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Abstract

Freshly created objects are a blank slate: their mutable state and their constant
properties must be initialised before they can be used. Programming languages
like Java typically support object initialisation by providing constructor methods.
This thesis examines the actual initialisation of objects in real-world programs to
determine whether constructor methods support the initialisation that program-
mers actually perform. Determining which object initialisation techniques are
most popular and how they can be identified will allow language designers to
better understand the needs of programmers, and give insights that VM design-
ers could use to optimise the performance of language implementations, reduce
memory consumption, and improve garbage collection behaviour.

Traditional profiling typically either focuses on timing, or uses sampling or
heap snapshots to approximate whole program analysis. Classifying the be-
haviour of objects throughout their lifetime requires analysis of all program be-
haviour without approximation. This thesis presents two novel whole-program
object profilers: one using purely class modification (#prof), and a hybrid ap-
proach utilising class modification and JVM support (rprof). #prof modifies pro-
grams using aspect-oriented programming tools to generate and aggregate data
and examines objects that enter different collections to determine whether cor-
relation exists between initialisation behaviour and the use of equality operators
and collections. rprof confirms the results of an existing static analysis study of
field initialisation using runtime analysis, and provides a novel study of object
initialisation behaviour patterns.
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Chapter 1
Introduction

Objects, at the heart of the object-oriented paradigm, are fundamentally about
modelling the world, breaking down complex problems into simple building
blocks then combining them again to form complex systems. Unlike the world
they mimic, objects in programming languages are not persistent. The chair you
are sitting on is probably constructed from plastics, which are produced from re-
tined oils, which are extracted from crude, which is pumped out of the ground,
where it collected from the decomposed flesh of prehistoric organisms, etc etc
back through billions of years. That particular chair is uniquely identifiable from
all other chairs no matter how similar: they have a different history and different
constituent parts. A typical object in a program has a much smaller timescale.
Programs usually begin by bootstrapping from a clean slate. They request a
chunk of virtual memory and rapidly carve out the chairs and other objects they
need to catch up to the parts of physical world they are modelling. When the
program has constructed sufficient objects to mimic the relevant real world pro-
cesses it can begin performing its primary functions. Program objects do not have
the rich history of real objects and are harder to distinguish than real objects, but
programming languages assign program objects an identity so that they can be
distinguished from all other objects — even if they are identical in every other
way.

After a new object has been allocated programmers must populate it with ini-
tial values for mutable state and establish any constant properties of the object.
Most mainstream languages use constructor methods to initialise the internal state
of new objects. Constructor methods fill in the pertinent details from a real ob-
ject’s history that a virtual object lacks: names, dates, addresses, and preferences
for electric livestock.

Like real objects, program objects have some properties that cannot or typi-
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2 CHAPTER 1. INTRODUCTION

cally do not change; names and types for example. Other properties are mutable
and can change freely; owner, colour, current location. Even though some prop-
erties should never change, programmers need to be able to establish their val-
ues. Java, like many other languages, represents immutable properties of objects
as fixed-value fields — final fields — and permits constructor methods to initialise
them.

Constructors and immutable fields are commonly used ways to initialise ob-
jects and represent constant properties, but they are not the only way to address
this problem as Java enterprise experience shows. The prevalence of abstrac-
tions such as JavaBeans, Dependency Injection frameworks, Factories, FactoryBeans,
and BeanFactorys in enterprise Java shows programmers battling with a lack of
support for creating and persisting objects, and especially with initialising and
configuring large groups of interacting objects.

This thesis examines the runtime behaviour of existing Java programs in an
attempt to discover how Java programmers use Java to create objects, and how
they distinguish between objects. We use runtime analysis to extract patterns of
behaviour from running programs to examine how objects are initialised, how
they are compared, and whether constructors, final fields, and equality methods
are serving the needs of every-day Java programmers. Based on our analysis,
we suggest some alternative language features for future languages and some

potential optimisations that virtual machine authors could make.

1.1 Contributions
This thesis makes the following contributions:

¢ Definitions of observable behaviour patterns that identify the initialisation

of immutable properties.

¢ A study of field and object initialisation behaviour, including confirmation
of the results of an existing static study on field initialisation using runtime

profiling.

¢ A study of the equality initialisation behaviour of classes and objects, espe-

cially in the context of collections.

¢ Two runtime profilers that track and analyse object initialisation behaviour.
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The study of equality initialisation was published in TOOLS 2010 [68], while
the confirmation of field initialisation behaviour was published in Runtime Veri-
fication 2012 [70].

1.2 Organisation

This thesis is organised as follows:

¢ Chapter 2 explores our motivations with this work and surveys the existing

work in this domain.

¢ Chapter 3 defines behaviour patterns for observing and characterising ini-

tialisation.

¢ Chapter 4 presents a runtime profiling tool and a study of 30 different Java
programs to determine how programmers implement object equality and

whether this is related to the data the objects contain.

¢ Chapter 5 presents our design for a more capable tool for profiling running
Java programs to extract and aggregate information about the behaviour of

individual objects.

¢ Chapter 6 presents results obtained using this tool to examine the initial-
isation of fields and of objects in all 15 applications from a standard Java
benchmark suite. It discusses the significance of these results and their im-

plications for object-oriented language designers.

¢ Chapter 7 concludes this thesis with an overview of our results and the

conclusions we draw.
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Chapter 2
Background

This chapter begins with an overview of the work that motivated this thesis be-

fore introducing relevant concepts and related work.

2.1 Object relationships and equality

I began my doctoral studies with a grant to research “First Class Relationships
for Object Oriented Programming Languages”. A rather daunting task set, I be-
gan reading work by Bierman and Wren [12], and Pearce and Noble [80], which
were relatively fresh and exciting when I began my doctoral studies in 2006. I
then worked my way back through several decades of clusters of related work
to find myself reading about the fundamentals of object-oriented programming
and its origins in simulation in the 1960s. To summarise the first few years of my
PhD and its influence on this thesis, this section begins with a whirlwind tour of
relationships and object-oriented programming, then briefly covers my conclu-
sions as a result of this research to motivate this thesis on initialisation and object

profiling.

2.1.1 A brief history of objects, relationships, and identity

Object-oriented programming traces its origins back to simulation languages de-
veloped early in the history of computer science and digital simulation [72]. SIM-
ULA showed how complex systems comprised of many concurrent processes
could be implemented as a single program [32], breaking away from the pre-
vailing programming models by allowing methods to maintain mutable state be-
tween calls. This simple change moved programs away from strict tree structures

to more complex graph structures where data and behaviour was grouped to cre-
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6 CHAPTER 2. BACKGROUND

ate objects, creating the illusion of multiple components. In the process SIMULA
created the concept of identity that has prevailed to this day: objects are located,
exchanged, compared, and ultimately identified by their reference, an abstraction
of their location in memory. Two objects that are equivalent in every way except
their reference can be distinguished using the == operator.

While Nygaard et al. modelled interacting objects, Chen identified that some
systems could be modelled more elegantly using entities and relationships [26].
Entities are composite values that nominate a key value that can distinguish them,
rather than relying on memory location for identity as objects do. Relationships
capture the interactions between entities explicitly, corresponding to the implicit
interactions encoded in the behaviour of object-oriented programs.

Chen’s model was extremely popular, eventually evolving into the relational
databases that dominate data storage, while SIMULA's success at modelling col-
laborative behaviour has lead to the object-oriented paradigm dominating com-
mercial software development for several decades. The conflict between entities
distinguished by keys and objects distinguished by memory location, and ex-
plicit relationships vs implicit interactions has in part lead to the object-relational
impedance mismatch problem identified in late “80s [62] that still remains an impor-

tant concern for academic research and commercial software development [50].

Entities, relationships, and objects

Relationships as described by Chen were well used in databases and seman-
tic data models but were, initially at least, ignored by object-oriented program-
ming language designers until Rumbaugh proposed that they should be added to
object-oriented languages. Rumbaugh recognised that objects correspond to the
entities as described by Chen (so long as they are distinguished only by memory
location), but the object-oriented paradigm has no explicit analog for relation-
ships:

It is possible to program [relationships] using existing object-oriented
constructs, but only by writing a particular implementation in which
the programmer is forced to specify details irrelevant to the logic of an
application. (Rumbaugh, [90])

Rumbaugh introduced a relationship construct for object-oriented languages
that adds relationships to object-oriented systems. His relationships are tuples of
object references that are similar to relations in Chen’s Entity-Relation diagrams;
they are distinguished by the objects they refer to. Rumbaugh’s relationships are
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declared at the meta-level (class) as a tuple of class references that are instantiated
as tuples of object references.

Rumbaugh and others implemented a language (DSM) that provided relation-
ship support [95]. DSM was based on C, with extensions providing OO and Rela-
tionship features. The language did not achieve widespread use, possibly due to
competition from C++ and Smalltalk, but Rumbaugh’s work laid the foundations
for much of the relationship literature that has followed.

Object-oriented modelling

The early 1990s saw the introduction of several design methodologies for object-
oriented systems that modelled relationships explicitly [11, 17, 91]. Among other
advantages, these mitigated many of the problems associated with the lack of re-
lationships support. Object-oriented practitioners could model relationships at
the design level without requiring explicit support at the language level. Pro-
grammers still implemented relationships without explicit support from their
programming language, but they could refer to a model that abstracted the boiler-
plate code details of relationship implementation.

Two of the most popular object-oriented development systems were OMT
(Rumbaugh et al.) [91] and the Booch Method (Booch) [17]. Both systems in-
cluded a diagrammatic description of the classes in a system and their interac-
tions, expressed as a graph where nodes represented classes or objects and edges
represented relationships. Edges in both systems were more similar to the re-
lation tables in Chen’s work than to the behaviour implementations of relation-
ships in object-oriented code because they were expressed independent from the
objects/classes they relate.

Concurrently with the development of OMT and the Booch Method, Cun-
ningham and Beck developed a brainstorming tool called the Class Responsibil-
ity Collaborator (CRC) cards [11]. The CRC card system models each class with
a piece of card detailing the name of the class, its responsibilities, and the classes
with which it collaborates. The collaborations define implicit unidirectional rela-
tionships between classes that are better suited for implementation as references
than the predominantly bi-directional relationships in Booch and Rumbaugh’s
systems.

During the mid 1990s Rumbaugh, Booch and Jacobson produced a new mod-
elling system, designed to unify their various techniques and provide an indus-
try standard. The resulting system was the Unified Modelling Language (UML),
which was accepted as a standard for modelling object-oriented systems by the



8 CHAPTER 2. BACKGROUND

Object Modelling Group (OMG) in 1997 [92]. UML’s approach to relationships
followed OMT and Booch’s method; modelling relationships as explicit entities
independent of the participating classes [17, 91]. UML has subsequently become
the dominant modelling language for object-oriented systems and the standard
has been updated several times. One of the primary tools UML provides is the
class diagram, which describes the structure of an object-oriented system as a col-
lection of classes and relationships, based on the diagrams in OMT and Booch'’s
method.

Explicit relationships

A binary relationship can be represented either as a pairs of references embedded
in the two related objects, or as a set of pairs (that may be reified as a class). In
the first case, there is burden placed on the programmer to ensure that the pairs
of related references remain consistent and it is difficult to associate properties
with the pairs because there is no clear place to store them. If links are reified
as a class the programmer must take care to preserve the uniqueness of the links
between objects (assuming this is desirable) as the link objects will gain an iden-
tity from their object reference that is independent of the objects they link, unlike
Chen’s relationships that are distinguished only by their target entities (objects).
Both implementations create strong coupling [64] between the related classes, lim-
iting their reuse potential and resulting in fragile code that is hard to maintain.
Both implementations also obscure the relationship with implementation details
of fields and methods spread among other fields and methods.

Some relationships are reasonably straight-forward to implement while other
relationship implementations can be quite complex. Inspired by Gamma et al.’s
“design patterns” [37] (a method for documenting complex techniques for solv-
ing recurring problems), Noble gives formulaic implementation strategies for five
common types of relationships [71]. Noble claims that the prevalence of relation-
ships in object-oriented design implies that relationships should be easy to write,
simple to represent, and immediately understood by later programmers [71].

Osterbye identifies that relationship representation and use are largely or-
thogonal issues [76]. Relationships can be represented as properties of the partic-
ipants, or independent of the participants (embedded references or sets of pairs)
while independently allowing access directly from the class (via attributes) or
through an external interface. Usterbye also demonstrates that relationships can
be abstracted using a library to decouple representation from use [77].

Pearce and Noble also demonstrate a technique for abstracting relationship
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implementation using a library [80]. They use Aspects to define a standard rela-
tionship interface and provide various relationship implementations. Like Jster-
bye’s work, their aspect interface allows either internal or external implemen-
tation of relationships, however they limit programmers to external access: as-
sociations are accessed via a separate interface, rather than using fields of the
participants.

Bierman and Wren present relationship support as a language extension: Rel]
extends a small, functional subset of Java to provide first-class support for rela-
tionships [12]. Rel] allows programmers to define relationships between objects,
specify attributes and methods on the relationships, and create relationship hi-
erarchies. The authors provide a complete formalism for Rel] with a type sys-
tem and small-step operational semantics for the system, however they do not
provide an implementation. Balzer et al. build on RelJ to describe a relationship
model that supports complex relationship constraints, further motivating explicit
relationship support by demonstrating how such a system could increase expres-
siveness [10].

Vaziri et al. define a new language construct called a relation that has a depen-
dent identity similar to Chen’s relationships [110]. Though not designed specif-
ically to support relationships, relation types are declared as relations between
existing objects and have an identity that may be computed from one or more

other objects/relations.

2.1.2 What are relationships?

UML Class diagrams and most other object-oriented modelling tools are con-
cerned with meta-level objects, or classes. Although not all object-oriented lan-
guages are class-based, object modelling techniques seldom consider individual
objects but rather aggregations of objects as classes with the same fields and the
same behaviour. The same modelling techniques consider relationships (associa-
tions) at the same level as classes so it seems apparent that UML relationships are
meta-level constructs. This is not consistent with Chen’s ER model where ‘rela-
tions” are expressed at the same meta-level as entities: ER Entities are analogous
to objects and entity relations to object-oriented classes, but object-oriented rela-
tionships are analogous to ER relationship relations, rather than to ER relationships.
In the terminology used by Bierman and Wren, the construct at the same meta-
level as an object is a relationship link, which is analogous to an ER relationship
(or relationship tuple). To further cloud the issue, Pearce and Noble, Osterbye

and Balzer et al. also discuss relationships as sets of links at the same meta-level as
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objects, but without a clear analogue from the class/object hierarchy[80, 77, 10]!

Relationships are about identity

Confused by the various names assigned to concepts in relationship literature, we
referred again to Chen’s ER model. It is elegant in its simplicity. Entities are dis-
crete units of information expressed as a fixed number of named, typed attributes
(a tuple). One of those attributes is the designated primary key that distinguishes
one entity from all other entities of the same type. Relationships are similar to
entities, they are also represented by a fixed number of named, typed, attributes
(a tuple). Unlike entities, relationships are identified by composite primary key
comprised of multiple attributes that refer to the primary keys of other entities.

ER entities and relationships diverge from objects in one fundamental way:
entities and relationships have an explicit identity that is part of the model. Ob-
jects have an implicit identity based on language references that are not generally
modifiable by the programmer. ER Relationships, where identity is derived from
a dependency on other objects, just cannot be expressed in languages like Java
without resorting to programmer-defined equals methods to mimic the compos-
ite primary-key behaviour ER Relationships require.

During the first few years of my PhD I had the pleasure of meeting and dis-
cussing my work with all of the Gavin Bierman and Alasdair Wren, Kasper Oster-
bye, Stephanie Balzer, and many of the other researchers working on explicit re-
lationship support (not to mention David Pearce and James Noble, my advisers).
It was from talking with Frank Tip, coauthor of the Relation Types work men-
tioned previously, that I became fascinated with the implications of adding sup-
port for ER-style delegated identity to object-oriented languages to support re-
lationships. His work with Vaziri et al. demonstrates that ER-style relationships
could be expressed in object-oriented programs by automatically generating con-
structors and equality methods and based on a subset of an object’s immutable
tields (the primary keys) then using hash-consing to ensure that a particular com-
bination of keys was unique in a program [36] — using a global hash map to
ensure that only one object exists with a particular permutation of immutable
tield values (key fields).

To implement hash-consing Vaziri et al. maintained extent-sets that behave re-
markably similarly to the relationships as sets of links. As Vaziri et al. observed,
these extent sets can cause garbage collection problems (when is it safe to collect
an object, if state can always be retrieved by creating an instance with the same

identity again?), or result in a new class of runtime errors that are hard to prevent.
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For example, suppose that a popular library uses a relation type with a composed
identity (and the runtime creates an extent-set to back it). Now suppose that the
library is used by two disparate components within a program and both try to
use a relation with the same composite identity: either they will both be access-
ing and potentially modifying the same tuple (breaking encapsulation) or one
instance will receive an unexpected error and be unable to create the appropriate
relation.

Unhappy with the implications of using global extent-sets we considered the
possibilities resulting from adding an operator like Baker’s EGAL [8] to object-
oriented languages: an operator that compares entirely immutable objects using
value comparisons, recursing until it encounters any non-immutable object then
reverting to reference comparison (discussed in more depth in Section 2.2.2). This
would allow programmers to easily create primary key objects for implement-
ing relationships without requiring whole-program extent-sets to maintain their
uniqueness (they are indistinguishable because they have no mutable state). We
considered implementing relationships sets of primary key objects or maps from
primary key objects to value objects containing mutable state for the relationship
links, where the programmer could create relationship instances similarly to how
they create collections, without requiring whole-program extent-sets. In fact, as
we were able to demonstrate, programmers can already implement relationships

in this style using collections and equals methods.

To investigate whether programmers already implement relationships using
collections and equals methods we created #prof, the first of two profilers pre-
sented in this thesis. #prof was initially created to identify objects without any
mutable state and with equality defined using all of their fields that were used as
map keys. #prof is presented in Chapter 4. #prof did identify objects that behaved
in a way we considered consistent with relationships, but it was hard to gener-
alise this behaviour. We concluded that we needed a second profiler, rprof, that
was more capable of tracking object behaviour. rprof is presented in Chapter 5,
and its name is an abbreviation for relationship profiler, though in the end we did

not use it to profile relationships.

During the development of #prof and later rprof my PhD focus gradually
shifted from relationships and equality to initialisation. While creating these pro-
filers we became aware that programmers initialised objects in several different
ways and we began classifying them. This lead to this thesis on profiling object
initialisation, with a secondary focus on profiling collection use and equality/i-

dentity inspired by our early work on relationships.
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Image copyright icanhascheezburger.com

Figure 2.1: The difference between identity and equality can be very important in par-
ticular situations. For example, Java collections (buckets) define equals based on their
contents rather than their identity (reference). If their contents change then their equals
method will behave differently. This is fine if the user is using equals to comparing col-
lections based on their equivalence to other collections, but can be undesirable they are
particularly attached to a particular collection (bucket).

2.2 Object identity and equality

Object-oriented languages typically provide two types of equivalence for objects:
identity and equality. Identity is the best operator for solving problems that require
a specific object, “Is this person Dave?”, “Is this my bucket?”. Identity operators rely
on object references, analogous to names or addresses that will locate a particular
person among many. Equality operators are best for solving problems that re-
quire an object with specific properties: “Does this person teach computer science?”,
“Does this bucket contain fish?”. Equality operators can rely on object references,
but they can also rely on object properties to locate an object that is suitable for the
task. It is important to use the correct operator for the correct task (see Figure 2.1).

Java’s identity comparison uses object references to distinguish objects, ref-
erences that also allow access to an object’s state and behaviour. Java hides the
implementation details of object references but provides two operators for per-
forming reference comparisons: == and System.identityHashCode).

Equality can be determined using many approaches. Java facilitates this by
providing a default equality based on references and allowing programmers to
overwrite the default for particular classes. Java’s equality is implemented by the
equals and hashCode methods. Both methods are overridable methods defined
on the root of the class hierarchy.
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Java references are good for finding objects that reside within a program’s
memory but they are not useful for locating objects that are external to the pro-
gram, such as “the object stored on my external disk drive”, or “the student with
database ID 4025”. Java’s identity operators cannot be modified by program-
mers so it is common for Java persistence and serialisation frameworks to rec-
ommend that programmers implement ‘external” references by modifying equals
and hashCode (e.g. [20, 79]). As a consequence, equals and hashCode could be
implemented by programmers for two purposes: to determine whether objects
are equal, or to determine whether objects represent the same object.

This section provides a survey of object identity and equality in languages like
Java.

2.2.1 Identity

What is an object?
According to Booch:

“An object is an entity that has state, behaviour, and identity.” [17]

State and behaviour are familiar concepts to any programmer or mathematician,
but what of identity?
Khoshafian and Copeland tell us that:

“Identity is that property of an object which distinguishes each object from
all others.” [53]

In object-oriented programming languages such as Java that distinguishing fea-
ture is clear:

“The term identity is used for reference equality: If two references are

identical, then == between the two will be true.” [5]

Java’s conflation of identity and reference equality is elegant (and common in
modern programming languages): object state and behaviour must be accessed
by reference, ensuring that neither state nor behaviour can allow a wily program-
mer to distinguish between supposedly identical (==) objects. The discussion
continues, describing equivalence in Java:

“The term equivalence describes value equality—objects that may or
may not be identical, but for which equals will return true.” [5]
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2.2.2 User-defined equivalence operators

SIMULA supported identity using reference comparisons (= in SIMULA, == in
C-like languages) [14], but reference comparisons are not very useful for compar-
ing entities that have an explicit identity from outside the program (a key value in
Chen’s terminology). Programmers were of course free to implement a method
for comparing their objects using object-field values, but Smalltalk felt that this
was sufficiently important to justify adding an additional operator. In Smalltalk,
the == operator compares references while the = operator compares the operands
by value; == asks whether the operands are the same object while = asks whether
the operands represent the same component [40]. Smalltalk’s == cannot be overrid-
den (though other languages allow this) while = can be overridden to implement
equality derived from object-field values.

Smalltalk’s operators remain essentially unchanged in Java, where == com-
pares objects by reference and equals allows users to define an arbitrary equiva-
lence relation, but the notion of what they should represent has changed slightly.
Java describes equals as an equivalence whereas Smalltalk’s description indicates
that these objects should represent the same entity. This means that Java objects
that are equal could be distinguished by their behaviour while still meeting Java’s
definition: they don’t “represent the same component”. The actual behaviour of
both Smalltalk’s = and Java’s equals relies on the programmers: both operators
default to == and allow programmers to override the default, without enforcing
particular behaviour. Programmers are free to violate the expectations of the lan-
guage authors.

Many languages have experimented with different operators for identity and
equality. Smalltalk has == for identity and = for equality, while Common Lisp has
no less than five different equality operators: eq, eql, equal, equalp, =, along with
a range of type specific functions such as char-equal, string-equal, and tree-
equal [103]. Lisp’s proclivity for equivalence operators may well be the reason
Baker developed the EGAL operator, his 1993 paper presented a very compre-
hensive conceptual discussion of equality framed in terms of Lisp and its many
operators [8]. Baker identified that object-oriented programs frequently contain
a mix of immutable and mutable objects. He observed that equality comparisons
are most useful for performing value-based comparisons of immutable objects
that cannot change, while identity comparisons are necessary to compare muta-
ble objects (equivalence comparisons should be stable, that is, two objects that are
equivalent must be indistinguishable, so current state is not sufficient for com-

paring mutable objects). EGAL recursively performs an equality comparison for
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immutable objects and an identity comparison for mutable objects.

Baker was not the first to identify the need for a distinction between objects
and values in programming languages, MacLennan identified that objects have
identity and mutable state, while values are immutable and any identity they

possess is merely an implementation detail [61].

Object identity as an abstract concept for programming languages was first
studied by Khoshafian and Copeland, who compared the identity mechanisms
in different systems including databases and object-oriented languages, charac-
terising not only object identity, but also shallow equality, deep equality, and the
ability to merge objects [53]. Their work explicitly addresses tuples and sets as

they attempt to cover both object-oriented languages and databases.

Grogono and Sakkinen discuss equality and object-copying and identify that
the copy of an object should be equal to the object from which it was copied [43].
They propose four different equalities: identity, shallow equality; deep equality;
and a structural equality that can distinguish between cycles and their unfoldings
as trees.

Vaziri et al.’s Relation Types are notable not only for their relevance to relation-
ships, but also for their equality based on multiple nominated key values [110].
Relation Types use hash-consing to ensure that each of their instances are unique
as far as values for these key fields are concerned. Relation Types represent a
different approach to Baker’s EGAL: relations can have mutable state so long as
their key values are immutable, allowing a mixture of mutable and immutable
state in a single object while also allowing identity based on key values rather

than memory address.

Hovemeyer and Pugh examine the behaviour of programmer-defined equal-
ity methods to demonstrate that a relatively simple static analysis can detect bugs,
such as incorrect covariant signatures for equals or missing hashCode methods.
They present results from static analysis of six Java applications [48]. Rupakheti
and Hou also examine bugs in existing Java programs; they identify several recur-
ring problems with the definition of equality using an observational study [93].
These results demonstrate that programmers make mistakes when implement-
ing equality behaviour that are not immediately apparent when running the pro-
grams, and suggest that languages like Java could do a better job of communicat-
ing these contracts to programmers and ensuring correct implementations.

Costanza suggests that object identities should be explicit comparands, similar
to entity-relational ‘keys’, or “ids” [31]. Comparands allow an object’s identity
to be changed, allowing objects to share identities. For example, a decorator or
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proxy could moditfy its identity so that comparisons between the proxy and the
target object share an identity. Techniques similar to comparands are often used
for identity comparisons between objects that are shared between networked ap-
plications, or for implementing identity hash codes in the presence of copying

garbage collectors [30].

2.3 Immutability and initialisation

2.3.1 Immutability

Languages that allow mixing objects and values should ensure that the values
cannot accidentally gain identity: a point value that can change can be distin-
guished from other points that nominally have the same value by observing those
changes. As a consequence, many object-oriented languages support some form
of immutability annotation.

C++ inherits the ‘const’ modifier from C and applies it to field declarations.
This modifier documents the programmer’s intention that particular fields or ref-
erences should not be modified. Java inherits this concept as the field-level final
annotation, though it allows initialisation anywhere inside the constructor rather
than using initialiser lists like C++.

Other languages support immutability at the class level: CLU [60] has im-
mutable versions of primitive data structures, and Scala’s standard libraries pro-
vide both mutable and immutable versions of most collections [73].

Bloch [16] advises Java programmers to “minimise mutability”: to use im-
mutable objects wherever possible, and to ensure objects are fully initialised by
constructors. Bloch identifies that immutable classes are “easier to design, im-
plement, and use” and “less prone to errors” than mutable classes. Certainly, it
is easier to predict the behaviour of equality methods for immutable classes, as
immutable objects that compare equal will remain equal for all future program
states. More generally, programmers using immutable classes do not need to
worry about calling methods that may unexpectedly modify state.

Implementing immutable classes in Java is not straightforward. In “Effective
Java” [16], Bloch describes five steps required to implement immutable classes:
don’t provide methods that can modify state, ensure the class cannot be extended,
make all fields final, make all fields private, and ensure exclusive access to any
mutable components. This poses a significant burden on programmers imple-

menting complex objects, for example, an object with cyclical references to other
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objects of the same class cannot be implemented using final fields (step 3) or with-
out mutator methods or non-private fields (steps 1 and 4).

Various researchers have proposed type-system approaches for maintaining
class or object immutability. For example, Zibin et al.’s IG] language provides pa-
rameterised mutability at both object and class level for a Java-like language [112].
IGJ enforces these restrictions statically using a generics-based type system, al-
lowing a class to parameterise the mutability of an individual field, e.g. an IG]
map class can require its keys to be immutable while permitting its values to be
either mutable or immutable.

Ensuring exclusive access to sub-components (step 5 of Bloch’s requirements
for immutable objects) requires access to the sub-components internal state (to en-
sure exclusive access via copying) or requires that the sub-component is created
by the object. One proposed approach for controlling access to sub-components
with programming language support is ownership [2, 29, 47, 85], which has also
been applied to maintaining object immutability [78, 113].

2.3.2 Initialisation

Imperative languages that support immutable fields or objects must allow some
way for the programmer to initialise those fields or objects. Most object-oriented
languages accomplish this using constructor methods that run as soon as the ob-
jectis created. C++ uses initialiser lists, a special attribute of constructor methods,
to initialise const fields. Java and Cf allow constructor methods to modify each
final (readonly) field at most once per constructor method and enforce correct
behaviour using static analysis.

It is sometimes necessary or desirable to modify inherently immutable fields
after an object’s constructor has run. Cyclic references in immutable fields cannot
be established using constructor methods, and constructor methods cannot be
virtual — the constructor must be called by name and cannot be parameterised or
replaced by a subtype at runtime — limiting their usefulness in enterprise frame-
works that handle dependency injection and persistence.

Programmers are free to implement post-constructor initialisers — methods that
initialise fields after the constructor has returned — in Java, but Java cannot stat-
ically check that those fields are not accessed before they are initialised. This
places the burden on the programmer to ensure correct implementation without
assistance from the language, or face potential runtime errors.

Fahndrich and Xia’s Delayed Types use an ownership-style type system of dy-

namically nested regions to allow programs to initialise fields even after construc-
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tors have run while preventing programs from accessing uninitialised fields [35].
Haack and Poll have shown how this can be applied specifically to immutabil-
ity [45], while Leino et al. demonstrate that ownership transfer can achieve a
similar result [58]. Qi and Myers’ Masked Types [87] use of type-states to ad-
dress post-constructor initialisation by incorporating a list of uninitialised (or
masked) fields into object types. Each of these approaches demonstrates that post-
constructor initialisation can be statically verified to ensure correct access to poten-
tially uninitialised state, but none of them determine whether or to what extent
these approaches would be useful to Java programmers.

Unkel and Lam [109] describe an interesting approach to generalising Java’s
final field behaviour. A stationary field is a field that has no observable writes, that
is, all writes precede all reads. A stationary field may be initialised multiple times
during or after the constructor but is not modified once it has been read. They
present a static analysis study of 26 Java applications, as well as dynamic analysis
of 9 small benchmarks, and find that 40-60% of Java fields are stationary, and that
at least 14-21% could not be initialised during the constructor. This demonstrates
a need for static verification of post-constructor initialisation.

Porat et al. [83] conducted a similar analysis looking for “deeply immutable”
tields (where neither the field itself nor any object reachable from that field is
modified after the object’s constructor completes) and found that around 60% of
static fields were immutable.

Pechtchanski et al. [82] performed a dynamic (runtime) analysis of small pro-
grams to detect immutably fields and consequently eliminate unnecessary dupli-
cate reads. They conclude that as many as 81% of field declarations are actually
immutable, yielding a reduction in the number of field reads in their sample pro-
grams ranging from 33% to 99%. These results show the enormous potential ben-
efits that could be obtained from better representation of programmer intentions

regarding immutable fields.

2.4 Runtime analysis

This thesis deals extensively with the analysis of existing Java programs using
runtime analysis, so in this section we consider literature techniques for extract-
ing information from running programs. Static analysis, an equally valid ap-
proach to corpus analysis, was not used in this thesis because we are primarily
concerned with aggregate properties of object behaviour.

Like static analysis studies, dynamic analyses require a corpus of programs



2.4. RUNTIME ANALYSIS 19

to analyse. Static studies typically select a group of open source programs, or
analyse a selection of programs that have been analysed by other researchers.
Poor corpus selection undermines the generalisability of results, as any trends
observed by the researchers may be anomalies of the particular corpus. For this
reason, and to aid reproducibility and allow similar research to be directly com-
pared, it is best to use an established corpus of programs that have been subjected
to peer review. Unfortunately, as Tempero et al. observe [106], there are few ex-
amples of standardised program corpora available. Their Qualitas Corpus is one
of the largest and most actively maintained.

In addition to program corpus selection, dynamic studies must execute the
programs to obtain results. This requires providing inputs, or workloads, to the
programs that trigger their behaviour. Like corpus selection, it is important for
generalisability that the program inputs are chosen without bias and that they are
reproducible by other researchers. While language corpora are rare, benchmark
suites, or collections of programs with workloads are relatively common. Bench-
mark suites for Java are primarily used for measuring JVM performance and for
acceptance testing. Unfortunately, this can limit their generalisability to regular
programs.

An additional concern for all dymanic analysis when compared to static anal-
ysis is completeness. While static analyses can demonstrate that a particular prop-
erty cannot occur, in general dynamic analysis can only determine that the be-
haviour did or did not occur for the particular program invocation measured [9].
While dynamic analysis can never match static analysis in this regard, by its na-
ture dynamic analysis is better at identifying the ‘important’ parts of the program:
those parts that actually execute! Nevertheless, this property relies on the selec-
tion of good inputs: if the program’s functionality is not well exercised by the
workload it is given then it is not necessarily clear that the ‘important” parts of
the program even ran. One way to measure how ‘good” a workload is for ex-
ercising a program’s functionality is to identify which program statements were
executed. This is known as measuring statement coverage. Brown et al. mea-
sured the statement coverage of the workloads provided by several benchmark
suites and concluded that the workloads for most of the benchmarks resulted in
good (greater than 80%) statement coverage [19].

2.4.1 Program corpuses for runtime analysis

This section considers the most commonly used Java benchmark suites.
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SPECjvm98 is one the most frequently used benchmark suites for both industry
and academia [100]. It was used by both Unkel and Lam [109] and Pechtchanski
and Sarkar [82] for their runtime studies. SPECjvm98 consists of eight relatively
small Java programs and will run on any Java Virtual Machine from JDK 1.1 on-
wards. SPECjvm98 is now deprecated in favour of SPECjvm2008, and both the
size of the benchmarks and the age of the code limit its generalisability to modern

Java programs.

SPECjbb2005

SPECjbb2005 is a single simulation application designed to simulate a typical en-
terprise web-based ordering application [101]. As an example of a realistic work-
load it is extremely useful for JVM implementors and hardware designers, but as
it consists of only one artificial application and it is not freely available, it is not

particularly useful for academic research.

Java Grande

The Java Grande Benchmarks consist of several suites of benchmarks with ‘large’
demands: single-threaded, multi-threaded, distributed, and benchmarks for per-
formance comparisons with C [22, 51]. Most of these benchmarks focus on solv-
ing academic problems in isolation, such as arithmetic problems, Fourier coeftfi-
cient analysis, encryption, and raytracing. These benchmarks are designed for
measuring the performance of JVMs for solving particular problems and as such
are not good candidates for generating generalisable results.

DaCapo

The DaCapo benchmark suite consists of 14 open source, ‘real” applications [15].
The suite was designed for programming language, memory management and
computer architecture research and the authors included generalisability as a
stated goal for their selection. The DaCapo benchmarks have gained significant
adoption since their first release in 2006, and their latest release (2009) includes

some relatively large programs.
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SPECjvm2008

SPECjvm2008 is a significantly updated version of SPECjvm98, consisting of 10
benchmarks: a mix of ‘real” programs and artificial benchmarks [102]. It is freely
available and includes source code, making it a reasonable choice for academic
research.

2.4.2 General profiling

Profiling — the dynamic (runtime) analysis of program behaviour — has been stud-
ied extensively as a tool for improving program performance, detecting bugs, and
identifying behaviour patterns. Examining program execution can produce mas-
sive amounts of data if every program state must be recorded, so every profiling
technique must include some approach for condensing or limiting this data.

The most common approach to data aggregation for profiling is sampling,
where programs are interrupted at regular intervals and relevant properties are
extracted. There are many examples of profiling techniques that focus on moni-
toring standard metrics, such as execution time (e.g. [42, 3, 4, 111, 23, 18, 99]) and
heap usage (e.g. [89, 114, 57, 81]). A well-known example is gprof [42], that uses
a combination of CPU sampling and instrumentation to approximate a call-path
profile; that is, it reports time spent by each method along with a distribution of
that incurred by its callees.

The increasing popularity of virtual machines and just-in-time compilation,
thanks to the popularity of languages like Java, Cf, and JavaScript, has moti-
vated significant investment in profiling research (e.g. [111, 7, 6, 55]). For exam-
ple, Whaley described a system for profiling method execution time in a JIT using
a compact representation of calling context [111] while Arnold et al. use profiling
information to guide JIT optimisations, such as method inlining [6].

Binder and Hulaas present an interesting technique for precise flow profil-
ing [13]. They used byte code modification to augment every method with an ad-
ditional parameter for maintaining precise stack trace information and a thread
local cache for storing results. They produce an exact count of executed byte
codes for each possible stack trace. Their major concerns are producing an exact
analysis of execution cost (measured in byte codes) without interference from the
profiler (measurement perturbation), as well as profiler portability: they reject the
use of JVMTI because it is not portable across platforms and JVMs. Using a tree
structure for tracking method call information is an interesting idea, but it’s not
particularly relevant to our analysis that doesn’t really deal with method track-
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ing. They do whole program analysis by modifying byte codes prior to execution,
which does not work well with external class-loaders. From their discussion it
seems they have an additional approach for using JVMTI or an agent to modify
byte codes but it is not described in the paper.

Sastry et al. present a hybrid approach to profiling using a combination of
hardware and software to compress the data stream emitted by a profiler then
analyse the compressed stream [94].

2.4.3 Object equality profiling

Marinov and O’Callahan present an approach to reducing program memory use
by identifying and merging equivalent objects [63]. Their object equality is ex-
tremely relevant to the Baker’s EGAL and a generalisation of Unkel and Lam’s
stationary fields to objects: an object may be a candidate for merging if, for all
future program states, the object is never written to, never used in an == compar-
ison, never used in a System.idenityHashCode() call, and never used as a monitor
for synchronisation. Assuming the object is a merge candidate, it may be uni-
tied with other merge candidates if all fields of the object are merge-able. Their
tool analyses several programs from the SPECjvm98 benchmark suite and sam-
ples program heap activity then applies a post-mortem analysis once execution
is complete. Their analysis examines the object graph of snapshots, searching for
sub-graphs that are structurally equivalent (isomorphic). They concluded that
several programs from their suite exhibited large numbers of equivalent objects.

2.4.4 Obiject lifecycle profiling

Numerous works have focused on profiling object lifetimes for pretenuring in vir-
tual machines (e.g. [1, 27, 52, 98]). Hirzel et al. studied a suite of benchmarks and
concluded that object connectivity correlates strongly with object lifetime [46].
Contrasting with this, others have shown how stack state at the point of object
allocation correlates with object lifetime [49]. Singer et al. studied a small bench-
mark suite in an effort to identify good predictions of long-lived objects [98].
Chen et al. consider the lifetime of object fields, rather than whole objects, since
a field may not be active for the duration of its enclosing object’s life; thus, fields
with disjoint lifetimes can occupy the same memory, thereby reducing object foot-
print [25]. Similar work studied field lifetimes for the SpecJVM98 benchmark
suite, and found on average a 14% reduction in heap space was possible [44].
Shankar et al. profiled Java programs in an effort to identify short-live objects
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suitable for stack allocation [97]. Dieckmann and Hoézle performed a detailed
study of the allocation behaviour of the SPECjvm98 benchmarks [34]. Pearce et
al. evaluated Aspect] as a profiling platform by considering different case stud-
ies [81]. They considered profiling execution time, heap usage, object lifetime and
more.

Rojemo and Runciman introduced the notions of lag, drag and use to describe

the lifecycle of memory cells in functional language implementations [89]:

lag use drag

T created T tirst used T last used T destroyed

Lag is the period after a memory cell is allocated and before it is first used
in a computation. Drag is the period after a memory cell is last used but before
it is garbage collected. Anything else is use. These concepts are interesting for
measuring the causes of unused memory in functional programs, but this ap-
proach is are equally applicable for describing the ‘life-cycle’ of objects in an im-
perative language. They focused on improving memory consumption in Haskell
programs and relied upon compiler support to enable profiling.

Shaham et al. measure the drag time for Java Objects: the time between last use
and release by the system for garbage collection [96]. They maintain a record for
each object containing a ‘last used’” timestamp that is updated each time an ob-
ject is accessed. When the object is finally collected (collection is triggered every
100ms), they emit the drag time for that object. By multiplying drag with object
size and sorting the result they create a list of the worst offenders that they used
to manually optimise programs to reduce ‘dragged’ objects and so general mem-
ory use. This is an interesting application of similar profiling techniques to the
techniques we used in Chapter 3. It would be interesting to use our Chapter 4

general profiler to verify their results.

2.4.5 JVM profiling support

Liang and Viswanathan introduced JVMP]I, a general purpose profiling tool capa-
ble of measuring CPU time in a thread-aware manner, tracking object allocation,
garbage collection, monitor contention and class loading [59]. JVMPI was de-
signed to be the basis for JVM-independent profilers that could be distributed by
vendors for use by programmers. JVMPI has been succeeded by JVMTI in more
recent versions of Java [74, 75].
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2.4.6 Heap analysis

Mitchell presented a novel approach to compacting the typically huge amounts
of data generated during profiling [65]. His approach exploits the dominates
relation for objects in the heaps.

Potanin et al. used the JVMPI interface [59] to profile object graphs in Java
programs, concluding that these exhibit the property of being scale-free [86]. In
particular, they observed a power-law distribution for edge degrees in the object
graph of large programs: some objects were very highly connected, whilst most
had low connectivity.



Chapter 3

Behaviour Patterns for the

Initialisation of State and Equality

3.1 Settling

Imperative object-oriented languages such as Java use special constructor meth-
ods to allow freshly created objects to initialise their properties, including im-
mutable or constant properties (e.g. final fields in Java, const in C++). Some objects
have properties that cannot be initialised immediately after the object is created
but are nonetheless constant (e.g. data structures with cyclical references).
Rojemo and Runciman introduced the notions of lag, use, and drag to describe
the lifecycle of memory cells in functional language implementations [89] (see Sec-
tion 2.4.4). We can apply similar concepts to describe the life-cycle and in particu-
lar the initialisation of objects in Java programs. Rather than considering lag, use,

and drag, we consider initialisation and use, separated by settling events:

initialisation use
L 1 ]
I T 1

T created T settled T destroyed

The intuition for settling events is that constant properties of an object must
be initialised after the object is created but before they are used. A constant object
property might fluctuate after the object is created, but at some point it will settle
at a particular value. After that point it will not change again. For example,
an object property that is settled by the end of the object’s constructor could be
illustrated as follows:

25
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initialisation use
1 ]

T created T constructor return T destroyed

Different object properties may have different settling events. For example,
objects that are stored in databases must be persisted, at which point the database
will assign them a unique ID (e.g. [79]). Their ID is a constant property, but it
cannot be allocated until after the object’s constructor has returned.

This chapter defines five different settling events in an object’s life-cycle: ob-
servable events that could demarcate the end of an object property’s initialisation
period, then describes how these events can be used to characterise program be-
haviour.

3.2 Settling events

An object-field — the value of a specific field of a specific object — may change
throughout the existence of its object or it may settle on a particular value. The
particular point in a program that an object-field settles is interesting because it
represents the point at which the object-field was fully initialised. By general-
ising object-field behaviour to fields, objects, and classes we can use set theory
concepts to divide program entities into sets based on their behaviour, and deter-
mine the relative importance of particular events by examining the relative sizes
of the sets.

This section provides behavioural definitions of particular settling events that
may occur in Java programs. Each event is introduced by describing how it can
be observed for a particular object-field, then extended to objects, classes, and
tields. Figure 3.1 shows a Java class definition that is used for examples in this

section.

3.2.1 Constructor-settled (C)

All writes to a constructor-settled (C) object-field occur before its object’s construc-
tor method returns. Constructor-settled captures the intuitive notion of initialisa-

tion by constructor:
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class Point {

int x;

inty;

Point() {}

Point(int x, int y) {
this.x = x;
this.y = y;

¥

public int hashCode() {
return x " y;

}

public boolean equals(Point other) {
return x == other.x && y == other.y;

}
}

Figure 3.1: A Point class. Java equals methods should take an Object parameter, this
method takes a Point and assumes that it is not null for simplicity.

Point p = new Point();

Point p = new Point(1,2); p.x=1;
p = null; p = null;
p.x is constructor-settled p.x is not constructor-settled

On the left, we see a point created and initialised using its constructor. The
second line of code discards the only reference to the point so we can conclude
that the point’s object-fields are only written from the constructor. On the right
we see another instance of the same class, but this time the instance’s x object-field

is modified after the constructor so it is not constructor-settled.

Final (F)

If a Java field declaration — the static description of a field in a Java class file - is
annotated with final then it cannot be written to outside the constructor, so object-
fields corresponding to final fields must be constructor-settled. final is a special
case of settled behaviour because it is declared in code, unlike all other settled be-
haviours that are dependent on context: a class may be constructor-settled in one
program but not constructor-settled in another depending on usage, but proper-
ties that are declared final must always be final.
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We can plot the set of object-fields from a hypothetical program as a Venn dia-
gram showing the subset relationship between final and constructor-settled object-
fields:

Constructor-settled fields

A field declaration is constructor-settled if all the object-fields resulting from that
declaration are constructor-settled. All writes to a constructor-settled field must
originate in a constructor method in the field’s class’s hierarchy or from a method
called from a constructor method. final fields, however, can only be written from
a constructor method of the class that declares the field (in addition, Java final
object-fields can only be written once whereas constructor-settled object-fields

can be written multiple times).

Constructor-settled objects

An object is constructor-settled if all object-fields of the object are constructor-
settled. All field writes to a constructor-settled object must occur before the ob-
ject’s constructor returns.

We do not consider static fields for object aggregations.

Constructor-settled classes

A class is constructor-settled if all objects of exactly that class are constructor-
settled. We summarise objects by their declared class, so the subclasses of a
constructor-settled class is not necessarily constructor-settled and vice versa. This
definition represents a decision to produce class behaviour categorisations by ag-
gregating objects rather than by aggregating field declarations. A subclass that
is not constructor-settled may change a field declared in its super-class, causing
that field declaration to be not-constructor-settled. This will not affect whether
the superclass is constructor-settled. Consequently, a class that is constructor-
settled may have field declarations that are not constructor-settled. We feel that
this definition is consistent with the general focus of this thesis on dynamic rather
than static properties, objects rather than field declarations.
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We do not consider static fields for class aggregations.

3.2.2 Read-settled (R)

All writes to a read-settled (R) object-field occur before the first field read of that
object-field. Read-settled captures the intuitive notation of observably immutable:
properties that are never observed to change — sequential reads never return

different values.

Point p = new Point(1,2); Point p = new Point(1,2);
p.x=1; .y = P.X;
p.y =p.X; px=1;
p = null; p = null;
p.x is read-settled p.x is not read-settled

Read-settled object-fields are not necessarily either a super-set or a sub-set of
constructor-settled object-fields, or even of final object-fields. Java final fields can
be read by methods called from a constructor before they have been assigned
(this is also true of const fields in C++).

Read-settled fields

A field declaration is read-settled if all the object-fields resulting from that dec-
laration are read-settled. In other words, all writes to a read-settled field must
occur before reads from the same field of the same object. A field declaration is
not read-settled if there exists an object of any class that writes to the field after it
has been read.

Read-settled field declarations correspond to the stationary fields observed by
Unkel and Lam, who characterise stationary fields as fields that are never written
after they are read [109].
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Read-settled objects

An object is read-settled if all object-fields of the object are read-settled.

Read-settled classes

A class is read-settled if all objects of that class are read-settled.

3.2.3 Whole-object read-settled (oR)

Whole-object read-settled (0R) is a special case of read-settled objects that uses an
object-centric interpretation of read-settled: an object is object-read-settled if all
tield writes to its object-fields occur before the first field read from any object-field

of the object. This class of objects is a subset of read-settled objects.

3.2.4 Write-settled (W)

A write-settled (W) object-field may only be written to once. This is similar to the
restriction Java 8 uses to characterise effectively-final local variables for lambda-

expressions [39].

Point p = new Point(); Point p = new Point();
p.y=p.Xx p-Xx=p.y;
px=1; px=1;
p = null; p = null;
p.x is write-settled p.Xx is not write-settled

While Write-settled object-fields are not necessarily either constructor-settled

or read-settled, final object-fields are always write-settled.
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Write-settled fields

A field declaration is write-settled if all the object-fields resulting from that dec-
laration are write-settled. A field declaration is not write-settled if there exists an
object of any class that has more than one write to that field.

Field declarations that are constructor-settled and write-settled (CW) corre-
spond to the undeclared-final fields observed by Unkel and Lam: fields that are
written at most once during the constructor and consequently could be labelled
final without changing the program [109].!

Write-settled objects

An object is write-settled if all object-fields of the object are write-settled.

Write-settled classes

A class is write-settled if all objects of that class are write-settled.

3.2.5 Equals-settled (E)

All writes to an equals-settled (E) object-field occur before the first call to one of the
object’s equality methods (equals and hashCode). Equals-settled is only applica-
ble to objects whose equals or hashCode method is called. Equals-settled captures
the behaviour of object-fields used to compute equals and hashCode that settle
before equals or hashCode is called.

Point p = new Point(1,2); Point p = new Point(1,2);
px=1; p.hashCode();
p.hashCode(); p.Xx=1;
p = null; p = null;
p.x is equals-settled p.x is not equals-settled

Equals-settled object-fields do not necessarily settle before any of the other
events we have defined: equals and hashCode methods can be called at any time

n fact there is a distinction between CW field declarations and undeclared-final fields:
undeclared-final fields, like Java’s final fields, must be written directly from the constructor
method. CW field declarations may be written from a method called from a constructor or super
constructor. As these method calls could be inlined into the constructor we feel that this distinc-
tion is minor.
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or not at all. equals and hashCode methods can even be called before final fields
settle.?

Equals-settled fields

A field declaration is equals-settled if all the object-fields resulting from that dec-
laration are equals-settled. All writes to an equals-settled field declaration in any
object must occur before calls to an equality method for that object. Object-fields
whose objects never have an equals or hashCode method called do not affect the
classification of a field declaration and a field declaration is only equals-settled if
at least one object-fields for that field declaration is equals-settled.

A field declaration is not equals-settled if there exists an object-field for that
field declaration that is written after equals or hashCode has been called on its
object, or if there are no object-fields for that field declaration whose objects have
an equals or hashCode method called.

Equals-settled objects

An object is equals-settled if no object-fields of the object is written after equals or
hashCode are called on the object. An object that never has equals or hashCode
called is not equals-settled.

Equals-settled classes

A class is equals-settled if all objects of that class that have an equality method
called are equals-settled and additionally at least one object of that class has an

equality method called.

3.2.6 Collection-settled (K)

All writes to a collection-settled (K) object-field occur before the object is stored in
a collection. Collection-settled is only applicable to objects that enter a collection.

2The Venn diagram for equals-settled and all previously defined behaviours is complex. For
simplicity we only show equals-settled and read-settled because these behaviours are directly
compared in Chapter 6.
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Most Java collections use equals and hashCode to determine whether an object is
a member of the collection, so collection-settled is a good candidate for the first
use of an object-field.

Point p = new Point(1,2); Point p = new Point(1,2);
p.Xx=1; new ArrayList().add(p);
new ArrayList().add(p); p.x=1;
p = null; p = null;
p.x is collection-settled p.x is not collection-settled

Like equals-settled object-fields, Collection-settled object-fields are not neces-
sarily settled before any other events occur: objects can enter a collection at any

time including during the constructor.?

Collection-settled fields

A field declaration is collection-settled if all the object-fields resulting from that
declaration are collection-settled. All writes to a collection-settled field declara-
tion must occur before the target object enters a collection. Object-fields whose
objects never enter a collection are ignored and a field declaration is collection-
settled only if at least one object-field’s object enters a collection.

A field declaration is not collection-settled if there exists a write to the field
declaration for an object of any class that has entered a collection, or if there is no

object-field for that field declaration whose object enters a collection.

3The Venn diagram for collection-settled including all defined behaviours is complex. For sim-
plicity we only show collection-settled, equals-settled, and read-settled because these behaviours
are directly compared in Chapter 6.
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Collection-settled objects

An object is collection-settled if all object-fields of the object are collection-settled

(this requires that the object enters a collection).

Collection-settled classes

A class is collection-settled if all objects of that class that enter a collection are

collection-settled and at least one object of that class enters a collection.

3.2.7 Mutable (M)

Some object-fields never settle by a particular point in the program, a program
will continue to write to them until the object is destroyed. If an object-field is not
settled before any of the other points described then we say it is mutable.

3.3 Equality settling

In general it is not possible to conclude which references stored in an object’s
fields represent other objects that are part of the object (composite) and which
represent relationships between that object and collaborating objects. Ownership
and heap analysis can provide some insights (e.g. 2.4.6), but Java’s equality meth-
ods (equals and hashCode) provide insight into the intentions of the programmer:
if a programmer uses a particular field to compute object equality then we as-
sume that the programmer considers that field part of the object (rather than a
convenience reference to a collaborating object). The value stored in the field is
sufficiently important that it can help distinguish this object from another similar
object.

We define an object’s equality as any program state (object-fields and array en-
tries) used to compute equals or hashCode during the execution of the program.
All of the settling patterns described in the previous section (Section 3.2) can be
applied to equality, but some are particularly interesting and relevant.

This section discusses the different ways that a programmer may implement
equals and hashCode and how they relate to our settling events. Equality is fun-
damentally a property of an object, so we consider objects and classes, but not
object-fields or field declarations.
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3.3.1 Identity-as-equality (Id)

Unless a programmer specifically implements equals and hashCode then the de-
fault implementations will use == and System.identityHashCode(), which rely on ob-
ject references. Object identity cannot be modified in a Java program so unless a
class (or its super-classes) implement equals and hashCode then its object’s equal-
ity will be settled as soon as the object is created.

class Person {
String name;
public Person(String name) {
this.name = name;

This class does not define equals and hashCode so the default implementa-
tions that use reference comparisons will be used. All instances of this class will

use identity-as-equality.

3.3.2 Constructor-settled equality (C)

Constructor-settled equality objects are objects whose equality settles before their
constructor returns. These objects include identity-as-equality objects, but also
objects whose class implements equals and hashCode that depend on fields that
are constructor-settled.

Constructor-settled equality objects do not change their equality after their
constructor returns, so two constructor-settled equality objects that are equals af-
ter their constructors return will be equals for the rest of the program.

class Point {

public final int x;

public final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int hashCode() {
return x " y;

}

public boolean equals(Point p) {
return x == p.x && y == p.y;

}
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This class defines equals and hashCode using fields that can only be set from
the constructor. Consequently, all instances of this class will have constructor-
settled equality.

Constructor-settled equality is interesting because it indicates that an object’s
equality depends only on properties that are initialised during the constructor.
This precludes equality based on cyclical references, for example.

3.3.3 Collection-settled equality (K)

Collection-settled equality objects are objects whose equality settles before they
enter a Java collection. These objects include constructor-settled equality objects,
but also objects whose equals and hashCode methods depend on properties that
are collection-settled.

After entering an equality collection they never change their equality again.

class Student {

private ID id;

String name;

public Student(String name) {
this.name = name;

¥

/** This method is provided so the ID

* can be set once the object has

* g database ID. %/

public void setID(ID id) {
this.id = id;

}

public int hashCode() {
return id.hashCode();

}

public boolean equals(Student p) {
return id.equals(p.id);

¥
¥

This class defines equals and hashCode using a field that can be set at any
time during the program. A comment indicates that the field is intended to be
set by a database framework when the object is persisted and the database allo-
cates it a unique ID. This is a common pattern for objects that are persisted in
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a database [20, 79]. Even though there are no static properties that ensure the
equality will settle the comment makes it likely that all instances of this class will
settle their equality.

Most Java collections (except IdentityHashMap) use equals to determine whether
a collection contains a particular object:

public boolean contains(Object o) {
Iterator<E> it = iterator();
if (o==null) {
while (it.hasNext())
if (it.next()==null)
return true;
} else {
while (it.hasNext())
if (0.equals(it.next()))
return true;

}

return false;

Implementation of the contains method from Java’s AbstractCollection [105].

If an instance of the Student class was stored in a Java collection before its ID
was set then any attempt to find an object in that collection would result in an
error (a null dereference). Programmers that use an external property such as a
database ID for implementing equals and hashCode take care to ensure that it is
initialised before they store the object in a collection [20].

3.3.4 Mutable equality (M)

Sometimes it is appropriate to implement equals and hashCode using properties
that do not settle. An object whose equality does not settle has mutable equality.

class Position {
public int x;
public int y;

public int hashCode() {
return x " y;

}

public boolean equals(Position p) {
return x == p.x && y == p.y;
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This class is designed to represent the position of an object in a 2D space.
Instances of this class will be updated as entities in the space move and the equals
method can be used to determine whether two entities currently occupy the same
position on that space. As long as the entities continue moving the equality will
not settle.

3.3.5 Equality settling object life-cycles

The four types of equality settling behaviour presented in this section are sum-
marised in this object-lifecycle chart:

T created Tconstructor return Tentered collection T destroyed

identity-as-equality is settled

constructor-settled equality is settled

collection-settled equality is settled

mutable equality changes

Subsequent chapters use the settling behaviours defined in this chapter to ob-

serve the runtime behaviour of Java programs.



Chapter 4

#prof: Profiling Equality

Initialisation

4,1 Introduction

This chapter introduces #prof, a runtime profiler designed and implemented for
this thesis to study the behaviour of equals and hashCode in Java. #prof uses
class file modification to add code to existing programs as they are loaded by
the JVM. This allows #prof to observe the behaviour of individual objects as the
program executes, summarise the observations by class, and output summary
data when the program terminates. #prof uses a novel technique to detect changes
to object equality by computing dependency graphs for hashCode method calls,
then recalculating hashCode when any fields of objects in the dependency graphs
change. #prof classifies objects by observing when their fields and their equality
settle according to the definitions from Chapter 3.1

The work presented in this chapter, and #prof in particular, represents our
first attempt at object profiling. #prof was developed using Aspect] [54] not only
to facilitate code modification but also to aid rapid development. This was very
successful and we were able to obtain interesting results and explore different ap-
proaches to object profiling with a relatively small time investment. This allowed
us to identify some of the categories of settling events presented in the previ-
ous chapter. Nevertheless, #prof’s approach to profiling has several limitations
(discussed in Sections 4.3.3 and 4.6) that have affected the scope of the results
presented in this chapter and motivated the development of a new profiler, rprof,

which is presented in Chapter 5.

IThe work presented in this chapter was also presented at TOOLS Europe 2010 [68] and an
extended version with tabular data is available as a technical report [69].

39
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Chapter organisation

This chapter is arranged as follows:

* Section 4.2 describes the behaviour classifications used in this chapter, de-
rived from the settling classifications presented in Chapter 3.

¢ Section 4.3 provides an overview of #prof, a runtime profiling tool devel-
oped for this thesis that monitors the behaviour of objects at runtime and

classifies them using the behaviour characterisations from Section 4.2.
* Section 4.4 presents relevant details of #prof’s implementation.

* Section 4.5 presents results obtained using #prof to monitor the behaviour

of 30 Java programs from the Qualitas Corpus [88].

* Section 4.6 summarises the contributions of this chapter and motivates the
work presented in subsequent chapters.

4.2 Classifications for #prof

Programmers may implement equals and hashCode in many ways, but by ob-
serving their settling behaviour at runtime we can broadly classify different types
of implementations and compare their relative popularity. This section uses the
settling behaviours defined in Chapter 3 to characterise the particular types of

implementations.

4.2.1 Equality vs. field settling behaviours

Chapter 3 defined several settling behaviours for object-fields and equality ini-
tialisation. This chapter classifies objects using a selected subset of these be-
haviours to characterise their object-fields and equality: constructor-settled or
mutable object-fields (Section 3.2.1); and identity-as-equality, constructor-settled,
collection-settled, or mutable equality (Section 3.3). Table 4.1 shows the eight
categories for objects derived from these settling behaviours.

Assuming that a class actually defines equals and hashCode, then comparing
the field and equality settling behaviour of its instances will result in one of four
possibilities:

¢ Equality and fields both settled before the end of the constructor (C(C)).

This could indicate that the objects represent constants such as numbers or

points that have an inherent equivalence relation but no mutable state.
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Fields
Constructor-settled (C) Mutable (M)
Identity-as-equality (Id) - 1d(M)
. Constructor-settled (C) - C(M)
Equality
Collection-settled (K) - K(M)
Mutable (M) - M(M)

Table 4.1: Object classifications based on equality and object-field settling behaviour.
Frame colour indicates equality behaviour while background colour indicates field set-
tling behaviour. These colours are also used in the results section of this chapter.

¢ Equality settles after fields (K(C), M(C)). This indicates that the class uses
deep state — referenced arrays or objects — to calculate its equals and hash-
Code because equality changed independent of the object’s fields. Unfortu-
nately we cannot conclude anything else about these classes because #prof

does not track deep state.

¢ Equality settles before fields (C(M), K(M)). This indicates that an object’s
equality is based on a subset of its properties and the object has fields that
change. If this occurs, it could indicate that the class is using equals and
hashCode to implement external references (e.g. [20, 79]). Alternately, the
class could be caching external values in fields, or even caching the value of
hashCode (e.g. java.lang.String).

* Neither equality nor fields settle (M(M)). This indicates that the class is most
likely using equals and hashCode to determine whether its objects are cur-
rently equal (e.g. comparing coordinates to see if two objects are currently

in the same position).

Classes that do not define equals and hashCode (Id(C), Id(M)) default to Java
reference comparisons. They could be mapping an external ID onto a Java refer-
ence (Hibernate can do this, for example [79]) but we won’t be able to tell using
these designations.

4.2.2 Collections and equality settling

Java’s standard libraries include the Java Collections API, a collection of general

purpose implementations of many common data structures. Almost all of these
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collections are capable of storing any type of object, yet they require stronger
contracts than the equals method documentation provides. For example, docu-

mentation for java.util.Set states:

“Note: great care must be exercised if mutable objects are used as set elements.
The behaviour of a set is not specified if the value of an object is changed in a
manner that affects equals comparisons while the object is an element in the
set. A special case of this prohibition is that it is not permissible for a set to
contain itself as an element.” [24]

This contract is significant because it requires that while objects are in a Set
their equality should not change. As no type constraint exists to prevent objects
with mutable equality from entering a Set, programmers must take care to obey
this contract or they may encounter subtle bugs. We will compare objects that
enter collections like Sets to objects that enter other types of collections (e.g. Lists),
as well as to objects that don’t enter collections, to determine whether classes with
objects in these categories are initialised differently (in some manner) to ensure
that they meet the Set constraints. For example, it would be an error for mutable-
equality /mutable-fields (M(M)) objects to change while they are in a Set.

The Java Collections API provides four major interfaces: Set, List, Queue, and
Map, each of which imposes different constraint on the objects they contain. As
we’ve discussed, the Set interface imposes a particularly strict contract on its con-
tents. Lists and Queues are more permissive, but they have a related note of cau-
tion:

“Note: While it is permissible for lists to contain themselves as elements,
extreme caution is advised: the equals and hashCode methods are no longer
well defined on such a list.” [24]

This note is necessary because the provided implementations define equals and
hashCode methods that depend on their contents. For example, ArrayList’s equals
method will recursively call equals on each List member. Programmers must be
aware that if the List is stored in another collection — such as a Set — the other
collection’s contracts will transitively apply to the List’s content.

The Map interface (also Hashtable) splits objects into keys and values: keys must
conform to the same contract as Set objects, while value objects must conform to
the same contracts as List’s.

Collections naturally divide into two categories based on the contracts they

impose on their contents:
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* Equality collections — collections like Set whose implementations depend on
equals and hashCode for correct functionality. These include Sets, and the
parts of Maps and HashTables that contain keys. While an object is in one of
these collections it must not change its equality.

e Identity collections — List, Queue, and the value parts of Map and HashTable
— do not require equals and hashCode for correct functionality but they use
equals to determine whether an object is in the collection, and their elements
must obey any transitive constraints — if the collection enters an equality
collection then all of the elements must behave as if they are in an equality
collection.

There is a third type of collection that does not use equality: IdentityHashMap.
As such, this collection does not exhibit any equality behaviour so we disregard
it for the analysis in this chapter.

4.3 #prof overview

This section gives a high-level overview of the strategies used by #prof to cate-
gorise objects as by their equality-settling behaviour (Id, C, K, or M) and by their
field-settling behaviour (C or M).

4.3.1 Detecting equality settling

Java’s equals and hashCode methods describe how an object’s equality can be cal-
culated. #prof needs to detect changes to an object’s equality at runtime to clas-
sify the object’s equality settling behaviour. hashCode is very useful for detecting
changes to equality if we assume that it does not have side-effects. If hashCode
is side-effect free, then #prof can observe an object’s equality at runtime with-
out affecting the program’s semantics by calling hashCode whenever an object’s
equality may have changed. If the value hashCode returns does not match the
previous value, then #prof can conclude that the object’s equality has changed.

#prof can determine which program events may cause an object’s equality to
change by observing each hashCode invocation and recording the properties it
uses, then monitoring events that affect those properties. #prof does this using a
two part strategy:

1. Immediately after an object’s constructor returns, #prof calls the object’s
hashCode method. During the computation, #prof intercepts all method
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public int hashCode() {

int h = this.hash;

if (h == 0 && count > 0) {
int off = offset;
char val[] = value;
int len = count;

for (inti=0;i <len;i++) {
h = 31xh + val[off++];

}
this.hash = h;

}

return h;

Figure 4.1: This hashCode method for java.lang.String demonstrates caching the result of
hashCode to avoid recomputing it for subsequent invocations (adapted from [105]).

calls and adds the target objects of each call to a dependency set for the object.
Once the hashCode method returns this set will contain all objects used to
compute the object’s hashCode. #prof records the dependency set and the
result of calling hashCode for each object.

. #prof tracks all field writes to all objects in dependency sets. When a field

write occurs, #prof determines which object contains the field, then causes
every object whose dependency set contains that object to re-compute hash-
Code. If the value returned by hashCode is different to the stored value,
then the object has changed its equality so #prof records the change and up-
dates the stored value. While #prof is recomputing hashCode it adds any
additional objects encountered to the appropriate dependency set so that
future changes can be detected.

If an object’s hashCode method is not side-effect free then #prof could affect

the program’s behaviour. An idiomatic hashCode method will not have side-

effects but a common optimisation for complex classes involves storing hash-

Code’s value the first time it is calculated and returning the stored value for sub-

sequent invocations (e.g. Figure 4.1). #prof could calculate hashCode too early

and trigger an exception, or cause the object to cache a hashCode value that does

not reflect its final state. #prof catches and discards exceptions while calculat-

ing hashCode. An object calculating and caching the wrong hashCode code could

affect program behaviour, but this is an advanced strategy so we assume that pro-
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public boolean equals(Object other) {
if (this == other)
return true;
if (this == null)
return false;
if (!(other instanceof A))
return false;
A otherA = (A) other;
return ...

}

Figure 4.2: An idiomatic Java equals method showing optimisation checks for this, null,
and compatible types (adapted from [38]).

grammers creating caching implementations of hashCode also code defensively
and ensure that any changes the object will invalidate the cached hashCode.

Detecting changes to equals is more difficult than detecting changes to hash-
Code because equals requires a parameter. We could compare the object to itself,
to null, or to a new object, but many implementations begin with a short-circuit
for common comparisons such as these (e.g. Figure 4.2). The only way a runtime
analysis can determine whether a change to a program’s state will cause equals
to return a different value (without analysing the method’s implementation) is to
compare the object to all other objects to which it has been compared or will be
compared in the future. A runtime analysis that attempts to monitor equals as
a black box method must either compare all objects in the program every time a
change occurs to reachable program state, or have foreknowledge of all possible
execution paths (Marinov and O’Callahan achieve this using multiple program
executions [63]).

Java’s documentation includes a contract for hashCode() that requires that any
two objects that are equal using equals must also have the same hashCode value:

“If two objects are equal according to the equals(Object) method, then calling
the hashCode method on each of the two objects must produce the same integer
result.” [24]

Consequently;, if the value computed using hashCode changes for a (correctly
implemented) object, its equality as determined using equals must also have
changed: monitoring hashCode will give at worst an under-approximation of
equals changes. In practice, hashCode methods are implemented to closely mimic
equals behaviour to avoid hash collisions between similar objects that would de-
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teriorate the performance of equality collections, so hashCode is a sufficiently ac-
curate approximation for equals for our purposes. Java does not enforce correct
hashCode implementations, but there are automated tools available to develop-
ers that detect incorrect implementations at compile-time [48]. We assume the
implementations are correct.

Even if we ignore the assumptions previously discussed, there are two addi-
tional problems that could threaten the validity of #prof’s equality settling detec-
tion. #prof should identify and monitor arrays that are used to compute hashCode
but does not due to tool limitations, so changes to arrays will not trigger #prof to
recalculate hashCode. Consequentially, some changes to equality may not be de-
tected. In addition, a change to equality may not be detected if the previous and
new hashCode values collide.

4.3.2 Detecting object-fields settling

Detecting changes that affect hashCode requires that #prof monitors all fields.
When changes occur, in addition to calculating the effect on hashCode(), #prof
marks the object that owns the field as mutable (M) if its constructor has com-
pleted. When the program terminates, #prof compares the number of mutable
(M) objects of a particular class to the total number of objects of that class. If none
of the objects were mutated then #prof concludes that the class was constructor-
settled (C), and hence all objects of that class have constructor-settled fields. If a
field of any object of that class was mutated after the constructor then #prof as-
sumes that any object could have been mutated, so all objects of that class are
classified as having mutable fields.

4.3.3 Aggregating results

#prof’s design consists of independent modules that identify and publish partic-
ular events, and components that record events for each object. For example,

suppose an object entered an identity collection then changed its equality:

e the detect collection membership component will identify that the object en-
tered a particular identity collection and update the object’s record to indi-

cate that it (a) is in an identity collection and (b) has entered a collection.

o the detect equality changes component will detect the object’s equality chang-

ing and generate an equality changed event.
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e the record changes in collection component will receive the equality changed
event, check the object record, observe that the object is currently in an
identity collection, and update the object’s record to indicate that the ob-
ject changed its equality in an identity collection.

When the object is destroyed by the JVM'’s garbage collector or the program ter-

minates, each component will update the record for the object’s class:

¢ the detect equality changes component will record that an instance of the class
changed its equality.

o the detect collection membership component will record that an instance of the
class entered an identity collection.

e the record changes in collection component will record that an instance of the
class changed its equality in an identity collection.

This approach ensures that the extra memory required to track objects is pro-
portional to the number of live objects (so the JVM does not run out of memory)
but means that #prof does not record information about the behaviour of par-
ticular objects, only the aggregate behaviour of classes. Using this information
we can accurately classify classes using the classifications from Section 4.2, but
we cannot always accurately classify individual objects. For example, suppose a
class had two instances in total, one instance that entered an identity collection
and one that entered an equality collection. We can conclude that instances of
the class entered equality collections and identity collections, but we don’t know
whether each instance entered one collection or one instance entered both. On
the other hand, if a class reports that one instance entered an identity collection
and one changed in an identity collection we can infer that it was the same object.

#prof always produces class aggregations that match the observed results, but
it is only possible to reconstruct object behaviour in cases where the majority of
instances of a class behaved in the same way.

Instead of recording properties independently, #prof could use separate coun-
ters for each possible combination of properties. For example, #prof reports for
each class:

¢ the number of objects in equality collections
¢ the number of objects in identity collections

Instead, #prof could record:
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the number of objects in equality and identity collections

the number of objects in equality but not identity collections

the number of objects in identity but not equality collections

the number of objects in no collections

Unfortunately this would cause an exponential explosion in the number of prop-
erties to record: #prof records 18 independent properties, recording the permuta-
tions of these properties instead would require over 200K property counters per
class. #prof represents an exploration of object initialisation behaviour, during de-
velopment we did not know which properties would prove to be important. Even
with only the six independent properties reported in this chapter plus member-
ship of two types of collections we would require 256 property counters per class

— feasible but it would have required significant architecture changes.

4.4 #prof implementation

#prof was implemented using Aspect] [54]. Aspect] is a language extension to
Java that can systematically add new functionality to an existing program [41,
56]. Aspect] is a useful platform for building profilers [81], as it does not require
recompilation of target programs or virtual machine modification, and allows the
profiler to be developed using Java-like syntax.

Aspect] provides a Java compiler that can modify class files at compilation,
and a class loader that replaces the JVM class loader and modifies classes as they
are loaded by a running program. Aspect] allows profilers to identify important
events using pointcuts, then specify Java code to handle event occurrences. #prof
uses Aspect] to modify classes as the JVM loads them so that, as a program ex-
ecutes, #prof receives callbacks when particular method calls and field accesses
occur. In addition, #prof uses Aspect] to replace Java collections with custom
implementations that make it possible to track collection membership.

Aspect] load-time weaving cannot add code to the Java standard libraries,
so #prof cannot directly record changes that occur within the standard library
objects (except for collections, which we address specifically). #prof can partially
observe some standard library objects that interact with user code but the results
are not necessarily accurate — it cannot generate events for field modifications,
for example. #prof is also unable to profile applications that use their own class
loaders (like Eclipse) or applications that are close to the limit on method size —
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Aspect] does not support breaking up methods to avoid overflowing the method
size limit and as #prof’s use of Aspect] adds a lot of tracking code to methods this
occasionally results in invalid class files, causing the program to terminate. This

limits the programs that can be profiled by #prof.

The remainder of this section discusses relevant aspects of #prof’s implemen-
tation.

4.4.1 Generating events

In the terminology of aspect-oriented programming, an observable event is a
join point. Code introduced at an event site is advice. Aspect] join points include
method entry, method calls, and field access (read or write). Aspect] can insert
advice at a single join point or to a set of join points (a pointcut).

#prof requires several different runtime events to be intercepted:

* object constructor return, to identify the beginning of the initialisation phase.
* object death, to aggregate recorded object data into class summaries.

¢ changes to an object’s equality.

¢ changes to an object’s fields.

¢ changes to an object’s containment by collections.

Intercepting object creation with Aspect]

As a simple example, Aspect] can intercept object constructor return using advice

similar to the following:

after () returning (Object o):
call(.new(..)) && within(profiler.«){

In this example, after advice causes Aspect] to insert code after each con-
structor method call. The pointcut call(~.new(..)) matches any constructor while
the pointcut Iwithin(profiler.x) prevents Aspect] from intercepting object creations
caused by #prof.
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Intercepting object death

#prof stores per-object information to record field modifications, object depen-
dencies, collection membership, and hash code calculations. #prof must ensure
that it does not cause memory leaks — which could cause the JVM to run out of
memory — while maintaining a dependency graph and ensuring that #prof can
aggregate the recorded information before program termination. For example,
when an object enters a collection, #prof records that it is in that particular collec-
tion. If the collection becomes unreachable from the program then #prof should
ensure that it can be collected by the garbage collector, as well as ensuring that the
object’s record is updated to indicate that it is no longer in the (garbage collected)
collection.

#prof uses weak references to refer to Java objects so that the garbage collec-
tor is not affected by the presence of #prof’s tracking structures (this technique
has been used for other profilers [1, 81]). #prof allocates weak references with
a ReferenceQueue, a Java standard library class that interacts with the garbage
collector. After collecting an object that is referenced by a weak reference, the
garbage collector adds the weak reference to its associated ReferenceQueue, which
allows #prof to identify that the object has been collected and take appropriate
action. When a Java thread enters #prof tracking code (next time a #prof event
occurs), #prof checks the queue and purges records for any objects that have been
collected, aggregating their information into class statistics.

Profiling object equality

Section 4.3.1 outlined the algorithm #prof uses to detect changes to object equal-
ity by profiling hashCode and building dependency sets. When any object in a
dependency set changes, #prof should detect the change, recompute hashCode
(adding any new dependencies to the set), and conclude whether the object’s
equality has changed as a result of the field modification. This calculation as-
sumes that hashCode methods are stable — as long as no reachable state changes,
calling hashCode should always return the same value. The Java API documenta-
tion for hashCode asserts that implementations should have this property so this
is not a major assumption [105]. #prof identifies changes that could affect object
equality by intercepting all field writes (using Aspect]’s set join point). This also
allows #prof to determine whether object state is mutated after the constructor.
Some hashCode methods assume that state is available for computation based
on programmer assumptions about when hashCode will first be called. #prof al-
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ways calls hashCode immediately after construction ends, which can invalidate
these assumptions and cause exceptions. #prof catches and discards any excep-
tions thrown during #prof-triggered hashCode calls as discussed in Section 4.3.3.
Even if the hashCode method throws an exception #prof can build an accurate
dependency set because one of the objects added to the set prior to the exception

must change in order for a future call to complete without an exception.

Profiling collections

#prof tracks objects’ collection membership to identify collection-settled equality
and track objects that enter different types of collections. Aspect] cannot mod-
ify Java’s standard libraries, which include collections, so #prof uses proxies to
determine whether or not an object is in a collection. When a program creates
a new collection #prof intercepts the call using Aspect] join points on collection
constructor calls, returning instead a proxy collection that wraps the actual col-
lection type that the program requested (see Figure 4.3). The proxy collections
monitor collection interfaces and track objects as the program adds and removes
them from the collections.

#prof replaces the following collections with proxy implementations: HashSet,
HashMap, LinkedHashMap, Hashtable, LinkedHashSet, TreeSet, TreeMap, PriorityQueue,
ArrayList, LinkedList, and Vector. Proxy collections extend the class they proxy, e.g.
HashMapReplacement extends HashMap.

Some programs extend standard collections themselves. #prof exploits As-
pect]’s declare parents functionality to introduce its proxy collections into the hier-
archy between the collection class and the application-defined subclass. In most
cases this works well, however in a small number of cases it fails due to an out-
standing bug in the Aspect] compiler. The benchmarks used in this chapter ex-
clude programs that exhibit this behaviour.

It is possible for proxy collections to alter a program’s behaviour. A program
could use reflection or use the actual name of the class in computations. We did

new ArrayListReplacement<String>(
new ArrayList<String>(); new ArrayList<String>());

(a) Before Aspect] Modification (b) After Aspect] Modification

Figure 4.3: Replacing collections with proxy collections
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not encounter any unexpected behaviour that could be attributed to this while
profiling the benchmarks in this chapter but it could cause problems for other
programs.

Finally, #prof cannot intercept collection object creations arising from code
within the Java standard library itself because Aspect] cannot weave against it,
and #prof can only profile collections from the standard libraries (application-

specific collections are not supported).

Storing object-specific analysis state

#prof must associate state with objects during profiling. For example, for each
object #prof records the last computed value of hashCode; the object’s depen-
dency set; and any collections that currently contain the object. Aspect] provides
a mechanism for inserting fields into a class (intertype declaration), however, #prof
must access object state after the JVM garbage collects an object, so object fields
are not suitable. #prof instead uses a global store containing a record for each ac-
tive object. When a program creates an object, Aspect] after advice causes #prof to
create a record for the object and insert it into the global store. When advice inter-
cepts an interesting event (for example, when the object enters a collection), #prof
retrieves and updates the object’s record. Since each record exists independently
of the object it describes, it remains accessible after the JVM collects the object.

#prof’s global store is a hash map, keyed on the objects themselves. Ideally
#prof should use a unique identifier for each object that persists after the JVM
collects the object. Unfortunately, this would cause a dependency problem: the
profiler must store the identifier where it can retrieve it later from the object —
using the identifier! In a language like C, #prof could use the memory address of
an object as an identifier, however Java does not expose object memory addresses
(and JVMs frequently relocate objects during garbage collection).

#prof uses a custom hash map similar to Java’s WeakHashMap keyed on the
actual objects, but wrapped with weak references to avoid affecting garbage col-
lection. This allows #prof access to an object’s record after the JVM collects the
object. WeakHashMap itself is not suitable as it uses hashCode to store objects.

#prof stores objects using identity hash codes from System.identityHashCode().
This method returns a consistent value for an object regardless of any changes
to object properties. Oracle’s JVM implementation derives this value from the
memory address of the object when the method is first called then preserves that
value for future calls.

The use of System.identityHashCode() leads to an interesting complication: #prof
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must insert each object into the global store as soon as the object is constructed so
that it can be used by the dependency set algorithm. The JVM, however, stores all
freshly-created objects in the nursery region of the heap — about 16MB of mem-
ory by default. This almost guarantees that there will extremely frequent hash
collisions for live objects as the nursery is reused for creating the next generation
of objects. These collisions significantly degrade performance as #prof must per-
form O(n) search of hash buckets — where 7 is the size of the buckets — every time
an event occurs that affects or could affect a particular object. This is a significant
source of overhead for #prof, particularly for larger benchmarks. An implemen-
tation that, for example, included some time-based entropy in generated hash

codes would significantly reduce #prof’s overhead.

Concurrency

Most Java programs are concurrent, at least to some degree, as most JVMs use
threads internally. #prof relies on being able to compute hashCode after a field is
modified without other field modifications occurring while it is doing so. To en-
sure this, #prof uses monitors to ensure that only one thread can be within profiler
code at a time. This does not guarantee the program is thread-safe; one thread
may still change a value while another thread is inspecting that object, but the
first thread must then enter the profiler and wait for the other thread to finish
before continuing. In practice we did not encounter any errors, but some pro-
grams that provided ‘instant” feedback were sluggish (particularly AWT-based
GUI applications).
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4.5 #prof results

This section presents the results obtained from running #prof on a sample of ap-
plications from the Qualitas Corpus developed at Auckland University, NZ [88].
The Qualitas Corpus is comprised of source distributions from 100 open source
Java projects to aid empirical research. The Qualitas research group designed
the corpus primarily for static analysis, so the corpus includes libraries and plat-
forms that cannot be run independently. In addition, some projects in the corpus
use custom class loaders or include long methods that prevent #prof from modi-
tying them (see Section 4.4). Of the 100 projects in the corpus, this section exam-
ines a sample population of 30 applications suitable for runtime profiling. These
included compilers, command-line utilities, graphical tools, sample applications
for libraries, and test suites. Figure 4.4 presents the complete list of applications
profiled with a short description of each.

4.5.1 Experimental method

#prof profiled each benchmark as it ran on a standard Java HotSpot™ Server VM
(build 1.5.0_15-b04, mixed mode), on one of several Dell Optiplex GX620 worksta-
tions (Pentium 4, 3.2GHz, 1GB memory) running NetBSD 5.0_RC2. Benchmarks

were started using the following command line arguments:
java —Xmx1024M —javaagent:aspectjweaver.jar —classpath hashprof.jar [benchmark]

This starts Java with Aspect]’s load-time weaving enabled. Aspect] will load
any join points defined in Aspect] files listed by the META—INF declaration of
hashprof.jar. Subsequently, when Java class files are loaded by the JVM, the As-
pect] load-time weaver will augment them with the code necessary to instrument
the specified join points.

Benchmarks

The Qualitas Corpus is not designed for runtime benchmarking and does not pro-
vide a framework for automatically executing programs, but most distributions
include a binary package. For each benchmark listed in Figure 4.4 we investi-
gated the binary packages available and determined how the benchmark could
be run and what functionality could be exercised by running them in a standard
Java environment. For each benchmark we identified a set of inputs designed
to exercise program functionality, but we did not consult source code or mea-

sure profiling coverage. Figure 4.4 briefly outlines the test inputs used for each
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Application Synopsis

ant A Java build system. Benchmarked building ant, uses javac.

antlr A compiler-generator. Tested compiling Java grammar.

aoi Art of Illusion, a 3D editor with raytracer. Built a simple model
and rendered it.

columba Java mail client. Connected to an imap server, browsed mail
and sent a message.

derby Java database. Ran tutorial on in-memory DB.

drawswf SWF animation editor. Generated a small animation and ex-
ported to SWE.

titjava Testing framework. Ran tests distributed with framework.

freecs Chat server. Ran server and connected several clients.

ganttproject Graphical tool for task management.

hsqldb Database tool. Created in-memory database and run various
test scripts.

itext Collection of tools for PDFs. Ran several tools.

jFin_DateMath  Date math library. Ran tests.

javacc Java Compiler Compiler. Compiled JavaCC grammar.

jchempaint Graphical molecule editor. Created and edited simple
molecules.

jedit Text editor. Created Java class, edited, searched, saved etc.

jfreechart Graphical tool for creating charts. Tested UL

jgraph Library for drawing graphs. Ran several examples.

jgraphpad Uses jgraph for drawing graphs. Created small graphs.

jgrapht Views graphs, uses jgraph.

jhotdraw Graphics framework. Tested sample application.

jmoney Personal finance. Created sample accounts. Tested import/-
export, saving, editing, and reporting.

nekohtml HTML parser. Ran samples.

pmd Source code analyser. Tested on various projects.

pooka Java email client. Tested connecting to IMAP server, reading
mail, sending mail.

trove High-speed collection implementations. Ran the included
benchmark suite.

velocity Templating engine. Ran sample application.

weka Data mining tool. Ran sample application.

xalan XSLT processor. Ran some examples.

xerces XML parser. Ran some examples.

Xmojo JMX implementation. Ran sample application.

Figure 4.4: 30 applications from Qualitas Corpus release 20080603 [88], using the most
recent version available where applicable. Where relevant, the table lists the profiled
application behaviour.
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benchmark.

For compilers, build tools and libraries we preferred samples distributed with
the benchmark. GUI tools required manual interaction; researchers attempted to
trigger all of the application’s major features, but did so without a deep knowl-
edge of the applications behaviour. #prof introduces significant but extremely
variable overhead to the applications, ranging from 2 x-20x the original runtime.
Large autonomous programs ran for several hours, but these can run unattended.
The overhead introduced made manually driving interactive programs extremely
tedious and we are grateful to several research students from our department for
their help driving these benchmarks.

On termination, #prof generates tab-separated summary data for each class
encountered that is stored in plain-text files (see Section 4.3.3). The results are

presented in this section.

4.5.2 Overview

Table 4.2 shows summary data for each benchmark. The first four columns show
the number of user-defined classes encountered by #prof at runtime (i.e. exclud-
ing java/javax). In order, they show: the total number of classes in each bench-
mark; the number of classes with instances in equality collections; the number
of classes with instances in identity collections; and the number of classes with
no instances that enter collections. The fifth column shows the total number of
objects in user-defined classes, and the final two columns show the total number

of classes and objects observed including system classes.

Figure 4.5 presents summary data for user-defined (i.e. excluding java/javax)
classes and objects encountered (Figures 4.5a and 4.5b respectively) and demon-
strates the result format used throughout the rest of this section. Each figure is
split between the categories introduced in Section 4.2 (Table 4.1). The chart on the
left of the figure shows the total population split between classes and objects that
use identity-as-equality, Id(M) and Id(C), and Other, which includes all classes
and objects that use non-default equals and hashCode methods. The chart on the
right, Other, subdivides the classes and objects from the Other segment on the left:
constructor-settled (C), collection-settled (K), and mutable (M) equality classes.
Each category is further split between constructor-settled (C) and mutable (M)
tields, giving six possible categories: C(C), C(M), K(C), K(M), M(C), M(M). No
instances of K(C) were observed so it is omitted from all figures.
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User defined (i.e. excluding java/javax) All

Classes Objects  Classes Objects
Benchmark Total Eq. Coll. Id.Coll. No Coll Total Total Total
ant 324 13 36 288 2,639,716 367 2,769,194
antlr 61 4 15 46 16,261 72 49,581
aoi 269 6 49 220 18,930 337 23,723
columba 509 8 35 474 13,059 607 34,402
derby 239 9 14 225 3,399 280 4,238
drawswf 90 1 6 84 1,873 146 5,887
fifava 8 0 1 7 102 22 739
freecs 89 1 58 31 999 106 3,763
ganttproject 230 5 21 209 24,553 294 37,397
hsqldb 85 0 0 85 22,930 116 27,014
itext 49 2 13 35 6,617 77 15,928
jFin_DateMath 6 0 0 6 151 10 881
javacc 41 2 13 28 41,271 50 74,335
jchempaint 173 3 17 156 800,688 241 860,622
jedit 409 7 23 386 55,489 501 105,912
jfreechart 110 3 7 103 1,784 140 2,524
jgraph 83 4 9 74 4,728 117 74,372
jgraphpad 174 13 17 157 17,084 257 90,466
jgrapht 69 4 9 60 2,139 94 18,591
jhotdraw 125 1 2 123 7,262 164 48,073
jmoney 220 3 11 209 8,786 297 33,514
nekohtml 41 0 1 40 4,368 55 9,215
pmd 198 9 42 155 658,736 216 776,269
pooka 349 6 73 276 23,803 440 58,965
trove 24 0 0 24 2,100,189 35 2,400,310
velocity 49 1 3 46 623 70 1,302
weka 22 1 1 21 605,493 41 606,341
xalan 144 2 5 139 1,664 161 3,050
xerces 160 7 19 141 1,661 169 2,339
Xmojo 52 1 5 47 323 95 1,293
Total 4,402 116 505 3,805 7,084,681 5,577 8,140,240

Table 4.2: Summary table showing the number of classes and objects in various cate-

gories, per benchmark.
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Figure 4.5: Classes and objects excluding java/javax. The charts on the left show classes
and objects in three categories: Id(M) — identity-as-equality and mutable fields, Id(C)
— identity-as-equality and constructor-settled fields, and Other — which is expanded
in the chart on the right. Within Other we see: C(C) — constructor-settled equality and
constructor-settled fields, C(M) — constructor-settled equality and mutable fields, K(M)
— collection-settled equality and mutable fields, M(M) — mutable equality and mutable
fields, and M(C) — mutable equality and constructor-settled fields. There were no classes
or objects with collection-settled equality and constructor-settled fields (K(C)).
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Discussion

Table 4.2 and Figure 4.5 show that the majority of classes do not override the
default equals and hashCode methods; in most cases, identity-as-equality is ade-
quate to both identify and compare objects. About half of all classes and objects
we observed have constructor-settled fields, suggesting that many classes and
objects do not need to mutate their fields after their constructor returns.

Of classes that override equals and hashCode, about half have constructor-
settled equality (131 of 267), but constructor-settled fields are less common among
these classes. Objects that have constructor-settled equality account for about
three quarters of objects that override equals and hashCode and collection-settled
or mutable equality is less common among objects than among classes.

Classes and objects whose fields settle before their equality (deep state-based
equality) are very uncommon: only three classes and 26 objects showed this be-
haviour, of a total 4402 classes and over 7M objects.

The following sections consider and compare different subsets of classes and ob-
jects from the whole population shown in Table 4.2 using the format established

in this section.

4.5.3 Results: classes and objects that enter equality collections

Figure 4.6 presents data for all user-defined (i.e. excluding java/javax) classes and
objects encountered that entered equality collections — collections that require
that equals and hashCode are not affected while an object is in that collection.
These include Sets and the parts of Maps and HashTables that store keys.

Discussion

Figure 4.6 shows that the vast majority of user-defined objects that enter equal-
ity collections do not use identity-as-equality, unlike in the general population
where identity-as-equality objects are the norm. The relative proportion of classes
that use identity-as-equality is also lower than in the general population, but not
to the same extent as objects. This suggests that although identity-as-equality
classes that enter equality collections are not uncommon, they tend to have fewer
instances than classes that implement equals and hashCode.

One possible interpretation for the extremely high proportion of objects in
equality collections that implement equals and hashCode is that collections are
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Figure 4.6: User classes and objects that enter equality collections (sets, keys of maps).
The charts on the left show classes and objects in three categories: Id(M) — identity-as-
equality and mutable fields, Id(C) — identity-as-equality equality and constructor-settled
fields, and Other — which is expanded in the chart on the right. Within Other we see: C(C)
— constructor-settled equality and constructor-settled fields, C(M) — constructor-settled
equality and mutable fields, and K(M) — collection-settled equality and mutable fields.
There were no classes or objects with collection-settled equality and constructor-settled
fields (K(C)) or with mutable equality (M(M) and M(C)).
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commonly used to map external references onto Java references. For example, a
database ID could be used as a map key, mapping that database ID to a unique
Java object that represents the domain object associated with that ID (this tech-
nique is common among persistence frameworks). If equality collections were
commonly used to maintain sets of unique Java objects then we expect to see
more objects with identity-as-equality entering these collections.

More than half of classes stored in equality collections have mutable fields
even though their equality always settled before entering a collection. It would
be interesting to know whether these object’s fields are also collection-settled,
unfortunately #prof does not implement this analysis. Instances of these classes
are uncommon: about three quarters of objects in this category have constructor-
settled equality and constructor-settled fields (C(C)), a significantly higher pro-
portion than among classes.

Reassuringly, none of the objects or classes we observed changed their equal-
ity in equality collections: this would be an error had it occurred. In fact, all of
the observed objects and their classes had equality that settled before entering a
collection. It would be entirely permissible for an object to enter an equality col-
lection, leave, then change their equality, or for instances of a class that do not
themselves enter a collection to change their equality after the constructor, but
we did not observe this occurring.

A significant proportion of classes and objects that enter equality collections
use collection-settled equality; post-constructor settling is relatively common for

these classes and objects.

4.5.4 Results: classes and objects that enter identity collections

Figure 4.7 presents data for all user-defined (i.e. excluding java/javax) classes and
objects encountered that entered identity collections — collections that do not re-
quire equals and hashCode for their implementation. These include lists, queues,

and the parts of maps that store values.

Discussion

Almost all classes and objects that enter identity collections have settled equality
(identity-as-equality (Id), constructor-settled (C), or collection-settled (K) equal-
ity). Classes and objects that enter identity collections also have very few in-
stances of identity-as-equality when compared to the general population (partic-
ularly noticeable for objects). These trends are not as pronounced as classes and
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Figure 4.7: User classes and objects that enter identity collections (lists, queues, values
of maps). The charts on the left show classes and objects in three categories: Id(M) —
identity-as-equality and mutable fields, Id(C) — identity-as-equality and constructor-
settled fields, and Other — which is expanded in the chart on the right. Within Other
we see: C(C) — constructor-settled equality and constructor-settled fields, C(M) —
constructor-settled equality and mutable fields, and K(M) — collection-settled equality
and mutable fields. There were no classes or objects with collection-settled equality and
constructor-settled fields (K(C)) or with mutable equality (M(M) and M(C)).
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objects in equality collections, but are less easy to explain: classes and objects that
enter equality collections must ensure that their equality does not change while
they are in those collections, and they can expect their equality to be used im-
mediately by the collection as it stores the object. Classes and objects that enter
identity collections do not have to meet this requirement: they may never have
equals or hashCode called as identity collections only use equality to determine
collection membership (contains()). There is significant overlap between classes
that enter both equality collections and identity collections that could partially
explain this trend, but as discussed in Section 4.3.3, #prof’s analysis cannot de-
cide in general whether particular objects enter both types of collection.

Among objects that do not use identity-as-equality, objects in identity collec-
tions also include fewer constructor-settled equality objects with mutable fields
than among the general population, where objects with mutable fields are com-
mon.

Unlike classes and objects that enter equality collections, identity collections
contain some classes and objects with mutable equality and mutable fields, in-
cluding some that change while in collections. Many of these were instances of
a single class: org.columba.core.xml.XmlElement. XmIElement uses a Java Hashtable in-
ternally to maintain a collection of ‘attributes” and a Vector to maintain a list of
‘subelements’. Its hashCode implementation depends on both of these, so if ei-
ther collection is modified its hashCode will be affected. This class is used to build
a tree hierarchy where it is stored in ‘subelements’ lists, so it is not surprising that
it changed its hashCode and its fields inside those collections.

4.5.5 Results: classes and objects that do not enter collections

Figure 4.8 presents data for all user-defined (excluding java/javax) classes encoun-

tered whose instances did not enter any collections, and instances of those classes.

Discussion

Figure 4.8 shows a significant difference in the behaviour of objects that do not
enter collections when compared with objects that do: identity-as-equality is the
norm, especially for objects, whereas this is uncommon among objects that enter
collections. Even among only those objects that do not use identity-as-equality,
the majority have an equality that settles before the constructor ends. This is a
surprising result: we expected that more classes would use mutable equality out-

side collections where they do not need to comply with collection requirements.
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Figure 4.8: User classes and their objects that do not enter collections. The charts on
the left show classes and objects in three categories: Id(M) — identity-as-equality and
mutable fields, Id(C) — identity-as-equality and constructor-settled fields, and Other —
which is expanded in the chart on the right. Within Other we see: C(C) — constructor-
settled equality and constructor-settled fields, C(M) — constructor-settled equality and
mutable fields, and K(M) — collection-settled equality and mutable fields. There were no
classes or objects with collection-settled equality and constructor-settled fields (K(C)) or
with mutable equality (M(M) and M(C)).
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Most objects that do not use identity-as-equality also have mutable fields. This
contrasts with objects in collections where mutable fields were relatively uncom-

mon.

4.5.6 Threats to validity

While developing #prof and generating the results presented in this chapter we
made several assumptions. If these assumptions do not hold then the results
presented here may not be valid, so in this section we discuss those assumptions
that could have the greatest impact if invalid.

Using hashCode to measure equality

We assume that programmers overriding equals also implement hashCode, and
that the implementation depends on the same fields. Additionally, we assume
that any change to equals will also cause a change to the hashCode value. This
assumption is justified by appealing to the Java specification for the equals and
hashCode methods, as discussed in Section 4.3.1. If programmers implement
equals and hashCode methods to be inconsistent with the specifications then our
observations of hashCode may not be representative of equality behaviour. We
suspect that if this does occur, it is uncommon.

Even if the programmer has implemented hashCode to depend on the same
tields as equals it is possible, due to hash collisions, that a change in equals will
not cause a change in hashCode. This is unlikely to occur sufficiently often to

affect our results.

Implementations of hashCode that cache the result

We assume that programmers using caching implementations of hashCode also
code defensively to make sure that it is updated when the fields that it depends on
change. It is possible that a programmer implements hashCode assuming it will
not be called until after all the object’s fields have been initialised (e.g. using post-
constructor initialisation methods). If programmers make this assumption then,
by calling hashCode as soon as the constructor ends, we break the assumption
and cause the object to store a cached hashCode based on uninitialised state that
will not be updated by subsequent calls to hashCode. This could cause the object
to be incorrectly classified as C(M) when it could possibly be K(M) or M(M), as
the hashCode should depend on post-constructor initialised fields but is instead
determined at the end of the constructor by #prof’s explicit call to hashCode. It is
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unlikely that this situation will result in incorrect program behaviour as at worst
it could cause all objects to have the same hash code: a bad hash function but not
an incorrect one.

Probably the most well-known class that caches its hash code is java.lang.String,
which stores the computed value the first time hashCode is called and returns that
value for subsequent calls. #prof cannot profile standard library classes so we do
not observe this particular class, but there could be other classes with this be-
haviour. If we were able to observe the behaviour of String objects without #prof
we would classify them based on their behaviour as C(M). Their fields change
after the constructor because they write to their hashCode cache field, but their
equality does not change because they always compute the same value for hash-
Code. In fact, #prof would also classify strings as C(M) for the same reasons.

Based on programming experience caching implementations of hashCode are
not common, and when they do occur they tend to depend on constructor-settled
tields (resulting in a correct C(M) classification). Nevertheless, it is possible that
#prof classified too many objects/classes as C(M) instead of K(M) or M(M).

Representativeness of benchmarks

We assume that the selection of programs that we measured to obtain the re-
sults presented in this chapter are in fact representative of Java programs in gen-
eral. This assumption is typical for researchers performing profiling, but is nev-
ertheless a genuine threat to the validity of our results. It is possible that all the
programs in our study exhibit behaviour that is not typical of other programs.
We tried to select a sample of programs that did not share common features:
some command line tools, some user-centric programs, etc. We also selected
programs from different authors, and from a corpus specifically designed for re-
search. However, all of the programs were open source, and all were relatively
small compared to large enterprise programs. We were also unable to profile the
whole corpus.

We made additional assumptions that the particular invocation of each pro-
gram we measured was representative of the program’s general behaviour, and
we did not measure coverage to ensure that all possible program behaviour was
executed. Whole-program dynamic analysis is not particularly common, but
those examples we discussed in Chapter 2 (e.g. [13, 63, 96]) also made these as-
sumptions. In fact, it is unlikely that most programs would achieve high code
coverage from a normal execution as, from experience, most programs include
code for handling exceptional conditions and future use that would not be exe-
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cuted during normal execution. For example, a class that we classified as C(C)
may have methods for modifying fields that were not called. We assume in-
stead that, by generalising across multiple programs, we see overall trends in
behaviour even if the classification of a particular class does not describe its be-
haviour in any possible program.

Finally, we did not normalise the contribution of objects and classes from in-
dividual benchmarks to the overall results presented in this chapter. This means
that larger benchmarks like ant and trove had a larger contribution to the results
than small benchmarks like fitiava and jFin_DateMath. We made this decision to
avoid giving high weighting to classes from small benchmarks that have only
one instance (singletons), as these classes could have a significantly different be-

haviour to regular classes.

4.6 Conclusion

This chapter presents our first approach to using runtime profiling to measure
settling behaviour in Java programs. While it has several limitations, this work
was very helpful for improving our understanding of this area and did yield

some interesting observations:

* Most classes and objects use identity-as-equality, only around 6% of classes
define equals and hashCode.

* Many objects and classes settle their fields during the constructor, more than

half of classes and nearly half of objects.

* Non-default equals and hashCode are the norm among objects and classes
that enter collections but uncommon among classes and objects that do not
enter collections. This implies that equals and hashCode are primarily used
for collections, either directly in the case of equality collections, or for “con-

tains” operations in other collections.

¢ [t is not uncommon for classes and objects that enter equality collections to
have mutable fields: more than half of classes and a quarter of objects in
these categories change their fields after their constructor returns. Identity-
as-equality and collection-settled equality are common among these classes
and objects.

¢ Equality implementations based on deep state are rare, or at least it is un-

common for equality to settle after an object’s fields settle.



68

CHAPTER 4. #PROF

This chapter has discussed many limitations in our approach to profiling with

#prof, but in light of the results we observed we consider these limitations to be

most significant:

#prof does not record information about individual objects. #prof performs
all aggregation internally and only emits class summary information. This
prevents after-the-fact aggregations from tracing the behaviour of a partic-
ular object and limited us to class-level observations in some cases.

#prof cannot track the behaviour of standard library classes and objects.
This is caused by Aspect], which cannot modify classes which are included
in rt.jar, the classes that the JVM loads on startup.

The Qualitas Corpus, while the largest and most comprehensive benchmark
suite available for Java, is not well-suited to runtime studies. Many of the
benchmarks are not capable of running as applications and few of them in-
cluded significant workloads that we could use for profiling. This severely
limits the reproducibility of our results and their comparability to other
studies.

#prof’s is unable to profile applications that use a class loader. This severely
limited the range of applications we could profile.

#prof could not track arrays, creating a significant opportunity for error.

From an engineering perspective, the development of #prof was significantly

impacted by not having an efficient means to identify objects. #prof distinguishes

objects by their system hash code, falling back to == to resolve collisions. Its use of

system hash codes interacted poorly with garbage collection resulting in frequent

collisions. A better mechanism for uniquely identifying objects during and after

the program execution would have aided development significantly.



Chapter 5

rprof: A General Object Profiler for

Java

This chapter presents rprof, our second runtime object behaviour profiler for Java
developed for this thesis. Like #prof, rprof characterises several object behaviour
patterns, then records the frequency of objects exhibiting these behaviours in
real-world Java programs. This chapter focuses on the contributions of rprof’s
design and implementation, which led to the development of several novel tech-
niques for whole-program dynamic analysis and especially state-independent ag-
gregation. These techniques are broadly applicable to profiling object behaviour.
This chapter also discusses numerous technical contributions. rprof development
focused particularly on identifying and measuring the object-field settling be-
haviour patterns defined in Chapter 3. Chapter 6 presents results obtained by
applying rprof to a selection of Java programs.
This chapter presents and discusses the following contributions:

* an object behaviour profiler capable of classifying the behaviour of classes,
objects, and fields in real-world Java programs according to the classifica-
tions presented in Chapter 3.

¢ techniques for complete, exact tracking of Java objects including (almost) all
standard library classes and objects, regardless of the class-load mechanism
used by the program.

* anovel application of MapReduce [33] to event aggregation, allowing par-
allel, out of order aggregation.

¢ a modular design for object profiling — decoupling the generation and ag-

gregation of events and using unique persistent identifiers for program enti-

69
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ties — allows independent development of data acquisition and aggregation

components.

Unlike #prof, rprof stores aggregate data for object-fields, allowing after-the-
fact aggregations to be developed and refined without re-running the original
benchmark. As a consequence, rprof requires significantly more resources than
#prof — for both computation and data storage. Nevertheless, the extra data
was invaluable for rprof’s development process and particularly for iteratively
refining the aggregations that produce the results presented in this thesis.

This chapter is structured as follows:

* Section 5.1 introduces an example used throughout this chapter that gives
an overview of the rprof approach to object profiling.

¢ Section 5.2 enumerates the major components of the rprof profiler and pro-

vides a high-level technical overview.

* Section 5.3 discusses rprof’s approach to tracking objects and generating

object-related events.

* Section 5.4 presents details of rprof’s use of byte code modification for track-
ing method calls.

¢ Section 5.5 discusses tracking field access and modification.

¢ Section 5.6 details rprof’s approach to parallel data aggregation using in-

memory MapReduce algorithms.

5.1 Example

This section presents a worked example that demonstrates the process rprof uses
to generate data, and performs a simple hypothetical analysis. Subsequent sec-
tions utilise this analysis as a running example.

Figure 5.1 shows the small Java program used in this example. When exe-
cuted, the code creates and initialises a new object of type Example. The code
then calls the hello() method on the object, which returns a string. The program
stores the string in a field belonging to the object. This program avoids I/O op-
erations as they introduce complexity that is irrelevant to the analysis. Though
simple, this program demonstrates all of the basic types of operations that rprof

can track.
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public class Example {
String foo;
public static void main(String args[]) {
Example e = new Example();
e.foo = e.hello();

}
public String hello() {

return “Hello!”,
}

}

Figure 5.1: A running example for Chapter 4; this simple Java program creates an object,
calls a method, and modifies a field.

5.1.1 Generating an event stream

rprof observes running programs and generates an event stream describing their
behaviour. rprof can also analyse the event stream as it is generated.

Suppose the analysis tracks: object allocation, initialisation, and destruction;
instance method calls; and field modifications. The example program — when
executed on a JVM running rprof — generates the following event stream (omitting

events related to JVM initialisation and termination):

EventID  Thread Type Class Method /Field  Arguments (Object IDs)

1 1 Method call Example <init>() ()

2 1 Method call Object <init>() ()

3 1 Object Init Example (2)

4 1 Method return Object <init>() (2)

5 1 Method return Example <init>() (2)

6 1 Method call Example hello() (2)

7 1 Method return Example hello() (2, 3)

8 1 Field store Example foo (2, 3)

9 null Object Free (2)

This event stream shows nine events that describe the behaviour of the pro-
gram’s objects. It shows two types of unique IDs: sequential event IDs 1-9 in the
first column, and object IDs in the thread column (the thread objects) and in the
arguments column. The stream refers to three object IDs: 1, a thread object; 2, an
Example object; and 3, the string “Hello!”.

The event stream shows that the program initialised a new object using its
default constructors (Events 1 and 2). Java’s type system prevents programs from
accessing freshly allocated objects until their constructors have run, so we do not



72 CHAPTER 5. RPROF

see a reference to the object’s ID, 2, until the program reaches the default Object
constructor (Event 3). This event also includes the type of the new object: Example.
Events 4 and 5 show control flow returning through the object’s constructors, then
Event 6 shows the program calling Object 2’s instance method, Example.hello().
Event 7 shows Object 2’s method returning a previously unseen object: Object
3.1 The program stores Object 3 in Object 2’s field, foo, shown in Event 8. Finally,
Event 9 records that the garbage collector has destroyed Object 3.

Using this information we can construct an object lifecycle diagram for Ob-
ject 2 in the style of Rojemo and Runciman [89], using event ids to delimit phases
(see Chapter 3):

Construction Use

T T T T T

3: Created  5: Constructor Return 6-7: hello() called  8: foo set 9: destroyed

Profiling a real program generates an enormous stream of events: some of
the streams generated by running a real analysis were in excess of 500 GB. This
excess of information makes it infeasible to extract useful information by manu-
ally inspecting the event stream and constructing life-cycle diagrams; we need an

automatic approach.

5.1.2 Analysing the event stream

Extracting aggregate properties from a program requires analysis of the event
steam. rprof uses a data-processing technique called MapReduce, a programming
model developed at Google for writing algorithms that can scale from small test-
cases to massively parallel computations spanning data-centers [33]. This style of
programming simplified the process of reasoning about and prototyping whole-
program dynamic analyses. rprof implements all data aggregations as context
independent MapReduce algorithms.

MapReduce algorithms consist of two functions: map, which takes an input
and produces a key and a partial record for that key; and reduce, which takes
partial records for the same key and combines them. When all inputs have been
processed and each key maps to one record the algorithm is complete.

Our running example continues in this section, analysing the event stream to

determine the number of method calls and field writes performed per object.

The full event stream would include JVM events prior to the main method running. These
would show the Object 3’s creation shortly after the JVM loaded the class file Example, and the
creation of a thread object: Object 1.
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For our example, the map algorithm stage converts events from the stream into
partial instance records: simple objects that record the number of method calls and
tield writes for a particular object contributed by a particular event. The records
are identified by object ID keys: the first argument to the emit method.

void map(Event event) {
if (event.type == OBJECT_INIT)
emit(event.args[0], new Record(0, 0));
if (event.type == METHOD_CALL && event.method.isInstanceMethod())
emit(event.args[0], new Record(1, 0);
if (event.type == FIELD_WRITE && event.field.isinstanceField())
emit(event.args[0], new Record(0, 1);

}

This map function emits at most one record per event. More complex analyses
might emit multiple records for a single event. The function emits partial records
when the input is a method call or a field write. It also emits partial records for
object allocations so that the aggregate data shows the total number of objects
allocated — including objects that did not have any method calls or fields writes.

The following table depicts the output of running the map function on the nine
events shown in the previous section. An empty line indicates that the function
did not generate a record for that event.

Input Key Record

(Event ID) (Object ID) Calls Writes

1
2
3 2 0 0
4
5
6 2 1 0
7
8 2 0 1
9

As the table shows, the map function emitted three partial records for the ex-
ample event stream — all for the same object, each with a different value for the
record.
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Reduce

The reduce algorithm stage combines partial results to produce a complete record
for each object:

Record reduce(ObjectlD id, List<Record> partialRecords) {
Record result = new Record();
for (Record input: partialRecords) {
result.calls += input.calls;
result.writes += input.writes;

}

return result;
}
This function takes an arbitrary number of partial records in any order and com-
bines them, returning a new record in the same format. This example only has
records for one object; when aggregating data from a real program reduce will

combine partial records for many objects.

Key Record

(Object ID) Calls Writes

0 0
Input 2 1 0
0 1
Output 2 1 1

The reduce function combines the three partial records for Object 2 into a sin-
gle instance record. The completed record shows that Object 2 received a single
method call and a single field write during the program, consistent with the ob-

ject life-cycle diagram in the previous section.

The example presented in this section is simple, but illustrates the fundamen-
tal concepts and processes used to perform much more complicated analyses.
The remainder of this chapter discusses the design and implementation of rprof,
a profiler that can generate event streams and provides a framework for perform-

ing this type of analysis.
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Figure 5.2: A depiction of rprof’s design, showing major components and the connections

between them.

5.2 Design overview

The rprof profiler consists of four discrete components:

¢ The Agent, a C library loaded by the JVM running the profiled application.

¢ The Profiler, a Java application running in a separate JVM that provides util-

ity functions for the Agent and routes its output.

¢ The Workers, Java applications that perform aggregation of the event stream

and handle storing the generated results.

¢ mongodb, a commercial NoSQL database used by the Profiler and Worker ap-

plications to store persistent data [28].

By running the Agent and the Profiler in different JVMs, rprof minimises the

execution of additional Java byte code on the same JVM as the profiled appli-

cation. This helps ensure that rprof does not affect the event stream generated

by the Agent, while allowing the Profiler to use common Java libraries (e.g. for

manipulating byte code and accessing mongodb). Figure 5.2 shows each of these

components, their subcomponents, and the interactions between them.

5.2.1 Component interactions

The Agent and the Profiler each consist of four distinct sub-components that work
in pairs: VM Start and Start, Class Load and Weave, Event and Log, and VM Exit

and Stop.
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Figure 5.3: A UML sequence diagram showing the modification of a class file by rprof.

VM Start and Start

The VM Start sub-component handles Agent initialisation and notifies the Start
sub-component with parameters describing the profiled application. Start creates
a new database on the mongodb server, initialises it appropriately, and returns an
ID to VM Start.

A single Profiler instance stores data and marshals workers for all profiler runs
from the same batch. After initialisation, all additional communications between
the Agent and the Profiler require an appropriate ID. The Profiler and Worker ap-
plications use the ID to locate the appropriate database.

Class Load and Weave

The Class Load sub-component handles class load events. When the JVM loads a
class it triggers Class Load, which can modify the class before returning it to the
JVM.

Class file modification is a common requirement for commercial and academic
purposes. Several Java libraries exist for this task, but there are no comparable
C libraries. Loading a Java library into the same JVM as the profiled application
risks collisions between library classes and profiled classes, result contamination,
and complicates JVM initialisation. Class Load avoids these problems by trans-
mitting the new class file to Weave (that runs within a different JVM), as shown in
Figure 5.3.

Before modifying the class file, Weave allocates unique IDs and creates records
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describing the class, its methods, and its fields. Weave stores the IDs and records
in mongodb so events can refer to IDs instead of using textual descriptions. Weave
then uses the ASM byte code modification library [21] to modify the class file
appropriately (see Sections 5.3.2,5.3.4,5.4.1, and 5.4.2).

Finally, Weave returns the modified class file to Class Load, which injects it back
into the JVM.

Event and Log

Several mechanisms trigger the Event sub-component (discussed in Sections 5.3.2,
5.3.3, 5.4.1, and 5.5). When triggered, Event generates a new event record and
appends it to the event stream.

Agent represents the event stream as an array of structs. Event stores these
locally until a sufficient number accumulate, then transmits them to Log (this re-
duces communication overhead).

Log blocks Event until a Worker becomes available, preventing the Agent from
generating data faster than the Profiler can process it. Having obtained a Worker,
Log transfers control of the event batch and unblocks Event.

MapReduce and mongodb

The Worker uses MapReduce functions to map the event stream to appropriate ag-
gregation records and store these records to mongodb [28]. rprof performs all data
aggregations using MapReduce algorithms. These algorithms run concurrently
on Worker processes, using mongodb as a backend (see Section 5.6).

NoSQL databases typically provide infrastructure for running MapReduce
analysis and mongodb is no exception. mongodb’s implementation of MapReduce,
however, is not designed for high-performance aggregation of large amounts of
data: it translates to and from JavaScript for each stage of the analysis causing un-
acceptable overhead and is single-threaded. Instead of using mongodb’s MapRe-
duce framework, rprof runs a custom MapReduce framework concurrently using

Worker processes.

VM Exit and Stop

When the profiled application terminates and the JVM begins shutting down,
it triggers VM Exit. VM Exit transmits any remaining batches of events to Log,
then sends a notification of completion to Stop. Stop notifies the Workers that the
program has completed (see Section 5.6.2).
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5.2.2 Technical overview

The Agent uses the JVMTI framework [75] to register C functions as callbacks for
certain events that occur inside the JVM. Only the callbacks that interact with
the Profiler appear in Figure 5.2 and merit discussion in subsequent sections. The
Agent registers additional callbacks with JVMTI that provide essential function-
ality but are not relevant to this chapter (e.g. JVM startup, shutdown, GC).

rprof uses TCP for all interactions between major components, in most cases

specifically HTTP requests. This serves two purposes:

¢ Simplified development: components implemented in different languages
can interact using common libraries. This isolates faults to a single compo-
nent and allows the use of commodity tools for analysing transmitted data,

measuring throughput, and replaying interactions.

¢ Parallel computation: components can run in separate JVMs on different

computers, distributing the workload between processors.

The Profiler uses Jetty’s implementation of the HTTP Servlet 3.0 specification
to handle requests [108, 66]. In particular, Jetty’s HTTP continuations provided a
simple mechanism for the Profiler to marshall Workers waiting for event batches.
The Agent uses the cURL library to implement requests [104].

rprof performs CPU-intensive or slow I/O tasks using the Worker applications.
The Workers can perform these tasks in parallel using multiple threads on multi-
ple computers, without impacting the progress of the profiled application.

rprof utilises a high-performance NoSQL database, mongodb [28]. An early
version of rprof attempted to use PostgreSQL, a relational database [84]. The
overhead caused by maintaining referential consistency resulted in runtimes in
the order of weeks for real-world Java programs. Switching to mongodb, designed
for scalability and performance in a concurrent environment without requiring

referential integrity, reduced this to hours.

5.3 Tracking objects

The example presented in Section 5.1 shows objects identified by unique IDs.
These IDs allow rprof to identify events that reference the same object. As dis-
cussed at the end of Section 4.4.1, Java object memory addresses make poor IDs
because the JVM'’s garbage collector moves objects during program execution;
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an object’s physical address may change at any point. #prof used Java’s identity
hashcodes to identify objects, obtained by calling a standard library method:

System.identityHashCode(Object x);

This method uses VM internal properties to consistently return the same integer
for an object, even if the object moves. In practice we found that JVMs derive the
integer from the physical address of the object when the method is first invoked,
i.e. while the object was in the garbage collection nursery pool. As a result, all
identity hash codes the JVM generated for #prof pointed to the small block of
memory that contains the nursery pool: the most frequently reused heap space!
This resulted in frequent hash collisions, which are not acceptable for a profiler
like rprof that performs analysis after the program terminates.

If we exclude the identity hash code approach used by #prof, three options
remain for uniquely identifying objects within the JVM:

¢ Use Java references (or weak references), as we did in Chapter 4.

¢ Extract actual memory addresses, track garbage collection events, and use
these to maintain a mapping between addresses and objects.

* Generate a unique ID for each object and store the ID with the object.

Tracking objects using garbage collection knowledge is possible: JVMTI pro-
vides access to garbage collection events. Nevertheless, this approach presents
additional challenges during analysis: the analysis would need to reconstruct a
complete model of program execution to successfully identify objects after pro-
gram termination.

Creating a unique ID and storing it with the object presents different chal-
lenges: generating unique IDs for objects created by different threads requires
synchronisation and storing the ID requires either class modification or JVM sup-
port. In fact, JVMTI provides support for profilers and debuggers to associate
state with Java objects. The remainder of this section discusses rprof’s use of

JVMTI to associate unique IDs with Java objects:

* Section 5.3.1 describes the use of Java’s profiling interface to associate per-
sistent state with objects.

* Section 5.3.2 discusses object allocation detection.
¢ Section 5.3.3 explores tracking system objects allocated by native code.

* Section 5.3.4 considers tracking class objects.
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5.3.1 Using JVMTI for object tracking

JVM developers recognised the difficulty for profilers to associate state with ob-
jects without program modification. Java 5 introduced JVMTI (Java Virtual Ma-
chine Tool Interface): a native interface to the JVM designed for profilers and
debuggers [75]. The JVM uses JVMTI to load native libraries, which can regis-
ter listeners for JVM events including: field reads and writes, class loads, and
garbage collection events.

The JVMTI framework includes a method that allows JVMTI agents to asso-
ciate a 64 bit (long) tag with any object (SetTag). The JVM maintains this tag itself,
unlike a field inserted into an object through source or byte code modification.
The JVM will inform the agent that it has collected an object even after its finalis-
ers terminate and the JVM reclaims its memory. JVMTI documentation suggests
using SetTag to store a pointer to a struct describing properties of the object stored
in the agent’s heap space. rprof uses it to store a unique object ID.

Figure 5.4 shows the actual source code rprof uses to tag objects using the
JVMTI SetTag method. It also demonstrates retrieving an object ID (GetTag).

5.3.2 Detecting object allocations

JVMTI expects profilers to rely on byte code instrumentation to monitor object
allocations; it does not generate events. Profilers can raise their own object al-
location events at multiple points as object allocation on the JVM is a multi-step
process. The first opportunity for tracking an object occurs when the call stack
for an object’s constructor reaches the default constructor for java.lang.Object. Java
requires that all objects call a constructor before they can be used, and each con-
structor must call a super-constructor. rprof cannot access a fresh Java object refer-
ence until the chain of constructor calls reaches java.lang.Object (top). Fortunately,
tield accesses and instance method calls cannot occur until the constructor chain
reaches java.lang.Object either.

rprof modifies the default constructor for java.lang.Object to generate events
when any new object is created from Java code. Figure 5.5 shows the constructor
after modification. This modification results in a call to the function shown in
Figure 5.4 for every object created in Java. The JVM provides java.lang.Object as a
bootstrapped class, rather than using a class-loader. Fortunately, JVMTI allows
class modification of bootstrapped classes — this would not be possible using
Aspect] or similar class modification tools.
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void

RPROF _native_newobj(JNIEnv =env, jclass tracker, jthread thread,
jclass klass, jobject o, jlong id)

{

jlong type, threadld;
jvmtiEnv sjymti = gdata—jvmti;
EventRecord =event = CreateEvent(jvmti, 1);

if (id == 0) { /* generate an object id */
enterCriticalSection(jvmti); {
id = generate_object_tag();
}; exitCriticalSection (jvmti);

}

/* tag object with id %/
tag_object(jvmti, o, id);

/% retrieve class id %/
type = get_tag(jvmti, klass);

/* retrieve thread id */
threadld = get_tag(jvmti, thread);

event—type = RPROF_OBJECT_ALLOCATED;
event—thread = thread;

event—type = type;

event—args_len = 1;

event—args[0] = id;

/* send the event to the profiler %/
comm_log(gdata—comm, event);

deallocate(jvmti, event);

}

Figure 5.4: The C function used by rprof to tag an objects and generate allocation events.
rprof injects code into java.lang.Object.<init>() (the root method in the constructor hier-
archy) that calls this method via JNI, passing a reference to the current thread, the class
of the new object (found using reflection), the new object, and a fresh ID for the new
object (generated without blocking). If this function is called before the JVM has fully
initialised the Java code cannot generate an ID, so this method blocks, generates an ID,
then continues. This function is a simplified version of the actual function used by rprof.
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package java.lang;
public class Object {
public Object() {
Class<?> type = this.getClass();
nz.ac.vuw.ecs.rprof.Tracker.newobj(type, this);

}
-

Figure 5.5: java.lang.Object after modification by rprof. All freshly created objects must
call a constructor, which calls a super constructor, which eventually results in this method
being called. rprof actually modifies byte code not Java code, this code approximates the
modification.

5.3.3 Tracking system objects

The JVM loads native agents such as rprof’s Agent before executing any byte
codes, loading any classes, or creating any objects. Nevertheless, many JVMTI
functions are not available until the JVM has been initialised so some objects are
created before the Agent can track object creations. Once the JVM has finished
initialisation, the Agent uses JVMTI to iterate over all previously created Java ob-
jects, allocating them unique ID tags and generating events for each object.
Programs allocate some objects using processes that rprof cannot detect using
byte code modification: the JVM generates some objects directly, and native code
creates objects using JNI. JVMTI provides a callback for these object allocations
that the Agent uses to tag the objects and generate events recording their creation.

5.3.4 Tracking class objects

Many of the objects created before the Agent can track object allocations are class
objects: special meta-objects that represent static classes and offer access to static
properties. The Agent uses these class objects to identify the types of regular Java
objects using reflection, but it must first tag each class object with the persistent
class ID that the Profiler generated for that class.

To facilitate class tagging, the Profiler sends the persistent class ID it has gen-
erated to the Agent with the modified class file. The agent cannot access the class
object until the class has been loaded by the JVM, so it stores the class ID in a list
of untagged classes, along with the fully qualified class name, which can uniquely
distinguish the class within the JVM. The Agent uses three mechanisms to assign
IDs to class objects:
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* In most cases as soon as a class has been loaded, JVMTI will notify the Agent
that the class is available. The Agent can tag it by looking up the class ID in
its list of untagged classes.

® During JVM initialisation JVMTI will not notify the Agent that a class is
available. When initialisation concludes the Agent iterates through the list
of untagged classes, retrieves class objects by name, and tags them appro-
priately.

¢ JVMTI never notifies agents when object array classes are available. When
these untagged classes are first encountered by the Agent it will use reflec-

tion and JNI functions to tag them correctly.

In addition to tagging class objects correctly for identifying object types the
Agent uses class objects to generate field events (discussed in Section 5.5). The
tirst approach to class object tagging is the most desirable because it ensures that
rprof does not miss field events for those classes. rprof will miss field events
that occur during JVM initialisation; this is unavoidable as the requisite JVMTI
functions are not available. Object arrays do not have fields so rprof will not miss
any field events for classes tagged using the third approach.

5.4 Tracking methods

Section 5.1 shows an example analysis that tracks constructors and instance meth-
ods. rprof is capable of generating events for all method calls, returns and excep-
tional returns (where the method terminates by throwing an exception).

Consider the following Java method:

public boolean isHello(String message) {
return message.equals(“Hello!”);

}

This method takes a string as input and returns true if the message is “Hello!”.
Compiling this method with Oracle’s Java 7 compiler yields the Java byte code
presented in Figure 5.6.

rprof can generate three different method events for the byte code method
in Figure 5.6: a ‘Method call’ event at 0, a "Method return’ event at 6, and an
‘Exceptional return’ event if 3 throws an exception. The method does not check
for undefined message parameters, so the method call at offset 3 could throw a
NullPointerException.
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public boolean isHello(java.lang.String);
flags: ACC_PUBLIC
Code:
stack=2, locals=2, args_size=2

0: aload1

1: Idc “Hello!”

3: invokevirtual String.equals(..)
6: ireturn

Figure 5.6: The byte code resulting from compiling Section 5.4’s example method. The
byte code instruction 0 pushes the first parameter onto the stack, then instruction 1
pushes the string constant "Hello!”. Instruction 3 invokes the String.equals() method, and
the JVM interprets this as a virtual call to equals on the method parameter (bottom of the
stack) that takes the string constant as a parameter (top of the stack). The result of the
method call to equals will be pushed onto the stack, then returned by instruction 6.

5.4.1 Generating method events

JVMTI can generate events for every method call, but explicitly recommends
against using these events as they incur a substantial performance penalty. Most
analyses will not require rprof to track all methods, so rprof uses byte code mod-
ification to instrument particular methods as the JVM loads them (this is the
approach JVMTI recommends) — this will considerably reduce the overhead
of analyses that do not require substantial method tracking. Figure 5.7 shows
the modified byte code rprof generates for the isHello example method to track
method entry, exit, and exceptional return.

For each event, the Profiler’'s weaver component inserts byte code into the ap-
propriate part of the method using ASM. The inserted code calls a static rprof
method. Figure 5.7 shows that enabling method tracking causes rprof to add byte
codes to the beginning of the method. The inserted code pushes class and method
identifiers onto the stack, constructs an array containing the arguments to the
method, then invokes the static rprof method for tracking method entry events.
The generated code stores each object parameter to the method, including the this
argument where applicable.

rprof handles method returns similarly to method calls. Before each return (or
equivalent) byte code, the weaver injects byte codes to generate a return event.
The inserted code gathers class and method identifiers, the this parameter, and
any return value. The code then sends them to the profiler by invoking the static

rprof method for tracking method returns.

rprof generates exceptional returns by wrapping the whole method body in a
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public boolean isHello(java.lang.String);
flags: ACC_PUBLIC
Code:
stack=6, locals=2, args_size=2

0: sipush classid

3: sipush methodid

6: iconst 2

7: anewarray java.lang.Object
10: dup

11: iconst 0

12: aload_0 >Enter
13: aastore

14: dup

15: iconst_1

16: aload_1

17: aastore

18: invokestatic enter(..)

21: aload_1
22: ldc "Hello!”
24: invokevirtual String.equals(..)

27: sipush classid
29: sipush methodid
32: aload 0

33: invokestatic exit(..)

> Exit

36: ireturn

37: astore_1

38: sipush classid
40: sipush methodid
42: aload_1 >Exception
43: invokestatic exception(..)

46: aload-1

47: athrow )

Exception table:
from to targettype
0 37 37 Class java/lang/Throwable

Figure 5.7: The byte code resulting from modifying Section 5.4’s example method to track
method entry, exit, and exceptional return. The number of added byte codes are related
to the number of method parameters and method returns, and significantly less than the
byte codes added by Aspect] for #prof. We did not encounter any methods that exceeded
the JVM method size limit after rprof’s modifications.
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try block. It inserts a finally handler at the end of the method that creates an event
by passing the class and method identifiers and the exception to rprof’s exception
tracking method. rprof inserts the try block last so that any other catch or finally
blocks run first. If a block consumes the exception and returns normally then
rprof’s exceptional return handler will not run.

rprof’s static tracker methods and the resulting JNI calls that map the parame-
ters to object IDs and log the events add a constant-time overhead to modified
methods. The overhead’s effect on the execution time of a program depends
on the nature of that program. Predominantly iterative programs experience
insignificant overhead, while programs that rely on recursion for computation
become unwieldy. Using rprof to instrument every method call resulted in pro-
grams that took hours to reach the main method, a process that takes only seconds
without method tracking enabled. As a result, although rprof can weave all meth-

ods, in practice it only tracks methods relevant to the current analysis.

5.4.2 Modifying constructors for profiling

Constructor methods differ from instance methods: the instance parameter (this)
remains inaccessible until the super constructor returns. Rather than delay the
method entry event, rprof generates the event as usual but omits the instance
parameter. The analysis can infer the instance parameter from the correspond-
ing method return event, if required. Constructor methods also require special
exceptional return handling: Java’s method verification algorithm prevents con-
structor exception handling code from accessing the instance if the handler could
have been triggered by the super constructor, or before the super constructor was
called.

5.5 Tracking fields

Our running example from Section 5.1 relies on the profiler generating events
when the program modifies a field. rprof supports generating events for both
tield writes and field reads of particular fields by registering each field with
JVMTL

When a program reads or writes to a registered field, JVMTI performs a call-
back to the Agent. The callback provides a reference to the object that owns the
tield, the value of the read or write operation, and the JVM field ID. JVM field
IDs are internal offset types used to locate a field slot within an object record.
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JVMTI Agent Class Object

class ready AL

tag class

LT class, id get field ids

v

|| register field(s)

B field

Figure 5.8: A sequence diagram showing field registration in the context of class loading.

They are only useful with the appropriate class reference which is only available
while the program is running. rprof generates persistent field IDs and the Agent
maintains a map between JVM-internal field IDs and rprof’s persistent field IDs,
rather than using the textual field descriptions that JVMTI can provide.

To register a field for tracking, rprof must obtain its JVM field ID. rprof can-
not register a field until after the JVM loads the class and generates its internal
tield IDs. Section 5.3.4 discussed rprof’s mechanisms for detecting when a class is
ready. Figure 5.8 shows a sequence diagram for the process rprof uses to register
fields in the context of class loading.

In addition to the class file modifications described in Section 5.4, rprof uses
the class weaving process to identify the fields defined by a class and generate
their unique IDs. rprof stores a mapping of these IDs to records describing the
fields in mongodb.

The Profiler sends a list of rprof field IDs for each class to the Agent by adding a
special static method to each class that creates and returns a Java array containing
the field IDs in the same order that JVMTI presents the fields the Agent. This
allows the Agent to retrieve the field IDs when it is ready to register the fields
with JVMTI, causing reads and writes to those fields to generate callbacks.

This concludes our discussion of the JVMTI Agent and generating the event
stream. The final section in this chapter discusses aggregating and storing the
event stream in the Profiler and Worker applications.
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5.6 Data aggregation and analysis

This section discusses the novel use of in-memory MapReduce algorithms for
analysing a profiler event stream. It begins by elaborating on the data models for
the event and instance records introduced in Section 5.1, then gives an overview
of the tasks performed by the framework when running a typical analysis. Fi-
nally, it discusses some details of the caching system designed to improve perfor-

mance by minimising disk writes for partial results.

5.6.1 Analysis data model

While profiling programs, rprof builds and maintains a representation of the pro-
gram’s static structure by recording information about the classes it weaves. After
modifying each class, the Profiler records information about the class, its methods,
and its fields to mongodb. The information is available later during the analysis in

the following form:

Method Field
Class , _ _
id : Methodld id : Fieldld
id : Classld name : String name : String
name : String description: String description: String
super : Classld properties: Integer properties: Integer
owner : Classld owner : Classld

As the profiled application runs, the Agent generates event records. rprof rep-
resents event records as structs within the Agent, as binary chunks in the wire

protocol, and in the following format when they reach Worker processes:

Event
id : Eventld
. Instance
thread : ObjectID
event : EventType id : ObjectID

~

map calls : Integer

class : Classld
method : Methodld writes : Integer
field : Fieldld

args : List<ObjectID>

As in Section 5.1, the map operation processes event records and emits par-

tial instance records (Instanceld/Instance pairs). reduce combines partial instance
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records, ultimately producing a single instance record for each instance. Worker
processes store complete instance records to mongodb.

The analysis does not require that events are aggregated in order, so aggrega-
tion can begin before a profiled program terminates. Workers can process events
in parallel and out of order without affecting the results or requiring synchroni-

sation.

5.6.2 Optimising MapReduce: caching partial results

The event streams generated by rprof from real-world programs contain billions
of events. Storing all events, even compressed, consumes a large amount of disk
space and takes time: as much as several days for large programs. For a typical
program, the event stream will contain hundreds or even thousands of events for
each object. rprof can significantly reduce the time and space required to store
its output by converting events to instance records as the Agent generates them,
rather than storing events and performing the conversion later.

Unfortunately, rprof cannot directly convert events into instance records: map
produces partial instance records that must be combined with the partial records
generated from all other events involving that object. Complete records can only
be assembled once all events for a particular object have been generated. Running
map alone to convert events to partial instance records does not necessarily reduce
the amount of data rprof must store: every event record can produce one or more
partial instance records — potentially resulting in more data to store than simply
storing the original event stream. Unlike event records, rprof can easily compress
partial instance records by aggregating them using reduce. Running both map and
reduce eagerly can significantly reduce the amount of data that rprof must store,
but even after running MapReduce the instance records that rprof generated for
the largest program we profiled consumed 60GB, far more data than the memory
available in a typical computer can store.

Rather than attempting to store all partial instance records in memory, rprof
maintains a cache of partial instance records that it flushes to mongodb when nec-
essary using a ‘least recently used” policy. When rprof flushes a partial record to
mongodb it first checks whether mongodb already contains a partial instance record
for that object and combines the partial records using reduce if necessary.

As shown in Figure 5.2, rprof uses Worker applications to aggregate events in
parallel. Ideally, events for a particular instance would be assigned to a particu-
lar Worker to avoid duplicating partial records, but in practice this is not possible:

events may describe multiple instances and rprof cannot predict which instance
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the event is for without running map. Instead, rprof splits the event stream into
batches (to reduce communication overhead) and assigns an entire batch to a sin-
gle Worker. The Agent creates batches by accumulating event records as it creates
them. It sends complete batches to the Profiler, which distributes them to Workers
for processing and storage (Section 5.2). Workers iterate over event record batches,
running map on each event record to produce partial instance records. Workers
store partial instance records in a hash map-based data structure that maps in-
stance IDs to partial instance records. If map emits a partial instance record for an
instance ID that is already in the hash map, then the Worker aggregates the partial
instance records using reduce. If the hash map does not contain a partial instance
record for the instance ID, then the Worker inserts it. When the Worker does not
have enough space to store more records it flushes the least recently modified
partial instance records from the hash map into mongodb. Once the profiled ap-
plication has terminated (the Profiler receives a stop message) the Profiler sends a
special message to each Worker, causing them to flush their cache of partial in-
stance records in the database. When all Workers have completed flushing their
caches, mongodb’s instance record table is complete.

5.6.3 Optimising MapReduce: flexible caching

rprof uses a custom caching system to keep commonly referenced records in
memory, while flushing less frequently used records to disk when memory be-
comes scarce. It uses the JVM’s ability to monitor heap usage to flush the least
recently used instance records into the database when heap space is low follow-
ing a garbage collection.

The caching system uses a priority queue of fixed-size instance record hash
maps, where the oldest hash map in the queue contains the least recently mod-
ified instances records (we assume that recently modified instance records are
more likely to be modified again, so they should be cached in memory). When
a cache hit occurs, the Worker aggregates the new partial instance record with
the existing record using reduce and stores the result in the most recently allo-
cated map. If this insert caused the map to reach its maximum size, the Worker
allocates a new map and adds it to the queue. When the JVM alerts the Worker
that heap memory is near exhaustion (90%), the collection flushes partial instance
records from the cache into the database. The caching system flushes partial in-
stance records, starting with records from the oldest map, and proceeding until
it has flushed half the allocated maps. After the flush has completed the Worker
triggers JVM garbage collection, then repeats the previous step until the JVM re-
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ports that heap is half empty. This caching system allows Workers to maintain a
coarse-grained priority ordering of instance records while also providing hash-
based access to the records.

5.6.4 Aggregating instance records

As rprof profiles a program it generates and stores a table of instance records to
mongodb that describes the behaviour of all objects in the program. The exam-
ple presented in Section 5.1 generates a single instance record. Profiling a real
program would produce more instance records than a human can examine indi-
vidually, so extracting useful information requires aggregating this table.
Consider again the example analysis from Section 5.1. The output table con-
sists of instance records containing the number of field writes and method calls
that occurred for each object in the table. Here are some questions that this table

could answer:
* How many objects did the program create?
¢ How many objects had at least one method call?
¢ How many objects had at least one method call, but no field writes?

Answering these questions requires aggregating the data from the instance
table. To do this we employ another MapReduce algorithm:

void map(Instance input) {
Result output = new Result();
output.instances = 1;
if (input.calls > 0) output.haveCalls = 1;
if (input.writes == 0 && input.calls > 0) output.haveCallsNoWrites = 1;
emit(0, output);

This map operation emits a partial result for every instance that records:
¢ the contribution of that instance to the total number of instances.
¢ whether that instance had any method calls.

¢ whether that instance had method calls, but no writes.

By combining these partial results together, reduce can produce a single result
object that describes the behaviour of all instances:
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Result reduce(List<Result> inputs) {
Result output = new Result();
for (Result input : inputs) {
output.instances += input.instances;
output.haveCalls += input.haveCalls;
output.haveCallsNoWrites += input.haveCallsNoWrites;

}

return output;

This reduce operation sums the tallies for each input. Once it has merged all of
the partial results, the final Result object will contain the answers to the questions
above. Note that map uses ‘0" as the key for its emits. This is because the algorithm
combines all the partial records together, so as long as they all have the same key
it doesn’t matter what the key is.

This example did not produce any information about classes, or discriminate
between different methods and fields. The instance records used by the analyses
presented in Chapter 6 contain information about fields, methods, and classes
that allow several different instance aggregations (by class, instance, and field).
These aggregations follow the same style as the analysis in this section, but are
considerably more complex.



Chapter 6
Profiling Initialisation Behaviour

In Chapter 4 we observed that many classes and objects either do not settle, or set-
tle after the constructor. #prof only detected constructor-settled fields, assuming
that all other fields were mutable. Many of the classes and objects that entered
collections and had mutable fields also had collection-settled equality. Perhaps
these objects’ fields were actually collection-settled but #prof couldn’t tell us?
This chapter uses rprof, the profiler described in Chapter 5, to measure the
settling behaviour of field declarations and objects. It classifies field declarations
and objects using the settling behaviour definitions from Chapter 3. We begin
this chapter by introducing the programs whose behaviour we examine in this
chapter in Section 6.1 then detail our experimental method in Section 6.2. This

chapter presents the following contributions:

* Section 6.3 presents a study of field declaration settling behaviour. This
study complements the work of Unkel and Lam, who presented a static
study of field declaration initialisation that concluded that final fields are
infrequently used but often applicable to field declarations in Java pro-
grams, and that a read-settled field annotation would be applicable to an
even greater proportion of field declarations than final is [109]. Our study
verifies their results using dynamic analysis and we additionally identify
constructor-settled field declarations and compare them to the classifica-
tions used by Unkel and Lam. By confirming Unkel and Lam’s established

results, this section also validates rprof’s design and implementation.

* Section 6.4 presents a study of object settling behaviour, motivated by the
observation made in Chapter 4 that many objects that have settled equal-
ity do not have constructor-settled fields. We postulate that many of these
objects do in fact settled, but after the constructor returns. In this section

93
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we will identify and compare constructor-settled, equals-settled, collection-
settled and read-settled objects. In addition, we will compare the behaviour
of settled objects to settled classes to determine whether settling is a pre-
dominantly class-specific property, or whether it is independent of class

(object-specific).

This is the last contribution chapter in this thesis, and we will summarise our
conclusions from this chapter and the contributions of this thesis in the final chap-
ter, Chapter 7.

6.1 Benchmarks

This chapter presents results obtained by analysing the DaCapo benchmark suite,
a compilation of non-trivial real world Java applications designed for benchmark-
ing [15]. The DaCapo suite consists of 14 applications that are listed in Figure 6.1.
The DaCapo suite packages all benchmarks into a single jar file that includes code
for extracting, setting up, and executing each benchmark. The DaCapo bench-
mark runner is capable of running benchmarks several times and provides hooks
for profiling tools to monitor each run. We did not use these facilities, instead
choosing to profile the whole application including the DaCapo bootstrapping
process. Each benchmark was executed one at a time using the default size, a
single iteration, and a single thread to drive the benchmark (some benchmarks
inherently use many threads — this parameter only affects the number of threads
driving the benchmarks). We used the following command to execute bench-

marks:
java [rprof—opts] —Xint —Xmx1024m —jar dacapo—9.12—bach.jar —n 1 —t 1 [benchmark]

Table 6.2 presents some statistics about each benchmark obtained using rprof,
including the number of classes (including interfaces), methods, fields, the num-
ber of objects captured, the number of rprof events generated, and the total time
(in minutes) required to execute and analyse each benchmark.

Two benchmarks in particular: tradebeans and tradesoap were problematic.
These benchmarks both use the Geronimo framework [107] to perform various
tasks using remote procedure calls implemented using HTTP. These include
hard-coded time-limits in two places that will cause the benchmark to fail if a re-
quest does not complete successfully within these time-limits. The first is within
DaCapo’s bootstrapping: the client worker thread will attempt to contact the

server at regular intervals until it becomes available for requests. If the server
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avrora Simulates a number of programs run on a grid of AVR microcontrollers.

batik Produces a number of Scalable Vector Graphics (SVG) images based on the
unit tests in Apache Batik.

eclipse Executes some of the (non-gui) jdt performance tests for the Eclipse IDE.

fop Takes an XSL-FO file, parses it and formats it, generating a PDF file.

h2 Executes a JDBCbench-like in-memory benchmark, executing a number of
transactions against a model of a banking application.

jython Inteprets the pybench Python benchmark.

luindex Uses lucene to index a set of documents; the works of Shakespeare and the
King James Bible.

lusearch Uses lucene to do a text search of keywords over a corpus of data comprising
the works of Shakespeare and the King James Bible.

pmd Analyzes a set of Java classes for a range of source code problems.

sunflow Renders a set of images using ray tracing.

tomcat Runs a set of queries against a Tomcat server retrieving and verifying the

resulting webpages.

tradebeans Runs the daytrader benchmark via a Java Beans to a GERONIMO backend
with an in-memory h2 as the underlying database.

tradesoap Runs the daytrader benchmark via a SOAP to a GERONIMO backend with
in-memory h2 as the underlying database.

xalan Transforms XML documents into HTML.

Table 6.1: Programs in the DaCapo benchmarks suite (dacapo—9.12—bach), including a
brief summary of functionality [15].

takes too long to ‘boot’ the client will fail. The second timeout occurs within the
axis framework, used by Geronimo. A request that takes longer than 10 minutes
will be terminated with a server error. In both cases, the overhead caused by rprof
triggered the timeouts causing the benchmarks to fail. We were able to increase
the timeouts by modifying the appropriate class files directly without recompil-
ing the benchmarks, ensuring the minimum change necessary for the benchmark
to execute successfully within rprof.

rprof tracks all objects created within the JVM, but it is not able to track all
tields. rprof does not track fields of the following classes:

® java.nio.charset.CharsetDecoder
java.nio.charset.CharsetEncoder
java.util.zip.ZipFile
These three classes use some form of JVM optimisation that causes memory
faults if rprof tracks them.
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Program Classes Methods Fields Objects Events Time (m)

avrora 999 10685 4649 1596K  843M 95
batik 1814 21710 8410 762K 32M 16
eclipse 2653 37949 18123 24159K 2096M 246
fop 1703 20133 8574 2043K 46M 21
h2 934 14622 5603 66183K 1488M 762
jython 2953 34167 11612 31203K  768M 250
luindex 788 10887 4146 219K  124M 19
lusearch 701 9640 3396 6747K  631M 111
pmd 1328 18281 6788 5170K  152M 48
sunflow 907 12854 5010 60222K  3522M 592
tomcat 2373 32369 12939 4362K  130M 46
tradebeans 8155 96250 38068 46588K  780M 321
tradesoap 8246 97026 38278 48758K 1330M 343
xalan 1125 14260 5549 6395K  486M 93

Table 6.2: Observed properties of the DaCapo benchmarks

¢ java.lang.Throwable
The JVM generates an additional field at runtime which causes off-by-one

errors in our tracking code.

® java.lang.String
String is excluded because it is so common: Strings are logically immutable
but they use internal fields to track access behaviour and generated proper-

ties, resulting in a disproportionate number of events.

rprof can track fields of the following generated classes but we chose not to
because they do not conform to the behaviour of regular objects. In particular,
generated accessor classes have final fields that are actually initialised before the

object’s constructor runs:

* sun.reflect.generated«

JVM classes generated for reflection

e .ByCGLIB-
Classes generated CGLIB, a byte code modification library used extensively
by the day-trader benchmarks

6.2 Experimental setup

This chapter presents results obtained using rprof to instrument and monitor a

selection of Java programs. Programs were executed on an Opteron 254 (2.8GHz)
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dual-CPU machine with 4GB of memory running Ubuntu 10.04.3 LTS (64 bit
server) using Open]DK 1.8.0-ea-b37.!

We used the preview Java 8 build because our analysis is not stable on pre-
vious JDK versions. OpenJDK 1.8.0-ea-b37 includes a bug fix for a problem with
JVMTI which we identified and reported [67]. Although we developed a work-
around for this particular bug, rprof remains unstable on previous builds, occa-
sionally triggering a memory access violation during JDK garbage collection in

long-running programs which suggests that there are additional related issues.?

6.3 Field declaration settling behaviour

This section presents a study of field declaration settling behaviour, observing
65,785 fields from the programs in the DaCapo benchmark suite. This study con-
firms the results obtained by Unkel and Lam who used a conservative static anal-
ysis [109].

Unkel and Lam observed final fields, undeclared-final fields, and stationary fields.
In Chapter 3 we noted that these terms correspond to final field declarations (F),
constructor-settled and write-settled field declarations (excluding final) (CW\E),
and read-settled field declarations (R) in our terminology. We present and discuss

our runtime measurements of these properties.

6.3.1 Read-settled and final field declarations

Figure 6.1 presents the results of our analysis of the DaCapo benchmarks for all
fields. The first column shows the name of the benchmark, the second shows the
total number of fields contributed by each benchmark. All other columns show
the percentage of the total number of fields in that category. Results are sepa-
rated broadly into read-settled and not-read-settled field declarations, then into
final (F), undeclared-final (CW\F), and other field declarations (—CW). The last

IThe batik benchmark relies on a proprietary jpeg class that is not included in the pre-release
JDK 8 build. For this benchmark we used Oracle JDK 1.7.0_03-b04.

2The bug we reported and has been fixed was due to the Hotspot’s non-standard use of reg-
isters on x86 and x86_64 architectures. Hotspot does not follow either Microsoft’s calling con-
ventions or SystemV conventions. In the particular bug we identified Hotspot did not protect
one of the SSE extension registers which is designated callee-save by SystemV 64-bit conventions
before calling JVMTI code. The register was being modified by memset, which was called from
our code. It is likely that a similar issue triggers the garbage-collection memory access violation,
but identifying these issues is extremely time-consuming and the problem does not occur after the
wide-spread changes introduced to fix a related issue in Hotspot build 24.0-b08, which is included
in OpenJDK 1.8.0-ea-b37.
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Program Total R (%) —R (%) Total (%)

F CW\F -CW F CW\F -CW F CW R
avrora 938 49 19 18 0 0 14 49 68 86
batik 1,314 2 56 20 0 0 2 2 58 78
eclipse 5406 8 36 27 0 0 30 8 43 70
fop 2218 5 44 33 0 0 18 5 49 82
h2 1,009 14 35 29 0 0 22 14 49 78
jython 1,271 10 50 20 0 0 20 10 60 80
luindex 789 17 33 18 0 0 32 17 50 68
lusearch 469 7 46 23 0 0 23 7 54 77
pmd 955 9 41 31 0 0 19 9 50 81
sunflow 506 11 30 31 0 0 28 11 41 72
tradebeans 12,381 26 33 22 0 0 18 26 59 81
tradesoap 12,572 25 33 23 0 0 18 25 59 81
tomcat 4476 6 40 28 0 0 26 6 46 74
xalan 1,209 6 41 31 0 0 22 6 47 77
Total 45513 18 36 24 0 0 21 18 54 79

Table 6.3: Read-settled (R) and final (F) field declarations excluding java. and javax.x

three columns in the table show summary information: the total number of final
(F), constructor-settled and write-settled (CW), and read-settled (R) field decla-
rations. The information is also presented in the stacked bar chart at the bottom
of the figure, where the total height of each bar corresponds to all read-settled
tield declarations (R), the lowest two segments together show fields that have fi-
nal behaviour (both constructor-settled and write-settled (CW)), and the lowest
segment shows final (F) field declarations. All percentages have been rounded to
the nearest percentage point and segments smaller than 1% are omitted from the
chart (we observed a total of 171 CW fields that were not in R).

Table 6.3 shows the same data for all field declarations excluding fields de-

clared in system classes (java/javax).

Discussion

These tables show that between 70% and 86% of the field declarations in DaCapo
benchmarks are read-settled (R) and between 41% and 68% of those fields showed
final-like behaviour (CW). The number of final field declarations (F) varies be-
tween benchmarks but in most cases less than half of field declarations whose
behaviour was final (CW) were declared final (F).

Comparing our results to Unkel and Lam’s, we see that the proportion of final
tield declarations in our benchmarks was slightly higher. This is largely because
of three specific benchmarks: avrora, which has a disproportionately high number
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Program Total R (%) —R (%) Total (%)

F CW\F -CW F CW\F -CW F CW R
avrora 1,702 36 31 16 0 0 17 36 67 82
batik 3272 8 52 17 0 0 23 8 60 77
eclipse 6,779 10 37 25 0 0 28 10 46 72
fop 3,390 9 43 28 0 0 19 9 53 81
h2 2,014 17 39 22 0 0 22 17 56 78
jython 2,501 14 46 19 0 0 22 14 60 78
luindex 1,674 18 38 16 0 0 26 18 57 73
lusearch 1,303 14 43 21 0 0 21 14 58 78
pmd 1,962 14 41 24 0 0 20 14 55 79
sunflow 1,831 14 43 20 0 0 23 14 57 77
tradebeans 15,404 25 35 21 0 0 19 25 60 81
tradesoap 15,611 25 35 21 0 0 19 25 60 81
tomcat 6,279 9 40 25 0 0 269 50 74
xalan 2,063 11 41 27 0 0 21 11 52 78
Total 65,785 18 38 22 0 0 21 18 57 78
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Figure 6.1: Read-settled (R) vs final (F) field declarations, including undeclared final —
constructor-settled and write-settled but not final (CW\F) — for all field declarations. The
table shows each category rounded to the nearest percentage point. This data is sum-
marised in the stacked bar chart. Almost all field declarations that are constructor-settled
and write-settled are also read-settled, and all read-settled field declarations are also final
so the total height of each bar shows the total number of read-settled field declarations,
while the lowest two segments combined show fields with final behaviour (constructor-
settled and write-settled (CW)).
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of declared final fields (though relatively few fields overall), and tradebeans and
tradesoap, which are far larger than any of the benchmarks included in Unkel and
Lam’s study and have a relatively high proportion of final field declarations. Even
allowing for differences between benchmarks, our results show a significantly
higher proportion of read-settled field declarations, in particular we detect far
fewer fields that are constructor-settled and write-settled but not read-settled (so
few that they never reach 0.5% for these tables). This is not surprising because
rprof’s whole-program behavioural analysis is not conservative, unlike the static
analysis performed by Unkel and Lam: their static analysis guarantees behaviour
for all possible inputs, whereas we observe the behaviour of a program for a
particular set of inputs.

Consistent with the findings of Unkel and Lam, we find that most programs
do not make good use of the final annotation to declare fields that are written
once and do not change after the constructor (CW, or final-like behaviour). Sec-
tion 6.3.2 examines constructor behaviour in more detail. Comparing results with
and without system classes is consistent with their hypothesis that this is largely
due to programmer style: we see that most applications use final annotations less
often than system classes even though the proportion of fields with final-like be-
haviour is similar. Even allowing for ‘lazy’ programmers not using final where
they could, the high proportion of read-settled fields compared with final fields
suggests to us that the use of constructors for field initialisation is not supporting
programming practices: there are many cases where fields were not initialised
during the constructor even though they settled before they were read.

Reference and primitive field declarations

Unkel and Lam compared the behaviour of reference fields — field declarations
that store object or array references, and primitive fields — that store primitive
types like ints, and observed that reference fields are more likely to settle than
primitive fields. Figures 6.2 and 6.3 show our analysis of these field declarations,
showing reference fields and primitive fields respectively. Each figure uses the
same format as Figure 6.1.

Discussion

These figures show that reference fields are more likely than primitive fields to
be final (F), undeclared final (CW\F), and read-settled (R). This is consistent with
Unkel and Lam’s observations, though the difference is more modest in our re-
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Program Total R (%) —R (%) Total (%)

F CW\F -CW F CW\F -CW F CW R
avrora 880 47 31 12 0 0 9 47 78 90
batik 1,593 9 54 17 0 1 19 9 64 81
eclipse 3324 15 43 20 0 0 22 15 58 78
fop 1,760 12 45 28 0 0 14 12 58 86
h2 990 21 41 20 0 0 18 21 62 82
jython 1,354 16 49 18 0 0 16 16 66 83
luindex 812 28 42 16 0 0 14 28 70 85
lusearch 598 20 48 18 0 1 14 20 69 86
pmd 1,048 18 45 22 0 1 15 18 63 85
sunflow 831 18 47 20 0 0 15 18 66 85
tradebeans 9,451 33 34 19 0 0 14 33 67 86
tradesoap 9,619 33 34 19 0 0 14 33 67 86
tomcat 3,393 12 43 26 0 0 18 12 55 82
xalan 1,095 14 46 24 0 1 16 14 60 83
Total 36,748 25 39 20 0 0 16 25 64 84
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Figure 6.2: Read-settled (R) and final (F) for reference field declarations, including unde-
clared final — constructor-settled and write-settled but not final (CW\F). The table shows
each category rounded to the nearest percentage point. This data is summarised in the
stacked bar chart. Almost all field declarations that are constructor-settled and write-
settled are also read-settled, and all read-settled field declarations are also final so the
total height of each bar shows the total number of read-settled field declarations, while
the lowest two segments combined show fields with final behaviour (constructor-settled
and write-settled).
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Program Total R (%) —R (%) Total (%)

F CW\F -CW F CW\F -CW F CW R
avrora 882 23 30 20 0 0 26 23 54 74
batik 1,679 6 50 17 0 0 26 6 56 74
eclipse 3455 5 30 31 0 0 34 5 35 66
fop 1,630 6 42 28 0 0 25 6 47 75
h2 1,024 12 38 23 0 0 26 12 50 73
jython 1,147 11 41 19 0 0 28 11 53 72
luindex 862 10 35 17 0 0 38 10 45 62
lusearch 705 10 38 24 0 0 28 10 48 72
pmd 914 9 36 27 0 0 27 9 46 73
sunflow 1000 11 40 20 0 0 29 11 50 70
tradebeans 5,953 12 36 25 0 0 26 12 49 73
tradesoap 5992 12 36 25 0 0 27 12 48 73
tomcat 2,886 6 37 22 0 0 34 6 43 65
xalan 968 8 36 30 0 0 27 8 43 73
Total 29,037 10 37 25 0 0 29 10 47 71
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Figure 6.3: Read-settled (R) and final (F) for primitive field declarations, including unde-
clared final — constructor-settled and write-settled but not final (CW\F). The table shows
each category rounded to the nearest percentage point. This data is summarised in the
stacked bar chart. Almost all field declarations that are constructor-settled and write-
settled are also read-settled, and all read-settled field declarations are also final so the
total height of each bar shows the total number of read-settled field declarations, while
the lowest two segments combined show fields with final behaviour (constructor-settled
and write-settled).
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sults. This is probably because our dynamic analysis detected more final and
read-settled field declarations in general, but could also be due to variations in be-
haviour of the benchmark suites. The different behaviour of reference and prim-
itive fields suggests that programmers use these fields for different purposes.

It is particularly noticeable that final fields are less common among primitive
tield declarations; the proportion of final primitive fields is also more consistent
between benchmarks than reference fields. This does not have much effect on
the overall variation in the number of read-settled fields which range from 62%
to 75% for primitive fields, a range of 13% compared to the 10% range observed
overall. Read-settled reference fields have a range of 12% across benchmarks:
78% to 90%, even though the number of final reference fields varies between 9%
and 47%.

6.3.2 Constructor-settled and final field declarations

If programmers do not make good use of the final annotation perhaps it is simply
because the annotation is too restrictive rather than a symptom of constructors
themselves being at fault. Final field declarations can only be written once, and
only from the constructor methods of the class that declares them. Section 3.2.1
defined constructor-settled field declarations — where any behaviour is allowed
until the constructor returns, after that only reads are allowed. This section com-
pares field declarations with final-like behaviour (constructor-settled and write-
settled (CW)) and constructor-settled field declarations (C) in the DaCapo bench-
marks to determine whether a constructed annotation — that allows any behaviour
before the constructor returns but does not allow writes after the constructor — in
place of final annotations would be more representative of actual program be-

haviour than final.

Figure 6.4 compares constructor-settled fields by their final behaviour. The for-
mat for this figure is similar to the figures in the previous section (e.g. Figure 6.1),

but considers constructor-settled in place of read-settled.

Field declarations that are final are not necessarily read-settled (although we
observed that they usually are), however final field declarations (F) are a subset
of constructor-settled and write-settled field declarations (CW), which are in turn
a subset of constructor-settled field declarations (C). The not-constructor-settled
column and the constructor-settled and write-settled column are necessarily zero

for the data presented in Figure 6.4, but we keep the same format for consistency.
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Program Total C (%) —C (%) Total (%)
F CW\F -CW F CW\F -CW F CW C
avrora 1,702 36 31 2 0 0 31 36 67 69
batik 3272 8 53 4 0 0 35 8 60 65
eclipse 6,779 10 37 4 0 0 50 10 46 50
fop 339 9 44 5 0 0 42 9 53 58
h2 2,014 17 39 3 0 0 41 17 56 59
jython 2,501 14 46 4 0 0 36 14 60 64
luindex 1,674 18 39 4 0 0 39 18 57 61
lusearch 1,303 14 43 4 0 0 38 14 58 62
pmd 1,962 14 41 3 0 0 41 14 55 59
sunflow 1,831 14 43 6 0 0 37 14 57 63
tradebeans 15,404 25 35 3 0 0 37 25 60 63
tradesoap 15,611 25 35 30 0 37 25 60 63
tomcat 6,279 9 41 5 0 0 45 9 50 55
xalan 2,063 11 41 4 0 0 43 11 52 57
Total 65,785 18 38 4 0 0 40 18 57 60
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Figure 6.4: Constructor-settled (C) and final (F) for all field declarations. The table shows
each category rounded to the nearest percentage point. This data is summarised in the
stacked bar chart. Constructor-settled field declarations (C) subsume constructor-settled
and write-settled field declarations (CW) and final field declarations (F) so the total height
of each bar shows the total number of constructor-settled field declarations, while the
first two segments show fields with final behaviour (constructor-settled and write-settled
(CW)).
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Discussion

This figure shows that only 3% of fields are constructor-settled but not write-
settled (5% of constructor-settled fields). This indicates that in almost all cases
tields that are initialised during the constructor are only written once. From this
data we conclude that there is little value to adding a constructed annotation to
Java as it would have very similar applicability to the existing final annotation.
New languages might consider using a constructed annotation instead of final as
it is slightly more applicable to the field declaration settling behaviour we ob-

served.

6.3.3 Read-settled and constructor-settled field declarations

In Section 6.3.1 we showed that final field annotations (F) are poorly utilised
while read-settled field declarations (R) outnumber field declarations that are
both constructor-settled and write-settled (final-like, CW). Section 6.3.2 showed
that constructor-settled field declarations slightly outnumber field declarations
that are both constructor-settled and write-settled. In this section we compare
constructor-settled field declarations with read-settled field declarations to de-
termine whether the small number of fields that are constructor-settled but not
write-settled are read-settled, or whether read-settled field declarations subsume
constructor-settled too.

Figure 6.5 shows a stacked bar chart for constructor-settled and read-settled
fields. The bottom segment of each bar shows read-settled field declarations
that are not constructor-settled (R\C) (14-24% of all field declarations). These are
tields that are never written after they have been read, but are written after the
constructor returns. The centre segment of each stacked bar shows fields that are
both read-settled and constructor-settled (CR) (50-68% of all field declarations).
The top section shows field declarations that are constructor-settled but not read-
settled (C\R) (1-2% of all field declarations). These fields are not written after the

constructor so they must be read before they are written during the constructor.

Discussion

Figure 6.5 shows that almost all fields that are constructor-settled are also read-
settled, but there are a small number of fields that are read during the constructor
before they are written. Unkel and Lam refer to a category of fields they call
semi-stationary — fields that would be read-settled if reads that occur before the
objects are ‘lost” by their analysis are disregarded. In other words, they allow
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Figure 6.5: Read-settled (R) and constructor-settled (C) for all field declarations. The
bottom two segments of each bar show read-settled field declarations (R) while the top
two segments show constructor-settled field declarations (C).

reads during and shortly after the constructor, but any subsequent reads must
not precede writes. Their definition of semi-stationary corresponds roughly to
the total size of the bars in Figure 6.5: the union of read-settled and constructor-
settled fields. We can confirm their observation that there are very few fields in
this category which are not in the read-settled category — they found up to 7%
but we never found more than 2%, probably because their analysis disregards
some reads that ours does not.

Figure 6.5 also shows that there is a large percentage of field declarations (14-
24%) that are read-settled but not constructor-settled. It also shows that the num-
ber of read-settled field declarations is very consistent between benchmarks: the
number of final field declarations (F) varies between 9% and 36%, constructor-
settled field declarations (C) vary between 50% and 69%, but the number of read-
settled field declarations (R) remains between 72% and 82% across a range of pro-
grams from different domains, authors, and of significantly different sizes. Our
runtime observations together with Unkel and Lam’s static analysis suggests that
an annotation that enforces read-settled behaviour for field declarations — station-
ary perhaps — would be substantially more applicable than final and we strongly
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encourage future language designers to consider this result.

Unfortunately, even if Java language designers added a stationary annotation
we have no evidence to suggest that programmers would utilise it any more than
they use final. Read-settled field declarations may be written after the construc-
tor returns and that would certainly allow, for example, cyclical references to be
established, but there are many fields that could be final but are not, so perhaps
annotating each field declaration is too much effort. Perhaps class or object anno-
tations for documenting classes and objects that settle would be more popular?
Section 6.4 considers the initialisation behaviour of objects and classes rather than
field declarations to determine whether they show sufficient settling behaviour
that language designers could justify whole-class or object annotations.

6.4 Object settling

Section 6.3 confirmed the observations of Unkel and Lam, concluding that most
Java field declarations in the programs we observed are read-settled, consider-
ably more than are constructor-settled. This section focuses on whole-object set-
tling behaviour, aggregating data for over 300M objects, to determine whether a
significant proportion of Java objects show settling behaviour.

This section does not aggregate objects by class but rather considers each ob-
ject as a distinct entity; objects of the same class can be classified differently if they
exhibit different behaviour. Field declaration aggregations — such as those in the
previous section — combine information about different objects (projecting object-
fields onto the set of all field declarations). Similarly, object aggregations combine
information about different field declarations (projecting object-fields onto the set
of all objects). The precise details of these aggregations are described in the object
settling behaviour definitions of Chapter 3.

This section is structured as follows:

* We begin with a survey of the settling behaviours of all observed objects,
considering specifically read-settled and constructor-settled objects as those
behaviours were the most common among fields. These results will show

whether or not settling behaviours can be applied to whole objects.

* Section 6.4.2 considers specifically objects that use equality methods (equals
and hashCode) and objects that enter collections, categories of objects that
we have already observed in Chapter 4. These observations will allow us
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to determine whether, as we speculated, there are many objects in these
categories that are read-settled, equals-settled, or collection-settled.

¢ Constructor-settled objects have a single unambiguous program event that
marks the end of their initialisation. Read-settled objects, on the other hand,
settle one object-field at a time; there is no clear point separating initialisa-
tion and use of the whole object. Section 6.4.3 considers object-read-settled
objects — objects that are settled as soon as one field is read (writes of all
fields must precede the first read of any field). The ratio of read-settled ob-
jects to object-read-settled objects will show whether a single initialisation

boundary exists for read-settled objects.

¢ This section concludes by comparing class and object settling behaviour in
Section 6.4.4. We aim to determine whether object initialisation behaviour
is consistent between classes, or whether there is substantial variation in the

behaviour of objects from a single class.

6.4.1 Read-settled and constructor-settled objects

This section examines the settling behaviour of objects in the DaCapo bench-
marks by comparing the read-settled objects (R) with constructor-settled objects
(C). Figure 6.6 presents the percentages of objects in each category as a table and
as a chart in a similar format to the figures in the previous section.

Discussion

Figure 6.6 shows that there is significantly more variance in the observed be-
haviour of different benchmarks than we encountered when analysing field dec-
laration settling. Like field declarations, constructor-settled objects account for
about half of all objects, however the range is much greater: 2-78% of objects
are constructor-settled whereas constructor-settled field declarations ranged be-
tween 50-69% of all fields across the 14 benchmark applications. The total ratio
of constructor-settled objects to all objects is also less than that of constructor-
settled fields: 49% of objects compared to 60% of fields. The number of objects in
each benchmark varies considerably more than the number of fields so this could
skew the object aggregations, but this does not seem to be the case as the mean
percentage of constructor-settled objects is 53% vs 60% for fields. We conclude
that objects are less likely to be constructor-settled than fields.
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R (%) -R (%) Total (%)

Benchmark Objects C -C C -C C R

avrora 1,596,220 55 1 0 44 55 56

batik 761,841 57 18 1 24 58 75

eclipse 24,159,223 50 18 2 29 53 69

fop 2,042656 58 15 0 27 58 73

h2 66,183,338 59 2 0 38 59 62

jython 31,203,059 78 10 O 12 78 88

luindex 218,890 73 4 0 22 73 78

lusearch 6,746,880 51 20 0 29 51 71

pmd 5169866 48 30 0 22 48 78

sunflow 60222278 2 67 10 21 12 69

tradebeans 46587901 50 12 0 38 50 62

tradesoap 48,758,437 59 16 0 25 59 74

tomcat 4362173 72 10 1 18 73 82

xalan 6,394,758 27 59 0 14 27 86

Total 304,407,520 47 23 2 28 49 70
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Figure 6.6: Read-settled (R) and constructor-settled (C) objects. The first two columns
of the table show the names of benchmarks and the number of objects observed in
each benchmark. The four central columns show primary divisions of objects into read-
settled (R) and not-read-settled (—R), then secondary divisions of those objects between
constructor-settled (C) and not-constructor-settled (—C). The final two columns show
summary data for constructor-settled (C) and read-settled (R) objects. The chart at the
bottom of the figure shows the same data. The bottom two segments of each bar show
read-settled objects (R) while the top two segments show constructor-settled objects (C).
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Our object settling behaviour analysis also shows more variance in the num-
ber of read-settled objects than read-settled field declarations, though the dif-
ference is less than between constructor-settled objects and constructor-settled
tields. Read-settled objects account for 56-88% of all objects, which compares
more favourably with the 72-82% of read-settled fields observed in the previ-
ous section than the constructor-settled ratios. Across all benchmarks 70% of
objects were read-settled, again lower than the 78% of fields. The mean num-
ber of read-settled objects also shows less divergence from field declarations than
constructor-settled objects: 73% for objects vs 78% for field declarations.

These results show that both constructor-settled and read-settled behaviours
occur for objects, although constructor-settled behaviour varies significantly be-

tween benchmark applications.

Correlation between read-settled and constructor-settled objects, and bench-

mark size

We noted that in the case of both constructor-settled and read-settled object ratios,
the ratio of all objects in all benchmarks was lower than the mean ratio of objects
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Figure 6.7: Ratios of read-settled and constructor-settled objects to all objects vs bench-
mark size (total number of objects)
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across benchmarks. This could indicate that larger programs are less likely to
have constructor-settled /read-settled objects. Figure 6.7 shows a scatter plot of
ratios versus total number of objects for each benchmark with generated lines of
best fit. This figure indicates that for the 14 benchmarks we observed the larger
benchmarks do have slightly fewer constructed and stationary objects. Neverthe-
less, low correlation coefficients (0.07 for constructor-settled, 0.1 for read-settled)
suggest that this is probably an anomaly of the particular benchmarks we ob-

served.

Read-settled and constructor-settled objects excluding system objects

Figure 6.8 presents data for all objects excluding system objects (java/javax) in the

same format as Figure 6.6.

Discussion

Figure 6.8 shows that more than half of all objects encountered in these bench-
marks were system (java/javax) objects. Excluding these objects results in a mod-
est increase in both constructor-settled (C) and read-settled (R) object ratios. In
particular, we see an overall drop of 15% in the proportion of objects which are
read-settled but not constructor-settled. This causes a rise of 21% in the number
of objects which are both read-settled and constructor-settled.

System objects are implemented by experienced library designers and are
available to all Java programmers. The significant increase in proportion of ob-
jects that are constructor-settled when we exclude system objects suggests that
the programmers implementing system objects used more complex initialisation
strategies for system library objects than the programmers who implemented the
DaCapo benchmarks. This is particularly surprising because system objects in-
clude common logically immutable objects like strings and integers, and Block,
author of many classes in the system libraries, tells Java programmers to “prefer
immutability” [16].

The differences between system and program-specific objects are more pro-
nounced than the differences we observed between system and program-specific
fields. This could be for a number of reasons, but it seems likely that it is simply
because system objects comprise a far larger proportion of total objects than sys-
tem fields: 56% vs 31%, probably because system classes are less numerous but

more frequently instantiated than program-specific objects.
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R (0/0) -R (o/o) Total (o/o)
Benchmark Objects C —-C C —-C C S

avrora IM 64 1 0 35 64 65
batik 560K 64 9 1 26 65 73
eclipse 11IM 74 3 0 23 75 77
fop 1M 59 8 0 33 59 67
h2 39M 77 1 0 22 77 78
jython M 79 6 0 15 79 85
luindex 115K 72 8 0 20 72 80
lusearch 2M 69 1 0 31 69 69
pmd 3M 60 10 0 30 60 70
sunflow 28K 72 7 0 20 73 79
tradebeans 26M 72 3 0 25 72 75
tradesoap 30M 58 14 1 28 58 72
tomcat 3M 72 9 1 18 73 81
xalan 5M 25 72 0 4 25 96
Total 132M 68 8 0 23 69 77
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Figure 6.8: Read-settled (R) and constructor-settled (C) objects excluding system objects
(java/javax). The data presented in this figure matches the format of Figure 6.6 but ex-
cludes system objects.
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6.4.2 Equality, collections, and objects

This section inspects the subcategories of objects that had equals or hashCode
called and also objects that entered collections. These subcategories of objects are
interesting because we have an additional event in each object’s lifecycle to de-
termine whether the objects have settled. These subcategories are also interesting
insomuch as they behave differently to the general population of objects. The re-
sults presented in Chapter 4 suggest that they may: we observed that almost all
objects that enter collections had some form of settled equality.

Objects used for equality operations

Figure 6.9 shows objects used in equality operations: objects which have their
equals or hashCode methods invoked and objects which are passed as arguments
to the equals method of another object. As in previous figures, data is shown both
in tabular form and as a chart. The table’s first column shows the total number
of objects from each benchmark that were used in equality operations. The sub-
sequent four columns show the distribution of these objects between read-settled
(R) and equals-settled (E) object categories — where equals-settled (E) requires
that objects do not write to fields after an equality operation occurs involving
that object. The last three columns summarise the number of these objects that are
equals-settled (E) and read-settled (R), as well as the number that are constructor-
settled (C). The chart at the bottom of the figure shows the data in the body of the
table in a similar format to previous charts: the bottom two segments show read-
settled objects (R) while the top two show equals-settled (E) objects. The centre

segment shows the intersection (ER).

Discussion

Figure 6.9 shows that objects used in equality operations are far more likely than
the general object population to be both read-settled and constructor-settled (i.e.
Figure 6.6), with most benchmarks near 100%. This is consistent with the results
obtained using #prof, presented in Chapter 4. Most objects in this subpopula-
tion that are read-settled are also equals-settled (ER), and there are fewer objects
that are equals-settled but not read-settled (E\R) than objects that are read-settled
but not equals-settled (R\E). In only one case (batik) do exclusively equals-settled
objects exceed the number of exclusively read-settled objects.

Objects that use equality and are equals-settled outnumber those that are use
equality and are constructor-settled; in fact the number of objects identified as
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R (%) =R (%) Total (%)

Benchmark Objects E -E E -E E C R
avrora 877 99 1 0 0 99 99 100
batik 15K 83 3 10 5 92 92 8
eclipse 39K 93 1 0 5 93 93 9
fop 43K 79 17 5 0 8 79 9
h2 iM 97 3 0 0 97 97 100
jython 48K 97 3 0 0 97 96 100
luindex 337 93 4 2 1 9 93 97
lusearch 295 96 3 1 0 9% 95 99
pmd 24K 100 0 0 0 100 100 100
sunflow 348 94 3 1 1 9 93 97
tradebeans 590K 98 2 0 0 98 89 100
tradesoap 948K 98 2 0 0 98 9 100
tomcat 20K 98 2 0 0 98 45 100
xalan 796 98 1 0 0 99 97 100
Total 6M 97 3 0 0 97 96 100
100% . — — —

80%
60%
40%

20%

0%—_-_—_l-_-_-_-—_-_______‘

X N ] N2
@ O & . o\\Qe o A\

H R(\B)

ot oN o W N Q0 LRV
RO A aéeveo xacee’o O
XY A\
ER mECWR

Figure 6.9: Ratios of equals-settled (E) and read-settled (R) objects for the subpopulation
of objects used for equality operations. The first two columns of the table show the names
of benchmarks and the number of objects used for equality operations observed in each
benchmark. The four central columns show primary divisions of objects into read-settled
(R) and not-read-settled (—R), then secondary divisions of those objects between equals-
settled (E) and not-equals-settled (—E). The final three columns show summary data for
equals-settled (E), constructor-settled (C), and read-settled (R) objects. The chart at the
bottom of the figure shows data for equals-settled and read-settled objects. The bottom
two segments of each bar show read-settled objects (R) while the top two segments show

equals-settled objects (E).
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equals-settled was always between the number of objects that were read-settled
and constructor-settled respectively (in batik’s case the bounds are inverted). We
conclude that while equals-settled is useful for comparing to other settling be-
haviours, equals-settled is not useful in general as it identifies fewer settled ob-
jects than read-settled and constructor-settled, but is only applicable to 2% of the
total set of objects observed.

Objects that enter collections

Figure 6.10 presents object categorisations for objects that enter Java collections —
objects in this category were observed as arguments to methods belonging to one
of Java’s collection classes. These objects are interesting because we can observe
collection-settled behaviour — objects whose fields are not modified after they
enter a collection for the first time. The table at the top of Figure 6.10 summarises
objects that enter Java collections for each of collection-settled (K), constructor-
settled (C), and read-settled (R) objects, and presents the distribution of objects
between collection-settled and read-settled categories in the centre. The chart at
the bottom of the figure shows the distribution as a stacked bar chart. The bot-
tom two segments of each bar show read-settled objects (R) while the top two
segments show collection-settled objects (the centre segment shows the intersec-
tion, KR).

Discussion

These results show that, like objects used for equality operations, objects that
enter collections are more likely than the general population to be constructor-
settled or read-settled, though the increase in likelihood is modest compared with
objects used in equality operations, even excluding xalan, a significant outlier.
This is unexpected: we observed in the results of Chapter 4 that objects in collec-
tions are actually less likely to be constructor-settled than objects in the general
population. However, #prof had severe limitations when observing the general
population of objects; it was essentially limited to user objects. The results pre-
sented here, obtained with rprof, track almost all objects created and so give a
better overall measure of object behaviour.

Unlike the results for equals-settled objects, these results show several bench-
marks where the number of collection-settled objects exceeds the number of read-
settled objects in this subpopulation. In addition, while equals-settled objects
are always bounded by read-settled and constructor-settled objects, collection-
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R (%) —R (%) Total (%)
Benchmark Objects K —-K K -K K C R
avrora 9K 78 4 1 18 79 77 82
batik 149K 87 1 0 12 8 50 87
eclipse 1M 58 21 10 11 68 48 79
fop 315K 66 14 14 6 80 63 80
h2 2M 66 26 0 7 67 66 93
jython ™M 70 22 5 3 75 72 92
luindex 7K 91 2 0 7 92 90 93
lusearch 514K 100 0 0 0 100 53 100
pmd 871K 63 28 3 6 65 61 91
sunflow 8K 75 12 2 11 77 74 87
tradebeans 6M 76 2 5 17 8 75 78
tradesoap M 75 14 2 8 78 74 89
tomcat 248K 81 5 10 5 90 82 86
xalan 518K 37 1 0 62 37 37 38
Total 2M 73 12 4 11 76 70 85
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Figure 6.10: Ratios of collection-settled (K) and read-settled (R) objects for the subpopu-
lation of objects that enter collections. The first two columns of the table show the names
of benchmarks and the number of objects that enter collections observed in each bench-
mark. The four central columns show primary divisions of objects into read-settled (R)
and not-read-settled (—R), then secondary divisions of those objects between collection-
settled (K) and not-collection-settled (—K). The final three columns show summary data
for collection-settled (K), constructor-settled (C), and read-settled (R) objects. The chart
at the bottom of the figure shows the data for collection-settled and read-settled objects.
The bottom two segments of each bar show read-settled objects (R) while the top two
segments show collection-settled objects (K).
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settled objects outnumber the settled objects identified by both general metrics
for two benchmarks, though overall it identifies a smaller fraction of objects than
equals-settled. The differences, while never dramatic, suggest that programmers
use several different initialisation patterns for objects which enter collections. It
would be interesting to combine this type of runtime analysis with a static analy-
sis which identifies source-code patterns for objects that enter collections.
Collection-settled is not very useful as a general purpose classifier because,
like equals-settled, it is not applicable to most objects ( 8% of all objects). Even so,
it is useful for comparisons and as we observed in Chapter 4, objects in collections

do behave quite differently to general objects in some cases.

6.4.3 Read-settled (R) vs object-read-settled (oR)

Section 6.4.1 began by comparing read-settled (R) and constructor-settled (C) ob-
jects. Read-settled objects do not necessarily have a single program point where
they become initialised as each object-field can become initialised independently.
This section considers object-read-settled objects (0R) — objects that are read-
settled and have the added condition that all field writes to every field occur be-
fore the first read of any field. Figure 6.11 shows the same data as Figure 6.6, but
overlays object-read-settled objects onto the segments that contain read-settled
objects. From the ratio of read-settled objects to object-read-settled objects we can
conclude whether read-settled objects have single initialisation boundary.

Discussion

Figure 6.11 shows that most objects that are read-settled are also object-read-
settled. This number of object-read-settled objects actually exceeds the number
of objects that are constructor-settled. This suggests that objects do have single
points where they become initialised. Of 300M objects observed, approximately
150K constructor-settled objects were read-settled but not object-read-settled. 7M
objects were constructor-settled, but not read-settled.

The data shows two significant outliers: sunflow has relatively few constructor-
settled objects, but a similar proportion of read-settled objects to other bench-
marks. In addition, of those objects that are constructor-settled, very few are also
read-settled. 57% of xalan’s objects are read-settled but not object-read-settled, in
contrast to other benchmarks where objects that are read-settled but not object-
read-settled accounted for 0-8% of all objects.

In spite of the outliers, the large proportion of read-settled objects that are
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Figure 6.11: Read-settled (R), object-read-settled (0R) and constructor-settled (C) objects.
This chart presents exactly the same data as the chart in Figure 6.6 but overlays object-
read-settled objects (0R). These are indicated by the black dotted outline in segments that
contain read-settled objects.

also object-read-settled objects suggests that programming languages could con-
sider adding whole-object initialisation mechanisms. In the following section we
will consider whether whole-object initialisation can be extended to classes, or

whether it is predominantly an object property.

6.4.4 Object settling behaviour polymorphism

In this section we test the hypothesis that object settling behaviour is a result of
the high number of settled field declarations. If this is the case then we would
expect to see an inverse relationship between the number of fields in an object
and the likelihood that the object is settled.

Figure 6.12 shows a stacked bar chart where the y-axis shows the proportion
of objects with a given behaviour, while the x-axis shows the number of fields
in each bar. The proportion of objects that have exclusively read-settled object-
tields is shown at the bottom of each bar and the proportion of objects that have
no read-settled object-fields is shown at the top (in black). The bottom chart in the
tigure shows relationship between object frequency and number of object-fields.
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Figure 6.12: Behaviour consistency of whole objects vs number of fields. The top chart
splits objects from all benchmarks into categories based on the number of object-fields
and shows each category as a bar. Each bar shows 100% of the objects in that cate-
gory split into three parts: the bottom segment shows objects that have only read-settled
object-fields. The central section shows objects with a mix of read-settled and not-read-
settled object-fields. The top segment (black) shows objects with exclusively not-read-
settled object-fields. The bottom chart shows the number of objects in each bar on a log
scale, showing an exponential relationship between the number of objects with a partic-
ular number of object-fields and the number of object-fields.
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In both cases we have trimmed the graph at 30 fields per object.

Figure 6.12 shows that the number of objects with a particular number of fields
decreases with an exponential trend, but there is no significant relationship be-
tween the number of fields in an object and the likelihood that the object is read-
settled.

Figure 6.13 shows a similar stacked bar chart where the y-axis shows the pro-
portion of classes with a given behaviour, while the x-axis shows the number of
tields in each bar. The proportion of classes that have exclusively read-settled ob-
jects are shown at the bottom of each bar and the proportion of classes that have
no read-settled objects are shown at the top (in black). The bottom chart in the
tigure shows relationship between class frequency and number of fields. In both
cases we have trimmed the graph at 30 fields per object.

From Figure 6.13 we can conclude that the number of classes with a particular
number of fields also shows an exponential decay. Figure 6.14 shows the data
from the top chart of Figure 6.13 plotted as a scatter plot with lines of best fit and
coefficient of determination, showing logarithmic decay in the ratio of both fully
read-settled and fully not-read-settled classes as the number of fields in a class
increases. This suggests that programmers do not decide to make entire classes
that are read-settled: instead they decide for an individual field. The more fields
a class has, the less likely it is that the class will show consistent read-settled
behaviour.

In conclusion, classes would not benefit from a class-level annotation to docu-
ment classes with settling behaviour because their settling behaviour is primarily
derived from their fields. Objects, however, have independent settling behaviour
and consequently programmers may benefit from programming language sup-
port for describing immutable objects independent of class (for example, a para-

metric immutability parameter).
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Figure 6.13: Behaviour consistency of classes vs number of fields. The top chart splits
classes from all benchmarks into categories based on the number of fields in that class and
shows each category as a bar. Each bar shows 100% of the objects in that category split
into three parts: the bottom segment shows classes that have only read-settled fields. The
central section shows classes with a mix of read-settled and not-read-settled fields. The
top segment (black) shows classes with exclusively not-read-settled fields. The bottom
chart shows the number of classes in each bar on a log scale, showing an exponential
relationship between the number of classes a particular number of field declarations, and
the number of field declarations. We do not show information for classes with more than
30 fields — this point was chosen because this is where the number of classes with a
particular number of fields drops below 10.
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Figure 6.14: Behaviour consistency of classes vs number of fields as a scatter plot with
logarithmic trend lines.



6.5. THREATS TO VALIDITY 123

6.5 Threats to validity

The results presented in this chapter, like those presented in Chapter 4, are only
valid if the assumptions we used to obtain them are correct. This section discusses

the assumptions we made that could impact our results if they are incorrect.

6.5.1 Internal validity

One major concern during the development of rprof was the difficulty in val-
idating its results. Unlike #prof, which only measured the behaviour of user-
provided code, rprof observes all code running within the JVM including system
libraries. Consequently, even the smallest programs are subject to some perturba-
tion from JVM behaviour, so it was difficult to run small tests to ensure consistent
behaviour (like we did for #prof). To mitigate the risk of incorrect behaviour, we
invested considerable effort in testing each component in isolation, developing
small end-to-end tests using package filters to examine a subset of the results,
and identifying and measuring aggregate behaviours that we could predict with
certainty (such as ensuring that there are no fields identified that are both final
and not constructor-settled). This was also a significant motivation for beginning
this chapter by comparing rprof’s results with those of Unkel and Lam [109].

Another significant concern for us was the possibility of the profiler affecting
program behaviour. This was partially mitigated for #prof, which did not track
JVM behaviour, but any use of system libraries by rprof would be very difficult to
distinguish from program behaviour. Consequently, we minimised the amount
of profiler code running within the profiled JVM, calling native code as soon as
possible and moving all substantial execution into separate JVMs.

No amount of testing can ensure correct behaviour but we are satisfied that
rprof’s results are sufficiently accurate to draw the conclusions presented in this
chapter. We would welcome any attempts by other research groups to replicate

our results using their own techniques.

6.5.2 External validity

The results presented in Chapter 4 were obtained by profiling a selection of pro-
grams from the Qualitas Corpus [88]. For the results presented in this chapter
we decided instead to profile the DaCapo benchmark suite, partially to make it
easier to run large programs without human interaction, but also to improve the

reproducibility of our results. However, the DaCapo benchmark suite consists
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entirely of non-GUI workloads so it is possible that the results presented in this
chapter are not generalisable to GUI Java programs, for example.

We chose the DaCapo benchmark suite as a compromise between our con-
cerns about the lack of reproducibility of results obtained by manually interacting
with programs, as we did in Chapter 4, and concerns about the generalisability of
the results obtained from benchmark suites such as SPEC JVM98 (used by Unkel
and Lam [109] and Pechtchanski and Sarkar [82]). As discussed in Section 2.4.1,
DaCapo consists of relatively large, general purpose applications, without a par-
ticular bias other than for programs with large memory loads, and the lack of
GUI tools [15].

6.5.3 Content validity

Finally, it is possible that there are settling events that we did not identify that
would produce better results than read-settled. Possible examples of alternative
settling events that we did not measure include the assignment of an object to a
tield or array, or return from the method that constructed the object. These events
were out of scope for us to measure during this project but could be measured us-
ing the techniques that we developed for rprof. It seems unlikely that these events
would identify significantly more settled objects/fields than read-settled due to
the relatively high number of read-settled fields and objects, and the consistency

that we observed between benchmarks.



Chapter 7
Conclusion

This chapter reviews the contributions of this thesis and considers future work.

7.1 Contributions

This thesis has made the following contributions:

7.1.1 Settling classifications

Chapter 3 presented definitions for describing the initialisation behaviour of pro-
gram entities. We defined settling events — observable events in an object’s life-
cycle where entities may be initialised — and defined five settling events and clas-
sifications based on these events for object-fields, objects, field declarations, and
classes. We also described how settling behaviour patterns could be observed for
equality.

7.1.2 Object equality initialisation

Chapter 4 presented the runtime analysis of 30 open source applications from the
Qualitas Corpus. This required the development of a novel profiler that could
actively track object initialisation and its effect on object equality. The results
presented in this chapter categorised objects based on their interaction with col-
lections and their settling behaviour. In particular, we observed the following

properties:

* Most classes and objects use identity-as-equality, only around 6% of classes
define equals and hashCode.
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* Many objects and classes settle their fields during the constructor, more than
half of all classes and near half of all objects.

* Non-default equals and hashCode are the norm among objects that enter

collections but uncommon among objects that do not enter collections.

* (Classes and objects that enter equality collections always settle their equal-
ity before entering the collections. Most objects that enter identity collec-
tions also define and settle their equality. More than half of classes and a
quarter of objects in these categories change their fields after their construc-

tors return, but very few changed their equality after entering a collection.

7.1.3 Context-independent object profiling

Chapter 5 presented a second profiler and a data aggregation framework for ob-
serving object behaviour at runtime. The profiler presented in this chapter, rprof,
is more precise than #prof: it is capable of tracking all Java objects including sys-
tem objects; it can monitor reads and writes to all object fields; and it can track
method calls, returns and exceptional returns for any method.

rprof represents a novel approach to aggregating profiler data that allowed us
to profile and analyse results from all 15 benchmarks in the DaCapo benchmark
suite. The DaCapo benchmark suite was designed as a general purpose tool for
the programming language, memory management, and computer architecture
research communities. Profiling all objects from these non-trivial applications
without sampling or otherwise limiting the profiler’s scope, and doing so using
commodity hardware represents a significant accomplishment that demonstrates
the success of our profiler and analysis framework.

rprof is a much more robust profiler than #prof but we were not able to re-
implement all of the features we explored with #prof within the scope of this PhD
— in particular the ability to monitor equality settling. Future work with rprof
could verify #prof’s equality settling result for all objects and for the DaCapo
benchmark.

7.1.4 Field declaration settling

Using results produced by rprof, Section 6.3 presented a runtime study of field
declaration initialisation behaviour that confirms the results that Unkel and Lam
obtained using static analysis [109]. In particular, we made the following contri-

butions:
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* We confirmed that programmers do not use final field declaration annota-
tions as often as they could. 50-68% of fields showed constructor-settled and
write-settled (final-like) behaviour while only 8-36% of those fields were de-
clared final by programmer.

* We confirmed that a high proportion of field declarations are read-settled
— 62-75% — including almost all fields that could have been declared final.
In addition there were a considerable proportion of field declarations that
could not have been declared final that were read-settled.

¢ We considered the case for replacing final field declaration annotations with
a constructed annotation that allowed field modification up to but not after
constructor return, but concluded that while there were some fields that
could be annotated with this modifier but not final, there were insufficient
tields to justify adding a new annotation to languages that already have
final.

¢ We compared the number of constructor-settled, and read-settled field dec-
larations, concluding that a stationary annotation for field declarations that
allowed fields to be written until the first time they are read would allow
considerably more fields to be annotated. We conclude that new languages
should strongly consider adding a stationary annotation for documenting
tields that settle, while existing languages may also benefit.

From the results presented in this section we conclude that constructor meth-
ods are not a good fit for the field declaration initialisation that we observe in
real-world programs. Language designers should consider other ways to enable
programmers to document field declarations that represent constant properties —
tield declarations that settle to a particular value after initialisation.

The conclusions we draw from the results in this section are largely consistent
with the conclusions of Unkel and Lam. By confirming their static analysis results
using dynamic analysis we have not only strengthened their conclusions but val-
idated our approach to observing initialisation behaviour at runtime. However,
the results are not directly comparable because Unkel and Lam’s static analysis
is conservative: their observations correspond to a guarantee that particular code
will show exactly the behaviour they identify, no matter what inputs it receives.
Our dynamic observations are only relevant to context in which we observed
them: a library may show particular behaviour for one set of inputs but different

behaviour for another set, or when it is used in another program. Nevertheless,
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our runtime study is useful for observing trends and is able determine the actual
behaviour of a program rather than what behaviour is possible. These results are

complimentary.

7.1.5 Object settling

Chapter 5 also analysed the settling behaviour of objects. Object behaviour is
very difficult to capture using static analysis so this type of analysis is best suited
to runtime profiling. Section 6.4 measured the frequency of constructor-settled,
equals-settled, collection-settled, and read-settled objects in the DaCapo bench-
marks. This section presented the following contributions:

* We showed that constructor-settled is an inconsistent metric for measuring
object initialisation, suggesting that constructor methods are not well suited

to object initialisation in general.

¢ We showed that read-settled objects account for the majority of objects in
the programs we observed and show more consistency between programs

than constructor-settled objects.

* We observed that nearly all read-settled objects are object-read-settled, sug-
gesting that entire objects are initialised before any fields are used. This is
an important result for language designers and VM implementers because it
suggests that there is a point at which the whole object will cease to change,
rather than individual fields settling independently.

* We showed that there is no significant correlation between the number of
object-fields in an object and the likelihood that an object is settled, however
there is significant correlation between the number of field declarations in
a class and the likelihood that the class is settled. Together, these results
show that programmers would not benefit from a whole-class annotation
to document settling behaviour because their behaviour is determined by
the aggregate behaviour of their fields. On the other hand, because object
initialisation behaviour is not directly correlated with the behaviour of their
tields — objects are sufficiently polymorphic that their settling behaviour
overwhelms the declared field settling behaviour of their class — program-
mers may benefit from a language mechanism for documenting immutable

objects that is perpendicular to their class.
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7.2 Comparison to related work and future work

In our opinion the most unexpected result from this thesis is our observation that
object settling behaviour is independent of the number of object-fields an object
has. This is surprising because we expected that object behaviour, like class be-
haviour, would be correlated with the number of fields. There is considerable
future work to be done in this area as we have only begun to explore this. In
particular, it would be interesting to measure the number of classes whose ob-
jects show polymorphic settling behaviour — classes that have some objects that
settle and some that do not. It would also be interesting to compare the settling
behaviour of objects with object longevity: are most settled objects short-lived,
for example?

If object settling behaviour independent of class is an important part of ex-
isting programs there are several ways that a language could support this. For
example, an “immutable” type parameter could be used to annotate uninitialised
objects then a special operator could be used to declare that an object has been ini-
tialised and can safely be used. Type systems such as Fihndrich and Xia’s Delayed
Types [35] could be helpful.

The profiling approach used by rprof was very successful, but there are signif-
icant improvements that could be made. Some of these improvements are largely
engineering, such as applying existing research to compress the result streams on
the fly, and combining duplicate sequential events to reduce the number of up-
dates. More advanced improvements could enable feedback from the analysis to
disable field event generation for fields which are already known to be mutable,
for example. rprof’s design is inherently parallel and we believe that with suf-
ficient tuning and hardware it could achieve near real-time performance so that
graphical and user-interactive programs can be analysed. This could allow rprof
to be used as a code comprehension tool. A significant shortcoming of rprof is
its inability to track arrays. rprof can already identify array creation events but
future work could add the byte code modification support necessary to gener-
ate events for array modifications and accesses so that array-aware aggregations
could be implemented as array value tracking is not supported by JVMTI directly.

Marinov and O’Callahan’s use of runtime profiling to identify and merge in-
distinguishable objects shows an interesting application of the type of profiling
we perform in this chapter [63]. Their results, however, are not applicable to
running programs and like ours can only be determined after the fact. Our ob-
servation of frequent read-settled object behaviour could be used by VMs, for
example, as a predictor of object immutability: when a field read occurs the VM
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could tag the object as initialised, and in about 60% of cases that object would not
subsequently change any fields. A VM could move initialised objects to read-
optimised memory regions then move any objects that subsequently change into

write-optimised regions.

7.3 Conclusion

In conclusion, this thesis has presented a comprehensive study of initialisation
behaviour in existing Java programs. We have examined the initialisation of ob-
ject equality and field declarations, we have replicated studies showing that final
is poorly utilised for field annotations, that stationary would be a better annota-
tion, and we have shown that most fields and objects settle by an easily observ-
able program event. We have also shown that object settling occurs sufficiently
frequently that it is not directly related to field declaration behaviour. We con-
clude that constructors are a poor match for the types of object initialisation that
programmers actually use and future languages should consider alternative tech-

niques for initialising program state.
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== Java’s equivalence operator operator for comparing objects by reference. This
operator is shared with other C-like languages and similar operators are
available in most object-oriented languages (see Section 2.2.2). 12-14, 35

collection-settled A settling behaviour property defined in Section 3.2.6. All
tield writes occur before the object enters a Java Collections API collection.
vi, x, 32-34, 36, 38, 40, 41, 51, 56, 58-62, 64, 67, 93, 94, 108, 115-117, 128

constructor-settled A settling behaviour property defined in Section 3.2.1. All
field writes occur before constructor return. v—vii, ix, x, 26-31, 35, 36, 38, 40,
41, 46, 56, 58-64, 93, 94, 97-118, 123, 127, 128

deep state Any mutable state of an object that is not stored in its fields. This
could include state stored in referenced arrays or objects. 41, 59, 67

EGAL An equivalence operator for identity that identifies objects with mutable
tields by reference and without mutable fields by their field values. EGAL
was first proposed by Baker for use in Common Lisp [8] (see Section 2.2.2).
11, 14,15, 22

equality Any properties of an object used to compute equals and hashCode.
These may include object-fields of the object, object-fields of objects refer-
enced by the object’s object-fields, and state stored in arrays in object-fields.
Equality is defined in Section 3.3. xi, 31, 32, 35, 36, 40, 41, 132

equals Java’s user-defined equivalence operator for objects. Java’s API docu-
mentation requires that equals method implementations should be reflex-
ive, symmetric, transitive, and consistent, as long as an object’s state does not
change. ix, 12-15, 27, 3143, 45, 46, 56, 59, 61, 63, 65, 67, 107, 113, 125, 126,
131,132

131
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equals-settled A settling behaviour property defined in Section 3.2.5. All field
writes occur before the first method call to equals or hashCode. v, x, 31-33,
94,108, 113-115, 117, 128

equivalence operator A comparison operator (binary) that is reflexive, symmetric,
and transitive. Equivalence operators in imperative languages like Java may
also be consistent, that is, given the same input they should return the same
result. v, 14, 131

final Java field declarations can be annotated with final and Java will ensure that
they are only written once, and only from a constructor. As a settling be-
haviour, final defers to field declarations and their corresponding object-
fields that are annotated with final, defined in Section 3.2.1. vii, ix, xi, 2,
27-32,97-106, 123, 127

hashCode A Java method for optimising equals comparisons. hashCode returns
an integer based on the object’s equality, by default derived from the object’s
memory location. Java programmers who override equals should ensure
that if equals returns true for an object comparison then both objects should
have the same hashCode value. ix, 12, 13, 15, 31-37, 39-46, 50-53, 56, 59, 61,
63, 65-67, 107, 113, 125, 126, 131, 132

identity “Identity is that property of an object which distinguishes each object from all
others” [53]. Most object-oriented languages including Java use identity to
mean reference equality: if two references are the same the objects they refer
to are indistinguishable. See Section 2.2.1. 6, 13, 14, 131

identity-as-equality An object’s equality is defined using reference comparisons
so its equality settles as soon as the object is created (before the constructor
runs). An equality-specific settling property defined in Section 3.3.1. vi, 35,
38, 40, 41, 56, 58-65, 67, 125

mutable In general, a property that can or does change. In the context of settling
behaviour, a program entity that does not settle. Defined in Section 3.2.7.
vi, 34, 37, 38, 40-42, 46, 56, 58-65, 67, 93

object-field A particular field slot inside a program object that corresponds to a
tield declaration in the object’s class hierarchy. For example, if a Point class
declares two fields, x and y, then each Point object will have two object-fields
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corresponding to the field declarations. xi, 14, 26-34, 40, 41, 69, 70, 107, 108,
117-119, 125, 128, 129, 131, 132

object-read-settled A settling behaviour property defined in Section 3.2.3. All
tield writes occur before the first field read of any field for a particular ob-
ject. vii, x, 108, 117, 118, 128

read-settled A settling behaviour property defined in Section 3.2.2. All field
writes occur before the first field read. v, vii, ix—xi, 29, 30, 32, 33, 93, 94,
97-103, 105-121, 124, 127-129

settled A program entity that has stopped changing and will not change again
for the duration of a program. Chapter 3 identifies several behaviour pat-

terns for identifying settled program entities. 133

settling See settled. 132

write-settled A settling behaviour property defined in Section 3.2.4. No field
writes occur after the first field write, or, the field is written at most once. v,
30, 31, 97-105, 127
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