Optimisation of Likelihood for

Bernoulli Mixture Models

Faezeh Frouzesh

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science

in Statistics and Operations Research

Victoria University of Wellington
2012

Abstract

The use of mixture models in statistical analysis is increasing for datasets with het-
erogeneity and/or redundancy in the data. They are likelihood based models, and
maximum likelihood estimates of parameters are obtained by the use of the ex-
pectation maximization (EM) algorithm. Multi-modality of the likelihood surface
means that the EM algorithm is highly dependent on starting points and poorly
chosen initial points for the optimization may lead to only a local maximum, not
the global maximum. In this thesis, different methods of choosing initialising
points in the EM algorithm will be evaluated and two procedures which make in-
telligent choices of possible starting points and fast evaluations of their usefulness
will be presented. Furthermore, several approaches to measure the best model to
fit from a set of models for a given dataset, will be investigated and some lemmas
and theorems are presented to illustrate the information criterion.

This work introduces two novel and heuristic methods to choose the best start-
ing points for the EM algorithm that are named Combined method and Hybrid
PSO (Particle Swarm Optimisation). Combined method is based on a combina-
tion of two clustering methods that leads to finding the best starting points in the
EM algorithm in comparison with the different initialisation point methods. Hy-
brid PSO is a hybrid method of Particle Swarm Optimization (PSO) as a global
optimization approach and the EM algorithm as a local search to overcome the
EM algorithm’s problem that makes it independent to starting points. Finally it
will be compared with different methods of choosing starting points in the EM

algorithm.

Produced Publications and

Presentation

1. Faezeh Frouzesh, Shirley Pledger and Yuichi Hirose, "A Combined Method
for Finding Best Starting Points for Optimisation in Bernoulli Mixture Mod-
els", in Proceedings of the 21st International Conference on Pattern Recog-
nition, Japan. IEEE Press, 2012 (in press).

2. Faezeh Frouzesh, Yuichi Hirose, Shirley Pledger and Mahdi Setayesh, "A
Hybrid Particle Swarm Optimization Approach to Bernoulli Mixture Mod-

els," in Proceedings of the Ninth International Conference on Simulated
Evolution And Learning (SEAL’2012), Vietham. ACM Press, 2012 (in press).

3. Faezeh Frouzesh, "Evaluation of Starting Points for Optimization in Mix-
ture Models", NZMASP 2011 Conference, 21-24 November 2011, Silver-

stream Retreat, New Zealand.

Acknowledgments

I have finally come to the end of my journey in completion of my thesis and my
graduate studies for master of science in statistics and operations research at Vic-
toria University of Wellington. It has been an honor to work with so many bright
professionals in this field to fulfill the requirements to grant this great success. I
would like to express my thanks to my first supervisor, Dr. Yuichi Hirose. He
played an important role in completion of my thesis. He was a great encourager
and a great friend throughout this process. I also extend my highest appreciation
to my second supervisor, Professor Shirley Pledger. 1 greatly appreciate her pa-
tience and hard work in the past year while I was finishing my thesis and also her
magnificent support as my supervisor during my Honors project.

This has been a great experience in my life and I have made very precious
memories during this time. I was so privileged to be next to my husband during
this time. His help has been very monumental to complete my work. He has
been helping me morally and intellectually through this process and has been the
cornerstone of my graduate studies success.

I would also like to offer my special thanks to my parents and my sister and
my brother-in-law who supported me in every step of the way to reach to this

excellence.

Contents

1 Introduction

1.1 Motivation e
1.2 ResearchGoals
1.3 Thesis Contribution
1.4 ThesisOutline,

The EM Algorithm for Finite Mixture Models

2.1 NotatilonsS v v e e,

2.2 Parametric formulation of mixture model

2.3 Optimizing mixture models via the EM algorithm

23.1

General EM algorithm

2.4 The EM algorithm’s formulation for mixture models
2.5 EM Algorithm for Bernoulli Mixture Models

2.6 Summary e

The MLE and information criterion

3.1 Theoretical background

3.1.1
3.1.2
3.13

3.14
3.1.5

Maximum Likelihood Estimation
Assumption: Regularity Conditions
Asymptotic Properties of the Maximum Likelihood Esti-

MAtOrS . . .« v v v vt e e e e e e e e
Derivation of Bias for (K-L) distance

Takeuchi Information Criterion (TIC)

7

11
12
12
13
13

15
16
17
18
18
20
21
23

CONTENTS

3.2 Estimation with nuisance parameter

3.2.1 Derivation of Bias for K-L distance with Nuisance Param-

3.2.2 Information Criteria based on profile likelihood (PLIC) . .

33 Summary

Combined Clustering Method
4.1 Related Work for Starting Points
4.1.1 Clustering techniques
4.1.2 Hierarchical clustering
4.1.3 Partitional clustering,
42 NewMethod
43 Experimentdesign
43.1 DataSet.
4.3.2 PerformanceIndex
4.4 Resultsand Discussion
4.4.1 Evaluation of Random Start as a Starting Point Strategy
for EM algorithm,
442 Comparison of New Method with Traditional Clustering
Methods

4.5 Summary e

Application of PSO for Optimization of Likelihood

5.1 PSOasaGlobalSearch

5.2 Neighborhood Topologies

5.3 PSO for Optimisation of Parameters of Bernoulli Mixture Model .
5.3.1 Fitness Functionfor PSO
5.3.2 ParticleEncoding L.
5.3.3 PSO with EM algorithm

5.4 ExperimentDesign

5.5 Resultsand Discussion

5.6 Summary e

CONTENTS 9
6 Conclusions 83
A Source Code of Algorithms in R Language 85

Bibliography 125

10

CONTENTS

Chapter 1
Introduction

The determination of groups in clustered data is the main goal of cluster analysis
when the observed value is the only available information. The use of clustering
methods is increasing due to their applications in new domains in, for example,
physics, astronomy, biology and social science. Most clustering techniques are
based on heuristic or distance-based methods, such as hierarchical clustering and
iterative methods. Their intuitive construction and reasonable computational time
are two major advantages of these methods. Due to the lack of statistical basis
to determine the answer to classical questions such as the number of clusters,
heuristic methods have been less used for clustering in recent years. Statistical-
based clustering techniques are a principal alternative to heuristic-based methods.
In this area the data come from a mixture of probability distributions represent-
ing different clusters. Finite mixture models have also been widely applied to
a variety of problems such as image analysis, survival analysis and discriminant
analysis. From both theoretical and practical points of view, finite mixture dis-
tributions have attracted researchers. Although most researchers have focused on
mixtures models for continuous data, binary or discrete mixture models have a
better performance in many pattern recognition problems. This thesis concen-

trates on multivariate Bernoulli mixture models for binary data sets.

Bernoulli mixture models are determined by the parameters which can be op-

timised based on likelihood by optimisation methods, such as the EM algorithm.

11

12 CHAPTER 1. INTRODUCTION

The Akaike Information criterion (AIC) is an information-theoretic criterion that
measures the goodness of fit of the models. Actually, it is a model evaluation
criterion which shows a merit or a performance measure for competing models.
The EM algorithm is a standard approach to finding maximum likelihood in a
variety of problems where there is incomplete information or missing data. This
algorithm was proposed by Dempster et al. in 1977 [9]. The EM algorithm suffers
from choosing the initialisation points. The main goal of this thesis is to find a
good solution for the initial value problem in the EM algorithm through techniques

in computer science (machine learning).

1.1 Motivation

Bernoulli mixture models are frequently used to classify binary data. They are
likelihood based models, and the maximum likelihood estimates of parameters
are often obtained using the expectation maximization (EM) algorithm. However,
multimodality of the likelihood surface means that poorly chosen starting points
for optimisation may lead to only a local maximum, not a global maximum. Be-
side all the advantages of the EM algorithm, such as its simplicity, monotonic con-
vergence and its natural statistical interpretation, it has some general drawbacks
which have been noted in the literature [16]. The EM algorithm is an iterative
hill-climbing method whose performance is highly dependent on its initial points,
especially in the multivariate context because of the multi-modality of the likeli-
hood function. Therefore, its sensitivity to the initial points and trapping in local

optima are major disadvantages of the EM algorithm.

1.2 Research Goals

The overall goal of this thesis is to improve the EM algorithm’s performance in
optimising the likelihoods of finite mixture models. This thesis concentrates on
using the EM algorithm to estimate the parameters of the Bernouli mixture models

for binary datasets. To achieve the overall goal of the thesis, this thesis focuses on

1.3. THESIS CONTRIBUTION 13

two major sub-goals:

1. Reducing sensitivity of the EM Algorithm to initialisation points

To achieve this sub-goal, we investigate the performance of the EM algo-
rithm when it is initialised through different clustering techniques, propos-
ing a novel combined clustering method and comparing its performance

with other techniques;

2. Combing the EM algorithm as a local search with the Particle Swarm Op-
timisation (PSO) algorithm as a global search method that is more likely to

avoid trapping in local optima.

1.3 Thesis Contribution

The major contributions of this thesis are:

* Investigating influence of using different clustering techniques for the ini-
tialisation of EM Algorithm

* Proposing a combined clustering technique for intelligently choosing initial

points

* Adopting likelihood as a fitness function for PSO algorithm and proposing a
hybrid PSO method which combines PSO as a global optimisation method

with the EM algorithm as a local search method.

1.4 Thesis Outline

The outline of the thesis is as follows:
* Chapter 2: The EM Algorithm for Finite Mixture Models

* Chapter 3: The Maximum Likelihood Method and Information Criterion

14

CHAPTER 1. INTRODUCTION

* Chapter 4: A Combined Clustering Method for Initialization of EM Algo-

rithm
* Chapter 5: Application of PSO for Optimization of Likelihood

* Chapter 6: Conclusions

Chapter 2

The EM Algorithm for Finite
Mixture Models

Finite mixture models provide a natural representation for great flexibility in fit-
ting models for continuous or discrete outcomes that are observed from popula-
tions including a finite number of homogeneous subpopulations [16]. The mix-
ture models also provide a convenient formal setting for model-based clustering.
There are a lot of applications of finite mixture models in the social and behav-
ioral sciences, biological, physical and environmental sciences, engineering, fi-
nance, medicine and psychiatry among many other fields [8]. The most important
advantage of mixture models is that the model can have quite a complex distribu-
tion through choosing its components to have an accurate local area in order to fit
the best distribution to the model. As a result, finite mixture models can be used
in situations where a single parametric family is unable to provide an adequate
model for local variations in the observed data [8].

To estimate a mixture distribution, a variety of approaches have been used over
the years like graphical methods, method of moments, minimum-distance meth-
ods, maximum likelihood and Bayesian approaches. The maximum likelihood
method is a well-known approach over the last 30 years due to the existence of an
associated statistical theory and we concentrate on it over this thesis.

Finding estimation of parameters in finite mixture models is of practical im-

15

16 CHAPTER 2. THE EM ALGORITHM FOR FINITE MIXTURE MODELS

portance in pattern recognition and other related fields. These parameters are es-
timated by maximizing the likelihood. The EM algorithm is a standard approach
to finding maximum likelihood in a variety of problems where there is incomplete
information or missing data. This algorithm was proposed by Dempster et al. in
1977 [9]. Beside all the advantages of the EM algorithm, such as its simplicity,
monotonic convergence and its natural statistical interpretation, it has some gen-
eral drawbacks which have been noted in the literature [16]. The EM algorithm
is an iterative hill-climbing method whose performance is highly dependent on its
initial points, especially in the multivariate context because of the multi-modality
of the likelihood function. Therefore, its sensitivity to the initial points and trap-

ping in local optima are the main disadvantages of the EM algorithm.

2.1 Notations

This section list all notations which will be used throughout the thesis. All data
sets used in this thesis are from an n x p matrix Y of binary data. The value of
Y;; is 1 if there is “success “on a Bernoulli trial with parameter 6;;, and 0 if there
is failure. In the binary data, the rows may represent species while the columns
or variables are the presence or absence over p quadrants or samples. We are
interested in knowing if the rows can be grouped (clustered) into two or more
relatively homogeneous groups. It is important to know if the species fall into
natural groups, so that species are more similar (in their pattern of occurrence)
within groups and dissimilar between different groups. The notation that will be
used throughout this thesis is as follows:
L =Likelihood
[=log likelihood
l.=log likelihood under complete knowledge
¢;; =Bernoulli parameter for Y, =1,..n,j =1,..p
z; = Indicator of row 1 being in row-group r
7= A priori membership probabilities from row-group r (r = 1,...R)

T;» = A posteriori probability row i from row-group r

2.2. PARAMETRIC FORMULATION OF MIXTURE MODEL 17

2.2 Parametric formulation of mixture model

LetY = {Y1, ..., Yn}T denote a random sample of size n where Y; is a p-dimensional
random vector of R", y; its realization or the observed value of the random vector
Y; and f(y;) is its probability density function, where the superscript 7" denotes
vector transpose. We use Y to represent the entire sample which is an n-tuple of
points in R". Though we consider the feature vector Y; as a continuous random
vector here, we can still take f(y;) as a probability function in the case where Y;
is discrete by adopting the count measure. The density of Y; is assumed to be a

mixture of R densities in the mixture model context, such that:

R
r=1

where 7, is a nonnegative quantity that can be viewed as the weight of the r-th

component of the mixture with the following constraint,

R
Y om=1 0< T, <1. (2.2)
r=1

In equation (2.1), f.(y;) is a density function and called a component density
of the mixture. Although the number of components R is considered fixed in
equations (2.1) and (2.2), in many applications, the value of R is unknown and it
has to be inferred from the given data set, along with the mixture of proportions
and the parameters in the specified forms for the component densities. In many
applications, f,.(y;) are designated to belong to some parametric family. Then, the
component densities f,.(y;) are indicated as f(y;; 0,.), where 0, denotes the vector
of unknown parameters of the model for the 7** component density in the mixture.

Therefore, the mixture density f(y;) can be rewritten as

R
Flys) = mf(yi6,), (2.3)
r=1

with ¢ = (011, ..., 01p, 601, ..., 02p, ..., OR1, ...0Rp, T1, ..., TR) containing all the un-

known parameters in the mixture model. In the case of incomplete data problems,

18 CHAPTER 2. THE EM ALGORITHM FOR FINITE MIXTURE MODELS

since the assignment of the observed data is unknown, mixture models are refor-
mulated. If we consider the complete data vector by X; = {Y;, Z;} whose only

component being observed is Y;, then its density function is,

g(xi; #’) = H [ﬂ'rf<yi; QT)]ZZ',,.

r=1
where
{ 1 if i*" subject is in group r
Zip = .

0 otherwise

2.3 Optimizing mixture models via the EM algorithm

This section is an adaptation of Picard [18] that was published in 2007. Expectation-
Maximization (EM) is a method used in point estimation. The main goal of the
EM algorithm is to estimate the maximum likelihood through an iterative method
when the observation is incomplete. The EM algorithm optimizes the observed
data likelihood using the simpler MLE computation of the complete data like-
lihood. According to equation (2.3), the likelihood function for n independent

observations from a mixture is:

n R
Lw;Y) =] {me(yi; 9»} :
i=1 (r=1
Since the maximization of the above likelihood with respect to) requires an
iterative procedure and is not straightforward, the EM algorithm is the best choice
for estimating the parameters of a mixture model due to its candid formulation. In
this section, we give a general presentation of the EM algorithm followed by its

formulation for mixture models.

2.3.1 General EM algorithm

Let x indicates the complete data sample space from which x arises, T represent

the observed sample space and Z is the hidden sample space. Let y = T x Z and

2.3. OPTIMIZING MIXTURE MODELS VIA THE EM ALGORITHM 19

x = (y, z). We consider the density of the observed data in y as:

g(x;) = f(y;0)k(2]y; 1)),

where f(y;) indicates the density of the observed given the datain Y and k(z|y; ¢)
shows the conditional density of the missing observation given the data. Now we
need to define different likelihoods:L(y, 1) is the observed/incomplete-data like-
lihood and L°(x;) is the unobserved/complete-data likelihood. The likelihood
log L¢(x; 1) is a function of log L(y,) and log k(z|y; 1) such that:

log L(z;v) = log L(y, v) + log k(z|y; ¢),

where
log L*(w;) = Y _ log (w1, 9),
t=1
and
n R
log k(zly;) =Y > ziplog B{Zy|Yi =y}
=1 r=1
Define

i f (yi; 0r)
Sk (yis 60)
Pr{Z;,. = 1} = m, shows the probability of belonging to population r for each

Tor = Pro{Ziy = 1Y = yi} =

data point which is the only available information about the data. The population’s
weights 7, are considered as prior probabilities of assigning to a given population
and 7;,. are interpreted as their posterior probabilities of constituent membership.
Briefly, the estimated probability of data point y; belonging to the first, second, ...,
the mixture probabilities are represented by 7;1, ..., T;5-
The EM algorithm is composed of an iterative method to optimize the incomplete-

data likelihood indirectly by the use of the current fit for . If we indicate the value

of the parameter at iteration h with w(h), and define:

Q™) = E,m{log L(X;)Y},
H(p; W) = Eym{logk(Z|Y;)|Y},

20 CHAPTER 2. THE EM ALGORITHM FOR FINITE MIXTURE MODELS

where I, {.} marks the expectation operator by taking the current fit M for 1,
it follows that:

log L(y:) = Q(us ") — H(w; 0 ™).
The EM algorithm has two steps:

s E-step: compute Q(; ™)),
» M-step: select ("1 = Argmax{Q(z; ™)},

These steps are repeated alternately until the difference between ¢("+1) and 1"
changes by an arbitrarily small amount. There are several stopping rule for the
EM algorithm. The difference of log likelihood between two steps could make
a stopping rule. Note that, since parameter)("*!) keeps changing, this differ-
ence can be fixed if the log-likelihood stuck on a plateau with respect to ¢). One
of the most important properties of the EM algorithm which was introduced by
Dempster et al. [9] is that after each iteration of the algorithm, the incomplete data

log-likelihood increases.

2.4 The EM algorithm’s formulation for mixture mod-

els

The log-likelihoods are written as the following when they are applied to the spe-

cial case of mixture models:

log L(y;¢) = > log fys¢) = Z?zllog{Zf:ﬂrf(yi;Or)}
log Lé(z;9) = Y0 logg(zsy) = So0, SoF 2 log{m, f(yi:0:)}

The E-step only needs to compute the conditional expectation of the missing in-
formation given the observed data y; because the complete data log-likelihood is
linear in the unobservable data z;, by the use of the current fit 1)® for 1. It leads

to
n R

Qv ™) = > " Bym{ Za|Vi = yi} log m f (i 0,),

i=1 r=1

2.5. EM ALGORITHM FOR BERNOULLI MIXTURE MODELS 21

with
E¢(’L>{ZZT|Y - yz} PT{Z““ - 1|Y - yl} z(rh)7
and also
oy _ (g 607)
T T O 0
Therefore

n

R
> log{m, £ (yi: 6,)}-

=1 r=1

The M-step needs to compute the global maximization of Q(v; ")) with respect
to 7 to obtain an updated estimate ¢"*!). By constrained maximization of the
incomplete-data log-likelihood, for finite mixture models we get the following

result:

n _(h)
ﬁ_ﬁh—i—l) _ D i1 T '
n

2.5 EM Algorithm for Bernoulli Mixture Models

Given a data set and any statistical model, the ML method (because of its desir-
able properties) is the most commonly used method to estimate the parameters
of the models. For this purpose, we need to know the probability of observing
the data set. The E-step or the expectation step computes the expectation of the
log-likelihood evaluated using the current estimate for the latent variables. For
an n X p matrix of data from a discrete distribution, the overall likelihood is the

product of the likelihoods for the individual rows:

L.y =] [ZmH@y” (1—0,5)"] 2.4)

i=1 Lr=1 j=1

where) | 7, = 1 and so the log likelihood is:

10, 7y) = Zlog {Zmﬁey” 1—06,,)'" yw]. (2.5)
J=

22 CHAPTER 2. THE EM ALGORITHM FOR FINITE MIXTURE MODELS

This assumes independence of rows, and conditional independence of columns
within each row (local independence). Consider the missing information as an
n X R group membership matrix, Z, where z;, = 1 if case ¢ is in group 7 otherwise

0. With complete knowledge,

n R P

lc<07 le,z) = Z Zir |:ij log T’j (26)

i=1 r=1 1

=
n R
+(1 — ;) log(1 — 9,7-)} + Z Z Zir lOg .

i=1 r=1

The maximisation step or M-step uses the complete data through maximizing us-
ing estimation of the missing data from the E-step in order to find parameters. The
partial derivative with respect to 0, is found, and equated to zero, giving an exact

mathematical solution,

lc g Yij 1 Yij
9 — E N e A A Vr. Vi 2.7
{50@} i=1 o {erj 1 em =0 v &7
So,
érj = i Zwy” (2.8)

DY

Also, with complete data, the maximum likelihood estimates of 7,7 = 1,..., R
are simply

YL 2.9)

n

i.e. the proportion of the n cases in group r. The other calculation will be in
the E-step, where we use current parameter estimates, é,.j and 7, to find the ex-
pected value of z;,.. The expected value (mean) of Bernoulli distribution is 6 the
probability of success. For case ¢

99”(1 _ 6)1 Yij

A]17’]

Zir = .
Zf:l Ty ey”(l — 0,)1 .

Jlm

(2.10)

2.6. SUMMARY 23

2.6 Summary

In this chapter, we introduced notations which will be used over this thesis and de-
scribed the EM algorithm along with its formulations for mixture models and the
Bernoulli Mixture Model. In the next chapter, basics of the maximum likelihood

estimator and derivation of information criteria such as AIC will be investigated.

24 CHAPTER 2. THE EM ALGORITHM FOR FINITE MIXTURE MODELS

Chapter 3

The Maximum Likelihood Method

and Information Criterion

There are several ways to measure the relative goodness of a fitted statistical
model. In this chapter, different methods are investigated to measure the best
model from a set of models for a given data set followed by some Lemmas for
more illustration. The Akaike Information Criterion (AIC) and (AICc) are two
most well-known approaches which are used in the next chapters to measure the
goodness of the fitted model. These methods are based on the minimization of
Kullback-Leibler distance between the model and the truth. Since the value of
AIC and AICc shows the amount of lost information, the model which loses a
minimum amount of information is the best candidate to fit. Therefore, a model

with the minimum AIC or AICc is the best model to choose.

3.1 Theoretical background

3.1.1 Maximum Likelihood Estimation

Suppose that we have a random sample of data and an appropriate theoretical
model with parameters. Maximum likelihood, ML is the most commonly used

method to estimate the parameters of the model to fit the best model to the dataset.

25

26 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Hence, it is also called Maximum likelihood estimators or MLE. Briefly, the like-
lihood is measuring some kind of plausibility for possible value of the unknown
parameter(s). Let X5, Xo, ..., X, be a sequence of random variables. Assume the
random variables are independent and identically distributed (iid) with common
pdf f(z;6) and we wish to estimate 6. The likelihood of the parameter for a given

data is defined as the following:

n

L) = [f(x::0). (3.1)
i=1
Let 6 be a maximum likelihood estimator (MLE):

0 = Argmax,L(0) (3.2)

where Argmax denotes that L(f) has its maximum value at 0. The type of
distribution of X (e.g. normal, binomial, Poisson, Exponential and etc.) will be
specified by our model. However, we do not know (all) the parameters.

Since log is a monotone increasing function, we use log(L(#)) instead of L(0).

A maximum for L(0) is also a maximum for

1(0) =log L(A) = znjlog f(x;;0). (3.3)
i=1

If 6 is M LE, it should satisfy the following equation which we often label as

an estimating equation or K F:

21(9) = 2log L(0) = %log f(z;0) =0. (3.4)
i=1

3.1.2 Assumption: Regularity Conditions

* Regularity (R1): The pdfs are distinct; i.e., 0 # ¢’ = f(x;0) # f(x;0").

3.1. THEORETICAL BACKGROUND 27
* (R2): The true value 6, is an interior point in the parameter space §2.
Additional regularity Conditions

* (R3): We can differentiate the pdf function f(z;) with respect to 6 twice.

* (R4): [f(x;0)dz is twice differentiable under the integral sign as a function
of 0.

3.1.3 Asymptotic Properties of the Maximum Likelihood Esti-

mators

In this section, we discuss the asymptotic properties of the maximum likelihood
estimator of a continuous parametric model {f(x;0);0 € © C RF} with p-
dimensional parameter vector 6.

Asymptotic normality: Suppose that g(z) is a true pdf and G(z) is a true cdf
respectively and X = {Xj,..., X,,} are independent and identically distributed
(i.i.d.) with g(z) and also the density function f(x;#) is two times differentiable

and o
J(0) = — Wlogf(x; 0)f(x;0)dz,
and 5 3
10) = | 55108 f(x;0) 577 log f(x;0) f(x;0)dx.

Under the above conditions, we have the following properties:

(a) Let X = {xy, 9, ..., z,,} be a collection of i.i.d. random variables which have
the same probability density function f(x;6y) (f(x;6p) is the true model).
Here, 6, is the solution of

/ f(; G)afgg !

Furthermore, if én is the maximum likelihood estimator based on n obser-

)dx:().

vations, the following properties can be derived:

28 CHAPTER 3. THE MLE AND INFORMATION CRITERION

(i) When n — oo , the maximum likelihood estimator én converges in
probability to 6.

(ii) The MLE 6, has an asymptotic normality: the distribution of \/ﬁ(én —
6p) converges in law to the p-dimensional normal distribution with the
zero vector mean and the variance covariance matrix (6y)~* which

I(6y) is not singular as follows:

V(0 — 80) = N[0, 171(6,)]

(b) Assume that g(z) # f(x;0) for all # and X = {xy,zo, ..., z,,} are observa-

tions according to the distribution g(z). Let 6, be the solution of

/g(x)%dm = 0.

In this case, we can state the following properties with respect to the MLE

~

0,:

(i) The MLE 4, converges in probability to 8, when n — oo.
(ii) The distribution of \/ﬁ(é —) with respect to the MLE 0 converges in

law to the p-dimensional normal distribution so that its mean vector is
zero and the variance covariance matrix is J~1(0y)(6y)J ' (6y) when

n — 00, 1.€.

A~

V(6 = 00) L N[0, T (66)1(60)J " (6o)].

PROOF. [(a),(b)] : By Taylor expansion, there is a #* that lies in between 6 and

6. The first derivative of the maximum log-likelihood [(6,,) = >, log f(x;; 0,)

around 6, then

0 0l(6,) dl(6y) L)

00 00 D000T (6 = o). (3-5)
A score function can be defined as:
S(z;0) = 9 log f(z;0). (3.6)

00

3.1. THEORETICAL BACKGROUND 29

If we apply Taylor expansion for S(z;0), we have

S(x;0) = S(x; 60) + ' (x; 6%)(6 — 6o) (3.7
where
_ S (z;0) _ 0 log f(x;0)

00T 0000™
The equation (3.7) can be changed to

S'(x;0)

(3.8)

:%Z;S(:ci; \FZS ;60 +—ZS’ 2,090 — 0,). (3.9)

By multiplying and dividing the second term by /n we get

J_stz,eo ZS’:E“ 0")v/n(0 — 6o). (3.10)

Since 0* 2 6, and based on Uniform Weak Law of Large Numbers (WLLN),
—ZS’ 2;0°) 2 —J(6,) (3.11)
where J(0y) = —E[S"(X;00)]. So
—ZS’ 24,0%) = —J(0p) + op(1). (3.12)

We can now rearrange equation (3.10) as the following:

~

0= - Z S 00) + [~ (00) + op(LIVF(0 —)

- % ; S (i3 00) + (=T (00)) V(0 — b0) + 0p(1)V/n(0 — 65)3.13)
As we know op(1)y/n(0 — 6y) = op(1), so

T(60)v/n(0 —) = % > S 60) + op(1)

30 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Multiply both sides by J~1(6y) giving
. 1 <&
Vil —bo) = 7' (60) = > S(Xi:60). + op(1) (3.14)
i—1

Since E[S(X;6y)] = 0, we have

Var [S(X;6,)] = E[S(X;600)S(X;60)"] — E[S(X;600)]E[S(X;6)]

= I(6,). (3.15)

By using the Central Limit Theorem (CLT), \/iﬁ Yo S(Xi;600) N N(0,1(6))).

Therefore,
V(0 — o) & N[0, T (86)1(86)J " (6o)].

If g(z) = f(x;0y) according to the Lemma 1 that is followed by this proof,
JH(00)1(80) T~ (6o) = I (6o)

hence

~

Vil —6o) 5 N[0, 171(6)))-

LEMMA 1.
Assume g(x) = f(x;6y), then J(6y) = 1(6y) where

62

J(0) = 20007

log f(x;0) f(x;0)dx,
and

0 log f(x;0) 5 = 0

1) = a0 09T

log f(x;0) f(x;0)dx.

PROOF. It is obvious that for all # we have [f(z;6)dz = 1. If we differentiate

it, f 55 (x;0)dx = 0 for all 6. We can multiply fga: eg both sides, so

3.1. THEORETICAL BACKGROUND 31

i/ (@:0)

00 \ "1

S f(z;0)dr = 0.

TCORA

In view of the fact that 2 log f(z;60) = ;{x(me)e 2299 £ a1l § we can reform above

equation such that

/ (5@ log f(x; 9)) F(2:0)de =

By differentiating the above equation and using product rule, for all 6,

/ [80%29T log f(x; 9)] f(:c;@)dx+/ {ge log f(; 9)] [a(ZTf(x 9)] de = 0.

If we multiply the second term by —;giz;,

/ [QQ%ZQT log f(x; 9)} f(z; 9)d$+/ {% log f(z; 9)} [%] f(z;0)dx = 0.

0 f(a
Again we can substitute {aef(i;)@)] by [log f(z; 9)]

/ [ageT log f(z; 0)] f(x;e)dx+/ {889 log f(z; 0)] B@ log f(x; 8)]Tf(x; 0)dz = 0.

Therefore, the desired result can be obtained such that at = 6y, 1(6y) =
J(6p).

3.1.4 Derivation of Bias for (K-L) distance

This section covers information criteria which are called Takeuchi information
criteria. The Kullback-Leibler (K-L) distance between g and f(.;) is defined by

T(9(), £(50)) = / log g(x)dG(x) — / log f(z:0)dG(z).

32 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Since the first term on the right hand side is constant, the greater the integral
[log f(x;0)dG(x) the smaller the K-L distance. Since G is the unknown prob-
ability distribution, we replace it with an empirical distribution function GG,,. So,
[log f(x,0)dG,,(x) is an estimator of the integral [log f(x,#)dG (z). Hence the
bias of this estimator is

Bias = F{ / log f(z;0)dGy () — / log f(2;0)dG(x)}
- E Ubgf(x; é)d(Gn—G)(x)]. (3.16)

By applying Taylor’s expansion,
A A 1 - A
log f(x;6) = log f(w;60) + 5 (:6)(6 = 60) + 56— 0)" " (x:67)(0 —) (3.17)

where 0* is located between @ and o.
When 6 25 6, 6* 25 6,. Thus S'(x;6%) £ S'(2;6,).

Thus the equation (3.17) can be rewritten as follows:

~

log f(x:0) = log f(:0) + S(x:60)(0 — b) + %(é = 00)" (S"(@;0) + 0,(1)) (0 = 6o)
= log f(x;0) + S(;60)(6 — 6o) + %(é — 00)"S"(;60) (6 — 6o) + 0,(1)(6 — 6,)°
(3.18)

By the use of equation (3.18), equation (3.16) can be written as:

Bias — E[/ log f(x;&o)d(Gn—G)(x)}

+ B [/ S 00)d(Gry — G ()(6 — 90)}

+ %E [(é — 0,)" / S (w; 60)d(Gr, — G) () (6 — 90)}

v B [o,,u)(é - 90)2} .

3.1. THEORETICAL BACKGROUND 33
Let

A= E { / log f(; 60)d(G,y — G)(sv)} ;

B = E [/ S(2;00)d(G,, — G) () (0 — 60)] ;

¢ = 5B [VRO- 0" [$'w a6, - oVl -)

2n
D = E[o,,(l)(é—eo)ﬂ.

Therefore, Bias = A + B + C + D. Firstly, we start from A:
A = £ [1g (06,0~ [1og (w0006

1 n
E |- 1 X
n; ng(7,790)

- / log f (x: 00)dG(x)

1 n
I > / log f(z;00)dG(x) — /log f(x;00)dG(z) = 0. (3.19)
i=1
Secondly, we compute C. According to the WLLN,

/ S'(x;00)dG, (z) 2 / S (x5 600)dG ().

Hence,

/S’x@o (G — G /S’x@odG /S’xHOdG() 0,(1),

Then

0 = o [Vl -0 [w0, - @)V -)

2n

1

- o E [\/ﬁ(é — 00) 0, (1)vn (6 — 6,)

1

= Hop(l).

Thirdly, we compute B:

34 CHAPTER 3. THE MLE AND INFORMATION CRITERION
Since [S(x;60)dG(z) =0,

B = 18 |Va [SwalG,— G)aitd - o)

_ %E [\/H/S(x;eo)dGn(x)\/ﬁ(é—eo)} :

According to the equation (3.14),
Vi(h = b0) = T (0p)—= > _ S(Xy;00) + op(1).

i 1L _ vn
Smceﬁ— —,

Vith = 00) = T G [S(a00)d(Go)(2) + 0, (1)

Then

B - lp {\/ﬁ / S(a; 00)dG () T~} (00) v / S(z; Go)dGn(x)+0p(1)]

— %tr{J—l(eo)E {\/H/S(x, Ho)dGn(x)/S(x;Ho)dGn(a:)} } + %op(l).
Since n(0 — 0p)? = 0,(1), D = L0,(1) and Var (v/n [S(x;00)dG,(z)) = I(6y),
B = %tr [J7'1(60)] + %opu). (3.20)

Altogether the bias of the estimator is given by (3.20).

3.1.5 Takeuchi Information Criterion (TIC)

TIC [26] is defined by

TIC = —2log L(A) + 2tr[J ™1 (6p)I(6,)].

According to LEMMA 1, if g(z) = f(x;6y), then J(6y) = 1(6y). Therefore,

tr[J 1 (00)I(0)] = tr(Ix) = K

3.2. ESTIMATION WITH NUISANCE PARAMETER 35

where K is the dimension of # and TIC becomes AIC as:

~

AIC = —2log L(f) + 2K.

The bias in AIC evaluation is derived under the assumption that the true distri-
bution g(x) is contained in the specified parametric model. But TIC is an asymp-
totically unbiased estimate of expected K-L that is not based on the true model
in dataset. Since the bias adjustment term in TIC involves the estimation of the
elements of two K x K matrices I() and J~*(6p) in first and second partial
derivatives, it is more complicated to compute than AIC.

AIC with the second-order correction for small sample size n with respect to
K is called AICc which is calculated as:

~

AICe = —2log L(B) + 2K (n/(n — K — 1)). (3.21)

3.2 Estimation with nuisance parameter

The proofs of all Theorems and Lemmas in this chapter are based on Dr.Yuichi

Hirose’s notes. Suppose that we have a model with a partitioned parameter § =

(8,m) as:
{f(z;8,m): B € ©5 CR™ 7€ O, CR'},

where [is called a parameter of interest and 7 is called as a nuisance parameter.
Let L, (3,n) = Y., log f(X;; 8,n). The maximizer of L,(/3,n) is denoted
by (3,7). For any fixed 3, consider 7() as the maximizer of L, (8, n): 7(8) =

ArgmaxL,(f,). So L,(5,7(B)) = max, L,(3,n) where L, (5,7(3)) is called a
profile likelihood for 5. We denote the maximizer of L, (3, 7(53)) by Bpr. Thus

Ly, <BPLaﬁ(/éPL)> = L(8,7).

We consider the log-likelihood as a function of the emprical cdf function:
LrBo) = LY log stmisn)
—Ln\M> = - O x50,
o U] n g n

- /logf(x;ﬁ,ﬁ)dGn(fﬁ)-

36 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Since for any fixed 3, the maximizer of [log[f(z; 3,7)]dG,(z) is 7(3) and also
7 is a function of G,, which is defined by

(8) = (5. Gu) = Avgmax, [loglf(zi 5n)}dGula). (322)
Let p
S(x:8,G) = 7z log f(x; 8,1(8, G)),
and)
§(036,6) = 5y low (w3 5,i(5.C).

Then the maximizer B of the profile likelihood is a solution to estimating equation

| A
— Y S(X;;:8,G,) =0. 3.23
7 ; (X35, G) (3.23)
We call S(z; f, Fy) the efficient score function which satisfies

E[S(X; B0, Fy)S (X Bo.m0)] =0

with

log f(z; Bo, 7).

=m0

0
Sy(x; = —
77(’ ﬁO? 770) 877
We consider a model with a partitioned parameter § = ((,7) in this section
and use the result of asymptotic linearity of M LE(B) in derivation of information

criteria in the next section.

THEOREM 1. If g(z) = f(x; Bo,10), then the solution (3 of the estimate equation

(3.23) is an asymptotic linear estimator,

\/_(ﬁ 50 \/—Z[15 Xlaﬁ(h)+0p()

which implies
V(B = Bo) 5 N(0,Ig1),
where I, = [(X By, G)ST(X; Bo,)} is the efficient information matrix.

3.2. ESTIMATION WITH NUISANCE PARAMETER 37

PROOF. Notation: for a function ®(G) of G, d® denotes the Frechet derivative

of ® respect to GG. According to Taylor’s expansion,
1 o - R
Vi
1 & 1 = -, . .
— % ; S(Xi; Bo, Gn) + - ; S'(Xi; 8%, Go)vn(B — Bo), (3.24)

where 3* lies in between B and . Let the first and second part of equation be A
and B :

JRR

A = — Xi;
\/ﬁ;S(wﬂOaGn)
1 - U * %

B = L8068 GaVals — o)

We apply Taylor’s expansion to A again,
1 «— - J
A=—= > 8(Xis B0, G) + — D deS(Xis fo, G)v/i(Gr — G)
i=1 i=1

where G* is between (&, and GG. Now, we need to prove that the second term in the
right hand side of above equation is 0,(1). Let S¢(x; 8, G) = dg log f(xz; 8,7(5, G)).

By Lemmas 2 and 3 given below
I~
- > daS(Xi; Bo, G)Vn(Gn — G)
i=1

— E [dGS*(X; Bo, G)] V(G — G) + 0,(1)
= E[S(X; 0, G)Sa(X; o, G)| V(G — G) + 0y(1)
op(1).

Therefore
1

n

A=—""S(X;; 5o, G) + 0,(1).
=1

Bl

38 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Now equation (3.24) becomes
1 1 o= =, . .
0= 7n ZS<X1'§BO7G) +op(1) + o ZS (Xi; 8%, Gu)v/n(B = Bo).
i=1 i=1

When 5* 2 3, and G, & G, by the Uniform Weak Law of Large Numbers
(UWLLN),

1 - Q! . Q% p T

EZZIS(XMB ,Gn)—>]0.
By assuming that I~0’ ! exists,

. 1 &~ -
V(B =) = Tn > I S(Xi Bo, G) + 0p(1).
i=1
As we know
Var [é(x;ﬁo,c:)} —E [ﬁ(x;ﬁo,G)ST<X;5O,G) — I,

Since Var (I;1S) = I;'Var (S)I;' = I; ! and by the central limit theorem, we

obtain our desired result such that

V(B — o) % N0, I).

LEMMA 2. Prove that

E [dGS(X;ﬁoaG)] =—-kK [S(X;ﬂo,G)SG(Xsﬁo,G)] :

PROOF. As we know [f(x;3,7(8,G))dx = 1 for all (3, G). When we differ-

entiate this equation, we have

/ %f(m;ﬁ,ﬁ(ﬁ, G)) = 0.

3.2. ESTIMATION WITH NUISANCE PARAMETER 39

By multiplying and dividing top and bottom of above equation by f(z; 3, G),

o f(ﬂﬂa 77(/3: G))
o op . A
0 = @ 5.00.0) f(x; 8,7(8,G))dx

- / $(w: o, G) f s B (B, G) e, for all(8, G). (3.25)

If we differentiate (3.25), we have
/dcg(x; B, G) f(x; B,7(8, G))diH/ S(X;8,G)daf(x; B,7(B,G))de =0 forall(8,G).

By substituting S (x; 5,G) = %&(ﬂc?),

/ deS(as B, G) f (w3 B,1(8, G))do+ / $(x: 8, G)So(x: B, C) f (x: B,7(8, C))da = 0,

LEMMA 3. We show

E[S(X; By, G)Sa(X; B, G)] = 0 (3.26)

PROOF. According to the chain rule, we have

0 . .
and the efficient score function S(X; By, G) has the following property,
—E [S(X; fo, G)Sy(X: foymo)| = 0

and 7)(So;) = no, then

B [$(X; 6o, G)Sa(X; o,)]
= B[S(X: Bo, G, (X; fo,)| dei(Bo, G) = 0.

40 CHAPTER 3. THE MLE AND INFORMATION CRITERION

LEMMA 4. Show

~E[S'(X; Bo, G)] = I. (3.27)

PROOF. If we differentiate equation (3.25) with respect to 5 we get the following
result for all (3, G):

[{553ta.60} stwssuis e [8s6.6) {5z s, e =0,

Consider the second integral,

) 96 x; B, 1n x
/S(m,B,G) CEXCRS) f(z; 8,0(8,G))d

_ / S(w;8,G)8 (8. G) f (w3 B,7(B, G))da

Now for all (8, G), we have

‘/ {agTS< o G>}f (z: 8,1(8, G))dw = / S(w; 8, G)S" (w8, G) f (w; B, (8, G))da.

THEOREM 5. Assume that g(x) # f(x; 3,n). Let
5 0
S(x; 6,G) = %bgf(8,08, G)),

and
2

0B0BT
So the solution of the profile likelihood score equation . S(X;, B) =01is

S'(x;8,G) = log f(x; B3,7(8,G)).

asymptotically linear estimator:

V(B = Bo) = ZJolst,ﬁoHop()

3.2. ESTIMATION WITH NUISANCE PARAMETER

which results in
V(B = o) % N (0,05 o 5|

where Jy = —E [5”()(;/60)].

PROOF. By applying Taylor’s expansion, we have
Z S(Xi, Bo) + Z S'(X, B7)(B — bo)
Smce f NG by multiplying /n we obtain
1 & 1 - &, . .
= T 2 S fo) 1 > 5 (X 8)Vn(B — o)
i=1 i=1
Since 3 5 B, then 8* 5 ;. By UWLLN, we have
1 - U * T
EZS (X;,8%) = —J + 0,(1).
i=1
Hence equation (3.28) is replaced by
1 = - . .
v ; S(Xi, Bo) + (—J + 0p(1)v/n(B — 6p).
When we expand above equation, we get the following result:
R 5 .
-7 ; S(X;, Bo) + (—J)v/n(B — o) + 0,(1).
After rearranging, we have
V(B —6) = Z LS(X5, Bo) + 0p(1).

According to the CLT,

~

V(B = po) 4 N 0.7 T g

41

(3.28)

42 CHAPTER 3. THE MLE AND INFORMATION CRITERION

3.2.1 Derivation of Bias for K-L distance with Nuisance Pa-
rameter

In this section, an expression of bias for K-L distance with nuisance parameter is

first derived and then this result is used to develop Profile Likelihood Information

Criterion (PLIC).

Let G be the true cdf and 7(5) = 7(5, G) where the function 7(3, G) is de-
fined in (3.22). We now derive an information criteria based on the K-L distance

between g and f(.; 3,9(5))

(900 £ B.0(3) = [ogg(@)aG(a) ~ [1og flas b (3)dG).

As you know the first term on the right hand side is constant, therefore the greater
the integral [log f(z; 3,7(53))dG(z) the smaller K-L distance. We use (3, instead
of G because G is unknown. So [log f(z; 3, ﬁ(B))dGn(x) is as an estimator of
the integral [log f(z; 3,7(3))dG(z). The Bias of this estimator is

Bias — E Ulogf(x;ﬁ,f;(ﬁ))dc;n(x)—/logf(a:;B,ﬁ(B))dG(w)
= 8| [1ow e BiA(G —)| (329)

By applying Taylor’s expansion,

log f(x; 8,7(8)) = log f(x; Bo,7(Bo)) + S(; Bo) (B — Bo)
- %(B — Bo)"S' (; B°)(B — Bo) (3.30)

where 3* is between B and fy. As we already defined

0
log f(z; 8,7(8,G)),

S(x;ﬁ,G):%

and)

~ 9BoBT
Since@ 2 By, then 5* & fy. Thus

S'(x; 8,G) log f(x; 8,1(8,G)).

S'(w; 8%) & S'(w; Bo).

3.2. ESTIMATION WITH NUISANCE PARAMETER 43

Now equation (3.31) becomes

log f(x; 8,7(8)) = log f(; Bo,1(Bo)) + S(; Bo) (B — Bo)
(B B (3 s o) + 0p(1)(B — i)
= logf(x;ﬁo,n(ﬂo))JrS(fE 50)(5 Bo)

)

n %(3_50)T§’(x;ﬁo)(5 Bo) + op(HB BOH
(3.31)

By using equation (3.31) in equation (3.16),

Bias = F [/ log f(x:0)d(G, — G)(:z:)}
b B | [S G -) -)]
b 3B |65 [8 (G —)5 - o)
+ oE |5 a].

Let
A = B [i, - 1)
B = | [85 dG, - 65 -)|
¢ = 3B |G- 8" [5 (G - 65—)|
D = o,(1)E {Hé—ﬁom .
Then

Bias=A+B+C+D

Using Lemma 5

A=E [[108 s GG — G)a) | =0

44 CHAPTER 3. THE MLE AND INFORMATION CRITERION
Using Lemma 6
B = E [/ S(@; Bo)d(Grn — G)(2) (B — 50)]
= %tr[jo_lfo] + %op(l).
Using Lemma 7
¢ = 38| [- a0 @ a(C, -)5 -)]

= —op(1).

Therefore . .
Bias = Etr[JO_lIo] + Eop(l).

LEMMA 5. Prove that

| [tog fas (o)), - G)w)] =0

PROOF.
| [1ow a3)G~ G)(o)

= F

%Zlogf(Xi;ﬁo,ﬁ(ﬁo))] —/bgf(ﬂ?;@Ao,ﬁ(ﬁo))dG(x)

_ / log £(x: fo, 1(60))AG (x) — / log f(z: fo. 7(80))dG(x) = 0.

LEMMA 6. Prove that

N R ITRTIN
B| [St)G — 6)@) (5=)| = 1T Ll + 0,0,

3.2. ESTIMATION WITH NUISANCE PARAMETER 45
PROOF. As we know,
B| [3t maG, - G))3 -)| = 1| va [St &) a)n(B— B
Since [S(x; 8y)dG(z) = 0 the equation above becomes

%E {ﬁ / S(; fo)dGh () v/n (5 — %)} : (3.32)
According to theorem 1,

Vi) = - Z Jo 'S (w; 5o, G) + 0(1)
= \/ﬁ_/ Jy LS(X; Bo, GYdG () + 0,(1).

So equation (3.32) becomes,

%E {\/_/ x; Bo)dG(\/_/JO (X; Bo, GG (z)+Op(1>]
— —tr{JolE {\/_/ ; B0)dGy(\/_/ (X; Bo, G)dG,, ()}+%0p(1)}

1 _ 1
= ﬁtr[JO o) + Eop(l).

LEMMA 7. Show

%E [/ (8 — Bo)"S (3 Bo)d(Grn — G) () (B — ﬂo>] = %opu) (3.33)

PROOF. According to the Weak Law of Large Numbers,

[3G, 5 [3 60)d6(a),

[380G = @)@ = [3 a0)dGata) — [33 0)dG(w) = o).

46 CHAPTER 3. THE MLE AND INFORMATION CRITERION

Hence, equation (3.33) becomes

Lp [ﬁ@)" [Slas (G~ G)w)ialh -)
= =5 [ValB — o) op(1)V(f — o)

n
1
ﬁap(1)~
(3.34)

3.2.2 Information Criteria based on profile likelihood (PLIC)

The general formula for PLIC is given by,
PLIC = —2log L(f) + 2tr[J; ' Iy

When g(z) = f(x; o, 1), for all 3, n, then Jy = I,. Therefore tr[.J; 1] = p
where p is the dimension of matrix 3. In this case, PLIC becomes profile AIC
(pAIC).

pAIC = AIC = —2log L(B) + 2p.

3.3 Summary

Since Akaike’s Information Criterion (AIC) is the most commonly used powerful
method for the selection of a good model and we use as a measure criterion in
this thesis, we derived an expression for AIC in this chapter. We also showed
the asymptotic linearity of MLE(A) and used the results for derivation of bias for
Kullback-Leibler (K-L) distance and then derived Takeuchi Information Criterion
(TIC) and also AIC based on (K-L) for the parametric models with or without

nuisance parameters.

Chapter 4

A Combined Clustering Method for
Initialization of EM Algorithm

In most applications, the parameters of a mixture model are estimated by maxi-
mizing the likelihood (ML). The EM algorithm proposed by Dempster et al. [9]
in 1977 is a standard method for finding maximum likelihood or maximum pos-
teriori in a variety of problems where there is incomplete information or missing
data. It is an iterative method entailing 2 steps: E-step and M-step. These two
steps are performed alternately until the parameter estimates are converged.

The most important advantages of the EM algorithm are its simplicity in com-
parison to other similar methods, its monotonic convergence and its natural statis-
tical interpretation [16]. The general drawbacks of the EM algorithm are its slow
convergence, trapping in local optima and sensitivity to its starting points. The so-
lution of the EM algorithm is highly dependent on its starting position, especially
in a multivariate context. Many methods have been proposed in the literature in
order to overcome the problem of choosing initial values such that the EM algo-
rithm can more likely lead to a global maximum. In this chapter, in the context
of clustering by finite mixtures, we aim to investigate the performance of the ini-
tialising methods such as random starts, K-means and divisive methods. Then we
introduce a novel heuristic procedure to intelligently choose the starting points in

order to increase the performance of the EM algorithm in binary datasets.

47

48 CHAPTER 4. COMBINED CLUSTERING METHOD

4.1 Related Work for Starting Points

For the first time in 1978, Laird [13] suggested an approach based on a grid search
for setting the initial values. Woodward et al. [27] used an ad hoc quasi-clustering
technique to obtain starting values for the EM algorithm. Bohning [6] suggested
an initial classification of the data by maximizing the within sum of squares cri-
terion. Seidel et al. [24] used a random starts method in the EM algorithm for
finite exponential mixtures. Their research showed that starting with several ran-
dom initial values was preferable in order to ensure that the global maximum is
obtained. In 2006, Sara et al. [22] used the K-mean algorithm to initialise the EM
algorithm and the results were promising. In 2009, Bessadok et al. [5] suggested
an initiative method via variable neighborhood search to overcome the problem
of choosing starting points in the EM algorithm which often gets trapped at local
maxima. To the authors’ knowledge, the K-mean algorithm is the only clustering
technique whose centroids have been used as starting points in the EM algorithm.
Since there are various clustering methods with different performances, we briefly
review hierarchical and partitional clustering techniques followed by the random

start method in this section.

4.1.1 Clustering techniques

A number of objects of the same kind or having a set of similar patterns are called
cluster, group or class. Regardless of the formal definition of these words, they are
used in an intuitive manner. The need for categorizing similar things has been felt
since early humans, for instance, being able to recognize many individual objects
that shared some characteristics like being alive or lifeless, poisonous or edible
and so on. The classification of a two-dimensional mixture of three normal com-
ponents are shown in Figure 4.1. There are many applications of the classification
of elements which is fundamental to most branches of science such as ecology
and astronomy. It plays a significant role in zoology and biology especially as
a basis for Darwin’s theory. Since data clustering is a good technique to make

a large data set more understandable and accessible to recall information, it is

4.1. RELATED WORK FOR STARTING POINTS 49

used to organise massive data sets. By summarizing a data set through making
a small number of groups, several concise pattern descriptions of similarities and
differences are provided via group labels. Clustering is a main feature of pattern
recognition and machine learning in computer science [12] and works as a main
process in Artificial Intelligence. Many clustering methods have been proposed
through the years. They are divided to two most popular categories: Hierarchical
clustering and Partitional clustering. A brief overview of these methods has

been provided in the next sections.

4.1.2 Hierarchical clustering

Hierarchical clustering as a widely used data analysis tool generates a hierar-
chy of clusters or a cluster tree through merging or splitting methods. A cluster
tree means "showing a sequence of clustering with each clustering being a parti-
tion of the data set "[14]. Hierarchical clustering is divided into agglomerative
("Bottom-up ") methods and divisive ("top-down ") methods. These techniques
can be symbolized by a two-dimensional diagram which is called dendrogram.
Agglomerative method is a popular method to merge n individuals to groups and
algorithms that use dividing to generate groups are called divisive methods. Once
divisions are made by hierarchical methods, they are unchangeable. That is to say
when an agglomerative method joins two individuals, the individuals cannot be
separated and when a divisive method makes a split, it cannot be reversed. Figure

4.2 shows an example of such a dendrogram or cluster tree.

Agglomerative methods

Algorithms that use merging to create the cluster tree are called Agglomerative
hierarchical clustering methods. Agglomerative methods treat each object as a
singleton cluster and begin with as many clusters as objects. These objects are
successfully merged until only one cluster is obtained. In other words, in agglom-
erative approach which is also called a bottom up approach, each of the n elements

is assumed as a cluster at the first step and then they are successively merged into

50 CHAPTER 4. COMBINED CLUSTERING METHOD

[1] true mixture & : [2] compression step:
single observations e :_' prototype system

,/’F-
[3] estimation step: [4] classification step:
sufficient EM component membership

Figure 4.1: Unsupervised classification by estimating a mixture model via suffi-

cient EM on compressed data (these figures are adopted from [25]).

larger clusters until the last partition contains all n elements in a single cluster.
This fusion procedure is step by step and at each stage two clusters which are
most similar are merged. Based on the definition of this similarity between clus-
ters, several agglomerative methods have been proposed. The most widely used
agglomerative clustering methods are: Single linkage clustering, complete linkage

clustering, average linkage clustering and average group linkage.

4.1. RELATED WORK FOR STARTING POINTS 51

Agglomerative

Divisive

Figure 4.2: Example of a dendrogram or a hierarchical tree structure

Divisive methods

The divisive methods of hierarchical cluster analysis proceed in an opposite way
to agglomerative methods. The divisive methods begin with all objects in one
cluster and the clusters achieved at the previous step are gradually subdivided into
smaller clusters until there are as many clusters as objects. This process is seen in
Figure 4.2 as a dendrogram. In other words, at the beginning of such methods, the
entire data set containing [V objects belongs to a cluster and after N —1 steps, there

will be N clusters, each including a single object. There are 2V~!

— 1 possible
divisions into two sub-clusters at each stage for a cluster containing /N objects.
The divisive hierarchical clustering method’s criterion is based on the distance
between two new clusters which is defined by the chosen linkage function. For
binary data there are some monothetic divisive methods which work based on the

presence and absence of each of /V variable.

52 CHAPTER 4. COMBINED CLUSTERING METHOD

4.1.3 Partitional clustering

Partitional clustering algorithms typically decompose a dataset into a number of
disjoint clusters at once. These divisions are based on some predefined objective
functions which are optimal. The goal of partitional algorithms as an optimization
methods is to minimise certain criteria such as a squared error function. These
algorithms usually start with a random partitioning and then refine it iteratively
through clustering techniques such as K-means and model based clustering. Par-
titional clustering attempts to minimize the criterion function which emphasizes
the global or local structure of the data by the allocation of clusters to peak in
the probability density function. In many researches, it has been shown that par-
titional clustering is very well-suited to cluster large datasets because of their low
computational requirements. Hence, partitional algorithms are more commonly

used than hierarchical clustering methods in pattern recognition.

K-means algorithm

K-means is a special case of a general procedure known as the Expectation Max-
imization (EM) algorithm. This commonly used iterative method, proposed by
Forgy [11] in 1965, generates K disjoint flat (non-hierarchical) clusters from n
observations. Each cluster is associated with a centroid (center point) and each
point is assigned to the cluster with the closest centroid. The number of clus-
ters, K, must be predetermined. Algorithm 1 shows the basic simple K-means

algorithm and Figure 4.3 is an example of K-means clustering where K = 2.

Advantages and disadvantages of K-means algorithm:

The main advantage of the K-Means Cluster Analysis procedure is that it is much
faster than the Hierarchical Cluster Analysis procedure. On the other hand, the
hierarchical procedure allows much more flexibility in a cluster analysis: any of a
number of distance or similarity measures including options for binary and count
data, can be used and the number of clusters is not required to be specified in ad-

vance. Once groups are identified, a model can be built which is useful for iden-

4.1. RELATED WORK FOR STARTING POINTS 53

Algorithm 1 K-means algorithm
1: Select K initial centroid points randomly (the mean of the points in the cluster

is typically chosen as the centroid)

»

repeat
3: Create K clusters by assigning all data points to the closest centroid (The
distance function should be specified)

Recalculate the centroid of each cluster

=

5: until the centroids don’t change or relatively few points change clusters

4 T T T
* Cluster 1
3r] * Cluster2 ¥ e . 7
X Centroids L ol S
2F . Ta . ® * b
i * * »
* *a »*s “t“. -
1r Y 4 safng Wt * 1
* - * "
* '.,. * ' » ‘
» -y L) - ® *
0k e, a W ;.*“ 4
'n .‘ . *, * - *
- :; . Fae
Ar . . PR+ Q'* » . » i
- “ ..ﬁﬁ #I * -
27 P L 1
* * *
_3 - ™ * .
*
_4 1 1 1
-4 -2 0 2 4

Figure 4.3: An example of K-means clustering where K=2 (this figure is adopted
from [23]).

tifying new cases using a discriminant procedure. The saved cluster membership
information can be used to explore other relationships in subsequent analyses,
such as Crosstabs (process that summarises categorical data to create a contin-

gency table) or GLM (the generalized linear model) Univariate.

Advantages to using K-means clustering techniques are as follows:

54 CHAPTER 4. COMBINED CLUSTERING METHOD
* Its implementation is very easy;

* With a large number of variables, it is much faster than the Hierarchical

Cluster Analysis procedure;

* The clusters which are produced by K-means can be tighter than the pro-
duced clusters by hierarchical clustering, especially if the clusters are glob-

ular.

Drawbacks to using K-means:

* This algorithm does not work well with non-globular clusters;

* It can be highly dependent on the initial conditions, which may cause the

algorithm to converge to local optima;

* With a fixed number of clusters, the prediction for what K should be, is

more difficult.

4.2 New Method

Since the advantages of partitional algorithms are the disadvantages of hierarchi-
cal algorithms and vice versa, finding a combination of these algorithms is desir-
able. Hybrid clustering methods usually have a higher accuracy than other meth-
ods. For example, Hammerly and Elkan [12] presented a hybrid method which
outperformed other clustering methods, such as the K-means and the Fuzzy C-
means algorithms. These methods are linear time algorithms which make them
suitable for very large data sets. To find a better method to choose starting points
with a higher maximum likelihood, we propose a combined method in this sec-
tion. The centroids found by a combination of a partitional clustering and divisive
method are used in the novel method as the initial points of the EM algorithm.

The proposed method has 5 steps:

4.3. EXPERIMENT DESIGN 55

1. Use the K-means algorithm based on the definition of K centroids and create
G (in the first step G = K) row clusters because a partial clustering algo-
rithm divides the data set into some specified clusters at once with low time
consumption. This gives new pseudo-rows (new row containing of combined
rows) which are regarded as a single entity. G is smaller than the final number

of the required groups;

2. Apply the divisive method for each group to divide it into two new clusters. A

pseudo-row will not be separated when specifying starting points;

3. Consider the clusters resulting from the division of each group along with other
groups as G+1 row clusters. We consider all possible sets of G+1 groups and
choose the G+1 group, which has the least Akaike information criterion (AIC

as will be described in section 4.3.2), as a new pseudo row;

4. Increase GG and repeat steps 2 and 3 until the number of required clusters is

reached;

5. Set the initial points of the EM algorithm at the centroids of the clusters found
at step 4.

4.3 Experiment design

4.3.1 Data Set

To evaluate the initial points found by the K-means and the divisive method and
validate the performance of the novel method, we use a dataset from [15] which is
the presence/ absence measure of the 25 most abundant plant species (n = 25) on
17 plots (p = 17) from a grazed meadow in Steneryd Nature Reserve in Sweden.
This is a challenging binary data set, as partitioning the rows into (say) two groups
has 2"~! possible groupings. It is a substantial data set that is a representative of

a range of matrix sizes.

CHAPTER 4. COMBINED CLUSTERING METHOD

56

uopams

‘QAIOSY QInjeN PAIQURIS Ul mopedw pazel3 e woly sjo[d £ uo saroads jueld ¢ 10J sainseow douepuNqQy :['4 9[qeL

suado. wun)o [1.4,J G,

ds wniy yg

wWin)o f 1)) a1y €T
s11190u D21Dd2 [T,
pupIULALL D0t ATTE

01)0 [1915 42d" D)nUPAUD) ()T,
snupjuow SNy T 61
WNUDQIT WNIE)RT
D]1250)2d WNODUL)T
DAQN.LDINISI] 9T
DID)0DUD] 0bDIUD] T G
§1435dUWDI DINZNT T
DSONTI) [DISAWDYISI(T €]
DIDINUD LD DED L[12D G 7T
an (10181922 SNUITDL] T
DIDL2WO)D SOV 0T
SLAPIDUIDYD DIVUO LD A" 6
DS0JIID" TIWNY] "]
S0 Ud VO] "),
S1UUD AR SUDLIND D AT O
DADILS STINIUNUDY "G
SINUIY S1IS0UbY "

DISOJ0Y DLLD]ID]S"E
DSOLOUIU QUOUDUY ',
DULNO DINYSI T

—
—

cano~Foo—~ocalomnococoo

So—~ocooXoaamotto—~O

p—

wooloaTunadtnaocoo—~0onnavono
—

CR O XNO 000 MNONVANOOO
—
o
=N
on
woooSnaococoRaoococooconN—~000O
N OO ORANNVOAND O RO OSSO0

[o)}
—
on
—

—F0 OO OOVNTOA—NAOANOANONFTOOO
—

— g oonnnnaoar~r—oocococor~waw2owvo
TRl AN TN~ OO0 N N OO —O

'}
S
[S\N e\

S
—
—

Dilogoollococo—~vooco0o0oor~o0o0oooTo
Slodvofloococarocoococococowooonono
Yool or— R0 —~MnNnooooNOAN—~0OONO
n | CCocloocaacvoolfocormr2—coanaoconad
+ | fRtoloocvSrtoocaoocalovwcooccoac
n|Poolocoocomno—~comnoSrofoococococlouw
a|Qoocolcocorcoconoloorocoococococaco

e 2]
N
wlo¥dGocolaao

o
—

4!

—
—
()
—
@)
o~
Ne)

—~ | Roocloco—~ococoocococotaocWcocococo—~co

saroadg

57

4.3. EXPERIMENT DESIGN

uopams

“QATASIY AumeN PAIoOUd)S ur mopeaw pazeid v woij sjo[d £ uo saroads jued ¢z Jo 90UIsSqe/0UISA 7'+ QIqRl,

suada.L wn)o f14,J°GT

ds wniy vg

wn2)o f 1 va)Yy ¢,
§1]190u D212 [T "TE,
puDLIULALLD]OL ATTE

010 1015 4od" DInUDAUD) ()T,
snuvIuOwW SNAAYIDT GT
WNUDQLT WNIH)KYT
D)]950)1d WNWDDUILE)T
DAGNL DINISD QT
DID)022UD] 0bDIUD) G
§14382dUWDI DINZNT T T
vsonxa) f visdwunysrso el
DIDINUD LD DED L[12D G 7T
anl 10181909 SNUITD L] T
DIDLWO0)b$1)fioD (T 0T
SLLPIDUWLDYD DIVUO LD A" 6
DS0JIID TIWNY "]

swuanUd Do),
SUUUILIA S U)DLIND 4D JAT" O
DLADIL S SNINIUNUDY] "G
SINUIY S1ISOUDY F
D2150]10Y " DLLD])DIS"E
DSOLOUIU QUOUUY/ ",
DULO DINYSD " T

OO~ OO0 OO0 000000 —O
Ot O OO0 OO0 —~O0 OO —O—O
OO~ O~ OO0 — O == =0 OO
Ot O O r~Ar~a S~~~ O OO0 —O—— OO —O
O OOO S S A A A O~ OO~ O — O
A A T OO e A S S O OO OO~ — O — O
A A Ot A A S A A A A A O O OO — O — O

— e e e (O O e e e e e e O O e — O — O

N O OO A == OO — O === O OO0
VIO OO = O OO0 —O — O ——O —O
N O OO~ OO0 O —~— 0000 ———O0 OO0
O | — = O O e~ O
N | OO0 OO~ O OO OO — —
| VOO0 OO0 00— O O 00000 —0O —
NI —OO0—0 0 —0O0 — OO0 —O—— O —0 0000 —O —
N OO —0 0O —O0 0O — O ——O0 00000 —=O0O
OO0 OO0 00O OO —~—O—0O0O0O0O—=OO

saroadg

[\
—
O
—
e
—
<
—
o
—
Q!
—
—
—
]
—

58 CHAPTER 4. COMBINED CLUSTERING METHOD
4.3.2 Performance Index

We use AIC as a measure of the goodness of fitted statistical models based on
the statistical likelihood function. When we have several candidate models for a
given data set, we can rank them according to their AIC, and the model with the
minimum AIC is the best model for fitting. The value of AIC shows the amount
of lost information when we use a model to estimate the true model. The model
which loses the minimum amount of information is the best model to fit. AIC is

calculated as:

AIC = 2K — 2log(L) 4.1)

where L is the maximized likelihood of a fitted statistical model and K is the
number of parameters in the model [2]. The AIC with the second-order correction

for small sample size n with respect to K is called AICc which is calculated as:

AlICc = —2log(L) +2K(n/(n — K — 1)) 4.2)

If AIC or AICc starts to rise through increasing the number of clusters, the cluster-

ing process should be stopped, as any more groups cannot be justified statistically.

In the finite mixture context, AIC provides a valid comparison between any
two models with the same number of groups. However, the failure of regular-
ity conditions at the boundary of the parameter space makes comparison between
models with different numbers of groups more of a problem. Burnham and Ander-
son [7] has done simulations showing that if two models with different numbers
of groups fit in the interior of the parameter space, the use of AIC to compare
them is justified [7]. For the fit, to be interior in the space, we require 0 < 7, < 1
for each row-group » = 1,2, ..., R, and also that no two groups have identical pa-
rameters’ estimates; i.e. the model estimates R different and non-empty groups.
The question of deciding the number of groups using information criteria is an
ongoing research area, with ICL-BIC offering good possibilities (McLachlan and
Peel [16], chapter 6).

4.4. RESULTS AND DISCUSSION 59

4.4 Results and Discussion

4.4.1 Evaluation of Random Start as a Starting Point Strategy
for EM algorithm

The random start is a common strategy to find the best starting point for the EM
algorithm. In this strategy, the EM algorithm is executed several times with dif-
ferent random starts to obtain the best solution. In this strategy, the parameter
of Bernoulli distribution, 6 is randomly initialised and then the EM algorithm is
executed. After the execution of the EM algorithm, the optimised parameter for
the Bernoulli mixture model is obtained. This process is repeated n times and the
best optimised parameter is chosen as a final result. Since this method is based on
a random way, the EM algorithm can more likely avoid trapping in local optima
and accordingly it can perform better than other methods in some problems.

To evaluate the effect of the number of the iterations in the random start strat-
egy, we set the number of random starting points at 10. We initially work with
the model with three row clusters. We change the number of the iterations from
50 to 550 with the step of 10. Figure 4.4 shows the maximum likelihood resulted
from the EM algorithm with different number of iterations. As can be seen in this
figure, the EM algorithm converges within a few cycles for the chosen dataset.
This implies that there is no advantage in increasing the number of the cycles and
the algorithm is still getting locked into a local (not global) maximum likelihood
in a small percentage of the starts. To compute the probability of finding the max-
imum likelihood in the random start method for the binary data, we first need to
find the maximum likelihood from 50 to 270 iterations. This investigation leads
to the graph plotted in Figure 4.5 which shows the logarithm of the maximum
likelihood is -180.871. We do 20 trials with 270 iterations and record the number
of the trials whose maximum likelihoods are equal or more than -180.871. By this
way, the probability of the highest maximum likelihood is 2% for this dataset. This
implies that this probability is very low for the random start method.

In the random start method, there can be more than 10 random starting points.

If the number of the points is increased, there is a very gradual increase in the

60 CHAPTER 4. COMBINED CLUSTERING METHOD

o o o o o
S
3 8
g =
< |
©
4
= o
E < |
g -
£ i
©
€
o
< -
= - O 000 O 00 OO 00 00 00 O 00 0000 00 o 00
BT @ 7
®
£ |
£
=
©
2 o o o o o
2 % - oo o o o o o o 0 0000
-
I
«@
-
> -
«
I
~
-
> -
i o o
T T T T I
100 200 300 400 500

The number of iterations

Figure 4.4: Plot of the maximum likelihood found with three row clusters when

we increase the iterations

number of times that the global maximum is obtained (as can be seen in Figure
4.6).

For the evaluation purpose, it would be good to switch to using the binomial
distribution. If we consider a large number (e.g. 1000 or perhaps 10000) of sepa-
rate trials and record the maximum likelihood for each trial, we can then classify
the outcomes by whether they reach the global maximum ("success ") or only
reach a local but not global maximum ("failure "). This gives us an estimate of: p
= probability of reaching global maximum from a random start. For this purpose,
we examined the random start method with 10, 20, 30 and 40 random starts and
for each random starts, we executed the algorithm 1000 times. Table 4.3 shows

that for more than 30 random starts, we have the probability 0.95 of finding the

4.4. RESULTS AND DISCUSSION 61

maxlikelihood
1 I 1 !

L

|

1

o
o
o
o

-181.20 -18115 -181.10 -181.05 -18100 -180.95 -180.90

100 150 200 250

The number of iterations

Figure 4.5: Plot of the maximum likelihood found with three row clusters to find

the first maximum likelihood when we increase the iterations

global maximum. If we draw a graph of y = 1 — (1 — P)* where y is the proba-
bility of reaching the global maximum and z is the number of random starts, the
graph in Figure 4.7 is resulted. This graph shows that we may have probability
0.95 after 25 random starts.

62 CHAPTER 4. COMBINED CLUSTERING METHOD

Logarithm of the maximum likelihood

-181.15 -181.10 -181.05 -181.00 -180.95 -180.90

T T T T
50 100 150 200

Number of starting points

Figure 4.6: Plot of the maximum likelihood found with three row clusters to eval-

uate the maximum likelihood when we are increasing the number of random starts

4.4.2 Comparison of New Method with Traditional Clustering
Methods

We first utilize the new method to choose the initial points of the EM algorithm.
Table 4.4 shows the results when we have 3, 4, ... and 8 clusters. This table
demonstrates logarithm of the maximum likelihood (Max.1l), residual standard
deviation, number of parameters, AIC and AICc of the models. As can be seen
in this table, AIC decreases when the number of clusters (column ’# of C’) is
changed from 3 to 4 but it increases when the number of clusters is rising above 4.
This implies that the model fitted for 4 row clusters is the best fitted model for this

binary data. Since biologists are often interested to have two to six row groups, for

4.4. RESULTS AND DISCUSSION 63

probability of finding global max
0.6 0.8

0.4

B Upper band
B Probability of finding global max
M lower band

I I I I I I
10 15 20 25 30 35 40

Number of starting points

Figure 4.7: 95% Confidence band for p (probability of reaching global maximum

from a random start.)

64 CHAPTER 4. COMBINED CLUSTERING METHOD

of probability of 95 % # of
random starts finding global maximum Confidence interval for p runs
10 Py = 0.4670 0.4670 £ 0.0309 1000

20 Pyy = 0.9396 0.9396 £+ 0.0147 1000

30 Py = 0.9956 0.9956 £ 0.0040 1000

40 Py = 0.9999 0.9999 £ 0.0003 1000

Table 4.3: Summary of evaluation of random starts analysis and 95% confidence

interval

#of C| Max.ll Res.Dev. npar AIC AlCc

3 |-180.871 361.742 53 467.742 483.796
4 |-160.301 320.602 71 462.602 492.466
5 |-145.875 291.750 89 469.750 518.791
6 [-133.545 267.091 107 479.744 555.597
7
8

-125.333 250.665 125 500.665 608.061
-117.321 234.642 143 520.642 669.785

Table 4.4: Summary of the results of the Combined method

interpretable results, we compare our new method with /-means, Random starts
and Divisive methods when we have 3, 4, 5 and 6 clusters. Table 4.5 shows the
results for all methods when the number of clusters is 3 and 4 correspondingly. As
can be seen in this table, AIC and AICc for the model, found by the EM algorithm
when the combined method is used to select the initial points, are lower than the
other methods. This implies that this model which is found by the combined
method is better than the others. These methods can be ranked in the order of best
performance in 3 and 4 row clusters as the Combined method, Random starts, K -
means and Divisive methods. For the case with 5 clusters, the results in Table 4.5
shows that the performances of the Combined and Random starts are better than
that of the two other methods. For 6 row clusters, the combined and /X -means
method perform better than the Random Starts and Divisive methods.

Table 4.6 shows the execution time of the four methods. The combined method’s

4.5. SUMMARY 65

Method Max.ll Res.Dev.npar AIC AICc R

Random Starts|-181.089 362.178 53 468.178 484.232 3
K-means |-182.664 365.329 53 471.329487.383 3
Divisive |-196.913 393.825 53 499.825515.879 3
Combined |[-180.871 361.742 53 467.742 483.796 3

Random Starts|-161.050 322.100 71 464.100 493.963 4
K-means [-162.216 324.432 71 466.432496.296 4
Divisive |-182.642 365.283 71 507.283 537.147 4
Combined |[-160.301 320.602 71 462.602 492.466 4

Random Starts|-145.875 291.750 89 469.750 518.791 5
K-means |-146.785 293.571 89 471.571520.613 5
Divisive |-175.716 351.433 89 529.433578.4755
Combined |[-145.875 291.750 89 469.750 518.791 5

Random Starts|-133.498 266.995 107 480.995 555.502 6
K-means |-132.872 265.744 107 479.744 554.250 6
Divisive |-169.844 339.688 107 553.688 628.194 6
Combined [-132.872 265.744 107 479.744 554.250 6

Table 4.5: Comparison of combined method with the traditional methods when we
have R = 3,4,5 and 6 row clusters. The best AIC is shown in boldface.

run time is 140.83 seconds for making 4 row clusters and 440.76 seconds for 6
row clusters. These run times are longer than the other methods’ run times; How-
ever, the combined method’s AIC or AICc are better (less) than the other methods.

4.5 Summary

Mixture models are frequently used to classify data. They are likelihood based
models, and the maximum likelihood estimates of parameters are often obtained
using the expectation maximization (EM) algorithm. However, multimodality of
the likelihood surface means that poorly chosen starting points for optimisation
may lead to only a local maximum, not a global maximum. In this chapter, dif-

ferent methods of choosing starting points were evaluated and compared, mainly

66

CHAPTER 4. COMBINED CLUSTERING METHOD

Run time in seconds for

Method 4 row 6 row
clusters clusters

Random starts 23.29 39.49

K -means 2.36 4.13
Divisive/Split off| 101.15 254.69
Combined 140.83 440.76

Table 4.6: Summary of evaluation of run time for four different methods when the

number of random starts is 10 and we have 4 and 6 row clusters.

via simulated data and then we introduced a procedure which made intelligent

choices of possible starting points and fast evaluations of their usefulness.

Chapter 5

Application of PSO for Optimization
of Likelihood

In this chapter, we aim to present a novel method to overcome the problem of
choosing initial point in the EM algorithm. Particle Swarm Optimisation (PSO) is
a meta-heuristic method that has successfully been used to solve global optimisa-
tion problems. The ease of implementation, fewer operations, limited memory for
each particle and high speed of convergence are the main advantages of PSO in
comparison with other heuristic methods, such as genetic algorithms [1]. PSO has
been used for the optimisation of parameters in Gaussian mixture models [3][21],
but it has never been used for optimisation in Bernoulli mixture models up to now.
The rows of the matrix of Bernoulli random variables are regarded as particles in

the PSO method. The main goals of this paper are as follows:

* investigate the performance of the use of different most well-known cluster-
ing techniques to choose the initial points for the EM algorithm in Bernoulli

mixture models for binary datasets;

* develop a new PSO-based algorithm as a global search method combined
with the EM algorithm as a local search method in order to more likely to

cover all the potential solutions;

* develop a new fitness function for the Hybrid PSO-based algorithm along

67

68CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

with a simple encoding scheme;

* compare the performance of the new proposed method to the EM algorithm
which is initialised by different clustering methods in terms of the goodness

of fitted statistical models.

5.1 PSO as a Global Search

Particle Swarm Optimization (PSO) is a population based stochastic optimization
technique. It is a computational method that iteratively optimizes a problem by
improving candidate solutions regarding their fitnesses. The population of candi-
date solutions is called particles and we can move these particles through multi-
dimensional search space according to simple mathematical formulae over the
particle’s position and velocity. Each particle moves based on its personal best
position and the best position of the neighborhoods of those particles. Moving
the swarm toward the best solutions is expected. Suppose that, there is a popula-
tion of m particles in PSO. The following information is maintained through each

particle:
* z;: The current position of the particle;
* V;: The current velocity of the particle.

The position of ith particle is represented as the vector X;(t) = (x;1(t), s (t), ..., Tin(t))
in an n-dimensional search space at time ¢. The position of the particle is changed
by its own experience (memory influence and particle) and that of its neighbors. A
particle’s position X;(¢) is updated at each iteration of PSO by adding a velocity
Vi(t).

Xi(t+1)=X;(t)+ Vi(t+ 1) (5.1

The velocity is changed according to three components: Current motion influence,

particle memory influence, and swarm influence:

V;(t + 1) = UJV;(t) + 01T1 (Xpbesti - Xz<t>> + O2r2(Xleader - Xl(t)) (52)

5.2. NEIGHBORHOOD TOPOLOGIES 69

where w denotes the inertia weight to control the impact of the previous veloc-
ity; Cy and C) are the self and swarm confidence learning factors which control
how far a particle will go in a single iteration. In other words, they represent the
attraction of a particle toward its best previous position and the best particle of
the population; r; and 7, are uniform random variables between 0 and 1; X e,
denotes the personal best position of th particle so far and X4 represents the
position of a particle to guide and lead other particles toward better regions of the

search space. The basic PSO algorithm can be represented as the following:

For each particle P on population do
Initialize the position and velocity of particle
Repeat
For each particle do
Calculate fitness value
Update best particle if fitness value is better than best fitness value pbest,
and set current position as pbest
For each particle do
Find local best particle from neighborhood
Compute particle velocity (5.2)
Update particle position (5.1)

Until stopping criterion

5.2 Neighborhood Topologies

Topology is an important characteristic of PSO which shows how particles are
connected to each other as an information sharing mechanism [20]. The social
structure among a swarm’s particles is defined through a topology. The topol-
ogy determines the leader of each particle according to the type of neighborhood
graph. Several typical neighborhood topologies have been proposed in the litera-

ture as follows:

70CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

* The von Neumann topology (VNT): In this topology, each particle is sur-
rounded with four neighbors within its neighborhood and exchanges the
information with them [20]. These particles are usually situated in four dif-
ferent directions of its position. Figure 5.1(a) shows an instance of this kind

of topology in 2-dimensional search space.

* Tree-based graph(TBG): This topology is a hierarchical topology which
has a root particle at the top level of the tree and all particles in the second
level are joined to the root. You can see an example of this hierarchical
topology in Figure 5.1(b). The root of each particle plays the role of par-
ent for the child particles in the second level and parents are the leader of
each particle in the tree. Whenever the solution found by each child particle
is better than the best particle bound through its parent, the personal infor-
mation is exchanged between the child and parent particles. In this case,

leader = pbest,qrens 1n equation (5.2).

 Star graph(SG): This topology has a star shape, as shown in Figure 5.1(c).
In this case, one particle in the center which is named the focal particle,
is just connected to all other particles [20]. In this topology particles are
separate from each other and they communicate through the focal particle.
Sometimes this topology is called the wheel topology. In this topology,
leader = focal. The focal particle is chose randomly before starting PSO

iterations.

* Ring topology: Each particle has just two immediate neighbors as shown in
Figure 5.1(d) in this case. This topology is based on the local best topology
in which £ = 2. Hence, each particle has a local best particle among two
neighbor particles. In this topology, each particle is influenced through a
leader in its neighborhood and its own past experience(pbest). The leader is
nominated the local best(lbest) particle. Low speed of information sharing
among particles and high exploration ability are the main features of the

ring topology.

5.2. NEIGHBORHOOD TOPOLOGIES 71

* Fully connected graph (FCG): In this case, the opposite of the empty
topology, each particle is fully connected to the other particles and is in-
fluenced by the best particle of the entire swarm (gbest) as well as its own
past experience(pbest). In this case, leader = gbest in equation (5.2) and

an example of this topology is shown in Figure 5.1(e).

In some papers (e.g.,[17]), it has been represented that there is a strong rela-
tion between the kind of topology which is chosen for the PSO algorithm and its
robustness to premature convergence to optimize some benchmark fitness func-
tion. In this section the fully connected topology is used for the PSO algorithm
because of its simplicity and speed of convergence and also it is more commonly
used topology.

cees
SO OE7 NP

(©) (d) (e)
Figure 5.1: Some important topologies used in PSO:(a) The von Neumann topol-
ogy (VNT), (b) Tree-based graph(TBG), (c) Star graph(SG), (d) Ring topol-
ogy(RT) and (e) Fully connected graph (FCG)

72CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

5.3 PSO for Optimisation of Parameters of Bernoulli
Mixture Model

Since the parameters of the Bernoulli mixture model (BMM) are in Euclidean
space, we expect that PSO as a global optimisation method in continuous search
spaces would be a good candidate to optimise these parameters. In this section,
we first introduce the fitness function used in our PSO algorithm and then describe

the particle encoding representing the parameters of BMM.

5.3.1 Fitness Function for PSO

We first merge two steps of the EM algorithm in order to develop a proper fitness
function to be optimised by PSO. In order to get a proper fitness function, we
first substitute the posterior probability Z;. (see Equation 2.10) in the equation of
likelihood under complete knowledge (see Equation 2.6) as follows:

n R

(6, 7ly, 2) ZZZWZ[ywlog) (5.3)

i=1 r=1

+(1 — y;;) log(1 — Hrj)] + Z Z Zir log T,
i=1 r=1

where Z;, is given by Equation 2.10. Since the parameter values which optimise
the likelihood under complete knowledge (Equation 2.6) are the same as the pa-
rameters which optimise the log likelihood in Equation 2.5, the maximum log
likelihood is computed through substitution of these parameters in Equation 2.5.
As described earlier, the parameter 7 in the complete likelihood should satisfy the
constraint ZR_l - = 1. Hence, it is necessary to use a Lagrange multiplier [4] to
satisfy this constraint. So, let Q = .+ A(>_7 1 T — 1). The partial derivatives of
() with respect to 7, are found and equated to zero as follows:

0Q dl,
o 87@ A= Z zw— +X=0. (5.4)

5.3. PSO FOR OPTIMISATION OF PARAMETERS OF BERNOULLI MIXTURE MODELT73

Based on the constraint, the following equation is obtained:

TL ir ; ir 1 -
1:ZWT:Z(——ZZ=;Z):—Z%%\:"Z :—ZA% :T”. (5.5)

T

Therefore, the function () which should be optimised by PSO is as follows,

R
Q=1l.—nd m—1) (5.6)
r=1

5.3.2 Particle Encoding

Since PSO needs a particle encoding to represent the parameters which should
be optimized, we develop a very simple encoding to represent all required pa-
rameters in the likelihood for Bernoulli mixture models. The parameters are
0 = (011, ..., 01,091, ... 00,0g1, ..0R,) and T = (my,...,mr) With 0 < §,; < 1
and 0 < 7. < 1 wherer = 1,..., Rand j = 1,...,p. We should have a vector
of parameters like ¢ = (011, ..., 01p, 001, ..., 02p, ..., OR1, ...0Ry, ™1, ..., mr) Which is

represented by each particle.

(911 (91p 921 92p 931 HRp I TR

Figure 5.2: Particle encoding for representing the parameters of Bernoulli mixture

models

5.3.3 PSO with EM algorithm

Since the EM algorithm is a well-known approach as a local search, finding a
hybrid method which can lead to a global search is worthwhile. Hence, PSO as
a global search is a good candidate method to mix with the EM algorithm. The
Hybrid PSO and EM algorithm can be represented as follows:

7TACHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

Algorithm 2 Hybrid PSO algorithm as a heuristic method to overcome the draw-

backs of the EM algorithm
1: Initialize the position and velocity of particle

2: repeat

3: for all particle P in population do

4: Calculate fitness value of P

5: Update its personal best if fitness value is better than best fitness

value pbest, and set current position as pbest

6: end for
7: for all particle P in population do
8: Find local best particle from neighbourhood
9: Compute particle velocity (equation (5.2))
10: Update particle position (equation (5.1))
11: Initialize EM algorithm with the position of current particle
12: Improve the position of current particle through applying EM algo-
rithm
13: end for

14: until stopping criterion

5.4. EXPERIMENT DESIGN 75
5.4 Experiment Design

To assess the starting points for the EM algorithm that are found by the Random
starts, K -means and Split off method, and compare the performance the proposed
method, we consider 3 challenging datasets. The first one is from [15] which is
the presence/absence measure of the 25 most abundant plant species (n = 25) on
17 plots (p = 17) from a grazed meadow in Steneryd Nature Reserve in Sweden.
The second data come from the R package “bipartite”which can be downloaded
from [10]. It is a plant-pollinator network from Memmott (1999). The rows are
insect species (n = 79) and the columns are plant species (p = 25). A one is
recorded if that insect species was recorded pollinating the flowers of that plant
species. It started as a count data matrix (i.e. the number of times that type of
insect was seen pollinating that type of flower), but this is the binary version. The
third one is from the book [19] which is nine rodent species (p = 9) in 28 urban
canyons (n = 28) in Southern California. These are challenging and substantial

binary datasets which are representative of a range of matrix sizes.

5.5 Results and Discussion

We first applied Random starts, K -means, Split off and Hybrid PSO in dataset
1, 2 and 3. Since these methods are indeterministic, we run these algorithms 30
times for each dataset when we have three to six row clusters and then calculate
95% confidence intervals for the maximum likelihood, AIC and AICc for each
dataset. Biologists are often interested to have three to six row groups. Hence,
we compare the Hybrid PSO with K-means, random starts and divisive methods
when we have three to six clusters. Tables 5.1, 5.2 and 5.3 demonstrate the loga-
rithm of the maximum likelihood, P-value based on student’s t-test to compare the
maximum log likelihood resulting from the proposed method with other methods,
the number of parameters in the Bernouli mixture models, AIC', AIC'c and the
number of clusters (column R) for datasets 1, 2 and 3. We arranged a student’s

t-test to compare the performance of the proposed method with other methods. As

76CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

Method Max.ll P-value npar AlIC AlCc R
Random starts | -182.20 £ 0.00 2.24E-63 53 470.41 £0.00 48646 +0.00 3
K-means -182.66 £ 0.00 1.25E-67 53 471.324+0.00 48738 £0.00 3
Split off -193.14 £ 10.83 0.03 53 49228 £43.33 50834 +£4333 3
Hybrid PSO | -181.06 £ 0.00 - 53 468.12+0.01 484.18+0.01 3
Random starts | -160.65 +0.07 3.1E-10 71 46331 +£0.29 493.17+029 4
K -means -162.21 £ 0.00 - 71 46643 £0.00 49629 +£0.00 4
Split off -178.94 £10.14 0.0011 71 499.89 £40.56 529.75 £40.57 4
Hybrid PSO | -160.30 £ 0.00 - 71 462.60 +£ 0.00 49246 +£0.00 4
Random starts | -146.17 +£0.10 7.1E-06 89 47034 £042 51938+042 5
K -means -14590 £ 0.00 1.35E-06 89 469.81 £0.03 518.85+0.03 5
Split off -167.96 £9.26 6.27E-05 89 51393 +37.06 56297+37.06 5
Hybrid PSO | -145.87 +0.00 - 80 469.75+0.00 518.79+0.00 5
Random starts | -133.49 4+ 0.27 0.90 107 480.09 +£1.09 55549 +1.09 6
K -means -133.02 £ 0.11 0.91 107 480.04 £046 55455+046 6
Split off -158.98 £+ 8.56 0.19 107 53196 +£34.25 606.46+34.25 6
Hybrid PSO | -130.93 +0.00 - 107 472.00 £ 0.00 544.87+0.00 6

Table 5.1: Comparison of Hybrid PSO method with the traditional methods when

we have three to six row clusters in dataset 1.

can be seen in Table 5.1 and 5.5, the maximum likelihood (ML), AIC and AIC¢
for the model with three, four and five row clusters, which are found by the Hybrid
PSO method, are statistically better than those values found by the EM algorithm
utilising other methods for initialising starting points. For the model with six row
clusters, our experiments show that the model found by our proposed method is

statistically equivalent with the models found by other methods for dataset one.

The results for dataset 2 can be seen in Table 5.2 and also 5.5. In this dataset,
the comparison of ML, AIC and AICc¢ for the models with three, four and five
row clusters found by the different methods show that the performance of hybrid
method is better than the old methods. Although, for six row clusters, the perfor-
mance of the Hybrid PSO method is better than Split off method, its performance

is equivalent with Random starts and /K -means.

5.5. RESULTS AND DISCUSSION

o
F -
w0 —=— Random Starts
K-means
—8— Splitt Off
—&— Hybrid PSO
(&) o
< 3
o
o -
<

Number of Groups (Row-Clusters)

Figure 5.3: Comparison of AIC for different methods in dataset 1.

77

78CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

Method Max.ll P-value npar AlIC AlCc R
Random starts | -578.67 +2.26 3.16E-13 77 1311.35+9.07 1317.85£9.07 3
K-means -58242 +0.10 5.12E-50 77 1318.84 £59.94 132534 +59.94 3
Split off -586.08 +£ 0.00 1.1E-56 77 1326.15+0.00 1332.65+0.00 3
Hybrid PSO | -564.21 + 0.10 - 77 128242 £ 042 1288.92+042 3
Random starts | -564.02 + 0.45 6E-09 103 1282.04 + 1.81 1288.54 £ 1.81 4
K-means -545.84 + 3.05 0.9739 103 1279.67 £ 12.21 1309.35 £ 1221 4
Split off -572.86 +£0.00 7.35E-13 103 1351.724+0.00 1363.40 £0.00 4
Hybrid PSO | -545.75 +4.39 - 103 1245.50 +17.57 1309.18 £17.57 4
Random starts | -564.28 +£0.21 4.55E-13 129 1386.56 4+ 0.85 1289.06 £ 0.85 5
K-means -528.56 +4.03 0.3818 129 1315.12 £ 16.14 133359+ 16.14 5
Split off -557.15+0.00 5.3E-11 129 137230+ 0.00 1390.77 +£0.00 5
Hybrid PSO | -525.21 + 6.20 - 129 1308.42 + 24.82 1326.89 +24.82 5
Random starts | -505.77 £ 0.12 0.9462 155 1321.54+£0.49 128930 049 6
K-means -505.77 £2.80 0.9482 155 1321.53 £11.18 134848 +£11.18 6
Split off -542.40 + 0.00 6.59E-08 155 1394.81 £0.00 1421.75+0.00 6
Hybrid PSO | -505.42 £10.09 - 155 1320.84 +38.40 134749 +£44.18 6

Table 5.2: Comparison of Hybrid PSO method with the traditional methods when

we have three to six row clusters in dataset 2.

5.5. RESULTS AND DISCUSSION 79

§ _| |- Random Starts
— K-means
—&— Splitt Off
—&— Hybrid PSO
o
O &
=< —
o
©n _]
N

Number of Groups (Row-Clusters)

Figure 5.4: Comparison of AIC for different methods in dataset 2.

Table 5.3 and 5.5 show the results for dataset 3. In this dataset, for three row
clusters, the performance of the Hybrid method is better than Random starts and
Split off methods, however it is equivalent to the /-means method. The model
found by Hybrid PSO in dataset 3 with four row clusters, has a better ML, AIC
and AIC'c than K-means and Split off methods and this model is approximately
equivalent to Random starts. The performance of Random starts and K'-means
in dataset 3 with five and six row clusters, are the same as proposed method, but

proposed method works better than Split off method.

80CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

Method Max.ll P-value npar AIC AlCe R
Random starts | -87.8420 & 0.00 - 29 233.6840 £ 0.00 242.1000 £ 0.00 3
K-means -85.0119 £ 0.08 0.9983 29 228.0230 £0.35 2364390+ 035 3
Split off -87.4620 £ 0.00 - 29 2329230 +£0.00 241.3400+0.00 3
Hybrid PSO | -84.9210 + 0.00 - 29 227.8410 £ 0.00 236.2570 £0.00 3
Random starts | -78.5822 £ 0.19 0.7039 39 2351637 +£4.81 250.7087 +4.81 4
K -means -79.5077 £0.52 0.0010 39 237.0149 £2.10 252.5599 £2.10 4
Split off -82.9460 + 0.00 - 39 243.8930 £0.00 2259.4380+0.00 4
Hybrid PSO | -78.5450 £ 0.00 - 39 235.0890 + 0.00 250.6340 £ 0.00 4
Random starts | -74.9245 £ 0.06 0.3981 49 247.8491 £0.24 2732227+0.02 5
K-means -74.9465 £ 1.17 0.4084 49 247.8933 +£4.71 2732663 +£4.71 5
Split off -79.0220 £ 0.00 0.012 49 256.0440 £0.00 281.4170£0.00 5
Hybrid PSO | -72.9772 £+ 4.45 - 49 2439555 +1.76 269.3285+1.76 5
Random starts | -71.2060 £4.77 0.9185 59 2604122 +1.40 298.7371+0.07 6
K -means -71.3434 £0.01 0.1231 59 260.6861 £ 0.06 299.0111 £0.06 6
Split off -74.7390 £ 0.00 1.21E-28 59 267.4790 +£0.00 305.8030 +0.00 6
Hybrid PSO | -71.4571 £ 0.14 - 59 260.2467 +2.01 298.1400 +8.02 6

Table 5.3: Comparison of Hybrid PSO method with the traditional methods when

we have three to six row clusters in dataset 3.

5.5. RESULTS AND DISCUSSION

o
-
« —=— Random Starts
K-means
—8— Splitt Off
—8— Hybrid PSO
3 4
(_) A
<
o
a -
l

Number of Groups (Row-Clusters)

Figure 5.5: Comparison of AIC for different methods in dataset 3.

81

82CHAPTER 5. APPLICATION OF PSO FOR OPTIMIZATION OF LIKELIHOOD

5.6 Summary

This chapter presented a new Hybrid PSO algorithm with a new fitness function
and a new encoding scheme for Bernoulli mixture models which makes the EM
algorithm independent of the initial points. Different methods (Random starts, K-
means, Split off and Hybrid PSO methods) for choosing the best starting points for
the EM algorithm were evaluated and a new heuristic algorithm which combines
PSO and the EM algorithm was introduced. Since the EM algorithm is applied as
a local search and its result is highly dependent on initial points, a Hybrid PSO
approach could improve the EM algorithm to be independent of initial points.
The results showed that in most cases, the performance of the Hybrid PSO is
statistically better than the other methods and in a few cases, it is equivalent to the
other methods. Our result showed that the proposed method performs better than
other methods in 23 cases out of 36 and in the remaining cases as well as other
methods. Since PSO has been used as a clustering method in literature, as a future
work, the performance of using PSO as a clustering method can be investigated to

choose the initialization points in EM algorithm.

Chapter 6
Conclusions

The main goal of this thesis was to improve the performance of the EM algorithm
as an optimisation method in terms of the Bernoulli mixture models. In the first
part of this research, we strived to reduce the sensitivity of the EM algorithm
to the initialisation points through clustering techniques. In the second part, we
combined the PSO algorithm as a global search method in order to be more likely

to avoid the EM algorithm trapping in a local optimum.

In the first part, we evaluated different methods (random starts, /K -means,
divisive and combined methods) for choosing the best starting points for the EM
algorithm and we developed an innovative way which combines A -means and
divisive methods. The results showed that the random starts method has the lower
AIC and AICc than the K-means and divisive methods but its run time is more
than the K -means and less than the other methods. The divisive methods take a
long time to run in comparison with the random starts and /{-means methods and
also their AIC and AICc¢ are more than the other methods’ AIC and AICc. So, the
divisive methods are not a good choice for starting points. The combined method
had the best AIC and AICc in comparison with the other methods, although its
execution time was longer than the other methods. Our experiments showed that
this method gives a substantial advantage over the random starts methods used in
many optimisations over a multimodal likelihood surface in high dimensions. On

the grounds that the new proposed method has the best result from a statistical

83

84 CHAPTER 6. CONCLUSIONS

point of view, a simulation study would now be desirable for further evaluation of
these starting point methods on more data sets.

In the second part, we presented a new hybrid PSO algorithm with a new fit-
ness function and a new encoding scheme for the optimisation of parameters of
Bernoulli mixture models which makes the EM algorithm independent of the ini-
tial points. We compared the new hybrid method with the EM algorithm methods
which were initialised by random starts, /-means, split off and divisive methods.
The results showed that in most cases, the performance of the hybrid PSO algo-
rithm is statistically better than, and in a few cases, it is equivalent to the other
methods. Our results also showed that the proposed method performs better than
other methods in 23 cases out of 36 and in the remaining cases, it is equivalent to
the other methods. Since PSO has been used as a clustering method in the litera-
ture, as future work, the performance of using PSO as a clustering method can be

investigated to choose the initialization points in the EM algorithm.

Appendix A

Source Code of Algorithms in R

Language

Listing A.1: All R Codes developed in this project
#The following R codes were written by Pledger S. & Frouzesh F.

Functions for binary data.

Fr

LOGIT FUNCTION

S

Function to take logit of a vector. If a value in the vector is

S

really close to 0 or 1, set logit to some max or min.

logit <— function(pvec)
{
Replace values if too near 0 or 1I:
pvec <— apply(cbind (pvec,rep(0.00001,length(pvec))),1 ,max)
pvec <— apply(cbind (pvec,rep(0.99999 ,length(pvec))),l ,min)
Output vector:
log (pvec/(1—pvec))
}

F*

EXPIT FUNCTION
Inverse of logit function, acts on a vector.

expit <— function(lvec)

85

86 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

1/(1+exp(—1lvec))

——— — MODEL FITTING FUNCTIONS

——— rRIcCIB
Null model, same Bernoulli probability for each cell in the matrix.

rR1cC1B.fn <— function ()
{
Estimation:
theta <— sum(y.mat)/n/p
max. 1l <— sum(y.mat)=xlog(theta) + (nxp — sum(y.mat)):xlog(l—theta)
Save results:
res.dev <— —2xmax. 11
npar <— 1
aic <— res.dev + 2xnpar
aicc <— aic + (2#(npar+1)=(npar+2))/(n%p — npar — 2)
outl <— round(c(n,p,max.1l ,res.dev,npar,aic,aicc),3)
names(outl) <— ¢("n","p","Max.11","Res.Dev","npar","AIC" ,"AICc")
list ("info"=outl ,"theta"=round(theta ,3))

}

—— rRcepB
Model with rows clustered , all columns different.
Version 1: random starts.

rRepB2.fn <— function (RG=2,iterations=50,nstarts=30)
{

Estimation using various random starts:

for (thisstart in l:nstarts)
{
pi.v <— rep(1/RG,RG)
pp.m <— matrix(pi.v,n,RG,byrow=T) # Posterior probs
theta.m <— matrix (
runif (RGxp, theta0%0.5,0.5+0.5«theta0) ,RG,p)
Run the EM cycle:
for (iter in l:iterations)
{
E—step — Update posterior probabilities:
for (i in 1:n)

{

Do numerators for row i:

num. vect <— pi.v

for (rg in

1:RG) for (j in 1l:p)

num. vect[rg] <— num.vect[rg](

y . mat

[i,j]=theta.m[rg,j] +

(I1—y.mat[i,j])=(1—theta.m[rg,j]))
Divide by denominator and put into y.mat:

pp.-m[i,] <— num.vect/sum(num. vect)

pi.v

1
<— apply

(pp.m,2 ,mean)

M-step — Maximise log Lc to update theta estimates:

theta .num <— t(pp.m) %+% y.mat

Rxp matrix of sum(over i)(pplir]=x[ij])
theta .denom <— nxmatrix(pi.v,RG,p)

theta .m <—

}

Calculate

logl <—
for (i
{
term
for

0
in 1:n)

<— pi.v

theta .num/theta .denom

the full log likelihood:

(rg in 1:RG)
term[rg] <— term[rg]*prod(y.mat[i,]=theta.m[rg,] +

(1—y.mat[i,])*(1—theta.m[rg,]))

logl <— logl + log(sum(term))

}

this . 11

<— logl

print(c(thisstart ,this.11))

If first start,

if (thisstart==1)
{
best. 11 <—
best.theta <—
best. pi <—
best.pp <—
}

Otherwise ,

save this as best:

this .11
theta.m
pi.v
pp.m

replace if better:

if ((thisstart >1)&(this.1l>best.11))

{

best.
best.
best.

best
}

11 <—
theta <—
pi <—
.pp <—

this . 11
theta.m
pi.v
pp.m

87

88 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

Find cluster grouping:
clus <— vector("list" ,RG)
for (ii in 1:RG) clus[[ii]] <—
(l:n)[best.pp[,ii]==apply(best.pp,1 ,max)]
Save results:
res.dev <— —2=zbest. 11
npar <— RGsp + (RG—-1)
aic <— res.dev + 2xnpar
aicc <— aic + (2#(npar+1)=(npar+2))/(n%p — npar — 2)
outl <— round(c(n,p,best.1l ,res.dev,npar,aic,aicc ,RG),3)
names(outl) <— ¢("n","p","Max.11","Res.Dev.","npar","AIC","AICc","R")
list ("info "=outl ,
"pi"=round(best.pi,3),
"theta"=round(best.theta ,3),
"post.probs"=round(best.pp,3),
"Row_clusters "=clus)

Single chosen start at ppr.start:

rRcpB2.fnl <— function (RG=2,iterations=50)
{
Estimation using given start:
pp.m <— ppr.start
pi.v <— apply(pp.m,2 ,mean)
theta .num <— t(pp.m) %% y.mat
theta.denom <— n#matrix(pi.v,RG,p)
theta.m <— theta.num/theta.denom
Run the EM cycle:
for (iter in l:iterations)
{
E—step — Update posterior probabilities:
for (i in 1:n)
{
Do numerators for row i:
num. vect <— pi.v
for (rg in 1:RG) for (j in 1:p)
num. vect[rg] <— num.vect[rg]=(
y.mat[i,j]=theta.m[rg,j] +
(I—y.mat[i,j])*(1—theta.m[rg,j]))
Divide by denominator and put into y.mat:
pp-m[i,] <— num.vect/sum(num. vect)
}
pi.v <— apply(pp.m,2 ,mean)
M-step — Maximise log Lc to update theta estimates:

theta .num <— t(pp.m) %+% y.mat

Rxp matrix of sum(over i)(pplir]sx[ij])
theta.denom <— nzmatrix(pi.v,RG,p)
theta.m <— theta.num/theta.denom

}
Calculate the full log likelihood:
logl <— 0

for (i in 1:n)
{
term <— pi1.v
for (rg in 1:RG)
term[rg] <— term[rg]=xprod(y.mat[i,]=theta.m[rg,] +
(1—y.mat[i,])=(1—theta.m[rg,]))
logl <— logl + log(sum(term))
}
this. Il <— logl
Find cluster grouping:
clus <— vector("list" ,RG)
for (ii in 1:RG) clus[[1ii]] <—
(L:n)[pp.m[,ii]==apply(pp.m,1,max)]
Save results:
res.dev <— —2sxthis .11
npar <— RG#p + (RG—1)
aic <— res.dev + 2s#npar
aicc <— aic + (2=(npar+l)s(npar+2))/(n%p — npar — 2)
outl <— round(c(n,p, this.ll,res.dev,npar,aic,aicc ,RG),3)
names(outl) <— ¢("n","p","Max. 11" ,"Res.Dev.","npar","AIC" ,"AICc","R")
list ("info "=outl ,
"pi"=round(pi.v,3),
"theta"=round(theta .m,3),
"post.probs"=round(pp.m,3),

"Row_clusters "=clus)

Version with a start from kmeans clustering:

rRepB2km. fnl <— function (RG=3,iterations =50)
{
Use kmeans clustering to find a starting allocation:
temp <— kmeans(y.mat,RG, nstart=10)$cluster
pp.m <— matrix (0,n,RG)
for (rg in 1:RG) for (i in 1:n)
if (temp[i]==rg) pp.m[i,rg] <— 1
Find starting parameter estimates (as in M step):
pi.v <— apply (pp.m,2 ,mean)
theta.num <— t(pp.m) %+% y.mat
theta .denom <— nsmatrix(pi.v,RG,p)

90 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

theta.m <— theta.num/theta .denom
Run the EM cycle:
for (iter in 1l:iterations)
{
E—step — Update posterior probabilities:
for (i in 1:n)
{
Do numerators for row i:
num. vect <— pi.v
for (rg in 1:RG) for (j in 1:p)
num. vect[rg] <— num.vect[rg]=(
y.mat[i,j]=theta.m[rg,j] +
(1—y.mat[i,j])*(1—theta.m[rg,j]))
Divide by denominator and put into y.mat:
pp-m[i,] <— num.vect/sum(num. vect)
}
pi.v <— apply(pp.m,2 ,mean)
M-step — Maximise log Lc to update theta estimates:
theta .num <— t(pp.m) %% y.mat
Rxp matrix of sum(over i)(pplir]=x[ij])
theta.denom <— nsmatrix(pi.v,RG,p)
theta.m <— theta.num/theta.denom
}
Calculate the full log likelihood:
logl <— 0
for (i in 1:n)
{
term <— pi.v
for (rg in 1:RG)
term[rg] <— term[rg]=prod(y.mat[i,]=theta.m[rg,] +
(I1—y.mat[i,])*(l—theta.m[rg,]))
logl <— logl + log(sum(term))
}
this .1l <— logl
Find cluster grouping:
clus <— vector("list" ,RG)
for (ii in 1:RG) clus[[ii]] <—
(L:n)[pp.m[, ii]==apply (pp.m,1 ,max)]
Save results:
res.dev <— —2sthis. 11
npar <— RGzp + (RG—-1)
aic <— res.dev + 2=xnpar
aicc <— aic + (2#(npar+1)=(npar+2))/(n%p — npar — 2)
outl <— round(c(n,p, this.l1l ,res.dev,npar,aic,aicc ,RG),3)
names(outl) <— c¢("n","p","Max. 11" ,"Res.Dev." ,"npar" ,"AIC" ,"AICc" ,"R")
list ("info"=outl ,
"pi"=round(pi.v,3),

91

"theta"=round(theta.m,3),
"post.probs"=round(pp.m,3),
"Row_clusters "=clus)

sk e sfe sk sfe sk sk st sk st sk st sk sk sl sk sk sfe sk sk st sk st sk st sl sk ik sk sk sfe sk sk st sk st sk st sl sk e sk sk ske st sk st sk st sk st sl sk e sk sk ske st sk st sk st ok s ol sk ke sk sk sk sk sk shesk sk sk ksl sk ke sk sk ok

runB2.R

Run the Steneryd data set.

B = binary data

Run models using functions from funB . txt
Need to have defined

y.mat, the input matrix of binary data.

Read in the Liphook Forest toadstool data:

source ("readdata .R")

y.mat <— stenerydB .mat # 25 by 17
—— Setting up

n <— nrow(y.mat)

p <— ncol(y.mat)

thetaO <— sum(y.mat)/n/p # Overall proportion of 1’s.

——— Read in the Functions

source ("funB2.R")

#

Fit the Basic Models
#

#

Null model, (rRI,cCl)

92 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

rR1cC1B.out <— rR1cCIB. fn () # Stores rRIcCIB. out

print (rR1cC1B. out)

H

Saturated model, (rn,cp)

rncpB . out <— ¢(n=n,p=p,Max.11=0,Res.Dev=0,npar=nxp, AIC=2%n=p,
AICc=NA)

print (rncpB . out)

Model rR.cp Rows clustered, p column groups

Default, two row groups, 10 random starts.

Two row groups, random starts .
#

rR2cpB . out <— rRepB2.fn(nstart=30)

print (rR2cpB . out)

Three row groups
#

Method 1: random starts .

elapsed.vect <— proc.time ()[3]

rR3cpB.out <— rRepB2.fn(RG=3) # Default is 10 random starts

elapsed.vect <— c(elapsed.vect,proc.time()[3])

print (diff (elapsed.vect))

print (rR3cpB. out)

93

Method 2: single start from k—means clustering:
#

rR3cpBkm. out <— rRepB2km. fnl (RG=3)
print (rR3cpBkm. out)

Method 3: Start from two—group output, split off one row
#

For each row in turn, provided it is not the sole member

of its cluster, start a new cluster with this row.

pp.temp <— rR2cpB.out$post.probs

for (bb in 1:n)
{
ppr.start <— cbind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,0,1)
temp.out <— rRcpB2.fnl(RG=3)
if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
}

rR2cpBsplit.out <— best.out
print (rR2cpBsplit.out)

Evaluation of random starts when the number of iteration is increasing

maxlikelihood<—rep (0,50)
aiter<—rep (0,50)

iter=50
for(i in 1:50)
{

rR3cpB . out<—rRcpB2. fn (RG=3,iterations=iter ,nstarts=10)
maxlikelihood [i]<—rR3cpB.out$info [3]
aiter[i]=iter
iter<—iter+10
}

plot(aiter ,maxlikelihood)

94 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

Finding the most maxlikelihood
max(maxlikelihood)
#—180.871

Finding the probability of the highest maxlikelihood in 20 trial
Number<—0
for(i in 0:20)
{ rR3cpB . out<—rRcpB2. fn (RG=3,iterations =220, nstarts =10)
maxlikelihood<—rR3cpB . out$info [3]
if (maxlikelihood>= —180.871)
{
Number=Number+1
}
}
print (Number)
3
Hence, the probability of the highest maxlikelihood is 3/20 in 20 trial or
according to the Geometric distributon p=1/x=1/220 such that x= no. of the

trials to the first succes.

Evaluation of random starts when the number of random starts is increasing

maxlikelihood<—rep (0,20)

aiter<—rep (0,20)

number=10

for(i in 1:20)

{
rR3cpB . out<—rRcpB2. fn (RG=3, nstarts=number)
maxlikelihood [i]<—rR3cpB.out$info [3]
aiter[i]=iter
number<—number+10

}

plot (aiter , maxlikelihood , xlab="nstart")

e o sl s s oo ol o e oo ol s oo ol s s ol s o s e ol sl s ool s s s okl ke o oo ol s s sk okl ks sk sk R sk sk sk ok Rk sk sk
#Evaluation of random starts when the number of random starts are increasing and

#run it 1000 times each time and finding a probability of reaching global maximum
maxlikelihood<—0

aiter<—rep (0,20)

Ys<—rep (0,20)

number=10

pl=0

#load("RandomStartOutput. txt")

#mm = mm + 1

for(i in mm:20)
{
max = —1000
c<— 0
for(d in 1:1000)
{
rR3cpB . out<—rRcpB2. fn (RG=3, nstarts=number)
maxlikelihood<—rR3cpB.out$info [3]

if (max<maxlikelihood)

max=maxlikelihood
c=0

}

if (max==maxlikelihood)

{

c=c+1

}
}
aiter [i]=number
pl=¢/1000.0
Y=1—(1—pl)~number
Ys[i]=Y
mm = i

save(mm, aiter , Ys, file="RandomStartOutput.txt")

number=number+10

Ploting the confidence band for probability of finding global max.
plot .new ()

load ("RandomStartOutput. txt")

success . fn<—function (x)

{

success . fnc—1—(1—-0.15)"x

I made the color of curve white.
curve(success.fn, 10, 40, col="white",xlab="No. starts",
ylab="Probability _of_finding_global_max")

95

96 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

Probability of finding global max
points (aiter [1:4],Ys[1:4],col="red")
lines (aiter[1:4],Ys[1:4],col="red")
abline (v=30, h=0.95)

#To find the confidence band
YsU <— Ys + 1.96 % sqrt(Ys = (1 — Ys) / 1000)

YsD <— Ys — 1.96 = sqrt(Ys = (1 — Ys) / 1000)
Make upper bound

points (aiter [1:4],YsU[1:4],col="green")

lines (aiter[1:4],YsU[1:4],col="green")

Make lower band
points (aiter [1:4],YsD[1:4], col="blue")
lines (aiter[1:4],YsD[1:4],col="blue")

legend (x=10,y=0.4, c("Upper_band", "Probability _of_finding _global_max",
"lower_band"), fill=c("green", "red","blue"))

EE R EESESS
Combined method: k—mean and divisive methods

y.mat <— yy.mat

krg <— 2

erg <— 3

n <— nrow(y.mat)

rR3cpBkm. out <— rRcpB2km. fnl (RG=krg)

Row <— matrix(0, nrow=erg, ncol= nrow(y.mat) + 1)

detectedRow <— krg

for(r in 1l:krg)

{
Row[r,1] <— length (rR3cpBkm.out$Row[[r]])
for(¢ in 1:length (rR3cpBkm.out$Row[[r]]))
Row[r,c+1] <— rR3cpBkm.out$Row[[r]][¢]
}

post.probs <— rR3cpBkm.out$post.probs
ppost.probs <— post.probs
yy .mat <— y.mat

for(rg in krg:(erg—1))

{
for(r in 1l:rg)
{
if(Row[r,1] ==1)
continue
y.mat <— matrix(O,nrow=Row[r,1] , ncol=ncol(yy.mat))

pp.temp <— rep(l, Row[r,1])

for(i in 1:Row[r,1])

{
for(j in l:ncol(yy.mat))
{
y.mat[i, j] <— yy.mat[Row[r, i+l], j]
}
}
n <— nrow (y.mat)
P <— ncol(y.mat)

theta0 <— sum(y.mat)/n/p
for (bb in 1:n)
{
ppr.start <— cbhind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,1)
temp.out <— rRcpB2.fnl (RG=2)
if (bb==1) best.out <— temp.out

if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
1
ppr.start <— matrix(O, nrow=nrow(yy.mat), ncol=rg+1)
for(rr in l:rg)
{
if(rr ==1)

{
for(¢ in 1:length(best.out$Row[[1]]))
{
ppr.start[Row[r,best.out$Row[[1]][¢c]
+1],r] <— 1
}
for(¢ in 1:length(best.out$Row[[2]]))
{
ppr.start[Row[r,best.out$Row[[2]][¢c]
+1],rg+1] <— 1
}
}
for(¢ in 1:Row[rr,1])
{
ppr.start[Row[rr,c+1], rr] <— 1
}
}
y.mat <— yy.mat
n <— nrow(y.mat)
p <— ncol(y.mat)

theta0 <— sum(y.mat)/n/p

97

98 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

temp.out <— rRcpB2.fn(RG=rg+1,iterations=50,nstarts=30)
if (r==1) bestt.out <— temp.out
if (temp.out[[1]][3] > bestt.out[[1]][3])
bestt.out <— temp.out
}
Row <— matrix(0, nrow=rg+l, ncol= nrow(y.mat) + 1)
for(i in 1l:(rg+1l))

{
Row[i,1] <— length(bestt.out$Row([[i]])
for(¢ in 1:length(bestt.out$Row[[i]]))
Row[i,c+l] <— bestt.out$Row[[i]][¢]
}

}
print(bestt.out)

#The result of combined method when the # of random stars is 10(nstart=10)

save(bestt.out, file="combined2to4firstrunlO.data")
load ("combined2to4firstrunlO.data")
bestt.out

save (bestt.out, file="combined2to4secondrunlO.data")
load ("combined2to4secondrunl0O.data")
bestt.out

save(bestt.out, file="combined2to4thirdrunlO.data")
load ("combined2to4thirdrunl0O.data")
bestt.out

#The result of combined method when the # of random stars is 20(nstart=20)
save (bestt.out, file="combined2to4firstrun20.data")

load ("combined2to4firstrun20.data")

bestt.out

save(bestt.out, file="combined2to4secondrun20.data")
load ("combined2to4secondrun20. data")

bestt.out

#The result of combined method when the # of random stars is 30(nstart=30)
save (bestt.out, file="combined2to5.data")

load ("combined2to5.data")

bestt.out

save(bestt.out, file="combined3to5.data")
load ("combined3to5.data")

bestt.out

save (bestt.out, file="combined2to6.data")
load ("combined2to6.data")
bestt.out

save(bestt.out, file="combined2to4.data")
load ("combined2to4 . data")

bestt.out

save(bestt.out, file="combined2to4secondrun.data")
load ("combined2to4secondrun.data")
bestt.out

save(bestt.out, file="combined2to4thirdrun.data")
load ("combined2to4thirdrun.data")
bestt.out

save(bestt.out, file="combined2to4forthrun.data")
load ("combined2to4forthrun.data")
bestt.out

save(bestt.out, file="combined2to3.data")
load ("combined2to3 . data")
bestt.out

save(bestt.out, file="combined2to3secondrun.data")
load ("combined2to3secondrun.data")

bestt.out

save(bestt.out, file="combined2to3thirdrun.data")
load ("combined2to3thirdrun.data")
bestt.out

The result of combined method when we want to have 6 row clusters(erg=6)
#First run

save(bestt.out, file="firstrun.data")

bestt.out=0

load (" firstrun .data")

bestt.out

$info
n p Max. 11 Res.Dev. npar AIC AlCc R
25.000 17.000 —133.545 267.091 107.000 481.091 555.597 6.000

$pi
[1] 0.12 0.08 0.16 0.28 0.20 0.16

100 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

$ ‘Row clusters *
$ ‘Row clusters ‘[[1]]
[1] 1 4 14

$ ‘Row clusters ‘[[2]]
[1] 5 6

$ ‘Row clusters ‘[[3]]
[1T 7 8 9 12

$ ‘Row clusters ‘[[4]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[5]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[6]]
[1] 15 17 23 25

The result of combined method when we want to have 6 row clusters(erg=6)
#second run

$ ‘Row clusters ¢

$ ‘Row clusters ‘[[1]]

[1] 7 8 9 12 20 21

$ ‘Row clusters ‘[[2]]
[1] 13 16 19

$ ‘Row clusters ‘[[3]]
[1] 5 6

$ ‘Row clusters ‘[[4]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[5]]
[1] 1 14

$ ‘Row clusters ‘[[6]]
[1] 2 3 10 11 18 22 24

The result of combined method when we want to have 6 row clusters(erg=6)
#Third run

save(bestt.out, file="thirdrun.data")

bestt.out=0

load ("thirdrun .data")

bestt.out

101

$ ‘Row clusters *
$ ‘Row clusters ‘[[1]]
(11 7 8 9 12

$‘Row clusters ‘[[2]]
[1] 56

$ ‘Row clusters ‘[[3]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[4]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[5]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[6]]
[1] 1 14

#The result of combined method after increasing the number of random starts
#(nstarts =20)

#First run

save(bestt.out, file="firstrunRS20.data")

bestt.out=0

load (" firstrunRS20.data")

bestt.out

$info
n p Max. 11 Res.Dev. npar AIC AlCc R
25.000 17.000 —132.872 265.744 107.000 479.744 554.250 6.000

$pi

[1] 0.28 0.16 0.20 0.08 0.20 0.08
$ ‘Row clusters ¢

$ ‘Row clusters ‘[[1]]

[11] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[2]]
[1ry 7 8 9 12

$ ‘Row clusters ‘[[3]]
[1] 4 15 17 23 25

$‘Row clusters ‘[[4]]
[1] 1 14

102 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

$ ‘Row clusters ‘[[5]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[6]]
[1] 5 6

#The result of combined method after increasing the number of random starts
#(nstarts =20)

#Second run

save (bestt.out, file="secondrunRS20.data")

bestt.out=0

load ("secondrunRS20.data")

bestt.out

$ ‘Row clusters *

$ ‘Row clusters ‘[[1]]
[11 7 8 9 12

$ ‘Row clusters ‘[[2]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[3]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[4]]
[1] 1 14

$ ‘Row clusters ‘[[5]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[6]]
[1] 5 6

#The result of combined method after increasing the number of random starts
#(nstarts=20)

#Third run

save(bestt.out, file="thirdrunRS20.data")

bestt.out=0

load ("thirdrunRS20.data")

bestt.out

$ ‘Row clusters ¢

$ ‘Row clusters ‘[[1]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[2]]
[11] 4 15 17 23 25

103

$ ‘Row clusters ‘[[3]]
[1] 1 14

$ ‘Row clusters ‘[[4]]
[1] 56

$ ‘Row clusters ‘[[5]]
[1ry 7 8 9 12

$ ‘Row clusters ‘[[6]]
[1] 2 3 10 11 18 22 24

#The result of combined method after increasing the number of random starts
#(nstarts =20)

#Fourth run

save(bestt.out, file="fourthrunRS20.data")

bestt.out=0

load (" fourthrunRS20.data")

bestt.out

$ ‘Row clusters *
$‘Row clusters ‘[[1]]
[11 7 8 9 12

$ ‘Row clusters ‘[[2]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[3]]
[1] 1 14

$ ‘Row clusters ‘[[4]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[5]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[6]]
[1] 56

#The result of combined method after increasing the number of random starts
#(nstarts =30)

#First run

save(bestt.out, file="firstrunRS30.data")

bestt.out=0

load (" firstrunRS30.data")

104 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

bestt.out

$info
n p Max. 11 Res.Dev. npar AIC AlCc R
25.000 17.000 —132.872 265.744 107.000 479.744 554.250 6.000

$pi
[1] 0.16 0.08 0.08 0.20 0.28 0.20

$ ‘Row clusters *
$ ‘Row clusters ‘[[1]]
[11 7 8 9 12

$ ‘Row clusters ‘[[2]]
[1] 5 6

$ ‘Row clusters ‘[[3]]
[1] 1 14

$ ‘Row clusters ‘[[4]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[5]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[6]]
[1] 13 16 19 20 21

#The result of combined method after increasing the number of random starts
#(nstarts =30)

#Second run

save (bestt.out, file="secondrunRS30.data")

bestt.out=0

load ("secondrunRS30.data")

bestt.out

$ ‘Row clusters ¢

$ ‘Row clusters ‘[[1]]

[1] 4 15 17 23 25

$ ‘Row clusters ‘[[2]]
[1] 5 6

$ ‘Row clusters ‘[[3]]
(1] 1 14

$ ‘Row clusters ‘[[4]]
[1] 2 3 10 11 18 22 24

105

$ ‘Row clusters ‘[[5]]
[1] 13 16 19 20 21

$ ‘Row clusters ‘[[6]]
(1] 7 8 9 12

#The result of combined method after increasing the number of random starts
#(nstarts =30)

#Third run

save(bestt.out, file="thirdrunRS30.data")

bestt.out=0

load ("thirdrunRS30.data")

bestt.out

$ ‘Row clusters *
$ ‘Row clusters ‘[[1]]
[1] 1 14

$ ‘Row clusters ‘[[2]]
[1] 13 16 19 20 21

$‘Row clusters ‘[[3]]
(11 56

$ ‘Row clusters ‘[[4]]
[1] 2 3 10 11 18 22 24

$ ‘Row clusters ‘[[5]]
[1] 4 15 17 23 25

$ ‘Row clusters ‘[[6]]
[17 7 8 9 12

#The result of combined method after increasing the number of random starts
#(nstarts=30)

#Fourth run

save(bestt.out, file="fourthrunRS30.data")

bestt.out=0

load (" fourthrunRS30.data")

bestt.out

$ ‘Row clusters ¢
$‘Row clusters ‘[[1]]
[1] 56

$ ‘Row clusters ‘[[2]]

106 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

[1] 13 16 19 20 21

$ ‘Row clusters ‘[[3]]
[1] 1 4 14

$ ‘Row clusters ‘[[4]]
[ty 7 8 9 12

$ ‘Row clusters ‘[[5]]
[1] 15 17 23 25

$ ‘Row clusters ‘[[6]]
[1] 2 3 10 11 18 22 24

#The resualt of combined method when (erg=7)
save(bestt.out, file="erg7.data")
bestt.out=0

load ("erg7.data")

bestt.out
$info
n p Max. 11 Res.Dev. npar AIC AICc R
25.000 17.000 —125.333 250.665 125.000 500.665 608.061 7.000
$pi

[1] 0.04 0.08 0.16 0.16 0.28 0.08 0.20

#The resualt of combined method when (erg=38)
save(bestt.out, file="erg8.data")
bestt.out=0

load ("erg8.data")

bestt.out

$info
n p Max. 11 Res.Dev. npar AIC AICc R
25.000 17.000 —117.321 234.642 143.000 520.642 669.785 8.000

$pi
[1] 0.04 0.04 0.28 0.16 0.08 0.16 0.08 0.16

#There is not any reduction in the AICc value. It is increasing and there is
#no need to go any further.

x=¢(6,7,8)

y=¢(555.597,608.061,669.785)

plot(x,y,xlab="erg",ylab="AICc")

107

ok sk ok sk Rk sk sk kR R sk kR kR Rk sk sk kR sk sk sk kR Rk sk sk R kR Rk R R Rk kR R R Rk kR R kR kR kR R Rk kR R Rk
To find the run time for different methods

Four row clusters(groups)

#

Method 1: random starts .

elapsed.vect <— proc.time ()[3]

rR3cpB.out <— rRcpB2.fn(RG=4) # Default is 10 random starts

elapsed.vect <— c(elapsed.vect,proc.time()[3])

print (diff(elapsed.vect))

#elapsed
#23.29

Method 2: single start from k—means clustering:
#

elapsed.vect <— proc.time ()[3]

rR3cpBkm. out <— rRcpB2km. fnl (RG=4)

elapsed.vect <— c(elapsed.vect,proc.time()[3])
print (rR3cpBkm. out)

#$ ‘Row clusters ‘[[1]]
#[1] 7 & 9 12 13 16 19 20 21

#$ ‘Row clusters ‘[[2]]
#[1] 1 4 14 15 17 23 25
#

#$ ‘Row clusters ‘[[3]]
#[1] 2 3 10 11 18 22 24
#

#$ ‘Row clusters ‘[[4]]
#[1] 5 6

print (diff (elapsed.vect))
#elapsed
2.36

Method 3: Start from two—group output, split off one row
#

108 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

For each row in turn, provided it is not the sole member

of its cluster, start a new cluster with this row.

rR2cpB . out <— rRcpB2.fn ()
#Finding three row groups

elapsed.vect <— proc.time ()[3]
pp.temp <— rR2cpB.out$post.probs
for (bb in 1:n)
{
ppr.start <— cbind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,0,1)
temp.out <— rRcpB2.fnl (RG=3)
if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]]1[3]))
}

rR2cpBsplit.out <— best.out
print (rR2cpBsplit.out)

#$ ‘Row clusters °

#$ ‘Row clusters ‘[[1]]

[1] 2 3 8 9 10 11 12 13 16 18 19 20 21 22 24
#

#$ ‘Row clusters ‘[[2]]

#[(1] 1 4 7 14 15 17 23 25

#

#$ ‘Row clusters ‘[[3]]

#[1] 5 6

elapsed.vect <— c(elapsed.vect,proc.time ()[3])
print (diff (elapsed.vect))

#elapsed

#45.62

Finding four row groups

rR2cpB . out<—rR2cpBsplit. out
elapsed.vect <— proc.time ()[3]
pp.temp <— rR2cpB.out$post.probs
for (bb in 1:n)
{
ppr.start <— cbind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,0,0,1)
temp.out <— rRcpB2.fnl (RG=4)

109

if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
}
rR2cpBsplit.out <— best.out
print (rR2cpBsplit.out)
#$ ‘Row clusters *
#$ ‘Row clusters ‘[[1]]
(1] 2 3 8 10 11 13 16 18 19 20 21 22 24
#
#$ ‘Row clusters ‘[[2]]
#(1] 1 4 7 9 12 14 25
#
#$ ‘Row clusters ‘[[3]]
#[1] 5 6
#
#$ ‘Row clusters ‘[[4]]
#$[1] 15 17 23

elapsed.vect <— c(elapsed.vect,proc.time()[3])
print (diff (elapsed.vect))

#elapsed

55.53

Finding five row groups

rR2cpB . out<—rR2cpBsplit. out
elapsed.vect <— proc.time ()[3]
pp.-temp <— rR2cpB.out$post.probs
for (bb in 1:n)
{
ppr.start <— cbind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,0,0,0,1)
temp.out <— rRcpB2.fnl (RG=5)
if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
}
rR2cpBsplit.out <— best.out
print (rR2cpBsplit.out)
#$ ‘Row clusters
#$ ‘Row clusters ‘[[1]]
(1] 2 3 8 10 11 13 16 18 19 20 21 22 24
#
#$ ‘Row clusters ‘[[2]]

110 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

#(1] 1 4 7 9 12 14
#

#$ ‘Row clusters ‘[[3]]
#[1] 5 6

#

#$ ‘Row clusters “‘[[4]]
#[1] 15 17 23

#

#$ ‘Row clusters ‘[[5]]
#[1] 25

elapsed.vect <— c(elapsed.vect,proc.time()[3])
print (diff (elapsed.vect))

#elapsed

68.95

Finding six row groups

rR2cpB . out<—rR2cpBsplit. out
elapsed.vect <— proc.time ()[3]
pp.temp <— rR2cpB.out$post.probs
for (bb in 1:n)
{
ppr.start <— cbind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,0,0,0,0,1)
temp.out <— rRcpB2.fnl (RG=6)
if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
}
rR2cpBsplit.out <— best.out
print (rR2cpBsplit.out)
#$ ‘Row clusters °
#$ ‘Row clusters ‘[[1]]
[1] 2 3 8 10 11 16 18 19 20 21 22 24
#
#$ ‘Row clusters ‘[[2]]
#r1] 1 4 7 9 12 14
#
#$ ‘Row clusters ‘[[3]]
#[1] 5 6
#
#$ ‘Row clusters ‘[[4]]
#[1] 15 17 23
#
#$ ‘Row clusters ‘[[5]]

111

#[1] 25

#

#$ ‘Row clusters ‘[[6]]
#[1] 13

elapsed.vect <— c(elapsed.vect,proc.time()[3])
print (diff (elapsed.vect))

#elapsed

84.59

Combined method: Combining k—mean and divisive methods
#-

s

elapsed.vect <— proc.time ()[3]
y.mat <— yy.mat
krg <— 2
erg <— 4
n <— nrow(y.mat)
rR3cpBkm. out <— rRepB2km. fnl (RG=krg)
Row <— matrix(0, nrow=erg, ncol= nrow(y.mat) + 1)
detectedRow <— krg
for(r in 1:krg)
{
Row[r,1] <— length (rR3cpBkm.out$Row[[r]])
for(¢ in 1:length (rR3cpBkm.out$Row[[r]]))
Row[r,c+1] <— rR3cpBkm.out$Row([[r]][¢]
}
post.probs <— rR3cpBkm.out$post.probs
ppost.probs <— post.probs
yy .mat <— y.mat
for(rg in krg:(erg—1))

{
for(r in 1l:rg)
{
if(Row[r,1] ==1)
continue
y.mat <— matrix(O,nrow=Row[r,1] , ncol=ncol(yy.mat))

pp.temp <— rep(l, Row[r,1])
for(i in 1:Row[r,1])
{
for(j in l:ncol(yy.mat))

{
y.mat[i, j] <— yy.mat[Row[r, i+1], j]

}

n <— nrow(y.mat)

P <— ncol(y.mat)
theta0 <— sum(y.mat)/n/p

112 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

for (bb in 1:n)
{
ppr.start <— chind(pp.temp,rep(0,n))
ppr.start[bb,] <— ¢(0,1)
temp.out <— rRcpB2.fnl (RG=2)
if (bb==1) best.out <— temp.out
if (temp.out[[1]][3] > best.out[[1]][3])
best.out <— temp.out
print(c(bb,temp.out[[1]][3]))
}
ppr.start <— matrix(0, nrow=nrow(yy.mat), ncol=rg+1)
for(rr in 1l:rg)

{
if(rr ==1)
{
for(¢ in 1:length(best.out$Row[[1]]))
{
ppr.start[Row[r,best.out$Row[[1]][¢c]
+1],r] <— 1
}
for(¢ in Il:length(best.out$Row[[2]]))
{
ppr.start[Row[r,best.out$Row[[2]][¢c]
+1],rg+1] <— 1
}
}
for(¢ in 1:Row[rr,1])
{
ppr.start|[Row[rr,c+1], rr] <— 1
1
}
y.mat <— yy.mat
n <— nrow(y.mat)
p <— ncol (y.mat)

thetaO0 <— sum(y.mat)/n/p
temp.out <— rRcpB2.fn(RG=rg+1,iterations=50,nstarts=10)
if (r==1) bestt.out <— temp.out
if (temp.out[[1]][3] > bestt.out[[1]][3])
bestt.out <— temp.out
}
Row <— matrix(0, nrow=rg+1, ncol= nrow(y.mat) + 1)
for(i in 1l:(rg+l))
{
Row[i,1] <— length(bestt.out$Row([[i]])
for(¢ in 1:length(bestt.out$Row[[i]]))
Row[i,c+l] <— bestt.out$Row[[i]][¢]

113

print(bestt.out)

#$ ‘Row clusters

#$ ‘Row clusters ‘[[1]]
#1156

#

#$ ‘Row clusters ‘[[2]]
#[1] 2 3 10 11 13 16 18 19 20 21 22 24
#

#$ ‘Row clusters ‘[[3]]
#[1] 4 15 17 23 25

#

#$ ‘Row clusters ‘[[4]]
#[1] 1 7 8 912 14

elapsed.vect <— c(elapsed.vect,proc.time()[3])

print (diff (elapsed.vect))
#elapsed
#140.83

#-

7

#An algorithm to get the parameter Theta and Pi to make a vector and vice versa.
GetThetaAndPi <— function(params)
{

pi.v <— rep(0 ,RG)

theta .m <— matrix (0,RG,p)

for(i in 1:RG)

{

pi.v[i]<—params[RG=p+i]
for(j in 1:p)

theta.m[i,j]<—params[(i—1)#p+j]

}

theta.m[theta.m > 1] <— 1
theta.m[theta.m < 0] <— O
if(sum(pi.v) == 0)
{
print ("ERROR_in_GetTheta")
pi.v = rep(1/RG ,RG)
}
pi.v <— pi.v / sum(pi.v)
o <— list("pi.v" = pi.v, "theta.m" = theta.m)
return (o)

114 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

GetParams <— function(theta.m, pi.v)

{
params<—rep (0 ,RG:xp+RG)
for(i in 1:RG)
{
params [RGxp+i] <— pi.v[i]
for(j in 1:p)
{
params [(i—1)xp+j] <— theta.m[i,]]
}
}
return (params)
}
#

#PSO algorithm. The pattern for the following PSO R code was taken from
http://www.r—project.org/ website.

psoptim <— function (par, fn, gr = NULL, ..., lower=0, upper=1,
control = list (), Hybrid = TRUE, MaxIteration=1000,
Stagnation=Inf ,SwarmScale=1) {
fnl <— function(par) fn(par, ...)/p.fnscale
mrunif <— function (n,m,lower ,upper) {
return (matrix (runif (n#m,0,1) ,nrow=n, ncol=m) = (upper—lower)+lower)
}
norm <— function(x) sqrt(sum(x#x))
npar <— length (par)
lower <— as.double(rep(lower, ,npar))
upper <— as.double(rep(upper, ,npar))
con <— list(trace = 0, fnscale = 1, maxit = MaxlIteration, maxf = Inf,
abstol = —Inf, reltol = 0, REPORT = 10,
s =NA, k =3, p=NA, w=1/(2=xlog(2)),
c.p = .5+log(2), c.g = .5+log(2), d = NA,
v.max = NA, rand.order = TRUE, max.restart=Inf,
maxit.stagnate = Stagnation,
vectorize=FALSE, hybrid = Hybrid , hybrid.control = NULL)
nmsC <— names(con)
con[(namc <— names(control))] <— control
if (length (noNms <— namc|[!namc %in% nmsC]))
warning ("unknown_names_in_control:_", paste(noNms, collapse = ",_"))
Argument error checks
if (any(upper==Inf | lower=—1Inf))
stop ("fixed_bounds_must_be_provided")

p.trace <— con[["trace"]]>0L # provide output on progress?

p.fnscale <— con[["fnscale"]] # provide output on progress?

115

.maxit <— con|[["maxit"]] # maximal number of iterations

.maxf <— con[["maxf"]] # maximal number of function evaluations

.abstol <— con[["abstol"]] # absolute tolerance for convergence

.reltol <— con[["reltol"]] # relative minimal tolerance for restarting
.report <— as.integer (con[["REPORT"]]) # output every REPORT iterations
swarm size

= T T T o

p.s <— ifelse(is.na(con[["s"]]), floor (10+2=«sqrt(npar)),con[["s"]])
p.-s <— p.s % SwarmScale
average % of informants
p.p <— ifelse(is.na(con[["p"]]),1—(1—1/p.s)~con[["k"]],con[["p"]])
p.-wO0 <— con[["W"]] # exploitation constant
if (length(p.w0)>1) {
p.wl <— p.wO[2]
p.-w0 <— p.wO[1]
} else {
p-wl <— p.w0
}
p.c.p <— con[["c.p"]] # local exploration constant
p.c.g <— con[["c.g"]] # global exploration constant
domain diameter
p.d <— ifelse(is.na(con[["d"]]),norm(upper—lower),con[["d"]])
p.vmax <— con[["v.max"]]=*p.d # maximal velocity
process particles in random order?
p.randorder <— as.logical(con[["rand.order"]])
p. maxrestart <— con[["max.restart"]] # maximal number of restarts
maximal number of iterations without improvement
p.maxstagnate <— con[["maxit.stagnate"]]
p.vectorize <— as.logical(con[["vectorize"]]) # vectorize?
p.-hybrid <— as.logical(con[["hybrid"]]) # use local BFGS search
p.hcontrol <— con[["hybrid.control"]] # control parameters for hybrid optim
if ("fnscale" %in% names(p.hcontrol)){
p.hcontrol["fnscale"] <— p.hcontrol["fnscale"]*p.fnscale
}else{
p.hcontrol["fnscale"] <— p.fnscale
}
if (p.trace) {
message ("S=",p.s,", K=",con[["k"]],", p=",signif(p.p,4),",_w0=",
signif(p.w0,4),", wl=",
signif(p.wl,4),", c.p=",signif(p.c.p,4),
",.c.g=",signif(p.c.g.,4))
message ("v.max=",signif (con[["v.max"]].,4),
",.d=",signif (p.d,4),", vectorize=",p.vectorize ,
", hybrid=",p.hybrid)
}
Initialization
if (p.reltol!=0) p.reltol <— p.reltol=p.d

if (p.vectorize) {

116 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

lowerM <— matrix (lower ,nrow=npar ,ncol=p.s)
upperM <— matrix (upper ,nrow=npar ,ncol=p.s)
}
X <— mrunif(npar,p.s,lower ,upper)
if (!any(is.na(par)) & all (par>=lower) & all (par<=upper)) X[,l] <— par
V <— (mrunif(npar,p.s,lower ,upper)—X)/2
if (!is.na(p.vmax)) { # scale to maximal velocity
temp <— apply(V,2,norm)
temp <— pmin.int (temp,p.vmax)/temp
V <— V%:%diag (temp)

f.x <— apply(X,2,fnl) # first evaluations
stats.feval <— p.s

P <X

f.p<— f.x

P.improved <— rep(FALSE,p.s)

i.best <— which.min(f.p)

error <— f.p[i.best]

init.links <— TRUE
if (p.trace & p.report==1)
message (" It_1:_fitness=",signif(error ,4))
Iterations
stats .iter <— 1
stats.restart <— 0

stats.stagnate <— 0

while (stats.iter <p.maxit & stats.feval<p.maxf & error>p.abstol &

stats.restart<p. maxrestart & stats.stagnate <p.maxstagnate) {
print("Iteration")
print(stats .iter)

stats.iter <— stats.iter+l
if (p.p!=1 & init.links) {
links <— matrix(runif(p.s=p.s,0,l)<=p.p,p.s,p-.s)
diag(links) <— TRUE
}
The swarm moves
if (!p.vectorize) {
if (p.randorder) f{
index <— sample(p.s)
} else {
index <— 1l:p.s

117

for (i in index) {
if (p.p==1)
j <— i.best
else
j <— which(links[,i])[which.min(f.p[links[,i]])] # best informant
temp <— (p.wO+(p.wl—p.w0)=max(stats.iter/p.maxit, stats.feval/p.maxf))
V[,i] <— temp=V[,i] # exploration tendency
V[,i] <— V[,i]+runif(npar,0,p.c.p)=(P[,i]-X[,i]) # exploitation
if (i!=j) V[,i] <= V[,il+runif(npar,0,p.c.g)=(P[,j]-X[,i])
if (!is.na(p.vmax)) {
temp <— norm(V[,i])
if (temp>p.vmax) V[,i] <— (p.vmax/temp)=V[,i]
}
X[,i] <= X[,i]+V[,i]
Check bounds
temp <— X[,i]<lower
if (any(temp)) {
X[temp,i] <— lower[temp]
V[temp,i] <— 0
}
temp <— X[,i]>upper
if (any(temp)) {
X[temp,i] <— upper[temp]
V(temp,i] <— 0
}
Evaluate function
if (p.hybrid) {
temp <— optim(X[,i],fn,gr,..., method="L-BFGS—B", lower=lower ,
upper=upper, control=p. hcontrol)
temp <— emoptim(X[,i])
V[,i] <= V[,il]+temp$par—X[,i] # disregards any v.max imposed
X[,i] <— temp$par
f.x[i] <— temp$value
stats . feval <— stats.feval+as.integer (temp$counts[1])
} else {
f.x[i] <= fnl (X[,i])

stats . feval <— stats.feval+l

if (f.x[i]<f.pli]) { # improvement
P[,i] <— X[,1]
f.pli] <— f.x[1i]
if (f.pl[il<f.p[i.best]) {
print(" ")
print("NewLike")
print(f.p[i 1)
print("LogLike")

118

APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

print(LogLike(X[,i]))
i.best <— i

}
if (stats.feval>=p.maxf) break
}
else {
if (p.p==1)
j <— rep(i.best,p.s)
else # best informant
j <— sapply(l:p.s,function(i)
which(links [,i])[which.min(f.p[links[,i]])])
temp <— (p.wO+(p.wl—p.w0)=max(stats.iter/p.maxit, stats.feval/p.maxf))
V <— temp#*V # exploration tendency
V <— V+mrunif (npar,p.s,0,p.c.p)=(P—=X) # exploitation
temp <— j!=(l:p.s)
V[,temp] <— V[,temp]+mrunif(npar ,sum(temp),0,p.c.p)=(P[,j[temp]]—X[,temp])
if (!is.na(p.vmax)) {
temp <— apply(V,2,norm)
temp <— pmin. int (temp,p.vmax)/temp
V <— V%:%diag (temp)
}
X <— X+V
Check bounds
temp <— X<lowerM
if (any(temp)) {
X[temp] <— lowerM|[temp]
V[temp] <— 0
}
temp <— X>upperM
if (any(temp)) {
X[temp] <— upperM[temp]
V[temp] <— 0
}
Evaluate function
if (p.hybrid) { # not really vectorizing
for (i in 1l:p.s) {
temp <— optim(X[,i],fn,gr,..., method="L-BFGS-B" ,lower=lower ,
upper=upper, control=p. hcontrol)
temp < emoptim(X[,i])
V[,i] <= V[,i]+temp$par—X[,i] # disregards any v.max imposed
X[,i] <— temp$par
f.x[i] <— temp$value
stats . feval <— stats.feval+as.integer (temp$counts[1])
}
} else {
f.x <— apply(X,2,fnl)

stats . feval <— stats.feval+p.s
}
temp <— f.x<f.p
if (any(temp)) { # improvement
P[,temp] <— X[,temp]
f.p[temp] <— f.x[temp]
i.best <— which.min(f.p)
}
if (stats.feval>=p.maxf) break
}
if (p.reltol!=0) {
d <— X-P[,i.best]
d <— sqrt(max(colSums(d=d)))
if (d<p.reltol) {
X <— mrunif(npar,p.s,lower ,upper)
V <— (mrunif (npar,p.s,lower ,upper)—X)/2
if (!is.na(p.vmax)) {
temp <— apply(V,2,norm)
temp <— pmin.int (temp,p.vmax)/temp
V <— V%:%diag (temp)
}
stats.restart <— stats.restart+1
if (p.trace) message("It_",stats.iter ,":_restarting")

}
init.links <— f.p[i.best]==error # if no overall improvement
stats .stagnate <— ifelse(init.links , stats.stagnate+1,0)
error <— f.p[i.best]
if (p.trace & stats.iter%%p.report==0) {

if (p.reltol!=0)

message (" It_",stats.iter ,": _fitness=",signif(error ,4),
",_swarm_diam.=",signif (d,4))
else
message ("It_",stats.iter ,":_fitness=",signif(error ,4))

}

if (error<=p.abstol) {
msg <— "Converged"
msgcode <— 0

} else if (stats.feval>=p.maxf) {
msg <— "Maximal_number_of_function_evaluations_reached"
msgcode <— 1

} else if (stats.iter >=p.maxit) {
msg <— "Maximal_number_of_iterations_reached"
msgcode <— 2

} else if (stats.restart>=p.maxrestart) {

msg <— "Maximal_number_of_restarts_reached"

119

120 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

msgcode <— 3
} else {
msg <— "Maximal_number_of_iterations_without_improvement_reached"
msgcode <— 4
}
if (p.trace) message(msg)
o <— list(par=P[,i.best],value=f.p[i.best],
counts=c("function"=stats .feval ,"iteration"=stats .iter ,
"restarts "=stats . restart),
convergence=msgcode , message=msg)
return (o)

}

#

7

Hybrid PSO and EM algorithm funcion.

PSOEM<—function (RG=3)
{
pi.v <— rep(l1/RG ,RG)
theta.m <— matrix (
runif (RGxp, theta0%0.5,0.5+0.5«theta0) ,RG,p)
params<— GetParams(theta.m, pi.v)
OptimisedParams <— optim(params, NewLike , method = "L-BFGS—B",lower = 0,
upper = 1, hessian =T)
#OptimisedParams <— emoptim(params, iterations=50)
OptimisedParams <— psoptim (params ,NewLike, gr = NULL, lower = 0,
upper = 1,Hybrid=TRUE ,MaxIteration=4,Stagnation=2,SwarmScale=3)
#complete likelihood
OptimisedParams$value
#converting params to theta and pi.
params<—OptimisedParams$par
print(LogLike(params))
ThetaAndPi <— GetThetaAndPi(params)
pi.v <— ThetaAndPi$pi.v
theta.m <— ThetaAndPi$theta.m
Save results:
res .dev <— —2%LogLike (params)
npar <— RGzp + (RG—-1)
aic <— res.dev + 2xnpar
aicc <— aic + (2x(npar+l)=(npar+2))/(n%p — npar — 2)
outl <— round(c(n,p,LogLike(params),res.dev,npar,aic,aicc ,RG),3)
names(outl) <— ¢("n","p","Max.11","Res.Dev.","npar","AIC","AICc","R")
list ("info "=outl ,
"pi"=round(pi.v,3),
"theta"=round(theta.m,3))
}

#

7

Run PSO with EM algorithm.

121

source ("readdata3 .R")

——— Setting up

y.mat <— stenerydB .mat # 25 by 17
n <— nrow(y.mat)

p <— ncol (y.mat)

thetaO0 <— sum(y.mat)/n/p # Overall proportion of 1’s.

source ("ThetaAndPiAndParamsConversion.R")
source ("LogLike .R")

source ("NewLike .R")

source ("EMOptim.R")

source ("pso.R")

source ("PSOEM.R")

elapsed.vect <— proc.time ()[3]
PSOEM.. out<—PSOEM (RG)

elapsed.vect <— c(elapsed.vect,proc.time()[3])
print (diff(elapsed.vect))

122 APPENDIX A. SOURCE CODE OF ALGORITHMS IN R LANGUAGE

Bibliography

[1] M. R. AlRashidi and M. E. El-Hawary. A survey of particle swarm opti-
mization applications in electric power systems. IEEE, Transactions on Evo-
lutionary Computation, 13(4):913-918, 2009.

[2] D. Anderson. Model Based Inference in the Life Sciences. Springer, 2008.

[3] C. Ari and S. Aksoy. Maximum likelihood estimation of gaussian mixture
models using particle swarm optimization. In 20th International Conference
on Pattern Recognition (ICPR), pages 746 —749, 2010.

[4] D. P. Bertsekas and D. P. Bertsekas. Nonlinear Programming. Athena Sci-
entific, 2nd edition, 1999.

[5] A. Bessadok, P. Hansen, and A. Rebai. EM algorithm and variable neigh-
borhood search for fitting finite mixture model parameters. In Proceedings

of International Conference on Computer Science and Information Technol-
0gy, pages 725-733, 2009.

[6] D.Bohning. Computer-assisted analysis of mixtures and applications: meta-

analysis, disease mapping and others. 1999.

[7] K. Burnham and D. Anderson. Model selection and multimodel inference: a

practical information-theoretic approach. Springer, 2nd edition, July 2002.

[8] P. Deb. Finite mixture models. Summer north american stata users’ group,
Stata Users Group, 2008.

123

124 BIBLIOGRAPHY

[9] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society,
series B, 39(1):1-38, 1977.

[10] C. F. Dormann, B. Gruber, and J. Frund. Introducing the bi-
partite package: Analysing ecological networks. R News, 8(2):8-
11, 2008. URL www.nceas.ucsb.edu/interactionweb/html/
memmott_1999.htm.

[11] E. W. Forgy. Cluster analysis of multivariate data: efficiency vs interpretabil-
ity of classifications. Biometrics, 21:768-769, 1965.

[12] G. Hammerly and C. Elkan. Alternatives to the k-means algorithm that find
better clusterings. In Proceedings of the 11th international conference on

information and knowledge management, 2002.

[13] N. Laird. Nonparametric maximum likelihood estimation of a mixing dis-
tribution. Journal of the American Statistical Association, 73(364):pp. 805—
811, 1978.

[14] Y. Leung, J.-S. Zhang, and Z.-B. Xu. Clustering by scale-space filtering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):
1396-1410, 2000.

[15] B. E. J. Manly. Multivariate Statistical Methods: a Primer. Boca Raton,
2005, 1st edition.

[16] G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in Proba-
bility and Statistics. Wiley-Interscience, 1 edition, October 2000.

[17] R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm:
Simpler, may be better. In IEEE Transactions on Evolutionary Computation
8, pages 204-210, 2004.

[18] F. Picard. An introduction to mixture models. Research re-
port, Statistics for Systems Biology Group, 2007. URL http:

BIBLIOGRAPHY 125

[21]

[22]

[25]

[26]

[27]

//pbil.univ-1lyonl.fr/members/fpicard/franckpicard_
fichiers/pdf/SSB-RR-7.mixture-tutorial.pdf.

G. P. Quinn and M. J. Keough. Experimental Design and Data Analysis for
Biologists. Cambridge University Press, 2002.

M. Reyes-sierra and C. A. C. Coello. Multi-objective particle swarm opti-
mizers: A survey of the state-of-the-art. International Journal of Computa-
tional Intelligence Research, 2(3):287-308, 2006.

R. Saeidi, H. Mohammadi, T. Ganchev, and R. Rodman. Particle swarm
optimization for sorted adapted gaussian mixture models. IEEE Transactions
on Audio, Speech, and Language Processing, 17(2):344-353, 2009.

N. Sara, A. Rawan, and V. Gregory. A modified fuzzy k-means clustering
using expectation maximization. In Proceedings of IEEE World Congress

on Computational Intelligence, 2006.

G. A. F. Seber. Multivariate Distributions, pages 17-58. John Wiley and
Sons, Inc., 2008.

W. Seidel, K. Mosler, and M. Alker. A cautionary note on likelihood ratio

tests in mixture models. Annals of the Institute of Statistical Mathematics,
52:481-487, 2000.

P. Steiner and M. Hudec. Classification of large data sets with mixture mod-
els via sufficient em. Computational Statistics and Data Analysis, 51(11):
5416 — 5428, 2007. ISSN 0167-9473. Advances in Mixture Models.

K. Takeuchi. Distribution of informational statistics and a criterion of model
ftting. Suri-Kagaku (Mathematical Sciences), 1976.

W. A. Woodward, W. C. Parr, W. R. Schucany, and H. Lindsey. A com-
parison of minimum distance and maximum likelihood estimation of a mix-
ture proportion. Journal of the American Statistical Association, 79(387):
pp- 590-598, 1984.

