23, red grouper; 24, spanish sardine; 25, greater amberjack; 26, atlantic herring; 27, haddock; 28, pacific herring; 29, broadbanded thornyhead (Stepien et al. 2000); 30, atlantic cod (N Atlantic); 31, atlantic cod (NW Atlantic); 32, capelin (NW Atlantic); 33, capelin (NE Atlantic); 34, shortfin mako; 35, hoki; 36, cape hake; 37, deepwater hake; 38, cape hake (von der Heyden et al. 2007); 39, deepwater hake (von der Heyden et al. 2007); 40, shortspine thornyhead (Stepien et al. 2000); 41, longspine thornyhead (Stepien et al. 2000); 42, bluemouth (control region, Aboim et al. 2005); 43, bluemouth (cyt b, Aboim et al. 2005); 44, alfonsino (Friess and Sedberry 2011); 45, alaskan pacific halibut (Nielsen et al. 2010); 46, spikey oreo (Elliott et al. 1998); 47, blackfin flounder (Xiao et al. 2010); 48, orange roughy (Smolenski et al. 1993); 49, orange roughy (Baker et al. 1995); 50, orange roughy (cyt b, present study, Chapter 2); 51, orange roughy (COI, present study, Chapter 2)

6.5 Genetic divergence and phylogenetic relationships of Hoplostethus spp.

The analyses conducted using COI sequences of six Hoplostethus species in Chapter 4, showed the typical pattern found in the barcode DNA region, there is a marked difference between intra and inter-species divergence (Hebert et al. 2003).

The analyses of the nucleotide data clearly showed that H. atlanticus is a separate taxon from the clade formed by H. latus, H. crassispinus, H. japonicus, and H. mediterraneus. The phylogenetic relationship between H. atlanticus and H. gigas was not resolved at the nucleotide level. However, the amino acid data differentiated H. atlanticus from all the other species including H.gigas. This was evident by the presence of three non-synonymous substitutions in H. atlanticus. Even more, two of these substitutions were among different physicochemical amino acids. These results are correlated with morphological differences. Hoplostethus atlanticus have different morphological characteristics respect to H. gigas, H. crassispinus H. japonicus, and H. mediterraneus Kotlyar (1986).

Considering the species used here, the analyses indicated that the genus Hoplostethus is monophyletic and derived (Maximum Likelihood and Bayesian analyses) respect to the genera Aulotrachichthys, Gephyroberyx and Paratrachichthys within the family Trachichthyidae. Further studies including all the Hoplostethus species and representatives of all the genera within Trachichthyidae would be needed to propose a complete molecular phylogeny for the genus Hoplostethus, and for clearly place the phylogenetic position of this genus within the family.

6.6 Visual adaptations of orange roughy to the bathypelagic light environment

It is well known that certain amino acid replacements (critical sites) in the opsin protein of vertebrates' visual pigments shift the maximal absorbance ($\lambda_{\max }$) of the pigments to adapt to different light environments (reviewed by Yokoyama 2008). The diversity of marine fish species inhabiting a wide range of depths and photic conditions (e.g. turbidity, color of the water and brightness of the downwelling light) provide an ideal model to study the evolution of visual systems (Bowmaker 1995; Yokoyama 2000). The visual pigments of many fish species are shifted towards the blue light when compared with terrestrial species (e.g. the bovine Bos taurus) (reviewed by Yokoyama 2008).

In Chapter 5, using partial rhodopsin sequences of 19 marine fish species inhabiting different depths ($1-1,800 \mathrm{~m}$), I identified 60 variable amino acid sites; four of them are known to be involved in spectral tuning in marine fish species: P194R, H195A, A292S and A299S (Hunt et al. 2001; Yokoyama and Takenaka 2004; Yokoyama 2008). The comparisons of the amino acid sequences of the species under study, revealed that orange roughy have a particular set of amino acids at two critical sites (292S/299A), which has been previously reported for silver roughy and was related with a $\lambda_{\max }$ value of 479 nm (Hunt et al. 2001). This combination was not found in any of the other species and, therefore, may represent an adaptation to the light available in bathypelagic environments (i.e. blue bioluminescence).

The study of rhodopsin gene sequences conducted here included very divergent species (belonging to16 families). The species used were available since they are common in New Zealand (although the samples of Trachurus murphyi were obtained from Chile). The diversity of species used allowed the identification of potential sites for spectral tuning for species covering a wide range of depth distribution, and thus, different light environments. Nonetheless, the use of rhodopsin gene sequences to identify critical amino acid sites has an enormous potential to study intra-specific adaptive evolution in many and diverse organisms (Yokoyama 2000). For example, a recent study reported a correlation between critical sites in the rhodopsin gene and the photic environments of different populations of the sand goby, Pomatoschistus minutus (Larmuseau et al. 2009b). Similarly, the influence of natural selection in visual systems has been related with diversification of marine fishes flocks in sand goby and sevenspined gobies species (Teleostei: Gobiidae) (Larmuseau et al. 2010; Larmuseau et al. 2011). Future studies aiming to study functional variation in the rhodopsin gene at intra and inter-species levels would be highly valuable to continue the research about the influence of natural selection (operating over visual systems) in the evolution and diversification of fishes. These kinds of studies are part of three steps needed to determine the molecular basis of adaptive changes in visual systems. The two other steps involve cloning and characterization of the retinal opsin genes and determination of the actual effects of critical amino acid sites on shifts in the $\lambda_{\max }$ of visual pigments using in vitro assay (Yokoyama 2000).

6.7 Concluding remarks and future research

This thesis covered several different aspects of genetic research on the deep-sea fish orange roughy. The main goal was to add knowledge into the already extensive research field of population connectivity in this heavily exploited fish. This is the first study to use large sample sizes, two types of neutral molecular markers and samples from New Zealand, Australia, Namibia, Chile, and the Northeast Atlantic Ocean; including multiple locations around New Zealand within the EEZ and in the high seas. Future studies should also include markers under selection to evaluate if adaptive variation plays a role in the levels of connectivity among orange roughy populations. The rapid advance in molecular technology (i.e. genome-wide studies) combined with continuos reductions in costs could facilitate the research into adaptive vs. neutral divergence in non-model species and will likely influence fisheries sciences (Hauser and Seeb 2008).

I also aimed to study the intra/inter genetic divergence and phylogenetic relationships of orange roughy respect to other congeners using a portion of the DNA barcode region. The lack of access to samples of other congeners limited the proposition of a molecular phylogeny for the genus Hoplostethus, and, therefore, constitutes a future area of research.

A third topic of study was about the molecular basis for visual adaptations of orange roughy to the bathypelagic light environment. The inclusion of other fish species inhabiting different depths allowed to gain insights into a particular feature not found in any of the other species, except by the congener silver roughy, which also occur in bathypelagic environments. Further studies about this aspect should aim to obtain the complete rhodopsin gene sequence in orange roughy to identify other potential tuning sites.

References

Abaunza P, Murta AG, Campbell N, Cimmaruta R, Comesaña AS, Dahle G, García Santamaría MT, Gordo LS, Iversen SA, MacKenzie K, Magoulas A, Mattiucci S, Molloy J, Nascetti G, Pinto AL, Quinta R, Ramos P, Sanjuan A, Santos AT, Stransky C, Zimmermann C (2008) Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fisheries Research 89:196-209
Aboim MA, Menezes GM, Schlitt T, Rogers AD (2005) Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Molecular Ecology 14:1343-1354

Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology 305:191-221

André C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG, Hutchinson WF, Mariani S, Mudde K, Ruzzante DE, Ryman N (2011) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106:270-280

Avise JC (1998a) The history and purview of phylogeography: a personal reflection. Molecular Ecology 7:371-379

Avise JC (1998b) Conservation genetics in the marine realm. Journal of Heredity 89:377-382

Ayling T, Cox GJ (1982) Collins guide to the sea fishes of New Zealand. Collins Publishers Auckland, 343 pp

Baker CS, Perry A, Chambers GK, Smith PJ (1995) Population variation in the mitochondrial cytochrome b gene of the orange roughy Hoplostethus atlanticus and the hoki Macruronus novaezelandiae. Marine Biology 122:503-509

Baker KD, Devine JA, Haedrich RL (2009) Deep-sea fishes in Canada's Atlantic: population declines and predicted recovery time. Environmental Biology of Fishes 85:79-88

Ball AO, Sedberry GR, Zatcoff MS, Chapman RW, Carlin JL (2000) Population structure of the wreckfish Polyprion americanus determined with microsatellite genetic markers. Marine Biology 137:1077-1090

Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37-48

Begg GA, Waldman JR (1999) An holistic approach to fish stock identification. Fisheries Research 43:35-44

Begg GA, Friedland KD, Pearce JB (1999) Stock identification and its role in stock assessment and fisheries management: an overview. Fisheries Research 43:1-8

Bell JD, Lyle JM, Bulman CM, Graham KJ, Newton GM, Smith DC (1992) Spatial variation in reproduction, and occurrence of non-reproductive adults, in orange roughy, Hoplostethus atlanticus Collett (Trachichthyidae), from south-eastern Australia. Journal of Fish Biology 40:107-122

Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian isthmus. In: Kocher T, Stepien C (Eds.) Molecular Systematics of Fishes. Academic Press, San Diego, pp 113-128

Bertrand A, Barbieri MA, Córdova J, Hernández C, Gómez F, Leiva F (2004). Diel vertical behaviour, predator-prey relationships, and occupation of space by jack mackerel (Trachurus murphyi) off Chile. ICES Journal of Marine Sciences 61:11051112

Boehlert GW, Sasaki T (1988) Pelagic biogeography of the armorhead, Pseudopentaceros wheeleri, and recruitment to isolated seamounts in the North Pacific Ocean. Fishery Bulletin 86:453-465
Bowmaker JK (1995) The visual pigments of fish. In: Osborne NN, Chader GJ, editors. Progress in retinal and eye research, vol 15. Oxford: Pergamon Press, 1-31

Branch TA (2001) A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. South African Journal of Marine Science 23:181-203

Broderick D, Ovenden JR, Buckworth RC, Newman SJ, Lester RJG, Welch DJ (2011) Genetic population structure of grey mackerel Scomberomorus semifasciatus in northern Australia. Journal of Fish Biology 79:633-661
Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76:1967-1971

Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA Barcoding of marine metazoa. Annual Review of Marine Science 3:471-508

Bulman CM, Koslow JA (1992) Diet and food consumption of a deep-sea fish, orange roughy Hoplostethus atlanticus (Pisces: Trachichthyidae), off southeastern Australia. Marine Ecology Progress Series 82:115-129

Cadrin SX, Friedland KD, Waldman J (2005) Stock identification methods: applications in Fishery Science. Elsevier Academic Press, Amsterdam.

Carbines G (2003) Age, growth, movement and reproductive biology of blue cod (Parapercis colias - Pinguipedidae): Implications for fisheries management in the south island of New Zealand. PhD Thesis, University of Otago, Dunedin, New Zealand, 225 pp

Carlsson J, Shephard S, Coughlan J, Trueman CN, Rogan E, Cross TF (2011) Finescale population structure in a deep-sea teleost (orange roughy, Hoplostethus atlanticus). Deep-Sea Research I 58:627-636

Cawthorn DM, Steinman HA, Witthuhn RC (2011) Establishment of a mitochondrial DNA sequence database for the identification of fish species commercially available in South Africa. Molecular Ecology 11:979-991

Chapman DD, Simpfendorfer CA, Wiley TR, Poulakis GR, Curtis C, Tringali M, Carlson JK, Feldheim (2011) Genetic diversity despite population collapse in a critically endangered marine fish: The smalltooth sawfish (Pristis pectinata). Journal of Heredity 102:643-652

Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution 26:262-288

Clark MR (1996) Biomass estimation of orange roughy: a summary and evaluation of techniques for measuring stock size of a deep-water fish species in New Zealand. Journal of Fish Biology 49(Supplement A):114-131

Clark MR (2009) Deep-sea seamount fisheries: a review of global status and future prospects. Latin American Journal of Aquatic Research 37:501-512

Clark MR (2010) Box 9: Effects of trawling on seamounts. Oceanography 23:132-133
Clark MR, Anderson OF, Francis RIC, Tracey DM (2000) The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fisheries Research 45:217238

Correia AT, Pipa T, Gonçalves JMS, Erzini K, Hamer PA (2011) Insights into population structure of Diplodus vulgaris along the SW Portuguese coast from otolith elemental signatures. Fisheries Research 111:82-91

Crandall KA, Templeton AR (1993) Empirical test of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959969

Crawford NG (2010) SMOGD: Software for the measurement of genetic diversity. Molecular Ecology Resources 10:556-557

Crescitelli F (1991) Adaptations of visual pigments to the photic environment of the deep sea. The Journal of Experimental Zoology (Supplement 5):66-75

DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology 56:461-473

Dower JF, Brodeur RD (2004) The role of biophysical coupling in concentrating marine organism around shallow topographies. Journal of Marine Systems 50:1-2

Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disc membrane. Trends in Biochemical Sciences 8:128-131

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7:214. doi:10.1186/147-2148-7-214

Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22:1185-1192

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4:699-710
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1, Available from http://www.geneious.com

Duffy CAJ, Petherick C (1999) A new size record for kahawai (Arripis trutta) from New Zealand. New Zealand Journal of Marine and Freshwater Research 33:565-569

Dunn MR, Devine JA (2010) An holistic approach to determining stock structure of orange roughy on the Chatham Rise. New Zealand Fisheries Assessment Report 2010/17

Dunn MR, Forman JS (2011) Hypotheses of spatial stock structure in orange roughy Hoplostethus atlanticus inferred from diet, feeding, condition, and reproductive activity. PLoS ONE 6(11): e26704

Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources (In press). doi:10.1007/s12686-011-9548-7

Edmonds JS, Caputi N, Morita M (1991) Stock discrimination by trace-element analysis of otoliths of orange roughy (Hoplostethus atlanticus), a deep-water marine teleost. Australian Journal of Marine and Freshwater Research 42:383-389

Elliott NG, Ward RD (1992) Enzyme variation in orange roughy, Hoplostethus atlanticus (Teleostei: Trachichthyidae), from Southern Australian and New Zealand waters. Australian Journal of Marine and Freshwater Research 43:1561-1571

Elliott NG, Smolenski AL, Ward RD (1994) Allozyme and mitochondrial DNA variation in orange roughy, Hoplostethus atlanticus (Teleostei, Trachichthyidae): little differentiation between Australian and North Atlantic populations. Marine Biology 119:621-627

Elliott NG, Haskard K, Koslow JA (1995) Morphometric analyses of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fish Biology 46:202-220
Elliott NG, Lowry PS, Grewe PM, Innes BH, Yearsley GK, Ward RD (1998) Genetic evidence for depth- and spatially separated stocks of the deep-water spikey oreo in Australasian waters. Journal of Fish Biology 52:796-816

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:26112620

Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50

Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567-1587

Fanelli E, Cartes JE (2010) Temporal variations in the feeding habits and trophic levels of three deep-sea demersal fishes from the western Mediterranean Sea, based on stomach contents and stable isotope analyses. Marine Ecology Progress Series 402:213-232

Fasick JI, Robinson PR (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37:433-438

Fauvelot C, Borsa P (2011) Patterns of genetic isolation in a widely distributed pelagic fish, the narrow-barred Spanish mackerel (Scomberomorus commerson). Biological Journal of the Linnean Society 104:886-902

Felsenstein J (1989) PHYLIP - Phylogeny inference package (version 3.2). Cladistics 5:164-166

Fenton GE, Short SA, Ritz DA (1991) Age determination of orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae) using 210Pb: 226Ra disequilibria. Marine Biology 109:197-202

Fevolden SE, Pogson GH (1997) Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and north-east Arctic populations of Atlantic cod. Journal of Fish Biology 51:895-908

Foley NS, van Rensburg TM, Armstrong CW (2011) The rise and fall of the Irish orange roughy fishery: An economic analysis. Marine Policy 35:756-763

Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180:977-993

Francis RICC, Horn PL (1997) Transition zone in otoliths of orange roughy (Hoplostethus atlanticus) and its relationship to the onset of maturity. Marine Biology 129:681-687

Francis RICC, Clark MR (1998) Inferring spawning migrations of orange roughy (Hoplostethus atlanticus) from spawning ogives. Marine and Freshwater Research 49:103-108

Francis MP, Hurst RJ, McArdle BH, Bagley NW, Anderson OF (2002) New Zealand demersal fish assemblages. Environmental Biology of Fishes 65:215-234

Friess C, Sedberry GR (2011) Genetic evidence for a single stock of the deep-sea teleost Beryx decadactylus in the North Atlantic Ocean as inferred from mtDNA control region analysis. Journal of Fish Biology 78:466-478

Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925

Glaubitz JC (2004) CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes 4:309-310

Glova GJ, Sagar PM (2000) Summer spatial patterns of the fish community in a large, shallow, turbid coastal lake. New Zealand Journal of Marine and Freshwater Research 34:507-522

González-Wangüemert M, Cánovas F, Pérez-Ruzafa A, Marcos C, Alexandrino P (2010) Connectivity patterns inferred from the genetic structure of white seabream (Diplodus sargus L.). Journal of Experimental Marine Biology and Ecology 383:2331

Goudet J (1995) FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86:485-486

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Available from http://www2.unil.ch/ popgen/ softwares/fstat. htm.

Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89:415-426

Grant WS, Waples RS (2000) Spatial and temporal scales of genetic variability in marine and anadromous species: implications for fisheries oceanography. In: Harrison PJ, Parsons TR (ed) Fisheries Oceanography: an integrative approach to fisheries ecology and management, pp 61-93

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59:307-321

Guzmán BE, Nuñez JJ, Vejar A, Barriga EH, Gallardo CS (2011) Genetic diversity and population structure of two South American marine gastropods, Crepipatella dilatata and C. fecunda (Gastropoda: Calyptraeidae): distinct patterns based on developmental mode. Italian Journal of Zoology 78:444-454

Hadfield MG, Rickard GJ, Uddstrom MJ (2007) A hydrodynamic model of Chatham Rise, New Zealand. New Zealand Journal of Marine and Freshwater Research 41:239-264

Han ZQ, Gao TX, Yanagimoto T, Sakurai Y (2008) Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in north-western pacific. Fisheries Science 74:770-780

Harpending RC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66:591-600

Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish and Fisheries 9:473-486

Heath RA (1985) A review of the physical oceanography of the seas around New Zealand - 1982. New Zealand Journal of Marine and Freshwater Research 19:79-124

Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B 270(Supplement):96-99

Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annual Review of Ecology. Evolution and Systematics 40:291-310

Hemmer-Hansen J, Nielsen EE, Frydenberg J, Loeschcke V (2007) Adaptive divergence in a high gene flow environment: $H s c 70$ variation in the European flounder (Platichthys flesus L.). Heredity 99:592-600

Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty. Chapman \& Hall, New York, 570 pp

Hoarau G, Borsa P (2000) Extensive gene flow within sibling species in the deep-sea fish Beryx splendens. Comptes Rendus de l'Academie des Sciences/Life Sciences 323:315-325

Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecology 21:797-807

Hope AJ, Partridge JC, Dulai KS, Hunt DM (1997) Mechanism of wavelength tuning in the rod opsins of deep-sea fishes. Proceedings of the Royal Society B 264:155-163

Horn PL, Tracey DM, Clark MR (1998) Between-area differences in age and length at first maturity of the orange roughy Hoplostethus atlanticus. Marine Biology 132:187-194

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9:1322-1332

Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. The Journal of Experimental Biology 204:3333-3344

Hurst RJ, Baglet NW, McGregor GA, Francis MP (1999) Movement of the New Zealand school shark, Galeorhinus galeus, from tag returns. New Zealand Journal of Marine and Freshwater Research 33:29-48

Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciations cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701-738

Jones MRL (2009) Diets of eight fish species from the upper slope off the Wairarapa coast, North Island, New Zealand, with notes on the diets of others. New Zealand Journal of Marine and Freshwater Research 43:929-939

Jordan AR (2001) Spatial and temporal variations in abundance and distribution of juvenile and adult jackass morwong, Nemadactylus macropterus, in south-eastern Tasmania. Marine and freshwater Research 52:661-670

Jost L (2008) $G_{\text {ST }}$ and its relatives do not measure differentiation. Molecular Ecology 17: 4015-4026

Katsanevakis S, Maravelias CD (2009) Bathymetric distribution of demersal fish in the Aegean and Ionian Seas based on generalized additive modelling. Fisheries Science 75:13-23

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120

Knutsen H, Jorde PE, Sannaes H, Hoelzel AR, Bergstad OA, Stefanni S, Johansen T, Stenseth NC (2009) Bathymetric barriers promoting genetic structure in the deepwater demersal fish tusk (Brosme brosme). Molecular Ecology 18:3151-3162

Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86:6196-6200

Koslow JA (1996) Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. Journal of Fish Biology 49(Supplement A):54-74

Koslow JA (1997) Seamounts and the ecology of deep-sea fisheries. American Scientist 85:168-176

Koslow JA, Boehlert GW, Gordon JDM, Haedrich RL, Lorance P, Parin N (2000) Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES Journal of Marine Sciences 57:548-557

Kotlyar AN (1986) Taxonomy and distribution of species of the genus Cuvier (Beryciformes, Trachichthyidae). Trudy Instituta Okeanologii Akademi Nauk SSSR 121:97-140

Kotlyar AN (2010) Fry of pacific slimehead Hoplostethus pacificus - a rare species of the Family of slimeheads (Trachichthyidae, Beryciformes). Journal of Ichthyology 50:197-200

Labbé J, Arana PM (2001) Alimentación de orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae), en el archipiélago de Juan Fernández, Chile. Revista de Biología Marina y Oceanografía 36:75-82

Laikre L, Palm S, Ryman N (2005) Genetic population structure of fishes: Implications for coastal zone management. Ambio 34:111-119

Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert P (2011) DNA barcoding Indian marine fishes. Molecular Ecology Resources 11:60-71

Larmuseau MHD, Van Houdt JKJ, Guelinckx J, Hellemans B, Volckaert FAM (2009a) Distributional and demographic consequences of Pleistocene climate fluctuations for a marine demersal fish in the north-eastern Atlantic. Journal of Biogeography 36:1138-1151

Larmuseau MHD, Raeymaekers JAM, Ruddick KG, van Houdt JKJ, Volckaert FAM (2009b) To see indifferent seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus) Molecular Ecology 18:4227-4239

Larmuseau MHD, Huyse T, Vancampenhout K, van Houdt JKJ, Volckaert FAM (2010) High molecular diversity in the rhodopsin gene in closely related goby fishes: a role for visual pigments in adaptive speciation? Molecular Phylogenetics and Evolution 55:689-698

Larmuseau MHD, Vanhove MPM, Huyse T, Volckaert FAM, Decorte R (2011) Signature of selection on the rhodopsin gene in the marine radiation of American seven-spined gobies (Gobiidae, Gobiosomatini). Journal of Evolutionary Biology 24:1618-1625

Lester RJG, Sewell KB, Barnes A, Evanks K (1988) Stock discrimination of orange roughy, Hoplostethus atlanticus, by parasite analysis. Marine Biology 99:137-143
Levine JS, MacNichol EF (1982) Color vision in fishes. Scientific American 246:140149

Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics 32:51-93

Librado P, Rozas J (2009) DNAsp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452

Lorance P, Uiblein F, Latrouite D (2002) Habitat, behaviour and colour patterns of orange roughy Hoplostethus atlanticus (Pisces: Trachichthyidae) in the Bay of Biscay. Journal of the Marine Biological Association of the United Kingdom 82:321331

Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Molecular Ecology 19:3038-3051

Mace PM, Fenaughty JM, Coburn RP, Doonan IJ (1990) Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise. New Zealand Journal of Marine and Freshwater Research 24:105-119

Madurell T, Cartes JE (2005) Temporal changes in feeding habits and daily rations of Hoplostethus mediterraneus in the bathyal Ionian Sea (eastern Mediterranean). Marine Biology 146:951-962

Mamuris Z, Apostolidis AP, Panagiotaki P, Theodorou AJ, Triantaphyllidis C (1998) Morphological variation between red mullet populations in Greece. Journal of Fish Biology 52:107-117

Martin AP, Humphreys R, Palumbi SR (1992) Population genetic structure of the Armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: application of the polymerase chain reaction to fisheries problems. Canadian Journal of Fisheries and Aquatic Sciences 49:2368-2391

McCusker MR, Bentzen P (2010) Positive relationships between genetic diversity and abundance in fishes. Molecular Ecology 19:4852-4862

Ministry of Fisheries (2011) Report from the Fisheries Assessment Plenary, May 2011: stock assessment and yield estimates. Ministry of Fisheries, Wellington, New Zealand. 1178 p. Available: http://www.fish.govt.nz via the Internet. Accessed 2011 Oct 21

Ministry of Fisheries (2011) Report from the Ministry of Fisheries 144-150. Available: http://fs.fish.govt.nz/Doc/22715/12_BUT_2011.pdf.ashx. Accessed 2012 Feb 15

Moore BR, Stapley J, Allsop Q, Newman SJ, Ballagh A, Welch DJ, Lester RJG (2011) Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites. Journal of Fish Biology 78:923-936

Moore JA, Dodd KA (2010) A new species of the roughy genus Hoplostethus (Teleostei: Trachichthyidae) from the Philippines. Bulletin of the Peabody Museum of Natural History 51:137-144

Morato T, Watson R, Pitcher TJ, Pauly D (2006) Fishing down the deep. Fish and Fisheries 7:24-34

Mundy BC, Moser HG (1997) Development of early stages of pelagic armorhead Pseudopentaceros wheeleri with notes on juvenile Ps. richardsoni and larval Histiopterus typus (Pisces, Percoidei, Pentacerotidae). Bulletin of Marine Sciences 61:241-269

Naro-Maciel E, Reid B, Holmes KE, Brumbaugh DR, Martin M, DeSalle R (2011) Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Marine Biology 158:2027-2041

Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807-841

Nathans J, Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proceedings of the National Academy of Sciences of the United States of America 81:4851-4855

Neethling M, Matthee CA, Bowie RCK, von der Heyden S (2008) Evidence for panmixia despite barriers to gene flow in the southern African endemic, Caffrogobius caffer (Teleostei: Gobiidae). BMC Evolutionary Biology 8:325, doi:10.1186/1471-2148-8-325

Nielsen JL, Graziano SL, Seitz AC (2010) Fine-scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis). Conservation Genetics 11:9991012

Niklitschek EJ, Cornejo-Donoso J, Oyarzún C, Hernández E, Toledo P (2010) Developing seamount fishery produces localized reductions in abundance and changes in species composition of bycatch. Marine Ecology-An Evolutionary Perspective 31(Supplement 1):168-182

Oke CS, Crozier YC, Crozier RH, Ward RD (1999) Microsatellites from a teleost, orange roughy (Hoplostethus atlanticus), and their potential for determining population structure. Molecular Ecology Primer Notes 8:2145-2147

Oke CS, Crozier RH, Ward RD (2002) Stock structure of Australian populations of orange roughy analysed using microsatellites. Published by James Cook University. Fisheries Research and Development Corporation, James Cook University, La Trobe University and the Commonwealth Scientific and Industrial Research Organization. 44 p.

Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool's guide to PCR. Honolulu, Department of Zoology, University of Hawaii

Pankhurst NW (1987) Intra- and interspecific changes in the retinal morphology among mesopelagic and demersal teleosts from the slope waters of New Zealand. Environmental Biology of Fishes 19:269-280

Pankhurst NW, Conroy AM (1987) Size-fecundity relationships in orange roughy, Hoplostethus atlanticus. New Zealand Journal of Marine and Freshwater Resarch 21:295-300

Paulin CD (1979) New Zealand roughies (Pisces: Berycomorphi: Trachichthyidae). New Zealand Journal of Zoology 6:69-76

Pitcher TJ (2010) Box 8: Eight major target species in world seamount fisheries. Oceanography 23:130-131

Pitcher TJ, Clark MR, Morato T, Watson R (2010) Seamount fisheries: Do they have a future? Oceanography 23:134-144

Pogson GH, Fevolden SE (2003) Natural selection and the genetic differentiation of coastal and Artic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation at the pantophysin (PanI) locus. Molecular Ecology 12:63-74

Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25:1253-1256

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959

Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Arbizu PM, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010) Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7:2851-2899

Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6(7): e22588.

Rasmussen TL, Oppo DW, Thomsen E, Lehman SJ (2003) Deep sea records from the southeast Labrador Sea: Ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18(1):1018 doi:10.1029/2001PA000736

Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Globalscale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636-639

Riginos C, Douglas KE, Jin Y, Shanahan DF, Treml EA (2011) Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34:566-575

Robinson N, Skinner A, Sethuraman L, McPartlan H, Murray N, Knuckey I, Smith DC, Hindell J, Talman S (2008) Genetic stock structure of blue-eye trevalla (Hyperoglyphe antarctica) and warehous (Seriolella brama and Seriolella punctata) in south-eastern Australian waters). Marine and Freshwater Research 59:502-514

Rogers AD (1994) The biology of seamounts. Advances in Marine Biology 30:305-350
Rogers AD, Morley S, Fitzcharles E, Jarvis K, Belchier M (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean Sectors of the Southern Ocean. Marine Biology 149:915-924

Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9:552-569

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574

Roques S, Sévigny JM, Bernatchez L (2002) Genetic structure of deep-water redfish, Sebastes mentella, populations across the North Atlantic. Marine Biology 140:297307

Rousset F (2008) GENEPOP'007: a complete reimplementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8:103-106

Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6:600-602

Salzburger W, Ewing GB, von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology 20:1952-1963

Sanders HL (1968) Marine benthic diversity: a comparative study. The American Naturalist 102:243-282

Sanders HL, Hessler RR, Hampson GR (1965) An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep-sea Research 12:845-867

Schunter C, Carreras-Carbonell J, Macpherson E, Tintoré J, Vidal-Vijande E, Pascual A, Guidetti P, Pascual M (2011) Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Molecular Ecology 20:5167-5181

Sedberry GR, Carlin JL, Chapman RW, Eleby B (1996) Population structure in the panoceanic wreckfish, Polyprion americanus (Teleostei: Polyprionidae), as indicated by mtDNA variation. Journal of Fish Biology 49(Supplement A):318-329

Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9:615-629

Slatkin M (1994) Linkage disequilibrium in growing and stable populations. Genetics 137: 331-336

Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data using the expectation-maximization algorithm. Heredity 76:377-383

Smith PJ (1986) Genetic similarity between samples of the orange roughy Hoplostethus atlanticus from the Tasman Sea, South-west Pacific Ocean and North-east Atlantic Ocean. Marine Biology 91:173-180
Smith PJ (2007) Issues, status and trends in deep-sea fishery genetic resources. FAO Fisheries Proceedings 5:81-108

Smith PJ, Benson PG (1997) Genetic diversity in orange roughy from the east of New Zealand. Fisheries Research 31:197-213

Smith PJ, McVeagh SM (2000) Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. Journal of Fish Biology 57:72-83

Smith PJ, McVeagh SM, Ede A (1996) Genetically isolated stocks of orange roughy (Hoplostethus atlanticus) but not hoki (Macruronus novaezelandiae) in the Tasman Sea and Southwest Pacific Ocean around New Zealand. Marine Biology 125:783-793

Smith PJ, Benson PG, McVeagh SM (1997) A comparison of three genetic methods for stock discrimination of orange roughy, Hoplostethus atlanticus: allozymes, mitochondrial DNA, and random amplified polymorphic DNA. Fishery Bulletin 95:800-811

Smith PJ, Roberts CD, Benson PG (2001) Biochemical-genetic and meristic evidence that blue and cooper moki (Teleostei: Latridae: Latridopsis) are discrete species. New Zealand Journal of Marine and Freshwater Research 35:387-395

Smith PJ, Robertson SG, Horn PL, Bull B, Anderson OF, Stanton BR, Oke CS (2002a). Multiple techniques for determining stock relationships between orange roughy, Hoplostethus atlanticus, fisheries in the eastern Tasman Sea. Fisheries Research 58:119-140

Smith PJ, McMillan PJ, Bull B, McVeagh SM, Gaffney PM, Chow S (2002b) Genetic and meristic variation in black and smooth oreos in the New Zealand Exclusive Economic Zone. New Zealand Jornal of Marine and Freshwater Research 36:737750

Smolenski AJ, Ovenden JR, White RWG (1993) Evidence of stock separation in southern hemisphere orange roughy (Hoplostethus atlanticus, Trachichthyidae) from restriction-enzyme analysis of mitochondrial DNA. Marine Biology 116:219-230
Stepien CA, Dillon AK, Patterson AK (2000) Population genetics, phylogeography, and systematic of the thornyhead rockfishes (Sebastolobus) along the deep continental slopes of the North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences 57:1701-1717

Stewart J (2008) Capture depth related mortality of discarded snapper (Pagrus auratus) and implications for management. Fisheries Research 90:289-295

Stuart CT, Rex MA, Etter RJ (2003) Large-scale spatial and temporal patterns of deepsea benthic species diversity. In: Tyler PA, ed. Ecosystems of the Deep Oceans, Ecosystems of the World Elsevier, Amsterdam. pp 295-311

Stockley B, Menezes G, Pinho MR, Rogers AD (2005) Genetic population structure in the black-spot sea bream (Pagellus bogaraveo Brünnich, 1768) from the NE Atlantic. Marine Biology 146:793-804
Sverdrup HU, Johnson MW, Fleming RH (1942) The Oceans: their physics, chemistry, and general biology. Prentice-Hall

Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Molecular Biology and Evolution 28:2731-2739

Thistle D (2003) The deep sea floor: an overview, in: Ecosystems of the World, Vol. 28, Ecosystems of the Deep Oceans, edited by: Tyler, PA, Elsevier, Amsterdam, 5-39

Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proceedings of the National Academy of Sciences of the United States of America 18:7461-7465

Trip EDL, Clements KD, Raubenheimer D, Choat JH (2011) Reproductive biology of an odacine labrid, Odax pullus. Journal of Fish Biology 78:741-761

Tsuchiya M, Talley LD, McCartney MS (1992) An eastern Atlantic section from Iceland southward across the equator. Deep-Sea Research 39:1885-1917
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538
van Vuuren BJ, Best PB, Roux JP, Robinson TJ (2002) Phylogeographic population structure in the Heaviside's dolphin (Cephalorhynchus heavisidii): conservation implications. Animal Conservation 5:303-307
von der Heyden S, Lipinski MR, Matthee CA (2007) Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Merluccius capensis and population structuring for mature fish in Merluccius paradoxus. Molecular Phylogenetics and Evolution 42:517-527

Wakefield CB, Newman SJ, Molony BW (2010) Age-based demography and reproduction of hapuku, Polyprion oxygeneios, from the south coast of Western Australia: implications for management. ICES Journal of Marine Sciences 67:11641174

Ward RD, Holmes BH (2007) An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Molecular Ecology Notes 7:899-907

Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fish Biology 44:213232

Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B 360:1847-1857

Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology 74:329-356

Warrant EJ and Locket NA (2004) Vision in the deep-sea. Biological Reviews 79:671712

Watson R, Morato T (2004) Exploitation patterns in seamount fisheries: a preliminary analysis. In Seamounts: Biodiversity and Fisheries (ed) T. Morato and D. Pauly Fisheries Centre Research Report: 61-65
Webb T, Bartlein PJ (1992) Global changes during the last 3 million years: Climatic controls and biotic responses. Annual Review of Ecology and Systematics 23:141173

White TA, Stefanni S, Stamford J, Hoelzel AR (2009a) Unexpected panmixia in a longlived, deep-sea fish with well-defined spawning habitat and relatively low fecundity. Molecular Ecology 18:2563-2573

White TA, Stamford J, Hoelzel AR (2009b) Nine new microsatellite loci for the orange roughy (Hoplostethus atlanticus). Conservation Genetics 10:601-603

White TA, Stamford J, Hoelzel AR (2010) Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology 19:216-226

White TA, Fotherby HA, Stephens PA, Hoelzel AR (2011) Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106:690-699

Wu G C-C, Chiang H-C, Chou Y-W, Wong Z-R, Hsu C-C, Chen C-Y, Yang H-Y (2010) Phylogeography of yellowfin tuna (Thunnus albacares) in the Western Pacific and Western Indian Oceans inferred from mitochondrial DNA. Fisheries Research 105:248-253

Xiao Y, Gao T, Zhang Y, Yanagimoto T (2010) Demographic history and population structure of blackfin flounder (Glyptocephalus stelleri) in Japan revealed by mitochondrial control region sequences. Biochemical Genetics 48:402-417

Yanagimoto T, Kitamura T, Kobayashi T (2008) Population structure of the pelagic armorhead Pseudopentaceros wheeleri, inferred from PCR-RFLP analysis of the mtDNA variation. Nippon Suisan Gakk 74:412-420

Yokoyama S (1999) Molecular bases of color vision in vertebrates. Genes and Genetic Systems 74:189-199
Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research 19:385-419

Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics 9:259-282

Yokoyama S, Takenaka N (2004) The molecular basis of adaptive evolution of squirrelfish rhodopsins. Molecular Biology and Evolution 21:2071-2078

Yokoyama S, Zhang H, Radlwimmer FB, Blow NS (1999) Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proceedings of the National Academy of Sciences of the United States of America 96:6279-6284

Zhang J (2011) Species identification of marine fishes in China with DNA barcoding. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2011/ 978253

Zhang J, Hanner R (2011) DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics and Ecology 39:31-42

Zeldis JR, Grimes PJ, Ingerson JKV (1995) Ascent rates, vertical distribution, and a thermal history model of development of orange roughy, Hoplostethus atlanticus, eggs in the water column. Fishery Bulletin 93:373-385

Zeldis JR, Francis RICC, Clark MR, Ingerson JKV, Grimes PJ, Vignaux M (1997) An estimate of orange roughy, Hoplostethus atlanticus, biomass using the daily fecundity reduction method. Fishery Bulletin 95:576-597

Zeldis JR, Grimes PJ, Hart AC (1998) Embryology and early larval development of orange roughy (Hoplostethus atlanticus Collet). New Zealand Journal of Marine and Freshwater Research 32:159-174

Appendix A

COI haplotype frequencies in each sampling site. GenBank Accession Numbers are indicated for each haplotype

Accession number	ORH1	Rit	Chat	Puy	Cha	LHR	Lou	NTas	Alb	Nam	JF	Por	Sed
JN580075	0	0	0	0	0	1	0	0	2	0	0	0	0
JN580076	9	8	10	12	7	8	7	8	8	12	16	7	0
JN580077	7	7	4	10	5	4	6	8	9	10	13	18	12
JN580078	1	2	7	4	1	5	5	0	7	5	3	2	12
JN580079	0	0	0	0	0	0	0	0	1	3	0	0	0
JN580080	0	1	0	0	1	0	0	0	1	0	0	1	2
JN580081	0	0	1	0	0	0	0	0	2	0	0	0	0
JN580082	2	0	0	0	1	0	1	0	1	1	1	0	0
JN580083	0	0	0	0	0	0	0	0	1	0	0	0	0
JN580084	1	0	3	0	2	1	0	0	1	0	0	2	0
JN580085	0	0	0	0	0	0	0	0	1	0	0	0	0
JN580086	0	1	2	0	1	2	4	0	1	2	0	0	0
JN580087	0	0	1	0	1	1	0	0	1	0	0	0	0
JN580088	0	0	0	0	0	0	0	0	1	0	0	0	0
JN580089	2	2	2	4	0	2	1	2	1	1	0	0	0
JN580090	0	1	0	0	0	0	0	0	1	0	0	0	0
JN580091	0	0	0	0	0	0	0	0	1	0	3	0	0
JN580092	0	0	0	0	0	0	0	0	1	0	2	0	0
JN580093	2	1	1	1	1	0	0	0	1	0	0	1	1
JN580094	0	0	0	1	0	2	0	0	1	0	0	0	0
JN580095	0	0	0	0	0	0	1	0	1	0	0	0	0
JN580096	0	0	1	0	0	1	0	0	1	0	0	0	0
JN580097	1	0	0	1	0	1	0	0	1	0	0	0	0
JN580098	1	0	0	0	0	0	0	0	0	0	0	0	0
JN580099	1	0	0	0	0	0	0	0	0	0	0	0	0
JN580100	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580101	0	1	1	1	1	1	0	0	0	0	0	0	0
JN580102	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580103	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580104	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580105	1	0	1	0	0	1	0	1	0	0	0	0	0
JN580106	0	0	1	0	0	0	0	0	0	1	0	0	0
JN580107	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580108	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580109	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580110	0	1	1	2	0	1	0	0	0	0	0	0	0
JN580111	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580112	0	0	1	0	0	0	0	0	0	0	0	0	0
JN580113	0	0	1	0	0	1	0	0	0	0	0	0	0
JN580114	0	0	0	0	1	0	0	0	0	0	0	0	0
													0

Appendix A continued

Accession	ORH1	Rit	Chat	Puy	Cha	LHR	Lou	NTas	Alb	Nam	JF	Por	Sed		
number															
JN580115	0	1	0	1	1	0	0	0	0	2	0	0	0		
JN580116	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580117	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580118	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580119	1	2	0	0	1	1	1	0	0	0	0	7	2		
JN580120	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580121	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580122	0	0	0	0	1	0	0	0	0	0	0	0	0		
JN580123	0	0	0	0	0	0	0	0	0	1	2	0	0		
JN580124	0	0	0	0	0	0	0	0	0	0	1	0	0		
JN580125	0	2	0	0	0	1	0	0	0	0	1	0	0		
JN580126	0	0	0	0	0	0	1	0	0	0	3	0	0		
JN580127	0	0	0	0	0	0	0	1	0	0	3	0	0		
JN580128	0	0	0	0	0	0	0	0	0	0	1	0	0		
JN580129	0	0	0	0	0	0	0	0	0	0	2	0	0		
JN580130	0	0	0	0	0	0	1	0	0	0	1	0	0		
JN580131	2	1	0	0	0	0	0	1	0	0	0	0	0		
JN580132	1	0	0	0	0	0	0	0	0	0	0	0	0		
JN580133	1	0	0	0	0	0	0	0	0	0	0	0	0		
JN580134	1	0	0	0	0	0	0	0	0	0	0	0	0		
JN580135	1	0	0	0	0	0	0	0	0	0	0	0	0		
JN580136	0	0	0	0	0	0	0	0	0	0	0	2	2		
JN580137	0	0	0	0	0	0	0	0	0	0	0	2	2		
JN580138	0	0	0	0	0	0	0	0	0	0	0	6	2		
JN580139	0	0	0	0	0	0	0	0	0	0	0	2	3		
JN580140	1	0	0	0	0	0	1	1	0	0	0	0	0		
JN580141	1	0	0	0	0	0	0	0	0	0	0	0	0		
JN580142	0	0	0	0	0	1	0	0	0	0	0	0	0		
JN580143	1	0	0	1	0	1	1	0	0	0	0	0	0		
JN580144	0	0	0	0	0	1	0	0	0	0	0	0	0		
JN580145	0	0	0	0	0	1	0	0	0	0	0	0	0		
JN580146	0	0	0	0	0	1	0	0	0	0	0	0	0		
JN580147	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580148	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580149	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580150	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580151	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580152	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580153	0	0	0	0	0	0	1	0	0	0	0	0	0		
JN580154	0	2	0	1	0	0	1	0	0	0	0	0	0		
													0		

Appendix A continued

Accession number	ORH1	Rit	Chat	Puy	Cha	LHR	Lou	NTas	Alb	Nam	JF	Por	Sed
JN580155	0	0	0	0	0	0	1	0	0	0	0	0	0
JN580156	1	0	0	0	0	0	1	0	0	1	0	0	0
JN580157	0	0	0	0	0	0	0	0	0	0	0	0	1
JN580158	0	0	0	0	0	0	0	0	0	1	0	0	0
JN580159	0	0	0	0	0	0	0	0	0	2	0	0	0
JN580160	0	0	0	0	0	0	0	0	0	1	0	0	0
JN580161	0	0	0	0	0	0	0	0	0	1	0	0	0
JN580162	0	0	0	0	0	0	0	0	0	1	0	0	0
JN580163	0	0	0	0	0	0	0	1	0	0	0	0	0
JN580164	0	0	0	0	0	0	0	1	0	0	0	0	0
JN580165	0	0	0	0	0	0	0	1	0	0	0	0	0
JN580166	1	0	0	0	0	0	0	0	0	0	0	0	0
JN580167	0	0	0	0	0	0	0	0	0	0	0	1	0
JN580168	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580169	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580170	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580171	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580172	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580173	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580174	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580175	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580176	0	0	0	1	0	0	0	0	0	0	0	0	0
JN580177	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580178	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580179	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580180	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580181	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580182	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580183	0	1	0	0	0	0	0	0	0	0	0	0	0
JN580184	1	0	0	0	0	0	0	0	0	0	0	0	0
JN580185	0	0	0	0	0	0	0	0	0	0	0	0	1
JN580186	0	0	0	0	0	0	0	0	0	0	0	0	1
JN580187	0	0	0	0	0	0	0	0	0	0	0	0	1
JN580188	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0									

Appendix B

Cyt b haplotype frequencies in each area. GenBank Accession Numbers are indicated for each haplotype

Accession number	New Zealand	Australia	Namibia	Chile	NE Atlantic
JN580189	0	2	0	0	0
JN580190	0	1	0	0	0
JN580191	1	3	5	2	8
JN580192	0	2	0	2	0
JN580193	8	2	5	4	0
JN580194	0	1	1	1	0
JN580195	0	1	0	0	0
JN580196	0	1	0	0	0
JN580197	1	0	0	0	0
JN580198	3	0	1	1	0
JN580199	1	0	0	0	0
JN580200	0	0	0	1	0
JN580201	0	0	0	3	0
JN580202	0	0	0	1	0
JN580203	0	0	0	1	0
JN580204	0	1	0	1	0
JN580205	0	0	0	1	0
JN580206	0	0	1	1	0
JN580207	0	0	0	0	0
JN580208	1	0	0	0	2
JN580209	0	0	0	0	3
JN580210	1	0	0	0	1
JN580211	0	0	0	0	0
JN580212	0	0	0	0	0
JN580213	0	0	0	0	0
JN580214	0	0	0	0	0
JN580215	0	0	0	0	0
JN580216	0	0	0	0	0
JN580217	0	0	0	0	0
JN580218	0	0	0	0	0
JN580219	0	0	0	0	0
JN580220	0	0	0	0	0
JN580221	1	0	0	0	0
JN580222	0	0	0	0	0
JN580223	0	0	0	0	0
JN580224	1	0	0	0	0
JN580225	1	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0

Appendix C

Genotypes of each individual in GENEPOP format for the spatial analyses. Sampling sites codes as in Table 3.1.

Orange roughy		
Hat2a		
HopAt2		
Hat3		
Hat9a		
Hat7		
Hat45		
HopAt4		
HopAt5		
HopAt11		
Pop		
Kail		187207183201130172140156000000000000000000000000000000
Kai2		187203193209130152142152208210144144160160160192146148
Kai3		207207201225130152142144238238136144158160160160144146
Kai4		187203203217150168150158222238142144156160160192144148
Kai5		191211189201130130150154210262142144154162160160146146
Kai6		195203211211130142146148238268144144154156184188132140
Kai7		000000197211130142144152238248134144000000178192000000
Kai8		191207203207000000000000222242144146154160160184140144
Kai9		191203197211130132140150210242144144154154188198000000
Kai10		187195189215130142142154200210142146154172188196140146
Kai11		195223189207160182142142228228142144156158180186148156
Kai12		207207189209164168142154236238144144154184184192138144
Kai13		207211207231130154144152236238146152152160160186140144
Kai14		187191201205168178146150228254144146156164160188136144
Kai15		199211197201146194142144228246144146156170160192138142
Kai16		187187191227158164146154232262146152148168168192134146
Kai17		187191207209164172140154210258144144152158160160000000
Kai18		191207197203142154142146238238144144154156180188000000
Kai19		207211195197148164150152210210144146156182160188000000
Kai20		191191193203168168144150238248126144158182160188132146
Kai21		191199185207132142152154236238144144160162160188136140
Kai22		187195193201130160148154226240134136156162160194134146
Kai23		199199175221160166146152232244000000000000160160144144
Kai24		199199193197142166152154246246144144152164160188134138
Kai25		191191209225000000000000242282140144164168186192144152
Kai26		000000205205140170142144226236134146154154160188138140
Kai27		199199000000130148142146220250144144156188182184144146
Kai28		199203199203132148138148234246146146156164160188146150
Kai29		191195189197130164150162234242140144154158000000136144
Kai30		195203205215130132144150210220144146160184160184134146
Kai31		191203193211130142152154208238144144158164160160144146
Kai32		199227197199142166152154236260144144158158190190140150
Kai33		191227199203130160144144210234144144158158160180134138
Kai34		191191193211142152132140210228134150156178160180138146
Kai35		191211195219142152144150246290146146154180188192136150
Kai36		1912270000001421641401442102281441441481601601881321

Kai37		
Pop		
Tau1	,	191207177193164180144152210210144146156160160188146160
Tau2	,	187187189193132182152152210274000000152152160160134160
Tau3	,	187187185201148162148152212260000000158160188192140152
Tau4	,	187199181211164172144150210226142144154158190196142142
Tau5	,	199207201211130130142152224256144144154156180192140144
Tau6	,	199207000000158166144148212224144144154158160192146146
Tau7	,	199207199199130168140142210238144144156164160180138144
Tau8		195207189189130166144148226238144146156160180180146146
Tau9	,	187203205205130156126150000000144146160160160196000000
Tau10		187191193197156160144154210234144144152180160192000000
Tau11		187191201213130160146158236268144144154158160180144144
Tau12		187219201201138164142152218236134146156160184198140140
Tau13		195195187205142176142152208274144146154160160192146146
Tau14		187207193195130130142148236244000000000000000000140146
Tau15		195227191239130146142148234236142144154162180184134148
Tau16		187203199211174188144158228234144150158158188190000000
Tau17		187219181201130142144148210236142144162182160192000000
Tau18		191191183209130140134142000000144144164172192198144144
Tau19	,	191199189213140148142154236236134140156160160190134142
Tau20		187195201213130154144148228228144144148162160160150150
Tau21	,	187187211223164168150154228244140152158160160160142150
Tau22	,	207207199205130130154154210242144146162188160160134150
Tau23	,	187195195199158182140152230246134144154156160188144152
Tau24		000000193199130172134158234238144144156164184188000000
Pop		
Exp1	,	195199187193162178142154226232144144148176180180138140
Exp 2	,	199211197201130136142160200244144146156160160192138140
Exp3	,	187191199211168172152162226238144156156182186188146160
Exp4	,	195199181201130130144150240244142142160164160160134138
Exp5	,	191199201203130130142152248254152158154154160160128140
Exp6	,	191199175187142148140150234258144144158160160160140140
Exp7	,	191207195195130154154154226250144154148154160188000000
Exp8	,	187191187205130176146156000000142146154162160188144146
Exp9	,	191227203215130174142146236254144144158158160192136146
Exp10		187191189201164170148148234248134144154158160188140154
Exp11	,	191211187197130160148156222266144154152158180188128144
Exp12	,	187191185203160162142144234240144144000000160184146150
Exp13	,	000000201211158168132148238238144144154158160190146154
Exp14		187191197203162164140142210226144144148160188192138140
Exp15		199203197201142158000000220240134134158158160184140144
Exp16		187187185211142142132150234240144146000000000000144144
Exp17		207211000000168176140154250262144144000000192192138144
Exp18		187187199205138174136142228252144152148156160198144144
Exp19		187207000000000000150154000000134142156158160192138140
Exp20		199207000000148174146156000000140144156156196196138170
Exp21		187191195199134142156170222230146152146156188192154154
Exp22		195195195205130142138142212238144144000000160178130144
Exp23		187207189209130168146156240240144146156184160160148156
Exp24		191203205207158176142150234234144144156160160160152158
Pop		
Ton1		191207187197152174140168210244144154160168160160146148
Ton2		187199189215130160140152226234142144000000160160136146
Ton3		207223195205138148144144210226134140154156160192144152

Ton4 , $\quad 191195207207130162144154206254144152156160160192136146$
Ton5 ,
Ton6 , 191219195195148158144154212214144146160164160192144146
Ton7 , $\quad 187191195213148166146148222234144146164184000000140148$
Ton8 , 000000177207142164142152226250144146148154178180132144
Ton9 , $\quad 191211203209138148142144224260134144148154186200138144$
Ton10
Ton11
Ton12
Ton13 ,
Ton14 ,
Ton15 ,
Ton16 ,
Ton17 ,
Ton18 ,
Ton19 ,
Ton20 ,
Ton21 ,
Ton22 ,
Ton23 ,
Ton24 ,
Pop
Yas1 , $\quad 191199193223130142140144236246138146166182160160140140$
Yas2 ,
Yas3 ,
Yas4,
Yas5,
Yas6 ,
Yas7 ,
Yas8 ,
Yas9,
Yas10
Yas11,
Yas12
Yas13 ,
Yas14 ,
Yas15,
Yas16
Yas17,
Yas18 ,
Yas19 ,
Yas20 ,
Yas21 ,
Yas22
87191000000148168144150210242146146156160160186128150
Yas24 , $\quad 187211191195152172134150226236146146158164160184138146$
Pop
Bir1 , $\quad 191199195209142182152154242250144146154160192194144144$
Bir2 , $\quad 191195193203142168150152234264144144150162188192146146$
Bir3 , $\quad 191203193231158172142144224234144146152180192198150150$
Bir4 , $\quad 207211193207130150128142236244134146154154160192134140$
Bir5 , $\quad 207231187213162184150152210234144152148160160160140146$
Bir6 , $\quad 187195191223130180142152230238144144156160160188140156$
Bir7 , $\quad 199211205229130130154156226246134142148156160180144144$
Bir8 , 195195183195148166150150236260144144154164160160144148

Bir9		191191203203130190144152210252134142156182192194138144
Bir10		191195189197130156144148222234144154156156160160146146
Bir11	,	199227193199158160140142228244144144154160160188146148
Bir12	,	207207177193158162142154236242144146152186180188144144
Bir13	,	187199197201142166146148208224146164156168160160000000
Bir14	,	187207195201160196142152254266144144164186160190000000
Bir15		187199187193130142150154000000134144158192160198000000
Bir16	,	191195195209132162138140210224146152158158160194140146
Bir17		191199191205148158144154238286144146158158160180142162
Bir18		187187195205130168142150214242144144154154160192000000
Bir19	,	000000205223148152142152232232144146182182184192136140
Bir20		187199187195162172138156230234144144156166188192000000
Bir21		203211189213130148146150236242144144160164188190000000
Bir22		199207000000130172152156234238144146000000160192000000
Bir23		000000181197142170128162222250142146160160160160000000
Bir24		199203197213148152142152222230146146148160160176134142
Bir25		195199191205162164142154230240146146152168160186000000
Bir26		207211191199152158146150230238144144000000186200144146
Bir27		187191195197130142146146256258144152158176160182144144
Bir28		191199215231130130140148226230144144148152180188140144
Bir29		187191187205000000000000000000000000156164184188134152
Bir30		191207197203142172140156000000146154184194160182128140
Bir31		207215189195130142146160000000144144154158160184000000
Bir32		199207199205130142152152232236144146154160160192134146
Bir33		199203000000130142142152218230144152152158160188140144
Bir34		191211199203154166150158236236144144152158172180128140
Bir35		187187207207148158136142228228144144000000160192000000
Bir36		191195197199148168142148220242142144156164190194134140
Pop		
Boul		187199193209130154152154234270144150158172160180140140
Bou2		187187205215158160142160230264144144172176160180128146
Bou3		199199207213130188148152236240140150160176160190138146
Bou4	,	207207197201160168142156230238144146154188000000138144
Bou5	,	187191177195158164144148210234144144156182160184144158
Bou6		187191195203158164150152236240144146156156160188144148
Bou7		199203205211158164140144236238144144154184160160130136
Bou8		199203193197130130142146216244134146154162160160140144
Bou9	,	191207185185130140146150210226144146158170160184130140
Bou10		199211199201140168000000210230146158152156160188144146
Bou11		191195191197000000000000230244146146154158184190138140
Bou12		191207187209130158152156232234144144154184160194140144
Bou13		203219203205152158148156238262142152156160160160138154
Bou14		191195203215130134128148212236142144156160160160140146
Bou15		203207193217130186144150234234134146156158192198138146
Bou16		191195199205168186140142244244144144158158160188132134
Bou17		000000213215130166142148226254152152148154190196144144
Bou18		191191203211130168144152212236132144148158180192144144
Bou19		187195193201142142148154212226146158154156184186134152
Bou20		207207185187158168144152236238144144160160184188140166
Bou21		203207199209138172142148226238144146156160160192134164
Bou22		195195195203130164138144000000142146154156160190138140
Pop		
Mill		203223197199000000000000000000144152152160196198138156
Mil2		187195000000164168150152228240144150148158160188138144
Mil3		191203197207162172148154228234142144152192160188136148

Mil4 , $\quad 191191187187160172152154236254144144156170160160146146$
Mil5 , 199203193205142158140154222232138144156156160182136150
Mil6 , $\quad 191191191203130182150154226248144152154156160188138138$
Mil7 , $\quad 199219189215162162142144246288144146158158192196140146$
Mil8 , $\quad 187191197215142142138154238242142144156162188192146166$
Mil9 , $\quad 191199217223130130144152210228144144158158188192132140$
Mil10 ,
Mill1 ,
Mil12 ,
Mil13 ,
Mil14 ,
Mil15 ,
Mil16
Mil17 ,
Mil18 ,
Mil19 ,
Mil20 ,
Mil21 ,
Mil22 ,
Mil23
Mil24 ,
Mil25 ,
Mil26 ,
Mil27 ,
Mil28 ,
Mil29
Mil30
Mil31,
Mil32 ,
Mil33 ,
Mil34
Mil35
Mil36
Pop
Nuk1
Nuk2 ,
Nuk3 ,
Nuk4 ,
Nuk5 ,
Nuk6 ,
Nuk7 ,
Nuk8 ,
Nuk9 ,
Nuk10 ,
Nuk11,
Nuk12 ,
Nuk13 ,
Nuk14,
Nuk15 ,
Nuk16 ,
Nuk17,
Nuk18 ,
Nuk19 ,
Nuk20 ,
Nuk21,

Nuk22 , $\quad 187207195203130188146148232248144144148148160160148154$

Pop
Coll ,
Col2 , $\quad 187207179193130130154160238246144150164166180196138146$
Col3 , $\quad 187199195195130148152156228234144144160186192198146146$
Col4 , $\quad 187199197207142168150150220262144146154156160188134140$
Col5 , $\quad 187207197197130168142152212232144144000000192196144146$
Col6 , $\quad 187211203229130160146152224244144152148164160192134140$
Col7 , $\quad 191199207207130176146158232234146146150172160192138138$
Col8 , $\quad 187199201215162182144150238260144144156160160192140152$
Col9 , $\quad 187187181205164164140144000000144146156162160160144154$
Coll0 ,
Coll1 ,
Coll2 ,
Coll3 ,
Coll4 ,
Coll5 ,
Coll6 ,
Col17 ,
Col18
Col19 ,
Col20 ,
Col21 ,
Col22 ,
Col23 ,
Col24 ,
Pop
Mer1 ,
Mer2 ,
Mer3 ,
Mer4 ,
Mer5 ,
Mer6 ,
Mer7 ,
Mer8 ,
Mer9 ,
Mer10 ,
Mer11,
Mer12 ,
Mer13 ,
Mer14 ,
Mer15 ,
Mer16 ,
Mer17,
Mer18 ,
Mer19 ,
Mer20 ,
Mer21 ,
Mer22 ,
Mer23 , Mer24 , Pop
Cla1 ,
Cla2 ,
Cla3 ,

191199211211146190142146212236134144160164160176000000 203223193215130180144152210238000000000000000000000000 187207203203130142148154228232000000158160188194000000 191199000000160164140148232234140140144152000000140146 187191193195140148132154000000000000154162160196146166 187199193197142158144152000000144146154156160190000000 187191000000130150148152230238142144176190188198148154 191191207207130130144144226252146152154160160160000000 191199195205142160146150234246142144156156180192000000 000000195201130154150154210250144146154172190192000000 187199195223132148142146000000144144154156180190000000 187191185199138182144150240242142152156170160184000000 191191197199152152142156214218144144154184180196146152 187195189203130186142148236244144158156188160188000000 187187195199130160144144220234134146000000160188000000

191195197199130144142154216218140144154160176186134140 191199207229130142144146222240146150000000160194132144
187203193209180186144144000000144144156168188200138144
191207181195160176140146238252144152148160160182146146
203211201205130168144154212226134146156164160182134146
191199209209130160148156210240142146158158190196144146
199203193201150164144148210226146146160166180200140152 187203203213130142156166238248144152154158160182134154 191207195205130164140146224236132144156162160192134140 199203193193158172142152000000144144158168160198138146 199207203205130154144150234258144144156158180192128146 199211183187130176132142214236144144000000160160134140 000000177193000000142144232232136144152160160190144164 191191183195130158150156236262144144152154160188134150 187191197207146160142144226242144144000000160160134144 187191185199146170138146222244142144160182160180144154 000000193197130152144146226238146152156158180196138144 199199203223130146162168232236132144154194160192144154 199203197205130166148150240240144144148186190192140146 195207191197130188142152210222146150154156160160144150 187191207217130176150152236252154158156188188192134144 199207197211130172152156210228144146154186180192144150 187199195207170176152152000000144144156158160180140146 191191187205166176142144242248144144000000192192146146

191195189193174198142142226234144154156158160160134140 191207175207130164140148226226144150158158160192144156 191191191209162184142142238238144154160180184198140144

Cla4
19510
Cla6 , $\quad 195199000000148172144148238258144144148156160184144166$
Cla7 , 211211181201142160128140230250134146148158188192138148
Cla8 , $\quad 203211195195160180144154224260142146156180186190136138$
Cla9 , $\quad 187207207207138148142144232268144146152168160192128144$
Cla10 , $\quad 199203207213130164144144216238136146156160160184144170$
Cla11, $\quad 000000205207168176142148226226134158172188180184132150$
Cla
Cla12,
Cla13 ,
Cla14 ,
Cla15 ,
Cla16
Cla17 ,
Cla18 ,
Cla19 ,
Cla20 ,
Cla21,
Cla22 ,
Cla23
Cla24 ,
Pop
Rit1 ,
Rit2 ,
Rit3 ,
Rit4 ,
Rit5 ,
Rit6 ,
Rit7
Rit8 ,
Rit9 ,
Rit10 ,
Rit11,
Rit12
Rit13
Rit14 ,
Rit15 ,
Rit16 ,
Rit17 ,
Rit18 ,
Rit19 ,
Rit20 ,
Rit21,
Rit22 ,
Rit23 ,
Rit24 ,
Pop 187195199211160176152158226268142144158162160192138140 199215191199130164140144236238144146154156000000140148 187191187207130152142148218218144146156168180188138146 191211189211130130140144212228142142160172160192138146 195207201207130158146150208234146146154164160194138146 207211213215174176134148210210144146154160188190140156 191191201209150154142146234288144144162172000000144150 187191187203130170138154214228142158156156160192144144 207211189217148158142158248260142144148154160188144146 191207199199130166140140236248144144154154160194146146 199203195207178188140142248274146146000000000000144146 191191187203148164144156218234146146148156160192134144 199207195207130162142146210236152154152152000000146146 187187177205142154150152232238144146154160194196140146 191191197213130176128150262266144158156164188192132140 187191203207130130128146240244134144152168192198140144 191207191207160172140142222232146152154160188194134144 195207187187130164140154238242144144154162160194134164 191199197203148166142150226232158158158160160194144146 191199195211168174142144208210144144168190196196138140 187195199205130142142148238238144144154160160180140146 199207209223160190148152234240144150164172160192146154 187191197205132164140168222234142146154156180180140146 187203185195130176140144222282144156148176160160144144 187187175195000000144150234240146146152188160180132144 187187187197174174152158232238142144154156160192146146 187199193197142174142154244250144146154154160178144154 195203211211130140150156228234144146162184160200000000 187203199211000000000000000000144144152158188192144144 207207203213130164148148220240144150154158176180140144 191219197199142154148152000000144144154160192200140148 187199197213130176138152246258142142156162160180140144 195223179197130130138142000000144144158190160188144150 187195197217148164142152210222144144000000160188128170 207207195215130176140142236248134142156160000000138148 203207203209152164148160222232144158000000160180144146 187191189195130148144148228240144146154162160192144146

187207207233160174142144236240144146154160160188140150 187199197197148168138142234234134150162172160192134136 187187000000164176150156208208144152000000160180144146 187187205211130146148154214248144158156158160188140140 187211199211130166144148252272140144154160188196136148 000000189199148158140166232246144144154188160196140150 187207185191000000000000000000144158156166160160136146

Chat9 ,
Chat10,
Chat11,
Chat 12 ,
Chat13,
Chat14,
Chat15,
Chat16,
Chat17,
Chat18,
Chat19,
Chat20,
Chat21,
Chat22,
Chat23,
Chat24, Pop
Puyl ,
Puy2 ,
Puy3 ,
Puy4 ,
Puy5
Puy6 ,
Puy7 ,
Puy8 ,
Puy9 ,
Puy10 ,
Puy11 ,
Puy12 ,
Puy13 ,
Puy14 ,
Puy15
Puy16 ,
Puy17 ,
Puy18 ,
Puy19 ,
Puy20 ,
Puy21 ,
Puy22 ,
Puy23 ,
Puy24 ,
Puy25 ,
Puy26 ,
Puy27 ,
Puy28 ,
Puy29 ,
Puy30
Puy31 ,
Puy32,
Puy33 ,
Puy34 ,
Puy35 ,
Puy36 ,
Pop
Cha1 ,

187187193209168176142148000000144146166166160184138146 191207207223158160142154210216134142152162160160134148 195195201219130148152168238250142154000000180196138146 187203185213000000152152210236144146154160184192132146 000000197201164168142158208222144146160190160188146148 191191201205142158134140226246144144156164160192136138 207211175189142142000000210238144144156194160186136148 195195187201142176142150210266144146152168180192136146 187219193207130148150154232248144144148160160160146146 187207189205130142154154226236152152156160184194140144 187191191203130160142144210246144144154156160184136140 187199205211130152144148216246142144154154180188138140 207207189203142186140148236270144144154156182192144156 187191205211140142152168238248144144000000160192144150 207211201203166174140152210228144152154160180188134140 191203187205142146144148000000144144148152160184138146

191207197199130162152152212242144144152162160182134154 187207203209130132142142240260142146154186160160140156 000000000000000000000000000000144144156166160198000000 187187193209130148146152246272142144156156192196132134 191219189197142166142146210234144146148152160186146152 191203205215156162146152234246146146156166160160144144 191199203213148178146152222222144144162188160196144148 191199199199138142148152214240144152156168184186134146 191207163163130162144150238242136148154168160192140170 199207191211130156148150210240144154154154160180144156 187191195203000000142152240240144144148162160160138148 191203199215130148142148238252142144154160160188140146 199203205211162162140144242246144144154172160160138170 187191201207156174154154208228142142156168160188146148 195195187201158176138152216242144146154160180188144146 191191193197130176150154212238144146162186160188144144 187199203229130182152168236256134146154156160160138140 195215191205130168144146222234144144156160160192138148 191207205207164164144152244250144144156172160200128128 191199203205130166144144222264144158154156160192138158 191191209217174188140152218236144154160170160180138140 191203185203130172144146244260144144154162160200132132 195203195229000000000000000000144146152182160184140144 199199203203160172140152220238140146156158160180138144 195207185213130148142152210246144144156156188188136170 000000000000130148142146210240144152156160160188144150 187187195209130142000000240256000000000000000000140148 199199191229160172150152216230144144158158178190140150 187191177207148168142152216238134144152164160160140144 187211203211130130152158210236134152154188160190144146 195207189193142174140152230242144144156158160188144146 199211197217142174146146232252144146158164160160134150 199199179193000000000000000000142144156174160194136140 191207193209130138000000212236144144158192160182128146 191211203211130174142152232236144144154158160188134140 199207201203130146142150226234144146146186160200138146

191199195227164168138156200250146146148156160188132136

Cha2 , $\quad 187207203203158164144148234254144146152156160192132140$
Cha3 , $\quad 191195203203130148144154210240146146160178160192140144$
Cha4 , 191207197197130142136142210246134144148166160188146150
Cha5 , $\quad 199207189197140168144154210226144146154160160198134138$
Cha6 , $\quad 191211193201130130142152256268144144154158160180134146$
Cha7 , 207215197197130166154168244268134146152160160186132134
Cha8 , 187199199209130142142142232238142146000000160180138146
Cha9 , $\quad 207207191209130130142162210210134146158164180194144146$
Cha10 ,
Cha11 ,
Cha12 ,
Cha13 ,
Cha14 ,
Cha15 ,
Cha16 ,
Cha17 ,
Cha18 ,
Cha19 ,
Cha20
Cha21 ,
Cha22 ,
Cha23 ,
Cha24 ,
Cha25 ,
Pop
Ntas1 ,
Ntas2 ,
Ntas3 ,
Ntas4 ,

Ntas6 , $\quad 191199201201148150142152230252144146156184160188148164$
Ntas7 , 191199199205164186144144212260144146152164184190146148
Ntas8 , 203207187203158174148154238252146146154156184194140146
Ntas9

Alb1 , $\quad 187191173195130176142156210232144146152162160160140144$ Alb2 , $\quad 187195215215130164138140210252144150156168188190140150$ Alb3 , $\quad 187191185199142172152156236242142142156162160188136140$ Alb4 , $\quad 187207195207142146144144210246144144148160180192136138$ Alb5 , $\quad 187187197203158190144148210242144150152158160184140140$ Alb6 , $\quad 187207187199130162142152230238142150154158160192140144$ Alb7 , $\quad 195199187205130160144160222236144144156160160190140148$

Alb8
Alb9 ,
Alb10 ,
Alb11 ,
Alb12 ,
Alb13 ,
Alb14 ,
Alb15 ,
Alb16 ,
Alb17 ,
Alb18 ,
Alb19 ,
Alb20 ,
Alb21 ,
Alb22 ,
Alb23 ,
Alb24 ,
Alb25 ,
Pop
Nam1 ,
Nam2 ,
Nam3 ,
Nam4 ,
Nam5
Nam6
Nam7,
Nam8 ,
Nam9 ,
Nam10,
Nam11,
Nam12,
Nam13,
Nam14,
Nam15,
Nam16,
Nam17,
Nam18,
Nam19,
Nam20,
Nam21,
Nam22,
Nam23,
Nam24,
Nam25,
Nam26,
Nam27,
Nam28,
Nam29,
Nam30,
Nam31,
Nam32,
Nam33,
Nam34,
Nam35,
Nam36 ,

187211191199154164150156222246144146154160160160128134 195199195219130174138148230238144144152154160186146154 000000175221130130144148218238144150164184194196144150 191207199205130148152168206210144144152158160160138152 195207193195142182144150238242142142152156160188138140 195203199201130162148152224238138144156158192194144144 199207211213148172128148222222144144154156184186130140 187191193193130134132148210234144146168170184188144146 187191185197146162152168210246142152154160160180140160 191207191199136160142148226236144144164164160160138152 187211189209130168150152234234144144162186160198150156 187191197211170176144148210234144146154158180190134140 191191187195148170140142236290144146156160160186140140 191211211215168172144148212236142144154168160160136144 187199000000182190152154210282140140158158000000146150 187203201211130176142148228228144144148194160192152154 187211203203162176140156210226134146154158160180144146 187207199229158176148154232240132144148168160192144146

191199199207142148142148222238144144160160160192138146 191203197209000000142152240258144146158192160186140144 191191179215142146142146000000144144158192188192144174 187199175185152152152152212240144144154154174190134140 187199187199148150148150226234144144156160160184132150 187191207213140150142150234238144144154192180192136144 187187000000144146144146226240144144168184188196144146 187203179205000000150152212260144146148164000000138138 191203187207148152148152234260144144162162160188140150 187211197205000000144152230240144146160184160192134146 199203187195150154150154210230144150000000160192144148 187207191217144144144144210234144150152162160192134138 187191189207000000138152240246144144154158184192146152 191207193203142148144148210248144150158160160188150164 191199189203140152142152240248130146158158160186136146 187207207209000000152164228238144144156168160186140140 191195207213146156146156210236144152162162160160146150 203207199203144156144156232232134140154160160192140146 187187193207148150148150232242144152156158160188150170 195199195215140144142144240240142144158190160180140144 187199193213000000144150224246144146154160160180136138 191215195197150154150154000000140144156158194200136146 187191175187142150142150228238144154154158186188140148 187191187201138138140140210260144150158164160160138154 187191000000150150150150220230134146148196180184146148 191207209225138150140150210210134158156162160192138150 191199191197144144144144228238142144156162160160144150 195207181193140152142152240254146150152162160184146148 187195197213000000142152238238144146000000160160134144 191199205205150152150152240242142154168192188192136150 187191197201142142142142210240140144162188160160140144 207207193219140150142150216236144144154160160192136136 191191195209144144144144236258142144158186186196146146 199207195195148152148152234234144146152162160190140146 000000000000140156142156238244144146158164192196000000 199207197197148152148152222238146146148160160182140146

Nam37	199215000000140150142150000000146150154166160192144154
Nam38	187195177181140150142150218238144150154156184190130146
Nam39	187187195197138150140150210252144144160160180188138138
Nam40	195199187191138148140148240248144144160168160160138144
Nam41	000000193215142150144150206210146146160166160188128146
Nam42	199227199213000000144164228242146152158166160186146158
Nam43	207223197201000000152152236238142158160190160194144146
Nam44	199207195217140146140146210210144144162188160160138144
Nam45	191207201209142148144148210240144144148160160192144144
Nam46	191191000000142142140140212254000000154166160192146164
Nam47	195207203203142150144150236236142158154162160186138144
Nam48	187203195199140144142144246246140144154158160160136144
Pop	
JF1	191191189231142142142142230230134144156168174190140144
JF2	191203203217146148146148212228142144160160188188144144
JF3	191211197199140152142152234244144154152156160194136146
JF4	203207197215140156140156214252140140000000160160140146
JF5	187227197203138150140150236236140144000000160160146146
JF6	187191189197146154146154234256140144158182160160144150
JF7	187195183197146156146156222256148148154168180188132150
JF8	191195177195000000000000234236136144156184180192140140
JF9	187215177191000000140142236236144144156160160192138146
JF10	191195197203150158150158210244136140154156160160146150
JF11	187195203205140146142146218240142144168168160192140150
JF12	187199191211146160146160212260140144148158160192140146
JF13	191191191193140148140148218234142150156160160190138144
JF14	199199193199000000152164244256000000154154160176148152
JF15	191211197203152156152156210244144144160160160160136144
JF16	191195191203144148144148226252134144152160160190134146
JF17	187207201203142142142142234244146154168172160186138150
JF18	187187201203152158152158236236144146156162160160140146
JF19	187187199205144156144156214238144152164166160186140144
JF20	191195195217000000156156214234144144148186160190134146
JF21	195195193203144152144152242252144146160162168188134140
JF22	000000203215000000000000222230134146152160160160138138
JF23	191207185195146156146156000000142142154156160180132132
JF24	191191177211148154148154238240140154148160184192146146
JF25	195207189201156158156158236236144152154156192192138156
JF26	191203177191142142142142214242144146154156160192136138
JF27	000000177191146154146154240254140144148158160160134134
JF28	187195191203140152140152240244144144156158160160136162
JF29	187195181203146158146158238246140146154154160192138140
JF30	187191000000144148144148000000144152158160160160134162
JF31	191191177199000000140152228228144146160188172192132158
JF32	207211195197146148146148232236144146162190160184134140
JF33	187211205215146146146156000000142154162170160160146148
JF34	187207183191148152148152246252142146160160160160128156
JF35	195199195209152154152154240240144144156160160188138140
JF36	195203189197000000146150214252136152154158180190136138
JF37	187203199203140144142144236238114146154164160184146146
JF38	211227195197000000160162222230144146000000160160134146
JF39	191203199225142144142144210222136150148156160160138148
JF40	191203183203144152144152240240140142154156160192138138
JF41	191211203205148152148152242252144152156164160192138148
JF42	191227201205132144132144210222144144154156160192134152

JF43		203211185203000000148168234234142154154156190190136140
JF44	,	191227197203152154152154214246144150154158160180140144
JF45	,	207207191203000000148162236256140150156160160196144150
JF46	,	187191181213140148142148214240134140156160160188146150
Pop		
Por1	,	199199000000158172142156212248142142156164000000134146
Por2	,	187187199205130176140142240246144146158158186192152154
Por3	,	199207193199166176148162232250144156160160192196134140
Por4	,	199207191203150166156156236236144144162162160160146146
Por5	,	187187000000132176148154226246144144000000180192134146
Por6	,	195211193205132172146154210238144156156182160192138144
Por7	,	191215195199168184142154226246140146158182160192138144
Por8		000000000000130176000000000000140144156160160192134144
Por9		187187193209132166152156210240142144158158180200136144
Por10		191195193199132148150162226226142144156160160160134144
Por11		199199199213164176162168232236144146148156190192144152
Por12		199211185207132150142142228230144152160182176188146150
Por13		187207189193148184142144214238142144148158188190144146
Por14	,	195207195203132184154156240252142146156156160180144144
Por15		203203187189130176144146210226146152162164160160138146
Por16		191195207207130172152154232236146146158160180192144152
Por17		199207189207148176144144230240142144156162160160138146
Por18		199199000000142172144152244244144156162162160180134146
Por19	,	191203203205176184152156228246144146160160182192138146
Por20		199207181195130166144150234242140144000000160192138146
Por21	,	203211187193130130152162210244134144156162160192144144
Por22	,	187211193197130152142152238244144146000000160160150156
Por23	,	000000193193130142000000000000142144000000180192144144
Pop		
Sed1	,	199199193213130176148152210226152152154158160180138152
Sed2	,	191199193193130176144158000000144144154160160180138152
Sed3	,	207207207209130148142162218236142144156158160200144160
Sed4	,	187195193195132148140162210234146152148156190194134144
Sed5	,	187195000000130176144150210232146154172180178186130138
Sed6	,	187187199205130148154156210228152156158160176180130152
Sed7	,	191211189201130180144146208250142144000000160186134144
Sed8	,	199199183207130132132144210266144144158158160192146146
Sed9	,	187207217217130168154158226244144146158164160180144144
Sed10		199199225229130148156162222240142142156158160192144146
Sed11		187199199213148168142142210230144152154160160192152152
Sed12		191203199209148166128154240264142142154154186194138138
Sed13		195195209215148172144146236244144150158180160188134154
Sed14		199203199209130158144150210244144152154154192192144154
Sed15		187187187207130184144148238240146152156162000000144152
Sed16		187199225229130148142144226244144146156168160184136144
Sed17	,	187203225229164184148156244246144146162162160192136152
Sed18		187187183187130162142144226236144146156158160160146150
Sed19		199199183229132154140152238238144144158158160180146160
Sed20		187207203229132172144146238246144146148154160180144144
Sed21		191203203205148176146148228228144146148156160196146152
Sed22		199203193199158166144152226236144154164164160160144146
Sed23		187187213217130140146154236238144144158160160192134148
Sed24		187199183207148166142156240244142144160160160160144150
Sed25		195199189217158176132132232238142156154158160192134152
Sed26		207211000000152162144156236244144146156158160192136150

Appendix D

Genotypes of each individual in GENEPOP format for eight sampling sites from the ORH 1 area sampled in 2010. Sampling sites codes as in Table 3.1.

> Orange roughy
> Hat2a
> HopAt2
> Hat3
> Hat9a
> Hat7
> Hat45
> HopAt4
> HopAt5
> HopAt11
> Pop
> Kai_2.1, $\quad 187191211213130168138142226248142144152154188188136138$
> Kai_2.2, $\quad 191191193195142194132158226264144146156188160186144152$
> Kai_2.3, $\quad 203203205209130166138144212238144152154162190194138152$
> Kai_2.4, $\quad 195199197197130162142142232276142144160160160192144156$
> Kai_2.5
> Kai_2.6,
> Kai_2.7,
> Kai_2.8,
> Kai_2.9,
> Kai_2.10,
> Kai_2.11,
> Kai_2.12,
> Kai 2.13,
> Kai_2.14,
> Kai_2.15,
> Kai_2.16,
> Kai_2.17,
> Kai_2.18,
> Kai_2.19,
> Kai_2.20,
> Kai_2.21,
> Kai_2.22,
> Kai 2.23,
> Kai_2.24,
> Pop
> Tau 2.1
> Tau_2.2, $\quad 187207185203130142140152228234144144148160180194136140$
> Tau_2.3, $\quad 191199209211130152154160238244144144158162160160128146$
> Tau_2.4, $\quad 187207185199150176148154234246134142154158160194140144$
> Tau_2.5, $\quad 187187189195130176152160222248144146156160160180138140$
> Tau_2.6, $\quad 195199183197130142144148224226144144156160196196144146$
> Tau_2.7, $\quad 203211203223170192128160240248134144158162160192144152$
> Tau_2.8, $\quad 191203191195000000000000000000142144154160186190144144$
> Tau_2.9, 191195195205188188144154240250144144152156000000140146
> Tau_2.10, 191199191205158164000000228256144146156158160188144146
> Tau_2.11, $\quad 191199205209130130142162236236142152158160160180144150$
> Tau_2.12, $\quad 207207191207130186152162222226144144162164160190144144$
> Tau 2.13, 187199189203154174152158230238144146156158192196134144

Tau_2.14, $\quad 187199197203142142140146236288144146154160180190138138$ Tau_2.15, 191199189211130154142142234242142158148160160184136146 Tau_2.16, $\quad 191195195199162162142142210244134144160168160198134136$ Tau_2.17, $\quad 187203177215164172150152228236142146158160160188136144$ Tau_2.18, $\quad 187191199207144154148152234246146152154154160160146148$ Tau_2.19, $\quad 187191199211130168148152238248142144000000160196144144$
Tau_2.20
Tau_2.21,
Tau_2.22,
Tau_2.23,
Tau_2.24, Pop
Exp_2.1,
Exp_2.2,
Exp_2.3,
Exp_2.4,
Exp_2.5,
Exp_2.6,
Exp_2.7,
Exp_2.8,
Exp_2.9,
Exp_2.10,
Exp_2.11,
Exp_2.12
Exp_2.13,
Exp_2.14,
Exp_2.15
Exp_2.16,
Exp_2.17
Exp_2.18,
Exp_2.19
Exp_2.20
Exp_2.21,
Exp_2.22,
Exp_2.23,
Exp_2.24,
Pop
Ton_2.1,
Ton_2.2,
Ton_2.3,
Ton_2.4,
Ton_2.5,
Ton_2.6,
Ton_2.7,
Ton_2.8,
Ton_2.9,
Ton_2.10,
Ton_2.11,
Ton_2.12,
Ton_2.13
Ton_2.14
Ton_2.15
Ton_2.16,
Ton_2.17
Ton_2.18,

Ton_2.19, 195207197203152176142154246268146154156158160184146146 Ton_2.20, 203203209211136160148164212240146146152154160188136136 Ton_2.21, 191207197205130150144146234234146152158180188194140150 Ton_2.22, $\quad 187187191211148150142142244246144144152160160192144146$ Ton_2.23, 191195207209000000144152238238144146000000186188138156 Ton_2.24, 195207195205136142144150238246144164158160160194138146 Pop
Bir_2.1,
Bir_2.2,
Bir_2.3,
Bir_2.4,
Bir_2.5,
Bir_2.6,
Bir_2.7,
Bir_2.8,
Bir_2.9,
Bir_2.10,
Bir_2.11,
Bir_2.12,
Bir_2.13,
Bir_2.14,
Bir_2.15,
Bir_2.16,
Bir_2.17,
Bir_2.18,
Bir_2.19,
Bir_2.20,
Bir_2.21,
Bir_2.22,
Bir_2.23,
Bir_2.24, Pop
Bou_2.1,
Bou_2.2,
Bou_2.3,
Bou_2.4,
Bou_2.5,
Bou_2.6,
Bou_2.7,
Bou_2.8,
Bou_2.9,
Bou_2.10,
Bou_2.11,
Bou_2.12,
Bou_2.13,
Bou_2.14,
Bou_2.15,
Bou_2.16,
Bou_2.17,
Bou_2.18,
Bou_2.19,
Bou_2.20
Bou_2.21, $\quad 187199187191130168136162212230142146158164160160144144$
Bou_2.22, $\quad 187195199213160164142152236242144152158192192192130138$
Bou_2.23, 199203181195164168146156234244144144158158188190150156

Bou_2.24, 187207179209130154140152234238144144152158160180132138 Pop
Mil_2.1, $\quad 187199000000154164132144234236134136156186188192136136$
Mil_2.2
Mil_2.3
Mil_2.4,
Mil_2.5,
Mil_2.6,
Mil_2.7,
Mil_2.8,
Mil_2.9,
Mil_2.10,
Mil_2.11,
Mil_2.12,
Mil_2.13,
Mil_2.14,
Mil_2.15,
Mil_2.16
Mil_2.17,
Mil_2.18,
Mil_2.19,
Mil_2.20,
Mil-2.21,
Mil_2.22,
Mil_2.23,
Mil_2.24, Pop
Col_2.1,
Col_2.2,
Col_2.3,
Col_2.4,
Col_2.5,
Col_2.6,
Col_2.7,
Col_2.8,
Col_2.9,
Col_2.10,
Col_2.11,
Col_2.12,
Col_2.13,
Col_2.14,
Col_2.15,
Col_2.16
Col_2.17
Col_2.18,
Col_2.19,
Col_2.20,
Col_2.21,
Col-2.22,
Col_2.23,
Col_2.24, 191199000000130174140152222234144144162168160190136146 187207185203130160140148234240144144152154160188140144 000000000000146168156158210242144152160170160180146148 191207197207130174142144238240144150148154160188138148 187207193223130164142144218236140146156170160192140146 191211201205168168152152220230144146156162160190144144 187199195195154164132144234236134136156186188192136136 207211000000148164142142236242146150156172188200136150 187211191211168172144150210240126146154158184188136150 187207185203130160140148234240144144152154160188140144 000000000000150178148160228236132154154156192196000000 000000000000130192142156222236000000160160160160140150 000000000000130160144154210238136144154156192194128150 191191000000160178142144210264144146152154180188140144 000000197199142168142148234254142152150158160184144150 187191000000130154140148218234142146158160160160132140 191195189231130166152156212236126136152158160176144144 191207195197162164142142234246144152148160160188144170 199207000000168174138142244244140144154156160190138156 000000203205130188142142226238144144148156160160146146 191207191201000000150162218236134146156192160184144144 187199193209130160144144252252136136154170190192144166 191191165195160178142144210264144146154154180188140144

191207000000142146140152210210144146158162180192132146 191191211213130142140146234244144154152154192192128140 191195000000154174142148210238134146152158160180134144 203211189193164166142158210218144144158182160196144144 203207213215168182144144226256144150152156180180134140 191199199201130162140140232232144146158174000000140140 195199179195148158134152240248144146152158160168144144 207207189213132168142166242256144144152156160178136150 191207193205130130142168226230146150152158160188150156 191231193195000000000000000000134144154154190192140158 195199175203130154000000210228140144154158160160140146 000000187205130164144150230238144150156172160160138140 187199199209130130148164216222144144154158160196144148 187211193205142142140152222240144144156156160190140146 195207191205144174136144210236134146154158180192128136 195195189207130168146156238242146146158160160176140152 199207185189136172152152208210144144000000186192138146 191211191201130144144152222230144144148164160180144166 191199189215148160144148222238144152152154160184138156 195215187201130194142150222248144146152154160180140146 187211201203160182142146224230144144000000160160138144 191191193201142152144152218218134146156170188194144152 187207203209130168140152210216134158154158000000144144 191191191195144148152154228236144146154156160160128138

Appendix E

Summary of genetic statistics for each locus for 22 sampling sites considering the samples from both seasons (Total $n=812$). Total number of alleles (A), allelic richness $\left(A_{\mathrm{r}}\right)$, expected heterozygosity $\left(H_{\mathrm{E}}\right)$ and the inbreeding coefficient $\left(F_{\text {IS }}\right) . P>0.002$ for all $F_{\text {IS }}$ values (Bonferroni correction $\alpha=0.00025$). Codes as in Table 3.1

Sites	Hat2a				HopAt2				Hat3			
	A	$A_{\text {r }}$	H_{E}	$F_{\text {IS }}$	A	A_{r}	H_{E}	$F_{\text {IS }}$	A	A_{r}	$H_{\text {E }}$	$F_{\text {IS }}$
Kai	9	8.1	0.85	0.111	27	17.1	0.95	0.016	25	15.7	0.90	-0.037
Tau	9	7.6	0.83	0.051	21	16.8	0.95	0.034	27	17.7	0.90	0.054
Exp	8	7.1	0.82	0.052	21	16.8	0.95	0.022	24	15.4	0.89	0.002
Ton	9	8.0	0.83	0.032	23	16.3	0.94	0.007	22	15.7	0.89	0.006
Yas	7	6.8	0.82	-0.064	19	18.1	0.94	-0.007	18	15.6	0.91	-0.055
Bir	12	8.6	0.86	0.055	23	16.2	0.94	0.011	24	14.8	0.89	-0.006
Bou	9	7.2	0.84	0.138	22	17.5	0.95	0.029	22	14.3	0.89	-0.052
Mil	10	8.2	0.83	-0.068	22	16.9	0.95	0.012	28	16.5	0.90	0.051
Nuk	8	7.6	0.82	-0.053	17	16.2	0.94	0.154	18	16.9	0.93	-0.077
Col	10	7.9	0.83	0.025	21	16.2	0.94	0.084	26	16.5	0.89	0.049
Mer	7	6.9	0.83	-0.045	20	17.5	0.95	0.031	18	15.9	0.88	-0.144
Cla	8	7.8	0.86	0.036	18	16.5	0.94	0.072	22	18.7	0.93	-0.033
Rit	8	7.5	0.83	0.095	20	17.3	0.94	0.021	15	13.7	0.88	0.022
Chat	8	7.6	0.80	0.154	18	16.5	0.94	0.031	15	14.1	0.92	-0.041
Puy	9	7.9	0.84	0.088	21	17.6	0.95	0.036	19	15.0	0.89	-0.022
Cha	9	8.1	0.83	-0.008	21	18.2	0.95	0.164	15	13.0	0.85	-0.025
NTas	6	5.9	0.77	0.117	14	14.0	0.91	0.088	16	15.2	0.94	-0.016
Alb	7	6.9	0.81	-0.128	21	18.4	0.95	0.081	18	16.2	0.92	-0.045
Nam	10	7.7	0.83	-0.023	22	17.1	0.95	0.042	10	9.4	0.88	0.102
JF	9	8.1	0.84	0.051	20	15.1	0.92	-0.089	13	11.1	0.91	0.020
Por	8	7.9	0.86	0.228	14	13.7	0.91	0.014	13	12.0	0.90	0.063
Sed	7	6.9	0.80	0.237	16	14.9	0.94	0.029	15	13.0	0.88	-0.142
Total/Ave.	13	7.8	0.83	0.049	34	16.9	0.94	0.040	36	16.7	0.90	-0.015

Appendix E continued

Hat9a
Hat 7
Hat45

Sites	A	$A_{\text {r }}$	$H_{\text {E }}$	$F_{\text {IS }}$	A	A_{r}	$H_{\text {E }}$	$F_{\text {IS }}$	A	$A_{\text {r }}$	$H_{\text {E }}$	$F_{\text {IS }}$
Kai	16	11.6	0.90	-0.017	29	17.9	0.94	0.061	10	6.9	0.66	0.001
Tau	14	11.4	0.90	-0.019	24	16.9	0.94	0.054	8	6.3	0.64	-0.040
Exp	15	12.1	0.91	0.041	28	18.8	0.95	0.071	9	7.4	0.63	0.092
Ton	17	12.5	0.91	-0.005	27	17.8	0.94	0.036	11	8.1	0.75	-0.053
Yas	13	12.3	0.91	-0.006	21	17.9	0.93	0.200	9	8.3	0.66	-0.014
Bir	17	12.0	0.90	-0.053	30	18.9	0.95	0.105	9	6.4	0.65	0.112
Bou	15	11.9	0.91	-0.073	24	16.8	0.94	0.059	11	8.3	0.70	0.075
Mil	16	12.1	0.90	0.058	28	17.4	0.94	0.045	13	9.2	0.72	0.038
Nuk	12	11.2	0.89	-0.017	25	21.9	0.96	-0.041	9	8.6	0.75	0.150
Col	17	12.2	0.90	0.037	26	19.1	0.95	0.027	10	7.7	0.69	0.033
Mer	14	12.6	0.90	-0.014	20	18.5	0.95	0.052	11	9.6	0.68	0.147
Cla	13	11.6	0.87	0.048	22	18.8	0.95	0.171	9	8.3	0.78	0.148
Rit	14	12.8	0.91	-0.052	20	18.2	0.94	-0.010	8	7.4	0.69	0.161
Chat	13	12.2	0.91	0.005	21	19.4	0.95	0.052	9	8.1	0.62	0.063
Puy	11	9.6	0.85	0.018	25	19.3	0.96	0.019	10	7.6	0.63	0.092
Cha	16	14.2	0.91	0.046	23	20.2	0.96	-0.001	7	6.2	0.67	0.003
NTas	8	7.9	0.89	0.101	15	14.4	0.92	-0.033	10	9.5	0.81	0.057
Alb	13	11.9	0.89	-0.075	19	16.4	0.93	0.054	9	7.8	0.68	0.177
Nam	11	9.2	0.87	0.064	24	16.8	0.93	0.118	10	8.1	0.69	0.047
JF	15	12.1	0.91	0.002	20	15.8	0.94	0.159	11	9.5	0.82	0.024
Por	11	10.7	0.90	0.050	17	15.9	0.94	0.094	7	6.7	0.75	0.107
Sed	13	12.3	0.91	-0.020	17	14.6	0.92	0.005	7	6.5	0.75	0.031
Total/Ave.	22	11.9	0.90	0.005	41	18.0	0.94	0.059	18	8.1	0.70	0.066

Appendix E continued

HopAt4
HopAt5
HopAt11

Sites	A	$A_{\text {r }}$	$H_{\text {E }}$	$F_{\text {IS }}$	A	$A_{\text {r }}$	$H_{\text {E }}$	$F_{\text {IS }}$	A	$A_{\text {r }}$	$H_{\text {E }}$	$F_{\text {IS }}$
Kai	18	11.8	0.88	0.055	13	9.1	0.78	-0.013	16	12.1	0.89	-0.061
Tau	15	10.7	0.87	-0.019	10	9.0	0.80	-0.030	12	10.6	0.86	0.165
Exp	20	12.9	0.89	0.007	12	8.8	0.77	0.067	18	12.8	0.89	0.057
Ton	15	11.2	0.87	0.006	14	9.4	0.78	-0.066	14	10.5	0.85	0.023
Yas	14	12.4	0.90	0.216	11	9.4	0.78	0.035	11	10.3	0.87	0.204
Bir	21	12.8	0.89	0.113	16	10.6	0.82	-0.078	14	10.4	0.85	0.181
Bou	18	12.8	0.89	0.046	11	8.5	0.74	0.004	19	12.8	0.89	0.048
Mil	20	12.1	0.88	0.054	15	9.8	0.82	-0.055	17	11.4	0.89	0.066
Nuk	13	12.1	0.90	0.297	8	7.6	0.66	-0.038	13	12.3	0.88	-0.028
Col	20	12.9	0.89	-0.049	13	9.8	0.81	-0.011	15	12.3	0.89	0.059
Mer	14	13.4	0.90	-0.057	12	10.8	0.83	-0.002	11	9.9	0.87	-0.061
Cla	12	11.4	0.90	0.129	9	8.8	0.82	-0.163	13	11.6	0.87	-0.009
Rit	14	12.9	0.90	-0.067	10	9.3	0.84	-0.038	12	10.9	0.84	-0.039
Chat	14	12.9	0.89	-0.020	9	8.2	0.78	-0.064	10	9.5	0.88	-0.047
Puy	18	14.1	0.90	0.015	13	10.2	0.70	-0.102	15	12.6	0.90	0.021
Cha	17	14.9	0.91	-0.106	13	11.9	0.86	-0.116	13	11.5	0.87	0.033
NTas	11	10.6	0.88	0.091	9	8.8	0.81	0.006	14	12.7	0.86	-0.107
Alb	13	11.8	0.91	-0.013	10	9.4	0.77	-0.033	14	12.4	0.88	0.003
Nam	16	12.7	0.90	0.037	12	9.1	0.76	-0.093	17	11.6	0.89	0.016
JF	17	11.7	0.87	0.014	13	8.6	0.68	0.069	14	11.3	0.89	0.102
Por	7	6.9	0.84	0.255	10	9.0	0.77	0.006	10	9.1	0.83	0.000
Sed	10	9.3	0.85	0.159	12	9.9	0.75	-0.125	11	10.4	0.88	0.080
Total/Ave.	28	12.2	0.89	0.053	17	9.3	0.78	-0.038	23	11.6	0.87	0.032

Appendix F

Varela AI, Ritchie PA, Smith PJ (2012) Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences. Marine Biology 159:1049-1060

Varela AI, Ritchie PA, Smith PJ (2013) Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fisheries Research 140:83-90

Low levels of global genetic differentiation and population expansion in the deep-sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences

Andrea I. Varela • Peter A. Ritchie • Peter J. Smith

Received: 25 October 2011 / Accepted: 12 January 2012 /Published online: 1 February 2012
© Springer-Verlag 2012

Abstract

The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise $\Phi_{\text {ST }}$ analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation $\left(\Phi_{\mathrm{ST}}=0.02-0.13, \quad P<0.05\right)$ was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.

Introduction

Deep-sea fishes (i.e. $>200 \mathrm{~m}$) live in the largest habitat on Earth. Many deep-sea fishes are widely distributed and have a circumglobal distribution, for example the alfonsino

[^1]Beryx decadactylus. Some bathyal fishes inhabit continental slopes, the slopes of oceanic islands, and seamounts that are separated by extensive areas of deep ocean. The dispersal of deep-sea fishes may be less constrained by their habitat than that of coastal fishes. However, while there are few obvious barriers in the deep sea, migration of individuals could be limited by ocean currents and bathymetric features, as reported for the demersal fish Brosme brosme (Knutsen et al. 2009). There are several examples of genetic differentiation among deep-sea fish populations at different geographical scales, including the spikey oreo Neocyttus rhomboidalis (Elliott et al. 1998), the bluemouth Helicolenus dactylopterus (Aboim et al. 2005), the Patagonian toothfish Dissostichus eleginoides (Smith and McVeagh 2000; Rogers et al. 2006), and the Cape hake Merluccius paradoxus (von der Heyden et al. 2007). However, there are also species that exhibit panmixia at regional, oceanic, and inter-oceanic scales such as the armorhead Pseudopentaceros wheeleri, the wreckfish Polyprion americanus, the alfonsino Beryx splendens, and the oreos Allocytus niger and Pseudocyttus maculatus (Martin et al. 1992; Sedberry et al. 1996; Hoarau and Borsa 2000; Smith et al. 2002a).

The orange roughy, H. atlanticus, has a cosmopolitan distribution (Paulin 1979). It occurs at depths of $450-1,800 \mathrm{~m}$ and is locally abundant off the coasts of New Zealand, Australia, Namibia, and in the Northeast Atlantic Ocean (Horn et al. 1998; Branch 2001) and off Chile (Labbé and Arana 2001). Orange roughy aggregate near prominent topographic features such as seamounts, plateaus, and canyons, especially during spawning and feeding periods (Clark et al. 2000). It is thought that adults migrate hundreds of kilometers to spawn, as mature fish are widespread, but spawning occurs in just a few specific areas (Francis and Clark 1998). Orange roughy fisheries

Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses

Andrea I. Varela ${ }^{\mathrm{a}, *, 1}$, Peter A. Ritchie ${ }^{\mathrm{a}}$, Peter J. Smith ${ }^{\text {b }}$
a School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
${ }^{\text {b }}$ Museum Victoria, Melbourne, Victoria 3001, Australia

A R T I C L E I N F O

Article history:

Received 22 May 2012
Received in revised form
13 December 2012
Accepted 23 December 2012

Keywords:

Genetic divergence
Deep-sea fish
Global distribution
Microsatellite DNA

Abstract

The widely distributed teleost orange roughy, Hoplostethus atlanticus, has been one of the main species targeted in deep-sea fisheries. While morphometric, parasite and otolith analyses have generally found differentiation among populations within ocean basins, genetic techniques have shown contradictory results at different geographical scales. Here, we used nine microsatellite DNA loci to study genetic diversity and differentiation in orange roughy at a global scale using samples from New Zealand, Australia, Namibia, Chile, and the Northeast Atlantic Ocean. Additionally, temporal genetic variation was assessed for eight sites in Northern New Zealand sampled in two different years. The expected heterozygosity was high in all the sites, suggesting high levels of genetic diversity in orange roughy. Overall, we detected low but significant differentiation at the global scale: across the Southern hemisphere and between the Southern hemisphere regions and the Northeast Atlantic Ocean. However, genetic homogeneity was found between New Zealand and Australia. The present data does not showed temporal variation in orange roughy from Northern New Zealand. A pattern of isolation by distance at the global scale suggests stepping-stone migration, which is likely the result of active adult dispersal. This study revealed levels of genetic differentiation at the global scale that were undetected with mitochondrial DNA sequences analyses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The marine environment was once considered a largely "open" system with few boundaries to dispersal of marine organisms. However, increasing research has revealed that many marine species are not panmictic. Despite the potential for widespread dispersal of swimming adults and/or pelagic early life stages, many studies have reported restricted gene flow at different geographic scales in marine fishes. Oceanographic and topographic features, coupled with behavioural characteristics provide barriers for dispersal in marine species. For example, Fauvelot and Borsa (2011) found high levels of genetic divergence in the widely-distributed Spanish mackerel Scomberomorus commerson and suggested that the high migrating ability of this fish may be associated with phylopatric behaviour rather than promoting wide-scale dispersal. In

[^2]contrast, there are examples of species with genetically homogeneous populations over wide geographical scales; Wu et al. (2010) found that the yellowfin tuna Thunnus albacares exhibits no genetic differentiation between populations from the Western Pacific and Western Indian Oceans.

Genetic studies are particularly useful for deep-sea species for which tag-recapture techniques are difficult to apply. Population genetics studies have been conducted on deep-sea fishes such as the wreckfish Polyprion americanus (Ball et al., 2000), the tusk Brosme brosme (Knutsen et al., 2009) and the alfonsino Beryx decadactylus (Friess and Sedberry, 2011), among others. While dispersal by larval stages and swimming adults was related to the finding of a single genetic stock in B. decadactylus in the North Atlantic Ocean (Friess and Sedberry, 2011), genetic differentiation among North Atlantic samples of B. brosme was related to bathymetric barriers (Knutsen et al., 2009). At a wider scale including samples from the North and South Atlantic Ocean, the Mediterranean Sea, and the South Pacific Ocean, Ball et al. (2000) found three genetic stocks in the wreckfish P. americanus.

Many deep-sea fishes are K-selected: they are long-lived, have late maturation and low fecundity. The increased fishing pressure on deep-sea species over the last three decades (see Pitcher

[^0]: ${ }^{1}$ As of $25^{\text {th }}$ January 2013

[^1]: Communicated by T. Reusch.
 A. I. Varela (\triangle) P. A. Ritchie

 School of Biological Sciences,
 Victoria University of Wellington,
 P.O. Box 600, Wellington, New Zealand
 e-mail: andrea.varela@vuw.ac.nz
 P. J. Smith

 Museum Victoria, GPO Box 666,
 Melbourne, VIC 3001, Australia

[^2]: * Corresponding author. Tel.: +56 51 209943; fax: +56 51209812.

 E-mail addresses: and.vrl@gmail.com, andrea.varela@vuw.ac.nz (A.I. Varela), Peter.Ritchie@vuw.ac.nz (P.A. Ritchie), h.p.smithnz@gmail.com (P.J. Smith).
 ${ }^{1}$ Current affiliation: Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.

