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Abstract 

 

The response of the surface ocean and terrestrial climate in the New Zealand region 

to interglacial Marine Isotope Stage (MIS) 11 (423-380ka) is documented, using 

assemblages of fossilised marine algae (dinoflagellate cysts, or dinocysts) and 

spores/pollen from terrestrial plants, analysed from marine sediment cores.  This 

work is underpinned by studies on the modern distribution of dinocysts, factors that 

influence their accumulation in marine sediment, and the use of dinocyst 

assemblages to quantify past sea surface temperature (SST).  

In the first of the modern-process studies, a dataset of modern sea-floor dinocyst 

assemblages from the Southern Hemisphere is collated, including new observations 

from the SW Pacific.  Variations in the assemblages are related to environmental 

gradients.  Cluster analysis reveals distinct biogeographic assemblage zones, 

individual taxa indicative of specific water masses are identified, while ordination of 

the databases indicates that the assemblages vary most with changes in SST.   

A second modern process study reports on the dinocyst assemblages from two time-

incremental sediment traps (3 years of data) moored north and south of the 

Subtropical Front in the ocean east of New Zealand.  This study provides 

observations of seasonal and inter-annual variability of dinocyst flux to the deep sea, 

which are used to identify possible biases in the sea-floor dinocyst assemblages.   

Observations from these first two studies are used in a systematic analysis of the 

strengths and weakness of using dinocyst assemblages to quantify SST in the SW 

Pacific.  The best transfer function performance achieved was a root mean squared 

error of 1.47˚C, for an artificial neural network model, and the benefits in 

considering a range of model results are also established.  

Fossil records that document the oceanographic and terrestrial response to MIS11 

are developed from two areas around New Zealand; (i) dinocysts assemblages are 

collected from the east Tasman Sea, from giant piston cores MD06-2987, -2988, and 
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2989, and (ii) dinocysts and pollen assemblages are analysed from Deep Sea Drilling 

Project (DSDP) Site 594, from the east of New Zealand.   

Dinocyst assemblages confirm that SST in the east Tasman Sea was ~2-3˚C warmer 

than the present during late MIS11 (415-400ka), while SSTs were slightly below 

modern levels during an early phase (428-415ka).  Two assemblage – based 

productivity indices suggest that the elevated SSTs during MIS11 were accompanied 

by lower rates of primary productivity in the east Tasman Sea study area than the 

present.   

As in the east Tasman Sea, two distinct phases of MIS11 are recognised in both the 

dinocyst and pollen assemblages at DSDP 594.  The dinocyst assemblages of late 

MIS11 are similar to, but qualitatively represent warmer waters than the Holocene.  

The succession of pollen assemblages during MIS12-11 is very similar to that 

observed during the previous two interglacials at this site (MIS1 and MIS5), with two 

notable variations: (i) the deglacial vegetation succession during MIS11 was 

prolonged, and (ii) the pollen assemblage representing the warmest forest type was 

also present for longer (ca. 15ky) than later interglacials.   

Changes in the pollen record during MIS11 at DSDP 594 correlate more closely to SST 

variations in the east Tasman Sea than to ocean variations at DSDP 594, suggesting 

that the eastern ocean had only limited influence on conditions on the adjacent 

landmass during MIS11.   
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1. Introduction 

The study of past climates improves our understanding of the range of possible 

environmental responses to current anthropogenic warming.  There are several interglacial 

periods during the Late Quaternary that had optima warmer than the Holocene.  One such 

interglacial, Marine Isotope Stage 11 (MIS11, 423ka – 380ka) is of special interest in light of 

its orbital configuration, which is similar to the Holocene or MIS 1 (~13ka – present).  Thus 

MIS 11 can help evaluate (i) the future natural behaviour of MIS 1 and (ii) the response of 

the surface ocean and terrestrial climate to warmer temperatures during MIS 1. 

In this thesis, assemblages of fossilised marine algae (dinoflagellate cysts, or dinocysts) and 

spores and pollen from terrestrial plants, collected from marine cores, have been used to 

document the response of the surface ocean and terrestrial climate in the New Zealand 

region to MIS11.  This work is underpinned by studies on the modern distribution of 

dinocysts which enhance their use as a palaeoenvironmental proxy in the southwest Pacific, 

in particular the development of quantitative models for sea surface temperature using 

dinocyst assemblages.  

There are three aims of this thesis: 

• To better understand the distribution of modern dinocysts in the SW Pacific and the 

environmental factors that control their distribution.  

• Develop models from the modern dinocyst data to quantify past climatic conditions 

with the focus on MIS 11. 

• Use these models in conjunction with pollen records both during MIS11 and other 

late Quaternary interglacials in order to compare sea surface and terrestrial signal, 

thus illustrating a range of past responses to warm environments in the New Zealand 

region 

Chapter 1 contains a brief outline of the setting, including a regional map and reference 

diagram of key global and regional Quaternary environmental records, along with an 

overview of each chapter and acknowledgement of unpublished data provided by 

collaborators.  
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1.1. MIS11 and the southwest Pacific 

MIS11 (423ka – 380ka) is the first interglacial for the fully developed quasi-100ky cycle 

following the climate reorganisation of the Mid-Pleistocene transition, prior to which a 

~40ky cycle dominated (Clark et al., 2006; Holden et al., 2011).  Unlike the shorter-duration 

MIS5e, MIS7 and MIS9 interglacials, ice core records covering MIS11 show a sustained 

(~30ka) period of Holocene-like climatic stability, with mean atmospheric CO2 being close to 

pre-industrial levels  (Siegenthaler et al., 2005).  The orbital configuration during MIS11 is 

similar to the Holocene (Loutre and Berger, 2003), although the Holocene contains one 

insolation peak so far, while the MIS 11 interglacial extends over two insolation peaks 

(Tzedakis, 2010; Rohling et al., 2010) (Figure 1.1).   

In addition to the prolonged duration of stable climate, and similarities to the Holocene 

orbital configuration, the sea level during MIS11 has attracted considerable attention in 

recent decades, with tropical marine terrace records suggesting sea level was up to 20m 

above present day levels (e.g. Siddall et al., 2007, Olson & Hearty, 2009).  This amount of sea 

level rise would require melting of the West Antarctic and Greenland Ice Sheets (Scherer, 

2003). This is not supported, however, by oxygen isotope studies (e.g. Rohling et al., 2010), 

or by ice-proximal Antarctic records (Naish et al., 2009), although a pollen record from the 

Labrador Sea contains high abundances of spruce pollen during MIS11 that is inferred to 

originate from an ice-free Greenland (de Vernal and Hillaire-Marcel, 2008).  Interestingly, 

MIS11 appears to not have been exceptionally warm at high southern latitudes (Hodell et 

al., 2000; Droxler et al., 2003), although the Dome C ice core record from Antarctica shows 

drill site air temperature was slightly higher than late Holocene levels (Masson-Delmotte et 

al., 2010). 

Published records of MIS11 in the New Zealand region of the SW Pacific are considered in 

more detail in later chapters, but mainly consist of SST estimates from foraminiferal 

assemblages (Wells and Okada, 1997; Weaver et al., 1998; Schaefer et al., 2005; Wilson et 

al., 2005; Crundwell et al., 2008; Hayward et al., 2008, 2012), estimates of dust flux into the 

Tasman Sea (Hesse, 1994) and a low resolution pollen record from distal marine core Ocean 

Drilling Project (ODP) Site 1123 (Mildenhall, 2003; Mildenhall et al., 2004).  The location of 

key paleoenvironmental records in the New Zealand region for MIS11, and other locations 

mentioned in this thesis, are shown in Figure 1.2.  
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1.2 Chapter summary 

There are seven chapters in this thesis.  Chapters 2 to 6 are designed to be distinct pieces of 

research, the results of which contribute to the aims of the thesis.  Most chapters are 

intended for publication, and the format reflects this.  As a consequence, the reader may 

encounter a degree of repetition, particularly in descriptions of methodology and regional 

setting.   

Chapters 2-4 develop a proxy for sea surface temperature (SST) and water masses in the SW 

Pacific using assemblages of dinoflagellate cysts from sea floor sediments, supported by 

observations from sediment traps.   

In Chapter 2, a dataset of modern sea floor dinocyst assemblages is collated, and variations 

in the assemblages are related to environmental gradients.  Modern sea floor assemblages 

from 120 sites in the SW Pacific are examined for dinocysts, and census counts from 40 of 
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these samples are combined with previously published counts to form a 311-sample 

Southern Hemisphere dataset (SH-311).  Cluster analysis of SH-311 and a 98-sample subset 

from the SW Pacific region (NZ-98), reveals distinct biogeographic assemblage zones, and 

taxa indicative of specific water masses are identified.  Ordination of the datasets indicates 

that assemblages vary most with changes in SST, with a lesser association with productivity.   

Contributed unpublished data include 
14

C ages of 48 samples from planktic foraminifera 

populations, which were picked by Helen Bostock at NIWA, Wellington, and analysed at the 

Rafter Laboratory, GNS Science, Lower Hutt, New Zealand.  The sea floor samples were 

collated by Giuseppe Cortese, GNS Science, with many coming from NIWA archives.  Details 

about which were provided by Helen Neil at NIWA.  This chapter is to be submitted to 

Marine Micropaleontology (title and authorship below). 

Chapter 3 reports the results of a study of dinocyst assemblages from two time-incremental 

sediment traps (3 years of data) moored north and south of the Subtropical Front, east of 

New Zealand (Locations “STM” and “SAM” shown in Figure 1.2).  This study provides 

observations of seasonal and inter-annual variability of dinocyst flux to the sea floor, which 

are used to identify possible biases in the sea floor assemblages and the possible processes 

causing the biases.  A large discrepancy between dinocyst flux and assemblages of nearby 

sea-floor sediments is observed.  Dinocysts known to be susceptible to degradation in 

oxygenated sediments are highly under-represented in the sea-floor assemblages.  More 

surprisingly, the flux of several cyst types that are relatively resistant to oxidation is over 30 

times more abundant in sea-floor sediments than would be expected from the three years 

of flux into the traps.  Various causes and implications of this discrepancy are explored.  The 

differences between the seasonality of dinocyst flux between the Subtropical and 

Subantarctic water masses, and the large interannual variability in the flux composition, 

suggest mean annual rather than seasonal climatologies are more appropriate for dinocyst-

based quantitative palaeoenvironmental reconstructions in the region.   

Samples used in this study were from a decade-long sediment trap experiment run by Scott 

Nodder at NIWA.  In addition to sample material, Scott provided unpublished data on mass 

flux, elemental analyses, and unprocessed data on sediment trap ‘tip’ and ocean current 

intensity.  This chapter is to be submitted to Marine Geology. 
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Chapter 4 contains a systematic analysis of the strengths and weakness of using dinocyst 

assemblages as a proxy for SST in the SW Pacific.  The chapter includes consideration of the 

effects of dinoflagellate ecology, lifecycle, transport, and preservation on the dinocyst 

sedimentary record.  Biasing effects in data collection and spatial correlation in the training 

set, and the implication of conflicting environmental gradients on the performance of 

dinocyst-based transfer functions are also considered.  The performance of four transfer 

function models is explored: weighted averaging, weighted averaging with the addition of 

partial least squares, the modern analogue technique, and an artificial neural network 

(ANN) model.  Under a “leave-one-out” cross validation routine, the ANN model performed 

best for the SW Pacific dataset, with a root mean square error (RMSE) of 1.14˚C.  The best 

performance achieved for the Southern Hemisphere dataset was a RMSE of 1.47˚C, also for 

the ANN model.  These errors are similar to those achieved using foraminifera-based 

training sets in the SW Pacific, which is the other microfossil group commonly used for 

quantitative faunal SST estimates in the region.  The key advantage of this detailed analysis 

of errors is a robust identification of situations where accuracy of estimates are likely to vary 

from the range observed in modern validation routines. 

Chapters 5 and 6 explore the oceanographic and terrestrial response to interglacial MIS11 in 

the New Zealand region. 

In Chapter 5, the development of MIS11 in the east Tasman Sea is documented (Figure 1.2).  

Dinocyst assemblages from three giant piston cores, confirm that SST in the east Tasman 

Sea was ~2-3˚C warmer than present during late MIS11 (415-400ka), while SSTs fluctuated 

slightly below modern levels during the earlier part of MIS11 (428-415ka).  Although 

dinocysts vary most with SST at a hemispheric scale, aspects of the assemblage are 

particularly sensitive to productivity.  A semi quantitative dinocyst-based productivity index, 

along with productivity indicators from published foraminiferal records, suggest that the 

elevated SSTs during MIS11 were accompanied by lower rates of primary productivity than 

present.  Both proxies suggest productivity was highest during glacial periods, while the 

productivity during the peak of MIS11 was likely lower than the present.  These glacial-

interglacial variations in productivity are inferred to arise from migrations of the STF, 

overprinted by the influence of terrestrially derived nutrients from the adjacent New 

Zealand landmass.  Furthermore, during the time period covered by this study, a strong 
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correlation is documented between a long (1Mya) published SST record from the study area 

and the foraminifera-based proxy for productivity.  This correlation is strongest during the 

MIS12-11 deglacial transition, and remains strong until the MIS9-8 transition, ~300ka.  

Between ~300ka and the present, the correlation between the two records is weak.  This 

step-change in correlation between SST and productivity may be due to one or more of the 

following: (i) an artefact of the prolonged MIS12-11 deglaciation, (ii) increased variability in 

the input of locally terrestrially- derived nutrients into the study area after ~300ka, or (iii) 

the onset of iron fertilisation by Australian-derived dust after MIS9.  Notwithstanding the 

cause of the shift in strength of correlation, the observation has implications for 

interpretation of faunal proxies used to infer MIS11 environments in the east Tasman Sea.   

The unpublished isotopic analyses in this study for both the age models and the mixing 

indices, and the age models themselves, were provided by Helen Bostock and Helen Neil at 

NIWA, Wellington.   

Chapter 6 introduces a second MIS11 dinocyst record from the New Zealand region, from 

Deep Sea Drilling Project (DSDP) Site 594, off the eastern South Island (Figure 1.2).  In 

addition to dinocysts, spores and pollen were counted at this site, which record changes in 

eastern South Island vegetation during MIS11.  These new data allow comparison of 

dinocyst records either side of the South Island of New Zealand, and also allow comparison 

with published dinocyst and pollen records from younger sediments at DSDP594.  As in the 

east Tasman Sea, two distinct phases of MIS11 are recognised at DSDP 594 in the dinocyst 

and pollen assemblages.  The dinocyst assemblages at DSDP594 of the early phase of MIS11 

are most similar to those observed at the site during MIS5e, while the assemblages of late 

MIS11 are similar to, but qualitatively represent warmer waters than, MIS1.  Estimates from 

the dinocyst-based transfer functions indicate SSTs during late MIS11 were likely warmer 

than the present at DSDP 594, but they do not appear to have been as warm as during 

MIS5e.  The succession of pollen assemblages during MIS12-11 is very similar to that 

observed in MIS2-1 and MIS6-5, but differs in two critical respects: (i) the deglacial 

succession was much slower than younger transitions, with a two-step expansion of 

Podocarpus/Prumnopitys conifer hardwood forest, and (ii) the maximum abundance of 

Podocarpus/Prumnopitys pollen, from ~420ka, was of a similar relative abundance to that 

observed at the site during the early Holocene climatic optimum.  These high abundances of 
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Podocarpus/Prumnopitys pollen persisted for ~15ky, more than twice as long as during 

MIS5e and MIS1.  Changes in the pollen record at DSDP 594 correlate more closely to SST 

variation in the east Tasman Sea during MIS11, than to variations in marine conditions at 

DSDP 594, both in terms of timing, and reflection of the magnitude of warmth, as the latter 

was stronger to the west than east of the South Island during MIS11.  This suggests that 

marine conditions from the east coast had only limited influence on conditions on the 

adjacent landmass during MIS11.   

The concluding Chapter 7 reviews and discusses the achievements and conclusions of this 

thesis, and identifies areas that would benefit from further research. 

1.3 Papers from this thesis for submission to peer-reviewed journals: 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Neil, H., submit July 2012. Environmental 

implications of dinoflagellate cysts in modern sea floor sediments from the SW Pacific and 

Southern Hemisphere.  From Chapter 2, for submission to Marine Micropalentology 

Prebble, J.G., Crouch, E.C, Nodder, S., Carter, L., Cortese, G., submit July 2012. Holocene and 

modern dinoflagellate cyst flux in subtropical and subantarctic waters, SW Pacific Ocean.  

From Chapter 3, for submission to Marine Geology 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Neil, H. In preparation. Marine productivity 

during warm MIS11, east Tasman Sea, SW Pacific.  From Chapter 5.  

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G. In preparation Marine-terrestrial climate 

during MIS11, South Island, New Zealand.  From Chapter 6. 

1.4. Conference presentations from this thesis: 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Neil, H. Marine response to warm MIS11, 

east Tasman Sea, New Zealand. To be presented at IPC, Tokyo, August 2012 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Neil, H. Reduction in coastal marine 

productivity during warm MIS11, offshore West Coast, New Zealand.  To be presented at 

IGC, Brisbane, August 2012 
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Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Neil, H. A Marine Isotope Stage 11 

environments using dinoflagellate cysts. GSNZ annual conference, November 2011, Nelson 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G., Warm Quaternary interglacials: dinocysts 

and pollen from Site U1352, IODP Exp 317 Post Cruise Meeting, November 2012, Oamaru 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G. A Dinoflagellate cyst temperature transfer 

function for the Southwest Pacific Ocean and Southern Hemisphere, Dino9 Conference, 

August 2011, Liverpool. 

Prebble, J.G., Crouch, E.C, Carter, L., Cortese, G. Extending the Late Holocene dinoflagellate 

Cyst reference dataset for the New Zealand region.  GSNZ annual conference, November 

2010, Auckland. 
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2. Sea floor dinoflagellate cysts from the Southwest Pacific and 

Southern Hemisphere  

Abstract 

Dinoflagellate cyst (dinocyst) assemblages are examined in 120 sea floor sediment 

samples from the SW Pacific and Tasman Sea to build up a picture of dinocyst 

distribution in the region.  From these, census counts of 40 samples are added to 

previously published census data from the Southern Hemisphere to form a modern 

dataset of 311 samples.   

Cluster analysis (k-means clustering) of a 98 SW Pacific subset reveals four distinct 

assemblages, whose distribution coincides with known oceanographic boundaries and 

water masses with distinct assemblages identified within: Subantarctic surface water, 

the Subtropical Front and Subtropical surface water.  A similar clustering exercise of the 

311 sample Southern Hemisphere dataset reveals an additional three assemblages, two 

associated with Polar waters colder than those sampled in the SW Pacific, and one that 

may be endemic in the Southern Hemisphere to the South Atlantic.   

Multivariate ordination (canonical correspondence analysis and redundancy analysis) 

indicates that the dinocyst assemblages change most along a sea surface temperature 

(SST) gradient, in both the Southern Hemisphere and regional SW Pacific datasets. SST 

accounts for 38% to 56% of the species-environmental relationship after removal of 

covarying variables, and contributes 2-3 times the explainable inertia than any of the 

secondary environmental variables tested. 

The modern dataset is suitable for use as a training set for quantitative 

paleotemperature transfer functions applied to the Late Quaternary records in the New 

Zealand region, with the caveat that the modern assemblage also displays considerable 
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sensitivity to productivity, shoreline proximity, and water mass; sensitivity that may be 

exploited in certain situations. 

2.1. Introduction 

Dinoflagellates are unicellular planktonic protists (Fensome et al., 1996). A small 

proportion of dinoflagellate species (about 10-20%) produce an organic-walled cyst that 

may be preserved in the fossil record (Dale, 1996).  More detail on dinoflagellate 

ecology is presented in Chapters 3 and 4. 

The composition of dinoflagellate cyst (dinocyst) assemblages in modern sediments has 

been shown to vary along various environmental gradients.  Statistical ordination 

techniques applied to a global dataset of modern sea floor samples indicate that 

changes in relative composition of cyst assemblages are most pronounced along 

gradients of SST, phosphate, and nitrate concentrations (Marret and Zonneveld, 2003).  

The empirical relationships observed in modern sediments have been used to interpret 

Quaternary paleoenviromental conditions using fossil assemblages.  These include semi-

quantitative approaches (e.g., Esper at al., 2004; Verleye and Louwye, 2010a) or 

mathematical transfer functions that quantify environmental parameters such as SST, 

salinity, sea ice cover or productivity (e.g., Peyron and de Vernal, 2001; Marret et al., 

2008; Bonnet et al., 2010).   

Exploration of regional datasets reveals significant local exceptions to these global, 

latitudinal trends.  The most common exception is faunal change in response to changes 

in primary productivity (Radi and de Vernal, 2004, 2008; Marret et al., 2008; Pospelova 

et al., 2008; Verleye and Louwye, 2010), and significant variability in dinocyst 

assemblages has also been identified along gradients of sea-ice cover and salinity 

(Rochon et al., 1999; de Vernal et al., 2001; Radi et al., 2001; Bonnet et al., 2012).  The 

reports of regional variations at odds with global trends, combined with a degree of 

endemism in modern distributions apparently uncorrelated to major environmental 
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gradients (Marret and Zonneveld, 2003; Verleye et al., 2011), strongly suggest that 

regional studies of modern dinocyst distributions are necessary prior to attempting 

paleo-reconstructions from that region.   

In the SW Pacific, the basis for a regional modern dinocyst dataset suitable for faunal 

transfer functions already exists (Marret and de Vernal, 1997; Marret et al., 2001; 

Crouch et al., 2010), building on earlier work documenting the diversity of assemblages 

in this region (McMinn, 1990, 1992; Sun and McMinn, 1994).  Further, the utility of fossil 

dinocysts for quantitative reconstruction of Late Quaternary sea surface conditions has 

been demonstrated in the region, where dinocyst assemblages from sediment core 

samples from 125 ka to present at Deep Sea Drilling Project (DSDP) Site 594 were used 

to infer SST and salinity (Marret et al., 2001).  That reconstruction of SST (and salinity, 

which largely covaries with SST in the waters around DSDP 594) is largely supported by 

the results of an ordination of 38 sea floor samples from the east of New Zealand 

(Crouch et al., 2010), which found  SST correlated strongly to assemblage changes.  

However, assemblage variation was also correlated with autumn chlorophyll-a 

concentrations, particularly in the vicinity of the Subtropical Front, a zone of regionally 

elevated primary productivity.       

In this chapter, we present new dinocyst census counts of 40 sea floor sediment 

samples from the SW Pacific (15˚S – 68˚S, 145˚E – 170˚W), along with additional counts 

from 80 samples of lower dinocyst density.  Areas previously unsampled for dinocyst 

assemblages are examined, including the east and central Tasman Sea and the New 

Zealand sector of the Southern Ocean, and the sampling density in waters to the east of 

New Zealand is also increased.  These data are combined with published dinocyst census 

data from the SW Pacific region to form a regional data base of 98 samples (NZ-98), and 

a Southern Hemisphere dataset of 311 samples (SH-311).  We document the extent to 

which cyst assemblages in the regional and hemispheric datasets respond to known 

environmental variables, including SST and productivity.  The reason for exploring a 

regional subset of the Hemispheric dataset are to confirm that the broader trends 
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observed in the Southern Hemisphere apply to the SW Pacific, and to determine the 

relative merits of regional versus larger training sets for palaeo-environmental 

reconstructions. 

2.2. Modern Oceanography, SW Pacific 

The study area covers almost 60˚ of latitude, from the tropics to Southern Ocean waters 

surrounding Antarctica, and extends from the east Australian margin to the eastern 

edge of the submerged continental platform of New Zealand (Figure 2.1).   

A major oceanographic feature of the region is the Subtropical Front (STF). Not only 

does this feature separate Subtropical from Subantarctic surface water masses, but it 

also forms the boundary between two contrasting circulation systems.  

North of the STF is the counter-clockwise South Pacific Gyre, whose path is controlled by 

the Australian and New Zealand continents as well as regional winds (Heath, 1985; 

Roemmich, 2007; Roemmich et al., 2007). The northernmost part of this gyral flow is a 

wide band of the westward flowing waters between the equator and about 30˚S, with 

flows concentrated into several jets (Kessler and Gourdeau, 2007), some of which feeds 

the southward-flowing East Australian Current (EAC) (Ridgway and Dunn, 2003).  Part of 

the EAC is deflected east across the Tasman Sea, where it forms the diffuse Tasman 

Front zone around 30˚S (Chiswell et al., 1997; Ridgway and Dunn, 2003), while the 

remainder of the EAC continues south as far as Tasmania (Ridgway, 2007).  After 

crossing the northern Tasman Sea, this western limb of the gyral circulation continues 

down the eastern continental margin of the North Island, New Zealand, as the East 

Auckland and East Cape currents (Stanton et al., 1997; Tilburg et al., 2001).  At ~44˚S, it 

is deflected eastwards along the northern flank of Chatham Rise, which forms a local 

bathymetric guide for the STF situated along the east-west rise crest (Chiswell, 1994; 

Uddstrom and Oien, 1999).  

South of the STF, the circulation is dominated by the eastward flowing Antarctic 

Circumpolar Current (ACC) (Carter et al., 1998; Morris et al., 2001; Sokolov and Rintoul, 
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2009).  As the flow approaches New Zealand, the dominant frontal systems that form 

the northern part of the ACC, namely the Subantarctic (SAF) and Polar (PF) fronts are 

forced to return north by the western boundary of the Campbell Plateau to around 50˚S 

before returning eastward. Part of the SAF flow passes northwestward though a gap in 

the plateau to contribute to the clockwise Bounty Gyre, part of which flows along the 

southern flank of the Chatham Rise.  

2.3. Data collection and compilation of dataset 

2.3.1. Modern samples   

One hundred-twenty sea floor sediment samples from the SW Pacific (15˚S - 68˚S, 145˚E 

- 170˚W) have been analysed for dinocysts (Figure 2.1; Table 2.1). Sample collection 

devices include piston corers (topmost sample), multicorers (top 20mm), box corers, 

and grabs. 

Radiocarbon ages were obtained for 48 of the samples examined.  Between 100-200 

individual mixed planktic foraminifera (Globigerina bulloides and Globigerina inflata) 

were picked for each sample, equivalent to 5-10 mg of CaCO3. Of these, nine samples 

had a 
14

C age greater than 7ky and were not included in the dinocyst dataset (although 

all samples with pre-Holocene 
14

C ages also had very low concentrations of dinocysts). 

This cutoff age was selected as local SST records varied less than 2˚C during the last 7ka 

(Pahnke et al., 2003; Pahnke and Sachs, 2006;  

Barrows et al., 2007; Sikes et al., 2009; Haywood et al., 2008; 2012). The distribution of 

ages (Figure 2.1B) shows that samples from the New Zealand continental shelf, and 

most from the Tasman Sea, had radiocarbon ages younger than 4000 years.  Pre-

Holocene 14C ages were most common in polar and tropical waters, in water depths 

>2500m.  There is a particularly strong gradient of increasing sea floor age across the 

Subantarctic Front.  Although the ~1200-year 
14

C age of surface waters in high latitudes 

of the Southern Ocean contributes to this gradient (Sikes et al., 2000; Hall et al., 2010), 

the assemblages from these high latitude sea floor samples may represent an  
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accumulation period covering deglacial to modern times.  There are consistently old 

(>10,000 year) 
14

C ages from samples in the Fiji Basin, between Norfolk Island, New 

Caledonia and Tonga.  

Samples were processed for dinocyst examination as described in Crouch et al. (2010).  

Cold 10% HCl was added to the dried sample to remove carbonates, followed by 24 

hours in cold 52% HF and a second 10% HCl wash. A Lycopodium tablet was added to 

obtain absolute abundance counts (batch number 938934) (Mertens et al., 2009, 2012). 

Samples were placed in an ultrasonic bath for up to a minute, sieved through a 6 μm 

mesh to remove small particulate material, then mounted on glass slides in glycerine 

jelly. All slides and residues are held at GNS Science. 

All counts were completed on a Leica binocular light microscope at 500x magnification.  

For each sample, at least one entire slide was examined, and subsequent slides were 

examined where fewer than 200 specimens had been identified and reasonable 

additional effort would surpass this target.  Taxonomy followed Rochon et al. (1999), 

Marret and Zonneveld (2003), and Zonneveld (1997), and references therein, with 

identification to species level where possible.  Broken cysts were counted per 0.25 of a 

specimen.  Count data are in Supplementary Material S2.1. 
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2.3.2. Compilation of dinocyst dataset 

Dinocyst quantitative data from other sources have been combined with the census 

counts completed here, to collate a Southern Hemisphere dataset (SH-311) and a SW 

Pacific/ New Zealand region subset (NZ-98). Census data from 311 published samples 

have been collated. Location maps of each dataset are shown in Figures 2.2 and 2.3. 

Summary details of each dataset are shown in Table 2.2, while sample details, including 

environmental variables assigned to each sample, are provided in Supplementary 

Material S2.2 and S2.3. 

Compiled samples are mainly from the Atlantic and SW Pacific, and are from the 

following sources:   

(i) Atlantic sector: 153 samples (Marret and de Vernal, 1997; Harland et al., 1998;  

Vink et al., 2000, Zonneveld et al., 2001;  Holzwarth et al., 2007; Esper and 

Zonneveld, 2002; 2007; Laurijssen and Zonneveld, unpublished),  

(ii) Southern Indian Ocean: 6 samples (Marret and de Vernal, 1997),  

(iii)  New Zealand/ south of Australia: 98 samples (Marret and deVernal, 1997,  Esper 

and Zonneveld, 2007; Marret et al., 2001; Crouch et al., 2010, this study), 

(iv)  Central Pacific: 7 samples (Esper and Zonneveld, 2007), and  

(v) Eastern Pacific: 48 samples (Verleye and Louwye, 2010b). 

Taxonomic groupings followed Marret and Zonneveld (2003), to allow easy integration 

of these data. Brigantedinium cariacoense, B. simplex, and Dubrudium capitatum were 

grouped into Brigantedinium spp.; Lejeunecysta spp., cysts of Protoperidinium stellatum, 

Quinquecuspis concreta, and Votadinium calvum were assigned to Protoperidiniacean 

cysts; all Nematosphaeropsis were assigned to N. labyrinthus; Spiniferites hyperacanthus 

was combined with S. mirabilis; S. bulloideus was combined with S. ramosus; S. belerius 

was combined with S. membranaceus, and cysts of Protoperidinium nudum were 

assigned to Selenopemphix quanta.  
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Rare specimens of Selenopemphix sp. 1 (Esper and Zonneveld, 2007) were combined 

with Selenopemphix antarctica. All Echnidinium were grouped.  

Undifferentiated Impagidinium and Spiniferites specimens were removed from the 

initial counts and the relative abundance of the remainder recalculated.  Very rare 

species (less than two specimens in less than two samples) were removed.  Only 

samples with >200 specimens were included in the dataset, except for high latitude sites 

with a mean annual SST of < 8˚C, where this limitation was relaxed and a minimum 
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count size of 100 specimens was allowed.  In a global compilation of 460 sea floor 

dinocyst census counts (with count sum >300) mean diversity for samples with a SST of 

< 10˚C is almost half the mean diversity of samples from warmer waters (Figure 2.4).  In 

addition to Southern Hemisphere references mentioned above, data from Rochon et al.  

(1999), de Vernal et al. (2001), Pospelova et al. (2008), Limoges et al. (2010), and 

Holzwarth et al. (2010) are included in this compilation for a global comparison.  The 

reduced count size for southern high-latitude samples allows incorporation of cold 

samples into the dataset with a minimal reduction in predictive power (Traverse, 2007).   
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2.3.3. Modern environmental data 

SST, salinity, nitrate, phosphate and silica were obtained from the 1˚ resolution World 

Ocean Atlas 2009 (Locarnini et al., 2010; Garcia et al., 2010a; Antonov et al., 2010), and 

extracted using the interpolation algorithm available in Ocean Data View (Schlitzer, 

2011).  Phytoplankton tows in the New Zealand region have shown dinoflagellates to be 

present throughout the euphotic zone, the base of which varies spatially and seasonally 

between 15m and 75m (Chang and Gall, 1998).  At each sample location, the following 

variables were extracted for 0m and 50m water depths: mean annual SST, mean austral 

seasonal SST, seasonal range (mean SST during the warmest season minus mean 

temperature during the coldest season), and mean annual nitrate and phosphate. In 

addition, the average depth for the base of the mixed layer, and oxygen concentration 

at the sea floor were extracted (Monterey and Levitus, 1997; Garcia et al., 2010b). 

Satellite-derived monthly productivity data at 1/6˚ resolution were also extracted for 

each sample (Behrenfeld and Falkowski, 1997). The productivity algorithm uses ocean 

colour and temperature observations from MODIS satellite to calculate average monthly 

productivity in mgC.m
2
.d

-1
.  For each sample location, the mean annual, mean seasonal, 
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and maximum monthly productivity were calculated using January 2006 – December 

2009 data, during which time the average monthly ENSO index was close to 0 (-0.077) 

(NOAA, 2011). While the reliability of satellite-derived ocean colour and productivity 

estimates is constantly improving, caution is required with such products.  For example, 

to the south of the SH-311 dataset region, in the Ross Sea, observation of high ocean 

colour-derived chlorophyll result in muted estimates of productivity (Figure 2.1D, E), 

while studies of that region have identified the need for productivity algorithms specific 

to the Ross Sea (e.g., Barbini et al., 2005; Fiorani et al., 2007).  Around New Zealand 

waters, there is generally a better agreement between the ocean colour and 

productivity estimates, where the SEAWIFS ocean colour algorithm performed well in 

New Zealand waters for chlorophyll-a concentrations <0.6 mgm
-3

, but overestimated 

productivity by a factor of two or more at higher concentrations (Murphy et al., 2001).  

A recent review of the skill of 21 productivity algorithms found that of Behrenfeld and 

Falkowski, (1997) had the lowest error rate, but cautioned against over-reliance of 

ocean colour measurements in coastal waters (Saba et al., 2011). 

The environmental variables were subjected to various transformations (square root, 

cube root, fourth root, squaring, cubing, and log10), with the transformation result 

closest to a normal distribution retained for gradient analysis (Brooks et al., 2001; 

Dieffenbacher-Krall et al., 2007). No transformation was required for SST, but the 

marked negative skew in the nitrate and phosphate distribution curve were brought 

significantly closer to normal using a log10 transformation, while a similar distribution of 

productivity data was most improved by using a cubed root. A marked bimodality 

observed in the SH-311 salinity data was reduced, but not completely removed, with a 

log10 transformation. The transformations explored did not reduce skew in the 

distribution for the variables distance from shore, water depth, and temperature range. 

2.3.4. Classification  

Classification allows spatial relationships of the entire dinocyst assemblage to be 

visualized more easily than inspection of the distribution of individual taxa. It also allows 
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examination of relationships independent of environmental gradients, which are 

explored later by ordination.   

Two classification approaches are available: (i) hierarchical classification, which 

produces a dendrogram output with decreasing similarity as one moves up the tree; and 

(ii) flat (non-hierarchical) clustering, where the assemblages are assigned to a 

predefined number of groups. We applied a k-Means (non-hierarchical) clustering 

algorithm to the NZ-98 and SH-311 datasets, using the PAST software (Hammer et al., 

2001; Bow, 1984). Hierarchical methods were also explored for the NZ-98 dataset, and 

resulted in similar groups (Ward’s method and UPGMA, Unweighted Pair Group Method 

with Arithmetic Mean, with Euclidean and Bray-Curtis distance measures), but we found 

the more primitive non-hierarchical method, with the addition of multiple runs to 

explore sample instability, more informative and easier to manipulate than hierarchical 

methods as the datasets became large (Shaw, 2003).  In k-Means clustering, the initial 

cluster assignments are random, and samples are moved iteratively to the cluster, which 

has the closest cluster mean until the solution stabilizes.  The solution varies due to the 

initial random order, so the stability of samples within clusters was investigated by fifty 

clustering run replications.  Where a sample was assigned to the same cluster for 80% of 

the 50 clustering model runs, the allocation of that sample to a given cluster was judged 

to be ‘stable’.   

2.3.5. Ordination 

Environmental gradients that correlate strongly with faunal distribution may be 

appropriate targets for reconstruction using transfer function inference models.  We 

used ordination methods on both the SH-311 and NZ-98 datasets to determine which of 

the available environmental variables correlated most strongly to dinocyst distribution.  

The analysis was completed using CANOCO version 4.53 (ter Braak and Smilauer, 2002). 

Two complementary treatments were explored to identify the environmental variables 

that correlated to change in faunal assemblage: Canonical Correspondence Analysis 

(CCA)/ Redundancy Analysis (RDA) with automatic forward selection (Marret and 
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Zonneveld, 2003; Pospelova et al., 2008; Verleye and Louwye, 2010b) and CCA/RDA with 

manual identification and removal of covarying environmental variables prior to forward 

selection (Brooks et al., 2001; Dieffenbacher-Krall et al., 2007). Details of the steps for 

each approach are contained in Appendix 2.1, and results of the manual forward 

selection process are described here.  We concluded that both treatments produced 

essentially the same result when considering the contribution of individual 

environmental variables to total inertia, because the removal of variables following 

manual forward selection has the effect of reducing the total explainable inertia without 

altering the contribution of the variables that remain.  However, the two treatments 

produced a different result in the balance of eigenvalues between the ordination axes.  

Manual removal of covarying environmental variables had the effect of assigning a 

greater proportion of the total explainable inertia to the first axis, apparently because 

many of the covarying variables were aligned more closely to subsequent axes.  This 

effect was most pronounced in the NZ-98 dataset, where 43% of the species-

environmental variance was explained by the first axis when all environmental variables 

were included, but 59% was explained by the first axis when covarying variables were 

excluded.  In contrast, this effect was subdued in the SH-311 dataset, where the 

proportion of the species - environmental relationship explained by the first axis rose 

from 27% to 38% with the removal of covarying variables. 

2.4. Results and Discussion 

2.4.1 Spatial distribution of dinocyst assemblages 

The abundance of dinocyst assemblages varied markedly with latitude and proximity to 

land (Figure 2.5).  High (south of 55˚S) and low (north of 35˚S) latitudes, and the central 

Tasman Sea, had particularly low abundances.  Illustrations of common taxa are 

included in Figures 2.6-2.8. 

Of the 120 samples examined, >200 specimens were counted in 40 samples, with a 

latitudinal range of 30˚S – 55˚S (Figures 2.1-2.2).  Their average cyst concentration was 
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1640 cysts g
-1

 dry weight, with a maximum concentration of 6200 cysts g
-1

 from a 

sample north of Tasmania in Bass Strait.  This range of abundance is similar to previous 

dinocyst studies in the region (Crouch et al., 2010).  The high proportion of nearly barren 

samples in this study reflects the large number of samples speculatively processed from 

polar, equatorial, and deep oceanic settings far from land, both to examine regions not 

previously studied, and to extend the environmental range for the dataset compiled 

here.  The decrease in abundance in oceanic settings is particularly noticeable around 

New Zealand, where adequate census counts were recorded across the large areas of 

the submarine plateau and rises but many samples from the abyssal zone were virtually 

barren.  Higher abundances were generally observed in waters off the west coast of 

New Zealand than those from the east coast of South Island, New Zealand, possibly 

reflecting higher current action on the east coast shelf compared to the relatively 

quiescent east Tasman Sea.  Such a difference may also reflect higher production of 

dinoflagellates at localised upwelling hotspots such as submarine canyon heads and 

Kahurangi Shoals (Chang and Bradford, 1985; Heath and Gilmour, 1987; Chang et al., 

1995; Bradford-Grieve et al., 1996) and their subsequent settling in relatively quiet 

water settings beyond the continental shelf, in contrast to the eastern South Island 

where productivity in the largely Subantarctic waters is less (e.g. Murphy et al., 2001) 

and deposition on the continental slope is likely impeded by the rapid flow associated 

with the local STF (Chiswell, 1996; Sutton, 2003). 
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Thirty-four dinocyst taxa were identified in the samples, with the maximum diversity in a 

single sample being 18 taxa, from a sample within STF waters west of Stewart Island, 

New Zealand.   

While few dinocysts were observed in the tropical samples, those assemblages were 

characterized by Impagidinium aculeatum, Impagidinium variaseptum, Impagidinium 

paradoxum, and Impagidinium strilatum in proportions that suggested assemblages 

different from those of the Tasman Sea.  Likewise, dinocysts were too sparse in the high 

latitude samples for census counts, but Impagidinium pallidum, Selenopemphix 

antarctica, Brigantedinium spp. and Nematosphaeropsis labyrinthus were the main 

components of these sparse assemblages. 

Within the New Zealand regional (NZ-98) dataset, many taxa show clear trends related 

to the significant features of the surface ocean. The quantative trends are described 

below, and their relationship to the position of the STF are summarised in Table 2.3.  For 

this table, and Figures 2.9-2.13, the position of the STF and SAF is described by a single  
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line, as estimated by Orsi and Harris (2001; 2008).  Such an estimate is more appropriate 

in places where the SST gradient across the front is relatively steep and thus the position 

of the front is well defined (such as over the Chatham Rise, Chiswell, 1994; 2001), rather 

than other sectors where the front is more diffuse and variable, such as in the south 

Tasman Sea (e.g. Hamilton, 2006).  However, even in places where the STF is well 

defined, such a line fails to adequately describe the broader area of the ocean 

influenced by mixing across the front (e.g. Figure 2.1D-E).  It is essentially this broader 

zone of frontal influence that is captured by the middle column (“In STF and north”) of 

Table 2.3.  
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Three taxa, Selenopemphix antarctica, Dalella chathamensis, and Impagidinium pallidum 

are largely restricted to SAW south of the STF (Figure 2.9-2.10).  I. pallidum is present in  

all but one of the SAW samples, but distribution of S. antarctica and D. chathamensis is 

more sporadic: each of these latter species are present in about half of the samples 

beneath SAW.  Nematosphaeropsis  labyrinthus is recorded north and south of the STF 

and is present in almost all samples, but is most abundant in samples south of the STF 

(>40% relative abundance). 

The peridinoid cyst Brigantedinium spp. is also found in most samples in the region, 

although it was absent from some samples in the east Tasman Sea, and deep ocean 

samples east of New Zealand (Figure 2.10)
1
.  The highest relative abundances (>50%) 

were observed in samples to the east of New Zealand, from the eastern South Island 

shelf samples and from the Chatham Rise (Figure 2.1), both of which are beneath the 

STF.  In comparison, the peridinoid taxa Selenopemphix quanta is found in relatively few 

samples, although the highest abundances were observed in the same settings as for 

Brigantedinium spp.  S. quanta is virtually absent from the east Tasman Sea, and low 

concentrations were observed in only three samples south of the STF.  Two other 

frequently occurring peridinoid cysts, S. nephroides and Echnidinium spp., have very 

similar distributions to Brigantedinium spp. (Figures 2.10-2.11) and are present in 

approximately half of the samples processed east of New Zealand in STW and the STF, 

although rarely in concentrations >5%.  They are very rare in SAW and beyond the 

western New Zealand shelf in the east Tasman Sea.  Although a few specimens of S. 

nephroides have been recorded in Bass Strait, they are also generally absent from the 

sea floor sediments around Tasmania.  

                                                      

1
 peridinoid describes a form of cyst tabulation frequently produced by heterotrophic dinoflagellates, 

formed by dinoflagellates assigned to Protoperidiniaceae.  The remaining cysts described here have a 

gonyaulacoid tabulation, and are produced by chloroplast-bearing dinoflagellates assigned to 

Gonyaulaceae.  More information on dinoflagellate nutrition is introduced in Section 4.2.1 
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A number of gonyaulacoid taxa are only found in samples within or north of the STF, or 

are found in greatest abundance in that setting.  Impagidinium aculeatum, Spiniferities 

ramosus and S. mirabilis are present in samples either side of the STF (Figures 2.11 and   

2.13), and I. aculeatum is even observed south of the SAF. However, the highest 

concentrations of all three taxa are observed in samples beneath the STF or STW, 

particularly (i) in the east Tasman Sea where I. aculeatum is common in off-shore 

samples and S. ramosus is common in more shore-proximal settings, and (ii) from the 

continental shelf east of the North Island of New Zealand.  I. paradoxum (Figure 2.13) 

has a similar distribution to I. aculeatum, but while it is slightly more common north of 

the STF, it infrequently forms >3% of the assemblage.  Impagidinium plicatum, 

Impagidinium strialatum, Operculodinium centrocarpum with short processes (SP), and 

O. jandaucheri are rare, but appear (with a few exceptions) to be restricted to STW.  

Impagidinium variaseptum is common in STW samples of the East Tasman Sea and 

around Tasmania (Figures 2.12-2.13). 

Variation in the relative abundance and distribution of two remaining common taxa, 

Operculodinium centrocarpum with long processes (LP) (Figure 2.11) and Pyxidinopsis 

reticulata (Figure 2.10) does not appear to correlate in an obvious way to water mass in 

the SW Pacific.  However, there is some tendency for higher abundances of the 

cosmopolitan O. centrocarpum LP in samples north of the STF (Figure 2.12, Table 2.3), 

while P. reticulata is more common in offshore/deeper sites around New Zealand, but is 

also present near to shore off the Australian Coast. 

The relative abundance of most of the common dinocyst taxa from the SW Pacific vary 

within the SST and productivity range observed for the rest of the Southern Hemisphere.  

The main exception is Spiniferities mirabilis: across the rest of the Southern Hemisphere, 

this taxa has only been observed north of 30˚S, in SST >15˚C (Figure 2.11), but in the SW 

Pacific, it is found beneath surface water of a mean annual SST of 8˚C.  Other minor 

outliers in the SW Pacific region compared to the rest of the Southern Hemisphere are 

high concentrations of O. centrocarpum LP in SST <15˚C, while I. pallidum is observed in 
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greater concentrations north of the STF in the SW Pacific than other parts of the 

Southern Hemisphere. 

2.4.2. Classification of dinocyst assemblages: SW Pacific 

Using k-means clustering, the NZ-98 dataset was explored for two, three, four, five and 

six cluster solutions.  Sample ‘1955Mar’, from SAW south of Tasmania, was removed as 

it had a destabilizing effect on the clustering and on the following ordination, probably 

due to its position as an environmental outlier (in water ~5˚C colder than the next 

warmest sample, and south of the SAF). The two, four, and five cluster solutions 

contained the highest proportion of stable samples, with 92%, 74% (Figure 2.14) and 

64%, respectively, of samples consistently assigned to specific clusters.  

 

The two-cluster solution displays a latitudinal division centered on the STF (Figure 

2.15C).  Although a large cluster in Subantarctic waters was a feature in the three-

cluster solution, relatively few of the samples north of the STF were consistently 

assigned to any cluster.  The four-cluster model contained clearly resolved 

biogeographic zones, the best correlation to surface ocean conditions, and is described 

in more detail below (Figure 2.15A). The five-cluster model had similar division to the 

four cluster, but a lower proportion of stable samples, while the six-cluster model was 

not able to divide the assemblage in a decisive manner, with a number of unstable 

samples (Figure 2.15C).   
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The four clusters are numbered 3 to 6, ordered by increasing median SST (colder 

Clusters 1 and 2, and a warmer Cluster 7 are identified during later clustering of the 

entire SH311 dataset, thus the confusing numbering system retains consistency 

throughout this chapter).   

Cluster 3 occurs primarily south of the STF, but extends slightly north of the STF in the 

region west of Tasmania.  Samples of Cluster 4 are generally within the STF or near to 

shore, and includes samples east of the South Island, along the Chatham Rise, as far 

north as 38˚S, and near-shore sites on the west coast of the South Island and in Bass 

Strait north of Tasmania.  The remaining two clusters (5 and 6) are restricted to 

Subtropical waters.  Cluster 5 has samples that are generally near to shore, from the 

northeast of the North Island, the West Coast of the South Island, and Bass Strait, while 

Cluster 6 has samples in the eastern Tasman Sea.   

There are distinctive features of the average assemblage within each cluster of the four-

cluster solution (Figure 2.16). 

Cluster 3 consists of 34 samples, 29 of which are stable in the four cluster model. The 

key feature of these samples is the high abundance of Nematosphaeropsis labyrinthus, 

and also the highest average abundances of Impagidinium pallidum and Pyxidinopsis 

reticulata (Figure 2.16).  Other noticeable, but non-unique, components are I. 

aculeatum, Operculodinium centrocarpum LP, and Brigantedinium spp.   

Cluster 4 consists of 22 samples, of which 19 were stable, and is dominated by 

Peridinioid taxa.  The key taxon is Brigantedinium spp., which is >30% in every sample, 

with an average abundance of 41% (Figure 2.16). Other characteristic taxa, are 

Selenopemphix quanta, S. nephroides, and Echnidinium spp., while I. aculeatum, O. 

centrocarpum LP, Spiniferites ramosus and N. labyrinthus are important components.   

Cluster 5 has 32 samples, with 18 stable. This cluster has the highest average 

abundances of O. centrocarpum LP, Spiniferites miribilis, and S. ramosus.  Approximately 
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40% of the samples contained O. centrocarpum SP.  The taxa Dalella chathamensis, I. 

strialatum and S. antarctica are near to absent from this cluster.   

Cluster 6 contains only 9 samples, of which 6 are stable, and is dominated by 

Impagidinium of all types, particularly I. aculeatum.  The virtual absence of 

representatives of the genera Brigantedinium and Selenopemphix are a feature of this 

cluster and, despite the abundance of other members of the genus, Impagidinium 

pallidum is absent.  N. labyrinthus is also common in these samples. 

The classification described here reflects previous observations of dinocyst distribution 

to the east of New Zealand.  As in the present classification, both Sun and McMinn 

(1994) and Crouch et al. (2010) identified the STF as a significant biogeographic 

boundary in the region.  Indeed, along the western Chatham Rise, the boundary of  
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cluster analysis-derived assemblages identified by Sun and McMinn (1994) mirrors the 

boundary between the Clusters 3 and 4 (Figure 2.15).  In the present study, we are able 

to extend the biogeographic boundaries beyond those identified by Sun and McMinn 

(1994).   

A number of geographic outliers are present when all samples, including the “unstable” 

samples (see Section 1.3.4 for explanation of this terminology) are considered in the 

four-cluster solution (Figure 2.15B).  Most of the outlying samples are south of the 

geographic area of their stable counterparts, a feature particularly apparent in the 

cluster associated with Subtropical coastal waters, Cluster 5.  The overlapping range of 

all the clusters are consistent with known mixing across ocean boundaries, particularly 

over the STF, which in the SW Pacific is frequently crossed by eddy migration north and 

south (Grieg and Gilmour, 1988; Shaw and Vennell, 2000; Chiswell, 2001; Sikes et al., 

2009).  The southward extent of samples with weak affinity to the Cluster 5, particularly 

along the Chatham Rise, but also south of the STF, may reflect southward transport of 

components of the assemblage by the East Cape Currents (Figure 2.1).  The presence of 

assemblages characteristic of the east Tasman Sea in samples from the east of the North 

Island may also be due to transport on ocean currents, as there is a mean eastwards 

flow from the Tasman Sea through Cook Strait (Carter et al., 1998), or may be a 

reflection of warm offshore sites to the east of New Zealand.  

The mean SST of samples from the four cluster groups are distinct, although the ranges 

overlap (Figure 2.17).  The cold tail in Cluster 5 may be due to the southerly transport of 

cysts in ocean currents discussed above.  There is considerable overlap of mean annual 

productivity between all four cluster groups, although the mean productivity of the 

more coastal Clusters 4 and 5 are higher than the two oceanic clusters.  The 

Impagidinium-dominated Cluster 6 from the east Tasman Sea is restricted to a narrow 

range of productivity, possibly a feature of the intolerance of Impagidinium to excessive 

nutrient levels (Dale, 1996). 
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The dinocyst clusters have similarities to the regional biogeographic distribution 

identified in other surface sediment microfaunal records, including radiolaria (Hollis and 

Neil, 2005), diatoms (Cochran and Neil, 2010), and foraminifera (Weaver et al., 1997, 

Crundwell et al., 2008; Hayward et al., 2008, 2012).  The largest assemblage changes in 

all three groups also occurred across the STF.  Both radiolaria and diatom studies  

recognise distinct assemblages broadly coinciding with dinocyst Cluster 4.  Furthermore, 

the radiolaria study of Hollis and Neil (2005) recognised a biogeographic boundary 

coinciding with the boundry between dinocyst Clusters 4 and 5 on the east coast of New 

Zealand.  Biogeographic variation within SAW was observed in both radiolaria (Hollis and 

Neil, 2005) and diatom (Cochran and Neil, 2010) assemblages, where no systematic 

change is observed in dinocyst assemblages.  The lower biogeographic variation of 

dinocyst assemblages in SAW compared to diatoms and radiolaria may be due to the 

reduced diversity of dinocyst assemblages with temperature observed in Figure 2.4, a 

characteristic shared by foraminifera, a group in which biogeographic variation in SAW is 

also relatively low (e.g. Crundwell et al., 2008).  

This study is the first to examine dinocyst assemblages from sea floor sediments in the 

eastern Tasman Sea.  Interestingly, a dinocyst assemblage distinct from others in the 

region was identified, dominated by Impagidinium aculeatum.  It is unlikely, however, 

that this assemblage is unique to the Tasman Sea in the SW Pacific, as oceanic 
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environments with similar temperature and nutrient conditions, for example to the east 

of the North Island that have not yet been sampled, and may contain similar 

assemblages (Figure 2.1). 

2.4.3. Classification of dinocyst assemblages: Southern Hemisphere 

The classification approach applied to the SW Pacific samples (NZ-98 dataset) was 

extended to the entire SH-311 dataset.  As in the SW Pacific dataset, a number of cluster 

solutions were trialled.  In this instance, the number of clusters were selected that best 

replicated the geographic divisions observed in the SW Pacific dataset.  Five-cluster and 

six-cluster solutions in the SH-311 dataset resulted in similar geographic divisions in the 

SW Pacific region as observed in the two-cluster and three-cluster solutions of the NZ-98 

dataset.  A seven-cluster solution of the SH-311 dataset reproduced the geographical 

divisions observed in the New Zealand region most coherently (Figures 2.18-2.19), 

although not exactly (compare Figure 2.15 to Figure 2.18).  Cluster solutions with higher 

numbers of divisions (>7) divided the existing four SW Pacific clusters, beginning with 

the splitting of Cluster 4 in the eight-cluster solution. 

All four of the cluster assemblages observed from the NZ-98 dataset are also 

represented in the east Pacific and Atlantic Oceans, which illustrates the cosmopolitan 

nature of sea floor dinocysts assemblages.  The three “new” clusters identified within 

the SH311 dataset are: 

Cluster 1:  A high latitude cluster of samples exclusively south of the SAF, dominated by 

S. antarctica (navy-blue samples in Figure 2.18 - 2.19).  Sample 1955_Mar, excluded 

from the previous SW Pacific clustering, is included in this group. 

Cluster 2:  A cluster of samples generally south of the STF, characterized by high relative 

abundances (>60%) of Brigantedinium spp. in all samples (dark blue samples in Figure 2. 

18 - 2.19).  Samples of this cluster are generally in the open ocean of the South Atlantic 

and East Pacific around the STF and SAF, also within and slightly south of, the regional  



Chapter 2 

47 

 

 

upwelling in the Chilean coast (Verleye and Louwye, 2010).  Three samples of this 

cluster are within the STF region to the east of New Zealand. 

Cluster 7: A cluster of continental shelf samples from mid-latitudes of the South Atlantic, 

characterized by high abundances of O. centrocarpum LP (>55%) (red samples in Figure 

2. 18 - 2.19). 

The SSTs of the three new clusters (1, 2, and 7) extend the range of the average SSTs of 

the four SW Pacific clusters (Figure 2.20).  Although Cluster 7 (red dots) is only 

represented by samples from the South Atlantic, the present sample coverage is 

insufficient to determine whether this is an assemblage type endemic to the South 

Atlantic.  However, this is a distinct possibility, as the coolest SST attributed to Cluster 7 

sample in the South Atlantic is 14˚C, which is cooler than the maximum SSTs (18-20˚C) 
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sampled in the western and eastern margins of the Pacific basin (Figure 2.18).  If 

“assemblage endemism” is indeed a feature of these South Atlantic assemblages, it may 

reduce the value of assembling a Southern Hemisphere dataset for quantitative 

reconstruction of SW Pacific paleo records.  The additional samples are retained pending 

further exploration of modern samples from low latitudes of the Indian and Pacific 

Oceans, although  such endemism may result in biases when cross-validating 

quantitative models due to spatial autocorrelation (Telford and Birks, 2005; 2009), 

considered in Chapter 4. 

As in the four-cluster solution for the NZ-98 dataset, the seven SH-311 dinocyst cluster 

groups cannot be separated on the basis of mean annual productivity (Figure 2.20), 

despite the larger mean annual productivity range within the SH-311 dataset.  Another 

way to explore the relationship of the dinocyst clusters and productivity is to compare 

them with objectively analysed chlorophyll-a based biomes (Hardman-Mountford et al., 

2008), where the global ocean is divided into seven biomes of increasing mean 

chlorophyll-a concentration.  One advantage of comparing the clusters to the 

chlorophyll-a biomes rather than mean annual productivity is the rigorous consideration 
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of temporal and spatial scale in the selection of the Hardman-Mountford et al., (2008) 

boundaries.  In contrast, the interpolation process of attributing “mean annual 

productivity” values to the samples of the SH-311 dataset from a relatively short time 

series may result in erroneous values (e.g. Winder and Cloern, 2010), particularly for 

areas with significant terrestrial influence (Cloern and Jassby, 2010).  Comparing the 

seven clusters with chlorophyll-a concentration reveals several interesting observations 

(Figure 2.21).  In the Impagidinium-dominated Cluster 6, no samples are present within 

the highest chlorophyll-a “Biome 7”, while in the low chlorophyll-a “Biome 2” only two 

clusters, those dominated by Impagidinium and N. labyrinthus, are represented 

(Clusters 3 and 6).  The cold S. antarctica-dominated Cluster 1 is the only cluster 

apparently restricted to higher chlorophyll-a settings, although the relatively low sample 

size (11 samples) may not fully represent the range of this group.  

Inspection of the SH-311 cluster and SST distributions (Figures 2.19-2.20) reveals one 

interval that may be under-sampled.  While the SST range of Cluster groups 2-7 overlap, 
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there is a ~5˚C gap between the 75
th

 percentile limits of Clusters 1 and 2.  This SST gap is 

highlighted by the discrete high concentrations of S. antarctica in Cluster 1 compared to 

the other clusters, and the highly skewed apparent distribution of S. antarctica along the 

SST gradient.  While this distribution may be “real”, additional samples in the 3-8˚C SST 

range may reveal an additional assemblage cluster that contains intermediate 

concentrations of S. antarctica, possibly accompanied by N. labyrinthus and 

Brigantedinium spp.   

The observations above are largely consistent with the biogeographic distributions 

recorded in the global compilation of Marret and Zonneveld (2003) (as the current study 

includes many of the same samples).  The main addition our study makes to their 

observations is the possibility that some dinocyst associations, specifically very high 

abundances of O. centrocarpum LP, may be unique in the Southern Hemisphere to the 

South Atlantic. 

2.4.4. Gradient analysis 

Gradient analysis found variance along the first ordination axis accounted for 38% of the 

species-environmental relationship after removal of covarying explanatory variables in 

the SH-311 dataset, and 56% in the NZ-98 dataset (Table 2.4, Figures 2.22-2.23, 

Appendix 2.2), and SST was the environmental variable that correlated most strongly to 

variation along the first axis.  The variation in dinocyst distribution that correlated to SST 

was 2-3 times greater than the variation along any of the secondary environmental 

variables.  

The eigenvalue length of the first axis of a correspondence analysis was 4.1 standard 

deviations (SD) for SH-311 and 2.3 SD for NZ-98, so subsequent ordination assuming a 

unimodal taxa distribution appeared appropriate for both datasets (ter Braak, 1994; 

Birks, 1995).  However, removal of environmental outlier ‘1955Mar’ (discussed in 

Section 2.4.2) shortened the environmental gradients and the total inertia of the first 

axis to only 1.94 SD, so a linear ordination method, redundancy analysis (RDA) was 

applied to the NZ-98 dataset (ter Braak, 1994).  CCA was also trialled on the reduced 
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NZ-98 dataset, and similar results to RDA were obtained, demonstrating a degree of 

resilience in the CCA to such reduced gradients. 

For the NZ-98 dataset, 56% of the species – environmental relationship was explained 

by the first axis (Table 2.4).  The samples of the first axis were distributed along a 

latitudinal gradient while the second axis was related to shoreline proximity and 

productivity (Figure 2.22).  Eighteen environmental variables were included in the initial 

RDA in addition to the seventeen available for the SH-311 (information on distance from 

shore was only available for NZ-98 dataset; all environmental values variables are in 

Supplementary data S2.2-S2.3).  Of these, eleven covariance relationships were 

identified (Appendix 2.2).  All of the SST measurements covaried, and SST also covaried 

with sea surface salinity, and had a negative correlation with sea surface phosphate and 

nitrate (Figure 2.23).  Mean annual productivity covaried with maximum monthly 

productivity (Figure 2.23).  The remaining ten environmental variables (with a 

correlation of <0.9) were summer SST, distance from shore, SST range, water depth, 

mean annual productivity and salinity, dissolved phosphate and nitrate at 50m water 

depth, depth to the mixed layer, and oxygen concentration at the sea floor.  A second 

RDA, constrained only by these ten variables, found that the five most significant 

variables contributed 89% of the explained variance (Table 2.4).  Summer SST 

contributed 53% to the explained variance, almost three times that of the next most 

significant variable, distance from shore. 

The distribution of dinocyst taxa along the first RDA axis confirms the earlier 

observations of ‘warm’ and ‘cool’ species in this chapter, and in previous compilations 

(e.g. Marret and Zonneveld, 2003).  The coldest three taxa, in the upper right quadrant 

of the biplot (Figure 2.23), are Selenopemphix antartica, Impagidinium pallidum and 

Dallela chathamensis, which in the SW Pacific dataset are also present furthest from 

land.  Temperate taxa in the region include  Nematosphaeropsis labyrinthus, 

Pyxidinopsis reticulata and Impagidinium sphaericum, while the warmest samples in the 
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SW Pacific compilation include Spiniferities ramosus, Impagidinium variasepum and 

Impagidinium aculeatum.   

For SH-311, the explained variance in the species – environmental relationship 

described by the first axis represents less than half (44%) of the total variance within the 

first four axes, less than the NZ-98 data set (Table 2.4). Of the initial 18 environmental 

variables included in the first CCA, 10 covariance relationships were identified by 

inspection of a weighted correlation matrix (Appendix 2.2). A second CCA with 

automatic forward selection, constrained by the eight remaining variables, revealed that 

seven of them contributed more than 5% of the total explainable variance (Table 2.4).  

SST explained the greatest proportion of the variance (36%), while the next two longest 

gradients (phosphate and salinity) cumulatively contributed another 38%.   

Gradient analysis indicates that both the assemblages of the SH-311 and NZ-98 datasets 

vary most along a SST gradient. SST is therefore the most reasonable target should these 

datasets be used for quantitative environmental interpretation of the Late Quaternary 

fossil record.  In the New Zealand region, dinocyst assemblages are more closely 

correlated to SST than across the entire Southern Hemisphere.  This may be due to the 

absence of large scale high-productivity upwelling systems in the SW Pacific, which have 

distinctive dinocyst assemblages in other parts of the Southern Hemisphere (Holzwarth 
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et al., 2007; Verleye and Loweye, 2010a), although the cluster analysis and ordination of 

the NZ-98 dataset also reflects the importance of both latitudinal and secondary shore-

line and productivity gradients in the region.  The most pervasive split in assemblages in 

the SW Pacific dataset is across the STF, but some of the finer divisions are along 

productivity-related boundaries.  These results suggest that these dinocyst datasets are 

not suitable for use as training datasets for SST inference models in all cases, and care 

must be taken when analysing the suitability of completing SST reconstructions.  Across 

the Southern Hemisphere, the gradient analysis also revealed significant assemblage 

changes along gradients not correlated to SST, particularly relating to proximity to land 

and productivity (e.g. Holzwarth et al., 2007; Pospelova et al., 2008; Verleye and 

Loweye, 2010a), while dinocyst assemblages associated with high productivity zones are 

also present in the SW Pacific.  Further consideration on assessing the suitability of 

dinocyst datasets for SST reconstruction in the context of competing environmental 

gradients is in Chapter 4.  
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Two numeric approaches are used here to consider the variation of dinocyst 

assemblages in the ocean, one that groups similar assemblages and another that places 

them along continuous gradients.  The similar, but subtly contrasting, results highlight 

the tensions implicit in isolating a single environmental parameter from observation of a 

biological system.  Although the ordination results provide the (relatively) simple answer 

that assemblages vary most along the SST gradient, the classification exercises show 

that geographic location and water masses also have important influences on 

assemblage composition.  Thus, the ‘unimodal’ or ‘linear’ variation assumed for the 

ordination (e.g. ter Braak, 1994; Birks, 1995; Birks et al., 2010), and for some transfer 

function models considered in Chapter 4, is at best step-wise along this gradient.  

Although boundaries between water masses are frequently defined by gradients in SST, 

there is also significant biogeochemical variation within these water masses, such as 

fundamentally different regimes of productivity, nutrient limitation, seasonality, and 

export production (e.g. Sathyendranath et al., 1995; Longhurst, 1995; Behrenfeld et al., 

2006), which cannot be described by the few variables included in an ordination.  Thus, 

SST, or any single environmental gradient, as a target for quantitative environmental 

reconstruction using biological proxies must be treated with caution, not only for the 

mathematical reasons explored in Chapter 4. 

2.5. Conclusions 

This study expands on the modern dinocyst assemblage dataset in the SW Pacific region.  

It is the first report of sea floor dinocyst assemblages from the Tasman Sea and provides 

information about southern and northern regions of the SW Pacific, including the 

difficulty in obtaining well preserved and abundant dinocyst assemblages from these 

regions.  This study shows the following: 

1. A distinctive assemblage dominated by Impagidinium aculeatum was found in 

the Tasman Sea. Tropical samples were sparse, and characterized by I. 

aculeatum, I. variaseptum, I. paradoxum, and I. strialatum in proportions that 

suggested assemblages different from those of the Tasman Sea.  Likewise, 
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dinocysts in the high latitude samples were too sparse to achieve census 

observed, but Impagidinium pallidum, Selenopemphix antarctica, 

Brigantedinium, and Nematosphaeropsis labyrinthus were the main components 

of these sparse assemblages. 

2. Cluster analysis of 98 SW Pacific samples revealed four distinct biogeographic 

provinces: a) SAW south of the STF, dominated by N. labyrinthus b) STF and near 

shore sites, dominated by Brigantedinium spp, Selenopemphix quanta and 

Echnidinium spp., c) STW near shore sites, dominated by Operculodinium 

centrocarpum, Spiniferities ramosus and S. mirabilis, and d) STW oceanic sites 

from the Tasman Sea, dominated by Impagidinium aculeatum. 

3. When cluster analysis was extended to a compilation of 311 samples across the 

Southern Hemisphere, three additional distinct assemblages were recognized.  

Two of the clusters appear to occupy ecological niches not present in the 98 SW 

Pacific samples, of a) Polar waters dominated by Selenopemphix antarctica and 

b) cool temperate and high productivity waters, containing relatively low-

diversity assemblages dominated by Brigantedinium and other peridinoid 

genera.  A final cluster, of assemblages characterized by high relative 

abundances of Operculodinium centrocarpum, was only observed in the South 

Atlantic samples. 

4. RDA and CCA ordination found variance along the first ordination axes accounted 

for 38% (SH-311) and 56% (NZ-98) of the species-environmental relationship 

after removal of covarying explanatory variables, and SST was the environmental 

variable that correlated most strongly to variation along the first axis. 

5. Modern dinocyst assemblages are yet to be examined from many parts of the 

Southern Hemisphere.  Further studies, particularly from the Indian and Pacific 

Oceans at all latitudes, will significantly enhance our understanding of Southern 

Hemisphere dinocyst biogeography.  In the SW Pacific, additional samples would 
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be useful from the Tasman Sea portion of the STF, the West Coast of the South 

Island, and from waters of the North and West Tasman Sea. 

6. The two dinocyst datasets compiled here are suitable as training sets for 

quantitative SST reconstruction.  The oceans of the SW Pacific, where most 

variation in dinocyst assemblages occurs along the meridonal gradient that is 

best characterised by variation in SST, is a suitable region in which to apply such 

approaches.   
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Appendix 2.1. Ordination methodology 

Automatic forward selection runs as many ordinations as there are environmental 

variables, and in every ordination step the environmental variable that explained the 

greatest proportion of total inertia in the previous run is removed (e.g., Verleye and 

Louwye, 2010; Pospelova et al., 2008; Marret and Zonneveld, 2003). We used Monte 

Carlo Forward Selection with 499 unrestricted permutations. Table A5a shows that 

automatic forward selection found sea surface temperature contributed the largest 

proportion to the total inertia in both datasets.  Mean summer SST explained 27% of the 

total inertia in SH-311, and 35% in the RDA ordination of NZ-98. The secondary 

environmental variables in all three ordinations (the next most significant ‘marginal 

effects’) contributed about half to one third of the variance of the primary 

environmental effects. For SH-311, mean annual nitrate and salinity at 50m water depth 
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contributed 16% and 9% respectively, while distance from land (12%) was the second 

largest contributor to explainable inertia for both NZ-98 ordinations.   

An alternative approach that achieves a similar result is to manually identify and remove 

environmental variables that covary, then perform a final ordination constrained by the 

remaining environmental variables (Dieffenbacher-Krall et al., 2007; Brooks et al., 2001). 

This is completed in three steps: CCA runs were completed with each environmental 

variable as the sole constraining variable, with a Monte Carlo simulation to assess the 

significance of the contribution of the environmental variable to variation along the first 

axis (Table A2.1.1).  Environmental variables that covaried (with a correlation of >0.95) 

were identified from a weighted correlation matrix.  Although Dieffenbacher-Krall et al. 

(2007) applied Detrended CCA at this step, we observed detrending made no difference 

to the result, as the effect of detrending is only to remove artifacts from the second axis 

and has no bearing on first axis variation.  

The environmental variable within each group of co-varying variables with the greatest 

contribution to the first axis variation was selected. Finally, a CCA with Monte Carlo 

forward selection was run with only the remaining variables constraining the ordination. 

What is implicit in this manual removal of co-varying variables is that each of the 

discarded variables is interchangeable with those finally selected. The results of the first 

two steps (the individual CCA analyses and the weighted correlation matrices) are 

included in supplementary material.  The final CCA and RDA ordinations (Table A2.1.2) 

show sea surface temperature contributed 36% to the total explainable inertia in the 

SH-311 dataset. In the NZ-98 dataset, sea surface temperature contributed 53% to the 

RDA ordination.   
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Appendix 2.2. Weighted correlation tables 
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Supplementary Material 

The following data tables are included at the end of this thesis 

S2.1 Dinocyst count data of 120 sea floor samples 

S2.2 NZ-98 count and environmental data 

S2.3 SH-311 count and environmental data 
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3. Holocene and modern dinoflagellate cyst flux in subtropical and 

subantarctic waters, Southwest Pacific Ocean. 

Abstract 

A three year (2005-2008) record of dinoflagellate cyst (dinocyst) flux is derived from two 

time-incremental sediment traps deployed at 1500 m water depth in two 

biogeochemically distinct water masses to the east of New Zealand: (i) warm, seasonally 

macronutrient-depleted Subtropical waters and (ii) cold, micronutrient-limited 

Subantarctic waters.  Dinocyst compositions in core-top sediments from within the 

vicinity of the trap moorings are compared with these modern fluxes to evaluate the 

biases inherent in using dinocysts as palaeoceanographic environmental proxies. 

Trap assemblages are dominated by peridinoid cysts, notably Brigantedinium spp, which 

comprise almost ~98% of the cyst flux.  Nineteen dinocyst taxa or taxonomic groups 

were identified from the trap samples.  The seasonality of dinocyst flux differs between 

the traps, with a pronounced spring flux coincident with peak productivity in the 

northern Subtropical trap, while annual variation in the southern Subantarctic trap is 

relatively muted.   

There is a large discrepancy between dinocyst flux and cyst assemblages of nearby sea-

floor sediments.  Dinocysts known to be susceptible to degradation in oxygenated 

sediments (particularly representatives of the genera Echinidinium and Brigantedinium) 

are highly under-represented in the sea-floor assemblages.  In contrast, cysts that are 

relatively resistant to oxidation, including species belonging to the genera Spiniferites, 

Nematosphaeropsis and Operculodinium, are over 30 times more abundant in sea-floor 

sediments than would be expected from the three years of flux measurements.  The 

most likely explanation for the under-representation of the less resistant cyst types in 

sea-floor sediments is degradation by oxidation in the water column and sediment-

water interface.  The reason for over-representation of resistant cysts in the sediment is 
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less clear.  Two likely possibilities are considered, transport in bottom currents from 

near-shore waters, or the restriction of cyst formation to optimal years not sampled by 

our trap record.  Available data support the latter hypothesis, although lateral transport 

and production during sampling gaps within the time series cannot be conclusively 

discounted.  

The major differences between the two water masses examined, being the seasonality 

of dinocyst flux, and the large inter-annual variability in the flux composition, suggest 

mean-annual rather than seasonal climatologies are more appropriate for dinocyst-

based quantitative palaeoenvironmental reconstructions in the New Zealand region. 

3.1. Introduction 

Dinoflagellates make a significant contribution to primary productivity and grazing in 

modern oceans, at times forming blooms that dominate carbon fixation and primary 

carbon cycling in surface waters (Chang, 1988; Verity et al., 1993; Sherr and Sherr, 2007; 

Wasmund et al., 2011).  About 10-20% of modern dinoflagellates form fossilisable 

organic-walled cysts (Dale, 1996; de Vernal and Marret, 2007), resulting in 

approximately 80 identifiable sub-fossil taxa in modern sea-floor samples (Marret and 

Zonneveld, 2003).  The organic-walled dinoflagellate cyst (dinocyst) represents a resting 

stage in the dinoflagellate life cycle, and is generally formed after sexual reproduction 

(Pfiester and Anderson, 1987; Figueroa et al., 2007; Kremp et al., 2009).   

Late Quaternary fossil dinocyst assemblages are frequently interpreted in terms of 

varying environmental conditions, based on observations of cyst assemblages in modern 

sediments (e.g., Marret and Zonneveld, 2003; Radi et al, 2007; Pospelova et al., 2008; 

Crouch et al., 2010; Limoges et al., 2010), either by semi-quantitative interpretation of 

trends (e.g., Esper at al., 2004; Verleye and Louwye, 2010) or by mathematical transfer 

functions that quantify environmental gradients, such as sea surface temperature, 

salinity, sea ice cover or marine productivity (e.g., Peyron and deVernal, 2001; Marret et 

al., 2008; Bonnet et al., 2010).  Although the distribution of dinocysts in modern 
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sediments is the primary archive used to interpret palaeo-assemblages, additional 

information on dinoflagellate ecology allows exploration of the implicit assumptions 

required to attempt reconstructions based on correlations to selected abiotic gradients, 

specifically the ecological relevance of the target environmental variable to the 

dinoflagellate (e.g. Birks et al., 2010).  Observations of modern dinocyst flux from time-

series sediment trap samples are one tool with which one can gain insight into such 

aspects of dinoflagellate ecology.   

Previous multi-year observations of seasonal scale variation in dinocyst flux have been 

mainly from near-shore and continental margin environments (e.g., Fuji and Matsuoka, 

2006; Ribeiro and Amorim, 2008; Pitcher and Joyce, 2009; Pospelova et al., 2010; Price 

and Pospelova, 2011), although there are a few records from open oceanic settings 

(e.g., Zonneveld and Brummer, 2000; Harland and Pudsey, 1999; Zonneveld et al., 2010).  

A common theme of these studies is the observation of marked seasonal and inter-

annual variability of cyst fluxes, occasionally accompanied by large differences between 

the observed trap assemblages and nearby sea-floor samples, with the latter 

observation particularly a feature of deep-water oceanic settings.  In addition to 

improving understanding of the near-surface marine conditions that correspond to cyst 

formation, trap experiments have provided information on a range of factors relevant to 

regional palaeoenvironmental interpretations using dinoflagellate cysts; for example 

nutritional modes (Fuji and Matsuoka, 2006; Pospelova et al. 2010; Zonneveld et al. 

2010) and the effects of degradation on dinocyst assemblages (e.g., Zonneveld and 

Brummer, 2000, Zonneveld et al., 2008). 

Here, we present multi-annual dinocyst flux measurements at monthly resolution from 

two time-incremental sediment traps to the east of New Zealand.  The traps were 

moored at 1500 m water depth beneath subtropical and subantarctic surface water 

masses (STW and SAW, respectively) (Figure 3.1).  The three years of dinocyst flux (May 

2005 to May 2009, with some time gaps due to mooring and sample losses) provide an 

initial investigation into seasonal and inter-annual variability of cyst fluxes in this region 
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and their relationship to nearby sea-floor samples.  As such, these are the first 

observations from oceanic waters in the mid-latitudes of the Southern Hemisphere.  The 

main emphasis of this study is on application of these observations to palaeo-

environmental interpretation, as deep water sediment trap studies provide an 

opportunity to link the observations of surface water productivity with observations 

from the fossil record on the sea-floor.  The objectives of this study are to: 

1. investigate the dinocyst flux for seasonal and/or inter-annual variability in STW 

and SAW, which may assist in interpretation of dinocyst assemblages in the 

sediment  record, and, 

2. investigate the degree of similarity between dinocyst flux and assemblages from 

nearby sea-floor sediments. 
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3.2. Oceanographic Setting and trap locations 

A significant oceanographic feature to the east of New Zealand is the Subtropical Front 

(STF), formed by the convergence of STW transported by the South Pacific Gyre and 

SAW carried by local flows some of which are linked to the Antarctic Circumpolar 

Current (ACC) (e.g. Morris et al., 2001). 

Around New Zealand, the STF follows the outer edge of the continental shelf up the east 

coast of the South Island (where it is called the Southland Front), then strikes eastwards 

along the crest of the Chatham Rise, at 43-44˚S (Heath, 1985; Carter et al., 1998; 

Uddstrom and Oien, 1999; Sutton, 2001) (Figure 3.1). Maximum productivity is typically 

observed in the frontal zone, where STW and SAW converge and mix (e.g., Bradford-

Grieve et al., 1997). 

Compared to SAW, STW is warmer, saltier, relatively poorer in macronutrients, such as 

nitrate and phosphate, but is relatively enriched in micronutrients, such as iron (Boyd et 

al., 1999, 2004). This results in higher primary productivity in the STW to the east of 

New Zealand, particularly during spring months, compared to the lower production and 

muted seasonal variation observed in SAW (Murphy et al., 2001).  Annual productivity in 

STW east of New Zealand appears to follow a classic spring bloom cycle, with the 

introduction of nutrients to surface waters by mixing during winter storms, followed by 

a spring bloom, dominated by diatoms initiated in thermally-stratified near-surface 

waters, with surface productivity reduced by early summer due to the depletion of 

macronutrients (Chang and Gall, 1998; James and Hall, 1998; Boyd et al., 1999; 

Bradford-Grieve et al., 1997, 1999; Murphy et al., 2001; Hall et al., 2004; Chiswell, 2011).  

A close coupling between the spring bloom and export of biogenic material to the deep 

ocean has been observed in STW eddies east of New Zealand, with rapidly-sinking 

aggregations of diatoms observed in deep-ocean traps during spring (Nodder and 

Northcote, 2001; Nodder et al., 2005).  However, this coupling of productivity and 

export appears transient, with flux at 1500m ceasing prior to the end of the spring 

bloom.  In contrast, primary productivity in SAW is limited by iron and silicia, and is 
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dominated by pictophytoplankton (organisms <2µm) (Bradford-Grieve et al., 1997, 

1999; Chang and Gall, 1998; Boyd et al., 1999, 2004).  A consequence of the small size of 

the dominant phytoplankton is generally a reduced export flux from surface waters due 

to low settling rates, although they too may aggregate into more rapidly sinking 

particles (Waite et al., 2000).  Thus, although the peak mass flux (dominated by biogenic 

silica) to the deep ocean in New Zealand SAW also occurs in spring, it precedes the peak 

productivity in surface waters, which is observed during summer (Nodder and 

Northcote, 2001; Nodder et al., 2005). 

The northern sediment trap mooring (Subtropical Mooring, STM) is located 200 km east 

of the North Island, New Zealand, in 3100 m of water (41˚15’S, 178˚33’E), with the 

sediment trap moored at a depth of 1500 m (Figure 3.1). The surface waters above the 

trap are STW associated with the East Cape Current (ECC) (Roemmich and Sutton, 1998), 

which is part of the western boundary flow of the South Pacific Gyre.  The ECC turns east 

along the northern flank of the Chatham Rise, approximately 150 km to the south of site 

STM (Heath, 1985).  A feature of the ECC is the formation of the transient, cyclonic 

Wairarapa Eddy (Chiswell and Roemmich, 1998; Chiswell, 2003, 2005).  The STM is 

located near the eddy centre (Nodder et al., 2005). 

The southern sediment trap mooring (Subantarctic Mooring, SAM) is below SAW, 

600 km east of the South Island, New Zealand, in a water depth of 2700 m (46˚33’S, 

178˚33’E). The trap is also moored at 1500 m below the sea surface.  The SAM is on the 

southern flanks of the Bounty Trough, and is located in a region of relatively slow 

surface currents (Heath, 1985; Morris et al., 2001; Nodder et al., 2005).  

3.3. Methods 

3.3.1. Mooring deployment and sample processing 

Both STM and SAM traps have been deployed almost continuously since October 2000, 

with three- to six-monthly collection and maintenance voyages from the RV Tangaroa 

over this time (Nodder et al., 2005).  Both moorings are of a similar design, comprising 
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current meters with pressure and temperature sensors at nominal depths of 60 m and 

1500 m, and a time-incremental, conical sediment trap with 0.5 m
2
 trap area moored at 

1500 m depth (McLane PARFLUX 7G-21).  In addition, thermistors were placed every 20 

m above 120 m depth (Brancker XL105).  Each trap has 21 collection bottles 

programmed to rotate to a new bottle, which for the present study was on average 

every 9 days, with saturated 7% HgCl2 used as a preservative (0.3% by volume).  

Additional information on the mooring deployments is available in Nodder et al. (2005).   

Trap samples were refrigerated at sea within two hours of collection.  Onshore, 

zooplankton “swimmers” (large mobile organisms) were removed by sieving at 200 µm 

and using a light microscope (magnification 60-200x) to remove individuals using 

tweezers. The entire sample was then wet-split using a five-way rotary splitter (McLane 

WSD10). Four of the five 1/5 splits were utilised for total mass and other chemical 

measurements (Nodder et al., 2005).  The remaining 1/5 subsample was wet-split again: 

4/25 was examined for foraminifera and coccolithophores (not discussed further here), 

and the final 1/25 examined for organic and silicic micro-flora and fauna.  

For the micro-flora and fauna analyses, trap subsamples were washed three times with 

distilled water to remove residual HgCl2, followed by treatment to remove the 

carbonate component using cold 10% HCl.  The material was sieved through a 45μm 

mesh for radiolarian studies (not discussed here).  The fine fraction was sieved through 

a 6 μm mesh. Depending on the volume of the residue, either a known proportion was 

mounted on glass slides in glycerine jelly using a micro-pipette from a standard volume, 

or the entire residue was mounted onto one or more slides. 

Approximately every third sample of the available trap material between May 2005 and 

May 2009 was examined for palynomorphs, with 35 samples examined from SAM and 

38 from STM, although sampling was denser (every second sample or every sample) 

during selected early and late spring bloom periods  (Figure 3.2, Supplementary 

Material S3.1).  Although we focused our study on a time period with a relatively 

continuous time-series, some sample gaps exist.  No samples were recovered from the 
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STM during May – June 2005 (due to a delay in mooring recovery), July 2007 – April 

2008 (when a small fish got stuck in the rotating mechanism), nor after February 2009 

(when the trap motor flooded), while the SAM could not be deployed between October 

2005 – April 2006 due to adverse sea conditions during the 2005 spring voyage.  

Although five samples were identified as being collected over an interval when the 

average daily tilt was greater than 10° (Supplementary Material S3.1), assessment of 

current velocity data reveals little correlation between tilt and currents.  Given this lack 

of relationship, we conclude that the collected material provides a reasonable indication 

of the actual flux (Gardner, 1985; Boyd and Trull, 2006).  Therefore, we examined 

samples representing over 30% of the time between May 2005 and May 2009.  This 

sampling captured most of the large seasonal variations in mass flux in both water 

masses (Figure 3.2), and covers both moderately strong positive and negative phases of 

the Southern Oscillation Index, although no strong El Niño or La Nĩna phases were 

sampled (NOAA Climate Prediction Centre, 

http://www.cpc.ncep.noaa.gov/data/indices/, accessed November 2011).   

3.3.2. Data collection 

Dinocysts and spores/pollen were counted using a light microscope.  Dinocysts were 

identified to species level where possible, and the presence of cell contents noted.  The 

dinocyst – motile theca nomenclature used are those given in Head (1996), and cyst 

taxonomy follows Rochon et al. (1999), Fensome and Williams (2004), and Marret and 

Zonneveld (2003).  Brigantedinium cariacoense and B. simplex were grouped into 

Brigantedinium spp.  Selenopemphix undulata was combined with Selenopemphix 

nephroides.  All Echnidinium were grouped.  Pollen identification was mostly to a generic 

level, and followed Pocknall (1981a, b, c), Large and Braggins (1991), and Moar (1993).  

All counts were converted to flux (specimens m
2
/day) (Example calculation in Appendix 

3.1).   

In addition to examining individual samples across the time-series, samples were 

aggregated into mean monthly statistics for each site.  Mean daily flux for each month 
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was estimated by taking the average of daily flux calculations from each bottle that had 

an opening date that fell within the month.  Mean monthly flux is the mean daily flux of 

every sample with a bottle opening date in a given month, multiplied by days in that 

month.  Average annual and average seasonal dinocyst flux was estimated by taking the 

sum of the monthly cyst flux, with October-December denoted as spring. 

In addition to the moored instrumental and bulk flux data provided from the mooring 

deployments, four satellite-derived parameters were compared to the flux data.  They 

were: monthly primary productivity data (Behrenfeld and Falkowski, 1997), eight-day 

composite sea surface temperature and surface chlorophyll-a estimates (NASA MODIS 

data, extracted using the Giovanni web-interface, Acker and Leptoukh, 2007), and an 

estimate of the Ekman upwelling driven by the wind-stress curl derived from daily NOAA 

QuikSCAT wind data ( P. Calil, NIWA, pers. comm.).  In the Ekman upwelling estimate (m
-

1
s

-1
), positive values correlate to upwards motion, negative values to downwards 

motion.   

3.3.3 Comparison with sediment assemblages 

Trap data were compared with sea-floor sediment samples collected using a variety of 

methods (corers, grabs) from within 175 km of the STM and SAM sites.  These areas of 

seabed are similar to the modelled particle source areas for each trap, which are ~180 

km and ~150 km diameter cones for STM and SAM, respectively, for a sinking speed of 

100 m/day (Nodder et al., 2005).  Also, the seafloor samples within each zone are in 

areas of similar sea-floor assemblages determined by previous cluster analyses (Chapter 

2, this study).  

First, average relative abundance of the dinocyst flux from the traps was compared to 

relative abundance census counts from the sea-floor samples in the area.  Seven 

sediment samples from STW and six from SAW were examined.  
14

C dates are available 

for three of the sea-floor samples, all of which were of Holocene age, with radiocarbon 

ages of 2700, 6700 and 8000 years.  Dinocyst relative abundance data were  
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taken from Sun and McMinn (1994), Crouch et al. (2010), and Chapter 2 (this study).   

Second, the average dinocyst flux into the traps was compared to the average flux of 

individual taxa to the sea-floor samples.  The sediment accumulation rates and sea-floor 

dinocyst observations required for this comparison were available for four sea-floor 

samples within 175 km of the STM (Figure 3.1) (Carter et al., 2000; Crouch et al., 2010).  

Average daily cyst flux/m
2
 was calculated for these four sediment samples, and the flux 

rate compared to that observed in the traps (calculations for cyst abundance to flux in 

sediment are included in Appendix 3.1).  No samples were available in the vicinity of 

SAM for a similar comparison. 

3.4. Results  

3.4.1. Dinocyst composition and abundance patterns 

An average of 53 cysts were identified from each trap sample across the 73 samples 

examined (Tables 3.1- 3.2).  Dinocyst counts were particularly low in autumn and winter 

(April – September), which were frequently barren of cysts (and any sample material), 

with an average of just 12 cysts per sample at STM and 42 cysts per sample at SAM at 

these times.  The highest dinocyst count from one 9.4-day bottle sample was 526 cysts, 
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during the 2006 spring bloom at STM.  While many of the counts in individual samples 

were low, ~2000 cysts have been counted at each mooring across the entire 

deployment, sufficient to determine the composition of the mean flux, and observe 

inter-annual and inter-seasonal variations.  

Nineteen dinocyst taxa or taxonomic groups were identified from the trap samples (Flux 

data are reported in Table 3.2 and Figure 3.2, key taxa are illustrated in Figure 3.3, and 

count data are included in Supplementary Material S3.1).  Eighteen taxa were identified 

at the northern mooring, while diversity was lower at the southern mooring, where nine 

taxa were identified.   

Peridinoid cysts dominated the assemblage at both sites, comprising almost 99% of the 

dinocyst flux at STM and over 97% at SAM. The peridinoid cysts were mainly 

Brigantedinium spp., which comprised 77% of the total cyst flux at STM and over 95% of 

the total cyst flux at SAM. Other peridinoid cysts that contributed more than 1% of the 

total cyst flux at STM were Selenopemphix nephroides, Quinquecuspis concreta and 

Echinidinium spp.  Selenopemphix nephroides is combined with Selenopemphix 

undulata.  Lejeunecysta spp. and Trinovantedinium appalatum were also present.  No 

peridinoids, other than Brigantedinium spp., contributed more than 1% of the total flux 

at SAM, although Echinidinium spp. contributed 0.5%.   

At both mooring sites the most common gonyaulacoid cysts were species of 

Impagidinium, which formed approximately 70% of the gonyaulacoid cyst flux.  I. 

pallidum was only observed at SAM, while I. aculeatum and I. patulum were only found 

at STM.  I. sphaericum was the most abundant Impagidinium at SAM, forming 20% of 

the gonyaulacoid flux, about twice that observed to the north. Rare specimens of I. 

variaseptum were recorded at both trap sites.  Other gonyaulacoid cysts recorded at 

both sites were Nematosphaeropsis labyrinthus and Lingulodinium machaerophorum.  A 

single specimen of Spiniferites spp., and rare specimens of Operculodinium 

centrocarpum were identified at STM. 
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Cell contents were observed in many of the cysts. While approximately 20% of 

Impagidinium cysts were unhatched (i.e. cell contents were present), empty cysts were 

more common in the other groups.  Of the 147 Quinquecuspis concreta specimens 

identified at STM, cell material was observed in only one sample, while no cellular 

material was observed in any of the 79 Selenopemphix nephroides cysts identified. 

Cellular material was common in Brigantedinium spp. during the 2006 spring bloom at 

STM, in which 66% of the round brown cysts (inferred to be Brigantedinium spp. 

although no archeopyle could be observed) that arrived at the trap contained cellular 

material.  Cell material was observed in only 2% of Brigantedinium spp. cysts during the 

rest of the time-series at STM. 

3.4.2. Cyst flux: seasonality 

Seasonal variation in average cyst flux was observed at both sites.  The highest average 

cyst flux at both sites occurred during the austral spring (October – December).  The 

season of lowest cyst flux differed, being autumn (April – June) at STM and summer 

(January – March) at SAM.  Large seasonal variations of dinocyst flux were observed at 

STM, while seasonal variations at the SAM were comparatively muted (Table 3.1, 3.2, 

Figure 3.4). 

At STM, the average daily cyst flux during spring was 5-20 times greater than the 

average seasonal daily flux for the rest of the year.  An average daily flux (largely 

represented by Brigantedinium spp.) of 6400 cysts/m
2
/day

 
was observed over the three 

spring blooms sampled at STM (note that this reduced to an average of 1360 

cysts/m
2
/day

 
when the short-lived Brigantedinium bloom during November 2006 is 

removed from the seasonal average).  In contrast to the average daily flux, during late 

summer to autumn the flux was 29 cysts/m
2
/day, with 0 cysts/m

2
/day

 
during April.  

Average flux during ‘shoulder’ times, January – February, and July – September, was 

~345 cysts/m
2
/day. Variation occurred within these average seasonal trends, including a 

brief peak in cyst flux during winter 2007 (July), of almost 1500 cysts/m
2
/day, again 

composed mostly of Brigantedinium spp. 
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A similar seasonal pattern of enhanced spring flux is observed in most of the other 

dinocyst groups at STM.  Subtle variations in timing are apparent, however.  For  

example, the average Echinidinium spp. spring flux returned to low (winter) levels by 

January, while cysts of Selenopemphix nephroides were observed for a relatively greater 

proportion of the year, between July and February (Figure 3.4).  Although few 

specimens of Impagidinium were identified, the flux of this taxa appears to have a less 

pronounced seasonality than other cysts at STM, with only 60% of the mean annual  
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flux collected during spring.  In contrast to STM, seasonal variation of dinocyst flux at 

SAM was relatively muted for much of the time-series.  Only 34% of the average annual 

Brigantedinium cyst flux was collected during spring, and 25% of both Echinidinium and 

Impagidinium cyst flux occurred during the spring quarter.  Brigantedinium cysts that 

contained cellular material were also distributed evenly throughout the year; half were 

collected during spring-summer, and half during autumn-winter.   
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From July 2006 until October 2007, the SAM cyst flux was characterized by short-term 

(monthly) episodic variability, which obscures the average seasonal variation (Figure 

3.2).  Flux peaks (of 1100 – 1800 cysts/m
2
/day) were recorded during September, 

October, December, May and August, punctuated by flux minima of 20-350 

cysts/m
2
/day.  In contrast, between April 2008 and April 2009 at SAM, a seasonal cycle 

of dinocyst flux reminiscent of that observed at STM occurred.  Most dinocysts entered 

the trap during November, and a very low flux was observed during autumn and winter.  

Across the whole SAM record, the lowest average monthly cyst fluxes occurred during 

January and April (16 and 32 cysts/m
2
/day

 
in summer-autumn), with the average 

monthly fluxes for the remaining months ranging from 300 to 1000 cysts/m
2
/day, with 

an average of 509 cysts/m
2
/day. 

3.4.3. Cyst flux: inter-annual variability  

In the samples examined, average daily cyst flux at STM was 1770 cysts/m
2
/day while 

the average daily flux at SAM was markedly less at 430 cysts/m
2
/day.  Large inter-annual 

variations in annual dinocyst flux were observed, particularly at STM, while cyst 

assemblages varied between years at both sites.  

At STM, the average daily dinocyst flux during spring over the three years sampled 

(2005, 2006 and 2008) varied from 900 cysts/m
2
/day during spring 2005, to 12500 

cysts/m
2
/day during 2006 and 2100 cysts/m

2
/day during 2008.  Most of the spring 2006 

dinocyst flux was recorded in one 9.4 day sample, for which a daily cyst flux of >40000 

cysts/m
2
/day is calculated.  Many of the samples collected during 2005 at STM 

contained Brigantedinium spp. (but in lower flux rates than later years), S. nephroides, 

Q. concreta, and Impagidinium spp.  A large Brigantedinium spp. bloom occurred during 

2006, with relatively high fluxes also recorded in 2008.  In contrast, very few specimens 

of Q. concreta or Impagidinium spp. were observed in 2006 or 2008 samples, while S. 

nephroides was observed in 2006 but not in 2008. 
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The average daily flux during spring at SAM ranged between 700 and 1500 cysts/m
2
/day 

during the three years sampled, which is a similar range to that observed at STM if a  

brief 2006 Brigantedinium spp. bloom is excluded.  Two key differences in the 2006 to 

winter 2007 assemblages from flux in the later years was the frequent presence of 

Impagidinium in samples prior to spring 2007, but it was only observed in one of the 13 

samples collected after that date.  In contrast, Brigantedinium spp. was present in most 

samples, but was absent from the spring of 2007. 

3.4.4. Cyst flux: comparison with Holocene sediment assemblages 

Dinocyst assemblages from sea-floor samples near the moorings differed from the 

average flux assemblages in the traps.  Peridinoid cysts, particularly Brigantedinium 

spp., were over-represented in sea-floor samples, while several cyst taxa present in sea-

floor dinocyst assemblages were not observed in the trap samples (Figure 3.5).   

At STM, 77% of the average flux was Brigantedinium spp., while this genus does not 

exceed 40% in the six sediment samples examined.  In contrast, Nematosphaeropsis. 

labyrinthus and Operculodinium centrocarpum each contributed <0.1% to the average 

sediment trap flux, but each form on average ~20% of the sea-floor assemblages.  Of the 

six dinocyst taxa that contribute >5% to the nearby sea-floor assemblages (Figure 3.5), 

only Spiniferities mirabilis was completely absent from the trap samples.  

At SAM, many of the significant components of the sea-floor dinocyst assemblages were 

observed in the trap samples, except for Dalella chathamensis, Impagidinium 

aculeatum, and Spiniferities mirabilis.  Combined, these three taxa form 17% of the 

average sea-floor assemblage in the vicinity of the southern mooring, but no specimens 

were observed in the trap samples. 

The comparison between sediment trap flux at STM and that estimated for four 

proximal sea-floor samples reveals a similar picture to the comparison of percentage 

composition, and allows taxa to be placed on a gradient of ‘relative representation’ 

(Table 3.3).  In the middle of this gradient, the observed concentrations in sea floor 
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samples of total Impagidinium and selected peridinoid cysts, including Q. concreta, S. 

quanta, S. nephroides and T. appalatum, were similar to that expected from the fluxes 

observed in the traps.  About four times as many specimens of Impagidinium were 

recorded in the sea-floor samples as would be expected from the traps, while 

concentrations of the four peridinoid taxa were about a third of that expected from the 

observed trap flux (Table 3.3).  At the extreme ends of this gradient, only about 6% of 

the trap Brigantedinium spp. cyst flux was observed in sea-floor sediments, while O. 

centrocarpum and N. labyrinthus concentrations in sea-floor sediments were between 

33 and 36 times greater than would be expected from the observed trap flux.  The main 

taxon missing from this gradient was Spiniferites: only one specimen was identified in 

the trap samples, although average sediment concentrations were similar to N. 

labyrinthus (range 2-18%).  
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3.5. Discussion  

3.5.1. Seasonal variation between water masses 

One of the most pronounced differences between the two mooring sites is the degree 

of seasonality in dinocyst flux.  At STM, a significant proportion of the dinocyst flux 

occurred during spring, while seasonal variation was more muted for most of the SAM 

record, although a flux pattern reminiscent of the STW spring bloom was observed at 

the end of the SAM record in spring 2008 (Figure 3.2).   

Over the three years studied at STM, the average seasonal progression appears 

consistent with the conceptual model of Chiswell (2011), of wind-driven mixing during  

winter coincident with the annual minima in productivity, followed by increasing 

productivity during the relatively calm months of August and September, which is 

accompanied by ocean warming and increased irradiance.  (Figures 3.2 and 3.4) (see 

also Longhurst, 1995; Nodder et al., 2005).  Further late spring mixing precedes the 

annual productivity maxima in November, with the annual maximum temperature 

occurring three months later, in February.  Timing of total mass (and dinocyst) flux to 

the STM trap largely reflected trends in surface productivity.  For example, 2005 was a 

year of relatively low productivity and coincided with relatively low mass and dinocyst 

flux, while above-average productivity during 2006 coincided with higher total mass and 

dinocyst fluxes (Figure 3.2).  These observations are supported by the moderate linear 

correlation between mean monthly productivity, mass flux, and dinocyst flux (mean 

monthly productivity:dinocyst flux r
2
 = 0.58, mean monthly mass flux:dinocyst flux r

2 
= 

0.47).  Although other factors have varying influence on primary productivity, such as 

stratification, nutrient availability, grazing and mortality (e.g. Longhurst, 1995), primary 

productivity has been shown to be controlled principally by deep mixing along the east 

coast of the North Island, particularly within the eddy systems within one of which (the 

Wairarapa Eddy) STM is located, with local upwelling also important north of the study 

area (Bradford et al., 1982; Chiswell and Roemmich, 1998). 
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At SAM, seasonal patterns differed from the north in many respects.  As in the north, 

winter mixing coincided with minimum productivity, but wind-driven mixing was a more 

significant feature of average spring conditions (Figure 3.4).  This ongoing mixing may 

have contributed to the delayed development of maximum productivity in surface 
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waters until February (also the warmest month), which followed the two calmest 

average months: December and January (Figure 3.6), although the availability of 

micronutrient iron has been shown to influence primary productivity in SAW (e.g. Boyd 

et al., 1999).  Fine Fe-rich particulates from terrestrial run-off and submarine erosion 

and transport could have substantial residence times in SAW (Nodder et al., 2005) and 

could be readily converted into biological Fe (e.g. Frew at al., 2006), although a 5-year 

time-series in the vicinity of SAM found poor correlation between episodic productivity 

and iron supply (Boyd et al., 2004).  Although peak productivity occurred in February, 

the peak mass flux into the southern trap occurred months earlier, during spring, a 

decoupling also observed during the previous season (Nodder et al., 2005).  This was 

inferred to be due to rapid export of silica-rich early spring blooms of diatoms, 

silicoflagellates or radiolaria.  This disconnect between the peak productivity and peak 

flux at the southern trap is reflected in much lower correlation coefficient values 

between average monthly productivity, mass flux, and dinocyst flux than observed in 

the north (mean monthly productivity:dinocyst flux r
2
 = 0.12, mean monthly mass 

flux:dinocyst flux r
2
 = 0.37).   

The correlation of organic carbon export to the deep sea with the type and nature of 

ballast material has been recognised as an important control on organic carbon export 

(Armstrong et al., 2001; Passow and De La Rocha, 2006), and the export of dinocyst 

organic carbon in this study appears no different.  The dinocyst flux does not form a 

dominant part of the export production at either study area, and their export to the 

deep sea is likely reliant on the form and timing of accessory ballast.  Thus, the 

performance and variations of other, ballast forming, organisms is likely to have a 

significant influence on how dinoflagellate communities in surface waters are preserved 

in sea-floor dinocyst assemblages. 

3.5.2 Inter-annual variability 

The composition of the dinocyst flux varied between years.  As with the observed 

seasonal variability, this longer term variation correlated with productivity, particularly  
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at STM.  Over the three years that were sampled at STM, productivity (Figure 3.2), and 

surface chlorophyll-a were high during spring-summer 2006 and 2008, while average 

surface chlorophyll-a was lower during 2005, and did not reach the intensity of other 

years (Figure 3.6).  The Impagidinium flux during the low-productivity year in 2005 was 

higher than the latter two years, which were characterized by well-developed spring 

blooms.  Meanwhile, the highest Brigantedinium spp. fluxes occurred during the high 

productivity years (2006 and 2008).  One possible reason for this inter-annual variation 

in productivity is the timing of winter and spring mixing events (e.g. Chiswell, 2011).  The 

winter of 2005 was generally characterized by limited mixing of surface water, while 

three deep mixing events occurred during the spring, as measured by the intensity of 

wind stress curl (Figure 3.6).  In contrast, four prominent mixing events occurred during 

winter 2006 (May – August), which was followed by a relatively stable spring.  The 2006 

pattern was repeated in 2008, although spring appeared less settled.  The impact of 

these mixing events on seasonal productivity can be considered within the conceptual 

model of Chiswell (2011):  the relatively calm winter of 2005 would have limited 

opportunity for deep mixing to bring nutrients into the surface waters, while fortnightly-

mixing events during mid-spring may have slowed algae growth by reducing the 

opportunity for stratification to become established.  The flux of Impagidinium cysts, 

which derive from a genus generally intolerant of high-nutrient conditions (Dale, 1996), 

may be highest during the low productivity year in this setting not due to the low 

productivity per se, but due to the relatively extensive oligotrophic, nutrient-depleted 

waters following a calm winter (Figure 3.6).  In contrast, the correlation of higher 

Brigantedinium cyst flux with years of higher productivity is more likely to reflect greater 

food availability of these heterotrophic dinoflagellates, which have been observed to 

prefer diatoms and flagellates over other food sources (Jacobson and Anderson 1986; 

Kjaeret et al., 2000; Zonneveld et al. 2010).   

In contrast to STM, correlation of inter-annual variability in dinocyst flux at SAM with 

surface productivity, chlorophyll-a, and mixing events is limited.  Impagidinium was 

observed during 2006 and the winter of 2007, and was absent after spring 2007.  The 
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pattern of Brigantedinium spp. flux was the same as for Impagidinium, except for the 

reappearance of Brigantedinium spp. in the late spring of 2008 (Figure 3.6).  Primary 

productivity in SAW is different to that in STW, being dominated by pico-phytoplankton 

and limited by the availability of micronutrients (Boyd et al., 1999; 2004; Bowie et al., 

2009; Mongin et al., 2011).  Average chlorophyll-a concentrations were much lower, and 

the seasonal variation in chlorophyll-a was much more muted.  Although the 2005 year 

that Brigantedinium spp. is absent from the SAM flux is also that of lowest average 

chlorophyll-a concentrations, the scale of variation between years is small (Figure 3.6).  

While the accompaniment of Impagidinium with Brigantedinium spp. seems 

incongruous in the context of the observations in STW, the chlorophyll-a concentrations 

during the entire SAM time-series are less than the low-chlorophyll-a 2005 year at STM.  

However, the absence of Impagidinium in the later part of the SAM record is more 

unexpected.   

The causes of inter-annual variability of cyst flux at SAM remain enigmatic.  It is possible 

that the two modes of cyst flux observed at SAM (July 2006- October 2007 compared to 

after October 2007) may reflect differences in wider functioning of food webs between 

years, but food web studies in the region are generally limited to single seasons (e.g. 

Nodder and Gall, 1998; Hall et al., 1999; Bradford- Grieve et al., 1999).  Alternatively, the 

variability may relate to transient influx of limiting nutrients, but the mechanisms by 

which this occurs (e.g. aeolian deposition, mixing of waters across the STF, periodic 

upwelling) remain unresolved (Boyd et al., 2004).  Longer time-series, and observations 

of many biophysical parameters at sufficient spatial and temporal resolution, along with 

variation in the species composition of other plankton groups may be required to 

understand the causes of dinocyst flux in this water mass.  

The difference in seasonal development on either side of the STF, and the differences in 

how this variation is preserved in deep-sea sediments, have implications for interpreting 

the fossil record.  Although summer SST correlates most closely to variations in dinocyst 

assemblages on a hemispheric scale (e.g. Marret and Zonneveld, 2003; Chapter 2, this 
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study), the interpretation of the two short time-series presented here implies that cyst 

flux is controlled by a much more complex combination of physico-chemical factors 

rather than merely temperature of any one season.  Rather, if temperature is to be used 

as a target for quantitative palaeo-reconstructions, these observations of different 

modes of seasonal variation suggest that the mean annual temperature is the best 

target, but with the caveat that other environmental factors, only broadly related to 

mean annual temperature, such as wind-driven mixing, upper ocean stratification, and 

the growth-rate of other ballast-producing organisms may also have significant impacts 

on cyst flux.  

3.5.2. Trap flux compared to sediments 

Under-representation of peridinoid cysts in sea-floor sediments, compared to 

concentrations predicted from ocean particle fluxes, has been noted in other sediment 

trap experiments (e.g., Harland and Pudsey, 1999; Zonneveld and Brummer, 2000).  One 

explanation for this discrepancy is preferential post-depositional oxidation of peridinoid 

cysts (e.g., Zonneveld et al., 2008).  Bottom water oxygen concentrations in the vicinity 

of the sediments used for comparison (Table 3.3) are well within the range that 

Zonneveld et al. (1997) predict to cause extensive alteration of the dinocyst assemblage 

by oxidation of sensitive cysts, and represent a plausible process to explain apparent 

under-representation of peridinoid cysts in surface sediments to the east of New 

Zealand.  However, it is worth noting that despite the large numbers of peridinoid cysts 

that fail to appear in the record, a considerable number remain, and form an important 

component of differentiation between biogeographic zones (Chapter 2, this study).  In 

addition, bottom water oxygen concentrations explain little (6-8%) of the variance in 

hemispheric and regional sea floor dinocyst compilations compared to other available 

environmental gradients (Chapter 2, this study).  In contrast, traps studies in coastal and 

estuarine settings (e.g. Pospelova et al., 2010; Price and Pospelova, 2011) show much 

stronger correlation between trap and sea floor assemblages, likely due to reduced 

transport times, better constrained source areas, and in some instances, more rapid 

sedimentation.  
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A more unusual observation in this study is the over-representation of oxidation-

resistant gonyaulacoid cysts in sea-floor sediments, compared to that predicted from 

the observed flux, such as N. labyrinthus, Spiniferities, and O. centrocarpum.  Two 

possible scenarios for this discrepancy are: (i) lateral transport of gonyaulaucoid cysts to 

the sea-floor sampling sites by deep currents, such that they are not collected by the 

sediment traps, or (ii) episodic cyst formation that has been missed by the trap sampling 

programme undertaken here.  Both would have implications for the use of sea-floor 

samples as modern analogues, as either a significant proportion of the assemblage did 

not live in the overlying water mass (scenario i), or the formation of their fossilisable 

remains in the overlying water is a relatively “unusual” event, that may be best 

correlated to environmental parameters of those exceptional years instead of a mean 

annual climatologies (scenario ii). 

Two lines of evidence support episodic cyst formation during optimal years, as opposed 

to extensive lateral transport as a most likely explanation.  This evidence is based on the 

characteristics of pollen flux in the traps, and on the episodic nature of the dinocyst flux 

that has already been observed. 

Firstly, terrestrially-derived organic material, including pollen, is abundant in both the 

sea-floor and trap samples (Crouch et al., 2010; Chapter 2, other incidental observation 

during this study).  Nodder et al. (2005) also noted lithogenic material in both STM and 

SAM traps was up to 10-15% of the total annual mass flux, and inferred this to be 

terrigenously sourced, although the pathway of this terrigenously-sourced sediment to 

the samples has not been determined (i.e. directly by surface currents or aeolian 

transport, with possibly extended and variable residence times in terrestrial and marine 

sinks).  Most of the pollen found in the traps and sea-floor sediments are of 

anemophilous plants (e.g. Pinus [Pine], Nothofagus [Southern Beech]), and eastwards 

aeolian dispersal of such pollen from the New Zealand landmass over great distances 

(<750km) has been established (Mildenhall, 1976; Holt et al., 2010).  However, there is 

an order-of-magnitude decrease in the average pollen concentration in sea-floor 
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sediments within 100km of the New Zealand landmass (Crouch et al., 2010, incidental 

observations during this study, Figure 4.1), suggesting that the majority of pollen to 

enter the ocean east of New Zealand is either via rivers, or by a near-shore pollen rain, 

an observation consistent with other ocean margin settings (Traverse, 2007).  Assuming 

the pollen and dinocysts originating from coastal waters are approximately hydro-

dynamically equivalent (both have a similar size range), both would be expected in the 

trap and sea-floor sediment assemblages in similar diluted/enriched proportions.  Direct 

comparison of terrestrial organic flux in the traps and recent marine sedimentation is 

hindered by ca. 700 years of anthropogenic deforestation and ca. 70 years of extensive 

plantation forestry of Pinus spp. in New Zealand (McGlone and Wilmshurst, 1999), and 

pollen is over-represented by a factor of ~1.9 in the sea-floor sediments.  However, in 

the context of the over- and under-representation of dinocysts by factors of >30 (e.g. for 

Nematosphaeropsis, Operculodinium, and Spiniferites genera), the pollen flux is 

relatively ‘balanced’ (Table 3.3).  There is additional circumstantial evidence of the tight 

coupling of pollen flux into the traps and events on land.  Incidental observations made 

during this study are that the order of peak pollen flux in the traps corresponds with the 

progression of flowering on land (i.e. Pinus spp. followed by Nothofagus fusca, followed 

by Poaceae), and there are some signs of higher Nothofagus fusca fluxes in the 3-15 

months following masting (high flowering) years.  These data require additional 

counting prior to more detailed presentation.  Thus, it appears the transport pathway of 

dinocyst-sized palynomorphs via waters of continental shelves to the STM is active (i.e. 

much of the pollen is accounted for between source-trap-deep-sea sediment), and 

transport of such particles to the trap sites may be relatively rapid (months). However, 

dinocysts do not appear to have been transported in large abundances from coastal 

waters of continental shelves to the STM during the trap deployment.   

Secondly, high inter-annual, and between-sample, variability of cyst fluxes and 

assemblages supports the alternative hypothesis.  For example, one 9.4 day sample 

during November 2006 at the northern site collected 60% of the total Brigantedinium 

spp. flux observed at STM, and over 98% of the cysts contained cell material.  Given this 
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highly episodic event, it is most likely that some of the “missing” cysts were deposited 

into the trap during the unsampled intervals, or during a season not yet sampled.  Inter-

annual variability is a common feature of multi-annual marine time-series, investigating 

other components of the marine food web (e.g., Cloen and Jassby, 2008; Mackas and 

Beaugrand, 2010), while significant decadal-scale variability is also becoming apparent 

in results from more recent time-series (e.g. Ayon et al., 2004; Alheit and Bakun, 2010; 

Wasmund et al., 2011).  One example from Baltic Sea records show strong spring 

blooms of dinoflagellates during the 1990s, but blooms dominated by diatoms at the 

same sites during the 1980s and 2000s (Wasmund et al., 2011).  These results contrast 

with a similar comparison of foraminiferal flux from the waters east of New Zealand 

(King and Howard, 2001), who found a strong similarity between the sediment trap 

assemblages and those of near-by sea-floor samples from a 12-month deployment 

during the 1990s, although more variability has been observed in subsequent years 

(Northcote pers comm., 2010).   

The scenario of episodic cyst formation, suggested here, does not require the cysts to be 

formed in the water mass immediately overlying the traps.  As we observe there is likely 

an active transport pathway from coastal waters, it is possible that the episodic cyst 

formation during optimal years proposed above partly takes place in coastal waters.  

Thus, although we cannot exclude the possibility that some cysts in the traps and 

surrounding deep sea sediments are transported from shallower waters of the shelf, 

there is also evidence that cyst-forming dinoflagellates occupy the more proximal 

surface waters.  The thecate (swimming) stage of dinoflagellates that form the cysts 

observed in the seafloor and sediment traps have been observed in the surface waters 

near the mooring (Chang and Gall, 1998; F.H. Chang, pers. comm., 2011).   

Variations in the Southern Oscillation Index (SOI) to the east of New Zealand have been 

observed to coincide with SST anomalies and variations in the intensity of gradients 

across the STF (e.g., Goring and Bell, 1999; Sutton and Roemmich, 2001; Hopkins et al., 

2010), with a local response lagging the SOI by some months.  Correlation of 
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productivity in New Zealand waters to SOI variation is, however, enigmatic (Murphy et 

al., 2001; Hopkins et al., 2010).  The sampling conducted here covers two negative and 

one positive (but poorly developed) phases of the SOI, and does not sample the local 

response to a well-developed El Niño event (Figure 3.4).  It is tempting to infer that the 

differences between the observed flux and sediment assemblages may become 

reconciled during a well-developed El Niño event or other longer term climate modes 

affecting ENSO, such as the Interdecadal Pacific Oscillation (Power et al., 1999; Mantuna 

and Hare, 2002), and the Southern Annular Mode (Ummenhofer and England, 2007; 

Ummenhofer et al., 2009)  A final possibility is that the discrepancy may be due to a 

permanent regime shift in SW Pacific waters, but identification of such a shift from 

natural variability would require significantly longer and more complete time-series, 

both of traps and sediments, than are available here (Wasmund et al., 2011; Hensen et 

al., 2010). 

3.6. Conclusions 

A three year record (2005-2008) of dinocyst flux into time-incremental sediment traps 

moored north and south of the STF in two different surface water masses, to the east of 

New Zealand, reveals the following:   

1. In the trap in STW, dinocyst flux peaks during the spring bloom.  The composition 

of this flux varied annually.  The flux of the peridinoid genera Brigantedinium 

was higher in years of high spring productivity, while flux of the oceanic genera 

Impagidinium was higher in a year when the spring bloom failed to peak (2005), 

possibly due to insufficient winter mixing, or unstable surface waters during 

spring. 

2. The seasonal cycle of dinocyst flux of the trap in SAW is relatively muted.  

Although the composition of cyst flux also varied between years, the relationship 

between environment and flux is less well resolved than STW. 
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3. The average dinocyst flux differs from that observed in nearby sea-floor samples.  

Peridinoid cysts, notably Brigantedinium spp., are under-represented in sea-floor 

sediments, with about 6% of the Brigantedinium spp. cyst flux preserved.  In 

contrast, Nematosphaeropsis, Operculodinium, and Spiniferites are over-

represented; concentrations in sea-floor sediments are ~30-40 times greater 

than predicted from the trap flux.  

4. The under-representation of peridinoid dinocysts may reflect oxidation of these 

cysts on the sea-floor, while the most likely explanation for under-representation 

of gonyalaucoid cysts is the restriction of cyst production to years outside the 

range of our sampling, although lateral transport and production during 

sampling gaps within the time series cannot be conclusively discounted. 

5. The variability of seasonality of cyst flux in each water mass has implications for 

palaeoclimate studies.  Quantitative models should use mean annual, as 

opposed to seasonal, resolution as targets.  Although sea-floor dinocyst 

assemblages vary with SST on regional and hemispheric scales, the processes 

revealed here highlight great complexity in the larger-scale correlations. 
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Appendix 3.1. Flux calculations 
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Supplementary Material 

The following data table is included at the end of this thesis: 

S3.1. Raw dinocyst counts from sediment trap samples 
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4. A dinoflagellate cyst-based sea surface temperature transfer 

function for the Southwest Pacific 

Abstract 

A dinoflagellate cyst (dinocyst) dataset of 311 Southern Hemisphere sea-floor samples is 

examined for its suitability as a training set to quantitatively reconstruct sea surface 

paleotemperatures from the New Zealand region in the Late Quaternary. 

Four sea surface temperature (SST) transfer functions are tested: the modern analogue 

technique (MAT), an artificial neural network (ANN), weighted averaging (WA), and 

weighted averaging with the addition of partial least squares (WA-PLS).   

Under a leave-one-out cross validation routine, the ANN model performed best for the 

Southwest (SW) Pacific dataset, with a root mean square error (RMSE) of 1.14˚C.  The 

best performance achieved for the Southern Hemisphere dataset was a RMSE of 1.47˚C, 

also for the ANN model.  The WA model had little predictive power due to a pervasive 

bias in the residuals, while the WA-PLS and MAT models had RMSEjack errors of 2.29˚C 

and 1.88˚C, respectively. 

The performance of the models decline when assessed using spatially independent test 

sets.  The exact decline in performance of the models depends on the test set selected, 

but on average there is little to differentiate the performance of MAT and ANN models 

when assessed in this way, while prediction error of the WA-PLS model is slightly 

superior to the others.  This is likely due to the tendency of MAT and ANN models to 

exploit spatial autocorrelation characteristics of the training dataset.   

When applying these models to fossil assemblages, MAT and ANN models are likely to 

be superior to WA-PLS when operating within familiar assemblages, but as fossil 

assemblages become more dissimilar to the modern training set, WA-PLS has a slight 

edge over MAT and ANN models.  This study confirms that it is important to assess both 
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model and fossil datasets when using transfer function models and to critically examine 

the proxy results that are produced.  Various sources of bias (regional vs. global and 

hemispheric datasets, spatial distribution of the training set, including spatial 

autocorrelation, dissimilarity between fossil and recent samples) strongly affect model 

performance. 

4.1. Introduction 

Since the development of multivariate transfer functions in the 1970s (Imbrie and Kipp 

1971), the use of faunally-derived quantitative environmental proxies has become well 

established in paleoecology (e.g. Kucera et al., 2005; Guiot and de Vernal 2007; Hillaire-

Marcel and de Vernal, 2007).  Early progress, along with many recent advances, in the 

application of transfer functions to paleoceanographic problems have used assemblages 

of fossil foraminifera (e.g. Imbrie and Kipp, 1971; Hutson, 1980; Malmgren and 

Nordlund, 1997; Kucera et al., 2005), but the same mathematical approaches have been 

applied to other groups of marine microfossils, including diatoms (e.g. Koc et al., 1993), 

radiolaria (e.g. Abelmann et al., 1999, Cortese et al., 2005), ostracods (e.g. Cronin, 1991) 

and dinoflagellate cysts (e.g. de Vernal et al., 2001; 2005). 

Numerous mathematical approaches have been developed that quantitatively 

reconstruct past environments based on faunal assemblages (Birks, 1995; Guiot and de 

Vernal, 2007).  While there is a great diversity in methods, they are similar in that all 

may be relied upon to produce a result.  The quality of the result, however, depends on 

a number of important factors, such as the quality of the underlying datasets, the 

temporal control, and the numerical approaches used (Birks et al., 2010). 

An extensive dataset of Northern Hemisphere dinoflagellate cyst (dinocyst) assemblages 

has been created over a number of years (e.g. Rochon and de Vernal, 1994; Rochon et 

al., 1999; de Vernal et al., 2001; Radi et al., 2007; Pospelova et al., 2008), and has been 

used to reconstruct sea surface temperature (SST), productivity, salinity, and ice cover 

(de Vernal et al., 2005; Bonnett et al., 2011) using MAT and ANN models.  In the SW 
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Pacific, the general utility of dinocysts in faunal transfer functions has been 

demonstrated.  Late Quaternary SST and salinity was reconstructed from Deep Sea 

Drilling Project (DSDP) Site 594, off the East Coast of the South Island, using a MAT 

model and a Southern Ocean dataset of 118 Southern Hemisphere surface sediment 

samples (Marret et al., 2001). 

In this chapter, we further develop dinocysts as a tool for quantitative paleo 

reconstruction in the SW Pacific, by exploring the performance of four different 

dinocyst-based transfer function models, using a newly compiled 311-sample Southern 

Hemisphere and 98-sample SW Pacific dataset (Chapter 2, this study). The relative 

performance of the best analogue method (Modern Analogue Technique; MAT) artificial 

neural network (ANN), weighted averaging (WA), and weighted averaging with the 

addition of partial least squares (WA-PLS) are compared.  Furthermore, their 

performance is explored by revisiting the existing Late Quaternary dinocyst record from 

DSDP Site 594 (Marret et al. 2001), for which other environmental proxy records are 

available for comparison. 

In a recent review, Birks et al., (2010) compiled lists of seven basic requirements and six 

assumptions of quantitative climate reconstructions using biological assemblages.  

These assumptions and requirements are important: they are the difference between 

reasonable and unreliable reconstructions.  The degree to which each of these 13 

requirements and assumptions are met for dinocysts in the Southern Hemisphere is 

documented in this chapter, with a particular emphasis on application of the 

quantitative models to the New Zealand region. The assumptions and requirements 

overlap to some extent (Birks et al., 2010) and are summarized below: 

4.1.1. Requirements of a transfer function 

1. A biological system that produces abundant identifiable fossils, that is responsive 

and sensitive at the required spatial and temporal scales to the climatic variables 

of interest 
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2. A large, high quality data-set of modern biological and associated climatic data 

are available 

3. Fossil datasets used for reconstruction are comparable in quality and 

sedimentary environment to the modern datasets 

4. Independent chronological control for both modern and fossil data 

5. Robust numerical methods for regression and calibration 

6. Reliable and realistic numerical estimation of errors of prediction 

7. Critical ecological, numerical, and paleoclimatic evaluations of reconstructions 

4.1.2. Assumptions of a transfer function: 

a. The taxa are systematically related to the climate in which they live 

b. The climatic variable to be reconstructed is related to an ecologically important 

determinant in the system 

c. The modern taxa are the same biological entities as the fossil taxa 

d. Other environmental variables have negligible influence on the assemblage 

e. The mathematical models adequately model species responses and produce 

sufficient predictive power 

f. Prediction errors are estimated on statistically independent test sets 

 

4.2. Dinoflagellate ecology 

Requirement 1 A biological system that produces abundant identifiable fossils, 

that is responsive and sensitive at the required spatial and 

temporal scales to the climatic variables of interest. 
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Assumption b The climatic variable to be reconstructed is related to an 

ecologically important determinant in the system 

4.2.1. Dinoflagellate nutrition 

Dinoflagellates are unicellular organisms that employ both heterotrophic and 

autotrophic feeding strategies (Jacobson, 1999), while examples of mixotrophy 

(photosynthetic dinoflagellates opportunistically consuming other cells) have been 

observed in all dinoflagellate orders (Stoecker, 1999; Hansen, 2011).  Most of the 

dinocysts recognised in Southern Hemisphere sea-floor samples are gonyalaucoid, which 

are cysts of chloroplast-bearing dinoflagellates, and about a quarter of the assemblage 

are formed by dinoflagellates assigned to peridinioid genera, many of which have 

hetrotrophic feeding strategies (e.g. Zonneveld and Brunner, 2000; Zonneveld et al., 

2010 and references therein).  Samples may consist almost exclusively of peridinoid or 

gonyalaucoid cysts (Smayda and Reynolds, 2003; de Vernal and Marret, 2007; Chapter 

2).  Dinoflagellates are mobile and can regulate their depth to maximize light or 

nutrients (Dale, 1996), which is a characteristic that leaves them better suited to 

stratified water masses than other micro plankton (e.g., diatoms) that require more 

vigorous physical mixing for nutrient supply. 

This diversity of nutritional strategies is relatively unusual among biological training sets 

used for quantitative reconstructions.  Most are restricted to one trophic level, being 

either primary producers (e.g., diatoms or plant pollen) or primary consumers (e.g. 

radiolaria or chironomids), although obligate symbiotic relationships between some 

planktonic foraminifera and photosynthetic dinoflagellates effectively result in a similar 

trophic division in foraminiferal training sets (Zaric et al., 2005; Kucera, 2007) to that 

observed in dinoflagellates.   

4.2.2. Habitat and cyst formation 

Dinoflagellates make a significant contribution to productivity and primary grazing in 

modern oceans, at times forming blooms that dominate carbon fixation and primary 

carbon cycling in surface waters (Chang, 1988; Verity et al., 1993; Sherr and Sherr, 2007; 
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Wasmund et al., 2011).  About 10-20% of modern dinoflagellates form fossilisable 

organic-walled cysts (Dale, 1996; de Vernal and Marret, 2007), resulting in 

approximately 80 identifiable sub-fossil taxa in modern sea-floor samples (Marret and 

Zonneveld, 2003).  Moreover, new sub-fossil taxa continue to be documented from 

lightly explored regions (e.g., the south Pacific, Verleye et al., 2011).   

The organic-walled dinoflagellate cyst (dinocyst) represents a resting stage in the 

dinoflagellate life cycle, and is generally formed after sexual reproduction (Pfiester and 

Anderson, 1987; Figueroa et al., 2007; Kremp et al., 2009).  Maximum rates of cyst 

formation have been observed following blooms of dinoflagellates (Heiskanen, 1993), 

along with diatoms that are frequently the prey of heterotrophic dinoflagellates 

(Jacobson and Anderson, 1986; Zonneveld et al., 2010).    

Dinocysts are preserved in depositional environments from estuaries to the deep ocean 

(e.g. Marret and Zonneveld, 2003; Riberio and Amorin, 2008), with the assemblage 

diversity being greatest in mid latitudes (Chapter 2, Figure 2.4).  While diversity 

decreases at higher latitudes, particularly in the Southern Hemisphere, monospecific 

polar assemblages that are common in other groups such as foraminifera are rare 

(Kurcea et al., 2005; Esper and Zonneveld, 2007).  Global and regional compilations 

show unimodal distributions of dinocyst relative abundance along various surface water 

environmental gradients, principally gradients related to latitude, proximity to land, 

bathymetry, and upwelling (Marret and Zoneveld, 2003; Esper and Zonneveld, 2007; 

Pospelova et al., 2010).  This distribution has important implications for later transfer 

function model selection, as some approaches, such as factor analysis (Imbrie and Kipp, 

1977), assume a linear distribution along the principal environmental gradient. 

Environmental factors that influence growth, reproduction and bloom formation are 

likely to also have a significant influence over dinocyst flux, so will be the most 

ecologically reasonable environmental gradients for quantitative reconstruction. 



Chapter 4 

 

 
107

4.2.3. Growth rate and encystment studies 

While the general relationship between living dinoflagellates and many of the dinocysts 

found in sea-floor sediments has been established, there is considerable uncertainty 

below generic level.  Single dinoflagellate species, or complexes of dinoflagellate 

species, can give rise to a large diversity of dinocyst forms.  For example, Impagidinium 

cysts are formed by an unknown species of Gonyaulax (Head, 1996), while the 

Gonyaulax spinifera complex produces cysts attributable to Spiniferites, 

Nematosphaeropsis, Bitectatodinium, and Ataxiodinium (Head, 1996; Rochon et al., 

1999), with phenotypic expression influenced by environment variations (Ellegaard et 

al., 2002, 2003; Rochon et al., 2009; Merthens et al., 2011; Verleye et al., 2012).   

Many of the dinoflagellate species that form fossilisable cysts have not been subjected 

to detailed study in laboratories, although Gonyaulax/ Lingulodinium polyedra (cyst 

Lingulodinium machaerophorum) and Gonyaulax tamarensis (cyst Alexandrium 

tamarense) are exceptions (Watras et al., 1982; Andersen et al., 1983, 1987; Gibson and 

Thomas, 1995; Lewis and Hallett, 1997; Hae et al., 2005).  These dinoflagellates, and 

other example from dinoflagellates that either do not form cysts, or form cysts generally 

too delicate for prolonged preservation in oceanic sediment, are used here to infer 

possible ecological controls of the wider group (e.g. Grzebyk and Berland, 1997; Navarro 

et al, 2006; Guerrini et al., 2007).   

Numerous environmental triggers for cyst formation by these dinoflagellates have been 

identified.  Temperature has frequently been found to influence growth rate and cyst 

formation, while salinity, pH and nutrient limitation are also frequently recognised as 

important factors (e.g. Jensen and Moestrup, 1997; Grzebyk and Berland, 1997;  Hwang 

and Lu, 2000; Juhl, 2005; Navarro et al, 2006; Guerrini et al., 2007; Laabir et al., 2011).  

Other  environmental factors are those associated with the peak and termination of 

bloom conditions, such as limitation of various nutrients, threshold concentrations of 

inhibition chemicals released by the dinoflagellates themselves, or light limitation 

(Suikkaen, 2011; Figueroa, 2011), while turbulence (in a laboratory setting) has been 
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shown to slow growth and bloom formation of Gonyaulax polyedra  (Gibson and 

Thomas, 1995).  Although the apparent dominance of temperature as a control of cyst 

formation may be in part due to the number of experiments that have explored 

variation along this gradient, temperature does appear to be an ecologically relevant 

factor in the growth and reproduction of dinoflagellates.   

4.3. Dinocysts on the sea-floor 

Requirement 3. Fossil datasets used for reconstruction are comparable in quality 

and sedimentary environment to the modern datasets 

4.3.1. Transport and deposition 

Dinoflagellate cysts, with a size range of ~20-100µm, are transported in the silt fraction 

(Dale, 1996), although some studies of dinocyst settling rates in the ocean suggest that 

they are considerably faster than would be expected of silt-sized particles, possibly due 

to flocculation into faster-falling aggregates (Zonneveld et al., 2010), ballasted particles 

such as fecal pellets, and transport during diel (diurnal) migration of zooplankton (Honjo 

et al., 2008).  While the resting dinocyst may remain viable on the sea-floor for months 

to years, only those that are deposited in coastal zones and the continental shelf have 

any significant chance of continuing their lifecycle after sexual reproduction.  However, 

an obligatory resting phase is unlikely to be a feature of the truly oceanic genus 

Impagidinium (Dale, 1996).  This obligate association with shallow water for successful 

sexual reproduction has led some workers to suggest a significant proportion of sea-

floor assemblages in oceanic settings are transported from the shelf and with ocean 

currents, and so have little contribution from the overlying water mass (e.g. Dale, 1996).  

Our observations of the New Zealand region, however, suggest that oceanic sea-floor 

assemblages should not be dismissed out of hand, particularly those within ~1000km of 

land (Chapters 2 – 3).  While cysts formed by dinoflagellates may sink to the deep ocean 

before they hatch, and oceanic populations of many taxa would require periodic seeding 
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from coastal waters, it is a reasonable assumption that growth and cyst formation would 

be triggered by the same environmental thresholds as those in coastal waters.   

The thecate (swimming) stage of cyst-forming dinoflagellates has been observed off 

eastern New Zealand in surface waters of >2500m deep water column (Chang and Gall, 

1998; F.H. Chang, pers. comm., 2011), including Protoceratium reticulatum (cyst 

Operculodinium centrocarpum), Protoperidinium conicum (cyst Selenopemphix quanta), 

and other indeterminate Protoperidinium species. Thecae of cyst-forming dinoflagellates 

have been recovered by surface water plankton tows across the northeast Atlantic in 

oceanic waters, although not in the central Atlantic, including Gonyaulax digitalis (cyst 

Spiniferites bentorii), G. scrippsae (cyst S. ramosus), G. spinifera (cysts 

Nematosphaeropsis labyrinthus, Spiniferites spp.), P. reticulatum (cyst O. centrocarpum), 

and Protoperidinium conicoides (cyst Brigantedinium simplex) (Dodge and Harland, 

1992).  Other dinflagellates appear to be restricted to more coastal waters (<500km 

from shore) in the North Atlantic, such as P. conicum (cyst Selenopemphix quanta) and 

Lingulodinium polyhedrum (cyst Lingulodinium machaerophorum) and Polykrikos 

schwarzii.  Thecae of Gonyaulax digitale (cyst Bitectatodinium tepikiense) (Lewis et al., 

2001) were recorded in oceanic waters of the SW Atlantic, and north of the South 

Georgia Islands (McKenzie and Cox, 1991). 

One way to infer the relative volume of coastally-derived dinocysts, compared to those 

that are locally produced, is by examining the proportion of pollen/spores and dinocysts 

in sea-floor sediments around New Zealand (Figure 4.1).  Within 100km of shore, 

significantly more pollen than dinocysts are observed in sea-floor sediments.  Although 

pollen is transported to the deep ocean, dinoflagellates are more abundant in 95% of 

the samples >250km from shore, and are on average 12 times more abundant (reduced 

to 9 times more abundant when four out-lying samples are excluded).  Although a 

considerable proportion of the pollen observed in sea-floor samples around New 

Zealand are from plants with wind-dispersal mechanisms (e.g., Pinus Pine] and 

Nothofagus [Southern Beech]) (Crouch et al., 2010; incidental observations during this 
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research), a significant proportion of the pollen appears to enter the deep sea via water 

rather than aeolian transport, as similar trends are observed in samples upwind (west of 

New Zealand) and downwind (east of New Zealand) of the prevailing westerly airflow 

(incidental observations during this research).   

A proportion of each sea-floor dinocyst assemblage may have been transported from 

coastal waters.  In rare cases, assuming that pollen is transported in a similar way to 

dinocysts, this coastal water contribution may represent a large proportion of the total 

assemblages, but in most samples the near-shore contribution appears to be diluted by 

local cyst production.   

In other parts of the world this transport modality is probably not relevant: as an 

example, zonal assemblages with increasing distance from the South American and 

West African coasts suggest limited off-shore transport at those sites (Holzwarth et al., 

2007; Verleye and Loweye, 2010).   

4.3.2. Preservation 

Dinocysts are often preserved in areas where calcareous and siliceous microfossils have 

suffered dissolution or form a less significant part of the plankton (e.g., coastal settings), 

but are themselves susceptible to degradation by oxidation (Zonneveld et al., 2001).  
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This oxidation is a potentially significant taphonomic overprint that may strongly affect 

quantitative reconstructions, as the assemblage may be degraded unevenly, with 

peridinoid cysts generally degrading more easily than gonyaulaucoid cysts (Zonneveld et 

al., 1997; Zonneveld et al., 2008).  While an empirical correction, the kt index, has been 

derived with the aim of identifying fossil assemblages affected by selective degradation 

(Zonneveld et al., 1997), it is not clear that the correction factor included in the index 

works beyond the training set, as it assumes a constant ratio of sensitive to resistant 

cysts in the modern (and fossil) flux.  The effects of preferential dissolution are ‘built in’ 

to the modern sea-floor dataset, but ordination, discussed in Chapter 2, reveals that 

bottom water oxygen concentration is not strongly correlated to changes in the 

assemblage.  However, modern dinocyst assemblages from sea-floor samples may prove 

to be poor analogues to environments with very different sea-floor oxygen regimes 

compared to the present, such as highly stratified closed basins.  

4.4. Training set compilation 

Requirement 2 A large, high quality data-set of modern biological and associated 

climatic data are available. 

A Southern Hemisphere dinocyst sea-floor dataset (SH-311) and a subset of this training 

set from the SW Pacific/ New Zealand region (NZ-98) have been compiled (Chapter 2, 

Figures 2.2 and 2.3).  Summary details of each dataset, including environmental 

parameters assigned to each sample, and taxonomic consolidations, are provided in 

Chapter 2.   

The purpose of compiling the NZ-98 subset is to explore whether there appears to be 

benefit from a regional, rather than hemispheric, training set.  The performance of a 

global training set has not been explored here.  Although a global training set of >830 

published samples has been compiled for this thesis, many of the Northern Hemisphere 

samples are from the Arctic and tropical waters, where assemblages are influenced by 

additional abiotic factors such as nutrient, salinity and productivity perturbations  
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associated with sea ice, and oceanographic effects unique to inland seas that are not 

envisaged in the Late Quaternary investigations of the SW Pacific planned for this 

project. 

4.4.1. Quality of dinocyst count data 

The samples included in the SH-311 dataset have been processed by numerous different 

laboratories, and quantitatively examined by at least 10 different palynologists.   

Samples were processed in a consistent way in all studies, with minor differences in 

sieving size fractions not expected to result in significant differences (Mertens et al., 

2009; Verleye and Loweye, 2010).  62 of the samples from the New Zealand region were 

processed with a wash of warm 30% HCl following the HF step that removes 

fluorosilicates.  While damage to modern peridinoid cysts has been noted following this 

processing step (Dale, 1976), Merterns et al. (2009) noted traces of deterioration to 

peridinoid cysts treated with hot HCl but did not report quantitative assemblage 

changes despite having designed experiments to test for this.  Duplicate dinocyst counts 
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of two sea-floor samples from north of the Chatham Rise, east of New Zealand, 

subjected to both cold (Marret et al., 2001) and warm (Crouch et al., 2010) HCl 

processing are available.  The assemblages reported in sample S924 are similar, with a 

maximum difference in an individual taxa count of 6%, and only 1% difference in total 

peridinoid cysts.  While the diversity in each of the sample R657 duplicates is similar, the 

proportions differ: 15% more Nematosphaeropsis labyrinthus was reported by Marret et 

al., (2001) at the expense of peridinoid cysts, which were 15% more abundant in the 

Crouch et al., (2010) data.  These two duplicates suggest the warm HCl treatment does 

not have a reductive effect on peridinoid cysts, but does raise an interesting issue of 

variation between palynologists.  No significant differences in the relative abundance of 

dinocyst assemblages were observed in samples that were processed differently from a 

Late Quaternary record at DSDP 594, offshore Canterbury (Marret et al., 2001), where 

some samples were prepared using hot acid, a KOH wash, and acetolysis, while for other 

samples only cold acids and sieving were used.  

Most of the SH-311 dataset is a collection of spatially discrete sample sets collected by 

different operators (Chapter 2), so there is little opportunity to compare results 

obtained by different palynologists.  The main exception is in waters around New 

Zealand, where three palynologists have contributed to the dataset.  Cluster analysis 

(Chapter 2) produces four clear biogeographic provinces, and samples of all three 

palynologists are spread evenly between the biozones.  Across the rest of the SH-311 

dataset, samples from different palynologists are well distributed across each of the 7 

clusters identified (Figure 4.2).  Although variation in a duplicate sample has been 

noted, it appears that inter-operator variation is insufficient to obscure the bio-

geographical variation. 

4.4.2. Transformation of count data 

In paleoecologial studies, training sets are frequently log-transformed prior to 

ordination and application of transfer functions (Mix et al., 1999; Marret et al., 2001; 

Niebler et al., 2003; de Vernal et al., 2001, 2005; Guiot and de Vernal, 2007).  This 
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practice is based on the observation that much of the variation in assemblages occurs in 

rare taxa, so a transformation that increases the importance of rare taxa should increase 

the sensitivity of the dataset to environmental changes.  We have not transformed data, 

as the count sizes in the SH-311 training set (mean count size 310 specimens per 

sample) do not support increased weighting of infrequently occurring taxa.  In fact, it 

introduces an additional source of error as it ignores the uncertainty associated with the 

chance of detection of small proportions in a census count (Traverse, 2007; Helsop et 

al., 2011).  Also, a recent dinocyst Southern Hemisphere compilation containing many of 

the same samples as the SH-311 dataset found no performance improvement using log-

transformed data (Verleye and Louwye, 2010). 

4.4.3. Quality of environmental data 

Environmental data attributed to each seafloor sample included seasonal and mean 

annual water temperature, salinity, dissolved nitrate, phosphate and silica content for 

0m and 50m water depths, average depth to the base of the mixed layer during spring, 

and bottom water oxygen concentration (discussed in Chapter 2).  All the data were 

obtained from the 1˚ climatologies in the World Ocean Atlas (Antonov et al., 2009; 

Garcia et al., 2009; Locarnini et al., 2010) using the 2D-estimation routine in Ocean Data 

View (Schlitzer, 2002) and monthly satellite-derived primary productivity data for the 

period January 2006 – December 2009  (Behrenfeld and Falkowski, 1997).   

There are many advantages in using data from the WOA.  The input data are restricted 

to on-site measurements and satellite data are excluded.  These data are extrapolated, 

both temporally and spatially, in a consistent way for the global ocean, and so provide a 

uniform climatology for comparison between studies.  However, the WOA climatology 

for the New Zealand region, and much of the Southern Hemisphere, is extrapolated 

from fewer measurements than for the Northern Hemisphere: in the SH-311 dataset, a 

third of the mean annual SST data are based on fewer than 50 observations (Figure 4.3), 

while half of the mean annual phosphate data for the NZ-98 dataset are based on fewer 

than 2 observations.  Sampling resolution for seasonal climatologies, particularly colder  
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months, is correspondingly poorer.  To overcome imbalances of intra-decadal variability, 

the mean annual SST is an average of five decadal climatologies since 1955.  This 

climatology is almost certainly more suitable than the higher resolution satellite data 

that is available, as the sea-floor dinocyst assemblages are an average of hundreds to 

thousands of years of flux.  Comparison of satellite-derived SST data with WOA 

climatology for the 98 samples from the New Zealand region reveals systematic 

differences.  Satellite SSTs south of the STF are on average 0.5˚C warmer than the WOA 

climatology, and 0.5˚C cooler in the waters of the Subtropical Front (STF), with similar 

WOA and satellite SSTs to the north of the STF.   

The productivity data are satellite derived, so are at a different temporal resolution to 

the other abiotic variables.  Since the productivity algorithm has both ocean colour and 

SST as inputs, it is worth remembering that the productivity data available may differ 

from a WOA-style climatology if it was available.    

4.4.4. Age control  

Requirement 4 Independent chronological control for both modern and fossil data 

The comparison of sea-floor assemblages with modern (or at best last 100 years) 

climatologies contains the implicit assumption that the climate of the last century is a 
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fair representation of at least the preceding 50, which is the average radiocarbon age of 

48 sea-floor samples analysed from around New Zealand waters (details of 48 sea-floor 

14
C ages from the SW Pacific are included in Chapter 2).  Marine records from the SW 

Pacific indicate that SST varied less than 2˚C since 7ka (Pahnke and Sachs, 2006; Barrows 

et al., 2007).  Although both these SST records also rely on sea-floor based calibrations, 

albeit using sea-floor sediments from other parts of the world, this range of surface 

temperature is close to the standard deviation of mean annual temperature climatology 

of the World Ocean Atlas used here (de Vernal et al., 2005; Giout and de Vernal, 2007; 

Locarnini et al., 2010; Guiot, 2011).  Age control of the remaining samples across the 

Southern Hemisphere has not been explored, although the pattern observed of old sea 

floor south of the SAF (Figure 2.1B), is of concern if this is a more uniform feature of 

southern high-latitudes. 

4.5. Selection of environmental gradients  

Assumption a. The taxa are systematically related to the climate in which they live 

Assumption d. Other environmental variables have negligible influence on the 

assemblage 

4.5.1. Relationship of assemblages to environmental gradients 

Ordination of the SH-311 and NZ-98 data sets indicate that summer SST correlated most 

strongly to the dinocyst distribution in both datasets, and accounted for between 37% 

and 56% of the species-environmental relationship, respectively, after removal of 

covarying gradients.  SST was 2-3 times more strongly correlated with the dinocyst 

distribution than the secondary environmental gradients (Chapter 2).  The four seasonal 

SST gradients and mean annual SST co-varied in the ordination, but when considered 

separately, summer SST explained slightly more of the faunal variation than the other 

temperature gradients.  Ordination of the modern sea-floor flora indicates that summer 

SST is the most suitable target to reconstruct by transfer function (Chapter 2).  The 
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gradients that covary with temperature on the scale of the modern dataset are salinity, 

phosphate, and nitrate.   

4.5.2. Selection of transfer function targets 

Although ordination results indicate summer SST correlated most closely to assemblage 

variation along the first ordination axis, variation in monthly observations of dinocyst 

flux from two time incremental biophysical moorings east of New Zealand (Chapter 3, 

this study) suggest that mean annual SST is likely to be a more appropriate target than 

specific seasonal temperatures.  While samples from the mooring to the north of the 

STF showed very strong seasonal variation in the flux, with most cysts arriving in the 

trap during spring, cyst flux at the mooring site to the south of the STF is evenly 

distributed throughout the year, with significant spring blooms occurring in only some 

years.  The effect of spatial variation in the strength of seasonality and productivity has 

been recognized across the Southern Hemisphere (Hiscock et al., 2003; Vantrepotte and 

Melin, 2011). As well as being a more appropriate target for the dinocyst dataset in the 

Southern Hemisphere reconstruction, mean annual SST allows easy comparison with 

other sea surface proxies in the region, that also frequently select the same transfer 

function target (e.g., Barrows et al., 2007; Crundwell et al., 2008; Hayward et al., 2012). 

4.5.3. Influence of minor environmental gradients 

The second ordination axis is most closely related to productivity and distance from 

shore (Chapter 2, this study).  This means that Assumption d will hold sometimes, but 

not all the time.  The ecological relationship of these secondary gradients to the 

dinocyst assemblage is the combination of numerous environmental parameters.  

Oceanic productivity is driven by a complex interaction of irradiance, nutrient availability 

and water mass stability (e.g., Longhurst, 1995; Falkowski et al., 1998), while the 

environmental changes along a land – ocean gradient include nutrient availability, 

salinity, water stability and clarity (Smayda and Reynolds, 2003).  However, while 

productivity may not be directly related to SST, the location of oceanic productivity belts 

is a function of global circulation, which in turn is controlled by marine and atmospheric 
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temperature gradients, bathymetry, Coriolis forcing and ocean density.  Thus, in the 

open ocean, productivity turns out to have strong meridional variation (e.g. Hardman-

Mountford et al., 2008).  

4.5.4. Reconstruction of multiple gradients 

We choose to quantify only SST, although there are examples of workers extracting 

multiple environmental proxy records from single biological training sets.  This 

extraction takes two forms.   

(i) The first is reconstructing environmental gradients that covary along the first 

ordination axis, which is effectively a rescaling and change of units between model 

outputs (Telford and Birks, 2011). An example is the training set used by Marret et al. 

(2001) to reconstruct SST and salinity for the last 125ka at DSDP Site 594, where the 

Southern Ocean training set contained samples in which SST and salinity were strongly 

negatively correlated.  However, even this supposed environmental relationship 

observed by Marret et al. (2001) is not universal: salinity of the tropical north Tasman 

Sea, with a SST of ~28˚C, is similar to that of the modern day DSDP 594 drill site, with a 

SST of ~ 12˚C.  In other words, the ‘rescaling’ is only appropriate within a narrow range 

of SST. 

An equivalent comparison in the SH-311 dataset would be simultaneous reconstruction 

of SST, salinity, nitrate, and phosphate, which all co-vary along the first axis.   However, 

the limited information available on dinoflagellate ecology suggests that of these 

variables, SST is the most reasonable target of the four environmental gradients. 

(ii) The second form of multiple reconstruction is quantification of environmental 

gradients that align to subsequent axes of ordination. The implication is that every 

ordination axis contains unique, and extractable, environmental information. As an 

example of this approach, SST, sea surface salinity, and sea ice cover were estimated for 

the high Arctic during the Last Glacial Maximum (LGM) (de Vernal et al., 2005), when 

ordination showed these three gradients to be approaching orthogonal.  This approach 
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has been questioned by Telford and Birks (2011a) who propose a statistical test of the 

validity of reconstructions based on this type of ‘lower order’ correlations.  

A similar reconstruction from the SH-311 dataset would be simultaneous reconstruction 

of SST and productivity.  In general, reconstructions of secondary gradients will have 

greater error than primary gradients.  In the SH-311 dataset, the validation tests of the 

entire dataset do not support quantitative reconstruction of environmental gradients 

aligned to the second axis.  While we show in Section 4.9 that calibration errors for SST 

are adequate to resolve orbital scale variation in many depositional settings, calibration 

errors for productivity are greater than the range of the values in the training set: i.e., 

predictions are no better resolved than if the mean value of the dataset were used for 

every reconstruction.   

However, the relationship between ecology and environmental gradient is important, 

and is a question of scale.  In some parts covered by the SH-311 dataset, such as the 

west coast of the South Island, New Zealand, productivity associated with distance from 

shore and small scale canyon-head upwelling appears to be a strong determinant of 

dinocyst assemblage change.  This balance between SST and productivity, in part 

possibly due to the two trophic levels occupied by dinoflagellates, highlights the 

problems of using dinocysts for paleo-temperature reconstructions in high productivity 

settings, but also represents a considerable opportunity for at least semi-quantitative 

productivity reconstructions.  Generally, if productivity is able to be reconstructed, at 

least semi-quantitatively and in selected areas, the quality of SST reconstructions in 

these settings might then require additional consideration.  

To explore the interdependence of SST and primary productivity, and the relative 

contribution of dinocysts with different feeding strategies, transfer model performance 

of the SH-311 dataset is tested by selective removal of samples and taxa.   

When seafloor samples that fall along the second ordination axis (i.e., samples in which 

primary productivity apparently has a strong correlation to the assemblage) are 

removed from a cross validation of a transfer function with SST as the target, average 
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performance errors increase compared to cross validation of the entire dataset.  One 

interpretation of this result is that a clearly extractable SST signal is included in the 

second axis, although a more likely cause is sampling irregularities along the SST 

gradient with respect to primary productivity.  Sea-floor samples are included from both 

major upwelling zones associated with high primary productivity in the Southern 

Hemisphere (Benguela and Peru).  Both have a similar narrow range of SSTs, and the 

models relate the highly distinctive assemblages associated with these areas to a 

temperature range narrower than the wider model errors.  It is likely exclusion of these 

unique samples that results in the apparent rise in predictive power. 

When autotrophic (gonyaulacoid) taxa are excluded from a similar cross validation 

exercise, a significant (~2x) reduction in modern transfer function performance is 

observed.  Hence, assemblages containing only heterotrophic (peridinoid) taxa are poor 

carriers of a temperature signal.  In contrast, cross validation of a dataset that contains 

cysts from only autotrophic species (although the key heterotrophic cold water species 

Selenopemphix antartica was included) results in slightly improved (< 5%) performance 

compared to a cross validation using the entire dataset.  These comparisons are not 

exact, as variable samples were discarded from each exclusion exercise to ensure that a 

minimum count size of 100 was retained.  However, they do indicate that while 

peridinoid cysts on their own contribute little to the resolution of a SST signal, their 

inclusion does not appear to erode it in a significant way.  Indeed, there is value in 

including heterotrophic dinocysts, as consideration of the entire assemblage increases 

the chance of accurate identification of modern analogues, high productivity zones 

where the SST signal is obscured, and of non-analogue situations.   

The precise identification of samples from high productivity regions, where temperature 

may be a less important determinant of the assemblage, is difficult to define: if it were 

easy, a transfer function could be constructed with productivity as its target!  

Characteristic taxa that are commonly abundant in areas of higher productivity surface 

waters include Quinquecuspis concreta, Selenopemphix quanta, S. nephroides, 
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Protoperidinium americanum , Echinidinium spp. and Brigantedinium spp. (Radi et al., 

2007; Pospelova et al., 2008).  Interestingly, among these species, the only one that 

seems to be a consistent indicator of poor transfer function performance in the SH-311 

dataset is a high (>60%) relative abundance of the Brigantedinium genus. 

4.6. How far back do transfer functions work? 

Assumption C  The modern taxa are the same biological entities as the fossil taxa 

The stationarity principle states that the properties of fossils and the relationships 

between them and the environment must remain identical throughout the range of the 

application of the proxy (Kucera, 2007; Birks et al., 2010).  The combination of 

taxonomic stability of the modern forms back through time, and comparison of fossil 

assemblages with independent environmental proxies, suggests that dinocyst-based 

transfer functions will have greatest accuracy in reconstructing SST from Late 

Pleistocene assemblages.  However, Mid Pleistocene assemblages and relationships 

appear sufficiently similar to those of the present for quantitative reconstruction 

(Rochon et al., 1999; de Schepper et al., 2011). 

Many of the dinocysts observed in modern sea-floor sediments are long lived.  Of the 33 

taxa recorded in a Northern Hemisphere sea-floor study that are also included in the SH-

311 dataset, 23 have a first appearance datum (FAD) in the Pliocene or older (Rochon et 

al., 1999, and references therein).  Of these 23 taxa, nine have a FAD during, or prior to, 

the Oligocene.  The remaining 10 taxa mostly have a FAD in the Early or Mid Pleistocene.  

Thus, with some minor exceptions, modern dinocyst taxa are unchanged since the Mid 

Pleistocene. 

All dinocyst taxa recorded at DSDP Site 594 (Modern – MIS 12) are attributed to extant 

taxa (Marret et al., 2001; see Chapter 6).  Similar stability is observed in a MIS 11 record 

off the West Coast of New Zealand (see Chapter 5), where all taxa are extant except for 

an undescribed ?Pyxidinopsis sp., which has a relative abundance of <2% in most 

samples where it is present, and up to 6% in a single sample.   
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In a recent study, de Schepper et al. (2011) demonstrated that the SST range 

(determined by Mg/Ca paleo-thermometry from foraminiferal tests) of most extant 

dinocyst taxa in Pliocene sediments from North Atlantic Integrated Ocean Drilling 

Programme (IODP) cores was within the range of modern dinocyst distributions.  The 

most significant variation to modern patterns during the Pliocene was the distribution of 

Impagidinium pallidum, which was recorded with relative abundances of >5% in 

sediments where Mg/Ca SST estimates ranged from 11.6 – 17.9˚C.  In the Modern 

dinocyst compilation of Marret and Zonneveld (2003), samples with similar 

concentration of I. pallidum are restricted to waters colder than 7˚C.  De Schepper et al. 

(2011) concluded this represented a significant change in the environmental tolerance 

of I. pallidum over the last 3Ma.  However, in the SH-311 dataset, I. pallidum is present 

in samples with SST up to 15˚C, with abundances >3% in some samples with a SST of 

10˚C, and specimens of this species observed in 10 samples beneath waters between 15 

– 17˚C (Chapter 2).  While these modern outliers may represent long distance lateral 

transport or reworking, it is also possible that the tolerance of I. pallidum has not 

changed significantly since the Pliocene.  Moreover, the change in relative abundance 

could also be due to a lower contribution of one of the taxa that commonly coexist with 

I. pallidum, such as Nematosphaeripsis labrynthis, Brigantedinium spp., or 

Selenopemphix antarctica, the latter two of which are peridinioid species and 

susceptible to oxidation.  Alternatively, the shift in environmental tolerance in Northern 

Hemisphere I. pallidum may reflect cryptic speciation of an independent population, 

with tolerances different to those observed in the Southern Ocean. 

 

4.7. Transfer function models 

Requirement 5. Robust numerical methods for regression and calibration. 

Assumption e. The mathematical models adequately model species responses 

and produce sufficient predictive power 
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4.7.1. Types of models 

One way to divide the numerous available faunal transfer function methods is 

differentiating those methods with an underlying assumption of a statistical distribution 

in the species’ environmental response (typically linear or unimodal), from methods that 

do not consider the underlying faunal distribution.  

An (incomplete) list of linear and unimodal methods that seek to exploit an assumed 

relationship between species abundances and an environmental gradient include factor 

analysis, weighted averaging (WA), and weighted averaging with the addition of partial 

least squares, (WAPLS) (ter Braak and van Dam, 1989; ter Braak and Juggins, 1993).   

Methods not constrained by an assumed distribution either build non-linear models of 

best fit (artificial neural networks – ANN), or seek to find the most similar assemblages 

from anywhere within a training set, as done by the modern analogue technique (MAT), 

and subsequent MAT refinements, such as the artificial training sets of the revised 

analogue method (RAM) or the preferential selection of proximal analogues in SIMMAX 

(Hutson, 1980; Malmgren and Nordlund, 1997; Malmgren et al., 2001; Waelbroeck et 

al., 1998; Pflaumann et al., 1996).  Over recent years, many paleoceanographic transfer 

function studies have focused on the second family of models  (e.g., de Vernal et al., 

2001; Marret et al., 2001; Kurcea et al., 2005, Hayes et al., 2005, Guiot and de Vernal 

2007; Bonnet et al., 2010).  

There are a growing number of methodological comparison studies for transfer function 

models applied to oceanographic settings (Barrows et al., 2000; Malgrem et al., 2001; 

Kucera et al., 2005; Hayes et al., 2005; Barrows and Juggins 2005; Guiot and de Vernal, 

2007).  While most conclude that the assumptions of linear distribution in the factor 

analysis of Imbrie and Kipp (1977) has been superseded by later unimodal and 

unconstrained approaches, there is less consensus on the relative performance of the 

other methods.   

Kucera et al. (2005) found little to differentiate ANN, RAM, and MAT, and recommended 

a multi-method approach with a focus on consistent patterns where results diverged.  
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Others, however, present the average of multiple techniques (e.g., Racca et al., 2001; 

Barrows et al., 2007).  Guiot and de Vernal (2007) concluded that, of the eight models 

tested, ANN, RAM, MAT, and WA-PLS performed best, and the results of all models 

should be considered, regardless whether results were averaged or considered 

individually.   

Following the recent explorations of model performance in the presence of spatial 

autocorrelation, discussed in Section 4.8 and Appendix 3.1 (Telford, 2006; Telford and 

Birks, 2009; 2011a), those authors concluded that much of the superior performance in 

the second family of models is likely to be due to their tendency to exploit 

characteristics of spatial autocorrelation in training sets.  This is based on the 

observation that when validated using a spatially independent test set, performance of 

unimodal models is similar to unconstrained models (but see Guiot and de Vernal, 2007; 

2011a; 2011b and Bonnett et al., 2010 for alternative interpretations of model 

performance under conditions of spatial autocorrelation). 

4.7.2. Model selection 

Here, the NZ-98 and SH-311 datasets are used to test four transfer function models: the 

Modern Analogue Technique (MAT), an Artificial Neural Network (ANN), Weighted 

Averaging (WA), and Weighted Averaging with Partial Least Squares (WA-PLS).   MAT, 

ANN, and WA-PLS were selected as these models provided reliable performance in a 

multi-method study of a North Atlantic foraminifera dataset (Guiot and de Vernal, 

2007).  WA was selected as a unimodal model that is apparently more resilient to the 

effects of spatial autocorrelation than the other models considered  (Telford and Birks, 

2009; Birks et al., 2010). 

4.7.4. Weighted Averaging and WA with Partial Least Squares 

WA assumes that a taxon will be most abundant in sites closest to its environmental 

optimum. The average environmental conditions over those sites where the taxon is 

present are weighted by the relative abundance of the taxon (ter Braak and Looman, 

1986; Birks, 1995).  WA requires taxa to be unimodal in distribution, and although the 
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NZ-98 gradient is relatively short (1.94 SD units), WA has proved reasonably resistant to 

linear distributions in other settings (ter Braak and Looman, 1995).  As there is an 

assumed relationship between species abundance and environment, the technique in 

theory allows extrapolation some distance beyond the range of the calibration set.  In 

practice, this is difficult to reconcile with well documented edge effects of WA, where a 

negative bias is frequently observed in residuals at the upper end of gradients and the 

opposite at the lower end (Birks et al., 2010; ter Braak and Juggins, 1993).  

WA-PLS adds to the basic WA model by utilizing residual variation: where WA uses only 

the first axis of variation, WA-PLS explores subsequent axes along which components of 

the target environmental gradient may lie (ter Braak and Juggins, 1993).  Information 

from the subsequent axes is used to improve the species parameter ‘optima’ in the final 

weighting predictors.  Thus, a one-parameter WA-PLS produces the same result as a WA 

model, and subsequent axes are included in the WA-PLS model until there is no increase 

in predictive power, measured by leave-one-out cross validation.  However, the 

introduction of subsequent ‘dimensions’ (components) to the WA-PLS model leaves it 

vulnerable to over fitting.  While performance statistics improve with each additional 

component, after some point this increase is artificial: model error approaches 0 as the 

number of components approaches the number of samples.  Selection of optimum 

components can be guided either by an independent test set, or a randomized t-test of 

the equality of predictions from each component (van der Voet, 1994).  This t-test is 

included in the C2 software, and is used here. 

As WA-PLS incorporates variation along subsequent ordination axes into the model, it is 

important to consider the extent to which variance in assemblages along these axes 

carry a signal of the target environmental gradient.  As explored above, the second axis 

of the SH-311 dataset is most closely correlated to productivity and proximity to shore, 

which although passively correlated to SST in the open ocean, is unlikely to be able to 

contribute additional detail to that extracted from analysis of the first axis only.  Thus, in 
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some locations, inclusion of additional components is expected to simply increase the 

noise.  WA and WA-PLS analysis was undertaken using C2 software 1.4.2 (Juggins, 2005). 

4.7.5. Modern Analogue Technique 

The key assumption of the MAT is that identical biological assemblages should reflect 

identical abiotic and biotic conditions (de Vernal and Guiot, 2007).  In the MAT, a 

dissimilarity score is derived between each analogue sample and the fossil assemblage, 

and the average characteristics of the most similar analogues are used to obtain the 

reconstructed environmental parameter (Hutson, 1980).  

Four dissimilarity coefficients were tested: Chord, Euclidean, Canberra, and Chi-squared. 

Although performance varied little between them, Chord was retained as it was slightly 

superior.  The Chord distance has also been found most successful by other workers 

(Hutson, 1980; de Vernal et al., 2005; Guiot and de Vernal, 2007; Crundwell et al., 2008; 

Hayward et al., 2011; 2012). 

A decision is required about the number of analogue samples used.  We fixed the 

number of analogues at five, after trials indicated this produced optimal results in 

modern calibrations across the entire SH-311 dataset. This approach of setting the 

number of analogues a priori is often employed, with between 4 and 12 analogues 

frequently selected, depending on the size of the training set (Barrows and Juggins, 

2005; Kucera et al., 2005; Crundwell et al., 2008; Marret et al., 2008; Hayward et al., 

2008; 2012).  

However, performance improvement is possible by selecting the optimal number of 

analogues for each sample, as some samples have fewer good analogues available than 

others.   

Although discarding all samples beyond a set dissimilarity value has intuitive appeal, this 

has an uneven effect along a SST gradient, because dissimilarity scores are a function of 

diversity, which varies with SST (Waelbroeck et al., 1998 and Chapter 2, Figure 2.4).  

One solution is to keep adding analogue samples until a large increase in dissimilarity 
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score between samples is observed (Waelbroeck et al., 1998; Barrows et al., 2000; 

Simpson, 2007).  This approach was explored for the SH-311 training set.  While there 

are small improvements in modern cross validation, we concluded the additional 

complexity does not outweigh the benefits, although careful inspection of all analogues 

is required when no analogue situations are suspected or reconstructions are near the 

edges of the training set gradient.   

Two key weaknesses of the MAT (and ANN) method are the production of a result even 

in the case of 1) multi-analogue situations, where similar assemblages are found across 

a range of environments, and 2) non-analogue situations, where an assemblage and 

corresponding environment is not included in the training set (Birks et al., 2010).  In 

fossil samples, possible multi-analogue situations are identified where there is a large 

temperature range across the analogues that have been selected. 

Typically, high dissimilarity values are used to identify non analogue situations (e.g., 

Gersonde et al., 2005; Sikes et al., 2009), although the cut-off value to a ‘no analogue’ 

situation remains an arbitrary decision.  Recent MAT reconstructions based on dinocysts 

(de Vernal et al., 2005; Marret et al., 2008) have used a three-point “reliability scale”.  In 

the scale, threshold levels were established using various proportions of the mean 

dissimilarity of the entire training set.  There is value in a scale such as this instead of an 

arbitrary cutoff value.  Conceptually, however, there is little justification in using the 

mean dissimilarity of the entire training set, as this number will be heavily influenced by 

the frequency distribution of training set samples along the environmental gradient.  

Instead, we explored the possibility of exploiting the expected relationship between 

dissimilarity and model performance, where a dissimilarity cut off value could be 

selected that is equal to some function of the combined dissimilarity values of samples 

with residuals less than the root mean square error of prediction (RMSEP).   

Intriguingly, however, there is no clear relationship in the SH-311 training set between 

the dissimilarity value of the nearest analogue and residual value (r
2
 = 0.03) (Figure 4.4).  

Although bigger residuals are (broadly) associated with larger dissimilarity scores at the  
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tails of the SST gradient, between 10˚C and 20˚C there is no systematic relationship 

between dissimilarity score and model performance.  This observation is apparently not 

a unique feature of this dinocyst training set, as a similar structure was also observed in 

the Southern Hemisphere foraminifera training set explored in Appendix 4.2.  Other 

features of residuals have been explored by Kucera et al. (2005).  They observed that 

large standard deviations of the SST of selected analogues generally corresponded to 

large residuals, but the scatter in this relationship precludes this as a general filter to 

exclude poor reconstructions. 

In the absence of any useful relationship between model performance and dissimilarity 

score in the modern environment, we can still use dissimilarity scores as a flag for fossil 
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samples that have no resemblance to modern assemblages.  This is essentially using the 

same criteria as de Vernal et al. (2005), but without differentiating the quality of 

reconstruction within the range of dissimilarities encountered in the modern training 

set.  Fossil samples where the dissimilarity score to the nearest sample is greater than 

that encountered in the modern dataset are flagged as non-analogue samples (Chapters 

5 – 6).   

As a similar test for poor analogues is not possible using ANN models, this scale is also 

used to flag possible non-analogue samples in ANN reconstructions. 

A second tool explored here to identify fossil samples which may be outside the range of 

the modern dataset is inspection of a DCA biplot of all samples.  This is tested and 

applied in Section 4.11.2.  It is a similar approach to the exploratory tool of plotting 

variation around single DCA ordination axes through a time series (e.g. Radi and de 

Vernal, 2008; Bonnet et al., 2010).  

MAT calculations were performed both in r using code applied in Guiot and de Vernal 

(2007), and in C2 (Juggins, 1995).   

4.7.6. Artificial Neural Networks 

An ANN develops algorithms that reproduce a target environmental parameter through 

iterative review and correction of the function of multiple (typically 2-20) non-linear 

neurons over multiple repetitions (typically 500-3000 epochs) aimed at minimizing root 

mean square error (RMSE) (Malmgren and Nordlund, 1997; Malmgren et al., 2001).   

ANNs were trained using the program Tiberius (www.tiberius.biz).  This software 

contains a single hidden layer, with one fixed linear neuron, and variable numbers of 

non-linear neurons containing tan-h functions.  Optimal training was achieved using 10 

non-linear neurons.  The training regime followed Hayes et al. (2005) and Kucera et al 

(2005): the SH-311 and NZ-98 datasets were randomly split, with 70% allocated to a 

training set, and the remaining 30% used to test the model.  The splitting procedure was 

repeated 10 times to allow for an estimate of the variability in prediction error derived 
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from heterogeneity within the dataset.  For each split, the software was allowed to train 

5 times.  Each training was stopped when the root mean squared error (RMSE – defined 

below) of the test set ceased to improve for ~100 epochs (this typically occurred after 1-

2000 epochs, using a software-specific ‘training rate’ of 0.001).  The solution with the 

lowest RMSE for the test-set of each set of 5 training runs was retained.  The best 

solution for each of the 10 training runs is applied to a fossil assemblage and the 

average and range of solutions presented. 

4.8. Performance measurement 

Requirement 6  Reliable and realistic numerical estimation of errors of prediction 

Assumption f Prediction errors are estimated on statistically independent test 

sets 

4.8.1. Introduction 

The development of a transfer function is an optimization of calibration errors and 

prediction errors.  The calibration error describes the reconstructive power of the target 

environmental parameter within the calibration data set, while the prediction (or 

validation) error is an estimate of how well the transfer function performs when applied 

to a dataset different from its calibration dataset (Kucera et al., 2005; Guiot and de 

Vernal, 2007).  Assessment of realistic prediction error is a critical aspect of transfer 

function design, without which true climatic variation cannot be separated from 

(frequently noisy) fossil data, and the relative performance of various models and 

training sets cannot be evaluated. 

4.8.2. Measurement statistics 

Two commonly used measures of calibration error, that are applied during validation of 

models in this chapter, include 1) the correlation or coefficient of determination 

between the observed and predicted variable (r, or more commonly r
2
, usually 

calculated using Pearson’s product moment correlation), and 2) the root mean square 

error (RMSE), which is the square root of the average of the squared residuals (Birks, 
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1995).  As the distribution of residuals (the actual minus predicted value) is non-

parametric, statistics of normal distributions are not appropriate: but in practice, the 

RMSE statistic describes the equivalent error of about one standard deviation.  

A third statistic commonly applied is the mean and maximum bias, which is the mean of 

the largest residual value of each 10th of the environmental gradient, and the maximum 

residual value of the entire training set, respectively (ter Braak and Juggins, 1993).  

Finally, linear regression, or simple visual inspection, of residuals along the 

environmental gradient is a useful method to check for systematic biases in estimation 

(Kucera et al., 2005).  

4.8.3. Assessing prediction error 

Following calibration of the transfer function, assessment of its predictive power 

requires some form of cross validation or split-sampling to test the model, to derive 

prediction errors, frequently measured by the root mean square error of prediction 

(RMSEP) (Birks, 1995).  As environmental information is required for the samples that 

are used to test the model, they must be taken from the pool of modern samples, or 

from a well constrained sediment core deposited during the time covered by 

instrumental records (Malmgren et al., 2001).  Due to the time and expense required to 

generate modern samples, routines have been developed to conduct cross validations 

that do not require partition of the calibration set.  The simplest of these is a ‘leave-one-

out’ cross validation, where the model is run multiple times with one sample omitted 

from the calibration set, and solved for, in each model run (ter Braak and Juggins, 1993).  

This technique is used extensively in paleoclimate research (e.g., Brooks et al., 2001; 

Kurcea et al., 2005; Hayes et al., 2005), although Telford et al. (2004) demonstrated this 

approach underestimates model errors when compared to a random split-sampling.  

Where a modern calibration set is large enough, the samples should be split into 

training and test sets, which provides the most robust test of the model’s predictive 

power outside its training set, and is therefore the best measure for inter-model 

comparison (ter Braak and van Dam, 1989; Birks, 1995; Telford et al., 2004; Guiot and de 
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Vernal, 2007).  However, even in large training sets (n>400 samples) many workers 

choose to assess prediction errors using cross validation techniques rather than split-

sampling (e.g., Hayes et al., 2005; Kucera et al., 2005; Xu et al., 2010; Lu et al., 2011).  

One example of a split-sampling technique is n-fold cross validation, where the 

calibration set is randomly divided into training and test sets numerous times (typically 

5-10), and the average of the tests used to obtain error estimates (Barrows and Juggins, 

2005).  While this technique is conceptually a more rigorous test of predictive power 

due to the greater proportion of excluded samples, in large training sets it tends to 

produce little change in performance statistics over leave-one-out methods.  

Recent attention to the assumptions of cross validation techniques and the methods 

employed in random split-sampling has identified deficiencies in these methods as they 

are commonly employed (Telford et al., 2004; Telford, 2006; Telford and Birks, 2009, 

2011b). The criticisms are principally based on the observation that the spatial 

autocorrelation in training sets violates the assumption of statistical independence 

between the training and test samples (Burrough, 1995).  Spatial autocorrelation is the 

tendency of neighbouring samples to be more similar than randomly selected samples.  

While this structure of proximal similarity is intuitively desirable for a quantitative paleo-

reconstruction, it has the effect of under-estimating prediction errors during cross 

validation compared to prediction errors assessed using spatially-independent test sets.  

In other words, a split-sampling routine that fails to consider the spatial relationship 

between the training and test sets does not provide a realistic demonstration of a 

model’s ability to extrapolate beyond its training data. 

A ‘worst-case’ scenario was demonstrated by Telford et al. (2004), where artificial data 

with no ecological relevance, but with spatially auto-correlated distribution on various 

scales, produced apparently robust cross validation statistics.  The potential effects are 

non-trivial: trials on five different biological datasets (including foraminifera, dinocysts, 

lake diatoms, pollen) suggest that model performance may be overestimated by up to a 

factor of three compared to testing against an artificial, but spatially independent, test 
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set (Telford and Birks, 2009).  That work found the effects to be particularly pronounced 

in models with no assumption of underlying structure in the species distribution along 

the target environmental gradient, such as the modern analogue technique (MAT) and 

artificial neural networks (ANN).  In a similar manner, the effect should become more 

severe in a weighted averaging with partial least squares (WA-PLS) model as additional 

components (axes) are incorporated (Telford and Birks, 2005; 2011b).   

Some consideration is given here to the presence and effect of spatial autocorrelation in 

Southern Hemisphere faunal training sets as this topic has received little attention to 

date.  Experiments on the SH-311 and NZ-98 dinocyst datasets, and a 1200 sample 

Southern Hemisphere foraminifera coretop training set (Crundwell et al., 2008; Hayward 

et al., 2012), indicates that spatial autocorrelation does improve apparent model 

performance compared to spatially independent test sets.  Although we find the effects 

are difficult to isolate and quantify using “real” data, we conclude that the effects are 

likely not as severe as the three-fold reduction in performance cited by Telford and Birks 

(2009). 

A description of the spatial autocorrelation experiments is included in Appendix 4.1, and 

are summarised below: 

1. The presence of spatial autocorrelation in the NZ-98 samples, sufficient to have 

an impact on transfer function performance, was established by monitoring the 

performance of a MAT model as analogues were excluded based on increasing 

geographic distance between the modern samples. 

2. The average distance over which samples were spatially autocorrelated was 

assessed by the range of an empirical semi-variogram (a plot of average variance 

between samples against distance between the samples).  This is approximately 

1000-1500km for both the SH-311 dinocyst and SH-1200 sample foraminifera 

training set.   
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3. An experiment was designed to document the effects of spatial autocorrelation 

on different transfer function models.  First, the SH-311 training set was 

systematically pruned to increase the distance between samples, and the 

performance compared to an equivalent random reduction in the number of 

samples.  Performance of the MAT and ANN models decreased faster than a WA-

PLS model as training set sample spacing become greater.  However, this type of 

pruning from the 311 sample dinocyst training set was recognised to result in 

training sets that were too small to make conclusions about the relative 

performance when reduced to 1000km inter-sample distances (average 30 

samples).  

4. This experiment was duplicated on the 1200-sample Southern Hemisphere 

foraminifera coretop dataset, again comparing MAT, ANN, and WA-PLS models.  

Generally, the results from the SH-311 experiment were confirmed when applied 

to the larger foraminifera-dataset; MAT and ANN model performance decreased 

more than WA-PLS models when validated on spatially independent test sets. 

The key conclusion from these exercises is that the ANN and MAT models do appear to 

derive a proportion of their performance from their ability to exploit autocorrelative 

properties of training sets.  The particular consequence of this is very poor performance 

when faced with “unknown” assemblages.  In such situations, our trials suggest WA-PLS 

model estimates are more likely to be reliable.   

4.8.4. Prediction error routines  

Two routines are adopted to test the predictive power for each of the models explored 

in this chapter: a cross-validation routine and a split-sampling routine using spatially 

independent test sets.   

For the cross-validation routine, WA, WA-PLS and MAT are cross-validated by a jack-

knifed leave-one out cross validation using the C2 programme (Juggins, 2005).  The 

equivalent cross-validation errors in the ANN model are calculated by the mean of 10 
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training runs where the training set is randomly divided 70:30, with the larger split used 

to train the model until performance (RMSE and r
2
) in the smaller test set is optimized.  

These cross validation routines are reasonably standard so allow comparison of 

apparent performance against that of other datasets, although with the caveats 

discussed above (e.g., Malmgren et al., 2001; Hayes et al., 2005; Kucera et al., 2005; Xu 

et al., 2010; Lu et al., 2011).   

The NZ-98 dataset is too small for meaningful split-sampling and sample spacing along 

the environmental gradient too irregular.  Moreover, having completed the exercise 

described below, we also concluded the SH-311 dataset is too small, and samples 

inappropriately distributed to employ a splitting routine.  However, we explored the 

split-sampling routine described below. Two splits were explored where a test set is 

spatially isolated from the training sets by the ca. 1000km range determined by semi-

variograms in Appendix 4.1.  As the purpose of the compilation in this thesis is to 

reconstruct Quaternary environments of the New Zealand region, a 68-sample group 

was isolated from the SH-311 training set (NZ-68), which are over 1000km from the 

nearest samples on the east coast of Australia (Figure 4.5A).  The remaining 243 samples 

were used for training and cross validation of the models: the repetitions of the 70:30 

split required to train the ANN used only these 243 samples, while a leave-one-out cross 

validation was run on the 243 sample training set before testing on the NZ-68 

independent test set.  Apart from the New Zealand region, the only significant 

concentration of samples with adequate distribution along a temperature gradient, and 

for which adequate analogues for the test set appear in the training set is the SW 

Atlantic.  Therefore, a second spatially independent test set of 54 samples was split from 

the SH-311 training set in this region (WATL-54) to further explore the predictive power 

of the models beyond the geographies in which they were trained (Figure 4.5B).  In this 

case, 7 samples from the central Atlantic were discarded to preserve the spatial 

independence of the test set, leaving 250 samples for model training.  These two 

training sets cover an environmental range of 20˚C and 27˚C respectively, although 

samples are distributed unevenly along this gradient. 



Chapter 4 

 

 
136

 

4.9. Transfer function performance 

4.9.1. Introduction 

Of the four methods explored, the ANN model had the best performance statistics when 

assessed using a leave-one-out cross validation routine (Table 4.1, Figures 4.6 – 4.8).  

The WA model performed the most poorly, while WA-PLS and MAT models were similar.  

For all models, the NZ-98 part of the SH-311 dataset performed better than the entire 

SH-311 dataset.  The best performance was observed towards the middle section of 

each environmental gradient, and significant performance reduction was observed at 

the tails. 

All models performed more poorly when assessed using the split-sampling routines 

(Figure 4.9) compared to the leave-one-out equivalents.  In all models, the window of 

lowest RMSEP remains in the center of the gradient, but all models featured a 

systematic bias in residuals, resulting in under- and over-estimation of SST at the 

warmest and coldest parts of the gradient, respectively.  As alluded to above, after 

further consideration of the split-sampling method employed, this systematic bias is 

considered to be an artifact of a poorly designed test set.  The ANN and WA-PLS models 

are the best of the four tested for SST reconstruction using Southern Hemisphere 

dinocysts.  Although the regional training set performed better than the SH-311 dataset,  
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when the performance decline at the tails is considered, the NZ-98 dataset does not 

cover a sufficiently large SST gradient to be useful for reconstruction on orbital 

timescales in most settings. 

4.9.2. Leave-one-out prediction error 

Of the four models, the ANN performed best in each of the four high-level statistics 

examined, with an average RMSE of 1.47˚C across the entire Southern Hemisphere, 

reduced to 1.14˚C when only the NZ-98 training set is considered, and had the lowest 

maximum and average bias, and highest r
2
 correlation (Table 4.1).  The RMSE of the next 

strongest model, the MAT, was 0.4˚C higher than the ANN model, while the poorest 

model, WA, had a RMSEjack twice that of the ANN, of 2.93˚C across the entire SH-311 

dataset.  For the NZ-98 dataset, the WA-PLS model found no advantage in additional 

components from further axes, so performs the same as a WA model.  For the SH-311 

training set, WA-PLS showed significant performance improvement over the WA model 

by applying two components (Table 4.1).  
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These average RMSE statistics disguise a window of optimum performance in each 

model at the center of the gradient, where errors are generally well below the average, 

with the obvious correlative that performance at the tails is poorer than the average 

(Figure 4.6).  This window of optimum performance is longest for the ANN model, where 

average RMSE for the SH-311 training set between 10˚C - 20˚C was ~1.2˚C.  Performance 

reduction at the ends of the gradient is most marked in the WA model, but RMSE is 

generally above 3˚C in the WA-PLS and MAT models for SST above 22˚C and below 8˚C. 

Model performance shows a marked correlation to sampling density along the SST 

gradient, particularly for the WA model.  This effect on WA and MAT model 

performance has been explored using artificial data (Telford and Birks, 2011b), where it 

was demonstrated that MAT and WA performance is inversely proportional to sample 
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density.  While Birks et al. (2010) speculate that ANN models should be susceptible in a 

similar way to low sampling density along the environmental gradient, Figure 4.6 shows 

that although there is noticeable reduction of performance at the tails in the ANN 

model, this reduction is not proportional to sampling density to the same degree as in 

the WA and MAT models.  Rather, performance appears to reduce when sample 

numbers in a given section of the gradient fall below a critical threshold; ~10 samples 

per 10
th

 of the environmental gradient in the case of the SH-311 training set. 

Although total bias in the WA models for both the SH-311 and NZ-98 models is very low 

(Table 4.1), this averaging disguises a pervasive bias in the residuals under leave-one-

out cross validation (Figures 4.7 – 4.8): the model always under-estimate SST when 

measured temperature is warmer than 17˚C, and has a strong tendency to overestimate 

below 10˚C.  This systematic bias is present, although less marked, in the WA-PLS and 

MAT models using the SH-311 training set, and is virtually absent from the ANN model 

(Figure 4.8).  However, this bias is a more obvious feature of all four models using the 

NZ-98 training set (Figure 4.7). 

The best dinocyst models explored here have RMSE statistics that are within the range 

of those presented for transfer functions in the SW Pacific using foraminifera, which is 

the group most commonly applied to paleoenvironmental reconstructions in the region 

(Barrows et al., 2005; Kucera et al., 2005; Crundwell et al., 2008; Hayward et al., 2008; 

2012).  Kucera et al. (2005) reported a 1.2 - 1.5˚C RMSE for SW Pacific core top 

assemblages at the latitude of New Zealand, while Kolodziej (2010), using the same MAT 

and ANN models and training sets applied in Crundwell et al., (2008), and Hayward et al. 

(2009, 2011), reported RMSE errors of 1.21˚C and 1.01˚C for MAT and ANN models, 

respectively.  Barrows et al. (2005) reports a five-fold random split-sampling cross 

validation error of 0.87˚C for ANN models, and a 0.77˚C RMSE when the average results 

of MAT, ANN and Revised Analogue Method models are considered. 



Chapter 4 

 

 
140

 

   



Chapter 4 

 

 
141

4.9.3. Split-sampling prediction error 

The performance errors resulting from the split-sampling routines are larger than leave-

one-out cross validation for all four models.  The reduction in performance is largest for 

the ANN models, where the RMSEP is twice that of the comparable leave-one-out 

errors.  RMSEP of the WA and WA-PLS models is ~30% larger in split-sampling cross 

validation than leave-one-out, while the RMSEP for MAT is ~50% larger (Table 4.1).   

As in the leave-one-out cross validation routine, a window of optimum performance is 

observed towards the center of the gradient (Figure 4.9).  Performance is generally  

strongest between SSTs of 8˚C and 20˚C, but narrower windows were observed in the 

WA model for the NZ68 test set, and for the ANN model for the WATL test set.  

A significant feature in all four models is the addition of a systematic bias in the test set 

residuals (Figure 4.9, middle plot).  As in the leave-one-out cross validation, this 

systematic bias is largest in the WA model, which leaves it with almost no predictive 

power between 8-20˚C.  The bias in the other three models is particularly pronounced 

where SSTs exceed 18˚C, but is a feature of the residuals above 16.5˚C.  

This systematic bias illustrates the importance in appropriate selection of test sets, 

which, if poorly designed, may provide an overly pessimistic view of transfer function 

performance.  Initially, these test sets were selected to ensure there were adequate 

analogues to the test set in the training set, based on K-means cluster analysis of the 

training set (Chapter 2).  However, a review of these analogues, plotted against SST, 

suggests that bias is inevitable.  Two obvious examples of inappropriate test set 

selection resulting in systematic bias stand out.  A significant feature of the warm end of 

the WATL-54 test set is assemblages that belong to “Cluster 7” in the k-means cluster 

analysis in Chapter 1 (Figures 2.15-2.17).  Although theses samples have numerous 

similar samples in the training set that are located at a similar latitude on the other side 

of the Atlantic (Figure 2.3), the lower SST of these analogues would clearly lead to 

systematic underestimation of these samples (Figure 2.15).  A similar situation exists in 

the NZ-68 test set.  Many of the warmer samples in that test set belong to “Cluster 3”  
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(Figure 2.13).  Although similar assemblages are present, the nearest analogue samples 

in the training set are around South Australia, in waters over 4°C cooler than those of 

the test set, although in this example there are also a series of similar (“Cluster 3”) 

samples in the South Atlantic (Figure 2.13) within the correct SST range that the transfer 

function models have clearly not used. 

Thus, although there are analogues available for each sample in the test sets, in each 

case splitting the SH-311 dataset has resulted in significant loss of information on 

taxonomic ranges along the SST gradient.  Although the absolute RMSEP of the split-

sampling routine appears to be an inadequate test of true prediction error, the relative 

performance of the different models remains highly informative.  Where fossil 

assemblages outside the range of the modern training set are encountered, the WA-PLS 

model has significantly better power than the analogue based MAT or ANN models.   

4.9.4. Prediction error in other training sets 

Having concluded that the predictive errors of the SH-311 dinocyst training cannot be 

reliably assessed using split-sampling methods, the much larger Southern Hemisphere  

foraminifera training set was revisited.  The purpose of this exercise was two-fold, (i) to 

further explore the effects of spatial autocorrelation on a training set that is large and 

(possibly) sufficiently balanced to withstand split-sampling without the same problems 

encountered in the SH-311 dinocyst training set, and (ii) to better understand the errors 

associated with the foraminifera faunal SST proxy, as it is a contemporary proxy-record 

to the dinocyst paleo records generated in the current study.   

The methods and results of this exploration are detailed in Appendix 4.2, and are 

summarised here.   

1. Leave one-out cross validation established similar errors to those published using 

the same training set (Kolodziej, 2010).   

2. Spilt-sampling routines, where test sets were spatially independent of the 

training sets, eroded model performance by a factor of ~2 for MAT and ANN  
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models, ~1.5 for WA-PLS models, and did not change the performance of WA 

models. 

3. Careful inspection revealed that even with a training set of this size, most of the 

test and training splits were poorly balanced taxonomically.  This resulted in a 

systematic bias in the residuals that was similar to, but more subtle than, that 

encountered when split-sampling the SH-311 dinocyst training set.  A ‘balanced’ 

spatially independent test set and training set was finally selected for the 

southern part of the SW Pacific.  Then, performance reduction of the split-

sampling routines compared to the leave-one-out cross validation was between 

a factor of 1.2 (WA-PLS) and ANN performance reduced by a factor of 1.8.   

4. These experiments confirm the general observation (Telford and Birks, 2009, 

2010, 2011a, 2011b) that WA and WA-PLS models have generally greater ability 

to extrapolate beyond their training sets.  However, this experiment suggests 

that for a Southern Hemisphere foraminifera training set, the ‘artificial’ 

improvement in model performance due to spatial autocorrelation is at the 

lower end of the range suggested by Telford and Birks (2009), being about 40%, 

or 0.5°C RMSEP in an ANN model.   

In conclusion, we infer that the effects of spatial autocorrelation on transfer functions 

using marine micro-faunal or -floral training sets may be similar across all fossil groups 

that are sourced from the same region, and the assemblage distributions are influenced 

mostly by the same abiotic gradients.  As biogeographic complexity increases, for 

example with the additional sea ice and salinity gradients seen in the high Arctic, so the 

effects of spatial autocorrelation in training set performance may become more 

pronounced, even towards the upper end of that suggested by Telford and Birks (2009). 
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4.10. Structure of residuals 

4.10.1. Introduction 

Observation of spatial structure and taxonomic correlation of model residuals provides 

additional detail of model strengths and weakness than are available by assessing model 

performance along the SST gradient discussed above.  While prediction errors in some 

regions are relatively uniform and also less than the model average, in other regions, the 

magnitude and sign of prediction error vary a lot over relatively short distances.  

Particular care is required when SST reconstructions are made in geographic regions of 
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high variability in the residuals, as model skill may be significantly below the average.  

Model performance also varies across the seven dinocyst clusters identified in Chapter 

2.  Fossil assemblages that are similar to those of clusters that perform relatively poorly 

during cross validation may also result in less accurate paleo reconstructions.  

4.10.2. Spatial distribution of error 

The residuals around the New Zealand region are examined from the leave-one-out 

cross validation procedure of the SH-311 training set, using a gridding algorithm in 

Ocean Data View (Schlitzer, 2011).  All model errors <2˚C are recoded to 0˚C so the areas 

of most significant error are easily identifiable.  Spatial distribution of residuals derived 

from split-sampling cross validations are not considered due to the systematic bias 

attributed to the poorly balanced test sets (Section 4.9), so the residuals of the leave-

one-out cross validation are plotted (Figure 4.10). 

The ANN model (Figure 4.10C) has the fewest samples with large errors.   

All three models have patches where SST is underestimated: east of the North Island as 

far south as the Chatham Rise, and an area of overestimation in the waters off eastern 

South Island (Figure 4.10).  The number of samples and the area affected by these 

systematic errors are much larger in the WA-PLS and MAT models compared to the ANN 

model.  In the WA-PLS and MAT models, this has the effect of producing a maximum 

prediction error of >5˚C across the STF east of New Zealand.  This range of prediction  

error is at least as large as the SST gradient across the STF (e.g. Chiswell, 2001).  Another 

region to the east of New Zealand where SST is overestimated by the WA-PLS and MAT 

models is around the Campbell Plateau, south east of the South Island.   

Prediction errors in the east Tasman Sea are fairly uniform for all three models, and are 

lowest in the ANN model.  Both the WA-PLS and MAT models have a >4˚C total error 

between some coastal and oceanic samples off the West Coast of the South Island 

(Figure 4.10A, 4.10B). 
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The MAT model has the most uniform errors in Bass Strait and south of Australia, while 

only a single sample in the ANN model has a prediction error of >2˚C.  In contrast, the 

WA-PLS model has limited success reconstructing the SST in Bass Strait.   

Although Barrows and Juggins (2005) reduced RMSE values by 10% of their planktonic 

foraminifera training set by using the average of MAT, ANN and Revised Analogue 

Method models, there appears little performance benefit from merging models in the 

SH-311 dinocyst dataset (Figure 4.10D).  When the two strongest models from each 

family are tested, and the ANN and WA-PLS are merged, none of the areas of systematic 
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bias are improved.  Notwithstanding this observation, since the experiments above 

demonstrate that WA-PLS has superior predictive power over MAT and ANN for 

“unknown” assemblages, a combination of model results are used to interpret the east 

Tasman Sea record in Chapter 5. 

4.10.3. Taxonomic distribution of error 

Of the seven clusters based on taxonomic similarity from the SH-311 dataset (Chapter 

2), the RMSE of Clusters 1, 2, 3, 4 and 7 all exceed the average RMSE for at least one of 

the models (Figure 4.11).  Of these, Cluster 2 exceeds the average in all three models, 

and by the greatest amount, Cluster 1 exceeds the average in the WA-PLS and ANN 

models, and Cluster 7 exceeds that average in the MAT and ANN models.  The relatively 

poor performance of Clusters 1 and 7 is expected, as they sit at each end of the SST 

gradient, where performance has already observed to be poorest (Figure 4.6).  The 

relatively poor performance of Cluster 2 is of more interest.  This cluster has a large SST 

range, and is most common in the Atlantic, although it is represented in four samples 

from the New Zealand region (which are the samples with large residuals to the east of 

the South Island in Figure 4.10).  This cluster is characterized by very high relative 

abundances of Brigantedinium spp., with a minimum relative abundance of 60%, and 

median of >80%.  Similar concentrations of Brigantedinium spp. in fossil samples may 

also result in relatively poor SST reconstructions.  In contrast, RMSE of samples in 

Clusters 5 and 6 were consistently lower than the average.  Taxa characteristic of  

(although not restricted to) these clusters are Impagidinium aculeatum, I. strialatum, I. 

sphaericum, I. patulum, Nematosphaeropsis labyrinthus, Spiniferites mirabilis, S. 

ramosus, and Operculodinium centrocarpum LP – all taxa shown to be relatively good 

carriers of a SST signal in Section 4.5.4.   
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4.11. Testing models on Late Quaternary DSDP Site 594 

Requirement 10  Critical ecological, numerical, and paleoclimatic evaluations of 

reconstructions 

4.11.1. DSDP Site 594 

The SH-311 training set was tested on a Late Pleistocene dinocyst record from DSDP Site 

594 (Marret et al., 2001), using WA-PLS, MAT, and ANN models, and the quality of the 

reconstruction critically assessed using the tools described in this chapter. 

Site 594 was drilled during DSDP Leg 90 in 1983 (Nelson, 1986).  The site is located on 

the southern margin of the Chatham Rise, approximately 300km east of Dunedin in 
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1400m water depth (Figure 4.1).  The dinocyst record used here was generated from the 

upper 20m of core, which consisted of alternating layers of glacial hemipelagic muds 

dominated by terrigenous silty-clay with subordinate bio-siliceous and nannofossil 

material, and interglacial foraminifera-bearing nannofossil ooze (Nelson, 1986; Marret 

et al., 2001).  Age control is based on matching δ
18

O of the planktonic foraminifera 

Globigerinoides bulloides to a globally-tuned benthic δ
18

O stack LR04 (Lisiecki and 

Raymo, 2005; Ryan, 2010).  The upper 20 metres below sea floor (mbsf) covers the last 

143ky, and extends back to MIS6.  83 samples were analysed for dinocyst assemblages 

over this interval (Marret et al, 2001), and one sampling gap occurred at MIS 5d (14.5 – 

15.5 mbsf) due to poor core recovery. 

 

A MAT model using 118 sea-floor analogue samples was previously used to reconstruct 

winter and summer SST, and sea surface salinity by Marret et al. (2001).  Their model 

recognized periods of relative warmth during MIS 5e, 5c, 5a, 3 and the Holocene.  SST 

variations were large, up to 10˚C between the warm/cold stages of MIS 5.  The LGM-

Holocene transition was modeled as a 6˚C increase in SST, and modeled Holocene SSTs  
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were ~ 2-4˚C cooler than modern measurements.   

4.11.2. Exploration of error indicators 

A Detrended Correspondence Analysis (DCA) is used as an exploratory tool to identify 

samples in the core that do not have analogues in the modern training set.  A biplot of 

the first two DCA ordination axes of the SH-311 training set, overlain by the 83 DSDP Site 

594 samples, shows that about half of the fossil assemblages plot in ordination space 

not occupied by any of the training set samples (Figure 4.12).  The cross validation 

routines conducted on the modern dataset in Section 4.9 suggest that model errors are 

likely to be greater for these samples, particularly for MAT and ANN models.  These 

samples are distributed throughout the core, but are a particularly dominant feature of 

the Holocene (MIS1), MIS4, and MIS5b, but are less common in MIS5e assemblages 

(Figure 4.13B). 

There is some correlation between high MAT dissimilarity scores (scores greater than 

the maximum [99
th

 percentile] within the training set) and the samples that plot outside 

of the modern DCA ordination range, particularly in the Holocene, and the early parts of 

MIS 5a, 5c and 5e (Figure 4.13B).  However, there is also a series of samples from MIS3 –

4 with relatively low dissimilarity scores, but which plot outside the modern range, while 

some of the assemblages with elevated dissimilarity scores in MIS 5a plotted within the 

scatter of modern samples.  Ideally, all fossil samples would plot within the ordination 

range of the training set, and all would have dissimilarity scores within the modern 

range.  That a significant number of these samples fail one or both tests suggests that 

this may be a relatively poor record for quantitative SST reconstruction using dinocyst 

assemblages.  Of the two measures of similarity explored, the ordination approach is 

used here in preference to the dissimilarity score.  A single sample contains >60% 

Brigantedinium spp., at 39ka (arrowed in Figure 4.13B) so has an affinity to the modern 

cluster of samples that consistently produce poorer than average error rates, and was 

removed from the final reconstruction in Figure 4.13G. 
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4.11.3. Model reconstructions  

The three transfer function models produce broadly similar reconstructions, but with 

characteristic differences (Figure 4.13C-E).  Each produced a similar magnitude of SSTs 

variation and maxima, with SST estimates between -0.2˚C to 15.3˚C.  Neither the WA-

PLS nor the ANN models reconstructed the MIS2 – Holocene transition, with SSTs 

remaining within the glacial range, while stable Holocene SSTs similar to modern values 

were reconstructed by the MAT model.  The structure of the MAT estimates obtained 

here are very similar to those obtained by Marret et al. (2001), possibly reflecting the 

fact that few new high-latitude analogue samples have become available since their 

work. 

The similarities between the WA-PLS and ANN models are striking, while the MAT 

reconstruction is generally characterized by much greater SST fluctuations than the 

other two models.  Examples of such behavior in the MAT model are a 14˚C warming 

between MIS5b and 5a (the other models reconstruct <6˚C change over this interval) 

and fluctuations of >10˚C during MIS4.  Fluctuations of this magnitude were also a 

feature of the MAT results of Marret et al. (2001).   

Three other SST proxies are available from the region: a foraminiferal-based faunal 

transfer function using an ANN model from DSDP Site 594 (Schaefer et al., 2005; 

Haywood et al., 2008), a Globigerina bulloides Mg/Ca SST record from the nearby giant 

piston core MD97-2120 (Pahnke et al., 2003), recalculated using a regional Mg/Ca 

calibration for Globigerina bulloides (Marr et al., 2011) (Figure 4.13F) and an alkenone 

SST record from MD97-2120 (Pahnke and Sachs, 2006).  Of the four reconstructions, the 

dinocyst models generally produce the lowest SSTs (Figure 4.13), with MIS5e being 6˚C 

cooler than the Mg/Ca record, and MIS2 ~2˚C cooler.  All three dinocyst models also 

exhibit greater variation than the other faunal reconstructions, particularly during MIS5e 

and 5c.   

When assemblages that plot outside of the modern ordination space are removed from 

the reconstruction, the average results of the remaining samples become slightly more 
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consistent between the models (from an average range of 2.4˚C to 2˚C), presumably 

because the remaining samples are more similar to those in the training set (Figure 

4.13G).  This increased consistency between model results is due only to the removal of 

the more extreme results from the MAT model.  The mean variation between the WA-

PLS and ANN models remains unchanged at 0.9˚C.  This is intriguing, as the modern 

cross validation exercises here suggest a WA-PLS model should have better success at 

reconstructing unfamiliar samples than an ANN model, so the mean variation between 

the model outputs should decrease as unfamiliar samples are removed.  The cause of 

this relative stability of the ANN model in this instance is unknown, but it is a sharp 

contrast to the great variability observed in the MAT results, and highlights the value in 

considering the results of multiple transfer models (Guiot and de Vernal, 2007).   

4.12. Conclusions 

In this chapter, assumptions and models to reconstruct SST using the SH-311 Southern 

Hemisphere dinocyst dataset were explored.   

4.12.1. Selection of best models 

Three models, the WA-PLS, MAT, and ANN models, appear the most suitable for paleo 

environmental reconstructions, based on their performance under “leave-one-out’ cross 

validation and split-sampling.  WA has little value due to the pervasive bias in residuals.   

While performance of the WA-PLS model is relatively poor under leave-one-out cross 

validation, it is retained because of its relative robustness when tested outside of its 

training set.  Although the performance statistics were below the four model average 

during “leave-one-out” cross validation, they changed relatively little in the split-

sampling routine.   

The ANN model is preferred over the MAT model.  The ANN has better cross validation 

RMSE and r
2
 statistics.  Although the performance of both reduces under split-sampling 

cross validation, the ANN performance appears slightly more stable.  The MAT model 

may improve as additional training samples become available to the dinocyst dataset.   
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Where the ANN model encounters familiar fossil assemblages, it should out-perform 

WA-PLS.  As discussed in Section 4.6, we do not have precise methods to identify non-

analogue situations, but a combination of dissimilarity scores that exceed the range of 

those encountered in the modern dataset, and the passive inclusion of fossil samples 

over a principal components analysis of the modern training set both assist.  An 

application of this observation is explored in Chapter 5, where ANN model estimates are 

discarded in favour or WA-PLS SST estimates where poorer modern analogues are 

encountered.   

4.12.2. Errors of best models. 

The NZ-98 dataset produced a range of RMSEs from 1.14°C (ANN) to 1.67°C (WA-PLS).  

The temperature gradient covered by this dataset was 7°C – 20°C, but the effective 

range was reduced by edge effects. 

RMSEs of the SH-311 dataset were 1.47˚C (ANN) to 2.29˚C (WA-PLS), with temperature 

extremes reconstructed more poorly than mid-latitude temperatures.  Mid-latitude 

RMSE for the ANN model is <1.2˚C. 

For the SH-311 training set, prediction errors obtained using split-sampling of spatially 

independent test sets were 1.3 times (WA-PLS) and 2.1 times (ANN) poorer than leave-

one-out cross validation.  Further exploration revealed the test sets to be poorly 

balanced: so the split-sampling was not an adequate test of transfer function 

performance.  Initial split-sampling cross validation using spatially independent test sets 

of a larger faunal training set for foraminifera suggests a similar performance reduction 

compared to leave-one-out cross validation to that observed in the SH-311 dinocyst 

training set.  However, even with the larger training set, a spatially independent test set 

that is appropriately balanced is difficult to achieve.  For the part of the SW Pacific SST 

gradient where an appropriate spatially independent test set was identified, 

performance reduction of the ANN model was about 1.8 times, while performance 

reduction of the WA-PLS model was about 1.2 times.   
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4.12.3. Improvements to dinocyst-based environmental estimates 

The following work would improve the use of dinocyst assemblages as quantitative 

environmental proxies in the SW Pacific, listed in decreasing order of importance. 

• Additional high quality sea-floor samples from key areas.   In the SW Pacific, 

areas that would benefit from additional sampling include the south Tasman Sea 

and north Tasman Sea, and off-shore east of the North Island of New Zealand 

(10-20 samples from each area).  Although dinocysts are sparse in the area, 

additional (20-30) samples from the south west Pacific sector of the Southern 

Ocean would contribute significantly to the predictive power of the models for 

SSTs <10˚C.  In addition, while new samples from much of the Southern 

Hemisphere would be useful, the Indian Ocean and margins remain poorly 

sampled. 

• Better-resolved environmental climatologies, particularly across frontal systems.  

In some places, such as across the STF, dinocyst assemblages appear to change 

more abruptly than the more gradual change shown by 1˚ WOA climatology, for 

example the 0.5˚ resolution CSIRO Atlas of Regional Seas, which is progressively 

improving resolution and quality control, particularly in data-rich regions. 

• Novel modeling approaches.  Other machine learning approaches, such as 

classification-based ‘Random Forest’ models (Breiman, 2001) do produce better 

calibration statistics on foraminifera training sets than the models explored here 

(G. Scott, pers comm, 2012), and may have other advantages in that they appear 

easier to describe and “see” the decisions paths than, for example, ANN models.  

However, like ANN models, rigorous assessment of prediction errors would be 

necessary to guard against spurious over-fitting during training. 
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Appendix 4.1. Spatial autocorrelation 

Appendix 4.1.1. – Introduction 

Spatial autocorrelation of faunal datasets is the condition of a spatial dataset where 

analogue samples are located too close to be effectively independent of one another.  In 

such a situation, the assemblage of a sea-floor sample can be (partially) predicted by the 

composition of its neighbours.  In a sea-floor assemblage, three types of increased 

similarity between neighboring samples occur: 

1. Lateral transport before deposition results in a mixing of otherwise distinct 

assemblages, resulting in a degree of similarity between adjacent sites; 

2. Lower spatial variation than sampling density in the primary environmental 

variable results in similarity between adjacent sites; 

3. Lower spatial variation than sampling density in secondary environmental 

variables also results in similarity between adjacent sites;  

The focus of recent papers on spatial autocorrelation has considered the effects of type 

(3) correlation, i.e. the contribution the secondary “nuisance” environmental gradients 

have on the performance of transfer functions (Telford et al., 2004; Telford and Birks, 

2009, 2011).  In other words, they were exploring whether model performance relies 

only on variation due to the primary environmental variable, or whether the 

assemblages and models also incorporate variation from other environmental gradients.  

They therefore start with the following test: 

“If performance deteriorates more when geographical neighbors are deleted 

than when environmental neighbors are deleted, the performance loss relative 
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to the random deletion cannot just be because the environmental variable being 

reconstructed is autocorrelated” (Telford and Birks, 2009). 

Having demonstrated this is so for various marine training sets, they conclude that the 

best way to account for the effects of secondary environmental gradients is to 

determine the average distance over which secondary gradients have an effect on 

model performance, then exclude samples nearer than this distance in a subsequent 

cross validation (the h-block cross validation of Telford and Birks, 2009).   

They acknowledge that the distance of h is therefore critical: too large a distance will 

result in overly conservative estimation of performance, as unnecessary samples will be 

excluded, while if too small, the effects of spatial autocorrelation will remain.  Telford 

and Birks (2009) suggest that the range of an empirical semivariogram is the most 

suitable way to obtain h.  An empirical semivariogram is a plot of the difference-squared 

of the values between each sample point in the training set, averaged into regular bins 

of separation distance, (typically bins of ~250km in a marine dataset) (Burrough, 1995).  

In a spatially autocorrelated dataset, this graph has a positive slope for small-distance 

bins, then flattens out.  The distance at which the graph flattens is the range beyond 

which the average difference between samples does not increase.  Since Telford and 

Birks (2009) were seeking to account for variation in secondary gradients, they 

constructed empirical semivariograms using residuals of transfer function models, 

because if there was a perfect relationship between the assemblage and the primary 

environmental gradient, there would be no residuals.  On the other hand, if an 

important autocorrelated predictor is omitted from a regression analysis, the residuals 

will be autocorrelated (Telford and Birks, 2005).   

 

Appendix 4.1.2. Spatial autocorrelation in the SH-311 training set 

The presence of spatial autocorrelation was established by comparing the reduction of 

MAT performance during progressive removal of proximal samples (i.e. samples near to 
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each target sample during a leave-one-out cross validation) to performance during 

random removal of the same proportion of samples.  Calculations were undertaken in 

Excel, and distances between samples were calculated as great circle distances and each 

plotted point is the average of 15 random deletion runs.  When applied to the SH-311 

training set, the MAT model appears to exhibit a degree of spatial autocorrelation.  

Performance is (slightly) worse when nearby samples are excluded than when nearby 

samples in environmental space are excluded, and is much worse than when random 

samples are removed, to the extent that removal of samples within 200km from 

consideration during cross validation had the same reduction in r
2
 as random removal of 

80% of all available analogue samples (Figure A.4.1.1). 

An empirical semivariogram was constructed of model residuals from a WAPLS model 

with leave-one-out cross validation of the SH-311 training set, following Telford and 

Birks (2009), and applying 250km bins.  The result is surprising, with a high nugget, and 

very little structure (Figure A.4.1.2).  While a flat empirical semivariogram is 

characteristic of a purely random variable with no correlation structure (e.g. Thompson 

et al., 2007), it is more likely this structure is due to the training set covering a range of 

variances in the residuals.  A similar problem was encountered by Telford and Birks 

(2009) when constructing semivariograms for a Northern Hemisphere dinocyst training 

set that included samples from the Pacific and Atlantic oceans.  A semivariogram of only 

the SW Pacific (Figure A.4.1.2) shows slightly clearer structure.  Although we have not 

attempted to formally fit variogram models to the empirical semivariograms, an 

approximate fit of a spherical or exponential model would result in a range of ~1500-

1750kms.  For the SW Pacific part of the training set, then, one could infer that samples 

more distant than this are not spatially autocorrelated.  However, the nugget variance is 

a high fraction of the sill variance, which has been used as a diagnostic characteristic of  
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generally low spatial autocorrelation of a lake based diatom training set (Telford and 

Birks, 2009).To test the performance of WA, WA-PLS, MAT and ANN techniques on 

spatially independent datasets, we pruned the SH-311 analogue dataset toward one 

that is approaching “independent” following the criteria established in the empirical 

semivariogram.  These ‘spatially independent’ datasets were created by progressively 

pruning the most highly connected samples from a randomly ordered SH-311 sample list 

until no analogue samples were closer than 1000kms.  As multiple solutions are possible 

in this iterative pruning, we created five random datasets to estimate the range of 

outcomes from this approach.  A second group of five datasets was also created by 

random deletion of the same proportion of samples required to create the spatially 

independent datasets above (Figure A.4.1.3A).  When sampling the “random” datasets,  
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sampling was constrained to ensure that the sampling frequency along the 

environmental gradient matched that of the spatially sampled training set (Figure 

A.4.1.4).  In order to ensure that the “random” data sets also had significantly lower 

distance between samples, the source of the samples was restricted to two geographic 

areas (Figure A.4.1.3B).  WA-PLS, MAT and ANN models were created from each of 

these pruned datasets using the same settings as described in Section 4.8, except that 

the optimum number of MAT analogue samples was determined for each dataset, as 

this decreased with training set size (typically 3 analogues were used).  Two 

observations are possible from the results of this exercise (Figure A.4.1.5): 1) there is a 

slight difference in model performance between WA-PLS, MAT and ANN models for the 

“spatially independent” test sets, with WA-PLS slightly out-performing ANN and MAT, 

but 2) there is no significant difference between model performance of the “spatially 

independent” training sets and the “random” training sets.  Either proximity of samples 

in a training set does not matter, or pruning the 311-samples training set in this way 

results in training sets that are too small for meaningful comparison. 

The same exercise as above was repeated on a much larger Southern Hemisphere 

foraminifera coretop training set.  This training set is the one used in Crundwell et al.  
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(2008) and Hayward et al. (2008, 2012).  Version 0611C3 was used, which is the 35-taxa 

version of the training set compiled by G. Scott in August 2011.  Some duplicates were 

removed from the dataset, leaving 1157 coretop samples from across the Southern 

Hemisphere (Figure A.4.1.6E).  An empirical semivariogram of the entire training set 

shows clearer results than for the dinocysts, with a range of ~1000kms (Figure 

A.4.1.6D).  Given the size and distribution of the training set, in addition to the spatially 

constrained training set with no samples nearer than 1000kms, three separate 

“random” training sets were created in the Pacific, Indian and Atlantic ocean basins 

(Figure A.4.1.6B), with the same frequency distribution along the environmental 

gradient (Figure A.4.1.6C), and five duplicates were created of each of the four training 

sets.  The range of model performance represents the range of the five models (Figure 

A.4.1.6A).  For the MAT models, RMSE from leave-one out cross validation of the 

randomly sampled training sets (solid bars) was ~1˚C lower than for the 1000km training 

set.  RMSE of the 1000km training set was similar to that when each of the randomly 

sampled training sets were alternately used as test and training sets.  In other words, 

when the MAT model was asked to reconstruct SST of unseen assemblages, the 

performance was ~1˚C, or on average 1.8 times worse, than a leave-one-out cross 

validation.  The WA-PLS model was similar to the MAT, in that the leave-one-out cross 

validation performance of the 1000km training set was poorer than the three randomly 

selected training sets, although there was less to differentiate them.  Although 

performance declined when the randomly sampled training sets were used as spatially 

independent test sets, the proportional decline in performance was not as severe as the 

MAT model, being about 0.4˚C, or 1.2 times.  ANN clearly struggles more with small 

training sets than the other two models, with performance poorer across all 

permutations in this simulation.  Although the magnitude of error is much greater in the 

ANN models, the structure of those errors is most similar to the MAT models.  RMSEs 

are generally lower for the randomly sampled training sets where the samples are closer 

together, than for the 1000km training sets.  Like the MAT, performance is erratic when  
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the models built for each region are used to determine SST on another region, with 

RMSE declining by a similar proportion to the MAT models, about 1.8 times. 

Appendix 4.1.3. A comment on the approach 

The small-training set sampling undertaken here fails to get to the heart of the actual 

effects of spatial autocorrelation on training sets, but it does provide some interesting 

insights on the relative performance of different models when faced with unknown 

analogues, which is of utility when weighing up conflicting model results from fossil 

assemblages. 

The method recommended by Telford and Birks (2009) to account for the effects of 

spatial autocorrelation (of h-block cross validation) has not been attempted here.  While 

it appears a conceptually elegant solution, Telford and Birks (2009) themselves 

acknowledge that the averaging process in selecting a single distance h for the entire 

training set is not ideal: “One key assumption of geostatistics is that the variable is 

stationary, i.e. that the difference between observations depends only on their 

geographical separation.  This assumption is not satisfied for ocean data: much of the 

environmental variability is encapsulated in oceanic fronts, whereas gyres have only 

small environmental gradients” (Telford and Birks 2009).  They justify their treatment of 

the ocean as a water mass of fixed variability by the need to obtain a value of h, but do 

not explicitly consider the effects of this assumption.  This blanket approach probably 

results in a more conservative h than is necessary.  Since much of the environmental, 

and assemblage, variability is concentrated at ocean fronts, wholesale exclusion of 

surrounding samples within h-distance of the test sample will frequently result in the 

unnecessary exclusion of independent samples during a cross validation exercise.  

Likewise, the most important secondary environmental gradients in the SH-311 training 

set are distance from shore and productivity, variability of which are also not 

‘stationary’.  The spatial effects of these environmental gradients varies over different 

distances, depending on e.g. coastal effects (riverine input), bathymetry (wide vs narrow 

shelves), and the source of the productivity (small scale transient upwelling vs oceanic 
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scale upwelling).  The SH-311 training set covers extremes of all these  

situations, while simply taking the average of such disparate environments would result 

in a poor test of model performance. 

A better solution, also not attempted here, might be to derive sample-specific values of 

h, thus accommodating the non-stationary nature of the modelled environment.  If this 

were attempted, a useful additional refinement would be to consider directionality in 

the variance at this scale.  Variance of the environmental gradients would frequently be 

anisotropic: the intense SST variation across fronts in the SW Pacific open ocean is 

generally north-south, while the amount of variation of the secondary gradients will also 

have a degree of anisotropy, such as shore line proximity. 

More generally, it is worth remembering that the effects of artificially improved model 

performance due to assistance from secondary environmental variables can be 

managed in other ways.  While Telford and Birks (2009) advocate identifying possible 

reductions on model performance during cross validation, identification of samples in 

the fossil record that are likely to be influenced by environmental gradients other than 

that under reconstruction has essentially the same result, that of providing a more 

accurate estimate of paleo-SST.  For example, in the dinocyst transfer functions, SST 

reconstructions from assemblages indicative of high productivity (e.g. Cluster 2, Figure 

4.11) are treated with more suspicion than those in lower productivity environments. 

Appendix 4.2. – Foraminifera training set 

Following the initial exploration in Appendix 4.1, the performance of the 1157 sample 

foraminifera training set was explored further by splitting it to form spatially 

independent test sets, with particular emphasis on its ability to perform reconstructions 

in the New Zealand region.   

The purpose of this exercise was two-fold, i) to explore the effects of spatial 

autocorrelation on a training set that is large and (possibly) balanced enough to better 

withstand split-sampling without the same problems encountered in the SH-311  
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dinocyst training set, and ii) to better understand the errors associated with the 

foraminifera faunal SST proxy, as it is a contemporary proxy-record to the paleo-records 

generated in the current study. 

First, for the entire dataset, performance results assessed using leave-one-out cross 

validation for MAT and ANN models, and were found to be similar to those reported in 

Kolodziej (2010) (Table A.4.2.1).  Then, a WPAC subsample was taken, to determine the 

regional performance of the training set.  This subsample covers a similar area to the 

WPAC subsample of Appendix 4.1, (Figure A.4.1.6), but differs in that no samples are 

removed from the test set (although in this exercise, samples from the ‘rest-of the 

world’ training set are excluded in a 1000km buffer from the WPAC test set), in an 

attempt to retain ‘spatial independence’ (Figure A.4.2.1A).   

The model results for WA, WA-PLS, MAT and ANN models under leave-one-out cross 

validation are similar for the WPAC and the entire 1157 sample training set (Table 

A.3.2).  Consistent with the patterns observed previously, model performance is poorer 

when the WPAC is used as an independent test set, and the “rest of the world” used as a 

training set: WA and WA-PLS performance drops the least, while MAT and ANN 

performance decline by a factor of ~2.  A k-means clustering exercise constrained to 6 

clusters shows a strong, coherent latitudinal division across the training set (Figure 

A.4.2.1B), suggesting that it is unlikely that the poorer performance is due to 

provincialism.   

However, this possibility is explored by further splitting samples from the New Zealand 

region into two data sets, WPAC_A (208 samples) and WPAC_B (156 samples), 

separated by a 1000km buffer of discarded samples (Figure A.4.2.2A) (the original area 

of these samples slightly exceeds the WPAC subset, to provide even samples in the test 

and training sets).  The rationale for exploring the performance within this more 

confined area is that provincialism (not identified by the k-means clustering), either 

purely represented by presence/absence of taxa, or by changes in their relative 

abundances, may be the cause of the poorer performance under the spatially 
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independent cross validation exercises undertaken.  In other words, better performance 

statistics may be achievable for SW Pacific samples by allowing analogue sample from 

within the region, but in a way that still accounts for spatial autocorrelation.  Although 

spatially independent cross validation again produces poorer results than the leave-one-

out cross validation (Table A.4.2), another clustering exercise of the WPAC training set, 

again constrained to six clusters, clearly shows provincialism at this scale in the warmer 

part of the training set (Figure A.4.2.2B).  The white and black cluster groups, well 

represented in WPAC_A, occur infrequently in WPAC_B, while the equivalent parts of 

the SST gradient in the WPAC_B dataset are occupied by orange and light blue cluster 

groups.  However, when the split-sampling exercise is confined to the samples south of 

25˚S (shown by samples south of the dashed line in Figure A.4.2.2B), i.e. within a range 

where there appear to be similar assemblages in both the test and training sets, the 

differences in model performance remains (Table A.4.2).  The ANN model performance 

under split-sampling (RMSEP 2.10˚C) is ~1.8 times worse than leave-one-out cross 

validation (RMSE 1.18˚C), and is comparable to (but slightly worse than) the split-

sampling performance of the WA-PLS model (RMSEP 1.92˚C).    

This exercise suggests that the ANN and MAT models do derive a proportion of their 

performance from their ability to exploit autocorrelative properties of training sets.  The 

particular consequence of this is poor performance when faced with “unknown” 

assemblages.  In such situations, WA-PLS model estimates are likely to be the more 

accurate of the three.   
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5. Sea surface conditions during warm Marine Isotope Stage 11, 

east Tasman Sea, Southwest Pacific 

Abstract 

Marine sediment cores of Marine Isotope Stage 11 (MIS11, 423ka – 380ka) from the 

east Tasman Sea, SW Pacific Ocean, are examined for dinoflagellate cyst (dinocyst) 

assemblages, which are sensitive to changes in sea surface temperature (SST) and 

marine productivity.  SST estimates from dinocyst assemblages confirm previously 

published SST data from foraminifera assemblages, that the east Tasman Sea was ~2-

3˚C warmer than the present during the peak warmth of MIS11.  A two-step 

warming of MIS11 is observed.  Between 428-415ka, SSTs were slightly below 

modern levels, with a pronounced cooling at ~420ka, and maximum warmth 

occurred between 415-400ka.  These fluctuations were accompanied by assemblage 

changes indicative of an increased influence of Subantarctic Surface Water during 

glacial periods, inferred to correspond with a northward migration of the STF of at 

least 3 degrees of latitude from the present. 

Two semi-quantitative proxies for primary productivity in surface waters, based on 

dinocyst and foraminifera assemblages, show a broad correlation between higher 

SST and decreased productivity on glacial-interglacial timescales.  Both proxies 

suggest productivity during the peak of MIS11 way likely lower than the present.  

These glacial-interglacial variations in productivity are inferred to arise from 

migration of the STF, as well as influence of terrestrially derived nutrients from the 

adjacent New Zealand landmass. 

During the time period covered by this study, a strong correlation occurs between a 

long (1Mya) published SST record from the study area and the foraminifera-based 

proxy for productivity.  This correlation is strongest during the MIS12-11 deglacial 

transition, and remains strong until the MIS9-8 transition, ~300ka.  In contrast, 

between ~300ka and the present, the correlation between the two records is weak.  

This step-change in correlation may be due to one or more of the following: (i) an 
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artefact of the prolonged MIS12-11 deglaciation, (ii) increased variability in the input 

of locally terrestrially- derived nutrients into the study area after ~300ka, or (iii) the 

onset of Fe fertilisation by Australian-derived dust after MIS9. 

5.1. Introduction 

Global marine productivity over the next century is projected to decrease with 

increasing temperatures, broadly as a result of less energetic circulation leading to 

enhanced stratification and lower nutrient concentrations in the upper ocean, 

although regional variation is expected (Bopp et al., 2001; Sarmiento et al., 2004; 

Beardall et al., 2009; Steinacher et al., 2010; Hoegh-Guldberg and Bruno, 2010). 

Although observations of a decade long satellite record show a trend of decreasing 

productivity coinciding with increasing SST, particularly in tropical oceans (Brenfield 

et al., 2006), enhanced productivity has been observed in some regions of the 

Southern Ocean accompanied by a strengthened Antarctic Circumpolar Current  

(Sarmiento et al., 2004; Behrenfeld et al., 2006; Toggweiler and Russel, 2008).  

Moreover, there are observations of increases in primary productivity in the major 

eastern-ocean upwelling systems (Demarcq, 2009; Gutiérrez et al., 2011).  It is likely 

to take some decades to unambiguously separate longer-term trends from the 

natural multi-decadal variability of oceanic systems (Henson et al., 2010).   

One way to explore the baseline (pre-industrial) natural variability of marine 

systems, is to examine long time series of fossil plankton and other environmental 

proxies from the sedimentary record.  The variability over periods longer than are 

available from the historical record can provide additional information on the range 

of future projections, illustrate local and regional responses to previous 

environmental perturbations, and identify the long-term consequences of change. 

Here, we describe dinoflagellate cyst (dinocyst) assemblages, which are sensitive to 

changes in sea surface temperature (SST) and productivity, recovered from three 

marine sediment cores (MD06-2987, -2988, -2989) in the east Tasman Sea off 

western South Island, New Zealand (Figure 5.1), to evaluate environmental 

responses to the prominent interglacial, Marine Isotope Stage (MIS) 11 (423ka –
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380ka) (Lisiecki and Raymo, 2005).  Although the orbital forcing configuration for 

MIS11 was similar to the last deglacial and Holocene (Loutre et al., 2004), SSTs off 

the western South Island appear to have been ~2.5˚C warmer than the Holocene 

optimum (ca. 12-6ka), and ~3.5 ˚C warmer than the present (Hayward et al., 2012).  

The aims of this study are to: 

1. Create a dinoflagellate-based MIS11 SST record for the east Tasman Sea, to 

test the existing foraminifera-based estimates and build a local multi-proxy 

stack of SST. 

2. Document the response of proxies for marine productivity to this warm 

interglacial in the east Tasman Sea. 

5.2. Background 

5.2.1 East Tasman Sea: setting and oceanography 

The central West Coast of the South Island, New Zealand, is bordered by a 

continental shelf, 20 - 50km wide, which is incised by the heads of the large Hokitika 

and Cook submarine canyons, that extend to abyssal depths of the east Tasman Sea 

(Proust et al., 2006) (Figure 5.1B).  On the New Zealand landmass, to the east, uplift 

rates in the Southern Alps are up to 10mm/yr (Norris and Cooper, 2001; Little et al., 

2005) and there are numerous peaks >3000m.  The rapid uplift and high rainfall 

(c.3m
-1

yr
-1

 at the coast, up to 10m
-1

yr
-1

 in the mountains) results in large volumes of 

river discharge, and high suspended sediment loads transported to coastal waters 

(Hicks et al., 1996, 2011). 

The local ocean circulation is subdued (Tilburg, 2001; Waugh et al., 2006) (Figure 

5.1A).  The Subtropical Front (STF) is ~500km to the south of the study area, where it 

forms a diffuse zone in the south Tasman Sea (Hamilton, 2006).  It crosses the south 

Tasman Sea (Stanton, 1998) before deflecting around and along the southern and 

eastern coasts of the South Island (Heath, 1985; Chiswell, 1996; Sutton, 2003).  The 

eastward flowing Tasman Front lies >1000km to the north of the study area, and 

stems from the southwards flowing tropical waters of the East Australian Current 
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(Tilburg et al., 2001; Ridgway and Dunn, 2003), then turns south around the eastern 

continental margin of the North Island (Figure 5.1A).  Between these prominent 

ocean fronts and associated currents, there is an ill-defined easterly drift across the 

central Tasman Sea (Stanton, 1976; Heath, 1985; Ridgway and Dunne, 2003).  The 

main body of this drift reaches New Zealand at about the central west coast of the 

South Island, where it splits into northerly and southerly components.  A weak and 

ephemeral wind-driven current inshore of this easterly drift, called the West Coast 

Current (WCC), flows northeast along the continental shelf before swinging  east into 

Cook Strait as the D’Urville Current (Stanton, 1976; Heath 1985). The WCC is 

seasonally perturbed by wind and freshwater inflow from rivers (Heath and Gilmour, 

1987; Greig et al., 1988). 

The offshore east Tasman Sea is generally an oligotrophic (low nutrient and 

productivity) setting compared to the nearshore environment, although chlorophyll-

a concentrations are elevated compared to the open Pacific Ocean (Tilburg et al., 

2002).  Seasonal productivity in the area has been modelled by introducing nutrients 

to surface waters by mixing from winter storms, with peak productivity occurring 

during spring following a rapid shoaling of the thermocline (Rahmstorf, 1992; 

Hadfield and Sharples, 1996; Hadfield, 2000; Tilburg et al., 2002).  Nearer to shore, 

wind-driven upwelling occurs sporadically within 20 km of the coast (Bradford, 1983; 

Heath, 1985; Stanton and Moore, 1992), while input from numerous large rivers 

frequently forms a 30-50 km wide plume of low-salinity sediment-bearing surface 

water, which occasionally extends further offshore in the form of jets or filaments 

(Stanton, 1976; Stanton and Moore, 1992; Moore and Murdoch, 1993).  This reduces 

the near-shore mixed layer depth, and, combined with the extra nutrient input, 

result in higher levels of productivity in inshore relative to offshore waters (Chang 

and Bradford, 1985; Bradford-Grieve et al., 1996).  Despite the relatively high 

nutrient levels, spring blooms in inshore waters result in seasonal depletion of 

nitrate (Chang et al., 1995).  

5.2.2 Dinoflagellate cysts 

Dinoflagellates make a significant contribution to productivity and primary grazing in 

modern oceans, at times forming blooms that dominate carbon fixation 
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and primary carbon cycling in surface waters, including in the study area (Chang, 

1988; Verity et al., 1993; Sherr and Sherr, 2007; Wasmund et al., 2011).  About 20% 

of modern dinoflagellates form fossilisable cysts (Dale, 1996; de Vernal and Marret, 

2007) resulting in approximately 80 identifiable sub-fossil taxa in modern sea-floor 

samples (Marret and Zonneveld, 2003).  The organic-walled cysts (dinocysts) 

examined in this study represent a resting stage in the dinoflagellate life cycle, which 

is generally formed after sexual reproduction or in response to environmental stress 

(Pfiester and Anderson, 1987; Figueroa et al., 2007; Kremp et al., 2009).  Two types 

of dinocysts are most common in Quaternary sediments: gonyaulacoid, which are 

generally formed by dinoflagelates containing chloroplasts, and peridinoid, which are 

generally formed by dinoflagellates with heterotrophic nutritional strategies 

(Zonneveld and Brunner, 2000; Zonneveld et al., 2010). 

5.2.3 Marine Isotope Stage (MIS) 11 

In the New Zealand region, six marine records document paleoceanographic change 

during MIS11, with most attention focused on understanding the dynamics of the 

Subtropical Front (STF) to the east of New Zealand.  SST estimates from foraminifera 

assemblages, both north and south of the STF east of New Zealand, indicate that 

SSTs during MIS11 were ~2-3.5˚C above present-day temperatures (Weaver et al., 

1998; Schaefer et al., 2005; Wilson et al., 2005; Crundwell et al., 2008; Hayward et al; 

2008, 2012).  In a regional-scale qualitative oceanographic reconstruction based on 

these foraminifera-based SST estimates, Hayward et al (2008, 2012) inferred surface 

water circulation was largely similar to the present.  Specifically, they suggest the 

position of the STF to the east of the New Zealand was unchanged compared to the 

present, where it is today constrained by the west-east flow of SAW and STW along 

the southern and northern flanks of the Chatham Rise, respectively (Uddstrom and 

Oien, 1999). The main variation that Hayward et al. (2008) inferred, compared to 

present day circulation, was an enhanced southwards flow of STW across the STF 

into the Bounty Trough area.  In the east Tasman Sea, a 1-million year record of SSTs 

derived from foraminifera assemblages was recently presented from a composite of 

two cores (MD06-2986 and MD06-2989) that overlap at MIS11 (Figure 5.1B) 

(Hayward et al., 2012).  SST estimates from the ANN25 model for MIS11 from the 
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two east Tasman Sea cores indicates a 10ka period of SSTs ~3.5˚C above present-day 

temperatures (Hayward et al., 2012).  In contrast, SST estimates using another model 

(the modern analogue technique) on the same foraminifera assemblages suggest 

that MIS11 was no warmer than the Holocene (Hayward et al., 2012).  In this 

chapter, all further references to foraminifera SST refer to the ANN25 model, as this 

model is preferred by Hayward et al. (2012), and its superior performance supported 

by trials in this study (Chapter 4, this study). 

5.3. Methods 

5.3.1 Core locations and chronology  

Samples from three sediment cores are examined, which have been collected in an 

offshore-onshore transect: MD06-2987, -2988, -2989 (Figure 5.1B).  All cores were 

collected using a Calypso giant piston corer from the RV Marion Dufresne during the 

2006 MATACORE Cruise (Proust et al., 2006), from water depths of 3220m (MD06-

2987), 1790m (MD06-2988) and 1250m (MD06-2989).  The cores, each 30-40m long, 

were retrieved from channel-proximal levees of the Hokitika and Cook Canyons, with 

the aim of recovering a high resolution Quaternary record of mid-latitude 

environmental change.  The core sites are positioned to sample a range of bottom 

water masses, and allow high resolution linkage with terrestrial proxies.  Site 

surveys, including multibeam seafloor topography and multiple short sediment cores 

revealed sinuous channels, particularly in the Hokitika Canyon, with significant levee 

accumulation on the north banks of oxbow bends (Proust et al., 2006).  Each target 

was chosen to lie within 5-10 km of the north canyon wall, in locations unlikely to be 

subject to downslope movement of sediment and which had a seismic signature 

indicative of relatively rapidly deposited, flat-lying strata with no signs of sub-sea-

floor gas accumulation (Proust et al., 2006).  Cores are stored refrigerated at the 

NIWA core store, Wellington. 

Sediment recovered at each site was extensively bioturbated greenish to olive grey 

silty clays, containing abundant foraminifera (Proust et al., 2006), with the percent 

CaCO3 at MD06-2989 over the interval sampled in the this study 70-80% (Hayward et 
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al., 2012).  The age model adopted for the cores is based on matching low resolution 

benthic foraminiferal oxygen isotopes (Uvigerina spp.) to the global LR04 benthic 

stack (Lisiecki and Raymo, 2005) (Figure 5.1C), supported by the occurrence of three 

rhyolitic tephras from New Zealand’s Taupo Volcanic Zone in MD06-2989, that are 

well-dated off eastern New Zealand (11.18 m = matched with tephra in Site ODP 

1125, ~550 ka; 20 m = Kaukatea Tephra, ~880 ka; 24.01 m = Potaka Tephra, 1000 ka; 

Carter et al., 2004; Hayward et al., 2012).  The highest average accumulation rates 

were observed in the deepest core, MD06-2987 (39m = 435ka, 9cm/kyr), while 

accumulation rates were lower in the mid-slope levee cores MD06-2988 (27m = 

980ka, 2.7cm/kyr) and MD06-2989 (39m = 1766ka, 0.46cm/kyr). 

5.3.2 Dinocyst census counts  

Ninety samples spanning MIS12-10 were collected from the three cores.  From 

MD06-2988, 44 samples were sub-sampled (average 1 sample/1.8kyr), and 33 

samples were collected from MD06-2989 (average 1 sample/3kyr).  At site MD06-

2987, 13 samples were collected from the early part of MIS11 (423ka - 390ka, 

average 1sample/2.5kyr), as that was the base of the core.   

All samples were processed using standard dinocyst techniques for Quaternary 

marine sediments.  Cold 33%HCl was introduced into ca. 5g of dried sample to 

remove carbonate, silicate was removed by 24 hours in cold 40%HF, followed by a 

second cold 33%HCl wash, brief ultrasonic treatment, removal of fines with 6µm 

filter and mounting on glass coverslips in glycerine jelly (Merthens et al., 2009; 

Crouch et al., 2010).  A single Lycopodium tablet (batch number 938934) was added 

to each sample for determination of absolute abundances.  A minimum of 300 

dinocysts were counted for each sample.  Dinocyst count data are included in 

Supplementary Material S5.1. 

5.3.3 SST estimates from dinocyst assemblages  

In the SW Pacific, the general utility of dinocysts in faunal transfer functions has 

been demonstrated in the late Quaternary from Deep Sea Drilling Project (DSDP) Site 

594 off the east coast of New Zealand (Figure 5.1A), where Late Quaternary SST and 

salinity were reconstructed using a training dataset of 118 surface sediment samples 



Chapter 5 

 

 

 

181 

(Marret et al., 2001).  There is also extensive Northern Hemisphere experience, 

where a large (>1000 sites) dinocyst training set (Rochon and deVernal, 1994; 

Rochon et al., 1999; de Vernal et al., 2001; Radi et al., 2007; Pospelova et al., 2008) 

has been used to reconstruct productivity, salinity, SST, and ice cover (e.g., de Vernal 

et al., 2005; Bonnett et al., 2010) using modern analogue technique (MAT) and 

artificial neural network (ANN) models in numerous North Atlantic sites.   

For this study, a 311-sample training set (SH-311) of dinocyst census counts from 

seafloor samples from the Southern Hemisphere is compiled (Marret et al., 1997; 

Harland et al., 1998; Vink et al., 2000; Zonneveld et al., 2001; Holwarth et al., 2007; 

Esper and Zonneveld, 2002, 2007; Crouch et al., 2010; Verleye and Louwye, 2010; 

Laurijssen and Zonneveld, in press; Chapter 2).  Ordination techniques indicated that 

SST correlated most strongly to the dinocyst distribution, and accounted for 37% of 

the species-environmental relationship after removal of covarying gradients.  SST 

was twice as strongly correlated with the dinocyst distribution than apparent 

secondary environmental gradients (Chapter 2).  This ordination, along with 

observations of the importance of water temperature as a control of dinoflagellate 

growth and cyst formation (e.g., Jensen and Moestrup, 1997; Grzebyk and Berland, 

1997; Hwang and Lu, 2000; Juhl, 2005; Navarro et al, 2006; Guerrini et al., 2007; 

Laabir et al., 2011), make SST the most suitable target for quantitative 

reconstruction.   

SSTs were estimated from dinocyst assemblages for each sample using three 

methods: weighted averaging with partial least squares (WA-PLS), the modern 

analogue technique (MAT) and an artificial neural network (ANN).  For most samples, 

the average of the three models is presented, with exceptions discussed below.   

In weighted averaging, the average environmental conditions over those sites where 

the taxon is present are weighted by the relative abundance of the taxon (ter Braak 

and Looman, 1986; Birks, 1995).  WA-PLS explores subsequent axes along which 

components of the target environmental gradient may lie (ter Braak and Juggins, 

1993).  In contrast, a MAT model does not seek to define a relationship between 

assemblage composition and environment, but instead selects similar biological 
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assemblages to the fossil assemblages from the modern training set as 

environmental analogues, using a dissimilarity measure (Hutson, 1980; Guiot and de 

Vernal, 2007). Here, a chord dissimilarity measure was used to select the five nearest 

analogues.  An ANN develops algorithms that reproduce a target environmental 

parameter through iterative review and correction of multiple (typically 2-20) non-

linear neurons (typically for 500-3000 training epochs) (Malmgren and Nordlund, 

1997; Malmgren et al., 2001).  ANNs were trained using the program Tiberius 

(www.tiberius.biz).  This software contains a single hidden layer, with one fixed 

linear neuron, and variable numbers of non-linear neurons containing tan-h 

functions.  Optimal training was achieved using 10 non-linear neurons.  The training 

regime followed Hayes et al. (2005) and Kucera et al. (2005):  

In a “leave-one-out” cross validation, root mean square errors (RMSE) of the SH-311 

database were ±1.2°C (ANN), ±1.5°C (MAT), and ±1.8°C (WA-PLS), over the SST range 

in this study.  The SH-311 training set is found to be spatially autocorrelated using 

the tests of Telford and Birks (2009).  One way to assess the effects of spatial 

autocorrelation on apparent model performance is to assess prediction errors using 

spatially independent test sets (Birks at al., 2010).  Although difficult to obtain 

appropriate balance in the relatively small training set assembled here, a 68-sample 

test set of samples around the New Zealand region was split from the training set 

and each sample separated by >1000km from the nearest training set sample.  

Model performance of this spatially independent test set was 1.3 times (WA-PLS) 

and ~2 times (ANN and MAT) poorer than leave-one-out cross validation (Chapter 4).   

High dissimilarity values in MAT are often used to identify non-analogue situations 

(e.g., Gersonde et al., 2005; Sikes et al., 2009).  Recent MAT reconstructions based 

on dinocysts (deVernal et al., 2005; Marret et al., 2008) have used a three point 

“reliability scale”.  We do not observe a strong relationship between model 

performance and the dissimilarity score in our training set (Chapter 4), and so only 

use a dissimilarity score higher than the 99
th

 percentile of those observed within the 

modern training set to identify fossil samples with poor similarity to modern 

assemblages (a chord distance of 0.41).   
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Where the ANN and MAT models encounter familiar fossil assemblages, they are 

likely to predict with greater accuracy than WA-PLS, but WA-PLS performance should 

be superior as assemblages become less similar.  For most fossil assemblages, we 

present the average of MAT, ANN and WA-PLS results.  Where fossil dissimilarity 

scores exceed 0.41, MAT and ANN results are discarded, and only the WA-PLS model 

retained.  This approach results in a RMSEP (RMSE of prediction) of ~±1.5-1.8˚C. 

5.3.4 SST estimates using foraminifera assemblages 

We compare our record to published SST records for MD06-2986 and MD06-2989, 

where SST was estimated using an ANN model based on a Southern Hemisphere 

training set of ~1200 assemblages of planktonic foraminifera (Hayward et al., 2012).  

That record applied the ANN-25 SST model of Crundwell et al. (2008), which excludes 

many deeper-dwelling globorotalid taxa.  We have added SST estimates from five 

new foraminifera census counts from MD06-2989 to create a SST record of 15 

samples between ~370-430ka (average sample resolution of 5kyr) (B. Hayward, pers. 

comm.).  “Leave-one-out” cross validation errors are ~±1.1˚C for this method and 

training set (Kolodziej, 2010, Chapter 4). 

5.3.5 Productivity using dinocysts 

Although variation in SST is the strongest factor influencing dinocyst assemblages 

across the Southern Hemisphere, the diversity of  dinoflagellate nutritional strategies 

(Jacobson, 1999; Stoecker, 1999) and an obligate association of many cyst-forming 

dinoflagellates with shallow shelf sediments for successful reproduction (Dale, 1992; 

Dale and Dale, 1992), lead to strong associations of dinocyst assemblages with both 

proximity to land and marine productivity (Marret and Zonneveld, 2003; Esper and 

Zonneveld, 2007; Pospelova et al., 2010).   

Productivity in the modern east Tasman Sea is highest along the West Coast of the 

South Island.  Further from shore, elevated chlorophyll-a concentrations extend 

westward into the Tasman Sea between ~43-47˚S (Figure 5.2), a broad zone 

coinciding with mixed surface waters of the diffuse STF in the south Tasman Sea 

(Figure 5.1A).  Although the cores in the study area sample a transect of increasing 

water depth, they are located along the northern boundary of elevated chlorophyll-a 
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associated with the modern STF.  Hence, the cores are well positioned to record 

variation in chlorophyll-a associated with changes in the position of the STF, 

although also under the influence of terrestrially-derived nutrient input.  Dinocyst 

assemblages from sea-floor samples from east Tasman Sea change with distance 

from shore and productivity (details Chapter 1).  This is clearly illustrated using a 

“dinocyst productivity index” established here based on observations from the east 

Tasman Sea.  The “dinocyst productivity index” is the ratio of peridinoid taxa 

Selenopemphix nephroides, S. quanta, Echnidinium spp. and Brigantedinium spp. to 

all Impagidinium taxa, which are gonyaulacoid (Figure 5.2).   

In the east Tasman Sea, there is a strong relationship (r
2
 = 0.72) between this index 

and the satellite – derived chlorophyll-a concentration (Figure 5.2). (NASA MODIS 

data, extracted using the Giovanni web-interface; Acker and Leptoukh, 2007).  Sea-

floor samples from modern shelf and slope settings, the surface waters of which are 

associated with upwelling and freshwater input-driven productivity described in 

Section 5.2, are characterised by high values of this index, due mainly to high 

abundances of Brigantedinium spp. and Selenopemphix nephroides.  Although the 

full SH-311 training set does not support quantitative reconstruction of productivity 

(Chapters 2 and 4), due to the strength of the gradient observed in the east Tasman 

Sea, we interpret high values of this “dinocyst productivity index” in the fossil record 

to infer the presence of a similar productivity regime to that of present-day near-

shore waters. 

5.3.6 Productivity using foraminifera 

Across the Southern Hemisphere, foraminifera assemblages vary most with SST 

(Morely et al., 2005), but in the SW Pacific, a higher frequency of three planktic 

foraminiferal species, Globigerina bulloides, Turborotalita quinqueloba, Globigerinita 

glutinata have been observed in productive settings of well-mixed surface waters 

(e.g. Schiebel et al., 2001; Crundwell et al., 2008).  We explored this relationship for 

modern SW Pacific samples, by comparing the relative abundance of these taxa in 

262 sea-floor samples (Crundwell et al., 2008; Hayward et al., 2012) against six 

chlorophyll-a based biomes for the SW Pacific (Hardman-Mountford et al., 2008).  Of 

the three taxa, only the proportion of G. bulloides varies in consistent way with  
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the chlorophyll-a biomes (Figure 5.3).  Although a there is a degree of overlap 

between each biome, the relative abundance of G. bulloides increases with 

increasing chlorophyll-a, from the “low” through to the “high” chlorophyll-a biomes, 
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although this relationship does not hold for the highest chlorophyll-a biome, which 

in the SW Pacific is generally a feature of near-shore shelf settings.  We use the 

percentage of G. bulloides as a proxy for relative chlorophyll-a concentration.  Low 

abundances (<~15%) indicate chlorophyll-a biomes 1-4, while higher abundances 

(>~40%) are likely indicative of chlorophyll-a biomes 4-5.  Notwithstanding the 

correlation observed here, we acknowledge that in ordination of a hemispheric-wide 

modern training set (Morely et al., 2005), G. bulloides also exhibits a close 

relationship with SST. 

A poor correlation has been noted between the % G. bulloides and another 

productivity proxy, using benthic foraminifera, (the Bulimina Index), in the cores 

examined in this study (Hayward et al., 2012). However, the Bulimina Index in these 

cores is based on incidental observations made during census counts of planktonic 

foraminifera.  Due to the resulting low count sum in most samples, we prefer to use 

the percentage of G. bulloides.   

5.3.7 Water mass indicators from dinocysts 

In the New Zealand region, the most significant change in sea-floor dinocyst 

assemblages is observed across the STF (Sun and McMinn, 1994; Crouch et al., 2010; 

Chapter 2), reflecting the strongly contrasting properties (e.g., temperature, 

seasonality, kinetic energy, and nutrients; Bradford-Grieve et al., 1997; Boyd et al., 

1999; Murphy et al., 2001) of water masses either side of the front.  In modern 

sediments, the relative abundances of 19 dinocyst taxa were observed to change 

across the STF (Table 2.3).  The presence of these taxa is used here as a semi-

quantitative indicator of water mass overlying the study area between MIS12-10, by 

charting the proportion of taxa in each sample that fulfil the criteria in Table 2.3.  No 

attempt was made to weight the relative importance or abundance of these 

occurrences.  For example, the sample at 1041cm (432.9ka) in MD06-2988 had the 

following taxa that fulfilled the criteria in Table 2.3: I. pallidum (2.5%), S. antarctica 

(2%), and Impagidinium paradoxum (3.4%), thus was plotted 2/3 ‘SAW indicators’ 

and 1/3 ‘STW indicators’. 
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5.4. Results 

5.4.1 Dinocyst abundance 

Dinocysts were abundant and well-preserved in all samples.  The average dinocyst 

concentration across all samples was 1800 specimens per gram sediment (dry 

weight) (Figure 5.4).  All three cores had an abundance minimum of ca.12ka duration  

 

during the early part of MIS11, when average abundance reduced to ca. 400 

specimens per gram.  The timing of these minima overlap, but are staggered over ca. 

20ka, starting at distal site MD06-2987 at ca. 418ka, and terminating at the 

shallower MD06-2989 ca. 395ka (Figure 5.4).  These intervals of minimal abundance  
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coincide with very low concentrations of peridinioid cysts, particularly 

Brigantedinium spp.  Low concentrations of peridinioid cysts are not only restricted 

to these intervals, but are sparse for the preceding 5-10ka when total abundances 

were closer to average concentrations (Figures 5.4 and 5.5). 

5.4.2 Dinocyst assemblages 

Dinocyst assemblages of all the three cores were dominated by the peridinoid genus 

Brigantedinium spp, and gonyaulacoid species Impagidinium aculeatum and 

Nematosphaeropsis labyrinthus (Figure 5.5).  A mean diversity of 15 taxa per sample 

was recorded, and a maximum diversity in a single sample of 20 taxa.  Variation in 

the relative abundances of these three genera characterised much of the 

glacial/interglacial variation between MIS12-MIS10.  A similar succession is observed 

in the three cores, with some local exceptions (Figure 5.5).  Some of the variations 

associated with shoreline proximity observed in modern sea-floor sediments are 

observed between the cores; for example samples from the most distal core, MD06-

2987, contain the highest relative abundance of I. aculetaum, and generally lowest 

relative abundance of Brigantedinium spp..  Interestingly, Operculodinium 

centrocarpum, a dinocyst common in modern sea-floor samples from the SW Pacific 

and to the east Tasman Sea, particularly from shelf and slope settings, is rare in the 

core samples.  To describe the succession from MIS12-MIS10, the section was 

qualitatively divided into 7 “assemblage zones” (AZ1-7) (Figure 5.5). 

Full glacial conditions (AZ1 and AZ6) are characterised by high relative abundances of 

Brigantedinium spp. and relatively low abundances of Impagidinium spp. (maximum 

20%).  Spiniferities mirabilis group is occasionally abundant, particularly in the 

shallowest site, while S. ramosus and I. sphaericum are absent and rare, respectively.  

Nematosphaeropsis labyrinthus is common. 

The early stages of de-glaciation (AZ2 and AZ7) are characterised by a notable 

decrease in the relative, and absolute, abundance of Brigantedinium spp., which in 

turn is replaced by an increase in Impagidinium aculeatum and N. labyrinthus.  In 

MD06-2989, S. mirabilis forms up to 20% of assemblages in the upper part of AZ7.  

The lowest sample examined in AZ2 in the offshore MD06-2987 contained unusually 
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high concentration of Impagidinium, with 58% I. aculeatum and 36% I. patulum 

(Figure 5.5). 

The three MIS11 interglacial assemblage zones (AZ3-5) are characterised by 

increased abundances of I. aculeatum, I. patulum, and S. mirabilis, and common 

occurrences of N. labyrinthus in variable abundances.  In the early phases, (AZ3) 

infrequent Selenopemphix spp. and Echnidinium spp. are recognised.  Several species 

were recorded only in the interglacial assemblage; including Bitectatodinium 

tepikiense, Dalella chathamensis, Impagidinium striatulum, and Impagidinium 

variaseptum.  The lower AZ3 is characterised by a rapid decrease in N. labyrinthus, 

low relative abundances of Brigantedinum spp. (<5%), an absence of S. quanta, and 

high relative abundances of I. aculeatum.  The highest abundances of I. aculeatum 

were observed in MD06-2987, the most off-shore site.  Zone AZ4 is characterised by 

a peak of N. labyrinthus, and moderate abundances of I. aculeatum and I. patulum, 

and this zone contains the lowest absolute cyst abundances (Figure 5.4).  In AZ4, the 

concentrations of Brigantedinium spp. remain low, but concentrations fluctuate and 

progressively increase up section to a maximum abundance of 20% in MD06-2989.  

This increase is accompanied by the more frequent occurrence of other peridinoid 

cysts, along with an increase in the absolute abundance of dinocysts.  The final 

interglacial zone, AZ5, has declining relative abundances of I. aculeatum and I. 

patulum, which is replaced by increases in N. labyrinthus and Brigantedinium spp. 

Other taxa were observed to have no obvious change in presence or abundance 

throughout the cores.  These include the cool water taxa Impagidinium pallidum, 

open ocean species Pyxidinopsis reticulata, and Impagidinium paradoxum, and the 

temperate water species Operculodinium janduchenei (Figure 5.5)  Although the cool 

water taxa Selenopemphix antarctica was not observed in the early part of AZ4, it 

was present throughout the rest of the studied interval. 

5.4.3 SST models 

Three SST models, WA-PLs, MAT, and ANN, were applied to the dinocyst 

assemblages produced comparable results, but with several interesting differences 

(Figures 5.6A-C, Supplementary Material S5.2).  When the fossil assemblages were  
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included passively in a detrended correspondence ordination of the SH-311 seafloor 

dinocyst training set, all the fossil assemblages plotted within the area occupied by 

the modern training set, indicating fossil assemblage are similar to those in the 

training set.  In the MAT model, eight fossil samples had a dissimilarity score to the 

nearest modern analogue sample greater than 99
th

 percentile (0.41).  These samples 

(highlighted in Figure 5.6) were often those with large differences in SST estimates 

between the three models, with the difference of estimated SSTs between the MAT 

and ANN particularly large, and these samples are those for which the MAT and ANN 

estimates are discarded to form the ‘consensus SST’ estimate in Figure 5.6D.  The 

ANN model generally returned the warmest SST estimates, a characteristic observed 

by other multi-model faunal transfer function reconstructions in the region (Barrows 

et al., 2007; Hayward et al., 2012). 

The dinocyst-based transfer functions indicate a SST range of 7-8˚C for glacial MIS12 

to interglacial MIS11, which is remarkably similar to that estimated from the 

foraminifera assemblages (Figure 5.6D-E).  Glacial SSTs for both MIS12 and MIS10 

were 10-11˚C, while peak MIS11 SSTs were 17-18˚C.  There is broad agreement 

between the three dinocyst and two foraminifera records on both timing and 

magnitude of SST variation over MIS11.   

Variation between core sites has been noted above, particularly in the timing of 

mass flux mimima, but there is less variation in the relative timing of SST events.  We 

explored possible regional relationships between SST and productivity and the 

mixing index by examination of a regional stack of records.  Available SST results 

from dinocysts and foraminifera from MD06-2986, -2987, -2988, and -2989 are 

averaged in 2kyr bins centred on odd-numbered millennia between 355ka and 439ka 

(Figure 5.8C, Supplementary Material S5.3).  Two stacked SST records are complied: 

(i) ANN estimates from dinocyst and foraminifera assemblages from four cores 

MD06-2986, 2987, -2988, -2989, and (ii) the “dinocyst consensus” SST estimates 

from cores MD06-2987, -2988, and -2989 (Figure 5.8C). Of the 40 composite SST 

estimates between 355-439ka, the average number of model results per bin in the 

‘dinocyst-only’ compilation is 2.3, with 10 containing a single model result, while the 
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average number of estimates per bin in the ANN composite is 2.7.  For the ANN 

composite, the range of SST estimates are shown for the bins where multiple SST 

estimates are available (Figure 5.8C), and generally shows good agreement between 

the estimates, with the main exception between 405-395ka, where there is up to 5˚C 

range in estimates.  This range is due to warm SST estimates from the foraminifera 

assemblages persisting until ca. 395ka, while the dinocyst SST estimates show a 

decrease from peak warmth ~405ka.  This stacked time series produces a clearer 

regional picture of MIS11 development in the east Tasman Sea  

SSTs started to warm between 435-430ka, and reached approximately modern-day 

SSTs (~15.5˚C) by ~428ka.  SSTs fluctuated about slightly cooler than modern 

conditions for the following ~10kyr, with a pronounced SST minima at ~420ka in the 

dinocyst composite records.  Maximum SSTs occurred between 415ka and 405-

400ka.  Peak SST estimates were ~18˚C, ~2.5˚C warmer than present mean annual 

SST in the study area, or 1˚C – 4.5˚C warmer than present when the RMSE calibration 

errors of the transfer function models are considered. 

The end of peak warmth occurs between 405-395ka, when SSTs rapidly declined.  A 

brief warming is recorded at ~385ka.  In the MD06-2989 foraminifera record, a brief 

rise of ~2˚C occurs over not more than 5ka, but in the dinocyst models a SST rise of 

~4˚C over a similar period of time is inferred.  Following the ~385ka SST peak, the 

SSTs declined into MIS10 and reach a minima at ~350ka. 

5.4.4 Productivity indices 

The productivity indices all suggest that eutrophic conditions and productivity were 

higher during the MIS12 and MIS10 glacials, than during the intervening MIS11 

interglacial (Figure 5.6F).  

Within MD06-2989, the timing of change is synchronous for the dinocyst and 

foraminifera productivity indices, with productivity declining from ~435ka and a 

minima recorded at 425ka.  In MD06-2988, productivity decreases c.10ky later than 

at MD06-2989, reaching the lowest values (inferred productivity minima) at c. 420ka.  

All indices suggest low productivity until ca. 400ka, and a productivity increase 

between 395-390ka.  Two productivity minima occur in all three records 
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covering the MIS11-10 transition, at c. 387ka and 373ka, which coincide with peaks 

in the foraminifera SST record (Figure 6F).   

A consensus of the “dinocyst productivity index” was calculated for 2kyr bins in the 

same way as for the SST estimates, to create a regional dinocyst productivity index 

(Figure 5.8E, Supplementary Material S5.3). 

The “dinocyst productivity index” is the ratio of selected peridinioid cysts to oceanic 

gonyaulaucoid cysts (Section 5.3.5).  Peridinioid cysts are more susceptible to 

oxidation in seafloor depositional settings than gonyaulaucoid (Zonneveld et al., 

1997; Zonneveld et al., 2008), raising the possibility that variation in the 

“productivity index” may reflect varying sea-floor or post-depositional oxygen levels 

rather than a true reflection of nutrient availability in surface waters and cyst 

production.  In this setting, however, oxidation is unlikely to have altered the 

productivity index significantly, as the foraminifera-based productivity index, 

resistant to the effects of oxidation, is well aligned to variation in the dinocyst index.  

Moreover, the absolute abundance of peridinioid cysts, also shown to be a robust 

indicator of productivity (Reichart and Brinkhuis, 2003) exhibits a very similar pattern 

to the index explored in more detail here (Figure 5.4). 

5.4.5 Water mass affinities 

Dinocyst water mass indicators prior to 430ka are mainly of SAW, with some 

indications of STF front assemblages (Figure 5.7).  The first indication of dinocyst 

assemblages clearly indicative of STW during the MIS12-11 transition occurred at 

425ka in MD06-2989, although SAW indicators are also present in all three records 

until 418ka (Figure 5.7).  In a stacked record of all three cores (Figure 5.7C), the MIS 

12/11 glacial termination is shown to be punctuated by a brief return of SAW over 

the area between 422 – 418ka, which is preceded by a period of mixed assemblages 

containing features indicative of both SAW and STW masses. 

There are no dinocyst-based SAW indicators between 418 – 400ka in the three cores.  

SAW indicators return in the two southern-most cores between 400-390ka, although 

mixed assemblages, similar to those observed during the termination, are a feature 

of that period.  The return of regional warmth during MIS11c (ca. 385ka) is  
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accompanied by an absence of SAW assemblages, with assemblages most strongly 

indicative of STW in the entire MD06-2988 record occurring during this interval.   

During the MIS11-10 transition, the last clear indicator of STW is observed at 380ka, 

which is followed by 7ka of assemblages found within, and north of, the STF.  

Dinocyst assemblage SAW indicators dominate the cores between 368 – ca. 345ka in 

MIS10.   

5.5. Discussion 

5.5.1 Duration and relative warmth of MIS11: comparison with other 

records 

The broad features of the MIS11 SST record identified in the east Tasman Sea (Figure 

5.8C), of a prolonged interglacial lasting at least 28kyr, divided into two phases with 

peak warmth occurring during the later phase, is similar to other global records.  

Other Southern Hemisphere marine records point to a relatively long interglacial 

with climatic optima 425 - 405ka in the South Atlantic Ocean Drilling Program (ODP) 

Site 1089 (Cortese et al., 2007), while peak SSTs at another South Atlantic site (ODP 

1085) were identified at 425-390ka with peak light planktic δ
18

O between 411-404ka 

(Dickson et al., 2010).   

In the New Zealand region, the site with sufficient sampling resolution south of the 

STF, DSDP Site 594, has MIS11 interglacial SSTs during 420-400ka, with peak warmth 

at 405-403ka (Weaver et al., 1998; Hayward et al., 2008).  In contrast, SST at ODP 

Site 1123 north of the STF, (Figure 5.1) exhibits a smooth SST peak between 417-

394ka, with peak warmth at 405ka (Crundwell et al., 2008).   

Likewise, a prolonged, two-phase interglacial with maximum warmth during the later 

phase of MIS11 is recorded in European and Greenland pollen records (Kühl and Litt, 

2007; deVernal and Hillaire-Marcel, 2008; Koutsodendris et al., 2010), and in SST 

observations in the northeast Atlantic (Kandiano and Bauch, 2005; Voelker et al., 

2010), however offshore from the Iberian Margin (Desprat et al., 2005), and Greece 

(Muller and Pross, 2007) warmer forest pollen assemblages are recorded during the 
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early part of MIS11. 

There is less consensus on the relative warmth of MIS11 compared to the present 

day.  North Atlantic and European records suggest peak SSTs were similar to, or 

cooler than, average Holocene conditions (Bauch et al., 2000; de Abreu et al., 2005), 

while Siberian pollen records suggest warmer and wetter continental temperatures  
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(Prokopenko et al., 2010).  In the South Atlantic, some records suggest MIS11 

temperatures were similar to the late Holocene (Hodell et al., 2000; Kunz-Pirrung et 

al., 2002). SSTs in a South Atlantic record from beneath the Benguela Current were 

~1˚C warmer than present (Dickson et al., 2010), while the estimates of temperature 

from the EPICA Dome C Antarctic ice core (Jouzel et al., 2007) suggests MIS11 was 

warmer than any time in the Holocene, but comparable to other Late Quaternary 

interglacials.  In the east Pacific Ocean, warm molluscan assemblages off Chile were 

identified almost 10˚latitude south of their present range (Ortlieb et al., 1996), 

suggesting MIS11 SSTs along the coast of Chile were substantially warmer than 

today.   

Marine records from the SW Pacific Ocean suggest the region was warmer than the 

Holocene during the peak of MIS11.  The consensus SST estimates of the present 

study suggest the east Tasman Sea was ~2-3˚C warmer than present, while peak SST 

at DSDP Site 594 (Figure 5.1) was ~3˚C warmer than present (Hayward et al., 2008), 

although dinocyst results from DSDP 594 suggest warmth of this level was not 

sustained (Chapter 6).  North of the STF, SSTs during MIS11 at ODP Site 1123 were 

~3˚C warmer than modern, although with SSTs similar to those of MIS7 and MIS9 

(Crundwell et al., 2008; Hayward et al., 2008).  

5.5.2 Water mass estimates 

Four foraminifera-based proxies that trace the relative position of the STF in the east 

Tasman Sea over MIS11, have been published for cores MD06-2986 and MD06-2989 

(Hayward et al., 2012).  These proxies are: a ratio of Neogloboquadrina incompta to 

N. pachyderma; a ratio of Globorotalia inflata to Globigerina bulloides; and the 

presence of two warm water species in sufficient abundance (Globigerinoides ruber 

and Orbulina universa) (Hayward et al., 2012 and references therein).  The results of 

these estimates are summarised graphically in Figure 5.8A.   

Cumulatively, the four foraminifera proxies suggest that SAW entered the region 

briefly during MIS12 and MIS10, but that the region was bathed in STW for much of 

the remaining period.  There is reasonable agreement between the foraminifera and 

dinocyst-based water-mass proxies on the timing of SAW replacement with STW 
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during the MIS12-11 transition, between 434-427ka, although the foraminifera index 

“% Orbulina universa” in MD06-2986 suggests STW reached the study area as early 

as 437ka.  There is little indication in the foraminifera-based indices of the brief 

incursions of SAW inferred from dinocyst assemblages during stadials centred on 

420ka and 395ka, except for fluctuations in “% Orbulina universa” at MD06-2989, 

that drop below the “STW threshold” during those times (Figure 5.8A).  The 

foraminifera-based indices also suggest the return of SAW to the region was delayed 

during the inception of glacial MIS10, compared to that suggested by the dinocyst-

based indices.  The first foraminifera-based proxy indicative of SAW is at c. 357ka, 

almost 10ka after the dinocyst-based proxies indicate SAW returned to this part of 

the east Tasman Sea. 

In the modern east Tasman Sea, the STF is positioned south of the study area (Figure 

5.1A).  The dinocyst water mass indicators are consistent with SAW over the study 

area during MIS10, while the foraminifera water mass indicators suggest the STF 

remained near to the study area.  The proxy signals are slightly different during 

MIS12, with the dinocyst water mass indicators indicative of a more proximal STF 

than inferred from the foraminiferal indicators (Figure 5.8).  These differences may 

relate reflect variability that is recorded in a different way by the two proxies, either 

as seasonal variability, or contrasting depth preferences of the proxies which could 

result in a different picture of frontal location.  During both glacials, it is likely that 

the STF in the east Tasman Sea was located within or near to the study area, as 

suggested by Hayward et al. (2012).  The northwards migration of the STF is well 

documented during the LGM in the Tasman Sea (Sikes et al., 2009), accompanied by 

a similar northwards migration of the Tasman Front (Martinez, 1994).  All the water 

mass estimates point to the STF south of the study area during MIS11: how far south 

is more difficult to constrain with the current data.   

5.5.3 Productivity in the east Tasman Sea MIS12-10 

Based on the relationship observed between the “dinocyst productivity index” and 

satellite derived chlorophyll-a in the modern east Tasman Sea, chlorophyll-a 

concentrations in the region are likely to have ranged between 0.4mg.m
-3

 (index 

values >0.6) during glacial periods and 0.2-0.3mg.m
-3

 during MIS11 (index 
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values <0.2) (Figure 5.2).  At present, the calibration dataset is not sufficient to 

resolve the smaller changes in the index values observed during the peak of MIS11 

(Figure 5.8E), although no variability similar to the ca. 6ka periodicity in the SST 

record is observed in the dinocyst productivity record.  The foraminifera-based proxy 

used here is consistent with the dinocyst index.  The “% G. bulloides” varies between 

12-22% during MIS11, with minima at 410ka and ~400ka, and also a minimum at 

~385ka.  The minima values suggest that both MD06-2986 and MD06-2989 were, at 

least briefly, beneath the “high intermediate” chlorophyll-a biome during MIS11.  

In contrast, dinocyst-based productivity indices during glacials MIS12 and MIS10 

ranged between 0.4 and 0.9, with average values ~0.6.  These values suggest a range 

of glacial chlorophyll-a concentrations of 0.3-0.5mg.m
-3

.  The range of “% G. 

bulloides” during glacials, of 40% to 60%, supports surface waters of the “high” 

chlorophyll-a biome (Figure 5.3, 5.8E), but cannot exclude the “high intermediate” 

biome. 

The increased productivity during glacials MIS12 and MIS10 inferred from the 

dinocyst and foraminifera proxies is most likely due to a northwards shift in the zone 

of elevated productivity associated with the STF, consistent with the interpretation 

of the water mass indicators in Section 5.5.3.  In addition, lower sea level resulting in 

river discharge close to the canyon heads may also have increased the incidence of 

nutrient-laden plumes of suspended sediment, extending the zone of “coastal” 

productivity into the Tasman Sea, similar to that inferred during the Last Glacial 

Maximum (LGM) in STW to the east of New Zealand (Carter et al., 2002; Carter and 

Manighetti, 2006).  Productivity in the micronutrient-limited SAW in the study area 

during glacial times may also have been more susceptible to the input of terrestrial 

nutrients than STW off the east Coast of New Zealand.  In other Tasman Sea records, 

strong anti-phased correlations are observed over the last ca. 400kyr between SST 

and various proxies for productivity on glacial/interglacial scales, frequently linked 

with increased dust flux during glacial times (e.g. Nees, 1997; Calvo et al., 2004; 

Nürnberg and Groeneveld, 2006).   

Productivity during the interglacial MIS11 appears to have been lower, and was also 
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probably less than the Holocene.  During MIS11, the lowest productivity is restricted 

to times where water mass indicators show an absence of SAW influence.  The 

minima in productivity proxies in the MIS11 records presented here are consistent 

with oligotrophic surface waters of the central Tasman Sea entering the study area.  

Although there is a broad correlation during the MIS11 interglacial of lowest 

productivity during periods of elevated SST (Figure 5.8), samples with lowest 

productivity are not confined to those with elevated SSTs: the first minimum in the 

dinocyst-based productivity index occurs at ca. 418ka, ca. 5ka prior to the peak SSTs.   

Observations of the modern ocean/climate system provide insights into possible 

oceanic circulation that could give rise to the productivity response observed during 

MIS11.  Over the last decade of ocean warming, the rate of circulation in the South 

Pacific Gyre, the western limb of which drives circulation of the East Australian 

Current (EAC) and the Tasman Front (Figure 5.1), has increased, attributed to an 

increase in westerly winds (Roemmich et al., 2007).  Increase in gyre flow affects 

transport within the EAC.  Over the last ~60 years, the intensification of the gyre has 

resulted in a ~350 km southwards extension of the EAC along the eastern margin of 

Tasmania (Hill et al., 2008), while transport along the Tasman Front has declined (Hill 

et al., 2011).  The South Pacific Gyre has shifted south in concert with the zonal 

westerly winds (Roemmich et al., 2007; Cai, 2006; Hill et al., 2008; 2011).  A 

reduction in east Tasman Sea productivity might therefore arise from southward 

migration of the STF.   

5.5.4 A different productivity regime during MIS11? 

The broad correlation on orbital timescales between water mass, SST and 

productivity observed in this study is consistent with what might be expected given 

observations of modern oceanography and other proxy reconstructions of the east 

Tasman Sea from the late Quaternary.  However, the interaction of SST, nutrient 

availability and productivity in the east Tasman Sea during MIS11 may have differed 

from the modern setting.  This suggestion is based on observations of the 

relationship between productivity proxies and SST during MIS12-11, compared to 

later times.   
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Prior to 300ka (MIS10), a strong (anti-phased) correlation is observed between the 

foraminifera-based SST and the foraminiferal productivity indicator % G. bulloides 

(Pearson correlation coefficient = -0.82, r
2
 = 0.68) (Figure 5.9) (Hayward et al., 2012).  

Although the relationship remains anti-phased after 340ka, the correlation is lower 

in samples between 340ka and the present (correlation coefficient = -0.39, r
2
 = 0.15).  

Assuming the ecological niche represented by % G. bulloides has remained constant 

over time, it appears that although the lowest rates of productivity occurred during 

MIS11, productivity and SST were also more strongly correlated during the interval.   

Care has been taken to compare correlations of ‘full’ glacial cycles, as the degree of 

coupling may vary within a cycle, but another way to document the correlation 

between SST and % G. bulloides is to do so in sections of the time series.  Thus, 

correlations of each transition from full glacial to peak warmth, i.e. 40-0ka, 165-

125ka, 280-240ka, and 440-400ka are considered in turn.  When considered in this 

way, the correlation between SST and % G. bulloides is much stronger in the MIS12-

11 termination (correlation coefficient = -0.89, r
2
 = 0.8) than the later four 

terminations, where the next highest correlations are observed during the MIS10-9 

and MIS6-5 transitions strength (correlation coefficients ~ -0.65, r
2
 ~ 0.43).  A similar 

relationship is observed in the overlapping core MD06-2989, that extends from 

386ka – 1084ka (Hayward et al., 2012).  There, a strong antiphased correlation is also 

observed between SST and % G. bulloides during 546 – 386ka (MIS14) (correlation 

coefficient = -0.81, r
2
 = 0.66), although it reduces slightly when the correlation is 



Chapter 5 

 

 

 

203 

extended to 564ka to compare two entire cycles (-0.73, r
2
 = 0.54). 

Given the close proximity of the study area to New Zealand, and to the STF, the shift 

in strength of correlation between SST and % G. bulloides is most likely to reflect 

some change in the relative influence of terrestrial input and water mass migrations 

around 300-350ka.  Alternatively, such a shift in correlation may simply be a feature 

of the relatively prolonged deglacial during MIS12-11 compared to later transitions 

(e.g. Tzedakis, 2010), reflect other unique factors associated with the end of the Mid 

Pleistocene transition (e.g. Clark et al., 2006), or change in the ecology of G. 

bulloides.  Another possibility, given that the timing of this shift coincides 

approximately with the increase of Australian aridity (Pillans and Bourman, 2001; 

Kershaw et al., 2003) and the inception of trans-Tasman transport of Australian-

derived dust (Hesse, 1994; Hesse and McTainsh, 1999), is that the resulting increase 

of iron flux allowed higher rates of primary productivity over a greater area of the 

east Tasman Sea than was possible during MIS14-10 (Figure 5.9). 

We explore the final possibility in more detail here, although the present data are 

insufficient to determine whether one, or a combination, of factors caused the 

change in the relationship between this productivity proxy and SST.  Indeed, 

additional proxies for productivity are also required to determine whether the 

observations made here are repeatable.   

Modern STW in the Tasman Sea is enriched in iron relative to the “high nutrient-low 

chlorophyll’ SAW to the south (Boyd et al., 2005; Bowie et al., 2009).  Iron is inferred 

to enter the modern Tasman Sea off Australia via entrainment of shelf sediments 

and atmospheric dust input (Bowie et al., 2009; Lannuzel et al., 2011; Mongin et al., 

2011a; 2011b).  Inspection of ocean colour satellite imagery for the east Tasman Sea 

study area suggests coastal waters are seeded by direct fluvial discharge, and under 

modern conditions Ekman transport of the W to SW winds would favour offshore 

transport of sediment-laden water towards the core sites (Brown et al., 1998).  The 

flux of Australian dust directly into the study area, and onto the South Island, must 

also contribute a proportion of the iron to reach the study area.  The accumulation 

rate of Australian dust at a South Island tarn during the Holocene was  



Chapter 5 

 

 

 

204 

0.2-1.6 g/m
2
/year (Marx et al., 2009).  At this rate, Australian derived dust could 

form 1-4% of the sediment accumulation in cores of the study area, using 

accumulation rate to mass relationships observed on the east of New Zealand 

(Carter et al., 2001).  Australian dust is enriched in iron, (~10-25% iron) (Douglas et 

al., 1999; Radhi et al., 2010a, 2010b, 2011) compared to the sediment load of West 

Coast rivers of the South (Kautz and Martin, 2007) and North Island (Goldsmith et al., 

2008) (range ~2-10% iron).   

Australian aridity appears to have increased progressively during the Mid Pleistocene 

Transition (MPT) (Pillans and Bourman, 2001; Kershaw et al., 2003), with initiation of 

terrestrially derived dust flux into Tasman Sea recorded from 400-300ka (Hesse, 

1994; Calvo et al., 2004), with a strong pattern of increased flux during glacial times.  

The easternmost core included in the study of Hesse (1994), E26-1 slightly north of 

the present study region (Figure 5.1A), recorded the first aeolian dust flux after MIS9 

(300ka) (Figure 5.9). 

Using the rates quoted above, the effect of Australian dust deposition into the study 

region during MIS9-10 could have increased the flux of elemental iron to surface 

waters of the east Tasman Sea by 5-20%.  In addition, the new flux may also have 

contained more soluble forms of iron from ash, and also been deposited to surface 

waters during times of the year that could complement the input of iron from the 

New Zealand landmass.  Although bio-utilisation of iron is complicated by timing, 

bioavailability and rates of flux (e.g., Boyd et al., 2005; Bowie et al., 2009; Lannuzel 

et al., 2011), an increase of iron flux into the Tasman Sea of this magnitude after 

MIS11 was possibly sufficient to alter the nutrient limitation regimes of primary 

productivity in the study area, particularly if it also had the effect of enriching STW of 

the entire Tasman Sea, which could be transported into the study area by the East 

Tasman Drift. 

To return to the original observation, of variable correlation between SST and 

productivity; one possible explanation for this pattern is that in the iron-limited east 

Tasman Sea prior to 340ka, productivity in the study area was influenced primarily 

by the proximity of the STF and the magnitude of terrestrial derived nutrient input 
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from the South Island.  During later times, in waters that were not iron limited, 

additional influences on productivity, such as windiness/ mixing intensity, may have 

resulted in a productivity regime less coupled to the glacial/interglacial scale changes 

in water mass that was apparently the dominant influence between MIS14-10.  

Further observations of productivity and variations in dust flux and other 

productivity drivers in the Tasman Sea between MIS10-1 are required to test this 

hypothesis.   

Notwithstanding the cause of the shift in strength of correlation between SST and % 

G. bulloides at 300ka, the observation that one occurs has implications for 

interpretation of faunal proxies used to infer MIS11 environments in the east 

Tasman Sea.  Whether due to variation in ecological niche or productivity regime (i) 

the faunal environmental proxies, used to determine the relative position of water 

masses and frontal systems, and to reconstruct SST, should be treated with more 

caution as good modern analogues may not be available, and (ii) the biological 

response to elevated warmth inferred from MIS11 may differ from that which might 

occur in the modern ocean. 

5.6. Conclusions 

1. The MIS12-11 transition in the east Tasman Sea featured a two-stage 

warming, with (i) a period between ca. 428-415ka when SST fluctuated 

around slightly below modern levels, and (ii) a sustained period of SSTs 

>16.5˚C (~1˚C above modern) between 415-405ka with peak SSTs >18˚C 

present during 413 – 407ka.   

2. In the east Tasman Sea, these fluctuations in SST were accompanied by 

dinocyst and foraminifera assemblage changes indicative of an increased 

influence of SAW during glacial periods, inferred to correspond with a 

northward migration of the STF.  

3. Productivity indices during MIS12-10 are anti-phased with SST.  The 

productivity minima associated with peak SSTs in MIS11 was likely lower 

than modern productivity in the east Tasman Sea.  These 
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variations in productivity on glacial-interglacial timescales are inferred to 

arise from migration of the STF, interacting with terrestrially derived 

nutrients from the adjacent New Zealand landmass. 

4. A strong correlation is observed between SST and a qualitative 

foraminifera-based proxy for productivity, (% G. bulloides) between 

MIS14-MIS9, with a particularly strong correlation during the MIS12-11 

transition.  In contrast, the correlation during later times (MIS9 – present) 

is much weaker.  The stronger correlation prior to 345ka may reflect the 

prolonged MIS12-11 deglacial compared to later transitions, an increase 

in the variability of the STF or New Zealand –derived terrigenous input 

after this time, or may reflect a primary productivity regime that was 

occasionally iron limited prior to the initiation of Australian aridity and 

enhanced trans-Tasman dust transport after MIS10-9. 
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6. Marine-terrestrial climate during Marine Isotope Stage 11, 

South Island, New Zealand.  

Abstract 

Marine and terrestrial conditions in the eastern New Zealand region during Marine 

Isotope Stage 11 (MIS11, 423ka – 380ka) are determined from assemblages of 

dinoflagellate cysts (dinocysts) and pollen from Deep Sea Drilling Project Site 594 

(DSDP594).  The dinocyst assemblages are used to infer sea surface temperatures 

(SSTs), using a selection of transfer function models and a 311-sample training set of 

modern sea-floor samples.  The pollen record, combined with earlier work at 

DSDP594, is the longest continuous Mid-Late Quaternary pollen record in the region 

(3 – 446ka, average resolution 3ka), recording variation of vegetation along the 

eastern margin of New Zealand’s South Island, ca. 250km west of the core site.   

Two distinct phases were recognised during MIS11 in both dinocysts and pollen 

assemblages.  During the early phase (ca. 430 – 415ka), dinocyst assemblages 

suggest surface water productivity conditions varied on sub-millennial timescales, 

while more stable dinocyst assemblages are a feature of the later phase of MIS11 

(ca. 415 – 400ka).  The dinocyst assemblages of the early phase are most similar to 

those observed at the Site during MIS5e, while the assemblages of later MIS11 are 

similar to, but qualitatively represent waters warmer than, the Holocene.  Estimates 

from transfer functions indicate SSTs during late MIS11 were likely warmer than the 

present, but they do not appear to have been as warm as during MIS5e. 

The succession of pollen assemblages during MIS12-11 is similar to that observed in 

MIS2-1 and MIS6-5.  However the transitions between pollen assemblages during 

the MIS12-11 deglacial occurred more slowly, and includes a ca. 10ky period with 

high abundances of pollen of Coprosma, that is not observed during later deglacials.  

The duration of the pollen assemblages that represent maximum extent of the 

warmest forest type, Podocarpus/Prumnopitys, is ca. 15ky during MIS11.  This is 
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longer than this pollen assemblage is observed during MIS5e (ca. 6.1ky) or during the 

early climatic optimum of the Holocene (ca. 6.3ky duration).   

During MIS11, changes in the pollen record at DSDP594 correlate more closely to SST 

variation in the east Tasman Sea than to variations in marine conditions at DSDP594, 

suggesting that marine conditions from the east coast have only limited influence of 

conditions on the adjacent landmass. 

6.1. Introduction 

Climatic conditions during Late Quaternary interglacials illustrate the natural 

variability of the Earth system under pre-anthropogenic atmospheric carbon dioxide 

concentrations.  In addition, some interglacials of the Late Quaternary were warmer 

than present day, at least in some parts of the globe, and aspects of those 

environments may serve as analogues for projected future warming.  Two such 

phases are Marine Isotope Stage (MIS) 5e (peak warmth ca. 125ka) and MIS11 (peak 

warmth ca. 405ka) (Lisiecki and Raymo, 2005; Jouzel et al., 2007).   

In the Southwest (SW) Pacific, environmental conditions during MIS5e are becoming 

increasingly well documented by a range of proxies from both marine (e.g., Nelson et 

al., 1993; Wells and Okada, 1997; Marret et al., 2001; Kawahata, 2002; Pahnke et al., 

2003; Neil et al., 2004; Pelejero et al., 2006; Pahnke and Sachs, 2006; Barrows et al., 

2007; Hayward et al., 2008, 2012; Lueer et al., 2009) and terrestrial environmental 

reconstructions (Heusser and van der Geer, 1994; Mildenhall, 1995; Newnham et al., 

2007, 2011; Vandergoes et al., 2005; Ryan et al., in press).  MIS11 records in the 

region are less common, with available marine records indicating sea surface 

temperatures (SST) warmer than the Holocene (Calvo et al., 2003; Pelejero et al., 

2006; Hayward et al., 2008, 2012).  There are no continuous records documenting 

terrestrial environments of MIS11 in the region. 

In this chapter, we describe dinoflagellate cyst (dinocyst) and spore/pollen 

assemblages from MIS11 in Deep Sea Drilling Project (DSDP) Site 594 to the east of 

the South Island of New Zealand (Figure 6.1).  The purpose of this study is threefold: 



Chapter 6 

 
209 

1. to document the climate response in Subantarctic Surface Water (SAW) 

during MIS11 by examining dinocyst assemblages, comparing with existing 

records from warm periods MIS 1 and MIS 5e; and estimating SST from the 

dinocyst assemblages using a faunal transfer function;  

2. to compare the MIS11 pollen record to those found in younger interglacial 

sections of DSDP594; and place terrestrial vegetation changes during MIS11 

in a continuous, well dated sequence; and  

3. to explore the relationships between terrestrial and marine environmental 

conditions during MIS11. 

6.2. Oceanographic setting 

A key oceanographic feature of the New Zealand region is the Subtropical Front (STF) 

(Figure 6.1). This feature separates Subtropical from Subantarctic surface water 

masses and it also forms the boundary between two contrasting circulation systems.  

North of the STF, water of the counter-clockwise South Pacific Subtropical Gyre 

(Roemmich, 2007; Roemmich et al., 2007) travels east across the Tasman Sea as the 

Tasman Front centred on ca. 30˚S (Chiswell et al., 1997). This current system then 

flows southeastwards along the eastern continental margin of the North Island as 

the East Auckland and East Cape currents (Stanton et al., 1997; Tilburg et al., 2001).  

The flow is subsequently steered eastwards along the northern flank of Chatham 

Rise, where it may help constrain the STF which resides along the east-west rise crest 

(Chiswell, 1994; Uddstrom and Oien, 1999).   

South of the STF, circulation is dominated by the eastward flowing Antarctic 

Circumpolar Current (ACC) (Carter et al., 1998; Morris et al., 2001; Sokolov and 

Rintoul, 2009).  As the flow approaches New Zealand, the dominant frontal systems 

that form the northern part of the ACC, namely the Subantarctic (SAF) and Polar (PF) 

fronts are forced north by the western boundary of the Campbell Plateau to around 

50˚S before returning to an eastward flow (Figure 6.1).  Part of the SAF flow passes 

northwestward though a gap in the plateau to form the clockwise Bounty Gyre, 

some components of which flow along southern Chatham Rise and the STF.  
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The surface water masses separated by the fronts have distinct physical and bio-

physical properties. The latitudinal transition from tropical to polar waters is 

characterized by a change in mean annual SST from 28˚C at 15˚S to -0.5˚C at 65˚S 

(Locarnini et al., 2010). The highest surface salinities in this region, 35.7 psu, are 

found in the STW of the central Tasman Sea, falling to 34.3 psu south of the STF, and 

33.9 psu south of the PF.  Nitrate and phosphate are virtually absent from STW north 

of the STF, and increase in concentrations to a regional maximum at 63˚S, while 

dissolved silica is only found in high concentrations south of the PF (Garcia et al., 

2010).  Levels of productivity vary over this region, and are generally highest near to 

land and at frontal zones (Behrenfeld and Falkowski, 1997).  Regional productivity is 
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highest along the STF to the east of New Zealand, where mean annual productivity is 

over 1000 mgC/m
2
/day (Bradford-Grieve et al., 1997; Murphy et al., 2001).  

6.3. Warm interglacials in the SW Pacific 

The two warmest interglacials following the Mid Pleistocene Transition (MPT) (e.g. 

Clark et al., 2006; Tzedakis et al., 2009) are MIS5e and MIS11, and are discussed here 

in relation to the Holocene (MIS1).   

In the New Zealand region of the SW Pacific, numerous proxy reconstructions 

suggest warmer SSTs during MIS5e (peak warmth 125ka) than any time during the 

Holocene (Marret et al., 2001; Pahnke et al., 2003, Pahnke and Sachs, 2006; Pelejero 

et al., 2006; Barrows et al., 2007; Hayward et al., 2008, 2012; Lüer et al., 2008).  This 

is also reflected in the a record based on the marine fossil group that is the focus of 

the present study, dinocyst assemblages from DSDP594 (Marret et al., 2001), where 

Holocene assemblages are very different, and suggest cooler SSTs, to those of MIS5e.  

The New Zealand terrestrial response to a warm climate during MIS5e is 

documented by a continuous pollen record from a near-shore marine core off 

western South Island, that suggests more extensive forest cover, reflecting warmer 

temperatures than present (Ryan et al., in press).  However, the presence of 

subalpine shrub pollen in an equivalent on-shore record from nearby Okarito Bog 

points to relatively cool temperatures during MIS5e (Newnham et al., 2007, 2011).  

Discontinuous MIS5 terrestrial records from New Zealand contain pollen 

assemblages indicative of conditions similar to the present (e.g., Bussel, 1990; 

Newnham and Alloway, 2004), although it is not clear the peak warmth of MIS5e is 

sampled. Other records report assemblages indicative of warmer-than-present 

conditions (e.g., Mildenhall, 1995).  The published pollen record from distal marine 

core DSDP594, provides a broad picture of terrestrial conditions from ca. 350ka to 

present (Heusser and Van der Geer, 1994).  Despite the poor preservation, low 

diversity, and different relative abundances in contrast to assemblages from 

terrestrial sites (e.g., Wilmshurst et al., 1999; Soons et al., 2002; Crouch et al., 2010), 

Heusser and van der Geer (1994) suggest the vegetation was similar during MIS1 and 

MIS5e. 
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For MIS11 (423-380ka), foraminifera-based transfer functions (Hayward et al., 2008, 

2012) and a recently developed dinocyst transfer function applied to east Tasman 

Sea assemblages (Chapter 5, this study) both indicate peak MIS11 SSTs west and 

east of New Zealand were 2-3˚C warmer than the present, and 1-2˚C warmer than 

the Holocene optimum.  In contrast, an alkenone U
K

37-based SST record from south 

of Tasmania indicates peak MIS11 temperatures there were similar to present, and 

cooler than the Holocene Optimum (Pelejero et al., 2006), although regional-scale 

climate changes may be obscured in the record due to sensitivity of this site to 

variability in the East Australian Current extension (e.g. Hill et al., 2008).  The only 

terrestrial pollen assemblages spanning MIS11 in the NZ region are three samples 

from the Wanganui Basin (Figure 6.1) (Bussell, 1987), and ~10 samples from the 

distal marine Ocean Drilling Programme (ODP) Site 1123 (Mildenhall, 2003; 

Mildenhall et al., 2004).  Bussell (1987) interpreted the Wanganui Basin assemblages 

as representing a climate warmer than present, as several pollen types were 

recognised from species south of their modern range, while a MIS11 sample from 

Site 1123 contained the highest concentration of Podocarpus/Prumnopitys pollen of 

the last four glacial/interglacials.  

In summary, all available marine records from STW west of New Zealand, and in SAW 

to the east of New Zealand indicate that SSTs during MIS5e were the warmest of the 

previous 4 interglacials (MIS1-9).  For MIS11, most proxy records in the region 

suggest SSTs were generally warmer than the Holocene, with most records indicating 

peak SSTs during the later part of MIS11.   

Coeval pollen on the West Coast of the South Island and at DSDP594 suggest a 

general coupling of South Island vegetation with SST during interglacials MIS1 and 

MIS5, in that most (but not all) proxies suggest terrestrial and marine conditions 

were warmer during MIS5e than the Holocene.  For MIS11, the few proxy records in 

the region suggest generally warmer SSTs than the Holocene, but no continuous 

pollen records are available to confirm whether there is a consistent vegetative 

response to warm interglacials in the eastern South Island. 
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6.4. Methods 

6.4.1. DSDP594 

Site 594 was drilled during DSDP Leg 90 in 1983 (Nelson, 1986).  The site is located 

on the southern margin of the Chatham Rise in 1400m water depth, approximately 

250km east the South Island, at about the latitude of Dunedin at 45°31.41’S, 

174°56.88’E (Figure 6.1).  The core lies in SAW, just south and east of the STF.  The 

Late Quaternary section of the core consists of alternating layers of nannofossil-

bearing terrigenous clayey silts, and foraminiferal-bearing nannofossil oozes (Nelson, 

1986). The silts represent a glacial phase of hemipelagic deposition whereas the 

pelagic calcareous oozes were deposited in interglacial periods (Nelson et al., 1993).   

The core chronology used here is based on matching the δ
18

O of the planktonic 

foraminifera Globigerina bulloides to the globally-tuned benthic δ
18

O stack, LR04 

(Lisiecki and Raymo, 2005; Ryan, 2010, this study) and all other records from 

DSDP594 used here are transferred onto the same timescale.  Although this should 

produce a closer fit to the LR04 stack than tuning to a combination of δ
18

O, CaCO3, 

and SST, as previous age models have done (Nelson et al., 1993; Kowalski and 

Meyers, 1997; Wilson et al., 2005; Schafer et al., 2005; Hayward et al., 2008, 2011), 

the relatively low resolution of the G. bulloides δ
18

O record compared to the other 

environmental proxies used to establish tie points effectively results in a similar 

average error.  However, it allows more rigorous comparison between cores 

collected at different locations, particularly those separated by frontal systems that 

may not necessarily have temporally aligned SST histories.  In practice, the age 

model over MIS12-10 is very similar to that used by Hayward et al., (2008), with the 

most significant difference in the timing of peak foraminiferal SST.  In the Hayward et 

al. (2008) model, peak foraminifera assemblage-based SSTs occur at 405ka.  

However, this SST peak is later than isotopic minima in both G.bulloides and the 

benthic Uvigerina spp., strongly suggesting this point is younger than 402ka.  Thus, in 

the present age model, this point is 401ka.  Observations of offsets between benthic 

and planktic isotopes from the region (ODP 1123, Crundwell, pers. comm.) suggest 

ages are still likely to be offset ca. 2-3ky (younger) when compared with 

chronologies derived using benthic stable isotopes.   
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Limited support for the age model comes from the presence of the Rangitawa tephra 

at 36.5m at DSDP594, which has an age of 340ka ±7ka (MIS10), with the error 

derived from orbital tuning of marine records (Pillans, 1996; Alloway et al., 2005; 

Holt et al., 2010).  The present age model assigns an age of 339ka to this depth.  This 

age model differs from the interpretation of Soons et al. (2002), who suggested that 

the interval 32-34m represented deposition during MIS7 based on their 

interpretation of the pollen assemblages.  Their interpretation implies that the 

MIS11 section presented here could be MIS9.  Although they are correct in their 

observation that the pollen assemblage over that interval is unusual, it is insufficient 

reason to adjust an age model well supported by tephra, isotopes and other 

environmental proxies (e.g. CaCO3, foraminiferal SST estimates, Nelson et al. 1993; 

Hayward et al., 2008). 

6.4.2. Sample processing and counting 

52 samples were processed for palynology between 36.86m and 49.32m (343ka – 

446ka).  All samples were processed using standard Quaternary marine palynological 

techniques.  Cold 33%HCl was added to a dried sample to remove carbonate, while 

silicate was removed by 24 hours in cold 40%HF. This was followed by a second cold 

33%HCl wash, brief ultrasonic treatment, removal of fines with 6µm filter and 

mounting on glass coverslips in glycerine jelly (Crouch et al., 2010).  A single 

Lycopodium tablet (batch number 938934) was added to each sample for 

determination of absolute abundances.   

Census counts of dinocysts were made for each sample, following taxonomy in 

Zonneveld (1997), Rochon et al. (1999), Marret and Zonneveld (2003), and 

references therein.  Census counts stopped at 300 specimens, or when two slides 

had been examined.  Dinocysts were sparse in some intervals.  Samples at seven 

intervals were combined to achieve adequate census counts (Supplementary 

Material S6.1), with combinations restricted to samples nearer than 30cm depth in 

the core (~2ky time assuming a constant accumulation rate), and constituent 

samples inspected for similarity before combination. Observations from an 

additional eight samples were discarded as counts were too low.  Hence, 37 dinocyst 

census counts are included, with an average count of 317 cysts, and average 
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sampling resolution of 2.7ka between MIS12-MIS10. This is slightly coarser (~1ky) 

than the existing sampling resolution from MIS1-6 (Marret et al., 2001).  All dinocyst 

count data are included in Supplementary Material S6.1. 

Census counts of pollen were made on the same samples that were examined for 

dinocysts.  Pollen abundance was generally lower than dinocysts, and processing 

techniques designed to maximise dinocyst preservation do not result in ideal pollen 

slides. Taxonomy followed Pocknall (1981a, b, c), Large and Braggins (1991), and 

Moar (1993). The dry-land pollen sum is calculated in a consistent way to Heusser 

and Van der Geer (1994), and proportions are thus directly comparable in DSDP594, 

although some aspects of the assemblages, including the frost-intolerant Ascarina 

lucida, are grouped into a category of ‘undifferentiated angiosperms’.  Division 

within the podocarps followed Heusser and Van der Geer (1994), with Dacrydium 

cupressinum, Dacrycarpus dacrydioides, Halocarpus sp., and Phyllocladus spp. 

differentiated, while Prumnopitys spp. and Podocarpus spp. were grouped.  

Nothofagus fusca pollen, N. menzeisii, and N. brassii were separated.  Cyathea spp., 

other trilete, and monolete spores were counted outside of the dryland sum.  

Cyperaceae spp. were also counted, but were identified in much lower numbers than 

Heusser and Van der Geer (1994) where sampling overlapped.  Although Cyperaceae 

spp. were a significant component of glacial assemblages from the younger part of 

the core, very few were identified from MIS10 or MIS12. The cause of this 

discrepancy has not been investigated, as the primary focus here is comparison of 

interglacial climates.  Census counts stopped when 300 dryland specimens were 

reached, or two slides were inspected.  Pollen samples with insufficient counts were 

combined using the same methodology as for dinocysts, resulting in 28 pollen 

samples included in this study.  The pollen samples had an average dryland pollen 

sum of 260 specimens (average 490 specimens including spores), and an average 

sample resolution of 3.7ka, compared to an average resolution of 2.9ka for the 

interval 350-0ka (Heusser and Van der Geer, 1994).  Pollen count data are included in 

Supplementary Material S6.2. 
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6.4.3. Dinocyst water mass indicators 

In the New Zealand region, the most significant change in modern sea-floor dinocyst 

assemblages is observed across the STF (Chapter 2, this study), reflecting the 

contrasting properties of water masses either side of the front, including 

temperature, salinity, kinetic energy, and nutrients (Bradford-Grieve et al., 1997; 

Boyd et al., 1999; Murphy et al., 2001).  In modern sediments, the relative 

abundances of 19 dinocyst taxa are observed to change in a consistent way across 

the STF (Table 2.3, Chapter 2).  The presence of these taxa is used here to infer 

similarity to dinocyst assemblages that are today characteristic of SAW or STW in the 

New Zealand region.  The dinocyst counts for each sample are plotted in the 

following way: the relative abundance of every taxon that fulfilled the criteria in 

Table 2.3 are plotted, less the threshold value shown in the table.  For example, the 

dinocyst assemblage sample at 441.4ka contained 78% Selenopemphix antarctica 

relative to the entire dinocyst assemblage.  The threshold value for this taxon in SAW 

is 1%, thus 77% of the assemblage is shown to contain characteristics of assemblages 

presently found in SAW.  Other samples contain components of dinocyst 

assemblages that are today characteristic of both SAW and STW.   While these are 

interpreted here to reflect a degree of mixing of surface water masses greater than is 

observed at present, it is possible that the conditions required to generate these 

apparently “mixed” assemblages could arise by other processes. 

6.4.4. SST transfer functions 

For this study, a 311-sample, 39 taxon training set of dinocyst census counts of sea-

floor samples from the Southern Hemisphere is compiled (Marret et al., 1997; 

Harland et al., 1998; Vink et al. 2000; Zonneveld et al., 2001; Holwarth et al., 2007; 

Esper and Zonneveld, 2002; 2007; Crouch et al., 2010; Verleye and Louwye, 2010; 

Laurijssen and Zonneveld, unpublished; Chapter 2, this study). Ordination of this 

dataset indicates that SST correlated most strongly to the dinocyst distribution, and 

accounted for 37% of the species-environmental relationship after removal of 

covarying gradients.  SST was twice as strongly correlated with dinocyst distribution 

than the secondary environmental gradients (Chapter 2, this study).  On the basis of 

this ordination, and observations of the importance of water temperature as a direct 

and/or indirect control of dinoflagellate growth rate and cyst formation (e.g., 
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Grzebyk and Berland, 1996; Jensen and Moestrup, 1997; Hwang and Lu, 2000; Juhl, 

2005; Navarro et al., 2006; Guerrini et al., 2007; Laabir et al., 2011), SST is inferred to 

be an appropriate target for quantitative estimation using fossil dinocyst 

assemblages.   

SSTs were estimated from dinocyst assemblages for each sample using three 

methods: weighted averaging with partial least squares (WA-PLS) (ter Braak and 

Juggins, 1993), the modern analogue technique (MAT) (Hutson, 1980; Guiot and de 

Vernal, 2007) and an artificial neural network (ANN) (Malmgren and Nordlund, 1997; 

Malmgren et al., 2001).  The results of all three models are considered, as modern 

cross validations experiments show each to have contrasting strengths (Chapter 4, 

this study).  Selection of optimum components in WA-PLS was guided by a 

randomized t-test of the equality of predictions from each component (van der Voet, 

1994), included in the C2 software 1.4.2 used for this analysis (Juggins, 2005).  For 

the MAT, a chord dissimilarity was used to select the five nearest analogues, using 

the MAT routine in C2. ANNs were trained using the program Tiberius 

(www.tiberius.biz).  This software contains a single hidden layer, with one fixed 

linear neuron, and variable numbers of non-linear neurons containing tan-h 

functions.  Optimal training was achieved using 10 non-linear neurons.  The training 

regime followed Hayes et al. (2005) and Kucera et al. (2005).  

In a “leave-one-out” cross validation, root mean square error (RMSE) of the SH-311 

database were 1.2˚C (ANN), 1.5˚C (MAT), and 1.8˚C (WA-PLS) between 7-17˚C.  For 

SST <7˚C the MAT and ANN models have a RMSE ~2 – 2.5˚C, while the WA-PLS model 

appears to have no predictive power over this interval.  The SH-311 training set is 

spatially autocorrelated using the tests of Telford and Birks (2009).  One way to 

assess the effects of spatial autocorrelation on apparent model performance is to 

assess prediction errors using spatially independent test sets (Birks at al., 2010).  

Although it is difficult to obtain appropriate balance in a relatively small training set 

such as has been assembled here, a 68-sample test set of samples around the New 

Zealand region was split from the training set and separated by >1000km from the 

nearest training set samples.  Model performance of this spatially independent test 
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set was 1.3 times (WA-PLS) and ~2 times (ANN and MAT) poorer than leave-one-out 

cross validation.   

High dissimilarity values in MAT are often used to identify non analogue situations 

(e.g., Gersonde et al., 2005; deVernal et al., 2005; Marret et al., 2008; Sikes et al., 

2009).  We have used a dissimilarity score higher than the 99
th

 percentile of those 

observed within the modern training set to identify fossil samples with poor modern 

assemblages (a chord distance of 0.41).  Another test of suitability of fossil 

assemblages for quantitative reconstruction used here is inspection of the mutual 

distribution of both the training and fossil assemblages in ordination plots.  

6.4.5. Interpreting the pollen record 

Transport to DSDP594 potentially complicates vegetation and climatic interpretation 

based on the pollen assemblages, due to three main factors: 1) the large, and 

possibly variable, source area; 2) alteration of the assemblages by winnowing, 

compared to terrestrial counterparts; and 3) physical damage to pollen during 

transport to the site.  Each factor is considered briefly here, before describing the 

groups of pollen used here to infer vegetation and climate. 

In their interpretation of the DSDP594 record, Heusser and Van der Geer (1994) 

provided no specific analysis of the likely source area of the pollen and spores, 

interpreting the pollen to represent vegetation changes across the “South Island”, 

and inferring that a significant proportion of pollen was likely transported to the site 

via water rather than wind.  Most of the pollen found in sediment traps and sea-floor 

sediments to the east of New Zealand are of anemophilous plants (Crouch et al., 

2010; Chapter 3, this study), and eastwards aeolian dispersal of such pollen from the 

New Zealand landmass over great distances (<750km) has been established 

(Mildenhall, 1976; Holt et al., 2010).  However, there is an order-of-magnitude 

decrease in the average pollen concentration in sea-floor sediments within 100km of 

the New Zealand landmass (Crouch et al., 2010, Chapter 3, this study), suggesting 

that most pollen entering the ocean east of New Zealand is either via rivers, or by a 

near-shore pollen rain, an observation consistent with other ocean margin settings 

(e.g. Traverse, 2007).   
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Inspection of modern currents (Figure 6.1), including the trajectories of drifters from 

the global Drifter Programme (Chiswell and Rickard, 2006) suggests that much of the 

pollen reaching the site under the present interglacial circulation regime is likely to 

be sourced from South Canterbury and eastern Otago (area “A” on Figure 6.1). 

Inferred glacial circulation patterns (Neil et al., 2004) also favour a similar pollen 

source, although enhanced circulation and counter-surface currents may have 

extended the distance travelled for water-borne pollen, while variation of westerly 

wind intensity or frequency may have led to more extensive aerial transport of 

pollen during glacials (Mildenhall, 2003; Mildenhall et al., 2004; Shulmeister et al., 

2004; Lorrey et al., 2012).   

Discrepancies between the MIS7 assemblages at DSDP594 and a single pollen sample 

in a fragmentary record from on-shore Banks Peninsula (near Christchurch) led 

Soons et al. (2002) to suggest that the DSDP594 record was a poor record of South 

Island vegetation.  Although this observation largely ignored the possibility that the 

Banks Peninsula core site may itself reflect local rather than regional vegetation, it 

does highlight the value in linking terrestrial with near-shore pollen records prior to 

interpreting the assemblages from more distal marine settings.   

In preparation for the present study, we inspected the pollen assemblage from a 

recently-collected marine core close to the Canterbury coast (Integrated Ocean 

Drilling Programme [IODP] 1352, water depth 340m) (Figure 6.1), as a “bridging” 

near-shore east coast record.  Although comparison of IODP 1352 with the DSDP594 

record is complicated by a poorly developed IODP 1352 age model, it is possible to 

match up the broad and distinctive patterns of pollen succession observed during 

MIS9 and MIS11.  Since the sediment source of the upper-slope IODP 1352 is 

interpreted to be largely from South Canterbury and East Otago rivers (Land et al., 

2010; Fulthorpe et al., 2010), the similarity of pollen succession observed at the two 

sites lends support to a southeastern South Island source for much of the pollen at 

DSDP594, although these data await more robust age constraint. 

Winnowing, the preferential transport of some pollen types over others, has long 

been recognised as an influence on pollen assemblages in lacustrine and marine 
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settings (Traverse, 2007).  The effects have been observed in modern New Zealand 

oceanic settings (Crouch et al., 2010), and broadly result in over representation of 

large saccate pollen and spores (e.g. Podocarpus, Cyathea) with increasing transport 

distance at the expense of smaller grains such as Kunzea spp., Poaceae, Coprosma 

spp., Dacrydium spp., Colobanthus spp..  While this means distal marine assemblages 

can never be compared directly to those from terrestrial settings, overall patterns 

and large signals can be compared, and the assemblages within the core may be 

compared, provided similar transport pathways are assumed through time (e.g. 

Mildenhall, 2003; Mildenhall et al., 2004). 

Poor preservation of pollen in marine settings can preclude divisions that are made 

routinely in better preserved terrestrial sequences (e.g., Mildenhall 2003; Mildenhall 

et al., 2004; Crouch et al., 2010): for example identification of Podocarpus spp. and 

Prumnopitys spp. to specific level, identification of ferns and fern allies, and many 

wetland taxa.  

For interpretation of the DSDP594 pollen record, we have collated the pollen 

assemblage into a number of functional groups and individual taxa, following the 

quantitative ordination of New Zealand pre-deforestation pollen spectra against 

modern mean annual air temperature and precipitation (Wilmshurst et al., 2007) 

(Table 6.1).We use the succession and relative abundance of these functional groups 

to compare the timing of vegetation developments during MIS11, and compare 

these to subsequent interglacial periods at the site. 

6.5. Results 

6.5.1. Dinocyst assemblages 

Dinocyst assemblages examined in this study are of comparable diversity to that 

reported for the MIS6-1 part of the core (Marret et al., 2001).  We recorded 32 taxa,  
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23 of which were recognised in more than one sample.  The most dominant taxa 

were Nematosphaeropsis labyrinthus, Selenopemphix antarctica and Brigantedinium 

spp., while large numbers of Spiniferites mirabilis, S. hyperacanthus, S. ramosus and 

Selenopemphix quanta were occasionally observed (Figure 6.2).  Average abundance 

was 1200 cysts.g
-1

 (2200 cysts.g
-1

 with the inclusion of a single outlier dominated by 

Spiniferites hyperacanthus at 348ka), and was generally higher in interglacial 

samples.  Abundance was particularly high between 421 – 418ka (average 5500 

cysts.g
-1

) and 348-345ka (average 2200 cysts.g
-1

).  The overall concentrations and 

patterns documented here are similar to those observed in the younger part of the 

core (Marret et al., 2001) where an average abundance of 1700 cysts.g
-1

was 

observed, with a peak of 10,000 cysts.g
-1 

during MIS5e.   

A clear progression of assemblages indicative of glacial to interglacial conditions was 

observed between MIS12 and 10.  For interpretation, the succession was 

qualitatively divided into seven assemblages zones (Figure 6.2).   

The oldest assemblage zone (AZ1), (>438ka during the peak of MIS12) is dominated 

by S. antarctica (70%), relatively low concentrations of Brigantedinium spp. (10-

15%), traces of other peridinoid cysts including S. quanta, and occasional 

Impagidinium pallidum.  A dramatic transition occurs between 438ka – 431ka (where 

there is a 7ky sample gap), from the AZ1 zone into the AZ2 zone.  In AZ2 (431-423ka), 

S. antarctica is less than 10% of the assemblage, and is frequently absent, and the  
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assemblages are dominated alternately by N. labyrinthus and S. mirabilis group (S. 

mirabilis sensu stricto and S. hyperacanthus), with elevated concentrations of 

Brigantedinium spp. (up to 30%).  The zone includes the first presence of four 

Impagidinium taxa (I. aculeatum, I paradoxum, I. patulum and I. sphaericum), with 

the proportion of total Impagidinium spp. increasing up through the zone, 

particularly I. paradoxum and I. patulum (Figure 6.2).  The zone also includes the first 

presence of Pyxidinopsis reticulata and Spiniferites membranaceus.  AZ3 (423ka – 

392ka) is characterised by the lowest concentration of peridinoid cysts in the section, 

high relative abundances of N. labyrinthus, and common presence (up to 10%) of S. 

ramosus, and a single occurrence of Operculodinium janduchenei.  The brief AZ4 

(392ka – 384ka) is a transitional zone, defined by the reintroduction of peridinoid 

cysts, including Selenopemphix quanta and Echinidinium spp., with a small increase 

in S. antarctica and the last appearance of P. reticulata, while AZ5 (366-384ka) 

contains still higher, but fluctuating concentrations of S. antarctica and S. quanta, 

declining abundances of N. labyrinthus, the last presence of I. paradoxum and I. 

patulum accompanied by a marked decrease in I. aculeatum.  Assemblages of AZ6 

(366ka – 354ka) are very similar to the glacial AZ1 zone.  The overlying AZ7 (341ka – 

354ka) has some similarities to AZ2, in the high abundance of S. mirabilis group, but 

differs from AZ2 by the near-absence of warmer water Impagidinium spp. taxa, and 

greater frequency of peridinoid cysts including S. quanta and Echinidinium spp.. 

Similar assemblages to those observed in MIS11 are recognised in the MIS6 – 5 

record (Figure 6.3) of Marret et al. (2001).  The glacial assemblages of MIS6 have a 

similar composition to AZ1 and AZ6 (although the older part of the MIS6 section 

contains cysts of Pentapharsodinium dalei up to 30%).  MIS5e has similar 

composition to upper AZ2 and AZ3, with relatively low S. antarctica (although up to 

20%), and a domination by alternating N. labyrinthus and S. mirabilis group, along 

with up to 30% Brigantedinium spp.  A notable difference between the MIS5e and 

MIS11 assemblages is the presence of two taxa (Impagidinium variaseptum and 

Operculodinium israelianum) during MIS5e in concentrations that are today found in 

waters north of the STF. 
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When comparing dinocyst assemblages of MIS12/11, MIS6/5e and MIS2/1, the last 

glacial-deglacial transition and MIS1 assemblages are markedly different to those of 

MIS6/5e and MIS12/11.  With the exception of an increase in N. labyrinthus and P. 

reticulata at ca. 15ka, the Holocene assemblages are similar to the underlying glacial 

stages, with low diversity and relatively high (up to 40%) relative abundances of S. 

antarctica.  The diverse Impagidinium spp. and Spiniferites spp. components 

characteristic of MIS5e and early MIS11 are not observed in MIS1.  But for the high 

relative abundances of S. antarctica, and slightly less common Spiniferities spp., the 

Holocene dinocyst assemblages are also similar to those of the later part of MIS11 

(AZ3) (Figures 6.2 and 6.3).  

6.5.2. Water mass indicators 

During peak glacial times at DSDP594 (MIS 2-4, 6, 10, and 12) the water mass 

properties interpreted from dinocyst assemblages show clear indications of SAW, 

and no components of the assemblage are indicative of water from north of the STF 

(Figure 6.4).  Assemblages during the interglacial periods MIS11, MIS5a and MIS5e 

have components indicative of possible STW influence, and the SAW influences are 

much reduced when compared to the glacial assemblages.  In MIS11, components 

indicative of possible STW influence are present, between 430 – 410ka (Figure 6.4).  

There are also intermittent, but muted, indications of possible STW influence for the 

following 40ka, until full glacial assemblages with a strong SAW signal are observed 

after 370ka.   

Assemblage components that are unequivocal indicators of STW are restricted to 

samples from MIS5e (Figure 6.4).  Interestingly, MIS1 (Holocene) assemblages have 

no components indicative of STW, and the water mass indicators do not change 

across the MIS2-MIS1 deglacial transition.  

6.5.3. SST models 

The first approach used here to assess the quality of transfer function models 

(dissimilarity scores to the nearest analogue sample) indicates 80% of the fossil 

samples have adequate modern analogues within the training set for the MIS12-10 

sequence.  Eight samples have a dissimilarity score >0.41 between MIS12-11  
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(Figure 6.4), while a similar proportion (77%) crossed this dissimilarity threshold in 

the MIS6-1 succession (Figure 6.4).  However, while all of the MIS12-10 samples plot 

within the distribution of the modern training set in ordination space (Figure 6.5), a 

proportion of those from MIS6-1 do not.  Model errors are likely to be greater for  
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these samples, particularly for MAT and ANN models.  These samples are distributed 

throughout the succession, but are most common in the Holocene, MIS4, and MIS5b, 

and are less common in MIS5e assemblages (Figure 6.4).   

The SST models produced for the MIS6-1 part of the core are very similar to the 

seasonal SST results of Marret et al. (2001), which showed peak SST during MIS5e to 

be ~3˚C warmer than the present.  Although a few SST estimates remain that plot 

outside the ordination range of the modern training set (Figure 6.5), when those 

with high dissimilarity scores are removed from the ANN model (Figure 6.4), the 

succession is remarkably coherent with the equivalent foraminifera-based SST model 

(except for sample gaps in the Holocene and MIS5a) (Figure 6.4B).  In particular, the 

timing and magnitude of SST rise during the MIS6-5 transition are very similar.  Of 

the three models, only the MAT estimates accurately reconstruct the modern core 

top mean annual SST of 11˚C.  The ANN and WA-PLS models indicate SSTs of 5 – 6˚C 

during the Holocene.  

In the MIS12-10 succession, SST models show a warming from MIS12 glacial 

conditions between 440 – 430ka, with peak MIS11 warmth at 423ka (Figure 6.4).  

From that peak, the ANN model shows a fluctuating decline in SSTs between 410ka – 

366ka.  In contrast, both the MAT and WA-PLS models suggest a more sustained 
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period of stable interglacial SSTs between 423ka – 385ka, followed by a period of 

increased variability in SSTs until 366ka.  All three models show a stable ca. 11ky 

period of low SSTs during MIS10, between 366ka – 355ka, coinciding with AZ6, and a 

rapid warming to interglacial SSTs between 355ka – 353ka.  The ANN model 

produced the warmest estimates, consistent with other multi-model transfer 

function studies in the region (Barrows et al., 2007; Hayward et al., 2008, 2012), with 

SST estimates of three samples with good modern analogues being >14±1.2˚C (1.8 – 

4.2˚C above present SST).  The MAT and WA-PLS model SST estimates were much 

lower, with no samples with good analogues warmer than 14±1.5/1.8˚C (MAT/WA-

PLS RMSE, respectively) during MIS11.   

While the magnitude of glacial to interglacial SST change between the foraminifera 

and dinocyst based estimates is similar during MIS12-11 (8 – 9˚C), the timing of 

events varies markedly between the two proxies.  Although the dinocyst sampling 

gap between 440ka – 430ka means that the commencement of warming may have 

been synchronous between the two proxies, the dinocyst-based models suggest 

much faster warming than that depicted by the foraminifera-based models.  The 

dinocyst models suggest SSTs similar to the present day was attained by 430ka, while 

the foraminifera models suggest this occurred 13ky later, at 417ka (Figure 6.4).  This 

discrepancy is explored further in Section 6.6.1, and may be due to poor SST 

estimates associated with the distinctive dinocyst assemblages of AZ2.  Peak SST in 

the foraminifera model (3˚C above present SST) is represented by a single sample 

late in MIS11c, about 298ka, which is followed by a relatively rapid decline to near-

glacial SSTs. 

In summary, there are multiple samples during MIS5e with SST estimates >13˚C 

(>2˚C above present SSTs) that have good modern analogues, and consensus 

between model estimates.  There is less evidence for a sustained period of SST >13˚C 

during MIS11, as there is poorer agreement between the dinocyst-based models, 

and between the best dinocyst-based models and the foraminifera-based SST 

estimates. 
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6.5.4. Pollen assemblages 

A clear glacial-interglacial pollen succession is observed in the sampled interval from 

448ka – 355ka (Figure 6.6).  This pollen record has been qualitatively divided into 

seven pollen zones (PZ), many of which coincide with the dinocyst-based zone 

boundaries identified in Figure 6.2.  The youngest samples examined here overlap 

with those of Heusser and Van der Geer (1994) between 355ka – 350ka.  The relative 

abundance counts for the overlapping samples are consistent (within 5 – 10%) 

between the two studies (Figures 6.6-6.7).   

Pollen concentrations ranged from ~100 – 3000 grains.g
-1

 and were highest in 

interglacial and deglacial samples, with the average concentration over the 425 – 

418ka interval almost four times the average of the remaining samples.  For the 

overlapping section in MIS10, pollen concentrations in the present study are lower 

(average 140 grains.g
-1

) than those reported by Heusser and Van der Geer (1994) 

(430 grains grains.g
-1

).  Although pollen concentrations in the two studies were 

calculated using the same marker-grain method, the different processing methods 

employed may be the source of this discrepancy.  Processing in the present study has 

been optimised for recovery of dinocysts, average abundances of which are very 

similar to those reported by Marret et al. (2001).  

The glacial assemblage PZ1 (>434ka, MIS12) is dominated by abundant Asteraceae, 

Phyllocladus spp., grasses, and Chenopodiaceae (Figure 6.6, Table 6.1).  The first 

vegetative changes associated with the deglacial (PZ2, 434ka – 425ka) are a rapid 

increase in Cyathea (tree fern) spores and Coprosma pollen.  Between 425ka – 419ka 

(PZ3), herb pollen notably decreased and the abundance of Podocarpus/Prumnopitys 

pollen begins to increase, while high abundances of Coprosma remain.  The relative 

abundance of Podocarpus/Prumnopitys pollen doubles between 424ka – 419ka 

(PZ4), and remains high (~70%) until ~404ka.  PZ4 also contains elevated Dacrycarpus 

dacrydioides and Asteraceae is absent.  Towards the top of the PZ4, the relative 

abundance of Nothofagus fuscospora gradually increases while D. dacrydioides 

decreases.  After 404ka, until 398ka, Nothofagus pollen abundance increases further 

(PZ5), and replaces Podocarpus/Prumnopitys.  At the top of the zone, the proportion 

of Phyllocladus spp. and Halocarpus spp. pollen increases, and is accompanied by  
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a peak (10%) of Dacrydium cupressinum.  Zone PZ6 (398ka – 384ka) contains a 

gradual increase of pollen characteristic of cool glacial periods, including Asteraceae 

and Poaceae, punctuated by a brief spike of Nothofagus spp., both N. fuscospora and 

N. menzeisii, centered on ~388ka.  The Nothofagus peak is mainly at the expense of 

Phyllocladus spp. and Halocarpus spp..  The MIS10 glacial pollen spectrum is stable 

for the 40ka following 380ka (PZ7), with an assemblage dominated by small trees 

and shrubs, such as Asteraceae, Phyllocladus spp., grasses, and Chenopodiaceae.  A 

forest component, of both hardwoods and particularly Nothofagus spp., remained 

throughout MIS10 in higher proportions than MIS12. 

6.6. Discussion 

MIS11 evolved differently to later interglacials of the Quaternary, with a protracted 

deglaciation, followed by an interstadial that persisted over two insolation peaks 

(Tzedakis et al., 2009; 2012).  In contrast, MIS5e (ca. 125ka), MIS7e (ca. 237ka), MIS9 

(ca. 324ka) had rapid deglaciations, coinciding with early peaks in Antarctic 

temperatures, atmospheric CO2 and CH4, followed by monotonic declines.  The MIS2-

1 glacial termination (18-10ka) and the following Holocene display a mixture of both 

patterns, with a relatively rapid deglaciation, and early Holocene maxima in Antarctic 

temperatures and greenhouse gas (GHG) concentrations that are not followed by 

monotonic declines (Jouzel et al., 2007; Tzedakis et al., 2012).  The long interstadial, 

along with the fact that MIS1 and the early part of MIS11 share similar orbital 

parameters of muted insolation due to an eccentricity minimum (Loutre and Berger, 

2003), has led to studies exploring MIS11 as a possible analogue for the 

development of the Holocene under pre-anthropogenic conditions (Muller and 

Pross, 2007; Bowen, 2010; Tzedakis, 2010; Koutsodendris et al., 2010).  However, 

two main factors complicate the use of MIS11 as a direct analogue for the Holocene.  

1. The relative influence of insolation between the two interglacials has slight 

differences in the phasing of precession and obliquity, resulting in non-

unique patterns of insolation (Dickson et al., 2009; Tzedakis, 2010; Rohling et 

al., 2010): although MIS11 is a close match, it is not an exact match 
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2. Although apparently modulated by orbital variation, the nature of 

interglacials is also likely to be influenced by the environments that 

preceeded them.  MIS11, for example, follows the most intense glaciation of 

the past 1My (MIS12) (e.g. as measured by benthic oxygen isotopes; Lisiecki 

and Raymo, 2005, or relative sea level; Rohling et al., 2009) and is the first 

fully developed quasi-100ka cycle following the climate reorganisation of the 

Mid-Pleistocene Transition (Clark et al., 2006; Kandiano and Bauch, 2007; 

Voelker et al., 2010; Holden et al., 2011).  Moreover, possible perturbations 

in carbon cycling associated with the Mid-Brunhes Dissolution Event may also 

have influenced marine conditions (Wang et al., 2002; Barker et al., 2006).   

Notwithstanding the variations described above, both the dinocyst and the pollen 

assemblages at DSDP594 during parts of MIS11 have many similarities to Holocene 

counterparts.  The succession of pollen assemblages during the protracted MIS11 

deglacial mirrors the succession seen in the more rapid deglacials of MIS6-5 and 

MIS2-1, while the dinocyst and pollen assemblages of the later part of MIS11 are 

similar to, although qualitatively warmer than, that observed in the Holocene.  The 

combination of the east Tasman Sea marine records (Hayward et al., 2012; Chapter 

5, this study) and the dinocyst and pollen records from DSDP594 suggest that 

conditions in the New Zealand region in the later part of MIS11 were similar to those 

of the early Holocene climatic optimum, or slightly warmer.   

6.6.1 Comparison of dinocyst records from MIS11, MIS5 and MIS1 east 

of New Zealand 

At DSDP594, different dinocyst assemblages are observed during the early (430ka – 

423ka) and late (423ka – 390ka) phases of MIS11.  The early phase has most 

similarity to the succession observed in MIS5e, while the late phase has some 

similarity to assemblages of MIS1 (Holocene).  The assemblages of the early and late 

phases are discussed in turn, under the following themes: 

1. There are two ‘modes’ of dinocyst succession observed during late 

Quaternary interglacials at DSDP594, one of variable assemblages during 

MIS5e and the early part of MIS11, and another of stable assemblages during 
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MIS1, and late MIS11.  The cause of the different modes is hypothesised to 

relate to variable versus stable nutrient and productivity regimes.   

2. Previous reconstructions suggest warm STW crossed the STF to reach 

DSDP594 during MIS5e and MIS11 (Hayward et al., 208; 2012).  The warm-

water taxonomic indicators established here indicate that significant 

southward incursion of STW was restricted to the variable assemblage mode 

of MIS5e, and that even during the variable assemblage mode of early MIS11, 

STW incursions were sufficiently infrequent that they were not recorded in 

the dinocyst record. 

1. Following the Selenopemphix antarctica-dominated glacial assemblages of MIS12 

and MIS6, MIS5e and early MIS11 are characterised by samples with assemblage that 

are alternately dominated by either Nematosphaeropsis labyrinthus or Spiniferites 

mirabilis group, with Brigantedinium spp. also common with both (Figures 6.2 - 6.3).  

Where sampling resolution is sufficient, the transitions between N. labyrinthus and S. 

miribilis dominance are seen to occur in <500 years during both time intervals.  

These rapidly alternating assemblages, is the ‘variable’ mode introduced above.  

Assemblages dominated by N. labyrinthus are common in the modern ocean and 

high relative abundances are generally characteristic of the waters between the STF 

and SAF (Chapter 2, this study), which are cool and generally oligotrophic.  There are 

no local modern analogues for high concentrations of S. miribilis, which has not yet 

been observed to exceed 25% of a modern Southern Hemisphere sample (Chapter 2, 

this study).  However, it is occasionally dominant in samples off the Iberian Peninsula 

(Marret and Zonneveld, 2003), a region of intense seasonal upwelling (Dickson et al., 

1988; Haynes et al., 1993; Lemos and Pires, 2004).  While high abundances of S. 

miribilis during MIS5e and early MIS11 do not necessarily reflect transient Iberian-

style upwelling, and S. miribilis is not observed in similar concentrations in other 

regions where upwelling occurs (Marret and Zonneveld, 2003), the alternation of N. 

labyrinthus and S. miribilis may be due to variations in the nature of primary 

productivity in SAW.  In the modern SAW setting of DSDP594, variation in 

productivity can result from increased southward incursions of warmer, micro 

nutrient-rich STW across the STF, variation in strength or timing of mixing of surface 
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waters, or variations in nutrient-rich dust input (e.g., Greig and Gilmour, 1992; Shaw 

and Vennell, 2000; Boyd et al., 2004).  All are potential mechanisms for the variability 

in the dinocyst record observed during MIS5e and early MIS11 (ca. 430 – 415ka), 

although Australian-derived dust flux was likely lower during MIS11 (Hesse, 1994).   

In contrast, the MIS1 dinocyst assemblage at DSDP594 is dominated by relatively 

stable assemblages of N. labrynthis and S. antarctica (Figures 6.2-6.3), the ‘stable’ 

mode.  But for the high relative abundances of S. antarctica, and slightly less 

common Spiniferities spp., the Holocene dinocyst assemblages are also similar to 

those of the later part of MIS11 (AZ3) (Figures 6.2 and 6.3). 

2. The presence of samples with high abundances of S. miribilis, along with a paucity 

of modern analogue samples with SSTs between 5-10˚C (Chapters 2 and 4, this 

study) may explain the divergent SST estimates from foraminifera and dinocyst 

based models between 430ka – 415ka at DSDP594 (Figure 6.4), which is a feature 

restricted to AZ2 in the present study.  

Dinocyst water mass indicators point to a southwards migration of STW across the 

STF to DSDP594 only during MIS5e (Figure 6.4).  This interpretation, is consistent 

with the circulation reconstruction of Hayward et al. (2008, 2012), although there is 

no evidence for the subsequent formation of an eddy circulation near DSDP594, 

either in the paleo record or in modern observations of periodic southwards 

incursions of STW through the Mernoo Gap on the western Chatham Rise (Grieg and 

Gilmour, 1992; Shaw and Vennell, 2000).  In contrast to the circulation 

reconstruction of Hayward et al. (2008, 2012), the dinocyst-based proxies do not 

support a similar southward jet of warm STW water at any time during MIS11.  The 

brief peak in SST estimates from the foraminifera-based models at ~401ka is not 

observed in the dinocyst record (Figure 6.4), and none of the MIS11 dinocyst 

assemblages have characteristics of modern STW.  While early MIS11 assemblages 

contain elements indicative of relative warmth in this SAW setting (e.g., 

Operculodinium janduchenei, Impagidinium aculeatum), MIS5e contains additional 

indicators of warmth (e.g., Operculodinium israelianum and Impagidinium 

variaseptum), which are present in greater abundance.   
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Early MIS11 in this region appears to have STW influence of intermediate intensity 

between the Holocene and MIS5e.  The assemblages of the Holocene and late MIS11 

are similar, but may be distinguished by the much lower concentrations of S. 

antarctica, and a higher ‘background’ abundance of both S. miribilis and S. ramosus.  

Qualitatively, the lower concentration of S. antarctica during late MIS11 suggests 

warmer conditions than during the Holocene, and possibly less productive surface 

waters.  

6.6.2 Pollen record of MIS11 

The general structure of the MIS11 pollen succession at DSDP594 is more similar to 

that observed in MIS5 and the Holocene, than the intervening MIS7 and MIS9 (Figure 

6.7).  The similarities between the Holocene, MIS5 and MIS11 lie in the broad 

succession of pollen and spore taxa, from the early spread of Cyathea spp., followed 

by a dominance of Podocarpus/Prumnopitys and Dacrycarpus spp., which are then 

replaced by Nothofagus spp. and Phyllocladus spp./Halocarpus spp., before a return 

to glacial grass and shrubs.  In contrast, MIS7 and MIS9 are each missing aspects of 

this pattern: the Podocarpus/Prumnopitys abundance alternates with 

Phyllocladus/Halocarpus throughout MIS7 before being replaced by Libocedrus spp., 

while MIS9 is dominated by Nothofagus spp., with Podocarpus/Prumnopitys barely 

exceeding average glacial concentrations.  The vegetation associations during MIS7 

and MIS9 are not discussed further here. 

As in the succession of dinocyst assemblages, there are also significant differences 

between the MIS11 pollen succession and those of MIS 1 and MIS5.  The two most 

notable differences are:  

1. the nature of the MIS12-11 deglacial succession, which is much slower (ca. 

10ky) than all later deglacial successions, (ca. 5-6ky), and 

2. the duration of the hardwood-conifer Podocarpus/Prumnopitys pollen 

assemblages, which represents maximum extent of the warmest forest type, 

is ca. 15.8ky long during MIS11, compared with ca. 6.1ky during MIS5e and 

ca. 6.3ky during the early Holocene climatic optimum.  The pollen assemblage 
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during the entire ca. 15.8ky of late MIS11 is most similar to that of the early 

Holocene climatic optimum. 

Each are discussed in turn below. 

6.6.3 The MIS12-11 deglacial pollen succession 

In the last two glacial terminations at DSDP594 (MIS2-1 and MIS6-5), the first change 

in pollen assemblages following glacial grasses and herbs, is a brief increase in the 

relative abundance of Coprosma.  This is then followed within 3-6ky by a large spike 

of Cyathea spores (Figure 6.7).  The MIS12-11 deglacial succession also has the same 

early increase of Coprosma (from ~430ka), that is followed by a large Cyathea spike 

within ~5ky.  However, in contrast to the later deglacials, the increase of Cyathea 

spp. is not followed by the rapid dominance of Podocarpus/Prumnopitys.  Instead, 

the relative abundance of Coprosma continued to rise, and was not replaced by high 

abundances of Podocarpus/Prumnopitys, along with low abundances of Cyathea and 

Coprosma typical of later interglacials, until ~418ka.  This pollen assemblage (PZ3, 

Figure 6.6) is unique in the 450ky-long record at DSDP594.  Two possible bio-

geographical explanations are considered for this unusual association:   

1. The source area during this time may have been larger than inferred for the 

majority of the record (Figure 6.1), possibly sampling pollen from what are 

today contrasting climatic regions of Southland and Canterbury, or possibly 

North Island sources (Kidson, 2000; Lorrey et al., 2007), due to the unique 

combination of lower sea levels (20-60m below present, Rohling et al., 2009, 

2010) and Holocene-like temperatures during this interval (Hayward et al., 

2012, Chapter 5, This Study).  Alternatively, this unusual scenario may have 

resulted in greater climatic heterogeneity along the eastern South Island than 

the present, or  

2. the Coprosma vegetation may have occupied an exposed continental shelf, 

and this genus displayed a decline due to flooding of the shelf as sea level 

rose, while the area covered by Podocarpus/ Prumnopitys forest remained 

unchanged between 425 – 400ka.   
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The second scenario can be discounted by inspection of absolute abundance data, 

and the accessory pollen types during each interval.  Podocarpus/Prumnopitys pollen 

concentrations (measured in grains per gram of non-carbonate sediment) were 2-5 

times higher between 400-420ka than the preceding 420-430ka interval (Figure 6.8), 

suggesting that the rise in relative abundance of Podocarpus/Prumnopitys at 420ka 

was due to an expansion in source vegetation, rather than flooding of suggested 

Coprosma spp. growing on the exposed continental shelf, assuming the transport to 

the site remained unchanged.  In addition, other aspects of the pollen spectra 

indicate that source vegetation was likely different between 420-400ka and the 

preceding 430-420ka interval: the later assemblages feature peaks of Dacrycarpus 

spp., while Asteraceae and Chenopodiaceae are absent.   

 

The different geographies resulting from lower sea level during the period 430-420ka 

(e.g., the connection of Stewart Island to the mainland and closure of Cook Strait) 

would have resulted in different coastal currents thus affecting pollen and sources of 

transport, while the STF was probably further north along the western South Island 

margin potentially transporting pollen from more northerly sources.  A more 

northerly position of the STF during glacial times is documented for the Indian Ocean 

(Howard and Prell, 1992), South Tasman Rise (Sikes et al., 2009), and Tasman Sea 
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(Martinez, 1994) with subsequent southerly migration during the deglaciation.  In 

addition, there is evidence for SAW influence at 42˚S along the South Island west 

coast as late as 420ka during MIS11, suggesting a slower southwards migration of 

the frontal system than during the later deglacials (Hayward et al., 2012; Chapter 5, 

this study, Figure 6.9).  Concurrently, the different geographies resulting from lower 

sea level may also have increased the heterogeneity of Canterbury climate during 

this protracted deglacial. 

Increased southwards transport of STW across the STF inferred by Hayward et al. 

(2008, 2012) would have the potential to increase the source area of pollen to 

include eastern North Island sources.  However, as discussed above, the dinocyst 

proxies do not support significant southwards transport during MIS11, while the 

major changes in pollen assemblages do not coincide with the peak of foraminifera-

based SST estimates, suggesting that variations in a North Island pollen component 

are an unlikely cause of the unusual PZ3 pollen assemblage.   

6.6.4 Duration of peak terrestrial warmth during MIS11  

Turning to the observation of the duration of peak warmth during MIS11.  Benthic 

oxygen isotopes indicate MIS11 was longer than those following, with exception of 

MIS 1 which is incomplete (e.g., Droxler et al., 2003; Lisiecki and Raymo, 2005).  SSTs 

of the oceans surrounding the South Island were similar to, or exceeded, Holocene 

levels for an extended (up to 40ky) period of time (Hayward et al., 2012; Chapter 5; 

this study).  Two aspects of the pollen assemblage from DSDP594 indicate that 

interglacial conditions on the South Island were also likely longer that subsequent 

interglacials, and an early-Holocene-like vegetation persisted for much of MIS11. 

At DSDP594, the pollen data show an early-Holocene peak in the relative abundance 

of Podocarpus/Prumnopitys pollen, where it exceeds 60% of the dry-land pollen 

assemblage in two samples, at 7.8ka and 11.1ka (maximum duration is 9.1ky, with 

bounding samples at 4.6ka and 13.7ka) (Figure 6.7).  This peak coincides with a two-

peak early Holocene climatic optima recorded by New Zealand terrestrial proxies 

between 11600 and 6500 cal. yr BP (Alloway et al., 2007), while marine proxies show 

SST was 1-2˚C higher than the Holocene average within this period (Pahnke and 
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Sachs, 2003; Hayward et al., 2012).  Podocarpus/Prumnopitys pollen exceeds 60% 

relative abundance at DSDP594 during two other interglacials: MIS5e and late MIS11 

(Figure 6.7).  This occurred in two samples during MIS5e, at 123.3ka and 125.8ka 

(minimum/maximum duration arising from sampling resolution 2.5ky – 9.7ky), and 

five samples during MIS11 between 405.6ka and 418.2ka (minimum/maximum 

duration 12.6ky – 19ky).   

Another way to compare the relative length of the three interglacials is the length of 

time the relative abundance of Podocarpus/Prumnopitys pollen exceeded the 

abundance observed in the youngest sample at DSDP594.  The youngest pollen 

sample at DSDP594 is at ca. 3.5ka, which has 45% Podocarpus/ Prumnopitys (Heusser 

and van der Geer, 1994).  The oldest Holocene sample to exceed this criterion is 

13.6ka, (age of next oldest sample is 17.1ka).  This is older than the 11-11.7ka onset 

of Holocene conditions inferred from the increase in the proportion of D. 

cupressinum pollen from West Coast South Island records (Ryan et al., in press), but 

is nearer to the onset of terrestrial warming inferred from more northerly records 

(Newnham et al., 2003), and air-temperature estimates from the West Coast derived 

from pollen assemblages (Newnham et al., 2011).  The relative abundance of 

Podocarpus/Prumnopitys pollen during MIS5e exceeded 45% in samples between 

119.2ka and 125.8ka (minimum/maximum duration 6.6ky – 12.4ky) and during 

MIS11 in samples between 405.6ka and 418.2ka (minimum/maximum duration 

12.6ky – 19ky). 

These qualitative comparisons of interglacial duration paint contrasting pictures on 

the relative length of MIS1, 5e and 11, although these conclusions, based only on the 

relative abundance of a single pollen group must be treated cautiously given the 

sampling resolution, transport, preservation and source area considerations outlined 

in Section 6.4.4.   

MIS1 thus far has hardwood forest of similar persistence to that observed during 

MIS11.  However, the pollen record at DSDP594 suggests the hardwood forest during 

all of MIS11 (405.6ka and 418.2ka) was as extensive as that of the early Holocene 

climatic optimum (3.4-9.1ky).    
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6.6.5 East-west comparison of marine records during MIS11 

Our dinocyst record at DSDP594 can be compared with coeval east Tasman Sea 

records (Chapter 5, this study), forming a transect across the South Island (and the 

STF, as the east Tasman Sea study area is within modern STW) (Figures 6.1 and 6.9).   

Within the limitations of sample resolution and age control (benthic isotopes in the 

west vs planktic in the east), we explore the synchronicity and intensity of events 

during MIS11.  While there are similarities in the SST records either side of the South 

Island, variation in the DSDP594 pollen record coincides most frequently with 

changes in the east Tasman Sea SST record.   

SST during MIS11 in the east Tasman Sea exhibits more large variations than at 

DSDP594.   

Initiation of the MIS12-11 deglaciation occurred between 435-430ka on both coasts, 

(Hayward et al., 2012; Chapter 5, this study) with indicators of SAW absent from the 

east Tasman Sea by 425ka, and dinocyst based estimates of SSTs near to modern 

levels.  This is coincident with the rise in Cyathea spores at DSDP594.  

A ca. 6ky long cooling occurred at between ~425ka-419ka in the east Tasman Sea, 

accompanied by the reintroduction of elements of a SAW-like assemblage in this 

area (Figure 6.9).  This cooling coincides with the prolonged deglacial Coprosma – 

dominated pollen assemblage observed at DSDP594.  SST exceeded modern 

temperatures by 415ka in the east Tasman Sea, ~5ky after the foraminifera based 

SST estimates attaining modern temperatures at DSDP594 (Hayward et al., 2008, 

Figure 6.9).  While the SSTs at DSDP594 remained high for ~15ky, until ~400ka, SSTs 

in the east Tasman Sea were more variable, with a 10ky long period of maximum 

warmth, followed by cooling from ~405ka.  The ~405ka decrease from peak SST in 

the east Tasman Sea coincides with the increase of Nothofagus spp. pollen at 

DSDP594, replacing Podocarpus/ Prumnopitys.  The ~400ka decrease of foraminifera-

based SSTs at DSDP594 coincides with another incursion of dinocyst assemblages  
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indicative of SAW into the east Tasman Sea, and a further cooling in the east Tasman 

Sea SST.   

Finally, a pronounced warming in the east Tasman Sea at ~387ka is accompanied by 

a spike in Nothofagus, including N. menzeisii, in the DSDP594 pollen record, with the 

Nothofagus mainly replacing herb and shrub vegetation.  No clear signs of increased 

SSTs, or variation in water mass indicators, are present in the DSDP594 record at that 

time. 

The correlation of east Tasman Sea SST variation with the eastern South Island-

derived pollen record at DSDP594, compared to the record of marine variability from 

the same samples is not unexpected, given the sensitivity of New Zealand climate to 

variation in the prevailing westerly winds (Salinger, 1980; Sturman and Tapper, 1996; 

Shulmeister et al., 2004; Lorrey et al., 2007).  Given the likely wide source area of the 

DSDP594 pollen assemblage, however, precise vegetation changes, and concomitant 

local climatic effects, are difficult to determine.  If the pattern of correlation 

between low precipitation, low Tasman Sea SST, and higher windiness observed 
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during the 20
th

 Century (Ummenhofer and England, 2007; Ummenhofer et al., 2009) 

was the same for MIS11, the relatively cool SST in the east Tasman Aea during the 

early part of MIS11 may have led to vegetation changes due to water stress in the 

Canterbury region.   

6.7. Conclusions 

1) At DSDP594, distinct dinocyst assemblages characteristic of early and 

late phases of MIS11 are identified.  The early phase, characterised 

by rapidly alternating dominance of N. labyrinthus and S. mirabilis, 

is interpreted to represent fluctuations in primary productivity.  In 

contrast, the late phase is characterised by stable assemblages 

dominated by N. labyrinthus.  The early phase is similar to the 

assemblage succession observed at the site during MIS5e, while the 

later stable phase is similar to assemblages of the Holocene (MIS1).   

2) SST estimates using dinocyst assemblages suggest that MIS11 was an 

extended period of warmth similar to present conditions, although 

dinocyst-based SST estimates from the early phase may be 

compromised due to insufficient modern analogue samples.  There 

are multiple samples during MIS5e with SST estimates >13˚C (>2˚C 

above present SSTs) that have good modern analogues, and 

consensus between model estimates.  There is less evidence for a 

sustained period of SST >13˚C during MIS11, as there is poorer 

agreement between the dinocyst-based models, and between the 

best dinocyst-based models and the foraminifera-based SST 

estimates. 

3) The dinocyst assemblage during MIS5e has characteristics of 

assemblages found north of the STF in modern sea-floor samples.  

Thus, some southward migration of STW to DSDP594 may have 

occurred during MIS5e.  In contrast, while there are indications 

from dinocyst assemblages that the early phase of MIS11 shared a 
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similar regime of variable productivity to MIS5e, neither MIS11 or 

Holocene dinocyst assemblages contain similar indications of 

southward migration of STW. 

4) The MIS11 pollen record at DSDP594 shows a vegetation succession 

similar to MIS5 and MIS1, but the deglacial succession was slower 

than younger transitions, with a two-step expansion of 

Podocarpus/Prumnopitys hardwood forest.  The maximum relative 

abundance of Podocarpus/Prumnopitys pollen from ~420ka was 

similar to that observed at the site during the early Holocene 

climatic optimum.  Such high abundances persisted for ~15ky, 

about twice as long as during MIS5e and MIS1. 

5) Changes in the pollen record at DSDP594 during MIS11 correlate more 

closely to SST variation in the east Tasman Sea than to variation in 

marine conditions at DSDP594, suggesting that the eastern ocean 

had only limited influence on the eastern South Island  
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7. Conclusion 

 

The three aims of this thesis were to: 

• Better understand the distribution of modern dinocysts in the SW Pacific and 

the environmental factors that control their distribution.  

• Develop models from the modern dinocyst data to quantify past climatic 

conditions with the focus on MIS 11. 

• Use these models in conjunction with pollen records both during MIS11 and 

other Quaternary interglacials in order to compare sea surface and terrestrial 

signal, thus illustrating a range of past responses to warm environments in 

the New Zealand region 

In this chapter, the key results relating to each aim are reviewed, and areas that 

would benefit from further research are identified. 

7.1. Controls on the modern distribution of dinocysts 

As in other parts of the globe, dinocyst assemblages from sea-floor sediments vary 

across the SW Pacific. 

Ordination shows that of the environmental variables gathered the gradient most 

strongly correlated to variation in dinocyst assemblages is sea surface temperature 

(SST). 

Although there are good physiological reasons why dinoflagellate growth and cyst 

formation should be influenced by SST, more detailed exploration of the controls of 

sea surface conditions and productivity suggests that in certain settings SST is likely 

to have almost an incidental influence on the composition of sea floor dinocyst 

assemblages in some instances.  Dinocyst assemblages are a product of the 
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ecosystem and biogeographical province, which frequently and fortuitously vary 

along meridional gradients. 

The clustering analysis in Chapter 2 illustrated the influence of regional ecosystems 

on sea floor assemblages, while the sediment trap study in Chapter 3 reveals, on 

shorter timescales, some of the complexity of these regional variations.  Within the 

two small zones of SST sampled by each sediment trap, different combinations of the 

timing and intensity of mixing, availability of nutrient and light, and the interactions 

with other organisms and trophic levels, all contribute to the composition of the 

dinocyst assemblage preserved in sea floor sediments. 

Areas for further research into the modern distribution and sedimentary processes 

undertaken in this thesis include improved coverage of under-sampled areas, both 

around New Zealand (e.g. the Tasman Sea) and the wider Southern Hemisphere (e.g. 

Southern Ocean, Indian Ocean), while the addition of well constrained short 

sediment cores could further refine late Holocene flux and transport pathways of 

dinocyst and pollen into ocean sediments.  The absence of a significant part of the 

sea floor dinocyst assemblage from the sediment trap study also requires further 

investigation, both for general understanding of dinocyst ecology and sedimentary 

processes in the region, but also because the disconnect could have significant 

implications for the assumptions made in quantitative reconstructions. 

Given their organic-walled composition and ecology, dinocysts are preserved in 

depositional settings where assemblages of other marine micro-fossil groups can be 

poorly preserved, thus they may at times be unique archives of environmental 

information.  However, given the complexity of oceanographic systems, the greatest 

potential for understanding past environments lies in the use of dinocysts along side 

other micro-fossil groups and proxies.  For example, integration of multiple fossil 

groups should better identify modern biogeographical provinces, which should result 

in more accurate paleoenvironmental interpretations.  There has been much 

progress towards documentation of the modern distribution of most oceanic 
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microfossil groups in the New Zealand region in recent years, which raises the 

exciting prospect of multi-group reconstructions for key time slices in the region. 

7.2 Estimating SST from dinocyst assemblages 

Given the importance and complexity of biogeography described above, it seems an 

almost impossible undertaking to attempt to reduce all this variability into a single 

parameter, SST.  However, if any parameter is to be extracted from the dinocyst 

abundance data, the work in Chapter 4 demonstrates that SST is the most 

reasonable; ecologically, physiologically and mathematically.   

The real value of a transfer function lies in the robust demonstration of how 

accurately the estimations of the target variable are, along with the identification of 

instances where those error estimates are likely to be exceeded.  Both these aspects 

in SW Pacific transfer functions have been explored in this project.  The way that 

accuracy is measured has a large influence on the apparent performance of a 

transfer function model.  When accuracy is measured using frequently employed, 

but simpler methods (leave-one-out cross validation), the performance of the 

dinocyst training set assembled for this thesis is comparable to the performance of 

other marine micro-fossil groups used in the region. 

However, simple methods of error assessment may underestimate the true errors 

(of all faunal training sets), as they do not account for spatial inter-connectedness 

(autocorrelation) between samples.  The effects of this omission has been previously 

demonstrated using artificial data; and experiments in this project using only ‘real’ 

assemblage data also show autocorrelation is likely to have a significant effect on the 

accuracy of predictions, although the effects are possibly not as severe in the SW 

Pacific as in other regions. 

The more important outcome of the experiments undertaken above is an 

appreciation of the strengths and assumptions of various transfer function models.  

Of the models considered, WA-PLS appears to be most successful at extracting 
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information accurately from unfamiliar assemblages.  This does not mean the other 

models considered (MAT and ANN) should be dismissed, as they are very accurate 

when assemblages are familiar.  Moreover, they have other advantages, particularly 

the MAT, as a tool suitable for reconstruction of an entire ocean system, i.e. it could 

be used for identification of entire biogeographic zones, which can be as useful as 

isolating single environmental gradients. 

It has been observed that faunal training sets are occasionally “datasets of 

necessity”: a collation of samples for which availability is the principal selection 

criterion.  In an area as large and relatively understudied as the SW Pacific, and 

indeed the Southern Hemisphere, such a criticism can carry some weight.  This is not 

necessarily a bad thing: one has to start somewhere, but with the caveat that 

periodic reviews are undertaken of the data that have been allowed into the training 

set.  Such reviews should ensure that the best available, rather than the greatest 

number, of samples are included from a given region, based on various criteria (e.g. 

quality of sampling and processing, age control, count size, and alignment of 

taxonomic determinations).  In the collation of the SH311 training set for this thesis, 

such decisions resulted in the exclusion of many published samples, but also the 

retention of others that can be excluded as higher quality data becomes available.  

The same is true of the abiotic data assigned to each sample.  Satellite observations 

continually improve, along with extrapolation methodologies that contribute to 

generate climatological datasets.  Such periodic review should progressively reduce 

prediction errors. 

7.3 MIS 11 in the SW Pacific 

The warm interglacial MIS11 in the New Zealand region was selected for study in this 

thesis both because of its orbital similarity to the Holocene, and the availability of 

published oceanic reconstructions indicative of greater warmth than present.  MIS11 

can serve both as an illustration of the regional variability possible under very similar 
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boundary conditions to the Holocene, but also can provide some insight into a world 

that is very similar to our own, but slightly warmer (and a third the CO2). 

The SST estimates from dinocysts examined from two sites, on the western and 

eastern side of the South Island, show uneven warming across the oceans of the 

southern New Zealand region during the peak of MIS11.  The east Tasman Sea was 2-

3˚C warmer than present for ca. 10ky.  In contrast, warmth in SAW east of New 

Zealand was more variable, and it is likely SSTs did not exceed 1-2˚C above modern 

conditions for a sustained period of time. 

Two faunal productivity proxies, along with dinocyst indicators of water mass, 

suggest that the peak warmth of MIS11 in the east Tasman Sea was accompanied by 

productivity levels that were likely below those of the present day, with oligotrophic 

oceanic water entering the study area, possibly accompanied by a southwards 

movement of the STF.  However, the observation that one of the faunal productivity 

proxies is more strongly correlated to SST during MIS11 than later times raises the 

possibility that the productivity regime in east Tasman Sea surface waters differed 

from present. 

The same dinocyst-based indicators of water mass used in the east Tasman Sea do 

not show any firm indications of STW leaking past the STF east of New Zealand 

during MIS11 (DSDP594), and thus a circulation similar to the late Holocene is 

implied for that area.  In contrast, there is strong evidence from the dinocyst record 

of STW assemblages south of the STF during MIS5e at DSDP594. 

A pollen record preserved in ocean sediments off eastern New Zealand is inferred to 

have sampled vegetation growing on the eastern South Island, and is the first 

continuous record of regional vegetation from MIS11 of this resolution.  The pollen 

record shows a relatively long period of full-interglacial vegetation (ca. 15kyr) 

compared to later interglacials.  Moreover, the composition of the pollen 

assemblages during the peak of MIS11 is most similar to those of the early Holocene 

climatic optimum.  The timing of changes in the pollen assemblage are closer to the 
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timing of SST variation on the east Tasman Sea than variation in the ocean to the 

east of New Zealand, suggest that the climate of the eastern South Island was more 

closely linked to conditions in the east Tasman Sea than to oceanic conditions east of 

New Zealand during MIS11. 

The interpretation of these records, and their value as windows on previously warm 

worlds, would be significantly enhanced by the addition of younger records for 

comparison.  Given that one immediate response to warming in the modern ocean 

appears to be the pronounced southward migration of warm currents in the western 

Tasman Sea, potentially associated with reduced eastward flow of the Tasman 

Current (Roemmich et al., 2007; Hill et al., 2008, 2011), high resolution 

oceanographic records, including dinocysts, from the east Tasman Sea, south 

Tasman Sea, and north of New Zealand for the early Holocene, and the last 

interglacial (MIS5e) might provide a valuable insight of the sensitivity on this part of 

the SW Pacific ocean to warming.  

In summary, this study has added significantly to what is known of MIS11 in the SW 

Pacific region.  There were many differences between MIS11 and the Holocene, heat 

appears to have been distributed differently across the region, with warming and 

oceanographic response concentrated to the west, while terrestrial vegetation 

reflected the warmer conditions observed to the west of the South Island.   
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S2.1. Dinocyst count data of 120 sea floor samples
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S2.1. Dinocyst count data of 120 sea floor samples
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S2.1. Dinocyst count data of 120 sea floor samples
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S2.1. Dinocyst count data of 120 sea floor samples
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S2.2. NZ-98 count and environmental data
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3_Cro Crouch et al. 2010 0.00 0.00 0.12 0.00 0.01 0.04 0.00 0.02 0.03 0.03 0.00 0.11 0.19 0.00 0.00 0.00

8_Cro Crouch et al. 2010 0.00 0.00 0.20 0.00 0.00 0.05 0.02 0.05 0.00 0.04 0.00 0.06 0.18 0.02 0.00 0.00

9_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.27 0.02 0.00 0.00

11_Cro Crouch et al. 2010 0.00 0.00 0.18 0.00 0.05 0.06 0.00 0.10 0.02 0.05 0.00 0.24 0.16 0.03 0.00 0.00

12_Cro Crouch et al. 2010 0.00 0.00 0.07 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.18 0.12 0.01 0.00 0.00

13_Cro Crouch et al. 2010 0.00 0.00 0.12 0.00 0.05 0.03 0.01 0.03 0.01 0.00 0.01 0.13 0.11 0.00 0.00 0.00

15_Cro Crouch et al. 2010 0.00 0.00 0.06 0.00 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.30 0.21 0.00 0.00 0.00

16_Cro Crouch et al. 2010 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.17 0.27 0.01 0.00 0.00

17_Cro Crouch et al. 2010 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.07 0.29 0.04 0.00 0.00

18_Cro Crouch et al. 2010 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.16 0.35 0.01 0.00 0.00

20_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.14 0.01 0.00 0.00

21_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.01 0.00 0.00

22_Cro Crouch et al. 2010 0.04 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.43 0.23 0.01 0.00 0.00

24_Cro Crouch et al. 2010 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.12 0.03 0.00 0.00 0.00

25_Cro Crouch et al. 2010 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.23 0.15 0.00 0.00 0.00

26_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.15 0.00 0.00 0.00

28_Cro Crouch et al. 2010 0.00 0.01 0.04 0.03 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.30 0.32 0.02 0.00 0.00

32_Cro Crouch et al. 2010 0.00 0.08 0.03 0.03 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.50 0.01 0.00 0.00 0.00

33_Cro Crouch et al. 2010 0.02 0.04 0.06 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.49 0.24 0.03 0.00 0.00

37_Cro Crouch et al. 2010 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00

38_Pre This Study 0.00 0.01 0.13 0.00 0.01 0.01 0.01 0.04 0.00 0.04 0.00 0.35 0.13 0.00 0.00 0.00

39_Pre This Study 0.01 0.02 0.47 0.00 0.02 0.00 0.02 0.00 0.02 0.08 0.00 0.35 0.00 0.00 0.00 0.00

41_Pre This Study 0.00 0.00 0.39 0.00 0.01 0.03 0.00 0.02 0.01 0.13 0.00 0.22 0.05 0.00 0.00 0.00

46_Pre This Study 0.03 0.00 0.06 0.01 0.00 0.01 0.00 0.06 0.00 0.00 0.02 0.14 0.00 0.00 0.00 0.00

48_Pre This Study 0.06 0.05 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.00

50_Pre This Study 0.00 0.05 0.10 0.03 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.23 0.27 0.00 0.00 0.00

58_Pre This Study 0.00 0.02 0.17 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.46 0.00 0.00 0.00 0.00

59_Pre This Study 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.28 0.02 0.00 0.00 0.00

60_Pre This Study 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.11 0.00 0.00 0.00

62_Pre This Study 0.00 0.00 0.68 0.00 0.07 0.02 0.00 0.02 0.02 0.08 0.00 0.06 0.03 0.00 0.00 0.00

64_Pre This Study 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.36 0.00 0.00 0.02

66_Pre This Study 0.00 0.00 0.19 0.00 0.03 0.07 0.00 0.01 0.01 0.01 0.00 0.28 0.35 0.01 0.00 0.00

67_Pre This Study 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00

68_Pre This Study 0.00 0.04 0.01 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.52 0.07 0.00 0.00 0.00

70_Pre This Study 0.00 0.01 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.17 0.01 0.00 0.00 0.00

71_Pre This Study 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.09 0.28 0.00 0.00 0.00

72_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.19 0.02 0.00 0.00

83_Pre This Study 0.00 0.01 0.00 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00

96_Pre This Study 0.00 0.00 0.19 0.00 0.00 0.01 0.00 0.02 0.01 0.06 0.00 0.27 0.13 0.00 0.00 0.00

97_Pre This Study 0.00 0.01 0.70 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.22 0.03 0.00 0.00 0.00

98_Pre This Study 0.01 0.00 0.61 0.00 0.01 0.04 0.00 0.00 0.02 0.11 0.00 0.12 0.01 0.00 0.00 0.00

104_Pre This Study 0.00 0.00 0.33 0.00 0.00 0.02 0.01 0.01 0.01 0.04 0.00 0.08 0.06 0.00 0.00 0.01

105_Pre This Study 0.00 0.00 0.37 0.00 0.06 0.06 0.06 0.00 0.04 0.05 0.00 0.14 0.12 0.00 0.00 0.01

107_Pre This Study 0.00 0.00 0.15 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.00 0.09 0.16 0.00 0.00 0.02

113_Pre This Study 0.00 0.01 0.64 0.00 0.02 0.01 0.00 0.00 0.01 0.05 0.00 0.20 0.02 0.00 0.00 0.00

119_Pre This Study 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

120_Pre This Study 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

123_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00

128_Pre This Study 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00 0.00

129_Pre This Study 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.34 0.03 0.00 0.00

133_Pre This Study 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

134_Pre This Study 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.30 0.01 0.00 0.00 0.00

136_Pre This Study 0.00 0.00 0.10 0.00 0.01 0.00 0.00 0.01 0.02 0.04 0.00 0.02 0.46 0.00 0.00 0.00

137_Pre This Study 0.00 0.00 0.03 0.00 0.03 0.04 0.01 0.01 0.01 0.02 0.00 0.01 0.33 0.00 0.00 0.01

140_Pre This Study 0.00 0.00 0.12 0.00 0.02 0.00 0.00 0.01 0.02 0.09 0.00 0.01 0.19 0.00 0.00 0.01

141_Pre This Study 0.00 0.00 0.03 0.00 0.01 0.03 0.00 0.00 0.00 0.03 0.00 0.01 0.29 0.01 0.00 0.00

142_Pre This Study 0.00 0.00 0.06 0.00 0.02 0.03 0.00 0.01 0.00 0.02 0.00 0.01 0.32 0.01 0.00 0.00
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143_Pre This Study 0.00 0.00 0.00 0.07 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.72 0.01 0.00 0.00 0.00

144_Pre This Study 0.00 0.00 0.35 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.02 0.21 0.00 0.00 0.00

145_Pre This Study 0.00 0.00 0.02 0.00 0.00 0.03 0.01 0.00 0.00 0.03 0.00 0.01 0.38 0.01 0.00 0.00

151_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

1875_Mar Marret et al. 2003 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.53 0.18 0.00 0.00 0.00

1879_Mar Marret et al. 2003 0.00 0.03 0.13 0.05 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.71 0.00 0.00 0.00 0.00

1883_Mar Marret et al. 2003 0.00 0.02 0.08 0.04 0.02 0.00 0.00 0.03 0.02 0.04 0.00 0.29 0.06 0.00 0.00 0.00

1887_Mar Marret et al. 2003 0.00 0.03 0.19 0.16 0.01 0.04 0.00 0.04 0.01 0.00 0.00 0.42 0.04 0.00 0.00 0.00

1888_Mar Marret et al. 2003 0.01 0.04 0.12 0.05 0.04 0.01 0.00 0.02 0.00 0.00 0.00 0.54 0.01 0.00 0.00 0.00

1889_Mar Marret et al. 2003 0.00 0.12 0.05 0.10 0.02 0.00 0.00 0.06 0.02 0.00 0.00 0.44 0.01 0.00 0.00 0.00

1893_Mar Marret et al. 2003 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.12 0.09 0.00 0.00 0.00

1894_Mar Marret et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.11 0.04 0.00 0.00 0.00

1895_Mar Marret et al. 2003 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1896_Mar Marret et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00

1897_Mar Marret et al. 2003 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.03 0.00 0.00 0.00

1898_Mar Marret et al. 2003 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.05 0.05 0.00 0.00 0.00

1899_Mar Marret et al. 2003 0.06 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.13 0.25 0.00 0.00 0.00

1900_Mar Marret et al. 2003 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.18 0.21 0.00 0.00 0.00

1901_Mar Marret et al. 2003 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.09 0.26 0.00 0.00 0.00

1952_Mar Marret et al. 2003 0.00 0.03 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00

1953_Mar Marret et al. 2003 0.00 0.05 0.12 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.01 0.00

1954_Mar Marret et al. 2003 0.00 0.04 0.05 0.03 0.01 0.01 0.00 0.05 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00

1955_Mar Marret et al. 2003 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

1993_Mar Marret et al. 2003 0.00 0.05 0.06 0.06 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.38 0.11 0.00 0.00 0.00

1994_Mar Marret et al. 2003 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.39 0.03 0.00 0.00 0.00

1995_Mar Marret et al. 2003 0.02 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.22 0.00 0.00 0.00

1996_Mar Marret et al. 2003 0.00 0.00 0.13 0.00 0.03 0.00 0.00 0.03 0.02 0.00 0.00 0.25 0.13 0.00 0.00 0.00

1998_Mar Marret et al. 2003 0.00 0.00 0.16 0.02 0.03 0.01 0.00 0.03 0.01 0.00 0.00 0.58 0.10 0.00 0.00 0.00

1999_Mar Marret et al. 2003 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.38 0.10 0.00 0.00 0.00

2000_Mar Marret et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.07 0.00 0.23 0.05 0.00 0.00 0.00

2001_Mar Marret et al. 2003 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.47 0.07 0.00 0.00 0.00

2002_Mar Marret et al. 2003 0.00 0.00 0.09 0.00 0.03 0.00 0.00 0.03 0.00 0.10 0.00 0.39 0.10 0.00 0.00 0.00

2003_Mar Marret et al. 2003 0.00 0.03 0.02 0.02 0.02 0.00 0.00 0.03 0.00 0.04 0.00 0.46 0.09 0.00 0.00 0.00

2004_Mar Marret et al. 2003 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.22 0.08 0.00 0.00 0.00

2005_Mar Marret et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.23 0.09 0.00 0.00 0.00

2006_Mar Marret et al. 2003 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.40 0.12 0.00 0.00 0.00

2007_Mar Marret et al. 2003 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.45 0.13 0.00 0.00 0.00

2008_Mar Marret et al. 2003 0.02 0.00 0.00 0.06 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.17 0.08 0.00 0.00 0.00

2009_Mar Marret et al. 2003 0.00 0.02 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.34 0.14 0.00 0.00 0.00

2012_Mar Marret et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.31 0.00 0.00 0.00
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0.00 0.00 0.21 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.00 0.02 0.00 0.03 174.15

0.00 0.02 0.08 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 173.51

0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.02 0.00 0.06 0.00 0.01 0.00 0.00 176.80

0.00 0.01 0.12 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.01 0.00 0.00 0.03 0.06 0.00 0.01 176.24

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.02 0.00 0.01 181.51

0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.00 0.00 0.03 0.05 0.01 0.00 0.05 179.99

0.01 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.08 0.02 0.00 0.10 177.99

0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.01 0.02 0.00 0.03 186.00

0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.20 0.00 0.00 0.01 0.06 0.04 0.00 0.04 181.51

0.01 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.30 0.00 0.00 0.02 0.03 0.04 0.00 0.03 179.36

0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 0.00 0.01 0.01 0.04 0.08 0.00 0.01 176.91

0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.45 0.01 0.00 0.01 0.15 0.05 0.01 0.05 174.50

0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.39 0.00 0.00 0.01 0.27 0.02 0.01 0.03 173.36

0.02 0.01 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 185.92

0.00 0.02 0.16 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.02 0.03 0.02 0.00 0.00 178.00

0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.00 0.00 0.01 0.06 0.03 0.00 0.03 174.98

0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.41 0.00 0.00 0.01 0.22 0.01 0.01 0.06 172.65

0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 182.08

0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.01 0.00 0.00 0.00 0.00 0.00 174.08

0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 182.01

0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 167.83

0.05 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.04 0.00 0.00 0.00 149.93

0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 167.68

0.02 0.00 0.11 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 165.44

0.03 0.01 0.04 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.01 0.00 0.02 144.41

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 173.73

0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.03 0.00 0.00 0.00 0.00 0.00 -174.69

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.03 0.00 0.00 0.00 164.61

0.01 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.01 0.01 0.03 0.03 0.01 0.07 166.06

0.00 0.01 0.07 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.03 0.07 0.00 0.00 0.00 148.89

0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 170.00

0.00 0.04 0.04 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.02 0.01 0.02 0.00 0.02 174.47

0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 179.99

0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 168.99

0.01 0.00 0.05 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 178.73

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.01 0.00 0.01 0.00 0.00 170.00

0.00 0.03 0.01 0.34 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.00 0.00 0.02 0.01 0.00 0.00 0.05 170.92

0.00 0.01 0.00 0.53 0.00 0.02 0.00 0.00 0.00 0.02 0.13 0.00 0.00 0.01 0.00 0.01 0.00 0.05 170.92

0.08 0.00 0.08 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 173.37

0.00 0.00 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.12 0.11 0.00 0.01 0.00 0.00 0.00 0.00 170.50

0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 170.34

0.02 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 170.65

0.02 0.01 0.02 0.33 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 165.22

0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.01 162.60

0.01 0.01 0.32 0.09 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 169.65

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 166.46

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.01 0.04 -178.17

0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.84 0.00 0.00 0.01 0.04 0.00 0.00 0.05 173.42

0.00 0.00 0.27 0.06 0.00 0.00 0.00 0.00 0.00 0.04 0.32 0.00 0.00 0.05 0.05 0.01 0.04 0.03 171.36

0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.86 0.00 0.00 0.01 0.00 0.00 0.00 0.00 171.42

0.00 0.00 0.03 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.01 0.01 0.00 0.02 0.00 172.42

0.03 0.02 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 169.92

0.05 0.00 0.19 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.03 0.00 0.00 0.00 0.00 0.00 170.98

0.00 0.00 0.17 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00 0.00 0.01 173.83

0.01 0.00 0.11 0.26 0.00 0.00 0.00 0.01 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.01 0.00 0.01 175.39

0.02 0.00 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.02 0.00 0.00 0.03 0.01 173.63

0.01 0.00 0.14 0.37 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.01 0.00 0.00 175.32

0.00 0.07 0.07 0.24 0.03 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.02 175.39
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0.07 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.00 171.52

0.01 0.01 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.01 0.00 0.00 0.00 0.00 171.80

0.00 0.07 0.09 0.17 0.01 0.00 0.01 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.01 0.04 0.00 0.00 175.21

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.70 0.00 0.00 0.02 0.03 0.00 0.03 0.13 178.20

0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 147.23

0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 159.94

0.06 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.02 0.00 0.02 0.00 0.00 0.00 150.05

0.05 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -175.13

0.03 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 165.06

0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.00 0.00 0.00 0.00 0.00 161.35

0.00 0.00 0.23 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.03 0.00 0.00 142.51

0.02 0.00 0.20 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.03 0.03 0.00 0.00 142.52

0.00 0.17 0.04 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.03 0.04 0.02 0.00 0.00 142.01

0.00 0.06 0.07 0.11 0.00 0.00 0.00 0.00 0.04 0.00 0.55 0.00 0.00 0.03 0.03 0.00 0.00 0.00 141.12

0.00 0.12 0.04 0.22 0.00 0.00 0.00 0.00 0.03 0.00 0.40 0.00 0.00 0.03 0.03 0.02 0.00 0.00 141.12

0.04 0.17 0.07 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.03 0.00 0.04 0.00 0.00 141.06

0.03 0.16 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 140.99

0.00 0.21 0.14 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 140.68

0.00 0.12 0.22 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 140.39

0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.05 0.00 0.00 0.00 0.00 0.00 145.80

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.05 0.00 0.00 0.00 0.00 0.00 148.48

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.21 0.00 0.00 0.00 0.00 0.00 147.16

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.78 0.00 0.00 0.00 0.00 0.00 144.58

0.10 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.03 0.00 0.00 0.00 0.00 0.00 177.99

0.04 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.02 0.03 0.00 0.00 0.00 0.00 0.00 174.99

0.00 0.00 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -174.08

0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.03 0.00 0.00 179.40

0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -171.50

0.03 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.05 0.00 0.00 0.00 145.21

0.00 0.05 0.16 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144.23

0.03 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 142.53

0.04 0.04 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 142.88

0.03 0.03 0.07 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144.41

0.02 0.07 0.17 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144.68

0.03 0.04 0.16 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.04 0.02 0.00 0.00 144.34

0.00 0.00 0.13 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.03 0.00 0.00 0.00 144.29

0.00 0.04 0.07 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144.22

0.02 0.26 0.03 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.02 0.00 0.00 0.00 144.10

0.03 0.07 0.13 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 143.83

0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.04 0.09 0.00 0.00 -176.91
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-33.65 1740923E 333876S 2133 19.03 17.93 18.71 21.50 16.89 19.12 18.24 4.61 35.57 35.60 0.29

-34.02 1733060E 340105S 2036 18.86 17.59 18.39 21.33 16.72 18.92 18.04 4.61 35.55 35.57 0.29

-36.32 1764813E 361920S 2411 17.96 17.45 18.06 20.30 15.68 17.61 17.31 4.62 35.45 35.54 0.27

-36.69 1761431E 364160S 430 17.78 17.45 18.07 20.13 15.49 17.39 17.13 4.64 35.43 35.53 0.27

-39.94 1813060E 395640S 3654 15.67 15.25 16.00 18.22 13.13 15.41 15.23 5.09 35.19 35.30 0.27

-40.33 1795940E 401980S 3003 15.53 15.36 16.08 18.01 13.16 15.16 15.16 4.85 35.18 35.36 0.28

-40.40 1775940E 402400S 2195 15.50 15.63 16.32 17.97 13.16 15.12 15.08 4.81 35.17 35.46 0.29

-43.20 1860000E 431200S 1128 13.79 13.38 13.99 16.08 11.54 13.36 13.34 4.54 34.90 35.00 0.35

-42.53 1813060E 423180S 1408 14.22 13.59 14.34 16.55 11.90 13.77 13.72 4.65 34.95 35.01 0.34

-42.22 1792160E 421320S 2540 14.03 13.59 14.38 16.73 11.77 13.95 13.63 4.97 34.97 35.03 0.34

-42.72 1765460E 424320S 850 13.60 13.10 13.88 16.31 11.44 13.61 13.10 4.87 34.88 34.96 0.39

-43.00 1743000E 430000S 854 13.40 12.05 12.91 16.07 11.35 13.40 12.77 4.72 34.83 34.78 0.43

-43.33 1732160E 431980S 79 13.19 11.38 12.29 15.82 11.19 13.17 12.53 4.63 34.79 34.66 0.46

-45.33 1855520E 451980S 4680 12.56 12.10 12.69 14.68 10.55 12.03 11.98 4.13 34.73 34.80 0.46

-44.13 1780000E 440780S 1080 12.42 11.50 12.44 15.28 10.35 12.70 11.86 4.92 34.71 34.64 0.47

-44.29 1745880E 441740S 580 12.28 10.72 11.83 15.04 10.34 12.55 11.64 4.70 34.66 34.53 0.52

-44.35 1723900E 442100S 100 12.35 10.08 11.27 14.98 10.49 12.49 11.65 4.49 34.67 34.43 0.54

-46.60 1820480E 463600S 4440 11.59 10.45 11.22 13.66 9.78 11.20 10.71 3.88 34.54 34.47 0.58

-47.04 1740480E 470240S 1429 10.41 9.16 10.01 12.89 8.78 10.80 9.73 4.11 34.43 34.32 0.70

-49.67 1820060E 494020S 4500 9.79 8.86 9.37 11.51 8.21 9.35 8.95 3.30 34.35 34.29 0.81

-51.72 1674980E 514320S 629 8.46 8.96 9.00 9.78 7.18 7.95 8.12 2.60 34.33 34.45 0.96

-43.96 1495568E 435753S 2622 12.82 13.05 13.34 14.58 11.01 12.22 12.33 3.57 34.96 35.10 0.56

-40.51 1674050E 403048S 1068 15.60 14.95 15.60 18.04 13.46 14.97 14.72 4.58 35.21 35.26 0.35

-36.47 1652651E 362838S 1088 17.92 16.89 17.62 20.37 15.73 17.45 17.06 4.64 35.47 35.48 0.29

-42.61 1442478E 423653S 2464 13.11 12.94 13.33 14.81 11.39 12.77 12.54 3.42 34.98 35.04 0.48

-48.73 1734398E 484380S 638 9.56 8.67 9.24 11.70 8.10 9.79 8.93 3.60 34.37 34.30 0.79

-53.04 1744128W 530251S 5470 8.00 7.73 6.41 7.38 7.73 1.33 34.24 1.05

-49.52 1643651E 493141S 3250 9.64 9.66 10.06 11.11 8.26 9.18 9.26 2.85 34.47 34.54 0.87

-47.00 1660366E 465980S 1648 11.11 11.69 11.95 12.95 9.52 10.74 10.64 3.43 34.62 34.75 0.70

-38.46 1485360E 382780S 2350 16.37 15.92 16.81 18.45 14.01 15.47 15.95 4.44 35.39 35.43 0.30

-37.00 1700000E 370000S 2096 17.46 16.35 17.07 19.97 15.31 17.19 16.52 4.66 35.41 35.40 0.30

-49.47 1742800E 492800S 501 9.18 8.32 8.78 11.23 7.78 9.36 8.54 3.45 34.33 34.27 0.83

-40.12 1795910E 400700S 2890 15.69 15.54 16.25 18.14 13.31 15.30 15.30 4.83 35.19 35.39 0.27

-50.58 1685960E 503460S 575 9.01 9.34 9.37 10.49 7.69 8.64 8.59 2.80 34.38 34.47 0.88

-44.50 1784400E 443000S 1339 12.14 11.30 12.25 15.03 10.09 12.47 11.56 4.95 34.67 34.59 0.48

-42.00 1700000E 420000S 1000 14.67 14.55 15.42 17.05 12.49 14.03 14.03 4.56 35.04 35.19 0.39

-41.40 1705500E 412400S 202 14.63 14.50 15.38 17.01 12.46 13.99 14.00 4.55 35.04 35.18 0.39

-42.38 1693600E 421200S 167 14.55 14.41 15.29 16.92 12.39 13.89 13.93 4.53 35.03 35.17 0.40

-50.06 1732231E 500383S 546 8.98 8.31 8.66 10.83 7.63 9.01 8.40 3.20 34.33 34.30 0.86

-41.88 507 14.54 14.40 15.28 16.90 12.37 13.88 13.92 4.53 35.03 35.17 0.40

-41.15 698 14.65 14.53 15.41 17.04 12.48 14.02 14.02 4.55 35.04 35.18 0.39

-36.67 1703900E 364000S 2112 17.62 16.45 17.22 20.13 15.47 17.39 16.70 4.66 35.43 35.41 0.30

-41.66 1651310E 413970S 4421 14.87 14.22 14.84 17.25 12.81 14.18 14.06 4.44 35.13 35.18 0.40

-33.15 1623600E 330900S 793 20.01 19.31 20.02 22.38 17.67 19.35 19.39 4.71 35.60 35.63 0.23

-39.00 1693900E 390000S 560 16.42 15.60 16.26 18.92 14.26 15.96 15.48 4.66 35.30 35.31 0.31

-41.32 1662790E 411920S 3253 15.11 14.43 15.08 17.51 13.01 14.43 14.29 4.50 35.15 35.20 0.38

-42.55 1780996W 423300S 1366 14.21 13.60 14.34 13.76 11.89 13.76 13.71 1.86 34.95 35.02 0.34

-44.54 1732500E 443250S 543 12.13 9.94 11.41 14.81 10.27 12.37 11.44 4.54 34.64 34.40 0.55

-44.40 1712148E 442398S 22 12.46 10.22 11.21 14.98 10.60 12.45 11.79 4.37 34.70 34.46 0.55

-45.72 1712500E 454300S 1400 11.38 9.55 10.40 13.85 9.70 11.59 10.65 4.15 34.56 34.36 0.64

-39.67 1722520E 394020S 234 16.02 15.22 15.85 18.51 13.81 15.56 15.15 4.70 35.22 35.23 0.30

-47.33 1695520E 471980S 1004 10.55 9.74 10.34 12.62 9.02 10.58 9.93 3.60 34.50 34.45 0.72

-46.64 1705880E 463840S 1244 10.82 9.47 10.13 13.12 9.24 11.01 10.13 3.88 34.51 34.37 0.69

-38.00 1734980E 380000S 794 16.99 15.99 16.91 19.46 14.75 16.60 16.16 4.71 35.34 35.28 0.28

-35.33 1752340E 351980S 797 18.33 17.37 18.13 20.75 16.12 18.18 17.60 4.63 35.50 35.54 0.29

-38.02 1733780E 380120S 974 16.97 15.96 16.87 19.45 14.74 16.59 16.13 4.71 35.34 35.28 0.29

-35.23 1751920E 351380S 922 18.37 17.40 18.16 20.79 16.17 18.24 17.63 4.63 35.51 35.54 0.29

-35.13 1752340E 350780S 1176 18.41 17.45 18.22 20.84 16.21 18.29 17.68 4.62 35.51 35.55 0.29
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-51.70 1713120E 514200S 519 8.36 8.22 8.43 9.83 7.10 8.03 7.94 2.73 34.30 34.33 0.94

-38.63 1714800E 383780S 1233 16.61 15.71 16.44 19.12 14.42 16.20 15.69 4.70 35.30 35.29 0.30

-35.42 1751260E 352520S 514 18.29 17.34 18.10 20.71 16.08 18.13 17.55 4.63 35.50 35.54 0.29

-38.94 1781195E 385630S 128 16.50 16.32 17.04 18.87 14.16 16.03 15.96 4.72 35.29 35.51 0.27

-45.07 1471368E 450401S 3589 11.85 12.00 12.25 13.41 10.22 11.42 11.36 3.19 34.81 34.92 0.67

-51.37 1595640E 512208S 3928 8.23 9.60 6.99 7.91 7.83 2.62 34.31 1.10

-47.89 1500318E 475321S 2545 10.03 10.09 10.23 11.48 8.64 9.74 9.60 2.84 34.56 34.62 0.94

-54.82 1750780W 544908S 5214 6.82 7.12 7.24 6.69 5.29 6.32 6.69 1.40 34.16 34.19 1.21

-51.26 1650330E 511541S 3808 8.65 14.74 15.39 9.98 7.36 8.15 8.31 2.62 34.36 35.37 0.98

-51.97 1612081E 515820S 5704 7.94 14.74 15.39 9.29 6.72 7.59 7.55 2.57 34.28 35.37 1.11

-39.34 1423070E 392040S 1702 14.69 14.33 15.00 16.54 12.83 14.52 14.00 3.71 35.22 35.33 0.34

-39.31 1423110E 391860S 1336 14.70 14.33 15.00 16.56 12.84 14.54 14.01 3.71 35.22 35.33 0.34

-38.88 1420080E 385250S 686 14.83 14.37 15.02 16.71 12.99 14.74 14.11 3.72 35.24 35.34 0.33

-38.61 1410710E 383680S 732 14.86 14.53 15.20 16.73 13.03 14.83 14.13 3.70 35.24 35.36 0.33

-38.67 1410700E 384020S 1345 14.84 14.51 15.17 16.70 13.01 14.80 14.11 3.70 35.24 35.36 0.33

-38.85 1410380E 385120S 2348 14.75 14.41 15.06 16.60 12.92 14.70 14.03 3.68 35.23 35.34 0.33

-39.68 1405910E 394080S 3984 14.36 14.13 14.73 16.17 12.56 14.24 13.70 3.61 35.17 35.28 0.36

-39.83 1404060E 394980S 4319 14.26 14.02 14.60 16.05 12.47 14.14 13.60 3.58 35.15 35.25 0.37

-40.07 1402320E 400390S 4703 14.11 13.80 14.33 15.89 12.34 14.00 13.46 3.56 35.13 35.20 0.38

-47.15 1454780E 470886S 2890 10.29 10.23 10.39 11.67 8.90 10.06 9.89 2.76 34.59 34.64 0.89

-49.15 1482880E 490900S 3885 8.99 7.81 7.90 10.34 7.74 8.88 8.61 2.60 34.42 34.28 1.07

-50.59 1470931E 503560S 4350 7.76 1.42 1.64 9.07 6.64 7.89 7.34 2.43 34.27 33.86 1.22

-57.95 1443503E 575686S 3740 2.12 -1.50 -1.38 4.00 1.18 3.48 1.31 2.81 33.88 34.18 1.73

-45.39 1775940E 452340S 0 11.46 10.37 11.36 14.32 9.51 11.89 10.80 4.81 34.57 34.43 0.56

-45.02 1745940E 450120S 1122 11.71 10.23 11.34 14.46 9.84 12.08 11.05 4.62 34.58 34.45 0.57

-45.33 1740480W 451980S 4808 12.56 12.10 12.69 12.03 10.55 12.03 11.98 1.48 34.73 34.80 0.46

-40.24 1792400E 401440S 3010 15.61 15.45 16.16 18.07 13.24 15.22 15.23 4.83 35.19 35.38 0.28

-41.58 1713000W 413480S 3556 14.52 14.00 14.68 14.35 12.11 14.35 14.10 2.24 34.98 35.06 0.30

-44.33 1451260E 441980S 2270 12.14 12.07 12.35 13.71 10.52 11.78 11.62 3.20 34.84 34.93 0.61

-41.39 1441380E 412340S 814 13.83 13.47 13.96 15.60 12.01 13.47 13.25 3.59 35.09 35.12 0.41

-42.25 1423180E 421500S 4103 13.12 12.82 13.21 14.81 11.43 12.88 12.53 3.38 34.97 35.01 0.47

-42.23 1425280E 421380S 3715 13.17 12.86 13.26 14.86 11.47 12.91 12.57 3.40 34.98 35.02 0.47

-42.20 1442460E 421200S 2360 13.36 13.01 13.42 15.09 11.60 13.01 12.78 3.49 35.01 35.05 0.46

-42.18 1444080E 421080S 765 13.41 13.03 13.44 15.14 11.63 13.04 12.83 3.51 35.02 35.06 0.45

-41.52 1442040E 413120S 838 13.77 13.42 13.90 15.53 11.95 13.40 13.19 3.58 35.08 35.11 0.42

-41.51 1441740E 413060S 1081 13.77 13.42 13.90 15.53 11.95 13.41 13.18 3.58 35.08 35.11 0.42

-41.52 1441320E 413120S 1557 13.75 13.42 13.90 15.51 11.94 13.40 13.17 3.57 35.07 35.11 0.42

-41.50 1440600E 413000S 1703 13.75 13.42 13.90 15.51 11.94 13.40 13.16 3.57 35.07 35.11 0.42

-41.12 1434980E 410720S 1265 13.94 13.58 14.09 15.71 12.11 13.61 13.34 3.60 35.10 35.16 0.40

-42.68 1765460W 424080S 1000 14.13 13.66 14.35 13.68 11.83 13.68 13.64 1.85 34.94 35.04 0.34
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0.39 1.25 2.86 477.77 633.91 131.00 72.46 108.37 3.56

0.41 1.27 3.18 614.20 817.22 60.00 69.53 106.04 3.71

0.36 1.17 2.16 610.90 856.57 81.00 57.32 30.06 3.78

0.36 1.19 2.22 873.52 1163.89 38.00 52.32 26.06 4.65

0.27 1.10 1.78 631.85 961.48 191.00 67.02 27.17 4.56

0.26 1.27 1.96 715.60 1139.72 211.00 70.48 27.75 4.17

0.24 1.38 1.55 792.33 1204.99 98.00 73.64 29.45 4.13

0.36 2.11 2.74 624.06 924.85 259.00 59.46 4.40 4.18

0.38 2.17 3.58 756.27 1171.28 287.00 59.69 39.32 3.85

0.37 2.16 3.94 802.59 1233.69 297.00 70.83 43.12 3.97

0.40 2.64 4.67 849.83 1287.90 174.00 66.48 51.00 4.60

0.49 2.95 6.30 983.84 1431.91 92.00 63.94 18.63 4.85

0.51 3.28 6.90 1252.06 1827.74 35.00 58.66 10.45 5.77

0.48 3.67 4.46 559.43 872.13 292.00 66.68 3.55 4.76

0.56 3.92 6.97 653.40 1136.74 395.00 58.88 58.79 5.04

0.63 4.29 8.65 881.96 1486.97 159.00 51.70 22.75 5.39

0.70 4.44 9.96 1026.79 1743.93 60.00 33.08 10.05 5.87

0.71 6.07 8.30 427.52 707.68 616.00 62.77 8.45 4.82

0.85 8.09 12.03 338.95 595.94 284.00 53.43 14.11 4.28

0.95 10.35 12.22 293.45 495.11 806.00 90.22 11.91 4.80

0.83 13.42 11.64 244.77 391.48 139.00 130.89 134.69 5.56

0.50 5.55 4.81 726.04 1162.04 185.00 46.24 21.71 4.25

0.34 1.56 2.01 588.84 770.31 356.00 73.28 133.48 4.13

0.33 0.86 1.07 559.09 748.50 830.00 69.99 62.22 3.75

0.40 4.66 3.41 717.98 1040.92 66.00 46.64 15.89 4.47

0.90 10.45 13.45 273.26 443.20 392.00 62.81 29.51 5.14

14.38 239.05 423.20 1307.00 108.64 6.46 4.84

0.84 10.57 9.04 357.24 611.22 361.00 127.92 55.31 4.31

0.57 7.41 5.39 661.07 1267.02 102.00 39.18 11.00 4.49

0.31 1.82 2.60 850.49 1219.81 66.00 100.37 151.02 4.44

0.33 1.05 1.94 516.17 756.26 382.00 59.60 127.17 3.63

0.93 11.53 14.48 266.28 408.80 487.00 107.53 99.54 5.33

0.25 1.21 1.82 708.39 1135.22 200.00 69.98 27.28 4.20

0.77 12.06 11.06 246.62 367.18 380.00 114.26 12.28 5.76

0.58 4.24 7.19 493.61 968.80 458.00 57.30 58.87 4.34

0.34 2.16 2.68 671.43 1017.46 113.00 38.13 82.68 4.58

0.35 2.19 2.83 674.50 1003.34 121.00 44.75 96.50 5.06

0.36 2.29 3.07 687.41 975.29 139.00 30.46 71.01 4.28

0.91 12.20 14.46 258.44 394.26 477.00 138.43 233.28 5.78

0.36 2.30 3.10 687.41 975.29 115.00 29.90 69.96 4.26

0.34 2.17 2.73 674.50 1003.34 110.00 26.87 62.80 4.16

0.34 1.10 2.21 512.86 739.57 292.00 56.17 104.83 3.65

0.38 2.29 2.40 612.94 827.34 350.00 41.35 42.22 4.50

0.25 0.63 0.65 543.99 677.20 931.00 58.22 59.40 4.22

0.31 1.13 1.62 525.81 708.20 302.00 74.74 137.84 4.64

0.36 2.00 2.35 634.09 839.09 331.00 49.72 85.97 4.31

0.37 2.15 3.51 761.56 1191.88 493.00 59.38 39.03 3.93

0.72 4.65 10.29 772.52 1516.67 80.00 43.09 10.18 5.51

0.71 4.51 9.64 0.00 0.00 6.00 20.55 10.04 6.19

0.83 6.24 10.82 469.15 808.75 49.00 25.72 10.00 4.99

0.32 1.21 1.03 745.36 1059.24 92.00 55.50 52.53 5.15

0.82 8.20 11.29 358.04 576.05 87.00 40.36 10.00 5.18

0.85 7.43 11.43 387.70 644.62 80.00 33.00 10.00 4.81

0.36 1.13 1.44 699.07 961.68 75.00 49.11 26.14 4.77

0.47 1.30 3.83 605.77 805.57 81.00 60.30 40.85 4.39

0.35 1.13 1.42 696.79 978.15 91.00 48.53 27.39 4.38

0.46 1.31 3.73 631.18 848.50 79.00 61.34 47.91 4.30

0.45 1.30 3.60 587.23 773.89 90.00 62.75 54.77 4.08
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S2.2. NZ-98 count and environmental data
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0.90 13.98 14.40 233.44 389.57 576.00 198.17 518.16 5.95

0.32 1.10 1.43 620.35 920.95 181.00 56.24 76.57 3.84

0.47 1.31 3.93 664.45 907.02 61.00 59.83 40.43 4.62

0.21 1.07 1.23 197.27 479.05 34.00 63.78 25.19 4.90

0.61 7.31 6.48 616.57 1038.48 138.00 46.33 14.54 4.46

14.28 257.88 483.51 667.00 102.58 166.47 4.67

0.94 11.49 11.02 366.53 641.48 531.00 88.14 289.21 4.23

1.26 17.31 17.37 202.98 336.56 1309.00 103.76 27.35 4.83

0.29 12.86 1.33 293.49 540.37 65.00 137.30 321.87 4.70

0.29 14.72 1.33 233.77 411.41 662.00 110.43 246.52 4.66

0.31 2.45 1.91 590.92 818.42 85.00 77.48 199.67 4.66

0.31 2.44 1.91 612.24 836.76 85.00 76.77 197.09 4.74

0.32 2.32 2.00 601.97 819.67 51.00 65.32 133.85 4.82

0.31 2.25 1.88 581.50 748.82 21.00 67.26 124.07 4.91

0.31 2.27 1.90 570.28 770.57 34.00 67.03 124.93 4.79

0.32 2.35 2.03 563.33 771.30 56.00 67.42 128.84 4.42

0.34 2.76 2.44 579.96 741.13 137.00 72.40 123.92 4.61

0.36 2.88 2.64 578.85 740.55 167.00 71.63 118.46 4.72

0.38 3.06 3.04 574.28 750.43 203.00 69.93 111.52 4.81

0.90 10.97 10.70 352.33 593.13 375.00 91.83 82.51 4.37

1.26 13.96 15.85 286.82 484.69 601.00 113.12 209.28 4.68

1.84 16.73 27.36 259.19 463.57 745.00 103.73 143.20 4.73

2.13 26.05 31.01 103.29 191.40 1575.00 26.47 29.73 5.02

0.69 5.45 8.93 434.71 812.21 418.00 50.74 64.33 4.40

0.70 5.23 9.59 565.79 1098.38 189.00 51.06 22.22 4.77

0.48 3.67 4.46 559.43 872.13 215.00 66.68 3.55 4.76

0.26 1.27 1.87 728.69 1181.55 205.00 71.16 27.87 4.25

0.30 1.36 1.47 532.99 767.94 924.00 56.01 44.69 4.60

0.56 6.60 6.03 642.97 1082.12 87.00 41.65 11.54 4.46

0.36 3.53 2.74 718.94 1014.70 40.00 93.35 26.04 4.91

0.46 4.59 4.47 578.80 888.25 211.00 68.67 35.96 4.78

0.45 4.51 4.25 609.23 927.38 185.00 66.43 31.86 4.73

0.40 4.25 3.39 715.37 1066.96 62.00 55.42 18.67 4.61

0.40 4.20 3.30 852.70 1201.70 30.00 55.47 18.29 4.85

0.37 3.63 2.83 773.34 1165.55 36.00 97.17 24.19 5.02

0.37 3.63 2.83 701.95 1002.99 36.00 96.40 24.64 4.91

0.37 3.65 2.85 701.95 1002.99 44.00 95.15 25.29 4.73

0.37 3.64 2.85 667.58 945.36 53.00 93.06 26.56 4.49

0.35 3.36 2.50 633.59 841.06 62.00 78.72 37.19 4.87

0.37 2.10 3.18 726.10 1074.62 592.00 58.89 22.11 4.21

308



S2.3 SH- 311 count and environmental data
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2_Cro Crouch et al. 2010 0.00 0.00 0.08 0.00 0.00 0.07 0.00 0.01 0.00 0.01 0.00 0.10 0.00 0.00 0.00

3_Cro Crouch et al. 2010 0.00 0.00 0.12 0.00 0.01 0.04 0.00 0.02 0.03 0.03 0.00 0.11 0.19 0.00 0.00

8_Cro Crouch et al. 2010 0.00 0.00 0.20 0.00 0.00 0.05 0.02 0.05 0.00 0.04 0.00 0.06 0.18 0.02 0.00

9_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.27 0.02 0.00

11_Cro Crouch et al. 2010 0.00 0.00 0.18 0.00 0.05 0.06 0.00 0.10 0.02 0.05 0.00 0.24 0.16 0.03 0.00

12_Cro Crouch et al. 2010 0.00 0.00 0.07 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.18 0.12 0.01 0.00

13_Cro Crouch et al. 2010 0.00 0.00 0.12 0.00 0.05 0.03 0.01 0.03 0.01 0.00 0.01 0.13 0.11 0.00 0.00

15_Cro Crouch et al. 2010 0.00 0.00 0.06 0.00 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.30 0.21 0.00 0.00

16_Cro Crouch et al. 2010 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.17 0.27 0.01 0.00

17_Cro Crouch et al. 2010 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.07 0.29 0.04 0.00

18_Cro Crouch et al. 2010 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.16 0.35 0.01 0.00

20_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.14 0.01 0.00

21_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.01 0.00

22_Cro Crouch et al. 2010 0.04 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.43 0.23 0.01 0.00

24_Cro Crouch et al. 2010 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.12 0.03 0.00 0.00

25_Cro Crouch et al. 2010 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.23 0.15 0.00 0.00

26_Cro Crouch et al. 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.15 0.00 0.00

28_Cro Crouch et al. 2010 0.00 0.01 0.04 0.03 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.30 0.32 0.02 0.00

32_Cro Crouch et al. 2010 0.00 0.08 0.03 0.03 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.50 0.01 0.00 0.00

33_Cro Crouch et al. 2010 0.02 0.04 0.06 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.49 0.24 0.03 0.00

37_Cro Crouch et al. 2010 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.69 0.00 0.00 0.00

38_Pre This Study 0.00 0.01 0.13 0.00 0.01 0.01 0.01 0.04 0.00 0.04 0.00 0.35 0.13 0.00 0.00

39_Pre This Study 0.01 0.02 0.47 0.00 0.02 0.00 0.02 0.00 0.02 0.08 0.00 0.35 0.00 0.00 0.00

41_Pre This Study 0.00 0.00 0.39 0.00 0.01 0.03 0.00 0.02 0.01 0.13 0.00 0.22 0.05 0.00 0.00

46_Pre This Study 0.03 0.00 0.06 0.01 0.00 0.01 0.00 0.06 0.00 0.00 0.02 0.15 0.00 0.00 0.00

48_Pre This Study 0.06 0.05 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00

58_Pre This Study 0.00 0.02 0.17 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.46 0.00 0.00 0.00

59_Pre This Study 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.28 0.03 0.00 0.00

60_Pre This Study 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.12 0.00 0.00

62_Pre This Study 0.00 0.00 0.68 0.00 0.07 0.02 0.00 0.02 0.02 0.08 0.00 0.06 0.03 0.00 0.00

64_Pre This Study 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.34 0.00 0.00

66_Pre This Study 0.00 0.00 0.19 0.00 0.03 0.07 0.00 0.01 0.01 0.01 0.00 0.28 0.35 0.01 0.00

67_Pre This Study 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.80 0.00 0.00 0.00

68_Pre This Study 0.00 0.03 0.01 0.00 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.51 0.07 0.00 0.00

70_Pre This Study 0.00 0.01 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.17 0.01 0.00 0.00

71_Pre This Study 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.09 0.28 0.00 0.00

72_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.19 0.02 0.00

83_Pre This Study 0.00 0.01 0.00 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.64 0.00 0.00 0.00

96_Pre This Study 0.00 0.00 0.19 0.00 0.00 0.01 0.00 0.02 0.01 0.06 0.00 0.27 0.13 0.00 0.00

97_Pre This Study 0.00 0.01 0.70 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.22 0.03 0.00 0.00

98_Pre This Study 0.01 0.00 0.61 0.00 0.01 0.04 0.00 0.00 0.02 0.11 0.00 0.12 0.01 0.00 0.00

104_Pre This Study 0.00 0.00 0.33 0.00 0.00 0.02 0.01 0.01 0.01 0.04 0.00 0.08 0.06 0.00 0.00

105_Pre This Study 0.00 0.00 0.37 0.00 0.06 0.06 0.06 0.00 0.04 0.05 0.00 0.14 0.12 0.00 0.00

107_Pre This Study 0.00 0.00 0.15 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.00 0.09 0.16 0.00 0.00

113_Pre This Study 0.00 0.01 0.64 0.00 0.02 0.01 0.00 0.00 0.01 0.05 0.00 0.20 0.02 0.00 0.00

119_Pre This Study 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

120_Pre This Study 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

123_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00

128_Pre This Study 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00

129_Pre This Study 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.34 0.03 0.00

133_Pre This Study 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.19 0.00 0.00 0.00

134_Pre This Study 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.30 0.01 0.00 0.00

136_Pre This Study 0.00 0.00 0.10 0.00 0.01 0.00 0.00 0.01 0.02 0.04 0.00 0.02 0.46 0.00 0.00

137_Pre This Study 0.00 0.00 0.03 0.00 0.03 0.04 0.01 0.01 0.01 0.02 0.00 0.01 0.33 0.00 0.00

140_Pre This Study 0.00 0.00 0.12 0.00 0.02 0.00 0.00 0.01 0.02 0.09 0.00 0.01 0.19 0.00 0.00

141_Pre This Study 0.00 0.00 0.03 0.00 0.01 0.03 0.00 0.00 0.00 0.03 0.00 0.01 0.29 0.01 0.00

142_Pre This Study 0.00 0.00 0.06 0.00 0.02 0.03 0.00 0.01 0.00 0.02 0.00 0.01 0.32 0.01 0.00

143_Pre This Study 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.68 0.01 0.00 0.00

144_Pre This Study 0.00 0.00 0.35 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.02 0.21 0.00 0.00
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S2.3 SH- 311 count and environmental data
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145_Pre This Study 0.00 0.00 0.02 0.00 0.00 0.03 0.01 0.00 0.00 0.03 0.00 0.01 0.38 0.01 0.00

151_Pre This Study 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

1393_Vin Vink et al. 2004 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.19 0.07 0.00 0.00

1394_Vin Vink et al. 2004 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.17 0.00 0.00 0.00

1395_Vin Vink et al. 2004 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.11 0.00 0.00 0.00

1396_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.16 0.77 0.00 0.00

1399_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.92 0.00 0.00

1400_Vin Vink et al. 2004 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.16 0.00 0.00

1402_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.10 0.00 0.00

1403_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.09 0.00 0.00

1404_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.17 0.00 0.00

1405_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.00 0.00

1406_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.19 0.00 0.00

1407_Vin Vink et al. 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.13 0.00 0.00

1875_Mar Vink et al. 2004 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.53 0.18 0.00 0.00

1876_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1883_Mar Marett et al. 2003 0.00 0.02 0.08 0.04 0.02 0.00 0.00 0.03 0.02 0.04 0.00 0.29 0.06 0.00 0.00

1887_Mar Marett et al. 2003 0.00 0.03 0.19 0.16 0.01 0.04 0.00 0.04 0.01 0.00 0.00 0.42 0.04 0.00 0.00

1890_Mar Marett et al. 2003 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.05 0.43 0.00 0.00

1891_Mar Marett et al. 2003 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.09 0.47 0.00 0.00

1892_Mar Marett et al. 2003 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.14 0.55 0.00 0.00

1893_Mar Marett et al. 2003 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.12 0.09 0.00 0.00

1894_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.11 0.04 0.00 0.00

1895_Mar Marett et al. 2003 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1896_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00

1897_Mar Marett et al. 2003 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.03 0.00 0.00

1898_Mar Marett et al. 2003 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.05 0.05 0.00 0.00

1899_Mar Marett et al. 2003 0.06 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.13 0.25 0.00 0.00

1900_Mar Marett et al. 2003 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.18 0.21 0.00 0.00

1901_Mar Marett et al. 2003 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.09 0.26 0.00 0.00

1902_Mar Marett et al. 2003 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.11 0.38 0.00 0.00

1903_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00

1904_Mar Marett et al. 2003 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.07 0.00 0.05 0.00 0.07 0.29 0.00 0.00

1905_Mar Marett et al. 2003 0.00 0.00 0.14 0.00 0.02 0.00 0.00 0.05 0.04 0.05 0.00 0.08 0.31 0.00 0.00

1907_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.71 0.00 0.00

1909_Mar Marett et al. 2003 0.00 0.00 0.13 0.00 0.07 0.00 0.00 0.04 0.03 0.46 0.00 0.05 0.02 0.00 0.00

1912_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00

1913_Mar Marett et al. 2003 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00

1914_Mar Marett et al. 2003 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00

1915_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.76 0.00 0.00

1916_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

1917_Mar Marett et al. 2003 0.00 0.04 0.54 0.00 0.06 0.00 0.02 0.07 0.06 0.06 0.00 0.04 0.04 0.00 0.02

1918_Mar Marett et al. 2003 0.00 0.02 0.45 0.00 0.00 0.02 0.03 0.21 0.09 0.10 0.00 0.03 0.00 0.00 0.02

1919_Mar Marett et al. 2003 0.00 0.02 0.44 0.00 0.02 0.00 0.00 0.18 0.14 0.08 0.00 0.03 0.00 0.00 0.02

1920_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.12 0.03 0.00 0.00

1921_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

1922_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00

1923_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00

1924_Mar Marett et al. 2003 0.00 0.00 0.06 0.00 0.00 0.04 0.00 0.00 0.00 0.13 0.00 0.28 0.06 0.00 0.00

1925_Mar Marett et al. 2003 0.00 0.00 0.14 0.00 0.00 0.05 0.00 0.03 0.05 0.11 0.00 0.25 0.23 0.00 0.00

1926_Mar Marett et al. 2003 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.26 0.21 0.00 0.00

1927_Mar Marett et al. 2003 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.10 0.07 0.00 0.00

1928_Mar Marett et al. 2003 0.00 0.00 0.19 0.00 0.00 0.07 0.00 0.06 0.04 0.12 0.00 0.14 0.06 0.00 0.00

1929_Mar Marett et al. 2003 0.00 0.00 0.13 0.00 0.00 0.07 0.00 0.00 0.04 0.31 0.00 0.14 0.05 0.00 0.00

1930_Mar Marett et al. 2003 0.00 0.00 0.21 0.00 0.00 0.07 0.00 0.04 0.05 0.10 0.00 0.11 0.04 0.00 0.02

1931_Mar Marett et al. 2003 0.00 0.00 0.33 0.00 0.02 0.11 0.00 0.09 0.14 0.19 0.00 0.04 0.02 0.00 0.02

1932_Mar Marett et al. 2003 0.00 0.00 0.31 0.00 0.00 0.07 0.00 0.13 0.20 0.18 0.00 0.11 0.00 0.00 0.00

1933_Mar Marett et al. 2003 0.00 0.00 0.42 0.00 0.00 0.13 0.00 0.08 0.11 0.08 0.00 0.07 0.00 0.00 0.00

1937_Mar Marett et al. 2003 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.09 0.04 0.00 0.00
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1938_Mar Marett et al. 2003 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1939_Mar Marett et al. 2003 0.00 0.04 0.00 0.02 0.00 0.01 0.00 0.11 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1940_Mar Marett et al. 2003 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.03 0.00 0.00 0.00

1941_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1942_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1943_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1945_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1947_Mar Marett et al. 2003 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.19 0.00 0.00 0.00

1948_Mar Marett et al. 2003 0.00 0.00 0.11 0.03 0.03 0.01 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.00 0.00

1949_Mar Marett et al. 2003 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.08 0.00 0.00 0.00

1950_Mar Marett et al. 2003 0.00 0.02 0.05 0.04 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.11 0.00 0.00 0.00

1951_Mar Marett et al. 2003 0.00 0.01 0.02 0.03 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00

1952_Mar Marett et al. 2003 0.00 0.03 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00

1954_Mar Marett et al. 2003 0.00 0.04 0.05 0.03 0.01 0.01 0.00 0.05 0.00 0.00 0.00 0.18 0.00 0.00 0.00

1955_Mar Marett et al. 2003 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

1958_Mar Marett et al. 2003 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1959_Mar Marett et al. 2003 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1962_Mar Marett et al. 2003 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

1963_Mar Marett et al. 2003 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00

1968_Mar Marett et al. 2003 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1969_Mar Marett et al. 2003 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1970_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

1971_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

1972_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1973_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00

1974_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

1975_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1987_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1988_Mar Marett et al. 2003 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1989_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00

1990_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1991_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1992_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

1993_Mar Marett et al. 2003 0.00 0.05 0.06 0.06 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.38 0.11 0.00 0.00

1994_Mar Marett et al. 2003 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.39 0.03 0.00 0.00

1995_Mar Marett et al. 2003 0.02 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.22 0.00 0.00

1996_Mar Marett et al. 2003 0.00 0.00 0.13 0.00 0.03 0.00 0.00 0.03 0.02 0.00 0.00 0.25 0.13 0.00 0.00

1998_Mar Marett et al. 2003 0.00 0.00 0.16 0.02 0.03 0.01 0.00 0.03 0.01 0.00 0.00 0.58 0.10 0.00 0.00

1999_Mar Marett et al. 2003 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.38 0.10 0.00 0.00

2000_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.07 0.00 0.23 0.05 0.00 0.00

2001_Mar Marett et al. 2003 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.47 0.07 0.00 0.00

2002_Mar Marett et al. 2003 0.00 0.00 0.09 0.00 0.03 0.00 0.00 0.03 0.00 0.10 0.00 0.39 0.10 0.00 0.00

2003_Mar Marett et al. 2003 0.00 0.03 0.02 0.02 0.02 0.00 0.00 0.03 0.00 0.04 0.00 0.46 0.09 0.00 0.00

2004_Mar Marett et al. 2003 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.22 0.08 0.00 0.00

2005_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.23 0.09 0.00 0.00

2006_Mar Marett et al. 2003 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.40 0.12 0.00 0.00

2007_Mar Marett et al. 2003 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.45 0.13 0.00 0.00

2008_Mar Marett et al. 2003 0.02 0.00 0.00 0.06 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.17 0.08 0.00 0.00

2009_Mar Marett et al. 2003 0.00 0.02 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.34 0.14 0.00 0.00

2012_Mar Marett et al. 2003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.31 0.00 0.00

2013_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.01

2014_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00

2015_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00

2016_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

2017_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00

2018_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.00

2019_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.53 0.00 0.00

2020_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.86 0.00 0.01

2021_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.84 0.00 0.02
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2022_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.03

2023_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.02

2024_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00

2025_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00

2026_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.66 0.00 0.00

2027_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.84 0.00 0.01

2028_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.80 0.00 0.01

2029_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00

2031_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.68 0.00 0.01

2033_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

2034_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00

2035_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.81 0.00 0.00

2036_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.77 0.00 0.00

2037_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16 0.00 0.01

2038_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.43 0.00 0.00

2039_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00

2040_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2042_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

2043_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.43 0.00 0.00

2044_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00

2045_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.21 0.00 0.00

2047_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.22 0.00 0.00

2048_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.73 0.00 0.00

2049_Hol Holwarth et al., 2007 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.19 0.41 0.00 0.01

2050_Hol Holwarth et al., 2007 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.18 0.57 0.00 0.00

2051_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.64 0.00 0.01

2052_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.21 0.00 0.01

2053_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.36 0.00 0.00

2054_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.25 0.00 0.00

2055_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.42 0.00 0.01

2056_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.40 0.00 0.00

2057_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.18 0.00 0.01

2059_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.00 0.00

2060_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.26 0.00 0.00

2061_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.23 0.00 0.00

2063_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

2064_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00

2065_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00

2066_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.21 0.00 0.01

2067_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.35 0.00 0.00

2068_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00

2069_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00

2070_Hol Holwarth et al., 2007 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00

2071_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2072_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2073_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2074_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2075_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2076_Ver Verleye and Leweye, 2011 0.00 0.00 0.18 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.31 0.03 0.00 0.01

2077_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00

2078_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2079_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2080_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

2081_Ver Verleye and Leweye, 2011 0.01 0.00 0.32 0.00 0.07 0.00 0.00 0.02 0.01 0.00 0.00 0.13 0.11 0.00 0.00

2082_Ver Verleye and Leweye, 2011 0.00 0.00 0.12 0.00 0.04 0.00 0.00 0.01 0.01 0.00 0.00 0.14 0.31 0.00 0.00

2083_Ver Verleye and Leweye, 2011 0.00 0.00 0.06 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.06 0.00 0.00

2084_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00

2085_Ver Verleye and Leweye, 2011 0.00 0.00 0.11 0.00 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.17 0.09 0.00 0.00

2086_Ver Verleye and Leweye, 2011 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.27 0.09 0.00 0.00
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2087_Ver Verleye and Leweye, 2011 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.05 0.00 0.00

2088_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.19 0.03 0.00 0.00

2089_Ver Verleye and Leweye, 2011 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.21 0.04 0.00 0.01

2090_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.14 0.08 0.00 0.00

2091_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.19 0.05 0.00 0.01

2092_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.05 0.00 0.00

2093_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00

2094_Ver Verleye and Leweye, 2011 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.02

2095_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00

2096_Ver Verleye and Leweye, 2011 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00

2097_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

2098_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2099_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2100_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2101_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

2102_Ver Verleye and Leweye, 2011 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.00

2103_Ver Verleye and Leweye, 2011 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.53 0.09 0.00 0.00

2104_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.40 0.08 0.00 0.00

2105_Ver Verleye and Leweye, 2011 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.03 0.00 0.00

2106_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.04 0.00 0.00

2107_Ver Verleye and Leweye, 2011 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.38 0.07 0.00 0.00

2108_Ver Verleye and Leweye, 2011 0.00 0.00 0.05 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.58 0.07 0.00 0.00

2109_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00

2110_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2111_Ver Verleye and Leweye, 2011 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.36 0.05 0.00 0.00

2112_Ver Verleye and Leweye, 2011 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.04 0.00 0.00

2113_Ver Verleye and Leweye, 2011 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00

2114_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2115_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2116_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2117_Ver Verleye and Leweye, 2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2118_Ver Verleye and Leweye, 2011 0.00 0.00 0.09 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.00 0.00

2119_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.03 0.07

2120_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.03 0.04

2121_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.02 0.03

2122_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.84 0.01 0.06

2123_Lau Laurijssen and Zonneveld 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.02 0.04

2124_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.02 0.07

2125_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.86 0.04 0.02

2126_Lau Laurijssen and Zonneveld 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.04 0.01 0.00 0.01 0.02 0.57 0.02 0.02

2127_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.85 0.03 0.05

2128_Lau Laurijssen and Zonneveld 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.81 0.02 0.08

2129_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.02 0.06

2130_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.03 0.02

2131_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.02 0.03

2132_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.60 0.02 0.08

2133_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.77 0.01 0.00

2134_Lau Laurijssen and Zonneveld 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.35 0.00 0.00

2135_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.69 0.03 0.01

2136_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.04 0.00

2137_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.02 0.00

2138_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.07 0.00 0.00

2139_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.02 0.60 0.01 0.01

2140_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.61 0.00 0.00

2141_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.76 0.01 0.00

2142_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.09 0.42 0.02 0.00

2143_Lau Laurijssen and Zonneveld 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.39 0.00 0.00

2144_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.62 0.01 0.00

2145_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.56 0.02 0.00
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2146_Lau Laurijssen and Zonneveld 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.55 0.01 0.00

2147_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.39 0.01 0.00

2148_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.32 0.01 0.00

2149_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.36 0.00 0.00

2150_Lau Laurijssen and Zonneveld 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.31 0.02 0.00

2151_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.10 0.00 0.00

2152_Lau Laurijssen and Zonneveld 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.83 0.01 0.00

2153_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.07 0.10 0.00 0.00

2154_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.02 0.00 0.02 0.17 0.00 0.00

2155_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.11 0.01 0.00

2156_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00

2157_Lau Laurijssen and Zonneveld 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.00 0.00

2158_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.10 0.00 0.00

2159_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2160_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00

2161_Lau Laurijssen and Zonneveld 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.13 0.00 0.00
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0.00 0.00 0.00 0.21 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.03

0.00 0.00 0.02 0.08 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.02 0.00 0.06 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.01 0.12 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.01 0.00 0.00 0.03 0.06 0.00 0.00 0.01

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.01

0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.00 0.00 0.03 0.05 0.01 0.00 0.00 0.05

0.00 0.01 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.08 0.02 0.00 0.00 0.10

0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.03

0.00 0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.20 0.00 0.00 0.01 0.06 0.04 0.00 0.00 0.04

0.00 0.01 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.30 0.00 0.00 0.02 0.03 0.04 0.00 0.00 0.03

0.00 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 0.00 0.01 0.01 0.04 0.08 0.00 0.00 0.01

0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.45 0.01 0.00 0.01 0.15 0.05 0.00 0.01 0.05

0.00 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.39 0.00 0.00 0.01 0.27 0.02 0.00 0.01 0.03

0.00 0.02 0.01 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.02 0.16 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.02 0.03 0.02 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.00 0.00 0.01 0.06 0.03 0.00 0.00 0.03

0.00 0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.41 0.00 0.00 0.01 0.22 0.01 0.00 0.01 0.06

0.00 0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.05 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.10 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.04 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.01 0.01 0.03 0.03 0.00 0.01 0.05

0.00 0.00 0.01 0.07 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.03 0.07 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.04 0.03 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.02 0.01 0.02 0.00 0.00 0.02

0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.05 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.03 0.01 0.34 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.05

0.00 0.00 0.01 0.00 0.53 0.00 0.02 0.00 0.00 0.00 0.02 0.14 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.04

0.00 0.08 0.00 0.08 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.11 0.11 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.02 0.01 0.02 0.33 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.02 0.01 0.01 0.32 0.09 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04

0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.83 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.05

0.00 0.00 0.00 0.26 0.06 0.00 0.00 0.00 0.00 0.00 0.04 0.30 0.00 0.00 0.05 0.05 0.01 0.00 0.04 0.03

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.85 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.00

0.00 0.03 0.00 0.61 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.05 0.00 0.19 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.16 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01

0.01 0.01 0.00 0.10 0.26 0.00 0.00 0.00 0.01 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01

0.01 0.02 0.00 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.01

0.00 0.01 0.00 0.13 0.37 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.07 0.07 0.24 0.03 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02

0.00 0.07 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
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S2.3 SH- 311 count and environmental data
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145_Pre

151_Pre

1393_Vin

1394_Vin

1395_Vin

1396_Vin

1399_Vin

1400_Vin

1402_Vin

1403_Vin

1404_Vin

1405_Vin

1406_Vin

1407_Vin

1875_Mar

1876_Mar

1883_Mar

1887_Mar

1890_Mar

1891_Mar

1892_Mar

1893_Mar

1894_Mar

1895_Mar

1896_Mar

1897_Mar

1898_Mar

1899_Mar

1900_Mar

1901_Mar

1902_Mar

1903_Mar

1904_Mar

1905_Mar

1907_Mar

1909_Mar

1912_Mar

1913_Mar

1914_Mar

1915_Mar

1916_Mar

1917_Mar

1918_Mar

1919_Mar

1920_Mar

1921_Mar

1922_Mar

1923_Mar

1924_Mar

1925_Mar

1926_Mar

1927_Mar

1928_Mar

1929_Mar

1930_Mar

1931_Mar

1932_Mar

1933_Mar

1937_Mar
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0.00 0.00 0.07 0.09 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.70 0.00 0.00 0.02 0.03 0.00 0.00 0.03 0.13

0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00

0.00 0.05 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.03 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.05 0.07 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.00 0.00 0.10 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.23 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.02 0.00 0.20 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.02 0.03 0.03 0.00 0.00 0.00

0.00 0.00 0.17 0.04 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.03 0.04 0.02 0.00 0.00 0.00

0.00 0.00 0.06 0.07 0.11 0.00 0.00 0.00 0.00 0.04 0.00 0.55 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00

0.00 0.00 0.12 0.04 0.22 0.00 0.00 0.00 0.00 0.03 0.00 0.40 0.00 0.00 0.03 0.03 0.02 0.00 0.00 0.00

0.00 0.04 0.17 0.07 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.00

0.00 0.03 0.16 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.21 0.14 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.12 0.22 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.17 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.17 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.06 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.02 0.07 0.00 0.00 0.06 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.06 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.15 0.00 0.00 0.08 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.08 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
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S2.3 SH- 311 count and environmental data
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1938_Mar

1939_Mar
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.03 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.63 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.33 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.02 0.77 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.10 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.30 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

0.00 0.00 0.05 0.16 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.04 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.03 0.07 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.07 0.17 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.04 0.16 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.00

0.00 0.00 0.00 0.13 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

0.00 0.00 0.04 0.07 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.26 0.03 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.00 0.03 0.07 0.13 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.04 0.09 0.00 0.00 0.00

0.00 0.00 0.02 0.01 0.16 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.01

0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.09 0.03 0.00 0.12

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.21

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.13 0.00 0.12 0.00 0.13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.34 0.00 0.00 0.03 0.23 0.00 0.00 0.00 0.34

0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.04

0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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0.00 0.00 0.00 0.01 0.19 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02

0.00 0.00 0.01 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.00 0.00 0.00 0.02 0.03 0.01 0.00 0.01

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.14 0.48 0.00 0.00 0.03 0.19 0.01 0.02 0.00 0.05

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.08 0.00 0.09 0.00 0.04

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02

0.01 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.10

0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.25 0.40 0.00 0.00 0.01 0.25 0.00 0.01 0.00 0.03

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.30 0.00 0.00 0.00 0.32 0.00 0.04 0.00 0.12

0.00 0.01 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02

0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.01 0.00 0.00 0.18 0.00 0.07 0.00 0.20

0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.16 0.00 0.05 0.00 0.04

0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.03 0.39 0.01 0.00 0.00 0.34 0.01 0.01 0.00 0.04

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.85 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.36 0.00 0.00 0.00 0.43 0.00 0.15 0.00 0.02

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.27 0.00 0.00 0.00 0.07 0.04 0.02 0.00 0.09

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.41 0.00 0.00 0.00 0.09 0.04 0.07 0.00 0.15

0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.28 0.00 0.29

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.00 0.00 0.00 0.06 0.03 0.00 0.00 0.02

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.05

0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.05

0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.14 0.01 0.03 0.00 0.17

0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.09 0.10 0.00 0.00 0.16

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.20

0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.01 0.00 0.00 0.03 0.04 0.04 0.00 0.01

0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.11 0.01 0.05 0.00 0.17

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.11 0.02 0.01 0.00 0.10

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.02 0.24 0.03 0.07 0.00 0.12

0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.35 0.00 0.00 0.00 0.12 0.05 0.02 0.00 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.15

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.45 0.00 0.00 0.03 0.45 0.00 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.04 0.46 0.00 0.00 0.01 0.22 0.00 0.01 0.00 0.15

0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.07 0.04 0.11 0.00 0.32

0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.00 0.00 0.00 0.13 0.02 0.08 0.00 0.23

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.03

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.13

0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.17 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.90 0.03 0.00 0.00 0.03 0.00 0.01 0.02 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.86 0.09 0.00 0.00 0.02 0.00 0.00 0.01 0.00

0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.17

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.66 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.77 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.57 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.10

0.00 0.14 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.12 0.37 0.01 0.00 0.00 0.05 0.00 0.01 0.00 0.03

0.00 0.03 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.13 0.27 0.05 0.00 0.00 0.05 0.00 0.01 0.00 0.10

0.00 0.19 0.00 0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.12 0.31 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.12
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.47 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.19

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.43 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.11

0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.15 0.33 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.15

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.56 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09

0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.14 0.40 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.13

0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.35 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.18

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.50 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.21

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.58 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.50 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.53 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.18

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.55 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.17

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.62 0.01 0.00 0.00 0.06 0.02 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.27 0.59 0.01 0.00 0.00 0.06 0.00 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.57 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.05

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.23 0.54 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.10

0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.21 0.49 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.13

0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.06 0.30 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.27 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.38 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.04

0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.28 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.08

0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.21 0.57 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.67 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.08

0.00 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.25 0.11 0.00 0.00 0.01 0.01 0.00 0.00 0.00

0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.36 0.16 0.00 0.00 0.01 0.00 0.00 0.00 0.01

0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.53 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.66 0.02 0.00 0.00 0.08 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.72 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.74 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.76 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.05

0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.50 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.05

0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.10 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01

0.00 0.00 0.00 0.07 0.09 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.01

0.00 0.00 0.00 0.09 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

0.00 0.00 0.00 0.02 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.07 0.12 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.07 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.72 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.08 0.07 0.00 0.00 0.01 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

0.00 0.00 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01

0.00 0.00 0.00 0.05 0.08 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.06 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.01 0.01 0.00 0.00 0.05 0.00

0.00 0.00 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00

0.00 0.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01
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0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.01 0.01 0.01 0.04 0.00

0.00 0.00 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01

0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.01 0.00 0.02 0.00 0.00 0.03 0.01

0.00 0.00 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.02

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.02

0.00 0.00 0.00 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.01 0.01 0.00 0.01 0.00 0.00 0.03 0.00
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0.00 174.15 -33.65 2133 18.8 21.2 16.6 19.3 18.2 4.6 484 834 17.9 18.7 35.6 35.6 0.3 0.4 2.1 2.9 71 99 3.9

0.00 173.51 -34.02 2036 18.5 20.8 16.3 19.1 17.8 4.5 624 1003 17.6 18.4 35.6 35.6 0.4 0.4 2.3 3.2 70 105 4.0

0.00 176.80 -36.32 2411 18.1 20.6 15.9 18.6 17.4 4.8 610 943 17.4 18.1 35.5 35.5 0.2 0.4 1.6 2.2 62 36 4.1

0.00 176.24 -36.69 430 18.1 20.7 15.8 18.6 17.4 4.9 844 1140 17.4 18.1 35.5 35.5 0.2 0.4 1.7 2.2 61 33 4.3

0.00 181.51 -39.94 3654 16.1 18.8 13.6 16.4 15.5 5.2 652 1143 15.3 16.0 35.3 35.3 0.2 0.3 0.7 1.8 67 27 4.5

0.00 179.99 -40.33 3003 16.1 18.8 13.7 16.5 15.6 5.1 719 1274 15.4 16.1 35.4 35.4 0.2 0.3 0.9 2.0 70 29 4.4

0.00 177.99 -40.40 2195 16.4 19.0 13.9 16.8 15.8 5.0 800 1461 15.6 16.3 35.5 35.5 0.2 0.2 0.8 1.6 72 31 4.4

0.00 186.00 -43.20 1128 14.1 16.5 12.0 14.2 13.5 4.5 621 997 13.4 14.0 35.0 35.0 0.3 0.4 1.2 2.7 60 5 4.4

0.00 181.51 -42.53 1408 14.4 17.2 12.1 14.5 13.8 5.1 743 1321 13.6 14.3 35.0 35.0 0.3 0.4 1.5 3.6 59 39 4.5

0.00 179.36 -42.22 2540 14.4 17.2 12.0 14.6 13.9 5.2 810 1499 13.6 14.4 35.0 35.0 0.3 0.4 1.7 3.9 71 42 4.5

0.00 176.91 -42.72 850 13.9 16.6 11.6 14.1 13.5 5.0 871 1475 13.1 13.9 34.9 35.0 0.3 0.4 1.6 4.7 64 51 4.8

0.00 174.50 -43.00 854 13.0 15.6 10.8 13.0 12.7 4.8 1020 1700 12.1 12.9 34.7 34.8 0.4 0.5 1.3 6.3 60 13 5.0

0.00 173.36 -43.33 79 12.4 15.1 10.2 12.2 12.2 4.9 1268 1983 11.4 12.3 34.6 34.7 0.4 0.5 1.2 6.9 63 10 5.2

0.00 185.92 -45.33 4680 12.7 15.1 11.0 12.8 12.0 4.1 573 1016 12.1 12.7 34.8 34.8 0.4 0.5 2.4 4.5 67 4 4.7

0.00 178.00 -44.13 1080 12.5 15.4 10.0 12.6 11.9 5.4 632 1257 11.5 12.4 34.6 34.6 0.4 0.6 3.5 7.0 61 58 4.7

0.00 174.98 -44.29 580 11.9 14.7 9.6 11.8 11.5 5.2 889 1747 10.7 11.8 34.5 34.5 0.5 0.6 3.4 8.6 55 25 4.9

0.00 172.65 -44.35 100 11.4 14.2 9.1 11.0 11.3 5.1 1078 1881 10.1 11.3 34.4 34.4 0.6 0.7 3.4 10.0 33 10 5.1

0.00 182.08 -46.60 4440 11.2 13.9 9.4 11.3 10.4 4.5 400 729 10.4 11.2 34.5 34.5 0.6 0.7 5.7 8.3 66 7 4.7

0.00 174.08 -47.04 1429 10.1 12.6 8.0 10.1 9.6 4.7 326 599 9.2 10.0 34.3 34.3 0.7 0.8 8.2 12.0 55 14 4.6

0.00 182.01 -49.67 4500 9.4 11.6 7.9 9.6 8.6 3.7 283 496 8.9 9.4 34.3 34.3 0.8 0.9 10.4 12.2 90 7 4.8

0.00 167.83 -51.72 629 9.0 10.1 8.2 9.3 8.4 1.9 235 507 9.0 9.0 34.4 34.5 0.9 0.8 11.9 11.6 136 235 5.4

0.00 149.93 -43.96 2622 13.4 15.5 11.7 13.8 12.7 3.8 746 1381 13.0 13.3 35.0 35.1 0.5 0.5 4.1 4.8 51 23 4.6

0.00 167.68 -40.51 1068 15.7 18.4 13.7 16.0 14.6 4.7 600 1011 14.9 15.6 35.2 35.3 0.3 0.3 1.0 2.0 70 127 4.2

0.00 165.44 -36.47 1088 17.7 20.1 15.6 18.3 16.9 4.5 570 902 16.9 17.6 35.5 35.5 0.3 0.3 0.5 1.1 68 61 3.8

0.00 144.41 -42.61 2464 13.4 14.9 12.0 14.0 12.6 2.9 727 1551 12.9 13.3 35.0 35.0 0.3 0.4 2.1 3.4 43 14 4.8

0.00 173.73 -48.73 638 9.3 11.4 7.5 9.4 8.8 3.9 264 463 8.7 9.2 34.3 34.3 0.8 0.9 10.9 13.4 73 33 5.0

0.00 164.61 -49.52 3250 10.1 11.4 9.1 10.4 9.5 2.3 364 670 9.7 10.1 34.5 34.5 0.8 0.8 9.1 9.0 126 63 4.7

0.00 166.06 -47.00 1648 12.0 13.7 10.7 12.2 11.3 3.0 716 1816 11.7 12.0 34.7 34.8 0.6 0.6 5.5 5.4 34 10 4.8

0.00 148.89 -38.46 2350 16.9 19.6 14.6 17.4 16.2 5.1 851 1257 15.9 16.8 35.5 35.4 0.3 0.3 1.5 2.6 104 182 4.8

0.00 170.00 -37.00 2096 17.2 19.7 15.0 17.7 16.3 4.7 530 977 16.3 17.1 35.4 35.4 0.3 0.3 1.0 1.9 62 127 3.9

0.00 174.47 -49.47 501 8.8 10.8 7.2 8.9 8.3 3.5 254 483 8.3 8.8 34.3 34.3 0.8 0.9 12.6 14.5 110 134 5.0

0.00 179.99 -40.12 2890 16.3 19.0 13.9 16.7 15.7 5.1 705 1197 15.5 16.3 35.4 35.4 0.2 0.3 0.8 1.8 69 28 4.4

0.00 168.99 -50.58 575 9.4 10.6 8.4 9.7 8.8 2.2 254 426 9.3 9.4 34.4 34.5 0.8 0.8 10.9 11.1 115 32 5.6

0.00 178.73 -44.50 1339 12.3 15.3 9.8 12.4 11.6 5.4 491 1240 11.3 12.2 34.6 34.6 0.5 0.6 3.9 7.2 59 59 4.7

0.00 170.00 -42.00 1000 15.5 18.4 13.3 15.8 14.4 5.0 664 1113 14.6 15.4 35.1 35.2 0.3 0.3 1.1 2.7 41 87 4.6

0.00 170.92 -41.40 202 15.5 18.4 13.3 15.8 14.4 5.0 664 1124 14.5 15.4 35.1 35.2 0.3 0.3 1.2 2.8 46 90 4.7

0.00 170.92 -42.38 167 15.4 18.3 13.2 15.6 14.3 5.1 689 1070 14.4 15.3 35.1 35.2 0.3 0.4 1.3 3.1 35 78 4.5

0.00 173.37 -50.06 546 8.7 10.5 7.3 8.8 8.2 3.2 238 418 8.3 8.7 34.3 34.3 0.8 0.9 13.0 14.5 133 240 5.3

0.00 170.50 -41.88 507 15.3 18.3 13.2 15.6 14.3 5.1 689 1070 14.4 15.3 35.1 35.2 0.3 0.4 1.3 3.1 35 77 4.5

0.00 170.34 -41.15 698 15.5 18.4 13.3 15.8 14.4 5.0 664 1124 14.5 15.4 35.1 35.2 0.3 0.3 1.1 2.7 36 76 4.4

0.00 170.65 -36.67 2112 17.3 19.9 15.1 17.8 16.5 4.8 531 909 16.4 17.2 35.4 35.4 0.3 0.3 1.2 2.2 59 109 3.8

0.00 165.22 -41.66 4421 14.9 17.6 13.0 15.1 14.0 4.6 639 1117 14.2 14.8 35.2 35.2 0.4 0.4 1.7 2.4 46 42 4.4

0.00 162.60 -33.15 793 20.1 22.6 17.9 20.5 19.3 4.7 535 897 19.3 20.0 35.6 35.6 0.2 0.3 0.5 0.7 59 58 3.9

0.00 169.65 -39.00 560 16.3 19.0 14.2 16.8 15.3 4.8 520 812 15.6 16.3 35.3 35.3 0.3 0.3 0.7 1.6 75 137 4.3

0.00 166.46 -41.32 3253 15.2 17.9 13.2 15.4 14.2 4.7 651 1043 14.4 15.1 35.2 35.2 0.4 0.4 1.4 2.4 51 96 4.3

0.00 -178.17 -42.55 1366 14.4 17.2 12.1 14.5 13.8 5.1 755 1392 13.6 14.3 35.0 35.0 0.3 0.4 1.5 3.5 60 37 4.6

0.00 173.42 -44.54 543 11.5 14.3 9.2 11.2 11.3 5.1 815 1993 9.9 11.4 34.5 34.4 0.6 0.7 3.4 10.3 47 10 5.0

0.05 171.36 -44.40 22 11.3 14.1 9.1 11.0 11.2 5.1 0 0 10.2 11.2 34.4 34.5 0.7 0.7 3.6 9.6 20 10 5.1

0.00 171.42 -45.72 1400 10.5 13.1 8.4 10.3 10.3 4.8 478 928 9.6 10.4 34.3 34.4 0.8 0.8 5.3 10.8 25 10 4.9

0.00 172.42 -39.67 234 15.9 18.7 13.7 16.3 15.0 5.0 752 1206 15.2 15.9 35.2 35.2 0.2 0.3 0.4 1.0 54 50 4.7

0.00 169.92 -47.33 1004 10.4 12.3 8.8 10.8 9.9 3.5 360 712 9.7 10.3 34.5 34.4 0.7 0.8 7.7 11.3 43 10 5.2

0.00 170.98 -46.64 1244 10.2 12.5 8.3 10.2 9.8 4.3 391 726 9.5 10.1 34.4 34.4 0.8 0.9 6.7 11.4 35 10 4.9

0.00 173.83 -38.00 794 17.0 20.0 14.5 17.4 16.1 5.4 658 899 16.0 16.9 35.3 35.3 0.2 0.4 0.9 1.4 46 26 4.6

0.00 175.39 -35.33 797 18.2 20.6 16.0 18.6 17.6 4.6 602 951 17.4 18.1 35.5 35.5 0.3 0.5 2.5 3.8 60 51 4.2

0.00 173.63 -38.02 974 17.0 19.9 14.5 17.3 16.1 5.4 650 897 16.0 16.9 35.3 35.3 0.2 0.4 0.9 1.4 44 26 4.5

0.00 175.32 -35.23 922 18.2 20.6 16.0 18.6 17.6 4.6 624 1026 17.4 18.2 35.6 35.5 0.3 0.5 2.5 3.7 61 57 4.1

0.00 175.39 -35.13 1176 18.3 20.7 16.0 18.7 17.7 4.6 591 916 17.4 18.2 35.6 35.5 0.3 0.4 2.4 3.6 62 59 4.1

0.00 171.52 -51.70 519 8.5 9.8 7.4 8.6 8.0 2.4 211 418 8.2 8.4 34.3 34.3 0.8 0.9 13.8 14.4 204 545 5.6

0.00 171.80 -38.63 1233 16.5 19.3 14.3 16.9 15.6 5.1 610 1054 15.7 16.4 35.3 35.3 0.2 0.3 0.7 1.4 56 80 4.2

321



S2.3 SH- 311 count and environmental data

N
am

e

145_Pre

151_Pre

1393_Vin

1394_Vin

1395_Vin

1396_Vin

1399_Vin

1400_Vin

1402_Vin

1403_Vin

1404_Vin

1405_Vin

1406_Vin

1407_Vin

1875_Mar

1876_Mar

1883_Mar

1887_Mar

1890_Mar

1891_Mar

1892_Mar

1893_Mar

1894_Mar

1895_Mar

1896_Mar

1897_Mar

1898_Mar

1899_Mar

1900_Mar

1901_Mar

1902_Mar

1903_Mar

1904_Mar

1905_Mar

1907_Mar

1909_Mar

1912_Mar

1913_Mar

1914_Mar

1915_Mar

1916_Mar

1917_Mar

1918_Mar

1919_Mar

1920_Mar

1921_Mar

1922_Mar

1923_Mar

1924_Mar

1925_Mar

1926_Mar

1927_Mar

1928_Mar

1929_Mar

1930_Mar

1931_Mar

1932_Mar

1933_Mar

1937_Mar

R
ad

_
co

rb

L
o
n
g

L
a
t

D
e
p
th

T
e
m

p

S
u
m

m
e
r_

T
e
m

p

W
in

te
r_

T
e
m

p

A
u
tu

m
n
_
te

m
p

S
p
ri
n
g
_
T

e
m

p

R
a
n
g
e
_
T

e
m

p

P
ro

d

M
ax

_
P

ro
d

T
em

p
_

5
0

m

T
em

p
_

1
0

m

S
al

in
it

y

S
al

_
5

0
m

P
h

o
sp

h
at

e

P
h

o
s_

5
0

m

N
it

ra
te

N
it

ra
te

_
5

0
m

M
L
D

-v
d

O
c
t 
M

L
D

-v
d

O
x
y
_
b
o
t_

G
o
u

0.00 175.21 -35.42 514 18.1 20.6 15.9 18.5 17.6 4.6 654 1029 17.3 18.1 35.5 35.5 0.3 0.5 2.6 3.9 60 55 4.2

0.00 178.20 -38.94 128 17.1 19.8 14.6 17.7 16.5 5.2 187 609 16.3 17.0 35.5 35.5 0.2 0.2 0.6 1.2 65 27 4.4

0.00 -16.33 -31.05 3470 20.4 23.2 18.2 20.8 19.3 5.0 248 346 19.2 20.3 35.9 35.9 0.2 0.2 0.0 0.2 36 34 5.5

0.00 -16.84 -31.13 3810 20.3 23.1 18.1 20.8 19.3 5.0 246 353 19.1 20.2 35.9 35.8 0.2 0.2 0.0 0.2 39 31 5.5

0.00 -19.76 -31.62 4204 20.2 23.1 18.1 20.7 19.1 5.0 258 377 19.1 20.1 35.8 35.8 0.2 0.2 0.1 0.2 37 32 5.4

0.00 -37.95 -27.63 4273 23.0 25.5 21.0 23.7 22.0 4.5 286 332 22.1 22.9 36.4 36.4 0.1 0.1 0.8 0.7 33 35 5.3

0.00 -38.55 -25.03 3842 24.2 26.4 22.3 24.8 23.4 4.0 265 321 23.3 24.2 36.6 36.7 0.1 0.1 1.1 1.2 49 79 5.4

0.00 -28.11 -7.47 4886 27.0 27.9 26.3 27.9 26.3 1.6 194 249 26.8 27.0 36.2 36.3 0.1 0.1 0.4 0.4 53 63 5.2

0.00 -36.27 -3.55 3174 27.2 28.0 26.5 28.0 26.7 1.6 202 239 26.9 27.2 36.1 36.3 0.2 0.2 0.4 0.6 42 58 5.4

0.00 -36.35 -4.25 2361 27.2 28.0 26.4 28.0 26.7 1.6 239 303 27.0 27.2 36.2 36.4 0.1 0.1 0.3 0.4 43 58 5.4

0.00 -36.64 -4.61 826 27.2 28.0 26.4 28.0 26.7 1.6 298 351 27.0 27.2 36.2 36.4 0.1 0.1 0.3 0.4 44 60 5.4

0.00 -37.72 -3.67 772 27.2 28.1 26.4 28.1 26.8 1.7 306 344 26.9 27.2 36.1 36.3 0.2 0.2 0.5 0.8 41 62 5.3

0.00 -38.31 -2.90 2289 27.2 28.0 26.4 28.0 26.7 1.6 214 259 26.9 27.2 36.1 36.3 0.2 0.2 0.6 0.8 34 50 5.3

0.00 -38.23 -2.73 2461 27.2 28.0 26.5 28.0 26.7 1.6 210 247 26.9 27.2 36.1 36.3 0.2 0.2 0.6 0.8 34 51 5.3

0.00 147.23 -45.07 3589 12.3 14.0 10.8 12.8 11.6 3.1 604 1087 12.0 12.2 34.9 34.9 0.6 0.6 5.7 6.5 44 14 4.5

0.00 68.67 -47.97 530 4.2 5.4 3.2 4.8 3.4 2.2 211 368 4.0 4.2 33.8 33.8 1.6 1.7 23.5 22.5 54 42 5.8

0.00 150.05 -47.89 2545 10.3 11.8 9.0 10.6 9.8 2.7 370 696 10.1 10.2 34.6 34.6 0.9 0.9 11.1 11.0 88 288 4.5

0.00 -175.13 -54.82 5214 7.3 8.6 5.9 7.6 7.0 2.7 197 488 7.1 7.2 34.2 34.2 1.2 1.3 16.7 17.4 101 29 4.8

0.00 138.51 -37.99 3810 15.4 17.4 13.8 16.1 14.5 3.6 539 744 14.7 15.4 35.4 35.4 0.2 0.3 1.0 1.3 63 117 4.9

0.00 138.54 -37.98 3614 15.4 17.4 13.8 16.1 14.5 3.6 539 744 14.7 15.4 35.4 35.4 0.2 0.3 1.0 1.3 63 116 4.9

0.00 137.77 -38.19 5390 15.2 17.2 13.6 15.8 14.3 3.6 547 832 14.6 15.2 35.3 35.3 0.3 0.3 1.3 1.5 66 115 4.9

0.00 142.51 -39.34 1702 15.1 17.0 13.7 15.4 14.2 3.3 600 930 14.3 15.0 35.4 35.3 0.2 0.3 1.2 1.9 85 206 4.9

0.00 142.52 -39.31 1336 15.1 17.0 13.7 15.4 14.2 3.3 625 909 14.3 15.0 35.4 35.3 0.2 0.3 1.2 1.9 84 204 4.9

0.00 142.01 -38.88 686 15.1 17.0 13.8 15.5 14.3 3.2 627 922 14.4 15.0 35.4 35.3 0.2 0.3 1.2 2.0 66 111 4.9

0.00 141.12 -38.61 732 15.3 17.2 14.0 15.7 14.4 3.2 602 844 14.5 15.2 35.4 35.4 0.2 0.3 1.0 1.9 71 121 4.8

0.00 141.12 -38.67 1345 15.3 17.1 14.0 15.7 14.4 3.2 594 906 14.5 15.2 35.4 35.4 0.2 0.3 1.1 1.9 71 121 4.8

0.00 141.06 -38.85 2348 15.2 17.0 13.8 15.5 14.3 3.2 589 966 14.4 15.1 35.4 35.3 0.3 0.3 1.2 2.0 70 120 4.8

0.00 140.99 -39.68 3984 14.8 16.7 13.5 15.2 14.0 3.2 608 897 14.1 14.7 35.3 35.3 0.3 0.3 1.7 2.4 70 116 4.8

0.00 140.68 -39.83 4319 14.7 16.5 13.3 15.0 13.9 3.2 603 872 14.0 14.6 35.3 35.3 0.3 0.4 1.9 2.6 67 113 4.8

0.00 140.39 -40.07 4703 14.4 16.2 13.0 14.8 13.6 3.2 577 913 13.8 14.3 35.2 35.2 0.3 0.4 2.3 3.0 67 111 4.8

0.00 139.70 -40.10 4996 14.3 16.1 12.9 14.7 13.5 3.3 568 1013 13.7 14.2 35.2 35.2 0.3 0.4 2.5 3.2 64 106 4.8

0.00 16.16 -31.89 520 16.9 18.6 15.4 16.9 16.9 3.2 1105 1749 15.1 16.7 35.2 35.2 0.5 0.8 2.2 7.3 32 33 4.8

0.00 12.16 -30.44 3906 18.3 20.6 16.3 18.5 17.7 4.4 549 689 17.4 18.2 35.5 35.5 0.4 0.4 0.7 1.4 55 48 5.0

0.00 11.74 -31.09 4312 18.4 20.7 16.3 18.6 17.8 4.4 511 621 17.6 18.3 35.5 35.5 0.4 0.3 0.5 1.1 57 51 5.0

0.00 8.27 -35.58 5067 17.2 19.3 15.1 17.5 16.7 4.2 521 726 16.4 17.1 35.4 35.4 0.3 0.4 1.3 1.5 35 34 5.0

0.00 -8.77 -36.05 3836 16.6 19.1 14.4 17.1 15.7 4.7 473 750 15.5 16.5 35.2 35.2 0.3 0.4 0.5 1.6 39 24 5.3

0.00 17.86 -34.64 945 18.2 20.1 16.1 18.2 18.4 4.0 1031 1527 16.8 18.1 35.4 35.3 0.5 0.7 1.6 4.9 33 39 5.0

0.00 17.76 -34.80 1880 18.3 20.2 16.2 18.3 18.4 4.1 881 1075 16.8 18.2 35.4 35.4 0.5 0.7 1.5 4.6 33 39 5.0

0.00 17.53 -35.12 2851 18.5 20.6 16.4 18.5 18.6 4.2 829 1045 16.9 18.4 35.4 35.4 0.5 0.6 1.5 4.1 34 40 5.0

0.00 15.50 -31.79 1510 17.2 19.0 15.5 17.2 17.1 3.5 881 1261 15.6 17.0 35.3 35.3 0.5 0.8 2.0 6.1 36 33 4.9

0.00 15.30 -31.45 1373 17.2 19.1 15.5 17.2 17.1 3.6 846 1107 15.6 17.1 35.3 35.3 0.5 0.7 2.0 5.9 37 34 4.8

0.00 -16.33 -31.05 3470 20.4 23.2 18.2 20.8 19.3 5.0 248 346 19.2 20.3 35.9 35.9 0.2 0.2 0.0 0.2 36 34 5.5

0.00 -16.84 -31.13 3810 20.3 23.1 18.1 20.8 19.3 5.0 246 353 19.1 20.2 35.9 35.8 0.2 0.2 0.0 0.2 39 31 5.5

0.00 -19.76 -31.62 4204 20.2 23.1 18.1 20.7 19.1 5.0 258 377 19.1 20.1 35.8 35.8 0.2 0.2 0.1 0.2 37 32 5.4

0.00 -19.50 -42.04 3384 11.7 13.6 10.4 12.0 10.8 3.2 502 803 11.4 11.7 34.7 34.7 0.8 0.7 5.5 6.4 101 189 5.0

0.00 -21.72 -44.51 4296 9.4 11.4 8.1 9.8 8.4 3.4 380 581 9.2 9.3 34.4 34.4 1.1 1.0 10.6 11.5 94 144 5.1

0.00 -17.34 -44.21 3768 9.2 11.0 8.0 9.6 8.2 3.0 355 570 9.0 9.1 34.3 34.3 1.1 0.9 10.5 11.0 76 128 4.9

0.00 -13.07 -44.00 3830 9.0 10.6 7.6 9.7 7.9 3.0 388 664 8.7 8.8 34.3 34.3 1.0 0.9 10.0 10.6 89 135 4.9

0.00 -18.16 -39.95 3525 13.6 15.8 12.1 13.9 12.7 3.7 582 1020 13.1 13.6 34.9 34.9 0.6 0.5 2.1 3.0 80 124 5.1

0.00 -21.04 -39.09 4024 14.5 16.7 12.8 15.1 13.5 4.0 583 985 14.0 14.5 35.1 35.1 0.5 0.5 1.6 2.3 62 145 5.1

0.00 -21.54 -38.43 4126 15.1 17.4 13.3 15.7 14.1 4.1 564 867 14.5 15.1 35.2 35.2 0.4 0.4 1.2 1.7 49 101 5.1

0.00 -21.86 -37.77 3567 15.8 18.2 13.9 16.5 14.7 4.3 526 777 15.1 15.7 35.3 35.3 0.4 0.4 0.8 1.2 47 82 5.1

0.00 -22.45 -36.45 4216 16.8 19.2 14.7 17.5 15.6 4.5 511 822 15.9 16.7 35.4 35.4 0.3 0.3 0.5 0.7 45 42 5.2

0.00 -22.73 -35.71 3972 17.4 20.0 15.3 18.2 16.3 4.6 454 738 16.5 17.3 35.4 35.5 0.3 0.3 0.3 0.5 42 39 5.2

0.00 -22.99 -35.25 3963 17.6 20.2 15.5 18.4 16.5 4.7 424 634 16.7 17.5 35.5 35.5 0.3 0.3 0.3 0.4 42 38 5.2

0.00 -23.59 -33.83 4352 18.9 21.6 16.7 19.5 17.6 4.9 315 441 17.9 18.8 35.6 35.6 0.2 0.2 0.2 0.2 42 35 5.2

0.00 -24.25 -33.18 4491 19.2 22.0 17.1 19.8 17.9 4.9 306 434 18.2 19.1 35.7 35.7 0.2 0.2 0.1 0.1 43 36 5.2

0.00 -24.25 -31.95 4335 20.1 23.1 18.0 20.6 18.8 5.0 280 424 19.1 20.0 35.8 35.8 0.2 0.2 0.1 0.1 43 33 5.2

0.00 -48.34 -53.87 4304 3.5 5.4 2.0 3.7 3.0 3.4 220 596 3.2 3.5 34.0 34.0 1.5 1.7 23.0 25.1 79 20 4.9
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0.00 -41.18 -52.15 0 2.8 4.7 1.3 3.2 2.2 3.4 384 929 2.5 2.8 33.9 33.9 1.6 1.7 22.4 24.6 51 36 5.0

0.00 -45.96 -52.68 3388 3.6 5.5 2.0 3.8 2.9 3.5 243 741 3.2 3.5 34.0 34.0 1.5 1.6 22.7 24.6 63 20 4.8

0.00 -45.02 -55.55 3840 1.8 3.7 0.4 2.1 1.2 3.4 194 618 1.6 1.8 33.9 33.9 1.6 1.7 24.3 26.0 60 20 5.1

0.00 -42.97 -56.73 0 1.1 2.9 -0.3 1.4 0.6 3.2 190 564 0.9 1.1 33.9 34.0 1.6 1.7 24.1 25.9 57 20 5.2

0.00 -41.97 -59.37 3900 -0.1 1.3 -1.3 -0.1 -0.4 2.6 133 401 -0.3 -0.1 34.0 34.1 1.7 1.8 24.4 26.2 36 54 5.5

0.00 -43.08 -59.88 0 -0.4 1.0 -1.4 -0.5 -0.6 2.5 127 403 -0.5 -0.4 34.0 34.1 1.7 1.8 24.4 26.3 31 45 5.5

0.00 -41.51 -51.94 3402 3.1 5.0 1.6 3.5 2.4 3.4 303 831 2.7 3.1 33.9 33.9 1.6 1.7 22.1 24.3 52 46 4.9

0.00 -57.02 -52.85 1219 6.0 7.9 4.5 5.8 5.8 3.4 306 752 5.6 6.0 34.1 34.1 1.3 1.4 19.7 20.9 126 98 5.2

0.00 79.49 -46.68 2925 7.4 8.3 6.4 7.9 7.0 1.8 255 468 7.2 7.4 34.0 34.0 1.2 1.3 18.5 16.7 36 29 4.9

0.00 82.93 -45.75 3480 8.8 9.5 8.1 9.3 8.5 1.4 275 440 8.7 8.8 34.2 34.2 1.0 1.0 15.5 14.6 59 63 4.9

0.00 90.11 -46.07 3400 8.6 9.4 8.1 8.7 8.3 1.3 258 472 8.5 8.6 34.3 34.3 1.0 1.1 14.3 14.5 99 133 4.9

0.00 100.08 -49.92 3350 4.8 5.9 4.0 4.9 4.4 1.9 185 326 4.7 4.7 34.0 34.0 1.4 1.5 18.5 19.5 77 144 5.0

0.00 145.80 -47.15 2890 10.4 11.7 9.3 10.9 9.9 2.4 363 615 10.2 10.4 34.6 34.6 0.9 0.9 10.7 10.7 84 73 4.5

0.00 147.16 -50.59 4350 8.0 9.1 7.1 8.1 7.5 2.0 252 566 7.8 7.9 34.3 34.3 1.3 1.3 16.9 15.9 108 135 4.7

0.00 144.58 -57.95 3740 1.6 3.5 0.3 1.7 1.1 3.2 105 261 1.4 1.6 33.9 33.9 1.8 1.8 26.8 27.4 25 29 5.1

0.00 138.20 -65.75 615 -1.3 -0.2 -1.9 -1.5 -1.6 1.7 68 301 -1.5 -1.4 34.0 34.2 2.1 2.1 30.7 31.0 11 10 5.1

0.00 115.70 -64.30 2232 -1.1 0.2 -1.8 -1.4 -1.3 2.0 61 297 -1.4 -1.1 34.1 34.2 1.7 1.9 27.2 29.8 15 1 5.2

0.00 86.08 -45.10 3559 9.5 10.2 8.9 9.7 9.1 1.3 286 485 9.4 9.5 34.4 34.4 0.9 1.0 13.8 13.6 94 72 4.9

0.00 90.05 -50.07 4036 5.6 6.4 5.0 5.8 5.4 1.4 206 391 5.5 5.6 34.0 34.0 1.3 1.4 19.3 19.4 117 103 5.2

0.00 3.81 -53.75 1838 0.6 1.7 -0.4 1.2 -0.1 2.1 99 190 0.5 0.6 33.9 33.9 1.8 1.8 23.5 24.3 49 35 5.2

0.00 3.84 -53.64 2089 0.7 1.8 -0.3 1.2 -0.1 2.1 100 198 0.5 0.6 33.9 33.9 1.8 1.8 23.4 24.3 50 39 5.2

0.00 5.77 -50.16 3763 3.1 4.1 2.2 3.5 2.5 1.9 152 348 3.0 3.0 33.8 33.8 1.7 1.6 21.1 21.6 79 135 5.0

0.00 17.36 -34.75 2578 18.2 20.2 16.1 18.3 18.3 4.0 837 1090 16.8 18.1 35.4 35.4 0.5 0.7 1.5 4.6 34 40 5.0

0.00 -5.96 -51.01 2114 1.9 3.0 0.8 2.4 1.4 2.2 105 211 1.8 1.9 33.8 33.8 1.5 1.6 23.4 24.2 65 29 4.9

0.00 -6.00 -49.13 3525 3.3 4.5 2.0 4.0 2.6 2.5 204 498 3.1 3.2 33.8 33.8 1.5 1.5 21.3 22.6 79 91 4.9

0.00 -6.00 -54.00 2415 0.4 1.6 -0.6 0.8 -0.1 2.2 76 153 0.3 0.4 33.8 33.8 1.6 1.8 24.8 25.5 52 96 5.1

0.00 -6.00 -48.57 3657 3.8 5.2 2.5 4.6 3.1 2.6 202 413 3.7 3.8 33.8 33.9 1.4 1.4 20.3 21.8 85 115 4.9

0.00 -114.89 -59.21 5135 3.6 4.4 3.2 3.8 3.1 1.4 127 311 3.5 3.6 34.0 34.0 1.7 1.7 23.4 23.9 153 191 4.9

0.00 -113.57 -56.89 3896 5.0 6.0 4.4 5.1 4.6 1.5 134 296 4.9 5.0 34.1 34.1 1.5 1.5 20.8 20.8 158 328 4.7

0.00 -93.83 -57.55 4038 5.3 6.6 4.4 5.0 5.0 2.2 147 335 5.2 5.3 34.1 34.1 1.5 1.5 21.2 21.6 163 306 4.9

0.00 -91.16 -57.65 3341 5.3 6.8 4.4 5.1 5.0 2.4 153 377 5.2 5.3 34.1 34.1 1.5 1.5 20.7 20.9 193 322 4.9

0.00 -92.38 -57.04 5026 5.5 7.0 4.6 5.3 5.2 2.3 156 423 5.4 5.5 34.1 34.1 1.4 1.5 20.5 20.9 183 330 4.9

0.00 -93.79 -56.57 5240 5.7 7.1 4.8 5.5 5.3 2.2 154 400 5.6 5.7 34.1 34.1 1.4 1.5 20.2 20.7 165 341 4.9

0.00 177.99 -45.39 0 11.4 14.4 9.0 11.5 10.7 5.4 426 878 10.4 11.4 34.4 34.4 0.6 0.7 5.5 8.9 56 65 4.6

0.00 174.99 -45.02 1122 11.4 14.3 9.1 11.3 11.0 5.2 544 1213 10.2 11.3 34.5 34.4 0.6 0.7 4.6 9.6 53 22 4.8

0.00 -174.08 -45.33 4808 12.7 15.1 11.0 12.8 12.0 4.1 573 1016 12.1 12.7 34.8 34.8 0.4 0.5 2.4 4.5 67 4 4.7

0.00 179.40 -40.24 3010 16.2 18.9 13.8 16.6 15.7 5.1 730 1354 15.4 16.2 35.4 35.4 0.2 0.3 0.8 1.9 70 28 4.4

0.00 -171.50 -41.58 3556 14.8 17.3 12.3 15.1 14.3 5.0 537 772 14.0 14.7 35.1 35.1 0.3 0.3 0.7 1.5 54 45 4.5

0.00 145.21 -44.33 2270 12.4 14.0 11.0 12.9 11.6 2.9 650 1272 12.1 12.3 34.9 34.9 0.5 0.6 5.1 6.0 39 12 4.6

0.00 144.23 -41.39 814 14.0 15.6 12.7 14.5 13.2 3.0 720 1187 13.5 14.0 35.1 35.1 0.3 0.4 1.4 2.7 75 23 5.0

0.00 142.53 -42.25 4103 13.3 14.8 11.9 13.7 12.6 2.9 584 1007 12.8 13.2 35.0 35.0 0.4 0.5 3.3 4.5 73 33 4.8

0.00 142.88 -42.23 3715 13.3 14.9 12.0 13.8 12.6 2.9 624 1030 12.9 13.3 35.0 35.0 0.4 0.4 3.0 4.3 74 30 4.8

0.00 144.41 -42.20 2360 13.5 15.0 12.1 14.1 12.7 2.9 714 1217 13.0 13.4 35.0 35.1 0.3 0.4 2.1 3.4 58 17 4.8

0.00 144.68 -42.18 765 13.5 15.0 12.1 14.1 12.7 2.9 858 1485 13.0 13.4 35.0 35.1 0.3 0.4 2.0 3.3 46 15 4.9

0.00 144.34 -41.52 838 13.9 15.5 12.6 14.5 13.2 2.9 755 1297 13.4 13.9 35.1 35.1 0.3 0.4 1.5 2.8 88 22 5.0

0.00 144.29 -41.51 1081 13.9 15.5 12.6 14.5 13.2 2.9 700 1172 13.4 13.9 35.1 35.1 0.3 0.4 1.5 2.8 84 22 5.0

0.00 144.22 -41.52 1557 13.9 15.5 12.6 14.5 13.2 2.9 700 1172 13.4 13.9 35.1 35.1 0.3 0.4 1.5 2.9 80 22 4.9

0.00 144.10 -41.50 1703 13.9 15.5 12.6 14.5 13.2 2.9 668 1074 13.4 13.9 35.1 35.1 0.3 0.4 1.4 2.9 73 23 4.9

0.00 143.83 -41.12 1265 14.1 15.8 12.7 14.6 13.3 3.1 632 960 13.6 14.1 35.1 35.2 0.3 0.4 1.4 2.5 71 29 4.9

0.00 -176.91 -42.68 1000 14.4 17.1 12.2 14.5 13.8 4.9 714 1269 13.7 14.4 35.0 35.0 0.3 0.4 1.3 3.2 60 21 4.6

0.00 17.90 -32.40 105 16.5 17.8 15.2 16.5 16.5 2.6 250 327 14.5 16.3 35.2 35.1 0.6 1.0 2.5 9.2 28 31 4.9

0.00 17.10 -32.49 295 16.7 18.2 15.3 16.7 16.7 2.8 257 339 14.8 16.5 35.2 35.2 0.6 1.0 2.4 8.4 30 33 4.8

0.00 18.02 -31.93 116 16.4 17.7 15.1 16.2 16.4 2.6 263 338 14.1 16.1 35.1 35.1 0.6 1.1 2.7 9.8 28 31 4.9

0.00 18.21 -31.93 84 16.3 17.6 15.1 16.2 16.4 2.5 262 337 14.0 16.0 35.1 35.1 0.6 1.1 2.8 9.9 30 33 4.9

0.00 17.31 -30.46 56 16.5 18.2 15.0 16.2 16.7 3.2 293 405 14.3 16.3 35.2 35.1 0.6 0.9 2.9 8.9 24 25 4.8

0.00 16.93 -30.55 180 16.5 18.3 15.0 16.2 16.7 3.2 284 366 14.3 16.3 35.2 35.1 0.6 0.9 2.8 8.8 23 24 4.7

0.00 16.55 -30.57 224 16.6 18.3 15.1 16.3 16.7 3.3 283 355 14.4 16.4 35.2 35.1 0.6 0.9 2.8 8.6 22 23 4.7

0.00 14.60 -30.10 530 17.3 19.4 15.5 17.2 17.1 3.9 303 394 15.7 17.1 35.3 35.3 0.5 0.7 2.2 5.6 37 33 4.8

0.00 15.42 -29.95 205 16.8 18.8 15.1 16.5 16.8 3.7 297 393 14.9 16.6 35.2 35.2 0.6 0.8 3.0 7.5 28 26 4.7
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0.00 15.83 -29.78 191 16.4 18.4 14.7 16.0 16.6 3.6 299 396 14.2 16.2 35.1 35.1 0.6 0.9 3.6 8.9 25 25 4.7

0.00 16.42 -29.63 165 16.0 17.8 14.3 15.4 16.4 3.5 300 365 13.4 15.7 35.0 35.0 0.6 1.0 4.2 10.6 20 21 4.7

0.00 16.93 -29.63 102 15.9 17.7 14.3 15.2 16.3 3.4 302 385 13.2 15.6 35.0 35.0 0.7 1.1 4.3 11.0 22 23 4.7

0.00 18.12 -32.73 9 16.7 18.0 15.3 16.7 16.7 2.7 247 312 14.7 16.4 35.2 35.2 0.6 1.0 2.4 8.7 31 35 4.9

0.00 13.40 -27.20 2060 17.1 19.1 15.4 17.3 16.7 3.6 321 425 15.9 17.0 35.3 35.3 0.6 0.8 3.6 6.0 37 39 4.6

0.00 13.72 -27.03 0 16.9 18.7 15.3 17.1 16.5 3.4 330 433 15.6 16.7 35.2 35.2 0.7 0.8 4.1 6.9 33 37 4.5

0.00 14.10 -27.03 437 16.7 18.5 15.1 16.9 16.3 3.3 347 462 15.4 16.6 35.2 35.2 0.7 0.9 4.4 7.4 34 36 4.4

0.00 14.67 -26.95 270 16.4 18.1 14.9 16.5 16.0 3.1 357 507 15.0 16.2 35.2 35.2 0.8 1.0 4.9 8.4 32 39 4.4

0.00 13.78 -26.22 390 16.4 18.0 15.0 16.6 16.0 3.0 356 534 15.1 16.2 35.2 35.2 0.8 1.0 4.9 8.3 29 34 4.3

0.00 17.01 -29.69 80 15.9 17.8 14.3 15.3 16.3 3.4 303 389 13.3 15.7 35.0 35.0 0.7 1.0 4.2 10.8 23 24 4.7

0.00 18.01 -31.51 62 16.0 17.1 14.9 15.7 16.1 2.2 273 361 13.3 15.6 35.1 35.1 0.6 1.2 3.1 11.3 27 30 4.8

0.00 15.03 -31.05 2035 17.3 19.3 15.6 17.3 17.2 3.7 279 381 15.8 17.2 35.3 35.3 0.5 0.7 1.9 5.5 38 35 4.8

0.00 13.40 -24.10 304 16.5 18.3 14.9 16.6 16.0 3.4 437 656 14.8 16.2 35.2 35.2 0.7 1.0 4.3 9.6 26 30 4.1

0.00 14.39 -22.94 40 16.6 18.7 14.8 16.6 16.3 3.9 515 820 14.6 16.4 35.2 35.2 0.8 1.3 5.0 13.2 21 31 3.9

0.00 14.40 -23.10 38 16.5 18.6 14.8 16.5 16.2 3.8 508 778 14.6 16.3 35.2 35.2 0.8 1.2 4.9 12.6 21 31 3.9

0.00 16.44 -28.97 123 16.3 18.3 14.6 15.8 16.5 3.7 314 436 14.0 16.1 35.1 35.1 0.6 1.0 4.1 9.7 18 20 4.7

0.00 16.44 -28.80 50 16.4 18.4 14.6 15.9 16.6 3.8 317 445 14.2 16.2 35.1 35.1 0.7 0.9 4.2 9.7 18 20 4.6

0.00 16.08 -28.37 43 16.4 18.5 14.6 16.0 16.6 3.9 319 432 14.3 16.2 35.1 35.1 0.7 1.0 4.4 9.8 20 21 4.6

0.00 11.39 -17.26 198 19.3 22.0 16.6 20.1 18.4 5.5 3058 6398 16.4 19.1 35.7 35.5 0.7 1.2 9.1 18.4 24 25 4.4

0.00 11.06 -17.26 1485 19.3 22.0 16.6 20.1 18.4 5.4 2642 6155 16.4 19.1 35.7 35.5 0.7 1.2 9.0 18.2 21 23 4.6

0.00 11.70 -17.94 108 18.6 21.3 16.1 19.3 17.8 5.1 1687 5877 16.2 18.5 35.6 35.5 0.8 1.3 9.6 18.2 21 22 4.2

0.00 13.61 -21.25 29 17.7 20.0 15.5 17.9 17.2 4.5 595 932 15.7 17.5 35.3 35.3 0.8 1.3 6.3 13.1 26 26 3.8

0.00 12.58 -21.25 390 17.8 20.2 15.7 18.1 17.3 4.5 582 1107 15.8 17.6 35.3 35.3 0.8 1.2 6.1 12.5 24 24 4.0

0.00 11.80 -21.27 1502 18.0 20.4 15.9 18.4 17.4 4.5 530 1208 16.1 17.9 35.3 35.4 0.7 1.2 5.9 11.6 28 29 4.4

0.00 11.63 -20.92 1525 18.0 20.4 15.9 18.4 17.4 4.6 544 1180 16.2 17.9 35.4 35.4 0.8 1.2 6.6 12.5 29 29 4.4

0.00 12.23 -20.58 339 17.6 20.0 15.4 17.9 17.1 4.6 585 963 15.6 17.4 35.3 35.4 0.9 1.4 7.7 14.9 25 25 4.1

0.00 11.40 -17.07 140 19.5 22.2 16.7 20.3 18.7 5.5 3816 6735 16.4 19.3 35.7 35.6 0.7 1.2 8.9 18.3 23 25 4.4

0.00 11.12 -17.57 1502 19.1 21.8 16.4 19.9 18.2 5.4 2038 5947 16.4 18.9 35.7 35.5 0.8 1.2 9.3 18.4 23 24 4.6

0.00 11.28 -17.57 776 19.1 21.8 16.4 19.8 18.2 5.4 2151 5612 16.3 18.9 35.7 35.5 0.8 1.2 9.3 18.5 24 26 4.5

0.00 11.45 -17.57 222 19.0 21.8 16.4 19.8 18.2 5.4 2376 6118 16.3 18.9 35.7 35.5 0.8 1.2 9.3 18.5 24 26 4.3

0.00 11.57 -17.53 130 19.1 21.8 16.4 19.8 18.2 5.4 2582 6699 16.3 18.9 35.7 35.5 0.8 1.2 9.3 18.5 22 24 4.3

0.00 11.33 -18.38 620 18.1 20.7 15.8 18.7 17.4 4.9 1004 2428 15.9 17.9 35.6 35.5 0.9 1.4 10.2 18.9 26 28 4.4

0.00 11.87 -18.40 98 18.0 20.5 15.6 18.5 17.2 4.9 1174 3573 15.8 17.8 35.5 35.5 1.0 1.4 10.5 19.5 20 21 4.2

0.00 11.53 -18.93 285 18.3 20.8 15.9 18.9 17.5 4.9 853 2161 16.1 18.1 35.5 35.5 0.9 1.3 9.4 16.8 27 28 4.3

0.00 11.32 -18.92 468 18.3 20.9 16.0 18.9 17.5 4.9 802 2325 16.2 18.2 35.5 35.5 0.9 1.3 9.3 16.6 27 28 4.4

0.00 16.56 -28.92 77 16.3 18.3 14.6 15.8 16.5 3.8 316 435 14.0 16.1 35.1 35.1 0.6 1.0 4.1 9.8 18 20 4.7

0.00 16.03 -28.54 100 16.4 18.5 14.6 16.0 16.6 3.9 316 431 14.3 16.2 35.1 35.1 0.7 1.0 4.4 10.0 21 22 4.6

0.00 14.45 -22.58 25 16.6 18.8 14.7 16.5 16.3 4.0 520 775 14.4 16.3 35.2 35.2 0.8 1.4 5.2 14.4 21 31 3.9

0.00 12.36 -18.88 50 18.1 20.6 15.8 18.6 17.3 4.9 981 2390 15.9 17.9 35.5 35.5 0.9 1.4 9.8 17.7 22 22 4.0

0.00 11.70 -17.07 48 19.5 22.2 16.7 20.3 18.6 5.5 3367 5901 16.3 19.3 35.7 35.6 0.7 1.2 9.0 18.5 18 19 4.3

0.00 12.67 -24.15 2090 16.8 18.7 15.2 17.0 16.3 3.6 394 542 15.2 16.6 35.2 35.2 0.7 1.0 4.0 8.5 29 31 4.4

0.00 15.99 -28.84 152 16.5 18.5 14.7 16.1 16.6 3.9 314 437 14.4 16.3 35.1 35.1 0.6 0.9 4.1 9.3 22 23 4.6

0.00 15.80 -28.81 177 16.5 18.6 14.7 16.1 16.7 3.9 314 434 14.4 16.3 35.1 35.1 0.6 0.9 4.0 9.2 23 24 4.6

0.00 -73.28 -52.78 42 8.1 9.7 6.3 8.5 7.8 3.3 636 1816 7.6 7.9 33.6 33.7 1.1 1.1 12.3 14.3 6 5 5.6

0.00 -73.29 -52.79 60 8.1 9.7 6.3 8.5 7.7 3.3 636 1819 7.6 7.9 33.6 33.7 1.1 1.1 12.3 14.3 6 5 5.6

0.00 -73.26 -52.75 42 8.1 9.7 6.4 8.5 7.8 3.4 635 1803 7.6 7.9 33.6 33.7 1.1 1.1 12.3 14.3 6 5 5.6

0.00 -73.48 -52.78 22 8.1 9.7 6.3 8.5 7.8 3.3 630 1760 7.6 7.9 33.6 33.7 1.1 1.1 12.3 14.3 6 5 5.6

0.00 -73.65 -52.79 46 8.1 9.7 6.4 8.5 7.8 3.3 624 1719 7.6 7.9 33.6 33.7 1.1 1.1 12.4 14.3 7 6 5.5

0.00 -75.90 -39.88 4075 13.9 16.6 11.4 14.0 13.7 5.2 769 1258 12.5 13.9 33.6 33.8 0.7 0.8 3.9 7.6 19 15 4.0

0.00 -74.45 -41.00 844 13.3 15.8 10.9 13.2 13.3 4.9 1477 2117 11.9 13.2 33.3 33.7 0.6 0.8 3.6 7.7 16 8 4.1

0.00 -73.68 -36.22 1019 14.0 15.8 12.3 14.0 14.0 3.5 1740 3114 12.2 13.8 33.7 34.0 0.8 1.3 3.5 13.8 14 23 3.7

0.00 -73.57 -36.15 494 14.0 15.8 12.3 14.1 14.0 3.5 1825 3264 12.2 13.8 33.7 34.0 0.7 1.3 3.5 13.7 14 23 3.6

0.00 -72.72 -32.96 5584 15.3 17.4 13.6 15.1 15.1 3.8 1134 1787 13.2 15.1 34.2 34.2 0.6 0.9 4.4 6.7 26 29 3.6

0.00 -72.63 -30.57 5862 15.7 18.3 13.8 15.6 15.4 4.5 1025 1423 13.9 15.6 34.3 34.2 0.5 0.5 3.6 5.6 24 26 3.7

0.00 -71.93 -27.47 6154 16.5 19.4 14.6 16.5 15.9 4.8 915 1234 14.1 16.4 34.5 34.4 0.5 0.8 2.2 7.5 28 43 3.6

0.00 -71.54 -25.70 7725 17.5 20.7 15.2 17.5 16.8 5.5 871 1150 14.8 17.4 34.7 34.5 0.6 0.9 1.6 3.7 29 51 3.6

0.00 -72.02 -27.91 6451 16.6 19.3 14.6 16.5 15.9 4.7 932 1170 14.3 16.4 34.5 34.4 0.5 0.7 2.3 7.3 29 42 3.6

0.00 -72.32 -29.28 6442 16.1 18.6 14.2 16.1 15.6 4.4 1018 1378 14.2 15.9 34.4 34.3 0.4 0.5 3.4 6.6 29 35 3.7

0.00 -75.59 -42.11 3847 12.9 15.6 10.5 12.9 12.7 5.1 871 1437 11.8 12.9 33.4 33.7 0.6 0.8 4.2 7.8 20 7 4.1
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S2.3 SH- 311 count and environmental data
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0.00 -75.45 -42.07 3854 12.9 15.6 10.5 13.0 12.8 5.1 932 1514 11.8 12.9 33.4 33.7 0.6 0.8 4.1 7.8 20 7 4.1

0.00 -75.74 -42.07 3819 12.9 15.6 10.5 13.0 12.8 5.1 814 1362 11.8 12.9 33.4 33.7 0.6 0.8 4.2 7.8 21 7 4.1

0.00 -75.81 -42.04 3810 13.0 15.6 10.5 13.0 12.8 5.1 798 1339 11.9 12.9 33.4 33.7 0.6 0.8 4.3 7.8 21 7 4.1

0.00 -75.68 -41.97 3819 13.0 15.6 10.6 13.0 12.9 5.1 836 1367 11.9 13.0 33.4 33.7 0.6 0.8 4.2 7.8 20 7 4.1

0.00 -75.54 -42.08 3850 12.9 15.6 10.5 13.0 12.8 5.1 887 1453 11.8 12.9 33.4 33.7 0.6 0.8 4.2 7.8 20 7 4.1

0.00 -75.24 -40.48 4101 13.5 16.1 11.1 13.5 13.5 5.0 894 1251 12.1 13.5 33.4 33.8 0.6 0.8 3.8 7.4 19 11 4.0

0.00 -75.15 -40.50 4137 13.5 16.1 11.1 13.5 13.5 5.0 928 1310 12.1 13.5 33.4 33.8 0.6 0.9 3.7 7.4 18 10 4.0

0.00 -75.17 -39.66 4413 13.9 16.4 11.4 13.8 13.8 5.1 988 1370 12.4 13.8 33.5 33.8 0.7 0.9 3.9 8.1 14 13 3.9

0.00 -75.19 -39.66 4307 13.9 16.5 11.4 13.8 13.8 5.1 982 1370 12.4 13.8 33.5 33.8 0.7 0.9 3.9 8.0 14 13 3.9

0.00 -75.25 -39.67 4219 13.9 16.5 11.4 13.8 13.8 5.1 962 1365 12.4 13.9 33.5 33.8 0.7 0.9 3.9 8.0 14 13 3.9

0.00 -74.98 -39.75 4338 13.8 16.4 11.3 13.8 13.8 5.1 1060 1483 12.3 13.8 33.5 33.8 0.7 0.9 3.9 8.1 13 12 3.9

0.00 -74.65 -36.90 4787 14.4 16.5 12.3 14.4 14.3 4.2 1181 1767 12.7 14.2 33.7 33.9 0.7 1.0 3.0 11.1 15 28 3.8

0.00 -74.42 -36.85 4608 14.3 16.4 12.3 14.3 14.3 4.1 1248 1887 12.5 14.1 33.7 33.9 0.7 1.1 3.1 11.8 15 27 3.8

0.00 -74.49 -36.87 4727 14.3 16.4 12.3 14.3 14.3 4.1 1225 1851 12.6 14.1 33.7 33.9 0.7 1.1 3.1 11.6 15 27 3.8

0.00 -72.70 -32.52 5994 15.3 17.6 13.7 15.1 15.2 4.0 1097 1682 13.2 15.2 34.2 34.2 0.6 0.8 4.6 5.8 27 28 3.6

0.00 -72.50 -33.01 4024 15.2 17.3 13.5 15.0 15.0 3.8 1217 2008 13.1 15.1 34.2 34.2 0.7 0.9 4.6 7.1 26 29 3.6

0.00 -76.96 -50.65 3964 8.9 10.8 6.9 9.4 8.4 3.8 425 894 8.7 8.7 33.5 33.8 1.1 1.1 10.8 11.1 11 10 4.5

0.00 -76.60 -46.88 3298 10.7 13.0 8.4 10.9 10.4 4.6 813 1826 10.1 10.7 33.4 33.7 0.9 0.9 7.8 10.5 15 9 4.2

0.00 -76.67 -46.35 3014 10.9 13.3 8.6 11.0 10.6 4.7 813 1875 10.2 10.9 33.4 33.7 0.9 0.8 7.0 10.2 17 7 4.1

0.00 -76.54 -46.32 2879 10.9 13.3 8.6 11.0 10.6 4.7 853 1863 10.2 10.9 33.4 33.7 0.9 0.8 6.9 10.2 16 7 4.1

0.00 -76.25 -43.42 3523 12.3 14.9 9.9 12.5 12.1 5.0 843 1572 11.5 12.3 33.3 33.7 0.6 0.8 4.5 8.2 18 5 4.0

0.00 -76.48 -43.54 3471 12.3 14.9 9.9 12.5 12.1 5.0 834 1671 11.4 12.3 33.3 33.7 0.6 0.8 4.7 8.3 18 5 4.0

0.00 -74.47 -39.97 1055 13.7 16.2 11.2 13.6 13.7 5.0 1418 2143 12.2 13.6 33.5 33.8 0.7 0.9 3.8 7.8 13 10 3.9

0.00 -74.12 -40.01 430 13.6 16.2 11.2 13.5 13.6 4.9 1810 2796 12.1 13.6 33.4 33.8 0.7 0.9 3.7 7.7 12 9 4.0

0.00 -75.92 -40.48 3850 13.6 16.3 11.1 13.7 13.4 5.2 723 1171 12.3 13.6 33.5 33.8 0.6 0.8 4.0 7.5 21 12 4.0

0.00 -75.75 -37.85 4051 14.5 17.1 12.1 14.6 14.4 5.0 873 1307 13.0 14.5 33.7 33.9 0.7 0.8 3.0 8.5 16 29 3.9

0.00 -75.43 -37.67 3946 14.5 17.0 12.1 14.5 14.4 4.9 969 1358 12.9 14.4 33.7 33.9 0.7 0.8 2.8 9.2 15 29 3.9

0.00 -73.45 -36.53 133 13.7 15.5 12.2 13.7 13.9 3.3 2549 4875 11.9 13.5 33.7 34.0 0.8 1.5 3.8 15.4 14 23 3.7

0.00 -73.57 -36.17 510 14.0 15.8 12.3 14.0 14.0 3.5 1861 3372 12.2 13.8 33.7 34.0 0.7 1.3 3.5 13.8 14 23 3.6

0.00 -73.68 -36.17 1028 14.0 15.9 12.3 14.1 14.1 3.5 1704 2972 12.2 13.8 33.7 34.0 0.7 1.3 3.5 13.6 14 23 3.6

0.00 -73.01 -35.76 172 13.9 15.7 12.4 14.1 13.9 3.3 2006 3900 12.2 13.8 33.9 34.0 0.7 1.4 3.4 13.3 12 17 3.5

0.00 -73.53 -33.28 3852 15.2 17.3 13.5 15.1 15.0 3.7 1064 1377 13.3 15.1 34.1 34.2 0.6 1.0 3.9 7.5 26 32 3.7

0.00 -46.43 -26.67 951 23.3 25.9 20.9 23.4 22.9 5.0 412 544 20.9 23.2 35.7 36.2 0.2 0.4 1.4 2.6 12 16 5.2

0.00 -47.17 -29.08 1850 22.6 25.5 20.0 22.9 22.0 5.5 422 645 21.8 22.6 36.0 36.4 0.2 0.2 1.2 1.1 18 30 5.2

0.00 -47.30 -28.83 1642 22.9 25.7 20.2 23.1 22.2 5.5 467 705 22.1 22.9 36.1 36.4 0.1 0.2 1.1 1.2 18 29 5.2

0.00 -47.37 -28.72 1519 22.9 25.8 20.2 23.2 22.4 5.5 491 721 22.2 23.0 36.0 36.4 0.1 0.2 1.1 1.2 17 29 5.2

0.00 -46.92 -29.50 2165 22.4 25.3 19.8 22.7 21.7 5.5 381 511 21.7 22.4 36.1 36.4 0.2 0.2 1.2 1.0 21 34 5.3

0.00 -46.55 -30.20 2714 22.0 24.9 19.6 22.3 21.2 5.3 386 551 21.3 22.0 36.1 36.4 0.2 0.2 1.0 0.9 27 41 5.3

0.00 -46.32 -30.63 2991 21.9 24.7 19.6 22.2 21.0 5.2 397 559 21.2 21.9 36.2 36.4 0.1 0.2 0.9 0.8 30 44 5.3

0.00 -45.67 -31.80 3592 21.3 24.0 19.1 21.6 20.2 4.9 425 596 20.5 21.2 36.2 36.3 0.1 0.1 0.7 0.6 41 58 5.3

0.00 -48.15 -31.75 2627 21.4 24.5 18.7 21.5 20.7 5.8 435 595 20.8 21.4 35.6 36.2 0.2 0.2 1.0 1.1 20 21 5.3

0.00 -48.82 -31.52 1925 21.4 24.7 18.4 21.4 20.9 6.2 475 702 20.8 21.3 35.2 36.2 0.3 0.2 1.1 1.4 16 18 5.2

0.00 -50.25 -32.50 1099 20.4 24.3 16.9 20.1 20.4 7.4 797 1387 20.9 20.3 33.9 36.1 0.4 0.3 1.2 1.3 12 11 5.1

0.00 -50.12 -32.68 1348 20.5 24.2 17.0 20.2 20.3 7.2 665 1086 20.8 20.3 34.0 36.1 0.4 0.3 1.1 1.2 13 11 5.2

0.00 -49.57 -33.17 2281 20.3 23.8 17.2 20.3 20.0 6.5 485 705 20.0 20.2 34.8 35.9 0.3 0.3 1.0 1.2 17 13 5.2

0.00 -51.45 -34.53 1889 18.9 23.0 15.0 18.8 18.8 8.0 707 1433 18.1 18.8 34.1 35.2 0.4 0.6 1.6 2.4 10 6 5.1

0.00 -51.23 -34.62 2142 19.0 23.0 15.3 18.9 18.9 7.8 627 1187 18.2 18.9 34.3 35.3 0.4 0.5 1.6 2.3 11 7 5.1

0.00 -51.00 -34.72 2435 19.2 23.0 15.5 19.0 18.9 7.5 578 1025 18.4 19.1 34.4 35.4 0.4 0.5 1.5 2.1 13 8 5.1

0.00 -50.57 -35.18 3230 19.0 22.6 15.8 19.0 18.7 6.8 546 878 18.2 19.0 34.9 35.5 0.3 0.4 1.5 2.0 17 10 5.1

0.00 -49.38 -33.35 2605 20.3 23.7 17.4 20.3 19.9 6.3 475 701 19.9 20.3 35.0 36.0 0.3 0.3 1.0 1.1 18 13 5.2

0.00 -49.22 -33.55 2867 20.4 23.6 17.5 20.4 19.8 6.2 484 725 19.9 20.3 35.1 36.0 0.3 0.3 1.0 1.1 19 14 5.2

0.00 -49.22 -33.55 2867 20.4 23.6 17.5 20.4 19.8 6.2 484 725 19.9 20.3 35.1 36.0 0.3 0.3 1.0 1.1 19 14 5.2

0.00 -49.68 -35.73 4152 19.3 22.4 16.4 19.3 18.7 6.0 591 993 18.5 19.2 35.4 35.7 0.3 0.3 1.2 1.4 27 14 5.1

0.00 -50.22 -35.40 3673 19.2 22.6 16.1 19.2 18.7 6.4 557 871 18.4 19.1 35.1 35.6 0.3 0.3 1.4 1.7 19 11 5.1

0.00 -48.42 -34.32 4000 20.0 23.0 17.6 20.2 19.3 5.4 514 787 19.4 20.0 35.7 36.0 0.2 0.2 0.8 0.9 34 19 5.2

0.00 -47.90 -37.15 4962 18.4 21.3 16.1 18.7 17.6 5.1 635 959 17.6 18.3 35.6 35.7 0.2 0.2 1.2 1.7 51 32 5.2

0.00 -46.38 -38.20 5034 17.4 20.3 15.0 17.7 16.5 5.2 630 1060 16.4 17.3 35.4 35.5 0.3 0.3 1.8 2.8 47 31 5.2

0.00 -52.65 -37.20 3054 16.7 20.7 13.2 16.5 16.4 7.5 836 1559 14.6 16.5 34.4 34.9 0.5 0.7 3.1 5.9 12 7 5.1

0.00 -51.68 -37.90 4245 17.1 20.7 14.1 16.8 16.5 6.6 743 1345 15.6 17.0 35.0 35.2 0.4 0.5 2.8 4.5 26 13 5.1
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S2.3 SH- 311 count and environmental data
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0.00 -53.02 -36.98 2376 16.6 20.9 12.8 16.4 16.4 8.0 1004 1917 14.3 16.4 34.0 34.7 0.5 0.7 3.0 6.4 8 5 5.2

0.00 -53.13 -36.90 2140 16.7 21.0 12.8 16.4 16.4 8.2 1085 2087 14.2 16.4 33.8 34.6 0.5 0.8 3.0 6.5 7 5 5.2

0.00 -53.83 -39.40 3294 14.2 18.3 10.9 13.8 13.7 7.3 1207 2143 11.8 14.0 34.4 34.6 0.6 0.8 5.8 9.9 20 15 5.1

0.00 -53.97 -39.30 2985 14.0 18.2 10.8 13.8 13.6 7.4 1249 2331 11.6 13.9 34.4 34.5 0.6 0.9 5.8 10.2 18 14 5.2

0.00 -54.15 -39.17 2641 14.0 18.3 10.6 13.7 13.6 7.6 1275 2493 11.4 13.8 34.3 34.5 0.6 0.9 5.8 10.5 16 12 5.2

0.00 -54.32 -39.05 2351 14.0 18.3 10.5 13.7 13.6 7.8 1313 2537 11.2 13.8 34.2 34.4 0.6 0.9 5.6 10.7 15 12 5.2

0.00 -54.63 -38.82 1844 14.0 18.4 10.3 13.7 13.6 8.1 1408 2794 10.9 13.8 33.9 34.3 0.6 1.0 5.3 11.0 11 8 5.3

0.00 -55.25 -38.35 1089 13.7 18.4 9.7 13.4 13.4 8.7 1703 3285 10.1 13.4 33.6 34.1 0.7 1.1 5.3 12.2 7 6 5.5

0.00 -54.60 -40.08 2937 13.1 17.4 9.8 12.9 12.6 7.6 1058 2529 10.4 12.9 34.3 34.4 0.7 1.0 6.9 11.8 23 19 5.2

0.00 -57.55 -46.15 3733 8.9 12.5 6.1 8.8 8.5 6.4 849 2005 7.3 8.8 34.1 34.1 1.0 1.2 12.3 15.7 41 47 5.1

0.00 -58.52 -46.08 2735 8.8 12.5 6.0 8.6 8.5 6.5 697 1523 6.9 8.7 34.0 34.1 1.0 1.3 12.1 16.5 40 44 5.1

0.00 -57.85 -46.15 3439 8.8 12.4 6.0 8.7 8.5 6.4 804 1796 7.1 8.7 34.1 34.1 1.0 1.2 12.3 16.0 41 46 5.1

0.00 -57.77 -44.85 3542 9.6 13.6 6.5 9.4 9.2 7.1 935 2379 7.5 9.5 34.1 34.1 0.9 1.2 11.5 15.3 35 39 5.1

0.00 -58.38 -45.15 2921 9.3 13.2 6.2 9.0 8.9 7.0 804 2152 7.1 9.1 34.0 34.1 1.0 1.2 11.7 16.2 36 41 5.1

0.00 -58.10 -44.92 3191 9.5 13.5 6.4 9.3 9.1 7.1 906 2478 7.4 9.4 34.0 34.1 0.9 1.2 11.5 15.6 35 40 5.1

0.00 -57.17 -44.45 4109 9.9 13.9 6.7 9.7 9.4 7.2 977 2554 7.9 9.7 34.1 34.2 0.9 1.1 11.4 14.8 35 38 5.1
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents
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3 May 2005 May-Oct05 NBM#1 >40 RD3490 4% 19% 0 0

<40 L25546 4% 60% 7 46 13

25 May 2005 May-Oct05 NBM#4 >40 RD3497 4% 14% 0 0

<40 L25553 4% 50% 0 3 0.5

16 June 2005 May-Oct05 NBM#7 >40 RD3491 4% 24% 0 1

<40 L25547 4% 67% 0 18 7.5

8 July 2005 May-Oct05 NBM#10 >40 RD3499 4% 100% 0 0

<40 L25555 4% 50% 0 1

29 July 2005 May-Oct05 NBM#13 >40 RD3500 4% 24% 0 0

<40 L25556 4% 100% 8 44 1

20 August 2005 May-Oct05 NBM#16 >40 RD3492 4% 28% 0 0

<40 L25548 4% 70% 8 59 32 2

27 August 2005 May-Oct05 NBM#17 >40 RD3501 4% 14% 0 0

<40 L25557 4% 100% 51 225 115 21

11 September 2005 May-Oct05 NBM#19 >40 RD3496 4% 14% 1 0

<40 L25552 4% 53% 38 250 185 17

3 October 2005 Oct - Apr 06 NBM #1 >40 L25982 4% 100% 28 321 314

<40 L25982 4% 52% 8 109 101 2

1 November 2005 Oct - Apr 06 NBM #4 >40 L25997 4% 100% 80 484 469 4

<40 L25997 4% 100% 79 490 379 69

1 December 2005 Oct - Apr 06 NBM #7 >40 L25999 4% 100% 17 139 118 9

<40 L25999 4% 100% 13 225 155 32

11 December 2005 Oct-Apr06 NBM #8 >40 L26004 4% 100% 23 104 69 11

<40 L26004 4% 100% 16 355 208 93

21 December 2005 Oct-Apr06 NBM #9 >40 L25981 4% 100% 14 151 143 1

<40 L25981 4% 57% 26 207 159 28

31 December 2005 Oct-Apr06 NBM #10 >40 L26000 4% 100% 15 71 64 2

>40 L26000 4% 100% 31 487 361 49

30 January 2006 Oct-Apr06 NBM #13 >40 L26001 4% 100% 6 38 28 3

<40 L26001 4% 100% 19 130 62

1 March 2006 Oct-Apr06 NBM #16 >40 L26003 4% 100% 4 19 18

<40 L26003 4% 100% 5 80 40 14

10 July 2006 Jul - Jan 07 NBM #1 >40 L25995 4% 100% 1 1 1

<40 L25995 4% 100% 6 13 5 3

7 August 2006 Jul - Jan 07 NBM #4 >40 L25994 4% 100% 8 76 61 1

<40 L25994 4% 100% 3 13 9

4 September 2006 Jul - Jan 07 NBM #7 >40 L25966 4% 52% 6 258 251

<40 L25966 4% 100% 20 249 239

2 October 2006 Jul-Jan07 NBM #10 >40 L25985 4% 43% 0 859 855 1

<40 L25985 4% 100% 1 196 178 2

30 October 2006 Jul-Jan07 NBM #13 >40 L25989 4% 100% 5 242 216 11
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents

B
o
tt
le

 o
p
e
n
in

g
 d

a
te

V
o
y
a
g
e

B
o
tt
le

 n
u
m

b
e
r

S
iz

e
 f
ra

c
ti
o
n

G
N

S
 S

c
ie

n
c
e
 L

a
b
o
ra

to
ry

 n
u
m

b
e
r

S
a
m

p
le

 s
p
lit

 p
ro

c
e
s
s
e
d

P
ro

p
o
rt

io
n
 e

x
a
m

in
e
d

D
in

o
c
y
s
t 
c
o
u
n
t

T
o
ta

l 
p
o
lle

n
 c

o
u
n
t

P
in

u
s

N
o
th

o
fa

g
u
s
 f
u
s
c
a

<40 L25989 4% 100% 16 289 232 24

28 November 2006 Jul-Jan07 NBM #16 >40 L25988 4% 14% 443 105 95

<40 L25988 4% 100% 83 128 70 10

26 December 2006 Jul-Jan07 NBM #19 >40 L25992 4% 100% 95 111 91

<40 L25992 4% 100% 83 214 149 11

1 February 2007 Jan - Aug 07 NBM #1 >40 L25987 4% 100% 28 87 75

<40 L25987 4% 55% 11 21 4 1

11 February 2007 Jan - Aug 07 NBM #2 >40 L25993 4% 100% 28 16 1

<40 L25993 4% 100% 6 15 1

21 February 2007 Jan - Aug 07 NBM #3 >40 L25990 4% 100% 3 16 9

<40 L25990 4% 10% 0 1

3 March 2007 Jan - Aug 07 NBM #4 >40 L25986 4% 100% 4 10 7

<40 L25986 4% 100% 6 16 12

2 April 2007 Jan - Aug 07 NBM #7 >40 L26002 4% 100% 0 1 1

<40 L26002 4% 100% 0 1 1

2 May 2007 Jan - Aug 07 NBM #10 >40 L25985 4% 100% 9 8 7

<40 L25985 4% 100% 0 14 3 1
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<40 L25991 4% 33% 1 8 7 1
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6 October 2008 May-Jan09 NBM#13 >40 RD3362 4% 100% 339 9 3
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<40 L24806 4% 100% 99 421 126.1 184
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents
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Gonyaulacaceae, counts Peridiniaceae and Polykrikaceae, counts
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents
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Gonyaulacaceae, counts Peridiniaceae and Polykrikaceae, counts

11 (1) 3

114 (324) 3

36 (12) 3
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents
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Peridiniaceae and Polykrikaceae, counts
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S3.1. Raw dinocyst counts from sediment trap samples - STM

 STM counts. ( ) denotes cel contents
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S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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10 July 2006 Jul - Jan 07 SBM #1 >40 L25960 4% 52% 0 1 1

<40 L25960 4% 100% 16 10 4

7 August 2006 Jul - Jan 07 SBM #4 >40 L25971 4% 100% 3 2 1

<40 L25971 4% 100% 21 20 2 12

4 September 2006 Jul-Jan 07 SBM #7 >40 L25968 4% 100% 5 48 34 6

<40 L25968 4% 100% 6 12 3 1

13 September 2006 Jul - Jan 07 SBM #8 >40 L25961 4% 65% 8 4 4

<40 L25961 4% 55% 13 10 5 2

2 October 2006 Jul - Jan 07 SBM #10 >40 L25965 4% 100% 3 64 61

<40 L25965 4% 100% 1 69 57 2

21 October 2006 Jul - Jan 07 SBM #12 >40 L25977 4% 100% 6 37 31 3

<40 L25977 4% 100% 89 108 38 27

30 October 2006 Jul - Jan 07 SBM #13 >40 L25975 4% 100% 1 14 5 1

<40 L25975 4% 100% 97 82 24 27

18 November 2006 Jul - Jan 07 SBM #15 >40 L25966 4% 43% 3 3 3

<40 L25966 4% 52% 30 10 7

26 December 2006 Jul - Jan 07 SBM #19 >40 L25970 4% 90% 4 7 5

<40 L25970 4% 100% 101 48 16 9

1 February 2007 Jan - Aug 07 SBM#1 >40 L25969 4% 100% 2 8 6

<40 L25969 4% 100% 70 48 2 11

3 March 2007 Jan - Aug 07 SBM #4 >40 L25963 4% 100% 5 7 6

<40 L25963 4% 100% 138 13 1

2 April 2007 Jan - Aug 07 SBM#7 >40 L25964 4% 100% 6 37 28

<40 L25964 4% 100% 7 11 7

2 May 2007 Jan - Aug 07 SBM #10 >40 L25976 4% 100% 2 13 9 1

<40 L25976 4% 100% 86 21 7 4

13 May 2007 Jan - Aug 07 SBM 11 >40 L25967 4% 52% 12 15 6

<40 L25967 4% 100% 217 17 11

2 June 2007 Jan - Aug 07 SBM #13 >40 L25978 4% 100% 3 5 3

<40 L25978 4% 100% 62 22 10 2

2 July 2007 Jan - Aug 07 SBM #16 >40 L25962 4% 100% 8 0

<40 L25962 4% 100% 167 4

1 August 2007 Jan - Aug 07 SBM #19 >40 L25973 4% 76% 1 0

<40 L25973 4% 100% 45 17 8 4

22 August 2007 Jan - Aug 07 SBM #21 >40 L25980 4% 100% 7 8 5

>40 L25980 4% 100% 11 0

7 October 2007 Sept-Apr08 SBM#4 >40 RD3358 4% 100% 6 0

<40 L24800 4% 100% 47 29 13 5

11 November 2007 Sept-Apr08 SBM#7 >40 RD3351 4% 100% 29 0

<40 L42795 4% 100% 42 20 2 8

15 December 2007 Sept-Apr08 SBM#10 >40 RD3361 4% 100% 78 4

S
A

M
 -

 S
o

u
th

e
rn

 M
o

o
ri

n
g

333



S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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<40 L24803 4% 100% 120 57 18 16 1

27 December 2007 Sept-Apr08 SBM#11 >40 RD3494 4% 14% 0 0

<40 L25550 4% 100% 55 78 11 24

20 April 2008 Sept-Apr08 SBM #21 >40 L25974 4% 100% 0 0

<40 L25974 4% 100% 0 0

21 July 2008 May-Jan09 SBM#1 >40 RD3348 4% 100% 1 0

<40 L24792 4% 100% 6 11 3

22 August 2008 May-Jan09 SBM#4 >40 RD3350 4% 100% 0 0

<40 L42794 4% 100% 4 4 2

4 September 2008 May-Jan09 SBM#6 >40 RD3489 4% 14% 0 0

<40 L25545 4% 77% 8 19 1

10 September 2008 May-Jan09 SBM#7 >40 RD3359 4% 100% 1 1

<40 L24801 4% 100% 23 71 27 11

6 October 2008 May-Jan09 SBM#10 >40 RD3352 4% 100% 9 8 3 1

<40 L42521 4% 100% 26 21 2 9

13 November 2008 May-Jan 09 SBM#13 >40 RD3354 4% 100% 33 74 5 62

<40 L24522 4% 100% 52 149 148

25 November 2008 May-Jan09 SBM#14 >40 RD3493 1% 10% 1 0

<40 L25549 1% 87% 64 256 17.5 200

8 December 2008 May-Jan09 SBM#15 >40 RD3495 4% 10% 1 0

<40 L25551 4% 53% 11 168 20.5 108

21 December 2008 May-Jan09 SBM#16 >40 RD3355 4% 100% 1 2 1

<40 L24797 4% 100% 1 50 8.5 15

27 December 2008 May-Jan09 SBM#17 >40 RD3498 4% 24% 2 0

<40 L25554 4% 29% 1 5 1 2

9 January 2009 May-Jan09 SBM#19 >40 RD3356 4% 100% 0 3

<40 L24798 4% 100% 2 25 2 5

18 March 2009 Feb - Sep09 SBM #5 >40 L25972 4% 100% 0 4 2 2

<40 L25972 4% 100% 0 0
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S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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Gonyaulacaceae, counts Peridiniaceae and Polykrikaceae, counts
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S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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Gonyaulacaceae, counts Peridiniaceae and Polykrikaceae, counts
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S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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S3.1. Raw dinocyst counts from sediment trap samples - SAM

SAM counts. ( ) denotes cel contents
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S5.1. Dinocyst census counts from MIS11 east Tasman Sea samples
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MD06-2989

691 335.3 L26021 7.32 415 354 0.00 0.00 0.29 0.00 0.00 0.04 0.00 0.06 0.00 0.00 0.00 0.15

701 341.5 L26022 8.53 971 339.5 0.00 0.01 0.30 0.01 0.00 0.02 0.00 0.08 0.00 0.00 0.00 0.22

711 345.4 L26023 5.95 1154 322 0.00 0.00 0.21 0.01 0.00 0.01 0.00 0.05 0.00 0.00 0.00 0.49

721 348.9 L26024 6.48 535 305.5 0.00 0.00 0.10 0.01 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.52

726 350.6 L26025 7.08 694 342 0.00 0.00 0.18 0.00 0.03 0.02 0.00 0.02 0.00 0.00 0.00 0.46

731 352.3 L26026 5.27 525 303.5 0.00 0.00 0.15 0.01 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.33

736 354.1 L26027 6.28 419 315 0.00 0.00 0.13 0.01 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.24

741 355.8 L26028 13.85 423 331 0.00 0.00 0.13 0.00 0.07 0.05 0.00 0.00 0.00 0.00 0.00 0.44

746 357.6 L26029 7.79 704 370 0.00 0.00 0.12 0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.42

756 361.1 L22030 8.83 273 317 0.00 0.00 0.14 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.48

761 362.8 L25687 6.06 440 334.5 0.00 0.00 0.23 0.01 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.26

771 366.3 L26031 8.29 192 320 0.00 0.00 0.09 0.01 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.69

781 369.8 L25688 6.89 115 309 0.00 0.00 0.24 0.01 0.04 0.07 0.00 0.00 0.00 0.00 0.00 0.44

791 373.3 L25689 5.92 318 327 0.00 0.00 0.32 0.00 0.02 0.11 0.00 0.00 0.00 0.00 0.00 0.31

796 375.0 L26032 9.16 - 301 0.00 0.00 0.24 0.00 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.27

801 376.8 L25690 7.26 126 340.75 0.00 0.00 0.18 0.00 0.01 0.17 0.00 0.00 0.01 0.00 0.00 0.34

806 378.5 L26033 10.29 366 315.5 0.00 0.00 0.23 0.00 0.03 0.18 0.00 0.00 0.00 0.00 0.00 0.18

811 380.3 L25691 8.58 173 339.75 0.00 0.00 0.32 0.00 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.22

821 383.8 L25692 6.04 224 306.25 0.00 0.00 0.36 0.00 0.07 0.09 0.00 0.00 0.00 0.00 0.00 0.23

831 387.2 L25693 8.8 663 316.75 0.00 0.00 0.59 0.00 0.02 0.06 0.00 0.01 0.00 0.00 0.00 0.15

841 390.7 L25694 6.95 194 354.25 0.00 0.00 0.27 0.00 0.01 0.11 0.00 0.01 0.00 0.00 0.00 0.29

851 393.7 L25695 7.98 215 391.25 0.00 0.00 0.29 0.01 0.01 0.04 0.00 0.01 0.00 0.00 0.00 0.42

856 396.7 L26034 6.04 1068 331.5 0.00 0.00 0.32 0.00 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.46

861 399.6 L25696 5.61 962 322.75 0.00 0.00 0.30 0.00 0.05 0.05 0.01 0.01 0.00 0.00 0.00 0.34

871 402.6 L25697 4.66 1019 109.5 0.00 0.00 0.37 0.01 0.14 0.14 0.02 0.00 0.00 0.00 0.00 0.26

876 405.2 L26036 - 1206 187 0.00 0.01 0.29 0.00 0.03 0.31 0.01 0.01 0.01 0.00 0.00 0.25

881 408.1 L25698 6.4 686 254.75 0.00 0.00 0.27 0.01 0.06 0.17 0.01 0.00 0.00 0.00 0.00 0.23

886 413.7 L26035 5.09 - 313.25 0.00 0.00 0.42 0.00 0.05 0.06 0.00 0.01 0.00 0.00 0.00 0.32

891 419.2 L25699 5.73 331 312.75 0.00 0.01 0.28 0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.00 0.55

901 424.8 L25700 4.56 440 306.5 0.00 0.01 0.32 0.00 0.05 0.04 0.00 0.01 0.00 0.00 0.00 0.44

911 431.7 L25701 5.99 372 297 0.00 0.00 0.13 0.01 0.02 0.01 0.00 0.05 0.00 0.00 0.00 0.36

921 434.7 L25702 6.94 158 230 0.00 0.00 0.05 0.03 0.06 0.00 0.00 0.03 0.00 0.00 0.00 0.39

931 437.9 L26037 - 312 332.5 0.00 0.00 0.07 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.32

MD06-2988

831 359.6 L26038 - 227 306.5 0.00 0.00 0.14 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.56

836 361.4 L26039 - 220 306 0.00 0.00 0.14 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.53

841 363.3 L26040 - 170 307 0.00 0.00 0.19 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.52

846 365.1 L26041 - 203 323 0.00 0.00 0.12 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.49

851 366.9 L26042 - 196 317 0.01 0.00 0.14 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.64

856 368.8 L26043 - 89 306 0.00 0.00 0.11 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.69

861 370.6 L26044 - 361 340 0.00 0.00 0.16 0.00 0.01 0.14 0.00 0.00 0.00 0.00 0.00 0.51

866 372.4 L24046 - 1144 303.5 0.00 0.00 0.17 0.00 0.02 0.12 0.00 0.01 0.00 0.00 0.00 0.51

871 374.3 L26045 - 241 320.5 0.00 0.00 0.21 0.00 0.02 0.14 0.01 0.00 0.00 0.00 0.00 0.50

876 376.1 L26047 - 246 333.5 0.00 0.00 0.14 0.01 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.47

881 377.9 L25670 6.22 131 298.4 0.01 0.00 0.16 0.00 0.02 0.19 0.00 0.00 0.00 0.00 0.00 0.25

886 379.8 L26048 - 208 306.5 0.00 0.00 0.17 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.27

891 381.6 L25671 8.22 153 309 0.02 0.00 0.31 0.00 0.07 0.22 0.00 0.00 0.00 0.00 0.00 0.17

896 383.4 L26049 - 382 344.5 0.00 0.00 0.41 0.00 0.03 0.17 0.00 0.00 0.00 0.00 0.00 0.22

901 385.3 L25672 6.02 370 305 0.00 0.00 0.43 0.00 0.03 0.20 0.00 0.00 0.00 0.00 0.00 0.10
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S5.1. Dinocyst census counts from MIS11 east Tasman Sea samples
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906 387.1 L26050 - 441 317 0.00 0.00 0.56 0.00 0.02 0.19 0.00 0.01 0.00 0.00 0.00 0.16

911 388.9 L25673 7.5 326 372.5 0.00 0.00 0.46 0.00 0.03 0.09 0.00 0.00 0.00 0.00 0.00 0.27

916 390.8 L26051 - 194 308.5 0.00 0.00 0.41 0.01 0.03 0.08 0.00 0.00 0.00 0.00 0.00 0.29

921 392.6 L25674 7.59 126 316.5 0.00 0.00 0.24 0.00 0.03 0.12 0.00 0.00 0.00 0.00 0.00 0.39

926 394.4 L26052 - 260 321 0.00 0.00 0.17 0.01 0.01 0.21 0.00 0.00 0.00 0.00 0.00 0.39

931 396.3 L25675 4.85 233 340 0.00 0.00 0.27 0.00 0.01 0.10 0.00 0.00 0.00 0.00 0.00 0.37

936 398.1 L26053 - 143 330.5 0.00 0.00 0.28 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.49

941 399.9 L25676 4.73 553 324 0.00 0.00 0.31 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.52

946 401.8 L26054 - 363 311.5 0.00 0.00 0.30 0.00 0.04 0.09 0.00 0.01 0.00 0.00 0.00 0.47

951 403.6 L25677 6.58 1348 328.5 0.00 0.00 0.30 0.01 0.05 0.04 0.01 0.00 0.00 0.00 0.00 0.32

956 405.2 L26055 - 2096 229.5 0.00 0.00 0.37 0.00 0.05 0.15 0.01 0.00 0.00 0.00 0.00 0.30

961 406.9 L25678 7.87 2109 350 0.00 0.00 0.37 0.00 0.08 0.22 0.00 0.00 0.00 0.00 0.00 0.19

971 410.2 L25679 3.11 2703 313 0.00 0.01 0.22 0.00 0.06 0.15 0.00 0.00 0.00 0.00 0.00 0.32

976 411.8 L26057 - 780 314.5 0.00 0.00 0.49 0.00 0.03 0.19 0.01 0.01 0.00 0.00 0.00 0.14

981 413.5 L25680 6.67 737 312.5 0.00 0.00 0.44 0.00 0.07 0.20 0.00 0.00 0.00 0.01 0.00 0.19

986 415.1 L26058 - 670 314.5 0.00 0.00 0.38 0.00 0.03 0.22 0.01 0.01 0.00 0.00 0.00 0.19

991 416.8 L25681 7.31 226 336.5 0.00 0.00 0.27 0.01 0.03 0.15 0.00 0.00 0.00 0.00 0.00 0.47

996 418.4 L26059 - 294 317.5 0.00 0.00 0.21 0.00 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.61

1001 420.1 L25682 4.61 278 316.75 0.00 0.00 0.14 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.50

1006 421.7 L26060 - 202 320.5 0.00 0.00 0.18 0.00 0.02 0.07 0.00 0.01 0.00 0.00 0.00 0.56

1011 423.4 L25683 5.68 425 345 0.00 0.00 0.17 0.00 0.06 0.05 0.00 0.01 0.00 0.00 0.00 0.23

1016 425.0 L26061 - 366 321 0.00 0.00 0.19 0.01 0.05 0.09 0.00 0.02 0.00 0.00 0.00 0.20

1021 426.7 L25684 5.49 260 297 0.00 0.00 0.11 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.23

1026 428.3 L26062 - 525 329 0.00 0.00 0.11 0.00 0.03 0.06 0.00 0.03 0.00 0.00 0.00 0.30

1031 430.0 L25685 5.67 125 302 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.13

1041 432.9 L25686 6.7 178 323.5 0.00 0.00 0.04 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.37

1051 435.1 L26063 - 438 332 0.00 0.00 0.05 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.37

MD06-2987

3761 391.8 L25657 11.05 258 304.25 0.01 0.00 0.44 0.00 0.04 0.14 0.00 0.01 0.00 0.00 0.00 0.20

3771 394.5 L25658 7.66 322 325.75 0.00 0.00 0.39 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.25

3781 397.2 L25659 7.66 312 303.5 0.01 0.00 0.46 0.00 0.01 0.13 0.00 0.01 0.00 0.01 0.00 0.29

3791 399.8 L25660 9.94 586 320.5 0.00 0.00 0.40 0.00 0.03 0.15 0.00 0.01 0.00 0.00 0.00 0.34

3801 402.5 L25661 8 448 328.5 0.00 0.00 0.44 0.00 0.01 0.04 0.01 0.03 0.00 0.00 0.00 0.42

3811 405.2 L25662 85 3102 318.5 0.00 0.00 0.35 0.00 0.02 0.03 0.01 0.03 0.00 0.00 0.00 0.47

3821 407.8 L25663 8.98 4400 306 0.00 0.00 0.41 0.00 0.02 0.08 0.01 0.00 0.00 0.01 0.00 0.40

3831 410.4 L25664 9.69 2530 315.5 0.00 0.00 0.50 0.00 0.02 0.18 0.01 0.00 0.00 0.00 0.00 0.22

3841 413.0 L25665 9.82 1114 304.25 0.00 0.00 0.61 0.00 0.08 0.18 0.00 0.00 0.01 0.00 0.00 0.06

3851 415.5 L25666 8.36 3635 310.25 0.00 0.00 0.60 0.00 0.02 0.18 0.00 0.00 0.00 0.00 0.00 0.11

3861 418.0 L25667 6.88 1169 319 0.00 0.00 0.44 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.36

3871 420.5 L25668 6.52 720 317 0.00 0.00 0.30 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.57

3881 423.0 L25669 4.99 912 309 0.00 0.00 0.58 0.00 0.01 0.37 0.00 0.00 0.00 0.00 0.00 0.02
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S5.1. Dinocyst census counts from MIS11 east Tasman Sea samples
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0.25 0.00 0.00 0.01 0.01 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.01 0.01 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.11 0.00 0.00 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00

0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00

0.10 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00

0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.26 0.00

0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00

0.00 0.00 0.00 0.01 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00

0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
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S5.2. SST and productivity index values from MIS11 east Tasman Sea samples
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MD06-2989

691 335.3 L26021 16.0 15.3 16.6 16.1 0.39 0.02

701 341.5 L26022 15.2 14.5 16.1 15.0 0.34 0.01

711 345.4 L26023 12.2 11.6 12.9 12.1 0.19 0.11

721 348.9 L26024 10.4 11.0 9.8 10.2 0.20 0.60

726 350.6 L26025 11.5 11.7 11.7 11.1 0.19 0.51

731 352.3 L26026 12.0 12.4 12.0 11.5 0.24 0.64

736 354.1 L26027 13.1 13.1 14.3 11.9 0.21 0.73

741 355.8 L26028 12.0 13.2 11.2 11.7 0.28 0.51

746 357.6 L26029 11.7 12.3 11.7 10.9 0.24 0.65

756 361.1 L22030 11.3 12.2 10.8 11.0 0.19 0.55

761 362.8 L25687 14.0 13.5 15.0 13.4 0.20 0.44

771 366.3 L26031 11.1 12.4 10.1 10.8 0.25 0.44
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806 378.5 L26033 15.6 16.5 15.9 14.3 0.34 0.45

811 380.3 L25691 15.0 15.5 15.1 14.4 0.33 0.40

821 383.8 L25692 15.1 16.0 17.0 15.1 0.44 0.28

831 387.2 L25693 16.0 14.9 16.5 16.7 0.29 0.05

841 390.7 L25694 14.5 14.8 14.8 13.8 0.38 0.35

851 393.7 L25695 13.1 13.4 12.8 13.1 0.26 0.28

856 396.7 L26034 14.1 14.4 14.4 13.5 0.32 0.06

861 399.6 L25696 14.3 14.2 14.4 14.3 0.37 0.12

871 402.6 L25697 16.3 18.2 16.8 16.3 0.42 0.01

876 405.2 L26036 16.7 18.8 15.3 16.7 0.51 0.01

881 408.1 L25698 15.7 16.4 15.4 15.7 0.49 0.10

886 413.7 L26035 15.5 15.5 15.7 15.2 0.29 0.07

891 419.2 L25699 13.5 14.2 12.7 13.4 0.33 0.00

901 424.8 L25700 14.2 14.5 14.1 14.0 0.28 0.04

911 431.7 L25701 11.8 11.2 12.8 11.4 0.22 0.55

921 434.7 L25702 10.3 10.5 10.6 9.8 0.17 0.58

931 437.9 L26037 12.6 13.8 11.9 12.2 0.30 0.57

MD06-2988

831 359.6 L26038 10.7 11.5 9.8 10.7 0.22 0.47

836 361.4 L26039 10.8 11.8 9.8 10.7 0.17 0.56

841 363.3 L26040 11.9 13.2 10.6 11.8 0.24 0.40

846 365.1 L26041 11.6 12.8 10.9 11.1 0.22 0.64

851 366.9 L26042 10.9 11.7 10.4 10.5 0.21 0.44

856 368.8 L26043 10.5 11.4 10.0 10.1 0.24 0.43

861 370.6 L26044 12.9 14.7 11.4 12.7 0.35 0.30

866 372.4 L24046 12.9 14.0 12.2 12.4 0.30 0.28

871 374.3 L26045 13.0 14.9 11.0 13.0 0.34 0.21

876 376.1 L26047 12.5 14.6 10.4 12.6 0.31 0.37

881 377.9 L25670 13.5 16.2 14.3 13.5 0.41 0.44
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S5.2. SST and productivity index values from MIS11 east Tasman Sea samples
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886 379.8 L26048 14.0 16.1 13.8 14.0 0.44 0.40

891 381.6 L25671 15.7 18.2 16.1 15.7 0.55 0.24

896 383.4 L26049 15.8 17.0 16.8 15.8 0.42 0.19

901 385.3 L25672 16.5 17.1 18.0 16.5 0.55 0.23

906 387.1 L26050 17.4 18.4 16.5 17.3 0.33 0.03

911 388.9 L25673 15.9 15.5 16.6 15.6 0.30 0.15

916 390.8 L26051 14.9 15.2 15.0 14.7 0.35 0.14

921 392.6 L25674 13.4 14.7 11.8 13.7 0.38 0.22

926 394.4 L26052 13.5 15.8 11.5 13.5 0.46 0.22

931 396.3 L25675 13.8 14.7 13.3 13.6 0.32 0.31

936 398.1 L26053 12.9 13.4 12.3 13.1 0.33 0.16

941 399.9 L25676 13.5 13.4 14.1 13.1 0.28 0.06

946 401.8 L26054 14.3 14.9 14.0 13.9 0.28 0.00

951 403.6 L25677 13.7 13.1 14.6 13.5 0.40 0.22

956 405.2 L26055 16.6 17.3 16.8 15.7 0.34 0.01

961 406.9 L25678 17.1 18.6 17.2 17.1 0.44 0.00

971 410.2 L25679 14.5 16.7 13.8 14.5 0.46 0.20

976 411.8 L26057 17.0 16.9 17.1 17.0 0.40 0.04

981 413.5 L25680 17.5 18.4 17.1 17.0 0.38 0.01

986 415.1 L26058 16.7 17.3 17.8 16.7 0.45 0.08

991 416.8 L25681 14.2 16.0 12.7 14.0 0.36 0.06

996 418.4 L26059 12.8 13.6 12.4 12.3 0.26 0.04

1001 420.1 L25682 12.3 12.9 11.7 12.1 0.30 0.42

1006 421.7 L26060 12.1 12.8 11.1 12.3 0.29 0.21

1011 423.4 L25683 14.4 14.3 15.6 13.3 0.36 0.55

1016 425.0 L26061 14.8 14.8 15.7 13.9 0.39 0.51

1021 426.7 L25684 14.1 15.4 13.5 13.4 0.37 0.64

1026 428.3 L26062 13.3 13.4 14.2 12.2 0.30 0.64

1031 430.0 L25685 11.0 11.7 10.2 11.0 0.23 0.88

1041 432.9 L25686 11.0 11.7 10.8 10.4 0.24 0.68

1051 435.1 L26063 12.8 14.4 11.6 12.4 0.33 0.59

MD06-2987

3761 391.8 L25657 16.8 17.4 16.6 16.4 0.29 0.13

3771 394.5 L25658 15.3 16.3 13.8 15.8 0.31 0.17

3781 397.2 L25659 16.3 16.8 16.2 15.9 0.20 0.06

3791 399.8 L25660 16.1 16.7 16.0 15.5 0.28 0.01

3801 402.5 L25661 14.7 14.1 15.6 14.3 0.22 0.01

3811 405.2 L25662 13.6 13.5 13.9 13.3 0.26 0.01

3821 407.8 L25663 15.5 15.5 16.2 14.8 0.20 0.01

3831 410.4 L25664 17.1 17.8 16.6 16.9 0.23 0.00

3841 413.0 L25665 18.1 18.9 17.0 18.5 0.24 0.00

3851 415.5 L25666 16.8 16.2 16.6 17.7 0.27 0.00

3861 418.0 L25667 15.5 15.9 15.5 15.2 0.22 0.00

3871 420.5 L25668 13.5 13.9 13.6 12.8 0.26 0.00

3881 423.0 L25669 19.7 20.7 17.0 19.7 0.42 0.00
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S5.3. Stacked SST and productivity index values from east Tasman Sea
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333 15.9 1 15.9 15.9

335 16.0 15.3 1 15.3 15.3 0.02

337 16.6 1 16.6 16.6

339 12.4 1 12.4 12.4

341 12.7 2 12.7 12.7

343 15.2 14.5 1 14.5 14.5 0.01

345 12.2 11.6 2 11.6 11.5 0.11

347 0

349 10.4 11.9 2 12.8 11.0 0.60

351 11.5 11.7 1 11.7 11.7 0.51

353 12.0 11.6 2 12.4 10.9 0.64

355 13.1 13.1 1 13.1 13.1 0.73

357 12.0 11.9 2 13.2 10.5 0.51

359 11.7 12.3 1 12.3 12.3 0.65

361 11.0 11.7 4 12.2 11.2 0.53

363 12.9 13.4 2 13.5 13.2 0.42

365 11.6 12.3 2 12.8 11.9 0.64

367 11.0 12.0 2 12.4 11.7 0.44

369 10.5 12.0 2 12.5 11.4 0.43

371 12.7 13.5 3 14.7 12.5 0.32

373 13.8 14.7 4 15.6 13.8 0.29

375 13.7 15.1 2 15.4 14.9 0.33

377 13.4 13.5 4 15.4 11.5 0.37

379 14.6 16.4 2 16.5 16.2 0.45

381 14.5 14.6 4 16.1 12.4 0.40

383 15.4 16.8 3 17.6 16.0 0.25

385 16.5 17.1 1 17.1 17.1 0.23

387 16.7 17.0 4 18.4 14.9 0.04

389 15.9 15.5 1 15.5 15.5 0.15

391 14.7 14.9 3 15.2 14.8 0.25

393 15.1 16.0 2 17.4 14.7 0.17

395 13.9 15.9 5 18.6 13.4 0.23

397 14.7 15.3 3 16.8 14.4 0.14

399 12.9 15.0 3 16.5 13.4 0.16

401 14.6 16.2 5 18.6 13.4 0.06

403 15.1 16.5 4 18.7 14.1 0.01

405 15.4 16.7 5 18.8 13.5 0.03

407 17.1 18.6 1 18.6 18.6 0.00

409 15.6 16.9 3 18.8 15.5 0.06

411 15.8 17.5 2 18.0 16.7 0.10

413 17.7 18.3 4 18.9 17.6 0.01

415 16.3 16.3 3 17.3 15.5 0.05

417 14.2 16.0 1 16.0 16.0 0.06

419 13.9 15.2 5 16.2 13.6 0.01

421 12.9 13.4 2 13.9 12.9 0.21

423 13.2 13.6 3 13.6 13.6 0.19

425 14.5 15.3 4 16.2 14.5 0.28
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S5.3. Stacked SST and productivity index values from east Tasman Sea
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427 14.1 14.6 2 15.4 13.8 0.64

429 13.3 13.4 1 13.4 13.4 0.64

431 11.4 11.1 3 11.7 10.3 0.72

433 11.0 11.7 1 11.7 11.7 0.68

435 11.5 11.4 14.4 10.0 0.59

437 12.6 13.8 1 13.8 13.8 0.57

439 10.5 2 10.6 10.4

441 10.3 2 10.7 10.0
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S6.1. DSDP 594 MIS11 dinocyst counts
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441.40 48.6 L25222 784 313.5 3 1 5 1 0.5
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S6.1. DSDP 594 MIS11 dinocyst counts

A
g
e
 (

k
a
)

D
e
p
th

 (
m

)

341.25 36.72

344.97 37

346.57 37.22

348.61 37.5

353.85 38.22

355.89 38.5

363.18 39.5

366.82 40

367.84 40.14

370.46 40.5

374.10 41

377.74 41.5

378.76 41.64

380.08 41.82

383.53 42.3

385.03 42.5

389.00 43.05

389.69 43.14

391.65 43.41

394.06 43.74

395.95 44

401.93 44.82

405.43 45.1

406.71 45.2

407.21 45.24

408.61 45.35

411.79 45.6

418.15 46.1

420.95 46.32

424.51 46.6

426.29 46.74

427.69 46.85

430.87 47.1

431.07 47.12

437.91 48.1

439.65 48.35

441.40 48.6

L
in

g
u
lo

d
in

iu
m

 m
a
c
h
a
e
ro

p
h
o
ru

m

N
e
m

a
to

s
p
h
a
e
ro

p
s
is

 l
a
b
y
ri
n
th

u
s

O
p
e
rc

u
lo

d
in

iu
m

 c
e
n
tr

o
c
a
rp

u
m

 (
lo

n
g
)

O
p
e
rc

u
lo

d
in

iu
m

 c
e
n
tr

o
c
a
rp

u
m

 (
s
h
o
rt

)

O
p
e
rc

u
lo

d
in

iu
m

 c
f.

 O
. 

ja
n
d
u
c
h
e
n
e
i

P
y
x
id

in
o
p
s
is

 r
e
ti
c
u
la

ta

?
P

y
x
id

in
o
p
s
is

 s
p
p
.

S
p
in

if
e
ri
ti
e
s
 m

e
m

b
ra

n
a
c
e
o
u
s

S
p
in

if
e
ri
ti
e
s
 h

y
p
e
rc

a
n
th

u
s

S
p
in

if
e
it
ie

s
 m

ir
a
b
ili

s
 g

ro
u
p

S
p
in

if
e
ri
ti
e
s
 r

a
m

o
s
u
s

S
p
in

if
e
ri
ti
e
s
 d

e
lic

a
tu

s

S
p
in

if
e
ri
ti
e
s
 b

e
n
to

ri
i

S
p
in

if
e
ri
ti
e
s
 s

p
p
.

L
e
je

u
n
e
c
y
s
ta

 o
liv

a

L
e
je

u
n
e
c
y
s
ta

 s
p

B
ri
g
a
n
te

d
in

iu
m

 s
p
p
.

S
e
le

n
o
p
e
m

p
h
ix

 a
n
ta

rc
ti
c
a

S
e
le

n
o
p
e
m

p
h
ix

 n
e
p
h
ro

id
e
s

S
e
le

n
o
p
e
m

p
h
ix

 q
u
a
n
ta

S
e
le

n
o
p
e
m

p
h
ix

 s
p
p

16 2 1 1 18.5 88 25.5 4 21 36 59 1 1

1 25 34 121 35 1 12.75 29 29 2

1 300 98 13 3

17 228 44 1 25 13 8

22 3 10 4 13 2 63 35 27 96 4

6 1.5 1 2 3 4.5 88 172 5 15

4 0.25 1 4 0.75 31 109 3 7 2

17 1 4 1 5 0.5 64 168 14 8

76 4 10.5 23 14 40.5 37 1 44 10

97 2 6 7 24 5.25 28 6 3 98 1

139 14 14 14 2.5 47 68 21

168 2 1 2 22 22 19 25.5 20 2 26

125 1 1 3 28 62 2.5 18 6 6 29 2

40 4 0.25 51 31 1 18

0 49 2 0 0 0 0 0 5 1 0 0 0 0 0 0 19 35 2 13 4

92 3 1 28 23 21 6.25 14 41 3 32

0 146 0 0 0 7 0 0 1 10 36 0 0 1.5 0 1 24.5 3 0 7 0

232 6 1 10 2 5 9 2.25 4 4 9

0 89 2 0 0 7 0 0 13 15.5 12 0 0 2.25 1 0 56 6 6 24 1

54 6 3 5 14 5.5 7.5 4.5 1

141 1 1 6 40 29 8 12 3 4

190 1 29 3 4 3.5 13 19 7 1

187 1 11 4 6 12 5.5 15 1

98 13 1 3 1 8 9 6 16.5 4 0.5

178 13 3 1 2 11 9 11.25 1 1

191 15 16.25 14 8 2

0 302 2 0 0 39 4 3 8 17 45 0 0 21.25 0 0 4 2 2 0 0

69 8 3 22 10 4.5 9.5 1 4 2

256 3 2 3 10.5 32 30 11 7 3 2

0 124 0 0 0 6 2 1 51 34 3 0 0 38 0 0 122.5 5 16 2 2

31 2 2 19 35 1 20.25 1 97 2 6 2

41 2 9 9 57 91 2 72 107 7 2 8

0 36 1 0 0 1 0 1 77 139 1 3 0 50 0 1 127 39 8 7 1

111 15 1 8 11 15 9.25 12 2 2 4

1 1 1 2.5 39.5 176 3 1

0 13 1 0 0 1 0 0 6 1 0 0 0 0 0 0 41.5 261 2 8 4

4 1 2 3 48 241 4

350



S6.1. DSDP 594 MIS11 dinocyst counts
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