
Implementation and
evaluation of security

protocols in e-commerce
applications

by

Hugh Davenport

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Engineering
in Software Engineering.

Victoria University of Wellington
2013

Abstract

There are a large amount of programs in the development process in to-
days technology environment, and many of these involve some type of
security needs. These needs are usually not dealt with in a sensible way
and some even don’t bother with any analysis. This thesis describes a so-
lution of implementing a secure protocol, and gives an evaluation of the
process along with the techniques and tools to aid a secure design and
implementation process. This allows others to take this knowledge into
account when building other applications which have a need for security
development.

ii

Acknowledgments

I would like to acknowledge my supervisors Dr. Kris Bubendorfer, and
Dr. Ian Welch. They gave me the motivation to finish this thesis after a
long break due to full time work.

I would also like to acknowledge my office mate, Ben Palmer, who re-
searched the protocol that I am implementing for this Masters thesis.

I would like to acknowledge the graduate students in the School of Engi-
neering and Computer Science at Victoria University of Wellington. Espe-
cially those who came from the room called “Memphis”. They were great
company while working on this thesis, and will remain good friends in
working life.

I would like to say thanks to my friends and family for sticking by me
while I was working on this, and also for motivating me to finish after the
long break. I know it can be difficult to enjoy moments when I am stuck at
a computer working.

I would also like to acknowledge my employers, who allowed me to take
a few weeks off to finish this thesis, even though I was very busy at the
time.

Most of all, I acknowledge lolly snake (shown in figure 1), without which
this thesis could not of been completed.

iii

iv

Figure 1: Picture of a Lolly Snake. Licensed under CC-BY-SA. c© Sam
Bonner. Valued at 437.25 words.

Contents

1 Introduction 1
1.1 E-commerce . 1
1.2 Tagged Transaction Protocol 2
1.3 Research Aims . 3
1.4 Thesis Outputs . 3

1.4.1 Prototype of the Security Protocol 3
1.4.2 Comparison of Secure Development Processes 3
1.4.3 Performance Evaluation of the Prototype 4

1.5 Structure of Thesis . 4

2 Related Work 7
2.1 Tagged Transaction Protocol 7

2.1.1 Domain Model . 8
2.1.2 Security Model . 9
2.1.3 Threat Model . 10
2.1.4 Protocol Details . 11

2.2 Related Work . 22
2.2.1 Paradiso . 22
2.2.2 Potato . 23

3 Techniques and Tools 25
3.1 Secure Use of Cryptographic Mechanisms 25

3.1.1 Choice of Key Size . 26

v

vi CONTENTS

3.1.2 Zero Knowledge Proof 27

3.1.3 Randomness . 29

3.1.4 Cryptographic Libraries 32

3.1.5 Summary . 33

3.2 Secure Software Design Lifecycles 35

3.2.1 Complete Lifecycles 37

3.2.2 Auxiliary Tools . 47

4 Design and Implementation 55
4.1 Structure of Implementation 56

4.2 Tag Generation Centre Implementation 56

4.2.1 Backing Implementation 57

4.2.2 Generating Elgamal Parameters 58

4.2.3 Registering Suppliers Products 59

4.2.4 Issuing Tags to Suppliers 60

4.2.5 Issuing Tags to Resellers 61

4.3 Supplier Implementation . 62

4.3.1 Backing Implementation 63

4.3.2 Initialisation . 64

4.3.3 Registering Items . 64

4.3.4 Requesting Tags . 65

4.4 Reseller Implementation . 67

4.4.1 Backing Implementation 67

4.4.2 Purchasing items upstream 68

4.4.3 Generating tags for customers 69

4.5 Tag Implementation . 70

4.6 Licence Implementation . 71

4.7 Hash Implementation . 72

4.8 Cryptographic Functions . 73

4.8.1 Signing . 73

4.8.2 Encryption . 74

CONTENTS vii

4.9 Network Implementation . 74
4.9.1 Client Side . 76
4.9.2 Server Side . 77

5 Verification and Validation 79
5.1 Verification of Protocol Implementation 80

5.1.1 Unit Testing . 80
5.1.2 Internal Review . 94

5.2 Validation . 94
5.2.1 The SecSDM lifecycle 95
5.2.2 Application of SecSDM to TTP 98

6 Performance Analysis 103
6.1 Experimentation Setup . 103

6.1.1 Operating Environment 104
6.1.2 Test Framework . 105

6.2 Performance Results . 106
6.2.1 Total time taken . 107
6.2.2 Initialisation time . 107
6.2.3 Supplier product registration time 109
6.2.4 Reseller purchase product from supplier time 110
6.2.5 Reseller purchase product from reseller time 112
6.2.6 Varying other environmental variables 113

6.3 Summary of Results . 115

7 Conclusions and Future Work 119
7.1 Research Aims . 119
7.2 Thesis Outputs . 120

7.2.1 Prototype of the Security Protocol 120
7.2.2 Comparison of Secure Development Processes 120
7.2.3 Performance Evaluation of the Prototype 121

7.3 Future Work . 123

viii CONTENTS

A Blank SecSDM Forms 125

B Completed SecSDM Forms 137

List of Figures

1 Picture of a Lolly Snake. Licensed under CC-BY-SA. c© Sam
Bonner. Valued at 437.25 words. iv

2.1 Relationships of the Tagged Transaction Protocol [66] 8
2.2 Supplier Generating Tag with TGC 16
2.3 Reseller Passing Tag to Customer 18

3.1 TSP Secure . 38

6.1 Raw results with 99% confidence interval, M108 108
6.2 Raw results with 99% confidence interval, M109 108
6.3 Raw results with 99% confidence interval, M10B 109
6.4 TGC Init results with 99% confidence interval, M108 110
6.5 Supplier register results with 99% confidence interval, M108 111
6.6 Supplier Purchase results with 99% confidence interval, M108111
6.7 1st Reseller Purchase results with 99% confidence interval,

M108 . 112
6.8 Time taken for protocol to run (one time gen) - without

HAVEGE . 114
6.9 Time taken for protocol to run (one time gen) - with HAVEGE114
6.10 Time taken for openssl to generate key parameters - without

HAVEGE . 115
6.11 Time taken for openssl to generate key parameters - with

HAVEGE . 116

ix

x LIST OF FIGURES

A.1 SecSDM Investigation Stage, Step 1 126
A.2 SecSDM Investigation Stage, Step 2 127
A.3 SecSDM Investigation Stage, Step 3 128
A.4 SecSDM Investigation Stage, Step 4 129
A.5 SecSDM Investigation Stage, Step 5 130
A.6 SecSDM Investigation Stage, Step 6 131
A.7 SecSDM Analysis Stage . 132
A.8 SecSDM Design stage (sample table) 133
A.9 SecSDM Design stage (final output) 134
A.10 SecSDM Implementation stage 135

B.1 SecSDM Investigation Stage, Step 1, Impact Value of Assets . 138
B.2 SecSDM Investigation Stage, Step 2, Likelihood of Common

Threats . 139
B.3 SecSDM Investigation Stage, Step 3, Asset Threat Relation-

ships . 140
B.4 SecSDM Investigation Stage, Step 4, Risk Vulnerabilities . . . 141
B.5 SecSDM Investigation Stage, Step 5, Risks A and B 142
B.6 SecSDM Investigation Stage, Step 5, Risks C, D, and E 143
B.7 SecSDM Investigation Stage, Step 5, Risks F, G, and H 144
B.8 SecSDM Investigation Stage, Step 6, Summary 145
B.9 SecSDM Analysis Stage . 146
B.10 SecSDM Design Stage, Risks A and B 147
B.11 SecSDM Design Stage, Risks C and D 148
B.12 SecSDM Design Stage, Risks E and F 149
B.13 SecSDM Design Stage, Risks G and H 150
B.14 SecSDM Design Stage, Summary 151

Chapter 1

Introduction

1.1 E-commerce

E-commerce security traditionally concerns itself with the authenticity of
parties involved and the integrity of the data exchanged.

Authen:w ticity is achieved through SSL certificates over the HTTP pro-
tocol (making it the HTTPS protocol) [49, 50, 11, 12, 13]. This allows the
client to know that it is talking to the server it is thinking it is talking to.
There are down-sides to the HTTPS scheme, one example is how to deter-
mine the trustworthiness of a given certificate.

Integrity of the data on the server side is normally handled through back-
end security measures.

As e-commerce moves from single client-seller models to situations where
chains of supplier and resellers are used, additional security measures are
required. In particular, provenance.

1

2 CHAPTER 1. INTRODUCTION

1.2 Tagged Transaction Protocol

In contrast, the Tagged Transaction Protocol [66] concentrates on the digi-
tal provenance of products. The protocol allows for an honest customer to
verify that the product they have purchased is from the authentic supplier
regardless of any resellers who have handled the product. The protocol al-
lows verification that products have been sold only once and that resellers
have legitimately obtained the product from the supplier through some
reseller chain. This includes any dishonest resellers.

The simple approach to this is that the chain of resellers is recorded and
the customer checks each transaction to verify its legitimacy. This process
does not allow the reseller to be anonymous, and the customer can choose
different resellers based on this knowledge for the next purchase, which is
not acceptable to most resellers.

The tagged transaction protocol uses a third party, the Tag Generation
Centre (TGC), to issue tags along with any purchase. This in effect cre-
ates an implicit reseller chain for any product, while providing anonymity
for the resellers in the chain. The TGC can also be used by customers to
verify the tag received in a purchase. This verification may only involve
the clients checking that the tag is signed by the TGC and holds the cor-
rect information, but more detailed verifications could take place, while
assuring the anonymity of parties in the chain.

The Tagged Transaction Protocol has been mathematically verified but at
the time of this work had not been implemented.

1.3. RESEARCH AIMS 3

1.3 Research Aims

The aims of this research is to implement a prototype of the security pro-
tocol discussed in Chapter 3, and to compare and discuss the different
processes for developing secure software and their respective benefits and
disadvantages. The comparison helps us determine engineering best prac-
tices for implementing security protocols.

1.4 Thesis Outputs

The outputs of this thesis are described in this section. They are described
in greater detail in further chapters, and Chapter 7 discusses how they
were used to obtain the research aims above.

1.4.1 Prototype of the Security Protocol

The prototype was developed in the Java programming language, using
the BouncyCastle cryptographic library [86]. The prototype was imple-
mented using secure design practises in mind, and was made to be ex-
tendable for alternative implementations.

1.4.2 Comparison of Secure Development Processes

A comparison between different secure design approaches is made. De-
signs such as CLASP (Comprehensive, Lightweight Application Security
Process) [65], TSP-Secure (Team Software Process - Secure) [81], SDL (Se-
cure Development Lifecycle) [30], and SecSDM (Secure Software Develop-

4 CHAPTER 1. INTRODUCTION

ment Methodology) [23] are presented, along with advantages and disad-
vantages between them.

In addition to complete processes for developing secure software, a selec-
tion of additional tools or partial processes is presented with a discussion
on how they can fit into the entire development process.

The SecSDM approach was then used to show how to validate the imple-
mentation of the prototype against security requirements. This approach
was then compared with an intuitive approach of implementation and
a discussion on the advantages and disadvantages of each approach is
made.

1.4.3 Performance Evaluation of the Prototype

The performance measure of the protocol is carried out to gain knowledge
on where bottle-necks lie, and how long common tasks in the protocol
take.

The measurements took the total time of the protocol running through
a test process, and also the time taken for each of the components. The
evaluation of these results is discussed about usability and possible further
testing.

1.5 Structure of Thesis

This thesis describes the process of developing an implementation of a
secure protocol. The main aspects of the thesis is to evaluate between dif-
ferent processes that could possibly be used when designing and imple-
menting secure software.

1.5. STRUCTURE OF THESIS 5

The thesis will be split into several chapters which outline different parts
of the process and background material. A short outline of the chapters is
as follows:

This chapter introduces the thesis, gave some brief background material,
and some motivation for the research. An introduction of the research in
question was given, along with the aims of the research and the thesis
outputs.

Chapter 2 covers a more detailed description of the Tagged Transaction
Protocol, as well as a survey of related work.

Chapter 3 expands on the background to the security protocol that will be
implemented. Points that will be covered include: Digital provenance;
Cryptographic functions and libraries; Secure development techniques;
and other minor points.

Chapter 4 describes the design and implementation process of the security
protocol. This includes any reasoning behind each decision in the process.

Chapter 5 outlines the verification and validation techniques used to show
security and validity of the implementation against the specifications of
the protocol.

Chapter 6 presents an analysis of the performance of the implementation
of the protocol. This includes an discussion on what the results represent.

Chapter 7 summarises this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This chapter outlines the protocol used for this project followed by some
related works. Section 1.2 in chapter one gives motivation for the protocol
mentioned here.

The chapter will be laid out as follows:

• Section 2.1 presents the tagged transaction protocol.

• Section 2.2 presents a selection of related implementations.

2.1 Tagged Transaction Protocol

This section presents the background material for the security protocol
that has been implemented for this project. The protocol is called the
Tagged Transaction Protocol [66].

• Section 1.2 in Chapter 1 discussed motivation for the protocol

• Section 2.1.1 will present a model of the relationship domain used in
the protocol

7

8 CHAPTER 2. RELATED WORK

Figure 2.1: Relationships of the Tagged Transaction Protocol [66]

• Section 2.1.2 will present a model of the security domain used in the
protocol

• Section 2.1.3 will discuss possible threats to the model of the protocol

• Section 2.1.4 will present the details of how the protocol works

2.1.1 Domain Model

Figure 2.1 shows the basic domain model for the protocol [66]. The proto-
col participants include a supplier, a chain of one or more resellers, and a
customer. These roles in detail are:

Supplier

Party that originally creates the digital product and hold all rights for the
item.

2.1. TAGGED TRANSACTION PROTOCOL 9

Reseller

Party that purchases the product of any other reseller, and sells the product
to any customer (which in turn could be a reseller).

Customer

Party that is interested in purchasing the digital product of a reseller and
may become a reseller.

2.1.2 Security Model

Malicious participants could be a possible threat to this domain They may
try and break the anonymity of the system. Possible actions malicious
resellers could take are shown below.

The customer will wish to verify that the first two actions have not taken
place, but the system will also need to protect them from the third action.
If a customer learns the identity of a reseller further up the chain, they may
take out the middleman to get a better deal. The protocol has an option to
provide anonymity.

Spoofing

Claiming to be a supplier, or attempting to subvert protocol to appear to
be the supplier.

10 CHAPTER 2. RELATED WORK

Counterfeiting

Selling a digital product that the reseller has not purchased. This could
include any of the following:

• Fabrication: Attempting to build a tag from scratch (after possibly
seeing the structure of the tag)

• Cloning: Trying to resell a product multiple times.

• Network Sniffing: Copying a legitimate licence from the network
and selling to customer.

Identity Revelation

The customer learns the identity of resellers (or possibly the supplier) that
are not neighbours in the chain.

2.1.3 Threat Model

It is assumed that any malicious participant is polynomial bounded. It
is also assumed that the reseller of product x will not collude with the
supplier of product x, but may collude with any other supplier to try and
convince the customer that the other supplier is the supplier of x. It is also
assumed that the customer does not collude with the reseller.

These assumptions do not imply that both the customer and the supplier
are honest. The supplier may try and find the identity of the customer and
vice versa, while being polynomial bound.

There may also be a third party member that tries to impersonate a reseller
r and act in such a way that the protocol fails and discredits r.

2.1. TAGGED TRANSACTION PROTOCOL 11

2.1.4 Protocol Details

This section outlines the details of the protocol.

• Introduce any definitions of global variables, and the tag structure.

• Outline the process of registering a product in the system.

• Outline the process of the supplier generating a tag to send to a re-
seller.

• Outline the process of a reseller generating a tag to send to a cus-
tomer or another reseller.

Definitions

This section defines the constructs used in the protocol, then describes the
details of each component of the protocol and how it fits together.

The protocol requires encryption, digital signatures and a secure message
digest. The background to these constructs is presented in Section 3.1.

The original protocol description specifies a modified elgamal algorithm
for signing [68]. This protocol could be replaced with any digital signing
system that is secure against existential forgeries in the adaptive chosen
message attack mode.

In this implementation, the elgamal encryption scheme is used for en-
crypting data [18], and the secure hash (SHA) family of secure message
digests is used for message digests [54]. More details of the actual imple-
mentation of the protocol is described in Chapter 4.

The modified elgamal signature scheme is used because it has been proved
secure in the random oracle model against existential forgeries in adaptive

12 CHAPTER 2. RELATED WORK

chosen message attacks [68]. The differences between this modified form
and the original signing scheme are described below.

For signing and encrypting data, the following notation is used through-
out this thesis. For signing data D with a private key sk, the notation for
the signed content is {D}sk. For encryption data D for the owner of the
public key pk, the notation for the encrypted data is {D}pk.

For all the key generation, signing, verification, encryption and decryp-
tion operations, the mathematical computations are calculated modulo a
large prime p in the integer group Zp closed under multiplications unless
specified otherwise.

The keys described in this document use the following notation. For pub-
lic keys, pk will be used, and for private keys, sk will be used. The rela-
tionship between the public and private keys is pk = gsk mod p, where g is
a generator for the group Zp.

For the elgamal algorithm, there are the parameters p, q, and g. The p and
g values are described above. The q value is a large prime such that q|p− 1

(q divides p− 1).

The TGC will have a key pair that is used both for signing and encrypting,
and will be referred to as pkTGC and skTGC for the public and private key
respectively. The supplier will generate a key pair for each item supplied
x, and these will be referred to as pkx and skx. The reseller r will generate a
one time key pair for each tag it requests (which it may or may not receive),
and is referred to as pktag,r and sktag,r.

The reseller has a separate one time key pair to prevent the TGC (or other
parties) being able to link multiple transactions to a single reseller. If a
single key pair were used, the TGC will be able to use a simple one to one
map between public key and reseller.

The protocol uses a zero knowledge proof of knowledge of the one time

2.1. TAGGED TRANSACTION PROTOCOL 13

resellers private key sktag,r. The details of this proof are described in detail
in the generation of the reseller tags. A commitment value is used by the
reseller along with the public key pktag,r . This commitment value uses the
notation ar = gzr mod p, where zr is a random private value chosen by the
reseller.

The tags in the system have the following outline. The tag contains the
following four values {A = pkx, B = Lx, C = pktag,r = gsktag,r mod p,D =

ar = gzr mod p}. The values have the following meanings:

• A = pkx is the public key of the product x, which is generated by the
supplier of product x during the registration of product x.

• B = Lx is the licence for the product x, which is generated by the
supplier of product x, when the original tag in this chain is gener-
ated.

• C = pktag,r is the one time reseller public key for this tag. It is related
to the private key as shown above.

• D = ar is the commitment value used by the reseller for the zero
knowledge proof of the private key sktag,r.

The licence Lx has the following outline. The licence contains the follow-
ing three values Lx = {id = H(x), tagno, Licence}skx . The values have the
following meanings:

• id = H(x) is the id of the item x, generated by the hash function H .

• tagno is a unique field that is used to detect replay.

• Licence is a supplier dependant licence that is sent to the customer.
The implementation details of this licence are not specified in the
protocol.

The specific hash function H is not specified in the protocol and would

14 CHAPTER 2. RELATED WORK

be implementation specific. This implementation uses the SHA family of
message digest functions [54]. The implementation will be described in
greater detail in Chapter 4. The licence Lx is signed by the private key skx

of the product x.

Some communications may be made over an anonymous channel. These
communications can be made anonymous by using an onion routing ser-
vice [82] such as TOR [15]. The use of any anonymity is not specified in
the protocol, and is therefore implementation specific.

The communications that are be made anonymous are be the communi-
cations between the supplier and the TGC, and any reseller and the TGC.
This anonymity prevents the TGC from knowing the identity of the sup-
plier or the reseller. The optional anonymous channels are shown as dot-
ted lines in Figures 2.2 and 2.3.

Registration of Products

The registration phase of the protocol is described in this section. Regis-
tration is the process by which supplier notifies the TGC that they have a
product they wish to supply using the protocol. The TGC can then per-
form an out of band check to validate that the supplier is authorised to
supply that product. The TGC can also choose to use a first in first served
for registration. If anonymous communications are used, the TGC must
follow a first in first registered approach as they can not verify an identity
they do not know.

This phase of the protocol only involves the supplier and TGC entities.
The reseller or the customer has no interaction in this phase.

The setup for this phase is for the supplier to calculate the id of the item as
id = H(x), where H is a implementation specific hash function, then the

2.1. TAGGED TRANSACTION PROTOCOL 15

supplier must generate a key pair pkx and skx for the item x. These keys
use the modified elgamal algorithm as described above.

The supplier then sends an encrypted registration request to the TGC con-
taining the values of the id and the public key for the item x. The TGC then
performs any checks necessary, and if the registration succeeds a signed
receipt is sent back to the supplier. This receipt contains the id and the
public key, and is signed by the TGC private key skTGC . This gives the
supplier proof that the product x was registered for them, in case a rogue
TGC does not follow the specifications correctly.

The registration request sent to the TGC is as follows:

{id = H(x), pkx}pkTGC

At this point, the supplier has successfully registered the item x. If any
problems have occurred, then the supplier will have to try the registra-
tion process again, though if an item with the same hash has already been
registered this will always fail.

Supplier Generating Tags

This section details the process of a supplier generating a tag for the pro-
tocol. This situation occurs when a reseller requests purchase of an item x

that the supplier has registered with the TGC.

An overview of this stage is shown in Figure 2.2, which was displayed in
the original paper describing the protocol.

A reseller starts the process by sending a purchase request to the supplier.
This request contains the hash of the item x as the id (id = H(x)), also a
one time public key and a commitment value.

The one time public key is the public half of a key pair which the reseller

16 CHAPTER 2. RELATED WORK

Figure 2.2: Supplier Generating Tag with TGC

must generate for use in the received tag. The key is referred to as pktag,r,
while the private half is sktag,r. They relate to each other as per usual,
pktag,r = gsktag,r mod p.

The commitment value is generated by the reseller as a commitment token
for use in a zero knowledge proof that will be performed when the reseller
attempts to generate a tag. The cryptographic section earlier in this chap-
ter (Section 3.1) introduces zero knowledge proofs. The specific details
of how the proof is performed is described later in this section when the
reseller generated tags are outlined.

The commitment value is related to a private random value zr, which the
reseller must generate. The commitment value is calculated as ar = gzr

mod p.

In summary, the request sent by the reseller contains the following:

{id = H(x), pktag,r, ar}.

After the supplier receives this purchase request, it creates a tag request to
send to the TGC. The tag request contains a licence Lx, and the public key
and commitment value sent by the reseller (pktag,r and ar). This request is
signed by the supplier’s private key for item x (skx).

The licence construct Lx contains a licence that the end user can use with

2.1. TAGGED TRANSACTION PROTOCOL 17

the product, along with some fields to aid the protocol. Lx contains the
following: id = H(x); tagno; and Licence. The id is the id of the item being
licenced, tagno is a unique field that is used to detect replay, and Licence

is an implementation specific licence. Lx is signed by the private key skx.

This tag request sent to the TGC is as follows:

{Lx = {id = H(x), tagno, Licence}skx , pktag,r, ar}skx

After the TGC receives the tag request it checks that the tagno field is not
the same as any other requests for the item x. This protects against replay
attacks on the licence, so the supplier must generate a new licence and
sign it for each request.

The TGC then creates a tag, signs it, and returns it. This tag is then for-
warded on to the reseller that sent the purchase request. The actual item x

may also be sent here, but is not specified in the protocol description.

The tag contains the following items:

tag = {pkx, Lx, pktag,r, ar}skTGC

The reseller should then check that the tag contains the correct informa-
tion, and the signatures for both the licence and the complete tag are valid
and signed by skx and skTGC respectively. This check could also be done
by the supplier as well to save extraneous traffic, but is not specified in the
protocol.

Reseller Generating Tags

This section describes the specifications for the stage where the reseller at-
tempts to generate a tag based on a purchase request from another reseller
or a customer.

This stage involves a zero knowledge proof between the reseller and the

18 CHAPTER 2. RELATED WORK

Figure 2.3: Reseller Passing Tag to Customer

TGC. Section 3.1.2 outlines a general description of what a zero knowl-
edge proof is, while this section merely outlines the key points required to
understand this protocol.

This zero knowledge proof is used to determine whether the reseller has
access to the private key. This stops forging and also can be used to detect
replays. Details of this proof will be given as well as an example of replay
detection.

An overview of this stage is shown in Figure 2.3, which was taken from
the original paper describing the protocol.

This stage occurs when a reseller or a customer (c) sends a purchase re-
quest for item x to a reseller (r) that resells item x. The purchase request
contains the hash of the item, a one time public key and a commitment
value.

The one time public key is the public half of a key pair which the reseller
must generate for use in the received tag. The key is referred to as pktag2,c,
while the private half is sktag2,c. They relate to each other as per usual,
pktag2,c = gsktag2,c mod p.

The commitment value is generated by the reseller/customer as a com-

2.1. TAGGED TRANSACTION PROTOCOL 19

mitment token for use in a zero knowledge proof that will be performed
when the reseller attempts to generate a tag. The cryptographic section
described earlier in this chapter (Section 3.1) introduces zero knowledge
proofs. The specific details of how the proof is performed is described
below.

The commitment value is related to a private random value zc, which the
reseller must generate. The commitment value is calculated as ac = gzc

mod p.

In summary, the request sent by the reseller contains the following:

{id = H(x), pktag2,c, ac}.

After the reseller r receives the request, it then creates a tag generation
request to send to the TGC. This tag request contains the original tag re-
ceived by r when they purchased x (which contains the one time public
key and commitment value for r), along with the one time public key and
commitment value for the client. The data sent to the TGC is as follows:

{tag = {pkx, Lx, pktag,r, ar}skTGC
, pktag2,c, ac}

When the TGC receives the request, it checks that the one time public key
has not been used before for the tagno field found in Lx. The TGC then
initiates a zero knowledge proof of knowledge of a discrete logarithm [76]
so that the reseller r proves to the TGC that it has knowledge of the secret
key sktag,r such that pktag,r = gsktag,r mod p, using a commitment value
ar = gzr mod p.

The zero knowledge proof (ZKP) starts by the TGC sending a challenge
value c which the TGC generates. The TGC will then expect the response
r such that gr = arpk

c
tag,r.

The reseller calculates r = zr + cskr mod q and sends it to the TGC and
with the one time public key and the commitment value of the customer

20 CHAPTER 2. RELATED WORK

c, with all the data signed by the one time private key of the reseller. The
data sent back to the TGC is as follows:

{r = zr + cskr mod q, pktag2,c, ac}sktag,r

The TGC then checks that the result is signed, the one time public key and
commitment value of the customer are the same, and that the result r is as
expected. This proof is demonstrated by the following equations:

gr = gzr+csktag,r mod q (2.1)

gr = gzrgcsktag,r (2.2)

gr = arpk
c
tag,r (2.3)

Equation 2.1 is basic substitution of r = zr + csktag,r mod q. Equation 2.2
uses the power rules to rearrange the equation into two separate powers.
Equation 2.3 uses the fact that ar = gzr mod p and pktag,r = gsktag,r mod

p. Equation 2.3 is also the equation that the TGC verifies, and given the
previous two equations, it follows that the reseller would give the correct
r value only with negligible chance of cheating if they knew the private
key sktag,r.

If the proof passes, then the TGC stores the transcript c, r against the item
hash (H(x)), the public key (pktag,r) and commitment value (ar). The TGC
then issues a tag with the following content:

tag = {pkx, Lx, pktag2,c, ac}skTGC

The reseller then forwards this on to the customer, who should check that
the tag contains the correct information, the licence is signed by skx and
the tag is signed by skTGC . This check could also be done by the reseller
but is not specified in the protocol.

If the proof fails then the TGC does not do anything, and returns an error
result.

2.1. TAGGED TRANSACTION PROTOCOL 21

If the tag is submitted again to the TGC, then the TGC can detect replay
and discover the private key sktag,r. This is done because the TGC will
have the first transcript c1, r1 already and now should have a new tran-
script c2, r2. Both these transcripts use the same commitment value ar. The
following equations can be used to extract the one time secret key sktag,r.

gr1/gr2 = arg
c1sktag,r/arg

c2sktag,r = gsktag,r(c1−c2) (2.4)

gr1−r2 = gsktag,r(c1−c2) (2.5)

logg g
r1−r2 = logg g

sktag,r(c1−c2) (2.6)

r1 − r2 = sktag,r(c1 − c2) (2.7)

sktag,r = (r1 − r2)/(c1 − c2) (2.8)

Equation 2.4 uses the ratio of the two gr results, expands that out, and
cancels out the common ar term. Equation 2.5 rewrites that result in a
form that is ready to take the log. Equation 2.6 shows the logg of both
sides, and Equation 2.7 shows the result after cancelling the log and the
exponent. Equation 2.8 rearranges so that sktag,r is the target. This shows
how the TGC can use the two transcripts c1, r1 and c2, r2 with a common
commitment value ar to determine the secret key sktag,r.

22 CHAPTER 2. RELATED WORK

2.2 Related Work

This section presents two security protocols implementations from a selec-
tion of many security protocol descriptions. The two presented here were
chosen as they were the only ones that focussed on the implementation
of a security protocol rather than a description of a security protocol. The
two systems are as follows:

• Section 2.2.1 presents the Paradiso system [47, 48]

• Section 2.2.2 presents the Potato system [1, 69]

These systems all allow for the reseller model, where a customer can on-
sell a product they purchase of a supplier. This model is similar to how the
Tagged Transaction Protocol works. The Tagged Transaction Protocol has
the extra benefit of having a verifiable solution, and allowing the supplier
and all but the immediate reseller to be anonymous.

2.2.1 Paradiso

The Paradiso system allows customers to purchase reseller rights along
with products from the suppliers [47, 48]. This provides the reseller model,
and has the benefit that the reseller does not need to contact the supplier
after purchasing the reseller rights for a certain number of copies of the
product.

Paradiso runs on media devices with a trusted computing module (TCM),
which allows enforcing contracts between the supplier and customer. The
device can be something like the iPod, or the Zune. The device will have
it’s own private key stored in the secure hardware of the TCM. All inter-
action with the Paradiso system, and the content being transferred makes
use of the secure hardware of the TCM.

2.2. RELATED WORK 23

To gain reselling rights, the device sends a request to the supplier along
with it’s public key. When payment is made for the content, the supplier
sends the customer the content and any rights encrypted with a newly
created AES key. All of this is encrypted using the customers public key
and sent to the customers device. The reselling rights and license is signed
by the suppliers private key. To verify the license, the player confirms that
it has been signed by a valid suppliers.

The Paradiso system has many appealing features, though it has a disad-
vantage of relying on the TCM. In an ideal situation, all devices would
have this TCM, and this would allow reselling of content without further
input from the supplier.

2.2.2 Potato

Potato is a music redistribution system developed by Fraunhofer and the
company 4FriendsOnly [1, 69]. Users of the system purchase the content,
and also get reseller rights that give them credit when they on-sell.

There is a signed media format (SMF) presented by Nutzel et. al. [26]. This
format has all the content encrypted with the AES symmetric encryption
scheme. The encryption key is then encrypted by the private key of the last
customer. Any further purchases need to decrypt the content by using the
public key of the last buyer. The format has the following fields: encrypted
media; encrypted AES key; public key of last buyer; signed licence. The
licence comes from an accounting server, in this case the Potato system.

Potato allows distribution through P2P networks, but has the disadvan-
tage of requiring interaction with a central web server run by trusted third
party. Potato also has an interesting use of a reward system.

24 CHAPTER 2. RELATED WORK

Chapter 3

Techniques and Tools

This chapter outlines some techniques and tools that are useful when de-
veloping secure software.

The chapter will be laid out as follows:

• Section 3.1 presents a discussion of cryptography

• Section 3.2 discusses a range of different development techniques for
secure software.

3.1 Secure Use of Cryptographic Mechanisms

Cryptography is an important underlying mechanism of security engi-
neering. This section aims to present to the reader the background knowl-
edge of cryptography and how it is implemented in security engineering.

Cryptographic functions are the underlying constructs to security proto-
cols, and how strong the functions are how strong the protocol can ever
be. That is, if a cryptographic function is found to be weak, all protocols

25

26 CHAPTER 3. TECHNIQUES AND TOOLS

employing this function have a vulnerability due to the use of this func-
tion. There are several organisations that evaluate the security of primitive
functions and rate how strong they are. As well as that, many individuals
who have access to the source for the function can try and exploit it. One
process in security engineering is to take all this information and make an
informed decision on what functions to use and what not to use, based on
what the situation requires.

• Section 3.1.1 presents a discussion on key sizes

• Section 3.1.2 outlines a background to zero knowledge proofs

• Section 3.1.3 presents a discussion on sources of random material,
and their importance in cryptography

• Section 3.1.4 presents a selection of cryptographic libraries

3.1.1 Choice of Key Size

Key sizes are an important topic in the field of security. When the key size
goes up, the computing power needed to break the cryptography using
those keys goes up exponentially. The computation needed to perform
the cryptographic functions also goes up exponentially. This means that
choosing a key size is a trade-off between time and security.

As an alternate system, elliptic curve keys require smaller key sizes for
similar security of larger traditional keys.

Having said all this, the question still arises. “What is the right size key?”

The right key size is really determined by how much security you need
versus the computational power. Standard key sizes that have been used
in the field are 1024, 2048, and more recently 4098. But which is best?
The cryptography using 1024 keys may be broken in years to come, so

3.1. SECURE USE OF CRYPTOGRAPHIC MECHANISMS 27

may not be the best solution. The 2048 size is a comfortable size for both
security and computational power, but how long will that last. The 4098
size provides good security while being slower computationally.

Another aspect that would need to be addressed is how long the keys are
intended to be used. If the keys are only intended to be used for a short
period, the 2048 size may be the best, as it is unlikely that the key will
be broken in that period. But if the keys are intended to be used for a
moderate time (say 10–20 years), then it could be possible for the 2048 bit
key to be broken in that time. The 4098 size may possibly be the best fit
here.

3.1.2 Zero Knowledge Proof

This section describes the idea of a zero knowledge proof. A zero knowl-
edge proof is when a verifier (with no knowledge of the secret) verifies
that another party knows the secret value. The secret value here can be
basically anything, but in cryptography it usually has some mathematical
background.

Zero knowledge proofs were first presented in 1985 by Goldwasser et. al.
[25]. Since then many different variations for different proofs have been
researched. This section will not describe the many different types, just a
brief overview on how a zero knowledge proof works. A specific proof
was described in Section 2.1.4 when the protocol specifications for this
thesis was outlined.

A proof must satisfy three properties: Completeness; Soundness; and Zero-
knowledge.

Completeness is satisfied if an honest verifier can be convinced that an
honest prover knows the secret.

28 CHAPTER 3. TECHNIQUES AND TOOLS

Soundness requires that no dishonest prover can convince an honest veri-
fier, except for a small probability of error.

Zero-knowledge requires that no dishonest verifier can learn more than
the fact that the prover knows the secret.

A small example in an abstract setting is described below, first published
as an example of how to explain zero knowledge proof to your children
(laypeople) [70]. In this example there are two parties, Peggy (the prover),
and Victor (the verifier). Peggy has the knowledge of a secret word that
will open a door in a cave shaped like a circle. This cave has only one
entrance. There are two paths leading to the hidden door, and to pass
through the door the secret word must be uttered.

Victor wants to verify that Peggy does indeed know the secret word, but
Peggy does not want to tell him outright. So they come up with the fol-
lowing way to prove that she knows the word. Victor waits outside the
cave and Peggy goes in, randomly choosing one of the two paths (Victor
can not see which path she takes). Victor then goes into the cave so he can
see the two paths, and calls out to Peggy to come out on the path that he
chooses.

At this point there is a 50% chance that Peggy went down the path that
Victor specified and can come back without using the secret word. On
the other hand, there is a 50% chance that she needs to utter the secret
word to come back along the correct path. To be certain, Victor could test
Peggy as many times as he wants (or until she gets tired of walking back
and forth), and if she never gets it wrong, chances are that she knows the
secret word (the proof part of the zero knowledge proof). There is still a
small probability that she guesses correctly each time, but this probability
(or soundness error) can be reduced exponentially by more tests. Note
that Victor still does not know the secret word, hence the zero knowledge
part of a zero knowledge proof.

3.1. SECURE USE OF CRYPTOGRAPHIC MECHANISMS 29

3.1.3 Randomness

This section presents a brief discussion on random data. The field of ran-
domness relates back to the field of mathematics, and is an important part
of cryptography. Note that a definition of randomness is described in the
next subsection.

Without random data, most of the assumptions made in cryptography
would be null and void. For example, if no random data was used to
create a key pair, with the same seed value an adversary can create the
exact same key pair. This is not desirable.

With some extra randomness, it is hard to create the exact same key pair. If
the random data is insufficient, then statistical analysis can be performed
to attempt to generate the same key pair given only the public key and/or
the seed value. This shows a good motivation on why randomness is im-
portant in cryptography. This is one example of motivation, but the same
argument could be applied to more areas of cryptography.

This section will give a brief introduction to the idea of randomness, then
go on to talk about sources of random material (and how they may be
built into the operating system or as a userspace program), and finally a
brief discussion of online sources of random material and whether they
are suitable for cryptographic purposes.

What is Randomness?

Kolmogorov defines a sequence of bits as random if and only if the length
of the sequence is shorter than any algorithm that could produce the se-
quence [39]. This definition ensures that a random sequence can not be
compressed, which implies that there can be no statistical measures to de-
duce any bits in the sequence.

30 CHAPTER 3. TECHNIQUES AND TOOLS

Randomness can be tested for sufficient randomness and some tests for
this are outlined in RFC 4086 [17] and FIPS 140-2 [53].

Randomness can be split into two major different variations: true random-
ness (which includes environmental randomness and sources like dice);
and pseudo randomness (generated by an algorithm).

True randomness includes sources such as any environmental noise for ex-
ample: atmospheric noise, or thermal noise from resistors. It also includes
physical systems such as dice, or roulette wheels, as long as these systems
are fair. This source of randomness can be obtained with purpose made
hardware random number generators, or manually by rolling a dice.

Pseudo randomness is a type of randomness that is generated by a com-
puter algorithm. The rest of this section will outline a few algorithms that
can be used. The algorithms presented below are a specific type of pseudo
random number generator algorithms designed for cryptography. These
types of generators are called Cryptographically-Secure-Pseudo Random
Number Generators (CSPRNG).

Randomness Sources in Major Operating Systems

First of all, the source of randomness for each of the major operating sys-
tems should be mentioned.

BSD systems and derivatives such as Mac OS X use a system called Yarrow
[38] which combines multiple sources of randomness by determining the
quality of the inputs. A successor to the Yarrow algorithm is Fortuna [20].

Linux uses a system that provides randomness from any available random
source, not limited to but can include hard disk access among other things
[28]. Linux’s system can also take advantage of any connected hardware
random sources.

3.1. SECURE USE OF CRYPTOGRAPHIC MECHANISMS 31

Microsoft systems use the Microsoft Cryptographic Application Program-
ming Interface, specifically the method CryptGenRandom [44].

Userspace Sources of Randomness

Aside from support in the operating systems, there are also userspace tools
that can provide pseudo randomness. These systems include EGD, prngd,
HAVEGE, randomsound, rng-tools.

EGD: The Entropy Gathering Daemon is a daemon for systems that do not
have a source of randomness in the operating system [89]. It works by
running userspace commands to collect various sources of unpredictabil-
ity from the underlying system.

Pseudo Random Number Generator Daemon (prngd) is an EGD compat-
ible program [35]. prngd differs from EGD in that it is a non blocking
program that seeds the random number generator in the OpenSSL library.

HArdware Volatile Entropy Gathering and Expansion (HAVEGE) is a tool
that takes the unpredictability of the underlying system as a source of ran-
domness [78]. The throughput of the HAVEGE algorithm is significantly
faster than the underlying systems source of randomness, and can also act
as an additional source of randomness for those systems, which makes it
very useful for cryptographic systems that require a large supply of ran-
dom data quickly.

Randomsound is a utility that uses the Linux sound system ALSA to gather
randomness [79]. It works by taking the low order bit of the ADC output
in the sound card, removing any biases and adds it to the Linux random
pool /dev/random.

The program rng-tools is an additional tool used by the Linux random
pool to obtain randomness from external sources. It allows using external

32 CHAPTER 3. TECHNIQUES AND TOOLS

sources such as a hardware random number generator to add randomness
to the internal pool used by /dev/random.

Each of these tools needs to take into consideration how they collect the
random entropy, and how they may use mathematics to extend the size of
the entropy.

It should be noted that the process of extending the entropy makes the
source of randomness less reliable as it gets further from the definition
of true random. This means that these techniques are used as a trade-off
between security and time (or entropy size, which contributes to the major
time computation in cryptography).

This project uses the tool HAVEGE as the source of randomness is quickly
obtained. The results in chapter 6 show the difference in timing between
running the protocol not using HAVEGE, and running the protocol while
using HAVEGE.

Online Sources of Randomness

As a final note, a mention of online sources such as random.org and
rand.org. These sources may not be as secure for cryptographic pur-
poses unless encryption is placed around the traffic received from the site.

3.1.4 Cryptographic Libraries

There are a multitude of libraries that implement the major algorithms
for cryptographic use. It is best practice to use a library that has already
implemented an algorithm rather than implementing it from scratch for
a new project. This saves your implementation from having unnecessary
bugs that the libraries that are developed by a wider group of developers
don’t have.

random.org
rand.org

3.1. SECURE USE OF CRYPTOGRAPHIC MECHANISMS 33

These libraries may have limitations such as language bindings, or al-
gorithms implemented. The choice of a particular library to use would
come down to how trusted is it in the security field?, does it implement the
needed algorithm?, and does it have bindings for the language used?

Note that the language used may be determined by the library choice or
vice versa.

This section will not detail any of the libraries or constraints they may
have, but is purely a list of some well known libraries.

These cryptographic libraries (in no particular order) include: OpenSSL
[87], GNU crypto [84], bouncycastle [86], cryptlib [27], gnutls [85], beecrypt
[91], gcrypt [83], nettle [45], polarssl [55].

This list does not include any cryptographic libraries built into the lan-
guage itself.

The implementation of this project used the bouncycastle cryptographic
library.

3.1.5 Summary

This section presents a summary of the techniques discussed in this chap-
ter. The main content of this summary will focus on how the techniques
can relate to the implementation of the protocol described in Section 2.1.

The actual description of the implementation is not covered until chapter
4, but this section outlines the details that would need a decision on the
specifications of the protocol.

The details that are not described in the protocol specifications include the
following:

34 CHAPTER 3. TECHNIQUES AND TOOLS

• Networking between entities

• Anonymous networking between entities and the TGC

• Hash function(s) to use

• Licences for objects (the Licence field in L)

The networking used in this implementation is described in chapter 4.
This describes the technique used to communicate, the advantages and
disadvantages of that technique, and some alternate techniques with ben-
efits.

The anonymous networking is not specified as such, and any implemen-
tation of an onion routing [82] (or garlic routing [14]) may be used. An
example implementation would be TOR [15]. This implementation uses
no anonymous communications built into the system, but the use of such
a routing protocol could be used in a layer underneath the protocol with
no (or minimal) changes to the implementation.

The hash function used is a combination of SHA-256 and SHA-512, both
from the Secure Hash Algorithm (SHA) family 2nd Generation [54]. The
reasons for this choice are the high standard of the algorithms and the
trust held by the algorithms in the security field. In later releases of the
protocol, the SHA-3 family could be used when it is finalised [52].

The licences used in the system are not defined, and are intended to be
supplier dependant so the supplier would have to extend the library that
this implementation provided. More details of this are described in chap-
ter 4.

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 35

3.2 Secure Software Design Lifecycles

There are several security development cycles that share roots with the
well known software design lifecycles such as the Waterfall [73] and Spiral
[5] models, or a iterative approach [41]. A key feature of these frameworks
is that they integrate security into every stage of the cycle. This hopefully
leads to more secure software.

To aid comparison between different lifecycles, each lifecycle will be split
into several logical phases. These phases create a common ground for each
lifecycle to enable discussion and comparison of these lifecycles.

• Security Training

• Requirements Gathering

• Design

• Implementation

• Verification

• Release

Security training is essentially a phase that happens before a project starts,
though some lifecycles explicitly include it. The training here can be quite
general or it can be project specific.

Requirements gathering is an important part of any lifecycle, whether or
not it is security based. In a security based lifecycle, it is where any se-
curity needs are decided upon, and what level of security is satisfactory
(this may involve a trade-off of some kind). The gathering process may in-
volve some kind of risk/threat analysis and uses this information to build
a model of the security needed.

The design phase is the phase where all the details on the how the project is

36 CHAPTER 3. TECHNIQUES AND TOOLS

going to be implemented are defined. Any design documents are created
during this phase. This phase is quite closely related to the requirements
phase as the requirements create a starting block from which to build on.

The implementation phase is where the actual coding takes place. It should
follow the design phase closely to make sure all the requirements are met.

The verification phase is where some kind of analysis takes place to make
sure that the implementation is correct in regard to the security require-
ments and any specifications. It may involve use of static analysis tools or
test cases or similar. These verification tests may be implemented parallel
to the implementation phase, or as a separate phase.

The release phase is the phase that happens after the project is finished.
It may involve creating a plan on how to handle any vulnerabilities that
arise after the product is released. In this phase, any vulnerabilities that
are found, will be fixed. This can require that the lifecycle to be repeated
on a smaller scale for each set of vulnerabilities.

The above phases work in a general sense that can have specifics applied
to it with each individual lifecycle. Any lifecycle style can be used, such
as a traditional waterfall or spiral model, or an agile approach.

There are a wide variety of different security frameworks in current prac-
tice. Many of them have similar aspects and some have a few unique
features. This section presents a selection of security frameworks, and
discusses advantages and disadvantages of using them in the area of this
project. Each discussion also details how the particular framework can be
applied to this project.

• Section 3.2.1 presents complete lifecycles

• Section 3.2.2 presents auxiliary tools that can combine to make a
complete lifecycle

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 37

3.2.1 Complete Lifecycles

This subsection will present some complete secure software design life-
cycles, discuss merits and limitations, and compare similarities. This will
lead into the next subsection which presents some techniques that do not
make up a full lifecycle, but can be used with others to build a custom
lifecycle.

The lifecycles presented in this section are as follows:

• Team Software Process - Secure (TSP-Secure) [9]

• Comprehensive, Lightweight Application Security Process (CLASP)
[62]

• Security Development Lifecycle (SDL) [30]

• Secure Software Development Methodology (SecSDM) [23]

TSP-Secure

Team Software Process Secure (TSP-Secure) is a software lifecycle method-
ology [9]. It is an extension of the Team Software Process (TSP) method-
ology [81] (developed by the Software Engineering Institute at Carnegie
Mellon University). It combines use of coding standards, checklists, and
tools to verify output.

TSP-Secure is being developed as a part of the survivable security engineer-
ing research done at CERT R© [80]. CERT is part of the Software Engineer-
ing Institute at Carnegie Mellon University. This research involves many
other security tools and methodologies that will be described later in this
section.

The main idea behind TSP-Secure is the use of a checklist, which is a

38 CHAPTER 3. TECHNIQUES AND TOOLS

Figure 3.1: TSP Secure

project specific working document. This checklist contains everything that
needs to be done in each phase, and is modified to create new additions or
check things off at each step of the process.

The checklist, while being project specific, can include items that may be
present in more general checklists or guidelines. For example, looking
at Figure 3.1, the CERT R© C Secure Coding Standard is a general set of
guidelines, but can have a heavy influence on the items used in any given
project specific checklists used in TSP-Secure.

Figure 3.1 shows an overview of how TSP-Secure works. In this image, it
shows use of the CERT R© C Secure Coding Standard, which is part of the
CERT Secure Coding Standards collection [8]. Possible tools that can be
used for the verification and testing process are presented and discussed
in Section 3.2.2.

Below is a more in depth outline on how the checklist may be modified
during each phase of the lifecycle.

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 39

The first step in the process will be to generate an initial start to the check-
list, usually by determining the security requirements based on the project
specifications. This step produces an initial checklist that can be used
throughout the rest of the steps. This step will fit into the requirements
phase. This phase and the remainder of the phases will include a security
manager overseeing additions and completion of the checklist to ensure
everything is done properly.

The design phase will involve deciding what libraries, languages, and
other design aspects to be used in the security project to meet the require-
ments. These decisions are noted on the checklist, and can be aided by a
set of security guidelines, like those in the CERT R© C Secure Coding Stan-
dard book [8]. This phase is illustrated by the arrow loop in the top left of
the figure, from checklist to the coding standards and back.

The implementation phase involves the actual coding of the project. This
is where the checklist is checked off as something is implemented, and
some more items are added (they will be used in the verification stage).
Throughout this phase, reference to the coding standards may take place
to ensure proper code is produced. This phase is illustrated by the bottom
left arrow loop in the figure, as well as the top left loop.

The verification phase involves using various tools to ensure that the im-
plementation meets the requirements correctly. These tools can include
static analysis tools, unit testing tools, fuzz testing, and other similar tech-
niques. When something has been verified, the appropriate entry on the
checklist is checked off. Tools that can be used for this purpose are pre-
sented in Section 3.2.2. The top right loop in the figure illustrates this
phase.

The release phase in TSP-Secure involves just deploying it (shown on the
right hand side of the image). After release, if vulnerabilities are found,
this process can be repeated as necessary.

40 CHAPTER 3. TECHNIQUES AND TOOLS

This checklist approach will be useful for validating the development pro-
cess as it can generate a new checklist and check things off that have been
done. Addition of new checklist items may have a bias through towards
what was done during the development process though.

CLASP

The Comprehensive, Lightweight Application Security Process (CLASP) is
a software security lifecycle with a focus on web development. CLASP is a
sub-project of a larger project, the Open Web Application Security Project
(OWASP) [62]. OWASP is a security framework which incorporates many
sub projects, tools, and methodologies. Section 3.2.2 will discuss other
projects in OWASP and how they can be used to work together.

It is designed so that it can be integrated with other lifecycles with rela-
tive ease. The general idea is that any security needs are identified and
addressed at an early stage in the lifecycle, and thoroughly tested and ver-
ified for appropriate security requirements.

CLASP has a set of best practices that it follows, and they are as follows:

1. Institute awareness programs

2. Perform application assessments

3. Capture security requirements

4. Implement secure development practices

5. Build vulnerability remediation procedures

6. Define and monitor metrics

7. Publish operational security guidelines

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 41

These practices are intended to be a broad overview of how a project is
tackled and because of this, they tend to be quite vague about how some
techniques are to be used. In contrast, TSP-Secure has a concrete checklist
to follow during each phase, which is well-defined and the only vagueness
in TSP-Secure is the choice of tools to use.

These practices contain several different techniques which are used through-
out the different phases in the lifecycle.

1. The institute awareness program is a program that brings security to all
the members of a development team through training [61]. This practice
belongs to the security training phase.

2. Performing application assessments include the following techniques:
identifying, implementing, and performing security tests [59]; threat mod-
elling [63]; and performing a source level security review [64]. The testing
technique is in the verification phase, the threat modelling, in both the
requirements and design phases, and the security review fits into the ver-
ification phase.

3. Capturing security requirements involves a decision, deciding on the
security requirements for the project [58]. This fits into the requirements
gathering phase.

4. Implement secure development practices involves defining or using an
existing set of secure development practises. This fits into the security
design phase of a lifecycle.

5. Building vulnerability remediation procedures involves building a set
of procedures to aid dealing with vulnerabilities discovered before or after
a release of a product [57]. This fits into the release phase of a lifecycle.

6. Metrics are useful throughout all phases in a lifecycle. This practice
involves defining a set of metrics that can allow judgement on how secure
something is, then using these metrics to monitor development.

42 CHAPTER 3. TECHNIQUES AND TOOLS

7. The operational security guidelines are intended for documentation
purposes after a product is released. It fits into the release phase of a life-
cycle.

Because CLASP is not precisely defined, it is not very helpful for validat-
ing out development process. If the specifications for CLASP were more
detailed, its metric system proves to be very useful for the validating pro-
cess.

SDL

Security Development Lifecycle (SDL) is a Microsoft designed software
development lifecycle, with an emphasis on security. The basis of the life-
cycle is a series of phases which integrate security at each step. This en-
sures that security is placed in the application as early as it needs to be
and no last minute additions to the code base should be necessary. The
phases are as follows: security training; requirements gathering; design;
implementation; verification; and release. There is one additional phase
after the cycle is complete, i.e. a response to any vulnerabilities that occur
post-release. This phase fits into the release phase for comparison.

SDL is a detailed lifecycle definition, but lacks the support of concrete tech-
niques such as pre-made forms for requirements, tools for testing/verify-
ing. It is more concrete than CLASP, and about on a par with TSP-Secure
(which is very detailed for requirements and design phase, but not so
much in implementation and verification).

Security training is useful for a team based environment to bring all mem-
bers up to the same standard, and establish a team wide process that can
be followed out for any security concerns. The training must also cover
technical aspects such as current vulnerabilities, and possible future vul-
nerabilities in the area of the project. Information on how to gather infor-

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 43

mation about security matters must also be delivered in training.

Requirements gathering involves identifying key security needs for the
application, and to what standard these needs must be met. This involves
analysing risk and threats to the application and the severity of these risks/threats,
then using this information to determine what needs will be met and to
what level. This can mean balancing between usability and security, whichever
is more important to the specific application.

The design stage is the stage where a base idea is formed and developed.
It involves performing a threat analysis in greater detail than the require-
ments stage to narrow down all the requirements for the overall project
and starts building a structure for the project.

The implementation stage is where the programme becomes a concrete
application. For this stage, best practices need to be followed to ensure
security is held and no unwanted vulnerabilities are introduced. Tools that
need to be used are identified here, and libraries that should or should not
be used, and throughout the stage, static analysis should be performed to
spot any potential vulnerabilities.

The verification stage is where the implementation meets the requirements
and design. Basically the application should be functioning by this stage,
so it needs to be tested against the requirements decided upon. This can
be done by some testing framework (mentioned in more detail in section
3.2.2), an independent tester, in-house testing or manual inspection of code
to verify requirements.

The release stage gathers together any details that may be needed if an
incident happens, a final review of the product, then file away all informa-
tion needed. The product is now released to the users.

The response stage occurs if a security incident happens post-release. This
is where all the information filed away at the release stage is needed, get-

44 CHAPTER 3. TECHNIQUES AND TOOLS

ting the response team up to knowledge with the product. A fix is then
made, and released to either the single user, or all users as a public fix.

SDL’s descriptive process would make it an ideal candidate for validation
of the development process. The lack of tools to aid the validation is one
disadvantage.

SecSDM

SecSDM is a process that is based on SDL aimed at implementing secu-
rity into any software development life cycle [23]. It builds on the authors
previous work [24] which gives a general outline of security software de-
velopment. SecSDM is available in both paper form, and as an application
to guide through the process.

SecSDM builds on the good practices of SDL and continues the philosophy
of a very detailed lifecycle. SecSDM is based largely on various interna-
tional standards on security.

The main benefit for SecSDM is the use of the concrete form for require-
ments and design, but it lacks the choice of libraries and tools for testing
and verification. The verification process in SecSDM is done by a tech-
nique of backtracking through the design of the project, and this technique
is also useful for the release phase where vulnerabilities may become ap-
parent.

SecSDM involves the following stages: Investigation; Analysis; Design;
Implementation; Maintenance. The investigation and analysis phases map
to the requirements gathering phase; the design and implementation phases
map to the phases of the same name respectively; and the maintenance
phase maps to the release phase.

SecSDM has the benefits of SDL, as well as a concrete form for require-

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 45

ments that link all the way to the implementation. This makes it an excel-
lent system for use with validation of the development process.

SecSDM was chosen to validate the design for this project because of its
good practices, and has the foundation of international engineering stan-
dards. The lifecycle also has a strong focus right from the requirements
gathering through to implementation while other lifecycles may only fo-
cus on one particular phase or may be too vague for use in validation.

Summary

Table 3.1 presents a summary of the complete lifecycles covered in this sec-
tion. It shows each phase of the lifecycle, and what techniques it provides
for ensuring security.

From this table, the following conclusions can be drawn:

TSP-Secure has good support for requirements gathering using SQUARE,
but has an issue in that the specific tools needed for completing the imple-
mentation and verification need to be decided on.

CLASP is very vague in its description, as most of the description is just a
set of guidelines on how to go about a secure project with no specifics on
procedures that can be used.

SDL has a very detailed process, but lacks concrete tools/forms/checklists
that some other lifecycles have.

SecSDM has the benefits of SDL’s detailed process, and also has a custom
form/checklist to work through the requirements gathering to the imple-
mentation stage in the lifecycle. This gives all round good support, and the
use of the form makes it a valuable tool for validation of a custom lifecycle
as well. For this reason, SecSDM was chosen to validate the development
process taken, and will be described in more detail in Chapter 5.

46 CHAPTER 3. TECHNIQUES AND TOOLS

Phase
T

SP-Secure
C

LA
SP

SD
L

SecSD
M

C
oncreteness

M
edium

Low
M

edium
M

edium
-H

igh

Training
G

eneralTraining
Institute

Security
A

w
areness

Program
[61]

Projectspecialised
training

program
G

eneralTraining

R
equirem

ents
SQ

U
A

R
E

[43]
C

apturing
R

equirem
ents

[58],
ThreatM

odelling
[63]

R
isk

analysis,
determ

ine
security

thresholds,risk
assessm

ent

A
ssetim

pact
analysis,linking

to
com

m
on

threats
to

produce
risks.R

isk
analysis.[33]

D
esign

C
ER

T
R©

C
oding

Standards
[8](or

sim
ilar),C

hecklist

ThreatM
odelling

[63]
Threatm

odelling,
analyse

attack
surface

M
apping

risks
to

security
services

and
m

echanism
s

[34]
Im

plem
entation

Static
A

nalysis,
C

hecklist
Secure

D
evelopm

ent
Practices

[60]
D

eterm
ine

required
tools/libraries,static
analysis

M
apping

softw
are

libraries
to

security
m

echanism
s.

Verification
O

C
TA

V
E

[2],U
nit

Testing,Fuzz
Testing,C

hecklist

Security
Testing

[59],
C

ode
R

eview
[64],

R
elating

back
to

Security
Policies

and
R

equirem
ents

D
ynam

ic
analysis,

fuzz
testing,review

attack
surface

Backchecking
through

other
phases

R
elease

D
eploying,possible

repetition
ofprocess

V
ulnerability

rem
ediation

procedures
[57],

operationalsecurity
guidelines

incidentresponse
plan,finalsecurity
review

Possible
sm

aller
repetitions

of
process

Table
3.1:Sum

m
ary

ofcom
plete

softw
are

security
lifecycles

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 47

3.2.2 Auxiliary Tools

This subsection will present any methodologies and tools that do not make
up a complete lifecycle in themselves, but when they are used with other
components (or replace a phase in an existing lifecycle) they can make up
a fully secure software design lifecycle.

The subsection divided so that methodologies or tools that fit under one
category (or lifecycle phase) are grouped together. There may be some
overlap with some tools, and this is mentioned when this occurs.

Requirements Phase

For the requirements phase, a possible methodology that can be used is
the Security Quality Requirements Engineering (SQUARE) process [43].

SQUARE is a development process to help integrate security early in the
development life cycle [43]. It involves nine steps: defining requirements;
identifying security goals; developing supporting documents; risk analy-
sis; elicitation techniques; generating security requirements; categorising
requirements; prioritising requirements; and inspecting requirements.

SQUARE, like TSP-Secure (mentioned in previous subsection), is also a
part of the survivable security engineering research done at CERT R© [80].
CERT also develops OCTAVE, a secure coding standard, and other things.
OCTAVE is discussed in the evaluation section, and the coding standard
will be discussed in the implementation section.

Design Phase

The design phase can use a range of tools and methodologies that aid the
designer in the process. This section covers some modelling tools, some

48 CHAPTER 3. TECHNIQUES AND TOOLS

potential frameworks, and some security guidelines that can be applied.

One modelling tool that is useful in designing security applications is
UMLSec [37], which is an extension of the popular Unified Modelling Lan-
guage [32]. The extension makes use of the standard UML extension me-
chanics such as Stereotypes and Constraints.

Some possible frameworks that can be used in the design stage are: the
Open Web Application Security Project (OWASP) [62]; Enterprise JavaBeans
(EJB) [56]; or the Spring project [36] (including Spring Security [46]).

Open Web Application Security Project (OWASP) is a security framework
geared towards web applications. It contains several different tools that
aid security engineering. There are tools to protect from security related
design and implementation flaws, tools to detect security related imple-
mentation flaws, and tools to integrate security into a software develop-
ment life cycle. A few OWASP projects are listed below:

• OWASP Secure Coding Practices

• OWASP Development Guide

• OWASP Enterprise Security API (ESAPI)

• OWASP Application Security Verification Standard (ASVS) Project

• OWASP Code Review Guide

• OWASP Testing Guide

• OWASP Comprehensive, Lightweight Application Security Process
(CLASP)

• And many more.

While on a whole the OWASP framework fits in the design phase, some of
the projects can be useful in other phases. The secure coding practices, de-

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 49

velopment guide, and the enterprise security API are useful in the imple-
mentation phase. The ASVS project, the code review guide, and the testing
guide are useful in the verification phase. The CLASP project, which was
mentioned in Section 3.2.1, is a complete lifecycle in itself.

Enterprise JavaBeans (EJB’s) are types of applications that aim at server-
side modular enterprise applications [56]. A bean can be thought of as
a single module that can make up a part of a application. These style of
applications tend to be web orientated.

There are two major types of beans: session beans and message driven
beans. Session beans can be either state full, stateless, or singleton. The
particular one to use depends on the situation needed to model; does it
need state? Message driven beans are those driven by a message being
sent, not a method being invoked. This is done by a bean “subscribing” to
any messages that it wants to be notified about, then it will be triggered
when any of these messages are sent.

Spring is a framework for developing enterprise Java products, and makes
large use of JavaBeans without the project source being dependant on
Spring.

Spring Security is a tool used for projects using Spring to incorporate se-
curity in projects. Spring Security is itself a project that uses Spring, to
provide security to other projects using Spring. The tool uses a simple
XML based project file to define security needs for the project. It is mostly
useful for web based applications, much like OWASP.

Implementation Phase

In the implementation phase, the security of any libraries used need to
be evaluated. In Chapter 5, a section covering cryptographic libraries is
presented.

50 CHAPTER 3. TECHNIQUES AND TOOLS

Another issue is avoiding introducing coding errors. For this reason, the
implementation and verification phases are quite closely connected. This
section will introduce a few tools and guidelines that aid good implemen-
tation.

Before implementation starts, a concise coding style needs to be deter-
mined. A few well known standards include the GNU Coding Standards
[22] or the Linux Kernel Coding Style [88].

Coding Standards are an integral part of the development process. Stan-
dards can come in many forms, but the principle is the same - they are a
set of guidelines on how the code is to be developed. Standards may in-
clude, among other things, whether certain functions need to be used, and
where they are to be used.

Another set of standards, aimed at security development is the CERT R©

Secure Coding Standards [8]. These are a collection of standards for a
few popular programming languages such as C, C++, and Java. They are
used in some of the processes developed by CERT, and can be used as a
good starting ground for many developers. One important aspect of the
CERT Secure Coding Standards is that they focus on secure programming,
something that many other standards do not cover.

As mentioned above, the CERT R© Secure Coding Standards are being de-
veloped as a part of the survivable security engineering research done at
CERT R© [80] at Carnegie Mellon University along with SQUARE, TSP-
Secure, and OCTAVE (mentioned below).

Checkstyle is a tool that can be applied to source code to determine whether
the coding standard is being followed correctly [7]. This is useful while
implementing in order to check that everything is running on track.

A similar tool, but one that is aimed at finding common vulnerability and
bug patterns, is FindBugs [29]. FindBugs is a tool that uses static analysis

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 51

to find bugs in source code. Bugs here can be anything from performance
bugs, bad practice, correctness, security vulnerabilities, and dodgy hacks.
It can accept user defined lists of bugs, as well as using the packaged list.
This tool is useful during implementation of a security project to keep the
code clean of bugs (especially possible security vulnerabilities). It can be
applied during each build, or when code is submitted to a repository.

Verification Phase

The verification phase is used to test against security vulnerabilities, ver-
ify that the application follows the requirements and specifications, and
evaluate the security of the application.

This section will present a framework for evaluation, OCTAVE [2], and
also some tools that can be used to test and verify against the implemen-
tation.

Operationally Critical Threat, Asset, and Vulnerability Evaluation (OC-
TAVE) is a collection of tools, techniques and methods for risk-based in-
formation security strategic assessment and planning. Three methods that
are a part of OCTAVE are: the original OCTAVE; OCTAVE-s (aimed at
smaller organisations); and OCTAVE-Allegro (streamlined).

As mentioned above, OCTAVE and its partners are being developed as a
part of the survivable security engineering research done at CERT R© [80] at
Carnegie Mellon University.

Another process that can aid evaluation is the Orange Book (mentioned in
the training phase). and this can be used to assess how secure the applica-
tion is.

The rest of this section presents the following tools: ESC/Java2; JUnit; and
JTest.

52 CHAPTER 3. TECHNIQUES AND TOOLS

ESC/Java2 is a static analysis tool. Static analysis tools are tools that take
into account the raw source code of the program to find either errors, vul-
nerabilities, verification on conditions, or many other features. More in-
formation on static analysis can be found [51]. Other static analysis tools
include Checkstyle, and FindBugs (both mentioned above).

ESC/Java2 is an Extended Static Checker for the Java programming lan-
guage. It is the second version of the software. It can be used to assert
statements that should be correct at run-time, but checks it at compile-time.
It can be used to prove pre- and post-conditions, as well as loop invari-
ants. In the back-end, ESC/Java uses the Simplify theorem prover [10] as
an automated theorem prover. ESC/Java is not considered complete, and
false positives or negatives can possibly occur.

ESC/Java uses an extension to the Java Modelling Language (JML) [42] to
specify what constraints are needed to be checked. This allows a developer
to put simple comments in their source code and run a tool against it to have
more peace of mind. These constraints could be security related, such as
the works by Hubbers [31] and Schubert [77].

An issue with checkers like ESC/Java, is that the developer needs to spec-
ify manually the constraints on the program which uses up a valuable
developer resource, time. There are some tools that provide a solution,
automatically generate the conditions. Some of these tools are the Daikon
Invariant Checker [19], and Houdini [21] (which unfortunately has not
been developed since 2001).

The other tools presented are types of unit testing tools. This means that
unit tests can be defined for each component of a project, and the tools
used to test it. These unit tests refer to what the project requirements and
specifications are and may be decided in the design phase.

JUnit is a testing framework useful for testing small unit cases in a project.
Basically a specific unit test case is written to test a single logical part of

3.2. SECURE SOFTWARE DESIGN LIFECYCLES 53

the project, for each component that needs testing. This can be useful to
test security vulnerabilities by ensuring the return results do not leak any
private information, and also for testing whether the implementation fol-
lows the specification. JUnit is specific to the Java programming language.
For other languages, there are various other projects.

JTest is a tool that uses static analysis to generate automatically JUnit test
cases [67]. These automatically generated tests should be reviewed by
someone with a knowledge of the system to ensure quality tests. This
automatic process speeds up the testing process significantly as the devel-
oper is not required to write up test cases manually.

54 CHAPTER 3. TECHNIQUES AND TOOLS

Chapter 4

Design and Implementation

This chapter outlines the implementation of the protocol, and the process
taken during implementation. This chapter will be split as follows:

• Section 4.1 outlines the general structure of the implementation.

• Section 4.2 describes the implementation of the Tag Generation Cen-
tre.

• Section 4.3 describes the implementation of the supplier.

• Section 4.4 describes the implementation of the reseller.

• Section 4.5 describes the implementation of the tag.

• Section 4.6 describes the implementation of a licence.

• Section 4.7 describes the implementation of the hash object.

• Section 4.8 describes the implementation of the cryptographic func-
tions in the system

• Section 4.9 describes the implementation of the networking in the
protocol.

55

56 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.1 Structure of Implementation

This section outlines the structure of the implementation of the protocol.
The protocol specifications are described in Section 2.1.

The protocol involves the following entities: The Tag Generation Centre
(TGC); a group of suppliers; a group of resellers; and a group of customers.
In this implementation, the customers are treated as resellers. Each of
these entities are described later in this section.

The protocol also defines the tag, and the implementation of a tag is de-
scribed in Section 4.5.

Outside of the scope of the protocol itself, is the implementation of the
networking between the entities. The implementation of this networking
is described in Section 4.9.

4.2 Tag Generation Centre Implementation

This section describes the implementation of the Tag Generation Centre
(TGC). The TGC performs the following functions:

• Generating the Elgamal parameters p, q, and g.

• Registering suppliers products.

• Issuing tags to suppliers.

• Issuing tags to resellers based on a zero knowledge proof.

The implementation of these functions and the backing object are described
in the rest of this section. The networking to interact between the TGC and
other entities is described in Section 4.9.

4.2. TAG GENERATION CENTRE IMPLEMENTATION 57

4.2.1 Backing Implementation

The backing of the TGC involves a Java class with the following fields:

• specifications (ElGamalParameterSpec)

• privateKey (ElGamalPrivateKey)

• publicKey (ElGamalPublicKey)

• registeredItems (Map<Hash, ElGamalPublicKey>)

• zeroKnowledgeProofs (Map<Tag, BigInteger[]>)

• issuedTags (Map<Hash, Set<Integer>>)

The specifications field is an object that holds the values of the ElGamal
parameters p, q and g. . . .

The private and public key are the private and public key respectively for
the TGC. These keys are used for signing, encrypting and decrypting data
sent to/from the TGC.

The registeredItems is a map between a Hash object and a public key. The
Hash object is a hash value of an object, described at The public key is
the public key for the product, which is sent by the supplier when regis-
tration occurs. This map is used to detect replay registrations.

The zeroKnowlegdeProofs map is a map between a Tag object and an array
of BigIntegers. The tag object is the tag being used in the zero knowledge
proof, and the array holds two items. The first entry in the array is the
challenge c sent by the TGC, and the second entry, which is only available
after the proof is completed, holds the response value r sent by the reseller.

Detection for replay of a zero knowledge proof is detected in two ways:
First if a reseller initiates a tag request and the map has an entry for the
original tag, the request is denied; second if a reseller tries to complete

58 CHAPTER 4. DESIGN AND IMPLEMENTATION

a zero knowledge proof by sending the return value r, and that value al-
ready exists in the array, then the request is denied as the proof has already
been completed before.

The issuedTags map holds a set of tag numbers for each item registered.

4.2.2 Generating Elgamal Parameters

This section outlines the method for generating the ElGamal parameters.
As mentioned above, the parameters are p, q, and g. These parameters are
global to the entire system, and are used for creating keys and performing
the zero knowledge proof.

To generate these values, a modified form of the bouncy castle is used. The
modifications made are for more checks to be made against the generated
values. The additional checks are detailed below. Without these checks
the system doesn’t work correctly.

The rest of the process uses just the straight bouncy castle library to do all
the key generations, signing, verifying, encryption and decryption.

The additional checks are to be done instead of the code found in the DH-
ParametersHelper class, the method being replaced is the selectGenerator
method. The additional checks are as follows:

• Checks that gp−1 mod p = 1

• Checks that g2 mod p 6= 1

• Checks that gq mod p = 1

• Checks that gp mod p = g

If any of these checks fail, the selected generator is discarded and another
is selected to be tested.

4.2. TAG GENERATION CENTRE IMPLEMENTATION 59

The original code only checks that the following two conditions are not
met:

• g2 mod p 6= 1

• gq mod p = 1

These checks are incorporated in the new checks, no loss of security oc-
curs, only increased robustness to any factorisation attacks.

4.2.3 Registering Suppliers Products

This section outlines the method used to register products with the TGC.

The parameters to this method are one encrypted registration request. A
registration request is an object that holds a hash value and a public key
for the item.

The process for registration are as follows:

1. Attempt to decrypt the registration, throws exception if fails

2. Ensures decrypted registration is valid, throws exception if invalid

3. Checks the registeredItems map for the hash value in the request,
throws exception if one exists (meaning that this item has already
been registered)

4. Checks that the public key in the request is a valid ElGamal key using
the same parameters that were generated by the TGC

5. If all checks pass, the registration is added to the registeredItems
map, an empty set is added to the issuedTags map, and then a signed
receipt is returned to the supplier.

60 CHAPTER 4. DESIGN AND IMPLEMENTATION

This method is marked as synchronized to avoid two attempts registering
an item at the same time.

4.2.4 Issuing Tags to Suppliers

This section outlines the method used to generate tags based on requests
from suppliers.

The parameters to this method are one signed tag request. A tag request is
either a supplier or a reseller tag request. In this method, the supplier tag
request is given. A supplier tag request contains a signed licence, a public
key and a commitment value (BigInteger).

The process for generating the tag is as follows:

1. Checks that the signed tag request is in fact a supplier tag request,
throws exception if not

2. Checks the public key in the request is a valid ElGamal key using the
same parameters that the TGC generated

3. Ensures that the licence is signed by the same key that was used in
the registration stage

4. Checks that the licence field tagno has not been seen before for this
item by checking the issuedTags map for the presence of this tagno

5. Adds the tagno to the set contained in the issuedTags map and then
issues a signed tag

This method is also marked as synchonized to avoid two attempts of gen-
erating a tag with the same tagno in the licence.

4.2. TAG GENERATION CENTRE IMPLEMENTATION 61

4.2.5 Issuing Tags to Resellers

This section outlines the method uses to generate tags for resellers. It in-
cludes the TGC side of the zero knowledge proof. In the reseller imple-
mentation details below, the full details of the zero knowledge proof is
presented.

There are two methods used for generating a tag for resellers. The first
method takes a encrypted request for a tag, does some housekeeping and
returns a challenge for the zero knowledge proof. The second method
takes the result of the zero knowledge proof along with the original tag
request, does some replay detection, verifies the proof and returns a tag if
everything passes.

The first method has the following process:

1. Decrypts the tag request, throwing an exception if fails

2. Checks that the decrypted tag request is a value reseller tag request,
throwing an exception if not

3. Checks that the original tag is a valid tag that was signed by the TGC

4. Checks that the public key used in the request is a valid ElGamal key
using the same parameters that were generated by the TGC

5. Checks that the original tag has not been used to generate a tag be-
fore by checking the zeroKnowledgeProofs map for the key

6. Generate a challenge value c, and put it in the zeroKnowledgeProofs
map

7. Return the challenge c

The reseller then computes the result of the zero knowledge proof r =

zr+cskr mod q. The reseller then calls the next method with the customers

62 CHAPTER 4. DESIGN AND IMPLEMENTATION

public key and commitment value and the result r. This data is all signed
by the resellers private key for that tag.

The second method has the following process:

1. Retrieves the entry from zeroKnowlegdeProofs map with the origi-
nal tag as the key

2. Checks that the zero knowledge proof has already been started (i.e.
a challenge has been sent)

3. Checks that the result of the zero knowledge proof has not already
been sent (the second element in the array is null)

4. Add the result value to the array, to detect replay attacks

5. Checks that the following formula holds: gr mod p = arpk
c
tag,r

6. If all tests pass, return a signed tag.

Both of these methods are set to be synchronized to stop any attacks due
to the concurrent nature of the network.

4.3 Supplier Implementation

This section describes the implementation of the suppliers in the proto-
col. Suppliers can also act as resellers, but this section only outlines the
functions of a supplier.

The functions that a supplier performs are:

• Registering items with the Tag Generation Centre (TGC)

• Requesting tags for resellers purchases

4.3. SUPPLIER IMPLEMENTATION 63

The implementation of these functions as well as the backing implemen-
tation are described in the rest of this section.

The networking to interact with the TGC and the resellers is described in
Section 4.9.

The supplier class is marked as abstract and designed so that custom im-
plementations can be made to extend this class. The only restriction is that
the core functions of the supplier are marked as final and can’t be overrid-
den by custom implementations.

4.3.1 Backing Implementation

This section describes the backing implementation of the supplier object.

The supplier object has the following fields:

• tgcPublicKey (PublicKey)

• specifications (ElGamalParameterSpec)

• items (Map<Hash, Item>)

• keys (Map<Hash, key pair>)

• receipts (Map<Hash, SignedRegistration>)

• tagnos (Map<Hash, Set<Integer>>)

The tgcPublicKey field contains the public key of the Tag Generation Cen-
tre, and the specifications field contains the parameters p, q, and g. These
values are initialised when the object is created.

The items field maps the hash of an item to the actual item object. This is
used for when the actual item is sent along side the tag, the supplier can
find the item by looking up the hash key.

64 CHAPTER 4. DESIGN AND IMPLEMENTATION

The keys map contains the key pair used for each item. The public key is
used for the tag and registration, while the private key is used to prove
that we are the legitimate supplier of the item that was registered with the
TGC

The receipts map holds all the registration receipts that can be used to
prove that the TGC actually registered the item. This can be used to show
that a rogue TGC is registering an item with multiple suppliers, which is
against the specification.

The tagnos map holds a set of tagnos used for each item.

4.3.2 Initialisation

When the object is created, the TGC public key and the parameters for
the ElGamal algorithm are retrieved from the TGC. This uses a network
connection to the TGC as described in Section 4.9.

After the TGC information has been retrieved, the custom method ini-
tialise is called, this method should setup anything that the custom im-
plementation of the supplier needs, for example registering all the items
that the supplier owns.

4.3.3 Registering Items

This section outlines the process of registering an item with the TGC.

The method parameter is the item object. The process is as follows:

1. Generate a hash for the item, and store the hash-item pair in the items
map

4.3. SUPPLIER IMPLEMENTATION 65

2. Check that the item hasn’t been registered before, by checking the
receipts map

3. Generate a key pair for use with the item, and store it in the keys
map

4. Create a registration request using the hash of the item and the gen-
erated public key

5. Encrypt the request using the TGC’s public key

6. Send the request to the TGC, and await the reply

7. If an exception occurs, let the user know and stop processing here

8. If no exception occurs, check that the registration receipt returns
matches the request sent, and is signed by the TGC

9. Add the receipt to the receipts map

10. Add an empty set to the tagnos map for this item

This method is intended to be called by the custom implementations through
the initialize method, but this is not a restriction. The only restriction is
that this method can’t be overridden, to protect the protocol from being
broken by bad implementations.

4.3.4 Requesting Tags

This section outlines the process of requesting a tag from the TGC after a
purchase request from a reseller.

This method is called with a parameter of a purchase request. A purchase
request is a request from a reseller that contains a item id, a public key

66 CHAPTER 4. DESIGN AND IMPLEMENTATION

and a commitment value. This is sent by a reseller using the networking
implementation described in Section 4.9.

The process of this method is as follows:

1. Check that the item is sold by the supplier by checking there is an
entry in the receipts map using the hash value as a key

2. Generate a licence, containing a unique tagno field

3. Sign the licence using the private key found in the keys map

4. Create a supplier tag request using the licence and the resellers pub-
lic key and commitment value

5. Sign this request and send it to the TGC

6. If an exception is thrown, let user and reseller know

7. If no exception is thrown, check the returned tag to see if it matches
the request sent, and is signed by the TGC

8. Send the tag along with the item to the reseller.

When generating licences, a abstract method generateLicence is called.
This method is meant to have a custom implementation for each suppliers
licence generation code. The created tagno is checked in the tagnos map,
and if not there it is used, and added to the map to ensure the TGC accepts
subsequent registrations. More information about licence implementation
is described in Section 4.6.

Another thing to note, if this supplier also acts as a reseller, first an attempt
to resell a product is made before attempting to supply it. The details of
reselling a product are described in the next section.

4.4. RESELLER IMPLEMENTATION 67

4.4 Reseller Implementation

This section describes the implementation of the resellers in the protocol.
Note that the customers in the system are treated as resellers.

The functions of a reseller are:

• Purchasing items from upstream in the chain (either suppliers or re-
sellers)

• Generate tags for customers (involving a zero knowledge proof)

The implementation of these functions as well as the backing implemen-
tation are described in the rest of the section

4.4.1 Backing Implementation

This section describes the implementation of the backing object of a re-
seller.

The reseller object has the following fields:

• tgcPublicKey (PublicKey)

• specifications (ElGamalParameterSpec)

• items (Map<Hash, Item>)

• tags (Map<Hash, Queue<SignedTag>)

• keys (Map<Tag, key pair>)

• zValues (Map<Tag, BigInteger>)

The tgcPublicKey field contains the public key of the Tag Generation Cen-
tre, and the specifications field contains the parameters p, q, and g. These

68 CHAPTER 4. DESIGN AND IMPLEMENTATION

values are initialised when the object is created.

The items map stores all the items that the reseller current has to offer.

The tags map stores a queue of tags to use when reselling. If the queue is
empty, the reseller must purchase a new supply of tags from upstream.

The keys map holds the key pairs generated for each tag, while the zVal-
ues map stores the z values generated for each tag. The z value is used
to compute the commitment value and the result of the zero knowledge
proof.

4.4.2 Purchasing items upstream

This section describes the process and implementation of a reseller pur-
chasing items from upstream sources, such as suppliers or other resellers.

The details of the network protocol implementation between the reseller
and the upstream source is described in more detail in Section 4.9.

The parameters for this method are the hash of the item, and the connec-
tion to the reseller that the purchase is being requested from. The reseller
in this case could also be a supplier.

The process for purchasing the item is as follows:

1. Generate a z value

2. Compute the commitment value a = gz mod p

3. Generate a key pair for use with the received tag

4. Create a purchase request for the item using the item id, the generate
public key, and the commitment value

5. Send the request to the upstream reseller/supplier

4.4. RESELLER IMPLEMENTATION 69

6. If any exception is encountered, tell the user and stop processing
(any private data is discarded)

7. Check that the tag matches the request and is signed by the TGC

8. Add the returned item to the items map

9. Add the returned tag to the tags queue

10. Add the z value to the zValues map

11. Add the key pair to the keys map

This method is intended to be called when the reseller is out of stock, but
can also be called when stock is plentiful as the returned tags are added to
a queue.

4.4.3 Generating tags for customers

This section describes the implementation of a reseller requesting tags for
a customer purchase. This includes a description of the zero knowledge
proof implementation in the reseller.

The parameter to this method is a purchase request from a customer. The
details on how this request is sent through the network is described in
Section 4.9. A purchase request is an object that contains the item hash, a
public key, and a commitment value.

The process of generating a tag is as follows:

1. Check that the item is sold by us, and is in stock, otherwise throw an
exception

2. Retrieve a tag from the tag queue, removing at the same time

70 CHAPTER 4. DESIGN AND IMPLEMENTATION

3. Generate a reseller tag request based on the information in the pur-
chase request and the retrieved tag

4. Encrypt the reseller tag request using the TGC public key

5. Sent the request to the TGC, throwing an exception if failing

6. The TGC should return a challenge value c for the zero knowledge
proof

7. Retrieve the z value and key pair for the retrieved tag from the zVal-
ues and keys maps respectively

8. Compute the result of the zero knowledge proof r = zr + cskr mod q

9. Send the result and the original tag request to the TGC

10. If TGC returns an exception, add the retrieved tag back to the queue
then inform the user and customer

11. If TGC returns a tag, check it’s validity and that it matches the re-
quest and is signed by the TGC

12. Send the generated tag and the item to the customer

This method is used for generating tags based on a purchase request from
a customer. It involves a zero knowledge proof between the reseller and
the TGC.

4.5 Tag Implementation

This section describes the implementation of the tags in the system. A tag
is the central part to the system, and is necessary for the protocol to work.
The structure of the tag is as follows:

4.6. LICENCE IMPLEMENTATION 71

• itemPublicKey (PublicKey)

• licence (SignedLicence)

• resellerTagPublicKey (PublicKey)

• resellerTagCommitmentValue (BigInteger)

The itemPublicKey is a field for the public key of the item. This is sent to
the TGC in the registration phase between the supplier and the TGC. It is
contained in all the subsequent tags.

The licence is a licence structure that is signed by the item private key. It
should be verified that the licence is signed by the key be testing against
itemPublicKey. The licence is generated when the supplier requests a tag
from the TGC due to a purchase request from a reseller. The licence con-
tains a tagno field which is used to detect replay. The details of the licence
implementation is described in Section 4.6.

The resellerTagPublicKey and resellerTagCommitmentValue are the pub-
lic key and the commitment value for the reseller for this tag. They are
used in the zero knowledge proof between the reseller and the TGC

The tag can be signed and encrypted, details of how this is implemented
are described in Section 4.8

4.6 Licence Implementation

This section describes the implementation of the licences in the system.
The licence is a signed token to verify that the item is licenced for the end
user. The structure of the licence object is as follows:

• itemID (Hash)

72 CHAPTER 4. DESIGN AND IMPLEMENTATION

• tagno (Integer)

• licence (byte[])

The itemID shows which item this licence is valid for. It corresponds to a
hash value of the item. The hash object is described in Section 4.7.

The tagno field is a unique value to each licence. It is used by the TGC to
verify that this licence is not being replayed.

The licence field is the actual licence itself, in a custom form implemented
by the supplier implementation. It is simply an array of bytes.

4.7 Hash Implementation

The hash object is used to identify items in the system, without sending the
full item across the network. The hash object is — as it’s name suggests —
a hash value of the item.

The specifications of which hash function to use was not present in the
original protocol specifications, so the function used in this implementa-
tion may be replaced by another hash function.

The implementation of the hash object uses a series of message digests of
the item to avoid any collisions. The algorithms used are the SHA-512 and
the SHA-256 hashes.

Additional hashes could be used by extending this class with a custom
implementation, and releasing that extension to all users of the system.

4.8. CRYPTOGRAPHIC FUNCTIONS 73

4.8 Cryptographic Functions

This section outlines the implementation of the various cryptographic func-
tions in the system. The underlying functions use the bouncy castle cryp-
tographic API, with the exception of signing and verifying signatures,
which use a slightly modified bouncy castle implementation.

Various objects in the system can be signed or encrypted, and these objects
then become wrapped in a new class (either SignedObject or Encrypte-
dObject respectively). The rest of the section outlines how these classes
are interacted with.

4.8.1 Signing

The SignedObject class holds the signed object, and the signature. It has
a method getEnclosingObject(). The class is abstract and is intended to
be extended for each specific type of object needing signed. This system
implements the following classes: SignedLicence; SignedTag; SignedTa-
gRequest. These subclasses have methods such as getEnclosingLicence()
depending on their type.

A helper class SigningUtils is used for all signing and verifying of objects.
The class has two public methods, sign and verify.

The sign method takes the object to be signed and a private key, and re-
turns a subclass of SignedObject (depending on the object passed in). Note
that the private key here is not sent over the network in any way, but has
the vulnerability to be sniffed by inspecting the internals of the Java virtual
machine.

The verify method takes a SignedObject and a public key. The return value
is true iff the object is signed by the public key, false otherwise.

74 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.8.2 Encryption

The EncryptedObject class holds the encrypted byte array of the object.
The class is abstract and is intended to be extended for each type of ob-
ject needing encryption. This means that the encrypted data sent over the
network does have the type of the underlying data attached. This is a
tradeoff between ease of use of the system and protecting the data. The
actual contents of the underlying object are not sent in the clear.

A helper class EncryptionUtils is used for all encryption and decryption
of objects. The class has two public methods encrypt and decrypt.

The encrypt method takes and object and a public key. It encrypts the
object and returns the results in a subclass of EncryptedObject (depending
on the passed object).

The decrypt method takes an EncryptedObject and a private key. The re-
turn result is either null if the decryption failed, or the original object in the
correct type. Note that the private key here is not sent over the network,
but has the vulnerability of being sniffed by inspection of the internals of
the Java virtual machine.

4.9 Network Implementation

This section describes the implementation of the networking between dif-
ferent entities in the system. The networking specification is out of the
scope of the protocol.

The implementation of the networking between different entities in the
tagged transaction protocol were not specified in the original specifica-
tions for the protocol. This means that the networking is an implementa-
tion decision to make, and will be implementation dependant.

4.9. NETWORK IMPLEMENTATION 75

The implementation of the network requires the design of how objects are
represented in a network stream. Because of the choice of language, it is
possible for this implementation to make use of Java’s serialization tech-
nology to represent objects as streams that can be sent over the network.
This implementation is not the most efficient way, but makes extending
the system for more objects trivial.

Another way to go about the representation of objects is to define a byte
level representation of each object used in the system. This approach
means that an efficient design can be used to limit unnecessary bandwidth.
A side effect of this is that either future objects need to have a reserved
structure, or a redesign must take place if further objects are introduced to
the system at a later point.

This prototype implementation makes use of the first option of using Java’s
built in serialization technique. This technique allows one to serialize an
object into a stream that can be sent over the network for example. If this
approach is shown to effect the results badly due to increased overhead, a
redesign may be needed for future prototypes.

Each object that will require sending over the network is declared as seri-
alizable, and a helper class NetworkUtils takes care of the encoding and
decoding of the objects. The use of a helper class keeps the main structure
of the library unaltered, and in the event of a change to the design of the
networking, minimal changes will be needed.

To declare an object serializable, the class just needs to implement the Se-
rializable interface. This does not require any additional methods. A field
serialVersionUID is used to track different versions of the object so that
both ends of the network stream know that the object relates to the ver-
sion they are aware of (or not if that is the case). Also any fields that are
not to be sent over the network can be declared transient. This means that
that field will not be encoded in the stream.

76 CHAPTER 4. DESIGN AND IMPLEMENTATION

The NetworkUtils helper class takes care of the following functions: open-
ing connections to remote entities, and receiving connections from remote
entities. These functions will be described separately but it should be
noted that they provide roughly a reverse functionality of the other. The
NetworkUtils requires that any object that is to be sent implements the
Serializable interface, otherwise will inform the user of the error.

Each entity in the system has two superclasses that identify how they are
to be used for networking. For example, the Supplier class has two su-
perclasses, a SupplierClient and a SupplierServer. This is the same for the
Reseller and the TagGenerationCentre as well. The client class is used to
connect to remote entities, and the server class is the backing model of the
entity (it has all the code for the functionality). The server class will be
described later in this section.

4.9.1 Client Side

When an entity wishes to make a connection to a remote entity (say a local
Reseller to a Supplier at host “foo” on port 12345. The Reseller class creates
a new Supplier object by calling the SupplierClient constructor with the
arguments “foo” and 12345, or whatever the host and port combination
are. This client class creates a new helper class NetworkUtils that actually
makes the underlying connection, and then waits for messages to send.

When that reseller wishes to call a method with the supplier, it calls the
method as per usual, and the client code does the work. The client code
takes the request, converts it into a Method Object (part of the reflection
API in Java), and sends that to the helper class along with the arguments
for the method. The helper class then sends that on to the remote sup-
plier (details on how it is received are below). The helper class then either
receives the result, or an exception, and passes that back through to the

4.9. NETWORK IMPLEMENTATION 77

client. The client takes the result and passes it back to the original reseller
class, and if appropriate the exception. If the exception is due to a network
error, the client class needs to deal with that in an appropriate way. This
implementation simply informs the user of the error and cleans up.

4.9.2 Server Side

The server side of the connection is the appropriate Server class, for exam-
ple SupplierServer. This class is used for the actual implementation, and
any extensions should extend this class to be able to use to networking
underneath.

In the example above, the reseller attempts to connect to the supplier. The
SupplierServer (or extension thereof) takes the connection and starts a new
NetworkUtils helper to receive the messages. Any errors in the network
are simply ignored on the server end of the communication.

When the reseller calls a method on the supplier client, the request is sent
to the server. The NetworkUtils helper takes the message from the stream,
reads in the required arguments from the stream, then invokes the method
on the SupplierServer object, getting a result or an exception. This result
or exception is sent back to the client by sending a boolean whether it is
the result or not, then either the result or the exception depending on what
is needed.

78 CHAPTER 4. DESIGN AND IMPLEMENTATION

Chapter 5

Verification and Validation

This chapter discusses the verification and validation of the implementa-
tion of the protocol. These two concepts are similar in nature and need
defining. The definition used in this thesis is as follows:

• Verification is an attempt to ensure that the product is built correctly,
in the sense that the output products of an activity meet the specifi-
cations imposed on them in previous activities.

• Validation is an attempt to ensure that the right product is build, that
is, the product fulfils its specific intended purpose.

When there are applied to this project: verification is the process of veri-
fying that the protocol specifications are met in the implementation, and
validation is the process of ensuring the users security requirements are
met.

The verification stage is simply using some technique to show that the im-
plementation meets the protocol specifications presented in chapter 3. The
validation stage is an attempt to show that the implementation is secure,
to some degree of secureness. Both these processes can not be exact, and

79

80 CHAPTER 5. VERIFICATION AND VALIDATION

as states above are just an attempt, but the purpose is to attempt to show
to the fullest understanding that they are both satisfied.

This chapter will be split in two, Section 5.1 will discuss verification of the
protocol specifications, and Section 5.2 will discuss the validation of the
security of the implementation.

5.1 Verification of Protocol Implementation

This subsection outlines the procedure followed to validate the implemen-
tation correctly implements the specifications of the security protocol pre-
sented in Section 2.1.

The following techniques have be used in the validation procedure: A
suite of unit tests for small components of the protocol; an internal review
of the implementation by the creator of the protocol. In addition, an exter-
nal review of the implementation against the specifications of the protocol
could be possible, but has not been done due to time constraints of this
project.

The section is split as follows: Section 5.1.1 describes the unit testing pro-
cedure used; and Section 5.1.2 describes the internal review procedure.

5.1.1 Unit Testing

This section presents the various unit tests that are applied to the imple-
mentation to show that the specifications are followed correctly.

The purpose of each test is to execute a small part of the protocol’s process
in a controlled manner an observe the outcome. Some of these tests are

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 81

expected to pass, and some are expected to fail. The pass and fail criteria
will be described in detail for each test.

These tests should cover all of the different stages of the protocol, and if
they all pass or fail as expected, then this validates that the implementation
of the protocol is correct with regards to the test cases. The next section
shows how the test cases can be validated independently to show that
they are suitable as test cases.

Each test case will describe the following:

• Protocol setup procedures

• Inputs for test (either static or dynamic)

• Expected outcome of the test

• Pass and fail criteria for the test

The design and implementation details are outlined in more detail in Chap-
ter 4, but in some situations some design and implementation details have
been clarified.

These unit tests will be described in more detail in the rest of the section.

Supplier Item Registration

This test performs a simple registration of an item from one supplier entity
with the tag generation centre. This step should pass if an item of the same
ID has not already been registered (see next test for this situation). This test
involves the following steps:

1. Calculating the ID of the item.

2. Generating a key pair for use with this item

82 CHAPTER 5. VERIFICATION AND VALIDATION

3. Register id using the public key with the TGC in an encrypted mes-
sage.

The TGC can do additional checks outside of the protocol to ensure that
the supplier is the rights holder of the product, but this would not work if
anonymity is used.

The implementation of the protocol used in this project does not include
any out of band checks on identity, and simply uses a first in first regis-
tered model.

The ID of the item is calculated as a SHA-512 hash of the product data, and
to minimise the collision possibilities a SHA-256 hash is also appended.
The bouncy castle library is used to generate the hash.

The key pair generated is an Elgamal key pair, using the parameters p, q,
and g which are generated by the TGC.

To get the protocol up to the stage of this test the following setup is needed
to be done:

1. TGC Generates ElGamal parameters p, q, and g

2. TGC Generates key pair for signing and encryption with the TGC.

3. The Elgamal parameters and the public key for the TGC are made
publicly available.

At this stage, the supplier is ready to register an item. This test makes the
assumption that an item with the same ID has not been registered yet. The
pass criteria is that the TGC will allow the registration to happen. If this
test fails, the TGC will reject the registration. This test is expected to pass.

The input parameters for the test are the parameters p, q, and g which the
TGC generated, the TGC public key, and the item being registered. This
test doesn’t have any dependency on the item being registered other than

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 83

that the item (or one with the same ID value) has not been registered in the
past as per the assumption above. For that reason, a static item has been
used with description of “Test item”.

This test performed as expected in the implementation, that is the TGC
accepted the registration.

Supplier Impersonation (Item Registration)

This test performs an attempt at impersonating a supplier during the item
registration stage of the protocol. This test should fail. This involves the
following steps:

1. Obtain a product ID, either by legitimate purchase or intercepting.

2. Generate key pair to use with item

3. Attempt to register item using the new public key with the TGC

Obtaining the product ID by intercepting can happen either by intercept-
ing the original registration or by intercepting a tag. As the original reg-
istration is encrypted for the TGC, no valuable data can be obtained. This
encryption can only be broken by a flaw in the Elgamal protocol, or if the
TGC private key is obtained.

This leaves only intercepting a tag, or a legitimate purchase. If either of
these occur, it should be noted that this can only happen if the product has
already been registered.

When an attempt to register the item with the TGC happens, as the prod-
uct with the same ID has already been registered, this step fails.

This shows that this test must fail iff the protocol is implemented correctly
and the encryption of the original registration is not broken.

84 CHAPTER 5. VERIFICATION AND VALIDATION

The protocol setup for this test is as follows:

1. TGC Generates ElGamal parameters p, q, and g

2. TGC Generates key pair for signing and encryption with the TGC.

3. The Elgamal parameters and the public key for the TGC are made
publicly available.

4. Any supplier has registered an item i

5. Any reseller has requested a tag through the supplier for item i

6. The TGC accepted the tag request and a tag was generated.

7. This tag was obtained by the attacker.

At this stage, the attacker can try to register an item using the item id from
the intercepted tag, or the legitimately obtained tag.

The pass criteria for this test is that the TGC will allow the registration, and
the fail criteria is that the TGC will reject the registration. It is assumed that
the item i has already been successfully registered, which is a prerequisite
for any tags to be generated for it. This test is expected to fail, as the item
has already been registered.

The input parameters for this test are the parameters p, q, and g from the
TGC, the TGC public key, the ID of i (the id of the being registered). Note
that the attacker could attempt to use the public key from the intercepted
tag with the same effect of generating a new key pair, but the attacker
would not know the original private key. If the registration was accepted,
the attacker would not be able to abuse this registration without knowl-
edge of the private key relating the public key that was registered. Both
a generated key pair, and reusing the original public key are expected to
fail.

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 85

The test performed as expected in this implementation, that is the TGC
rejected the registration.

Zero Knowledge Proof

This test performs the zero knowledge proof algorithm used in the proto-
col. This involves the following steps:

1. Customer initiates transaction with reseller.

2. Reseller requests tag from TGC using their old tag.

3. TGC starts zero knowledge proof by sending random challenge c

4. Reseller responds with proof

5. TGC checks proof with expected value and issues tag

This process proves that the reseller is actually the owner of the original
tag. The correct response is r = zr + csktag,r, where zr is the value used
to produce the commitment value (a = gzr), and sktag,r is the one time
private key for the resellers tag. The response is sent to the TGC along
with original tag request, all signed by the private key for the resellers tag.

The response is checked by the TGC using the knowledge that the private
key sktag,r relates to the public key with the following function, pktag,r =

gsktag,r . The response value should be correct in the following equation,
gr = arpk

c
tag,r

This test is actually part of the reseller generated tag test which occurs in
any transaction with chain length greater than one.

The protocol setup for this test is as follows:

1. TGC Generates global parameters p, q, and g

86 CHAPTER 5. VERIFICATION AND VALIDATION

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. The reseller has purchased item i off the supplier and received a tag
t

6. A customer requests purchase of item i from the reseller

7. The reseller sends a tag request to the TGC on behalf of the customer,
using tag t

At this stage, the protocol is in the middle of the reseller generated tag
function. The zero knowledge proof must be completely successfully for
the TGC to accept the proof and send a signed tag.

The pass criteria for this test is the TGC accepts the proof and returns a
signed tag for the item being requested. The fail criteria is that the TGC
rejects the proof for some reason. This test is expected to pass.

The input parameters for this test are the global parameters p, q, and g,
the public TGC key, the commitment value ar, and the one time public
key pktag,r. The reseller knows the secret value zr that relates to ar by the
function ar = gzr , and also the one time secret key sktag,r

The test performed as expected in this implementation, that is the TGC
accepted the proof and returned a signed tag.

Zero Knowledge Proof (Replay Attack)

This test is similar to the test above, but the reseller is trying to use the
same tag in a zero knowledge proof.

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 87

Using two zero knowledge proof transactions with values c1, r1, and c2, r2,
the one time secret key (sktag,r) for the resellers tag can be discovered by
computing the following.

gr1/gr2 = CBc1/CBc2 = Bc1−c2 and loggB = r1 − r2/c1 − c2 = sktag,r

The protocol set up for this test is as follows:

1. TGC Generates global parameters p, q, and g

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. The reseller has purchased item i off the supplier and received a tag
t

6. A customer requests purchase of item i from the reseller

7. The reseller sends a tag request to the TGC on behalf of the customer,
using tag t

8. The reseller and the TGC carry out a zero knowledge proof success-
fully

9. Another customer requests purchase of item i from the reseller

10. The reseller sends a tag request to the TGC, using tag t again

At this stage, the reseller is about to attempt to perform a zero knowledge
proof using that tag they have used previously.

The pass criteria for this test is the TGC accepts the proof and returns a
signed tag. The fail criteria for this test is that the TGC rejects the proof as
a replay, and can produce the one time secret key for the resellers tag. This
test is expected to fail.

88 CHAPTER 5. VERIFICATION AND VALIDATION

The input parameters for this test are the usual global parameters p, q,
and g, the TGC public key, the commitment value ar, and the one time
public key pktag,r. The reseller knows the secret value zr such that ar = gzr ,
and also the one time private key sktag,r. The TGC also has a record of the
previous zero knowledge proof transaction values c1, and r1 stored against
the item.

The test performed as expected, that is the TGC rejected the proof and
discovered the resellers private key for that tag.

Zero Knowledge Proof (Forged Attack)

This test is similar to the above two, except the attacker has no knowledge
of the secret value z or the secret key sktag,r and instead attempts to guess
and forge the response value r. This is unlikely to be correct, but there is a
very minute chance none the less.

The protocol set up for this test is as follows:

1. TGC Generates global parameters p, q, and g

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. A reseller has purchased item i off the supplier and received a tag t

6. The attacker intercepts this tag t

7. A customer requests purchase of item i from the attacker

8. The attacker sends a tag request to the TGC on behalf of the cus-
tomer, using tag t

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 89

At this stage, the attacker is ready to attempt a zero knowledge proof with
no knowledge of the secret value zr or the secret key sktag,r.

The pass criteria for this test is that the TGC will accept the proof and
return a signed tag. The fail criteria is that the TGC will reject the proof as
incorrect. It is expected that this test will fail.

The inputs are the usual p, q, g, the TGC public key, the commitment value
ar, and the one time public key pktag,r. The response value r will be a
random number of the appropriate length. Because of the dynamic nature
of the r input, this test will be repeated several times to ensure a wide
selection of inputs are tested. Note that there is a very small chance that a
random input produces the correct response.

Licence Replay Attack

This test shows an impersonation attempt from a reseller attempting to
be a supplier by attempting to replay a legitimate licence. This test is ex-
pected to fail. This can happen with the following steps:

1. A customer initiates transaction with reseller (they believe to be the
supplier)

2. Reseller (impersonating the supplier) sends a generated licence along
with the customers request, all signed by the items private key, to the
TGC.

3. If everything passes, the TGC returns a signed tag.

In the second step, the generated licence includes a tagno field. This field
must be unique to the item, otherwise the TGC will reject the transaction.
This stops licence replay attacks. The only other way to send a licence
is if it is signed by the items private key, which is protected by the true
supplier.

90 CHAPTER 5. VERIFICATION AND VALIDATION

The protocol setup for this test is as follows:

1. TGC Generates global parameters p, q, and g

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. A reseller has purchased item i off the supplier and received a tag t

6. The attacker intercepts the suppliers tag request which contains li-
cence l

7. A reseller requests purchase from attacker for item i, believing them
to be supplier.

8. The attacker sends a tag request to TGC using the licence l.

At this stage, the attacker is attempted to get the TGC to issue a tag for
supplying to the reseller. This requires the attacker to send a licence, the
public key and commitment value supplied by the reseller to the TGC all
signed by the items private key. As the attacker doesn’t have the private
key, they can only replay the knowledge they have, which is the public
key and commitment value of the original reseller. The TGC will check
this and will result in not issuing a tag.

The pass criteria is the TGC will issue a tag for the attacker, and the fail
criteria is the TGC will refuse to issue a tag due to a replay attack. It is
expected that this test will fail.

The inputs are the usual p, q, g, the TGC public key, the intercepted tag
request containing the licence l, and the public key and commitment value
from the reseller.

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 91

Supplier Impersonation

This test shows a reseller attempting to impersonate a supplier based on
information from the intercepted registration.

The protocol setup for this test is as follows:

1. TGC Generates global parameters p, q, and g

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. Attack intercepts the registration

6. A reseller requests purchase of item i from attacker, believing it to be
the supplier

At this stage the attacker is requesting a tag from the TGC by impersonat-
ing the supplier. To request a tag, they need a licence and the public key
and commitment value from the reseller, all signed by the private key of
the item. As the attacker doesn’t have the private key, they will not be able
to sign the triple.

The pass criteria is the TGC issuing a tag, and the fail criteria is the TGC
rejecting the request due to incorrect or no signature or no licence. It is
expected that this test will fail.

The inputs are the usual p, q, g, the TGC public key, and the public key and
commitment value from the reseller.

92 CHAPTER 5. VERIFICATION AND VALIDATION

Tag Replay Attack

This test shows a replay attack when the attacker tries to resell an already
sold tag. This assumes that the tag has been received during a legitimate
transaction, and has already been used in a transaction since receiving it.
This test is expected to fail. The steps involved in this test are as follows:

1. Purchase a product from a reseller upstream, receiving a tag.

2. Resell that product to a customer downstream, using the received
tag.

3. Attempt to resell the product to another customer downstream, us-
ing the same tag.

The attempt to resell the second time should fail because after a successful
trade with the tag, a zero knowledge proof would’ve taken place and any
replay attempt on this will fail with the TGC.

The protocol setup for this test is as follows:

1. TGC Generates global parameters p, q, and g

2. TGC Generates a key pair for signing and encryption

3. TGC shares the parameters p, q, g, and the public key

4. A supplier has registered an item i

5. A reseller has purchased item i off the supplier

6. A customer requests purchases item i off the reseller

7. The reseller requests tag from TGC and carries out zero knowledge
proof, receives tag t

8. Reseller sends tag t to customer with item i

5.1. VERIFICATION OF PROTOCOL IMPLEMENTATION 93

9. The attacker intercepts this tag t

10. A customer requests purchase of item i from the attacker

11. The attacker sends a tag request to the TGC on behalf of the cus-
tomer, using tag t

At this stage the attacker is requesting a tag from the TGC using an inter-
cepted tag t. This tag has already been used before to generate a new tag,
and as such a zero knowledge proof has already taken place. The TGC
should detect this and reject the request for a new tag.

The pass criteria is that the TGC will issue a tag, and the fail criteria is that
the TGC will reject the tag due to a zero knowledge proof already having
taken place. It is expected this test will fail.

Reseller Purchase

This test is a slightly larger test that shows the protocol running with a
chain length of one, that is a supplier and a customer (who may then re-
sell). This tests whether the supplier can generate a tag successfully. This
test is expected to pass.

The steps in this test are as follows:

1. Generate a one time key pair.

2. Generate a private z value.

3. Calculate the commitment value

4. Send a request to the supplier with the one time public key and the
commitment value.

5. Receive tag.

94 CHAPTER 5. VERIFICATION AND VALIDATION

The key pair generated is an elgamal key pair using the bouncy castle
library. The z value is a random number with bit length the same as pa-
rameter q. The commitment value is equal to gz mod p.

Chain of Two

This test is a slightly larger test again. This tests the protocol running with
a chain length of two, that is a supplier, and reseller, and a customer (who
can then resell on if they wish). This test should test all aspects of the
protocol, and can be extended to show that all combinations would pass
iff this test passes (if enough computational resources are available).

This test is expected to pass, and shows that the implementation of the
protocol is assumed to be correct.

5.1.2 Internal Review

The internal review consisted of a review by the designer of the original
protocol. This was done as an iterative process throughout the develop-
ment process, and as a final check once the prototype was complete.

This review showed that the implementation correctly implemented the
protocol as per the designers specifications. This review also doubled as a
security audit of the code base that the implementation used.

5.2 Validation

This section presents the validation of the secureness of the implementa-
tion. This was done as a two pronged approach. The first part was using
the secure development lifecycle (SDL) to validate secureness through the

5.2. VALIDATION 95

process taken to produce the implementation. The second technique for
validation is to determine possible vulnerabilities that could be present.

The SDL used to validate the process is the SecSDM lifecycle [23]. This
lifecycle was chosen as it has strong ties to international standards in se-
curity, and has a very strong focus on designing security. An overview of
SecSDM was presented in Section 3.2.1, and a more detailed outline will
be presented later in this chapter in Section 5.2.1.

Using this validation technique to validate a design process is useful as it
shows that best practices were used throughout the development process.

In a more team based development project, the intuitive approach dis-
cussed in Chapter 4 may not be suitable, and a traditional SDL is more
applicable. Because of the individual development aspect of this project,
the intuitive approach is shown to work similar to a traditional SDL.

The section will be split into several sub-sections as follows:

• Section 5.2.1 will present the SecSDM lifecycle.

• Section 5.2.2 will discuss the application of SecSDM to this project,
outlining each phase in the lifecycle.

5.2.1 The SecSDM lifecycle

The lifecycle used for validation of the design process is the SecSDM tool,
which was presented in Section 3.2.1, along with other possible lifecycles.
SecSDM was chosen because of the strong backing of the ISO standards
for security. These standards show good security engineering practises.

The SecSDM tool is used by both a paper based system, and a software
tool. In the TTP prototype, the software tool was used. The phases used
in the lifecycle are as follows:

96 CHAPTER 5. VERIFICATION AND VALIDATION

1. Investigation

2. Analysis

3. Design

4. Implementation

5. Maintenance

These phases and the general outline of the lifecycle is outlined and dis-
cussed below in the section. The application of these phases is discussed
in Section 5.2.2.

The rest of the section will outline each stage in detail. Note that the no-
tation A.1 refers to figure 1 in appendix A, A.2 is figure 2 in appendix A,
and so on. The notation B.1, and B.2 refer to figures 1 and 2 in appendix B
respectively.

Investigation

The investigation stage decides on asset needing protection, and the im-
pact those assets have. Then the associated threats are determined, and
the risks derived from those risks. The final risks are sorted into an or-
der determined by the value of the asset impact, likelihood of the threat
occurring, and the level of vulnerability of the risk.

Figures A.1, A.2, A.3, A.4, A.5 and A.6 show the form based process of the
investigation stage. Figure A.1 shows the process of determining the as-
sets and the impact value. Figure A.2 shows the process of specifying the
level of likelihood for common threats. Figure A.3 shows the process of
determining the most critical risks through the asset/threat relationships.
Figure A.4 shows the process of specifying the level of vulnerability for

5.2. VALIDATION 97

each of the selected risks. Figure A.5 and A.6 show the risk analysis pro-
cess that outcomes an ordered list of risks with an associated value.

This stage in the SecSDM lifecycle was derived from work done by Whit-
man and Mattord [90] and the ISO/IEC TR 13335-3:1998 [33]

Analysis

The analysis stage takes the ordered risks from the investigation phase and
decides what security services are needed to protect against the risks.

Figure A.7 shows the form for this stage. Some common security services
are shown for the common threats. The next step is to use the information
about the threats to decide on what services are needed for each threat,
and to what level. Levels include basic, standard, and extra strong.

Design

The design phase maps the security services needed to protect the risks
to concrete security mechanisms. This technique is derived from the ISO
standard 7498-2 [34].

Figure A.8 shows a table mapping the security services from the analysis
stage to a set of security mechanisms. The rest of the form (not shown)
for this stage is decided which of these mechanisms (or all) are needed
to support the security service required. In the form, a level of service is
entered. Levels include basic, standard, and extra strong.

Figure A.9 shows the final summary table for this stage. This table is
marked corresponding the the results of the entries on the forms for this
stage without the level of service.

98 CHAPTER 5. VERIFICATION AND VALIDATION

Implementation

In the implementation phase, the security mechanisms are mapped to a
software library that will fulfil the mechanism. In the SecSDM example
form, only the .Net language is used. This thesis discusses various li-
braries of different languages that can be used in Section 3.1.4

Figure A.10 shows the form used for this stage. For each mechanism from
the design stage, specify which risks they protect, and note the libraries
used to provide the mechanism.

Maintenance

The maintenance stage doesn’t have an associated form with it, but simply
using the information gathered throughout the process to fix vulnerabili-
ties when they arise. The fixing process may include performing another
smaller iteration for each vulnerability.

5.2.2 Application of SecSDM to TTP

This section discusses the application of SecSDM to the TTP prototype.
This will entail what happened in each stage of the lifecycle, choices made
at each phase, and reasoning behind any choices made.

The section will be laid out so that each stage of the lifecycle is described
separately, then a summary and general discussion will follow. The stages
covered from the SecSDM lifecycle are:

1. Investigation

2. Analysis

3. Design

5.2. VALIDATION 99

4. Implementation

5. Maintenance

Investigation

As mentioned earlier in the chapter, the investigation stage is where the
assets needing protection are decided. From those assets, a ordered list of
risks are derived. This section shows how the process was followed for
this project.

We start with deciding on the assets needing protection. Figure B.1 shows
the SecSDM form filled out with all the important assets for this project.
The most important assets are shown at the bottom of the image along
with the asset impact value.

The assets decided upon are as follows:

• TGC Private Key (Critical)

• Supplier Private Key (High)

• Reseller Private Key (Medium)

• Reseller Z-value (Medium)

• Tags (Low)

The reasoning for the final selection is because all of those assets are needed
for successful running of the protocol, and if some of those assets for com-
promised then the security of the protocol is void.

Figure B.2 shows the common threats and the likelihood of them occur-
ring. The reasoning behind this is because they seemed the most adequate
levels for each of the threats for this system.

100 CHAPTER 5. VERIFICATION AND VALIDATION

Figure B.3 shows the ordered selection of risks chosen from the asset/threat
combinations. The ordering is shown by the letters A to H, where A is the
most critical risk, and H is the least. This set of risks and levels were de-
cided by working out how likely a threat is against a given asset.

Figure B.4 shows the levels of vulnerabilities for each of the risks chosen
in the previous step. The reasoning behind this is because the level of vul-
nerability shows how badly a certain risk can damage the protocol system.

The next set of figures show the risk assessment for the chosen risks. Each
risk is given a table to complete, and it will give a value of the risk which
is a combination of the associated asset impact value, the likelihood of the
associated threat, and the level of vulnerability for that particular risk. The
value is in the range 0 to 8.

Figure B.5 shows the assessment of risks A and B; Figure B.6 shows the
assessment of risks C, D, and E; Figure B.7 shows the assessment of risks
F, G, and H. The circle in the figures show that risks assessed value.

Figure B.8 shows a summary of the risks and the values.

Analysis

As mentioned earlier in this chapter, the analysis stage is where security
services are assigned for each of the risks. Figure B.9 shows the completed
form for this stage.

To get these results, the typical threats shown in the top of the image were
transferred down to the bottom of the image depending on what threats
each risk related to. The mapping between risks and threats are shown
above in Figure B.3.

The SecSDM form suggests that each mechanism have labels B, S, and ES
for basic, standard, and extra strong support respectively. In this form, I

5.2. VALIDATION 101

have just used an X to mark which service is needed, and all mappings are
treated equally.

Design

The design stage is where security mechanisms are mapped to the security
services assigned in the analysis stage. These mappings are according to
ISO 7498-2 [34].

The following group of figures show the mechanisms needed for each risk.
Figure B.10 shows risks A and B; Figure B.11 shows risks C and D; Figure
B.12 shows risks E and F; Figure B.13 shows risks G and H.

The SecSDM form suggests that each mechanism have labels B, S, and ES
for basic, standard, and extra strong support respectively. In this form, I
have just used an X to mark which mechanism is needed, and all mappings
are treated equally.

These mappings were applied directly from the mappings shown in Figure
A.8 earlier in the chapter.

Figure B.14 shows a summary of these mechanisms for each risk. Instead
of an X as the form says, I have used background shading for viewing
purposes.

Implementation

This stage did not have a completed form as the SecSDM lifecycle focused
on .NET components, while this implementation used Java. The blank
form is available in figure A.10.

Section 3.1 shows a range of possible options of different cryptographical
libraries, and the choice this implementation used.

102 CHAPTER 5. VERIFICATION AND VALIDATION

Chapter 6

Performance Analysis

This chapter outlines the experiments performed and the results gathered
and a discussion of their relevance. The tests outlined in this chapter focus
on performance only, while chapter 5 covers the verification and valida-
tion tests for the design and implementation.

The chapter is be split as follows:

• Section 6.1 will outline the experimentation setup

• Section 6.2 will present the results of the experiments

• Section 6.3 will summarise the findings.

6.1 Experimentation Setup

This section outlines the experimental setup of the performance results.
This setup will include descriptions of the operating environment, the test
framework, and the test input and output formats.

103

104 CHAPTER 6. PERFORMANCE ANALYSIS

6.1.1 Operating Environment

This section outlines the environment that the tests were run in. This in-
cludes the test machine specifications, operating system, Java versions,
and also a brief discussion on aspects of the environment such as the the
load of the machine and the source of randomness.

There were three machines used in the testing. The machines were stock
Dell Optiplex GX780’s. They had the following specifications:

• Intel Core 2 Duo

• 4GB DDR Memory

• Running Debian Squeeze (stable)

• Linux Kernel 2.6.32-5

• Java version OpenJDK Runtime Environment 1.6.0_18 (IcedTea6 1.8.7)
(6b18-1.8.7-2 squeeze1) (Server VM build 14.0-b16)

The tests were performed with a network consisting of only localhost.
Each test was run by itself, with minimal load along side the test (achieved
by running a minimal set of services). The reasoning behind this decision
was to focus on the performance of the implementation rather than the
network throughput and effects that it had on the protocols performance.

The source of randomness in the Java library was the NativePRNG with a
SHA1PRNG helper. This means that the /dev/{u,}random files are used
as the main source of randomness. To keep the entropy levels in these files
at a usable level, the HAVEGE daemon is used [78]. HAVEGE is detailed
more in Section 3.1.3.

6.1. EXPERIMENTATION SETUP 105

6.1.2 Test Framework

The testing performed was a simple set of transactions with a chain length
of two. This means that there are four entities in the system: The TGC; a
supplier; a reseller; and a customer.

The purpose of this test is to perform all functions of the protocol, includ-
ing network connectivity (only on localhost though). The inputs to the test
are different key sizes to use, and the outputs are the timings involved for
the test to run.

The test is run for the key sizes within the range of 256 bits to 4098 bits,
with an increment of 256 bits. The lower bound was chosen as 256 as one
of the ElGamal encryption algorithm requires a size of at least 192 bits. The
upper bound was chosen to provide a value that will be useful for several
years after publication. The increment was chosen to give enough gran-
ularity but not too much unnecessary noise. This means that any strange
results should be seen if any occur.

Each key size is run through the test framework 100 times, which was
shown to be enough to get a p-value of 0.05.

The timings are collected by using the unix utility time and recording the
user time for each run of each key size test. The user time is the time
spent using the CPU and gives a better estimate of the running time with
no load. The results from this may not be accurate if the machine comes
under especially large load. This is unlikely to happen, as these machines
were only used for running the tests.

The process taken for the test is as follows:

1. TGC Generates ElGamal parameters p, q, and g

2. TGC Generates key pair for signing and encryption

106 CHAPTER 6. PERFORMANCE ANALYSIS

3. TGC becomes public using a free port on localhost, sharing the pa-
rameters and the public key

4. The supplier and reseller connects to the TGC and retrieves the pa-
rameters and public key. They then become public by using free
ports on localhost.

5. The supplier registers a test item with the TGC, after generating a
key pair for use with that item

6. The reseller purchases the item off the supplier, which involved a tag
request from the supplier to the TGC. The reseller receives this tag

7. The reseller verifies that the tag is correct.

8. The customer purchases the item off the reseller, which involves the
reseller using the existing tag to request a new tag with the TGC and
perform a zero knowledge proof. The customer then receives the
new tag

9. The customer verifies that the tag is signed by the TGC and the hash
and licence correspond to the received item

6.2 Performance Results

This section presents the results for the tests outlined in section 6.1. Graphs
of the results appear in-line. Each figure will be discussed in this section.

A note on the image titles. They may contain a computer name such as
M108, M109, and M10B. These are simply the names of the computer that
test was run on to generate that graph. As mentioned in section 6.2.1, the
performance of all the machines were similar and the graph for two of
the machines are ommitted in most of the results. These are available on

6.2. PERFORMANCE RESULTS 107

request.

6.2.1 Total time taken

Figures 6.1, 6.2, and 6.3 show the total time taken for the experiment on
each machine. Along the x axis the key sizes are shown, and along the y
axis the time taken in seconds is shown. The time axis is presented in a
logarithmic scale.

The actual data is shown as black circles, and the average and one standard
deviation around the average are shown by lines coloured blue and red
respectively.

Figures 6.1, 6.2, and 6.3 show that the time taken to execute the test transac-
tions is sub-exponential in nature, and that the data is quite widely spread.
The logarithmic nature is expected from the protocol as it is using expo-
nential functions for the cryptographic parts. The wide spread of data
points on the other hand was not expected. This lead to further analysis to
try and identify the cause by timing each stage in the protocol. Further fig-
ures shown in this section show each of the stages in order to break down
each sub-stage of the protocol.

Another point to note is that the data looks similar on each machine. Due
to this, the extra figures for each section of the protocol will only show one
machine, although analysis was done on multiple machines.

6.2.2 Initialisation time

Figure 6.4 shows the time taken for the TGC to initialise. This step in the
protocol is a one off cost when the TGC is first started. The bottom axis

108 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.1: Raw results with 99% confidence interval, M108

Figure 6.2: Raw results with 99% confidence interval, M109

6.2. PERFORMANCE RESULTS 109

Figure 6.3: Raw results with 99% confidence interval, M10B

shows the key sizes, and the side axis shows the time taken in seconds.
Again, the side axis is shown with a logarithmic scale.

Figure 6.4 shows sub-exponential growth and the large spread of the total
time. It should be noted that the time is very close to the total time taken
though, and could be shown in later figures that this is the stage that is
creating the large spread and times for the protocol. This is due to the time
taken for the Elgamal encryption algorithm to create the parameters. After
these parameters are created, further cryptographic operations should be
simpler.

6.2.3 Supplier product registration time

Figure 6.5 shows the time taken for a supplier to register a product with
the TGC. This is recorded as the round trip time from the suppliers per-
spective. The bottom axis shows the key sizes, and the side axis shows the
time taken in milli-seconds. The time scale is logarithmic.

110 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.4: TGC Init results with 99% confidence interval, M108

Figure 6.5 shows slightly sub-exponential time as well, but significantly
lower times than the initialisation stage. This is a good sign, as it shows
that the protocol has low times for the more common functions. This
shows that it takes around one to two seconds with a key size of 1024.

6.2.4 Reseller purchase product from supplier time

Figure 6.6 shows the time taken for a reseller to purchase an item from a
supplier. This is recorded as the round trip time from the resellers per-
spective. The axis’s are the same as for the register time.

Figure 6.6 shows an exponential function, but with lower times than the
registration step. This stage is more common than the registration step as
it will be done multiple times, but the product is only registered once. This
shows that it takes around a quarter of a second with a key size of 1024.

6.2. PERFORMANCE RESULTS 111

Figure 6.5: Supplier register results with 99% confidence interval, M108

Figure 6.6: Supplier Purchase results with 99% confidence interval, M108

112 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.7: 1st Reseller Purchase results with 99% confidence interval,
M108

6.2.5 Reseller purchase product from reseller time

Figure 6.7 shows the time taken for a reseller to purchase an item from an-
other reseller. This is recorded as the round trip time from the perspective
of the reseller that is purchasing the product. The axis’s are the same as
above.

This figure shows a slightly sub-exponential function with higher time
costs than purchasing from a supplier. This is not the best outcome, as
this stage is repeated for each reseller in the chain, whereas the supplier
purchase is only done with the top reseller. The time is still not massive
given that, taking around one second with a key size of 1024.

This stage is also the time that would be expected from an end user using
the system.

6.2. PERFORMANCE RESULTS 113

6.2.6 Varying other environmental variables

This section provides some more results from which conclusions about
different setups may be drawn.

The results are showing the different costs of running different parts of the
protocol, both using the HAVEGE daemon to gather entropy, and without.

Figure 6.8 shows the time taken for the protocol to run the one time key
parameter generation. This relates to figure 6.4, showing the time taken
for the initialisation of the TGC. Figure 6.8 was run without the HAVEGE
daemon running to gather random entropy. This image shows a fairly lin-
ear growth with some outliers. These outliers always appeared as the first
run of the batch. This behaviour seemed like there was some anomalies
with using the Java system, by having outliers which may be caused by the
VM startup cost. This startup cost most likely includes the time to fill the
entropy pool for the random functions needed to generate the parameters.

Figure 6.9 is also showing the initialisation time, but this time with the
HAVEGE daemon running. As with figure 6.8, this figure shows a fairly
linear growth with similar outliers which may be due to the setup cost and
the entropy pool needing to be filled the first run. When HAVEGE is run,
then the time taken is marginally smaller.

Figures 6.10 and 6.11 show the time take for the OpenSSL tool set to gen-
erate the parameters. This test was done to try and take out the overhead
of using the Java Bouncycastle libraries for the initialisation step. Again
this shows a linear relationship, though with no outliers. The values are
about the same, around the 1 second mark.

These extra figures confirm our believe that there may be some anomalies
with using the Java system, by having outliers which may be caused by
the VM startup cost. This is because when we take the Java system out of
the procedure, the outliers are not present.

114 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.8: Time taken for protocol to run (one time gen) - without
HAVEGE

Figure 6.9: Time taken for protocol to run (one time gen) - with HAVEGE

6.3. SUMMARY OF RESULTS 115

Figure 6.10: Time taken for openssl to generate key parameters - without
HAVEGE

The HAVEGE daemon does produce minor benefits, but may be more no-
ticeable for more long running servers. These tests were not run for great
lengths so the results may not be applicable to real world usage.

6.3 Summary of Results

The results shown in section 6.2 show us the following:

• Large one time start up cost for initialising the TGC

• Anomalies with the Java cryptographic library

• Exponential times for each stage in the process

• Moderate timings for transferring tags between entities

Those results are the main points that will be summarised. A more de-
tailed discussion is in section 6.2.

116 CHAPTER 6. PERFORMANCE ANALYSIS

Figure 6.11: Time taken for openssl to generate key parameters - with
HAVEGE

The one time start up cost is one of the biggest downfalls of the perfor-
mance of this implementation. Though it is just a one time cost when the
system is first initialised. Improvements on the underlying cryptographic
library, possibly using a different language, and many other factors could
make an improvement on the timing of this stage. Section 6.2.6 describes
how the conclusions of the use of Java was causing outliers to be present,
and shows that taking Java out of the generation procedure for the initial-
ization these outliers were not present.

Each stage was shown to be exponential in time, which was to be ex-
pected as the cryptographic functions rely on exponential functions to
work. Choosing an adequate key size as a time cost and security trade-
off is important. A key size of 1024 bits showed reasonable times for each
stage in the system, with faster computers the key size could possibly be
increased.

The times for transferring tags between entities using a 1024 bit key size
showed performance of about one to two seconds round trip time. This

6.3. SUMMARY OF RESULTS 117

delay is acceptable to users dealing with security transactions.

A note should be made about possible degradation of the performance
when anonymity is used, and also network speeds. The experiments here
focussed only on running the tests on a single machine with no network
traffic.

If a second computer is involved, then the cryptographic load is shared be-
tween the two systems, and some network latency would be introduced.
The size of the tag being transferred is rather small, and the size of the
product would be the main cost of network bandwidth. Further tests
could be run to determine what the speed would be when using two (or
more) machines over a network, and what impact different types of net-
works introduce.

My hypothesis is that the time taken is mainly in the cryptographic func-
tions, and would be shared between the two systems which would make
the overall protocol time smaller, but the introduced network latency would
likely bring it up to the same level. I think that the type of network would
not play a large part in the timing costs, but would still need taking into
account when deciding on key sizes.

The issue of anonymity is solved by the use of a network such as the TOR
network [15]. Further tests could be run to see the impact of using such a
network would be. Ries et. al. have looked into a comparison the latency
of different types of anonymity networks [72].

118 CHAPTER 6. PERFORMANCE ANALYSIS

Chapter 7

Conclusions and Future Work

This thesis describes the process of developing an implementation of a
secure protocol. The main aspects of the thesis is to evaluate between dif-
ferent processes that could possible be used when designing and imple-
menting secure software.

This chapter is structured as follows: Section 7.1 will reiterate the research
aims, and Section 7.2 reiterates the thesis outputs and discuss how the
aims were met;Section 7.3 discusses possible areas for future work.

7.1 Research Aims

The aims of this research were to implement a prototype of the security
protocol discussed in Chapter 3, and to compare and discuss the differ-
ent processes for developing secure software and their respective benefits
and disadvantages. The comparison helps us determine engineering best
practices for implementing security protocols. These were used in this im-
plementation.

119

120 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Thesis Outputs

The outputs of this thesis are described in this section. They are described
in greater detail in further chapters, and Chapter 7 discusses how they
were used to obtain the research aims above.

7.2.1 Prototype of the Security Protocol

The prototype was developed in the Java programming language, using
the BouncyCastle cryptographic library [86]. The prototype was imple-
mented using secure design practises in mind, and was made to be ex-
tendable for alternative implementations.

The outline of the development procedure is presented in chapter 4.

7.2.2 Comparison of Secure Development Processes

A comparison between different secure design approaches is made. De-
signs such as CLASP (Comprehensive, Lightweight Application Security
Process) [65], TSP-Secure (Team Software Process - Secure) [81], SDL (Se-
cure Development Lifecycle) [30], and SecSDM (Secure Software Devel-
opment Methodology) [23] were presented, along with advantages and
disadvantages between them.

In addition to complete processes for developing secure software, a selec-
tion of additional tools or partial processes is presented with a discussion
on how they can fit into the entire development process.

The comparison was discussed in chapter 3.

The SecSDM approach was then used to show how to validate the imple-
mentation of the prototype against security requirements. This approach

7.2. THESIS OUTPUTS 121

was then compared with an intuitive approach of implementation and
a discussion on the advantages and disadvantages of each approach is
made.

The discussion of the SecSDM approach was made in chapter 5. The value
of the use of SecSDM was useful in validating the security of the actual
implementation of the prototype. It allows us to confirm that engineering
best practices were followed.

7.2.3 Performance Evaluation of the Prototype

The performance measure of the protocol is carried out to gain knowledge
on where bottle-necks lie, and how long common tasks in the protocol
take.

The measurements took the total time of the protocol running through a
test process, and also the time taken for each of the components. The eval-
uation of these results is discussed about usability and possible further
testing. To obtain the aims mentioned above, this research had the follow-
ing outputs:

• A prototype of the security protocol, in the form of a modular library

• A comparison of different processes for developing secure software

• An example of using parts of the SecSDM [23] process for developing
secure software

• A measurement of the protocol performance, with an evaluation

The prototype was developed in the Java programming language, using
the BouncyCastle cryptographic library [86]. The prototype was imple-
mented using secure design practises in mind, and was made to be ex-
tendable for alternative implementations.

122 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

A comparison between different secure design approaches is made. De-
signs such as CLASP (Comprehensive, Lightweight Application Security
Process) [65], TSP-Secure (Team Software Process - Secure) [81], SDL (Se-
cure Development Lifecycle) [30], and SecSDM (Secure Software Develop-
ment Methodology) [23] are presented, along with advantages and disad-
vantages between them.

In addition to complete processes for developing secure software, a selec-
tion of additional tools or partial processes is presented with a discussion
on how they can fit into the entire development process.

The SecSDM approach was then used to show how to validate the imple-
mentation of the prototype against security requirements. This approach
was then compared with an intuitive approach of implementation and
a discussion on the advantages and disadvantages of each approach is
made.

The performance measure of the protocol is carried out to gain knowledge
on where bottle-necks lie, and how long common tasks in the protocol
take.

The measurements took the total time of the protocol running through
a test process, and also the time taken for each of the components. The
evaluation of these results is discussed about usability and possible further
testing.

These outputs are described in further chapters, and discussions of how
they were met are in Chapter 7. The following section gives the structure
of the thesis.

7.3. FUTURE WORK 123

7.3 Future Work

This section presents some ideas for possible expansion and further re-
search. Further research into the area is important to expand knowledge
on different ideas where they may be out of scope with this research.

A major area of possible research is to expand the comparison of design
processes to other lifecycles than SecSDM and the intuitive approach. This
would open pathways for future implementations of security based ap-
proaches with different ideas on what makes a good design process.

Another area of expansion is to extend the experimental process to include
other factors such as network latency, and latency due to use of anony-
mous networks.

As this implementation was just a prototype, further design decisions may
be made on the protocol which would require new implementations, or
extensions of this prototype.

124 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendix A

Blank SecSDM Forms

125

126 APPENDIX A. BLANK SECSDM FORMS

Figure A.1: SecSDM Investigation Stage, Step 1

127

Figure A.2: SecSDM Investigation Stage, Step 2

128 APPENDIX A. BLANK SECSDM FORMS

Figure A.3: SecSDM Investigation Stage, Step 3

129

Figure A.4: SecSDM Investigation Stage, Step 4

130 APPENDIX A. BLANK SECSDM FORMS

Figure A.5: SecSDM Investigation Stage, Step 5

131

Figure A.6: SecSDM Investigation Stage, Step 6

132 APPENDIX A. BLANK SECSDM FORMS

Figure A.7: SecSDM Analysis Stage

133

Figure A.8: SecSDM Design stage (sample table)

134 APPENDIX A. BLANK SECSDM FORMS

Figure A.9: SecSDM Design stage (final output)

135

Figure A.10: SecSDM Implementation stage

136 APPENDIX A. BLANK SECSDM FORMS

Appendix B

Completed SecSDM Forms

137

138 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.1: SecSDM Investigation Stage, Step 1, Impact Value of Assets

139

Figure B.2: SecSDM Investigation Stage, Step 2, Likelihood of Common
Threats

140 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.3: SecSDM Investigation Stage, Step 3, Asset Threat Relationships

141

Figure B.4: SecSDM Investigation Stage, Step 4, Risk Vulnerabilities

142 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.5: SecSDM Investigation Stage, Step 5, Risks A and B

143

Figure B.6: SecSDM Investigation Stage, Step 5, Risks C, D, and E

144 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.7: SecSDM Investigation Stage, Step 5, Risks F, G, and H

145

Figure B.8: SecSDM Investigation Stage, Step 6, Summary

146 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.9: SecSDM Analysis Stage

147

Figure B.10: SecSDM Design Stage, Risks A and B

148 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.11: SecSDM Design Stage, Risks C and D

149

Figure B.12: SecSDM Design Stage, Risks E and F

150 APPENDIX B. COMPLETED SECSDM FORMS

Figure B.13: SecSDM Design Stage, Risks G and H

151

Figure B.14: SecSDM Design Stage, Summary

152 APPENDIX B. COMPLETED SECSDM FORMS

Bibliography

[1] 4FRIENDSONLY. New technologies for virtual goods. http://

wwww.4fo.de/en/potato.htm, accessed in Oct 2010.

[2] ALBERTS, C. J., AND DOROFEE, A. Managing Information Security
Risks: The OCTAVE Approach. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[3] BLAKE-WILSON, S., NYSTROM, M., HOPWOOD, D., MIKKELSEN, J.,
AND WRIGHT, T. Transport Layer Security (TLS) Extensions. RFC
3546 (Proposed Standard), June 2003. Obsoleted by RFC 4366 [4].

[4] BLAKE-WILSON, S., NYSTROM, M., HOPWOOD, D., MIKKELSEN, J.,
AND WRIGHT, T. Transport Layer Security (TLS) Extensions. RFC
4366 (Proposed Standard), Apr. 2006. Obsoleted by RFCs 5246 [13],
6066 [16], updated by RFC 5746 [71].

[5] BOEHM, B. A Spiral Model of Software Development and Enhance-
ment. SIGSOFT Softw. Eng. Notes 11, 4 (1986), 14–24.

[6] BROWN, M., AND HOUSLEY, R. Transport Layer Security (TLS) Au-
thorization Extensions. RFC 5878 (Experimental), May 2010.

[7] BURN, O.

[8] CERT. Secure Coding Standards. http://www.cert.org/

secure-coding/scstandards.html, accessed in Dec 2010.

153

http://wwww.4fo.de/en/potato.htm
http://wwww.4fo.de/en/potato.htm
http://www.cert.org/secure-coding/scstandards.html
http://www.cert.org/secure-coding/scstandards.html

154 BIBLIOGRAPHY

[9] CERT. TSP-Secure. http://www.cert.org/secure-coding/

secure.html, accessed in Dec 2010.

[10] DETLEFS, D., NELSON, G., AND SAXE, J. B. Simplify: a theorem
prover for program checking. J. ACM 52, 3 (2005), 365–473.

[11] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0. RFC 2246
(Proposed Standard), Jan. 1999. Obsoleted by RFC 4346 [12], updated
by RFCs 3546 [3], 5746 [71].

[12] DIERKS, T., AND RESCORLA, E. The Transport Layer Security (TLS)
Protocol Version 1.1. RFC 4346 (Proposed Standard), Apr. 2006. Ob-
soleted by RFC 5246 [13], updated by RFCs 4366 [4], 4680 [74], 4681
[75], 5746 [71].

[13] DIERKS, T., AND RESCORLA, E. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008. Up-
dated by RFCs 5746 [71], 5878 [6].

[14] DINGLEDINE, R. The Free Haven Project: Design and Deployment of
an Anonymous Secure Data Haven. Master’s thesis, MIT, MA, USA,
June 2000.

[15] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: the
second-generation onion router. In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13 (Berkeley, CA, USA, 2004),
SSYM’04, USENIX Association, pp. 21–21.

[16] EASTLAKE 3RD, D. Transport Layer Security (TLS) Extensions: Ex-
tension Definitions. RFC 6066 (Proposed Standard), Jan. 2011.

[17] EASTLAKE 3RD, D., SCHILLER, J., AND CROCKER, S. Randomness
Requirements for Security. RFC 4086 (Best Current Practice), June
2005.

http://www.cert.org/secure-coding/secure.html
http://www.cert.org/secure-coding/secure.html

BIBLIOGRAPHY 155

[18] EL GAMAL, T. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Proceedings of CRYPTO 84 on Ad-
vances in cryptology (New York, NY, USA, 1985), Springer-Verlag New
York, Inc., pp. 10–18.

[19] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND NOTKIN,
D. Dynamically Discovering Likely Program Invariants to Support
Program Evolution. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering (New York, NY, USA, 1999), ACM,
pp. 213–224.

[20] FERGUSON, N., AND SCHNEIER, B. Practical Cryptography, 1 ed. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[21] FLANAGAN, C., AND LEINO, K. R. M. Houdini, an Annotation As-
sistant for ESC/Java. In FME ’01: Proceedings of the International Sym-
posium of Formal Methods Europe on Formal Methods for Increasing Soft-
ware Productivity (London, UK, 2001), Springer-Verlag, pp. 500–517.

[22] FREE SOFTWARE FOUNDATION. GNU Coding Standards. http://
www.gnu.org/prep/standards, accessed in Oct 2010.

[23] FUTCHER, L., AND VON SOLMS, R. SecSDM: A Model for Integrating
Security into the Software Development Life Cycle. In Fifth World
Conference on Information Security Education, L. Futcher and R. Dodge,
Eds., vol. 237 of IFIP International Federation for Information Processing.
Springer Boston, 2007, pp. 41–48.

[24] FUTCHER, L., AND VON SOLMS, R. Guidelines for Secure Software
Development. In Proceedings of the 2008 annual research conference of the
South African Institute of Computer Scientists and Information Technolo-
gists on IT research in developing countries: riding the wave of technology
(New York, NY, USA, 2008), SAICSIT ’08, ACM, pp. 56–65.

http://www.gnu.org/prep/standards
http://www.gnu.org/prep/standards

156 BIBLIOGRAPHY

[25] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge
complexity of interactive proof-systems. In Proceedings of the seven-
teenth annual ACM symposium on Theory of computing (New York, NY,
USA, 1985), STOC ’85, ACM, pp. 291–304.

[26] GRIMM, R., AND NUTZEL, J. Potato system and signed media for-
mat – an alternative approach to online music business. In Pro-
ceedings of the 3rd International Conference on Web Delivering of Mu-
sic (Germany, Sept. 2003), WEDELMUSIC ’03, Fraunhofer Publica
[http://publica.fraunhofer.de/oai.har], pp. 23–26.

[27] GUTMANN, P. cryptlib Encryption Toolkit. http://www.cs.

auckland.ac.nz/~pgut001/cryptlib/, accessed in Jul 2012.

[28] GUTTERMAN, Z., PINKAS, B., AND REINMAN, T. Analysis of the
linux random number generator. In Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA, 2006), SP ’06,
IEEE Computer Society, pp. 371–385.

[29] HOVEMEYER, D., AND PUGH, W. Finding Bugs is Easy. SIGPLAN
Not. 39, 12 (2004), 92–106.

[30] HOWARD, M., AND LIPNER, S. The Security Development Lifecycle.
Microsoft Press, Redmond, WA, USA, 2006.

[31] HUBBERS, E., OOSTDIJK, M., AND POLL, E. Implementing a For-
mally Verifiable Security Protocol in Java Card. In Proceedings of the
First International Conference on Security in Pervasive Computing, vol-
ume 2802 of Lecture Notes in Computer Science (2003), Springer-Verlag,
pp. 213–226.

[32] HUNT, J. The Unified Process for Practitioners: Object-Oriented Design,
UML and Java. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2000.

http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

BIBLIOGRAPHY 157

[33] ISO 13335-3:1998. Information technology – guidelines for the man-
agement of it security – part 3: Techniques for the management of it
security. ISO, Geneva, Switzerland.

[34] ISO 7498-2:1989. Information processing systems – open systems in-
terconnection – basic reference model – part 2: Security architecture.
ISO, Geneva, Switzerland.

[35] JÄNICKE, L. PRNGD - Pseudo Random Number Generator Daemon.
http://prngd.sourceforge.net/, accessed in Jul 2012.

[36] JOHNSON, R., HOELLER, J., ARENDSEN, A., RISBERG, T., AND

KOPYLENKO, D. Professional Java Development with the Spring Frame-
work. Wrox Press Ltd., Birmingham, UK, UK, 2005.

[37] JUERJENS, J. Secure Systems Development with UML. SpringerVerlag,
2003.

[38] KELSEY, J., SCHNEIER, B., AND FERGUSON, N. Yarrow-160: Notes
on the design and analysis of the yarrow cryptographic pseudoran-
dom number generator. In Proceedings of the 6th Annual International
Workshop on Selected Areas in Cryptography (London, UK, 2000), SAC
’99, Springer-Verlag, pp. 13–33.

[39] KOLMOGOROV, A. N. On tables of random numbers. Sankhyā Ser. A
25 (1963), 369–375. Reprinted in [40].

[40] KOLMOGOROV, A. N. On tables of random numbers. Theor. Comput.
Sci. 207, 2 (Nov. 1998), 387–395. Reprint of [39].

[41] LARMAN, C., AND BASILI, V. Iterative and incremental develop-
ments. A brief history. Computer 36, 6 (june 2003), 47 – 56.

[42] LEAVENS, G. T., AND CHEON, Y. Design by Contract with JML, 2006.

http://prngd.sourceforge.net/

158 BIBLIOGRAPHY

[43] MEAD, N. R., AND STEHNEY, T. Security Quality Requirements Engi-
neering (SQUARE) Methodology. In SESS ’05: Proceedings of the 2005
workshop on Software engineering for secure systems—building trustwor-
thy applications (New York, NY, USA, 2005), ACM, pp. 1–7.

[44] MICROSOFT. CryptGenRandom function. http://msdn.

microsoft.com/en-us/library/windows/desktop/

aa379942(v=vs.85).aspx, accessed in Jul 2012.

[45] MÖLLER, N. Nettle: a low-level cryptographic library. http:

//www.lysator.liu.se/~nisse/nettle/nettle.html,
accessed in Jul 2012.

[46] MULARIEN, P. Spring Security 3. Packt Publishing, 2010.

[47] NAIR, S. K., GERRITS, R., CRISPO, B., AND TANENBAUM, A. S. Turn-
ing teenagers into stores. Computer 41 (2008), 58–62.

[48] NAIR, S. K., POPESCU, B. C., GAMAGE, C., CRISPO, B., AND

TANENBAUM, A. S. Enabling drm-preserving digital content redis-
tribution. In Proceedings of the Seventh IEEE International Conference on
E-Commerce Technology (Washington, DC, USA, 2005), CEC ’05, IEEE
Computer Society, pp. 151–158.

[49] NETSCAPE COMMUNICATIONS CORP. SSL 0.2 protocol specifica-
tion. http://www.mozilla.org/projects/security/pki/

nss/ssl/draft02.html, Feb 1995.

[50] NETSCAPE COMMUNICATIONS CORP. SSL 3.0 protocol specifica-
tion. http://www.mozilla.org/projects/security/pki/

nss/ssl/draft302.txt, Nov 1996.

[51] NIELSON, F., NIELSON, H. R., AND HANKIN, C. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379942(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379942(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379942(v=vs.85).aspx
http://www.lysator.liu.se/~nisse/nettle/nettle.html
http://www.lysator.liu.se/~nisse/nettle/nettle.html
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt

BIBLIOGRAPHY 159

[52] NIST. Tentative timeline of the development of new hash func-
tions. http://csrc.nist.gov/groups/ST/hash/timeline.

html, accessed in Jul 2012.

[53] NIST COMPUTER SECURITY DIVISION. Federal information process-
ing standards 140-2.

[54] NIST COMPUTER SECURITY DIVISION. Federal information process-
ing standards 180-2.

[55] OFFSPARK. Polar SSL. http://polarssl.org/, accessed in Jul
2012.

[56] ORACLE. Enterprise JavaBeans Technology. http://www.oracle.
com/technetwork/java/index-jsp-140203.html, accessed
in Dec 2010.

[57] OWASP FOUNDATION. Build vulnerability remediation pro-
cedures. http://www.owasp.org/index.php/Category:

BP5_Build_vulnerability_remediation_procedures,
accessed in Feb 2010.

[58] OWASP FOUNDATION. Capture security requirements.
http://www.owasp.org/index.php/Category:BP3_

Capture_security_requirements, accessed in Feb 2010.

[59] OWASP FOUNDATION. Identify, implement, and perform se-
curity tests. http://www.owasp.org/index.php/Identify,

_implement,_and_perform_security_tests, accessed in Feb
2010.

[60] OWASP FOUNDATION. Implement secure development prac-
tices. http://www.owasp.org/index.php/Category:BP4_

Implement_secure_development_practices, accessed in Feb
2010.

http://csrc.nist.gov/groups/ST/hash/timeline.html
http://csrc.nist.gov/groups/ST/hash/timeline.html
http://polarssl.org/
http://www.oracle.com/technetwork/java/index-jsp-140203.html
http://www.oracle.com/technetwork/java/index-jsp-140203.html
http://www.owasp.org/index.php/Category:BP5_Build_vulnerability_remediation_procedures
http://www.owasp.org/index.php/Category:BP5_Build_vulnerability_remediation_procedures
http://www.owasp.org/index.php/Category:BP3_Capture_security_requirements
http://www.owasp.org/index.php/Category:BP3_Capture_security_requirements
http://www.owasp.org/index.php/Identify,_implement,_and_perform_security_tests
http://www.owasp.org/index.php/Identify,_implement,_and_perform_security_tests
http://www.owasp.org/index.php/Category:BP4_Implement_secure_development_practices
http://www.owasp.org/index.php/Category:BP4_Implement_secure_development_practices

160 BIBLIOGRAPHY

[61] OWASP FOUNDATION. Institute security awareness program.
http://www.owasp.org/index.php/Institute_security_

awareness_program, accessed in Feb 2010.

[62] OWASP FOUNDATION. Open Web Application Security Project.
http://www.owasp.org, accessed in Oct 2010.

[63] OWASP FOUNDATION. Perform security analysis of system re-
quirements and design (threat modeling). http://www.owasp.

org/index.php/Perform_security_analysis_of_system_

requirements_and_design_(threat_modeling), accessed in
Feb 2010.

[64] OWASP FOUNDATION. Perform source-level security re-
view. http://www.owasp.org/index.php/Perform_

source-level_security_review, accessed in Feb 2010.

[65] OWASP FOUNDATION. CLASP security principles. https://

www.owasp.org/index.php/CLASP_Security_Principles,
accessed in Jul 2012.

[66] PALMER, B., BUBENDORFER, K., AND WELCH, I. A protocol for
anonymously establishing digital provenance in reseller chains (short
paper). In Financial Cryptography (2011), G. Danezis, Ed., vol. 7035 of
Lecture Notes in Computer Science, Springer, pp. 85–92.

[67] PARASOFT. Java static analysis, code review, unit testing, runtime
error detection. http://www.parasoft.com/jsp/products/

jtest.jsp/, accessed in Jul 2012.

[68] POINTCHEVAL, D., AND STERN, J. Security proofs for signature
schemes. In EUROCRYPT ’96: Proceedings of the workshop on the the-
ory and application of cryptographic techniques on Advances in cryptology
(1996), Springer-Verlag, pp. 387–398.

http://www.owasp.org/index.php/Institute_security_awareness_program
http://www.owasp.org/index.php/Institute_security_awareness_program
http://www.owasp.org
http://www.owasp.org/index.php/Perform_security_analysis_of_system_requirements_and_design_(threat_modeling)
http://www.owasp.org/index.php/Perform_security_analysis_of_system_requirements_and_design_(threat_modeling)
http://www.owasp.org/index.php/Perform_security_analysis_of_system_requirements_and_design_(threat_modeling)
http://www.owasp.org/index.php/Perform_source-level_security_review
http://www.owasp.org/index.php/Perform_source-level_security_review
https://www.owasp.org/index.php/CLASP_Security_Principles
https://www.owasp.org/index.php/CLASP_Security_Principles
http://www.parasoft.com/jsp/products/jtest.jsp/
http://www.parasoft.com/jsp/products/jtest.jsp/

BIBLIOGRAPHY 161

[69] POTATO SYSTEM. Potato system - about us. http://www.

potatosystem.com/info/en/imprint, accessed in Sept 2010.

[70] QUISQUATER, J.-J., GUILLOU, L., ANNICK, M., AND BERSON, T.
How to explain zero-knowledge protocols to your children. In
Proceedings on Advances in cryptology (New York, NY, USA, 1989),
CRYPTO ’89, Springer-Verlag New York, Inc., pp. 628–631.

[71] RESCORLA, E., RAY, M., DISPENSA, S., AND OSKOV, N. Transport
Layer Security (TLS) Renegotiation Indication Extension. RFC 5746
(Proposed Standard), Feb. 2010.

[72] RIES, T., STATE, R. AND PANCHENKO, A. Comparison of low-latency
anonymous communication systems — practical usage and perfor-
mance. In Australasian Information Security Conference (AISC 2011)
(Perth, Australia, 2011), C. Boyd and J. Pieprzyk, Eds., vol. 116 of
CRPIT, ACS, pp. 77–86.

[73] ROYCE, W. W. Managing the Development of Large Software Sys-
tems: Concepts and Techniques. In ICSE ’87: Proceedings of the 9th in-
ternational conference on Software Engineering (Los Alamitos, CA, USA,
1987), IEEE Computer Society Press, pp. 328–338.

[74] SANTESSON, S. TLS Handshake Message for Supplemental Data.
RFC 4680 (Proposed Standard), Oct. 2006.

[75] SANTESSON, S., MEDVINSKY, A., AND BALL, J. TLS User Mapping
Extension. RFC 4681 (Proposed Standard), Oct. 2006.

[76] SCHNORR, C. P. Efficient identification and signatures for smart
cards. In EUROCRYPT ’89: Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptology (New
York, NY, USA, 1990), Springer-Verlag New York, Inc., pp. 688–689.

http://www.potatosystem.com/info/en/imprint
http://www.potatosystem.com/info/en/imprint

162 BIBLIOGRAPHY

[77] SCHUBERT, A., AND CHRZĄSZCZ, J. ESC/Java2 as a Tool to Ensure
Security in the Source Code of Java Applications. In Software Engi-
neering Techniques: Design for Quality, K. Sacha, Ed., vol. 227 of IFIP In-
ternational Federation for Information Processing. Springer Boston, 2007,
pp. 337–348.

[78] SEZNEC, A., AND SENDRIER, N. HAVEGE: A user-level software
heuristic for generating empirically strong random numbers. ACM
Trans. Model. Comput. Simul. 13, 4 (Oct. 2003), 334–346.

[79] SILVERSTONE, D. randomsound — alsa sound card related en-
tropy gathering daemon. http://www.digital-scurf.org/

software/randomsound, accessed in Jul 2012.

[80] SOFTWARE ENGINEERING INSTITUTE, CARNEGIE MELLON UNIVER-
SITY. CERT. http://www.cert.org/, accessed in Feb 2011.

[81] SOFTWARE ENGINEERING INSTITUTE, CARNEGIE MELLON UNIVER-
SITY. Team software process. http://www.sei.cmu.edu/tsp/,
accessed in Feb 2011.

[82] SYVERSON, P. F., GOLDSCHLAG, D. M., AND REED, M. G. Anony-
mous connections and onion routing. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy (Washington, DC, USA, 1997), SP
’97, IEEE Computer Society, pp. 44–56.

[83] THE FREE SOFTWARE FOUNDATION. Libgcrypt. http://www.gnu.
org/software/libgcrypt/, accessed in Jul 2012.

[84] THE FREE SOFTWARE FOUNDATION. The GNU Crypto project.
http://www.gnu.org/software/gnu-crypto/, accessed in Jul
2012.

[85] THE FREE SOFTWARE FOUNDATION. The GNU Transport Layer Se-
curity Library. http://www.gnu.org/software/gnutls/, ac-

http://www.digital-scurf.org/software/randomsound
http://www.digital-scurf.org/software/randomsound
http://www.cert.org/
http://www.sei.cmu.edu/tsp/
http://www.gnu.org/software/libgcrypt/
http://www.gnu.org/software/libgcrypt/
http://www.gnu.org/software/gnu-crypto/
http://www.gnu.org/software/gnutls/

BIBLIOGRAPHY 163

cessed in Jul 2012.

[86] THE LEGION OF THE BOUNCY CASTLE. bouncycastle.org. http:

//www.bouncycastle.org, accessed in Jul 2012.

[87] THE OPENSSL PROJECT. OpenSSL: The Open Source toolkit for SS-
L/TLS. http://www.openssl.org/, accessed in Jul 2012.

[88] TORVALDS, L. Linux Kernel Coding Style. http://lxr.

linux.no/source/Documentation/CodingStyle, accessed in
Oct 2010.

[89] WARNER, B. EGD: The Entropy Gathering Daemon. http://egd.
sourceforge.net/, accessed in Jul 2012.

[90] WHITMAN, M. E., AND MATTORD, H. J. Principles of Information Se-
curity, 3rd ed. Course Technology Press, Boston, MA, United States,
2007.

[91] X-WAY RIGHTS BV, AND DEBLIER, B. Beecrypt. http://

beecrypt.sourceforge.net/, accessed in Jul 2012.

http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.openssl.org/
http://lxr.linux.no/source/Documentation/CodingStyle
http://lxr.linux.no/source/Documentation/CodingStyle
http://egd.sourceforge.net/
http://egd.sourceforge.net/
http://beecrypt.sourceforge.net/
http://beecrypt.sourceforge.net/

	Introduction
	E-commerce
	Tagged Transaction Protocol
	Research Aims
	Thesis Outputs
	Prototype of the Security Protocol
	Comparison of Secure Development Processes
	Performance Evaluation of the Prototype

	Structure of Thesis

	Related Work
	Tagged Transaction Protocol
	Domain Model
	Security Model
	Threat Model
	Protocol Details

	Related Work
	Paradiso
	Potato

	Techniques and Tools
	Secure Use of Cryptographic Mechanisms
	Choice of Key Size
	Zero Knowledge Proof
	Randomness
	Cryptographic Libraries
	Summary

	Secure Software Design Lifecycles
	Complete Lifecycles
	Auxiliary Tools

	Design and Implementation
	Structure of Implementation
	Tag Generation Centre Implementation
	Backing Implementation
	Generating Elgamal Parameters
	Registering Suppliers Products
	Issuing Tags to Suppliers
	Issuing Tags to Resellers

	Supplier Implementation
	Backing Implementation
	Initialisation
	Registering Items
	Requesting Tags

	Reseller Implementation
	Backing Implementation
	Purchasing items upstream
	Generating tags for customers

	Tag Implementation
	Licence Implementation
	Hash Implementation
	Cryptographic Functions
	Signing
	Encryption

	Network Implementation
	Client Side
	Server Side

	Verification and Validation
	Verification of Protocol Implementation
	Unit Testing
	Internal Review

	Validation
	The SecSDM lifecycle
	Application of SecSDM to TTP

	Performance Analysis
	Experimentation Setup
	Operating Environment
	Test Framework

	Performance Results
	Total time taken
	Initialisation time
	Supplier product registration time
	Reseller purchase product from supplier time
	Reseller purchase product from reseller time
	Varying other environmental variables

	Summary of Results

	Conclusions and Future Work
	Research Aims
	Thesis Outputs
	Prototype of the Security Protocol
	Comparison of Secure Development Processes
	Performance Evaluation of the Prototype

	Future Work

	Blank SecSDM Forms
	Completed SecSDM Forms

