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PO Box 600
Wellington
New Zealand

School Tel: +64 4 463 5341
School Fax: +64 4 463 5045

School Email: office@msor.vuw.ac.nz

Measuring Shear Wave Splitting
using the Silver and Chan Method

Ernestynne Walsh

Supervisors: Richard Arnold and Martha Savage

Submitted in fulfilment of the requirements for
Master of Science. Deposited January 2013.



Abstract

Seismic shear waves emitted by earthquakes can be modelled as plane (trans-
verse) waves. When entering an anisotropic medium they can be split into two
orthogonal components moving at different speeds. This splitting occurs along
an axis, the fast direction, that is determined by the ambient tectonic stress. Shear
wave splitting is thus a commonly used tool for examining tectonic stress in the
Earth’s interior. A common technique used to measure shear wave splitting is
the Silver and Chan (1991) method. However, there is little literature assessing
the robustness of this method, particularly for its use with local earthquakes, and
the quality of results can vary.

We present here a comprehensive analysis of the Silver and Chan method com-
prising theoretical derivations and statistical tests of the assumptions behind this
method. We then produce an automated grading system calibrated against an
expert manual grader using multiple linear regression.

We find that there are errors in the derivation of certain equations in the Silver
and Chan method and that it produces biased estimates of the errors. Further,
the assumptions used to generate the errors do not hold. However, for high
quality results (earthquake events where the signal is strong and the earthquake
geometry is optimal), the standard errors are representative of the spread in the
parameter estimates. Also, we find that our automated grading method pro-
duces grades that match the manual grades, and is able to identify mistakes in
the manual grades by detecting substantial inconsistencies with the automated
grades.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Seismic waves are waves of energy that travel through the Earth. They occur during events
such as earthquakes and travel from the location of the event (called the source) and are
picked up by seismometers 1 at stations (called receivers) on the surface of the Earth. Seismic
waves are very useful because they provide information about what is happening within the
Earth’s interior. To extract this information contained in the seismograms many methods
have been developed, but the one we will consider is shear wave splitting using the Silver
and Chan (1991) method (see section 1.3).

While this method is used by many and there are several software packages available
implementing it, no one has conducted in-depth research to assess the robustness of it. Here
we provide an in-depth analysis of the Silver and Chan (1991) method analysing the theory,
implementation and the reliability of the results produced by this method.

More specifically, the objectives are

1. provide a detailed theoretical discussion of how the Silver and Chan (1991) method
works

2. construct an automated method to grade the results obtained from the Silver and Chan
(1991) method

3. test key assumptions that the theory relies upon and assess the impact they are having
on results

The next two sections outline the basics of shear wave splitting.

1Green word(s) correspond to a glossary entry, page 143. These are links in the electronic copy
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Figure 1.1: Single crystals in purple randomly oriented in an isotropic medium and lattice
preferred orientation causing anisotropy.

1.2 Seismic Anisotropy and Shear Wave Splitting

1.2.1 Seismic Anisotropy - Definition

Anisotropy is a property where a medium possesses preferential orientation. A special
type we focus on here is seismic anisotropy, where the velocity of a seismic wave depends
on its propagation direction and its orientation or polarisation as well as the properties of
the medium itself (Babuska and Cara, 1991). When a wave passes through an anisotropic
medium the wave’s velocity will be faster in one direction and slower in an approximately
orthogonal direction. In contrast, an isotropic medium has wave velocities that are indepen-
dent of direction. The magnitude of the anisotropy is expressed as a percentage as is given
by the anisotropy coefficient k (Babuska and Cara, 1991).

k =
vmax − vmin

v̄
× 100 (1.1)

where

vmax = velocity of the shear wave along the fast direction
vmin = velocity of the shear wave along the slow direction

v̄ = an average of vmax and vmin

1.2.2 Seismic Anisotropy - Causes and Applications

Anisotropy can be caused by different properties. One of the most common causes of
anisotropy in the mantle is preferred alignment of crystals such as olivine to create lat-
tice preferred orientation (LPO) (Stein and Wysession, 2003) as shown in Figure 1.1. In
the anisotropic medium with LPO a seismic wave will travel faster parallel to one axis of the
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crystal and slower if it is perpendicular to that axis. Since olivine is one of the main minerals
in the upper mantle (Stein and Wysession, 2003) the alignment of such crystals can provide
information regarding strain and deformation in the upper mantle.

On the other hand, anisotropy in the crust tends to be caused by composite structures
such as horizontal layers of sediments (Stein and Wysession, 2003). Fluid filled microcracks
can also cause anisotropy with their opening and closing being an indication of the stress
applied to them.

Anisotropy studies are important because they have many applications such as analysing
present day tectonic actions (Silver and Chan, 1991), monitoring stress changes (e.g. Teanby
et al. (2004b)) monitoring temporal changes in volcanoes (e.g. Gerst and Savage (2004)) and
providing information for reservoir exploitation (Angerer et al., 2002). Crampin and Chastin
(2003) provide a detailed discussion of applications of crustal shear wave splitting as well
as references to other papers.

1.2.3 Seismic Waves

There are three types of waves we refer to in this thesis.

P Wave

The P wave is the fastest travelling wave. It is a longitudinal wave, i.e. it oscillates in the
direction of the wave propagation (Stein and Wysession, 2003). Whilst P waves are not
often used in shear wave splitting analyses, they are mentioned here since there are some
comments about them in this thesis.

S Wave

The wave of interest in this thesis is the shear wave or S wave. This wave travels more
slowly than the P wave and unlike the P wave it oscillates perpendicularly to the wave
propagation. Both types of waves are illustrated in Figure 1.2. The S wave can be broken
down into a horizontal (SH) component, and the component perpendicular to this, referred
to as the SV even though it is not purely vertical. The direction that SV displaces is referred
to as the radial direction. SV describes displacement that is in the vertical plane whilst SH
displaces horizontally or normally to the plane (Figure 1.2). The direction that SH displaces
is referred to as the transverse direction.
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SV

SH

P propagation
direction

Figure 1.2: Illustration of a P wave and the two S wave components. The SV component is
inside the plane of propagation and the SH component is normal to it.

SKS Wave

Both types of waves can be converted into other types of waves whilst travelling under-
ground. One converted wave of interest is the SKS wave (Figure 1.3). S waves cannot pass
through the outer core since it is liquid (Stein and Wysession, 2003) so an S wave is converted
into a P wave as it enters the outer core. If it is converted back to an S wave as it leaves the
core and passes back into the mantle then it is called an SKS wave. These waves are popular
for the analysis of geophysical properties because they are easy to use and interpret (Savage,
1999). When the wave is converted back from a P wave to an S wave the energy is only in
the vertical plane so the S wave only has an SV component (Figure 1.2). This means that the
incoming polarisation (i.e. the orientation) is always known for an SKS wave and does not
need to be estimated (this also applies for another type of wave, the SKKS wave). If there
were energy on the SH component it can be interpreted as noise. However, not all waves
that reach a station are SKS or SKKS wave so other more general S waves must be used. A
general S wave has a polarisation that depends on the fault geometry and usually contains
a signal on its SH component.

1.2.4 Shear Wave Splitting

Shear wave splitting is one of the most common methods used to measure anisotropy. A
shear wave will split into two perpendicular components with different velocities as it
passes through an anisotropic medium. The splitting is characterised by two parameters
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Figure 1.3: Examples of an SKS wave travelling through the Earth. Diagram produced by
Mattieu Duclos and Etienne Audoine (personal communication, 2012).

defined as follows

ϕ = fast direction
δt = delay time

The fast direction is the polarisation (orientation) of the faster travelling which is usually re-
ported with respect to North wave whilst the delay time represents the temporal separation
between the fast and slow waves when they arrive at the receiver. Figure 1.4 illustrates this.
These two parameters are referred to as the splitting parameters and provide information
about the anisotropic medium. For a single anisotropic layer along a shear wave’s ray path
the fast polarisation identifies the fast orientation (see Figure 1.1) in the anisotropic medium
for that path. The delay time is a function of distance and velocity and will therefore give a
measure of thickness of the anisotropic layer. The thickness of the medium can be obtained
if you know or assume the percentage of anisotropy. If splitting is caused by micro cracks
then the fast direction would give you an idea of how the cracks are aligned and the delay
time would give you an estimate of crack density. In some cases, even when anisotropy is
present it can not be detected. A null measurement is one where splitting cannot be de-
tected for one of three reasons: there is no splitting, the incident wave is parallel to the fast
direction or it is parallel to the slow direction.

The next section shows how the splitting parameters and their standard errors are ob-
tained.

1.3 Obtaining Shear Wave Parameters and their Errors

1.3.1 Splitting Techniques

Three techniques often used to obtain splitting parameters are the transverse minimisation
method, eigenvalue method and cross correlation method (Vecsey et al., 2008). These tech-
niques are applied to a data set consisting of three seismogram components at a specified
sampling rate, for a specified amount of time. The S wave arrival is identified and a window,
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Figure 1.4: Illustration of shear wave splitting caused by microcracks. The cracks that are
aligned parallel to the maximum horizontal stress remain open whilst cracks that are not
parallel to the maximum horizontal stress close. The incoming shear wave splits into two
orthogonal components labelled s1 and s2. The splitting is measured by the two splitting
parameters ϕ and δt. Diagram produced by Alex Gerst (personal communication, 2012).

which is the segment of data containing the S wave, is identified for analysis purposes. Fig-
ure 1.5 shows an example of the three seismogram components. The window is illustrated
by the vertical red lines while the vertical black line extending down through all three com-
ponents denotes the S wave arrival.

Cross correlation Method

The cross correlation method was used early on by Fukao (1984) who used two rotated and
time shifted orthogonal horizontal components to reverse the effect of splitting. The fast di-
rection and a delay time that would lead to the greatest correlation between these two com-
ponents was considered the optimal parameter set. For this method to work Fukao (1984)
notes that the orthogonal components must contain similar waveforms. This method can be
used at long period as well as at high frequency (Long and Silver, 2009). However, Crampin
and Gao (2006) note that the method is dependent on selecting appropriate end points for
the window (although Teanby et al. (2004a) provide a solution to this). Crampin and Gao
(2006) also note that the waveforms are often not similar and that fast and slow waves are
not always strictly orthogonal, making the cross correlation of these components almost
impossible. However, teleseisms (such as SKS) do not usually encounter these problems
since they have similar waveforms and near normal incidence, making the cross correlation
technique useful for measuring anisotropy from splitting that occurs in the mantle.
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Figure 1.5: Example of a seismogram for the East, North and vertical components. The shear
wave labelled S is located within the analysis window shown by the vertical red lines.

Transverse Minimisation Method

This method, introduced by Silver and Chan (1991), attempts to reverse the effects of split-
ting to retrieve the original wave (that is assumed to be propagating in a near vertical di-
rection upwards from the source to the station) before it split by using an inverse splitting
operator. To do this it performs a grid search over all possible pairs of (ϕ, δt) and selects the
pair that best remove the effects of splitting. The best parameters are the ones that minimise
the energy on one of the transverse components. The method assumes a single layer of
anisotropy and that two of the three symmetry axes lie in the horizontal plane. However ex-
tensions were made later that relax these assumptions, for example Wolfe and Silver (1998)
extend the method to include two layers that do not commute (Silver and Savage, 1994) i.e.
the two splitting operators do not possess the commutativity property. These yield appar-
ent splitting parameters, but the actual splitting parameters and useful information can be
retrieved (Silver and Savage, 1994). Marson-Pidgeon and Savage (2004) extend this method
to allow for known focal mechanisms. Savage (1999) provides a review of some of these
extensions. This method also assumes that the movement of particles of two orthogonal
components (the particle motion) caused by the incoming isotropic wave is linear and that
there is initially no energy on the transverse component (Vecsey et al., 2008). As a result this
method is applicable to waves such as SKS (see Section 1.2.3).

Eigenvalue Method

The eigenvalue method (Silver and Chan, 1991) is similar to the transverse minimisation
method but instead of minimising the energy on the transverse component, the smaller
eigenvalue of the corrected covariance matrix of two orthogonal components is minimised
(Silver and Chan, 1991). This is equivalent to creating the most linear particle motion (Long
and Silver, 2009). If anisotropy is completely removed the covariance matrix will have one
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non-zero eigenvalue corresponding to the speed of the unsplit wave. However, if noise
is present there will be two eigenvalues with the second eigenvalue being a measure of
how much noise is present in the system. The best set of splitting parameters will produce
the smallest second eigenvalue. Like the transverse minimisation method it assumes that
the particle motion of the unsplit wave is linear and that the wave is near vertical. Unlike
the transverse minimisation method, this method can be used even when the polarisation
is unknown (Savage, 1999). This is the method that is investigated in this thesis, and is
explained in detail in Chapter 2.

Other Methods

More recent methods have been developed such as the splitting intensity method (Chevrot,
2000) as an alternative for measuring the splitting parameters from SKS and SKKS waves.
No assumptions are made regarding geological properties of the medium. However, inter-
preting the splitting vector requires some assumptions (see Chevrot (2000)). This method
requires good coverage from various sources to the receiver (back azimuth coverage). Long
and Silver (2009) suggest this as a reason why there are only a few data sets that have been
analysed using this method. This method was later improved by applying a Wiener filter
beforehand to minimise noise (Montellier and Chevrot, 2010).

Menke and Levin (2003) create a cross convolution method that also does not make ge-
ological assumptions regarding the anisotropy. Essentially it convolves the radial and tan-
gential components with an impulse response from a hypothetical model and then attempts
to minimise the difference between the observed and the hypothetical waveforms. This
method also has the advantage of determining the number of distinct anisotropic layers by
using an F test to estimate the significance of the error reduction each time. However, the
degrees of freedom are constructed assuming each seismogram data point is independent,
which is highly unlikely.

1.3.2 Estimating Errors

Silver and Chan (1991)

In order to calculate errors of the estimates, Silver and Chan (1991) make assumptions about
the noise process having a Gaussian distribution. To calculate the degrees of freedom of the
noise process, further assumptions are made about the noise process being a convolution
of a filter and Gaussian noise. These are strong assumptions which are investigated further
in Chapter 2 when the method is described in full with all the assumptions clearly outlined
and derivations of the equations given.
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Wolfe and Silver (1998)

The Silver and Chan (1991) method works best in stable continental interiors where there
is low background noise. On the other hand, splitting measurements from island stations
are likely to be of poor quality due to high ambient noise. To overcome this problem the
Silver and Chan (1991) method was modified to incorporate stacking of the eigenvalues
from a number of events. The method takes several earthquake events and sums (or stacks)
the second eigenvalue for each pair of ϕ and δt to create a new error map based on these
summed eigenvalues. The best splitting parameters are then estimated by finding the min-
imum value of the sum of the second eigenvalue. The method works best when stacking
varying polarisations, but it will still work stacking like polarisations because noise proper-
ties will vary with each event. Whilst they note that their method improves the accuracy of
the shear wave splitting parameters, they still assume that the sum of squared errors has a
chi-squared distribution. They also note that ideally the wave forms should have a period
that is less than 10 times the delay time to achieve good results.

Sandvol and Hearn (1994)

Instead of assuming that the noise process follows a Gaussian distribution, Sandvol and
Hearn (1994) opt for a bootstrapping method to calculate the errors. The bootstrapping
method has the advantage of not making any assumption about the errors or relying on
correctly estimating the degrees of freedom. However, it does assume that the points are
independent and identically distributed. To account for correlations in the noise they con-
struct a bootstrap noise sequence in such a way that the statistical properties remain the
same each time as the original noise but with different sequencing. Further randomisation
is performed to remove consistent waveforms to preserve the statistical properties of the
noise process.

Menke and Levin (2003)

The cross convolution method by Menke and Levin (2003) defines the error in a more gen-
eral form than Silver and Chan (1991). The observed seismograms are compared to a hy-
pothetical anisotropic model containing at least two parameters, ϕ and δt. The number of
parameters increases with the complexity of the model. For instance, a model with two
anisotropic layers would have four parameters (ϕ1, ϕ2, δt1, δt2). The best set of parameters
are the ones that minimise the error i.e. the normalised, squared difference between the
observed and the hypothetical time series of the seismograms.

1.3.3 Problems with Identifying Shear Wave Splitting

Shear wave splitting cannot always be identified and the quality of results can vary. This
section explains some of the common problems with identifying shear wave splitting and
how different methods compare.
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Figure 1.6: Illustration of cycle skipping. Cycle skipping can occur here because the dashed
blue peak can in phase with either peaks or the trough of the solid black wave (Matcham,
1997).

Cycle Skipping

Cycle skipping is a phenomenon where two waveforms are mismatched by an integer num-
ber of half cycles of the waves’ period (Figure 1.6). This results in matching the wrong peak
of the wave form, or a peak with a trough, that leads to errors in the shear wave splitting
parameters. Mismatching the waveforms is typical for local events when narrow band pass
filters are used (Teanby et al., 2004a). This tends to be because local events (close to the
receiver) have shorter periods so it is easier to skip a cycle. Vecsey et al. (2008) suggested
damping the waveforms to a single pulse to avoid cycle skipping but this only appears to
work for the cross correlation method and not the eigenvalue method. Cycle skipping can
also occur if the amplitude of the first peak of the wave is small (Matcham, 1997).

Null Measurements

Null measurements can provide useful information as outlined below. For example, Sand-
vol and Hearn (1994) provide a method to detect whether or not splitting has occurred. They
re-parametrise the problem by replacing the fast direction parameter ϕ with a polarisation
direction that may refer to either the fast direction or the slow direction. The delay time may
be positive (meaning that the polarisation direction is the fast direction) or negative (mean-
ing the polarisation direction is the slow direction). This new parametrisation means that if
a confidence interval for the delay time δt contains zero then splitting has not occurred.

Wustefeld and Bokelmann (2007) present a method for detecting null measurements and
their quality by utilising both the Silver and Chan (1991) method and the rotation correlation
method. Their method produces two values of interest: the difference between the fast
direction of these two methods and the ratio between the two delay times. These can be
used to detect nulls.

Wustefeld and Bokelmann (2007) also note the nulls can be used to detect the strength of
anisotropy with strong anisotropy being characterised by nulls from small distinct ranges of
back azimuths compared to nulls from all back azimuths for a purely isotropic medium.
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Later their method for classifying nulls was revised by Wustefeld et al. (2010) to quantify
the quality of nulls ranging from 0 (poor) to 1 (good null). By placing a numerical value on
quality the detection of nulls can be automated. The measure of quality also allows one to
distinguish between genuine nulls and measurements that appear null because of noise.

Grading Measurements

Not all splitting measurements obtained are reliable and as a result grading systems for their
results are needed. This can be done manually by a person, which is quite time consuming
for a large set of measurements. Furthermore, the process is subjective making consistent
grading difficult to obtain (Aster et al., 1990). Alternatively, several automated grading sys-
tems currently exist. Peng and BenZion (2004) assign either a high or low grade based on 10
objective criteria that check the strength of the signal, the stability of a solution with respect
to changes in the window that is used to remove the effects of splitting, small confidence
regions and significant energy reduction on the perpendicular to the polarisation compo-
nent. This grading system can also detect null measurements. (Evans et al., 2006) have an
automated grading system based on 5 criteria. These criteria place limits on the size of the
errors of ϕ and δt plus a limit on the maximum delay time. The other criteria look at the
linearity of the particle motion between two orthogonal components before and after the
effects of splitting have been removed. More recently, (Savage et al., 2010) created a grading
system that combines aspects of both (Peng and BenZion, 2004) and (Evans et al., 2006) with
the main difference being that most of the grading is based on the number of measurements
and the variation within groups of like parameters called clusters. It also has a wider vari-
ety of grades and a criterion to check the number of contours enclosing the 95% confidence
region. This provides an idea of the quality of the measurement, with more than 8 contours
indicating a high quality measurement.

1.3.4 Comparisons of Techniques

Several authors have looked at comparing these techniques. Vecsey et al. (2008) look at the
three most common splitting methods (cross correlation, eigenvalue, and transverse minimi-
sation). The errors were estimated by creating a 95% confidence interval using the method in
Silver and Chan (1991) as well as bootstrapping (Sandvol and Hearn, 1994). They found that
the transverse minimisation method works best, but it can only be used when the incoming
polarisation is known (i.e SKS, SKKS waves). Although if the geometric representation of
the fault slip during an earthquake (i.e. the focal mechanism) is known then S waves can
have a known polarisation. For a more general waveform we then have to use either the
eigenvalue method or rotation correlation. They found that the eigenvalue method is more
prone to cycle skipping but less susceptible to noise and thus can provide more accurate
splitting parameters compared to cross correlation.

Wustefeld and Bokelmann (2007) compared the Silver and Chan (1991) method to the rota-
tion correlation method. They find that in null directions the Silver and Chan (1991) method
gives an approximate solution but the rotation correlation method has fast direction devia-
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tions of around 45◦. This result is used to create a null detection method (see Section 1.3.3).
Synthetic tests using the three main methods in Splitlab (Wustefeld et al., 2008) show simi-
lar results. They also found that the results for the transverse minimisation and eigenvalue
minimisation were similar.

Montellier and Chevrot (2010) used SKS and SKKS wave to compare Silver and Chan
(1991) and Wolfe and Silver (1998) to their splitting intensity method. They find that Silver
and Chan (1991) works best on a high quality records with a strong signal on the transverse
component. This significantly limits the number of records available to analyse. In contrast,
stacking the error maps (Wolfe and Silver, 1998) considerably improves the reliability of
splitting parameters and agrees with results from their splitting intensity method.

Menke and Levin (2003) test their convolution method against cross correlation, trans-
verse minimisation and eigenvalue methods. They find it performs similarly when there is
a single anisotropic layer and performs better when there are two anisotropic layers and a
two layer cross convolution is performed. This is probably because the other models make
assumptions about there being only one layer of anisotropy.

1.4 Contribution of Thesis

As mentioned before, there is no in depth literature assessing the robustness of the Silver
and Chan (1991) method itself. The closest assessments are the comparisons of methods
mentioned in Section 1.3.4. Here we provide an in-depth, step by step break down of the
Silver and Chan (1991) method. This is useful because the original Silver and Chan (1991)
article only covers a few key formulas and most proofs are omitted. By doing this we are also
able to identify some problems with the theory behind the Silver and Chan (1991) method
as well as bugs in some of the original computer codes implementing the method, some of
which have been carried over to other software using this method.

In this project we produce an automated grading method to assess the quality of the re-
sults coming from the Silver and Chan (1991) method. Unlike other automated grading
methods (e.g. Peng and BenZion (2004)), which criteria to use and how to determine grades
was decided statistically using the AIC criterion and multiple regression.

Many assumptions are made in order to perform the Silver and Chan (1991) method, but
we know of no articles that carry out statistical tests to check these assumptions. We test
some of the key assumptions in the Silver and Chan (1991) method and see what influence
they have on results.
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1.5 Outline

The structure of this thesis is as follows. In chapter 2 the Silver and Chan (1991) method is
explained in great detail along with problems with the theory and bugs we have identified in
the code. Chapter 3 discusses in detail a dataset we have used for testing, and explains how
manual grades were determined. It then describes how this grading process is automated.
Chapter 4 discusses cycle skipping in more detail and whether the dataset shows signs of
it. In Chapter 5 we test some of the assumptions in the Silver and Chan (1991) method and
investigate how they affect the method. Chapter 6 contains some concluding statements and
future directions. There is also a glossary and a list of symbols. The appendix contains some
useful mathematical results.
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Chapter 2

Silver and Chan (1991) Method - A
Full Description

The Silver and Chan (1991) method estimates the splitting parameters ϕ and δt along with
their corresponding (standard) errors. These errors give an indication of how accurate the
estimates of ϕ and δt are. In order to understand how this is done, this chapter carefully
explains the process outlined in their article, as well as giving additional steps and explana-
tions that the article omits. In order to obtain the standard errors of the parameter estimates,
several assumptions are made. Each time an assumption is made it is clearly highlighted in
a box. Differences and potential points where the method may break down are given at the
end. This chapter is completely self contained and it is not necessary to have read the article
in advance.

2.1 The Shear Wave

In order to carry out the Silver and Chan (1991) method we require observations of shear
waves as inputs. These are usually obtained from a seismic station during an earthquake,
which is sometimes referred to as an event. One way of expressing a shear wave displace-
ment mathematically is by using the following one dimensional expression

u(x, t) = A exp[i(kx − ωt)] = A(ω, k) exp[−i(ωt − kx)] (2.1)

where

u(x, t) = wave at time t and position x
A = amplitude of the wave
k = wavenumber=2π/λ where λ is the wave length
x = point along the x axis

ω = angular frequency=2π f where f is the frequency
t = point in time

i = imaginary number, i2 = −1
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The wave number measures how quickly the wave changes over space at a particular point
in time. On the other hand, the angular frequency measures how quickly the wave changes
over time at a particular point in space. Euler’s formula shows that exp(ix) = cos(x) + i sin(x)
so Equation 2.1 can be rewritten using trigonometric functions as follows

u(x, t) = A(ω, k) [cos(kx − ωt) + i sin(kx − ωt)] (2.2)

Silver and Chan (1991) simplify the shear wave shown in Equation 2.1 by looking at a shear
wave in an isotropic medium that has travelled a distance of length L and arrives at the
surface of the Earth at time T0. As a result they define a vector that represents the shear
wave as follows

u(ω, T0) = A(ω) exp(−iωT0) (2.3)

(SC 1)1

where

ω = angular frequency
u(ω) = isotropic shear wave vector

A(ω) = w(ω)Â(ω) complex amplitude vector
w(ω) = ∥A(ω)∥ norm of the amplitude with angular frequency ω

T0 = time at which the wave arrives at the surface

The shear wave travels in a particular direction and is oriented a particular way. In order
to represent this, a right handed set of orthogonal vectors [p̂âb̂] are defined and given the
name, propagation coordinates (P). The three orthogonal vectors that define this coordinate
system are

b̂ = propagation vector
p̂ = polarisation vector pointing in the direction of shear wave displacement

â = null vector b̂ × p̂ = â

The vector p̂, which is normal to b̂ because it is an S wave, represents the orientation, while
the vector b̂ represents the direction of travel. To make a coordinate system, a third vector
is created by taking the cross product of the existing two. Silver and Chan (1991) take into
account the polarisation but do so in a simplified manner. They assume that waves (for
all frequencies, ω) displace in the same direction p̂. Consequently, the complex amplitude
vector A(ω) = w(ω)Â(ω) where w(ω) = ∥A(ω)∥ can be approximated by replacing Â(ω)
with p̂ for all ω. Taking this into account, p̂ is substituted in place of Â(ω) and Silver and
Chan (1991) express Equation 2.3 alternatively as

u(ω, T0) = w(ω) exp(−iωT0)p̂ (2.4)

(SC 2)
with A(ω) being replaced by w(ω)p̂. Figure 2.1 illustrates a wave, u(ω), travelling through
an isotropic medium.

1SC numbering denotes equation numbering in the original Silver and Chan (1991) article
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surface

p̂

â

b̂

u(ω)

Figure 2.1: An unsplit shear wave u(ω) travelling towards the surface shown in propagation
coordinates (P). The wave is oriented along p̂ and travelling along b̂.

The above case describes a shear wave in an isotropic medium. For an anisotropic medium
(one with preferential orientation) we can define another coordinate system that we call the
splitting coordinate system (S). We define two new directions with respect to a propagation
direction b̂. One of them is the fast direction f̂ in which a wave will travel faster and the
other is the slow direction ŝ in which the wave travels more slowly. f̂ and ŝ are orthogonal
to each other. The three orthogonal vectors

[
f̂ŝb̂
]

form the splitting coordinate system (S).
We describe P , S and other coordinate systems in more detail in Section 2.5.2. A shear wave
will split in two when it passes into an anisotropic medium and travel at different speeds
with displacements in these directions. To model the splitting caused by anisotropy on the
shear wave u(ω) orientated along p̂, we project p̂ onto these two directions and then by the
time the wave emerges at the surface, i.e. time T0, the faster wave arrives at a time δt before
the slower wave. If T0 is the time an unsplit wave would have arrived, then the fast wave
arrives at time T0 − δt/2 and the slow wave at time T0 + δt/2 (Figure 2.2).
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Figure 2.2: An initial shear wave split in two, modelled in space. The faster wave moves
ahead and the slower wave lags behind. The dot represents the half way point between the
two peaks and is where the wave would have been centred if it had not been split.
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2.2 Geophysical Properties

Elastic properties described below lead to fast and slow directions f̂ and ŝ being eigenvectors
of a polarisation tensor V (also known as the Christoffel matrix). In order to define the
polarisation tensor, the concept of elastic moduli must first be explained. Elastic materials
under the ground are under stress and as a result they deform (strain). Hooke’s law relates
stress to strain in a linearly elastic material as follows

σij = cijkℓϵkℓ (2.5)

where

σij = stress tensor

cijkℓ = elastic moduli

ϵkℓ = strain tensor

The elastic moduli reflect how displacements in both space and time arise as a result of stress
so anisotropy can be introduced by this tensor (see Stein and Wysession (2003) for further
information).

With this in mind, we can define the polarisation tensor. Let

ρ = density
Viℓ = polarisation tensor

cijkℓ = elastic coefficients

bj = jth component of the propagation vector b̂

bk = kth component of the propagation vector b̂

then V may be defined by the following relationship

ρViℓ ≡
3

∑
j=1

3

∑
k=1

cijkℓbjbk (2.6)

Silver and Chan (1991) use the summation convention, i.e. when an index appears on the
same side of the equation twice it is implied that you sum over that index. This leads to a
more compact version of Equation 2.6

ρViℓ ≡ cijkℓbjbk (2.7)

(SC 3)
Using the symmetries cijkℓ = cjikℓ = cijℓk one can derive Equation 2.7. Babuska and Cara
(1991) give a full proof of this equation starting with a generalised form of Hooke’s law to
obtain Equation 2.7. However, what’s of more interest is the interpretation of this polarisa-
tion matrix. This matrix forms part of an eigenvalue problem and solving it gives f̂ and ŝ as
eigenvectors corresponding to the direction of particle displacement for the split wave and
their corresponding eigenvalues are shear velocities in each direction.
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The second splitting parameter, the delay time (δt), may be expressed in terms of these
shear velocities if the amount of anisotropy is relatively small. The easiest way to under-
stand this is to think of the formula that links distance, time and velocity together. i.e.
distance = velocity × time. Assuming that the waves enter the anisotropic medium at time
t = 0, both the fast wave and the slow wave will eventually reach the surface so they travel
the same distance therefore

v1t1 = v2t2 or
β1t1 = β2t2 using the notation in Silver and Chan (1991) (2.8)

Let

L = the length of the path the wave has travelled
β0 = shear wave velocity in an isotropic medium

The waves initially travel at β0 in an isotropic medium. At time t = 0 the wave enters the
anisotropic medium and the wave is split. When the wave splits, the faster wave (with
δβ1 > 0) increases speed to travel at β1 = β0 + δβ1 whilst the slower wave (with δβ2 < 0)
decreases speed to β2 = β0 + δβ2. Rearranging and adding this to Equation 2.8 yields

β1t1 = β2t2

(β0 + δβ1)t1 = (β0 + δβ2)t2

β0t1 + δβ1t1 = β0t2 + δβ2t2

β0(t1 − t2) = δβ2t2 − δβ1t1

−β0δt = δβ2t2 − δβ1t1 since δt = t2 − t1 > 0
≈ (δβ2 − δβ1)t for small δt = (t2 − t1)

= (δβ2 − δβ1)
L
β0

t = distance/velocity ≈ (t2 + t1)/2

⇒ δt ≈
(

δβ1 − δβ2

β0

)
L
β0

(2.9)

If the relative velocity δζ is defined as

δζ =
δβ1 − δβ2

β0
=

δβ1 + |δβ2|
β0

(2.10)

then for small anisotropy and consequently small delay times, δt may be defined as

δt =
δζL
β0

(2.11)

(c.f. SC 4)
Silver and Chan (1991) use the term δβ̂ instead of δζ but this might give the impression that
this term has the same units as β when in fact it is dimensionless, which is why we chose to
label it δζ.

2.3 Split Wave and the Splitting Operator

So far we have looked at a shear wave and a few of its properties, but we are yet to discuss
shear wave splitting in detail. The splitting operator (Γ(ϕ, δt)) takes an unsplit wave, then
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rotates and time shifts it. The splitting operator is a function of the splitting parameters and
Silver and Chan (1991) define it as

Γ(ϕ, δt) ≡ exp(iωδt/2)f̂f̂ + exp(−iωδt/2)ŝŝ (2.12)

(SC 5)
There are two points here to make. Firstly both f̂ and ŝ are column vectors so to multiply
such vectors the second one should be transposed. Secondly and more importantly, it ap-
pears that the signs on the exponentials are the wrong way round. To justify this we define
the split shear wave us(ω, t) to have two components: a component for the faster travelling
wave (u1(ω, t)) and a component for the slower travelling wave (u2(ω, t)). Figure 2.3 illus-
trates this for a one dimensional situation. If we ignore the spatial components, then the

t

−δt/2 +δt/2
u1(ω, t) u2(ω, t)u(ω, t)

Figure 2.3: An initial shear wave is split in two with the faster (red) u1(ω, t) wave being
moved back δt/2 in time (i.e. sped up) and the slower (blue) u2(ω, t) one moved forward in
time by δt/2.

initial wave has a real component Re[u(ω, t)] = Re(A(ω)e−iωt) = A(ω) cos(ωt). The faster
wave will arrive δt/2 seconds earlier than an unsplit wave and the slower wave will arrive
δt/2 seconds later compared to an unsplit wave. In other words,

Re[u1(ω, t)] = Re[u(ω, t) exp(−iωδt/2)] = Re[A(ω) exp(−iωt − iωδt/2)] = A(ω) cos[ω(t + δt/2)]
Re[u2(ω, t)] = Re[u(ω, t) exp(+iωδt/2)] = Re[A(ω) exp(−iωt + iωδt/2)] = A(ω) cos[ω(t − δt/2)]

(2.13)

An alternative way to view this is to consider a wave, in a one dimensional situation, prop-
agating in the direction x with a wave number k

u(x, t) = cos(ωt − kx)

Then consider two more waves propagating with a slightly higher constant k + dk/2 (shorter
wave length) and one with a slightly lower constant k − dk/2 (longer wave length). The
speed of the wave is given by ω/k so that the wave with higher constant k + dk/2 repre-
sents a slower wave while k − dk/2 represents a faster wave

u f (x, t) = cos(ωt − (k − dk/2)x)

us(x, t) = cos(ωt − (k + dk/2)x)
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After travelling a distance L (as in Silver and Chan (1991)), the waveforms have the follow-
ing form

u f (L, t) = cos(ωt − (k − dk/2)L) = cos(ωt − (kL − Ldk/2)) = cos(ωt − kL + Ldk/2)

us(L, t) = cos(ωt − (k + dk/2)L) = cos(ωt − (kL + Ldk/2)) = cos(ωt − kL − Ldk/2)

There is a phase shift between the two waves. If we let dt = Ldk/ω we can rewrite the
equations as

u f (L, t) = cos(ωt − kL + ωdt/2) = cos(ωt + ωdt/2 − kL) = cos(ω(t + dt/2)− kL)

us(L, t) = cos(ωt − kL − ωdt/2) = cos(ωt − ωdt/2 − kL) = cos(ω(t − dt/2)− kL)

The two waves are identical except for a phase shift of dt. The fast wave has a shift of
(t + dt/2) while the slower wave has a time shift of (t − dt/2). The sign of the dt/2 shifts
agree with Equation 2.13. Silver and Chan (1991) omit the kL term because they assume
the wave has travelled a distance L. Note that the same result occurs for a wave defined
as u(x, t) = exp(i(kx − ωt)). The important thing to note is that the wave speed ω/k is the
inversely proportional to k. Both sets of reasoning suggest that the signs on the Silver and
Chan (1991) splitting operator (Equation 2.12, (SC 5)) are incorrect.

Silver and Chan (1991) only consider almost vertically travelling waves and thus only
consider the 2D horizontal plane. We wish to give the problem a more general treatment
and so extend the splitting operator to have 3 components or dimensions. Therefore, we
define the splitting operator as

Γ(ϕ, δt) ≡ exp(−iωδt/2)f̂f̂T + exp(iωδt/2)ŝŝT + b̂b̂T (2.14)

(c.f. SC 5)

We can define the time difference tensor as

δT = δt/2(f̂f̂T − ŝŝT) (2.15)

(c.f. SC 7)
so that Γ(ϕ, δt) can be written in a more compact form. Since Silver and Chan (1991) define
ϕ as the angle between f̂ and p̂ (Figure 2.4), it follows that Γ(ϕ, δt) and therefore δT are both
functions of ϕ. Evaluating the dot product gives f̂ · p̂ = ∥f̂∥∥p̂∥ cos(ϕ) = cos(ϕ) and
ŝ · p̂ = ∥ŝ∥∥p̂∥ cos(π/2 + ϕ) = − sin(ϕ). This leads us to define the compact splitting oper-
ator

Γ(ϕ, δt) = exp[−iωδT(ϕ, δt)] (2.16)

(c.f. SC 8)
This formula and Equation 2.15 are different to the ones in Silver and Chan (1991). This
follows as a result of changes in how we define the splitting operator. To show Equations
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ϕ

p̂

b̂

ŝ

f̂

ϕ

â

Figure 2.4: Diagram showing the relationship between the orthogonal unit vectors f̂, ŝ and
b̂ that form the splitting coordinates (S) and the vectors [p̂âb̂] that define the propagation
coordinates (P).

2.16 and 2.14 are equivalent we rewrite Γ(ϕ, δt) as a Taylor series

Γ(ϕ, δt) = exp[−iωδT(ϕ, δt)]

=
∞

∑
k=0

(−iωδT)k

k!

=
∞

∑
k=0

(−iω)k

k!
(δT)k

= (δT)0 +
∞

∑
k=1

(−iω)k

k!
(δT)k (2.17)

δT has been isolated because of its recursive form

(δT)k = (δt/2)k(f̂f̂T + (−1)k ŝŝT) (for ∀ integers k : k ≥ 1) (2.18)

We will call Equation 2.18 P(k) and show it is true for all k ≥ 1 by induction.

Proof. Base case: k = 1

(δT)1 = (δt/2)1(f̂f̂T + (−1)1ŝŝT) = (δt/2)(f̂f̂T − ŝŝT) (2.19)

Appendices A.1 & A.2 explain why this is the case.

Inductive step: Assume P(n), for some n ≥ 1 is true i.e.

(δT)n = (δt/2)n(f̂f̂T + (−1)n ŝŝT) (2.20)
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and prove P(n + 1) is true

(δT)n = (δt/2)n(f̂f̂T + (−1)n ŝŝT) (inductive hypothesis)

(δT)n(δT) =
[
(δt/2)n(f̂f̂T + (−1)n ŝŝT)

][
(δt/2)(f̂f̂T − ŝŝT)

]
(δT)n+1 = (δt/2)n+1(f̂f̂T + (−1)n ŝŝT)(f̂f̂T − ŝŝT) (then expand)

= (δt/2)n+1(f̂f̂T f̂f̂T + (−1)n+1ŝŝT ŝŝT) (since f̂ & ŝ are ⊥)

= (δt/2)n+1(f̂f̂T + (−1)n+1ŝŝT) (inner product of unit vectors is 1) (2.21)

This is the same form as P(n) so P(n + 1) is true. Therefore P(k) is true for all integers
k : k ≥ 1

Substituting Equation 2.18 into Equation 2.17, using Appendix A.2 and splitting into fast
and slow components gives,

Γ(ϕ, δt) = (b̂b̂T + f̂f̂T + ŝŝT)︸ ︷︷ ︸
(δT)0 = I (Appendix A.2)

+
∞

∑
k=1

(−iω)k

k!
(δt/2)k f̂f̂T +

∞

∑
k=1

(−iω)k

k!
(δt/2)k + (−1)k ŝŝT (2.22)

The two sums in this expression are almost the Taylor series form of the exponential but the
first term is missing in each series. If we rewrite this equation as an exponential we must
subtract off the first term from each of the sums to obtain

Γ(ϕ, δt) = (f̂f̂T + ŝŝT)− f̂f̂T − ŝŝT + exp(−iωδt/2)f̂f̂T + exp(iωδt/2)ŝŝT + b̂b̂T (2.23)

Simplifying gives

Γ(ϕ, δt) = exp(−iωδt/2)f̂f̂T + exp(iωδt/2)ŝŝT + b̂b̂T (2.24)

which is Equation 2.14. Therefore Equations 2.14 and 2.16 are equivalent.

The splitting operator enables the faster wave to move ahead by −δt/2 (i.e. because it is
travelling faster we see the wave sooner in time) and moves the slower wave back by +δt/2
(i.e. the wave is retarded so we see the wave later in time). If we apply the splitting operator
to a shear wave (Equation 2.4) we obtain a split wave.

us(ω, t) = Γ(ϕ, δt)u(ω, t) (2.25)

2.4 Inverse Splitting Operator

The previous section shows how to split a shear wave. Here we look at how to desplit a
wave once it has been split. The inverse splitting operator (Γ−1(ϕ′, δt′)) for some chosen
(ϕ′, δt′) is applied to a split shear wave us(ω, t) to obtain a corrected shear wave ũ(ω, t)

ũ(ω, t) = Γ−1(ϕ′, δt′)us(ω, t)

= Γ−1(ϕ′, δt′)Γ(ϕ, δt)u(ω, t)
(2.26)
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If the seismograms contain no noise, which only occurs in simulated noise free seismograms,
then ϕ′ = ϕ and δt′ = δt, which implies ũ(ω, t) = u(ω, t). In other words we have fully
corrected for splitting. Equation 2.26 shows that we wish to find a pair of ϕ and δt so that the
inverse splitting operator, Γ−1, best removes the effects of splitting. The complex conjugate
transpose of Γ is

Γ† = [exp(−iωδT)]†

= [exp(iωδT)]T

=
(

exp[iω
(
δt/2(f̂f̂T − ŝŝT) + b̂b̂T)])T

(substituting in Equation 2.15)

=
∞

∑
k=0

[
(iω)k[δt/2(f̂f̂T − ŝŝT)k) + b̂b̂T)

]k
)

k!

]T

(Taylor series)

=
∞

∑
k=0

[
(iωδt/2)k

k!

]
[(f̂f̂T − ŝŝT)T]k (since (Ak)T = (AT)k)

=
∞

∑
k=0

[
(iωδt/2)k

k!

]
[(f̂f̂T − ŝŝT)]k (see Equation 2.18)

= exp(iωδT) (2.27)

Note that since (δT) = (δt/2)(f̂f̂T − ŝŝT) is symmetric, it follows that ΓT = Γ so that Γ† = Γ∗

where Γ∗ is the complex conjugate of Γ. Multiplying the inverse splitting operator by the
splitting operator gives

Γ†Γ = exp[iωδT(ϕ, δt)] exp[−iωδT(ϕ, δt)]
= exp[iωδT(ϕ, δt)− iωδT(ϕ, δt)]
= exp(0) = I (Appendix A.1) (2.28)

Therefore Γ−1 = Γ† = Γ∗ and hence Γ is said to be unitary (i.e. Γ†Γ = I).

2.5 Coordinate Systems and Rotations

2.5.1 Overview

So far we have seen two coordinate systems, the propagation coordinates (P) defined by
the vectors [p̂âb̂] and the splitting coordinates (S) defined by the vectors [f̂ŝb̂]. However,
there are other coordinate systems used to model the shear wave splitting process. For each
coordinate system we describe

• the vectors that define the coordinate system

• the transformation angle that rotates you into the current system from a previously
described coordinate system
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• diagram illustrating the vectors and the transformation angle

• equations and matrices describing the rotation

Different methods or computer programs may use different coordinate systems so this sec-
tion should be useful for comparing waveforms and results expressed in another coordinate
system. We then show how to express a shear wave in some of the coordinate systems. All
coordinate systems are right handed.

Transforming between coordinate systems requires a rotation matrix (or a series of rota-
tion matrices). We define three rotation matrices at angle θ anticlockwise around the x, y
and z axes

R1(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.29)

R2(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.30)

R3(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.31)

where θ denotes an angle that rotates you from the current coordinate system to another
and the subscripts 1,2 and 3 indicate this is a rotation around the x, y and z axis respectively.
A rotation matrix has the following properties

RT(θ) = R−1(θ)

det[R(θ)] = 1 (2.32)

Therefore to rotate back again you simply apply RT(θ). The rotation matrix and its prop-
erties are discussed in detail in Evans (2001). More general rotations using more than one
angle can be found in Appendix A.3.

We also choose to introduce additional notation that we believe is useful in this section.
We define UXC = [ĉ1ĉ2ĉ3] as a matrix comprising of unit vectors of the coordinate system C
expressed from the coordinate system X. In other words it rotates from coordinate system
X to coordinate system C. UXC is a rotation matrix therefore

UXC = UT
CX = (UCX )

−1 (2.33)

UT
XX = I (∀ X ) (2.34)

A final matrix we define is

C3 =

 0 1 0
1 0 0
0 0 −1

 (2.35)

which exchanges the x and y axes and reverses the z axis. This matrix is used to perform a
special rotation into a particular coordinate system that is shown in the next section.
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2.5.2 Coordinate Systems

Propagation Coordinates (P)

As mentioned earlier, the propagation coordinates (P) are defined by the three vectors [p̂âb̂].
The vector b̂ points along the ray path, the S wave particle displacement is oriented along p̂
and the null vector is orthogonal to both of these, â = b̂ × p̂. These vectors are illustrated in
Figure 2.5. The set of vectors can be expressed in our new, more general, notation

[p̂âb̂] = UXP (2.36)

This is the first coordinate system we have described in this section so we have no other
system to rotate into at the moment.

â

p̂
b̂

Figure 2.5: Propagation coordinates (P)

Splitting Coordinates (S)

The splitting coordinates (S) are defined by the three vectors [f̂ŝb̂]. In anisotropic materials
seismic velocities vary with direction so with respect to a propagation vector b̂ we define the
displacement direction associated with a wave that travels fastest as the fast direction f̂. The
displacement direction for a wave that travels the slowest is the slow direction ŝ. The two
vectors f̂ and ŝ can be non horizontal and non vertical. The rotation from P coordinates to S
coordinates can be described by the angle ϕ which is the angle between p̂ and f̂ (Figure 2.6).
The rotation is described below in both equation and matrix form using a rotation matrix.

p̂

ŝ

f̂

ϕ

â

Figure 2.6: Rotation from P to S

f̂ = cos ϕp̂ + sin ϕâ
ŝ = − sin ϕp̂ + cos ϕâ

b̂ = b̂ (2.37) f̂T

ŝT

b̂T

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 p̂T

âT

b̂T

 = RT
3 (ϕ)

 p̂T

âT

b̂T

 (2.38)
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Using our notation a rotation from any coordinate system X into S coordinates can be ex-
pressed in the following ways

UT
XS = RT

3 (ϕ)U
T
XP (2.39)

UXS = UXPR3(ϕ) (Using Equation 2.33) (2.40)

and a rotation from P coordinates into S coordinates can be expressed as

UPS = UPPR3(ϕ) = R3(ϕ) (Using Equation 2.34) (2.41)

Emerging Ray Coordinates (E )

Here we introduce a new coordinate system we call the emerging ray coordinates. Again, b̂
is the propagation direction. The component t̂ is perpendicular to b̂ and lies in the horizontal
plane. The vector q̂ = t̂ × b̂ completes the coordinate system, and together, [q̂t̂b̂] form the
emerging ray coordinates. This coordinate system is more commonly known as the [q̂t̂l̂]
system but we have chosen to be consistent with the Silver and Chan (1991) notation and
use b̂ instead of l̂. The rotation from P coordinates to E coordinates can be described by the
angle θ which is the angle between p̂ and q̂ (Figure 2.7). The rotation is described below in

p̂

q̂

θ

t̂
â

Figure 2.7: Rotation from P to E

both equation and matrix form using a rotation matrix.

q̂ = cos θp̂ + sin θâ
t̂ = − sin θp̂ + cos θâ

b̂ = b̂ (2.42) q̂T

t̂T

b̂T

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 p̂T

âT

b̂T

 = RT
3 (θ)

 p̂T

âT

b̂T

 (2.43)

Using our notation a rotation from any coordinate system X into E coordinates can be ex-
pressed in the following ways

UT
XE = RT

3 (θ)U
T
XP (2.44)

UXE = UXPR3(θ) (Using Equation 2.33) (2.45)

and a rotation from P coordinates into E coordinates can be expressed as

UPE = UPPR3(θ) = R3(θ) (Using Equation 2.34) (2.46)
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Ray Planar Coordinates (R)

Another ray based coordinate system that we call ray planar coordinates (R) is represented
by the three vectors [r̂t̂ẑ]. The vector ẑ is the vertical direction, r̂ is the radial direction,
which is a horizontal projection of the SV displacements i.e. the horizontal projection of b̂.
The final component t̂ = ẑ × r̂ is the transverse component. The rotation from E coordinates
to R coordinates can be described by the angle of incidence, i, which is the angle between
b̂ and ẑ (Figure 2.8). In the special case of a vertically travelling wave i.e. b̂ = ẑ, i = 0 so
the ray planar (R) and emerging ray (E ) coordinate systems are the same. The rotation is

ẑ

r̂

b̂

q̂

i

Figure 2.8: Rotation from E to R

described below in both equation and matrix form using a rotation matrix.

r̂ = cos iq̂ − sin ib̂
t̂ = t̂

ẑ = sin iq̂ + cos ib̂
(2.47) r̂T

t̂T

ẑT

 =

 cos i 0 − sin i
0 1 0

sin i 0 cos i

 q̂T

t̂T

b̂T

 = RT
2 (i)

 q̂T

t̂T

b̂T

 (2.48)

Using our notation a rotation from any coordinate system X into R coordinates can be
expressed in the following ways

UT
XR = RT

2 (i)U
T
XE (2.49)

UXR = UXER2(i) (Using Equation 2.33) (2.50)

and a rotation from E into R coordinates can be expressed as

UER = UEER2(i) = R2(i) (Using Equation 2.34) (2.51)

Geographic Coordinates (G)

Another coordinate system that exists is the one used by seismometers, geographical coordi-
nates (G) i.e. east (ê) and north (n̂) and vertical (ẑ = ê × n̂). The rotation from R coordinates
to G coordinates can be described by the angle b, which is the angle between r̂ and ê (Fig-
ure 2.9). The rotation is described below in both equation and matrix form using a rotation
matrix.

ê = cos br̂ + sin bt̂
n̂ = − sin br̂ + cos bt̂
ẑ = ẑ (2.52)
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r̂

t̂

b

n̂

ê

Figure 2.9: Rotation from R to G

 êT

n̂T

ẑT

 =

 cos b + sin b 0
− sin b cos b 0

0 0 1

 r̂T

t̂T

ẑT

 = RT
3 (b)

 r̂T

t̂T

ẑT

 (2.53)

Using our notation a rotation from any coordinate system X into G coordinates can be ex-
pressed in the following ways

UT
XG = RT

3 (b)U
T
XR (2.54)

UXG = UXRR3(b) (Using Equation 2.33) (2.55)

and a rotation from R coordinates into G coordinates can be expressed as follows

URG = URRR3(b) = R3(b) (Using Equation 2.34) (2.56)

Bearing Coordinates (B)

Another similar system to G is the bearing system (B). This system is defined by the coor-
dinates [n̂êd̂] where d̂ is positive downwards (d̂ = −ẑ). Quite a few angles of interest such
as the fast direction are reported clock wise from North in the bearing coordinate system
(B). Since these two systems are similar all that is required is a rotation matrix to turn the
geographic coordinate system upside down and then a rotation into [n̂êd̂]. (Figure 2.10).
The rotation is described below in matrix form using a rotation matrix

ê

ẑ
n̂

d̂

n̂

ê

Figure 2.10: Rotation from G to B

 n̂T

êT

d̂T

 =

 0 1 0
1 0 0
0 0 −1

 êT

n̂T

ẑT

 = C3

 êT

n̂T

ẑT

 (2.57)
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Coordinate System Vector Components Transformation Angle
P - propagation [p̂âb̂] = UXP -
S - splitting [f̂ŝb̂] = UXS = UXPR3(ϕ) ϕ (P → S)
E - emerging ray [q̂t̂b̂] = UXE = UXPR3(θ) θ (P → E )
R - ray planar [r̂t̂ẑ] = UXR = UXER2(i) i (E → R)
G - geographic [ên̂ẑ] = UXG = UXRR3(b) b (G → R)
B - bearing [n̂êd̂] = UXB = UXGC3 (G → B)

Table 2.1: Summary of the different right handed coordinate systems and the vectors that
define them. The angles that rotate you into these coordinate systems is also given along
with the appropriate rotation.

Using our notation a rotation from any coordinate system X into B coordinates can be ex-
pressed in the following ways

UT
XB = C3UT

XG (2.58)
UXB = UXGC3 (Using Equation 2.33) (2.59)

Summary of the Coordinate Systems

Table 2.1 summarises all the coordinate systems along with a shorthand name and the trans-
formation angles that are used to rotate between particular coordinate systems. The coor-
dinate systems are also summarised in Figure 2.11 with an arbitrary splitting coordinate
system. The two vectors f̂ and ŝ can be non horizontal and non vertical. The summary
table shows the angles that we used to rotate into different coordinate systems. Most of
these angles would be used during processing to rotate into a particular coordinate systems
and carry out an analysis. However, when results are reported, seismologists focus on three
main angles of interest to them that are in bearing coordinates. They are

ϕb = bearing fast direction measured clockwise from n̂ to f̂
α = incoming polarisation measured clockwise from n̂ to p̂
β = back azimuth measured clockwise from n̂ to r̂ plus 180◦

Note that ϕb is a true bearing for a vertical ray, otherwise this angle is not in a horizontal
plane The fast direction provides information about the anisotropic medium, the incoming
polarisation provides information about the orientation of the wave in an isotropic medium
and the back azimuth provides information about the earthquake location.
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Figure 2.11: Different right hand coordinate systems for a near vertically travelling wave
that may be used to model the shear wave splitting process. Not drawn to scale.
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2.5.3 Shear Wave Splitting and Rotated Components

The previous section explained all the coordinate systems along with the relevant angles.
Here we explain a split wave in S coordinates in a more general form and then look at a
special case of shear wave splitting expressed in R coordinates

Split Wave in S Coordinates

Recall that a split wave can be modelled by the following equations

us(ω, t) =
[
exp(−iωδt/2)f̂f̂T + exp(iωδt/2)ŝŝT + b̂b̂T

]
w(ω) exp(−iωt)p̂ (Equations 2.4 & 2.14)

= Γ(ϕ, δt; ω)u(ω, t) (Equation 2.25)
= exp(−iωδT)u(ω, t) (Equations 2.15 & 2.16) (2.60)

A split wave can also be rewritten using trigonometric functions. Remember that f̂Tp̂ = cos ϕ
and ŝTp̂ = cos(ϕ + π/2) = − sin ϕ. First we group the common terms together and then use
our definition of ϕ to simplify

us(ω, t) =
[
exp [−iω(t + δt/2)] f̂(f̂Tp̂) + exp [iω(t − δt/2)] ŝ(ŝTp̂)

]
w(ω)

=
[
exp [−iω(t + δt/2)] f̂(cos ϕ) + exp [iω(t − δt/2)] ŝ(− sin ϕ)

]
w(ω)

=
[
exp [−iω(t + δt/2)] cos ϕf̂ − exp [iω(t − δt/2)] sin ϕŝ

]
w(ω)

= W(ω, t + δt/2) cos ϕf̂ − W(ω, t − δt/2) sin ϕŝ (2.61)

where
W(ω, t) = w(ω) exp(−iωt) (2.62)

This can be defined using our more general notation in the previous section providing we
define three new vectors

δ̂1 =

 1
0
0

 , δ̂2 =

 0
1
0

 , δ̂3 =

 0
0
1

 (2.63)

which are the columns of the identity matrix i.e. [δ̂1δ̂2δ̂3] = I. This allows us to access par-
ticular columns of a matrix. In the previous section we defined UXC = [ĉ1ĉ2ĉ3] as a matrix
comprised of unit vectors of frame C explained from the coordinate system X (in other
words, a rotation from X to C) therefore

UXC δ̂j = cj j = 1, 2, 3 (2.64)

The vectors forming the splitting coordinates (S) can then be rewritten in any coordinate
system X as follows

f̂ = UXS δ̂1

ŝ = UXS δ̂2

b̂ = UXS δ̂3 (2.65)
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and then we may rewrite Equation 2.61 as follows

us(ω, t) = W(ω, t + δt/2) cos ϕUXS δ̂1 − W(ω, t − δt/2) sin ϕUXS δ̂2 (2.66)

We define

W+ = W(ω, t + δt/2)
W− = W(ω, t − δt/2)

so that we can shorten Equation 2.66 and subsequent equations that involve these terms.
Equation 2.66 can then be shortened to

ûs(ω, t) = W+ cos ϕUXS δ̂1 − W− sin ϕUXS δ̂2 (2.67)

Expressing a split wave in this more general manner allows us to express the split wave in
splitting coordinates from any coordinate system X .

Split Wave in R Coordinates

The split wave may also be expressed in ray planar coordinates (R). If p̂ (and consequently
q̂) is known then we can rotate into radial and transverse components. This is necessary if
we wish to minimise the energy on the transverse component. Using the same more general
notation as before, the three components defining this system can be expressed as

r̂ = UXRδ̂1

t̂ = UXRδ̂2

ẑ = UXRδ̂3 (2.68)

To keep the equations relatively short we represent these three vectors as a single equation

r̂j = UXRδ̂j j = 1, 2, 3 (2.69)

where [r̂1 r̂2 r̂3] = [r̂t̂ẑ]. Using this notation we can now define a split wave in R coordinates

ûrj = r̂T
j ûs

= δ̂T
j URX ûs (Since UT

XR = URX . Equation 2.33)

= δ̂T
j URX

[
W+ cos ϕUXS δ̂1 − W− sin ϕUXS δ̂2

]
(from Equation 2.67)

= δ̂T
j URX UXS

[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
= δ̂T

j URS
[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
(2.70)

The matrix URS is not defined in Section 2.5.2 but we can obtain it using the matrices (or
their transposes) that are defined in that section (Equations 2.41, 2.46 and 2.51) as follows

URS = UREUEPUPS

= UT
ERUT

PEUPS

= RT
2 (i)R

T
3 (θ)R3(ϕ) (2.71)
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The two rotation matrices that rotate the third component can be combined into a single
rotation matrix using trigonometric identities

RT
3 (θ)R3(ϕ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1


=

 cos θ cos ϕ + sin θ sin ϕ − cos θ sin ϕ + sin θ cos ϕ 0
− sin θ cos ϕ + cos θ sin ϕ sin θ sin ϕ + cos θ cos ϕ 0

0 0 1


=

 cos(ϕ − θ) − sin(ϕ − θ) 0
sin(ϕ − θ) cos(ϕ − θ) 0

0 0 1


= R3(ϕ − θ) (2.72)

then URS becomes

URS = RT
2 (i)R3(ϕ − θ) (2.73)

We can then substitute this simplified version of URS into Equation 2.70

urj = δ̂T
j URS

[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
= δ̂T

j RT
2 (i)R3(ϕ − θ)

[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
(2.74)

This is the most general form describing a rotation into R coordinates from S coordinates.
The Silver and Chan (1991) method looks at special case of a vertically incident ray. In other
words, the angle of incidence, i = 0. This implies that the R and E coordinates are the same
(see Figure 2.8). Another special case is when p̂ is in the vertical plane of b̂ and ẑ. In other
words θ = 0. This implies that the P and E coordinates are the same (see Figure 2.7). If
both these special cases are true then P=E=R so [p̂âb̂] = [q̂t̂b̂] = [r̂t̂ẑ]. When both these
special cases are true (i = 0, θ = 0) then the radial component (the first component of the R
coordinates) is

ur1 = δ̂T
1 RT

2 (i)R3(ϕ − θ)
[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
= δ̂T

1 R3(ϕ)
[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
= W+ cos ϕ(δ̂T

1 R3(ϕ)δ̂1)− W− sin ϕ(δ̂T
1 R3(ϕ)δ̂2)

= W+ cos ϕ(cos ϕ)− W− sin ϕ(− sin ϕ) (By Equations 2.31 2.63)

= W+ cos2 ϕ − W+ sin2 ϕ

= w(ω) exp[−iω(t + δt/2)] cos2 ϕ + w(ω) exp[−iω(t − δt/2)] sin2 ϕ

(2.75)

(c.f. SC 14)
and the transverse component (the second component of the R coordinates) when i = 0, θ = 0
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is

ur2 = δ̂T
2 RT

2 (i)R3(ϕ − θ)
[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
= δ̂T

2 R3(ϕ)
[
W+ cos ϕδ̂1 − W− sin ϕδ̂2

]
=
[
W+ cos ϕ(δ̂T

2 R3(ϕ)δ̂1)− W− sin ϕ(δ̂T
2 R3(ϕ)δ̂2)

]
= [W+ cos ϕ(sin ϕ)− W− sin ϕ(cos ϕ)] (By Equations 2.31 2.63)
= sin ϕ cos ϕ(W+ − W−)

=
1
2

sin 2ϕ(W+ − W−) (using the half angle formula)

=
1
2

sin 2ϕw(ω) (exp[−iω(t + δt/2)]− exp[−iω(t − δt/2)])

(2.76)

(c.f. SC 15)
If we define w(ω, t) = w(ω) exp(−iωt) then we obtain the same equations for the radial (SC
14) and transverse (SC 15) components that are in the Silver and Chan (1991) article.

2.6 Covariance Matrix

Now that we are familiar with all the coordinate systems and what we are optimising we can
search for the best splitting parameters. The best pair of ϕ and δt are the ones that produce
a corrected wave that is the most similar to the original wave (Equation 2.26). Choosing the
best pair is done by calculating the covariance matrix of the two orthogonal fast and slow
components in the splitting coordinate (S) system. The covariance is defined as

Cov(X, Y) =
⟨
[X − ⟨X⟩][Y − ⟨Y⟩)]

⟩
= ⟨XY⟩ − ⟨X⟩⟨Y⟩ (2.77)

where ⟨·⟩ denotes the expected value. The covariance matrix describes how the elements of a
random vector vary with each other with the covariances being the off diagonal components
and the variances along the diagonal. Two properties of the covariance matrix that we use
often in this section are

cov(aX) = a2cov(X) (2.78)

cov(AX) = Acov(X)AT (2.79)

We can use these to calculate the covariance matrix of two orthogonal components. Recall
that the ground motion for a split wave and an unsplit wave are

us(ω, t) = exp(−iωδT)u(ω, t) = Γ(ϕ, δt)u(ω, t)
u(ω, t) = w(ω) exp(−iωt)p̂ (2.80)

and that the fully corrected wave is defined as

ũ(ω, t) = Γ−1(ϕ, δt)us(ω, t)
= exp(iωδT)us(ω, t)

= [exp(iωδt)f̂f̂T + exp(−iωδt)ŝŝT + b̂b̂T]us(ω, t)
= w(ω) exp(−iωt)p̂ (2.81)
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In P coordinates we can express the covariance of the fully corrected wave as

(ũ)P = w(ω) exp(−iωt)

 1
0
0


cov((ũ)P ) = cov

w(ω)

 exp(−iωt)
0
0


= w(ω)2cov

 var[exp(−iωt)] 0 0
0 0 0
0 0 0

 (Using Equation 2.78) (2.82)

When the split wave is fully corrected the covariance matrix is singular and has one eigen-
vector [100]TP = p̂ corresponding to the polarisation of the wave. Since this is a diagonal
matrix we can read the eigenvalues off the diagonal. There is only one non-zero eigenvalue
λ1 = w(ω)2var[exp(−iωt)]. In the 2D case, the other eigenvalue λ2 is zero if we have fully
corrected and in the 3D case both eigenvalues λ2 = λ3 = 0 if we have fully corrected.

The Silver and Chan (1991) method constructs a covariance matrix based on the fast and
slow components in the S coordinate system. Therefore we want the covariance matrix of

ũ(ω, t) = [exp(iωδt)f̂f̂T + exp(−iωδt)ŝŝT + b̂b̂T]us(ω, t)

= [f̂ŝb̂]

 exp(iωδt/2)f̂T

exp(−iωδt/2)ŝT

1b̂T

 us(ω, t)

= [f̂ŝb̂]

 exp(iωδt/2) 0 0
0 exp(−iωδt/2) 0
0 0 1

 f̂T

ŝT

b̂T

 us(ω, t)

= UXSDUT
XSus(ω, t) (2.83)

where D is the matrix containing the exponential terms and UXS = [f̂ŝb̂]. The covariance of
this is

cov (ũ(ω, t)) = cov
(

UXSDUT
XSus(ω, t)

)
= UXS

[
cov

(
DUT

XSus(ω, t)
)]

UT
XS (Using Equation 2.79)

(2.84)

Again this more general form will allow you to define the covariance matrix in S coordinates
using any other coordinate system X providing we know the rotation matrix UXS . If we
choose to refer everything to ray planar coordinates (R) then we must replace each UXS
with

URS = UREUEPUPS (Equation 2.71)

= RT
2 (i)R

T
3 (θ)R3(ϕ) (Equation 2.72)

= RT
2 (i)R3(ϕ − θ) (Equation 2.73)

(2.85)
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and then the covariance matrix becomes

cov (ũR(ω, t)) = URS
[
cov

(
DUT

RS (us(ω, t))R
)]

UT
RS = URScω(ϕ, δt)UT

RS (2.86)

In the special case where i = 0 and θ = 0 then URS = URRRT
3 (ϕ) = RT

3 (ϕ) and the covari-
ance matrix simplified to

cov (ũR(ω, t)) = R3(ϕ)cω(ϕ, δt)RT
3 (ϕ) (2.87)

(c.f. SC 10,11,12)
The elements of cω(ϕ, δt) are

[cω(ϕ, δt)]ij =
∫ ∞

−∞

(
DUT

RS (us(ω, t))R
)

i

(
DUT

RS (us(ω, t))R
)

j
dt

−
[∫ ∞

−∞

(
DUT

RS (us(ω, t))R
)

i
dt
] [∫ ∞

−∞

(
DUT

RS (us(ω, t))R
)

j
dt
]

(2.88)

Dii is a time shift operator
Diius(ω, t) = us(ω, t + ∆i) (2.89)

∆i =


−δt/2 i = 1
+δt/2 i = 2
0 i = 3

Therefore

[cω(ϕ, δt)]ij =
∫ ∞

−∞

(
δ̂T

i us(ω, t + ∆i)
) (

δ̂T
j us(ω, t + ∆j)

)
−
∫ ∞

−∞

(
δ̂T

i us(ω, t + ∆i)
)

dt
∫ ∞

−∞

(
δ̂T

j us(ω, t + ∆j)
)

dt

(2.90)

(c.f. SC12)
Since we are integrating over all of R applying the change of variable technique yields∫ ∞

−∞
a(t + δ)dt =

∫ ∞

−∞
a(t′)dt′ (2.91)

where t′ = t + ∆ and dt′ = dt means it does not matter whether we integrate over t or t′.
The diagonal terms can be simplified to

[cω(ϕ, δt)]ii =
∫ ∞

−∞

(
δ̂T

i Diius(ω, t)
)2

dt −
(∫ ∞

−∞
δ̂T

i Diius(ω, t)dt
)2

=
∫ ∞

−∞

(
δ̂T

i us(ω, t)
)2

dt −
(∫ ∞

−∞
δ̂T

i us(ω, t)dt
)2

= var(δ̂T
i us(ω, t)) (2.92)

(c.f. SC 10,11)
and the off diagonal terms can be expressed as

[cω(ϕ, δt)]ij =
∫ ∞

−∞

(
δ̂T

i Diius(ω, t)
) (

δ̂T
j Djjus(ω, t)

)
dt

−
∫ ∞

−∞

(
δ̂T

i Diius(ω, t)
)

dt
∫ ∞

−∞

(
δ̂T

j Djjus(ω, t)
)

dt

(2.93)
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This is the most general from of the covariance matrix. From here, we restrict ourselves
to the special case of a vertically travelling wave i.e. i = 0 and the back azimuth β and θ are
known.

u2

u1

δt

Figure 2.12: Two wave components u1 and u2 that only differ by a time shift. If the faster
wave u1 is shifted back by δt then the waves look similar and the covariance between the
two waves is maximised.

Now that we have a definition for the elements of the covariance matrix we can provide
a more detailed interpretation. The covariance matrix is used to find an inverse splitting
operator that makes the two waveforms look similar (see Figure 2.12). In anisotropic cases
where the shear wave has not been fully corrected (which is the case for all data from a sta-
tion), the covariance matrix (in 2D i.e. ignoring the vertical component) has two non-zero
eigenvalues λ1 and λ2 whilst in isotropic cases c will have only one non-zero eigenvalue λ1.
The first eigenvalue λ1 is a measure of how well the two split waves match after correcting
for splitting. A graph that helps illustrate this is the graph of particle motion. If we think
of a small piece of earth as a particle, the graph of particle motion shows the movement
(through the relative amplitudes) of the particle over time in particular directions. We orig-
inally start with East and North motion but we rotate by ϕ and time shift by δt to obtain S
coordinates. Figure 2.13 shows movement in fast and slow directions with the amplitudes
being normalised by the maximum value for each component. When the fast and slow com-
ponents are out of phase the particle motion is elliptical. When they are in phase the particle
motion is linear. The first column shows the uncorrected plots. These are the plots before the
inverse splitting operator is applied. The second column shows the plots after the splitting
operator has been applied using the pair of (ϕ, δt) with the smallest eigenvalue λ2. Figure
2.13b has very linear particle motion so λ1 will be large and λ2 will be very small. On the
other hand, Figure 2.13a still has elliptical particle motion so its λ1 would be relatively small
and its λ2 would be relatively large.

When λ1 is at its maximum the particles are almost linear. Therefore, to obtain the original
wave before it split we wish to find the values of (ϕ, δt) via a grid search such that the
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(a) Example where particle motion between the fast and slow compo-
nents is not linear after applying the inverse splitting operator because
of the significantly different amplitudes of the fast and slow compo-
nents.
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(b) Example where particle motion between the fast and slow compo-
nents is linear after applying the inverse splitting operator. The wave-
forms are both in phase and the amplitudes are similar.

Figure 2.13: Two examples of particle motion. Top graphs show the fast and slow com-
ponents. The top left plot, which is prior to correcting, shows a time lag between the two
components. The top right graph, after rotating and time shifting one of the components
should have both wave forms in phase. The bottom plots show the particle motion of the
fast and slow components before and after correcting. The particle motion should be linear
after correcting because the splitting has been reversed so the unsplit shear wave should be
oriented along a single direction p̂.
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covariance matrix c is singular, i.e.

c =

[
max(λ1) 0

0 λ2 = 0

]
(2.94)

In the 2D case, the trace of c does not vary with changes to either ϕ or δt so maximising λ1 is
equivalent to minimising λ2. A proof of the invariance of trace(c) is given in Appendix A.4.

c = λ1 + λ2 (Since the trace is invariant to changes in ϕ and δt)
max(λ1) = min(c − λ1) = min(λ2) (λ2 is at its smallest when λ1 is at its largest)

(2.95)

Silver and Chan minimise λ2. Note that in the 3D case it is not possible to minimise λ2 or λ3
and instead we must find β, i, θ, ϕ, δt such that λ1 is maximised. This is because even though
λ2 or λ3 could be minimised, there is no guarantee that λ1 would be maximised because
there are three eigenvalues. In 2D the value of min(λ2) can be thought of as the residual
variation. It is discussed more in the next section.

In reality we will not have a perfect situation like Figure 2.12. As mentioned in the caption,
u1(t + δt) = u2(t) so the energy will be all on the polarisation component after desplitting
and consequently the covariance matrix will be singular. Figure 2.13 shows some more
realistic waveforms. There will be residual noise along the null component so the variance
on that component will be non-zero so c will not be singular. Instead we search for c that
is closest to being singular. The second eigenvalue, λ2, of c is used to determine the pair of
ϕ and δt that best reverses the effects of splitting. The pair that produce the smallest λ2 are
the pair that get the waveforms to match the best and the particle motion to be as linear as
possible (Figure 2.13b).

So far we have shown our derivations of the covariance matrix for the corrected and fully
corrected waves and have provided an explanation of how this matrix determines the best
splitting parameters using eigenvalues. However, the Silver and Chan (1991) equations and
implementation of the covariance matrix are different. They are discussed more below.

Silver and Chan (1991) attempt to write a single line equation to represent the covariance
matrix

cij(ϕ, δt) =
∫ ∞

−∞
ui(t)uj(t − δt)dt i, j = 1, 2 (2.96)

(SC 9)
However, if Equation 2.96 is written as a matrix it does not look like a covariance matrix[ ∫ ∞

−∞ u1(t)u1(t − δt)dt
∫ ∞
−∞ u1(t)u2(t − δt)dt∫ ∞

−∞ u2(t)u1(t − δt)dt
∫ ∞
−∞ u2(t)u2(t − δt)dt

]
(2.97)

It is likely that they have tried to write the covariance in a more compact form, which as a
result looks incorrect. The covariance matrix is a symmetric matrix that gives the amount
of dispersion between the the two waves on the off diagonal and the variance of each wave
along the diagonal. To meet the definition of the covariance matrix using the formula given
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by Silver and Chan (1991) would require that the off diagonal components were equal,
which may not necessarily be the case especially for more complex waveforms. The vari-
ance should be the square of a variable but the formula in the Silver and Chan (1991) looks
more like an autocovariance (e.g.

∫ ∞
−∞ u1(t)u1(t − δt)dt). The covariance matrix defined in

Equation 2.96 is in fact a cross covariance which is not a symmetric matrix (Brockwell and
Davis, 2006). We suggest that the covariance matrix should be defined as follows

c(ϕ, δt) = Cov[(u1(t), u2(t − δt)]

=

[ ∫ ∞
−∞ u2

1(t)dt
∫ ∞
−∞ u1(t)u2(t − δt)dt∫ ∞

−∞ u1(t)u2(t − δt)dt
∫ ∞
−∞ u2

2(t − δt)dt

]
=

[ ∫ ∞
−∞ u2

1(t + δt/2)dt
∫ ∞
−∞ u1(t + δt/2)u2(t − δt/2)dt∫ ∞

−∞ u1(t + δt/2)u2(t − δt/2)dt
∫ ∞
−∞ u2

2(t − δt/2)dt

]
(2.98)

(c.f. SC 9)
To check whether Equation 2.96 was an error we compared the formula in the article (Table
2.2) to the original code from the Silver and Chan method (Silver and Chan (1991)) as well as
two other popular splitting programs using their methodology; Mfast (Teanby et al. (2004a),
Wessel (2010), Savage et al. (2010)) and Splitlab (Wustefeld et al. (2008)). The covariance
matrix in Splitlab matches the form we described in Equation 2.98. However, Fortran based
codes such as the original codes and Mfast have a subtle difference.

Recall the definition of the covariance is

Cov(X, Y) =
⟨
[X − ⟨X⟩][Y − ⟨Y⟩)]

⟩
= ⟨XY⟩ − ⟨X⟩⟨Y⟩

The Fortran based codes use the following to calculate the covariance matrix

c ** calc cross correlation matrix **

cov(1,1) = 0.

cov(2,2) = 0.

cov(1,2) = 0.

cov(2,1) = 0.

do 1 i=1,n

cov(1,1) = cov(1,1) + x(i)**2

cov(2,2) = cov(2,2) + y(i)**2

cov(1,2) = cov(1,2) + x(i)*y(i)

1 continue

cov(2,1) = cov(1,2)

What this code shows is that the second term in Equation 2.77 has not been subtracted off
any of the entries, meaning they are assuming that the means for each component are zero.
Most preprocessing involves removing the mean of the entire time series. However, the
data used for analysis is the windowed time series around the S wave. The mean of the
windowed data are usually not zero even if the entire time series has been demeaned. We
suggest that any program that calculates the covariance matrix this way be modified so that
it matches the form in Equation 2.77. Alternatively, some programming languages, such as
Matlab and R, have a built in covariance function that should be used.
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Figure 2.14: Illustration of three different confidence regions. Minimum is denoted by the
cross and the 95% confidence region by the bolded lines.

2.7 Confidence Region

From here on we restrict ourselves to the special case where i = 0. The back azimuth and
θ are known, therefore making this a 2 dimensional problem. Once the pair of ϕ and δt
that lead to the smallest second eigenvalue have been identified, a measure of how accurate
these estimates are can be calculated. This is done by calculating the standard errors of the
estimates ϕ̂ and δ̂t. Silver and Chan (1991) do this by calculating a quarter of the width and
length of the confidence region. Figure 2.14 shows examples of confidence regions for three
different events. For each pair of ϕ and δt the second eigenvalue of the covariance matrix
is determined and contoured to form a set of contour lines. The smallest λ2 is marked by a
cross. The 95% confidence region is indicated by a thick black line. In order to mark in the
confidence region we define the sum of squares function S(ϕ, δt) which is constructed from
λmin

2 (ϕ, δt) for S phases or the minimum energy on the transverse component for SKS waves.
Once the ideal parameters have been identified by one of these methods and the wave has
been desplit, the windowed components are rotated so that one contains the signal one
contains the noise. This is discussed more in subsequent sections (particularly Section 5.2).
After this process we obtain an n-point time series. The minimum value of this time series,
Smin(ϕ, δt) is needed to construct the confidence region. It is assumed that

Assumption 1: Smin(ϕ, δt) ∼ χ2
n (chi-squared distribution) where the degrees of free-

dom n is equal to the number of data points.

The chi-squared distribution is discussed more in Appendix A.5. This assumption would
be true for Gaussian white noise, i.e. if we have n independent and identically distributed
(iid) disturbances to the signal giving us the observed data. With this assumption we obtain
two, independent, central chi-squared variables. The construction of the confidence region
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is outlined in Jenkins and Watts (1968). The easiest way to derive this is to compare to
ANOVA. ANOVA is a statistical model that tests whether at least one of the k group means
is different from an overall mean that ignores groupings. This is done by looking at different
sources of variation. These sources are group variation known as the sum of squares for the
groups (SSG) and inherent variation known as the sum of squared errors (SSE). Adding
them up gives the total sum of squares (SST). The ratio of SSG and SSE divided by their
corresponding degrees of freedom yields an F statistic

F =
SSG/(k − 1)

SSE/[(n − 1)− (k − 1)]
=

SSG/(k − 1)
SSE/[n − k]

(2.99)

The test statistic F is a ratio of two, independent, central chi-squared variables that have
degrees of freedom k − 1 and n − k respectively. Therefore F has an F distribution with
parameters k − 1 and n − k (Clark and Randal, 2011).

This can be derived as follows

SSG/(k − 1)
SSE/(n − k)

=

(
n − k
k − 1

)(
SSG
SSE

)
∼ Fk−1,n−k

⇔
(

n − k
k − 1

)(
SST − SSE

SSE

)
∼ Fk−1,n−k since SSG + SSE = SST

⇔
(

n − k
k − 1

)(
SST
SSE

− 1
)

︸ ︷︷ ︸
F

∼ Fk−1,n−k (2.100)

where

k = number of parameters excluding the variance parameter
n = number of data points

For a (1 − α) confidence region we can obtain the critical value F = F1−α
k−1,n−k. Substituting

this critical value into Equation 2.100 gives

F = F1−α
k−1,n−k(

n − k
k − 1

)(
SST
SSE

− 1
)
= F1−α

k−1,n−k

SST
SSE

= 1 +
k − 1
n − k

F1−α
k−1,n−k (2.101)

In ANOVA the SSG is a sum of squares excluding the overall mean so it has k − 1 degrees of
freedom. Likewise SST is a corrected sum of squares total excluding the overall mean so it
has n − 1 degrees of freedom. This implies the degrees of freedom for SSE = SST − SSG are
(n − 1)− (k − 1) = n − k. However, in this case we do not use the corrected sum of squares,
so the corresponding degrees of freedom for this case are k, n and n − k respectively.

Our parameter λmin
2 can be thought of as a measure of the variation inherent in the system

like SSE whilst λ2 (which is determined by ϕ and δt) can be thought of as the SSG. If we
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substitute these into Equation 2.101, the confidence region is defined as

λ2

λmin
2

≤ 1 +
k

n − k
F1−α

k,n−k (2.102)

where

k = number of parameters, which is 2 in this case (ϕ, δt)
n = number of data points

F1−α
k,n−k = inverse F(k, n − k) distribution i.e P(F < F1−α

k,n−k) = 1 − α for F ∼ Fk,n−k

λ2 = second eigenvalue of the covariance matrix

Any point below this value will be inside the (1 − α) confidence region.

A value of interest is the boundary of the confidence region λ
(1−α)CR
2 (α). The 1 − α confi-

dence regions is
(1 − α)CR = {(ϕ, δt) : λ2 ≤ λ

(1−α)CR
2 (α)} (2.103)

where

λ
(1−α)CR
2 (α) = λmin

2

[
1 +

k
n − k

F1−α
k,n−k

]
(2.104)

This λ
(1−α)CR
2 value is often used to normalise the contour plot, which becomes a plot of

g(ϕ, δt) =
λ2(ϕ, δt)
λ95CR

2 (α)
(for α = 0.05) (2.105)

so that 1 corresponds to the boundary of the 95% confidence region and any number less
than one is inside the confidence region. If we assume a normal distribution then the con-
fidence region length and width is twice the margin of error where the margin of error is
1.96 × SE (SE is the standard error). Therefore, to obtain approximate standard errors for ϕ
and δt we can say that these are roughly a quarter of the length and width of the ellipse en-
closing the minimum. Determining the length and width for a contiguous region like Figure
2.14c can be done with a few lines of code, but problems occur for more complex regions like
the ones in Figures 2.14a and 2.14b. The fast direction has a 180◦ ambiguity, meaning that an
angle that is 180◦ away is in fact one and the same angle. This means for example that -90◦

and 90◦ are the same. The cyclicity of the fast direction can make it difficult to calculate the
length of the confidence region. Silver and Chan (1991) acknowledge this in their codes (sic)

c ** finding min max i is more difficult because of cyclicity of angles **

c ** sweep a line over all j, set point on line equal to 1 if it falls

within the 95% convidence contour for any j. The height of the bounding

rectangle is defined by the shortest line which includes all points with a

value of line(i)=1. This line is found by searching all line lengths from

the minimum = sum_i linr(i) to maximum = np1**

However what this means is that for Figure 2.14a the fast direction error is reported as ±45◦

(quarter the length of the grid) since the shortest range of ϕ that includes all the bolded
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points is the entire length of the grid, not the length of the ellipse enclosing the minimum.
It is possible to define the errors this way, but the main problem with such a method is
consistency. The delay time errors for Figures 2.14a and 2.14b are reported as a quarter of
the width of the ellipse and not a quarter of the width of the grid. We suggest that both
errors be a quarter of the width and length of the ellipse.

2.8 Degrees of Freedom

In order to construct the confidence region, the degrees of freedom must be calculated. k
will always be 2 because we have 2 parameters, ϕ and δt. If we use Assumption 1 then the
other degrees of freedom is the number of points in the time series, n. If Assumption 1 does
not hold and S(ϕ, δt) does not have a chi-squared distribution then changes are needed and
a new assumption is made by Silver and Chan (1991)

Assumption 2: If S(ϕ, δt) is not χ2
n distributed assume S(ϕ, δt) ∼ χ2

ν where the de-
grees of freedom (ν) depend upon the noise spectrum and instrument response.

To obtain an estimate of the actual degrees of freedom, ν, we must first define the power,
E, which integrates the squared modulus of a signal.

E =
T
2

∫ ∞

−∞
η2(t)dt =

T
2

∫ ∞

−∞
|η(t)|2 (2.106)

(SC A1)
Here the signal is denoted η(t) and is a finite sample of the noise process of length T. The
noise is obtained by looking at the signal of the shear wave as well as a small segment
before and after the shear wave on the fast and slow components. This section of the data
are called the (analysis) window and has a time length of T. The desplit components in
splitting coordinates are then rotated by (ϕ − α) so that one component contains the signal
and the other component contains the noise, η(t). This process is outlined in more detail in
Section 5.2.

The next assumption we use is

Assumption 3: After rotating and shifting the noise component, η(t) may be written
as the convolution of a filter f (t) and Gaussian white noise g(t).

The Convolution Theorem takes two functions and creates a third which is a combination
of the two.
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Theorem 2.8.1. [Convolution Theorem] A convolution in the time domain may be defined as

η(t) =
1√
2π

∫ ∞

−∞
f (y)g(t − y)dy ≡ f ∗ g (2.107)

It can be shown that in the frequency domain this convolution is

η̃(ω) = ˜[ f ∗ g](ω) = f̃ (ω)g̃(ω) (2.108)

where
f̃ (ω) ≡ FT[ f (t)](ω) (2.109)

The ∼ above a symbol denotes the Fourier transform, which is a mathematical function that
converts a function of time into a function in the frequency domain. One can also convert
a function in the frequency domain back into the time domain using the inverse Fourier
transform. The transform and the inverse transform are defined respectively as

η̃(ω) =
1√
2π

∫ ∞

−∞
η(t) exp[−iωt]dt (2.110)

η(t) =
1√
2π

∫ ∞

−∞
η̃(ω) exp[iωt]dω

or if the data are discrete they are defined as

η̃(ω) =
N

∑
n=0

η(tn) exp[−iωtn] (2.111)

η(t) = c
N

∑
n=0

η̃(ωn) exp[iωtn]

where c is a constant factor.

A result related to Fourier transforms that is useful to us is Parseval’s Theorem. The
Theorem has many different forms but we choose to represent it as follows

Theorem 2.8.1. [Parseval’s Theorem] For two functions f (t) and g(t) where f (t) ̸= g(t)∫ ∞

−∞
| f̃ (ω)||g̃∗(ω)|dω =

∫ ∞

−∞
| f (y)||g∗(t − y)|dy (2.112)

here ∗ denotes the complex conjugate.

For f (t) = g(t) ∫ ∞

−∞
| f̃ (ω)|2dω =

∫ ∞

−∞
| f (t)|2dt (2.113)
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With these theorems and Assumption 3 we can rewrite the power as

E ≈
∫ ∞

−∞
|η2(t)|dt

=
∫ ∞

−∞
|( f ∗ g)(t)|2dt Assumption 3

=
∫ ∞

−∞
| ˜f ∗ g(ω)|2dω Parseval’s Theorem

=
∫ ∞

−∞
| f̃ (ω)g̃(ω)|2dω Convolution Theorem

=
∫ ∞

−∞
| f̃ (ω)|2|g̃(ω)|2dω

(2.114)

In all practical experimental cases η(t) is in the form of discretely sampled data. Taking a
discrete sample of a continuous process causes a loss of information in the form of aliasing.
Aliasing is when two different signals become indistinguishable because of the way they
were sampled. For example the two signals in Figure 2.15 are indistinguishable based on the
current set of sample points. It would be impossible to reconstruct the black curve using this
sample. For a given sampling frequency fs, a waveform at frequency f can be reconstructed
if

f ≤ (1/2) fs (2.115)

In other words, it can be perfectly reconstructed providing the frequency of the waveform
does not exceed half the sampling rate. The right hand side of the inequality is referred to
as the Nyquist frequency. Imagine we have discretely sampled data comprising a sample

0 5 10 15 20 25
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0
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0.
0

0.
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0

 

 

Figure 2.15: Example of aliasing. If we sample only at the red circles then the two waves
become indistinguishable.

of N + 1 data points up to the Nyquist frequency over the interval [0, T] with a sampling
frequency of N

(T−0) and each point evenly spaced by (T−0)
(N)

as illustrated in Figure 2.16.

For η(t) at points η(t0), η(t1), ..., η(tN) we can use a discrete Fourier transform to obtain
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Figure 2.16: Illustration of sampling a continuous process with even spacing over the inter-
val.

η̃(ω). E can then be approximated (up to a multiplicative constant) by

E ≈
N−1

∑
n=1

| f̃n|2|g̃n|2 +
1
2
(| f̃0|2|g̃0|2 + | f̃N |2|g̃N |2) (2.116)

(SC A3)
which uses the trapezoidal rule from numerical integration (Appendix A.6). If we assume
Assumption 4

Assumption 4: E is approximately distributed as a χ2
ν scaled by a constant.

then the degrees of freedom can be calculated as follows. The expected value and variance
of a scaled central chi-squared variable Y ∼ aχ2

ν are

⟨Y⟩ = aν

var(Y) = 2a2ν (2.117)

where ⟨E⟩ is the expected value of E and var(E) is the variance of E. This can be derived
using moments. Rearranging the two Equations in 2.117 we can obtain method of moments
estimators for a and ν respectively

a = ⟨Y⟩/ν

ν = var(Y)/2a2

= var(Y)/2(⟨Y⟩/ν)2

ν/ν2 = var(Y)/2⟨Y⟩2

1/ν = var(Y)/2⟨Y⟩2

ν = 2⟨Y⟩2/Var(Y) (2.118)

Therefore the degrees may be estimated using the following formula

ν =
2⟨E⟩2

var(E)
(2.119)

(SC A4)
More specific details can be found in Jenkins and Watts (1968) .
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The expected value of the power E can be calculated as follows if we make the following
assumption

Assumption 5: gn ∼ N(0, σ2) i.e. gn follows a normal distribution with mean 0 and
variance σ2.

Since gn has a zero mean the second moment can be calculated quite easily. The variance
and mean are related by the equation

Var(X) = ⟨X2⟩ − ⟨X⟩2 (2.120)

If the mean ⟨X⟩ is zero we have

Var(X) = ⟨X2⟩ − 02 = ⟨X2⟩ (2.121)

Starting with Equation 2.116 and using Equation 2.121 we can calculate the expected value
of the power as

⟨E⟩ =
⟨ N−1

∑
n=1

| f̃n|2|g̃n|2 +
1
2
(| f̃0|2|g̃0|2 + | f̃N |2|g̃N |2)

⟩

Since f̃ is a known filter there is no random variation associated with it so it can be regarded
as a constant and move outside the expectation. On the other hand, g̃ is the noise signal so
it is a stochastic process with a second moment equal to the variance, σ2. Therefore,

⟨E⟩ =
N−1

∑
n=1

| f̃n|2⟨|g̃n|2⟩+
1
2
(| f̃0|2⟨|g̃0|2⟩+ | f̃N |2⟨|g̃N |2⟩)

=
N−1

∑
n=1

| f̃n|2σ2 +
1
2
(| f̃0|2σ2 + | f̃N |2σ2) since g̃n ∼ N(0, σ2), Var(g̃) = E(g̃2) = σ2

= σ2
[ N−1

∑
n=1

| f̃n|2 +
1
2
(| f̃0|2 + | f̃N |2)

]
rearranging

≡ σ2F2 (2.122)

(SC A5)
where σ2 is the variance of the noise process and F2 is the second moment of the signal
F. In order to write these expectations in a more compact form we define the following
coefficients for the trapezoidal rule of integration

an =

{
1/2 n = 0, N
1 otherwise

so that

E =
N

∑
n=0

an| f̃n|2|g̃n|2 (2.123)
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then

⟨E⟩ =
N

∑
n=0

an| f̃n|2⟨|g̃n|2⟩

=
N

∑
n=0

an| f̃n|2σ2

= σ2
[ N

∑
n=0

an| f̃n|2
]

≡ σ2F2 (2.124)

and then the second moment of the power can be written as

⟨E2⟩ =
⟨ N

∑
n=0

an| f̃n|2|g̃n|2
N

∑
m=0

am| f̃m|2|g̃m|2
⟩

(2.125)

The easiest way to evaluate this is to split ⟨E2⟩ into two cases. One where m = n and the
other where m ̸= n

⟨E2⟩ = ⟨
N

∑
n=0

N

∑
m=0

an| f̃n|2|g̃n|2am| f̃m|2|g̃m|2⟩

=
N

∑
n=0

N

∑
m ̸=n

an| f̃n|2am| f̃m|2⟨|g̃n|2|g̃m|2⟩+
N

∑
n=0

a2
n| f̃n|4⟨|g̃n|4⟩

(2.126)

For independent g̃n and g̃m (i.e. when m ̸= n) we have

⟨|g̃n|2|g̃m|2⟩ = ⟨|g̃n|2⟩⟨|g̃n|2⟩ = σ2 × σ2 (2.127)

based on the reasoning explained in Equation 2.121, substituting this into Equation 2.126
gives

⟨E2⟩ =
N

∑
n=0

N

∑
m ̸=n

an| f̃n|2am| f̃m|2σ2σ2 +
N

∑
n=0

a2
n| f̃n|4⟨|g̃n|4⟩ (2.128)

Equation 2.128 requires the 4th moment, ⟨|g̃n|4⟩, to be evaluated. In order to calculate this
the following assumption is made

Assumption 6: The real and imaginary parts of g̃n are independent, identical and
normally distributed.
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The fourth moment of a standard normal variable is

E(z4) =
1√
2π

∫ ∞

−∞
z4e−z2/2dz (2.129)

The 4th moment of a normal variable, ⟨|g̃n|4⟩ can be evaluated by calculating the 4th mo-
ment of a standard normal variable z ∼ N(0, 1) then scaling up by the constant σ4. To obtain
this Equation 2.129 must be evaluated using integration by parts i.e.∫

u dv = uv −
∫

v du where

u =
1√
2π

z3 v = −e−z2/2

du =
1√
2π

3z2dz dv = ze−z2/2dz

Solving this leads to

∫
u dv = uv −

∫
v du∫ ∞

−∞

1√
2π

z3ze−z2/2dz = − 1√
2π

z3e−z2/2
∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
−e−z2/2 1√

2π
3z2dz

= 3
∫ ∞

−∞

1√
2π

z2e−z2/2dz︸ ︷︷ ︸
⟨z2⟩ = Var(z) = 1 (Eq 2.121)

= 3

E[(σz)4] = σ4E[z4]

= 3σ4

and so ⟨|g̃n|4⟩ = 3σ4 (2.130)

Equation 2.130 can be substituted into Equation 2.128 as follows

⟨E2⟩ =
N

∑
n=0

N

∑
m ̸=n

an| f̃n|2am| f̃m|2σ2σ2 +
N

∑
n=0

a2
n| f̃n|4⟨|g̃n|4⟩

=
N

∑
n=0

N

∑
m ̸=n

an| f̃n|2am| f̃m|2σ2σ2 +
N

∑
n=0

a2
n| f̃n|4(3σ4)

(2.131)
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If we wish to adjust this so that both sums for the first term start at zero then the terms where
m = n will have been counted twice so they must be subtracted off as follows

⟨E2⟩ =
N

∑
n=0

N

∑
m=0

an| f̃n|2am| f̃m|2σ2σ2 −
N

∑
n=0

a2
n| f̃n|4σ4 + 3

N

∑
n=0

a2
n| f̃n|4σ4

=
N

∑
n=0

N

∑
m=0

an| f̃n|2am| f̃m|2σ2σ2 +
N

∑
n=0

2a2
n| f̃n|4σ4

=

(
N

∑
n=0

an| f̃n|2
N

∑
m=0

am| f̃m|2
)

σ4 +
N

∑
n=0

2a2
n| f̃n|4σ4

= σ4

(
N

∑
n=0

an| f̃n|2
)2

+ σ4

(
N

∑
n=0

2a2
n| f̃n|4

)
= σ4(F2

2 + F4) (2.132)

where (
N

∑
n=0

an| f̃n|2
)2

≡ F2
2 is the second squared moment of F (2.133)(

N

∑
n=0

2a2
n| f̃n|4

)
≡ F4 is the fourth moment of F (2.134)

If we replace an with their appropriate values we obtain

⟨E2⟩ =
([

1
2
| f̃0|2 +

N−1

∑
n=1

| f̃n|2 +
1
2
| f̃N |2

])2

︸ ︷︷ ︸
F2

2

σ4

+

([
1
2
| f̃0|4 +

N−1

∑
n=1

2| f̃n|4 +
1
2
| f̃N |4

)]
︸ ︷︷ ︸

F4

σ4

= σ4(F2
2 + F4) (2.135)

(SC A6)

The F4 defined in Silver and Chan (1991) (SC A8) is very similar except their coefficient for
| fn|4 is 1 not 2 (Equation 2.139). This is discussed further in Section 2.9.

Equation 2.135 implies the variance of E is

Var(E) = ⟨E2⟩ − ⟨E⟩2

= σ4(F2
2 + F4)− (σ2F2)

2

= σ4F4 (2.136)
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(SC A7)
Placing this and Equation 2.122 in Equation 2.119 gives the following expression for the
degrees of freedom

ν = 2
(σ2F2)2

σ4F4
= 2

F2
2

F4
(2.137)

(SC A9)

2.9 Estimating the Quantities Needed to Calculate the Degrees of
Freedom

In order to calculate the degrees of freedom using Equation 2.137 (SC A9), F2
2 and F4 must

be estimated. These quantities can be obtained directly from the data using the observed
values of E2 and E4. Remember, we defined F4 as

F4 =
N−1

∑
n=1

2| f̃n|4 + (1/2)(| f̃0|4 + | f̃N |4) (2.138)

whereas Silver and Chan (1991) defined F4 as

F(SC)
4 =

N−1

∑
n=1

1| f̃n|4 + (1/2)(| f̃0|4 + | f̃N |4) (2.139)

(SC A8)
To determine the correct coefficients we define E4 with unknown coefficients bn

E4 =
N

∑
n=0

bn| f̃n|4|g̃n|4 (2.140)

The expected value of E4 according to Silver and Chan (1991) is

⟨E4⟩ = 2σ4F4 (2.141)

(SC A11)
Using our definition of F4 (Equation 2.138) we can solve for the unknown coefficients bn to
ensure that Equation 2.141 (SC A11) holds.

⟨E4⟩ =
N

∑
n=0

bn| f̃n|4⟨|g̃n|4⟩

= σ4
N

∑
n=0

3bn| f̃n|4 (Using Equation 2.130)

c. f . = 2σ4F4 (SC A11 definition)

= 2σ4
N

∑
n=0

2a2
n| f̃n|4 (Using our definition of F4 derived in Equation 2.132) (2.142)
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Using the expected value of E4 from Silver and Chan (1991) along with our definition of E4
(Equation 2.138) implies that

⟨E4⟩ = 2σ4F4

⇒ σ4
N

∑
n=0

3bn| f̃n|4 = 2σ4
N

∑
n=0

2a2
n| f̃n|4

3
(

σ4
N

∑
n=0

bn| f̃n|4
)
= 4

(
σ4

N

∑
n=0

a2
n| f̃n|4

)
3bn = 4a2

n

bn =
4
3

a2
n (2.143)

The a2
n coefficients are

a2
n =

{
1/4 n = 0, N
1 otherwise

which means the bn are

bn =

{
1/3 n = 0, N
4/3 otherwise

Placing this back in Equation 2.140 gives

E4 =
N−1

∑
n=1

(4/3)| f̃n|4|g̃n|4 + 1/3(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (2.144)

(c.f. SC A10)
which differs from the Silver and Chan (1991) definition given in the article (Equation 2.145)

E(SC)
4 =

N−1

∑
n=1

1| f̃n|4|g̃n|4 + 1/3(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (2.145)

(SC A10)
In other words the coefficients Silver and Chan (1991) have used are

bSC
n =

{
1/3 n = 0, N
1 otherwise

Again we checked some of the original codes to see if the coefficients in the article matched
the coefficients in the code. In a subsequent version of the codes we found an interesting
comment in the degrees of freedom subroutine (note that c denotes a comment in the code).
The following variables are given in the code

nf = Nyquist frequency
f2 = second squared moment of E
f4 = fourth moment of E

temp = power of sample point i

Note that we do not actually know what F2
2 and F4 are. The quantities E2 and E4 are observed

from the data and are estimators for those unknown quantities (see Equations 2.122 and
2.141). Therefore more informative names for the variables would have been e2 and e4.
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do i=1,nf

temp=cabs(a(i))

f2=f2+temp**2

f4=f4+temp**4

c for zero frequency and for Nyquist:

if(i.eq.1.or.i.eq.nf)then

f2=f2-.5*temp**2

cccccccccccccccccccccc

c *** note the following line is from Silver and Chan 1990.

c but this appears to give a slightly too large value for

c the number of df for a gaussian distributed time series.

c using .5 instead of (2./3) seems to give the right

c answer but I dont know why. It depends on the fourth

c moment of the zero frequency and nyquist frequency points.

cccccccccccccccccccccc

f4=f4-.5*temp**4

c f4=f4-(2./3.)*temp**4

endif

enddo

The f2 is calculating

f2 =
N

∑
n=0

| f̃n|2|g̃n|2 − 1/2| f̃0|2|g̃0|2 − 1/2| f̃N |2|g̃N |2 (sum goes from 0 to N)

=
N−1

∑
n=1

| f̃n|2|g̃n|2 + 1/2(| f̃0|2|g̃0|2 + | f̃N |2|g̃N |2) (sum goes from 1 to N − 1)

= E

which matches the definition of the an coefficients which are the same for both us and Silver
and Chan (1991). They are also the same coefficients used in ⟨E⟩ and F2. The f4 is calculating

f4 =
N

∑
n=0

| f̃n|4|g̃n|4 − 1/2| f̃0|4|g̃0|4 − 1/2| f̃N |4|g̃N |4 (sum goes from 0 to N)

=
N−1

∑
n=1

| f̃n|4|g̃n|4 + 1/2(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (sum goes from 1 to N − 1)

= F4

which is the Silver and Chan (1991) definition of F4 (Equation 2.139 (SC A8)). The com-
mented out f4 calculates

f4 =
N

∑
n=0

| f̃n|4|g̃n|4 − 2/3| f̃0|4|g̃0|4 − 2/3| f̃N |4|g̃N |4 (sum goes from 0 to N)

=
N−1

∑
n=1

| f̃n|4|g̃n|4 + (1/2)(2/3)(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (sum goes from 1 to N − 1)

=
N−1

∑
n=1

| f̃n|4|g̃n|4 + 1/3(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (sum goes from 1 to N − 1)

= E4
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which is the Silver and Chan (1991) definition of E4 (Equation 2.145 (SC A10)). Again we
reiterate that we do not know F4 and so we must estimate it through E4 therefore the code
should be using the f4 that is commented out (which is in fact E4). (This highlights the im-
portance of choosing meaningful variable names in programming.) However, because our
definition of E4 differs from the Silver and Chan (1991) E4 we believe that even the com-
mented out version of f4 is incorrect and that the coefficients should be the ones defined
in bn not bSC

n . Based on the comments in the code it appears they knew there was an error
but chose a different coefficient because it supposedly lead to the “right answer”. In order
to test this, an analysis of the Silver and Chan (1991) code an coefficients and our bn coeffi-
cients is done in Section 5.1. For now we will complete the degrees of freedom calculation.
Substituting these results into Equation 2.137 we may estimate the degrees of freedom as

ν̂ ≡ 2
(

2E2

E4
− 1
)

(2.146)

(SC A12)
If we look at the ratio of these two estimators we obtain

E2

E4
=

⟨E2⟩+ (E2 − ⟨E2⟩)
⟨E4⟩+ (E4 − ⟨E4⟩)

(2.147)

If we define

δE2 =
E2 − ⟨E2⟩

⟨E2⟩ (2.148)

then this implies ⟨δE2⟩ = 0. Likewise, if we define

δE4 =
E4 − ⟨E4⟩

⟨E4⟩
(2.149)

then this implies ⟨δE4⟩ = 0 and so

E2

E4
=

⟨E2⟩(1 + ( E2−⟨E2⟩
⟨E2⟩ ))

⟨E4⟩(1 + ( E4−⟨E4⟩
⟨E4⟩ ))

=
⟨E2⟩(1 + δE2)

⟨E4⟩(1 + δE4)

=
⟨E2⟩
⟨E4⟩

(1 + δE2)(1 + δE4)
−1

(1 + δE4)
−1 can be approximated by its Taylor Series

≈ ⟨E2⟩
⟨E4⟩

(1 + δE2)(1 − δE4 + . . . )

≈ ⟨E2⟩
⟨E4⟩

(1 + δE2 − δE4︸ ︷︷ ︸
first order terms

−δE2δE4 + . . . )

⟨
E2

E4

⟩
=

⟨E2⟩
⟨E4⟩

(1 + ⟨δE2⟩︸ ︷︷ ︸
= 0

− ⟨δE4⟩︸ ︷︷ ︸
= 0

+ second order terms)

⟨
E2

E4

⟩
=

⟨E2⟩
⟨E4⟩

+ second order terms (2.150)
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and so this is a first order unbiased estimator of the degrees of freedom. Using the above
result and Equations 2.135, 2.137 and 2.141

ν̂ = 2
(

2E2

E4
− 1
)

⟨ν̂⟩ = 2
(⟨

2E2

E4

⟩
− 1
)

≈ 2
(

2⟨E2⟩
⟨E4⟩

− 1
)

= 2
(

2[σ4(F2
2 + F4)]

2σ4F4
− 1
)

= 2
(

F2
2

F4
+ 1 − 1

)
= 2

F2
2

F4
= ν = (SC A9) (2.151)

This suggests the degrees of freedom estimate is unbiased. However, with Silver and Chan
(1991) accidentally using the an coefficients, E4 will be too small so ν̂ > ν that is, the estimate
of the degrees of freedom is positively biased. Again, this is discussed more in Section 5.1.

2.10 Summary

In this chapter, the method given in the Silver and Chan (1991) article has been explained in
detail. Sign conventions as well as the need to write things in a more compact form have led
to discrepancies in the formulae as explained in this chapter and listed in Table 2.2.

Discrepancies between what is written and what is implemented in the codes have also
been identified. Whilst the mistake in calculating the covariance matrix is relatively minor,
using the wrong coefficients for the degrees of freedom and inconsistent definitions of the
standard errors are a concern.

In order to obtain the errors and a confidence region a large number of assumptions
are made mainly around the the sum of squares S(ϕ, δt) having a chi-squared distribution,
which relies on having uncorrelated Gaussian noise. These assumptions need to be checked
because without them the errors and the confidence region are unreliable. The chi-squared
assumption is tested in Section 5.2.

Even if the assumptions hold, the use of the an coefficients instead of the bn coefficients
means that E4 is too small, which would lead to the degrees of freedom being too large and
consequently the error bars being too small. In Section 5.1 we test these coefficients to see
how reliable estimates of the errors are.
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Chapter 3

Grading System

The previous chapter explained in detail the Silver and Chan (1991) method. However,
the method sometimes produces results that are unreliable. For instance, if there is not
much energy on components to begin with, it is very difficult to obtain results that can be
trusted. We graded 146 output plots from the Mfast (Teanby et al. (2004a), Wessel (2010),
Savage et al. (2010) program manually using an expert, experienced grader (Prof. Martha
Savage). We then developed a set of six numerical diagnostics, which appeared to capture
the features used to classify the Mfast output plots. We then use these numerical diagnostics
to calibrate a prediction model for the expert’s manual grades, which are regarded as a gold
standard. The goal is to use this prediction model to create grades automatically from the set
of numerical diagnostics, therefore avoiding the need to manually grade output plots. Our
dataset does not contain any null measurements so we have not incorporated null detection
into this model.

3.1 Dataset

The dataset for this project is from the BOR station (courtesy of Rivemale (2012)) on Reunion
Island off the East coast of Africa (Figure 3.1). The events are replicates in the sense that
they are all from the BOR station, they are in close proximity temporally (end of 2004-mid
2006), all are shallow earthquakes with depths between 0.5 and 1.5km, they have similar
waveforms and were all sampled at 100 samples per second. We therefore expect them to
have similar fast directions (ϕ) and similar delay times (δt). Each event records activity for
19 seconds and has an S wave arrival at around 4 seconds. Figure 3.2 shows an example
of the North component for 5 different events with estimated fast directions between 0 and
45◦.

A dataset provided to us by Rivemale (2012) was part of a much larger dataset that com-
prises several families of earthquakes. She created the dataset in the following manner: the
vertical component of each earthquake recorded at the BOR station was cross-correlated
with every other earthquake’s vertical component using the C-PARSE program (Ludlam,
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Figure 3.1: Map of Reunion island and the BOR station. World map produced using Google
Earth (Google Earth, 2011).

2012). To group the earthquakes into families the coherency was calculated. The coherency
Cxy between two signals x and y is defined as

Cxy =
|Gxy|2

GxxGyy
(3.1)

where Gxy is a cross spectral density and Gxx and Gyy are auto spectral densities. The specific
details about coherency, cross and auto spectral densities can be found in Crocker (1998).
The coherency must lie somewhere between 0 and 1 inclusive.

The events were grouped together if the waveforms had a coherency greater than 90%.
The dataset provided originally contained 513 events that were recorded between 2004-2006.
Only 510 were usable because some events were missing at least one of their East, North or
vertical components and had to be discarded. The remaining 510 events were graded using
Mfast (Teanby et al. (2004a), Wessel (2010) and Savage et al. (2010)). Prior to processing,
the data are filtered to remove unwanted frequencies that interfere with the signal. The
filters are applied, and Mfast selects the one that results in the strongest signal relative to
the noise, in other words the one with the largest signal to noise ratio. The Mfast algorithm
first determines the best filter using the signal to noise ratio around the S arrival. Then the
best filter is applied to the data. A total of 202 high quality events (those with A or B grades)
were observed. Using different filters can lead to different results so the filter was fixed for
all of the events, rather than having a different filter for each event. The filter that had the
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Figure 3.2: Example of replicates of the North component from BOR station for the first
10 seconds. 0 marker represents the event origin; A, the P wave arrival; T2, the window
beginning; T3, the window end and T0 the S wave arrival.

most A and B grades was a 2-pole Butterworth band pass filter that had corner frequencies
of 4 and 10Hz. When using the fixed filter exclusively instead of allowing Mfast to select
the filter, the 4-10Hz filter obtained more A and B grades (268) than the automated method
in Mfast (202 events). However, after further analysis it appeared that there were two main
clusters of events. Group 1 consisted of events with fast directions between 0 and 45◦ (146
events). Group 2 consisted of events with fast directions between 90 and 120◦ (89 events).
Thirty-three events that did not belong to either group were removed. Group 1 was chosen
as the data set to analyse, since it has a larger number of events. Lastly, the window to be
analysed during shear wave splitting (the area within T2 and T3 in figure 3.2) was fixed
to prevent results that vary with the window. The 146 group 1 events with their 4-10Hz
filter had an average window start time of 3.88 ± 0.002 seconds and an average window
end time of 4.39 ± 0.002 seconds. Therefore, a fixed window consisting of a start time of 3.88
seconds and an end time of 4.39 seconds is used for every event. Fixing both the filter and
the window means fewer sources of variation to take into account during this chapter. The
group selection process is outlined in Figure 3.3.
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fast directions 0−45 fast directions 90−120 other fast directions
(146 events) (89 events) (33 events)

fixed window 3.88 − 4.39 seconds

(146 events)

raw data
(513 events)

usable data
(510 events) (268 events)

fixed bandpass filter 4−10Hz

Figure 3.3: Flow chart showing how a subset of family 1 was chosen for analysis.

3.2 Manual Grading

Within group 1 there appeared to be variability in the quality of the estimates. As a result,
all 146 events were manually graded with 1 being the best grade possible and 5 being the
worst.

3.2.1 Mfast Output Plots

Each event was analysed using Mfast, a software package that implements the Silver and
Chan (1991) method. The Mfast output plots are used to manually grade the data. Figures
3.4 and 3.5 are both examples of output plots. Understanding what each Mfast output plot
consists of is outlined below:

• The top left plot contains the East (e), North (n) and vertical (z) components of the
waveform (what we call ê, n̂ and ẑ respectively). The two vertical red bars indicate
the window beginning and end. The black vertical bar indicates the S wave arrival.
This plot is not used in the manual grading process, except as a rough check that there
are no major problems with the waveforms such as a very poor signal.

• The top right plot contains the rotated waveforms. p (what we call p̂) represents the
polarisation direction determined by Mfast using the Silver and Chan (1991) method
and p ⊥ (what we call â) is the direction perpendicular to p for the original waveform.
The corrected versions are similar except they are calculated after reversing the effects
of shear wave splitting. The vertical lines are interpreted the same as the ones in the
top left plot.

• The bottom left plot consists of the original fast and slow waveforms (left) and the
fast and slow waveforms after the wave is desplit (right). Both waveforms are rotated
into splitting coordinates (S). The white region of these graphs represents the analysis
window used for the splitting calculation. The grey section is a small segment of the
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Figure 3.4: Example of a poor quality event (grade 5 - the worst grade). Notice the poor
waveform match, non linear particle motion (bottom left), multiple 95% confidence contours
(bottom right) and energy pushed outside the window (top right).

wave outside the analysis window. Below these plots are the particle motion in the
fast and slow direction for the original (left) and corrected (right) waveforms based on
the data in the window.

• The bottom right plot is a contour plot of the smallest eigenvalue of the covariance
matrix as a function of the fast direction ϕ and delay time δt. The best (ϕ, δt) pair
with the smallest eigenvalue is marked by a cross. The darkest contour indicates the
95% confidence region. All the contours are normalised by the 95% confidence regions
boundary so that the 95% confidence region has a contour level of 1 and so on (see
Equation 2.105). In a high quality event this contour is a single closed loop enclosing
the cross (Figure 3.5). In lesser quality events there may be multiple disconnected 95%
contour curves (Figure 3.4).

The generation of these plots, and the entire Silver and Chan (1991) method including pre-
processing such as detrending the data, were rewritten in R to make current and future
statistical analysis easier. An example of an R generated set of output plots is shown in Fig-
ure 3.6. Care has been taken to ensure that these closely resemble the outputs of Mfast. A
legend was added to our plots to make it easier to distinguish between the fast and slow
components.
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Figure 3.5: Example of a high quality event (grade 1 - the best grade). Notice the good
waveform match, linear particle motion (bottom left) and the single bullseye style, 95% con-
fidence contour (bottom right).

3.2.2 Manual Grading Criteria

To give each event a manual grade the following criteria were used:

1. Contour plot (bottom right plot on the output plot)

(a) Count the number of closed contours enclosing the minimum. The more contour
levels, the deeper the minimum, and the more accurate an estimate is.

(b) Check for more than one closed contour corresponding to the 95% confidence
region. More than one can be indicative of cycle skipping, making estimates un-
reliable.

2. Fitting of the curves (bottom left plot on the output plot)

(a) Check the corrected fast and slow components are in phase within the window
after splitting is reversed. The two components are out of phase by δt when they
are split but should be in phase after correcting for shear wave splitting.

(b) Check the corrected fast and slow components are in phase just outside the anal-
ysis window (grey section in the output plot) after splitting is reversed. The data
outside the analysis window is not used during desplitting so if the waveforms
in this area are in phase, the ϕ and δt may be considered more reliable
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Figure 3.6: R generated output plot of the event corresponding to Figure 3.5.
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3. p (p̂) and p ⊥ (â) components (top right plot on the output plot)

(a) Check how much energy has been minimised by comparing p ⊥ (â) and cor p ⊥
(â after correcting for shear wave splitting). The more energy that has been min-
imised the better.

(b) Compare the energy minimised on the cor p ⊥ (â after correcting for shear wave
splitting) component within the analysis window and outside the analysis win-
dow. Whilst minimising the energy of the signal is desirable, minimising noise is
undesirable. Minimising the noise is typically shown as an extremely flat section
within the window whilst there are oscillations outside the window. In such a
case we have effectively treated the noise as signal and have overcorrected the
data.

4. Particle motion (bottom left plot on the output plot)

(a) Check the area enclosed by the particles after removing splitting. Ideally, after
splitting the fast and slow waves should be in phase and so the particle motion
should be linear and therefore the area enclosed should be close to zero.

What typically determined each event’s gold standard grading by the expert was the fol-
lowing:

Grade 1: good fit between fast and slow components both inside and outside the window plus
bullseye style (deep) contour plots and linear particle motion (Figure 3.5)

Grade 2: good fit between fast and slow components both inside and outside the window and
generally a single confidence region but not a bullseye style contour plot (Figure 3.7)

Grade 3: good fit between fast and slow components only inside the window and possible cycle
skipping (Figure 3.8)

Grade 4: moderate fit and possible cycle skipping (Figure 3.9)

Grade 5: poor fit, energy pushed outside the window for cor p ⊥ (â after correcting for shear
wave splitting), 95% confidence region over the entire search space (Figure 3.4)

Figures 3.4 (grade 5) and 3.5 (grade 1) are examples of the varying quality of estimates
within the BOR dataset. In Figure 3.4 there are multiple 95% confidence regions, the wave
fit is poor both inside and outside the window, there appears to be some other phase coming
in on the cor p ⊥ component and the particle motion is not very linear. On the other hand,
Figure 3.5 has one 95% confidence region with many rings around it, the fit is very good
inside the window, the signal’s energy has been minimised and the particle motion is linear.

3.2.3 Manual Grading Results

Based on the filtering criteria used to obtain group 1, the fast directions of the example
results should be between 0 and 45◦. However, this group was determined using a 4-10Hz
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Figure 3.7: Example of a grade 2 event. Notice the good fit between the waveforms (bottom
left) but no bullseye style contours (bottom right).

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Total
7 40 60 19 20 146

Table 3.1: Number of Group 1 events in each grade band.

bandpass filter, which may not be suitable for every single event. Consequently, there may
be some poor quality events with fast directions outside this range. The delay times were
not used to form the groups of events so it is possible to get delay times across the entire
range of the grid search which is 0-0.4 seconds.

Figures 3.10 and 3.11 show the degree of variability in the splitting estimates and their
errors based on the manual grading. Many data points were clustered tightly together so R’s
jitter() command, which adds a small amount of noise to each value, was used to make
them more visible. The number of events allocated a particular grade are given in Table 3.1.

Figure 3.10 shows two main clusters of grades with fast directions between 0 and 45◦ with
some poor quality estimates (4 and 5) scattered around the outside. There are some fast
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Figure 3.8: Example of a grade 3 event. Notice the good fit between the waveforms (bottom
left) but multiple 95% contours (bottom right).

directions estimates outside 0-45◦ because the 4-10Hz bandpass filter was not be suitable
for every single event. For some events the 4-10Hz filter and fixed window may not be
ideal and leads to some fast directions being outside 0-45◦ (see Section 3.1 and Figure 3.3).
This is reflected by the low grades outside this region. The two groups that have similar
fast directions but different delay times could have been separated by cycle skipping. There
appear to be more events in the cluster that has a higher delay time, but it also contains more
lower quality estimates. The grade 1 events are scattered between both clusters, however,
there are only 7 of them so it is hard to say which delay time is more likely to be correct.

Figure 3.11 shows a scatter plot of the fast direction errors and the delay time errors. Since
the contour plot is used to manually grade events, the events with high errors have grades
of 5 whereas events with low errors and more bullseye looking contour plots have a high
quality grade of 1. The optimisation over (ϕ, δt) looks over the parameter space and takes
place by evaluating the smallest eigenvalue on a regular grid of (ϕ, δt) values in units of 1◦

in ϕ and 0.01 seconds in δt. This creates horizontal bands of estimates of the errors in ϕ and
δt, although this effect has been minimised by using jitter() in Figure 3.11.

The process of manually grading the 146 events in group 1 was very time consuming
and not guaranteed to be consistent (for instance some 2s could be 3s and vice versa). An
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Figure 3.9: Example of a grade 4 event. Notice a moderate fit between the waveforms with
possible cycle skipping (bottom left) and multiple 95% contours (bottom right).

automated, consistent, method of grading each event based on the output plots from Mfast
is created in the next section.

3.3 Automated Grading

In this section we automate this process of grading by creating a series of numerical criteria
and then predict an overall grade using multiple linear regression. We then check whether
the regression model is suitable for predicting grades by checking that the assumptions
behind the model are met and that no single event has too much influence over the model.

3.3.1 Converting Manual Criteria into Numerical Formulae

This section provides mathematical details to show how each numerical criterion was con-
structed. For each criterion, a description is given of what is a sign of a good grade and what
is a sign of a poorer grade.
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Figure 3.10: Plot of fast direction estimates against delay time estimates after the jitter()

function was applied. Numbers and colours reflect the grades.

Eigenvalues - GC1a,GC1b

Counting the number of contours enclosing the minimum eigenvalue is equivalent to evalu-
ating the depth of the minimum. The first grading criterion looks at the difference between
the normalised (Equation 2.105) largest eigenvalue on the contour plot and the smallest
eigenvalue.

GC1a = (λmax
2 − λmin

2 )/λ95CR
2 (3.2)

where

λmax
2 = largest eigenvalue

λmin
2 = smallest eigenvalue

λ95CR
2 = boundary of the 95% confidence region

Mfast has a similar criterion where λmax
2 is used as a measure of quality. This measure also

gives an idea of the steepness of the entire region contoured. The larger the difference, the
steeper the contour region. The smaller the difference, the flatter the confidence region.
Contour plots with many separate, closed 95 % confidence contours tend to have a very
small GC1a.

The other eigenvalue based criterion counts the number of separate closed 95% confidence
contours. The contourLines() function returns a list of the confidence regions that contain
the level for each contour line. Since the eigenvalues have been normalised, the confidence
region has a level of 1. Therefore we can count how many contour lines have a level of 1. If
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Figure 3.11: Plot of fast direction error estimates against delay time error estimates after the
jitter() function was applied. Numbers and colours reflect the grades.

there is more than one, this can indicate cycle skipping. This is represented mathematically
as

GC1b = ∑
x

195CR(x) (3.3)

where

195CR =

{
1 if the contour line x corresponds to a 95% confidence region
0 otherwise

As suggested by Figure 3.5, a good quality result has one 95% confidence region. Several
confidence regions (like Figure 3.4) indicate a low quality result, which should receive a low
grade. Section 2.7 highlighted the cyclical nature of the fast direction (Figure 2.14 ). The
contourLines() function is not aware of this cyclicity and will treat a single confidence
region that lies at ±90◦ that should wrap around and be a single region, as two separate re-
gions. For example Figure 2.14a has 7, 95% confidence regions but because contourLines()
cannot directly cope with cyclicity it believes there are 9, 95% confidence regions. A method
that could take into account the cyclicity and produce the correct number of 95% confidence
regions would make this criterion more valuable. However, the value of this criterion is ac-
tually in its identification of a multiplicity of 95% confidence regions, the exact count being
less important than the finding that there are more than just one or two.
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Waveforms - GC2, GC3a, GC3b

The root mean square of a vector x is defined as

rms =

√
1
n

n

∑
i=1

x2
i (3.4)

where n is the length of the vector and x2
i is the square of the ith entry of x. It is a measure

of the typical magnitude of x. Therefore we can calculate the rms of different waveforms
and compare their magnitudes by taking ratios of the two. In R we defined a more general
function called the rmse for the difference between a pair of vectors. The rmse of vectors a
and b is defined as

rmse =

√
1
n

n

∑
i=1

(ai − bi)2 (3.5)

It is implemented in R as follows

rmse<- function(a, b){

x<-sqrt(mean((a-b)^2))

return(x)

}

However, if b is zero then this is simply the rms of vector a.

There are three grading criteria that make use of the rms. The first criterion is one that
compares the windowed slow and fast components to the slow and fast components just
outside the window (i.e. the shaded area in the bottom left Mfast output plot). This can be
represented mathematically as

GC2 =

[
rms

[
(uosc)− (uo f c)

]
rms

[
(uwsc)− (uw f c)

] − 1

]2

(3.6)

where

rms(x) = root mean square of x
uosc = corrected slow component outside (after) the window
uo f c = corrected fast component outside (after) the window

uwsc = corrected slow component inside the window
uw f c = corrected fast component inside the window

In the ideal case the waves will be in phase and will have similar amplitudes both inside and
outside the window. This means that the ratio would be one and hence GC2 would be zero.
We expect the waveforms to be more similar inside the window because the best splitting
parameters are determined using this window. Therefore the denominator should be close
to 0. Poor fits outside the window should correspond to a numerator that differs from 0
and therefore the ratio term of GC2 is either strongly negative (rms(uosc) ≪ rms(uo f c)) or
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strongly positive (rms(uosc) ≫ rms(uo f c)). However, ratio term is not unidirectional because
values a value too far from 0 in either direction is bad. If a criterion is not unidirectional
then we cannot perform multiple regression because we require a linear relationship for
each criterion. Consequently, the ratio has 1 subtracted from it and is then squared so that a
small value close to 0 indicates a good results and a large value indicates a poor result.

The second criterion to use the rms function is GC3a. It compares the corrected, windowed
â component to the corrected, windowed p̂ component

GC3a =
rms(uwac)

rms(uwpc)
(3.7)

where

rms(x) = root mean square of x
uwac = windowed, corrected null component
uwpc = windowed, corrected polarisation component

The energy on the a component should be small after correcting for splitting so a GC3a
that is, small is ideal while a large GC3a indicates a poor result. We avoid comparing the
windowed corrected null component to the original windowed null component because the
the original waveforms may be polarised in such a way that leads to events being unfairly
penalised. For example, if there was not much energy on the original component then GC3a
would be unfairly large.

While we want the energy on the null component to be small, the rms of uwac should not be
too small. If the waveform inside the window is too flat then we have overcorrected. In other
words, we have minimised all the power including the noise rather than just minimising the
signal. To overcome this problem the GC3b criterion was created to ensure the waveform
inside the window is not too flat relative to the waveform immediately to the left (before) of
the window. We chose to compare it to the waveform before the analysis window to avoid
phases that came in after the S wave. The energy before the window should contain mostly
noise and the energy from the P wave but because the P wave is vertically polarised and
these are not vertical components, the amount of P wave energy on the a component should
be small. The GC3b is defined as

GC3b =

[
log
(

rms(uwac)

rms(uiac)

)]2

(3.8)

where

rms(x) = root mean square of x
uwac = windowed, corrected null component
uiac = corrected null component before (to the left) the analysis window

The ratio of this criterion (the term in the brackets) would be 1 in the ideal case where
waveform inside the window is similar to the waveform outside the window. However,
the ratio is not unidirectional because values smaller than one indicate overcorrecting and
a value greater than one indicates undercorrecting, in other words, a value too far from
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1 in either direction is bad. We make GC3b unidirectional by taking the log of the ratio
and squaring it so that a small value of GC3b is ideal and larger values suggest under or
overcorrecting. The ratio is also stored in the file so that under and overcorrection can be
analysed separately if need be.

Particle Motion - GC4

The particle motion between the fast and slow components can be thought of as a polygon.
The polygon can be closed by joining the start and end points. Since the particle motion
should become more linear after correcting for splitting, measuring the corrected area can
be an indicator of how well the effects of splitting have been reversed.

Particle motion polygons are self-intersecting polygons meaning the edges cross over
themselves so calculating the area will depend on how the interior of the polygon is defined.
One way to define the interior is by using the even-odd rule. Here a ray is constructed from
the point in interest to a point that is outside the polygon. If the ray passes though an odd
number of edges then the point is inside the polygon. If the ray passes through an even
number of edges then the point is outside the polygon. For this algorithm zero is considered
an even number (Hormann and Agathos, 2001). Figure 3.12 illustrates the even-odd rule.

0 (exterior point)

1 (interior point)

2 (exterior point)

3 (interior point)

Figure 3.12: A self-intersecting polygon with interior points defined by the even-odd rule.
Numbers denote how many edges the ray passes through.

It shows that some areas of the polygon can be excluded from the interior such as the inner
5 sided piece of the star. One way to correct for this would be to create a simple polygon
(i.e. a polygon that does not self intersect) that covers the outer edges so that the entire area
enclosed could be calculated, but it is extremely time consuming locating the set of outer
points.

To see how much of the area is covered by the even-odd rule, a test example was run in
R. First a square grid was set up of points ranging from -400 to 400 in steps of 1 in each
direction. Next the in.out() function was used. This function is an implementation of the
even-odd rule. It returns a boolean matrix where true corresponds to a point inside the
polygon and false, a point outside the polygon. The points marked as true were plotted
in red and the false points are plotted in black (Figure 3.13). Figure 3.13 shows that a large
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Figure 3.13: Area inside the polygon based on the even-odd rule. Red is the area inside,
black is considered outside the polygon.

portion of the area is omitted based on this rule. Consequently, a second method was created
to try to capture the whole area. Instead of focusing on the interior, which is difficult to
identify, the method calculates the area outside the polygon as follows

1. Have in.out() determine whether a point is inside (denoted true) or outside (de-
noted false) the polygon using the even-odd rule

2. Copy the results from in.out() and change the false values to NAs (not available)

3. Start at the bottom left corner and check for any NA values, change them to false

4. From every point on the boundary of the region move inwards (in a direction per-
pendicular to the boundary), changing NA to false. Stop searching that row/column
when a true value is encountered i.e. an interior point is found (Figure 3.14)

5. This produces the exterior of the polygon so the remaining NAs must be inside the
polygon and can be changed to true

This method captures the area because it counts points exterior to the polygon and stops
when it encounters the boundary of the polygon. The results of this method are shown in
Figure 3.15 where blue corresponds to points inside the polygon. There are a few horizontal
and vertical green lines extending inside the polygon. This is because the grid is not fine
enough to capture all the points. However, the number of points inside the polygon that it
has determined as being outside the polygon is extremely small compared to the polygon’s
size. Comparing these two figures for this particular example showed that the even-odd
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rule based area only covered 68% of the area that the iterative method covered. It may seem
inefficient to run back and forth through the rows and columns (Step 3) but if it is not done
then some of the area outside the polygon would not be identified (see Figure 3.14).

Figure 3.14: Illustration of how Step 3 works. A search back and forth across the rows and
the columns must be made so that none of the area outside the polygon is missed.

Figure 3.15: Area inside the polygon using an iterative method. Blue is the area inside, green
is considered outside the polygon.

Once the number of points enclosed by the polygon is obtained, it then needs to be nor-
malised to enable comparisons. Originally, we were going to normalise by the particle mo-
tion area of the original component. However, we found in some cases that by chance, the
original particle motion area was small to begin with or that the corrected particle motion
area was larger than the original (see Figure 3.16). This means the event would have a larger
ratio which would lead to it being penalised with a worse (higher) grade. Instead, we chose
the following grading criterion

GC4 =
Ac/g

MS(uwpc)
(3.9)
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Figure 3.16: Example where the area of the corrected particle motion is slightly larger than
the area of the original particle motion. This is because the top of the turnip shaped particle
motion expanded into 2 large petals after correcting for splitting. Compare this to Figure 3.5
which has a small particle motion area after correcting for splitting.

where

MS(x) = mean square =
1
n

n

∑
i=1

x2
i

xi = ith element of the vector x
n = length of the vector x

Ac = number of points inside the corrected particle motion polygon
g = number of points in the grid

uwpc = the windowed, corrected p component amplitude

The grid of points is constructed from points ranging from -1 to 1 in steps of 0.002, in other
words it covers the entire area of the normalised particle motion. The smaller the proportion
of the area and the greater the power on the windowed, corrected polarisation component,
the smaller the GC4 ratio. The smaller this ratio, the more likely it is that this event would
receive a good grade.

Figure 3.17 illustrates each criteria on a number line showing all the criteria are unidirec-
tional. Table 3.2 provides definitions and brief justifications for each criteria, which serves
as a useful reference for subsequent sections.
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Criterion Definition
GC1a the difference between the normalised maximum and minimum eigen-

values (checks how steep the contour surface is)
GC1b the number of 95% confidence regions (checks for multiple regions that

typically indicate cycle skipping)
GC2 ratio of how well the fast and slow components match outside and in-

side the analysis window after correction (checks to see if the wave-
forms are in phase after correcting for splitting)

GC3a ratio of the null component and the polarisation component after cor-
rection (a check to see how much energy has been minimised on the
null component)

GC3b log ratio squared of the corrected null component before and inside the
window squared (a check for under and overcorrecting)

GC4 area of particle motion relative to the grid size and the mean squared
error of the corrected p̂ component (a check to see if particle motion is
linear after correcting for splitting)

Table 3.2: Summary of the grading criteria.
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TerribleGreat result
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GC4 − particle motion area
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...

TerribleGreat result
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TerribleGreat result
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GC3b − under/over correcting

GC1b − # 95% confidence regions

GC1a − max vs min eigenvalues
≈0huge R+

huge R+≈0

huge R+≈0

huge R+≈0

1

≈0 huge R

huge N+

GC2 - match of f̂ and ŝ

GC3a - energy on â

Figure 3.17: Summary of what is a great result and what is a terrible result for each grading
criterion.
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3.3.2 Using the Criteria to Automate Grading

Now that we have established a set of numerical criteria we can can automate the grading
process. First this section checks that the grading criteria produce results consistent with
Figure 3.17. Then the grading process is automated using multiple linear regression.

Grading Criteria Plots

Each criterion was plotted against the manual grades (Figures 3.18, 3.19 and 3.20). Then,
each plot was checked to ensure the patterns on each graph were expected. Figure 3.18 con-
tains the two eigenvalue criteria corresponding to the depth (Figure 3.18a, GC1a) and num-
ber of confidence intervals (Figure 3.18b, GC1b). As mentioned earlier, we want to evaluate
the difference between the maximum and the minimum eigenvalue. Higher quality events
have bullseye style contour plots (Figure 3.5) so the difference between the maximum and
the minimum eigenvalue should be large. For poor quality events with flat surfaces, this
difference should be small. Figure 3.18a (GC1a) has a clear downwards sloping trend, con-
firming what we expected to see.

Good grades have a single confidence region while poorer grades have many confidence
regions. Figure 3.18b (GC1b) has a clear upwards sloping trend confirming this. However,
there was something unexpected in this diagram. There is a grade 1 event that has two
confidence regions. Looking at its corresponding set of Mfast output plots (Figure 3.21), this
event does have two confidence regions. Also, the corrected particle motion area is fairly
large so this should not have been classified as a grade 1 result. This highlights the potential
of making mistakes during manual grading, especially with a large dataset like the one used
in this project.

Figure 3.19a shows the criterion GC2. Regarding the fast and slow waveforms, we expect
high quality grades to be in phase both inside and outside the analysis window. If they are
exact then GC2 is zero. Figure 3.19a shows a trend which is in the opposite direction. To
explain this we look at a high quality event (Figure 3.5) and a poor quality event (Figure 3.4)
and compare the two. In Figure 3.5 , the waveforms are in phase and the amplitudes are
fairly similar inside the window but not outside the window. This means that the rms of
the components inside the window will be very small. Since the rms waveforms outside the
window is scaled by the rms waveforms inside the window, the denominator will be very
small compared to the numerator, making the fit appear worse than it actually is, leading
to a higher GC2 (GC2=1.48 (2dp)). On the other hand, the waveforms in Figure 3.4 have a
poor fit both inside and outside the window. This is creating a cancelling effect when the
GC2 is calculated, leading to smaller GC2 (GC2=0.33(2dp)). Therefore, this criterion does
not function the way we had hoped, which is outlined in Figure 3.17. We are reluctant to
incorporate scaling involving the original fast and slow components because the two wave
forms could have been in phase by chance.
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Figure 3.18: Eigenvalue grading criteria GC1a and GC1b plotted against the manual grades.
The jitter() function is applied along the y axis to make results more visible.
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Figure 3.19: Waveform grading criteria GC2 and GC3a plotted against the manual grades.
The jitter() function is applied along the y axis to make results more visible.

84



1 2 3 4 5

0
1

2
3

4

grades

G
C

3b
 −

 u
nd

er
/o

ve
rc

or
re

ct
in

g

5
4

4

5

5

2 3

3

3

3

2

3
3

3

2
3
3

3

2
3

3

3

4

4

3
3

2

3

3
3

3

5

3

3

5

2

3

4
2

2
3

2

3

2

2

2

3
3

3

2

2

2

2

4

2

1
3
3 5

5

2

5

51
4

2

4

2 3

2 3
3

3

2

4

2
5
55

53
3

2

4
3

4
3
3
3

2

3

4

5

2 4

1
32 5

4
3

3

2

5

1

2 3

2

1

3

5

2

3

4
3

4
3

1

3

2

5

3
2

4
3

2

5
2

2

43

5

3

3

2

3

2

3

3

4

2 33

1

2

3

(a) GC3b

1 2 3 4 5

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

grades

G
C

4 
−

 p
ar

tic
le

 m
ot

io
n 

ar
ea

5

4
4

5

5

2

3
3

3

3

2

3

33

2

3

3

3

2 333 44332 3

3

33 533 52
3 42

2 32 3

2

22 333

2

2
2

2

4

21
3

3
552

5

5

1

4

2

4

2

3

2 3

3

3

2

4

2

5

5

5

5
3
3

2

43
4

3

3

3

2

3

4

52

4

1
3

2

54

3

3

2

5

1

2

3

2

1
3

5

2

3

43 4

3

1
3

2

5

3
2

4

3

2

5

22 4
3 53
3

2

3

2

3

3

4

2
331 2

3

(b) GC4

Figure 3.20: Waveform grading criterion GC3b and particle motion criterion GC4 plotted
against the manual grades. The jitter() function is applied along the y axis to make results
more visible.
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Figure 3.19b shows the criterion GC3a The amount of energy on the null component after
correcting for splitting should be small. A large amount of energy suggests that some sort
of signal remains instead of the null component only containing noise. High quality events
have a small amount of energy on the null component while poorer events have more energy
remaining on the null component. Figure 3.19b shows a slight upwards trend and is in
agreement with the above reasoning.

The final plot contains GC3b (Figure 3.20a) and GC4 (Figure 3.20b) Figure 3.20a is the
plot corresponding to the grading criteria that checks for under or overcorrecting. The GC3b
criterion involves a squared log term so ideally GC3b should have a value close to zero. Large
values indicate both under and overcorrecting. Figure 3.20a is sloping slightly downwards,
which is opposite to what we expect. There appears to be a few grade 1 events that are
creating this trend. If you ignore these two events then GC3b appears constant across grades.
Figure 3.22 shows an example of one of these grade 1 events. It appears that some sort of
power still remains in the corp component (our corrected â), suggesting undercorrecting,
which could explain the large difference. Since there are only seven grade 1 events, it is
difficult to tell whether those two large values of GC3b are unusual for grade 1 events.

Figure 3.21: Anomalous grade 1 event. Note the absence of bullseye style confidence con-
tours.
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Figure 3.22: Example plot corresponding to a high GC3b.

Lastly, Figure 3.20b (GC4) shows the particle motion area criterion. High quality grades
have linear particle motion after correcting for shear wave splitting so the area should be
small. On the other hand, poor quality events tend to still have elliptical particle motion
and therefore a larger area. Figure 3.20b confirms this with a slight upwards trend.

Another task these plots helped us to perform was determining whether individual cri-
terion were indicative of the grade. As mentioned earlier, using original components in
grading criteria such as GC2, GC3a and GC4 is not advisable because there is a chance the
particle motion area could be small to begin with, or there might not be much energy on the
p component to begin with, or the fast and slow components could be in phase, making it
more difficult to detect improvements in the corrected components. This became apparent
when we looked at the plots relating to these criteria. Consequently, certain criteria were
defined so that they did not refer to the original waveforms (i.e. GC2, GC3a and GC4)

Multiple Regression

The previous sections showed how we calculated automated criteria and assessed whether
the values from the grading criteria were what we expected. The next step is to use these
criteria to assign an automated grade. This is done using multiple linear regression. This
creates an automated grade that is a linear combination of the grading criteria. This can be
expressed as

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp (3.10)
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where

Ŷ = automated grade

β̂i = estimated regression coefficients
Xi = grading criteria

This should be similar to the manual grade denoted, Y

Y = β0 + β1X1 + · · ·+ βpXp + ϵ (3.11)

where ϵ is a random error. This difference between the observed manual grade and the fitted
automated grade is known as a residual

ei = yi − ŷi i = 1, · · · , n (3.12)

There are several assumptions underpinning this model, namely:

• the sample is representative of the entire population

• the relationship between X (grading criteria) and Y (grade) is linear (which we demon-
strated in the previous section)

• ϵ are normally distributed with zero mean and constant variance

• the predictors (our grading criteria) are linearly independent, meaning one criterion
cannot be expressed as a linear combination of any of the others (although they may
be correlated)

The unknown coefficients are determined using least squares (Rencher, 2000), which min-
imises the squared distances between the observed values (the manual grades) and the fitted
values (the automated grades). R has a linear model function lm() that can produce these
coefficients.

Selecting Criteria for Regression

Not all our grading criteria may be needed to produce a reliable automated grade. In order
to decide which criteria to include in the multiple regression, different models are compared
using Akaike’s Information Criterion (AIC). The AIC for multiple regression (Demidenko,
2004) is defined as

AIC = n log
(

SSE
n

)
+ 2(p + 1) (3.13)

where

n = number of observations (events)
p = number of predictors (grading criteria)

SSE = sum of squared errors = ∑
i

e2
i
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The second term in the AIC definition ensures that a model with too many parameters that
does not lead to a significant reduction in the SSE is penalised accordingly. The best re-
gression model will have the smallest AIC. The AIC is used to compare models, but we
also require a method of stepping through different models. Stepwise regression is used. It
moves through the models as follows.

1. Start with a model with no predictors (grading criteria)

2. Create all simple regression models with a single grading criterion

3. Select the model with the lowest AIC

4. Add or remove another predictor that results in the lowest AIC

5. Repeat steps 3 and 4 until the AIC cannot be lowered any further

R has a function that performs stepwise regression. It requires a starting model (usually one
with no predictors) and a full model with all the predictors. For example

stepAIC(lm(Mgrade~1),Mgrade~GC1a+GC1b+GC2+GC3a+GC3b+GC4

,direction="both")

The parameter direction=both is needed so that a grading criterion can be added or deleted
at each iteration.

Running the data and models through this function resulted in with the following final
model

Ŷ = 3.52462 + 0.19111GC1b − 0.19422GC1a − 0.21302GC3b (3.14)

A summary of the coefficients in the final model is given below. It provides an estimate of
the coefficients and their standard errors. The t value itself is not of interest, but it is used to
construct the p-value that is of interest. The p-value tells us how significantly the coefficient
differs from zero. Both eigenvalue criteria have very small p-values and therefore are very
important in the model. The under/overcorrecting GC3b criterion is not as important as the
other two criteria in the model.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.52462 0.16969 20.771 < 2e-16 ***

GC1b 0.19111 0.01991 9.600 < 2e-16 ***

GC1a -0.19422 0.02506 -7.751 1.59e-12 ***

GC3b -0.21302 0.08573 -2.485 0.0141 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Next we check each coefficient to see if they make sense to us. The first coefficient in the
regression model is the intercept. If no grading criteria were available then this is the auto-
mated grade allocated. Table 3.1 shows that the quality of our events is centred around 3, so
the intercept coefficient makes sense. The first grading criterion in the model is the number
of 95% confidence regions. The sign of the coefficient is positive so high quality events with
only one region will receive a smaller contribution to the final grade. Conversely, as the
events get poorer in quality, the number of confidence regions should increase, resulting in
a higher contribution to the final grade (Figure 3.17). The next grading criterion in the model
is the difference between the maximum and minimum eigenvalues. The sign of this coeffi-
cient is negative, so a large difference in the two eigenvalues produces a smaller final grade,
while a smaller difference produces a larger final grade. The difference in eigenvalues indi-
cates the steepness of the confidence region, so the steeper the region, the larger GC1a, the
smaller the grade (Figure 3.17). The third grading criterion in the model is the checking for
under and overcorrecting. The negative sign is consistent with the slight downward slop-
ing trend in Figure 3.20a, which is most likely caused by scattered phases arriving after the
shear wave. All coefficients are consistent with the figures in the previous section (Figures
3.18a, 3.18b and 3.20a). This model should produce a low Ŷ for the high quality events and
a high Ŷ for poor quality grades.

To summarise, the stepwise regression has chosen a model consisting of all the eigenvalue
based criteria and the criterion that checks for under or overcorrection. The three criteria
chosen by AIC for the model were

• number of 95% confidence regions (GC1b)

• difference between the maximum eigenvalue and the minimum eigenvalue (GC1a)

• ratio of the corrected windowed null component and the corrected null component in
front of the window (GC3b)

Therefore there are only two key plots (contour map of the eigenvalues, corrected â com-
ponent) that are needed to produce an automated grade. The model does not include the
following criteria

• comparing slow and fast coordinates inside and outside the window (GC2)

• ratio of the windowed corrected a component and the windowed corrected p compo-
nent (GC3a)

• the particle motion area measure (GC4)

This means that when all the other grading criteria are used, adding these criteria into the
model does not significantly improve correctly predicting the automated grade. Table 3.3
shows the AIC of each model. The final iteration that adds GC3b to the model only results
in a slightly smaller AIC so it is possible that this criterion could be removed from the final
model without affecting the automated grades too much.
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Model AIC
ŷ = β0 21.47
ŷ = β0 + β2GC1b -105.16
ŷ = β0 + β2GC1b + β1GC1a -153.92
ŷ = β0 + β2GC1b + β1GC1a + β5GC3b -158.13

Table 3.3: Chosen model and AIC at each iteration.

Finally, we compare the automated grades against the manual grades (Figure 3.23). If
the model is good, the points should be close to the diagonal blue line, in other words the
automated grade is similar to the manual grade. The points are roughly centred around the
diagonal line, with most of the automated grades differing from the manual grades by no
more than 1. A cut off of an automated grade of 3 captures almost all of the good grades
and only a few that have a grade of 4. Therefore, the automated method can distinguish
between good and bad results. A few points in Figure 3.23 look unusual (illustrated by red
points) so they are investigated further below. Most of the grading criteria in the model are
based on the contour plots, so these are used to investigate the unusual grades (Figure 3.24).
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Figure 3.23: Comparison of automated grades to manual grades. Red points indicate large
discrepancies. Blue line indicates agreement between automated and manual grades.
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Figure 3.24: Contour plots showing discrepancies in grading. M denotes manual grade and
A denotes automated grade.

The first anomalous result was mentioned earlier, which was the misclassified grade 1
event (Figure 3.21). It is clearly not a grade 1 event, which is why the automated grade is
so much higher than the manual grade. The other three anomalous cases have their contour
maps displayed in Figure 3.24. The event corresponding to Figure 3.24a was given a very
low automated grade relative to the manual grade. Looking at the contour plot, there is
only 1 small 95% confidence region and there are bullseye style contours. This should be
a grade 1 event as the automated grade suggests. The event corresponding to Figure 3.24b
was given a very high automated grade. Looking at the contour plot shows multiple long
95% contour regions and a fairly flat surface. This should be a grade 4 event. Lastly the event
corresponding to Figure 3.24c has a single small 95% confidence region and a moderately
steep error surface. It has a single confidence region but not a bullseye style contour plot.
It is possible that this could be a grade 2 event. Again this highlights the problem of grade
misclassification when a large set of events must be manually graded.

3.3.3 Suitability of Model

The previous section generated a model that could automate grades. However, this model is
based on assumptions that must be checked. Also, the events need to be checked to ensure
that a single event is not having too much influence on the automated grades or the grading
criteria coefficients.

Checking Assumptions

In order to test assumptions regarding the residuals we use the more robust jackknife resid-
ual. It takes into account the influence a single point can have by utilising the hat matrix.
The hat matrix is defined as

H = X(XTX)−1XT (3.15)

92



where X is the linear model matrix corresponding to Equation 3.11, our observed values for
each criterion included in the model. If the manual grades are in the vector y, then the hat
matrix converts the observed values into fitted models under the linear model

ŷ = Hy (3.16)

The hat matrix is used to calculate the jackknife residual, which is defined as

r(−i) =
ei√

MSE(−i)(1 − hii)
(3.17)

where

r(−i) = jackknife residual of event i

ei = residual of observation i
MSE(−i) = MSE after removing event i

hii = ith diagonal element of the hat matrix

If removing a single event dramatically decreases the MSE it results in a larger residual and
indicates that the event is highly influential in the regression.

The fitted model must be checked to ensure that the assumptions mentioned in Section
3.3.2 are not violated. If they are then the results from the multiple regression are invalid.
This can be done by looking at the scatter plots and quantile-quantile plots (qq plot). The qq
plot will show if the errors are normally distributed by comparing the jackknife residuals
to the quantiles of a standard normal distribution. If the residuals are normally distributed
then the points should lie on a diagonal straight line. Scatter plots of the jackknife residuals
against the fitted automatic grades or the predictors (grading criteria) can check for non
constant variance and non linearity. These plots should look random and have no structure
to them.

The qq plot in Figure 3.25 looks relatively straight. To be certain the jackknife residuals
were consistent with a normal distribution a Shapiro-Wilk test was conducted. This is a
hypothesis test that specifically tests for normality. If the p-value > 0.05 then we have no
reason to doubt that the data are normally distributed. R has a shapiro.test() function
that returns a p-value as shown below

Shapiro-Wilk normality test

data: jkr

W = 0.9862, p-value = 0.1537

The Shapiro-Wilk test shows there is no reason to doubt that the residuals are normally
distributed.
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Figure 3.25: Diagnostic Plots checking normality and constant variance.

Plots of the residuals are used to confirm linearity and constant variance. The jackknife
residuals plotted against the fitted values (automated grades) (Figure 3.25) have no structure
(i.e. an even spread) and no outliers (extreme values). The points lie on one of five diagonal
lines. This is because the manual grades are integers (1,2,3,4,5). Figure 3.26 shows plots of
the jackknife residuals against each predictor. All of these plots have an even spread, so the
variance is constant. However, there do appear to be a few extreme points that look quite
different from others. These are investigated properly in the next section.

Finally, we check how correlated the variables are. When multicollinearity is present the
grading criteria are highly correlated with each other. Figure 3.27 shows the scatter plots
for each criterion, compared to all the other criteria. Correlations and p-values are given in
the lower diagonal. Labels are down the main diagonal indicating which plot has which
criteria on its x and y axis and what the correlation coefficient is for those two criteria. The
figure shows that all criteria are only moderately correlated, with the strongest correlation
being between GC2 and GC3a (r=-0.57). Since all the criteria are only moderately correlated,
multicollinearity is not a problem.

Checking for Influential Observations

The final regression model chosen to produce automated grades is based on the 146 events.
To check the suitability of the model we should ensure that the final model is not being
overly influenced by a few events. The following are checked to ensure the final model has
not been heavily influenced:
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Figure 3.26: Diagnostic plots of the jackknife residuals for each coefficient.

• influence on the fitted values (automated grades)

• influence on the coefficients

• influence on summary statistics

First we check for potential influence of (the automated grades). This can be done by us-
ing Cook’s Distance, which measures the change in an automated grade when an event
is deleted and the final regression model using the chosen grading criteria is recalculated
(which may lead to different β coefficients for each grading criterion). This measure is de-
fined as

Di =

n
∑

k=1
(ŷk − ŷk(i))

2

(p + 1)MSE
(3.18)

where

Di = Cook’s Distance for the ith observation (event)
ŷk = the fitted value for observation k

ŷk(i) = the fitted value for observation k when observation i is removed

p = number of predictors
MSE = mean squared error

Based on this formula, one can see that the bigger the numerator, the bigger the difference in
fitted values when that particular event is removed and therefore, the more influential that
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Figure 3.27: Scatterplot matrix of predictors along with their correlation (r) and p-value, p.

point is. The spread in ŷ should be similar to the MSE. The cut off for what constitutes an
influential point is

Di > Fα=0.5
(p+1,n−p−1) (3.19)

In other words, any point with a Di that exceeds the 50th percentile of that F distribution.
The F distribution comes from looking at joint confidence regions and is explained in detail
in Rawlings et al. (1998).

Figure 3.28 displays the results for Cook’s Distance (bottom plot). The horizontal dashed
line is the cut off. Since no values exceed this, none of the events significantly influence the
automated grades.

Next we check whether a few observations are influencing the β coefficients (Equation
3.10). This can be done by calculating the DFBETA of each observation as follows

DFBETASj,i =
β̂ j − β̂ j(i)√
cjjMSE(i)

(3.20)
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Figure 3.28: Plots of leverage points and Cook’s distance. Values that exceed the horizontal
dashed blue line are considered leverage and influence points respectively.

where

DFBETASj,i = DFBETAS for event i and coefficient j

β̂ j = jth coefficient using all observations

β̂ j(i) = jth coefficient calculated by using all but the ith observation

cjj = jth diagonal component of the matrix (XTX)−1

MSE = mean squared error

This measures the standardised change in a grading criterion coefficient when an event is
removed. The larger the DFBETA, the more influence the event has on a particular coeffi-
cient. The denominator was chosen so that the same proportion of points will be classified
as influential regardless of the size of the dataset (Belsley et al., 2004). Any absolute DFBETA
that exceeds

|DFBETASj,i| > 2/
√

n (3.21)

is considered influential.

Figure 3.29 shows the DFBETAs for the three chosen grading criteria. Since no points
exceed the horizontal dashed line, GC1b, GC1a and GC3b have no influential points so the
grading criteria coefficients are not heavily influenced by a few events.

Finally we check if there are any points affecting the summary statistics. These are called
leverage points. In order to identify these we use the hat matrix (Equation 3.15). The trace

97



0 50 100 150

0.
00

0.
05

0.
10

0.
15

GC1b

Index

D
F

B
E

TA
S

0 50 100 150

0.
00

0.
05

0.
10

0.
15

GC1a

Index

D
F

B
E

TA
S

0 50 100 150

0.
00

0.
05

0.
10

0.
15

GC3b

Index

D
F

B
E

TA
S

Figure 3.29: Plots of the DFBETAs for each criterion used in the multiple linear regression.
Horizontal dashed blue line is the cutoff.

of this matrix H has a special property

tr(H) =
n

∑
i=1

hii = p + 1 (3.22)

If each event contributed equally to the regression results, then based on the above equation
each hii should be

hii =
p + 1

n
(3.23)

where

n = number of events
p = number of grading criteria

hii = ith diagonal component of the hat matrix

Hoaglin and Welsch (1978) argued any diagonal entry of the hat matrix that exceeds

hii >
2(p + 1)

n
(3.24)

corresponds to the ith event being a leverage point. Figure 3.28 shows the leverage plot
(top plot) shows. There are 13 values that exceed the horizontal line so these are events are
considered leverage points. Again some of these are the misclassified events such as the
events corresponding to Figure 3.24a.
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Extreme data points, known as outliers, can also affect results. Checking for outliers can
be done by checking for points that have a residual more than 3 standard deviations away.
For jackknife residuals, any residual that exceeds

r(−i) > 3 ×
√

1
(n − p − 1)− 1

n

∑
i=1

r2
(−i) (3.25)

where

n = number of events
p = number of grading criteria

r(−i) = jackknife residual of event i

is considered an outlier. Using this rule none of the events are considered outliers.

3.3.4 Summary of Model Suitability

The assumptions behind the multiple linear regression model appear to hold, so the auto-
mated grades are valid. No outliers have been identified and based on Cook’s Distance,
there are no events that significantly influence the automated grades. However, there are a
few leverage points that can influence summary statistics.

Even with this problem, the automated method works very well. The bulk of the auto-
mated grades are consistent with the manual grades. The automated method was able to
identify incorrect manual grades by producing large discrepancies between the automated
and the manual grades. Using a cutoff automated grade of 3 the automated method captures
most of the good grades and only a couple of bad grades. Most of the automated grades are
no more than 1 grade away from the manual grade. Our dataset does not contain any null
measurements so we have not incorporated null detection into this model, but this could be
incorporated in the future by creating additional criteria that can detect null measurements.
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Chapter 4

Incoming Polarisation & Cycle
Skipping

Results from the previous chapter suggested that some events in our dataset may have pa-
rameter estimates affected by cycle skipping. In this chapter we investigate whether our
dataset shows signs of cycle skipping and how this affects the fast direction and delay times.
We also explore what effect cycle skipping has on the incoming polarisation.

4.1 Incoming Polarisation

The incoming polarisation (α) is an angle related to the wave displacements before the wave
splits. In all the implementations of the Silver and Chan (1991) method, angles are measured
clockwise from North in bearing coordinates. Consequently, n̂ · p̂ = cos(α) (Figure 4.1). It
is also referred to as the S polarisation and source polarisation. Silver and Chan (1991) do

n̂

ê

f̂

p̂α

ϕ
ϕb

Figure 4.1: Incoming polarisation angle in geographical coordinates.

not mention the incoming polarisation angle in their article but it is mentioned here because
it is used to calculate the degrees of freedom (see Section 5.2 for more details). It is also
useful to study various types of geophysical parameters. Figure 4.1 shows that the incoming
polarisation for a near vertical ray can be calculated by

α = ϕb + ϕ (4.1)
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1 3

2
(a) Potential cycle
skipping

pre S phase

(b) No cycle skipping

Figure 4.2: Illustration of cycle skipping. Cycle skipping can occur here because the dashed
blue peak can be matched to either peaks or the trough of the solid black wave. Adding a
pre S phase means that the two waveforms are more likely to be matched correctly.

The grid search for the best two parameters involves the fast direction relative to North (i.e.
ϕb). The other ϕ is obtained by calculating the arc tangent of the two components of the first
eigenvector of the covariance matrix (Equation 2.88) x1 = [x11x12x13]

T (which is p̂ if there is
no noise) corresponding to the eigenvalue λ1

α = ϕb + atan2(x11, x12) (4.2)

where atan2 is a computer implementation of the arc tangent which returns a value between
−π and π (in radians) except when both parameters are zero, in which case atan2 is unde-
fined (Yoshikawa, 1990).

4.2 Cycle Skipping

As mentioned in Section 1.3.3, cycle skipping is a phenomenon caused by misfitting peaks
of a waveform with different peaks or a trough (see Figure 4.2). One way to reduce this
problem is to include a segment of the wave prior to the S arrival so that the waves can be
matched correctly (see Figure 4.2b). However, in real data it may not always be clear when
the shear wave arrives.

There are several observations that can indicate cycle skipping. Firstly, mismatching the
two waveforms can produce delay times that are incorrect by some integer multiple of half
the dominant period (T) of the waveform i.e.

δtCS = δt ± nT/2 (4.3)

where

δt = delay time
δtCS = cycle skipped delay time

T = dominant period
n = positive integer
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This can be seen as several troughs in the contour plot that are half a dominant period
apart. It can also be seen in the wave forms. For an odd n, a trough and peak have been
matched and for an even n, an entire cycle has been skipped so the incorrect peaks have
been matched. Secondly, the contour plots may have fast directions that are 90◦ apart (i.e. ŝ
and f̂ are flipped) with δt being half a period earlier (or later) or a whole period later if they
have the same fast direction indicating an entire period has been skipped (Matcham, 1997).
Thirdly, if events are identical, as is the case here, substantially different fast directions and
delay times can indicate cycle skipping.

4.3 Checking for Cycle Skipping

To assess whether some of the events in this dataset suffer from cycle skipping, the three
indicators mentioned previously are checked.

All 146 events in our test dataset are supposedly identical so the splitting parameters
(ϕ, δt) should be similar. Figure 3.10 shows two main clusters of splitting parameters along
with a few others that do not belong to either. The two clusters have different delay times,
which could indicate cycle skipping. Since the group consists of fast directions between 0
and 45◦, this graph does not provide information about whether there are other measure-
ments in which the fast directions have a 90◦ ambiguity. This is because Figure 3.10 only
contains fast directions between 0 and 45◦. Such occurrences are expected to be in the group
of events (group 2) we excluded from the analysis (see Figure 3.3).

Next a set of output plots is taken from each cluster and their contour plots and wave-
forms are compared (Figures 4.3 and 4.4 respectively). Figure 4.3 shows the contour plots
have two 95% confidence regions that look roughly half a period apart. This can be checked
by calculating the dominant period using a script. For both events the dominant frequency
is 8.19847. This means the dominant period T is

T = 1/ f = 1/8.19847 = 0.122 sec (3dp) (4.4)

Substituting this into Equation 4.3 gives

δtCS = δt + nT/2 (4.5)
= 0.045 + (1)× 0.121974/2 (for n = 1) (4.6)
= 0.105 (3dp) (4.7)

The second event has a delay time of 0.11. This delay time and the other one both have
errors of at least ±0.02 so the second event has a delay time that is roughly half the dominant
period larger. This suggests that at least one of the events suffers from cycle skipping.

Next the waveforms are compared. Figure 4.4 indicates the time shifts with red arrows.
Figure 4.4a matches the peak of a slow wave to the trough of the fast wave. Figure 4.4b
has matched two peaks. When a trough and peak are matched, Mfast flips the sign of the
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Figure 4.3: Two contour plots of different events from group 1 (fast directions 0-45◦). Note
the splitting parameters differ (ϕ is similar but δt is different).

slow wave displacements so that the match becomes more obvious. This gives the illusion
that two peaks have been matched. However, if the particle motion is pointing down to
the bottom right corner of the graph (like Figure 4.4a) then a trough and peak have been
matched. To avoid confusion, the waveform plot has been edited to show the matching of a
peak to a trough. The mismatched waveforms suggests that cycle skipping is occurring.

Since the effect on the fast direction cannot be checked for with this group, events from
group 2 which consist of fast directions between 90-120◦ are analysed. Figures 4.5 and 4.6
show the contour plots and waveforms for two events from group 2 respectively. Figure
4.5a has two 95% confidence regions with similar fast directions and different delay times.
Figure 4.6a shows that a peak has been matched to a peak that is 2 periods away. Figure
4.5b is similar. The peaks have been matched to peaks which are two periods away, which
explains the larger delay times compared to group 1. The existence of fast directions that are
90◦ away also suggests cycle skipping.

4.4 Effects on the Incoming Polarisation

Cycle skipping causes jumps in the delay times and fast directions with a 90◦ ambiguity.
Figure 4.7 suggests that there is also an effect on the incoming polarisation. The angle α
(illustrated schematically in Figure 4.1) can be seen in the plots of particle motion (Figure
4.8).

Figures 4.4 and 4.6 show the original plots of particle motion for two group 1 and two group
2 events respectively. Figure 4.8 shows particle motion plots for the two group 1 events
with annotations highlighting the similar fast directions but different incoming polarisa-
tions. From the plots of particle motion it appears that mismatching the waveforms can also
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Figure 4.4: Two wave forms of different events from group 1 (fast directions 0-45◦). Note the
different shifts of the slow wave annotated in red.
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Figure 4.6: Two waveforms of different events from group 2 (fast directions 90-120◦). Note
the different shifts of the slow wave annotated in red.
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Figure 4.7: Polarisation waveforms of different events from group 1 (fast directions 0-45◦).
Note that the p (p̂) component of one looks like the p ⊥ (â) component of the other.
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Figure 4.8: Two wave forms of different events from group 1 (fast directions 0-45◦). Note the
different shifts and incoming polarisations annotated in red. The polarisation annotations
show ϕb and α (see Equation 4.1). These two parameters are also given on the contour plot
(Figure 4.3).
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create 90◦ jumps in α (i.e. p̂ and â are flipped). The incoming polarisation for event
2005081808393418BOR (Figure 4.8a) is 145.384 ± 7.338 while the incoming polarisation for
event 2005090408311169BOR (Figure 4.8b) is 65.232 ± 8.039. These are roughly 80◦ apart but
if you take into account the errors on both of these estimates (7.338 + 8.039 = 15.377) then it
is likely that these two estimates of the incoming polarisation are 90◦ apart

65.232 + 90 = 155.232 ∈ 145.384 ± 15.377
145.384 − 90 = 55.384 ∈ 65.232 ± 15.377 (4.8)

This switch is also shown in Figure 4.7 where the p (p̂) component of one event looks like
the p ⊥ (â) component of the other event.

Figure 4.9 displays the α and δt parameters for all 146 events. There are two clear clusters
highlighting the effect of cycle skipping on the incoming polarisation
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Figure 4.9: Incoming polarisation estimates vs delay time estimates for group 1 (fast direc-
tions 0-45◦) events. Two clusters have formed that are 90◦ ± SE(spol) apart.

So far we have taken two or more events and compared them. Here we take a single event
that has two 95% confidence regions (Figures 4.3a and 4.3b) and see what effect shifting from
one 95% confidence region to another has. File ./images/rep16dtshiftanim.gif1 shows
an animation of moving the supposed minimum to a point that is +T/2 away in the other
95% confidence region. Another file, ./images/rep23dtshiftanim.gif shows the effect of
moving −T/2 into the other 95% confidence region. These animations make it easier to see
the waveforms shifting and what effect this has. The following was observed:

1Pink font indicates a link to an external file. The animations are also on CD if there are viewing problems
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• when the selected point shifts to the other 95% confidence region the particle motion
flips and points in the opposite direction

• corrected fast and slow waveforms show what appears to be cycle skipping (matching
another peak/trough)

• corrected slow waveform flips at the half way point. As mentioned before, the Mfast
codes flip the sign of the slow waveform displacements when a peak is matched to a
trough to make the match more obvious

• null component p ⊥ (â) appears to have more energy on it when the minimum is
shifted to the other 95% confidence region

• the corrected p (p̂) component still has its first peak but the second peak starts to
shrink. This waveform can also be seen slowly moving by δt

The 90◦ ambiguity of the incoming polarisation appears to be a new phenomenon that has
not been mentioned in articles before. As a result of this 90◦ ambiguity, the incoming po-
larisation using this method will differ from the incoming polarisation obtained from the
focal mechanism (see Aki and Richards (2002) for details on this method). For a single layer,
cycle skipping causes a 90◦ ambiguity between the two methods. For multiple layers of
anisotropy the polarisations using the two methods will differ but not necessarily by 90◦.
This is because the polarisation is being calculated from two different waves. Figure 4.10
illustrates this for two layers of anisotropy. Consequently, there may be incorrect inferences
about the geometry of the fault if it is based on an incoming polarisation that is used by
Silver and Chan (1991) outlined in this chapter.

It is also possible that an incorrect incoming polarisation would affect detecting null mea-
surements (where ϕ − α ≈ 0). A criterion used to define null measurements (Savage et al.
(2010), Wessel (2010), Peng and BenZion (2004)) is

20◦ ≤ |ϕb − α| ≤ (90◦ − 20◦) (4.9)

This equations tells us that if the incoming polarisation is polarised too closely to either
the fast or slow direction then it is a null measurement. If the incoming polarisation has
a 90◦ ambiguity then there is no problem because the incoming polarisation will instead
be too close to the other (fast or slow) component. However, for incoming polarisations
with large errors, an event may be incorrectly classified because Equation 4.9 only applies
to the parameters and not their errors. For example, Figure 4.8 shows an example where the
difference between two incoming polarisations is 80◦.

To summarise, it appears that some of the events have contour plots with two 95% confi-
dence regions that are T/2 apart, the splitting parameters have two main clusters of events
that differ by a delay time of T/2 and some events have fast directions that are 90◦ away
from other fast directions. This strongly suggests that some of the events in this dataset
suffer from cycle skipping. It appears that cycle skipping also has an effect on the incoming
polarisation α that has not been mentioned in any of the literature before. Cycle skipping
also causes 90◦ jumps in the incoming polarisation, which results in mistaking the p com-
ponent for the a component. Consequently, the incoming polarisation determined using the
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of the original wave

Focal mechanism

on the polarisation

The method in Silver
and Chan 1991 will

on the polarisation of the
first wave that enters the
final anisotropic layer

has an α based

produce an α based

Figure 4.10: Diagram illustrating that the incoming polarisation obtained from the Silver and
Chan (1991) method will differ from the polarisation obtained from the focal mechanism.
The focal mechanism method returns an α based on the polarisation of the original wave
while the method in this chapter (Silver and Chan, 1991) returns an α based on one of the
split waves. If the waveforms are split by a time greater than the wave length, then α is the
fast direction for the second to last layer from the surface.

method above may differ from the incoming polarisation obtained from the focal mecha-
nism. This can effect inferences about the fault geometry and also the classification of null
grades.
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Chapter 5

Testing Assumptions & Estimators

In order to test the validity of the error estimates obtained using the Silver and Chan (1991)
method and its derivatives we have formulated three tests. The first involves investigating
the bias of the degrees of freedom estimate using both sets of coefficients discussed in Sec-
tion 2.9. The second determines whether the time series used to calculate the errors has a
chi-squared distribution. The final test determines how reliable the standard errors calcu-
lated by Silver and Chan (1991) are.

5.1 Test 1: Bias of Estimators

5.1.1 Test 1 Program

This program, which was written in R, compares the bn coefficients to the Silver and Chan
(1991) an that are used to estimate the degrees of freedom using the power E (Section 2.9).
We wish to see which set of coefficients (if any) produce an unbiased estimate of the degrees
of freedom. The program can be broken down into 4 steps.

Recall that we have digital data comprising a sample of N + 1 data points over the interval
[0, T] with a sampling frequency of N

(T−0) and each point evenly spaced by (T−0)
(N)

(Figure 2.16)
and that we assume the sample data can be written as a convolution of a Gaussian filter and
Gaussian noise (Assumption 3). In other words,

η(t) = ( f ∗ g)(t) (5.1)

where f denotes the filter and g denotes the noise. The Gaussian filter induces correlations
between the set of data points according to the width of the filter. The first step is to create
the Gaussian filter f (t).

Step 1: Create the filter, f (Note that comments in R are denoted by #)
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# Parameters

sigma <- 1

tmax <- 10

N <- 1000

N1 <- N+1

# our N1 discrete points with index n

tvec <- (0:N)/N*tmax

w <- 0.05

# Filter

f <- exp(-0.5*((tvec/tmax)/w)^2)

f <- f + rev(f)

f <- f/sum(f)*2/N # scale f

The first set of lines define the parameters needed for the filter

sigma = standard deviation σ

tmax = maximum t over the interval i.e. T
N = the number of data points minus one

N1 = the number of data points
tvec = N + 1 data points spread evenly over the interval [0, T]

w = smoothing width 0 < w ≤ 1

The only parameter not seen in Section 2.9 is the smoothing width, which is the proportion
of the data to be correlated. The higher the smoothing width, the greater the range of points
that are related to each other, creating a smoother curve. The variable σ2 is the variance of
the Gaussian noise process.

Using these parameters we create a Gaussian filter, fn

fn = exp

[
−1/2

(
tn

wT

)2
]

n = 0, · · · , N (5.2)

We form fn ∝
[

exp[−1/2
(
((t−0)/T)

w

)2
]
+

[
exp[−1/2

(
((t−T)/T)

w

)2
]

)
. Since the range of the

simulated data are [0,T) we shift the points from (−T/2, 0) forward to (T/2, T) so that it’s
centred on zero and scale f by twice the sum of all the points in f divided by N. Only the N
points n = 0, · · · , N − 1 are retained because the fast Fourier transform treats the function
as a cycle with period T. Next we fast Fourier transform fn. R has an fft() function, which
applies the following operation to f

f̃ (ω) =
N

∑
n=0

f (tn) exp[−iωtn]

Both the filter and the data are periodic over the interval [0, T), [T, 2T).... In other words
x0 = xT so the last point is deleted in order to calculate the transform correctly.
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Step 2: transform the filter into the frequency domain by using the fast Fourier transform

# f(omega)

ff <- fft(f[-N1])

The third step involves calculating the exact degrees of freedom. Remember to obtain the
degrees of freedom we need(

N

∑
n=0

an| f̃n|2
)2

≡ F2
2 (the second squared moment)(

N

∑
n=0

2a2
n| f̃n|4

)
≡ F4 (the fourth moment)

when these two quantities are known we can calculate the degrees of freedom exactly using

ν = 2
(σ2F2)2

σ4F4
= 2

F2
2

F4

(SC A9)
The an coefficients are used to calculate the second squared moment of F and are defined as

an =

{
1/2 n = 0, N
1 otherwise

The a2
n coefficients are used to calculate the fourth moment of F and are defined as

a2
n =

{
1/4 n = 0, N
1 otherwise

These two sets of coefficients are called avec and avec2 respectively in our code. Using these
coefficients we can calculate the true degrees of freedom

Step 3: Calculate the true degrees of freedom

# Calculate nu true df

# SC coefficents

avec <- rep(1,n)

avec[c(1,n)] <- 0.5

avec2<- rep(1,n)

avec2[c(1,n)] <- 0.25

f2 <- sum(avec * (Mod(ff))^2) # second moment F_2

f4 <- 2*sum(avec2 * (Mod(ff))^4) # fourth moment F_4

nu <- 2*f2^2/f4 # true degrees of freedom

Equation 2.137 (SC A9) has been used to calculate the true degrees of freedom. We can cal-
culate the true degrees of freedom because here we know exactly how f (t) was constructed.
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When analysing actual data we do not know the correlational properties of the data. In-
stead we can use the following equation to estimate the degrees of freedom

ν̂ ≡ 2
(

2E2

E4
− 1
)

(SC A12)
Recall both we and Silver and Chan (1991) define E2 as

E2 =

(
N

∑
n=0

an| f̃n|2|g̃n|2
)2

which also has an coefficients like F2
2

an =

{
1/2 n = 0, N
1 otherwise

We define E4 as

E4 =
N−1

∑
n=1

(
4
3

)
| f̃n|4|g̃n|4 +

(
1
3

)
(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4)

=
N

∑
n=0

bn| f̃n|4|g̃n|4

(c.f. SC A10)
Therefore the bn coefficients are

bn =

{
1/3 n = 0, N
4/3 otherwise

Silver and Chan (1991) define E4 as

ESC
4 =

N−1

∑
n=1

1| f̃n|4|g̃n|4 +
(

1
3

)
(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4)

=
N

∑
n=0

bSC
n | f̃n|4|g̃n|4

(SC A10)

bSC
n =

{
1/3 n = 0, N
1 otherwise

The Silver and Chan (1991) codes accidentally define FSC
4 instead of ESC

4 and use it to esti-
mate the degrees of freedom

FSC
4 =

N−1

∑
n=1

1| f̃n|4|g̃n|4 +
(

1
2

)
(| f̃0|4|g̃0|4 + | f̃N |4|g̃N |4) (5.3)

114



Therefore Silver and Chan (1991) estimate the degrees of freedom using the an coefficients,
which are the coefficients for FSC

4 (and coincidentally E2) not ESC
4 . We estimate the degrees

of freedom using the bn coefficients, which are the coefficients for our E4. Therefore we
compare the estimates of the degrees of freedom using the coefficients in the original Silver
and Chan (1991) codes (an) and our coefficients (bn).

The experiment is repeated nrep times. Each time the estimated degrees of freedom (us-
ing Equation 2.146 (SC A12)) is calculated using both sets of coefficients, which requires
two different E4 values to be calculated: E4 =e4 with our bn coefficients and the Silver and
Chan (1991) ESC

4 =e4e, which accidentally uses the an coefficients instead of the bSC
n coef-

ficients. Since the experiment has the same filter each time, there is no need to recalcu-
late it. However, the Gaussian noise (fg=g̃(ω)) is different each time so the convolution,
fu= | f̃ (ω)|2|g̃(ω)|2 needs to be calculated each time. Thaller (2000) shows that the Fourier
transform of a Gaussian with mean zero and variance σ2 is a Gaussian with zero mean and
variance 1/σ2. Therefore we simply create g̃(ω) directly in the Fourier domain. Since σ2 = 1
no scaling of the variance is required either.

Step 4: Calculate the estimated degrees of freedom using both an (Silver and Chan (1991)
code) and bn (ours) coefficients

# Our coefficients

bvec <- 4/3*avec2

nrep <- 1000 # repeat nrep times

nu.ests <- t(sapply(1:nrep,

function(i) {

fg <- rnorm(n,0,1/sigma) # g(omega)

fu <- fg*ff # g(omega)f(omega)

mfu2 <- (Mod(fu))^2 # squared modulus

e <- sum( avec*mfu2 ) # power

e4 <- sum( bvec*mfu2^2 ) # our E_4

e4e <- sum( avec*mfu2^2 ) # SC code E_4 which is actually F_4

nu <- 2*(2*e^2/e4 - 1) # our estimated df

nu.e <- 2*(2*e^2/e4e -1 ) # SC estimated df

c(nu,nu.e,e,e4,e4e)

}))

dimnames(nu.ests)[[2]] <- c("nu","nu.e","e","e4","e4e")

The code given above gives results for a single smoothing width. The code can be wrapped
with a for loop that contains a vector of smoothing widths such as

ws <- c(0.00001,0.0001,0.001,0.01,0.05,0.1,0.15,0.2,0.25)

for(w in ws){

[steps 1 to 4 here]
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}

so that multiple smoothing windows can be analysed.

5.1.2 Test 1 Results

To analyse the results from the final steps, we plot histograms showing the true degrees of
freedom in the form of a vertical red line and the estimates using both sets of coefficients
(Figures 5.1a and 5.2a). A second histogram was created with the estimates being divided
by the true degrees of freedom (Figures 5.1b and 5.2b). In other words for each replicate rj
we have

rj =
ν̂j

ν
j = 1, ..., nrep (5.4)

where

rj = scaled degrees of freedom for the jth replicate

ν̂ = estimate of the degrees of freedom
ν = true degrees of freedom

nrep = total number of replicates

Therefore, unbiased estimators would have a scaled degree of freedom of 1 (on average).
The scaled versions make comparisons across different smoothing widths possible.

Figures 5.1b and 5.2b show the estimated degrees of freedom for a smoothing width of
almost zero (w=0.0001) i.e. virtually uncorrelated points in the time series. Figure 5.1b
shows v̂SC based on the an coefficients used by Silver and Chan (1991) in their codes is a
positively biased estimator with the degrees of freedom being over estimated by a factor of
1.33≈4/3. For the bn coefficients that are used in our estimate of the degrees of freedom
(Figure 5.2b), it appears the degrees of freedom are unbiased.

Figure 5.3 shows a summary of the effect of different smoothing windows (i.e. differing
amounts of correlation between the data points) on both sets of coefficients. All median
estimates of the degrees of freedom are scaled by the true degrees of freedom to enable com-
parison. Both sets of degrees of freedom converge to constant values after around w=0.5.
One can see that the greater the correlation, the degrees of freedom based on our bn coeffi-
cients is unbiased. On the other hand, for smoothing widths greater than 50%, the degrees
of freedom based on the Silver and Chan (1991) an coefficients is negatively biased (i.e. too
small). As mentioned earlier, for virtually uncorrelated data, the bn coefficients produce un-
biased degrees of freedom whilst the an coefficients overestimate the degrees of freedom by
a factor of around 4/3. Therefore, if the noise was Gaussian our estimate of the degrees of
freedom using the bn coefficients would be correct. There is an interesting bump around
0 < w < 0.4. During this time the bn coefficients produce a degrees of freedom estimate that
is positively biased while the an coefficients lead to a degrees of freedom estimate that is
positively biased to begin with but eventually becomes negatively biased. If the amount
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Degrees of freedom using Silver and Chan a_n coefficients (median=1335.0415, w=1e−04)
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(a) Unscaled degrees of freedom with an coefficients

Scaled degrees of freedom using Silver and Chan a_n coefficients (median=1.3357, w=1e−04)
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(b) Scaled degrees of freedom with an coefficients

Figure 5.1: Example of the Silver and Chan (1991) estimated degrees of freedom using the
an coefficients. Estimates have been both scaled and unscaled for a single smoothing width
(w=0.0001), which is given in the title of the plot.
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Degrees of freedom using our b_n coefficients (median=1001.0058, w=1e−04)
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(a) Unscaled degrees of freedom with bn coefficients

Scaled degrees of freedom using our b_n coefficients (median=1.0015, w=1e−04)
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(b) Scaled degrees of freedom with bn coefficients

Figure 5.2: Example of the estimated degrees of freedom using our bn coefficients. Estimates
have been both scaled and unscaled for a single smoothing width (w=0.0001), which is given
in the title of the plot.
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of correlation between data points in the power were known, then comments about which
coefficients were more appropriate could be made.
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Figure 5.3: Comparison of the scaled estimated degrees of freedom for different smoothing
widths based on nrep=1,000 repetitions. Circles are based on our degrees of freedom based,
which uses the bn coefficients. Triangles denote the Silver and Chan (1991) estimate of the
degrees of freedom based on the the an coefficients that are used in the Silver and Chan
(1991) code. If the estimates were unbiased they would sit on the horizontal red line.

The final plot, Figure 5.4 shows the true degrees of freedom over various smoothing widths
ranging from approximately zero to 20% of the window length. The diagrams show that for
virtually uncorrelated data the degrees of freedom is almost 1000, the number points in our
time series. This drops sharply to roughly 1 degree of freedom once the smoothing width
exceeds 0.05.
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Figure 5.4: Comparison of the true degrees of freedom for various smoothing widths.
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5.2 Test 2: Chi-squared Assumption

The next test involves checking whether the noise has a Gaussian distribution, which would
imply that the sum of squares, Smin(ϕ, δt), (Section 2.7) has a chi-squared distribution. This
is done by performing a Kolmogorov-Smirnov test and also by analysing plots of the em-
pirical distribution, the noise in the time domain and the squared modulus of the Fourier
transformed noise. We then compare this noise to background noise to see how similar the
two types of noise are.

5.2.1 Testing the Distribution of the Data

The Kolmogorov-Smirnov test is used to determine whether one continuous distribution
matches another. As a result, we can use this to test Assumptions 1 and 2 that state that the
power has a chi-squared distribution. The test is a non-parametric one, meaning that it does
not make any assumptions about the distribution of the data. The test has the following
hypotheses

H0: the two distributions are the same
HA: the two distributions are not the same

To determine whether H0 is accepted or rejected, the test statistic D is calculated, which is the
largest vertical distance between the two cumulative distribution curves. The idea behind
this measure is that similar distributions should have a similar shape and thus a small D.
The more different the distributions are, the larger the value of D. Figure 5.5 illustrates the
test statistic.

The two distributions to be compared are the distribution of the data and the chi-squared
distribution More details on this test can be found in Feldman and Valdez-Flores (2010).
The Kolmogorov-Smirnov test requires all parameters to be known in advance i.e. they
cannot be obtained from the data, which is how we obtain the estimate of the degrees of
freedom. However, we have a process involving randomisation that should let us use the
Kolmogorov-Smirnov test. This is explained later. The sample data are obtained as follows

1. desplit the wave using the best pair of ϕ and δt to produce the corrected waveforms.
The two components are now in splitting coordinates

2. calculate the incoming polarisation

3. rotate the windowed corrected waveforms by (ϕ − α) to obtain the noise. The first
component contains the signal and the second component contains the noise. This
gives η(t) = δ̂T

2 R3(ϕ − α)ũs(ω, t) (Note the ∼ here denotes the corrected wave and
not a Fourier transformed shear wave)

4. fast Fourier transform the noise in the window, |η̃(ω)|
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Figure 5.5: Example of the test statistic D which is the largest vertical distance between two
distribution functions.

5. calculate the squared modulus of the fast Fourier transform, |η̃(ω)|2 up to the Nyquist
frequency

6. scale |η̃(ω)|2 by the variance of the noise

The scaling is needed because a chi-squared distribution is the sum of squared standard
normals (Appendix A.5). This dataset is compared to a chi-squared (χ2) distribution. This
distribution has a single parameter, the degrees of freedom. Silver and Chan (1991) first
assume the degrees of freedom is n, the number of points in |η̃(ω)|2 (Assumption 1). If this
assumption does not hold it is assumed that |η̃(ω)|2 is approximately χ2 with ν̂SC degrees of
freedom (Assumption 2). We think the derivation of νSC was incorrect and that the degrees
of freedom is in fact smaller. We denote our degrees of freedom ν̂. The data set is compared
to each of these three chi-squared distribution with n, ν̂SC, ν̂ degrees of freedom respectively.

Before the Kolmogorov-Smirnov test is carried out the distribution of the data and the chi-
squared distribution are plotted. The empirical distribution is the cumulative distribution
of a sample and is defined as

Fn(t) =
1
n

n

∑
i=1

1{xi ≤ t} (5.5)
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where

n = number of data points
t = time

1 =

{
1 xi ≤ t
0 otherwise

This can be thought of as taking a 1/n step at each of the n data points to create a stair-
case looking plot like Figure 5.5. For each of the 146 events the empirical distribution was
plotted against a chi-squared distribution with n, ν̂SC and ν̂ degrees of freedom. All of the
plots showed that |η̃(ω)|2 was definitely not chi-squared with n, ν̂SC or ν̂ degrees of free-
dom. Because it was so obvious from the plot, there was no point displaying the results of
the Kolmogorov-Smirnov test which produced p-values of zero (5dp) for all degrees of free-
dom. Therefore there is no need to explain or proceed with the randomisation test. Instead
a few of these plots are presented along with some comments.

Figures 5.6, 5.7 and 5.8 show plots for a grade 1, 2 and 3 event respectively. Each plot
shows the empirical distribution plotted against a chi-squared distribution with ν̂ degrees
of freedom (top plot). Since the plots with ν̂SC and n degrees of freedom look the same they
are not displayed. The bottom left shows the windowed noise component η(t) while the
bottom right plot shows |η̃(ω)|2 up to the Nyquist frequency. All three figures consist of a
chi-squared distribution with a jump that appears to be soon after zero. This is because the
range of x is so incredibly large, which gives the illusion of the of the chi-squared variable
having a cumulative distribution of 1 soon after x = 0. We applied a 4-10Hz band pass filter
to our data so there is a large amount of power inside this range, which attenuates rapidly
outside this range (bottom right plot). The bottom left plot shows the noise in the time
domain. There appears to be too much structure here to be Gaussian noise.
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Figure 5.6: Grade 1 event - plots of the empirical distribution, the windowed noise in the
time domain and the squared modulus fast Fourier transform of the windowed noise up to
the Nyquist frequency

0 10000 20000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical Distribution of the Scaled Squared Modulus FFT of Noise

x=|η(ω)|2 σ2

F
n(

x)

data
chi−squared

−
40

−
20

0
20

40
60

Windowed Part of the Noise

Time (seconds)

η(
t)

3.88 4.14 4.39 0 10 20 30 40 50

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Squared Modulus FFT of the Noise 

Frequency (Hertz)

|η
(ω

)|
2

Figure 5.7: Grade 2 event - plots of the empirical distribution, the windowed noise in the
time domain and the squared modulus fast Fourier transform of the windowed noise up to
the Nyquist frequency.
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Figure 5.8: Grade 3 event - plots of the empirical distribution, the windowed noise in the
time domain and the squared modulus fast Fourier transform of the windowed noise up to
the Nyquist frequency.
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Max power - windowed noise Max power - background noise
Min 3,112,000 19,440
LQ 18,800,000 132,800

Median 77,230,000 337,400
Mean 400,200,000 846,500
UQ 320,500,000 808,600
Max 17,280,000,000 905,3000

Table 5.1: Summary statistics of the maximum amplitude for the two types of noise.

5.2.2 Comparison to Background Noise

The chi-squared assumption clearly does not hold so the errors produced by the Silver and
Chan (1991) method are not valid. Our previous findings suggested that there was too much
structure in the windowed noise for it to be Gaussian noise. We finish this section by com-
paring the noise from the window, to noise on the east component before the S wave arrival
(background noise) to see if the two have a similar structure. Our background noise consists
of a sample of the data prior to the P-wave and event start time. We compare the windowed
noise to this to see if they have a similar frequency content and amplitudes. To do this we
look at six power plots and create summary statistics for all events. The plots of the win-
dowed noise are constructed with 27 points of data up to the Nyquist frequency. The plots
of the background noise are constructed with 175 points up to the Nyquist frequency. The
background noise consists of more points so the fluctuations are more visible compared to
the windowed noise which has a smooth looking power plot. Figures 5.9 and 5.10 show
power plots for grade 1 events, Figures 5.11 and 5.12 show power plots for grade 2 events
and Figures 5.13 and 5.14 show power plots for the grade 3 events. Both types of noise
consist of filtered (4-10Hz) data so the power attenuates rapidly outside this range. In all
the plots there is a large spike near the lower frequencies because of the filter, but the am-
plitudes for the windowed noise are much larger so it is clear that there is more power in
the windowed noise than in the background noise. This could be caused by some sort of
coherent signal contained in the windowed noise - possibly S wave power from scattered
rays. Table 5.1 summarises the maximum amplitude for both the windowed noise and the
background noise. The different mean and medians highlight that the distribution of maxi-
mum power for both types of noise is skewed. The table reconfirms that the power is a lot
larger for windowed noise than the background noise with the medians differing by a factor
of roughly 200.
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Figure 5.9: Power of the windowed noise and background noise for a grade 1 event.
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Figure 5.10: Power of the windowed noise and background noise for another grade 1 event.

127



0 10 20 30 40 50

0.
0e

+
00

2.
0e

+
06

4.
0e

+
06

6.
0e

+
06

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07

1.
4e

+
07

Power of the windowed noise

Frequency (Hertz)

P
ow

er

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00

Power of the background noise before the event

Frequency (Hertz)

P
ow

er

Figure 5.11: Power of the windowed noise and background noise for a grade 2 event.

0 10 20 30 40 50

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

Power of the windowed noise

Frequency (Hertz)

P
ow

er

0 10 20 30 40 50

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Power of the background noise before the event

Frequency (Hertz)

P
ow

er

Figure 5.12: Power of the windowed noise and background noise for another grade 2 event.
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Figure 5.13: Power of the windowed noise and background noise for a grade 3 event.
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Figure 5.14: Power of the windowed noise and background noise for another grade 3 event.
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5.3 Test 3: Reliability of the Standard Errors

The final test is designed to see how reliable the (standard) errors obtained from the Silver
and Chan (1991) method are. This is done by creating plots of these errors and marking on
these plots three different measures of spread.

Figure 5.15, 5.16 and 5.17 contain examples of the plots. Each shows a histogram of the
corresponding standard errors obtained for each estimate and the corresponding parameter
estimates. The top left diagram shows the standard errors based on the Silver and Chan
(1991) method for the fast direction, bottom left are the fast direction estimates (ϕ̂), top right
are the standard errors based on the Silver and Chan (1991) method for the delay time,
bottom right are the delay time estimates (δ̂t). On each of the two standard error diagrams
there are three vertical lines corresponding to three different measures of spread. The three
measures are listed below. An explanation of what to expect if the errors are reliable is given
after the measures are described.

1. The dashed blue line represents the median of the standard errors i.e.
median

(
ŜE(ϕ1), . . . , ŜE(ϕn)

)
and median

(
ŜE(δt1), . . . , ŜE(δtn)

)
2. The solid red line represents the standard deviation of the parameter estimates, which

are displayed at the bottom of each figure
i.e. SD(ϕ̂1, . . . , ϕ̂n) and SD(δ̂t1, . . . , δ̂tn)

3. The dash-dot yellow line represents a robust estimate of the standard deviation of the
parameter estimates based on the interquartile range i.e.
SDIQR = (UQϕ̂ − LQϕ̂)/(2 × .6745) and SDIQR = (UQδ̂t − LQδ̂t)/(2 × .6745) (see Equa-
tions 5.6 and 5.7 plus the explanation below)

The solid red line (measure 2: SD(ϕ̂1, . . . , ϕ̂n) and SD(δ̂t1, . . . , δ̂tn)) will give us an idea of the
spread of the estimates ϕ and δt. The more dispersed they are, the higher the SD. The blue
dashed line (measure 1: median

(
ŜE(ϕ1), . . . , ŜE(ϕn)

)
and median

(
ŜE(δt1), . . . , ŜE(δtn)

)
)

will give us an idea of what the Silver and Chan (1991) method believes the errors are.
If the SC errors have been calculated correctly then you would expect the solid red (measure
2) and dashed blue lines (measure 1) to be close together.

If the distribution of the estimates is skewed then the standard deviation of the parameter
estimates (solid red line) may be unfairly large, making the Silver and Chan (1991) estimates
of the errors appear worse than they actually are. In order to overcome this problem, another
standard deviation, robust to skewness and outliers, is calculated based on the interquartile
range (IQR). The interquartile range shows how spread out the middle 50% of the data are
and is calculated by using the upper (UQ) and lower quartiles (LQ) (see Figure 5.18).

IQR = UQ − LQ (5.6)
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The mid section boundaries correspond to a standard deviation of ±0.6745σ (Figure 5.18).
Using this we can calculate the standard deviation based on the IQR as

IQR = 2 × 0.6745σ

σ ≃ IQR
2 × 0.6745

σ ≃ (UQ − LQ)

(2 × 0.6745)
(5.7)

Now that we have detailed explanations of each measure of spread we can expand on
how this test works. The test looks at the reliability of the errors by comparing the regular
standard deviation (measure 2) of the estimates to the standard errors of the estimates (mea-
sure 1). If the two values represented are the same, then the errors obtained from the Silver
and Chan (1991) method are unbiased. If the standard deviation (measure 2 - the solid red
line) exceeds the median standard error (measure 1 - the dashed blue line) then the Silver
and Chan (1991) errors have been underestimated. If the standard errors exceed the stan-
dard deviation then the Silver and Chan (1991) method has overestimated the errors. If the
IQR standard deviation (measure 3 - dash-dot yellow line) is significantly larger than the
standard deviation (measure 2 -solid red line) then the standard deviation may be unfairly
too large.

A total of three Figures have been created. Figure 5.15 shows the standard errors when
grading has been ignored. The last two Figures 5.16 and 5.17 show the standard errors when
they are grouped into usable results (grades 1, 2 and 3) and unusable results (grades 4 and
5) respectively. Numerical values of the three measures of spread are in Table 5.2. Some
general observations are made

• In Figure 5.15 both dashed blue lines (measure 1) and both solid red lines (measure 2)
are quite far apart. This indicates that when grades are ignored both the errors for the
fast direction and the delay time have been underestimated by the Silver and Chan
(1991) method by a factor of roughly 2. However, this could be caused by the poorer
grade results being quite different from the high quality grades. The yellow dash dot
line is not similar to the solid red line so the two types of standard deviations differ.
The plots of the estimates are skewed, confirming this.

• In Figure 5.16a, which only displays the usable grades 1 2 and 3, the solid red (measure
2) and dashed blue lines (measure 1) are indistinguishable so the fast direction error
estimates from Silver and Chan (1991) are consistent with the spread of the estimates
The dash-dot yellow line (measure 3) also agrees with these two measures. On the
other hand, Figure 5.16b has the dashed blue (measure 1) and solid red lines (measure
2) far apart. The delay time estimates themselves (Figure 5.16d) are clearly bimodal
with a mix of grades in each cluster, which would explain the large regular standard
deviation. This is most likely caused by the cycle skipping factors discussed in Chapter
4. This effect is not seen in the fast directions because group 1 consists of fast directions
that are between 0-45◦. This bimodal shape is causing the large difference between
the regular standard deviation and the IQR based standard deviation, so the regular
standard deviation may be unfairly large.
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• In Figure 5.17, which displays the unusable grades, the estimates of the errors are very
large compared to usable grades. The solid red line and the dashed blue line are dis-
tinct. The Silver and Chan (1991) method appears to underestimate the fast direction
errors and slightly over estimate the delay time errors. The dashed dot yellow line and
the solid red line are distinct, which is reflected in the skewed plots in Figures 5.17c
and 5.17d.

Finally, Table 5.2 summarises the three measures of spread shown in the three figures. The
table shows that the usable grades have fast directions errors that are fairly similar to the
spread of the parameter estimates. However, the delay times errors are different, which is
caused by the cycle skipping. The standard deviation and the IQR based standard deviation
are slightly different. This highlights the skewed distribution of parameter estimates.
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Events Median error Standard deviation IQR Standard deviation
All ϕ 10.62 24.22 10.75
All δt 0.02 0.05 0.02
Usable (1,2,3) ϕ 8.75 8.80 9.27
Usable (1,2,3) δt 0.01 0.03 0.04
Unusable (4,5) ϕ 33.25 44.37 15.57
Unusable (4,5) δt 0.09 0.08 0.06

Table 5.2: Comparison of median standard errors to a regular standard deviation and a
standard deviation based on the interquartile range. All values rounded to 2dp.
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Figure 5.18: Diagram illustrating the relationship between the interquartile range and the
standard deviation. Vertical dash dot lines denote the lower and upper quartiles.

5.4 Summary

To summarise, our simulations in Section 5.1 show that our bn coefficients produce an un-
biased estimate of the degrees of freedom for large smoothing widths i.e. large amounts
of correlation. On the other hand, the Silver and Chan (1991) code an coefficients produce
a negatively biased estimate of the degrees of freedom for large smoothing widths. In the
case when the errors are uncorrelated our coefficients produce an unbiased estimate while
the Silver and Chan (1991) code coefficients produce a positively biased estimate of the de-
grees of freedom. If the amount of correlation between data points in the power was known,
then comments about which coefficients were more appropriate could be made.
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Our diagnostic plots from Section 5.2 reveal that assumptions used to generate the degrees
of freedom and consequently the errors do not hold. Therefore the windowed noise is not
Gaussian and therefore the sum of squares S(ϕ, δt) (Section 2.7) used to construct the degrees
of freedom does not follow a chi-squared distribution (which is the sum of squared standard
normal variables (Appendix A.5)). There appears to be too much structure in the signal. We
also find the structure of the noise is quite different to background noise. The power of the
windowed noise is significantly larger than the power of the background noise, suggesting
that the windowed noise still contains some coherent signal possibly from scattering.

Even though the assumptions used to generate the errors do not hold, our last set of
diagnostic plots from Section 5.3 reveal that for good quality events, the fast direction errors
from the Silver and Chan (1991) method (using the an coefficients) match the spread of the
fast direction estimates. However, the delay time errors from the Silver and Chan (1991)
method appear to be too small. This is probably caused by the bimodal delay time estimates
that have been caused by cycle skipping.
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Chapter 6

Conclusions and Future Directions

In this thesis we have performed a detailed analysis of the Silver and Chan (1991) method
that is used to measure shear wave splitting. We find that there are discrepancies between
our derivations, the Silver and Chan (1991) article and the Silver and Chan (1991) computer
codes. Sign conventions as well as the need to write things in a more compact form have
led to discrepancies in the article (see Table 2.2). Errors have been found in the original
codes such as the covariance matrix being calculated incorrectly. Consequently there may
be minor differences in the splitting parameters if this bug was corrected. More importantly,
the fourth moment of the power (E4), which is used to calculate the degrees of freedom
and consequently estimates of the errors, has been incorrectly derived and also incorrectly
implemented. Therefore, the estimates of the errors produced by the Silver and Chan (1991)
method should be treated with caution.

We have also automated the manual grading process by creating numerical criteria that an
expert grader used to classify events and incorporate them into a multiple linear regression
model. We find that the automated method works well and that the automated grades
are consistent with the manual grades with most of the automated grades being no more
than 1 grade away from the manual grade. Using a cutoff automated grade of 3 captures
most of the good grades and only a couple of the bad grades. The automated method was
also able to identify incorrect manual grades by producing large discrepancies between the
automated and manual grades. Our dataset does not contain any null measurements so we
did not incorporate null detection into our automated method.

Additionally, we have explored the effects of cycle skipping. Jumps in delay times and fast
directions for our set of near identical events is indicative of cycle skipping. Further analy-
sis shows that cycle skipping also has an effect on the incoming polarisation. Consequently,
inferences about the fault geometry based on the Silver and Chan (1991) incoming polarisa-
tion may be incorrect. Also, the classification of null events could be incorrect because the
incoming polarisation is often used to determine null measurements.
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We also test some of the assumptions behind the Silver and Chan (1991) method and in-
vestigate whether the degrees of freedom are unbiased and what effect this has on the errors
themselves. Our simulations in Section 5.1 show that our bn coefficients produce an unbi-
ased estimate of the degrees of freedom for large smoothing widths. On the other hand,
the Silver and Chan (1991) code coefficients (an) produce a negatively biased estimate of the
degrees of freedom. In the case of Gaussian noise, our coefficients produce an unbiased esti-
mate while the Silver and Chan (1991) code coefficients produce a positively biased estimate
of the degrees of freedom. If the amount of correlation between data points in the power
was known, then comments about which coefficients were more appropriate could be made.

Our second test in Section 5.2 reveal that assumptions used to generate the degrees of
freedom and consequently the errors do not hold. Therefore the windowed noise is not
Gaussian and therefore the sum of squares S(ϕ, δt) (Section 2.7) used to construct the degrees
of freedom does not follow a chi-squared distribution (which is the sum of squared standard
normal variables (Appendix A.5)). There appears to be too much structure in the signal. We
also find the structure of the noise is quite different to background noise. The power of the
windowed noise is significantly larger than the power of the background noise suggesting
that the windowed noise still contains some coherent signal possibly from scattering.

Even though the assumptions used to generate the errors do not hold, our last set of
diagnostic plots from Section 5.3 reveal that for good quality events, the fast direction errors
from the Silver and Chan (1991) method match the spread of the fast direction estimates.
However, the delay time errors from the Silver and Chan (1991) method appear to be too
small. Although, this could be caused by the bimodal delay time estimates that have been
caused by cycle skipping.

As indicated by the concluding statements, this thesis has made many new discoveries.
However, there is still room for improvement and other areas to explore. For instance, the
automated grading produces a grade for a single event. Other automated programs such as
Mfast (Teanby et al. (2004a), Wessel (2010), Savage et al. (2010)) do grading using a combi-
nation of individual events and clustering (see Section 1.3.3). One could use our automated
method to determine the clusters or explore an automated system that utilises both. With
regard to our automated method, it would also be useful to test it on a less homogeneous
dataset that has been manually graded. It would be interesting to see whether it can predict
the manual grades of a non-homogeneous dataset and how much the regression coefficients
and model change by when another dataset is used. Incorporating criteria to detect null
measurements would also be beneficial.

We conducted an analysis of the errors produced by the Silver and Chan (1991) method.
The assumptions did not hold so the errors from the Silver and Chan (1991) method and
other variants (e.g. Wolfe and Silver (1998)) can not be trusted. Finding a more reliable
method of calculating the errors would be beneficial.
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To conclude, we have provided the first in-depth analysis of the Silver and Chan (1991).
Our research shows that the estimates of the errors are not correct and the assumptions
behind them do not hold. This highlights the need for a new method of estimating the
errors of shear wave splitting parameters.
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Glossary

AIC Akaike information criterion, which is a measure of how well a model fits the data. 12,
88

aliasing an effect where two different signals become indistinguishable because one of them
has not been sampled enough. 48

anisotropic medium a medium that possesses anisotropy. 2, 17

anisotropy dependence on direction. 2, 17, 109

ANOVA a statistical test for whether a group of means are all equal or at least one mean
differs. 44

back azimuth measured from a seismometer, the clockwise angle between North and the
source of seismic energy. 8, 31

background noise noise contained in the wave signal caused by external factors such as the
wind or the ocean. 9, 126

band pass filter filter that allows frequencies within a certain band to pass through. 10, 63,
123

BOR seismic station on Reunion Island. 61

chi-squared distribution statistical ditribution that is defined by a sum of squared standard
normal variables and has a single parameter called the degrees of freedom. 43, 111

coherency amount of correleation (as determined by the cross correlation function) between
two time series at each frequency. 62

contourLines() an R function that calculates the contour lines of a data set and can also
calculate contour lines for a particular level. 72

convolution a function that transforms two separate functions into a new single function at
different lag times between the function. 8, 46, 111

Cook’s Distance a measure of whether particular observations are influencing the regres-
sion analysis. 95

covariance measure of how two variables vary together. 7, 36, 65, 139

cross correlation method shear wave splitting method where the correlation between two
components is maximised. 5
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cycle skipping an error in the shear wave splitting parameters caused by matching the
wrong peak of the wave form or a peak with a trough, which leads to a cycle being
skipped. 10, 66, 101, 137, 139

damping reduction of the ampltidues of a signal. 10

delay time the time separation between the fast and slow wave components. 5, 20, 65, 101,
130, 139

DFBETA measure of how much influence observations have on the coefficients of the mul-
tiple linear regression model. 96

eigenvalue method shear wave splitting method where the best parameters are found by
minimising the smaller eigenvalue of the corrected covariance matrix of two orthogo-
nal components. 5

empirical distribution step function that is the cumulative distribution (a function that de-
scribes the probabilities) of the sample. 122

F test a statistical test where the test statistic has an F distribution if the null hypothesis is
true. 8

fast direction the direction in an anisotropic medium where the waves velocity is the fastest.
Technically, it is an orientaiton or a polarisation but informally it is referred to as a di-
rection. 5, 17, 61, 101, 130, 139

fitted values an output value produced by a model (in this thesis the multiple linear regres-
sion). 88

focal mechanism the geometric representation of the fault slip during an earthquake. 7, 11,
109

Fourier transform a transform that converts a function in the time domain to a function in
the frequency domain. 47, 112

Gaussian noise random uncorrelated noise. 8, 58, 111, 112

hat matrix a matrix that maps the observed data to the fitted values under the linear model.
92

Hooke’s law a rule relating force and displacement for elastic materials. 19

hypothesis test process of testing a claim about a parameter based on the sample. 93

in.out() an R function that returns true if a point is inside a polygon which is determined
by using the even odd rule. 76

incoming polarisation orientation of particle motion before the wave passes through an
anisotropic medium. 4, 101, 139

influential point observation that strongly affects the fitted values or the regression coeffi-
cients. 96

interquartile range the middle 50% of the data that is between the lower and upper quar-
tiles. 130
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inverse splitting operator operator that reverses the splitting operation. 7, 24

isotropic medium a medium where velocities are independent of direction. 2, 16

jackknife residual a residual where the function that provides an estimate of the observa-
tion is based not on the entire data set but the data set with one observation removed
i.e. it is a delete one jackknife. 92

jitter() an R function that adds a small amount of random noise to each observation. 69

Kolmogorov-Smirnov test a nonparametric test that tests whether two distributions are the
same. 121

lattice preferred orientation (LPO) a property of rocks that have a preferred distribution of
the crystallographic axis. 2

leverage point observations that have little effect on the regression coefficients but can in-
fluence the summary statistics. ix, 97

lm() An R function that fits linear models such as multiple linear regression. 88

multicollinearity the occurrence of explanatory variables that are highly correlated. 94

multiple linear regression a model of the linear relationship between a single dependent
variable and multiple explanatory variables. 71, 139

negatively biased phenomenon where an estimator consistently underestimates the pa-
rameter. 116

noise any unwanted component of the signal. 4, 25, 62, 102

null measurement a measurement that cannot detect shear wave splitting because of one of
three reasons: splitting has not occurred or the initial polarisation is parallel to either
the fast or slow direction. 5, 10, 61, 109, 139

Nyquist frequency half the sampling rate. 48, 122

outlier extreme observation in the data set. 94

P wave longitudinal seismic wave, which travels faster than the S wave. viii, 3, 63

p-value the probability of obtaining the text statistic or a more extreme value if the null
hypothesis is true. 89

particle motion movement of particles during wave propagation. 7, 39, 65, 104

positively biased phenomenon where an estimator consistently overestimates the parame-
ter. 58, 116

power rate at which energy is transferred which is u(t) = |u(t)|2 for a signal u(t). 46, 111,
119

predictor a variable used to predict the fitted value. 88
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probability density function a function that shows the relative likelihood of a random vari-
able. 163

qq plot a plot comparing two distributions. If these distributions are the same then the qq
plot lies on a diagonal line. 93

radial horizontal component direction that is parallel but in the opposite direction to the
source-receiver back azimuth. 3, 29

randomisation a process used to induce randomness. 9

regression coefficient the coefficient in front of each explanatory variable (predictor). 88,
140

residual the difference between an observation and the estimate of that observation. 88

rotation matrix a matrix that rotates a coordinate system about an axis by a given angle. 26,
35

S wave transverse seismic wave, which travels more slowly than the P wave. 3, 27, 61, 126

seismometer device that measures ground motions. 1, 29

self-intersecting polygon a polygon that has at least a pair of edges crossing. 76

SH S wave displacements that are horizontal or normal to the plane. 3

Shapiro-Wilk test a statistical test that checks whether the data is normally distributed. 93

shear wave see S wave. 2, 15, 90, 102

shear wave splitting phenomenon where a wave splits when it encounters an anisotropic
medium, creating two roughly orthogonal waves with one travelling faster than the
other. 1, 63, 139

signal to noise ratio a measure of signal strength, the level of the signal relative to the level
of background noise. 62

simple polygon a polygon where none of the edges cross each other. 76

SKKS wave similar to an SKS wave but it bounces off the outer core boundary before it
leaves the core. 4

SKS wave a seismic wave that is initially an S wave but transforms into a P wave as it
passes through the liquid core before returning to an S wave. 4, 43

smoothing width the proportion of points used to create correlations between the data. 112

splitting intensity the ratio of the amplitude of the time component against the time deriva-
tive of the radial component of a seismogram. 8

splitting operator operator that splits a shear wave into two quasi shear waves. 20

splitting parameters the two parameters that define shear wave splitting (the fast direction
and the delay time). 5, 15, 74, 103

standard deviation measure of the spread of the data. 99, 112
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standard error standard deviation of an estimate. 43, 89, 111

stepwise regression the process of selecting a multiple regression model, which is done
iteratively by selecting a new explanatory variable or removing one on each iteration.
89

summary statistics statistics that summarise a dataset, for example the standard deviation.
95, 126

SV S wave displacement that is in the vertical plane and also the horizontal projection of b̂.
3

transverse horizontal component that is perpendicular to the radial direction. 3, 29

transverse minimisation method shear wave splitting method that finds the best parame-
ters by minimising the energy on the transverse component. 5

trapezoidal rule a numerical integration method that approximates the area under a curve
by summing up the area of small trapezia. 49, 164

window the section of data used for analysis that contains the shear wave. 5, 46, 63, 121
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List of Symbols

k anisotropy coefficient

x point along the x axis

η2(t) power of the noise

f (t) filter in the time domain

fn filter in the time domain indexed by the number of points

g(t) Gaussian noise in the time domain

gn Gaussian noise in the time domain indexed by the number of points

σ2 variance of the Gaussian noise process

·̃(ω) fast Fourier transform (fft) of ·

c constant

g̃∗(ω) complex conjugate of the fft of g(t)

fs sampling frequency

f frequency

N total number of data points

⟨E⟩ first moment of the power

⟨E2⟩ second moment of the power

⟨z4⟩ fourth moment of a standard normal variable

an coefficients to calculate the second moment of F and E

bn coefficients to calculate the fourth moment of E

bSC
n Silver and Chan coefficients to calculate the fourth moment of E

ν̂ estimate of the degrees of freedom ν based on bn coefficients

ν̂SC estimate of the degrees of freedom ν based on an coefficients

δE2 a variable related to E2 and its mean with an expected value of zero

ω angular frequency
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δE4 a variable related to E4 and its mean with an expected value of zero

CXY coherency between x and y

GXY cross spectral density between x and y

G·· auto spectral density of ·

T2 analysis window start time

T3 analysis window end time

T0 shear wave arrival time

p Mfast symbol for what we call p̂

p ⊥ Mfast symbol for what we call â

spol Mfast symbol for what we call α

t point in time

ϕ̂ estimate of the bearing fast direction

δ̂t estimate of the delay time

α̂ estimate of the incoming polairsation

GC· grading criteria ·

Ac number of points in the corrected particle motion polygon

uwpc windowed corrected p̂ component

λmax
2 largest second eigenvalue

195CR indicator function for the 95% confidence region

rms root mean square

uwac windowed corrected â component

i imaginary number, i2 = −1

uiac corrected â component before the window

β0, · · · , βp regression coefficients

Ŷi automated grades

Xi grading criteria

Yi manual grades

ϵ normally distributed error term

ei residuals

AIC Akaike Information Criterion

p number of preditors (grading criteria)
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r(−i) jackknife residual

u(ω) isotropic shear wave vector

MSE mean squared error

H hat matrix

κ constant

Di Cook Distance

ŷk fitted values for observation k

ŷk(i) fitted values for observation k when observation i is removed

β̂ j(i) jth regression coefficient when obseration i is removed

cjj jth diagonal of (XTX)−1

x̂1 eigenvector corresponding to the eigenvalue λ1

δtCS cycle skipped delay time

A(ω) complex amplitude vector

T dominant period

w smoothing width in seconds

rj scaled degrees of freedom for the jth replicate

nrep number of replicates

SE standard error

SD standard deviation

LQ lower quartile

UQ upper quartile

IQR interquartile range

Φ Euler angles

w(ω) norm of the amplitude with angular frequency ω

G Gaussian function

T0 time at which the wave arrives at the surface

b̂ propagation vector

vmax velocity of the shear wave along the fast direction

p̂ polarisation vector

â null vector

P propagation coordinates [p̂âb̂]
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f̂ fast direction

ŝ slow direction

S splitting coordinates [f̂ŝb̂]

σij stress tensor

cijkℓ elastic moduli

ϵkℓ strain tensor

ρ density

vmin velocity of the shear wave along the slow direction

Viℓ polarisation vector

Cijkℓ elastic coefficients

bj jth component of the propagation vector b̂

bk kth component of the propagation vector b̂

v1 velocity of the faster travelling wave

v2 velocity of the slower travelling wave

t1 time it takes the faster travelling wave to reach the surface

t2 time it takes the slower travelling wave to reach the surface

L the length of the path the wave has travelled

β0 shear wave velocity in an isotropic medium

v̄ average velocity

δβ1 increase in speed relative to β0

δβ2 decrease in speed relative to β0

δζ unitless relative velocity

Γ splitting operator

δT time difference tensor

us(ω, t) split shear wave

ũ(ω, t) corrected shear wave

Γ−1 inverse splitting operator

Γ† complex conjugate transpose of Γ

Ri(·) rotation matrix at angle · anticlockwise around the ith axis

ϕ fast direction
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UXC matrix of unit vectors of frame C explained in the coordinate system X

C3 shift matrix to convert geographic coordinates into bearing coordinates

t̂ transverse component

q̂ component orthogonal to t̂ and b̂

E emerging ray coordinates [q̂t̂b̂]

θ angle between p̂ and q̂

r̂ radial component

ẑ vertical component

R ray planar coordinates [r̂t̂ẑ]

i angle between b̂ and ẑ

δt delay time

ê east component

n̂ north component

G geographical coordinates [ên̂ẑ]

b angle between ê and r̂

d̂ downwards component d̂ = −ẑ

B bearing coordinates [q̂t̂b̂]

δ̂1 column vector [100]T

δ̂2 column vector [010]T

δ̂3 column vector [001]T

W(ω, t) w(ω) exp(−iωt)

u(x, t) wave amplitude at time t and position x

W+ W(ω, t + δt/2)

W− W(ω, t − δt/2)

[r̂1 r̂2 r̂3] alternative symbols for [r̂t̂ẑ]

D diagonal matrix with entries exp(iωδt/2) exp(−iωδt/2) and 1

∆ii diagonal time shift matrix

ϕb bearing fast direction, clockwise angle between n̂ and f̂

α bearing polarisation, clockwise angle between n̂ and p̂

β bearing back azimuth, clockwise angle between n̂ and r̂ + 180◦

u1 fast wave
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u2 slow wave

A maximum amplitude of the wave

c covariance matrix

⟨·⟩ expected value of ·

λ1 largest eigenvalue

λ2 smallest eigenvalue in the 2D case

λ3 smallest eigenvalue in the 3D case

S(ϕ, δt) sum of squares

λ2(ϕ, δt) smallest eigenvalue for each pair of ϕ and δt

n number of data points/events

Smin(ϕ, δt) minimum value of the sum of squares

χ2 chi-squared distribution

k wave number

SSG sum of squares for the group

SSE sum of squared errors

SST total sum of squares

k degrees of freedom = number of splitting parameters = 2

F1−α
k,n−k inverse F distribution with k and n − k degrees of freedom

λ95CR
2 second eigenvalue corresponding to the boundary of the 95% confidence region

λmin
2 smallest second eigenvalue

ν reduced degrees of freedom

E power

T period
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Appendix A

Useful Definitions and Results

A.1 Matrix Exponential

The definition of a matrix exponential of a square matrix A is

exp(A) = Σ∞
k=0

Ak

k!
where A0 ≡ I (A.1)

A useful property of the matrix exponential is that

exp(A) exp(B) = exp(A + B) (A.2)

if AB = BA i.e. if the matrices commute.

A.2 Why f̂f̂T + ŝŝT = I in 2D

Theorem A.2.1. If f̂ is defined as

f̂ =
[

cos ϕ
sin ϕ

]

and f̂ · ŝ = 0 then
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ŝ =

[
− sin ϕ
cos ϕ

]

Proof.

ŝ =

[
a
b

]

We know that ŝ is a unit vector so ∥ŝ∥ = 1 and a2 + b2 = 1. Since ŝ and f̂ are orthogonal
their dot product is zero

ŝ · f̂ = 0 = a cos ϕ + b sin ϕ

= a cos ϕ +
√

1 − a2 sin ϕ rearrange and substituting a2 + b2 = 1

−a cos ϕ =
√

1 − a2 sin ϕ

a2 cos2 ϕ = (1 − a2) sin2 ϕ

a2(cos2 ϕ + sin2 ϕ) = sin2 ϕ

a2 = sin2 ϕ sin2 ϕ + cos2 ϕ = 1
a = ± sin ϕ

⇒ b = ±
√

1 − a2 = ± cos ϕ (A.3)

If a = − sin ϕ then

b sin ϕ = −a cos ϕ

= sin ϕ cos ϕ

⇒ b = cos ϕ (A.4)

f̂f̂T + ŝŝT =

[
cos ϕ
sin ϕ

] [
cos ϕ sin ϕ

]
+

[
− sin ϕ
cos ϕ

] [
− sin ϕ cos ϕ

]
=

[
cos2 ϕ cos ϕ sin ϕ

sin ϕ cos ϕ sin2 ϕ

]
+

[
sin2 ϕ − sin ϕ cos ϕ

− cos ϕ sin ϕ cos2 ϕ

]
=

[
1 0
0 1

]
= I (A.5)

The above explains the case for two dimensions. More generally, if R = û1, · · · , ûm is an
m × m matrix of orthogonal unit vectors then

RTR =

 ûT
1

· · ·
ûT

m

 [ûT
1 · · · ûT

m

]
= (ûT

i ûj) = I (A.6)
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and it follows that

RRT =
[
ûT

1 · · · ûT
m

]  ûT
1

· · ·
ûT

m

 = (ûiûT
j ) = I (A.7)

See Strang (2003) for more details.

A.3 Rotation with Euler Angles

A rotation matrix can perform a rotation using three Euler angles (Φ = (ϕ, θ, ψ)) to describe
a 3D rotation, where

0 ≤ ϕ ≤ 2π

0 ≤ θ ≤ π

0 ≤ ψ ≤ 2π

The rotations are shown in Figure A.1 using a zyz right handed system convention (Mason,
2001)

z z’
z’z’’

x
x’

y

y’

x’x’’

y’
y’’

z’’ z’’’

x’’’x’’

y’’

y’’’

ϕ

θ

ψ

Figure A.1: Diagram showing how to rotate a coordinate system using zyz right hand con-
vention.

The diagram illustrates an anticlockwise rotation by ϕ about the z axis, then an anticlockwise
rotation by θ about the y′ axis and finally an anticlockwise rotation by ψ about the z′′ axis
hence the name zyz convention.

This rotation can be expressed with the following matrix using the same notation that is
in Section 2.5.2

161



R(Φ) = R3(ϕ)R2(θ)R3(ψ) = cos ϕ cos θ cos ψ − sin ϕ sin ψ − cos ψ sin ϕ − cos ϕ cos θ sin ψ cos ϕ sin θ
cos ϕ sin ψ + cos θ cos ψ sin ϕ cos ϕ cos ψ − cos θ sin ϕ sin ψ sin ϕ sin θ

− cos ψ sin θ sin θ sin ψ cos θ


In special cases such as a vertically travelling ray (θ = 0 or θ = π) the rotation matrix sim-

plifies.

A.4 Proof that the Trace is Invariant in the 2D Problem

Recall that
cov(ũ(ω, t)) = UXS (cov(DUXSus(ω, δt))UT

XS (A.8)

where UXS = [f̂ŝb̂]. The covariance matrix has the variances down the main diagonal and
the covariances off the diagonal. The trace of a matrix is the sum of the elements down the
main diagonal therefore

tr [cov(ũ(ω, t))] = tr
[
UXS (cov(DUXSus(ω, δt))UT

XS

]
= tr

[
(cov(DUXSus(ω, δt))UT

XSUXS
]

= tr [(cov(DUXSus(ω, δt))] (Equation 2.34)

= ∑
i

var ([DUXSus(ω, δt)]ii)

= ∑
i

var
([

Diiδ̂ius(ω, δt)
]

ii

)
(where [δ̂1δ̂2δ̂3] = [f̂ŝb̂])

= ∑
i

var
([

δ̂i
TDiius(ω, δt)

]
ii

)
= ∑

i

(∫ ∞

−∞
[δ̂i

TDiius(ω, δt)]2dt −
[∫ ∞

−∞
δ̂i

TDiius(ω, δt)dt
]2
)

(A.9)

Dii is a time shift operator. Since we are integrating over all of t we can drop this term. This
is the change of variable technique mentioned in Section 2.6. Simplifying yields,

tr [cov(ũ(ω, t))] = ∑
i

(∫ ∞

−∞
[δ̂i

Tus(ω, δt)]2dt −
[∫ ∞

−∞
δ̂i

Tus(ω, δt)dt
]2
)

= ∑
i

var
(
δ̂i

Tus(ω, δt)
)

= tr
[
cov(UT

XSus(ω, δt)
]

= tr
[
UT

XScov (us(ω, δt))UXS
]

= tr
[
cov (us(ω, δt))UXSUT

XS

]
= tr [cov (us(ω, δt))UXX ]

= tr [cov (us(ω, δt)) I]
= tr [cov (us(ω, δt))] (A.10)
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The final term has the covariance of the split wave rather than the corrected wave. This
does not involve the time shift matrix or the the splitting coordinate system S so the trace is
invariant with respect to changes in ϕ and δt.

A.5 Relationship between Gamma, Chi-squared and Exponential
Distributions

The gamma distribution has the probability density function

f (x; k, θ) =
1

θkΓ(k)
xk−1e−x/θ x ≥ 0 (A.11)

where

k = a positive value that defines the shape of the distribution
θ = a positive value known as the scale parameter

The chi-squared distribution has the probability density function that depends on the pa-
rameter ν also known as the degrees of freedom.

f (x; ν) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2 x ≥ 0 (A.12)

so it is a special case of the gamma distribution with k = ν/2 and θ = 2. The sum of k
squared standard normal variables is also chi-squared with k degrees of freedom. In other
words,

X =
k

∑
i=1

Z2
i ∼ χ2

k (A.13)

When the degrees of freedom are 2 the chi-squared distribution is equivalent to an exponen-
tial with θ = 2 = 1/λ where λ is the rate parameter.

f (x; ν) =
1

(1/λ)2/2Γ(2/2)
x(2/2)−1e−x/(1/λ) x ≥ 0

=
λ

Γ(2/2)
e−λx x ≥ 0 (A.14)

For integers the gamma function can be evaluated as Γ(n + 1) = n! so Γ(1) = 1 and we
obtain the probability density function of the exponential

f (x; λ) = λe−λx x ≥ 0 (A.15)
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therefore the exponential distribution is also a special case of the gamma distribution with
k = 1 and θ = 1/λ.

A.6 Trapezoidal Rule

The trapezoidal rule is a numerical integration technique used to approximate a definite
integral

∫ b
a f (x)dx by summing up the area of N − 1 trapezia all with equal width w = b−a

N−1 .
Figure A.2 illustrates this.

...

...

...

...x1 x2 x3 xN−2xN−1 xN

fn
fn+1

xn xn+1

A =
N−1
∑

n=1
An

An = 1
2 × ( fn+1 + fn)(xn+1 − xn)

Figure A.2: Diagram illustrating the trapezoidal rule. The area A under the solid curve is
approximated by summing up the area of the An trapezia.

The approximation is given by

∫ b

a
f (x)dx ≈ 1

2

[
N−1

∑
i=1

w( f (xi+1 + f (xi))

]
(A.16)

where w is the width of the trapezia. If the trapezia are not of equal width then the area can
be approximated by

∫ b

a
f (x)dx ≈ 1

2

[
N−1

∑
i=1

(xi+1 − xi)( f (xi+1 + f (xi))

]
(A.17)
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