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Abstract 
 

Alginate is known to be a commercially valuable polysaccharide, of great importance in 

industries such as food, cosmetics, medicine and pharmaceuticals. It is obtained 

commercially by harvesting brown algae. The final step in the alginate biochemical 

pathway involves the epimerization of D-mannuronic residues into L-guluronic residues, 

catalyzed by the enzyme mannuronan-C5-epimerase. This final step has been found to be 

responsible for controlling the physicochemical properties of the produced alginate. This 

study is the first to characterize the genes encoding for the enzyme mannuronan-C5-

epimerase in the Northern, Southern and Wellington lineages of the brown alga Lessonia 

variegata (Phaeophyceae). The gene of interest was amplified by standard PCR and 

cloning. Cloning PCR results revealed the presence of two distinct copies of the gene in 

Lessonia variegata. The coding region of the copies was found to be very conserved with 

very little sequence variation. The Lessonia variegata sequences were compared with 

those of Laminaria digitata and Saccharina japonica, which indicated that at least one 

gene duplication event has occurred in Lessonia variegata, leading to the formation of 

two gene duplicates. The possible mechanisms by which the gene paralogs may control 

the structure and function of the produced alginate have been discussed.  
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CHAPTER ONE 

1.1 Introduction 
 

Algae constitute a large and diverse group of unicellular or multicellular organisms, 

which are generally autotrophic. The most commonly known algal classes, which 

includes both micro- and macroalgae, are diatoms (Class Bacillariophyceae), green algae  

(Class Chlorophyceae), red algae (Class Rhodophyceae), yellow green algae  

(Class Xanthophyceae), golden algae (Class Chrysophycae) and brown algae  

(Class Phaeophyceae) (Chen et al., 2009).  The Phaeophyceae, Rhodophyceae and the 

Chlorophyceae are generally referred to as macroalgae or seaweeds. Algae provide one of 

the main sources of food in benthic marine coastal systems and are thus one of the most 

important groups of primary producers (Phillips et al., 2008a). They are also of the most 

important ecosystem engineers, helping to fix carbon dioxide (CO2) and thus oxygenating 

the water and making it possible for other organisms in the community to survive and 

thrive (Tsai et al., 2012). Both micro- and macroalgae are used for various commercial 

purposes. Research has shown that in addition to being important primary producers, 

brown algae (Phaeophyceae) are also used for a number of commercial purposes, such as, 

biosorption of heavy metals (Davis et al., 2003) and various medical and pharmaceutical 

uses (Athukorala et al., 2007; Rupérez et al., 2002; Kelecom, 2001). Some of the most 

commercially important chemicals produced by brown algae are alginates. There have 

been several studies on the enzymes involved in alginate production, the chemical 

structure and biotechnological applications of alginate. However, studies on the genes 

controlling the biochemical pathway of alginate synthesis are lacking in number. There is 

a need to understand how these genes function, for both academic and commercial 
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reasons, as knowledge about the genetic mechanisms will lead to understanding the genes 

encoding the enzymes in the biochemical pathway, how the genes are expressed and 

variation of the expression levels spatially, seasonally and between different tissues of the 

same alga, thus providing information about the regulation of alginate production. The 

following study attempts to shed some light on the genes encoding mannuronan C5 

epimerase, the last enzyme in the biochemical pathway of alginate in Lessonia variegata 

J. Agardh. 

 

1.2 Taxonomy 
 

Brown algae belong to the class Phaeophyceae within the division Heterokontophyta 

(Phillips et al., 2008b). They are almost exclusively marine multicellular algae found in 

both tropical and temperate ecosystems (Phillips et al., 2008b). The range of distribution 

is wide, extending from the marine ecosystems in the subpolar regions to the equator (De 

Reviers, Rousseau, & Draisma, 2007). They act as foundation species and structure 

marine ecosystems by providing food, habitat, protection and also serving as recruitment 

sites for a variety of marine organisms (Vásquez, 2007).  

 

1.3 Characteristics of Phaeophyceae 
 

Brown algae range in size from microscopic filaments to giant kelps. The life history of 

all brown algae, except the members of the order Fucales, exhibit alternation of 

generation between a haploid gametophyte and a diploid sporophyte phase (Fig. 1.1) 

(Graham and Wilcox, 2000). Brown algae have three types of flagellate reproductive 

cells – meiospores, asexual zoospores and gametes (Graham and Wilcox, 2000). These 
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cells have typical heterokont flagella, consisting of two long, unequal flagella, one 

anterior and one posterior, which beat differently (Daugbjerg and Anderson, 1997). 

Phaeophycean motile cells are distinctive as their flagella usually emerge laterally rather 

than apically or sub-apically (Graham and Wilcox, 2000). In some brown algae the 

posterior flagellum is shorter than the anterior flagellum and some even have only a 

single anterior flagellum, while flagella are completely absent from the egg cells of the 

most oogamous species (Graham and Wilcox, 2000). Some brown algae are isogamous, 

that is, the flagellated gametes, while motile, cannot be morphologically distinguished 

from each other. However, one gamete typically settles at the bottom, while the other 

actively swims for a longer period (Graham and Wilcox, 2000). Anisogamous brown 

algae have one gamete larger than the other, while some species exhibit oogamy, where 

there is one non-motile egg cell and a smaller flagellate sperm cell (Graham and Wilcox, 

2000). Gametes are produced by multicellular gametophytes within specialized 

plurilocular gametangia (Graham and Wilcox, 2000). Plurilocular gametangia are 

produced by mitosis and are internally subdivided into chambers, each of which contains 

a gamete (Graham and Wilcox, 2000). Sporophytes sometimes produce a single-

compartment reproductive structure called a unilocular sporangia, which is absent from 

the thalli of the gametophyte generation (Graham and Wilcox, 2000). Unilocular 

sporangia undergo meiosis leading to the formation of haploid zoospores. In some cases, 

the sporophyte produces a plurilicolar sporangia, which produces asexual zoospores that 

develop into multicellular thalli, which is morphologically similar to the parent (Graham 

and Wilcox, 2000). 
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Fig. 1.1: Diagram showing the alternation of generation in the life cycle of members of the Laminariales. 

 

Source: Drawn by Sayani Ghosh, modified from Graham and Wilcox (2000).  

 

1.4 Morphology and Life History of Laminariales 
 

The order Laminariales, commonly called kelp, belongs to the class Phaeophyceae. They 

include the largest algae in the world, reaching up to a length of around 50m (Van den 

Hoek et al., 1995). Kelps are found in cold temperate regions dominating hard subtidal 

substrates. These aggregations are called kelp beds if the algae do not form a surface 

canopy and kelp forests if they do form a floating surface canopy (Nybakken and 

Bertness, 2005). The size and biomass of kelps creates an unique habitat for various 

species (Steneck et al., 2002) by providing a source of food, substrate and protection 

from predators. Although the morphology varies among the members of the 

Laminariales, all kelp are attached to the substrate by a holdfast of branched haptera, 

rhizoids or disc (Lane et al., 2006). A stipe arises centrally from the holdfast. The stipe 
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has intercalary meristematic tissue at its upper end, at the transition zone between the 

stipe and the terminal blade (Fig. 1.2) (Lane et al., 2006). Extension of the stipe and the 

blade occurs due to cell divisions in this transition zone and the resulting increase in girth 

produced by a superficial meristem is called the meristoderm (Bold and Wynne, 1985). 

Kelp are the only seaweeds that have specialized cells called trumpet hyphae, present on 

the blades, that are used for transport of nutrients, which are subsequently stored as 

laminaran and mannitol (Lüning, 1990).   

                                     

Fig. 1.2: The Structure of the Laminariales. Source: Diagram by Erasmo Macaya Horta. Used with 

permission. 

 

 

The Laminariales exhibit an alternation of generations of a macroscopic sporophytes and 

microscopic gametophytes (Kai et al., 2006). Reproduction is by unilocular sporangia, 

which are born in sori on general or localized portions of the sporophyte. The sporangium 

undergoes meiosis, leading to the formation of haploid zoospores, which then settle on a 

substrate and form male and female gametophytes (Dayton, 1985). The reproduction by 
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sporophytes is of particular importance as it helps to expand the distribution via zoospore 

dispersal (Kai et al., 2006). The rocky, subtidal habitats of the Northern Hemisphere are 

dominated by members of  the Laminariales, which are less abundant in the Southern 

Hemisphere. The Northern Atlantic only has a fraction of the species diversity found in 

the North Pacific, where 40 species are currently recognized along the coast of North 

America and 41 from Asia (Lane et al., 2006). Only eight species of kelp occur in the 

North Atlantic. Kelp species in the Southern Hemisphere are limited in number. They are 

restricted to Eisenia galapagensis W.R. Taylor, Laminaria abyssalis A.B. Joly & E.C. 

Oliveira, Laminaria brasiliensis A.B. Joly & E.C. Oliveira, three species of Macrocystis: 

Macrocystis angustifolia Bory de Saint-Vincent (exclusively Southern), Macrocystis 

pyrifera (Linnaeus) C. Agardh and Macrocystis integrifolia Bory de Saint-Vincent, the 

introduced species Undaria pinnatifida (Harvey) Suringer, and the largely Southern 

Hemisphere genera Ecklonia and Lessonia. Lessoniaceae is exclusively southern in 

distribution (Lane et al., 2006).  

 
       

1.5 Distribution and life history of Lessonia variegata J. Agardh 
 

The Lessoniaceae are conspicuous and the dominant species of algae along many rocky 

coastlines of the Pacific and Southern Oceans (Chin et al., 1991). including the rocky 

shores and reefs of New Zealand. The sporophytes are usually found subtidally (Nelson 

and Schwartz, 2005), while the microscopic gametophytes are presumed to be present in 

the mid to low intertidal zone (Fox and Swanson, 2007). 

 Lessonia variegata J. Agardh is a species which is endemic to New Zealand. There are 

four cryptic species of Lessonia variegata – the Northern lineage, extending from outer 
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South Head (Auckland) to East Cape; the Wellington lineage, which exends from East 

Cape to White Bay (Marlborough Sounds); the Kaikoura lineage, extending from Cape 

Cambell to Goose Bay; and the Southern lineage, extending from Tumbledown bay 

(Canterbury) to Stewart Island (Fig. 1.3) (Martin, 2011; Abbott, 2011). The sporophytes 

are distributed along some of the most exposed shorelines of New Zealand, from the 

upper subtidal zone to 15-20m depth (Nelson, 2005). Lessonia spp. exhibits the pattern of 

growth typical of Laminariales (Hawes et al., 2004).  

 

 

 

Fig. 1.3: Map of New Zealand showing the approximate distribution of the different lineages of Lessonia 

variegata. 

Source: Martin (2011). Used with permission.  

 

Schwartz et al. (2006) conducted field experiments on Lessonia variegata, collected from 

the three sites along the Wellington south coast (Red Rocks, Island Bay and Quarry), and 

found that Lessonia variegata was fertile from April to September (autumn to spring), 
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based on the presence of dark brown sori on the blades, with the fertility reaching its peak 

in August and September. Sori were absent from the blades by November and this 

coincided with the beginning of summer with warmer temperatures and longer days. The 

elongation rate of the blades of Lessonia variegata, and thus the growth of the algae, was 

found to be maximal over the summer months from November to February. Nelson and 

Schwartz (2005) conducted culture experiments on male and female gametophytes of 

Lessonia variegata  by varying the temperature, daylength and light intensity. They found 

that more gametes were formed under longer days (15 hours of light) and warmer (15°C) 

conditions, rather than shorter days (9 hours of light) and colder conditions (10°C). It was 

found that under low light conditions, the gametophytes grew as filamentous clumps 

instead of forming sperm and eggs. When the conditions were altered from winter (low 

light) to summer (high light) conditions, the gametophytes responded rapidly and formed 

gametes that underwent fertilization and developed into zygotes and ultimately formed 

sporophytes. Thus the gametophytes appear to serve as ‘seed banks’ for kelp under 

unsuitable conditions and produce gametes under suitable conditions (Nelson and 

Schwartz, 2005).  In many parts of the world, kelps are harvested from wild populations 

and some species are cultivated in aquaculture operations  to use as human food, animal 

feed, fertilisers and soil conditioners, as well as a source of many useful extracts such as 

gelling agents and pharmaceutical compounds (Graham and Wilcox, 2000).  

 

1.6 Carbohydrates produced by brown algae and their uses 
 

Brown algae produce various carbohydrates that are economically important and have 

uses in different industries ranging from food, the cosmetic and the pharmaceutical 
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industries to microbiology and biotechnology. Cellulose, laminaran, alginate, fucoidan 

and mannitol are the major polysaccharides produced by brown algae (Graham and 

Wilcox, 2000). All of these polysaccharides have various functions in the Phaeophyceae. 

One of the major photosynthetic end products, mannitol, along with laminarin (a β-1,3- 

glucan), acts as the main source of carbon storage in the Phaeophyceae (Rousvoal et al., 

2011). Fucoidans play an important role in the algal cell wall organization, and are 

involved in the morphogenesis of algal embryos (Bisgrove and Kropf, 2001). Fucoidans 

may also be involved in cross-linking alginate and cellulose (Mabeau et al., 1990). 

Cellulose comprises about 1-10% of the thallus dry weight, alginate may comprise up to 

35% of the thallus dry weight, mannitol accounts for about 20-30% (Graham and Wilcox, 

2000), fucoidan may vary between 5-20% (Davis et al.,2003) while laminaran percentage 

may vary between 0.2-6.5% (Rioux et al., 2009). Alginates, responsible for the flexibility 

of different parts of the algae, are mainly present in the intercellular matrix. They play an 

important role in preventing dessication and also help in ion exchange (Graham and 

Wilcox, 2000). The chemical structures and the content of some of these carbohydrates 

like laminaran, mannitol and fucoidan may vary according to the season, age of 

population and the geographic location (Rioux et al., 2009; Rioux et al., 2010; 

Zvyagintseva et al., 2003).  

 

Laminarin and fucoidans are commercially important for their various biological 

activities, while alginate is commercially used mainly in the food and cosmetic industry 

(Rioux et al., 2007).  Hayashi et al. (2008) found that sulfated fucoidans isolated from the 

edible brown alga Undaria pinnatifida inhibits the in vivo replication of herpes simplex 
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virus type 1 (HSV-1) in mice by increasing the activities of the natural killer (NK) and 

cytotoxic T lymphocyte (CTL) cells. They have also been found to have anti-coagulant 

and anti-thrombotic properties, interfere with the proliferation of cells, and may interfere 

with certain fertilization-related mechanisms (Berteau and Mulloy, 2003). Laminarin has 

been found to suppress apoptotic cell death (Kim et al., 2006), stimulate humoral 

immunity (Awad and Osman, 2003) and show anticoagulant properties (Hawkins and 

O’Neill, 1955). Experiments using laminarin to treat hydrofluoric acid induced corneal 

burns in rabbits have shown positive results (Hatipoglu et al., 2008).  

 

1.6.1 Properties of alginate 
 

Alginate, a cell wall polysaccharide, is believed to act as a structure forming component, 

having similar physiological properties as cellulose in terrestrial plants (Draget et al., 

2005). The intercellular alginate gel matrix is responsible for the mechanical strength and 

flexibility of kelps (Anderson et al., 1977). Alginate is a linear polysaccharide made up 

of 1,4-linked-β-D-Mannuronic acid (M) and its C-5 epimer α-L-Guluronic (G) acid 

arranged in heteropolymeric and homopolymeric blocks (Figure 1.4) (Campos et al., 

1996; Nyvall et al., 2003). A G block-rich alginate provides an increased rigidity to the 

stipes and holdfasts of the algae. On the other hand, alginates rich in M or MG blocks 

which are more flexible polymers, are found in blades exposed to wave action (Kloareg 

and Quatrano, 1988). The stipe and holdfast of Laminaria hyperborea (Gunnerus) Foslie, 

an alga that grows in very exposed coastal areas, have very high contents of guluronic 

acid that gives it mechanical rigidity, while the blades have much lower guluronic acid 

that allow them to be flexible (Draget et al., 2005). The composition and content of 
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alginate have been found to vary according to species, geographical locations and tissues. 

In 1984, Cragie et al. found that the polyguluronate composition (G- block rich alginate) 

was the lowest (~3%) in the blades of Laminaria longicruris Bachelot de la Pylaie, 

collected from the site with strong tidal currents, which were the most flexible, compared 

to blades from other sites (~14%), which were more rigid. On comparison of the alginate 

content in the blade and stipe of Laminaria digitata (Hudson) J.V. Lamouroux to that of 

Laminaria longicruris, it was found that the G-block content was much higher and the 

MG content lower in Laminaria digitata compared to Laminaria longicruris. Moreover, 

comparison of alginate composition between Laminaria digitata collected from Sandy 

Bay, Nova Scotia and that from east coast of Britain (Stockton et al., 1980) showed 

significant differences both in the blade and stipe, thus proving that alginate composition 

varies intraspecifically (Cragie et al., 1984).  
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a) 

  

b) 

    

 
Fig. 1.4: Diagram showing a) chemical structures of alginate monomers; b) an example of block 

distribution of alginate. 

 
Source: Draget et al.(2005) 
 

Commercially, alginate is a very valuable chemical, used in a number of industries. 

Alginate is able to form heat-resistant gels in the presence of Ca
+2 

(Campos et al., 1996), 

a property which makes it useful as a gel-former, and viscosifier (South and Whittick, 

1987; Fenoradosoa et al., 2010) in a wide range of industrial applications (Tenhaken et 

al., 2011), such as to immobilize enzymes (Tanriseven and Doğan, 2001), as a thickening 

agent in food and cosmetics (Podkorytova et al., 2007; Gómez-Díaz and Navaza, 2003) 

or to cover organs during transplantation as a barrier between the transplant and the host 

immune system (Kühtreiber et al., 1999). It is also used in cell encapsulation technology 

(Ertesvag and Valla, 1998).  
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1.6.2 Biosynthesis of alginate 
 

The biosynthetic pathway of alginate production in brown algae is shown in Fig. 1.5. 

Studies on the enzymes in the biosynthetic pathway of alginate in brown algae are very 

few. The final step of the pathway is the epimerization of D-mannuronic residues into L-

guluronic residues in the polymer chain. This reaction is catalyzed by the enzyme 

mannuronan C-5 epimerase (Nyvall et al., 2003). In addition to stimulating the reaction, 

the presence of low concentration of Ca
2+

 favours introduction of neighbouring G units, 

whereas at high concentration it has been found to favour the introduction of single G 

units, thus creating a polymer with a more alternating structure (Rødde and Larsen, 

1997).  

                             

Fig. 1.5: Biosynthesis pathway of alginate in Phaeophyceae.  

 
Source: Nyvall et al., (2003)  
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The GDP- mannose dehydrogenase (GMD) enzyme, which converts GDP- mannose to 

GDP-D-mannuronic acid via a four electron oxidation, has been studied in Ectocarpus 

siliculosus (Dillwyn) Lyngbye (Tenhaken et al., 2011). The GMD enzyme in Ectocarpus 

siliculosus is significantly different from related bacterial enzymes due to the absence of 

a ~120 amino acid sequence at its C-terminal (Tenhaken et al., 2011). The GMD from 

brown algae is highly active at alkaline pH (8.5-9.0) and is inactive below pH 7. It 

contains a catalytic Cys-residue which is highly sensitive to heavy metals. It is 

temperature sensitive, with the activity steadily increasing from 0°-30°C and rapidly 

getting deactivated at temperatures above 30
o
C (Tenhaken et al., 2011). The enzymatic 

activity was found to increase in the presence of salts, the optimum being around 500mM 

for Na2SO4 and NaCl and slightly lower for KCl.  

 

1.6.3  Mannuronan-C5-Epimerase genes involved in encoding the last 
enzyme in the alginate biosynthetic pathway 

            

Studies conducted on the genes involved in the biosynthetic pathway of alginate in 

members of  the phaeophyceae are limited in number. One of the two studies done on 

members of the Laminariales was conducted by Nyvall et al. (2003). They conducted an 

expressed sequence tag (EST) analysis on the kelp Laminaria digitata and established a 

total of 905 ESTs from sporophytes and gametophytes, which led to the characterization 

of 600 transcripts. The corresponding cDNAs of two ESTs were found to exhibit a 

significant similarity with the coat protein GP1 of the virus (EsV-1) infecting Ectocarpus 

siliculosus. The sequenced cDNAs, named Man-C5-E1 and Man-C5-E2, revealed a 

significant similarity with the mannuronan C5 epimerase (Man-C5-E) genes from the 
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alginate producing bacteria Azotobacter vinelandii and Pseudomonas aeruginosa. A 

northern blot on colonies containing cDNAs of L. digitata sporophytes, using the coding 

region of Man-C5-E1 as a probe, revealed four new cDNAs (Man- C5-E3-E6). The 

analysis of the amino acid sequences of the six cDNAs indicated that Man-C5-E1 and 

Man-C5-E6 were the only two full length cDNAs, encoding proteins of 55 kD. All the 

other cDNAs were partial cDNAs. The six cDNAs had large, variable 3'-UTRs, varying 

in length between 1318-1825 base pairs (bp) and shared a more or less conserved section 

(802 bp or 267 amino acid long) of the coding region (54% nucleotide identity and 69% 

amino acid identity). The 5' end was also variable between the copies. This indicated the 

presence of multiple copies of the Man-C5-E gene. The expression  levels of the Man-

C5-E genes were examined by northern blot analysis and reverse transcriptase PCR (RT-

PCR) in sporophytes collected at regular intervals over the whole year. A single 3.5 kb 

transcript was observed, based on the hybridization with the cDNA probe (Man C5-E1). 

However, cloning and sequencing of the RT-PCR products indicated the presence of 16 

different epimerase genes in the sporophytes. Both northern blot and RT-PCR showed 

that the transcript expression level was the highest in winter and early spring, which was 

also when the seawater nutrient levels and the active growth and alginate content of 

Laminaria digitata were maximal in Brittany, France.  

 

This was the first study to discover the presence of multiple copies of the Man-C5-E gene 

and the fluctuations in the expression levels of the copies, in a member of the 

Laminariales, thus throwing some light on the genetical mechanisms behind the last 

enzyme in the alginate biochemical pathway.  Inoue et al. (2007) conducted a study on 
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Man-C5-E genes in Saccharina japonica (Areschoug) C.E. Lane, C. Mayes, Druehl and 

G.W. Saunders. Although the study was not published, the sequence of the gene is 

available from GenBank. In the Ectocarpales, the sequenced genome of            

Ectocarpus siliculosus (Cock et al., 2010) revealed the presence of 20 copies of the gene 

and 25 isoforms of the Man-C5-E enzyme.  

 

1.6.4 Alginate production in Lessonia variegata 
 

Lessonia variegata, like all brown algal species, produces the cell wall building chemical 

alginate. Alginate is the major matrix component of the brown algal cell wall, accounting 

for 10.8% to 30.9% of the dry weight in the Wellington lineage (Abbott, 2011).  

Abbott (2011) measured the amount of alginate in Lessonia variegata from March 2010 

to February 2011 and her findings indicated that the alginate levels fluctuate throughout 

the year, showing the highest levels in May, November and December (Fig. 1.6). 
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Fig 1.6: Histogram showing the monthly mean yield (± standard deviation, n= 9-10) for alginate within the Wellington 
lineage of Lessonia variegata for the period of March 2010 – February 2011, (expressed as percent dry weight of the 
Lessonia variegata milled samples). Columns with the same letters are not significantly different at 
 P < 0.05 
Source: Abbott (2011). Used with permission. 

 

Skriptsova et al. (2004) found that in Undaria pinnatifida (Laminariales, Phaeophyceae) 

the alginate content was highest just before plant maturation and sporophyll development, 

which occurs during winter. This was hypothesized to be related to the development of 

reproductive structures. A fluctuation of alginate content is also seen in Abbott's (2011) 

findings. The highest level of alginate production is seen in November, which coincides 

with the maximum growth rate and rate of blade elongation in Lessonia variegata 

(Schwartz et al., 2006). Since alginate is a cell wall polysaccharide responsible for 

maintaining the structure of the cell wall, the production of alginate is expected to 

increase during the growth of the algae.  
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There is only one study on the alginate production of Lessonia spp., conducted on 

Lessonia variegata (Abbott, 2011). The studies which have been conducted all focus on 

the chemistry of the alginate and its biological and commercial uses. There is no study on 

the biochemical pathway of alginate synthesis or the enzymes and genes involved in the 

pathway in Lessonia spp. It is assumed that the biochemical pathway of alginate synthesis 

is similar to that of other members of  the Laminariales. However, as the genome of this 

species has not yet been sequenced, there is no information about the genes encoding the 

enzymes in the pathway. Due to the lack of data about the genetic sequences, the pattern 

of expression of the genes is not yet known. 

 

1.7 Outline and scope of this study 
 

This study aims to develop a better understanding of the genetic mechanisms leading to 

the production of alginate in the endemic New Zealand species Lessonia variegata. To 

start this, I have attempted to characterize the genes encoding mannuronan C5 epimerase 

on the four lineages of Lessonia variegata. I have compared the genetic sequences of the 

four lineages to check for the presence of multiple gene copies, thus gathering more 

information about the phenomenon of gene duplications, multigene families and genes 

under selection. I have also compared the Man-C5-E gene sequences of Lessonia 

variegata with those of Laminaria digitata and Saccharina japonica to examine if the 

genes share a monophylectic origin.  

This study is important in increasing our knowledge about Lessonia variegata, both in an 

academic and commercial sense, as this species could be a very important source of 

alginate production and extraction for a lot of industries. Understanding how the genes 
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behind the biosynthetic pathway of alginate production work could potentially lead to 

further studies on discovering more copies of the gene, the expression levels of the gene 

paralogs and fluctuations in the expression levels seasonally, spatially and also between 

different tissues of the same algae. This knowledge would be valuable in providing 

information about manipulating the genes to increase alginate production.  
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CHAPTER TWO 

MATERIALS AND METHODS 
 

2.1  Sampling 
 

Previous samples collected and prepared by a PhD student, Peter Martin, were used for 

this study. For this study, six samples of the Wellington lineage, one sample from the 

Northern lineage, one from the Kaikoura lineage and one from the Southern lineage were 

used (Table 2.1). 

 

2.2 DNA Extraction 
 

Peter Martin extracted the DNA using a modified CTAB protocol (Zuccarello and 

Lokhorst, 2005).  

 

2.3  PCR with Primer Set I 
 

2.3.1  Primer Set I designed from Genbank data 
 

Primer set I was designed by downloading and aligning the cDNA sequences of 

Laminaria digitata and Saccharina japonica from GenBank (Table 2.2), using the 

bioinformatics software Geneious (Drummond et al., 2012). The most conserved region 

was found to be 568 bp long, between nucleotide positions 1056 and 1623 (64.3% 

nucleotide identity), corresponding to Laminaria digitata Man-C5-E6 sequence. The 

aligned sequences in this region were thus used to design two primers, called C5-1056F 

and C5-1623R (Table 2.3), to amplify ~500bp of the coding region of the gene of interest 

in Lessonia variegata. 
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2.3.2 DNA Amplification 

 
All PCR amplifications were carried out in a PTC – 100 Thermal Cycler (MJ Research). 

Each 30 µl reaction volume contained 1 µl of  diluted DNA sample, 1X ThermoPol 

Reaction buffer (New England Biolabs, Ipswich, MA, USA), 0.83 mM dNTP, 0.5 mM 

Mg
2+ 

(New England Biolabs), 0.25% BSA (New England Biolabs), 0.75 nM of each 

primer, and 1U of Taq polymerase (New England Biolabs). A touchdown PCR was 

carried out on the DNA sample C568. An initial denaturation step at 94°C for 4 minutes 

was followed by 9 cycles, where the initial annealing temperature of 55°C decreases by 

1°C each cycle until it reaches 45°C. This was followed by 29 cycles at an annealing 

temperature of 45°C. An initial denaturation step at 94°C for 4 minutes was followed by 

37 cycles (1 minute at 94°C, 1 minute at 45°C and 1minute at 72°C), followed by a final 

extension step at 72 °C for 10 minutes.  

 

2.3.3 DNA extraction and ligation 
 

PCR products were checked for yield on 1% agarose gel. The bands were excised using a 

clean scalpel and extracted according to the specifications of a  Qiagen Gel extraction kit. 

The excised gel slice was weighed and an equal volume of binding buffer was added to it. 

The mixture was then incubated at 58° C till the gel was completely melted and then the 

mixture was vortexed for 3 minutes. 600-700 µl of the DNA/agarose solution was placed 

in a Hibind
®
 mini column and centrifuged at 10,000x g for 1 minute. The flow through 

was discarded and 300µl of binding buffer was added to the same Hibind
® 

mini column 
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and centrifuged at 10,000x g for 1 minute at room temperature to wash the column. The 

flow through was discarded and the column was washed by adding 700µl of SPW wash 

buffer diluted with absolute ethanol. It was then centrifuged at 10,000x g for 1 minute 

and the step was repeated. The column was then placed into a clean microcentrifuge tube 

and 30 µl of elution buffer was added directly to the column matrix, incubated at room 

temperature for 1min and then centrifuged for 1minute at maximum speed to elute the 

DNA.  

 

Extracted DNA was then ligated into pGEM® T-Easy vector (Promega, Madison, USA) 

by adding 1µl of vector, 1X ligation buffer (Promega, Madison, USA), 3U of T4 DNA 

ligase (Promega, Madison, USA) to 7 µl of purified PCR product to make a final volume 

of 10 µl. This mixture was then put in a water bath and incubated at 4°C overnight.  

 

2.3.4 Making LB-agar-ampicillin plates 
 

LB-Agar Plates were made by adding 1% agar to 500ml of Luria Broth (LB) (Sigma-

Aldrich, New Zealand), which was then autoclaved. 1ml of Ampicillin (50mg/ml) was 

added to the mixture after cooling it down to 55°C, followed by pouring the mixture into 

petri dishes. 20µl each of X-gal (20mg/ml) and IPTG (0.1M) were then added to the LB-

Agar plates. The plates were then left partially open for 20 minutes for the X-gal and 

IPTG to dry out. 
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2.3.5 Preparation and transformation of chemically competent E. coli 
 

The DH5α Escherichia coli cells were made according to the protocol adapted by Jeremy 

Owen (2010) based on the method described in Hanahan (1983).  

 

2.3.6 Transformation of competent DH5α E. coli cells 
 

Competent DH5α bacterial cells were transformed by adding 10µl of ligation to 100µl of 

competent cells, followed by leaving the cells on ice for 20 minutes and heat shocking at 

42°C for 90 seconds. 900µl of LB was then added and the cells were allowed to recover 

for 1 hour at 37°C. Thereafter, 250µl of transformed DH5α cells containing the ligated 

DNA were added to each plate and colonies were grown overnight at 37°C.  

 

White colonies were picked with sterile toothpicks and transferred to another LB-agar-

ampicillin plate (without X-gal and IPTG), along with one blue colony, and grown 

overnight at 37°C.  

 

2.3.7 Miniprepping of plasmids 
 

Colonies grown on the master plates were then picked with sterile toothpicks and 

inoculated in 3ml of LB and 6µl of Ampicillin (50mg/ml) and grown overnight at 37°C. 

The bacteria from the culture tube was then transferred to a 1.5ml eppendorf  tube and 

centrifuged for 5 minutes at 13,000 rpm at 4°C. The bacterial pellets were then 

resuspended in 100µl of ice cold solution I (1M glucose, 1M Tris, pH 8.0, 0.5 EDTA, pH 

8.0) by vortexing until all the pellets are completely dissolved. 200µl of freshly prepared 

solution II (0.2N NaOH, 1% sodium dodecyl sulphate) was then added and the contents 
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mixed by inverting the tubes five times. 150µl of ice cold solution III (5M potassium 

acetate, 96% glacial acetic acid) was then added and the contents mixed by inverting five 

times. This mixture was then centrifuged at maximum speed for 20 minutes at 4°C, 

followed by transferring the supernatant to a fresh tube. 450µl of 1:1 phenol:chloroform 

was then added to each tube. The mixture was shaken well and centrifuged at maximum 

speed for 5 minutes. 400µl of the upper aqueous layer was then transferred to a fresh tube 

and an equal volume of 24:1 chloroform-isoamyl alcohol mixture was added to each tube. 

This was mixed and centrifuged at maximum speed for 2 minutes. 350µl of the upper 

aqueous layer was transferred to a fresh tube and 870 µl of cold 99% ethanol was added 

to each tube. The mixture was centrifuged at maximum speed for 15 minutes at 4°C. The 

supernatant was then removed and 200µl of 70% ethanol was run down the sides of each 

tube and the mixture centrifuged for 5 minutes at maximum speed. The supernatant was 

removed and the pellet air dried. The nucleic acid pellet was then redissolved in 40 µl of 

sterile water.  

 

2.3.8 Restriction digestion of plasmid 
 

Restriction digestion of the miniprepped plasmid was carried out by adding 3µl of the 

plasmid, containing the insert, to 1X EcoRI buffer (Roche Applied Science, New 

Zealand), 10U of the restriction enzyme EcoRI (Roche Applied Science, New Zealand), 

1µl of 2mg/ml RNAse A (Invitrogen, Life technologies), and 4µl of sterile water, to 

make up a total volume of 10µl.  This was incubated at 37°C for 3 hours. The resulting 

digested plasmid was then run on a 1% agarose gel to check the length of the inserts, 

which were then commercially sequenced (Macrogen Inc., Seoul, South Korea).  
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2.4 PCR with Primer Set II 
 

2.4.1 Primer Set II designed for the specific amplification of Lessonia variegata 
sequences 
 

The three gene sequences obtained were aligned, using Geneious (Drummond et al., 

2012), with the Man-C5-E gene sequences of Laminaria digitata and Saccharina 

Japonica to design primer set II, Lv.E-F49 and Lv.E-R473 (Table 2.3), specific for the 

Wellington lineage of Lessonia variegata. This was done to minimize chances of non-

specific amplification of DNA sequences.  

 

PCR amplifications were carried out at an annealing temperature of 55°C with the new 

primers on all 4 lineages. An initial denaturation step at 94°C for 4 minutes was followed 

by 37 cycles (1 minute at 94°C, 1 minute at 55°C and 1 minute at 72°C), followed by a 

final extension step at 72 °C for 10 minutes. 

 

2.4.2 Ligation, PCR clean up and transformation 
 

As the PCR amplification by the primers Lv.E-F49 and Lv.E-R473 (Table 2.3) showed 

multiple bands. 5% DMSO was added to increase specificity. The PCR products were 

then purified according to the specifications in the High Pure PCR product purification 

kit (Roche Applied Science, New Zealand) to get more concentrated DNA for ligation. 

25µl of PCR product was mixed with 125µl of binding buffer. The mixture was then 

transferred to the upper reservoir of a High Pure Filter Tube, inserted into a collection 

tube, and centrifuged for 1 minute at 13,000x g at room temperature. The flow through 

was discarded and 125µl of wash buffer was added to the upper reservoir, which was 
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then centrifuged for 1 minute at 13,000x g at room temperature. The resulting flow 

through was discarded and 50µl of wash buffer was added to the filter tube and 

centrifuged as before. The collection tube with the flow through was discarded and the 

filter tube was inserted into a 1.5ml microcentrifuge tube. 10µl of elution buffer was 

added to the filter tube, and centrifuged for 1 minute at maximum speed. The resulting 

flow through contained purified PCR product. 

 

The PCR products were then directly ligated into pGEM® T-Easy vector (Promega, 

Madison, USA) by adding 1µl of vector, 1X ligation buffer (Promega, Madison, USA), 

3U of T4 DNA ligase (Promega, Madison, USA) to 7µl of PCR product to make a final 

volume of 10 µl. This mixture was then put in a water bath and incubated at 4°C 

overnight.  

 

LB-agar plates were made following the procedure described previously. Chemically 

competent JM109 High Efficiency Competent Cells (Promega, Madison, USA) were 

transformed with the ligated DNA by following the transformation procedure provided 

by the manufacturer. 2µl of each ligation was added to a 1.5ml microcentrifuge tube set 

on ice. Frozen JM109 cells were placed in an ice bath until just thawed. The competent 

cells were then mixed by gently flicking the tube and 50µl of competent cells were 

transferred to each of the tubes containing ligations. The tubes were gently flicked to mix 

the contents and placed on ice for 20 minutes. The cells were then heat-shocked for 45-50 

seconds in a water bath at exactly 42°C. The tubes were then immediately returned to the 

ice for 2 minutes. Then 950µl of room temperature super optimal broth with catabolite 
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repression (SOC) (2% bactro-tryptone, 0.5% yeast extract, 10mM NaCl, 2.5mM KCl, 

10mM MgCl2, 20mM glucose) was added to the tubes and the mixture was incubated for 

1.5 hours at 37°C with shaking. 100 µl of each transformation was then plated onto each 

LB/ampicillin/X-gal/IPTG plates. The plates were then incubated overnight (16-24 hours) 

at 37°C to facilitate the growth of bacterial colonies. 

 

White colonies were picked with sterile toothpicks and transferred to another 

LB/agar/ampicillin plate (without X-gal and IPTG), along with one blue colony, and 

grown overnight at 37°C.  

 

2.4.3 Colony PCR 
 

PCRs were carried out on the bacterial colonies growing on the LB/agar/ampicillin plate, 

in order to determine if the plasmids in the competent cells contained the desired insert 

(~500bp). All PCR amplifications were carried out in a PTC – 100 Thermal Cycler (MJ 

Research). Each 30 µl reaction volume contained 1X ThermoPol Reaction buffer (New 

England Biolabs, Ipswich, MA, USA), 0.83 mM dNTP, 0.5 mM Mg
2+ 

(New England 

Biolabs), 0.25% BSA (New England Biolabs), 0.75 nM of each primer ( Primer Set II; 

Table 2.3), and 1U of Taq polymerase (New England Biolabs). Sterile toothpicks were 

used to pick up each colony and then dipped into the 1.5ml microcentrifuge tube 

containing the PCR mixture and swirled around to mix well. PCR amplifications were 

carried out at an annealing temperature of 60°C for all samples. An initial denaturation 

step at 94°C for 4 minutes was followed by 37 cycles (1 minute at 94°C, 1 minute at 

60°C and 1 minute at 72°C), followed by a final extension step at 72 °C for 10 minutes. 
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PCR products were then run on 1% agarose gel to check for the presence of the desired 

insert. The samples containing the insert were then purified with ExoSAP-IT (USB, 

Cleveland, Ohio, USA) and sent away to be commercially sequenced (Macrogen Inc., 

Seoul, South Korea).  

 

2.5 Analysis of obtained DNA sequences 
 

An unrooted neighbour-joining tree consisting of all the cloned Man-C5-E DNA 

sequences (full 429bp dataset) was constructed using Jukes-Cantor (Jukes and Cantor, 

1969) distances. This was done in Geneious (Drummond et al., 2012). The resulting 

topology showed gene clusters that indicated the presence of multiple identical sequences 

per sample (Appendix 1). Each cloned Man-C5-E gene sequence was thus manually 

checked and identical sequences as well as sequences differing from each other by only 

one or two base pairs, removed. The clones were also screened for singletons and 

chimeric PCR products (Wang and Wang, 1997). 'Singletons' or base pairs which differ 

in position in one cloned sequence when compared with other clones in the same sample, 

could be errors which normally arise due to the non-proof reading ability of Taq DNA 

polymerase (Zuccarello et al., 2009). These point mutations, which are not restricted to 

third codon positions, and can occur randomly in first and second codon positions as 

well, were checked manually and removed. The clones were also checked for chimeric 

PCR products (PCR-produced errors in the form of mixed template sequences) using the 

Bellerophon server (Huber et al., 2004). A BLAST search (blastx) of the samples was 

done to confirm the correct orientation (5'-3') and to check for homology to existing algal 
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Man-C5 epimerases in the GenBank database. Each alignment was edited and formatted 

in Se-Al (Rombaut, 1996) prior to constructing trees.  

 

The final Lessonia variegata Man-C5-E gene dataset consisted of 20 sequences, 

belonging to the three lineages (Northern, Southern and Wellington lineage) and a 

maximum of 429 characters per sequence. Two unrooted neighbour joining (NJ) trees, 

using Jukes-Cantor (Jukes and Cantor, 1969) distances, were constructed, one with the 

first 127 characters (the exon) and one with the remaining 302 characters (the intron) 

(refer to section 3.1.2). For bootstrap analysis (BP), 1000 replicates were generated from 

resampled data. The NJ trees were constructed in Geneious (Drummond et al., 2012).  

A haplotype data file of the first 127 characters of 20 Man-C5-E DNA sequences was 

generated using DnaSP v5 (Librado and Rozas, 2009). A haplotype network was 

calculated and drawn in Network 4.6.1.0 (Fluxus Technology Ltd.) using median-joining 

(Bandelt et al., 1999).   

 

A Man-C5-E DNA dataset consisting of 29 sequences, belonging to 4 species (Lessonia 

variegata, Laminaria digitata, Saccharina japonica and Ectocarpus siliculosus) and the 

127 characters of the exon (28 parsimony-informative positions, 9 parsimony 

uninformative positions and 90 constant characters), was analyzed using three 

algorithms: a neighbour-joining procedure was implemented in PAUP*4.0b10 (Swofford, 

2002). General Time Reversible (GTR) (Tavaré, 1986) distances were used to determine 

bootstrap percentages (1000 replicates), which was used to construct a NJ tree; a 

maximum likelihood (ML) analysis was implemented in PAUP*, using GTR+ proportion 
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invariant + gamma (GTR+I+G) (Tavaré, 1986) distances, with 1 random sequence 

addition, tree-bisection-reconnection (TBR) branch swapping, unordered and unweighted 

characters, and gaps treated as missing data.  For bootstrap analysis (BP), 100 bootstraps 

were generated from resampled data (10 random sequence additions). The models for 

both the analyses were executed in ModelTest 3.7 (Posada and Crandall, 1998), using the 

Akaike Information Criterion (AIC) (Akaike, 1974). A Bayesian tree was inferred using 

Mr Bayes 3.1.2 (Huelsenbeck and Ronquist, 2001) using two parallel runs of each three 

heated chains and a cold one, and 3 X 10
6 
generations with sampling every 100 

generations. Tracer v1.4 (Rambaut and Drummond, 2007) was used to check the 

convergence between the runs and the stationarity of scores. A burn-in of 3000 trees was 

removed from each run separately, and the posterior probability estimated from the 

remaining 27000 trees. Transition model + Proportion invariant + gamma (TIM+I+G) 

distances for Mr Bayes analysis were estimated in ModelTest using AIC. 

 

2.6 RNA extraction 
 

Lessonia variegata samples were collected from Moa Point, Island Bay, Wellington for 

RNA extraction. Tissues (1-2 cm
2
) were collected from the base (youngest part), middle 

and tip (oldest part) of the blades, which were then patted dry, sealed in bags, frozen 

immediately in liquid nitrogen and stored at -80°C.  

 

The TRIzol
®
 method (Invitrogen, Life technologies) was used to extract RNA. A 

sterilized mortar and pestle was used for homogenization of the tissues. Liquid nitrogen 

was added to the mortar and pestle and the tissue was ground up until powdery. The 
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tissue samples were then homogenized in 1ml of TRIzol
®
  Reagent per 50-100 mg of 

tissue. The homogenate was then centrifuged at 12,000x g for 10 minutes at 2°-8°C to 

remove excess polysaccharides. The supernatant containing RNA was then transferred to 

a new 1.5ml microcentrifuge tube. The tubes were then incubated at 15°-30°C for 5 

minutes to allow the nucleoprotein complex to dissociate completely. Then 0.2ml of 

chloroform per 1ml of TRIzol
®
  Reagent was added, followed by vigorous shaking by 

hand for 15 seconds and incubating the tubes at 15°-30°C for 2-3 minutes. The samples 

were then centrifuged at 12,000x g for 15 minutes at 2°-8°C. Following centrifugation, 

the mixture separated into a lower red phenol-chloroform phase, an interphase, and a 

colourless upper aqueous phase containing RNA. The aqueous phase was then transferred 

to a fresh tube and the RNA was precipitated by adding 0.5ml of isopropyl alcohol per 

1ml of TRIzol
®
  Reagent added for homogenization. The samples were then incubated at 

15°-30°C for 10 minutes and then centrifuged at  12,000x g for 10 minutes at 2°-8°C. A 

gel-like pellet was seen on the bottom of the tube. The supernatant was then removed and 

the pellet was washed by adding 1ml of 75% ethanol (in DEPC-treated water) per 1 ml of 

TRIzol
®
  Reagent added for homogenization. The sample was then centrifuged at 7,500x 

g for 5 minutes at 2°-8°C. The RNA pellet was then briefly air-dried for 5 minutes, taking 

care not to let it dry out completely. The pellet was then dissolved in 40µl of RNase-free 

water (0.01% diethylpyrocarbonate or DEPC added to sterile water, left overnight and 

autoclaved) by passing the solution a few times through a pipette tip and incubating at 

55°-60°C for 10 minutes.  

The samples were then run on 1% agarose gel to check for bands of RNA.  
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Table 2.1 Location of samples used in this study 

The following table lists the Lessonia variegata samples used in this study, the region from where it was 

collected, the geographical coordinates of the location, the name of the collector and the date it was 

collected.   

 

 

 

 

 

 

 

 

 

Sample 

no. 
Species Phytogeographic  

region 
Sample 

site 

Latitude 

N-S 

Longitude 

W-E 

Collection Date 

A103 L.variegata Kaikoura Paia 

Point 

42°29'22.43"S 173°31'27.05"E Peter 

Martin 

06.02.10 

B070 L.variegata Northeastern Cape 

Wiwiki 

35°09'22.56"S 174°07'19.62"E Peter 

Martin 

07.02.15 

C132 L.variegata Fiordland Doubtful 

Sound at 

Causet 

Cove 

45°17'47.63"S 166°54'33.01"E Wendy 

Nelson 

08.01.25 

C318 L.variegata Cook Turakirae 

Head 500 

41°26'18.63"S 174°55'10.87"E Peter 

Martin 

08.12.01 

C549 L.variegata Cook Cape 

Palliser 0 

41°36'44.84"S 175°17'49.87"E Peter 

Martin 

09.01.29 

C550 L.variegata Cook Cape 

Palliser 0 

41°36'44.84"S 175°17'49.87"E Peter 

Martin 

09.01.29 

C568 L.variegata Cook Cape 

Palliser 

300 

41°36'43.24"S 175°17'58.33"E Peter 

Martin 

09.01.29 
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Table 2.2 Brown algal sequences used in the study 

The following table lists the brown algal sequences downloaded from GenBank, which were used in this 

study: the name of the species and the gene, the GenBank accession numbers and the source article.  

 

Species GenBank Accession Numbers             Source 

Laminaria digitata Man-

C5-E6 

AJ496454 Nyvall et al., 2003 

Laminaria digitata Man-

C5-E5 
AJ496453 Nyvall et al., 2003 

Laminaria digitata Man-

C5-E4 
AJ496452 Nyvall et al., 2003 

Laminaria digitata Man-

C5-E3 
AJ496451 Nyvall et al., 2003 

Laminaria digitata Man-

C5-E2 
AJ496450 Nyvall et al., 2003 

Laminaria digitata Man-

C5-E1 
AJ496449 Nyvall et al., 2003 

Saccharina japonica AB299380 Inoue et al., 2007 

Ectocarpus siliculosus  FN648516 Cock et al., 2010 

Ectocarpus siliculosus  FN648702 Cock et al., 2010 
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Table 2.3 Primers designed for this study 

The table lists the primers that were designed for this study. C51056 and C51623 are the primers, obtained 

by aligning Laminaria digitata and Saccharina  japonica sequences, used in the original PCR, while the 

rest were designed specifically for Lessonia variegata, to be used in the later PCR. The names given to 

each primer, the DNA sequences, melting temperature (Tm) and percentage of GC content of each primer 

are noted below; F= Forward primer, R = Reverse primer. 

 

    Primers               Sequence (5’-3’) Primer 

Set 

 Melting 

Temperature 

(Tm) 

     %GC 

C5-1056 (F)  

(nucleotide 

1056-1076) 

CAC RTA CGG YCA CSA GMA GG  

 

       I 

      59.3°C       62.5 

C5-1623 (R) 

(nucleotide 

1603-1623) 

SMG TCB TCG AAG CGG ATC GT       59.9°C      60.8 

Lv.E-F49 (F) 

(nucleotide 

49-73) 

TGG AGG AGG AAC AAG ATG CAC 

GAC 

 

 

 

       II 

      60.9°C      54.1 

Lv.E-

R473(R) 

(nucleotide 

454-473) 

TAC GGC CAC GAG CAG GCG G      65.5°C      65.5 
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CHAPTER THREE 

3.1 RESULTS  
 

3.1.1 Amplification with Primer Set I 
 

The restriction digestion and sequencing of the cloned products from the original PCR, 

using Primer Set I (Table 2.3) produced three distinct Lessonia variegata DNA 

sequences, differing by 8-14bp (Table 3.1). Each of the obtained sequences were 474 bp 

long and shared 97.3% nucleotide identity between them. When aligned with the 

Laminaria digitata and Saccharina japonica epimerase sequences, the sequences were 

found to be aligned between nucleotide positions 1057 and 1540 of Laminaria digitata 

Man-C5-E6 sequence (Genbank Accession number: AJ496454; Table 2.2). However, the 

first 156bp of the Lessonia variegata sequences showed the highest nucleotide identity 

(79.5%) with the L. digitata and S. japonica sequences (between nucleotide positions 

1057 - 1212; Table 2.2), while the remaining 318bp of the amplified sequences could not 

be aligned sensibly, due to the presence of a high amount of gaps. Stop codons in all 

reading frames were observed in all the L. variegata sequences between positions 181-

494 (corresponding to Lessonia variegata sequence alignment). 
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Table 3.1: List of the observed number of nucleotide changes (bp) between three Lessonia variegata 

sequences from the Wellington lineage C568, obtained from primer set I.  

 

 

 

 

 

 

 

 

3.1.2 Sequences obtained from PCR with Primer Set II 
 

The cloning PCR using Primer Set II (Table 2.3; see Materials and Methods) produced 

multiple Man-C5-E gene sequences for the Wellington, Northern and Southern lineages, 

the longest amplicon size being 429bp. Each of the sequences was assigned a number. 

The sequences were compared manually to identify identical copies and singletons (see 

Materials and Methods), which were then deleted. This produced a total of 20 sequences 

for Lessonia variegata (Table 3.2). PCR amplifications in Lessonia variegata were 

unsuccessful in amplifying from the Kaikoura lineage (Table 2.3).  

When the full 429bp Lessonia variegata dataset was aligned, the first 127bp of the 

alignment was found to be very conserved, with base pair variations mostly seen at the 

third codon positions. The remaining 302bp alignment showed more variations in the 

alignment, with the presence of gaps and stop codons after position 180 in the alignment. 

Hence, the alignment was divided up into two parts - the first 127bp (deduced to be 

Number of 

nucleotide changes 
(bp) 

C568.1 C568.2 C568.3 

C568.1    

C568.2 10   

C568.3 8 14  
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exons) and the remaining 302bp (deduced to be introns). Each part was analysed 

separately.  

 

Table 3.2: List of Lessonia variegata sequences (only variable positions shown) obtained from 

primer set II 

 

Each sequence per sample was assigned an unique number. The table lists the DNA isolation number-

Lessonia variegata lineage-clone number of each sample and the point mutations observed at each position 

in the first 127bp (exon) of the alignment of the Lessonia variegata clones. Non-synonymous mutations are 

highlighted; bold:1st codon transition, Italics and underlined: 2nd codon transition. 

 

 

Samples 

 

Lineage 

                    Point Mutations (Positions in the alignment) 

9 18 21 30 36 39 43 50 73 75 78 87 111 120 

B70-N-1 Northern C T C C T T C  T  A C A  C  T C 

B70-N-2 Northern C T C C T T C T A C G  C C T 

B70-N-12 Northern C T C C C C T T A C A T C C 

C132-S-1 Southern T T T T C C T T A C G C C T 

C132-S-2 Southern C T C C T T C T A C G C C T 

C132-S-5 Southern T T T C C C T C A C A C T C 

C132-S-7 Southern T T T T C C T T A C A C T C 

C132-S-22 Southern T T T C T T C T A C A C C T 

C318-W-1 Wellington C T C C T T C T A T G C C T 

C318-W-2 Wellington T C C C T T C T A C G C T C 

C549-W-2 Wellington C T T C C C T T G C A C T C 

C549-W-4 Wellington C T C C T T C T A T G C C T 

C549-W-10 Wellington C T C T T T C T A T G C C T 

C549-W-17 Wellington T C C C T T C T G C G C T C 

C550-W-1 Wellington C T T C C C T C A C A C T C 

C550-W-2 Wellington C T T C C C T T A C A C T C 

C550-W-5 Wellington C T C C T T C T A T G C C T 

C550-W-6 Wellington T C T C C C T T A C A C T C 

C550-W-12 Wellington T C C C T T C T A C G C T C 

C550-W-27 Wellington T C C C T T C T A C G C C T 

 

An unrooted neighbour joining tree (Jukes-Cantor distances) of the first 127 bp (exon) of 

Lessonia variegata lineages produced two distinct groups (Fig. 3.1). A weakly supported 

relationship (<50%) of the groups clearly showed the presence of  at least two distinct 

copies of the Man-C5-E gene in Lessonia variegata. The groups differed mainly due to 

base pair changes in the third codon positions (10 variable sites), all of them being 
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synonymous mutations. Non-synonymous mutations were only observed in five 

sequences at positions 50 and 73 in the alignment, due to transitions at the second and 

first codon positions respectively (Table 3.2).  

       In Group 1(92.1% nucleotide identity), gene clusters consisting of samples from all 

three lineages were observed. A sample from the Southern lineage (C132-S-5) and one 

from the Wellington lineage (C550-W-1) were found to share a common non-

synonymous transition at a second codon position (Table 3.2), causing an amino acid 

substitution (isoleucine → threonine). A  non-synonymous transition leading to the amino 

acid change (asparagine → aspartic acid) was seen in C549-W-2 (Table 3.2). 

        In Group 2 (92.9% nucleotide identity), the Wellington lineage samples C549-W-4, 

C318-W-1 and C550-W-5 were found to have identical sequences, sharing point 

mutations at positions 21, 36, 39, 43, 75, 78, 111 and 120 (Table 3.2). The Northern and 

Southern lineage samples were found to cluster together, rather than with the Wellington 

lineage samples, with B70-N-2 and C132-S-2 having identical sequences (Fig. 3.1). 

Interestingly, the non- synonymous transversion in the first codon position leading to an 

amino acid change (asparagine → aspartic acid) in C549-W-2 (Group 1) was also 

observed in C549-W-17 (Group 2) (Table 3.2).  

 



39 

 

 

Fig. 3.1: Unrooted neighbour joining topology of Man-C5-E exon sequences (127 characters, Jukes-Cantor 

distances) in Northern, Southern  and Wellington lineages of Lessonia variegata. Lineages are color-coded. 

B70-N Northern lineage (green); C132-S Southern lineage (red); C318-W, C549-W, C550-W Wellington 

lineage (blue)  

 

The two gene clusters (Fig. 3.1) are defined as two groups (exon group 1 and 2) based on 

the number of base pair differences between the groups, ranging from 5-11bp (Fig. 3.2; 

Table 3.3). The variations within each exon group, was found to be less than that between 

the two groups (Table 3.3). The number of base pair differences within exon group 1 was 

found to be within 1-6bp, while that within exon group 2 was found to range from 0-7bp 

(Table 3.3). The haplotype network (Fig. 3.2) shows the base pair positions (in the 

Lessonia variegata alignment) where the substitutions have taken place, and thus 
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indicates the number of base pair changes between sequences. The number of possible 

alleles in each sample is shown in Table 3.4. 

 

 

Fig. 3.2: Haplotype network showing nucleotide substitutions between sequences. Numbers on branches 

indicate positions where the transversions have taken place in the Lessonia variegata lineages, also listed in 

Table 3.1. B70-N: Northern lineage (green); C132-S: Southern lineage (red); C318-W, C549-W, C550-W: 

Wellington lineage (blue).  
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Table 3.3: List of observed range of nucleotide changes within and between exon groups. The nucleotide 

change has been calculated per lineage: W = Wellington lineage consisting of samples C550, C549 and 

C318; N= Northern lineage consisting of sample B70; S= Southern lineage consisting of sample C132 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.4: A list of possible alleles in each exon group, as seen in fig 3.1 

 
   

 

Lineages 
 

 

 

Samples 

 

Exon 

Group 1 

  

Exon 

Group 2 

  

Alleles 

 

Alleles 

Northern B70-N  
1 

 
2 

Southern C132-S  

2 

 

2 

Wellington C318-W   
- 

 
2 

C549-W  
1 

 
3 

C550-W  

3 

 

3 

 

 

Number     

of 
nucleotide 

changes (bp) 

         Exon Group 1          Exon Group 2 

W N S W N S 

Exon 

Group  
1 

W    1-3          

N    3-5 N/A       

S   1-6   5-6   3-5    

Exon 

Group 

2 

W  5-11      0-7   

N   7-9  5-6     1-5    3  

S   6-11  6-9  6-9   1-7   0-3    2 
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A very low nucleotide identity (52.3%) was observed when the remaining 302bp of the  

L. variegata sequences were aligned with each other. All three lineages were found to 

have stop codons after position 180, in all three reading frames. When aligned with the 

Man-C5-E gene copies of Laminaria digitata and Saccharina japonica (Table 2.2), the 

alignment was found to be very poor (15.6% nucleotide identity) with a high amount of 

gaps after the first 127bp. This poor alignment, combined with the presence of stop 

codons and the high variability between sequences, indicates the presence of an intron in 

the gene, after the first 127bp of the sequence. This is further supported by the presence 

of the GT sequences at position 127-128 (corresponding to all Lessonia variegata 

sequences), as per the GT-AG intron splice junction rule (Mount, 1982). However, the 

putative ending of the intron, signalled by the presence of the AG sequence was not 

found. 

 

Fig. 3.3: Unrooted neighbour-joining topology of the intronic sequences of Man-C5-E gene (Jukes-Cantor 

distances) of the Northern, Southern and Wellington lineages of Lessonia variegata. Lineages are colour-

coded. B70-N Northern lineage (green); C132-S Southern lineage (red); C318-W, C549-W, C550-W 

Wellington lineage (blue) 
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When an unrooted neighbour-joining tree (Jukes Cantor distances) was constructed with 

the intron sequences of the Man-C5-E gene (Fig. 3.3), the sequences were found to form 

different clusters than those observed previously (Fig. 3.1). A BLAST search to identify 

the presence of transposons in the introns yielded no result.  

 

The search for chimeric sequences in the dataset indicated the presence of one such 

sequence in the Wellington lineage, C549-W-17. Bellerophon (see Materials and 

Methods) indicated that the parent sequences of the putative chimera, were C549-W-1 

and C549-W-2. The chimeric breakpoint was observed to be present within the intronic 

region (nucleotide position 200 in Lessonia variegata sequences). Manual inspection 

revealed a high percentage (>95%) of nucleotide identity of the putative chimera with the 

parent sequences, on both sides of the breakpoint and 100% nucleotide identity with 

C549-W-17 within the intronic region, after the chimeric breakpoint.  

 

A Bayesian tree constructed (GTR+G distances; exon only 127 characters) with the 

epimerase sequences of Laminaria digitata, Saccharina japonica and Lessonia variegata, 

with Ectocarpus siliculosus epimerase sequences as outgroups (Fig. 3.4), revealed two 

distinct groups of L. variegata exon sequences, as observed previously (Fig. 3.1). 

Assuming the topology is correct, the phylogenetic tree reveals at least one gene 

duplication event took place in Lessonia variegata, leading to the formation of two gene 

duplicates. The topology also shows one gene duplication event in Laminaria digitata. 

The base pair substitution frequency within and between the two Laminaria digitata 
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groups (Table 3.5), was found to be greater than that in the Lessonia variegata groups 

(Table 3.3). 

Fig. 3.4: Neighbour-Joining topology of Man-C5-E gene DNA sequences (127 characters, GTR distances) 

of select taxa in the Laminariales. Ectocarpus siliculosus chosen as outgroups. PP/ML-BP/NJ-BP values 

shown if ≥50% BP/0.7 PP. BP- bootstrap analysis; PP - posterior probability; NJ- neighbour joining; ML - 

maximum likelihood. '-' indicates <50% support in a particular analysis.  
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Table 3.5: List of observed range of nucleotide changes within and between Man-C5-E DNA sequences of 

Laminaria digitata groups.  

 

 

 

 

 

 

 

3.2 DISCUSSION 
 

3.2.1 Gene duplication: multiple copies of Man-C5-E gene in Lessonia variegata 
 

The high nucleotide similarity (Appendix 2) of the first 127 bp (exon) is an indication of 

the exon sequences being 'under selection' (Bergthorsson et al., 2007). If the production 

of a certain protein is essential to the organism, the DNA sequences are subjected to 

'selection' or functional restraints to minimize divergence. As alginate is an important cell 

wall polysaccharide, its production is very important for the alga. This makes it beneficial 

to select for mutations that contribute to alginate production. Thus the rate of divergence 

is less to maintain specific functions, as well as to minimize the rate of acquiring 

deleterious mutations.  

     The occurrence of gene duplication in Lessonia variegata was hypothesized based on 

the discovery of multiple Man-C5-E gene copies in Laminaria digitata (Nyvall et al., 

2003) and Ectocarpus siliculosus (Cock et al., 2010).  

In addition to the bootstrap support (>50%) in the neighbour-joining analysis (Fig. 3.1), 

the base pair variations between exon groups 1 and 2, being greater than that within the 

Frequency of 
nucleotide 

changes (bp) 

 
L. digitata Group 1 

          
L.  digitata Group 2 

 
L.  digitata 
Group 1 

 

10-12 

 

 
L.  digitata 
Group 2 

 
13-20 

 
2-10 
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groups, indicated the possible presence of at least two duplicates of the gene. This was 

further supported by the Bayesian analysis of the Lessonia variegata exons (Fig. 3.4), 

which supports one gene duplication event that occurred on the branch leading to the two 

groups, thus forming two gene paralogs in Lessonia variegata. The Bayesian analysis 

also supports at least one gene duplication event in Laminaria digitata. This brings up the 

question - when did the gene duplication event in Lessonia variegata take place? It is 

hard to ascertain that fact due to the lack of support for the branches (Fig. 3.4). However, 

there are two possible scenarios.  

    Since the NJ topology (Fig. 3.3) supports a common origin of the epimerase gene in 

the Laminariales, the first scenario is that the gene duplication could have occurred 

simultaneously with the diversification of Lessoniaceae from Laminariaceae. According 

to Silberfeld et al. (2010), the Laminariales started diversifying around 84.4 million years 

ago, during the upper Cretaceous era. The ontogenetic split between Laminariaceae and 

Lessoniaceae took place sometime in the late Paleogene (Cenozoic) era, which was 

approximately 20 million years ago (Silberfeld et al., 2010). Thus, if the gene duplication 

event occurred on the branch leading to these two families, then we would expect two 

clades, each clade containing one Man-C5-E gene copy from Laminaria digitata and one 

from Lessonia variegata. However, since the topology also indicates that the Lessonia 

variegata exon groups are closer to each other than to the Laminaria digitata groups, the 

more likely explanation, the second scenario, is that the gene duplication event occurred 

after the ontogenetic split of Lessoniaceae from Laminariaceae (Fig. 3.5). Our data would 

indicate an independent gene duplication event in Lessonia variegata, separate from that 

in Laminaria digitata. This theory provides an explanation for the high percentage of 
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nucleotide identity and low number of base pair variations (Table 3.3) between the 

Lessonia variegata sequences, compared to the Laminaria digitata sequences (Table 3.5), 

as a recent duplication would mean an insufficient amount of time for the gene to acquire 

sufficient point mutations to promote differences (Hurley, 2004; Zhang, 2003). Further 

sequencing and analysis are necessary to ascertain this theory. 

                    

  

Fig. 3.5: Diagram illustrating a possible gene duplication that may have occurred in Lessonia variegata 

after the ontogenetic split between Laminariaceae and Lessoniaceae. 

 

3.2.2 Allelic variations in a diploid organism 
 

The term 'allele' refers to one of the different forms of a gene that is present at a particular 

locus in the genome (Feero et al., 2010; Lodish et al., 2000). Diploid organisms, like 

Lessonia variegata, have one allele on each chromosome. If both alleles are the same, 

then the individual is referred to as homozygous, whereas, if the alleles are different, it is 

referred to as heterozygous (Lodish et al., 2000). The exon sequences seen in the NJ tree 
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(Fig 3.1) were deduced to be alleles of the gene duplicates (Table 3.4). Samples with 

identical, or near identical sequences (Fig 3.2) were assumed to represent a single allele. 

However, it is not possible to ascertain homozygous and heterozygous individuals from 

the limited dataset. The sporophyte of Lessonia variegata being diploid, each sample of 

Lessonia variegata would exhibit, at most, only two alleles of the gene. Thus one gene 

duplication event would lead to the formation of four alleles in each sample per lineage. 

The presence of more than four alleles in the Wellington lineage sample C550-W and the 

Southern lineage sample C132-S may be an indicator still of the presence of PCR 

artifacts in the dataset. In spite of the removal of singletons and identical sequences from 

the dataset, it is possible that some variations in the sequences were the result of point 

mutations introduced by Taq polymerase during PCR which were amplified during 

subsequent PCR cycles and ultimately during cloning. Taq polymerase is known to have 

a non-proof reading ability (Zuccarello et al., 2009) and an error rate of 10
-5

 to 10
-4

 error 

per nucleotide synthesized (Eckert and Kunkel, 1991; Zhou et al., 1991). The presence of 

only three alleles in the Northern lineage and the Wellington lineage sample C318-W can 

be attributed to insufficient amount of sequencing or that these individuals are 

homozygous at one of the two loci. Moreover, further sequencing and cloning of the three 

lineages may help in distinguishing true alleles from sequences which are simply PCR 

artifacts. 

 

The topology of the NJ tree of exon sequences (Fig. 3.1) indicates that the Wellington 

lineage samples C549-W-17, C318-W-2, C550-W-12 and C550-W-27 may be very 

divergent alleles of the Man-C5-E gene, differing from the other Wellington lineage 
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samples in exon group 2, by 6-10bp (Fig. 3.2). If that hypothesis is correct, then it could 

indicate that the Wellington lineage allele diversified from the Northern and Southern 

lineages after the gene duplication occurred, thus forming the exon group 1 alleles (Fig. 

3.1).The presence of the divergent Wellington lineage allele can also be explained by the 

fact that all three lineages are cryptic species of Lessonia variegata (Martin, 2011). 

However, further cloning and analysis of the Northern and Southern lineages is necessary 

to rule out the presence of a similar allele in these two lineages. 

 

3.2.3 Introns and chimeric sequences in the dataset: possibilities 
 

The results indicated the presence of an intron, at least 300bp long, in the DNA 

sequences of Lessonia variegata, even though primer set I (Table 2.3) was designed from 

the cDNAs of Laminaria digitata and Saccharina japonica (see Materials and Methods). 

A probable explanation is that the primers attached to the template DNA near an 

intron/exon boundary, as a result of which the intron was amplified during subsequent 

PCR cycles. However, due to the absence of the putative AG sequence signalling the end 

of an intron, it is likely that only a portion of a full length intron was amplified. It is 

probable that the primer attached to the edge of the intron and the putative end of the 

intron was cut off during sequence trimming of the obtained PCR product. Introns were 

also found in the Man-C5-E gene of Laminaria digitata. Nyvall et al. (2003) discovered 

six introns, ranging in size from 295-523bp in the reading frame of a genomic clone 

(EpiG), on comparison of the clone with the six cDNAs in Laminaria digitata. As the 

EpiG sequence data was not available in Genbank, it is not possible to determine if the 

location of the introns is the same as that observed in Lessonia variegata.  
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The NJ tree constructed with only the intronic sequences of the Lessonia variegata 

samples exhibited a different gene clustering pattern than that exhibited by the 

corresponding exon sequences. Introns, the non-coding regions of a gene, are presumed 

to have a higher rate of change than the corresponding protein-coding exon regions, as 

they are subjected to fewer functional constraints (Li, 1997; Villablanca et al., 2002). 

This is exhibited in the dataset by the high number of variable sites within the intronic 

sequences (Appendix 3). Intronic recombination events also provide a possible 

explanation for the intronic gene clusters. It has been proposed that in eukaryotes, a high 

rate of genetic recombination occurs within the eukaryotic introns or 'spliceosomal 

introns', which promotes events like 'exon shuffling' to increase the protein diversity 

within an organism (Roy and Gilbert, 2006; Kolkman and Stemmer, 2001). Intronic 

recombination can also occur via transposons or 'jumping genes' (McClintock, 1950).  

However, that is an improbable event in this case, as the search for transposons present in 

the intronic sequence was found to be negative. An event like 'jumping PCR' (Pääbo et 

al., 1989) generally occurs when the DNA template is somewhat degraded. If the 

degraded DNA sample is amplified, the lengths of some of the degraded sequences may 

not be sufficient to span the entire distance between the two primers. During such an 

event, the first primer is only extended until the end of that short fragment in the first 

extension cycle by Taq polymerase. In the subsequent cycle, that primer will 'jump' to 

another complimentary DNA fragment and the extension will continue until the original 

DNA sequence has been reformed. Eventually, a double stranded DNA will be formed, 

which will serve as a template for subsequent rounds of amplification, thus forming a 
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recombinant DNA sequence (Howe, 1995; Pääbo et al., 1989). This is the leading cause 

of formation of chimeric sequences during PCR amplification. It is possible that some of 

the sequences contained a recombinant intron. The formation of some recombinant 

introns in the dataset may provide an explanation for different intronic gene clusters, but 

it is unlikely that this event occurred in all 20 sequences. Although such theories may 

elude to possibilities explaining the formation of intronic gene clusters that are different 

from the corresponding exon clusters, further research is necessary to ascertain this 

phenomenon. Thus this remains a curiously unresolved part of our analysis.  

 

It is not clear whether there is an actual chimeric sequence in the dataset, or if the 

analysis indicated the presence of a chimera due to a higher percentage of variations in 

the intron region (52.8% nucleotide identity), compared to the exon region (89% 

nucleotide identity). The high percentage of nucleotide identity between the putative 

chimera and the parent sequences in the exon region, that is, before the chimeric 

breakpoint, can be explained by the exon region being under selection, and thus highly 

conserved in all sequences of Lessonia variegata, as discussed previously.  

3.2.4 Mannuronan C5 Epimerase gene duplicates may control alginate 
structure 
 

In Lessonia variegata, the gene duplicates may encode Man-C5-E enzymes that control 

the content of the M and G blocks of the alginate in different parts of the plant, thus 

giving some parts more flexibility than others. This was hypothesized by Nyvall et al. 

(2003) due to the discovery of 16 different gene copies in sporophytes of Laminaria 

digitata. They hypothesized that in addition to epimerization of the D-mannuronic 

residues into L-guluronic units, the different epimerases may also be involved in the 
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tailoring of the relative contents and distributions of G blocks, M blocks and MG blocks 

in alginate chains, depending upon the season, age of plant and tissue type. Venegas et al. 

(1993) conducted a study on Lessonia trabeculata Villouta & Santalices and found that 

the blades of plants collected from exposed areas, produced alginates with a significantly 

lower M/G ratio and had a higher  percentage of G blocks than those from protected sites. 

The blades of sporophytes collected from the exposed sites were also significantly 

narrower and thicker.  They also found that when the blades from exposed sites were 

transplanted to a protected bay, there was a significant decrease of M/G ratio and increase 

of MM blocks, while blades transplanted from the protected bay to the exposed beach 

showed a significant increase of M/G ratio and increase in content of GG blocks. This 

showed that algae acclimatized to changes in the hydrodynamic activity of the site 

through modifications in alginate biosynthesis. It is possible that in Lessonia variegata, 

the multiple gene copies play a similar function in modifying the chemical structure of 

alginate in response to environmental conditions or to different requirements in different 

parts of the thallus. It was also shown that the expression of Man-C5-E genes in 

Laminaria digitata may be stress and defence induced (Roeder et al., 2005).  

 

Alginates with different proportions of M and G blocks have been found to have different 

biotechnological applications. For example, alginate with high M block content (over 

50%) has been found to have a wide range of immunological applications. These include 

applications, such as, cell transplantations, due to the resulting alginate gels being less 

viscous than alginates with more guluronic acid content. This makes the gels more stable, 

have less diffusion permeability and thus be more efficient in protecting immobilized 
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cells against the host immune system (Klöck et al., 1997). Since the exon sequences are 

highly conserved with very few amino acid substitutions, the paralogs may encode for 

enzymes that may synthesize or modify the alginates in a different way. The presence of 

the intron indicates that the Man-C5-E gene copies are modular, and thus possibly subject 

to alternative splicing (Black, 2003). Alternative splicing has been found to be 

responsible for the formation of multiple protein isoforms (Graveley, 2001). Su et al. 

(2006) suggest that alternative splicing and gene duplication may exhibit co-evolution 

and that in the early stages after gene duplication, the newly evolved duplicates may take 

over some of the protein functional diversity which, prior to gene duplication, was carried 

out by alternative splicing of the ancestral gene.  

     The identification and linking of such mechanisms to alginate structure and 

composition would be of particular importance in the biotechnological industry. 

3.2.5 RNA extraction 
 

RNA extraction from the blades of Lessonia variegata after several attempts with the 

TRIzol
®
 method was unsuccessful. A possible explanation for the failure of the TRIzol

®
 

method may be due to the presence of high amounts of polysaccharides in the algal cell 

walls which can bind or co-precipitate with the RNA, thus causing very low or no yield 

of RNA (Falcão et al., 2008; Salzman et al., 1999). Alternatively, RNA degradation 

could have occurred during the extraction procedure, despite taking the requisite 

precautions. Some studies have developed alternate methods of extracting RNA, such as 

a modification of the TRIzol
®
 method (Falcão et al., 2008) or using soluble 

polyvinylpyrrolidone (PVP) and ethanol (ETOH) precipitation (Salzman et al., 1999), 

which should be explored in future studies. 
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3.2.6 Conclusion 
 

This is the first study on the genetic aspect of the biochemical pathway of alginate in the 

endemic New Zealand species Lessonia variegata. With the exception of a few studies on 

the genetics of alginate production in the Laminariales (Nyvall et al., 2003; Inoue et al., 

2007), most of the studies on alginate have focused on the enzymes involved in the 

pathway and the chemical aspects of alginate. However, with the increasing importance 

of alginate in various industries, such as the food, cosmetics and medicine, it is of both an 

academic and commercial importance to characterize and gather more information about 

the genes involved in the production of alginate, which would help in the regulation of 

alginate production.  

 

At least one gene duplication event was found to have occurred in Lessonia variegata, 

leading to the formation of two Man-C5-E genes. Putative alleles were discovered in the 

Northern, Southern and Wellington lineages. Further analyses are required to separate the 

true alleles from PCR artifacts, as well as to ascertain the presence of a diverging allele in 

the Wellington lineage. It would be of great interest to see if there are more alleles of the 

gene in Lessonia variegata, as that could be an indication of more than one gene 

duplication event having taken place in the brown alga. Future studies are also required to 

determine the number of gene paralogs in the Kaikoura lineage. It is also of academic and 

commercial interest to determine whether all the gene paralogs are expressed and how the 

expression level differs seasonally and between different tissues.  
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While this study raises the possibility of the occurrence of alternative splicing, further 

studies should be done to determine the existence of the actual phenomenon in alginate 

production and the genetic mechanisms behind the production of alginates with different 

block structures.  
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5.0 Appendices 
 

Appendix 1 

 

Neighbour-Joining topology of all cloned Man-C5-E DNA sequences of the Northern, Southern and 

Wellington lineages of Lessonia variegata, obtained from primer set II; the lineages are colour-coded. B70-

N: Northern lineage (Green); C132-S: Southern lineage (Red); C318-W, C549-W, C550-W: Wellington 
lineage (Blue). 
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Appendix 2 

 

Alignment of the exon sequences (127 characters) of the Lessonia variegata lineages. B70-N: Northern lin 

eage; C132-S: Southern lineage; C318-W, C549-W, C550-W: Wellington lineage.
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Appendix 3 

 

Alignment of the intron sequences of the Lessonia variegata lineages. B70-N: Northern lineage; C132-S: 

Southern lineage; C318-W, C549-W, C550-W: Wellington lineage. 

 
 
             1        10        20        30        40        50        60 

             |        |         |         |         |         |         |  

   B70-N-1   GTACGATGTGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

   B70-N-2   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  B70-N-12   GTACGATGTGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCGTTCTGGGTAGTCT 

  C132-S-1   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C132-S-2   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C132-S-5   GTACGATGTGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C132-S-7   GTACGATGTGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

 C132-S-22   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C318-W-1   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C318-W-2   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C549-W-2   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCGGCAGTACCGCATTCTGGGTAGTCT 

  C549-W-4   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGATAGTCT 

 C549-W-10   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGCACCGCATTCTGGATAGTCT 

 C549-W-17   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C550-W-1   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGCACCGCATTCTGGGTAGTCT 

  C550-W-2   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C550-W-5   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

  C550-W-6   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

 C550-W-12   GTACGATATGTTCGGCACGCTTCGCTTTGTACCGCAGCAGTACCGCATTCTGGGTAGTCT 

 C550-W-27   GTACGATGTGTTCGGCACGCTTCGCTTTGTGCCGCAGCAGTACCGCATTCTGGGTAGTCT 

    

   B70-N-1   TGGTAGTAAGCCAAGGGCATTTCGCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

   B70-N-2   TCGTAGCAAGCCAAGAGCATTTCGCGGGTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

  B70-N-12   TGGTAGTAAGCCAAGGGCATTTCGCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C132-S-1   TCGTAGTAAGCCAAGAGCATTTCGCGGGTCGTCTTCTCAACTGGAGAAATTTGTGTTTTG 

  C132-S-2   TCGTAGTAAGCCAAGAGCATTTCGCGGGTCGTTTTCTCAACTGGAGAAATTTGTGTTTTG 

  C132-S-5   TGGTAGTAAGCCAAGGGCATTTCGCGGGTCGTCTTCTCAGCCGGAGAAGCT--TATTTTG 

  C132-S-7   TGGTAGTAAGCCAAGGGCATTTCGCGGGTCGTCTTCTCAGCCGGAGAAGCT--TATTTTG 

 C132-S-22   TCGTAGTAAGCCAAGAGCATTTCGCGGGTCGTCTTCTCAGCTGGAGAAATT--TATT--- 

  C318-W-1   TCGTAGTAAGCCAAGAGCATTTCGCG-GTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

  C318-W-2   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C549-W-2   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C549-W-4   TCGTAGTAAGCCAAGAGCATTTCGCG-GTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

 C549-W-10   TCGTAGTAAGCCAAGAGCATTTCGCG-GTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

 C549-W-17   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C550-W-1   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C550-W-2   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

  C550-W-5   TCGTAGTAAGCCAAGAGCATTTCGCG-GTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

  C550-W-6   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

 C550-W-12   TGGTAGTAAGCCAAGGGCATTTTTCGGGTCGTCTTCTCAGCCGGAGAAGCT--TGTTTTG 

 C550-W-27   TCGTAGTAAGCCAAGAGCATTTCGCG-GTCGTCTTCTCAACTGGAGAAGTTTGTGTTTTG 

 
   B70-N-1   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

   B70-N-2   GAAGTT-ATTCTCGATTGACTCGTCAAAGAGATGACTATGAAATAACCTGGCAACTCTCG 

  B70-N-12   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C132-S-1   GAAGTT-ATTCTCGATTGACTCCTCAAAGAGATGACTATGAAATAACCTGGCAACTCTCG 

  C132-S-2   GAAGTT-ATTCTCGATTGACTCCTCAAAGAGATGACTATGAAATAACCTGGCAACTCTCG 

  C132-S-5   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C132-S-7   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

 C132-S-22   ------------------------------------------------------------ 
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  C318-W-1   GAAGTT-ACTCTCGATTGACTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C318-W-2   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C549-W-2   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C549-W-4   GAAGTT-ACTCTCGATTGACTCCTCAACGAGATGACTATGAAATAACCTAGCAACTCTCG 

 C549-W-10   GAAGTT-ACTCTCGATTGACTCCTCAACGAGATGACTATGAAATAACCTAGCAACTCTCG 

 C549-W-17   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C550-W-1   CAAGTTAATTCTCGATTGATTCCTCAAAGAGATGACTATGAAGTAACCTAT----TCTCG 

  C550-W-2   CAAGTTAATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

  C550-W-5   GAAGTT-ACTCTCGATTGACTCCTCAAAGAGATGACTATGAAATAACCTAGCAACTCTCG 

  C550-W-6   CAAGTTAATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

 C550-W-12   GAAGTT-ATTCTCGATTGATTCCTCAAAGAGATGACTATGAAATAACCTAT----TCTCG 

 C550-W-27   GAAGTT-ACTCTCGATTGACTCCTCAAAGAGATGACTATGAAATAACCTAGCAACTCTCG 

 

   B70-N-1   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

   B70-N-2   CCGCAGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCACTGTAGATACGTGCTGCG 

  B70-N-12   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C132-S-1   CCGCAGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C132-S-2   CCGCGGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C132-S-5   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C132-S-7   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

 C132-S-22   -----------------------------------------------TTTACGTGCTGCG 

  C318-W-1   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C318-W-2   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C549-W-2   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C549-W-4   CCGCAGCTATTAATGGTTCCCACGTAGGCGCCGGAGTTGGCGCTGTAGTTACGTGCTGCG 

 C549-W-10   CCGCAGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCGCTGTAGTTACGTGCTGCG 

 C549-W-17   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C550-W-1   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C550-W-2   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

  C550-W-5   CCGCAGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCGCTGTAGTTACGTGCTGCG 

  C550-W-6   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

 C550-W-12   CCGCAGCTATTAATGGTTCCCAGGAAGGCGCCGGAGTTGGCGCTGTAGATACGTGCTGCG 

 C550-W-27   CCGCAGCTATTAATGGTTCCCACGAAGGCGCCGGAGTTGGCGCTGTAGTTACGTGCTGCG 

 

   B70-N-1   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

   B70-N-2   ACGTTGAACGTTATTTATTGCCCCCCCGAACCTAACACGTCCCCTCGAATATCGTCTCAT 

  B70-N-12   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C132-S-1   ACGTTGAACGTTATTTATCGCCCCCCCGAACCTAACACGTCCCTTCGAATATCATCTCAT 

  C132-S-2   ACGTTGAACGTTATTTATCGCCCCCCCGAACCTAACACGTCCCTTCGAATATCATCTCAT 

  C132-S-5   ACGCTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C132-S-7   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

 C132-S-22   ACGTTGAACGTTATTTATCGCCCCCCCGAACCTAACACGTCCCTTCGAATATCATCTCAT 

  C318-W-1   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C318-W-2   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C549-W-2   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C549-W-4   ACGTTGAACGTTATTTATTGCCCCCTCGAACCTAACACGTCCCCTCGAATATCATCTCAT 

 C549-W-10   ACGTTGAACGTTATTTATTGCCCCCTCGAACCTAACACGTCCCCTCGAATATCATCTCAT 

 C549-W-17   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C550-W-1   ACGTTGAACGTTGTTTATTCCCCACCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C550-W-2   ACGTTGAACGTTGTTTATTCCCCACCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

  C550-W-5   ACGTTGTACGTTATTTATTGCCCCCTCGAACCTAACACGTCCCCTCGAATATCATCTCAT 

  C550-W-6   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

 C550-W-12   ACGTTGAACGTTGTTTATTGCCCCCCTGGACCTAACACGTCCCCTCGAATATCATCTCAT 

 C550-W-27   ACGTTGAACGTTATTTATTGCCCCCTCGAACCTAACACGTCCCCTCGAATATCATCTCAT 

 
   B70-N-1   TCC 

   B70-N-2   TCC 

  B70-N-12   TCC 

  C132-S-1   TCC 

  C132-S-2   TCC 

  C132-S-5   TCC 

  C132-S-7   TCC 

 C132-S-22   TCC 
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  C318-W-1   TCC 

  C318-W-2   TCC 

  C549-W-2   TCC 

  C549-W-4   TCC 

 C549-W-10   TCC 

 C549-W-17   TCC 

  C550-W-1   TCC 

  C550-W-2   TCC 

  C550-W-5   TCC 

  C550-W-6   TCC 

 C550-W-12   TCC 

 C550-W-27   TCC 

 


