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Abstract

Acute rheumatic fever is a major cause of heart disease in many parts of the

world. Though it is generally considered rare in developed countries, is remains

a large issue in New Zealand. Of particular concern is the prevalence of acute

rheumatic fever among Maori and Pacific Island peoples. In this thesis we develop

a model to simulate acute rheumatic fever in a population. We discuss the use of

both deterministic methods and stochastic processes. Demographics and statistics

specific to New Zealand are then used to develop the model in a way that fits

specifically to the situation in New Zealand. We also consider the introduction of

treatment strategies for acute rheumatic fever and discuss how risk factors can be

used to focus such strategies.
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Chapter 1

Introduction

Acute rheumatic fever is an autoimmune response to an infection by Group A

Streptococcus. This means the immune system creates antibodies in response to

the infection, but as well as attacking the infecting bacteria, certain body tissues

are also damaged. Tissue such as cardiac tissue, joints, skin, and the central

nervous system are affected in particular [11]. Repeat attacks of acute rheumatic

fever can lead to chronic rheumatic heart disease and permanent damage to the

heart valves [18].

Internationally acute rheumatic fever is considered rare in developed countries [31],

but is still acknowledged as highly prevalent in developing countries [11]. Up until

the late 1980’s its eradication in western developed countries was considered a very

real possibility. The decline of acute rheumatic fever, however was halted by the

reappearance of isolated out-breaks in the United States [1].

Acute rheumatic fever is a significant problem in New Zealand, particularly among

Maori and Pacifica peoples between the ages of 5 and 45. New Zealand maintains

some of the highest rates of acute rheumatic fever in a developed country. The

respective rates for Maori and Pacific Islanders equate to those of many developing

countries.[18].

We can use mathematical models as a way of estimating how different rates of

infection, individual interaction and treatment programs might affect the spread of

a disease. In using mathematical models we can save time, as we can plot estimates

1
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for different scenarios much more quickly than the the time disease might actually

take to run its course in the population. They also allow us to overcome some of

the obvious ethical issues surrounding experimenting with diseases.

In this thesis I provide a background in mathematical modelling of infectious dis-

eases and how these models might apply to acute rheumatic fever. I also develop

a model in stages, that can follow the behaviour of acute rheumatic fever in New

Zealand and account for the different factors that are specific to this popula-

tion. I then discuss how this kind of model could be useful in developing realistic

treatment programs and reducing the incidence of acute rheumatic fever in New

Zealand.



Chapter 2

Infectious Disease Modelling

Mathematical modelling in epidemiology provides an understanding of the under-

lying mechanisms involved in the spread of a disease that may often be missed

in an analysis of experimental data. Models can also help us suggest appropriate

control strategies. For endemic diseases the possibility of controlling or even erad-

icating a disease that has been persistent in the population is worthy of study.

[7].

Mathematical modelling of biological systems, including epidemics, is often suc-

cessfully attacked in steps, starting simply and adding complexity as needed to

better model real data [7]. In an epidemiological model we aim to answer several

questions about the possible severity of the epidemic. We want to know the total

number of individuals who would be affected and how many could need care at

any point in time. Other details such as how long the epidemic might last and

how much good quarantine would do are also of interest.

There is always a tradeoff between simplicity and detail. Simple models are of

value as they are often the building blocks of more complicated models. They

can also be useful in highlighting general qualitative behaviour. More detailed

models are often designed for specific situations. They are generally difficult to

solve analytically however, which limits how useful they can be. Focusing on the

asymptotic behaviour of the model, as t −→ ∞, as opposed to finding explicit

solutions, can be a good option here too [7]. Though the asymptotic values may

3
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not always be realistically reached.

A lot of mathematical modelling work has been done in relation to measles epi-

demics. Because measles has easily recognisable symptoms, and most cases in

developed countries are seen by doctors, the data available are often very good

[7]. Data present a bit more of a problem for modelling acute rheumatic fever.

While acute rheumatic fever is a notifiable disease in New Zealand, which provides

us with a good record, the infection data available for Group A streptococcus

infections are much more limited. This makes it more challenging to validate a

model.

2.1 Compartmental Models

In most epidemic models, the population is divided into compartments. Individuals

are sorted according to their ‘state’ in relation to the disease [7]. There are three

main types of infectious diseases, those caused by viruses, those caused by bacteria

and those caused by parasites [13].

Viral infections, such as influenza, measles and chicken pox, usually confer some

sort of immunity to reinfection once an individual recovers [7]. These types of

infections are best modelled by SIR type models. S stands the number of in-

dividuals who are susceptible to infection and could become infected if exposed

to the disease. I stands for the number of individuals who are currently infected

and may infect susceptible individuals given contact. R stands for Removed; this

compartment contains all the individuals who are immune to the disease or oth-

erwise isolated from possible infection. Removed individuals no longer affect the

transmission of the disease.

Some diseases, including Group A streptococcus, do not confer any immunity

against reinfection [7]. These types of diseases are best modelled with SIS type

models. Upon recovery, individuals move back into the Susceptible compartment

as they are once again susceptible to infection.
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2.1.1 Biological Accuracy

When developing a model, we need to be careful and pay attention to what is going

on biologically. Control strategies based on false models can sometimes do more

harm than good [7]. One of the most famous epidemics of all time is the Great

Plague of London, 1665 - 1666. The simple SIR model can fairly accurately match

the exponential rise, turnover and fall of the number of deaths due to the plague

per week [7, 16]. There are, however, some features of the data such as jagged

oscillations, that remain unexplained by this basic model [7]. If the equations of

the SIR model are replaced with stochastic processes, these can be accounted for

in the model. Even with the stochastic reformulation however, the longer term

re-emergences and extinctions of the plague cannot be explained by the simple

SIR model[7]. Biology shows, that the disease primarily infects rodents and is

spread by fleas. It is not until we take into account rodents, and the fact that

they may carry the disease when it is absent among the human population then

cause a re-emergence, that the overall pattern of the plague begins to make sense

[20]. This means that placing an infected community under quarantine will not

prevent the spread of disease to other communities. To build an accurate model

of plague transmission, the populations of fleas and rats, as well as movement in

space, needs to be taken into account [7]. Biological accuracy is very important

when developing a model for an infectious disease.

2.1.2 The SIR Model

In the SIR model the total population size is N = S + I +R. Although the num-

bers of individuals in each compartment must be integers, with sufficiently large

population sizes, we can treat S, I and R as continuous variables [7]. This allows

us to use differential equations where the rates of transfer between compartments

are derivatives of the compartment size, with respect to time [7]. The system of

differential equations for the basic SIR model is as follows

dS

dt
= −βSI, (2.1)
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S I R
βSI γI

Figure 2.1: Flow chart for the SIR epidemic model given in equations 2.1 and 2.2.

dI

dt
= βSI − γI, (2.2)

Where γ is the recovery rate. 1/γ is the time it takes for each individual to be

removed, i.e. it is the average length of time an individual is infectious for. βSI

describes the rate at which individuals are being infected. It makes sense that

the number of individuals being infected per unit of is proportional to both the

number of susceptible individuals (S) available to be infected and the number of

infectious individuals (I) that are around to infect them. β is the proportionality

constant, it represents the transmission rate per capita. β is dependent on the

infectivity of the disease in question as well as characteristics of the population we

are dealing with [7]. The fact that R does not appear in either of the equations

above reflects the fact that removed individuals do not affect disease transmission

[7]. Removed individuals are those who have either recovered from the disease

with full immunity, been isolated from the rest of the population somehow, been

immunised against infection, or have died as a result of the disease. For the simple

SIR model removal is generally seen as recovery from the disease, though isolation

due to infection could also be included as part of this [7]. So the equation for R is

simply the rate of removal of infectives.

dR

dt
= γI. (2.3)

The flow chart in figure 2.1 illustrates how individuals move between the compart-

ments.

The system of equations 2.1, 2.2 and 2.3 forms the Kermack-McKendrick ODE

model. This is a special case of the Kermack-McKendrick model, which is for-

mulated in terms of integral equations [13] and used to model the incidence of

infection [28]. The Kermack-McKendric model is given in equations 2.4 and 2.5
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below

i(t) = α(t) + S(t)

∫ ∞
0

p(τ)C(τ)i(t− τ)dτ (2.4)

S(t) = S(0)−
∫ t

0

i(τ)dτ (2.5)

t is the amount of time since the outbreak began, ie. t=0 coincides with the first

case of the disease in question in the population.

i(t) is incidence of infection, or the number of new infections per unit of time, at

time t.

α(t) represents the incidence rate of the index case. This is the number of cases

being imported into the population at time t [28]. The index case is the first case of

the infection in a particular epidemic. We can have multiple index cases however

if those cases come from outside of the population in which the epidemic is taking

place. If α(t) 6= 0, the population is not closed. The incidence of the index case is

0 in a closed population.

S(t) is the number of susceptible people in the population at time t.

τ is the time since exposure to the infection. So
∫ t

0
i(τ)dτ models the total number

of cases, that have occurred, since the beginning of the outbreak. i(t−τ) gives the

number of new cases, per unit of time, that were occurring τ units of time ago.

p(τ) is the probability that an individual infected τ units of time ago, will infect

another individual, given contact [28]. This is also known as the infectivity of the

disease [13].

C(τ) is the contact rate per host [28].

S(0) is the number of susceptible individuals in the population before the outbreak

began. So essentially, S(0) ≡ N , the population size.

We can represent the total number of infected individuals at time t by

I(t) =

∫ ∞
0

g(τ)i(t− τ)dτ (2.6)

Where g(τ) represents the probability an individual is still infectious τ units of
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time after being infected. The total number of removed individuals at time t is

R(t) =

∫ ∞
0

(1− g(τ))i(t− τ)dτ (2.7)

It is dependent on individuals no longer being infectious after τ units of time.

By assuming a constant contact rate between individuals and a constant ‘removal’

rate for infectious individuals, we can use 2.4 to derive the Kermack-McKenderick

ODE model from the three equations 2.5, 2.6 and 2.7. We are also assuming

a closed population with no new individuals entering, and no one leaving the

population. This means α(t) = 0, which is acceptable as long the timescale of

the epidemic is significantly shorter than the timescale for births, deaths and

migration. Though we still require a source of infection at t = 0.

dS

dt
= (S(0))′ − i(t)

= 0− α(t)− S(t)

∫ ∞
0

p(τ)C(τ)i(t− τ)dτ

p(τ)C(τ) represents the rate at which contacts resulting in infection are made by

an individual who was infected τ units of time ago. β represents the constant rate

a which contacts that would result in infection occur per individual. So βg(τ)

represents the rate at which an individual, who was infected τ units of time ago,

makes contacts that result in infection. hence if we assume a constant rate of

contact in the population we can use p(τ)C(τ) = βg(τ).

=⇒ dS

dt
= −S(t)

∫ ∞
0

βg(τ)i(t− τ)dτ

= −βS(t)I(t) (2.8)

=⇒ i(t) = βS(t)I(t) (2.9)

The results in 2.8 is the same as equation 2.1 [28].

If we let r(τ) be the number of infected individuals who are still infectious τ units
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of time after infection, assuming a constant rate of removal γ

dr

dτ
= −γr (2.10)

dr

r
= −γ dτ

ln(r) = c− γτ

r(τ) = r(0)e−γτ (2.11)

So if we define the rate of removal to be γ, we see that the length of the infectious

period is exponentially distributed with a mean length of 1/γ [7]. So we can

substitute g(τ) = e−γτ for the probability that an individual infected τ units of

time ago is still infectious, so that

I(t) =

∫ t

−∞
e−γ(t−τ)i(τ)dτ

= e−γt
∫ t

−∞
eγτ i(τ)dτ

⇒ dI

dt
= −γe−γt

∫ t

−∞
eγτ i(τ)dτ + e−γteγti(t)

= −γI(t) + i(t)

= −γI(t) + βS(I)

Which is the same as equation 2.2 [28].

This model only makes sense if both S(t) and I(t) are always non-negative. If

either of them reaches zero the system, and therefore the epidemic, is considered

terminated. We can clearly see from the flow chart in figure 2.1 that the population

will continue to flow from S, through I, to R until either the disease dies out, at

I = 0, or everyone is immune, R = N . S is always decreasing and I increases to a

maximum before decreasing. When this maximum happens and how big it is are

of interest[7].

In using this model we assume that each individual makes contact, capable of

resulting in infection, with βN other individuals per unit time and that infective

individuals are removed at a rate γI per unit of time. While the assumption of a
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S I

βSI

γI

Figure 2.2: Flow chart for the SIS epidemic model given in 2.12.

contact rate proportional to population size is unrealistic, except near the start of

an epidemic, many more realistic models will exhibit similar qualitative behavior

[7].

2.1.3 The SIS Model

Some diseases, particularly those caused by bacterial infections, confer no immu-

nity on individuals who have recovered [7]. Upon recovery individuals move from

being infected back to being susceptible. Group A streptococcus is one such infec-

tion. To account for this in a model, we can modify the SIR model by removing

the equation for R and adding the term describing rate of recovery to the equation

for S. This gives us the SIS model below

dS

dt
= −βSI + γI (2.12)

dI

dt
= βSI − γI

Figure 2.2 shows the flow of infectious individuals between the Susceptible and

infectious compartments [7]. In this type of model we have N = S + I.

2.2 The basic reproduction number R0

R0 is the basic rate of disease spread at time zero with no intervention. It is

defined as the number of individuals who would be directly infected by an infec-

tious individual released into a fully susceptible population [13]. The value of R0
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is closely correlated with several important characteristics of an epidemic. The

size of peaks in the number of cases and when these peaks occur are two such

characteristics.

R0 exhibits a threshold behavior in relation to how likely it is an epidemic will

occur. If R0 > 1 a major epidemic is likely. If R0 < 1 the disease will likely die

out quickly and only a minor epidemic will occur [7].

In estimating R0 we are concerned only with the rate at which individuals enter

and exit the infectious compartment. Where they have come from and where they

recover to do not affect the reproduction number.

In the SIS and SIR models, for an infectious individual introduced into a totally

susceptible population S(0) ' N . In this case we would expect the initial rate of

infection per infected individual, at time t = 0, to be βN . That is the infectious

individual makes βN contacts, per unit of time, where the infection is passed on.

The reproduction number of a disease at any point in time is the rate at which an

infectious person is infecting others multiplied by how long they are infectious for

[7]. So if the mean infectious period is 1/γ, we would expect

R0 =
βN

γ
(2.13)

R0 can also be found as the largest eigenvalue of the next generation matrix [14].

2.2.1 The Effective Reproduction Number R*(t)

We can now also defineR*, the time-dependent running reproduction number. It is

the effective rate of disease reproduction at time t, taking in to account the effects

of any intervention as well. R* represents the number of secondary infections

caused by an individual in the population who becomes infectious at time t. An

infectious individual makes C contacts per unit time, where the infection could be

passed on if that contact is made with a susceptible individual. S/N represents

the proportion of those contacts that are with susceptible individuals. Using this
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information along with equation 2.13, for the SIR and SIS models we get

R∗(t) =
C

γ
× S

N

=
βN

γ
× S

N

=
βS

γ
(2.14)

If R∗ < 1 for all large t, the epidemic will die out [7]. If R∗ > 1 then the number

of infectious individuals is increasing. Because infectious individuals come from

susceptible individuals being infected, and there is no source of new susceptible

individuals in this model, an increase in I implies a decrease in S. β and γ are

both non-negative constants, so R∗ decreases as S decreases. S will continue to

decrease as long as individuals continue to become infected. This means that R∗

will continue to decrease until the disease dies out. So a disease modelled by the

SIR model will always die out [7].

For the SIS model however, individuals recover into the susceptible compartment.

In this case, when R∗ > 1 the system will tend towards an equilibrium where the

number of susceptible individuals being infected is equal to the number of infectious

individuals recovering. This is called the endemic equilibrium, as the infection

becomes endemic in the population. For the basic SIS model this equilibrium

occurs at βS = γ. So in an SIS system for,R∗ > 1,R∗ decreases asR∗ approaches

1 as t −→∞.

2.2.2 Final size

The final size of an epidemic is the total number of infections caused by a disease

before it dies out. This is another characteristic of epidemics that is predictable

given R0, or conversely can be used to estimate R0 in retrospect. Though it is

only applicable to SIR type models

Even with the basic SIR model, it is not possible to obtain an exact solution for

I(t). We can however, solve for I as a function of S by taking the ratio of equations
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Figure 2.3: Curves in the (S, I) plane produced by equation 2.16. S0 = N was
used to find c, with N = 200, β = 0.01 and γ = 0.5, 0.8, 1, 1.5. The dashed line
shows the maximum possible value of I which occurs as γ

β
−→ 0.

2.1 and 2.2 [7]

dI

dS
=
βSI − γI
−βSI

= −1 +
γ

βS
(2.15)

The maximum number of individuals infectious at the same time occurs when the

derivative of I is zero, which is when βS = γ [7].

We can then integrate 2.15 to find curves in the (S, I) plane.

I = −S +
γ

β
ln(S) + c (2.16)

Where c, the arbitrary constant of integration is determined by the initial values

S(0) and I(0). Figure 2.3 shows some of these curves with varying values of γ.

We define the function

V (S, I) = S + I − γ

β
ln(S),
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so that solutions are given by V (S, I) = c for all t [7].

At the start of an epidemic we have a population of size N and the number of

susceptible individuals S0 ≈ N . If a small number of infectious individuals are

introduced into a large population, we have large N , so I0 ≈ 0. By using these

two approximations and that limt−→∞ I(t) = 0, for the SIR model, we can use

V (S0, I0) = V (S∞, 0) = c where S∞ = limt−→∞ S(t) to get

N − γ

β
ln(S0) = S∞ −

γ

β
ln(S∞). (2.17)

The contact rate β can be difficult to estimate as it depends on the particular

disease in question and also social and behavioural factors. We can rewrite 2.17

in terms of R0, using 2.13, to get

γ

β
(lnS0 − lnS∞) = N − S∞,

⇒ lnS0 − lnS∞ =
βN − βS∞

γ

= R0 −
βS∞
γ

,

⇒ lnS0 − lnS∞ = R0

[
1− S∞

N

]
. (2.18)

We may be able to estimate S0 and S∞ using blood samples, of a random sample

of the population taken before and after an epidemic. Using equation 2.18, we can

estimate what R0 was, for a particular epidemic [7]. If we know the value of R0

and S0 we can estimate what the final size of the epidemic might be.

This final size calculation is not practical for SIS type models however. If we take

the ratio of the equations in 2.12 we get

dI

dS
=
−βSI + γI

βSI − γI
= −1 (2.19)

This just implies that I increases at the same rate S decreases and vice versa.
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2.2.3 Equilibrium Points

Once a disease dies out, at I = 0, no new infectious individuals can develop for

that particular outbreak. There are no infectious individuals left to infect anyone

who is susceptible. This is known as the disease free equilibrium [7].

An endemic equilibrium is when the number of infectious individuals in the pop-

ulation reaches a certain value and remains there. This usually occurs when the

rate of infection equals the rate of recovery.

We can find the equilibrium points for a particular system of equations by setting

each differential equation in the system equal to zero and solving to find the number

of individuals in each compartment[7].

2.2.3.1 SIS Equilibrium Points

For the SIS epidemic model, because N = S + I we can rewrite the system of

equations in 2.12 as

dI

dt
= −β(N − I)I + γI = 0 (2.20)

⇒ I = 0 or β(N − I) = γ

This gives us the two equilibrium points (S, I) = (N, 0) and ( γ
β
, N − γ

β
).

The stability of an equilibrium point tells us what happens to points close to it. If

an equilibrium point is unstable, all nearby points move away from it over time.

All points within a certain distance of a stable equilibrium point will move towards

it and eventually end up there. In the context of a disease model, the stability

of the equilibrium points tells what will happen if introduce the disease to the

population. If the disease free equilibrium is stable, the introduced disease will die

out, returning the model to the disease free state. If the disease free is unstable

however, as soon as we introduce the disease in to the population, we begin to

move away from the disease free state and, if it is stable, towards the endemic

equilibrium.

Either of these equilibrium points will be stable if the value of d2I
dt2

is negative at
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that point.
d2I

dt2
= βN − 2βI − γ

The first point, (S, I) = (N, 0) is the disease free equilibrium. For the SIS model

there can only be one disease free equilibrium, because once the disease dies out

everyone recovers to the susceptible compartment. At this equilibrium point

d2I

dt2
= βN − 2β(0)− γ

= βN − γ (2.21)

This means the disease free equilibrium is stable as long as βN < γ. When

βN < γ, R0 = βN/γ < 1. So when the disease free equilibrium is stable, the

value of R0 is also telling us that an epidemic is unlikely and the disease will die

out.

The point (S, I) =

(
γ

β
,N − γ

β

)
is the endemic equilibrium. Because it is at the

point where βS = γ and S ≤ N , for this equilibrium point to exist and be valid

we require βN ≥ γ. This means the endemic equilibrium is only valid when the

disease free equilibrium is unstable. At the endemic equilibrium we get;

d2I

dt2
= βN − 2β(N − γ

β
)− γ

= βN − 2βN + 2γ − γ

= γ − βN (2.22)

So the endemic equilibrium is stable as long as βN > γ, i.e when it is valid,

R0 > 1 and the disease free equilibrium becomes unstable. This swapping of

stability through the point βN = γ is known as transcritical bifurcation [5].

2.2.3.2 SIR Equilibrium Points

For the SIR model we can use equations 2.1 and 2.2 from section 2.1.2 to find the

equilibrium points. We do not need to use the equation for R (2.3), as R does not

appear in any of the equations and N = S + I + R is constant. This means if I
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and S are not changing, R cannot be changing either. Given N , S and I, R is

easily determined [7].

dI

dt
= βSI − γI = 0 (2.23)

⇒ I = 0 or βS = γ

Setting I = 0 results in all three variables being stationary, dS
dt

= dI
dt

= dR
dt

= 0,

thus satisfying the conditions for equilibrium. Setting βS = γ results in dS
dt

=

−γI = −dR
dt

, which requires I = 0 for the system to be in equilibrium. I = 0

is the disease free equilibrium, regardless of the value of S. There are no other

equilibrium points in this system.

2.2.3.3 The Jacobian Matrix and Stability

Given a system of equations f(x1, x2 . . . xn) the Jacobian matrix is the n×n matrix

of partial derivatives [26].

J(x1, x2 . . . xn) =

[
∂fi
∂xj

]

The Jacobian matrix for this system in 2.23 is given by

J(S, I) =


∂(dS

dt
)

∂S

∂(dS
dt

)

∂I

∂(dI
dt

)

∂S

∂(dI
dt

)

∂I

 =

[
−βI −βS
βI βS − γ

]
(2.24)

If all the eigenvalues of the Jacobian matrix at the equilibrium point x have neg-

ative real parts, then the equilibrium point x is asymptotically stable [17].

The disease free equilibrium point, (S, I) = (S, 0), represents the situation where

the disease has died out after infecting a number of people who have now recovered

and moved into compartment R. S is the number of Susceptible individuals left
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who were never infected. The Jacobian matrix at this point becomes[
0 −βS
0 βS − γ

]
(2.25)

The eigenvalues of this matrix are 0 and βS − γ. This means the disease free

equilibrium is stable when βS < γ, which implies the rate of infection is less than

the rate of recovery. Because S is reduced in size as individuals become infected,

in the situation a disease is introduced where βS ≥ γ, the disease free equilibrium

is initially unstable and we move away from it, until S is reduced to the point

where βS < γ. At this point the disease free equilibrium becomes stable and the

disease starts to die out, returning the system to the disease free state.

This makes sense as βS > γ implies βS
γ
> 1, or at time t = 0, R0 > 1, which

would suggest an epidemic will occur.

2.2.4 Herd Immunity

Herd immunity occurs when some fraction of the population being immune protects

the whole population against an outbreak becoming endemic. If a fraction of the

population, p, is successfully immunised, we essentially replace N with N(1 − p)
and therefore R0 with R0(1 − p). Then for a disease to die out we then require

R0(1− p) < 1, or

1− p < 1

R0

(2.26)

p > 1− 1

R0

(2.27)

Smallpox is the only disease for which herd immunity has been achieved worldwide.

R0 for smallpox is approximately 5 so an 80% minimum rate of immunisation was

required to achieve this [7].
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2.3 Numerical Approximations

Initially the number of infective individuals grows exponentially and with a large

enough population size, we can approximate the equation for I, in either the SIS

or SIR model, by

dI

dt
= βNI − γI

= (βN − γ)I (2.28)

So the initial rate of growth (g), of infected individuals is

g ≡ 1

I

dI

dt
(2.29)

g = βN − γ

=
γ(βN − γ)

γ

g = γ(R0 − 1) (2.30)

This growth rate g can be estimated experimentally near the beginning of an

epidemic, based on sampling of initial cases seen by health professionals. We

could then calculate β as

β =
g + γ

N
(2.31)

This estimate should be used cautiously however. It is likely to be very inaccurate,

due to incomplete data, underreporting and misdiagnosis of cases, especially when

dealing with the outbreak of a new disease [6].

Even with the simple system of equations in the basic SIR model, we cannot

solve exactly for I(t) as an expression of t. We can however find a numerical

approximation by using small time intervals of ∆t and a computer with Euler’s

Method [15]. Though it is not the only way, Euler’s method is a simple way to

solve for the number of susceptible individuals ∆t time units into the future [7].

Using ∆S = S(t+ ∆t)− S(t) and the approximation dS/dt ' ∆S/∆t

∆S(t)

∆t
' −βS(t)I(t)
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S(t+ ∆t)− S(t)

∆t
= −βS(t)I(t)

S(t+ ∆t)− S(t) = −βS(t)I(t)∆t

S(t+ ∆t) = S(t)− βS(t)I(t)∆t (2.32)

In the same way the number of infectives at time t+ ∆t is

I(t+ ∆t) = I(t) + βS(t)I(t)∆t− γI(t)∆t (2.33)

Initial conditions for I and S are important and can make a huge difference to

the resulting model. For a disease that is persistent in the population we cannot

assume S(0) = N and I(0) = 1 as we have no idea when or even if this was ever the

case. We must instead use data available to us to choose a suitable starting point

and use those values for initial conditions [7]. Another method, the Runge-Kutta,

method us used in solving many of the later models in this thesis.

2.4 Vital dynamics

One of the problems with the previous SIR model 2.1 and 2.2 in section 2.1.2, is

it does not allow for repeat epidemics. The disease starts to die out after we reach

the point βS = γ, as the number of susceptible individuals becomes to small for

the the disease to spread as easily. It will cease to exist in the population once all

the infected persons recover.

In the case of an put break where demographic and epidemic changes take place

over similar timescales we need to include vital dynamics, such as births and deaths

in our model.this has the side effect of introducing a source of new susceptible

individuals such as newborn babies. We can include the effects of births and

deaths in the model with modified version of the basic SIR model. These vital

dynamics are independent of the disease; they are the rates of birth and death that

would exist in the population if the disease in question were absent. Assuming

that all newborns enter the population as susceptible individuals, if we let B be
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S I R
βSI γI

µN

µS µI µR

Figure 2.4: Flow chart for the SIR epidemic model with vital dynamics and a
constant population size, given by equations 2.34 and 2.35.

the birth rate and µ be the death rate we get

dS

dt
= B − βSI − µS (2.34)

dI

dt
= βSI − γI − µI (2.35)

We may also assume a constant population size for the duration of the epidemic,

as changes in birth and death rates usually take place over a much larger time

frame than an epidemic. So if we maintain a constant population size by setting

births equal to deaths we have B = µN . The flow chart in figure 2.4 shows how

individuals move in and out of each compartment when we include vital dynamics

in the SIR model and keep the population constant.

By including these vital dynamics we can produce oscillations in our model that

correspond to recurrent epidemic data seen in real populations. However, unlike

the oscillations seen in the data, our oscillations that occur solely with the in-

troduction of vital dynamics damp out over time to eventually reach an endemic

equilibrium. In fact it can be proven that this equilibrium is globally asymptoti-

cally stable. So no matter what the starting conditions or the values of the other

parameters are, the solutions will always converge on the equilibrium. Because of

this, the basic SIR model with vital dynamics alone is not enough to explain the

oscillations seen in the data for most recurring epidemics that show a oscillating

pattern [7]. We may need to introduce more complex elements to the model to

more accurately represent the behaviour of an infection in the population.
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2.4.1 SIR Equilibrium points with vital dynamics

To find the equilibrium points for the SIR model with vital dynamics, we set

equations 2.34 and 2.35 equal to zero. Using B = µN for a constant population

size we solve for S and I.

dI

dt
= βSI − γI − µI = 0

⇒ βS = γ + µ or I = 0

If we substitute each of these values into equation 2.34 we get the following

If I = 0

µN − µS = 0

µS = µN

S = N

If βS = γ + µ

µN − (γ + µ)I − µ(γ + µ)

β
= 0

µN − µ(γ + µ)

β
= (γ + µ)I

I =
µN

γ + µ
− µ

β

So the two equilibrium points are (N, 0) and
(
γ+µ
β
, µN
γ+µ
− µ

β

)
.

The Jacobian matrix for this system 2.34 and 2.35 is given by

J(S, I) =


∂(dS

dt
)

∂S

∂(dS
dt

)

∂I

∂(dI
dt

)

∂S

∂(dI
dt

)

∂I

 =

−βI − µ −βS

βI βS − γ − µ

 (2.36)

The disease free equilibrium, at (N, 0) represents a population where the disease in
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question has died out and all those who recovered from the disease have also died,

at the usual death rate. As soon as the disease stops spreading we are headed for

this equilibrium and the equation for Susceptibles S heads towards an equilibrium

at I = 0. However the number of individuals in the Removed compartment R

continues to shrink at the rate µR, therefore the system does not technically reach

equilibrium until R = 0 as well. The Jacobian matrix at this equilibrium becomes

[
−µ −βN
0 βN − γ − µ

]
(2.37)

This matrix has eigenvalues −µ and βN − γ − µ, so the equation is stable when

βN < γ + µ.

Because βN ≥ βS = γ + µ at the endemic equilibrium,
(
γ+µ
β
, µN
γ+µ
− µ

β

)
, it is only

valid as long as βN ≥ γ + µ. This also ensures that the number of individuals

in the infectious compartment remains non-negative. The Jacobian matrix at this

equilibrium point becomes

[
−βµN

γ+µ
−γ − µ

βµN
γ+µ
− µ 0

]
(2.38)

The eigenvalues for this matrix are not very simple, however there is another way

to determine the stability of an equilibrium point.

Let us define a matrix M

M =

[
A B

C D

]
(2.39)

M has determinant |M | = AD − BC and trace tr(M) = A + D. To find the

eigenvalues we find the roots of the characteristic equation given by |M −λI| = 0,

where I is the identity in this case and λ is an eigenvalue.

|M − λI| = 0

⇒ (A− λ)(D − λ)−BC = 0

⇒ λ2 − λ(A+D) + AD −BC = 0

⇒ λ2 − tr(M)λ+ |M | = 0 (2.40)
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So if tr(M) < 0 and |M | > 0 then the roots of the characteristic equation 2.40,

and hence the eigenvalues of M both have negative real parts [13].

The Jacobian matrix for the endemic equilibrium in this system 2.38 has determi-

nant βµN − µ(γ + µ) = µ(βN − γ − µ) which is positive if βN > γ + µ.

The trace is −βµN
γ+µ

, which is always negative as all of the parameters and compart-

ment sizes are non-negative.

So the endemic equilibrium is stable as long as βN > γ + µ. This is similar to

analysis seen in Brauer [7].

2.5 Stochastic Epidemic Models

In the previous sections, by using differential equations we are treating I and S as

continuous variables. As discussed previously this is quite reasonable for a large

population size N . However this assumption still has some observable effect on

the predictions of the model. By adding a small amount of noise to the model, or

replacing it with a stochastic version, we can account for the fact that I and S

are actually discrete variables, or that some things don’t happen deterministically.

Doing this also prevents the oscillations in the previous model 2.34 and 2.35 from

damping out [7].

2.5.1 Discrete Time Markov Chain Models

Using Markov chains, we can derive realistic stochastic models that are based on

our deterministic models. Let pji= the probability of transition from state I(t) = i

to state I(t+ ∆t) = j during the time interval ∆t. This is the probability that the

number of infectious individuals changes from i to j over the time step ∆t. For

a simple discrete time model we choose ∆t to be small enough that at most one

transition can take place during the time step. This means j = i− 1, j = i+ 1 or

j = i [7].



CHAPTER 2. INFECTIOUS DISEASE MODELLING 25

2.5.1.1 The SIS DTMC model

For the SIS epidemic model, using a Discrete Time Markov Chain or DTMC

model, the transition probabilities look like this

pji(∆t) =



βi(N − i)∆t j = i+ 1

(µ+ γ)i∆t j = i− 1

1− [βi(N − i) + (µ+ γ)i]∆t j = i

0 otherwise

(2.41)

This shows the probabilities for each possible change in the number of infectious

individuals over one time step ∆t. The probabilities are based on the differential

equations for the SIS model with vital dynamics, µ = birth-rate = death-rate.

The probability that the number of infectious individuals decreases by one is the

sum of the probability that an infectious individual dies and the probability that

an infectious individual recovers. These probabilities are determined by the death-

rate µ and the recovery rate γ in the differential equations for the SIS model with

vital dynamics.

Figure 2.5 shows a plot of some sample paths produced by the SIS DTMC transi-

tion probabilities, along with the curve produced by the deterministic SIS model.

The sample paths were produced in Matlab, a random number between 0 and 1,

was chosen from a uniform distribution and used with the transition probabilities

in 2.41, to decide the change in the number of infectious individuals at each time

step. The code for how this was done is given in Appendix A.1.

Two of the sample paths presented in Figure 2.5 follow the deterministic plot,

fairly well, towards the endemic equilibrium. The green path however, shows the

number of infected individuals dying out near the start of the plot, leaving us

with the disease free state. This is an example of one characteristic of stochastic

epidemic models, there is always the possibility that the disease will start die out,

from any point in the epidemic, reaching in the disease free equilibrium regardless

of the parameter values and what is predicted by the deterministic model.
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Figure 2.5: Three sample paths of the DTMC SIS model in 2.41. The dashed line
shows the deterministic model. The different colours show the different sample
paths. For all three sample paths the time step ∆t = 0.01, N = 100, β = 1, µ =
0.1, γ = 0.25.

2.5.1.2 The SIR DTMC model

For the SIR Epidemic Model with vital dynamics, the DTMC model is based

on equations 2.34 and 2.35 from section 2.4. The transition probabilities are as

follows

p(s+k,i+j),(s,i)(∆t) =



βis
N

∆t (k, j) = (−1, 1)

γi∆t (k, j) = (0,−1)

µi∆t (k, j) = (1,−1)

µ(N − s− i)∆t (k, j) = (1, 0)

1− [βis
N

∆t+ γi+ µ(N − s)]∆t (k, j) = (0, 0)

0 otherwise

(2.42)

p(s+k,i+j),(s,i)(∆t) is the probability that the number of individuals in compartment

S changes from s to s + k and the number of individuals in I changes from i to
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i + j over the time step ∆t We have a constant population size N and birth-rate

= death-rate=µ. Because we are assuming all newborns are susceptible, a birth

results in an increase in the number of susceptible individuals. Because of the

constant population size, a birth also results in a death. If this is an infected

individual, we have (k, j) = (1,−1). This has a probability µi∆t of occurring over

one time step. If a birth is balanced by a death among the susceptible population,

we would see no change in numbers, i.e. (k, j) = (0, 0). If the birth is balanced by

the death of a recovered individual, we only see the increase in S, (k, j) = (1, 0)

[7].

Combining these transition probabilities together, we can get an equation for the

probability that S = s and I = i at time t+ ∆t.

p(s,i)(t+ ∆t) = p(s+1,i−1),(s,i)(t)
β

N
(i− 1)(s+ 1)∆t+ p(s,i+1),(s,i)(t)γ(i+ 1)∆t

+ p(s−1,i+1),(s,i)(t)µ(i+ 1)∆t+ p(s−1,i),(s,i)(t)µ(N − s+ 1− i)∆t

+ p(s,i),(s,i)

(
1−

[
β

N
is+ γi+ µ(N − s)

]
∆t

)
(2.43)

Figure 2.6 shows some sample paths for the SIR DTMC model, along with the

curve from the deterministic model. These sample paths were produced in the

same way as those for the SIS DTMC model. Because of the added compartment

R there are more possible transitions at each time step. In the SIS model a recov-

ery from infection had the same effect as the death of an infected individual, In the

SIR stochastic model however, a recovery increases the size of the removed com-

partment and does not affect the size of S. The red sample path dies out near the

beginning, resulting in a disease free state early on, this is another example of how

a stochastic model may die out despite the predictions made by the deterministic

model.

2.5.2 Continuous Time Markov Chain Models

The DTMC models described above are defined on discrete time steps, where one

individual changes state at each step. The problem with this type of model is that
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Figure 2.6: Three sample paths of the DTMC SIR model in 2.42. The dashed
line shows the deterministic model. The different colours show the different sample
paths. For all three sample paths the time step ∆t = 0.01, N = 100, β = 1, µ =
0, γ = 0.25,.
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we need to be very careful choosing the size of the time step. Too small a time

step and the program takes too long to run, too large a time step and we start to

underestimate the change in the population.

One way of overcoming this issue is to use continuous time. A Continuous Time

Markov Chain (CTMC) model looks fairly similar to the DTMC model. The

transition probabilities are still defined for a small time interval ∆t, but they

are referred to as infinitesimal transition probabilities because they are valid for

infinitesimally small ∆t. By excluding terms o(∆t) in the definitions of the in-

finitesimal transition probabilities, where lim∆t−→0(o(∆t)/∆t) = 0, we are able to

vary the sizes of the time steps in a exponential distribution and simulate contin-

uous time [7]. For the SIS CTMC model the infinitesimal transition probabilities

are defined as follows:

pji(∆t) =



β
N
i(N − i)∆t+ o(∆t) j = i+ 1

(µ+ γ)i∆t+ o(∆t) j = i− 1

1− [ β
N
i(N − i) + (µ+ γ)i]∆t+ o(∆t) j = i

0 + o(∆t) otherwise

(2.44)

To produce a plot for this model we let ∆t = −log(u1)/a, where u1 is a uniform

random number and a is the probability of change in a time step, a = 1− pi,i(∆t).
We then use another random number u2 to decide what type of change occurs in

that time step.

Figure 2.7 shows a few of the sample paths produced using the SIS CTMC transi-

tion probabilities. Again one of the sample paths shows the disease dying out near

the start instead of heading to the endemic equilibrium. While it is possible for a

stochastic model to die at from any point in the epidemic, it is usually unlikely.

In each model we have shown, the disappearing sample path has died out near

the begging of the epidemic when numbers of infectious individuals are low. this

shows the vulnerability of the disease to small changes in the initial stages of an

epidemic.
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Figure 2.7: Three sample paths of the CTMC SIS model in 2.44. The dashed
line shows the deterministic model. The different colours show the different sample
paths. For all three sample paths the time stepN = 100, β = 1, µ = 0.1, γ = 0.25,

.



Chapter 3

Acute Rheumatic fever

Acute rheumatic fever is an autoimmune response following an infection by Group

A streptococcus bacteria [18]. Group A streptococcus is often presented as strep

throat and less often as scarlet fever [1], though there is a recent hypothesis that

a skin infection by Group A streptococcus may be responsible for acute rheumatic

fever in some communities [11].

If a Group A streptococcus infection is not properly treated, acute rheumatic

fever can develop after 2 to 3 weeks [31]. After apparent recovery, the individual

experiences an inappropriate immune response. This response is thought to be due

to molecular similarity between products of Group A streptococcus degradation

and certain human tissues. The heart, joints and central nervous system are the

three places this similarity occurs. Acute rheumatic fever is very rare among young

children, under the age of 3 [24]. The highest risk coincides with the maturation

of the immune system at around ten years of age [31]. First time infections of

acute rheumatic fever typically occur in children aged between the ages of 5 and

17 [11, 24]. 92% of cases occur in children under the age of 18 [24].

3.1 Symptoms and Diagnosis

Accurate diagnosis of acute rheumatic fever can be an issue and there is currently

no definitive laboratory diagnostic test for it [18]. Because of this, diagnosis is

31
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done clinically with laboratory tests used to support the diagnosis [24].

A patient is usually asymptomatic for about three weeks following the Group A

streptococcus infection [1].

Symptoms are described in terms of the Jones criteria, where a combination of

major and minor symptoms are used to determine the likelihood that a patient

has acute rheumatic fever.

Polyarthritis, affecting the knees elbows, wrists and ankles, accompanied by fever,

is the initial warning sign. The hips and spine may also, occasionally, be affected.

The arthritis is a major symptom but is only seen in 75% of cases.

Carditis, another major symptom, usually occurs within three weeks. This is re-

vealed by cardiac sonography in 70% of cases. Carditis, together with polyarthritis

and fever, strongly supports the diagnosis of acute rheumatic fever. Skin signs,

such as subcutaneous nodules are rare but may also be observed [24].

Under or over diagnosis in different regions could affect data and recorded incidence

in some areas [18]. In the absence of any other explanation however, a diagnosis of

rheumatic fever may be given even if symptoms are incomplete. Though if there is

abdominal pain initially, the diagnosis of rheumatic fever may be invalidated [24].

3.2 Susceptibility and Prevention

Not all individuals infected with Group A streptococcus will develop acute

rheumatic fever if untreated. Only certain individuals are susceptible to the dis-

ease. 0.3% to 3% of a general population will develop acute rheumatic fever fol-

lowing a Group A streptococcus infection [1, 11]. The incidence is much higher

among individuals who have had previous attacks of acute rheumatic fever with

about 30% to 80% having a recurrence of acute rheumatic fever following a Group

A streptococcus infection [1]. Interestingly, there is also a higher incidence of acute

rheumatic fever among relatives of patients who have, or have had, the disease,

when compared with unrelated individuals. It has been noted in past studies that

individuals with a family history of acute rheumatic fever are nearly five times

more likely to acquire the disease [8]. This suggests a genetic susceptibility to
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acute rheumatic fever [1, 11]. Genetic predisposition is also supported by twin

studies where monozygotic twins showed greater similarity in their susceptibility

when compared with dizygotic twins, though the lack of greater similarity in sus-

ceptibility suggests a complex pattern of inheritance [8]. It also suggests there is a

role played by environmental factors in determining susceptibility. There is a long

held belief that individuals who are susceptible to acute rheumatic fever also show

a hyper reactive immune response to Group A streptococcus antigens [1].

There is usually no increased resistance or susceptibility among particular races or

ethnic groups. An outbreak in America in the 1980’s however, did occur among

middle-class white children with no apparent risk factors aside from possible over-

crowding. The degree to which host risk factors are inherited or acquired is unclear

[31].

Surveillance involving the collection of epidemiological data is required, to identify

‘at risk’ groups and help direct control efforts [11].

Recurrence of acute rheumatic fever is relatively common, especially in the 3-5

years following a previous episode [24]. Prevention of recurrent attacks is impor-

tant, as they can lead to permanent damage to the heart valves. The most cost

effective way of preventing rheumatic heart disease is to prevent recurrences of

acute rheumatic fever [11]. Regular injections of penicillin (usually monthly), for

at least five years following an acute rheumatic fever attack, are used to prevent

recurrences. The length of this secondary prophylaxis is dependent on the severity

of an individual’s previous acute rheumatic fever attacks [11, 31]. Susceptibility

to recurrence of acute rheumatic fever is reduced with age [31].

Giving antibiotics to patients with sore throats and other symptoms suggestive of

Group A streptococcus remains the only way to prevent primary attacks of acute

rheumatic fever. That is besides improving access to medical care and eliminating

poverty and overcrowding [11]. There has never been a documented case of Group

A streptococcus being resistant to penicillin anywhere in the world [4]. Acute

rheumatic fever still lacks a vaccine, but if we can learn more about susceptible

hosts and how to identify them, prevention of the disease could be greatly simplified

[31].

With appropriate health care programs and good medical care, the burden of acute
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rheumatic fever can be reduced [11].

3.3 Treatment and Recovery

There is no treatment for acute rheumatic fever. The treatment received by a

patient with acute rheumatic fever is purely symptomatic, aside from treatment

for heart failure if necessary [19]. The main aim of treatment is to eliminate any

remaining Group A streptococcus from the original infection and suppress the

inflammation caused by the acute rheumatic fever [10]. Following such treatment,

acute rheumatic fever attacks usually cease within 2 months of the initial Group

A streptococcus infection. Any relapses after this period are likely to be due to a

new infection [32].

3.4 Group A Streptococcus

Acute pharyngitis is one of the most common illnesses seen by paediatricians and

other primary care physicians [3]. Streptococcus pyogenes strains commonly re-

ferred to as Group A Streptococci [1], are the most frequent bacterial cause [12].

It is primarily a childhood disease occurring mostly in children aged between 5

and 15 [12].

Group A Streptococcus is spread through inhalation or contact with secretions

from infectious individuals [29]. In temperate climates it usually appears in winter

and early spring. During this time of year up to 20% of asymptomatic children

may be streptococcus carriers. These carriers, however, are unlikely to spread the

organism to their close contacts and are at low risk of complications such as acute

rheumatic fever.

A ‘Ping-pong’ effect can occur within family groups, where the infection bounces

between family or household members as they infect each other and recover. Ap-

proximately 25% of individuals within the household of an index patient may also

harbour Group A streptococcus in their upper respiratory tract. There is no cred-

ible evidence that family pets may contribute to familial spread.
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Most asymptomatic patients with Group A streptococcus remaining in the upper

respiratory tract after a course of antibiotics are streptococcal carriers. While this

may mean persistence of the infection in that individual, the circumstances that

lead to such asymptomatic carriage usually mean the infection has relatively low

virulence. This means asymptomatic carriage has negligible influence in infection

models [12]. A small percentage of patients have recurrences of acute pharyngitis

associated with Group A streptococcus, shortly after completion of a course of

antibiotics [3].

3.4.1 Symptoms and Diagnosis

Symptoms of Group A streptococcus infection usually develop after an incubation

period of 24 to 72 hours [29]. There is a large overlap between streptococcal and

viral pharyngitis in terms of symptoms. Less than half of patients with acute

pharyngitis are actually infected with Group A streptococcus. Symptoms include

sudden onset of a sore throat, pain on swallowing and fever. Headache, nausea,

vomiting and abdominal pain may also be present, especially in children. None of

these symptoms however are specific to Group A streptococcus. It can also be dif-

ficult to distinguish between a Group A streptococcus carrier currently suffering a

non-Streptococcal infection, from a patient with Acute Streptococcal pharyngitis,

though the absence of fever or the presence of symptoms such as conjunctivitis,

cough, diarrhoea, suggests viral rather than bacterial infection. Because of the

overlap in symptoms with viral infections, unless Group A streptococcus can be

confidently excluded, a laboratory test should be performed to determine if it is

present or not [4]. The most reliable method for detecting the presence of Group

A streptococcus in the throat is by culturing a throat swab [12]. Streptococ-

cal pharyngitis is also a self-limiting disease with symptoms disappearing spon-

taneously within 3-4 days. Rapid identification and treatment of streptococcal

pharyngitis can reduce the risk of spread as well as the acute morbidity associated

with the disease [4].
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3.4.2 Treatment and Recovery

Effective treatment of a Group A streptococcus infection reduces the risk of acute

rheumatic fever by about 90% [24]. Penicillin, as a treatment for Group A strep-

tococcus, is preventative against acute rheumatic fever [24]. Treatment with peni-

cillin will also reduce the duration of symptoms by 1 or 2 days [29]. Erythromycin

is a suitable substitute in the case of patients who are allergic to penicillin [4].

Antimicrobial therapy has no benefit however, in treating pharyngitis that is not

caused by Group A streptococcus. Its use in such situations unnecessarily exposes

patients to expense and hazards as well as possibly contributing to the emergence

of antibiotic-resistant bacteria. It has been shown that therapy can be postponed

for up to 9 days after symptoms first appear, and still safely prevent the onset of

acute rheumatic fever [4]. An untreated Group A streptococcus infection will last

for 7 to 10 days [29]. In about 10% of cases, Group A streptococcus will remain

present in the throat even after adequate treatment [24]. For patients whose

symptomatic episodes do not decrease in frequency over time, without alternative

explanation, surgical removal of the tonsils may be considered. Throat cultures

should be performed regularly for patients with a history of acute rheumatic fever

[4].

Vaccines for Group A streptococcus are currently being investigated. One impor-

tant issue with the vaccine is that it does not itself, induce the acute rheumatic

fever it is intended to prevent [12].

3.4.3 Rheumatogenic Strains

Infection of the throat, by Group A streptococcus, is usually required for acute

rheumatic fever to be a risk [24]. Studies have shown Group A streptococcus

strains that colonise the skin are rarely associated with cases of acute rheumatic

fever [31]. Not all infections due to Group A streptococcus can result in acute

rheumatic fever. Those that do are considered extremely virulent and the attack

rate of the resultant acute rheumatic fever is dependent on the host’s immune

response [31]. The onset of acute rheumatic fever in an individual may be the
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result of an increase of virulence in a specific strain of Group A streptococcus [24].

Identifying the particular strains that lead to acute rheumatic fever can be difficult

however, as often patients do not remember having a sore throat. By the time

acute rheumatic fever is diagnosed, the infecting strain is often gone [31]. While

the separation of skin and throat strains of Group A streptococcus is fairly simple,

the differences between throat strains associated with acute rheumatic fever and

those that are not is not clear other than their differing levels of virulence [31].

There appears to be some seasonal variation, such that throat colonising Group

A streptococcus is not often associated with acute rheumatic fever during the

summer. It is during the winter that acute rheumatic fever follows Group A

streptococcus [31].

Overall the development of acute rheumatic fever and its severity is thought to

depend on the genetic susceptibility of an individual, the virulence of the Group

A streptococcus strain, environmental factors and an abnormal immune response

[8, 11].

3.5 New Zealand Infection Rates

In a study conducted by Jaine et.al. annual rates of first time acute rheumatic

fever cases in New Zealand between 1996 and 2005 were found to be 3.4 per 100

000. This is an average of 125 first time acute rheumatic fever hospital admissions

per year [18].

There also appears to be a strong ethnic association with acute rheumatic fever

in New Zealand, making ethnicity an important risk factor. While New Zealand

European and other ethnicities have seen a significant drop in acute rheumatic

fever rates, there have been increases among Maori and Pacific peoples such that

overall rates in New Zealand have not dropped since the 1980’s. The highest

estimated incidence of acute rheumatic fever among school children is in Sub-

Saharan Africa, but the highest published incidence in recent times is among the

indigenous populations of Australia and New Zealand [11]. Rates among Maori

are approximately 22 times that of New Zealand Europeans, and Pacific peoples
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Figure 3.1: Rheumatic fever rates for 2010 by age group and ethnicity. Rates are
per 100 000 population. This was sourced from the New Zealand public health
observatory website, Notifiable disease page. The numbers of acute rheumatic fever
amoung the other ethnicities do not show up here because they are too small, they
represent only 6 cases in total or 0.000076 per 100 000 individuals.

have a rate 75 times greater [18]. Figure 3.1 shows the rates for different ethnicities

and age groups in 2010.

As the graph in Figure 3.1 shows, acute rheumatic fever is a huge issue among

Maori and Pacific peoples, while barely affecting any other ethnicities. In 2010

there were 104 cases among Maori, 58 among Pacific peoples and 6 cases among

all the other ethnicities together.

In New Zealand recurrences are again, more likely to occur among the Maori and

Pacific peoples, when compared with the rest of the population, accounting for

well over 90% of recurrent cases. Overall recurrence rates in New Zealand are low,

with an average of only six cases per year for the years 1996 to 2005 [18].

New Zealand continues to maintain a high rate of acute rheumatic fever for a

developed country. Table 3.1 gives rates of acute rheumatic fever from around the

world [9]. We can easily see how much more prevalent acute rheumatic fever is

among the maori, aboriginal and pacific island populations comapared with other

ethnicities and regional populations.

Figure 3.2 shows the number of acute rheumatic fever cases seen by health profes-

sionals in New Zealand each month since 1997.
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Region Median incidence* Annual No. cases

Sub-Saharan Africa 13.4 24000

South central Asia 54.0 184000

Asia other 21.2 26500

Latin America 19.6 21000

Middle east and north Africa 13.4 11000

Eastern Europe 10.2 4000

Pacific & indigenous Australia/NZ 374.0 8000

Established market economies** 10.0 11000

China 21.2 47000

Total aged 5-14 years .. 336500

Total all ages† .. 471000

* cases per 100,000.
** Non-indigenous Australia and New Zealand, Western Europe,

Northern Europe, Southern Europe, Northern America and Japan
† Assumes 40% of all acute rheumatic fever cases occur over 14 years of age.

Table 3.1: Estimated annual number of acute rheumatic fever cases in children
aged 5-14 years, and extrapolation to all ages [9].

Figure 3.2: Rheumatic fever cases by month since 1997. This was sourced from
the New Zealand public health observatory website, Notifiable disease page.
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Figure 3.3: Rheumatic fever cases by month since 1997 summed together. Data
were sourced from the New Zealand public health observatory website, Notifiable
disease page.

Geographically incidence is highest in the upper North Island with low incidence

in the South Island. This geographic variation is strongly correlated with ethnic

distribution in New Zealand.

Acute rheumatic fever is a notifiable disease in New Zealand [18]. This means

medical practitioners are required to notify local medical health officers of any

acute rheumatic fever diagnoses they make. Failure to do so is an offence against

the health act [22]. The numbers of reported cases, between 1996 and 2005, peak

around early winter for the months June - August. The lowest incidence was

recorded in October, November and December [18]. Figure 3.3 shows the monthly

pattern a bit more clearly.

These patterns in age, ethnicity and season give us some things to focus on in

developing a model for disease incidence.



Chapter 4

A Basic Model for Rheumatic

Fever

4.1 Building the Basic Model

As we saw in Chapter 3, acute rheumatic fever is an autoimmune response to in-

fection by Group A streptococcus. This means individuals are moving from being

infected to developing acute rheumatic fever. If we label the infected compartment

I and the compartment containing those with acute rheumatic fever as A, indi-

viduals flow from I to A, as shown in Figure 4.1, at the rate they develop acute

rheumatic fever.

The infected individuals must come from somewhere, so we need a compartment

that contains those individuals susceptible to infection. This is the Susceptible

compartment which we will label S. As Figure 4.1 shows, susceptible individuals

move from S to I as they become infected and from there move on to A.

Because Group A streptococcus is an illness from which no immunity is retained

upon recovery, we need an SIS type model. All individuals move back to the

susceptible compartment as they recover. Individuals may recover from either the

I or A compartment as not everyone develops acute rheumatic fever after having

a Group A streptococcus infection. Figure 4.1 shows the flow of individuals once

41
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S I A
βSI

γI

ωI

κA

Figure 4.1: Flow chart for the SIAS epidemic model, given by 4.1, showing the
rate of movement between compartments as individuals move from Susceptible,
though Infectious to developing Acute rheumatic fever, and the different paths
they can take back to the Susceptible compartment.

we add in recovery.

We will refer to this as the SIAS model. The differential equations for this model

are shown in 4.1 below.

dS

dt
= −βSI + γI + κA

dI

dt
= βSI − γI − ωI (4.1)

dA

dt
= ωI − κA

The rate of new infections is proportional to both the number of susceptible indi-

viduals and the number of infectious individuals. β is the proportionality constant

and represents the rate of contact resulting in infection. γ is the rate of recovery

of infected individuals back into the susceptible population. ω is the rate at which

infected individuals develop acute rheumatic fever and κ is the rate at which they

recover. Figure 4.1 shows the flow of individuals and the rates at which they move

between compartments in this basic model.

4.1.1 Assumptions

For this model we are assuming individuals with acute rheumatic fever are no

longer infectious but cannot be infected either. Though individuals with acute

rheumatic fever may still retain some bacteria, this is minimal and often gone

by the time they are diagnosed [31], and due do the immune response resulting

in acute rheumatic fever they are unlikely to contract a new infection while in
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compartment A. We are also assuming we have a homogeneous population where

individuals mix evenly and each individual has the same chance of being infected

and developing acute rheumatic fever.

N = S + I + A is the total population size. In this model we are assuming the

population size is constant, therefore dS
dt

+ dI
dt

+ dA
dt

= 0. This means we can use

A = N − S − I to substitute for A. The acute rheumatic fever compartment

works a bit like an R class in an SIR type model, it contains individuals who were

infected and are temporarily immune to reinfection. While A does have an effect

on the dynamics of S and I, we can easily find A from S, I and N at any point.

Substituting A = N − S − I into 4.1 gives us the reduced system

dS

dt
= −βSI + γI + κ(N − S − I) (4.2)

dI

dt
= βSI − γI − ωI

4.2 Equilibrium Points for the SIAS Model

We find the equilibrium points in the same way we found them for the SIS and

SIR models in section 2.2.3. First set the righthand side of each equation equal

to zero, Then solve for S and I. The second equation from 4.2 gives us

βSI = γI + ωI

⇒ I = 0 or βS = γ + ω

If I = 0 the first equation of 4.2 gives us

κN = κS

N = S

κ is the constant rate of recovery from acute rheumatic fever and non-zero. So the

first equilibrium point is at (N, 0). This is the disease free equilibrium.

If I 6= 0 then we have βS = γ + ω. By substituting this into the first equation of
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4.2 we get

−I(γ + ω) + γI + κN − κ(γ + ω)

β
− κI = 0

−I(ω + κ) + κ

(
N − γ + ω

β

)
= 0

I(ω + κ) = κ

(
N − γ + ω

β

)
I =

κ(βN − γ − ω)

β(ω + κ)
(4.3)

giving us the endemic equilibrium point at

(S, I) =

(
γ + ω

β
,
κ(βN − γ − ω)

β(ω + κ)

)
.

4.2.1 Stability of the Equilibrium Points

To determine the stability of each equilibrium point we find the Jacobian matrix

for 4.2 [
−βI − κ −βS + γ − κ

βI βS − γ − ω

]
(4.4)

At the disease free equilibrium (N, 0) this becomes[
−κ −βN + γ − κ
0 βN − γ − ω

]
(4.5)

which has two eigenvalues, −κ and βN − γ − ω. Because −κ < 0 always, the

disease free equilibrium is stable if βN < γ + ω and unstable if βN > γ + ω. This

makes sense because if the initial rate of infection, βN , is less than the rate at

which individuals leave the infectious compartment, γ + ω, then the infectious I

will shrink faster than it grows until the disease dies out in the population.

At the endemic equilibrium (S, I) =

(
γ + ω

β
,
κ(βN − γ − ω)

β(ω + κ)

)
we get the Jaco-
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bian matrix −κ(βN − γ + κ)

ω + κ
−ω − κ

κ(βN − γ − ω)

ω + κ
0

 (4.6)

Fixed points are stable if the determinant of the Jacobian matrix is positive and

the trace is negative. The determinant of the Jacobian matrix 4.6 is

(ω + κ)× κ(βN − γ − ω)

ω + κ
= κ(βN − γ − ω) (4.7)

Which is positive if βN > γ + ω.

The trace of this matrix is
−κ(βN − γ + κ)

ω + κ
(4.8)

Which is negative if βN > γ − κ. For κ > 0,

γ − κ < γ < γ + ω.

So this equilibrium point is stable as long as βN > γ + ω.

This is similar to what we saw in Section 2.2.3.1 with the endemic equilibrium

for the SIS model. The condition of stability of this equilibrium point is also

a condition for the valid existence of this equilibrium point. At the endemic

equilibrium βS = γ + ω, so βN must be greater than βS, as N = S + I + A

and to be biologically realistic we cannot have a negative number of individuals

in any compartment. This means βN > βS = γ + ω for this equilibrium point to

realistically exist. That is, when the equilibrium is achievable it is also stable. The

change of stability about the point βN = γ+ω, is again an example of transcritical

bifurcation.

To find the nature of A and its value at each equilibrium point we can use N =

S + I + A and substitute the appropriate values into 4.1. Note that A is also

stationary at the equilibrium points since A = N−S−I and S and I are stationary.

So at (N, 0), A = 0.

This makes sense as when S = N everyone is in the susceptible compartment.

There are no individuals with acute rheumatic fever or in the infected compartment
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Figure 4.2: A plot of a numerical solution to the SIAS model 4.1. with N =
100, β = 0.01, γ = 0.4, ω = 0.2, κ = 0.8 and 2 initial infectious individuals.
Under these conditions the numbers of Group A streptococcus (Strep= I) and
acute rheumatic fever (ARF= A) head to an equilibrium at 32 and 8 respectively

.

to be at risk of developing acute rheumatic fever.

At the endemic equilibrium

A =
ω(βN − γ − ω)

β(ω + κ)
=
ωI

κ
.

A is directly proportional to I. This is also clear from the third equation in 4.1.

dA

dt
= 0 =⇒ ωI = κA
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4.3 Triangle of Validity

Because N = S + I + A is constant we can ‘decouple’ A from the system of

equations as was done in 4.2. We cannot drop it entirely however. Aside from A

being the compartment we are interested in in the first place, it also has a large

influence on the values of I and S and their valid existence.

The endemic equilibrium point is at βS = γ+ω. S ≤ N always, so for the endemic

equilibrium to have valid values of S and I, we require βN > γ + ω. The disease

free equilibrium is at S = N and is stable as long as βS = βN < γ + ω. This

puts the endemic equilibrium outside the ‘triangle of validity’, or valid range of

possible values for S and I, as βS = γ + ω > βN is an unrealistic scenario.

If we plot I against S and join the points (N − A, 0) and (0, N − A) to represent

the boundary above which points are no longer valid, we get a triangle. Figure

4.3 shows this along with a numerical solution of 4.1 with infectious individuals

plotted against the number of susceptibles.

So for the endemic equilibrium to be valid the disease free equilibrium must lose

its stability. It also means that when the endemic equilibrium has valid values, it

has a negative trace and positive determinant. So when it is valid, the endemic

equilibrium is always asymptotically stable. Under the conditions at which the

endemic equilibrium is unstable it is outside of the ’triangle of validity’.

This change of stability about the point βN = γ + ω = βS is an example of

transcritical bifurcation [33]. In this case either the disease free equilibrium is

always valid, but is unstable when the endemic equilibrium exists. The endemic

equilibrium only exists when the disease free equilibrium is unstable, the endemic

equilibrium is always stable when it exists.

We saw this same, transcritial bifurcation, behaviour in our analysis of the SIS

model in section 2.2.3.1.

Theoretically the same triangle of validity, seen in our SIAS model can apply to

the SIR model. The problem is that there is no feedback into S from either I or

R so R gets bigger and the triangle decreases in size until I = 0.
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Figure 4.3: A plot of I against S for SIAS model. N = 100, β = 0.1, γ =
0.4, ω = 0.2, κ = 0.8 with 2 initial infectious individuals. The line curves down
before we reach S = 0 as this can only happen if β −→∞ or if γ + ω = 0, i.e. we
have no recovery. The solid blue line shows the direct line between (S, I) = (0, N)
and (S, I) = (N, 0)
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4.3.1 R0 for the Basic SIAS Model

In section 2.2, equation 2.13, we defined the basic reproduction number R0 for the

SIR model as

R0 =
βN

γ

This is the rate of infection of susceptible individuals in a fully susceptible pop-

ulation, (ie. when S = N) divided by the rate at which individuals leave the

infectious compartment [7]. For our acute rheumatic fever model this would mean

R0 =
βN

γ + ω

It is instructive to relate R0 to the stability of the equilibrium points. When

the endemic equilibrium is valid βN > γ + ω and R0 > 1, meaning more than

one susceptible individual is infected by each infected individuals, which would

imply an epidemic is likely to occur. It makes sense that this threshold is reached

simultaneously with the appearance of a stable endemic equilibrium.

4.4 A Basic Stochastic Model

Using our basic acute rheumatic fever model, we can derive a set of transition

properties similar to what was done for the SIR model in equation 2.42 and the

SIS model in section 2.5.2. Using S = N − I − A we can show the probability

of a single change of state. This is the probability that one individual changes

compartment.

4.4.1 Discrete Time Markov Chain Model

p(i+j,a+k),(i,a)(∆t) is the probability that the number of individuals in the infectious

compartment will change from I(t) = i to I(t + ∆t) = i + j and the number of

individuals with acute rheumatic fever will change from A(t) = a to A(t + ∆t) =

a + k over the time step ∆t. The transition probabilities for the SIAS DTMC
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S I A
β(N − i− a)i

γi

ωi

κa

Figure 4.4: Flow chart for the SIAS DTMC model showing the transition prob-
abilities for moving between each compartment.

model are

p(i+j,a+k),(i,a)(∆t) =



βi(N − i− a)∆t (j, k) = (1, 0)

γi∆t (j, k) = (−1, 0)

ωi∆t (j, k) = (−1, 1)

κa∆t (j, k) = (0,−1)

1− [βi(N − i− a) + i(γ + ω) + κa]∆t (j, k) = (0, 0)

0 otherwise

(4.9)

These transition probabilities are derived from the differential equations 4.1 seen

earlier in the chapter.

The probability that I = i and A = a at time t + ∆t in terms of the transition

probabilities is given by

p(i,a)(t+ ∆t) = p(i−1,a)(t)β(i− 1)(N − i+ 1− a)∆t

+ p(i+1,a)(t)(γ)(i+ t)∆t+ p(i+1,a−1)(t)ω(i+ 1)∆t (4.10)

+ p(i,a+1)(t)(κ)(a+ 1)∆t

+ p(i,a)(t)(1− [βi(N − i− a) + i(γ + ω) + a(κ)]∆t)

Figure 4.5 shows two sample paths for the transition probabilities in 4.9. The plots

for both Group A streptococcus (I) and acute rheumatic fever (A) are shown along

with their deterministic plots.
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Figure 4.5: Two sample paths of the DTMC SIAS model given in 4.9. The solid
lines are the DTMC sample paths. The dashed lines show the deterministic model.
The lower set of lines is the number of individuals with acute rheumatic fever (A)
and the higher are the number with Group A streptococcus (I). N = 100, β =
0.002, γ = 0.5. ω = 0.2, κ = 0.8

.
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4.4.2 Continuous Time Markov Chain Model

As we said earlier in section 2.5.2, by using a Continuous Time Markov Chain

(CTMC) model, we allow changes to occur over time steps of varying size. A

CTMC model allows us to more accurately represent changes taking place in con-

tinuous time. Because of this increased accuracy, from now on we will only be

using continuous time in our stochastic models.

For the basic SIAS model we can define the CTMC infinitesimal probabilities as

follows

p(i+j,a+k),(i,a)(∆t) =



βi(N−i−a)
N

∆t+ o(∆t) (j, k) = (1, 0)

γi∆t+ o(∆t) (j, k) = (−1, 0)

ωi∆t+ o(∆t) (j, k) = (−1, 1)

κa∆t+ o(∆t) (j, k) = (0,−1)

1− [βi(N−i−a)
N

+ i(γ + ω) + κa]∆t+ o(∆t) (j, k) = (0, 0)

o(∆t) otherwise

(4.11)

Figure 4.6 shows a plot of two sample paths for the SIAS CTMC infinitesimal

transition probabilities. Comparing them with the deterministic plot from the

equations in 4.1 we can see that the sample paths generally follow the deterministic

curve but with some variation induced by the random choice made at each time

step.
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Figure 4.6: Two sample paths of the CTMC SIAS model seen in 4.11. The solid
lines are the CTMC sample paths. The dashed lines show the deterministic model.
The lower set of lines is the number of individuals with acute rheumatic fever (A)
and the higher are the number with Group A streptococcus (I). N = 100, β =
0.02, γ = 0.5. ω = 0.2, κ = 0.8

.



Chapter 5

Developing the Model Further

5.1 Vital Dynamics

Because there is no immunity conferred by Group A streptococcus, if we want to

include the possibility that people may die from acute rheumatic fever, we must

also include natural birth and death rates. Otherwise our whole population would

eventually die out from the disease.

If people die from acute rheumatic fever, there will also be a fraction who recover.

Let f be this fraction that recover, so 1 − f of individuals who develop acute

rheumatic fever will die. In this model the population size will not always be

constant, so N is also changing. Our system of equations for acute rheumatic

fever with vital dynamics is given in 5.1 below:

dS

dt
= bN − βSI + γI + κfA− µS

dI

dt
= βSI − γI − ωI − µI (5.1)

dA

dt
= ωI − κA− µA

We are assuming no vertical transmission of Group A streptococcus from mother

to newborn, so all newborns are born into the susceptible compartment. b is the

birthrate in the population. µ is the natural death rate that would happen in the

54
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S I A
βSI

γI

ωI

κfA

bN

µS µI µA

κ(1− f)A

Figure 5.1: Flow chart for the SIAS epidemic model with vital dynamics given
by 5.1.

absence of disease. We should note that, since N = S + I + A we can define

dN

dt
= bN − (1− f)κA− µN.

Apart from the addition of a death rate the equations for I and A have not changed

from 4.1. The equation for S gains birth and death rates and κfA replaces κA as

only a fraction f survive having acute rheumatic fever.

5.1.1 Equilibria

dN
dt

= 0 =⇒ (b − µ)N − (1 − f)κA = 0. This means the only way N can reach

an equilibrium where dN
dt

= 0 is if b = µ and f = 1. There are two ways we could

deal with this problem. We could replace bN with b(N) where b(N) is logistic,

so as the population size increases the birth-rate approaches the death-rate so the

population size approaches an equilibrium, also known as the carrying capacity. So

as N approaches this carrying capacity, b(N) approaches µN . While this method

is useful it complicates the system a bit more.

When dealing with the smaller periods of time usually associated with epidemics

we can use the fact that the population will not normally vary in size much. In this

case we can say b ≈ µ and b = µ+ε1, where |ε1| � 1. Because of available medical

care in NZ very few individuals actually die from rheumatic fever meaning f is

very close to 1. Most of the deaths are due to Chronic Rheumatic Heart Disease,

which can develop with reccuring episodes of acute rheumatic fever.

Let (1− f)κ = ε2, |ε2| � 1. This means
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dN

dt
≈ (µ+ ε1)N − (1− f)κA− µN = ε1N + ε2A.

ε1N > ε2A, So dN
dt
< 2ε1N .

If we let ε1t = τ , dN
dτ
< 2N .

The fact that N is only noticeably changing on the timescale τ = εt, means that

with respect to t we can consider N to be constant and treat it as such in our

analysis.

Treating N = S + I + A as a constant and b ≈ µ we find two equilibrium points.

(S, I) = (N, 0) and

(
γ + ω + µ

β
,
(µ+ κf)(βN − γ + µ+ ω)

β(ω + κf + µ)

)
The Jacobian matrix for this system 5.1 is[

−βI − κf − µ −βS + γ − κf
βI βS − ω − γ − µ

]
(5.2)

At the disease free equilibrium (N, 0), this becomes[
−κf − µ −βN + γ − κf

0 βN − ω − γ − µ

]
(5.3)

This has two eigenvalues −κf − µ and βN − γ − ω − µ. This means the disease

free equilibrium for this system is stable as long as βN < γ + ω + µ.

At the endemic equilibrium the Jacobian matrix becomes
(µ+ κf)(γ + ω + µ− βN)

ω + κf + µ
− κf − µ −ω − µ− κf

(µ+ κf)(βN − γ − µ− ω)

ω + κf + µ
0

 (5.4)

We will find the stability of this point using the trace and determinant. The trace

is
(µ+ κf)(γ + ω + µ− βN)

ω + κf + µ
− κf − µ =

(κf + µ)(γ − κf − βN)

ω + κf + µ
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This is negative as long as βN > γ − κf .

The determinant of 5.4 is

(µ+ κf)(βN − γ − µ− ω)

This is positive when βN > γ + µ + ω. So the endemic equilibrium can only be

stable when the disease free equilibrium is unstable. Again we see an example

of transcritical bifurcation. The endemic equilibrium is stable as long as βN >

γ + ω + µ.

5.2 Stochastic Model with Vital Dynamics

Using our rheumatic fever model with vital dynamics from 5.1, with b = µN , we

can derive a set of transition probabilities for the CTMC SIAS model with vital

dynamics. Using S = N − A − I the probabilities of each single change of state

are as follows

p(i+j,a+k),(i,a)(∆t) =



βi(N − i− a)∆t+ o(∆t) (j, k) = (1, 0) S → I

(γ + µ)i∆t+ o(∆t) (j, k) = (−1, 0) I → S

ωi∆t+ o(∆t) (j, k) = (−1, 1) I → A

(µ+ κ)a∆t+ o(∆t) (j, k) = (0,−1) A→ S

1− [βi(N − i− a) + i(γ + ω + µ) + a(κ+ µ)]∆t+ o(∆t) (j, k) = (0, 0) No Change

o(∆t) otherwise

(5.5)

µi and µa represent the birth of a susceptible being balanced by the death of an

infected or an individual with acute rheumatic fever, respectively.

The probability that I = i and A = a at time t + ∆t in terms of the transition
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Figure 5.2: Two sample paths of the CTMC SIAS model given by the transition
probabilities in 5.5. The solid lines are the CTMC sample paths. The dashed lines
show the deterministic model. The lower set of lines is the number of individuals
with acute rheumatic fever (A) and the higher are the number with Group A
streptococcus (I). N = 100, β = 0.02, µ = 0.1, γ = 0.5. ω = 0.2, κ = 0.8

.

probabilities is given by

p(i,a)(t+ ∆t) = p(i−1,a)(t)β(i− 1)(N − i+ 1− a)∆t

+ p(i+1,a)(t)(γ + µ)(i+ t)∆t+ p(i+1,a−1)(t)ω(i+ 1)∆t (5.6)

+ p(i,a+1)(t)(κ+ µ)(a+ 1)∆t

+ p(i,a)(t)(1− [βi(N − i− a) + i(γ + ω + µ) + a(κ+ µ)]∆t)

A plot of two sample paths, using these transition probabilities is shown in Figure

5.2. Matlab was used to create this plot

Basically we use a random number between 0 and 1 to pick which type of change

occurs in each time step. The size of each time step is randomly chosen on an

exponential distribution as was discussed in section 4.4.2. The code for this is in

the appendix.
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Figure 5.3: Flow chart for the SIAS epidemic model with migration and vital
dynamics, given in 5.7.

5.3 Migration

In New Zealand, migration can be an important factor. Immigration must be rep-

resented slightly differently from births, as individuals could possibly be infected

with Group A streptococcus or have acute rheumatic fever when they migrate.

This means we need three separate ‘birth terms’. Let b1S + b2I + b3A = bN be

the total rate of inflow into the population due to births and immigration. b1 is

a combination of susceptible immigrants and births of children, b2 represents im-

migration of infected individuals and b3 represents the immigration of individuals

with acute rheumatic fever. Now µ represents deaths and emigration. This gives

us a modified system of equations

dS

dt
= b1S − βSI + γI + κfA− µS

dI

dt
= b2I + βSI − γI − ωI − µI (5.7)

dA

dt
= b3A+ ωI − κA− µA

(5.8)

and consequentially,
dN

dt
= bN − (1− f)κA− µN

This modification to the equations alters the flow chart by having entry into each

compartment via immigration. This is shown in Figure 5.3.

Using the argument in section 5.1.1 above, we will treat the population size N ,

as a constant. This means we can again reduce our system so we are just dealing
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with I and S.

The Jacobian matrix we then get is[
b1 − βI − κf − µ −βS + γ − κf

βI b2 + βS − ω − γ − µ

]
(5.9)

Setting the equations in 5.7 equal to 0 we get I = 0 or βS = ω + γ + µ− b2.

I = 0 gives us the disease free equilibrium

S =
κfN

κf + µ− b1

Substituting this into the Jacobian matrix (5.9) we get
b1 − κf − µ − βκfN

κf + µ− b1

+ γ − κf

0 b2 +
βκfN

κF + µ− b1

− ω − γ − µ

 (5.10)

which has eigenvalues b1 − κf − µ and b2 + βκfN
κf+µ−b1 − ω − γ − µ. These are both

negative if

b1 < κf + µ and βN <
(κf + µ− b1)(ω + γ + µ− b2)

κf

βN > 0 always, so for the second condition to be true, the righthand side of the

inequality must also be positive. The first condition means κf + µ− b1 > 0 so we

need ω+ γ+µ > b2. Under these conditions the disease free equilibrium is stable.

The endemic equilibrium exists at βS = ω + γ + µ− b2 and

βI =
βκfN − (κf + µ− b1)(ω + γ + µ− b2)

ω + µ+ κf − b2
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The Jacobian matrix at the endemic equilibrium then becomes
(κf − γ)(b1 − κf − µ)− βκfN

ω + µ+ κf − b2

−ω − µ+ b2 − κf

βκfN − (κf + µ− b1)(ω + γ + µ− b2)

ω + µ+ κf − b2

0

 (5.11)

The determinant of the Jacobian matrix 5.11 is

βκfN − (κf + µ− b1)(ω + γ + µ− b2)

This is positive if

βκfN > (κf + µ− b1)(ω + γ + µ− b2)

The trace of 5.11 is
(κf − γ)(b1 − κf − µ)− βκfN

ω + µ+ κf − b2

which is negative if

βκfN > (κf − γ)(b1 − κf − µ)

Because the endemic equilibrium exists at βS = ω + γ + µ − b2, we need βN ≥
ω + γ + µ − b2 for this equilibrium point to be valid (All compartments contain

non-negative numbers of individuals). So for the endemic equilibrium to be both

valid and stable we need

βN >
(κf + µ− b1)(ω + γ + µ− b2)

κf
≥ ω + γ + µ− b2

Which implies

κf + µ− b1

κf
≥ 1

κf + µ− b1 ≥ κf

µ− b1 ≥ 0

µ ≥ b1
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This makes sense under the assumption that N is approximately constant and

µN ≈ bN = b1S + b2I + b3A. We are also assuming κf + ω + 2γ + µ > b2 though

this seems to be a reasonable assumption given all our parameters are positive and

b2, which is the rate of infected people entering the population, is likely to be quite

small.

5.3.1 Independence of Immigration

In the above system 5.7, rates of migration and births into and from each com-

partment are represented as proportional to the number of individuals currently

in that compartment. This makes sense for deaths and emigration, as the number

of people available to leave a compartment would be dependent on how many are

in that compartment. For births and immigration however, it makes more sense

for the number for people entering to be dependent on the whole population size,

or even independent of any other value. Infected individuals and individuals with

acute rheumatic fever will not immigrate based on how many other individuals

are infected or have acute rheumatic fever, it is much more likely to depend on

the total population size. Although this still may not be true in New Zealand

where immigration is regulated, it may also be more dependent on the size of the

global population. Taking this into account we can modify the equations to get

this system.

dS

dt
= b1N − βSI + γI + κfA− µS

dI

dt
= b2N + βSI − γI − ωI − µI (5.12)

dA

dt
= b3N + ωI − κA− µA

The rates of immigration into each compartment are now all proportional to N in-

stead of each individual compartment size. the differential equation for N remains

the same as in 5.7. Figure 5.4 shows the modification to the flow chart.

Using the same argument as above in section 5.1, we will treat the population

size, N , as a constant. This means we can again reduce our system so we are just
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Figure 5.4: Flow chart for the SIAS epidemic model with immigration propor-
tional to total population size as given in 5.12 .

dealing with I and S. The Jacobian matrix we then get is[
−βI − κf − µ −βS + γ − κf

βI βS − ω − γ − µ

]
(5.13)

Setting the equations in the system equal to 0 we get

S =
(γ + µ+ ω)I − b2N

βI

I =
βN + γ + ω + µ±

√
(βN + γ + ω + µ)2 − 4βb2N( ω

κ+µ
+ 1)

2β( ω
κ+µ

+ 1)

These are both the endemic equilibria. Because there is always the possibility of

infected persons entering the population via immigration there is no disease free

equilibrium.

5.4 Exposed Periods and Treatment Models

In this section we will be deviating briefly from acute rheumatic fever modelling

and focusing more generally on SIR type models. Not everything mentioned in

this section relates explicitly to acute rheumatic fever, but there are important

concepts here that we need to consider. We will discuss the use of these concepts

in the later development of our SIAS model in Chapter 6.
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5.4.1 Exposed Periods

Many infectious diseases have a latent period, where an individual has been ex-

posed to the disease and is infected, but is not yet infectious. The length of this

exposed period has little effect on the predictions of an epidemic model [7]. To

incorporate an exposed period into an SIR type model, we add the compartment

E. With a mean exposed period of 1/v this gives us the SEIR model below:

dS

dt
= −βSI

dE

dt
= βSI − vE (5.14)

dI

dt
= vE − γI

dN

dt
= −(1− f)γI

We have used the equation for N instead of R as it shows our inclusion of the

possibility for death from the disease better. The equation for R is R′ = γfI as

not all infectious individuals recover.

In some diseases, this exposed period is really an asymptomatic stage of infec-

tiousness, where there is some infectiousness but it is reduced by some factor εE

until the individual moves into the fully infectious compartment. In this case the

equations for S and E become

S ′ = −βS(I + εEE) (5.15)

E ′ = βS(I + εEE)− vE

The equations for I and N remain the same as in 5.14 [7]. For this model R0 is

the sum of the secondary infections caused by an individual in a fully susceptible

population, during their exposed period and during their infectious period.

R0 =
βN

γ
+ εE

βN

κ
(5.16)

Though we will not be using exposed periods in the acute rheumatic fever model we
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develop in this thesis, the concept of more that one compartment being infectious

is important [7]. We will use multiple infectious compartments later on along

with the idea that R0 is the sum of all the secondary infections caused by each

compartment.

5.4.2 Vaccination models

For many diseases, there are vaccinations to protect against infection. This is one

form of treatment, and a simple way of accounting for it is to reduce the population

size by the number of vaccinated individuals. In reality however vaccinations

may only reduce the rate of infection. Along with other treatments however,

they may reduce the infectiousness of a vaccinated individual if they do become

infected [7]. Modelling this requires an extra compartment similar to the exposed

compartment in section 5.4.1 above. In the case of vaccination however, vaccinated

individuals follow a path parallel to other individuals. Not everyone goes though

the compartment of reduced infectiousness.

The main issue with modelling this separation is identifying who has been vacci-

nated prior to becoming infected. What this may require is multiple compartments

for susceptible individuals. This will keep vaccinated individuals separate from the

rest of the population in the model so we can deal with their interactions in the

population separately.

If we use the subscript V to identify vaccinated individuals, the flow chart for an

SIR model with vaccination might look like the diagram shown in Figure 5.5.

Once an individual is recovered from the infection, with immunity, their previous

vaccination status is no longer important to the model.

We have not included vital dynamics in this model. The main point of its in-

troduction is to show the use of multiple susceptible compartments and parallel

infection and recovery paths. The differential equations that match the diagram

in Figure 5.5 are

dS

dt
= −βS(I + εIV )− λS dSV

dt
= λS − κSV (I + εIV )
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Figure 5.5: A flow chart for the SIR model with vaccination. κ represents the
reduced susceptibility of vaccinated individuals. ε is the factor by which their
infectiousness is reduced. λ is the rate of vaccination.

dI

dt
= βS(I + εIV )− γI dIV

dt
= κSV (I + εIV )− αIV (5.17)

dR

dt
= γI + αIV

Though it may be unrealistic, this model assumes that the vaccination lasts life-

time. this is purely to provide a simple introduction to this type of model, a more

complicated model could be constructed to account for vaccination wearing off

over time, but is beyond the scope of this thesis. We are also assuming mixing in

the population is independent of vaccination status. This means any susceptible

individual, vaccinated or not, can be infected by any infectious individual. R0

is the sum of the number of new infections due to each infectious compartment.

It is the rate of transfer of individuals into that compartment multiplied by the

rate at which they leave. If we let I + IV = It be the total number of infectious

individuals, the part of R0 due to I is as follows

βSIt
βSIt + κSV It

× βSI + κSV I

γI
=
βS

γ

βSIt is the portion of individuals being infected who move into compartment I.

βSI + κSV I is Th rate of infection due to individuals in compartment I, and γI i

the rate that they leave I.

Doing the same thing for compartment IV we get

κSV It
βSIt + κSV It

× βSεIV + κSV εIV
αIV

= ε
κSV
α
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This gives us

R0 =
βS

γ
+ ε

κSV
α

The ε is the factor by which infectiousness of vaccinated is reduced.

There is currently no vaccination against Group A streptococcus, available for

widespread use [12]. Because of this we will not use a vaccination compartment

in our further development of the model for acute rheumatic fever. Both Group

A streptococcus and acute rheumatic fever however are diseases that have shown

increased prevalence among certain age groups [4] and in New Zealand, different

ethnicities show variation [18][11]. This is an area where we may need to use

multiple susceptible compartments to account for the different rates of infection

for different demographics.

5.4.3 Treatment for infection

In the situation where there is a treatment for the disease after an individual has

been infected, we can use an SITR model, where T is the compartment containing

those undergoing treatment. Suppose some fraction α of infected individuals are

selected for treatment per unit of time, the treatment reduces infectivity by a

fraction δ and the rate of removal of treated individuals is η. [7]. The model we

then produce is

dS

dt
= −βS(I + δT )

dI

dT
= βS(I + δT )− (γ + α)I (5.18)

dT

dt
= αI − ηT

dR

dt
= γI + ηT

The flow chart for this model is shown in Figure 5.6

The mean amount of time spent in the infective compartment is 1/(γ + α) so an

individual in this compartment would cause βN/(γ + α) secondary infections, in

a fully susceptible population. The fraction α/(γ + α) of infected individuals are
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Figure 5.6: A flow chart for the SIR model with treatment as seen in 5.18. δ is
the factor by which infectiousness is reduced for individuals in treatment. α is the
rate of treatment. γ and η represent the different rates of recovery.

treated. While in the treatment compartment an individual will cause δβN new

infections per unit of time. Individuals remain in the treatment class for a mean

time of 1/η so the number of secondary infections caused by treated individuals,

in a fully suscpetible population, is α/(γ + α)× δβN/η [7]. Overall R0 is

R0 =
βN

γ + α
+

αδβN

η(γ + α)
(5.19)

5.5 Acute Rheumatic Fever History

An individual’s history in relation to acute rheumatic fever will affect their likeli-

hood of developing the disease following their next Group A streptococcus infec-

tion. An individual who has had acute rheumatic fever before is more at risk than

someone who has not [1]. This is something we should account for in our model.

Similarly to how the population was split in section 5.4.2 based on vaccination

status, we can split the population based on individual history in relation to acute

rheumatic fever. We assume that an individual’s history of acute rheumatic fever

only affects their susceptibility to acute rheumatic fever and not their susceptibility

or infectiousness in relation to Group A streptococcus. Figure 5.7 shows what the

flow of individuals would look like in a model accounting for acute rheumatic fever

history.

The subscript A represents those individuals who have had Acute Rheumatic fever

in the past. These individuals have a greater chance of developing acute rheumatic
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Figure 5.7: Flow chart for an acute rheumatic fever model with compartments for
individuals with a history of Rheumatic fever.

fever, so σ > ω. It is also logical that they would have a reduced chance of recov-

ering from a Group A streptococcus infection without developing acute rheumatic

fever, therefore χ < γ. The differential equations for the model shown in Figure

5.7 are given in 5.20 below

dS

dt
= −βS(I + IA) + γI

dSA
dt

= κA− βSA(I + IA) + χIA

dI

dt
= βS(I + IA)− γI − ωI dIA

dt
= βSA(I + IA)− χIA − σIA (5.20)

dA

dt
= ωI + σIA − κA

One big issue with this model is that all individuals flow towards eventually hav-

ing acute rheumatic fever. S gets replenished by those who recover from Group A

streptococcus without developing acute rheumatic fever. Some individuals how-

ever, are always lost to the right hand side of the diagram in Figure 5.7. Eventually

there will be no one left without a history of acute rheumatic fever. We can see

this in the equilibrium points as well.

The differential equations in 5.20 give us two equilibrium points. The disease free

equilibrium occurs when

I = A = IA = 0 =⇒ S + SA = N

It is realistic for individuals to settle into the two susceptible compartments once

the disease dies out and can theoretically occur at any value of S or SA.

The other endemic equilibrium however, can only be reached once we run out of
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Figure 5.8: Flow chart for an acute rheumatic fever model with compartments for
individuals with a history of acute rheumatic fever and vital dynamics.

individuals who have never had acute rheumatic fever. This happens when

S = I = 0, SA =
χ+ σ

β
, IA =

κ(χ+ σ)

β(κ+ σ)
and A =

σ(χ+ σ)

β(κ+ σ)

This is an unrealistic equilibrium, especially in a population where not everyone

is actually susceptible to developing acute rheumatic fever.

A model that is unrealistic is not much use in the real world. We need to do

something about the fact that we are running out of susceptible individuals with

no history of acute rheumatic fever. One way to balance this loss is by introducing

new individuals in the form of newborns. This means we need to include vital

dynamics in the model.

5.5.1 History with Vital Dynamics

By including vital dynamics we can replenish the susceptible compartment con-

taining those with no history of acute rheumatic fever. Figure 5.8 shows the flow

of individuals once we add in the vital dynamics.

The introduction of vital dynamics also allows us to include the possibility that

individuals might die from acute rheumatic fever. The system of differential equa-
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tions when we include vital dynamics and disease deaths is as follows:

dS

dt
= bN − βS(I + IA) + γI − µS

dI

dt
= βS(I + IA)− γI − ωI − µI

dA

dt
= ωI + σIA − κA− µA (5.21)

dSA
dt

= κfA− βSA(I + IA) + χIA − µSA
dIA
dt

= βSA(I + IA)− χIA − σIA − µIA

where b is the birth rate. µ is the death rate and (1 − f) is the proportion

of individuals that die from acute rheumatic fever. If we let b ≈ µ as per the

argument in section 5.1.1 we can find the equilibrium points. The equations in

5.21 give us three equilibrium points. The disease free equilibrium occurs when

S = N, and I = A = SA = IA = 0

This describes the situation where Group A streptococcus has died out in the

population before anyone has developed acute rheumatic fever and survived it. Or

everyone with a history of acute rheumatic fever has died out.

If f 6= 1 The endemic equilibrium we find is

S = −σ(γ + ω + µ)

β(ω − σ)
SA =

ω(χ+ σ + µ)

β(ω − σ)

I =
σµ(σ + χ+ µ)

β(ωµ− σ(σ + ω + µ))
IA = − ωµ(σ + χ+ µ)

β(ωµ− σ(σ + ω + µ))

A = 0

Even though f 6= 1, none of these equations depend on f , because κf is the

coefficient of A and A = 0 at this equilibrium.

This equilibrium however is not valid. If all of the compartments and parameters

are non-negative, S and SA and I and IA cannot validly exist at the same time.
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For S to be valid we need

S = −σ(γ + ω + µ)

β(ω − σ)
≥ 0, ω 6= σ

β(ω − σ) < 0

ω < σ

However for SA to be valid we require that ω > σ, the opposite. The only way

this point could be valid is if σ = 0. The equilibrium point would then become

S = I = A = 0, and SA = IA =
χ+ µ

β

Which like the equilibrium point in section 5.5 above is unrealistic and acutally

impossible if µ > 0. So this model has no realistic endemic equilibrium unless,

under the assumption µ ≈ b, the assumption that f ≈ 1 is also made .

The running reproduction number for this model is

R∗ βS

γ + ω + µ
+

βSA
χ+ σ + µ

(5.22)

For the numerical solution 5.9 If we assumed the outbreak started in a fully suscep-

tible population with no history of acute rheumatic fever, then basic reproduction

number would be

R0 =
βN

γ + ω + µ
(5.23)

Figure 5.9 shows a plot a numerical solution produced by this model. In this

particular plot R0 = 3.85. The number of infected individuals shoots up steeply

then begins to settle down to what looks like an endemic equilibrium.

By assuming f = 1 we get three equilibrium points, one of which is the disease

free equilibrium given above. The other two equilibrium points points, are endemic

equilibria. They are solutions of cubic which we will not show here. The numbers
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Figure 5.9: A plot of numerical solutions for acute rheumatic fever history model
given in 5.21. The dashed, green line represents total Group A streptococcus
numbers, both compartment I and IA added together. The solid line plots the
acute rheumatic fever (A) numbers. N = 100, β = 0.02, µ = 0.01, γ = 0.5. ω =
0.02, κ = 0.8, χ = 0.4, σ = 0.5.
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in each compartment in terms of S however are;

I =
µ(N − S)

ω + µ

IA =
µ(S −N)(βS − γ − ω − µ)

βS(ω + µ)

A =
µ(N − S)(ωβS − σ(βS − γ − ω − µ))

βS(ω + µ)(κ+ µ)

SA =
βS(χ+ σ + ω)(ω + γ + µ− βS)

ω + γ + µ

If we use R∗ = 1 at an endemic equilibrium we can find the values of S at the

equilibrium points from equation 5.22.

R∗ =
βS

γ + ω + µ
+
βS(χ+ σ + ω)(γ + ω + µ− βS)

(γ + ω + µ)(χ+ σ + µ)
= 1

βS + βS(γ + ω + µ)− (βS)2

γ + ω + µ
= 1

βS(βS − 1)− (γ + ω + µ)(βS − 1) = 0

(βS − (γ + ω + µ))(βS − 1) = 0

⇒ βS = γ + ω + µ or βS = 1.



Chapter 6

A New Zealand Specific Model

In New Zealand, acute rheumatic fever is a notifiable disease. This means that

if an individual is diagnosed with acute rheumatic fever, the medical practitioner

involved must report it [18, 22]. Because of this requirement data for rates of acute

rheumatic fever in New Zealand are fairly good.

To construct a model that follows the behaviour of acute rheumatic fever in New

Zealand accurately, we need to take into account aspects of the disease’s behaviour

that are specific to New Zealand.

There is a strong ethnic association with acute rheumatic fever in New Zealand.

Maori and Pacific Island peoples have an increased risk of developing the disease

following a Group A streptococcus infection. Rates also seem to vary geographi-

cally within the country [18]. It is not clear if this geographical variation is due to

the distribution of ethnicities in the country, or if the increased incidence among

particular ethnicities is due to higher rates in different geographical locations. It

is possible it could be a mix of both variables. Even if we are not sure of the cause,

these factors should be taken into account in our model.

Age is also a factor in an individual’s risk levels. While it is not specific to New

Zealand it is an important factor that we need to account for in the construction

of our model.

75
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6.1 Public Health records and treatment

Because acute rheumatic fever is a notifiable disease in New Zealand, and because

of good public health records, anyone who has had acute rheumatic fever once

will be treated differently in the future in relation to Group A streptococcus and

acute rheumatic fever symptoms. This means that as people recover from an

episode of acute rheumatic fever, we cannot just put them back into the susceptible

population with everyone else. We need to add extra compartments to the model

for individuals with a history of acute rheumatic fever, as we did in section 5.5.

The effective treatment of Group A streptococcus will prevent the development of

acute rheumatic fever [24]. When we include treatment classes in our model, we

allow the assumption that individuals who receive treatment for Group A strep-

tococcus will not go on to develop acute rheumatic fever. We can also assume

that individuals with a known history of acute rheumatic fever will always seek

treatment for a Group A streptococcus infection.

If we start with a simple model without any vital dynamics we produce the fol-

lowing system of equations.

dS

dt
= −βS(I + IA) + γI + ρT

dI

dt
= βS(I + IA)− γI − φI − ωI

dT

dt
= φI − ρT

dA

dt
= ωI − ηA (6.1)

SA
dt

= ηA+ λTA − βSA(I + IA)

dIA
dt

= βSA(I + IA)− σIA
dTA
dt

= σIA − λTA

TA, SA, and IA represent individuals who have been through the acute rheumatic

fever compartment and are now in treatment, susceptible or infected with Group

A streptococcus respectively. Figure 6.1 shows the flow of individuals for this
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Figure 6.1: Flow of individuals in an acute rheumatic fever treatment model with
compartments for individuals with a history of acute rheumatic fever, as modelled
by the equations in 6.1.

system.

Because of the way we have set up the rate of transfer between compartments,

once an individual has gone through the acute rheumatic fever compartment they

cannot go back to being a ‘normal’ susceptible. This causes a bit of a problem

though because eventually everyone in the population is going to go through the

acute rheumatic fever compartment as we have set up no alternative route. This

is similar to what we saw in section 5.5 for the system 5.20.

We get two possible equilibrium points for this model. The disease free equilibrium

is at (S, I, T, A, SA, IA, TA) = (S, 0, 0, 0, N−S, 0, 0) where the disease dies out, this

can happen at any point in time during the epidemic. This equilibrium is stable

as long as βN < σ.

This model also has an endemic equilibrium at

(S, I, I, A, SA, IA, TA) =

(
0, 0, 0, 0,

σ

β
,
σ(βN − σ)

βλ(λ+ 1)

,
βN − σ
β(λ+ 1)

)
The Jacobian for this equilibrium has a determinant of 0 and the trace is

−2λ(βN − σ)

σ − λ
− η − φ− ρ− ω − λ− γ
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This means this equilibrium point is stable as long as

2λ(βN − σ)

σ − λ
> 0

So either

βN > σ > λ or λ > σ > βN

This equilibrium seems rather unrealistic, especially when we know that not every-

one will develop acute rheumatic fever after contracting Group A streptococcus,

even if they have multiple Group A streptococcus infections [11]. To solve this

problem we need to allow for people to recover from Group A streptococcus and

never develop acute rheumatic fever, introducing vital dynamics could help here.

6.1.1 Vital dynamics model

Including vital dynamics in the model allows us to bring new susceptible individ-

uals into the population via births. At the same time individuals with a history

of acute rheumatic fever may leave the population via deaths. If we assume ‘birth

rate’ = ‘death rate’=µ, the new system of equations we get is

dS

dt
= µN − βS(I + IA) + γI + ρT − µS

dI

dt
= βS(I + IA)− γI − φI − ωI − µI

dT

dt
= φI − ρT − µT

dA

dt
= ωI − ηA− µA (6.2)

dSA
dt

= ηA+ λTA − βSA(I + IA)− µSA
dIA
dt

= βSA(I + IA)− σIA − µIA
dTA
dt

= σIA − λTA − µTA

One of these equations is redundant, if we let TA = N − (S+ I +T +A+SA + IA)
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Figure 6.2: Flow chart for an acute rheumatic fever treatment model with vital
dynamics and compartments for individuals with a history of acute rheumatic
fever.

we get the jacobian matrix



−β(I + IA)− µ −βS + γ ρ 0 0 −βS
β(I + IA) βS − µ− φ− ω − γ 0 0 0 βS

0 φ −µ− ρ 0 0 0

0 ω 0 −µ− η 0 0

−λ −βSA − λ −λ η − λ −β(I + IA)− λ− µ −βSA − λ
0 βSA 0 0 β(I + IA) βSA − µ− σ


(6.3)

A diagram showing the flow of individuals for this model is shown in Figure 6.2.

In this case, as most acute rheumatic fever deaths are due to recurrent attacks

that lead to rheumatic heart disease [12], we have simplified the model by assum-

ing there are no deaths due to the disease. Because of the way we have designed

the model, individuals with a history of acute rheumatic fever always receive treat-

ment for a Group A streptococcus infection. They therefore never develop acute

rheumatic fever again. We have essentially eliminated the possibility of recurrent

attacks in individuals with a known history of acute rheumatic fever. We are also

assuming that births equal deaths so our population size N is constant.

Using Sage [30] we were able to find two equilibrium points for this model. The

disease free equilibrium at;

S = N, and I = T = A = SA = IA = TA = 0
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This is similar to what we saw in section 5.5.1. The disease free equilibrium point

represents a population where Group A streptococcus has died out before anyone

has developed acute rheumatic fever. Because we have included vital dynamics

in this model, it is also possible there were individuals who had acute rheumatic

fever, but all these compartments have died out.

The Jacobian matrix in the case of the disease free equilibrium becomes

0 −βN + b+ ρ+ γ µ µ µ −βN + µ µ

0 βN − µ− φ− ω − γ 0 0 0 βN 0

0 φ −µ− ρ 0 0 0 0

0 ω 0 −b− η 0 0 0

0 0 0 η −µ 0 λ

0 0 0 0 0 −µ− σ 0

0 0 0 0 0 σ −µ− λ


(6.4)

This equilibrium point is stable as long as βN < µ+ φ+ ω + γ.

Analytically there is another equilibrium point at

S = I = A = 0 SA =
σ + µ

β
(6.5)

IA = −(λ+ µ)(σ + µ)

β(λ+ σ + µ)
TA = − σ(σ + µ)

β(λ+ σ + µ)

This point immediately appears unrealistic and it is. Much like the endemic equi-

librium point in section 5.5, it is unrealistic for the whole population to develop

rheumatic fever.

This point is also not valid. The compartment sizes cancel each other out by all

adding to 0 instead of N , and both IA and TA have negative values. For a bio-

logically realistic model all compartments must be non-negative in size. Therefore

this model also has no valid endemic equilibrium.

The basic reproduction number for this model, R0 is

R0 =
βN

µ+ φ+ γ + ω
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Figure 6.3: Numerical solution for the model given in 6.2. Group A streptococcus
(I+IA) is represented by the solid line and acute rheumatic fever (A) numbers are
given by the dashed line. R0 < 1. The initial number of infections was 2. N=400,
β = 0.00055, µ = 0.01, φ = 0.1, ω = 0.03, γ = 0.1, σ = 0.8

as time goes on and individuals develop acute rheumatic fever, moving into the

right hand side of the model, our effective reproduction number becomes

R∗ =
βS

µ+ φ+ γ + ω
+

βSA
µ+ σ

,

as infectious individuals with a history of acute rheumatic fever also effect the rate

of infection.

When R0 < 1, βN < µ + φ + ω + γ. The disease dies out as expected and

we reach the disease free equilibrium, I = IA = 0. Figure 6.3 shows how the

number of infectious individuals quickly dies out in this scenario and the number

of individuals with acute rheumatic fever follows closely.

There is an initial bump in the number of individuals with acute rheumatic fever

as a proportion of those infected with Group A streptococcus before it dies out,
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Figure 6.4: Plot of the reproduction number with R0 < 1, using numerical
solutions to the model given in 6.2. The same parameters as used in Figure 6.3
apply.

still develop acute rheumatic fever.

With the parameters, used for the plot in Figure 6.3, R0 = 0.914 < 1. As some

individuals are infected and develop acute rheumatic fever initially the effective re-

production number drops with the falling number of susceptible. Once individuals

start to recover faster than they are being infected, the reproduction number starts

to increase. The disease continues to die out however because there are no infec-

tious individuals left to infect anyone and R∗ < 1 still. The effective reproduction

number settles at R0. This behaviour is shown in Figure 6.4.

We were unable to find a realistic endemic equilibrium easily earlier. So what does

happen when βN > b+ω+γ+φ? Figure 6.5 shows a plot for βN > µ+φ+ω+γ

and R0 > 1.

The number of infected individuals shoots up steeply near the start but then drops

off almost as steeply to settle into an equilibrium. The number of individuals with

acute rheumatic fever does the same thing but not quite so steeply.

The effective reproduction number drops off sharply near the beginning, and actu-

ally drops below one twice before settling there in an equilibrium. This is shown

in Figure 6.6. From these Figures 6.3, 6.4, 6.5 and 6.6, we can see the disease free

equilibrium is reached when R∗ = R0 and the endemic equilibrium when R∗ = 1.
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Figure 6.5: Group A streptococcus and acute rheumatic fever numbers, given by
numerical solutions to the model seen in 6.2. R0 > 1. The dashed line represents
rheumatic fever and the solid line gives Group A streptococcus numbers. The
initial number of infectious was 2. N=400, β = 0.0009, µ = 0.01, φ = 0.1, ω =
0.03, γ = 0.1, σ = 0.8

Figure 6.6: Plot of the running reproduction number for R0 > 1, using numerical
soulutions to the model given in 6.2. The same parameters as used in Figure 6.5
apply.
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i j Probability Change in i Change in j
S I βS(I + IA)∆t+ o(∆t) s −→ s− 1 i −→ i+ 1
I S (γ + µ)I∆t+ o(∆t) i −→ i− 1 s −→ s+ 1
I T φI∆t+ o(∆t) i −→ i− 1 τ −→ τ + 1
T S (ρ+ µ)T∆t+ o(∆t) τ −→ τ − 1 s −→ s+1
I A ωI∆t+ o(∆t) i −→ i− 1 a −→ a+ 1
A S µA∆t+ o(∆t) a −→ a− 1 s −→ s+ 1
A SA ηA∆t+ o(∆t) a −→ a− 1 sA −→ sA + 1

TA S µTA∆t+ o(∆t) τA −→ τA − 1 s −→ s+ 1
TA SA λTA∆t+ o(∆t) τA −→ τA − 1 sA −→ sA + 1
SA S µSA∆t+ o(∆t) sA −→ sA − 1 s −→ s+ 1
SA IA βSA(I + IA)∆t+ o(∆t) sA −→ sA − 1 iA −→ iA + 1
IA S µIA∆t+ o(∆t) iA −→ iA − 1 s −→ s+ 1
IA TA σIA∆t+ o(∆t) iA −→ iA − 1 τA −→ τA + 1

Table 6.1: Transition probabilities for transition of individuals from compartment
i to j. The probability that nothing changes is one minus, the sum of all the above
probabilities.

So we can confirm the presence of the endemic equilibrium by plotting a numerical

solution, and estimate when it will happen using the running reproduction number

R∗. The question stability is still unanswered.

6.1.2 Stochastic Model

We can easily derive a CTMC Model incorporating individual acute rheumatic

fever history, treatment and vital dynamics.

Using a stochastic model allows us to incorporate chance into the model. We can

essentially account for unknown factors and influences on the patterns of disease

spread. The stochastic variation allows for a more accurate prediction of what

might actually happen without the need to complicate the actual model further.

The table of transition probabilities is shown in Table 6.1 Using these transition

probabilities and the same parameters as we did for the deterministic model we can

plot sample paths. Figure 6.7 shows two sample paths for the stochastic model,

plotted along with the deterministic model.
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Figure 6.7: CTMC plot using the transition probabilities given in table 6.1. The
parameter values are the same as those used to produce the plot in figure 6.5.
The dashed lines show the deterministic model. ‘I’ is the number of individuals
infected with Group A streptococcus, ‘A’ is the number of indiviuals suffering from
acute rheumatic fever.
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The stochastic model tends to oscillate a lot. In one of the simulations, Group

A streptococcus died out just before 200 days, even though the deterministic plot

shows the disease settling to an equilibrium. This is an example of a the disease

can die out at anytime in the stochastic model no matter what the deterministic

model predicts should happen. It also suggests that the endemic equilibrium may

not be stable.

6.2 Including Demographics

The risks of both contracting Group A streptococcus and developing acute

rheumatic fever change with age and vary due to ethnicity and geographic lo-

cation. Because of this variation we need to take these demographics into account

when constructing our model. Individuals of different ages and ethnicities need to

be separated in the model so we can account for their differing rates of developing

acute rheumatic fever. A simple variation of the SIAS model that accounts for

ethnicity is shown below:

dSM
dt

= −βSM(IM + IE) + γIM + κAM

dIM
dt

= βSM(IM + IE)− γIM − ωIM
dAM
dt

= ωIM − κAM (6.6)

dSE
dt

= −βSE(IM + IE) + γIE + κAE

dIE
dt

= βSE(IM + IE)− γIE − αIE
dAE
dt

= αIE − κAE

The M and E subscripts denote Maori & Pacific Island peoples and other ethnicities

respectively. ω and α represent the different rates of developing acute rheumatic

fever for Maori and Pacific peoples and the other ethnicities. There is no movement

of individuals between ethnic subgroups. Assuming homogeneous mixing however,

infectious individuals of any ethnicity can infect any susceptible individual at the
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SM IM AM SE IE AE
βSM (IM + IE)

γIM

ωIE

κAM

βSE(IM + IE) αIE

γIE

κAE

Figure 6.8: Flow chart for an acute rheumatic fever model including ethnicity,
given by the equations in 6.6.

same rate regardless of ethnicity. In reality homogeneous mixing may not be

realistic and some type of proportional or preferential mixing maybe more suitable.

This adds further complication to the construction of the model however an is

outside the scope of this thesis. Figure 6.8 illustrates the flow of individuals for

this model.

Analytically there are three equilibrium points for this model. The disease free

equilibrium is at

SM + SE = N, IM = AM = IE = AE = 0

In this case, because we have not included acute rheumatic fever history in the

model, the disease has just died out at some point and everyone has gone back to

being susceptible. An individual’s ethnicity does not change so we have SM = NM

and SE = NE where NM and NE are the constant population sizes for each ethnic

group.

Because one of the equations in the system 6.6 is redundant, we can use AE =

N − (SM + IM +AM +SE + IE), the Jacobian matrix for this is given below in 6.7
−β(IM + IE) −βSM + γ κ 0 −βSM
β(IM + IE) βSM − γ − ω 0 0 βSM

0 ω −κ 0 0

−κ −βSE − κ −κ −β(IM + IE)− κ −βSE + γ − κ
0 βSE 0 β(IM + IE) βSE − γ − α

 (6.7)
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The Jacobian matrix at the disease free equilibrium becomes
0 −βNM + γ κ 0 −βNM

0 βNM − γ − ω 0 0 βNM

0 ω −κ 0 0

−κ −βNE − κ −κ −κ −βNE + γ − κ
0 βNE 0 0 βNE − γ − α

 (6.8)

The trace of this matrix is βN − 2γ − ω − α − 2κ, and the determinant is 0. So

the disease free equilibrium is stable as long as βN < α + 2(γ + κ) + ω.

There is an endemic equilibrium at

SM =
(γ + ω)IM
β(IM + IE)

, IM =
βNM(α + γ)− (γ + ω)(α + γ − β(NM − IE(1 + α

κ
)))

β(α + γ)(1 + ω
κ
)

,

AM =
ωIM
κ

, SE =
(α + γ)

(
1− IM

IM+IE

)
β

,

IE = IM

(
γ + ω

β(NM − IM(1 + ω
κ
))
− 1

)
, AE =

αIE
κ

We also get a third equilibrium point at

SM =
γ + ω

β
, IM =

κ(βN − γ − ω)

β(κ+ ω)
, AM =

ω(βN − γ − ω)

β(κ+ ω)
,

SE = 0, IE = 0, AE = 0

This last equilibrium is basically a degenerate case for only one ethnicity group

in the population. by symmetry the case where NM = 0 is also an equilibrium

point. It occurs at the same place as the endemic equilibrium for the original

SIAS model 4.1.

6.2.1 Ethnicity and ARF History

As we have seen earlier, how likely an individual is to develop acute rheumatic

fever also depends on whether they have had acute rheumatic fever before [1].
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IE AE
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SA
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βSM I

φIM ωIE

κAM

ρTM

βSEI

αIEγIE

φIE

κAE

ρTE

βSAI

λIA

ρTA

ηAA

θTA

γIM

βSLI

φIL ρTL

γIL

Figure 6.9: Flow chart for an acute rheumatic fever model including ethnicity and
rheumatic fever history.

So it makes sense that individuals with a history of acute rheumatic fever be

treated differently to those with no history of acute rheumatic fever. Also those

who have Group A streptococcus but do not develop acute rheumatic fever even

without treatment are less likely to ever develop acute rheumatic fever. It may be

useful to treat these individuals separately too. Basically we start with everyone

susceptible, in their ethnic groups and then they move into groups based on their

history in relation to acute rheumatic fever as Group A streptococcus and acute

rheumatic fever spread and develop in the population. Figure 6.9 shows this flow

of individuals.

The subscript L is used to denote those who have recovered from a Group A

streptococcus infection without treatment and without developing acute rheumatic

fever. In this model we then make the assumption that they are not susceptible

to acute rheumatic fever so will never develop it.

We have left in the possibility for individuals with a history of acute rheumatic

fever to develop it again, even after treatment. This is because of their increased

risk of developing the disease and the possibility that treatment may not always

be effective in preventing acute rheumatic fever.
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The system of differential equations for the model pictured in figure 6.9 are as

follows:

dSM
dt

= −βSM(IM + IE + IA + IL) + ρTM

dIM
dt

= βSM(IM + IE + IA + IL)− IM(φ+ γ + ω)

dTM
dt

= φIM − ρTM
dAM
dt

= ωIM − κAM
dSE
dt

= −βSE(IM + IE + IA + IL) + ρTE

dIE
dt

= βSE(IM + IE + IA + IL)− IE(γ + α + φ)

dTE
dt

= φIE − ρTE
dAE
dt

= αIE − κAE (6.9)

dSA
dt

= κ(AM + AE)− βSA(IM + IE + IA + IL) + ρTA + ηAA

dIA
dt

= βSA(IM + IE + IA + IL)− λIA
dTA
dt

= λIA − TA(ρ+ θ)

dAA
dt

= θTA − ηAA
dSL
dt

= γ(IM + IE)− βSL(IM + IE + IA + IL) + ρTL

dIL
dt

= βSL(IM + IE + IA + IL)− IL(γ + φ)

dTL
dt

= φIL − ρTL

This system has two equilibria; the disease free equilibrium at

SM + SE + SA + SL = N

IM = TM = AM = IE = TE = AE = IA = TA = AA = IL = TL = 0
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and an unrealistic endemic equilibrium that is basically the result of there being

no new entry into SM or SE. This endemic equilibrium is at

SM = SE = SL = IM = TM = AM = IE = TE = AE = IL = TL = 0

SA =
λ

β
, IA =

η(ρ+ θ)(βN − λ)

β(η(ρ+ θ) + λ(η + θ))
, TA =

λIA
ρ+ θ

, AA =
λθIA

η(ρ+ θ)

The trace for the Jacobian matrix at the disease free equilibrium is

βS − 4βI − α− η − 3γ − 2κ− λ− ω − 3φ− 4ρ− θ

Where S = SM + SE + SA + SL and I = IM + IE + IA + IL. The determinant is

0. This means the disease free equilibrium is stable from time zero if

βN < α + η + 3γ + 2κ+ λ+ ω + 3φ+ 4ρ+ θ

For the endemic equilibrium the trace is

− 4(ρ+ θ)(βN − λ)η

(ρ+ θ)η + (η + θ)λ
− α− η − 3γ − 2κ− λ− ω − 3φ− 4ρ− θ

This makes it stable when

βN < λ− (α + η + 3(γ + φ) + 2(κ+ 2ρ) + λ+ ω + θ)(η(ρ+ θ) + λ(η + θ))

4η(ρ+ θ)

This is only plausible if

λ >
(α + η + 3(γ + φ) + 2(κ+ 2ρ) + λ+ ω + θ)(η(ρ+ θ) + λ(η + θ)

4η(ρ+ θ))

as N > 1 at all times. This can only happen however, if λ is negative, so the

endemic equilibrium is not valid in this case. because of this, the diseases will

always die out for this model once I reaches a point where

βS < 4βI + α + η + 3γ + 2κ+ λ+ ω + 3φ+ 4ρ+ θ
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Figure 6.10: Plot of a numerical solution to the model seen in 6.9. Group A
streptococcus numbers are represented by the solid line, acute rheumatic fever
numbers are given by the dashed line. β = 0.00035, γ = 0.1, ω = 0.006, λ =
0.3, µ = 0.01, φ = 0.1, ρ = 0.1, κ = 0.025, η = 0.02, α = 0.003, θ = 0.001, N =
4000.

Figure 6.10 shows a plot of the Group A streptococcus and acute rheumatic fever

numbers over time for this model. For this plot, initially βN > α+ η + 3γ + 2κ+

λ + ω + 3φ + 4ρ + θ so the number of infectious individuals increases. With this

increase in infected individuals and the consequential decrease in the number of

those susceptible, we reach a point where

βS < 4βI + α + η + 3γ + 2κ+ λ+ ω + 3φ+ 4ρ+ θ

and the disease dies out. The parameters used in this plot are unrealistic, we are

just using them to show an example of what might happen using this model. More

accurate parameter values will be brought estimated in Chapter 7.

6.2.2 Age

Group A streptococcus and acute rheumatic fever are both diseases that show

increased prevalence among school aged children [12, 11, 24]. Because of this we
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should consider splitting the population into subgroups based on age. Something

else we need to note, especially when we are using vital dynamics, is that individu-

als increase in age over time. We need to allow for individuals to change subgroups

as they age. We will cover the inclusion of age and age groups in the model more

in the next section.

6.3 Using a recommended diagnosis and treat-

ment algorithm to define risk groups

The National Heart Foundation of New Zealand, together with the Cardiac Soci-

ety of Australia and New Zealand, produced the New Zealand Guideline for Sore

Throat Management in 2006. Figure 6.11 shows the flow chart based on the algo-

rithm given in the guideline, this was produced in 2007. If we base our population

groupings on the risk factors presented in this algorithm then we can treat each

risk group as it is recommended a health professional should.

To keep the model slightly simpler for now, we will be focusing on age and ethnicity

and acute rheumatic fever history. By ignoring geographic location we assume

homogenous mixing of individuals in the population. This makes the model simpler

but may affect accuracy.

6.3.1 Risk Groups

To make a model that covers age, ethnicity and acute rheumatic fever history we

need to split each of the ethnic groups into age groups. We will include a few

extra groups based on individual history of acute rheumatic fever and Group A

streptococcus. These extra groups will start out empty and grow with time as

individuals contract Group A streptococcus and develop acute rheumatic fever. In

total we have nine subgroups of individuals.

Rates of movement between groups due to ageing are fixed. Everyone increases in

age at the same rate.

Individuals under 3 years of age have a low risk of contracting Group A strepto-



CHAPTER 6. A NEW ZEALAND SPECIFIC MODEL 94

Algorithm: Guide for sore throat management 

 
 

Assess risk factors for GAS pharyngitis and/or rheumatic fever 
 

x MƗori or Pacific peoples 
x 3-45 years old 
x Lives in lower socioeconomic areas of North Island 
x Past history of acute rheumatic fever 

Medium 
Risk for GAS 

and 
rheumatic fever 

 
x Throat swab 
x Antibiotics only 

if GAS positive  

High  
Risk for GAS 

and 
rheumatic fever 

 
x Throat swab 
x Start empiric 

antibiotics 

Choose appropriate antibiotics (from tables 1 and 2)* 

Seek 
alternative 
diagnosis 

High  
Risk for GAS 

 
x Throat swab 
x Start empiric 

antibiotics 

Medium 
Risk for GAS 

 
x Throat swab 
x Antibiotics 

only if GAS 
positive 

Low 
Risk for GAS 

 
x No throat swab
x No antibiotics 
x Symptomatic 

treatment only 

Score 0-1Score 4-5

Apply Criteria:14 Score 
Temperature >38oC 1
No cough 1
Swollen, tender anterior cervical lymph nodes 1
Tonsillar swelling or exudate 1
Age 3-14 years 1
Age 15-44 years 0
Age 45+ years -1
Total Score /5

No criteria 
present 

Apply Criteria:13 
 
x Temperature >38oC 
x No cough 
x Swollen, tender anterior cervical lymph nodes
x Tonsillar swelling or exudate 

Any criteria 
present 

 

*   If patient is on benzathine penicillin IM prophylaxis for acute rheumatic fever, and is GAS positive on throat  
 swab, treat in the following way: 
x If GAS positive in the first two weeks after IM penicillin injection has been given, treat with a 10 day course of 

erythromycin (see Table 3)  
x If GAS positive in the 3rd and 4th weeks after IM penicillin injection, treat with a 10 day course of oral penicillin (see 

Table 3). 
 
Sources: 
13 Centor RM, Witherspoon JM, Dalton HP, Brody CE, Link K. Med Decis Making. (1:3) pp.239-246, copyright (c) 1981 by (Sage 

Publications Inc).  Reprinted by Permission of SAGE Publications, Inc. 
14 Copyright © 2004, American Medical Association, All rights reserved.

Assess household (see next algorithm) 

Score 2-3 

0-1 risk factors2-3 risk factors 

Sore throat 

14 

Figure 6.11: The algorithim from the New Zealand Guideline for Sore Throat
Management.
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coccus or developing rheumatic fever [25]. Their mixing in the population is also

limited. To keep things simpler we will not count individuals as being ‘born’ into

the population until they turn 3. This also avoids the need to introduce a new

subgroup or loop the age groups around, by including under threes in the same

group with the over 45’s.

An individual will spend 12 years in the under 15 age group, so the rate of move-

ment out of this group is 1
12 years

or 1
4380

individuals per individual per day. Indi-

viduals spend 30 years in the 15 to 45 age group, so leave this group at a rate of
1

10950
per day. Because we are assuming a constant birth rate that is equal to the

rate of deaths, with no other sources of mortality, year groups are of equal size.

6.3.1.1 Maori and Pacific Island Groups

Maori and Pacific Islanders under 15 have the highest risk of developing acute

rheumatic fever following a Group A streptococcus infection. This age group also

has the highest risk of contracting a Group A streptococcus infection. We will

label this group of individuals with the subscript M1.

Maori and Pacific Island peoples between the ages of 15 and 45 inclusive have

less risk of contracting Group A streptococcus than their younger counterparts.

They still have a high risk of developing acute rheumatic fever after an infection

however, if it should occur. We will give this group the subscript label M2.

Maori and Pacific Island peoples over the age of 45 have even less risk of contracting

a Group A streptococcus infection. They also have a reduced risk of developing

acute rheumatic fever when compared to those in the younger age groups. This

group of individuals will be labeled with the subscript M3.

6.3.1.2 Other Ethnic Groups

Other ethnicities have a reduced risk of developing acute rheumatic fever following

a Group A streptococcus infection but their risk of this and Group A streptococcus

still varies with age.

Individuals in other ethnicities under the age of 15 have the highest risk of con-
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tracting a Group A streptococcus infection, like Maori and Pacific Islanders in the

same age group. Their risk of developing acute rheumatic fever following such an

infection, however, is lower. The individuals in this subpopulation will be labeled

with the subscript E1.

Individuals of other ethnicities between the ages of 15 and 45 have less risk of

contracting Group A streptococcus but their risk of developing acute rheumatic

fever afterwards is still similar to the younger age group. This group of individuals

will be referred to with the subscript E2.

Individuals of other ethnicities over 45 have reduced risk of contracting a Group

A streptococcus infection and a low likelihood of developing acute rheumatic fever

after the infection. They will be labelled with the subscript E3.

6.3.1.3 Rheumatic Fever History Groups

As individuals move through the compartments and develop or don’t develop acute

rheumatic fever after Group A streptococcus infections, we can introduce sub-

groups based on acute rheumatic fever history.

Individuals who develop acute rheumatic fever after a case of Group A strepto-

coccus recover into a separate group of susceptible individuals and become part

of a subgroup we will label with the subscript H. This subgroup has increased

risk of developing acute rheumatic fever if they do not receive treatment for a

Group A streptococcus infection. Their history of having had acute rheumatic

fever increases their likelihood of getting it again [27].

Individuals who recover from a Group A streptococcus infection without treat-

ment and do not develop acute rheumatic fever afterwards may have a reduced

susceptibility to developing acute rheumatic fever. We move these individuals into

a subgroup labelled with the subscript G, as they recover from their Group A

streptococcus infection. This subgroup works a bit like a buffer. It can be used to

confirm that an individual really does have a low susceptibility to acute rheumatic

fever. If individuals in this subgroup are able to recover from a Group A strepto-

coccus infection without developing acute rheumatic fever, we assume their risk is

low.
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Group GAS Rank ARF Rank GAS ARF Recovery Treatment
S −→ I I −→ A I −→ S I −→ T

M1 2 2 β ω σ r
M2 1 2 κ ω σ θ
M3 0 1 γ α λ θ
E1 2 1 β α λ θ
E2 1 1 κ α λ θ
E3 0 0 γ ϕ χ q
H 2 2 β ω σ r
G 1 1 κ α λ θ
L 1 0 κ ϕ χ q

Table 6.2: Table showing each subgroup’s risk of Group A streptococcus (GAS)
and acute rheumatic fever (ARF), and the parameters for the rates of movement
into and out of the infectious compartment.

Individuals who start in a group with low risk of Group A streptococcus or acute

rheumatic fever who contract Group A streptococcus though do not develop acute

rheumatic fever after the infection move into a subgroup with low acute rheumatic

fever risk, upon recovery. This subgroup we will label with the subscript L. In-

dividuals can only move into this subgroup from groups with the subscript G or

E3.

6.3.2 Creating the Model

We can rank each risk group on their risk of contracting Group A streptococcus

and developing acute rheumatic fever. Table 6.2 shows each subgroup and their

risk of Group A streptococcus and acute rheumatic fever given a number, 0, 1 or

2. 2 indicates a high risk and 0 a low risk, but not no risk. 1 indicates a medium

level risk.

If an individual is in the subgroup L and develops acute rheumatic fever, upon

recovery their risk of acute rheumatic fever is increased. Because of this increase

they should change subgroups. They will become part of subgroup M3 upon

recovery. This group has the same risk level for acute rheumatic fever, and because
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M3 is part of the oldest age group it cannot be aged out of. This is a modelling

convenience, individuals cannot in reality change ethnicity. Even if the individual

is not of Maori or Pacific Island ethnicity, they should be treated the same with

regards to rheumatic fever. This gives the individual time to re-establish their

low risk status or to move into the high risk subgroup H. A more detailed model

would keep these ethnic groups separate and maybe use a new subgroup fro the

from L who develop acute rheumatic fever. Because their characteristics, relative

to Group A streptococcus and acute rheumatic fever are very similar however,

combing these subgroups does not greatly affect our model.

The flow of individuals between groups and subgroups is depicted in figure 6.12.

Each sub group contains 3 or 4 compartments, so we have 29 compartments in total

for this model. Each compartment needs an equation in the system. Because of

varying rates of infection and recovery among the different subgroups, each requires

a different combination of parameters. For this particular model we are using 19

different parameters, including those for ageing between susceptible compartments.
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These equations can be seen in 6.10 below.

dSM1
dt = Mµ− βSM1I + ρTM1 − µSM1 − SM1

4380
dIM1
dt = βSM1(I)− IM1(ω + σ + r + µ) dTM1

dt = rIM1 − (ρ+ µ)TM1

dSM2
dt = SM1

4380 − κSM2I + ρTM2 − µSM2 − SM2
10950

dIM2
dt = κSM2(I)− IM2(ω + σ + θ + µ) dTM2

dt = θIM2 − (ρ+ µ)TM2

dSM3
dt = SM2

10950 − γSM3(I) + ρTM3 + φAL − µSM3

dIM3
dt = γSM3(I)− IM3(α+ λ+ θ + µ) dTM3

dt = θIM3 − (ρ+ µ)TM3

dSE1
dt = Eµ− βSE1(I) + ρTE1 − µSE1 − SE1

4380
dIE1
dt = βSE1(I)− IE1(α+ λ+ θ + µ) dTE1

dt = θIM1 − (ρ+ µ)TE1

dSE2
dt = SE1

4380 − κSE2(I) + ρTE2 + φAL − SE2
10950

−µSE2

dIE2
dt = κSE2(I)− IE2(α+ λ+ θ + µ) dTE2

dt = θIE2 − (ρ+ µ)TE2

dSE3
dt = SE2

10950 − γSE3(I) + ρTE3 − µSE3

dIE3
dt = γSE3(I)− IE3(χ+ ϕ+ q + µ) dTE3

dt = qIE3 − (ρ+ µ)TE3

dAH
dt = ω(IM1 + IM2 + IH)

+α(IM3 + IE1 + IE2 + IG)− (φ+ µ)AH
dSH
dt = φAH − βSHI + ρTH + σIH − µSH
dIH
dt = βSHI − IH(r + σ + ω + µ) dTH

dt = rIH − (ρ+ µ)TH
dSG
dt = σ(IM1 + IM2) + λ(IM3 + IE1 + IE2)

+ρTG − κSGI − µSG
dIG
dt = κSGI − IG(α+ θ + λ+ µ) dTG

dt = θIG − (ρ+ µ)TG
dSL
dt = χ(IE3 + IL) + λIG − κSLI + ρTL − µSL
dIL
dt = κSLI − (ϕ+ χ+ q + µ)IL

dTL
dt = qIL − (ρ+ µ)TL

dAL
dt = ϕ(IE3 + IL)− (φ+ µ)AL

(6.10)

M and E represent the proportions of Maori and Pacific Island peoples and other

ethnicities respectively.

β, κ and γ represent the different levels of susceptibility to Group A streptococcus

in each age group.

ω, α and ϕ represent the different rates of acute rheumatic fever development.

σ, λ and χ represent the different rates of recovery from Group A streptococcus,
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back to being susceptible without passing through treatment.

r, θ and q represent the different rates of treatment for Group A streptococcus in

each risk group.

The rates for each subgroup can be seen in Table 6.2.

µ is still the birth/death rate and ρ is the recovery rate following treatment for a

Group A streptococcus infection.

6.3.3 The Basic Reproduction Number

Because of the complicated structure of this model, finding equilibriums points

using the methods shown previously is difficult. We can however write an equation

for the basic reproduction number R0. We can then use this value to help us see

how the system may behave. By using the definition of R0 as the rate of infection

multiplied by how long an individual is infectious for we can calculate R0 for our

model.

Let E be the total number of individuals being infected by individuals in com-

partment IM1 per unit of time. A fraction βSM1

E
move into the compartment IM1

as they become infectious. While individuals are in the compartment IM1 they

are causing E new infections per unit of time. The mean amount of time spent

in compartment IM1 is 1
r+ω+σ+µ

. So the portion of the basic reproduction number

due to IM1 is

RM1 =
βSM1

E
× E

r + ω + σ + µ
=

βSM1

r + ω + σ + µ

We can do the same calculation for each infectious compartment and sum them

up to find R∗ as shown below.

R∗ = β

(
SM1 + SH

r + ω + σ + µ
+

SE1

θ + α + λ+ µ

)
+ κ

(
SM2

θ + ω + σ + µ
+

SE2 + SG
θ + α + λ+ µ

+
SL

q + χ+ ϕ+ µ

)
(6.11)

+ γ

(
SM3

θ + α + λ+ µ
+

SE3

q + χ+ ϕ+ µ

)
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This is the same expression as that given by the largest eigenvalue of the next

generation matrix.

R0 is R∗ at time zero. At the start of an outbreak compartments A,G and L are

empty, so

R0 = β

(
SM1

r + ω + σ + µ
+

SE1

θ + α + λ+ µ

)
+ κ

(
SM2

θ + ω + σ + µ
+

SE2

θ + α + λ+ µ

)
(6.12)

+ γ

(
SM3

θ + α + λ+ µ
+

SE3

q + χ+ ϕ+ µ

)



Chapter 7

Introducing Real Data and

Conclusions

If we are going to make a model to simulate disease in a real population, we

need to use parameter values that apply to the population and that disease. We

can use the information about acute rheumatic fever and Group A streptococcus,

seen in Chapter 3 to estimate parameters such as recovery rate with and with-

out treatment, and rates of acute rheumatic fever development. Parameters such

as population size , proportions of ethnicities and birth/death rates we can find

through Statistics New Zealand. We may have to modify some parts of our model

to fit what data may be available.

Using data on births and deaths from the Statistics New Zealand, we estimate a

value of µ. While birth rates are greater than death rates in New Zealand at the

moment, we want to estimate a value somewhere between so we can use µ for both

births and deaths. We will use µ = 0.000027 deaths per person per day = births,

based on tables from Statistics New Zealand [2] This does estimate a lifespan of

about 100 years, but this is due to the birth rate being higher that the death rate

in reality, and for the sake of simplicity in our model we are assuming no other

sources of mortality aside from natural causes . Parameters are defined on rates

of change per day. We will use a population size 0f N = 4, 000, 000.

103
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7.1 Ethnic Proportions

Using data from the 2006 Census, provided by Statistics New Zealand we can

estimate the proportions of Maori and Pacific peoples in each age group. Table

7.1 shows the proportions of the relevant ethnicities in each age group [2].

Ethnicity 0 to 14 15 to 44 45+ Total
European and Other 11.93% 33.05% 32.23% 79.36%
Maori and Pacific 6.2% 9.29% 3.89% 20.64%
Total 18.12% 42.34% 36.12% 100%

Table 7.1: Percentage of the total population categorised by age and ethnicity

7.2 Rates of Rheumatic Fever Development

The parameters ω, α and ϕ, are used to represent the different rates of rheumatic

fever development in each group. Several factors can affect this rate. We need

to know how long it takes acute rheumatic fever to develop after a Group A

streptococcus infection and the rate of acute rheumatic fever in that group. We

know from Chapter 3 that it takes about 3 weeks for an individual to start showing

symptoms of acute rheumatic fever following a Group A streptococcus infection.

If we treat this as 20 days we can estimate the rate of acute rheumatic fever

development for individuals susceptible to acute rheumatic fever as 0.05 per day.

α represents the rate of acute rheumatic fever for groups M3, E1, E2 and G.

From Section 3.2 we can estimate that approximately 3% of individuals in these

groups are likely to develop acute rheumatic fever following an untreated Group A

streptococcus infection. Because of this we will estimate α = 0.03× 0.05 = 0.0015

per person per day.

ω represents the rate of acute rheumatic fever development for individuals in groups

M1, M2, andH. That is Maori and Pacific peoples under 40 and individuals with a

history of acute rheumatic fever. The upper age limit of group 2 has been modified

to 40 because of data availability in age group distribution. We saw in section 3.2
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that individuals with a history of acute rheumatic fever have an increased chance of

30% to 80% of recurrence following another Group A streptococcus infection. We

also saw that Maori and Pacific peoples are 22 to 75 times more likely to develop

acute rheumatic fever than New Zealand Europeans. From this information we

could estimate 22× 3% = 66% to over 100% . But with an increased likelihood of

treatment for these groups we can reduce this a bit, to about 50%. We can then

estimate ω = 0.5× 0.05 = 0.0215 per person per day.

ϕ is the rate of acute rheumatic fever development for those with a low risk. That is

those in group E3 and group L. 0.3% is the low end of the range given in section 3.2

for the general population. This means we can estimate ϕ = 0.003×0.05 = 0.00015

per person per day.

7.3 Rates of Treatment and Recovery

Rates of treatment are something we can vary to try and reduce numbers of acute

rheumatic fever and Group A streptococcus. The part that we can’t vary is how

long it takes for individuals to receive treatment. There is a window of about 9

days within which an individual can receive treatment to prevent acute rheumatic

fever [4]. Symptoms for Group A streptococcus usually show up within 3 days

and then disappear within 4 more. We work with 5 days as it is in the middle

and gives us a nice value of 0.2 to multiply the proportions of individuals receiving

treatment by. We will start with all groups receiving treatment equally at at a

proportion of 20%. r = θ = q = 0.2× 0.2 = 0.04 per person per day.

If an individual with Group A streptococcus goes untreated, the infection can last

for 7 to 10 days [29]. After this they will either develop acute rheumatic fever or

recover. The rate of recovery if untreated is 0.1 multiplied by the proportion of

individuals likely to recover. For groups M1, M2 and H we have σ = 0.1× 0.1 =

0.01 per person per day. For groups E3 and L, we will use χ = 0.8 × 0.1 = 0.08

per person per day. For all the other groups we use λ = 0.65 × 0.1 = 0.065 per

person per day.

Treatment of Group A streptococcus reduces the duration of symptoms, and in
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our model eliminates the risk of developing rheumatic fever. The duration of

symptoms is reduced by 1 to 2 days but 10 days of treatment with antibiotics is

recommended for routine strep throat treatment [21]. So an individual will spend

10 days in the treatment compartment then recover to the relevant susceptible

compartment, implying ρ = 0.1 per person per day.

Following treatment for rheumatic fever symptoms, the attacks usually cease

within 2 month of the initial infection. This is about 60 days minus the time

spent in a Group A streptococcus compartment, which is about about 20 days if

no treatment was received. So we have φ = 0.025 per person per day.

7.4 Rates of Infection

Because of the lack of data on strep throat these values are the hardest to estimate.

We need to work backwards from numbers of rheumatic fever cases. We can use

the rates of development that we know and simpler models to try to estimate what

the overall rate of infection is, then we need to take a bit of an educated guess as

to the individual values of β, κ and γ. Using data from the New Zealand Public

Health observatory [23], we can estimate an average of 9.3 cases of acute rheumatic

fever each month from 1997 to 2010. that is 0.31 cases per day.

We also know β > κ > γ > 0, the majority of cases occur in the under 15 age

group. For now we will start with 70% of infection occurring in this age group.

20% for age group 2 and 10% for age group 3.

We know that rheumatic fever rates are not dropping, so R∗ ≥ 1. They are not

growing hugely either so the value must still be close to 1. Using equation 6.11

with our current parameters we get

R0 = β

(
0.062N

0.04 + 0.0215 + 0.01 + 0.000027
+

0.1193N

0.04 + 0.0015 + 0.065 + 0.000027

)
+ κ

(
0.0929N

0.04 + 0.0215 + 0.01 + 0.000027
+

0.3305N

0.04 + 0.0015 + 0.065 + 0.000027

)
(7.1)
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Figure 7.1: Plot of a numerical solution for the model described in 6.10 and Figure
6.12. Group A streptococcus numbers are represented by the dashed line and acute
rheumatic fever numbers by the solid line. The parameter values are defined in
the above sections.

+ γ

(
0.0389N

0.04 + 0.0015 + 0.065 + 0.000027
+

0.3223N

0.04 + 0.08 + 0.00015 + 0.000027

)

R0 = β(0.8668 + 1.1199)N + κ(1.2988 + 3.1025)N + γ(0.3652 + 2.6819)N

= 1.9868βN + 4.4013κN + 3.0471γN

R∗ = 1 is where our endemic equilibrium would be. For now we can use R0 = 1

can give us a good estimate of what β, κ and γ should be. If we use our ratios

from earlier of 70%, 20% and 10% of cases in each age group, we can estimate β, κ

and γ using, for example, βN = 0.7R0. Setting R0 = 1 we get;

β = 6.93× 10−8, κ = 1.32× 10−8 and γ = 0.73× 10−8

A plot of numerical solutions for the model given in 6.10 using these parameters is

shown in Figure 7.1 In this case there is an initial spike but then the disease dies

out. R0 = 0.9923 < 1 in this case however due to rounding errors in estimating

β, κ and γ. So the disease is dying out when we would expect it to. If we round
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Figure 7.2: Numerical solutions for the model in 6.10. Group A streptococcus
numbers a represented by the dashed line and acute rheumatic fever numbers
by the solid line. The parameter values are those defined in the above sections.
β = 7× 10−8, κ = 2× 10−8 and γ = 1× 10−8.

up to

β = 7× 10−8, κ = 2× 10−8 and γ = 1× 10−8

We get R0 = 1.1474 > 1. Figure 7.2 shows what happens with these infection rate

changes. The peak at the beginning is a lot steeper but the disease is still dying

out. Figure 7.3 shows how the reproduction number is changing over this time. R0,

is the initial reproduction number at time 0. Initially the reproduction number is

greater than 1 and the number of infected individuals increases, but as the number

of susceptible individuals gets smaller so does the effective reproduction number.

When we reach the point where R∗ < 1 the disease starts to die out. The model

with these parameters has no stable endemic equilibrium.

In this model there appears to be a threshold for R∗ to stabilise. Keeping the 70%,

20% 10% for proportion of cases in age groups, the reproduction number starts to

settle around 1 when we start with R0 at about 1.7. this is with

β = 1.123× 10−7, κ = 2.135× 10−8 and γ = 1.185× 10−8
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Figure 7.3: The effective reproduction number, given by the numerical solution to
the model in 6.10 using the same parameters as the plot in figure 7.2.

Figure 7.4 shows the effective reproduction number over time using these values.

If we play with these infection rate parameters some more and just use β = 7γ, κ =

2γ, The numbers of infected and those with rheumatic fever, start to settle out

with an R0 of about 1.68. Figure 7.5 shows a plot of this using γ = 1.4× 10−8.

We can reduce γ to about 1.345 × 10−8 before Group A streptococcus and acute

rheumatic fever start dying out instead of settling towards an equilibrium. Figure

7.6 shows a plot for this value of γ.

7.5 Matching Acute Rheumatic Fever Data

In terms of acute rheumatic fever numbers, we are aiming for them to settle at

around 12 individuals with acute rheumatic fever at any point in time. We are

currently not accounting for seasonality in this model. This is based on the data

from Statistics New Zealand with about 0.31 new cases per day and each case

taking about a month to recover. The number of individuals with acute rheumatic

fever this model, with the current parameter values is producing is still about 16

times too high. R0 = 1.52 with these infection rate values. We may need to modify
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Figure 7.4: The effective reproduction number, given by the numerical solution
to the model in 6.10 and using β = 1.123 × 10−7, κ = 2.135 × 10−8 and γ =
1.185× 10−8, with the other parameter values as defined above.

Figure 7.5: Acute rheumatic fever numbers given by the numerical solution to 6.10
with γ = 1.4× 10−8.
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Figure 7.6: The solid line shows rheumatic fever numbers, given by the numerical
solution to the model in 6.10, with γ = 1.345 × 10−8. The dashed line shows the
number of individuals infected with Group A streptococcus.

some of the other parameters to achieve the correct rate of acute rheumatic fever.

We can do this by reducing ω, α and ϕ.

Figure 7.8 shows a plot where we have acute rheumatic fever numbers settling out

to about 12 individuals. A small reduction in the rate of acute rheumatic fever

development from that shown in Figure 7.6 actually increased acute rheumatic

fever numbers. This may be because individuals spent longer in the infected com-

partment. Figure 7.7 shows what happens when make small reduction.

By reducing the acute rheumatic fever development rates we have increased the

basic reproduction number to R0 = 1.55.

Comparing these rates to the original estimates made in Sections 7.2 and 7.4, the

largest change has been made to the rate at which individuals at high risk of devel-

oping acute rheumatic fever develop the disease following a Group A streptococcus

infection, parameter ω. In our original estimate in section 7.2 we had ω ≈ 150ϕ

in our most recent estimate ω ≈ 55ϕ so this proportionality has been reduce by

almost a third. In both estimates α = 10ϕ, this has remained the same. There

has beed a large reduction in the size of ϕ between our original estimate and now,
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Figure 7.7: Rheumatic fever numbers, given by the numerical solution to 6.10 with
γ = 1.345× 10−8, ω = 0.021, α = 0.001 and ϕ = 0.0001 .

Figure 7.8: Acute rheumatic fever numbers, given by a numerical solution to the
model in 6.10, with ω = 0.000022, α = 0.000004 and ϕ = 0.0000004.
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from ϕ = 1.5× 10−4 to ϕ = 0.004× 10−4.

As far as rates of infection are concerned γ is now slightly less than twice our

original estimate, changing from γ = 0.73 × 10−8 to γ = 1.345 × 10−8. In terms

of proportion κ and β have not changed too much. In section 7.4 we originally

had κ ≈ 1.8γ and β ≈ 9.5γ, we no have κ = 2γ and β = 7γ. So the the relative

parameters are proportionally similar to what we estimated in section 7.4.

7.6 Reducing Rheumatic Fever with Treatment

of Strep Throat

In the previous plots of the model, the treatment rate has been 0.04I for all the

subgroups. Keeping all the other above parameters the same we will try now

varying treatment rates. First of all we will try focusing all the treatment on the

groups with a high risk of rheumatic fever. Let

r = 0.2, and θ = q = 0

The plot of this is shown in Figure 7.9. This focused method has actually increased

rheumatic fever numbers. The basic reproduction number in this case becomes

R0 = 2.67. So we can see just by R0 that we have made things worse.

Because any treatment plan would be implemented after we have reached equi-

librium, for a disease like rheumatic fever that has been in the population for a

while, we should try using the values of each compartment at equilibrium as our

initial values. Exclusively focusing treatment on those most a risk of rheumatic

fever still increases rheumatic fever numbers over all. The reproduction number

now becomes R∗ = 2.86 at the point in time we introduce exclusive treatment.

Maybe a better approach would be to proportionally focus treatment based on

risk, but not be exclusive. Let us try

r = 0.1, θ = 0.06 and q = 0.04
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Figure 7.9: Rheumatic fever numbers given by the numerical solution to 6.10, with
treatment rates r = 0.2 and θ = q = 0. Infection rates and other parameters are
the same as in figure 7.8.

The plot using these treatment rates is shown in figure 7.10. This proportional

method of treatment looks quite successful in reducing acute rheumatic fever num-

bers. Acute rheumatic fever has been reduced to an average of 1.4 individuals at

any one time. In this case R∗ is reduced to 0.92. Figure 7.11 shows how the re-

production number changes over time, from the introduction of this proportional

treatment.

7.7 Conclusions

Rates of acute rheumatic fever remain an issue in New Zealand. A large concern is

the increased rates for Maori and Pacific peoples. While we have not covered the

socio-economic or geographic distribution of acute rheumatic fever in this thesis,

these are also issues which require attention.

We have developed a model which accounts for the different rates of Group A

streptococcus and acute rheumatic fever among different age groups and ethnic-
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Figure 7.10: Acute rheumatic fever numbers, given by the numerical solution to
6.10, with treatment rates r = 0.1, θ = 0.6 and q = 0. All other parameters are
the same as in figure 7.8.

Figure 7.11: The reproduction number given by the numerical solution to 6.10
with treatment rates r = 0.1, θ = 0.6 and q = 0. All other parameters are the
same as in figure 7.8.
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ities. The accuracy of this model may be limited by absence of factors such as

geographic location, as mentioned above. It does however, with a bit of modifica-

tion to some parameter values, allow us to model a stable rate of acute rheumatic

fever, at values similar to that seen in the real data. Even without the manipula-

tion of the acute rheumatic fever rates, the model produced a relatively stable, if

overestimated, value for acute rheumatic fever numbers in New Zealand. It may be

that with further development of the model and the inclusion of seasonality, socioe-

conomic status and geographic location, in some combination, less modification of

parameters would be required to match what is seen in the real data.

Varying the rates of treatment in our model produced some interesting results. It

has been suggested that primary prevention of acute rheumatic fever be targeted

at high-risk individuals, rather than just the whole population. This has been

suggested as a possibly efficient means of managing the ethnic inequality [18].

Figure 7.9 shows what happened when we tried treating Group A streptococcus,

in individuals at high-risk of developing acute rheumatic fever, exclusively in our

model. The results produced here suggest that focusing treatment to the exclusion

of other groups could make acute rheumatic fever numbers worse. A higher rate of

treatment for higher risk groups did result in lower acute rheumatic fever numbers

however. As long as each risk group received some treatment for Group A strep-

tococcus infections, focusing more attention on those at higher risk of developing

acute rheumatic fever, produced desirable results.

It is possible that the increase in acute rheumatic fever numbers with exclusive

treatment, may be due to the assumption of homogeneous mixing made by our

model. An individual with a high risk of developing acute rheumatic fever, it is

assumed is just as likely to catch Group A streptococcus from some one with a low

risk of acute rheumatic fever risk as they are from someone with a very high risk.

This even possibility of infection is not necessarily true to reality. Risk factors

such as overcrowding show strong correlations with socioeconomic status and eth-

nicity. Ethnicity in turn is strongly correlated with geographic location. Factors

such as preferential mixing within ethnicity neighbourhood and social standing

may influence the impact the spread of Group A streptococcus and the impact of

treatment protocols in the population. The development of acute rheumatic fever
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may be influenced by geographic location household structure as well. Before this

type of model may be useful in management of acute rheumatic fever the inclusion

of socio-economic and geographic factors, and the use of different mixing models

must be investigated. Such further investigation is beyond the scope of this thesis

While primary prevention of acute rheumatic fever in New Zealand is currently

considered inadequate [18], this model is limited in how much we can learn with

regard to treatment protocols. From what we have seen infection between groups

may be an important factor and exclusive treatment would be unwise. Differ-

ent interaction and mixing patterns between sub-populations are something that

should be considered before a large treatment and/or prevention plan is initiated.

As the ethnic gap in rheumatic fever rate continues to grow [18], the prevention of

this disease becomes more and more important. This is a solvable problem that

deserves more attention.



Appendix A

Matlab Code

A.1 SIR and SIS Stochastic Plots

This is the code used to produce the DTMC sample paths in Sections 2.5.1 and

2.5.2. They each produce three sample paths where change in the number of

infectious individuals at each step is determined by the value of a random num-

ber. Euler’s method is used to to produce a plot of the deterministic model for

comparison.

This is the code used to produce the SIS sample paths shown in Figure 2.5.

clear

set(0,’DefaultAxesFontSize ’, 18);

set(gca ,’fontsize ’ ,18);

dt =0.01; % Time step

beta =1*dt;

b=0.1* dt;

gam =0.25* dt;

N=100;

init =2;

time =2000;

sim =3;

for k=1: sim

clear t s i

t(1)=0;
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i(1)= init;

s(1)=N-init;

j=1;

while i(j)>0 && t(j)<time

u1=rand; % uniform random number

u2=rand;

a=(( beta/N)*i(j)*s(j)+(b+gam)*i(j));

probi=(beta*s(j)/N)/( beta*s(j)/N+b+gam);

t(j+1)=t(j)+1;

if u1 > a

i(j+1)=i(j);

s(j+1)=s(j);

elseif u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

else

i(j+1)=i(j)-1;

s(j+1)=s(j)+1;

end

j=j+1;

end

plot(t,i,’r-’,’LineWidth ’ ,2)

hold on

end

% Eulers method applied to the deterministic SIS model.

y(1)= init;

for k=1: time/dt

y(k+1)=y(k)+dt*(beta*(N-y(k))*y(k)/N-(b+gam)*y(k));%I

end

plot ([0:dt:time],y,’k--’,’LineWidth ’ ,2);

axis([0,time ,0 ,100]);

xlabel(’Time Steps’);

ylabel(’Number of Infectives ’);

hold off

Below is the code used to produce the SIR DTMC sample paths shown in Figure

2.6.

clear

set(0,’DefaultAxesFontSize ’, 18);
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set(gca ,’fontsize ’ ,18);

dt =0.01;

beta =1*dt;

b=0*dt;

gam =0.25* dt;

N=100;

init =2;

time =2000;

sim =3;

for k=1: sim

clear t s i

t(1)=0;

i(1)= init;

r(1)=0;

s(1)=N-init;

j=1;

while i(j)>0 && t(j)<time

u1=rand; % uniform random number

u2=rand; % uniform random number

a=(beta/N)*i(j)*s(j)+gam*i(j)+b*(N-s(j));

probi=(beta*s(j)*i(j)/N)/a;

t(j+1)=t(j)+1;

if u1 > a

i(j+1)=i(j);

s(j+1)=s(j);

r(j+1)=r(j);

elseif u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

r(j+1)=r(j);

else

i(j+1)=i(j)-1;

s(j+1)=s(j);

r(j+1)=r(j)+1;

end

j=j+1;

end

plot(t,i,’r-’,’LineWidth ’ ,2)

hold on
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end

% Euler ’s method applied to the deterministic SIR model.

y(1)= init; %y=i

x(1)=0; %x=r

for k=1: time/dt

x(k+1)=x(k)+dt*(gam*y(k)-b*x(k));%R

y(k+1)=y(k)+dt*(( beta*y(k)*(N-(x(k)+y(k))))/N-(b+gam)*y(k));%I

end

plot ([0:dt:time],y,’k--’,’LineWidth ’ ,2);

axis([0,time ,0 ,60]);

xlabel(’Time Steps’);

ylabel(’Number of Infectives ’);

hold off

The code below was used to produce the three sample paths shown in figure 2.7.

The time it takes for a change of stare to occur is determined by t(j + 1) =

t(j)− log(u1)/a. where u1 is a random number.

clear

set(0,’DefaultAxesFontSize ’, 18);

set(gca ,’fontsize ’ ,18);

beta =1;

b=0.1;

gam =0.25;

N=100;

init =2;

dt =0.01;

time =20;

sim =3;

for k=1: sim

clear t s i

t(1)=0;

i(1)= init;

s(1)=N-init;

j=1;

while i(j)>0 & t(j)<time

u1=rand; % uniform random number

u2=rand; % uniform random number

a=(beta/N)*i(j)*s(j)+(b+gam)*i(j);

probi=(beta*s(j)/N)/( beta*s(j)/N+b+gam);
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t(j+1)=t(j)-log(u1)/a;

if u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

else

i(j+1)=i(j)-1;

s(j+1)=s(j)+1;

end

j=j+1;

end

plot(t,i,’r-’,’LineWidth ’ ,2)

hold on

end

% Euler ’??s method applied to the deterministic SIS model.

y(1)= init;

for k=1: time/dt

y(k+1)=y(k)+dt*(beta*(N-y(k))*y(k)/N-(b+gam)*y(k));

end

plot ([0:dt:time],y,’k--’,’LineWidth ’ ,2);

axis([0,time ,0 ,100]);

xlabel(’Time’);

ylabel(’Number of Infectives ’);

hold off

A.2 SIAS Plots

This section contains the code used to produce the deterministic and stochastic

plots seen in Chapter 4.

A.2.1 Deterministic Plot

The bit of code below defines the function we are trying to solve.

function dy=sias(t,y)

dy=zeros (3 ,1);

bta =0.00001;

gam =0.25;
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kap =0.1;

om=0.1;

dy(1) = -bta*y(1)*y(2)+ gam*y(2)+ kap*y(3);%S

dy(2) = bta*y(1)*y(2) -(gam+om)*y(2);%I

dy(3) = om*y(2) - kap*y(3);%A

This next bit of code uses the Runge-Kutta method to solve the system, given

parameter and initial values. It then produces a plot of the solution, as seen in

Figure 4.2.

clear

init =1;

bta =0.01;

gam =0.4;

om =0.02;

kap =0.8;

N=100;

time =2000;

options = odeset(’RelTol ’,1e-4,’AbsTol ’,1e-4);

[T,Y] = ode45(@ARFHIST ,[0 time],[N-init , init , 0],options );

R= bta*Y(: ,1)/( gam+om+mu) + bta*Y(: ,4)/( chi+sig+mu);

plot(T,Y(:,3),’-’,T,Y(:,2),’--’);

%plot(T,R,’.’);

A.2.2 Stochastic Plots

This is the code used to produce the stochastic plots for the basic SIAS model.

Both programmes produce three sample paths and plot them along with the de-

terministic model.

The code used to produce the DTMC sample paths in the Figure 4.5 is shown

below.

clear

set(0,’DefaultAxesFontSize ’, 18);

set(gca ,’fontsize ’ ,18);

dt =0.01;

beta =1*dt;

b=0*dt;
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gam =0.5*dt;

om=0.2* dt;

kap =0.8*dt;

N=100;

init =2;

time =2000;

sim =3;

for k=1: sim

clear t s i r

i=zeros(time +1);

r=zeros(time +1);

s=zeros(time +1);

j=linspace(0,time ,time +1);

t=zeros(time +1);

m=zeros(time +1);

t(1)=0;

i(1)= init;

r(1)=0;

s(1)=1 - init;

m(1)=0;

j=1;

while i(j)>0 && t(j)<time

u1=rand;

u2=rand;

a=(beta/N)*i(j)*s(j)+(gam+om+b)*i(j)+r(j)*(kap+b);

probi=(beta*s(j)*i(j)/N)/a;

probr=(om*i(j))/a;

probs=(b+gam)*i(j)/a;

t(j+1)=t(j)+1;

if u1 > a

i(j+1)=i(j);

s(j+1)=s(j);

r(j+1)=r(j);

elseif u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

r(j+1)=r(j);

elseif u2 <= (probi+probr)

i(j+1)=i(j)-1;
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s(j+1)=s(j);

r(j+1)=r(j)+1;

elseif u2 <= (probi+probr+probs)

i(j+1)=i(j)-1;

s(j+1)=s(j)+1;

r(j+1)=r(j);

else

i(j+1)=i(j);

s(j+1)=s(j)+1;

r(j+1)=r(j)-1;

end

I(j+1)=i(j+1)/N;

A(j+1)=r(j+1)/N;

j=j+1;

end

%plot(t,A,’g-’,’LineWidth ’,2)

plot(t,I,’r-’,’LineWidth ’ ,2)

hold on

end

% Euler ??s method

y(1)= init;

x(1)=0;

for k=1: time/dt

x(k+1)=x(k)+dt*(om*y(k)-(kap+b)*x(k));%A

y(k+1)=y(k)+dt*(beta*(1-y(k)-x(k))*y(k)-(b+gam+om)*y(k));%I

end

plot ([0:dt:time],x,’b--’,’LineWidth ’ ,2);

plot ([0:dt:time],y,’k--’,’LineWidth ’ ,2);

axis([0,time ,0 ,1]);

xlabel(’Time’);

ylabel(’Number of Infectives ’);

hold off

The CTMC sample paths seen in Figure 4.6 were produced using the following

code.

clear

set(0,’DefaultAxesFontSize ’, 18);

set(gca ,’fontsize ’ ,18);

beta =0.02;
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b=0.0;

gam =0.5;

om=0.2;

kap =0.8;

N=100;

init =2;

time =20;

sim =2;

for k=1: sim

clear t s i r

t(1)=0;

i(1)= init;

a(1)=0;

s(1)=N-init;

c(1)=0;

m(1)=0;

p(1)=0;

j=1;

while (i(j)+a(j))>0 && t(j) <time

u1=rand; % uniform random number

u2=rand; % uniform random number

r=(beta)*i(j)*s(j)+(gam+om)*i(j)+kap*a(j);

probi=(beta*s(j)*i(j))/r;

proba=om*i(j)/r;

probis=gam*i(j)/r;

probas=kap*a(j);

c(j)=-(log(u1))/r;

t(j+1)=t(j)+c(j);

if u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

a(j+1)=a(j);

elseif u2 <= (probi+proba)

i(j+1)=i(j)-1;

s(j+1)=s(j);

a(j+1)=a(j)+1;

elseif u2 <= (probi + proba + probis)

i(j+1)=i(j)-1;

s(j+1)=s(j)+1;
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a(j+1)=a(j);

elseif u2 <= (probi + proba + probis + probas)

i(j+1)=i(j);

s(j+1)=s(j)+1;

a(j+1)=a(j)-1;

else

i(j+1)=i(j);

s(j+1)=s(j);

a(j+1)=a(j);

end

j=j+1;

end

plot(t,i,’r-’,’LineWidth ’ ,2)

hold on

plot(t,a,’g-’,’LineWidth ’ ,2)

end

% Euler

dt =0.01;

y(1)= init;

x(1)=0;

for k=1: time/dt

x(k+1)=x(k)+dt*(om*y(k)-(kap+b)*x(k));

y(k+1)=y(k)+dt*(beta*(N-y(k)-x(k))*y(k)-(b+gam+om)*y(k));

end

plot ([0:dt:time],x,’b--’,’LineWidth ’ ,2);

plot ([0:dt:time],y,’k--’,’LineWidth ’ ,2);

axis([0,time ,0 ,80]);

xlabel(’Time’);

ylabel(’Number of Infectives ’);

hold off

A.2.3 SIAS with Vital Dynamics

This is the code that was used to produce the two sample paths seen in Figure

5.2. In this case we have used ode45 and the Runge-Kutta method to plot the

deterministic model.
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clear

set(0,’DefaultAxesFontSize ’, 18);

set(gca ,’fontsize ’ ,18);

beta =0.001;

mu =0.01;

gam =0.1;

om =0.03;

rho =0.1;

phi =0.1;

eta =0.025;

lam =0.09;

sig =0.8;

N=400;

init =1;

time =1000;

sim =2;

for k=1: sim

clear t s i r m a ta sa ia c

t(1)=0;

c(1)=0;

s(1)=N-2* init;

i(1)= init;

m(1)=0;

a(1)=0;

ta (1)=0;

sa (1)=0;

ia(1)= init;

j=1;

while i(j)>0 && t(j)<time

u1=rand; % uniform random number

u2=rand; % uniform random number

r=(beta/N)*(i(j)+ia(j))*(s(j)+sa(j))

+(gam+om+phi+mu)*i(j)+( rho+mu)*m(j)

+(eta+mu)*a(j)+( lam+mu)*ta(j)

+(sig+mu)*ia(j)+mu*sa(j);

probs=(gam*i(j)+mu*i(j))/r;

probi=(beta/N)*(i(j)+ia(j))*s(j)/r;

probm=phi*i(j)/r;

proba=om*i(j)/r;
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probas=mu*a(j)/r;

probsm =(rho+mu)*m(j)/r;

probta=sig*a(j)/r;

probtas=mu*ta(j)/r;

probsa =(eta)*a(j)/r;

probtasa=lam*ta(j)/r;

probsas=mu*sa(j)/r;

probia =(beta/N)*(i(j)+ia(j))*sa(j)/r;

probias=mu*ia(j)/r;

c(j)=-(log(u1))/r;

t(j+1)=t(j)+c(j);

if u2 <= probs

s(j+1)=s(j)+1;

i(j+1)=i(j)-1;

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi)

s(j+1)=s(j)-1;

i(j+1)=i(j)+1;

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm)

s(j+1)=s(j);

i(j+1)=i(j)-1;

m(j+1)=m(j)+1;

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba)

s(j+1)=s(j);

i(j+1)=i(j)-1;

m(j+1)=m(j);
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a(j+1)=a(j)+1;

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm)

s(j+1)=s(j)+1;

i(j+1)=i(j);

m(j+1)=m(j)-1;

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm+probta)

s(j+1)=s(j);

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j)-1;

ta(j+1)=ta(j)+1;

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm

+probta+probtas)

s(j+1)=s(j)+1;

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j)-1;

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm

+probta+probtas+probsa)

s(j+1)=s(j);

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j)-1;

ta(j+1)=ta(j);

sa(j+1)=sa(j)+1;

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm
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+probta+probsa+probtas+probsas)

s(j+1)=s(j)+1;

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j)-1;

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm+probta

+probsa+probtas+probsas+probia)

s(j+1)=s(j);

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j)-1;

ia(j+1)=ia(j)+1;

elseif u2 <= (probs+probi+probm+proba+probsm+probta

+probsa+probtas+probsas+probia+probas)

s(j+1)=s(j)+1;

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j)-1;

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j);

elseif u2 <= (probs+probi+probm+proba+probsm

+probta+probsa+probtas+probsas

+probia+probas+probtasa)

s(j+1)=s(j);

i(j+1)=i(j);

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j)-1;

sa(j+1)=sa(j)+1;

ia(j+1)=ia(j);

else

s(j+1)=s(j)+1;

i(j+1)=i(j);



APPENDIX A. MATLAB CODE 132

m(j+1)=m(j);

a(j+1)=a(j);

ta(j+1)=ta(j);

sa(j+1)=sa(j);

ia(j+1)=ia(j)-1;

end

j=j+1;

end

plot(t,a,’r-’,’LineWidth ’ ,2)

plot(t,i+ia ,’b-.’,’LineWidth ’ ,2)

hold on

end

options = odeset(’RelTol ’,1e-4,’AbsTol ’,1e-4);

[T,Y] = ode45(@vitSIATSDEs ,[0 time],

[N-init init 0 0 0 init 0 4.33] , options );

R= (beta*Y(: ,1))/((mu+phi+gam+om)) + (beta*Y(: ,5))/((mu+sig));

plot(T,Y(:,2)+Y(:,6),’-’,T,Y(:,4),’-.’);

plot ([0:dt:time],A,’k--’,’LineWidth ’ ,2);

plot ([0:dt:time],I+Ia ,’g.’,’LineWidth ’ ,2);

axis([0,time ,0 ,100]);

xlabel(’Time’);

ylabel(’Number of Individuals ’);

hold off

The code used to input the deterministic model for solving is given below.

function dy = vitSIATSDEs(t,y)

dy=zeros (8 ,1);

bta =0.0009;

gam =0.1;

om =0.03;

lam =0.09;

mu =0.01;

phi =0.1;

rho =0.1;

eta =0.025;

sig =0.8;

N=400;
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dy(1)= mu*N-bta*y(1)*(y(2)+y(6))+ gam*y(2)+ rho*y(3)-mu*y(1);

dy(2)= bta*y(1)*(y(2)+y(6)) -( gam+phi+om+mu)*y(2);

dy(3)= phi*y(2)-(rho+mu)*y(3);

dy(4)=om*y(3)-(eta+mu)*y(4);

dy(5)= eta*y(4) +lam*y(7)-bta*y(5)*(y(2)+y(6))-mu*y(5);

dy(6)= bta*y(5)*(y(2)+y(6)) -( sig+mu)*y(6);

dy(7)= sig*y(6)-(lam+mu)*y(7);

A.3 New Zealand Specific Model

This is the code that was used to produce the plots in Chapter 7. The values of the

parameters were varied from plot to plot. ode45 uses the Runge-Kutta to solve

the function labeled MPIage, defined below. R was used to plot the reproduction

number.

clear

init =1;

%bta =0.000000105;

%kap =0.00000002;

gam =0.00000001345;

bta =7* gam;

kap =2* gam;

om =0.000022;

alp =0.000004;

vp =0.0000004;

sig =0.01;

lam =0.065;

chi =0.08;

r=0.1;

the =0.06;

q=0.04;

mu =0.000027;

phi =0.025;

rho =0.1;

time =20000;

N=4000000;

options = odeset(’RelTol ’,1e-4,’AbsTol ’,1e-4);

[T,Y] = ode45(@MPIAge ,[0 time ] ,[0.5181*10^5 6.171*10^4 9871 9428
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3208 100 3770 1283 40 11.7 1.737*10^4 2720 403.6 1235 55 3.6

494 22 1.4 1.039 685 124.7 49.88 7.641*10^4 1552 621 3.656*10^6

6.501*10^4 2.6*10^4] , options );

R= bta*((Y(: ,1)+Y(: ,21))/(r+om+sig+mu)+Y(: ,11)/( the+alp+lam+mu))+

kap*(Y(: ,2)/( the+om+sig+mu)+(Y(: ,12)+Y(: ,24))/( the+alp+lam+mu)+

Y(: ,27)/(q+chi+vp+mu))+gam*(Y(: ,3)/( the+alp+lam+mu)+Y(: ,13)/(q+

chi+vp+mu)); % Reproduction number

%plot(T,Y(: ,10)+Y(:,20),’-’,T,Y(: ,4)+Y(: ,5)+Y(: ,6)+Y(: ,14)+Y(: ,15)

+Y(: ,16)+Y(: ,22)+Y(: ,25)+Y(:,28),’-.’);

%plot(T,Y(:,29),’-’);

plot(T,R,’.’);

The code below was defines the model we are wanting to plot

function dy = MPIage(t,y)

dy=zeros (29 ,1);

gam =0.00000001345;

bta =7* gam;%beta

kap =2* gam;

om =0.000022;

alp =0.000004;

vp =0.0000004;

sig =0.01;

lam =0.065;

chi =0.08;

r=0.1;

the =0.06;

q=0.04;

mu =0.000027;

phi =0.025;

rho =0.1;

M=0.215;

E=0.785;

N=4000000;

dy(1) = mu*M*N - bta*y(1)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) + rho*y(7) - mu*y(1) - y(1)/4380;%Sm1

dy(2) = y(1)/4380 - kap*y(2)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) + rho*y(8) - mu*y(2) - y(2)/9125;%Sm2

dy(3) = y(2)/9125 - gam*y(3)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) + rho*y(9) + phi*y(20) - mu*y(3);%Sm3
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dy(4) = bta*y(1)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(4)*(r+om+sig+mu);%Im1

dy(5)= kap*y(2)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(5)*( the+om+sig+mu);%Im2

dy(6)= gam*y(3)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(6)*( the+alp+lam+mu);%Im3

dy(7) = r*y(4) - (rho+mu)*y(7);%Tm1

dy(8) = the*y(5) - (rho+mu)*y(8);%Tm2

dy(9) = the*y(6) - y(9)*( rho+mu);%Tm3

dy(10) = om*(y(4)+y(5)+y(22)) + alp*(y(6)+y(14)+y(15)+y(25))

- (phi+mu)*y(10);%Ah

dy(11) = mu*E*N - bta*y(11)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) + rho*y(17) - mu*y(11) - y(11)/4380;%So1

dy(12) = y(11)/4380 - kap*y(12)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) + rho*y(18) - mu*y(12) - y(12)/9125;%So2

dy(13) = y(12)/9125 - gam*y(13)*(y(4)+y(5)+y(6)+y(14)+y(15)

+y(16)+y(22)+y(25)+y(28)) + rho*y(19) - mu*y(13);%So3

dy(14) = bta*y(11)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(14)*( the+alp+lam+mu);%Io1

dy(15) = kap*y(12)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(15)*( the+alp+lam+mu);%Io2

dy(16) = gam*y(13)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(16)*(q+vp+chi+mu);%Io3

dy(17) = the*y(14) - (rho+mu)*y(17);%To1

dy(18) = the*y(15) - (rho+mu)*y(18);%To1

dy(19) = q*y(16) - (rho+mu)*y(19);%To3

dy(20) = vp*(y(19)+y(28)) - (phi+mu)*y(20);%Al

dy(21) = phi*y(20) + sig*y(22) + rho*y(23) - bta*y(21)*(y(4)

+y(5)+y(6)+y(14)+y(15)+y(16)+y(22)+y(25)+y(28)) - mu*y(21);%Sh

dy(22) = bta*y(21)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) -y(22)*(r+om+sig+mu);%Ih

dy(23) = r*y(22) - (rho+mu)*y(23);%Th

dy(24) = lam*(y(6)+y(14)+y(15))+ sig*(y(4)+y(5))

- kap*y(24)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)+y(22)+y(25)+y(28))

+ rho*y(26)-mu*y(24);%Sg

dy(25) = kap*y(24)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(25)*( the+alp+lam+mu);%Ig

dy(26) = the*y(25) - (rho+mu)*y(26);%Tg

dy(27) = chi*(y(16)+y(28)) + lam*y(25) - kap*y(27)*(y(4)+y(5)+y(6)
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+y(14)+y(15)+y(16)+y(22)+y(25)+y(28))+ rho*y(29)-mu*y(27);%Sl

dy(28) = kap*y(27)*(y(4)+y(5)+y(6)+y(14)+y(15)+y(16)

+y(22)+y(25)+y(28)) - y(28)*( chi+q+vp+mu);%Il

dy(29) = q*y(28) - (rho+mu)*y(29);%Tl
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