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Abstract

This thesis exploits latent information in personalised recommendation, and in-
vestigates how this information can be used to improve recommender systems.
The investigations span three directions: scalar rating-based collaborative filter-
ing, distributional rating-based collaborative filtering, and distributional rating-
based hybrid filtering.

In the first investigation, the thesis discovers through data analysis three
problems in nearest neighbour collaborative filtering — item irrelevance, pref-
erence imbalance, and biased average — and identifies a solution: incorporat-
ing “target awareness” in the computation of user similarity and rating devia-
tion. Two new algorithms are subsequently proposed. Quantitative experiments
show that the new algorithms, especially the first one, are able to significantly
improve the performance under normal situations. They do not however excel
in cold-start situations due to greater demand of data.

The second investigation builds upon the experimental analysis of the first
investigation, and examines the use of discrete probabilistic distributional mod-
elling throughout the recommendation process. It encompasses four ideas: 1)
distributional input rating, which enables the explicit representation of noise
patterns in user inputs; 2) distributional voting profile, which enables the preser-
vation of not only shift but also spread and peaks in user’s rating habits; 3)
distributional similarity, which enables the untangled and separated similarity
computation of the likes and the dislikes; and 4) distributional prediction, which
enables the communication of the uncertainty, granularity, and ambivalence in
the recommendation results. Quantitative experiments show that this model
is able to improve the effectiveness of recommendation compared to the scalar
model and other published discrete probabilistic models, especially in terms of
binary and list recommendation accuracy.

The third investigation is based on an analysis regarding the relationship
between rating, item content, item quality, and “intangibles”, and is enabled by
the discrete probabilistic model proposed in the second investigation. Based on
the analysis, a fundamentally different hybrid filtering structure is proposed,
where the hybridisation strategy is neither linear nor sequential, but of a divide-
and-conquer shape backed by probabilistic derivation. Experimental results
show that it is able to outperform the standard linear and sequential hybridi-
sation structures.
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Chapter 1

Introduction

The explosion of information available in our daily lives makes it im-
possible for humans to look at everything before making informed de-
cisions. An overload of diffuse and intermingled data can also lead to
confusion and compromise decision making. Therefore, it is desirable to
have intelligent information filtering systems to strategically filter out un-
wanted information to aid our decision-making, or even make decisions
for us. Existing examples include search engines such as google.com and
bing.com that determine the importance of a web page by techniques such
as counting its incoming and outgoing hyperlinks [24]; and movie rating
sites such as imdb.com and rottentomatoes.com that indicate the quality of
a movie using global average rating. However, these systems ignore the
importance of individuality and personalisation in their information fil-
tering processes, thus are unsuitable for tasks where there are large prefer-
ence variations among individuals, such as the recommendation of food,
movies, music, books, articles, and so on.

This thesis focuses on recommender systems (RS), which are intelligent
systems designed to provide personalised recommendations based on the
user’s past activities and preferences. This chapter sets the theme for the
thesis: section 1.1 provides overview and motivations; section 1.2 outlines
the scope of this thesis; section 1.3 specifies research topics and questions;
section 1.4 lists the contributions; section 1.5 provides a structural outline
of this thesis.

1
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1.1 Overview and Motivations

The task of personalised recommendation can be formulated as the task
of estimating the personalised utility of an item to a user, the estimation of
which can be used as guidance to improve the user’s browsing efficiency
and decision making. The recommendations can be made manually by
human experts, known as knowledge-based recommendation [26], or automat-
ically using machine learning algorithms. This thesis focuses on automated
recommender systems of the latter kind, which are supervised machine
learning systems that use training data such as the profile of the user, the
properties of the item, the user’s feedback on other items, and/or the pref-
erences of other like-minded users to estimate the degree of preference of
a user on an item.

Automated recommender systems have been widely adopted in real
life to recommend movies [120], music [79], books [81], groceries [75],
jokes [38], online news [110], research papers [20, 21, 67], recipes [145], pro-
gram code [154], and so on. Successfully deployed recommender systems
can greatly increase website traffic, system usability, and company profit
[167, 170]. For example, digg.com reported significant increase in traf-
fic and user activities after the deployment of their recommender system
[170]; eBay reported that recommender systems can potentially increase
the amount of products sold by 10% [167].

Recommender systems have also attracted great interest from the re-
search field due to their high practicality, potential commercial gain, and
the unique machine learning properties of the problem. In contrast to
conventional classification or regression problems which simply model a
mapping from the data points to classes or values, recommendation prob-
lems have two primary dimensions — users and items — which are mapped
onto ratings or rankings representing the estimated value of the item to the
user. This extra dimension on the left-hand-side of the mapping brings in
a whole new set of collaborative strategies around the pivoted dimension
(i.e. either user or item); the unique semantics of the right-hand-side (i.e.
rating or ranking) also invites the exploitation of domain-specific heuris-
tics.
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1.2 Scope and Focus

The field of recommender system research is vast and diverse. Active re-
search topics include interface design [30, 148], user psychology [88, 22,
74], security and networking [93], anti-spamming [96, 127], active learning
[45], temporal diversity study [72], and contextual diversity study [3, 155].
However, one of the most fundamental topics is the study of recommender
algorithms, which refers to the application, adaptation, and advancement
of machine learning algorithms and heuristics to better accommodate rec-
ommendation problems; this is also the focus of this thesis.

There are many angles from which a recommender algorithm can be
studied and improved. Most research focuses on the general improvement
of recommendation accuracy and recommendation effectiveness, which is
also the focus of this thesis. Other specialised studies include algorithm
adaptivity [26], algorithm scalability [106, 156, 160], the algorithm’s rec-
ommendation diversity [169, 67, 163, 1, 62], and the algorithm’s sparsity
handling ability [117, 134, 156, 152, 107, 84].1 Although not the focus of this
thesis, adaptivity, scalability, diversity, sparsity, and various other idiosyn-
cratic aspects of recommender algorithms are surveyed and discussed in
this thesis.

There are several directions to improve the general accuracy and ef-
fectiveness of recommender algorithms. These include introducing previ-
ously unemployed machine learning algorithms to the recommendation
problem [120, 27, 17, 23, 12, 53, 51, 54, 123, 136], alternative ways of apply-
ing machine learning algorithms to recommendation [38, 129, 87], discov-
ering recommendation-specific heuristics [47, 59, 152, 84, 70, 57], combin-
ing multiple machine learning algorithms to form a congregated recom-
mender system [91, 159, 156, 107, 14], and utilising additional information
sources [9, 91, 2, 26, 86].2 This thesis focuses on discovering, through data
analysis and logical reasoning, new recommendation-specific heuristics to
improve existing recommender algorithms, with an emphasis on exploit-

1All citations in this paragraph are discussed in details in chapter 2.
2All citations in this paragraph are discussed in detail in chapter 2 as part of the liter-

ature review, or in sections 4.4 and 5.6 as closely related work.



4 CHAPTER 1. INTRODUCTION

ing latent and neglected concepts and information.

There are also many studies that indirectly improve recommender al-
gorithms by conducting literature surveys that provide clarity and alter-
native perspectives for other colleagues in the field. Examples include
general-purpose survey [2, 110, 143], empirical analysis [23, 102], logical
analysis [89], recommender system taxonomies [98, 41, 26], and evalua-
tion methods surveys [48, 88, 41]. This thesis also intends to contribute in
this direction by providing literature reviews on recommender algorithms
(sections 2.2, 2.3, 2.5), their taxonomies (section 2.1), comparisons (section
2.4), and evaluations (section 3.3).

1.3 Research Topics and Questions

The theme of this thesis is to investigate the recommendation problem and
current techniques, exploit latent information, devise specialised heuris-
tics, and apply them to improve recommender algorithms. Specifically,
the research focuses on the following three topics:

1. Nearest neighbour collaborative filtering. This investigation looks at
Pearson’s correlation-based nearest neighbour collaborative filtering
— one of the most popular recommender algorithms — and focuses
on the following research question: are there any problems with this
method? specifically, is there any latent or neglected information
that can boost the performance of this method?

2. Distributional rating-based collaborative filtering. This investigation builds
upon the experimental analysis of the first investigation, which ob-
served the importance of the range and the distribution of ratings on
top of their values. It focuses on the following research questions:
what is the best way of modelling rating distribution in the recom-
mendation process? where should distributional rating be used? and
how should it be used?

3. Distributional rating-based hybrid filtering. This investigation expands
the focus from collaborative filtering to hybrid filtering, which uses
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items’ content data as well as the rating data to make recommenda-
tions. It asks the following research questions: how does a user’s
rating correspond to the content of the item being rated? what does
a user rating actually entail? what are the fundamental causes of
content-based filtering’s relatively poor performance compared to
collaborative filtering? do the current hybridisation strategies —
which are either linear or sequential — the optimal way of handling
the “tangibles” (i.e. the item content) and the “intangibles”? are there
latent or mishandled information in the process? and are there better
ways of handling them?

1.4 Contributions

This thesis includes four major contributions:

1. The first contribution is the target-aware similarity computation or TASK
algorithm. It is presented in chapter 4, and corresponds to the first re-
search topic described in section 1.3 — nearest neighbour collabora-
tive filtering. In it, two problems with the nearest neighbour method
are identified. The TASK algorithm identifies the cause of both prob-
lems as the target identities being ignored in the similarity compu-
tation, and resolves the problems by incorporating the ignored in-
formation, consequently improve recommendation performances. A
preliminary version of this work was published as Zhang and An-
dreae [166]. Since then, further improvements and more extensive
evaluations have been made and are presented in this thesis.3

2. The second contribution is the partial average and double average or the
PANDA algorithm. The algorithm also corresponds to the first re-
search topic, but identifies latent information in the rating deviation
computation stage instead of the similarity computation stage. The
performance improvement of PANDA is not as prominent as TASK.

3Other than the TASK algorithm, which was published in [166], no attempts has yet
been made to publish the other parts of this thesis. This could be an important future
work for us.
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But improvements are achieved by carefully tuning the application
preconditions.

3. The third contribution is the distributional rating-based nearest neigh-
bour or the DRNN recommendation process. It is described in chap-
ter 5, and corresponds to the second research topic — distributional
rating-based collaborative filtering. The main idea is to use a discrete
vector-based probability distribution representation throughout the
recommendation process, including the ideas of distributional rat-
ing input, distributional voting profile, distributional similarity, and
distributional rating predictions. The richer distributional modelling
structure enables the representation, preservation, computation, and
communication of previously undiscovered concepts and ignored
information, which are also identified in the thesis. This process is
able to improve recommendation set and recommendation list-based
accuracies.

4. The fourth contribution is the Diamond hybrid filtering framework.
It is presented in chapter 6, and corresponds to the third research
topic — distributional rating-based hybrid filtering. This framework
is inspired and designed based on an analysis of the relationships
between rating, item content, item quality, and the “intangibles”. Its
novelty and distinctiveness lie in its diamond-shaped hybridisation
strategy and its reliance on the “distributional rating-based ecosys-
tem” provided by the DRNN recommendation process. Experimen-
tal results show that this new hybridisation strategy is able to out-
perform the standard linear and sequential hybridisation structures.

Apart from the four major algorithm-based contributions, this thesis also
contributes to the research community by providing a literature survey
that addresses four aspects. They are:

5. A taxonomy of modern recommender systems, which include six
not-necessarily-orthogonal dimensions (presented in section 2.1).

6. A review of recommendation algorithms, including collaborative fil-
tering algorithms in sections 2.2, content-based filtering algorithms
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in section 2.3, and hybrid filtering algorithms in section 2.5.

7. A detailed comparison of the pros and cons of collaborative filtering
versus content-based filtering (presented in section 2.4). The com-
parisons are done from various perspectives, including their data re-
quirements and formats, recommendation abilities in various situa-
tions and scenarios, recommendation tendencies, and machine learn-
ing properties. This analysis is new and does not appear to have been
specifically done before to this extent.

8. A review on the evaluation mechanisms for numerical rating-based
recommendation algorithms (presented in section 3.3). This survey
not only addresses the evaluation of rating-based algorithms in terms
of their prediction error, which is the “natural format”, but also ad-
dresses the procedure and metrics for evaluating the accuracy of
rating-based algorithms in the binary set recommendation and the
ranked list recommendation settings.

1.5 Thesis Outline

This thesis is organised as follows: chapter 2 provides literature reviews;
chapter 3 sets out the datasets, evaluation metrics, and evaluation pro-
tocols used throughout the thesis; chapter 4 presents the first investiga-
tion — nearest neighbour collaborative filtering, along with the first two
contributions — TASK and PANDA; chapter 5 presents the second inves-
tigation — distributional rating-based collaborative filtering, along with
the third contribution — the DRNN recommendation process; chapter 6
presents the third investigation — distributional rating-based hybrid fil-
tering, along with the fourth contribution — the Diamond hybrid filtering
system. Finally, chapter 7 concludes the thesis and indicates future work.
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The curse of individuality — one of the many difficulties we face as
recommender systems.4

4This is an XKCD comic originally published at http://xkcd.com/958/. The “in-
visible hand” in the last block is coined by 18th century economist Adam Smith as a
figurative reference to the invisible force that coordinates the cooperation of individual
interests to lead to the common good.

http://xkcd.com/958/


Chapter 2

Literature Review

This chapter provides a literature review of the related topics and con-
cepts. Section 2.1 firstly outlines the field by presenting six different di-
mensions on which a recommender system can be classified, then delin-
eates the scope of this thesis by specifying its “coordinates” within the six
dimensions. The chapter then zooms into the dimension most important
to this thesis — collaborative and content-based filtering — sections 2.2
and 2.3 survey the techniques of the two filterings; section 2.4 compares
the respective strengths, weaknesses, and recommendation and learning
properties of the two filterings; section 2.5 describes the hybridisation of
the two filtering. Finally, section 2.6 summarises the chapter.

The intention of this chapter is to provide a holistic view of the field,
with emphasis on the areas related to this thesis. It is not a “related work”
chapter — closely related work of each investigation is presented in the
investigation’s own respective chapter.

2.1 Taxonomies of Recommender Systems

There are several taxonomies for classifying recommender systems. Schafer
et al. [132] is an early, though slightly out-of-date survey that studied the
classification of recommender systems; Montaner et al. [98] uses 37 sys-
tems to demonstrate 8 classification dimensions. Other publications that
provide unique taxonomies include Gunawardana and Shani [41], which

9
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presents a de facto evaluation-based classification; and Burke [26] that pro-
vides a knowledge source-based classification.

This section outlines six dimensions for classifying recommender sys-
tems. The six dimensions are chosen because they are the most rational,
the most illuminating, the most helpful in placing this thesis within the
field, and the least overlapping. Note that the classification dimensions
are not necessarily orthogonal. For example, rating prediction systems
are more widely used where there is explicit relevance feedbacks, content-
based filtering algorithms are mostly model-based, and most model-based
systems use a batch updating scheme.

2.1.1 (Implicit or explicit) relevance feedback

Recommender systems can be classified as implicit or explicit based on the
way the training data is collected. Explicit recommender systems collect data
by explicitly asking users to express their degree of preference on a sub-
ject. Examples include the MovieLens movie recommender [120] that so-
licits ratings on a discrete numerical scale; the Jester joke recommender
[42, 173] that solicits ratings on a continuous numerical rating scale; the
Fab system [9] that asks users to rank the documents forwarded to them;
and multi-component RS [122] that operates on the Yahoo! Dataset [175],
which collects multi-component ratings.

Implicit recommender systems collect data by unobtrusively tracking user
activities in the background. The feedback can be a boolean value indicat-
ing a show of interest, or a numerical value representing the time spent
examining the item. It greatly reduces the workload of users by eliminat-
ing the onerous job of rating items, thus is more user friendly and more
applicable [164, 92, 145]. A hybrid of implicit and explicit rating collection
is also gaining popularity, since interfaces that provide explicit data also
embed collectable implicit data [98].

Since this thesis is algorithm-oriented instead of interface-oriented, the
implicit and explicit dimension does not directly apply to it. However, the
evaluations are performed on the MovieLens and Jester datasets, both of
which provide explicit numerical rating feedbacks.
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2.1.2 (Binary, ranked or rating) recommendation format

Recommender systems can be classified into three categories of binary,
ranked-list or rating-based, based on the format of the recommendation feed-
back provided by the system. Binary recommender systems provide yes-or-
no type recommendations suggesting either to accept or to reject an item.
Such recommendations are often presented as an unordered list (i.e. a set)
including all items considered acceptable. Because the final decision of
users is often “hard” rather than soft, namely to accept or reject, binary rec-
ommender systems maximally reduce the workload for human users by
directly presenting them with a recommended final decision. Rank-based
recommender systems also provide a list of items, but order the items by
their estimated value. It is left to the user to decide whether to accept or
reject an item based on its ranking. Rating-based recommender systems
provide an often numerical rating estimation of how the user would have
rated the item if asked. This feedback format provides the most informa-
tion, since a set of rating recommendations can be easily converted into
rank-based or binary list recommendations, but not the reverse.

This thesis studies all three formats with an emphasis on the rating for-
mat. Chapter 5 also presents a different recommendation format called
distributional rating. Since the recommendation format is directly linked to
the evaluation metrics suited to evaluate the algorithm, further explana-
tion and citations are presented in section 3.3.

2.1.3 (Memory- or model-based) knowledge representation

Recommender systems can be classified as memory-based or model-based,
based on whether or not the system generates and maintains a gener-
alised knowledge model from which recommendations could be drawn.
Memory-based systems do not keep a model, but process the raw dataset
every time a recommendation is requested. Model-based systems use the
training data to compile a generalised knowledge model first, and answer
recommendation queries solely from this learnt model.

Most memory-based methods adopt a nearest-neighbour-based imple-
mentation. Examples include [120, 84, 8] that apply nearest neighbour
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over collaborative data, and the daily learner system [19] that applies nearest-
neighbour over content-based data. Model-based methods have a wider
variety of implementations, including classification [17, 94], clustering [23,
53, 156], latent variable-based probabilistic models [53, 112, 52, 60], di-
mensionality reduction methods [131, 119, 147], graph-based models [4,
54, 165, 136], and rule-based methods [101, 126] that utilise a wide range
of machine learning algorithms such as naı̈ve bayes [16, 94, 23], Bayesian
networks [23, 46], Gaussian process [114, 100], and neural networks [56,
27, 123].

The classification of memory- and model-based recommendation was
proposed by Breese et al. [23]. With the progress of recommendation tech-
nologies, the distinction has become blurred. As pointed out in [68], tradi-
tional memory-based methods have evolved to rely on rigorous models at
least for caching purposes, whereas some model-based approaches have
started to directly explore the rating dataset in order to improve accuracy.
There have also been recommender systems that contain both memory-
based and model-based components, such as [156, 112].

Chapter 4 of this thesis focuses on improving memory-based nearest
neighbour algorithms. The rest of this thesis utilises both memory- and
model-based knowledge representations.

2.1.4 (Online or batch) knowledge model update

Recommendation tasks can be classified as online or batch. In online tasks,
training data are presented piece-by-piece; whereas in batch tasks, all train-
ing data are at the disposal of the recommender system from the start.
Most real-life recommendation tasks that involve real users are online,
whereas batch tasks are widely used in research studies.

Similarly, recommender systems can be classified as online or batch based
on whether or not the system updates its knowledge model as data arrives.
Memory-based algorithms are generally “online”, since they do not keep
a knowledge model, thus require no update as data arrives. Model-based
algorithms are mostly “batch”, but some batch models can be adapted to
accept online updates [118].
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Online algorithms may not be good for online tasks. In reality, online
tasks often demand high recommendation speed, so the advantage of in-
corporating newly arrived data into the recommendation may give way
to the recommendation speed if the two were in conflict, and quite often
they are. This is because highly online algorithms such as memory-based
collaborative filtering achieve their “online-ness” by leaving all the work
to the recommendation stage, resulting in slow recommendation speed;
whereas many model-based algorithms, although requiring a resource in-
tensive batch learning stage, can recommend very fast due to the compact-
ness of the model. To this end, it may be more practical for online tasks
to adopt a fast-predicting model-based batch algorithm, while caching the
incoming data for periodic update after new data has accumulated and
when the computational power is less occupied, such as at night.

Therefore, although the algorithms proposed in this thesis all adopt a
batch updating model, they can still be used in online tasks if so required.
However, online recommendation is not the focus of this thesis, and all
experiments are conducted under batch recommendation task settings.

2.1.5 (User- or item-based) model orientation

Since recommender systems have two primary dimensions — user and
item — the recommendation algorithms can “pivot” around one of the di-
mensions, reducing the recommendation problem into a set of correlated
classification problems. Recommender systems can thereby be classified
as user-based or item-based, based on the pivoting orientation of the algo-
rithm. The most distinctive implementation of the same algorithm with
both orientations is nearest neighbour collaborative filtering, which is de-
scribed in section 4.2 with both orientations clarified. Both user and item
orientations are studied in this thesis.

2.1.6 (Collaborative or content-based) knowledge source

Balabanovic and Shoham [9] were the first to propose the classification
into collaborative filtering (CF) and content-based filtering (CBF). They took
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a very restricted interpretation, defining content-based filtering as sys-
tems that make recommendations to a user based solely on the content
of items the user has rated before; and collaborative filtering as algorithms
that make recommendation based solely on items other similar users have
rated and “one which does no analysis of the items at all”[9]. As recommen-
dation techniques advanced, especially with the proposal of item-based
collaborative filtering by Sarwar et al. [129], this definition is no longer
accurate.

This thesis adopts a strict information source oriented definition. Sys-
tems are defined as collaborative or content-based filtering solely based
on the information source they base their recommendations on. Collab-
orative filtering systems are ones that base their recommendations solely
on collaborative data — a collection of ratings from the target user and other
users. Content-based filtering systems are ones that base their recommen-
dations on ratings by the target user and the content-based data, which are
attributes or models describing users or items, such as the cast of a movie
item or the age of a user.

Due to the importance of this dimension to the thesis, further litera-
ture reviews are presented in dedicated sections, with the techniques of
the two filterings reviewed in sections 2.2 and 2.3; their recommendation
and machine-learning strengths and weaknesses compared in section 2.4;
and hybrid filtering — the incorporation of both collaborative and content-
based information sources — described in section 2.5.

2.2 Collaborative Filtering

Collaborative filtering (CF) refers to the class of algorithms that recom-
mend items to users based purely on feedback from other users who have
rated a similar set of items in the past. The underlying assumption is
that users who agreed in the past tend to agree in the future — a socially
sound assumption. Surveys that address collaborative filtering include
[48, 102, 143, 23, 17, 127].

This section provides a literature survey of current CF techniques by
classifying CF algorithms into memory-based nearest neighbour methods
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(section 2.2.1) and four categories of model-based methods, which are ma-
trix factorisation (section 2.2.2), clustering (section 2.2.3), latent variable-
based models (section 2.2.4), and other model-based methods such as graph-
based and rule-based methods (section 2.2.5).

2.2.1 Memory-based Collaborative Filtering

Memory-based CF [23, 120] refers to nearest neighbour-based collabora-
tive filtering (NNCF) methods that calculate rating predictions by aver-
aging over the corresponding ratings of neighbouring users, weighted by
the preference similarities between the neighbours and the target user of the
prediction task. A detailed procedure is outlined in section 4.2.

The core of NNCF lies in the similarity measure, which determines the
similarity of two users by calculating the correlation of their past ratings.
Existing similarity measures include Pearson’s correlation [23, 120], cosine
vector similarity [23, 34], Spearman correlation [47], Euclidean distance [47],
rating concordance [71], entropy-based uncertainty measure [47], probabilistic
distance measure [43], and conditional probability-based similarity [34]. Among
those, empirical evidence suggests Pearson’s correlation to be the top per-
former [23, 47], possibly because it captures both negative and positive
correlations, unlike other correlation measures that only capture positive
correlations.

The similarity measures listed above, especially the most prominent
Pearson’s correlation, have been enhanced using various heuristic “tweaks”,
including inverse user frequency, variance weighting, and correlation signifi-
cance weighting, which are further elaborated in section 4.4.1. Chapter 4
also proposes two new heuristics for improving the Pearson’s correlation-
based similarity measure.

Sarwar et al. [129] proposed item-based NNCF method, which uses item
similarities instead of user similarities to make predictions. Recent studies
have also focused on combining user and item-oriented NNCF to improve
prediction accuracy and combat data sparsity. Examples include [84, 152],
details of which are elaborated in section 4.4.2.

In terms of prediction accuracy, NNCF methods work well once the
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users have rated a large number of items [23], this is especially true with
item-oriented methods [107]. Efficiency-wise, the memory-based nature of
NNCF makes them efficient to learn but slow at producing recommenda-
tions. However, the recommendation speed can be improved with caching.
The memory-based nature also makes them susceptible to poor scalability
(section 2.4.4.1), dataset sparsity (section 2.4.1.2), cold-start problems (sec-
tion 2.4.2.2), and the non-transitive association problem (section 2.4.2.4).

2.2.2 Matrix Factorisation

Matrix factorisation refers to the class of methods that map the user-item
rating matrix1 into two or more lower-dimensional matrices, from which
predictions can be drawn. This class is renowned for their performance
when the dataset is sparse. However, when the dataset is dense, excessive
reduction in dimensionality could result in the loss of potentially useful
information.

The most popular implementation of matrix factorisation is singular
value decomposition (SVD), which approximates the rating matrix R ∈ Rm×n

as the product of two lower-ranking matrices R ≈ PQ, where P ∈ Rm×k

and Q ∈ Rk×n can be thought of as lower dimensional feature vectors for
users and items respectively. The parameters of P and Q are estimated
by minimising the sum-squared distance to the target matrix R. This can
be calculated using latent semantic indexing on an imputation-filled rating
matrix [131], in which case it suffers badly from scalability problems; or it
can be calculated using gradient descent [108, 146] or alternating least squares
[13] on only the observed coordinates of the rating matrix. After the two
lower-ranking matrices have been generated, the prediction queries can
then be answered solely based on the inner product of the two matrices.

Other matrix factorisation-based implementations include Billsus and
Pazzani [17], which uses SVD as a pre-processor to reduce the dimension
of the rating matrix, it then creates a neural network for each of the re-

1The user-item rating matrix is a matrix whose rows correspond to users, columns cor-
respond to items, and entries correspond to the rating of the indexed user on the indexed
item. An abstract visualisation of the user-item matrix is presented in table 3.3.
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duced dimensions. Fast maximum margin matrix factorisation (MMMF) [119]
constrains the overall strength of the parameters instead of their size. Eigen
vector [38] is a principal component analysis method that uses a small set of
gauge items to represent orthogonal item dimensions. Sandvig et al. [127]
uses matrix factorisation to calculate the similarity between user profiles
based on reduced dimensions. Yu et al. [160] attempted to improve the
scalability of SVD and PCA (principal component analysis) by using flexible
factorisation dimensions.

2.2.3 Clustering

Clustering techniques group together users (or items) with similar rating
patterns into clusters. Recommendations can then be made by consulting
the ratings of other users in the same cluster(s). The algorithms can be
sharp [23] or soft [151, 127, 53], based on whether or not the same user
(or item) can belong to multiple clusters. They can also be user-oriented
[23, 127], item-oriented [29, 136], or two-sided [53, 151], where both users
and items are grouped into clusters.

Clustering-based recommendations tend to be less personalised due
to their group-oriented nature, thus can be less accurate than highly per-
sonalised nearest-neighbour approaches [6]. However, accuracy can be
improved by reducing cluster sizes. The group-oriented nature also leads
to better learning scalability. Clustering has also been used in combination
with other CF techniques to boost prediction accuracy and improve scala-
bility. Connor and Herlocker [29] uses clustering to partition the problem
space before applying nearest neighbour prediction within the clusters;
Xue et al. [156] uses clustering as a pre-processing step to complete the
missing entries of the rating matrix before feeding it to nearest neighbour.

Several heuristics have been proposed to generate the clusters. K-means
clustering [127, 156] minimises the intra-cluster similarity variances; hierar-
chical agglomerative clustering [29] uses item similarities to group together
items based on bottom-up pairing; naı̈ve Bayes clustering [23] maximises
the likelihood of the clusters using an EM (expectation-maximization) al-
gorithm under the naı̈ve assumption that a cluster’s preference on a given
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item is independent of the other clusters; Gaussian mixture model-based clus-
tering [151] maximises the likelihood of the clusters modelled as Gaus-
sian mixture models using an EM algorithm or Gibbs sampling; hierarchi-
cal clustering-based ontology filtering [136] uses conceptual clustering algo-
rithms to learn a set of item ontologies, which are directed acyclic graphs
or DAGs representing a set of hierarchical clusters of items. Probabilistic
latent variable-based methods can also be considered as clustering, where
the clusters are modelled by the latent variable(s) over user-item pairings
instead of users or items. This class of methods is elaborated on in section
2.2.4.

2.2.4 Probabilistic Latent Variable Models

Probabilistic latent variable approaches introduce a set of latent variables
that appear to “cause” or explain the observed ratings. A probabilistic de-
pendency model is then formulated based on this causal structure around
variables representing users, items, ratings, and the newly added set of la-
tent variables. Probability distributions of this model can then be learnt us-
ing EM algorithms to maximise the likelihood of the observed data given
the model. After the model is properly trained, it can be used to draw
predictions of new user-item scenarios.

This family of methods has close ties with the clustering methods of
section 2.2.3 and the matrix factorisation methods of section 2.2.2. The la-
tent variable models can be thought of as latent variable-based clustering,
with each of the latent variables corresponding to a probabilistic cluster.
Many matrix factorisation methods can be thought of as latent variable
models, with the entries of the lower-dimensional matrices being the la-
tent variables that model the observed data. One distinctive feature of this
family that neither clustering nor matrix factorisation possess is its strong
probabilistic and causal semantics that allow statistical techniques to be
used for the inference of the model.

The representative method of this class is the aspect model [53], which
associates a layer of latent variables with each observed user-item pair.
Users and items are assumed independent from each other given the latent



2.3. CONTENT-BASED FILTERING 19

class variables. The latent variables can be thought of as clusters on users,
items, and the correlations between users and items all in one. As a result,
this method is able to produce more personalised recommendations than
conventional clustering methods, since predictions are no longer identical
for all users or items in the same cluster. The method is extended to incor-
porate item content information in [115, 134]; and is extended to support
numerical ratings instead of categorical ratings in [52]. Other work that
uses the aspect model includes [60, 45, 159].

Other probabilistic latent variable-based approaches include the flexi-
ble mixture model [140, 60, 45], which uses two layers of latent variables,
instead of one layer as in the aspect model, to characterise the grouping of
users and items separately; and personality diagnosis [112], which uses la-
tent variables in a naı̈ve bayes model to model user clusters representing
user “personalities”.

2.2.5 Graph-based, Rule-based, and Others

Other model-based collaborative filtering approaches include graph-based
models such as horting [4], which builds user-noded DAGs that capture
the predictability of ratings between users, and then makes predictions by
walking through the graph. Huang et al. [54] uses a Hopfield network
to retrieve and model the associations between users and items in a bi-
partite user-item graph. Breese et al. [23] encodes the dependencies be-
tween items using a Bayesian network with one decision tree at each node,
which corresponds to an item of interest. Other solutions include neural
networks [123], and rule-based solutions [126] that generate discrete asso-
ciation rules for groups of commonly liked items based on patterns of item
co-occurrence across user profiles.

2.3 Content-based Filtering

Content-based filtering (CBF) [110] bases its recommendation for a new user-
item scenario purely on how well the content of the target item matches
the user’s preferred content pattern, which is learnt from the user’s own
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past ratings and the content pattern of the rated items. To this end, the
content-representation, which provides an abstract characterisation of the
item content, becomes an essential part of every CBF system, since it de-
fines how the items are to be perceived by the CBF learning algorithms.

Modern content-representations often use a set of feature attributes,
each of which represents one key aspect of the item important for the
capturing of user preferences. For examples, in movie recommendation,
item attributes can include the movie’s genre, synopsis keywords, dates,
actors/actresses, directors, producers, editors, distributors, writers, plot
keywords, and reviews [172]. For text document recommendation, items
attributes can be a set of extracted keywords [9].

CBF essentially views the problem of recommendation as a set of per-
user classification (or regression) problems, where the ratings are classes,
the items are objects to be classified, and the item attributes are the build-
ing blocks of the classifiers. Generally speaking, research on CBF is not as
active and techniques not as diverse as CF, as elaborated in Nanas et al.
[99]. CBF methods are mostly model-based.2 Existing implementations
include naı̈ve Bayes [16, 2], neural networks [27, 56], Gaussian processes
[114, 100], belief nets [165], and decision trees [12].

CBF is user-oriented, since the recommendation process “pivots” around
users and classifies items. Its item-oriented counterpart is known as demo-
graphic filtering [26], which pivots around items and generates per-item
models, each of which uses demographic attributes such as the user’s age,
sex, location, language, occupation, and marital status as building blocks
to characterise the demographic profile of the users who would prefer it.
Demographic filtering has not been as successful as CBF in research or
real-world applications due to the difficulty of gathering sufficient demo-
graphic data [26].

CBF has both strengths and weaknesses compared to collaborative fil-
tering. CBF performs well in areas where content data is abundant and

2This thesis classifies memory-based CBF such as the vector space model [2, 16] as single
module hybrid filtering (section 2.5.3.2). This is because in this class of methods, although
the neighbourhood similarities are computed purely based on user or item content, the
recommendation still uses collaborative rating data from other users or items.
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pertinent to the preference of users, such as text document recommen-
dation, and performs badly in areas where these conditions do not hold,
such as cross-domain situations (section 2.4.2.3). CBF does not take into
account any collaborative preference data gathered from other users, result-
ing in the recommendations being localised to the target user’s own past
experience (section 2.4.3 – serendipity). However, this also makes CBF al-
gorithms more efficient since it needs to deal with less data, and makes it
outperform CF when training data is scarce, especially in new-item situa-
tions (section 2.4.2.2). When data is sufficient, CF often outperforms CBF
in terms of recommendation precision, whereas CBF has been reported to
achieve marginally better recall (at the cost of worse precision) [12]. De-
tailed analysis of the pros and cons of CF and CBF on all the aforemen-
tioned aspects are elaborated in section 2.4.

2.4 Comparisons of the Two Filtering Approaches

Collaborative filtering and content-based filtering are two classes of rec-
ommendation techniques that possess fundamentally different inductive
biases. When used in isolation, they exhibit different strengths, weak-
nesses, and properties. This section analyses the two filterings from four
perspectives: section 2.4.1 discusses their data requirements in terms of
the availability, density, and quality of rating data and content-based data;
section 2.4.2 discusses their recommendation abilities under general sit-
uations and special scenarios such as cold-start, cross-domain, and non-
transitive association; section 2.4.3 discusses their ability to incorporate
factors such as novelty, user subjectivity, item properties, and item quality
in the recommendations; and section 2.4.4 discusses their machine learn-
ing properties in terms of scalability, adaptivity, and explainability.
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2.4.1 The Data Requirements of CF and CBF

2.4.1.1 The requirements on rating data

Like all supervised machine learning algorithms, the availability, quantity,
and quality of the training data is a major factor directly linked to the
learning efficacy and recommendation accuracy of both collaborative and
content-based filtering. It has been suggested in [26] that when rating data
is extremely scarce, human expert-constructed recommendations, which
otherwise would be considered limited and biased, can often outperform
learning-based CF and CBF methods.

CF and CBF have different requirements on the source of training data.
Collaborative filtering makes recommendations by incorporating the wis-
dom of the crowd, and requires a reasonable number of ratings not only
from the target user of the prediction, but also other users in the dataset.
Content-based filtering makes recommendations solely based on the rat-
ings provided by the target user, and totally ignores the ratings of the
crowd. Therefore, although it is immune to an insufficiency of collabo-
rative data, it does require its only data source — the target user — to
have rated a significant number of items.

2.4.1.2 The requirements on the sparsity of rating data

The sparsity of a rating dataset is defined as the density of the vacancies in
the user-item rating matrix, as in equation 2.1.

sparsity = 1− # ratings
# users× # items

(2.1)

Because most users would have only rated a very small portion of the
items, most recommendation datasets have very high sparsity, with spar-
sity as high as 0.95 considered normal [129].3 For this reason, in the field of
recommender systems, the term “sparse” only refers to the extreme cases
where the sparsity of the dataset is higher than 0.99. Such extreme sparsity

3 Table 3.1 in chapter 3 (Evaluation Settings) lists the statistics of the recommendation
datasets used in this thesis along with their sparsity values.
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normally occurs when new recommender systems are first established, or
in datasets where the number of users is small relative to the volume of
information in the system due to either a large number of items or regular
updates of the item pool or both.

Many publications include evaluations on sparse datasets in order to
demonstrate the performance of their algorithms under start-up situations
and other similar conditions [115, 104, 54, 40]. These studies normally use
a standard recommendation dataset such as MovieLens, and achieve high
sparsity by deliberately excluding training data.

High dataset sparsity has no effect on CBF given sufficient number of
ratings from the target user, but can greatly reduce the performance of
CF, since it is harder to extract collaborative information from a sparse
matrix. There have been several heuristics proposed to improve the per-
formance of CF under extreme sparsity. Existing solutions can be classi-
fied into explicit rating solicitation, dimensionality reduction, smoothing
methods, graph-based methods, “fill-in-the-gap” methods, and hybrid fil-
tering. Note that the classes may not be orthogonal. For example, the
“fill-in-the-gap” method proposed in [91] is also hybrid filtering.

A typical explicit rating solicitation methods is active learning [45], which
reduces the sparsity of the dataset by actively calculating the minimum
set of queries that would be sufficient to learn the user’s preference pat-
tern, and then explicitly querying the user. Dimensionality-reduction meth-
ods [119, 38, 131] generalises over unrepresentative or insignificant users
or items so that the user-item matrix is condensed. Smoothing mechanisms
[152, 84] combine multiple prediction sources produced by different CF
mechanisms to increase the likelihood of a prediction being produced.
Graph-based methods deal with sparsity structurally. For example, Aggar-
wal et al. [4] implements a graph-based model that represents user similar-
ities, and makes predictions by walking through the graph, thus is able to
simply skip users with no data instead of being stopped by them; Schickel-
Zuber and Faltings [136] uses ontology modelling to provide priors and
hierarchical generalisation in the recommendation process to combat spar-
sity.

“Fill-in-the-gap” methods alleviate the lack of data caused by sparsity by
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essentially exploiting a bigger part of the rating matrix for every predic-
tion. The idea is to introduce a preprocessing step that fills in the miss-
ing entries of the rating matrix before feeding it to the main CF algorithm
that produces recommendations, so that the transitive associations (sec-
tion 2.4.2.4) that would otherwise be lost due to a lack of data connectors
can be established through artificial data. Heuristics have also been pro-
posed to only fill in the gaps considered constructive to the recommenda-
tion accuracy of active users [84]. Methods for generating artificial filler
ratings include using a static “default voting” [23], using item-based CF to
generate fillers for user-based CF [115], using CBF to generate filler to be
later used by CF [91], using filler ratings provided by user clusters [156],
using recursive prediction to refine the filler [162], using a set of common
machine learning classifiers such as decision tree, logistic regression, naive
Bayes, neural networks, one rule, decision list, and support vector ma-
chines to fill in the missing data [144].

Hybrid filtering [115, 91, 107] is one of the most effective ways to deal
with data sparsity, due to CBF’s immunity to the sparsity of the collabora-
tive data, and the fact that it is always helpful to exploit other data sources
(i.e. the content data source) when data from one source is scarce. How-
ever, it does require the availability of content data. A detailed survey of
hybrid filtering algorithms is presented in section 2.5.

2.4.1.3 The requirement on item’s content data

The availability and the quality of content data is the biggest factor that
hinders the applicability and the performance of content-based filtering.

There are three sources where the content data can be obtained — high-
level feature extraction, low-level feature extraction, and manual construc-
tion. Some domains such as text-based recommendation of documents
and news articles have highly-extractable high-level features that can be
easily parsed into representative content attributes. These are also the do-
mains where CBF has the biggest advantages over CF. Other domains such
as multimedia recommendations of music, movies, and images only have
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low-level features that are harder but not impossible [77] to extract.4 Con-
tent data can also be manually added by human experts, such as the genre
information of a movie item. However, this is not only expensive, but can
also add bias [138, 2].

The quality of content data refers to how pertinent the content represen-
tation is at sufficiently capturing user interests. For example, “leg room”
and “ticket price” would be quality content for airline recommendation,
but the “seat colour” is not. Since the content-representation defines the
building blocks of CBF algorithms, it provides a significant inductive bias
that can greatly affect the accuracy of CBF recommendations. The insuffi-
ciency of content attributes is considered one of the main reasons why CBF
is not as successful as CF [99]. Pilászy and Tikk [113] also argues that in
movie recommendation, CF with only 10 ratings on a new movie is better
than pure CBF due to the large gap between movie descriptions and the
movies themselves — people rate movies, not their descriptions.

There have been studies focusing on developing a richer content rep-
resentation [137], but this is not the focus of this thesis. Instead, chapter 6
describes a new algorithm partly aspired by better utilisation of the exist-
ing content-representation.

2.4.2 The Recommendation Abilities of CF and CBF

2.4.2.1 Recommendation in general situations

Due to the richness of most collaborative data and the inadequacy of con-
tent representations given current technology, pure CF methods generally
outperform pure CBF methods in terms of their prediction accuracies in
general recommendation scenarios [99]. However, CBF methods are able
to make faster predictions due to their model-based and non-collaborative
(per-user) nature. Basu et al. [12] have also argued that CF techniques tend
to produce precision-oriented results, whereas CBF tend to produce recall-
oriented results.

4 Nanas et al. [99] pointed out that, since user interests are not captured completely by
free language expressible terms, lower level features have the potential to be as informa-
tive or more as higher level ones.
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2.4.2.2 Recommendation in cold-start situations

The cold-start problem [134, 78] refers to the situations where a recommen-
dation query targets a new or obscure user or item, on which there are no
or very few existing ratings to consult on. It can be classified as the new-
user problem [117] or the new-item problem [134, 91, 105] based on which
orientation is experiencing the cold-start.5 The new-user problem is ubiq-
uitous across recommendation domains, stages, and techniques. The new-
item problem is especially prevalent in dynamic domains.

CBF does not suffer from the new-item problem, because it relies on
the item’s content attributes instead of other users’ ratings to make rec-
ommendations, therefore having a brand new target item with no prior
ratings makes no difference. It does however suffer greatly from the new-
user problem, because the user’s own ratings are its only source of training
feedback, and a brand new user with no prior ratings would deprive it of
its only data source.

CF does not suffer from the new-user problem as badly as it suffers
from the new-item problem. This is because it can simply offer the item’s
average rating across all users as the recommendation to new users, but
recommending the user’s average rating to new items does not make as
much sense. On top of that, CF is more effective at building user models
than CBF when there are only a small number of user ratings because of
its ability to take advantage of collaborative ratings from other users.

Existing solutions of the cold-start problem can be classified into four
groups. The first group is to take initiative; examples include trying to de-
termine the most-informative items for a new user to rate based on heuris-
tics such as item statistics [117, 158], with the purpose of breaking free of
the new-item situation with a minimum number of elicited ratings. The
second group is manual interference; examples include expert-based man-
ual recommendation instead of learnt predictions [26], and the employ-
ment of “professional raters” to examine new items as soon as they ar-
rive [8]. The third group is higher-level generalisation; examples include

5The new-user problem is also known as the first-rater problem [91]; the new-item prob-
lem is also known as the recurring startup problem [73].
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non-personalized recommendations [107], and the use of prior knowledge
[159, 164] in cold-start situations. The fourth group is the exploitation of
wider knowledge sources, which follows the philosophy of incorporat-
ing information from different data sources when data from one source is
scarce. Most solutions to the cold-start problem belong to this group. Ex-
amples include hybrid collaborative and content-based filtering, hybrid
user and item-based methods [80, 152], and the exploitation of user’s so-
cial network information [85].

2.4.2.3 Recommendation in cross-domain situations

In recommender systems, a problem domain refers to a specific subject area
where items are comparable in their content and can be captured by a com-
mon content representation. Popular problem domains include movie,
music, books, jokes, and news. Sometimes, recommender systems need
to recommend to users who are interested in multiple problem domains.
This is known as the cross-domain situation [99].

In cross-domain situations, items of different domains do not share a
common content representation, thus cannot be compared, filtered, and
recommended based on their content descriptions. CBF in this case is
severely compromised to the extent of not being applicable, whereas CF is
not affected at all because it does not rely on content data.

2.4.2.4 Recommendation in non-transitive association scenarios

Memory-based CF has an inherent machine learning weakness caused by
its dependence on the transitive associations between users and items. In
it, users can only be linked through their common items, and items only
linked through their common users. If two items have never been rated
by the same user, or two users have never rated the same item, it is not
possible to determine whether the two items or users are similar. This
is known as the non-transitive association problem [63], which is one of the
main cause of CF’s poor performance in cold-start scenarios and sparse
datasets.

The remedies include fill-in-the-gaps methods that preserve associations
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through pseudo-ratings generated prior to the learning (as described in
section 2.4.1.2). Another solutions is hybrid collaborative and content-
based filtering, in which case the item relationships lost by the lack of
transitive associations in collaborative data can potentially be recovered
by content-based filtering, if the items share common content-based traits.

2.4.3 The Recommendation Tendencies of CF and CBF

Apart from the different recommendation abilities under different situa-
tions, CF and CBF are also different in terms of their tendency to incor-
porate factors such as novelty, user subjectivity, item properties, and item
qualities in the recommendation.

Since the recommendation process of CBF revolves around item con-
tents, it has a natural advantage at capturing user preference regarding
the property and content of items. CF on the other hand does not have
this nature advantage. However, if the user’s preference of certain item
properties or contents is consistently reflected in his or her ratings, CF can
still pick it up implicitly.

CBF’s dedicated attention to item content is a double-edge sword. While
enabling it to easily capture user’s preference on item content, it also con-
strains it to only be able to recommend items that are similar in content
to the ones the user has already seen. This is sufficient if users have spe-
cific interests in mind and are only looking for related recommendations,
but may not be useful when “out-of-the-box” discovery is of interest, such
as recommending fiction novels based on the programming books a user
likes. This is known as the serendipity problem, and was first pointed out in
[138]. Three groups of remedies have been proposed — add collaborative
filtering [1], add randomness [139], and add into fitness [163], which incor-
porates the requirement of diversity directly into the optimisation prob-
lem. Related research include [67, 62].

A more dire accusation is that CBF’s dedication to item content ren-
ders it incapable of capturing user’s subjective view and item’s quality
[9, 73], which, if true, would be an inherent problem that greatly affect
CBF’s real-life applicability even when users are happy to stick with rou-
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tine contents. I believe this inability is not due to the inherent flaws of
the CBF algorithms, but the general lack of content representation broad
enough to sufficiently categorise the “subjectiveness” of users’ views and
the quality of items. This new perspective is fundamental to the new hy-
bridisation structure proposed in chapter 6, and is further elaborated in
section 6.1.1.

2.4.4 The Machine Learning Properties of CF and CBF

2.4.4.1 The learning scalability

The scalability of a recommender system [106, 129] refers to the system’s
ability to cope with the growth of users, items, and ratings, in terms of
computational complexity, processing efficiency, and other resource re-
quirements. It is vital to the system’s applicability in the real world, where
dealing with a large and growing user and item base is often required.

Recommendation algorithms that depend on less data generally have
a slower increase in demand as the system grows, thus tend to have better
scalability. To this end, CBF generally has better scalability than CF, due
to the fact that the content-based data is normally more compact, and that
pure CBF only needs to process ratings from the target user alone.

Given the same data load, the scalability of an algorithm depends on
the degree of generalisation, partition, and reuse implemented by the al-
gorithm. To this end, memory-based CF has worse scalability than model-
based CF. Among model-based CF, matrix factorisation is on the lower
end of the scalability scale, and clustering algorithms on the higher end.
Algorithms that allow online updating also have better scalability than
batch algorithms due to the fact that they allow the models of newly ob-
served ratings to be built on top of the previous model, thus vastly im-
proving scalability through reuse.

2.4.4.2 The learning adaptivity

Scalability measures the performance of a system with the expansion of the
training dataset, whereas adaptivity measures the system’s speed to adapt
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to new data with the update of training data. When data is sufficient,
it is generally preferable for the recommendation to comply with more
recent data to capture the evolution of user interests. A system with low
adaptivity may keep recommending baby toys to a mother after her child
has grown up.

High adaptivity is not always welcome, as it may compromise the sta-
bility of the system and opens the door for spamming and injection at-
tacks. This is known as the plasticity vs. stability dilemma [26] — a key
topic in anti-spamming and system robustness research [127, 97, 96, 90].
Generally, adaptivity and stability can both be improved at the same time
through model-based methods with a high-level of abstraction. To this
end, model-based CBF generally has better adaptivity as well as stabil-
ity, whereas memory-based CF is considered to have the poorest stability
[127]. Another way to improve adaptivity is temporal decay [18], where
long-term information can be partially preserved using priors [164].

2.4.4.3 The explainability of the learnt model

Explainability is a general machine learning concept. On top of good
learning accuracies, it is also preferable for the learnt structure to be un-
derstandable by human. As [68] points out, explainability is of special
importance to recommender systems, as a recommendation with an intu-
itive reasoning such as “you will like this because . . . ” can improve the
user’s confidence and reliance on both the recommendation and the sys-
tem. Related studies include [148].

Rule-based methods generally have the best explainability by nature.
Between the two filterings, CBF has an edge in this aspect because of the
structured nature of the content-based data. However it is not always the
case, as a neural network-based CBF system would still suffer from poor
explainability.
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2.5 Hybrid Filtering

As explained in section 2.4, CF and CBF have a rather complementary set
of strengths and weaknesses in terms of their operational requirements,
recommendation abilities, and machine learning properties. Modern re-
search therefore developed hybrid filtering techniques in order to alleviate
the weaknesses of CF and CBF. The earliest hybrid filtering system dates
back to the Fab system in the late 90s [9]. Since then, hybrid filtering has
flourished, with modern techniques surveyed in [26, 2].

As specified in section 2.1.6, this thesis adopts an information source-
oriented definition of CF and CBF. Collaborative filtering is defined as
techniques that base their recommendations solely on collaborative data,
whereas content-based filtering is defined as techniques that base their
recommendations solely on content-based data. Hybrid filtering thereby
refers to techniques that utilise both collaborative and content-based in-
formation to make recommendations. This is different from early publi-
cations that adopt a procedure-based definition of hybrid filtering, ruling
systems that utilise both information sources but process them separately
as non-hybrid [28].

The core of a hybrid system is its hybridisation strategy [25], which refers
to the mechanism that coordinates the CF and CBF components to make
cooperative recommendations. This section surveys the existing hybridis-
ation strategies, and classifies them into three categories of combinatorial
hybridisation, sequential hybridisation, and non-communicative hybridi-
sation in sections 2.5.1, 2.5.2, and 2.5.3 respectively.6

2.5.1 Combinatorial Hybridisation

As shown in figure 2.1, combinatorial hybridisation strategies operate col-
laborative and content-based modules separately to produce independent

6Note that a hybrid system can implement more than one hybridisation strategy. For
example, the Fab system [9] implements a sequential hybridisation strategy using recom-
mendations as its hybridisation media (section 2.5.2.1). However, its CF component uses
both collaborative and content-based information to compute peer users, implementing
a single module non-communicative hybridisation strategy (section 2.5.3.2).
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recommendations, which are then combined through rating integration or
list merging to form the final recommendation. Existing rating prediction-
based combinatorial hybridisation strategies include weighting, switch-
ing, voting, and stacking.
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Figure 2.1: The Combinatorial Hybridisation Structure

2.5.1.1 Weighting

The weighting-based combinatorial hybridisation strategies [26] compute
the final rating prediction as a weighted average of the predictions inde-
pendently produced by separate CF and CBF modules. The weighting
scheme can be static or dynamic. Static weighting schemes as in [28, 14]7 de-
termine the weights by calculating the empirical means on a validation set.
The weights are not altered upon assignment (i.e. static), thus is only suit-
able where the relative power of the modules is consistent over the prob-
lem space [26]. Dynamic weighting schemes [28, 10] implement an adaptive
weight-assignment method, allowing the weights to change as conditions
change. The simplest example is a piecewise function that assigns a dif-
ferent weight-balance to different users. Another common heuristic is to
bias the weights towards CBF modules at the start when data is scarce,
and gradually adjust towards CF modules as more data is collected.

2.5.1.2 Switching

Switching [26, 3] implements a conditional winner takes all scheme, in which
the hybrid system switches between its modules based on the context,
and the chosen module takes over the recommendation completely. This

7[14] implements a weighted combination of multiple CF algorithms with no CBF
components, thus is not “hybrid filtering” per se, but its “hybridisation strategy” is simi-
lar to that of static weighting-based hybrid filtering.
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scheme is suitable where different modules possess distinctive strengths
in different parts of the problem space. The switching criteria can either
be statically predetermined, or dynamically decided based on certain rec-
ommendation quality metrics [3], such as the “degree of confidence” used
by [18], or the “consistency with past user ratings” used by [149].

2.5.1.3 Voting

Voting schemes are essentially a variation of weighting and switching,
with the weighting or switching formulated as a voting or a bidding prob-
lem. Examples include [111] that proposed a voting scheme to combine list
recommendations, and [153] that implements a market-based approach
where different filtering algorithms bid with each other under various
heuristics to offer their recommendations to the users.

2.5.1.4 Stacking

Instead of pre-determining the way of combining the base recommenders,
the stacking scheme [10] uses a meta-learner to learn the optimal combina-
tion pattern. It treats the combination problem as a classification problem
that maps the recommendation outputs of all the base recommenders to a
final recommendation. The training data of the meta learner is provided
by cross validation.

2.5.2 Sequential Hybridisation

As shown in figure 2.2, sequential hybridisation strategies stream two or
more CF and CBF modules into a sequence. The modules are then applied
one after another, with the output of the earlier module guiding the learn-
ing of the module following it. The final recommendation is produced by
the last module in the sequence.

Sequential hybridisation strategies can be classified based on the type
of information being passed down the sequence, which can be recommen-
dations (section 2.5.2.1), feature vectors of users or items (section 2.5.2.2),
or abstract knowledge models (section 2.5.2.3). The strategies can also be
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classified based on the ordering of the CF and the CBF modules in the
sequence, as described in sections 2.5.2.4.
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Figure 2.2: The Sequential Hybridisation Structure

2.5.2.1 Recommendations as hybridisation media

The most straightforward form of sequential hybridisation is to pass down
recommendations. In this type, each individual module in the sequence
is a recommender by itself. The recommendations made by the earlier
module is passed down to the next module to be further refined [9], to
serve as tie-breakers [25], or to be used as additional training data [91, 159,
130, 39, 107, 31].

For example, in the Fab system [9], both the items gathered by content-
based collection agents and the items recommended collaboratively by the
neighbouring users are passed into the content-based selection agent of the
user to be further filtered before being recommended to the user. EntreeC
[25] implements a “cascading” strategy that assigns priorities to recom-
mendation modules, with the lower priority ones serving as tie-breakers
in the scoring of the higher priority ones. Rating augmentation [91, 159, 31]
uses content-based predictions to complete the missing entries of the rat-
ing matrix, which is then used by a CF module to make the final recom-
mendations. Filterbots [39, 107] expand the user pool with fictitious users
called filterbots, whose item ratings are provided by content-based recom-
mendation modules solely based on the content data of the items. The
filterbots are then treated as ordinary users in the recommendation pro-
cess of the main collaborative recommendation modules.

2.5.2.2 Features vectors as hybridisation media

Passing down feature vectors, or feature augmentation requires the earlier
algorithm to serve as a feature extraction mechanism to create or expand
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the existing feature set describing items or users. The augmented features
are then fed into the main recommendation algorithm to produce the final
recommendation.

Examples that use CF as a feature extractor and CBF as the final rec-
ommender include [104] and the Ripper system [12]. Both systems use
association rule mining over the collaborative data to derive new features,
which are then fed into a rule induction-based CBF recommender. An-
other example is [113], which firstly applies matrix factorisation (section
2.2.2) on the rating matrix to generate a feature matrix representing a set
of feature vectors for the movie items. A CBF module is then used to find
an approximated linear transformation that transforms the item content
features to the CF-induced feature vectors. This system, once trained, is
able to make collaborative recommendations on new items that do not yet
have user ratings.

Examples that use CBF as a feature extractor and CF as the final recom-
mender include [124, 111]. In [124], CBF techniques are used to generate
a set of intermediate ratings corresponding to the different aspects of the
item’s content representation, such as a rating for each actor or each film
genre. CF is then applied on the generated content ratings to produce col-
laborative recommendations.8 In [111], a content-based naı̈ve Bayes tech-
nique is used to build feature vectors representing users’ preferences of
restaurants. CF is then applied to the feature vectors to identify peer users
and produce recommendations.

2.5.2.3 Knowledge models as hybridisation media

In this class, the knowledge model learnt by the earlier module is fed as input
into the next module, which then produces the recommendations. The dif-
ference between a knowledge model and a feature set (as described in the
previous section) is that a knowledge model does not directly correspond
to a partial aspect of users or items.

8The hybridisation media in this case are feature vectors but not recommendations,
because the intermediate ratings that get passed down the sequence reflect the user’s
preference on a general concept, or a pre-defined cluster, instead of on individual items.
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Examples include [64], which uses the item-item similarity matrix as
the hybridisation media. In this system, a CBF module that applies k-
means clustering over the item contents is applied to calculate item sim-
ilarities, which are then combined through weighted sum with the item
similarities calculated using conventional CF methods to form the final
similarity matrix to be used in an item-based CF recommendation setting.
Another example is [109], which firstly builds a directed tree structure
called a conceptual graph for each user based on content-based data. Peer
users are then identified by comparing users’ conceptual graphs, and used
in a CF setting to make the final recommendations.

2.5.2.4 The ordering of CF and CBF

The previous three sections defined three classes of sequential hybridis-
ation strategies based on the different hybridisation media being passed
along the module sequence. An alternative classification dimension is
based on the order in which CF and CBF modules are applied.

Content-then-collaborative sequential hybridisation strategies refer to the
scenarios where CBF comes before CF in the module sequence. CF would
serve as the main recommendation engine, whereas CBF serves as a pre-
processing auxiliary helper. Examples include using CBF to provide addi-
tional artificial training data [91, 159, 130, 39, 107, 31] (section 2.5.2.1), as
a feature extractor [111, 124] (section 2.5.2.2), or as an abstract knowledge
extractor [109, 64] (section 2.5.2.3).

Collaborative-then-content sequential hybridisation strategies refer to the
scenarios where CF comes before CBF in the module sequence. CBF would
serve as the main recommendation engine, whereas CF serves as a pre-
processing auxiliary helper. Examples include using CF as a feature ex-
tractor [12, 104, 113] (section 2.5.2.2), or as a recommender system whose
recommendations are to be further refined by a content-based filter [9].

2.5.3 Non-communicative Hybridisation

Non-communicative hybridisation strategies refer to scenarios where both col-
laborative and content-based information sources are explored, thus qual-
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ify as hybrid filtering, but there is no explicit hybridisation step of the CF
and CBF modules in the filtering process. This class can be further divided
into two subclasses of parallel hybridisation and single module hybridisation,
which are described in sections 2.5.3.1 and 2.5.3.2 respectively.

2.5.3.1 Parallel Hybridisation

As shown in figure 2.3, parallel hybridisation refers to the scenario where
a mixture of collaborative and content-based recommenders are imple-
mented to produce independent recommendations, which are all presented
to the end user without further attempt to combine the results. It is also
known as the mixed hybridisation strategy [26], and is proposed mainly to
combat sparsity. Published implementations include ProfBuilder [5] and
the PTV system [142].
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Figure 2.3: The Parallel Non-communicative Hybridisation Structure

2.5.3.2 Single Module Hybridisation

As shown in figure 2.4, single module hybridisation refers to the scenario
where both collaborative and content-based information sources are ex-
plored in a single recommendation setting. There are no distinctive CF
and CBF modules, thus is a type of non-communicative hybridisation.

Many systems of this class are built upon the idea of adapting collab-
orative filtering techniques to incorporate both collaborative and content-
based data. Examples based on nearest neighbour collaborative filtering
(section 2.2.1) include using the correlations between the profiles of users’
preferred document keywords to calculate user similarities [9], or using
the correlations between the content attributes of items [2, 16] or noise-
reduced feature vectors of items [95] to calculate item similarities. Such
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content data-induced similarities are then used to identify peer users or
items in a nearest neighbour CF recommendation setting.

Examples based on matrix factorisation (section 2.2.2) include [15], which
proposed a “distributive” recommender system by partitioning the rat-
ing matrix into several smaller matrices, each corresponding to a content-
based concept of the problem domain (e.g. movie genre). These content-
derived matrices form several distributive collaborative filtering systems,
which then communicate with each other to make the final recommen-
dations. Another example is [141], which tries to integrate the relations
between user, item, movie genre, and movie actor using the matrix fac-
torisation method.

Examples based on clustering (section 2.2.3) include [115, 134], which
proposed a probability-based clustering method that extends the aspect
model-based CF method [53] (also see section 2.2.4) by using both collab-
orative and content-based data to build the aspect models, through the
learning process of which a balanced cooperation between collaborative
and content-based data is reached.

Other examples include [11], which features a support vector machine-
like model with a kernel function based on a combination of collaborative
ratings and content-based feature attributes; and preference network [150]
that models content-based and collaborative data in a single conditional
Markov random field.
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2.6 Summary

The purpose of this chapter is to present a general review of the field, to
clarify the scope of this thesis, and to provide new perspectives to vari-
ous concepts. It was written with the hope that it could be a stand-alone
contribution on its own, and could be useful as a general reference for
other colleagues in the field. It is not a “related work” chapter — closely
related work for the newly proposed algorithms will be presented in the
algorithms’ own respective chapters.

This chapter has three main components — the taxonomies of recom-
mender systems (section 2.1); a comprehensive comparison of the pros and
cons of CF and CBF (section 2.4); and a survey on the existing CF, CBF, and
hybrid filtering techniques (sections 2.2, 2.3, and 2.5).

• Section 2.1 outlines six recommender system taxonomies based on
the system’s input format, output format, knowledge representa-
tion structure, knowledge updating model, (user or item) orienta-
tion, and (collaborative or content-based) knowledge source. Table
2.1 summaries the coordinate of this thesis within the six dimensions.

• Sections 2.2, 2.3, and 2.5 provide literature surveys on the techniques
used in collaborative filtering, content-based filtering, and hybrid
filtering respectively. Section 2.2 covers collaborative filtering tech-
niques by classifying them into memory-based methods, matrix fac-
torisation methods, clustering methods, probabilistic latent variable
model, and graph and rule-based models; section 2.3 clarifies the im-
portance of “content representation” in content-based filtering; sec-
tion 2.5 organises hybrid filtering systems by their hybridisation struc-
tures, and classifies them into combinatorial hybridisation (include
weighting, switching, voting and bidding), sequential hybridisation
(include using recommendation, feature vectors, or knowledge mod-
els as sequential hybridisation media), and non-communicative hy-
bridisation (include parallel and single module hybridisation).

• Section 2.4 presents a thorough and comprehensive comparison of
CF and CBF from various aspects, including their data requirements
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(in terms of rating data, content data, and data sparsity), recom-
mendation abilities (in general situations, cold-start situations, cross-
domain situations, and non-transitive association situations), recom-
mendation tendencies (in terms of the system’s ability to incorporate
item content, item quality, item novelty, user subjectivity, and user
individuality), and machine learning properties (in terms of scala-
bility, adaptivity, and explainability of the learnt model). Although
most of the recommender system publications do mention the differ-
ences between CF and CBF, based on my research, a comprehensive
comparison like this has never been done before. Hopefully this sur-
vey could serve as a useful and compact information source for other
collagues in the field.



Dimension Section This Thesis

(Implicit or explicit)

Relevancy Feedback
2.1.1

The experimental datasets provide ex-

plicit rating feedback, although chapter

5 does refer to implicit rating in its sup-

porting arguments.

(Binary, ranked or rating)

Recommendation Format
2.1.2

Numerical ratings are used as the pri-

mary recommendation format. How-

ever, binary and ranked-list recommen-

dations are also formulated to test the

power of the proposed methods. Chap-

ter 5 also proposes a different recom-

mendation format — distributional rat-

ings.

(Memory- or model-based)

Knowledge Representation
2.1.3

Chapters 4 and 5 are memory-based;

chapter 6 adopts both memory- and

model-based representations.

(Online or batch)

Model Update
2.1.4 Batch mode.

(User- or item-based)

Model Orientation
2.1.5

The algorithms of this thesis are de-

scribed in a user-oriented way, but can

be easily adapted to an item-oriented

setting.

(Collaborative or

content-based)

Knowledge Source

2.1.6

Chapters 4 and 5 only use collabora-

tive ratings; chapter 6 explores both

collaborative and content-based knowl-

edge sources.

Table 2.1: Where this thesis lies with respect to the six dimensions of classifica-

tion outlined in section 2.1 .
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Chapter 3

Evaluation Settings

The best way to test a system is to put it into practice. Therefore, recom-
mender systems are best evaluated through online real user-based exper-
iments. However, such experiments are very expensive due to the cost of
creating and maintaining an online system, the difficulty of gaining a user-
base, and the time required to gather a sufficient amount of data from the
end users. Online recommendation experiments also lack coherence and
consistency — properties important for comparing two different systems
or system settings.

For these reasons, offline experiments remain dominant in recommender
system research. Over time, standard offline data sets gathered from real
online systems have been established, experimental protocols developed,
and evaluation metrics refined. Survey and interesting discussions regard-
ing the experimentation and evaluation of recommender systems include
[41, 48, 23, 88].

This chapter describes the evaluation settings adopted by this thesis.
The datasets, evaluation protocols, and evaluation metrics are described
in sections 3.1, 3.2, and 3.3 respectively. Section 3.4 serves as a summary
of this chapter, as well as a compendium of the evaluation practices of this
thesis.

43
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3.1 Datasets

A rating dataset can be viewed as a set of 〈u, i, r〉 triplets, each of which
represents a user u’s preference rating r on item i. The rating can be bi-
nary, as in implicit datasets, or numerical, as in most of the explicit rating
datasets. It is the data source for collaborative filtering recommendations.

Some datasets also provide content attributes of items on top of the
rating data, known as the content data. To carry out content-based filtering,
both rating data and content data are required. This thesis requires both
rating and content data, which are described in sections 3.1.1 and 3.1.2.

3.1.1 The Rating Datasets

Three rating datasets are used in this thesis. They are the MovieLens Stan-
dard (MLS) dataset [120], the MovieLens Million (MLM) dataset [120], and
the Jester joke dataset (JST) [38] , all of which contain explicit numerical
ratings gathered from real users. The three datasets are very widely used
in modern RS research, making it easier to reproduce experiments and
compare system results. The MovieLens datasets especially is considered
the industry-standard, and is “representative of most data sets used in col-
laborative filtering recommender systems” [162, 35]. Other rating datasets
include the Each Movie dataset [171] and the NetFlix dataset [174], both of
which are similar to MovieLens in terms of data source, rating format, and
dataset characteristics.

The three datasets used in this thesis possess different statistical at-
tributes, as presented in table 3.1, thus provide diversity to the evaluation.
The MovieLens Standard dataset contains 100,000 ratings for 1682 movies
by 943 users. The ratings are integers from 1 to 5, with the average rat-
ing being 3.53 and the standard deviation of the ratings being 1.17. Each
user in the dataset has at least 20 and at most 737 ratings, with the average
number being 106 and the standard deviation of the number of ratings be-
ing 101. Each item in the dataset has at least 1 and at most 538 ratings, with
the average being 59 and the standard deviation being 80. The sparsity of
the dataset, as defined in formula 2.1, is 0.937. Note that the user orientation
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ML Standard ML Million Jester

Size

User 943 6,040 59,132

Item 1682 3,706 140

Rating 100,000 1,000,209 1,761,439

Rating
Range integer [1–5] integer [1–5] float [1–5]1

(µ, σ) (3.53, 1.13) (3.58, 1.17) (3.32, 1.06)

User
# rating [20 – 737] [20 – 2314] [1 – 140]

# rating (µ, σ) (106, 101) (166, 193) (30, 33)

Item
# rating [1 – 538] [1 – 3428] [166 – 59122]

# rating (µ, σ) (59, 80) (270, 384) (12582, 11914)

sparsity .937 .955 .787

Table 3.1: Statistics of Rating Datasets

is denser than the item orientation, with the average user possessing more
ratings then the average item.

The equivalent statistics of the MovieLens Million and the Jester joke
datasets can be read off table 3.1. In contrast to from MovieLens Stan-
dard, both datasets have a denser item orientation than the user orienta-
tion. The MovieLens Million dataset, albeit similar in domain and rating
format, is much bigger and much more sparse than the MovieLens Stan-
dard dataset. The Jester dataset is yet again different. It features real num-
ber ratings gathered from an unlabelled scroll-bar interface, resulting in a
different kind of rating bias. It also features an extremely unbalanced user
and item orientations, with only 140 items being ranked by almost 60,000
users. This results in many users having ranked the complete set of items,
effectively providing full information in the problem space.2

1The Jester joke dataset originally featured continuous ratings from -10 to 10. In this
thesis, they are scaled to real numbers between 1 and 5 in order to make the evaluation
results comparable to the MovieLens datasets.

2The purpose of the Jester dataset is to demonstrate the algorithms’ performances
under near-complete information. Therefore, only its user-orientation is presented in the
experiments of this thesis since its item-orientation does not hold such property. Also
that since the Jester dataset does not contain content-based data, it is not used in the
evaluation of content-based algorithms in chapter 6.
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3.1.2 The Content Data

The MovieLens datasets come with preliminary content-based data, where
each movie item is described by its movie title, release year, and 18 differ-
ent genres flattened into 19 boolean-valued attributes3. Some publications
use this as the sole content source for CBF recommendations [1], but it
is generally considered insufficient information to fully exploit the rec-
ommendation power of CBF algorithms [10]. To compensate, the Inter-
net Movie Database (IMDb) [172] is often used to provide additional con-
tent attributes to the MovieLens datasets. This method was pioneered by
[12, 39], and has now become a common practice used in many publica-
tions [76, 10, 161, 165].

The following content features are extracted from IMDb and used in
our experiments: release year, release month, running time, USA certifi-
cate, colour information, production country, production company, genre,
words in title, keywords, cast (actors and actresses), directors, producers,
and writers. Note that not all movies contain complete information. For
each attribute, there are on average 9% MovieLens Standard movies and
12% MovieLens Million movies with the attribute value “unknown”.

The content-representation adopted by this thesis takes the form of
single-valued attributes with boolean, categorical, or numerical values.
Multivariate attributes such as genre, keywords and cast are “flattened”
into multiple binary-valued attributes, producing boolean attributes such
as genre-being-action, keyword-being-prison, and actor-being-will-smith.

3.2 Experimental Protocols

In standard offline recommender system evaluations, the dataset at hand
is partitioned into a training set and a test set. The training set is visible to
the recommender system and is used in its training. The test set, hidden
during training, is used later as a reference to evaluate the trained system.

There are cases where a recommendation algorithm contains tweak-
able parameters whose values are to be determined by empirical trials. In

3The nineteenth attribute is “unknown”.
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these cases, the dataset is partitioned into three instead of two subsets,
serving as the training set, the validation set, and the test set. The valida-
tion set is used to determine the best parameter settings, and the system’s
final credit is judged by its performance on the test set, with the system
parameters set to the best performing values on the validation set.

In order to minimise the bias introduced by a particular partitioning,
the above process is often repeated several times and the reports averaged.
Generally, it is a good practice to offset the partitioning to make sure that
every data point is used exactly once as test data.

The exact procedure of the partitioning is determined by the partition-
ing protocols, with random partitioning being its simplest form. Over the
years, specialised partitioning protocols tailored to recommender systems
have been developed, including skip-every-nth, given-n, and held-out-k, which
are described in sections 3.2.1, 3.2.2, and 3.2.3 respectively. These parti-
tioning protocols serve different purposes. This thesis uses skip-every-nth
for general purpose experiments, and given-n and held-out-k for sparsity
experiments.

3.2.1 General experiments via “skip every nth”

The skip every nth protocol firstly lines up all the data points by position-
ing the ratings of each user contiguously, with the user ordering and the
rating ordering within each user randomised. Then, as its name states, it
traverses down this line-up and assigns every nth data point as test data
and the rest as training data. This protocol ensures that the sparsity of
the training dataset is minimally disturbed, and guarantees a (n − 1) : 1

size ratio between training and test data for all users up to decimal round-
ing. This thesis adopts skip every 10th as its general purpose partitioning
protocol. This is coupled with ten-fold cross validation [65], with the ten
partitions using the same randomised data line-up but offset, thus ensur-
ing that every data point is used exactly once as test subject.
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3.2.2 Robustness experiments via “given n”

Robustness refers to the sparsity endurance capability of the system. Note
that all recommendation datasets are more or less sparse, with the Movie-
LensMillion datasets featuring a sparsity as high as 0.955 (see table 3.1).
Robustness is concerned with the extreme situations where the sparsity is
over 0.99. More discussions on dataset sparsity can be found in section
2.4.1.2.

Robustness experiments generally take a regular dataset and thin it
down to the desirable sparsity. This is done using the given n partitioning
protocol, in which n ratings are randomly selected for each user or item as
observed training data, and the rest are treated as test subjects. Common
configurations are given-2, given-5, given-10, and given-20. The most gener-
ous user-oriented given-20 protocol will thin the two MovieLens datasets
down to a sparsity of 0.988 and 0.995 respectively;4 the draconian given-2
protocol will thin the three datasets down to a sparsity of 0.9988, 0.9995,
and 0.9975 respectively. The effect of the given-n protocol on the sparsity
of the three datasets is presented in table 3.2.

Table 3.2: The effect of skip-every-nth and given-n on dataset sparsity.

Dataset Sparsity

ML Standard ML Million Jester

Original Sparsity 0.9370 0.9553 0.7872

Skip Every nth
2 0.9685 0.9777 0.8936

5 0.9496 0.9643 0.8298

10 0.9433 0.9598 0.8085

Given n (on user)

2 0.9988 0.9995 0.9975

5 0.9970 0.9987 0.9937

10 0.9941 0.9973 0.9874

20 0.9881 0.9946 0.9748

Given n (on item)

2 0.9980 0.9997 0.99997

5 0.9953 0.9992 0.9999

10 0.9914 0.9985 0.9998

20 0.9850 0.9971 0.9997
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3.2.3 Controlled robustness experiments via “held out k”

The held out k protocol [152, 84, 64] partitions the dataset using users and
items as boundaries, instead of ratings. The protocol selects ku users as
test users and ki items as test items, hence partitions the rating dataset
into four quarters of test users on test items {rut,it}, test users on observed
items {rut,io}, observed users on test items {ruo,it}, and observed users on
observed items {ruo,io}, as shown in table 3.3. The first (top-left) partition
forms the test dataset, and the remaining three partitions form the training
dataset. The held-out-k protocol can be coupled with x-fold cross validation
to minimise the noise of a single partition, with x being the number of
distinct test set partitions. For example, if the protocol is to hold out 20%

users and 20% items, x would be 1
20%
× 1

20%
= 25; whereas if the protocol is

to hold out 25% of both users and items, x would be 16, and so forth.

Table 3.3: The user-item matrix with the held-out-k partitioning protocol.

i1 . . . iki iki+1 . . . in

u1

{rut,it} {rut,io}

︸
︷︷

︸

test users {Ut}
...

uku

uku+1

{ruo,it} {ruo,io}

︸
︷︷

︸

observed users {Uo}
...

um ︸ ︷︷ ︸
test items {It}

︸ ︷︷ ︸
observed items {Io}

The given n protocol can be used in combination with held out k to con-
trol the dataset sparsity of similarity calculation and rating prediction sep-
arately. For the three partitions that form the training dataset, with {ruo,io}
remains unchanged, applying the given n protocol on {rut,io} can be used
to control the data sparsity in user similarity computation, and applying
the given n protocol on {ruo,it} can be used to control the dataset sparsity
in rating prediction calculation.

4Due to the low (user-oriented) sparsity of the Jester joke dataset, the given-10 protocol
will only increase the sparsity to 0.929, which does not qualify for “extreme” and is not
suitable for robustness experiments.
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3.3 Evaluation Metrics

In offline recommender system evaluation, two recommendation formats
have been formalised to mimic the utilities of real-world users. They are
the rating prediction format and the list recommendation format. The latter
can be further divided into ranked list recommendation format and binary list
recommendation format, based on whether or not the list is ordinal.

In the rating prediction format, recommendations are presented to the
target user in the form of a numerical rating for each queried item, indi-
cating the expected user preference for that item. The original GroupLens
recommender [66] is of this type. In the list recommendation format, rec-
ommendations are presented as a list of best-qualified items selected from
a set of candidate items known as the bucket. If the list is ordered based
on the expected preferences, then it is of the ranked recommendation format,
otherwise it is of the binary recommendation format. The fundamental dif-
ference between the (rating) prediction task and the (list) recommendation
task is that the latter focuses on the relative instead of the absolute compar-
ison of the items, or that it focuses on rankings instead of ratings. An item
with a rating of a 2 out of 10 can still be the top-ranked item thus strongly
recommended, so long as the rating of 2 is the highest of all. Real-world
application of binary recommendation include E-commerce websites such
as Amazon [81]; applications of ranked recommendation include Siteseer
[121] and the essence of internet search engines.

Various research has pointed out the importance of using appropriate
evaluation metrics for tasks of different formats [48, 41, 88], and the po-
tential of misleading evaluation results if inappropriate metrics are used
[48, 88]. Metrics for evaluating rating prediction tasks operate by com-
paring the numerical prediction score with the actual user ratings. They
are known as the predictive accuracy metrics, and are described in detail in
section 3.3.1. Metrics for evaluating binary and ranked recommendation
tasks are known as the binary- and ranked- recommendation accuracy met-
rics. These metrics often have an information retrieval background, and
are described in detail in sections 3.3.2 and 3.3.3 respectively.

The algorithms proposed in this thesis are rating-prediction based, mak-
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ing the predictive accuracy metrics the primary evaluation choice. Al-
though a rating-based recommendation feedback provides more informa-
tion to the end users than the list recommendation formats, the ultimate
decision the user would make based on this recommendation is often bi-
nary, namely yea or nay. User studies have also shown that rankings, in-
stead of ratings, may sometimes be a more appropriate indication of whether
an item is to be accepted by a user, thereby a better measure of user expe-
rience [48, 41]. Therefore, to better understand a rating-prediction algo-
rithm, it is worthwhile evaluating its decision-support effectiveness by
testing it on binary- and ranked- recommendation tasks. Rating predic-
tion systems like the ones proposed in this thesis can be easily adapted to
solve list-recommendation tasks — for binary recommendation, a rating-
threshold can be chosen so that the system recommends all items with
ratings above the threshold; for ranked recommendation, a rank based on
the predicted rating can be imposed.

For the above reasons, a set of evaluation metrics of all three formats
were selected to evaluate the different facets of the rating-prediction al-
gorithms proposed in this thesis. Sections 3.3.1 to 3.3.3 provide a detailed
survey and analysis of the state-of-the-art evaluation metrics of each for-
mat, with an emphasis on the metrics used in this thesis. Section 3.3.4
outlines another important aspect of comparative evaluation — the signif-
icance tests.

3.3.1 Predictive Accuracy Metrics

The standard way of evaluating rating-prediction recommender systems
is to compare the prediction score provided by the system against the ac-
tual rating provided by the user for each user-item pair in the test data set,
thereby measuring the accuracy of the rating predictions. Such evaluation
metrics are known as the predictive accuracy metrics (PAMs).

PAMs can only be applied to systems that produce explicit ratings — a
condition not met by list recommendation-only systems. It has also been
pointed out in various studies such as [23, 48, 87, 41] that PAMs are not fit
to evaluate the ranking effectiveness of an algorithm, even if the algorithm
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does produce explicit rating predictions. In many cases, a very small dif-
ference in an algorithm’s predictive accuracy can lead to a very significant
improvement in its recommendation accuracy [68]. This is mostly because
PAMs weigh all errors equally regardless of the consequence of the error
on the item’s ranking. They can also be overly sensitive to unnecessary
details, especially when a prediction of a 4 as a 5 or a 2 as a 1 makes no
difference to the user. Therefore, PAMs should only be considered as one
component for evaluating rating prediction-based recommender systems,
and should be used alongside of other binary- and/or ranked- recommen-
dation accuracy metrics for omnifaceted evaluations.

This thesis adopts two commonly used PAMs to evaluate the rating-
prediction accuracy of the proposed algorithms. They are the mean abso-
lute error (MAE) and the root mean squared error (RMSE), and are explained
in detail in sections 3.3.1.1 and 3.3.1.2. Other predictive accuracy metrics
such as the normalized mean average error [48] and the prediction-rating cor-
relations [50, 48] are less popular due to their added complexity and strong
linear agreement with the MAE, thus are not adopted in this thesis.

3.3.1.1 Mean Absolute Error (MAE)

Given a test dataset consisting of N prediction queries in the form of user-
item pairs; suppose pu,i is the predicted rating and ru,i is the actual rating of
user u on item i; the mean absolute error (MAE) of the recommender system
on the test dataset is defined in formula 3.1:

MAE =

∑
(u,i)∈testset |pu,i − ru,i|

N
(3.1)

MAE measures the deviation of the predictions from their true user-
specified values. Lower MAE indicates better prediction accuracy. The
earliest published research that uses MAE on recommender systems is
Shardanand and Maes [138] in 1995. Since then, MAE has become one
of the most popular metrics in recommender system research due to its
computational simplicity and strong linear agreement with many other
more complicated metrics [48]. The same metric is sometimes referred as
the average absolute deviation [23], or simply the prediction error. Dedicated
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empirical studies on MAE in the context of recommender systems can be
found in [48, 87, 88, 41, 143].

3.3.1.2 Root Mean Squared Error (RMSE)

MAE weighs all errors equally, which may not be a preferred evaluation
bias. The root mean squared error (RMSE) has a similar effect as MAE, but
weights highly out-of-whack predictions more severely, thus is a better
measure especially when small prediction errors such as predicting a 4 as
5 or 2 as 1 do not matter much for the user experience. The RMSE metric
is defined as follows in formula 3.2:

RMSE =

√∑
(u,i)∈testset(pu,i − ru,i)2

N
(3.2)

RMSE measures the distance between the predictions and the true user-
specified values. Lower RMSE indicates better prediction accuracy. Stud-
ies have shown that, in recommender system evaluations, an improve-
ment as small as a 0.01 on the RSME can lead to a very significant im-
provement when ordering items by their predicted preference [68], thus is
considered significant and meaningful to the end user [120, 48, 152]. Stud-
ies of the RMSE metric can be found in [130, 143, 41].

3.3.2 Binary Recommendation Accuracy Metrics

Binary recommendation accuracy metrics (or simply binary metrics) measure
the ability of recommender systems at simply telling yeas from nays. They
are normally used to evaluate systems designed to make binary (non-
ranked) recommendation sets, but can also be applied to systems that out-
put ranking or rating predictions. For the latter usage, a threshold-cutoff
is often implemented for compatibility.

This thesis uses binary metrics to evaluate the decision support charac-
teristics of the proposed rating-based algorithms. More often than not, the
real-world decision the end user ultimately makes based on the recom-
mendation is binary, namely acceptance or rejection. Binary recommen-
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dation tasks and metrics allow us to look beyond the format of the rec-
ommendation and evaluate how well the system is at assisting the final
decision of the user. As pointed out in [169], although binary metrics do
not map directly to the user’s utility, they do serve as a good complement
to the predictive accuracy metrics such as the MAE.

The rest of the section is organised as follows: 3.3.2.1 describes the
methods and options for adapting binary recommendation accuracy met-
rics to rating-prediction based recommender systems; the later two sec-
tions outlines the two families of binary metrics — 3.3.2.2 presents pre-
cision and recall, and their implied PRC curve and F1-measure; 3.3.2.3
presents sensitivity and specificity, and their implied ROC curve and AUC-
measure.

3.3.2.1 How to apply binary metrics to rating-prediction systems

All binary recommendation accuracy metrics deal with the statistical as-
sociations of two sets — the set of items recommended by the system to the
user, and the set of items that are actually preferred by the user. An item can
be classified as either positive or negative, based on whether or not it is rec-
ommended by the recommender system; this classification can be either
true or false, based on whether or not the recommendation agrees with the
actual user preference. Therefore, an item can fall into one of the four cat-
egories based on its recommendation and preference status. This relationship
is illustrated in table 3.4.

Recommended Not Recommended
Preferred True-Positive (TP) False-Negative (FN)
Not Preferred False-Positive (FP) True-Negative (TN)

Table 3.4: Classification of items based on the item’s recommendation and
its actual user preference

The algorithms proposed in this thesis are of the rating-prediction for-
mat, where the system produces a numerical or distributional rating indi-
cating the expected preference of the user on the queried item. To evaluate
such algorithms with binary recommendation accuracy metrics, an extra
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step is needed to convert rating prediction scores into binary yes-or-no rec-
ommendations. Since the datasets used in this thesis are also rating-based,
an extra step of converting users’ actual ratings into users’ actual binary
preferences is also needed. The rest of the section outlines various ways of
converting rating predictions into binary recommendations, and ways of
converting user ratings into binary user preferences.

There are three ways of converting rating predictions into binary rec-
ommendations. The first one is the top-N approach, which generates a rec-
ommendation list of size N consisting of the N items with the highest
rating predictions. For web-based recommender systems, it is common
practice to choose an N between 1 and 20, as it is unlikely for users to
be interested in a longer list [87]. Published applications adopting this
approach include [128, 34, 48, 169, 161]. The second approach is the top-
quartile approach, which recommends all items whose predicted ratings are
in the top quarter. This approach is not as popular as the top-N approach
due to its inability to control the size of the recommendation list. Actually
its only published usage is in [12], where the approach was originally pro-
posed. The third approach is the threshold cutoff approach, which specifies a
rating-threshold indicating the strictness of the recommender system, and
recommend items whose predicted ratings exceed the threshold. Publi-
cations adopting this approach include [130, 47]. The threshold approach
can also be used in conjunction with the top-N approach, meaning that
only the top N highest-rated items with ratings exceeding the threshold
are recommended. If there are not enough items satisfying the threshold,
fewer will be recommended. Publications adopting this conjunctive ap-
proach include [8]. It is also the approach this thesis adopts, since it has
the added benefit of taking predicted ratings into account, as well as al-
lowing explicit control of the (maximum) size of the recommendation list.

There are also three ways of converting actual user ratings into user’s
binary preferences. The first approach is to use existence as an indica-
tion of preference, namely to consider all items present in the test dataset
as preferred. This approach is more suitable for implicit recommendation
domains such as online purchasing or browsing, as although a purchase or
a browse does not prove user satisfaction, it does indicate a certain level
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of user interest. Published applications adopting this approach include
[128, 34, 169]. The second approach is the top-quartile approach, where
only items whose actual ratings are in the top quarter are considered as
preferred. This approach, like its top-quartile recommendation counterpart
described in the previous paragraph, has only been used in [12], where
it was originally proposed. The third approach is to use a threshold-cutoff,
where only items whose actual ratings exceed a certain threshold are con-
sidered as preferred. If preference status is enquired on a recommended
item that is absent in the test dataset thus actual rating unknown, it can ei-
ther be ignored [130, 39, 47, 91, 8, 161], or considered as not-preferred [87].
Ignoring unrated items results in an overestimation of systems that rec-
ommend obscure items no one has seen, as such “mistakes” are ignored
instead of penalised; considering unrated items as not preferable results
in an underestimation of the system, since chances are that some of the
unrated items are actually preferred thus correctly recommended.

Certain prediction-to-recommendation conversion approaches can only
be paired with certain rating-to-preference conversion approaches. Exam-
ples of existing pairing are presented in table 3.5. The pairings adopted by
this thesis are also marked.

Binary Recommendation Conversions
Top-N Top-Quartile Threshold

Binary
Preference
Conver-
sions

Existance as Preference [34] – –
Top-Quartile As Preferred – [12] –

Threshold (unrated as ignored) [161] – [8], chapter 4, 5, 6
Threshold (unrated as misses) [87] – chapters 5, 6

Table 3.5: Exemple publications with different approaches of converting rating

predictions to binary recommendations (the columns), and of converting actual

user ratings to binary user preferences (the rows).

This thesis adopts the threshold-cutoff approach as it is the most rating-
friendly. Both unrated-items-as-ignored and unrated-items-as-unpreferable
are implemented to provide a more holistic evaluation, as shown in table
3.5.
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3.3.2.2 Precision, Recall, and the F1 Measure

Precision, recall, and the F1-measure are statistical metrics widely used in
the evaluation of binary information retrieval systems [69]. Given a set
of instances, suppose the task is to tell the positives (desired, relevant, rec-
ommended) from the negatives (undesired, irrelevant, not recommended).
Precision, as shown in equation 3.3a, measures the ratio of correctly pre-
dicted positives over all the positives suggested by the system; whereas
recall, as shown in equation 3.3b, measures the ratio of correctly predicted
positives over all the positive instances out there in the data set. Precision
reflects the fidelity of the system’s performance on a task, whereas recall
reflects its completeness.

precision =
# correctly recommended

# recommended
=

#TP
#TP + #FP

(3.3a)

recall =
# correctly recommended
# preferred in the data set

=
#TP

#TP + #FN
(3.3b)

Precision and recall are often conflicting in nature. For example, sim-
ply recommending all instances can achieve perfect recall at the cost of low
precision, whereas being overly cautious at claiming a positive can vastly
improve precision at the cost of low recall. Although there are publica-
tions that use solely precision without recall [8], or solely recall without
precision [61, 34] in their evaluations, it is more often for the two met-
rics to be presented together as a package for a more complete evaluation.
The precision-recall curve or PRC curve is a curve that plots the precision
(on the y-axis) against recall (on the x-axis) with varying recommendation
strictness, which is controlled by the N value in a top-N recommenda-
tion scheme or the rating threshold in a threshold-cutoff recommendation
scheme. Since the curve provides a holistic view of the correlations be-
tween precision and recall, it can be used to guide the choice of the op-
timal recommendation strictness on the deployment of the system. The
curve can also be used to compare the performances of competing rec-
ommender systems on a holistic precision-and-recall-combined scale, as a
dominant PRC curve with more area underneath indicates better overall
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decision-support accuracy. Recommender systems using the PRC curve as
part of their evaluation scheme include [130, 87, 161].

A more compact way of comparing the decison-support performances
of competing recommender systems is the F1-measure, which is a single
metric featuring the harmonic mean of precision and recall, as shown in
equation 3.4. Recommender systems evaluated using the F1-measure in-
clude [128, 161].

F1 =
2× precision× recall

precision + recall
(3.4)

In most cases, it is desirable to reach a balance between precision and
recall, as both are important for the quality judgement of the system. How-
ever, it has been pointed out in [12] that the nature of the recommendation
tasks induces a greater demand on precision over recall. This is because
when it comes down to user experiences, fidelity trumps completeness —
users in general do not mind not seeing some potentially interesting rec-
ommendations, so long as there are other equally-interesting recommen-
dations occupying their minds; whereas being recommended an item that
is not of interest to the user would quickly drain the user’s confidence on
the system. However, in the rare occasions where the cost of overlooking
an item is high, such as the recommendation of medical diagnoses or le-
gal documents, user experiences give in to the risk of missing any positive
items, and recall-biased recommendations are preferred. Information re-
trieval tasks such as web search are also recall-biased, but for a different
reason. It is because the cost of verifying a returned item is relatively low,
and the user can always refine their search to obtain higher fidelity.

Interesting studies have been done on the trade-offs between precision
and recall on different recommender system techniques. Basu et al. [12]
showed that collaborative filtering techniques tend to produce precision-
oriented results, content-based filtering techniques tend to be recall-oriented,
and hybrid filtering combines the advantage of the two filtering techniques
thus can achieve an improvement on both precision and recall.
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3.3.2.3 ROC, GROC and CROC Curves

Like precision and recall, another pair of conflicting yet complementary bi-
nary recommendation metrics are the hit-rate and miss-rate, or sometimes
also referred as sensitivity and (1−) specificity [134], or true and false posi-
tive rate [41]. Hit-rate, as shown in equation 3.5a, is exactly the same as
recall. Miss-rate, as shown in equation 3.5b, measures the ratio of wrongly
predicted positives (recommended but not preferred) over all the items in
the dataset that are not-preferred by the user. Semantically, the hit-rate
represents the probability of a preferred item being recommended by the
system, whereas the miss-rate represents the probability of a not-preferred
item being recommended by the system.

hit rate(recall) =
# correctly recommended

# preferred
=

#TP
#TP + #FN

(3.5a)

miss rate =
# wrongly recommended

# not preferred
=

#FP
#FP + #TN

(3.5b)

Like the precision-recall curve, the receiver operating characteristic or
ROC curve [36, 69] plots the hit-rate (on the y-axis) against the miss-rate
(on the x-axis) with varying recommendation strictness. A good algorithm
with higher-than-random performance has an ROC curve that lies in the
upper left triangle of the axis. As pointed out in the previous section on
page 58, it is more important for a recommender system to have high pre-
cision than high recall due to the nature of the recommendation task. Sim-
ilarly here, it is more important to focus on the left hand side of the ROC
curve to keep the false positive (miss) rate low, as a wrongly recommended
item could very quickly drain out the confidence of the user on the system.

The area under the ROC curve is a combined performance measure
known as the ROC sensitivity, a higher value of which represents a higher
overall ability for the system to recommend more good items as well as
reject more bad items. A perfect performance, where all and only the
preferred items are recommended, has an ROC sensitivity of 1.0; random
guessing has an ROC sensitivity of 0.5; for interim situations, the value of
the ROC sensitivity can be estimated using quadrature [44], a popular ap-
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proach of which is known as the AUC (area under curve) approximation
as presented in formula 3.6.

AUC (Area Under Curve) = 1− 1

2

n∑
k=1

(xk − xk−1)(yk + yk−1) (3.6)

where xk and yk are the coordinates of the points defined by the hit-
miss-rate pairs. The AUC measure, like the F1-measure in precision and
recall, aptly sums up the ROC curve as a single number, thus is handy for
comparing algorithms with intersecting ROC curves. However, it does
lose important trade-off information provided by the ROC curve, thus
should only be considered as a complement rather than a replacement to
the curves. Survey papers that discuss the use of ROC metrics on recom-
mendation tasks include [48, 41, 143]. Recommender systems that employ
the ROC curves as part of their evaluations include [134, 40]; recommender
systems that present only the numerical ROC-sensitivity or AUC-measure
without the curve as part of their evaluations include [130, 39, 47, 91].

The ROC metrics (curve and sensitivity) are widely used in machine
learning and information retrieval to evaluate binary classification prob-
lems [69]. The difference here is, due to the personalised nature of rec-
ommender systems, both the system’s overall accuracy as well as its per-
user accuracy are of interest. Schein et al. [135] introduced the termi-
nologies of global ROC (GROC) and customer ROC (CROC), the former
refers to the application of the ROC metrics on the entire test dataset, and
the latter refers to the application of ROC on a per-user bases. For rat-
ing threshold-controlled binary recommendation, the difference between
GROC and CROC is small; for top-N binary recommendation, GROC re-
quires the N-value to be defined on a cross-user scale, whereas CROC re-
quires N to be defined on a per-user scale, and then averages the per-user
ROCs to form the final aggregated ROC known as the CROC curve. If
GROC is to be applied, the task of recommending the top-N items to the
user would be interpreted as recommending the top-N user-item pairs, so
that the system is allowed to make more recommendations to some users
than the others; if CROC is to be applied, everyone gets the same number
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of recommendations. For this reason, CROC is considered a more appro-
priate metric than the GROC, as it can be used to guide the choice of the
number of recommendations to each user. Surveys that studied the GROC
and CROC metrics include [41, 143]; recommender systems that present
both the GROC and CROC as part of their evaluations include [134, 40].

A property worth noticing for the CROC curve is that, if there exist
some users in the test dataset who have fewer than N preferred items
(which is the case for most real datasets), a perfect recommender would
no longer have a curve with area 1, since it can never recommend N items
all of which are preferrable to those users. Therefore, for each CROC eval-
uation, a curve for the perfect recommender should be provided to mark
the upper boundary of the system performance.

3.3.3 Ranked Recommendation Accuracy Metrics

Ranked recommendation accuracy metrics (or ranking metrics) measure the
ability of recommender systems to impose an item ordering that correctly
reflects the user’s ordinal preference, which has been recognised as a vital
part of the user experience [48]. As mentioned previously,5 predictive ac-
curacy metrics do not incorporate the fact that the intervals on the rating
scale are not equidistant, resulting in two undesirable properties in their
evaluation bias. Firstly, they do not take into account the effect an error
has on the ranking placement of items — a wrongful prediction of a 2.5 as
1 has the same impact as a wrongful prediction of a 3.5 as 5 on the MAE,
despite the fact that the latter would more obviously lead to user dissatis-
faction. Secondly, predictive metrics can be overly sensitive to small errors
that have little effect on the user experience, such as predicting 4.5 as 5 or
1.5 as 1.

Both biases can be compensated by using ranking metrics as a comple-
ment to the predictive accuracy metrics in the evaluation. In the following,
section 3.3.3.1 firstly explains how the conversion from rating to ranking
can be made, so that ranking metrics can be applied to rating-based sys-
tems; section 3.3.3.2 then outlines the different types of ranking metrics;

5As mentioned in section 3.3.1 on page 52.
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sections 3.3.3.3, 3.3.3.4, and 3.3.3.5 in turn describe the three most popular
ranking metrics used in modern recommender system publications.

3.3.3.1 How to apply ranking metrics to rating-prediction systems

Ranking metrics are normally used to evaluate systems designed to make
ranked recommendation lists, but can also be applied to systems that make
rating predictions. For the latter usage, an extra step of rating to ranking
conversion is normally required.

In general, the conversion is done by firstly converting the rating pre-
dictions into a binary set of recommended items according to the procedures
described in section 3.3.2.1, then imposing an ordinal ordering based on
descending order of predicted ratings over the recommended items, con-
verting the binary recommendation set into an ordered or ranked recom-
mendation list. Similarly, the actual ranking to evaluate against is obtained
by firstly converting the actual ratings provided by the test dataset into
a binary set of actually preferred items, upon which an actual-rating-based
ordering can be imposed. Metrics such as the correlation-based measures
described in section 3.3.3.2 and the ARHR metrics described in section
3.3.3.3 follow this mechanism.

Some other ranking metrics such as ERU and NDCG are rather differ-
ent. Albeit being ranking metrics, they still use the rating prediction values
in their formulae. This makes them not applicable to systems that only
produce list recommendations without ratings, but at the same time makes
them more appropriate, popular, and convenient in evaluating the ranking
performance of rating prediction systems. These metrics do not require
the explicit step of converting rating predictions into binary recommen-
dation set first, but instead has a threshold-based built-in mechanism that
tell apart recommended vs. not-recommended items. In ERU it is done by
the default rating rd, and in NDCG it is done by the parameter n. More on
these two metrics are presented in sections 3.3.3.4 and 3.3.3.5 respectively.
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3.3.3.2 Types of ranking metrics

Most ranking metrics are either correlation based or importance decay based.
Correlation based ranking metrics such as Spearman’s correlation [48], Kendall’s
Tau correlation [48], and the normalized distance-based performance measure [9]
operate by directly comparing the correlations between two vectors — the
vector of the recommended ranking, and the vector of the actual preferen-
tial ranking. This mechanism suffers from the interchange weakness, mean-
ing that a miss-rank at the top of the ranking has the same weight as if it
happens at the bottom of the rank. Such metrics, albeit rank-based, do not
incorporate the semantics of “rank”, thus are not adopted by this thesis.

Importance-decay based ranking metrics incorporate the essence of “rank-
ing” by imposing an importance decay over the recommended items along
the ranking list. Three such metrics that feature linear, exponential, and
logarithmic decay are presented in sections 3.3.3.3, 3.3.3.4, and 3.3.3.5 re-
spectively.

3.3.3.3 Linear Decay — Average Reciprocal Hit-rank (ARHR)

The average reciprocal hit-rank or ARHR [34] is a ranked recommendation
accuracy metric that imposes a linear decay over the expected importance
of the recommended items along the ranking. Given a weakly ordered (i.e.
tie allowed) list of recommended items, let i be the item in this list that is
also actually preferred by the user,6 let rank(i) be the rank of item i, the
ARHR metric is defined as follows in formula 3.7a.

ARHR =
1

#preferred

∑
i∈{recommended & preferred}

1

rank(i)
(3.7a)

hit rate(recall) =
1

#preferred

∑
i∈{recommended & preferred}

1 (3.7b)

The ARHR is essentially the rank-weighted version of the hit-rate bi-

6As explained in section 3.3.3.1, ARHR requires the generation of a binary recommen-
dation set first, upon which a rating-based ranking order can be imposed. The binary
concept of “actually preferred” and “recommended” is provided by this binary set con-
version.
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nary metric.7 The value of ARHR varies from hit-rate to hit−rate
N

, where N
is the size of the ranked recommendation list. The former happens when
all the hits occur in the first rank, whereas the latter happens when they
all occur in the last rank. Recommender systems that use ARHR as part of
their evaluations include [34].

3.3.3.4 Exponential Decay — Expected Rank Utility (ERU)

Expected rank utility (ERU) [23] or the half-life utility metric [48] is a ranked
recommendation accuracy metric that imposes an exponential decay on the
importance or the “expected utility” of the recommended items along the
ranking. It is one of those “different” ones that is dedicated to evaluate the
ranking performance of rating-producing systems, and still uses the val-
ues of rating predictions in its formula. It also only evaluates the ranking
performance on a per-user basis, as opposed to the previously described
metrics such as ARHR, which can be applied to evaluate both the per-user
ranking performance and the global ranking performance (of a large rank-
ing list across all users).

Suppose UQ is the set of queried users. For each u ∈ UQ, a ranked
recommendation list is generated for this user by imposing an ordering
based on this user’s ratings over all items in the dataset. Suppose n is a
experimenter-specified parameter corresponding to the length of the rec-
ommendation list; ik is the kth item in the ranked list; ru,ik is the actual
rating that user u gives to item ik; rd is a pre-determined constant known
as the default rating that normally takes on a slightly below-average value,
representing the rating threshold of minimal user satisfaction; α is the half-
life, representing the rank of the item that has a 50% chance to be viewed
by the user. The expected rank utility is defined as follows in formula 3.8a:

7Hit-rate is a binary metrics described in formula 3.5a on page 59, and is reformulated
here in formula 3.7b.
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R = 100

∑
u∈UQ

Ru∑
u∈UQ

Rmax
u

,where (3.8a)

Ru =
n∑
k=1

max (ru,ik − rd , 0)

2 (k−1)/(α−1) (3.8b)

where Rmax
u is the maximum possible utility computed using formula

3.8a on user’s actual ranking — a ranked list generated based on items’
actual ratings instead of their predicted ratings.

This mechanism treats an unrated item as a miss, though instead of
penalising it completely, it effectively assigns it the default rating rd. The
metric is most appropriate for domains that value the top of the recom-
mendation list greatly and have a sharp exponential drop in the item’s
expected utility further down the list. Publications that use the expected
rank utility as part of their evaluations include [23, 115, 48].

3.3.3.5 Logarithmic Decay — The NDCG Performance

The normalised discounted cumulative gain or NDCG is a ranked recommen-
dation accuracy metric widely used for evaluating ranked results in infor-
mation retrieval, and was first adapted to recommender systems in [55]. It
is also the main ranking metrics adopted by this thesis. It is similar in at-
tributes to that of ERU in terms of the use of rating prediction values in its
calculation, and that it only evaluates the per-user ranking performance
but not the global ranking performance. Suppose UQ is the set of queried
users; n is the (capped) length of the recommendation list for each queried
user; ik is the kth recommended item; ru,ik is the actual rating that user u
gives to item ik. The NDCG of a ranked recommendation list is defined as
follows in formula 3.9:

NDCG(UQ, N) =
1

|UQ|
∑
u∈UQ

(
Zu ·

N∑
k=1

2ru,ik − 1

log(1 + k)

)
(3.9)
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where Zu is the normalisation factor so that the NDCG of the optimal
ranking has a value of 1. With normalisation, the value of NDCG ranges
from 0 to 1, with a higher value representing closer-to-truth ranking per-
formance. Like the expected rank utility introduced in section 3.3.3.4, the
NDCG metric puts more weight on, thus is more sensitive to, the top of
the ranking list. It also takes into account users’ actual ratings in its com-
putation. However, it features a logarithmic decay instead of an exponen-
tial decay as in the expected rank utility metric. Publications that use the
NDCG performance as part of their system evaluations include [55, 82, 83].
It is also the ranking metric used in the evaluation of this thesis.

3.3.4 Statistical Significance Tests

Statistical significance tests [33] are a way of validating the comparison re-
sult of different algorithms under certain numerical metrics to be sure it is
statistically valid and not due to chance. They can be applied to all the nu-
merical metrics described in the previous sections, including MAE, RMSE,
precision and recall, F1-measure, and AUC.

Given a hypothesis that algorithm A is better than algorithm B for a
certain task under a certain evaluation metric, the null hypothesis is that our
hypothesis is wrong, namely A is no better than B. The significance level or
ρ-value is the probability that our hypothesis is true only due to chance,
or that the null hypothesis is indeed the truthful one. The lower the ρ-
value, the less likely our hypothesis is true due to chance, and the more
statistically significant our hypothesis is. It is common practice to consider
a hypothesis statistically significant if its ρ-value is lower than 0.05.

A significance test is either a paired test or a multiway test, based on
whether or not the hypothesis that the test is trying to validate involves
only two algorithms or more than two algorithms. Detailed explanations
are presented in section 3.3.4.1 and 3.3.4.2 respectively.

3.3.4.1 Paired Test

This thesis uses a paired t-test to test hypotheses involving only two algo-
rithms. Suppose n is the number of data queries (i.e. the number of rec-
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ommendations to make in this context), ai and bi are the performance of
algorithms A and B on the ith query under a given numerical metric such
as the MAE. di = ai − bi is the difference in performance, and d, as shown
in formula 3.10a, is the expected difference between the performance of
algorithms A and B. The hypothesis of that algorithm A outperforms B
would then be translated into the hypothesis of that d > 0. The t-value
of this hypothesis is computed using the student t-distribution with n− 1

degrees of freedom, as shown in formula 3.10b:

d =
1

n

∑n

i=1
ai − bi (3.10a)

t =
d

s.e.(d)
=

d√
1

n(n−1)
∑n

i=1(di − d)2
(3.10b)

where s.e.(d) is the estimated standard difference or the standard er-
ror. The paired t-test assumes a normal distribution over the hypothesised
variable, namely d in this case. This assumption is true only if d is natu-
rally normally distributed, or that there are enough (more than 30) data
sets to hedge the risk [33]. Although the former condition is uncertain and
the latter untrue for most of the published recommendation experiments
out there, the paired t-test is still the most widely adopted significance
test for recommender systems [91, 34, 45] due to its relative simplicity and
accuracy.

3.3.4.2 Multiway Test

Multiway test refers to a significance test with the purpose of validating
for example the performance superiority of one algorithm over all other
algorithms of interest. It has been shown statistically that hypotheses in-
volving multiple algorithms cannot be validated by simply performing
paired tests multiple times [33, 41]. Specialised multiway tests have thus
been developed, including the Bonferroni test [33, 41], the Friedman test [33],
and the ANOVA test [33].

This thesis adopts the Bonferroni test for significance tests of multi-way
hypotheses because of its simplicity, accuracy, and popularity within other
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recommender systems [34, 41]. The Bonferroni test is also known as the
Bonferroni correction. As its name suggests, it operates by performing the
paired tests multiple times, and then applies a statistical correction to re-
duce inaccuracy. Suppose the hypothesis H states that algorithm A out-
performs all N other algorithms. In order to claim H with significance
level ρ, namely to claim the validity of H with a confidence level of more
than 1− ρ, N paired tests need to be performed between algorithm A and
each of the other algorithms, with the significance level for each paired
test not exceeding 1− 1/N

√
1− ρ. In this way, to claim that algorithm A out-

performs 10 other algorithms with significance level 0.05, 10 paired tests
need to be performed, each of which must reach a significance level below
0.0057.

3.4 Summary

Evaluation is a vital part of scientific studies. In recommender system
research, a set of evaluation datasets, protocols, and metrics have been
established to accommodate the special characteristics of the field, its dual-
orientationess (user and item), and its personalised nature.

As described in section 3.1, this thesis uses the two MovieLens datasets
as its primary datasets. The choice is made because of the MovieLens’s
long-established industrial status, its widespread adoption, its stereotypi-
cal dataset statistics, and the extensibility of content attributes through the
IMDb movie content collection. On top of this, diversity is provided with
the additional use of the Jester joke dataset, which possesses a different set
of statistical characteristics from the MovieLens datasets.

As described in section 3.2, this thesis follows the standard RS evalu-
ation protocols. Skip-every-10th with 10-fold cross validation is used for
general experiments. A combination of given-n and held-out-k is used to
increase the sparsity of the training dataset in order to test the robustness
of the system.

Section 3.3 classifies current RS evaluation metrics into three classes of
predictive accuracy metrics in section 3.3.1, binary recommendation accu-
racy metrics in section 3.3.2, and ranked recommendation accuracy met-
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rics in section 3.3.3. The algorithms proposed in this thesis are evaluated
using all three classes of metrics, with MAE and RMSE for the evalua-
tion of rating prediction accuracy; precision, recall, and F1-measure for
the evaluation of binary set recommendations; and NDCG (logarithmic
decay that takes ratings into account) for the evaluation of ranked-list rec-
ommendations. This thesis also provides statistical significance for all the
hypotheses proposed. The paired-t test described in section 3.3.4.1 is used
to verify paired hypotheses, and the Bonferroni test described in section
3.3.4.2 are used to verify multiway hypotheses. Unless specified other-
wise, all experimental results presented in this thesis pass the statistical
significance test with significance level of ρ = 0.05.
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Chapter 4

Investigating Nearest Neighbour
Collaborative Filtering

Collaborative filtering (CF) makes recommendations purely based on the
preference feedbacks gathered from users, making the assumption that
users who agreed in the past will tend to agree in the future. Among
CF methods, nearest neighbour-based collaborative filtering (NNCF) is one of
the top-performing algorithms [105, 107] despite its early establishment
[120], and remains a popular research topic in recent publications [162,
133].1 This chapter attempts to improve the effectiveness of NNCF by dis-
covering and in turn utilising previously “cloaked” information in the rec-
ommendation process. Two such heuristics are proposed following the
identification of three problems.

This chapter is organised as follows: section 4.1 outlines notation and
terminologies; 4.2 explains the algorithm of the standard NNCF. The rest
of the chapter presents two improvements over standard NNCF from two
different angles. Section 4.3 identifies the item-irrelevancy problem and the
preference imbalance problem, and proposes the Target-Aware Similarity Com-
putation or TASK as the solution. Its related work and experimental analy-
sis are presented in sections 4.4 and 4.5 respectively. Section 4.6 identifies
the biased-average problem, and proposes partial average and double average or
PANDA as solutions. Its experimental analysis is presented in section 4.7.

1Different types of CF algorithms are surveyed in section 2.2, with NNCF elaborated
in section 2.2.1.
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Finally, section 4.8 concludes the chapter, and explains how observations
in this chapter lead to the development of chapter 5.

4.1 Notation and Problem Formalisation

The three fundamental elements of collaborative filtering are users, items,
and ratings, which are symbolised in this thesis as u, i, and r respectively.
Lower-case letters with subscripted indices represent individual elements,
such as user us, item it, and rating rus,it or rs,t. Capitalised letters represent
a set of elements, such as the set of users U , items I , and ratings R. A
right arrow over a set notation represents the vector over the elements in
that set, ordered by their indices unless specified otherwise. For example,
−→
U = 〈u1, . . . , um〉 represents the vector of users in set U ordered by user
indices, and so forth.

Given a set of ratings R, user u’s rating set Ru is the subset of ratings
gathered only from u, with its corresponding set of items noted as Iu. Con-
sequently,

−→
Ru = 〈ru,i1 , . . . , ru,in〉 represents user u’s rating vector ordered

by item indices. The average rating of user u over all i ∈ Iu is repre-
sented as ru, as shown in formula 4.1. The same convention applies to
item-oriented notations, with the calculation of ri shown in formula 4.2.
The global average, noted as r, is calculated according to formula 4.3.

ru =
1

|Ru|
·
∑

i∈Iu
ru,i (4.1)

ri =
1

|Ri|
·
∑

u∈Ui

ru,i (4.2)

r =
1

|R|
·
∑

u∈U

∑
i∈Iu

ru,i (4.3)

In explicit rating-based recommender systems, the task of recommend-
ing new items to a target user can be translated into the problem of pre-
dicting the potential ratings the user would give to a pool of items. A
requested rating prediction of a user on an item is called a query, and is
formalised as a triplet of 〈 u?, i?, ru?,i?=? 〉, where u? is the target user, i? is
the target item, and ru?,i? is the rating to be predicted.
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The predictions are based on a set of training data in the form of users’
explicit ratings on items, namely a set of triplets 〈u, i, ru,i〉 from the space
of U × I 7→ R. In most datasets, users would have only rated a very small
subset of the items, making the total number of ratings |R| significantly
smaller than |U | × |I|. The training dataset can also be formatted into the
so-called rating matrix — a |U | × |I| matrix whose entries take on values
∈ (�, [rmin, rmax]), where � indicates unknown ratings. Figure 4.1 is an
illustrative rating matrix of size m× n.


i1 ··· in

u1 ru1,i1 · · · ru1,in
...

... . . . ...
um rum,i1 · · · rum,in


 U = {u1, . . . , um}

︸ ︷︷ ︸
I = {i1, . . . , in}

Figure 4.1: An illustrative rating matrix of size m× n.

4.2 Nearest Neighbour Collaborative Filtering

NNCF can be user-oriented [120, 23, 47] or item-oriented [129, 34, 81].
User-oriented NNCF makes predictions based on the preferences of users
like-minded to the target user; item-oriented NNCF makes predictions
based on the popularities of items similar to the target item. This section
outlines the procedure of user-oriented NNCF with Pearson’s correlation
as the similarity measure. The computation of item-oriented NNCF can be
derived by reversing the orientation.

Given a prediction query 〈 u?, i?, ru?,i?=? 〉, NNCF computes ru?,i? —
the rating to be predicted — following three steps:

1. Calculate user similarities:

The first step is to compute the similarities between the target user u?
and every other u ∈ U . The similarity between two users u1 and u2 can
be calculated as the Pearson’s correlation between their rating vectors
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−→
Ru1 and

−→
Ru2 , as defined in equation 4.4:

sim (u1, u2) = Pearson’s correlation(
−→
Ru1 ,
−→
Ru2) (4.4)

=

∑
i∈Iu1∩Iu2

(ru1,i − ru1)(ru2,i − ru2)√∑
i∈Iu1∩Iu2

(ru1,i − ru1)2
√∑

i∈Iu1∩Iu2
(ru2,i − ru2)2

2. Define the effective neighbourhood:

Based on the similarities calculated in step 1, the effective neighbourhood
of the target user is defined as the subset of users who are the “nearest”
(i.e. most similar) to the target user. The size of the effective neigh-
bourhood is controlled by an exogenous cut-off parameter k, thus the
name k-nearest neighbours. In this thesis, the effective neighbourhood
of user u? with size k is represented as Uk

u? .

3. Compute the predicted ratings:

Given the target user’s effective neighbourhood Uk
u? and similarities,

the prediction ru?,i? is calculated as the average of the neighbours’ rat-
ings on the target item i?, weighted by the neighbours’ similarities to
the target user:

ru?, i? =

∑
u ∈ Uk

u?
sim (u?, u) · ru, i?∑

u ∈ Uk
u?
sim (u?, u)

(4.5)

Resnick et al. [120] introduced rating normalisation to the equation to
handle the different rating habits of users. This is to deal with the fact
that, for example, a rating of 4 out of 5 may mean “outstanding” to one
user, but “mediocre” to another. To compensate this, predictions are
carried out on normalised ratings by recentring the ratings with respect
to their user averages, as shown in formula 4.6:

ru?, i? = ru? +

∑
u ∈ Uk

u?
sim (u, u?) · (ru, i? − ru)∑
u ∈ Uk

u?
sim (u?, u)

(4.6)
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4.3 TASK: Incorporating item-relevancy into the

computation of user similarity

This section digs into the mechanism of the standard NNCF described
in section 4.2, and identifies two problems that hinder the pertinence of
the standard correlation-based similarity computation. They are the item-
irrelevancy problem described in section 4.3.1, and the preference-imbalance
problem described in section 4.3.2. A solution called the Target-Aware Simi-
larity (K)computation or TASK is subsequently proposed in section 4.3.3.

4.3.1 The item-irrelevancy problem

Standard Pearson’s correlation, as described in equation 4.4, measures the
similarity between two users as the correlation between their entire rating
vectors of the items they have in common. This approach has a potential
problem, which this thesis names as the item-irrelevancy problem. It refers to
the situation where some ratings in the rating vectors may be on items that
are very different from the target item i? of the prediction task. By incor-
porating such “irrelevant” items into the computation of user similarities,
which are ultimately going to be used to make predictions on the target
item i?, noise rather than constructive information may be introduced, re-
sulting in impaired prediction accuracy.

Table 4.1 uses an illustrative example to clarify the problem. The top
portion of the table shows the preference data from a group of 10 users, 2

of whom have a science background and like the movie Matrix, 8 of whom
have an art background and like the movie Emma. In both groups, half of
the people from each group happen to like cheese, and they tend to have
the same preference on candy. The bottom row of the table shows two
prediction tasks: to predict Zoe’s preference on movie and candy, based on
the information she provided on academics and cheese.

In this simplified world, the movie preference of a user is closely related
to his academics background, but is irrelevant to his preference on cheese.
Similarly, to predict the preference on candy, it is better to look at the per-
son’s preference on cheese, rather than his academic background.
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Items Similarities to Zoe based on
Academics Cheese Movie Candy Both Academics Cheese

U
se

rs

Ann Science like Matrix like 1 1 1

Bob Science hate Matrix hate .5 1 0

Cal Art like Emma like .5 0 1

Dan Art hate Emma hate 0 0 0

Eve Art like Emma like .5 0 1

Fay Art hate Emma hate 0 0 0

Gil Art like Emma like .5 0 1

Han Art hate Emma hate 0 0 0

Ivy Art like Emma like .5 0 1

Jim Art hate Emma hate 0 0 0

Zoe Science like ? ?
Corresponding prediction results

Matrix: 3/7 Matrix: 100% Matrix: 20%

Candy: 6/7 Candy: 50% Candy: 100%

Table 4.1: An illustration of the “item-irrelevancy problem”

Given the query of predicting the preferred movie of user Zoe, who has
been known to have a science background and have a fondness for cheese,
conventional NNCF would compute the similarities between Zoe and the
training users using their ratings on both known items (i.e. academics and
cheese). This would result in a neighbourhood similarity shown in the
“Both” column of table 4.1, leading to a final prediction a 4 : 3 preference
of Emma over Matrix, which is inaccurate.

The inaccuracy is caused by item irrelevancy, meaning that some of the
items used to compare the users are irrelevant to the target item of the
prediction task. This thesis proposes a solution in section 4.3.3 based on
the idea that only the items relevant to the target item should be used
for the similarity computation. In the example of table 4.1, it would be
only to use academics to predict movie and cheese to predict candy. In this
way, the noise brought in by irrelevant items is eliminated, resulting in a
neighbourhood similarity as shown in the last two columns of table 4.1.
The prediction for Zoe would be a 100% preference towards Matrix based
on the similarities shown in the Academics column, and a 100% preference
towards candy based on the similarities shown in the cheese column.
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4.3.2 The preference-imbalance problem

There are two contributing factors to standard NNCF’s inaccurate predic-
tion of user Zoe’s movie preference. Although the fundamental cause is
the item-irrelevancy problem, it is made worse by what this thesis calls the
preference-imbalance problem.

The preference imbalance problem refers to the situation where most
of the users in the training dataset share a common preference on an item,
making the less common preference on that item hard to predict, thus re-
sulting in a low recommendation recall on the minority preference. In the
example of table 4.1, such imbalance is manifested by 8 out of 10 users
prefer the movie Emma, whereas the target user Zoe’s true preference is
the minority item Matrix.

The prediction of candy does not suffer from this problem, since the
preferences of candy in the training dataset is split half-and-half. Only af-
fected by item-irrelevancy but not preference-imbalance, standard NNCF
is able to predict a 6

7
chance that Zoe likes candy. This is only 1

7
off the truth,

which is more accurate than the prediction regarding her choice of movies,
which is 4

7
off the truth.

Preference-imbalance and item-irrelevancy are not independent prob-
lems. Without preference-imbalance, item-irrelevancy is still a problem,
but not as severe. However, without item-irrelevancy, preference-imbalance
is no longer a problem, as it is automatically eliminated by the similarity-
based prediction process. This is further clarified using the examples in
tables 4.2 and 4.3.

Table 4.2 is an illustrative dataset similar to that of table 4.1, but mod-
ified to rid the preference-imbalance on items academics and movie. In
this case, standard NNCF would produce similarities as shown in the
“Both” column of the table, and predicts the target user Zoe as being 80%

of a Matrix-fan — much closer than the 3
7

prediction when preference-
imbalance existed. However, the residue of item-irrelevancy is still mani-
fested by the 20% deviancy from Zoe’s true preference.

Table 4.3 is an illustrative dataset similar to that of table 4.1, but mod-
ified to rid the item-irrelevancy problem. In this case, standard NNCF
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would produce similarities as in the last column of the table, and predicts
the target user Zoe as 100% of a Matrix-fan, which is correct despite the
preference-imbalance.

Items Similarities to Zoe based on
Academics Cheese Movie Candy Both Academics Cheese

U
se

rs

Ann Science like Matrix like 1 1 1

Bob Science hate Matrix hate .5 1 0

Cal Science like Matrix like 1 1 1

Dan Science hate Matrix hate .5 1 0

Eve Science like Matrix like 1 1 1

Fay Art hate Emma hate 0 0 0

Gil Art like Emma like .5 0 1

Han Art hate Emma hate 0 0 0

Ivy Art like Emma like .5 0 1

Jim Art hate Emma hate 0 0 0

Zoe Science like ? ?
Corresponding prediction results

Matrix: 80% Matrix: 100% Matrix: 60%

Candy: 80% Candy: 60% Candy: 100%

Table 4.2: The illustrative dataset of table 4.1, modified to rid the “preference-

imbalance” on items academics and movie.

Items Similarities
to ZoeAcademics Sci-fi Movie Math

U
se

rs

Ann Science like Matrix like 1

Bob Science like Matrix like 1

Cal Art hate Emma hate 0

Dan Art hate Emma hate 0

Eve Art hate Emma hate 0

Fay Art hate Emma hate 0

Gil Art hate Emma hate 0

Han Art hate Emma hate 0

Ivy Art hate Emma hate 0

Jim Art hate Emma hate 0

Zoe Science like ? ?
Prediction results

Matrix: 100%

Math: 100%

Table 4.3: The illustrative dataset of table 4.1, modified to rid the “item-

irrelevancy” by replacing items cheese and candy with sci-fi and math
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The preference-imbalance problem is similar to the class-imbalance prob-
lem [103] well-known in classification studies. It refers to the imbalanced
distribution of instances among different classes, so that the rare classes
are hard to get right, because the classifier would have a high overall
performance so long as it gets the majority classes (which in most cases
also occupies most of the test cases) right. Sometimes the class-imbalance
problem is serious, such as earthquake forecast, where it is very impor-
tant to get the very rare occasions (classes) right. Existing solutions to the
class-imbalance problem include cost-sensitive learning, where the evalua-
tion function is modified to emphasize the importance of rare classes; and
the under-sampling strategy, which cuts off instances in the majority classes.

Preference imbalance is different from class imbalance in that it is the
relative preference imbalance among items that matters, instead of the abso-
lute preference imbalance within a single item. In other words, unlike the
class imbalance problem which stands on its own, the preference imbal-
ance problem resides within the irrelevancy between items. In the exam-
ple of table 4.3 where there is no item irrelevancy, preference imbalance no
longer hinders the accuracy of the similarity computation of the standard
NNCF method.

Section 4.3.3 proposes a solution to the item-irrelevancy problem. Since
the preference imbalance problem only arises when there is item-irrelevancy,
it is automatically settled when the item-irrelevancy is eliminated.

4.3.3 Target-Aware Similarity Computation (TASK)

The Target-aware Similarity Computation or TASK for NNCF is a new ap-
proach for calculating user similarities that takes the relevancy of the item
orientation into account, thus eliminating the item-irrelevancy problem 2.

In TASK, a target-item-aware user similarity simi?(ua, ub) is used to re-
place the standard Pearson’s correlation similarity sim(ua, ub), which is de-
scribed in formula 4.4 and repeated here as formula 4.7 for convenience.
The target-item-aware similarity is still based on the correlations between

2 Without loss of generality, the TASK algorithm is presented as user-oriented. The
item-oriented version can be derived by inverting the orientations.
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users’ rating vectors. However, each rating ru,i is weighted by the relevancy
between its corresponding item i and the target item i? of the prediction

task. Suppose
ua,ub
R (i, i?) is the relevancy between items i and i? for the sim-

ilarity computation of users ua and ub, then the target-item-aware similarity
between users ua and ub is given by formula 4.8.

sim(ua, ub) =

∑
i∈Iua∩Iub

(rua,i − rua)(rub,i − rub)√∑
i(rua,i − rua)2

√∑
i(rub,i − rub)2

(4.7)

simi?(ua, ub) = (4.8)∑
i∈Iua∩Iub

(rua,i − rua)(rub,i − rub) ·
ua,ub
R (i, i?)√∑

i(rua,i − rua)2 ·
ua,ub
R (i, i?)

√∑
i(rub,i − rub)2 ·

ua,ub
R (i, i?)

The introduction of the relevancy factor
ua,ub
R (i, i?) addresses the item-

irrelevancy problem described in section 4.3.1. The rationale is that when
calculating the correlation between two rating vectors

−−→
Rua : 〈. . . , ruaix , . . .〉

and
−→
Rub : 〈. . . , rubix , . . .〉, if item ix is not relevant to the target item i?,

the corresponding relevancy factor
ua,ub
R (ix, i?) should approach to zero

weighting, which would effectively nullify item ix’s contribution to the
similarity computation; whereas if ix is strongly related to i?, positively

or negatively, the weighting factor
ua,ub
R (ix, i?) should be high so that the

corresponding ratings are emphasised. By using the item relevancy as
weights, TASK captures the importance of each particular item to the cur-
rent prediction task. By filtering out irrelevant information, more accurate
predictions can be expected.

A straightforward way to compute the relevancy factor
ua,ub
R (ix, iy) is

to make it the standard item-oriented similarity between items ix and iy,

namely
ua,ub
R (ix, iy) = sim(ix, iy). However, sim(ix, iy) also suffers from

a similar irrelevancy problem in the user-orientation, namely the user-
irrelevancy problem. It refers to the situation where some users in the items’
rating vectors

−→
Rix and

−→
Riy are irrelevant to the target users of the similar-

ity computation, thus introducing noise and ultimately affecting the ac-
curacy of the similarity computation. Since the purpose of the computa-
tion of sim(ix, iy) is no longer the prediction of the target user u?, but as a
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relevancy-based weight in the similarity computation of users ua and ub,
the target users in this case are users ua and ub instead of the target user

of the prediction task u?. The item relevancy
ua,ub
R (ix, iy) is consequently

the user-aware item similarity simua,ub(ix, iy) instead of simu?(ix, iy). Fur-

ther more, TASK defines
ua,ub
R (ix, iy) as the absolute value of simua,ub(ix, iy),

as shown in formula 4.9:

ua,ub
R (ix, iy) =

∣∣simua,ub (ix, iy)
∣∣

=

∣∣∣∣ ∑
u∈U(ru,ix − rix)(ru,iy − riy) · f(u)√∑

u(ru,ix − rix)2 · f(u)
√∑

u(ru,iy − riy)2 · f(u)

∣∣∣∣ (4.9)

where f(u) is the user-relevancy between user u and the two users ua and
ub, who are the target of the similarity computation of simua,ub (ix, iy):

f(u) =
ix,iy

R (u, {ua, ub})

=

ix,iy

R (u, ua) +
ix,iy

R (u, ub)

2

(4.10)

where
ix,iy

R (u, ua) and
ix,iy

R (u, ub) are computed using the user-oriented ver-
sion of formula 4.9, forming an iterative pattern. The number of iterations
is controlled by an exogenous parameter η, with the iteration terminated
by using standard similarities instead of the target-aware similarities to
weight the formula. In this way, the standard similarity computation can
be viewed as target-aware similarity with η = 0. This process is clarified in

table 4.4, which provides the pseudocode of the calculation of
ua,ub
R (ix, iy).

proc relevance(ix, iy, ua, ub, η):
if η ≤ 0 then

return sim(ix, iy) as in formula 4.7;
else

returnR =
∣∣simua,ub (ix, iy)

∣∣ as in formulae 4.9 and 4.10;

where
ix,iy
R (u, ua/b) = revelance(u, ua/b, ix, iy, η − 1);

end

Table 4.4: The pseudocode that illustrates the iterative process of TASK.
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The TASK method was published in Zhang and Andreae [166] under
the less-descriptive name of Iterative Neighbourhood Similarity Computation.
This version did not contain the discussion of preference-imbalance, and
the relevancy factor was defined as the user-aware similarity simua,ub (ix, iy)

instead of its absolute value as in formula 4.9. This was a previous over-
sight that missed the fact that items negatively correlated to the target item
provide as much constructive information to the similarity computation as
positively correlated items. Upon fixing this oversight, further improve-
ment on the prediction accuracy is achieved.

4.4 TASK: Related Work

This section presents related work of TASK. Section 4.4.1 presents studies
that also weigh items by their importance to the similarity computation of
users. Section 4.4.2 presents studies that combine user- and item-oriented
NNCF at the rating-prediction stage. The algorithms are described in a
user-oriented fashion, but can be easily adapted to be item-oriented by
reversing the orientations.

4.4.1 Incorporating Item Importance

Inverse user frequency proposed in Breese et al. [23] is based on inverse doc-
ument frequency [125] in information retrieval. The idea is that universally
liked items are not as useful in capturing similarity as less commonly liked
items. Therefore, it suggests to weighting the (binary) votes for item i by
|log n

ni
|, where n is the total number of users and ni is the number of users

who voted in favour of i. In case that all users voted in favour of i, the log-
arithmic factor would converge to zero, nullifying its contribution to the
user similarities. A problem with this method is that it is only applicable
under a binary rating scheme. The simplistic attempt to adapt it to numer-
ical ratings by using a threshold-cut would result in a problem — instead
of degrading items with high common views, it would only degrade items
with high positive common views, but actually amplifies the effect of items
with high negative common views.
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Variance weighting proposed in Herlocker et al. [47] is a more sophisti-
cated attempt to adapt inverse user frequency to numerical ratings. The
idea is to consider the variance of the ratings of an item, and emphasise
items with high variance in user similarity computations. This has an im-
mediate problem, which they pointed out themselves. The problem is that
it does not take into account the fact that, if two users’ ratings show agree-
ment with each other in a way that disagrees with the popular opinion,
the information this exhibits should be more significant. Their experi-
ments also showed that weighting items using their rating variances led
to a slightly worse prediction accuracy than no weighting. Other failed
attempts that follow the same philosophy include [157], which proposed
an entropy-based item diversity measure as the weighting factor.

Automatic weighting scheme proposed in Jin et al. [59] is a more compli-
cated attempt based on the same philosophy that universally liked items
should carry minimal weights in the similarity computation of users. The
idea is to dynamically learn a set of item weights that maximise the to-
tal user-on-user “asymmetric explainability” under a probabilistic model.
The item weights are then used directly as multipliers in the Pearson’s
correlation similarity computation.

One problem with the aforementioned heuristics is that they are not
“target-aware”, meaning that the item weights are the same for all user
similarity computations regardless of the pair of users involved. There-
fore, these heuristics are not able to handle the item-irrelevancy problem
or the preference-imbalance problem described in section 4.3.

Correlation significance weighting is another weighting heuristic proposed
in Herlocker et al. [47] and refined in Herlocker et al. [48] and Ma et al. [84].
It is less related to the work of this thesis in that, instead of weighting indi-
vidual items based on their estimated pertinence to the similarity computa-
tion, it weights the computed similarity between two users by the number
of common items between the two users used in the similarity computa-
tion, namely sim′(u1, u2) = λ · sim(u1, u2), where λ = max(|Iu1∩Iu2|,γ)

γ
in [48]

and [47], and λ = min(|Iu1∩Iu2|,γ)
γ

in [84]. The idea is that a higher availability
of data points in the similarity computation suggests a higher confidence
in user correlations, thus higher similarity between users. This heuristic,
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albeit also similarity weighting-based, is actually orthogonal to, thus can
be combined with other item weighting heuristics presented in this section,
as well as TASK.

4.4.2 Combining user- and item-oriented predictions

The TASK method can be viewed as a hybrid user- and item-based NNCF
approach, since both user similarities and item relevancies are computed
in order to make predictions. This section outlines the publications that are
also hybrid user- and item-based NNCF, but combine the two orientations
at the rating-prediction stage instead of the similarity computation stage.

Effective missing data prediction proposed in Ma et al. [84] is a Pearson’s
correlation-based NNCF method that incorporates both the user and the
item orientations by making the final prediction a weighted average of the
predictions of the two. User- and item-based similarity fusion proposed in
Wang et al. [152] is another NNCF method that makes predictions by us-
ing a weighted sum of three sources: a user-based approach that bases its
prediction on other similar users; an item-based approach that bases its
prediction on other similar items; and a third source that bases its predic-
tion on similar users’ ratings on other similar items, where each contribut-
ing rating is weighted by a Euclidean combination of its user- and item-
similarity with the target query.

This class of methods mostly targets the sparsity problem described in
section 2.4.1.2 by following the philosophy that when the dataset suffers
from extreme sparsity, a bigger chunk of the dataset should be exploited
by analysing both the user and the item orientation. Algorithmically, such
methods are predominantly along the lines of averaging user- and item-
based predictions in a close to linear fashion, resulting in all predictions
being pushed towards the average point.

4.5 TASK: Experimental Analysis

This section presents experiments and evaluations of the TASK algorithm
described in section 4.3. Section 4.5.1 firstly presents the general perfor-



4.5. TASK: EXPERIMENTAL ANALYSIS 85

mance of TASK; sections 4.5.2 and 4.5.3 then proceed to examine the TASK
algorithm’s two indigenous parameters — the orientation, and the num-
ber of iterations η; sections 4.5.4 and 4.5.5 evaluate the effect of dataset
sparsity on the performance of TASK. Finally, TASK is compared with its
related work: comparisons with other similarity weighting algorithms is
presented in section 4.5.6; comparisons with other algorithms that com-
bine user- and item-oriented predictions is presented in section 4.5.7.

4.5.1 The general performance of TASK

Table 4.5 presents the experimental results of user-oriented TASK and NNCF
on all three rating datasets MLS, MLM, and JST described in section 3.1.
The experiments use the skip-every-10th partitioning protocol. The dis-
played results are the average of 10-fold cross validation. In terms of
evaluation metrics, MAE and RMSE are used as predictive accuracy met-
rics; precision, recall, and F1-measure are used as binary recommendation
metrics; NDCG (with N = 30) is used as ranked recommendation met-
rics. The binary and ranked recommendations are generated based on
rating predictions, as explained in sections 3.3.2.1 and 3.3.3.1. A threshold
cut-off of threshold = 3 is used for both the predicted rating to binary recom-
mendation conversion and the actual rating to binary preference conversion,
as explained in section 3.3.2.1. If a recommended item does not have an
actual user rating in the test dataset to judge its true user preference, this
recommendation is simply ignored, as explained in table 3.5.

Table 4.5: The general performance of TASK

Dataset Algorithm MAE RMSE Precision Recall F1 NDCG

MLS
TASK 0.719 0.924 0.887 0.917 0.887 0.695
NNCF 0.737 0.938 0.886 0.907 0.881 0.668

MLM
TASK 0.704 0.900 0.901 0.937 0.912 0.676
NNCF 0.718 0.912 0.899 0.919 0.902 0.655

JST
TASK 0.674 0.788 0.812 0.896 0.838 0.389
NNCF 0.696 0.813 0.806 0.868 0.806 0.342

Table 4.6 formats the data of table 4.5 in a different way. It shows
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the performance improvement of TASK over NNCF as a percentage of
NNCF’s performance. For prediction accuracy measures such as MAE and
RMSE where a smaller value indicates a better performance, the presented
values are “NNCF minus TASK”; for recommendation accuracy measures
such as precision, recall, F1 and NDCG, where a larger value indicates a
better performance, the presented values are “TASK minus NNCF”. In this
way, a positive value always indicates a positive improvement, and vice
versa.

Table 4.6: The percentage improvement of TASK over NNCF

Dataset MAE RMSE Precision Recall F1 NDCG

MLS 2.44% 1.49% 0.11% 1.10% 0.68% 4.04%

MLM 1.95% 1.32% 0.22% 1.96% 1.11% 3.21%

JST 3.16% 3.08% 0.74% 3.23% 3.97% 13.74%

Table 4.6 shows that TASK consistently outperforms NNCF in terms of
predictive accuracy (MAE and RMSE), binary recommendation accuracy
(F1-measure), and ranked recommendation accuracy (NDCG) on all three
datasets. It is able to perform 2.44% better than NNCF in terms of MAE,
which is a significant improvement in recommender system terms [47]. It
makes more improvement on recall without sacrificing precision, result-
ing in a higher overall F1-value.3 This means that TASK is able to better
tell apart items above and below the rating of 3 for each user. It makes a
significant improvement on NDCG, indicating that it is able to better cap-
ture the relative ranking between items on top of the better abslolute rating
predictions reflected by the MAE.

4.5.2 How does TASK respond to the user and item orien-

tations?

In contrast to most of the other methods that combine user- and item-
oriented collaborative filtering [156, 152, 54], TASK is still orientation sen-
sitive, meaning that user-oriented TASK is different from item-oriented

3The precision, recall, and F1 presented here are the average of 10-fold cross valida-
tion, thus the equality F1 = 2× precision× recall/(preciaion+ recall) does not hold.
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TASK. Table 4.7 presents the experimental results of TASK and NNCF with
both the user and the item orientations on both the MLS and the MLM
datasets. The partitioning protocol and evaluation metrics are the same as
section 4.5.1.

Table 4.7: The effect of (user or item) orientation on the performance of TASK

Dataset Algorithm MAE RMSE Precision Recall F1 NDCG

MLS

TASK-user 0.719 0.924 0.887 0.917 0.887 0.695
TASK-item 0.728 0.928 0.892 0.895 0.882 0.690

NNCF-user 0.737 0.938 0.886 0.907 0.881 0.668

NNCF-item 0.752 0.951 0.890 0.896 0.880 0.680

MLM

TASK-user 0.704 0.900 0.897 0.937 0.905 0.660

TASK-item 0.692 0.880 0.909 0.916 0.909 0.676
NNCF-user 0.718 0.912 0.899 0.919 0.902 0.655

NNCF-item 0.707 0.899 0.906 0.914 0.901 0.661

Table 4.7 shows that, in terms of both predictive accuracy measures
(MAE and RMSE) and recommendation accuracy measures (F1 and NDCG),
both NNCF and TASK seem to perform better in a user-oriented setting
on the MLS dataset, but perform better in an item-oriented setting on the
MLM dataset. We speculate that this is due to the difference between
the orientation densities of the two datasets. As specified in table 3.1, MLS
has a denser user-orientation, with the average user possessing more rat-
ings (106) than the average item (59); whereas MLM has a denser item-
orientation, with the average item possessing more ratings (270) than the
average user (166). Therefore, the results here can be translated into: TASK
always performs better on the denser orientation (i.e. the user-orientation
for MLS and the item-orientation for MLM).

Another interesting observation is regarding precision and recall. The
results show that in terms of precision, the item-oriented TASK and NNCF
always outperform their user-oriented counterparts regardless of the dataset
and the orientation density, whereas the user-oriented algorithms always
perform better on the recall.



88
CHAPTER 4. INVESTIGATING NEAREST NEIGHBOUR

COLLABORATIVE FILTERING

4.5.3 How does TASK respond to the number of iterations?

The number of iterations is the number of iterative similarity computations
to use as specified on page 81. With η = 0, TASK is effectively equiv-
alent to the standard NNCF algorithm; with η = 1, the user similarity
computation is weighted by item similarities, which are computed by the
standard NNCF; with η = 2, the user similarity computation is weighted
by item similarities, the computation of which is weighted by user simi-
larities, which are computed by the standard NNCF, and so forth.

The computational complexity of TASK is polynomial to the number
of data items with a degree equal to the number of iterations. In other
words, it is exponential to the number of iterations. Due to hardware lim-
itations, only experiments on the MLS dataset with up to three iterations
were carried out. The results are shown in table 4.8.

Table 4.8: The effect of the number of iterations η on the performance of TASK.

MAE RMSE Precision Recall F1 NDCG

η = 0 0.7367 0.9381 0.8864 0.9065 0.8811 0.6681

η = 1 0.7194 0.9241 0.8871 0.9173 0.8868 0.6947

η = 2 0.7161 0.9221 0.8877 0.9182 0.8860 0.7003

η = 3 0.7159 0.9220 0.8877 0.9182 0.8860 0.7006

The experiments show that TASK with one iteration makes a consistent
improvement over zero iterations (i.e. the standard NNCF). However, the
improvement made by η = 2 over η = 1 is much smaller, with improve-
ments on the binary recommendation metrics (i.e. precision, recall, and
F1-measure) only observable beyond four decimal points. The improve-
ment made by η = 3 over η = 2 is even smaller, though still positive.
Paired t-tests are also conducted between each pair of η = x and η = x+ 1

under the hypothesis of that η = x+ 1 performs no worse (i.e. the same or
better) than η = x in terms of MAE. Both (η = 0, 1) and (η = 1, 2) passed
the 95% confidence level, but (η = 2, 3) did not. The combined experi-
mental results suggest that the improvement potential converges very fast
as the number of iterations goes up. Therefore, based on the combined
consideration of computational complexity and improvement potential,
TASK with exactly one iteration is recommended. In the rest of this the-
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sis, all experiments on TASK are performed with one iterations without
further specifications.

4.5.4 How is TASK affected by different types of dataset

sparsity?

There are two aspects to dataset sparsity — the similarity computation
sparsity, and the rating prediction sparsity. They can be controlled sepa-
rately through a combination of the held-out-k and the given-n protocol,
as described in section 3.2.3.

Figure 4.2(a) presents the MAE of user-oriented TASK algorithm with
varying degrees of the similarity calculation sparsity (as shown in the
columns) and the rating prediction sparsity (as shown in the rows); fig-
ure 4.2(b) shows the MAE improvements of TASK over NNCF under the
corresponding sparsity settings. The sparsity is controlled using the user-
oriented given-n protocol, with the resulting sparsity value for each n in-
dicated in table 3.2.4 The experiments are performed on the MLS dataset.
The displayed results are the average of (80 = 16×5)-fold cross validation,
where the held-out-25% protocol commences a 16-fold dataset partitioning,
each of which incorporates a 5-fold cross validation over the given-n pro-
tocol to eliminate noise and randomness in the results.5

The table cells are coloured based on the cell values. In figure 4.2(a), a
smaller value and a lighter colour corresponds to a better performance; in
figure 4.2(b), a larger value and a greener colour indicates a more substan-
tial improvement of TASK over NNCF.

The experiments shows that the performance of TASK is severely af-
fected by the similarity calculation sparsity (SCS). Both the prediction ac-
curacy indicated by (the inverse of) MAE and the improvement margin
over NNCF are monotonically decreasing with respect to the SCS, which

4 The values displayed in figure 3.2 are the dataset sparsity of applying given-n on the
entire dataset. This value is slightly bigger (i.e. more sparse) than applying given-n to
control only the similarity calculation sparsity or the rating prediction sparsity. However,
the general gesture can be inferred.

5 Detailed explanations of the relationship between given-n, held-out-k, and cross
validation are described in section 3.2.3.
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Given‐2 Given‐5 Given‐10 Given‐20 Given‐all

Given‐2 1.097 1.095 1.067 1.027 0.918

Given‐5 1.099 1.088 1.046 0.982 0.875

Given‐10 1.094 1.086 1.022 0.957 0.825

Given‐20 1.088 1.066 1.014 0.858 0.793

Given‐all 1.082 1.029 0.959 0.832 0.771

Similarity Calculation Sparsity

Rating 

Prediction 

Sparsity

(a) The MAE performance of TASK (the lower the better).

Given‐2 Given‐5 Given‐10 Given‐20 Given‐all

Given‐2 ‐0.547% ‐0.302% 0.094% 0.292% 0.872%

Given‐5 ‐0.546% ‐0.216% 0.191% 0.306% 1.257%

Given‐10 ‐0.457% ‐0.092% 0.196% 0.522% 2.060%

Given‐20 ‐0.459% ‐0.094% 0.395% 0.933% 2.774%

Given‐all ‐0.185% ‐0.097% 0.626% 1.322% 2.661%

Similarity Calculation Sparsity

Rating 

Prediction 

Sparsity

(b) The percentile improvement made by TASK over NNCF in terms of
MAE (the higher the better).

Figure 4.2: MAE of controlled robustness experiments of TASK.

is inversely correlated to the n in given-n. When the SCS is extremely
high, as in the given-2 and given-5 scenarios shown in columns 1 and
2, the MAE performance of TASK is slightly worse than that of NNCF,
as manifested by the negative (red) values in figure 4.2(b). This makes
sense, because the functional advantage of the TASK heuristic is that it
is capable of delving into the niche of the dataset and exploring previ-
ously ignored details, which naturally requires a reasonably amount of
data for the niches and details to manifest. Another way to look at it is that,
TASK takes on extra steps to filter out item-irrelevancy and preference-
imbalance. This extra filtering process requires a buffer of data, or else the
item-irrelevancy and preference-imbalanced observed by TASK may be in-
accurate and due to random noise. Even if the filtering process is accurate,
when the dataset is extremely sparse, the remaining data after the dataset
has been rid of item-irrelevancy and preference-imbalance would become
even more sparse. The negative performance caused by increased spar-
sity may overpower the positive performance caused by item-irrelevancy
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and preference-imbalance filtering, resulting in an overall decrease of pre-
diction accuracy. On the bright side, TASK is only severely affected to be
worse than the standard NNCF when extreme sparsity exists. In the given-
10 scenario presented in column 3, although the sparsity of the dataset is
0.9941, which still reaches the “extremely sparse” level of over 0.99, TASK
is already able to leverage the existing data and achieve a performance
improvement over NNCF.

The TASK algorithm is less affected by the rating prediction sparsity
(RPS). The prediction accuracy (inverse of MAE) and the improvement
potential of TASK are still monotonically decreasing with respect to RPS.
However, when the SCS is low enough for the similarity to be calculated
properly, as in the last three columns in the tables, TASK is still able to
make a positive improvement over the NNCF despite the extremely high
PRS sparsity introduced by the given-2 protocol. This indicates that the
power of TASK entirely resides within the similarity computation, and
indeed produces more appropriate similarities compared to the standard
NNCF. More analysis on the similarity produced by TASK is presented in
section 4.5.6.

4.5.5 How does TASK perform under different dataset spar-

sity in general?

This section investigates the effect of dataset sparsity on the performance
of TASK from a general angle. Here, the given-n protocol is applied to the
entire training dataset, as opposed to section 4.5.4 that only applies given-
n on part of the dataset to control similarity computation sparsity and rat-
ing prediction sparsity separately. In reality, the two types of dataset spar-
sity are often quite similar, and both are similar to the overall sparsity of
the entire dataset. Therefore, experiments like this provide a holistic view
of how the algorithm performs under the specified sparsity value.

Figure 4.3 presents the performance of TASK (in (a)) and the improve-
ments TASK makes over the standard NNCF (in (b)) on the MLS dataset.
The MAE, RMSE, F1, and NDCF curves correspond to the performances
under the respective evaluation metrics; the F1-0 curve is explained in
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the next paragraph. In figure 4.3(a), the units of different curves in the
same diagram are not the same, since they correspond to different evalu-
ation metrics. So the y-coordinates of different curves should not be com-
pared with each other. It is the growth of the curves with respect to the
x-coordinate that should be looked at. In figure 4.3(b), a positive value in-
dicates a better performance by TASK. This means for prediction accuracy
measures like MAE and RMSE, the values presented are “NNCF minus
TASK”, since a smaller value indicates a better performance; whereas in
F1-measure and NDCG, the values presented are “TASK minus NNCF”,
since a larger value indicates a better performance. Note that the improve-
ment over F1 is plotted on a different y-scale to the other three curves due
to the range difference.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Given‐2
(0.9989)

Given‐5
(0.9971)

Given‐10
(0.9942)

Given‐20
(0.9889)

Given‐all
(0.9458)

P
e
rf
o
rm

an
ce
 o
f 
TA

SK

Sparsity

MAE RMSE F1 NDCG F1‐0

(a) The performance of TASK.

-.015
-.010
-.005
.000
.005
.010
.015
.020
.025
.030

Im
pr

ov
em

en
t o

f T
AS

K 
ov

er
 N

N
CF

-0.06
-0.04
-0.02
0.00
0.02
0.04

Given-2
(0.9989)

Given-5
(0.9971)

Given-10
(0.9942)

Given-20
(0.9889)

Given-all
(0.9458)

Sparsity

MAE RMSE F1 NDCG F1-0

(b) Improvements over NNCF.

Figure 4.3: The performance of TASK under different dataset sparsity.

Figure 4.3(a) shows a consistent improvement of MAE, RMSE, and
NDCG as the data sparsity decreases. F1 also shows a monotonic increase
beyond given-10. Its bizarrely good performance with given-2 and given-5
puzzled us at first. However, further investigations show that it is caused
by extremely low coverage — very often (over 85% of the time for given-2),
the algorithm is not able to provide any item recommendations to a given
user. Since the F1-value presented here is the average of only the valid
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F1-values over all users and all (cross validation) folds, 85% of the more
difficult cases that hurt the F1 accuracy of given-10, given-20, and given-
all are simply ignored and goes unpunished, resulting in the seemingly
high performance of given-2 and given-5. If the F1 of the uncovered cases
are set to 0 instead of simply being ignored, the resulting averaged F1 on
given-2 and given-5 becomes much lower, as indicated by the “F1-0” curve
in figure 4.3, and the overall monotonic increase of F1 can be observed.

Figure 4.3(b) shows that the improvements of TASK over NNCF in
terms of MAE, RMSE, and NDCG also increase monotonically as the data
sparsity decreases. With given-10, although the dataset sparsity still reaches
the “extremely sparse” level of over 0.99, TASK is already able to make a
positive improvement over NNCF in terms of all three metrics. The curve
of the F1-measure exhibits the same pattern to the F1 curve in figure 4.3
due to the same reason explained in the previous paragraph. It also seems
like it is more difficult for TASK to make an improvement in terms of the
binary recommendation accuracy (i.e. F1) than the rating-related accura-
cies (MAE, RMSE, and NDCG). 6 However, given a reasonable amount of
data, TASK is still able to make a positive improvement in F1.

4.5.6 How does TASK compare with other similarity weight-

ing algorithms?

In this section, the TASK algorithm is compared with two other algorithms
that also incorporate item-based weighting in user similarity computation:
the inverse user frequency (IUF),7 and the variance weighting (VW). Both
algorithms are described in details in section 4.4.1.8

Figure 4.4 present the performance comparison of user-based TASK,
NNCF, VW, and IUF on the MLS dataset. The displayed results are the av-

6NDCG measures the ranked recommendation accuracy, however, it still utilises the
prediction ratings in its calculation, as described in section 3.3.3.

7The IUF implemented here uses a threshold cut of r = 3 to decide if a user voted in
favour of an item and in turn whether to apply the item weight, as explained in 4.4.1.

8The other related work automatic weighting scheme is not included due to incomplete
implementation details.
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erage of 10-fold cross validation with skip-every-10th. It shows that TASK
is able to achieve better performance than NNCF in terms of all the dis-
played metrics, whereas IUF and VM, albeit also using item weights in
user similarity computations, fail to do so. This is consistent with the find-
ings in their original publications.
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Figure 4.4: Comparison of TASK with other similarity weighting algorithms.

Figure 4.5 plots the user similarities of NNCF, TASK, IUF, and VW
against individual user-user pairs, with the x-axis being an imposed user-
user pairing index ordered by descending y-coordinates (i.e. descending
user similarity) of NNCF. The MLS dataset contains 943 users, resulting
in 422,710 unique pairs of calculable user-user similarities,9 which make
up the x-axis. Each y-axis value is the average similarity of 10-fold cross
validation with skip-every-10th.

Figure 4.5: User Similarity Comparison of NNCF, TASK, IUF and VW
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One thing this figure shows is the variance of the three item weighting
mechanisms — IUF, TASK, and VW — against the original NNCF simi-
larities. According to the figure, VW is the most conservative and has the
smallest deviation to NNCF; IUF is the most aberrant with the biggest de-
viation; TASK is in between the two. Given the fact that TASK is the only
algorithm that makes a positive improvement over NNCF, it would seem
that there is a Goldilocks zone of performance improvement with respect to
the similarity deviation to NNCF — too much or too little deviation both
cause a decrease in prediction and recommendation accuracy. However, to
make this observation into an allegation would require the substantiation
of more experiments over a wider variety of algorithms. It is only pointed
out here as an interesting observation regarding VW, IUF, and TASK.

A more significant observation is the loom-like shape exhibited by the
TASK (purple) curve. This means that TASK is more in line with NNCF
at the two ends when the similarities approach 1 and -1. Upon further
investigations, it appears that the extreme similarities (at both ends) are
correlated with, or are largely caused by a lack of common ratings. Figure
4.6 plots the relationship between NNCF user similarities and the number
of common ratings between users. Although there are on average 16.004

common ratings between all user pairs, there are only 1.577 common rat-
ings between users when the resulting NNCF similarities are over 0.9 or
below−0.9. It is a positive attribute that, when there is not enough data to
back up the similarity computation, TASK is able to converge to the sim-
pler model of standard NNCF, instead of keep piling up complexities over
the inadequate thus noisy data, like IUF and VW do.

A clearer visualisation of this allegation is presented in figure 4.7, which
plots the same data to that of figure 4.5 in a different format. It contains
three separate subfigures for the three algorithms. In each subfigure, the
x-axis represents the user similarity calculated by NNCF; the y-axis rep-
resents the difference between the similarity calculated by the target algo-
rithm (i.e. TASK, VW, or IUF) and that of NNCF. Figure (a) shows that
TASK deviates from NNCF in the middle range — when there are more

9943 users would result in 444, 153 = 943×943−943
2 pairs of irreflexive and asymmetric

user-user relations. 21,443 of those are not calculable due to a lack of common ratings
between the involved users, resulting in 422,710 pairs of calculable user-user similarities.
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Figure 4.6: The number of common ratings between users w.r.t. user similarities

common ratings to support more complex similarity calculations. Both
VW and IUF do the opposite, as shown in figures (b) and (c). They exhibit
a bigger deviation from NNCF at both ends when there are fewer common
ratings, and a smaller deviation in the middle where there are more.

(a) TASK (b) VW (c) IUF

Figure 4.7: Similarity differences over NNCF. The x-axis is the user similarity

calculated by NNCF; the y-axis is the difference between the similarity calculated

by the target algorithm (i.e. TASK, VW, or IUF) and that of NNCF.

To summarise, among the three similarity weighting algorithms pre-
sented here, TASK outperforms both VW and IUF, and is the only algo-
rithm that can make a positive improvement over NNCF under all met-
rics tested. It appears that one of the contributing factor to this is TASK
is able to automatically converge to the simpler NNCF model under in-
sufficient data, whereas the other two algorithms do the opposite. Apart
from this, we believe that the true advantage of TASK over IUF and VM is
its target awareness, which tailors the item weights to the target similarity
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calculation, whereas IUF and VW simply impose a canonical item weight
indiscriminately across all situations.

4.5.7 How does TASK compare with other dual-orientation

algorithms?

TASK can be considered as an algorithm that combines user and item-
oriented NNCF. Therefore, it is interesting to see how it compares with
other algorithms of this type. This section compares user-oriented TASK
and NNCF with effective missing data prediction (EMDP) [84]10 and user and
item-based similarity fusion (UISF) [152], both of which are described in de-
tails in section 4.4.2 as part of the closely related work.

Figure 4.8 shows the experimental results of the four algorithms on
the MLS dataset. Figure (a) displays general experimental results un-
der skip-every-10th; figure (b) shows robustness performance under the
extreme dataset sparsity of 0.994 provided by given-10. Results for TASK
are marked in red, NNCF marked in grey, and the other dual-orientation
algorithms marked in different shades of blue. The algorithms in figure
(a) are sorted in descending order of performance.

The results show that both EMDP and UISF make a positive improve-
ment over both TASK and NNCF under extreme sparsity, but perform
worse than both TASK and NNCF in regular situations. The offsetting be-
haviour between TASK and other dual-orientation algorithms is not sur-
prising, because they actually have opposite design objectives. TASK fo-
cuses on improving the general prediction accuracy by applying an ad-
ditional layer of filtering that uses item similarities to eliminate the item-
irrelevancy and preference-imbalance in user similarity computation, thus
can be thought of as a multiplication of the item-based and user-based
NNCF; whereas the conventional dual-orientation approaches such as EMDP

10The EMDP paper includes two heuristics: correlation significance weighting (CSW),
and effective missing data prediction (EMDP). Here only the EMDP part is implemented,
because CSW is a separate heuristic that has nothing to do with combining user- and
item-oriented collaborative filtering. It is a heuristic orthogonal to, thus can be combined
with NNCF, TASK, EMDP, and UISF. Detailed explanation of the CSW heuristic is pre-
sented in the last paragraph of section 4.4.1.
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Figure 4.8: Comparison of TASK with other dual-orientation algorithms.

and UISF focus on improving the chance of producing a prediction un-
der extreme dataset sparsity by effectively combining the predictions of
both user-based and item-based NNCF with the hope that at least one of
them will be able to produce a prediction, or that in the cases where they
both do, “averaging” their predictions to reduce the noise and randomness
caused by insufficient data. Therefore, they can be thought of as an addition
of item-based and user-based NNCF. Different focus, opposite effects.

This explanation is corroborated by the standard deviations of the pre-
dicted ratings, as shown in figure 4.9. Both EMDP and UISF show a much
lower standard deviation of their rating predictions compared to TASK
and NNCF, suggesting that their predictions are “blurred” towards the
global average. Such behaviour may help under extreme sparsity, but is
not optimal on regular datasets.
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Figure 4.9: The standard deviation of rating predictions.
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4.6 PANDA: Analysing the effect of items indi-

rectly involved in the similarity computation

through biased identity averages

This section identifies, analyses, and proposes solutions to the biased-average
problem. The problem is explained in section 4.6.1. Two solutions — partial
averaging (PA) and double averaging (DA) are then proposed in section 4.6.2
and further discussed in sections 4.6.3 and 4.6.4 respectively. The general
combined idea will also be referred to using the abbreviation PANDA,
meaning “PA and DA”.

4.6.1 The Biased-Average Problem

Standard NNCF calculates the similarity between two users as the Pear-
son’s correlation between their ratings over items they have both rated,
known as their common ratings over their common items. This is presented
in equation 4.4 on page 74, and reformulated here as equations 4.11.

simPC (u1, u2) =

∑
i∈Iu1∩u2

r′u1,i · r
′
u2,i√∑

i∈Iu1∩Iu2
r′ 2
u1,i

·
√∑

i∈Iu1∩Iu2
r′ 2
u2,i

(4.11)

where r′u,i is the rating deviation (RD) defined as:

r′u,i = ru,i − ru (4.12)

and ru is user’s average rating over all items:

ru =
1

|Ru|
·
∑

i∈Iu
ru,i (4.13)

This approach has a potential mismatch — the similarity calculation of
equation 4.11 is carried on the common ratings of the two users, namely
Ru1,i∈Iu1∩Iu2 and Ru2,i∈Iu1∩Iu2 , whereas the user deviation in equation 4.12
is calculated against the user average ru on all items the user has rated,
namely Ru1,i∈Iu1 and Ru2,i∈Iu2 , as shown in equation 4.13. The calculation
of ru ignores the information that it is part of the similarity calculation
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between two users u1 and u2, thus is not sensitive to which items are in-
volved in the similarity computation, or more precisely, which of the items
are not involved. The rated items that are not part of the “common items”
could potentially incorrectly bias the averages, causing undesirable effects
in the similarity computation.

Table 4.9 uses an illustrative example to clarify the problem. Assume
two users u1 and u2 have exactly the same preferences thus should have
a similarity of 1. They have both rated three items i3, i4, and i5 and have
rated them identically, as shown in the second and third rows of table 4.9.
However, u1 also rated two other items i1 and i2 that he disliked, whereas
u2 rated two other items i6 and i7 that he liked. Therefore, the average
ratings of the users, as shown in the ru column of table 4.9, are differ-
ent despite their identical preferences. The rating deviations calculated
against their general rating averages, as shown in the last two rows of ta-
ble 4.9, would skew the otherwise consistent ratings, ultimately result in
an incorrect similarity of 0.44.

i1 i2 i3 i4 i5 i6 i7 ru sim(u1, u2)

Original User
Ratings

u1 1 1 2 4 5 2.6
-

u2 2 4 5 5 5 4.2
Rating Deviations
by equation 4.12

u1 -1.6 -1.6 -.6 1.4 2.4 -
.44

u2 -2.2 -.2 .8 .8 .8 -

Table 4.9: Users with identical preferences, thus should have a Pearson’s correla-

tion similarity of 1, but happen to have rated different sets of non-common items,

and the standard NNCF outputs a similarity of 0.44.

4.6.2 Solution: Partial Average and Double Average (PANDA)

This section proposes two solutions to the biased-average problem. The
fundamental idea is to obtain a user average that is not biased by the non-
common items of the users. Partial average, as shown in equation 4.14b,
calculates the user averages only using the common ratings between the
two users; double average, as shown in equation 4.14c, calculates the user
averages using ratings that have been “pre-adjusted” by the item averages
of the items involved.
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ru =
1

| Iu |
∑

i∈Iu
ru,i (4.14a)

ru
partial =

1

| Iu∩v |
∑

i∈Iu∩v
ru,i (4.14b)

ru
double =

∑
i∈Iu(ru,i − ri)
| Iu |

+ r = ru − ri∈Iu + r (4.14c)

Figure 4.10 use twelve illustrative examples on two users and seven
items to show the effects of ru partial and ru

double. The effects differ depend-
ing on the relation between the user similarity, users’ voting habits, and
user’s preferences on their common and non-common items. The exam-
ples are presented as twelve tables in a format similar to that of table 4.9.
Each example is based on the ratings of two users (u1 and u2) on seven
items (i1 to i7), where u1 has rated items i1 to i5, and u2 has rated items
i3 to i7. Items {i3, i4, i5} are their “common items”, and items {i1, i2} and
{i6, i7} are their “non-common items”. The ratings are integers from 1 to 5,
just like in the MovieLens datasets.

The first row of each table shows the item averages ri of the seven
items. Note that it may not equal to the average rating of u1 and u2 on
that item, since there are unshown users in the dataset. The item averages
are designed to indicate the general quality of the items. Mathematically,
they are only used in the calculation of double average ru double, but not ru
or ru partial. Their effect is discussed in section 4.6.4.

The third and fourth rows of each table show the raw ratings of the
two users, with their cosine similarity shown in the “similarity” column.
The cosine similarity shown in equation 4.15 is another way of calculating
user similarities [3]. It does not use rating deviations as in Pearson’s corre-
lation (see formula 4.12), but estimates the similarity between users’ raw
rating vectors, thus is not subject to the biased-average problem. In cosine
calculations, in order to obtain a [−1, 1] similarity range for comparison
purposes with Pearson’s similarities, the rating range is “recentred” from
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r ∈ [1, 5] to r̃ ∈ [−2, 2] by subtracting 3 from each rating.

simcosine(u1, u2) =

∑
i∈Iu1∩u2

r̃u1,i · r̃u2,i√∑
i∈Iu1∩u2

r̃ 2
u1,i

·
√∑

i∈Iu1∩u2
r̃ 2
u2,i

(4.15)

Each of the following three two-row-blocks, marked with different colours
for reading convenience, shows the rating deviations or RDs, the corre-
sponding rating averages used to calculate the RDs, and the resulting
Pearson’s similarities, when the RDs are calculated using the standard av-
erages ru, partial averages ru partial, and double averages ru double respec-
tively.

For presentation convenience, the twelve examples in figure 4.10 can be
viewed as a 4× 3 example matrix, or e. Each example can be referred to by
its index. For example, e1,1 refers to the top-left example, e4,3 refers to the
bottom-right example, and so forth. The examples are designed to demon-
strate twelve situations spanning four dimensions, which are shown as the
four coloured blocks at the bottom of each example. The first dimension
represents whether u1 and u2 are indeed positively correlated (green), un-
related (yellow), or inversely correlated (red). The optimal similarities in
the three cases would be 1, 0, and−1 for both Pearson’s and cosine similar-
ity. The second dimension — voting habit — demonstrates the advantage
of Pearson’s similarity over cosine similarity; the third and fourth dimen-
sions demonstrate the situations where the biased average problem be-
comes harmful to the similarity estimation. The dimensions are discussed
further below.

Dimension 2 — Users’ Voting Habits

The voting habit is the user’s internal mapping of the rating scale to their
true preference of the item. In a numerical rating scale from 1 to 5, a “pos-
itive” voter may use 5 and 3 to express like and dislike, whereas a “nega-
tive” voter may use 3 and 1 to express like and dislike.

When the two users have different voting habits, direct comparison of
their rating vectors may lead to inaccurate similarity. For example, row 2
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of the example matrix features three examples of a similar construction to
the examples in row 1, except the users’ voting habits are different, with u1
being a positive voter and u2 being a negative voter. This difference causes
the raw-rating-based cosine similarities (in the grey cells) to drop from a
perfect estimation of 1, 0, −1 in examples e1,1, e1,2, e1,3 to an inaccurate
estimation of −0.2, −0.45, and −1 in examples e2,1, e2,2, and e2,3.

This inaccuracy can be fixed by using rating deviation-based similar-
ity measures such as Pearson’s correlation. For example, in examples e2,1,
e2,2, and e2,3 where there are voting habit differences, although the raw
rating-based cosine measures in the grey cells are compromised, the rat-
ing deviation-based Pearson’s measures in the blue cells still show perfect
estimates of 1, 0, and −1 for correlated, unrelated, and opposite users.

Voting habit differences between users have been a long observed fac-
tor since Resnick et al. [120]. The proposed way of dealing with it is
through rating normalisation in the prediction stage, as shown in formula
4.6. However, the effect of voting habit differences in the similarity cal-
culation stage has never been explicitly pointed out. Based on their vot-
ing habits, users can be roughly classified as “positive” versus “negative”
based on the shift of their internal voting scale, and “mild” versus “ex-
treme” based on the span of their internal voting scale. For example, an
“extreme” voter may use 5 and 1 to express dislike and like, a “positively
mild” voter may use 4 and 3, and a “negatively mild” voter may use 3

and 2. In NNCF, rating normalisation in the prediction stage can only
deal with span-based voting habit differentials. To deal with shift-based
differentials, rating deviations instead of raw ratings need to be used in
the similarity calculation stage. For this reason, this thesis claims that rat-
ing deviation is necessary in correlation-based similarity calculations, and
Pearson’s correlation is therefore superior to cosine similarity measure.

Dimension 3 — The Users’ Non-common Preferences

This third dimension — (different) non-common preferences — refers to the
situation where the non-common items the users happen to have rated
(e.g. {i1, i2} and {i6, i7}) happen to be very different items, so that even
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if the users have identical preferences, as in example e3,1, they would still
have rated their non-common items very differently. This would cause
their rating averages ru1 and ru2 to be biased towards the opposite direc-
tions by the non-common ratings, triggering the biased-average problem.

Rows 3 of the example matrix illustrates this situation by having u1

rated {i1, i2} unfavourably and u2 rated {i6, i7} favourably. In this situa-
tion, standard Pearson’s correlation as shown in the blue cells tends to un-
derestimate the correlation between users, resulting in similarities smaller
than the truth — 0.61, −0.12, and−1 for correlated, unrelated, and inverse
users.

This problem can be solved by calculating the rating deviations us-
ing unbiased averages, such as ru partial and ru

double. In examples e3,1, e3,2,
and e3,3, both partial average in the green cells and double average in the
red cells are able to work around the “non-common preference differentials”
and greatly improve the similarity estimations. Partial average is able to
achieve perfect estimations of 1, 0, and −1. Double average estimates the
similarities to be 0.9,−0.12, and−1, which is still an improvement, but not
as consistent. The reason for this is explained in section 4.6.4.

Dimension 4 — Non-common vs. Common Ratings

The fourth dimension — (different) common and non-common ratings — demon-
strates another scenario that would trigger the biased average problem. It
refers to the situation where the averages of the users’ non-common rat-
ings are not vastly different from each other as in dimension 3, but are
different from the average of the same user’s common ratings.

Row 4 of the example matrix illustrates this situation by having both
u1 and u2 rated their non-common items extremely negatively. In this sit-
uation, standard Pearson’s correlation as shown in the blue cells tends to
overestimate the correlation between users, resulting in similarities larger
than the truth — 1, 0.36, and −0.61 for correlated, unrelated, and inverse
users. Just like in dimension 3, this problem can also be solved by unbi-
ased averages ru partial and ru

double. In the examples, partial average in the
green cells is still able to achieve perfect estimations; double average in
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the red cells is able to achieve substantial improvements subject to minor
fluctuations.

The examples have demonstrated that, firstly, it is necessary to use rat-
ing deviations instead of raw ratings in the similarity computation; sec-
ondly, rating deviations will be biased by the biased average problem, which
is caused by indirectly involving in the similarity computation users’ non-
common ratings, whose quality and biases we have no base line to com-
pare and judge. Partial average and double average seem to provide a so-
lution, but they also have their own sets of problems, which are explained
in sections 4.6.3 and 4.6.4 respectively.

4.6.3 Analysis of Partial Average

Partial average ru partial, which seems to be the perfect method in the ex-
amples, also has its own set of problems. Firstly, the average rating of u1
becomes a variable of not only u1, but also its counterpart u2. Therefore,
it needs to be recomputed for every other u2 in the data set. This slightly
reduces the efficiency of the recommendation.

Secondly and more seriously, it runs the risk of insufficient informa-
tion when the number of common ratings is significantly smaller than the
number of non-common ratings, in which case the common ratings alone
may not provide a reliable picture of the users’ voting habits, causing the
partial average to be inaccurate.

Figure 4.11 uses two examples to clarify this problem. In the two exam-
ples, all four users are supposed to have very well-balanced voting habits.
However, this can only be gauged by looking at all their ratings. In figure
4.11(a), users u1 and u2 are supposed to have similar voting habits but op-
posite tastes thus negative similarity. However, without the non-common
ratings to justify their de facto similar voting habits, the partial average
ru

partial calculated solely based on the three common items would mistak-
enly attribute the difference in their ratings as a difference in their voting
habits, which is neutralised in the rating deviations. Rating deviations cal-
culated as such would magnify the micro-agreement between the users —
that they both prefer i5 slightly more than i3 and i4 — and consider the
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users as positively correlated, resulting in a wrongly estimated similarity
of 0.5 as shown in the green similarity cell.

Item Avg. 2 3 2 3 4 2 3

item 1 item 2 item 3 item 4 item 5 item 6 item 7 user avg. similarity

user1 4 5 1 2 2

user2 4 4 5 1 2

user1 1.20 2.20 ‐1.80 ‐0.80 ‐0.80 2.80

user2 0.80 0.80 1.80 ‐2.20 ‐1.20 3.20

user1 2.33 3.33 ‐0.67 0.33 0.33 1.67

user2 ‐0.33 ‐0.33 0.67 ‐3.33 ‐2.33 4.33

user1 0.50 1.50 ‐2.50 ‐1.50 ‐1.50 3.50

user2 0.10 0.10 1.10 ‐2.90 ‐1.90 3.90

Ratings

RD 

(Standard)
‐0.78

RD 

(Partial)
0.50

‐0.83

RD 

(Double)
‐0.56

(a) Inversely correlated users appear to have a positive correlation
based on common ratings alone.

Item Avg. 2 3 3 4 5 2 3

item 1 item 2 item 3 item 4 item 5 item 6 item 7 user avg. similarity

user 3 1 2 3 4 5

user 4 5 4 3 1 2

user 3 ‐2.00 ‐1.00 0.00 1.00 2.00 3.00

user 4 2.00 1.00 0.00 ‐2.00 ‐1.00 3.00

user 3 ‐3.00 ‐2.00 ‐1.00 0.00 1.00 4.00

user 4 1.00 0.00 ‐1.00 ‐3.00 ‐2.00 4.00

user 3 ‐2.10 ‐1.10 ‐0.10 0.90 1.90 3.10

user 4 1.90 0.90 ‐0.10 ‐2.10 ‐1.10 3.10

RD 

(Partial)
‐1.00

RD 

(Double)
0.10

Ratings 0.20

RD 

(Standard)
0.20

(b) Positively correlated users appear to be inversely correlated
based on common ratings alone.

Figure 4.11: Examples where the partial-average method fails, due to the fact

that common ratings alone may not provide sufficient information to gauge the

voting habit of users.

Figure 4.11(b) shows a similar but reversed example. u3 and u4 are sup-
posed to have similar and well-balanced voting habits, and weakly posi-
tively correlated tastes, thus should have a small positive similarity. Pear-
son’s correlation based on ru and ru

double is able to correctly gauge this,
and produce similarity estimations of 0.2 and 0.1 respectively. However,
partial average ru partial, without the full spectrum of ratings to accurately
gauge the users’ voting habits, considers both users positive voters, and
in turn magnifies their micro-disagreement in the rating deviations and
considers the two users completely inversely correlated with a similarity
of −1.
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The problem can be worse. Figure 4.12 presents a scenario where it
cannot be decided whether the two users indeed have similar taste and
similar voting habits, but happen to have voted on non-common items of
different qualities, like example e3,1 in the example matrix of figure 4.10;
or whether they indeed have different taste on items and different voting
habits, with u1 being a negative voter and u2 being a positive voter. If
the former was true, then standard Pearson’s calculation suffers from the
biased average problem, and partial average-based similarity in the green cell
is more accurate; if the latter was true, then standard Pearson’s similarity
of −0.42 as shown in the blue cell is more accurate.

Item Avg. 2 2 2 3 3 4 4

item 1 item 2 item 3 item 4 item 5 item 6 item 7 user avg. similarity

user1 1 1 3 4 4

user2 3 4 4 5 5

user1 ‐1.60 ‐1.60 0.40 1.40 1.40 2.60

user2 ‐1.20 ‐0.20 ‐0.20 0.80 0.80 4.20

user1 ‐2.67 ‐2.67 ‐0.67 0.33 0.33 3.67

user2 ‐0.67 0.33 0.33 1.33 1.33 3.67

user1 ‐2.70 ‐2.70 ‐0.70 0.30 0.30 3.70

user2 ‐1.50 ‐0.50 ‐0.50 0.50 0.50 4.50

RD 

(Double)
0.55

RD 

(Standard)
‐0.42

RD 

(Partial)
1.00

Ratings 1.00

Figure 4.12: An example where it is ambiguous whether the standard average

or the partial average is better.

4.6.4 Analysis of Double Average

Double average does not suffer from the “incomplete voting habit” prob-
lem that partial average suffers from. However, it has its own problem,
which is that similarities based on double averages are overly sensitive to
the item averages of the items involved.

Figure 4.13 uses two examples to clarify this problem. The examples
are otherwise identical to figure 4.12 except for the item averages. In figure
4.13(a), the item averages are made to be slightly more consistent with user
ratings, in which case the double average-based similarity in the red cell
is 1. In figure 4.13(b), the item averages are made to be different from user
ratings, in which case the double average-based similarity in the red cell
is −0.42.
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The problem here is, double average-based similarities not only mea-
sure the preference similarity between users, but also the similarities be-
tween the user ratings and the general item averages. The bigger the dif-
ferences between users’ ratings and the item averages are, the smaller the
final “user” similarities will be. This is not only unnecessary but also in-
correct. Actually, if both users disagree with the general public in the same
way, the disagreement should serve as an even stronger factor to promote
their similarity, instead of punish it.

Item Avg. 1 1 3 3 4 5 5

item 1 item 2 item 3 item 4 item 5 item 6 item 7 user avg. similarity

user1 1 1 3 4 4

user2 3 4 4 5 5

user1 ‐1.60 ‐1.60 0.40 1.40 1.40 2.60

user2 ‐1.20 ‐0.20 ‐0.20 0.80 0.80 4.20

user1 ‐2.67 ‐2.67 ‐0.67 0.33 0.33 3.67

user2 ‐0.67 0.33 0.33 1.33 1.33 3.67

user1 ‐2.70 ‐2.70 ‐0.70 0.30 0.30 3.70

user2 ‐0.70 0.30 0.30 1.30 1.30 3.70

RD 

(Standard)
‐0.42

RD 

(Partial)
1.00

RD 

(Double)
1.00

Ratings 1.00

(a) The item averages are consistent with user ratings.

Item Avg. 3 3 3 3 3 3 3

item 1 item 2 item 3 item 4 item 5 item 6 item 7 user avg. similarity

user1 1 1 3 4 4

user2 3 4 4 5 5

user1 ‐1.60 ‐1.60 0.40 1.40 1.40 2.60

user2 ‐1.20 ‐0.20 ‐0.20 0.80 0.80 4.20

user1 ‐2.67 ‐2.67 ‐0.67 0.33 0.33 3.67

user2 ‐0.67 0.33 0.33 1.33 1.33 3.67

user1 ‐2.10 ‐2.10 ‐0.10 0.90 0.90 3.10

user2 ‐1.70 ‐0.70 ‐0.70 0.30 0.30 4.70

Ratings 1.00

RD 

(Standard)
‐0.42

1.00

RD 

(Double)
‐0.43

RD 

(Partial)

(b) The item averages are different from user ratings.

Figure 4.13: Two examples that are otherwise identical to figure 4.12 except for

the item averages. Comparison of the two examples shows how double average-

based similarity computations (in red) are affected by the item averages.
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4.7 PANDA: Experimental Analysis

This section presents experimental analyses of the partial average (PA) and
double average (DA) heuristics presented in section 4.6. 4.7.1 focuses on
the general performance of partial and double average. 4.7.2 and 4.7.3
investigate different heuristics that selectively apply partial and double
averages in the right circumstances to achieve better performance.

4.7.1 General performance

Figure 4.14 compares the general prediction and recommendation perfor-
mance of four NNCF algorithms: Pearson’s correlation (PC), cosine simi-
larity (CS, as described in formula 4.15), partial average (PA), and double
average (DA). The experimental settings are the same to that of figure 4.8.
Figures (a) and (c) display general experimental results under skip-every-
10th; figures (b) and (d) show robustness performance under the extreme
dataset sparsity of 0.994 provided by given-10. Results for PA and DA are
marked in red and green; the baseline algorithms PC and CS are marked
in different shades of grey.

Judging from figure 4.14(a), PA and DA fail to make a positive im-
provement over the standard PC.11 This is disappointing but expected.
As already pointed-out in sections 4.6.3 and 4.6.4, although partial and
double averages solve the biased-average problem, they each suffer from the
incomplete voting habit problem and the overvalued item averages problem re-
spectively. As the experimental results manifest, the negative effects of the
newly introduced problems override the positive effects of solving the old
problem, resulting in an overall decrease of performance.

Between DA and PA, user-oriented DA exhibits significantly worse
performance compared to user-oriented PA, especially in terms of the pre-
diction accuracies MAE and RMSE. This is consistent with the illustrative
examples in figure 4.10, which demonstrates that DA tends to experience
more fluctuation with minute change of circumstances due to the instabil-

11Recall that a positive improvement means smaller MAE and RMSE, and bigger F1
and NDCG.
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(a) User-oriented General Experiments
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(b) User-oriented Sparse (.994) Experiments
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(c) Item-oriented General Experiments
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(d) Item-oriented Sparse (.994) Experi-
ments

Figure 4.14: Comparison of partial average (PA) and double average (DA) with

the baseline algorithms of Pearson’s correlation (PC) and cosine similarity (CS).

ity caused by the overvalued item averages problem. However, this perfor-
mance difference is much smaller in item-oriented PA and DA, as shown in
figure 4.14(c).12 This is due to the fact that in the MLS dataset, each user has
at least 20 ratings, whereas 8% of the items only have one rating, and 44%

of the items have less than 20 ratings — the minimum amount a user has.
This makes the item averages much less stable than the user averages, in
turn causing the overvalued item averages problem to affect the performance
of user-oriented DA much more than the overvalued user averages problem

12The paired t-tests over the hypotheses of that item-oriented PA performs better than
item-oriented DA in terms of MAE only passed the 85% confidence level. In other words,
item-oriented PA is not statistically significantly better than item-oriented DA.
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affecting item-oriented DA.

Figures 4.14(b) and (d) show the performance comparison under the
dataset sparsity of 0.994. In this case, the four algorithms exhibit much
smaller performance differences. This is because in regular situations, the
performance of PA and DA is affected by the noise caused by the over-
filtering thus a lack of data. In sparse situations, all four algorithms are
subject to noisy data due to the lack thereof, thus shrinking the perfor-
mance gap.

Inspired by the fact that the performance gap diminishes as the dataset
sparsity increases, the next two sections propose two different types of
heuristics focusing on selectively applying partial and double averages
only when the newly introduced problems are less likely to exist.

4.7.2 Piecewise partial average

The incomplete voting habit problem explained in section 4.6.3 states that
when the number of common ratings between two users is too small, es-
pecially in comparison with the total number of ratings of the involved
users, the common ratings alone may not be able to accurately capture the
voting habits of users, resulting in the partial average being inaccurate, in
turn hurting the performance of the recommender system. Partial average
also has a much lower coverage of 81% compared to NNCF’s 95%,13 fur-
ther hurting its prediction accuracy.14

This section investigates these problems by studying two parameters:
number of common ratings or NCR between a pair of users, and the rating
range differential or RRD between a pair of users. Suppose across all items
the user has rated, user u1’s rating range is [rmin

u1
, rmax
u1

], user u2’s rating
range is [rmin

u2
, rmax
u2

]; u1’s ratings on the common items between u1 and u2

have the range of [cmin
u1
, cmax
u1

], and u2’s common ratings have the range of

13The lower coverage is caused by all the common ratings being equal to the partial
average, resulting in the rating deviations to be entire vectors of zeros, thus corrupting
Pearson’s correlation from producing a similarity.

14In our implementation, when a rating prediction is not able to be produced, a default
rating of 3 is provided. In this way, the coverage is reflected in the prediction accuracy.
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[cmin
u2
, cmax
u2

]. The rating range differential RRD is calculated as follows:

RRD(u1, u2) = max
(

RRD(u1),RRD(u2)
)

, where (4.16)

RRD(ux) = |rmax
ux − c

max
ux |+ |r

min
ux − c

min
ux |

Figure 4.15 demonstrates the relationship between RRD and NCR. Fig-
ure (a) plots the monotonically decreasing relationship between RRD and
the averaged NCR; figure (b) plots for each NCR value in the x-axis the
percentile distribution of RRD across all user pairs. An RRD value of zero
means the rating range for both users overlap with their common rating
range. According to the figures, it happens more often when there are
abundant common ratings (and user ratings) to cover the intended range.
On the other hand, an RRD value of 4 indicates that the common rating
range and users’ rating range are very different. It happens the most when
the number of common ratings is extremely low, with the average NCR be-
ing only 1.72. 85% of the user pairs where there is only one common rating
has an RRD of 4; the maximum NCR that is associated with an RRD of 4 is
21.
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Figure 4.15: The relationship between RRD and NCR.

The rest of this section proposes piecewise partial average or PPA, which
uses regular average instead of partial average in two scenarios — (a)
when the number of common ratings or NCR is less than a threshold α;
and (b) when the rating range differential or RRD is more than a thresh-
old β. This two scenarios are selected because they are prone to causing
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the incomplete voting habit problem, and their preconditions can be easily
tested during the recommendation process.

Figure 4.16(a) presents the distribution of user pairs with respects to the
α and β thresholds. Each cell represents the percentage of user pairs with
its NCR ≤ α or its RRD ≥ β. Since there is no user pairs with NCR ≤ 0

or RRD ≥ 5,15 The first column and the first row of the table are equiv-
alent to only applying RRD related heuristics and NCR related heuristics
respectively.

β       α ≤ 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8 ≤ 282

 ≥ 5 0 6.9% 14.5% 22.0% 28.9% 35.2% 40.9% 46.0% 50.4% 100.0%

≥ 4 10.1% 11.1% 16.1% 22.7% 29.2% 35.4% 41.0% 46.0% 50.4% 100.0%

≥ 3 25.5% 25.5% 27.3% 30.6% 34.9% 39.4% 43.9% 48.2% 52.1% 100.0%

≥ 2 53.2% 53.2% 53.4% 54.3% 55.7% 57.5% 59.5% 61.6% 63.7% 100.0%

≥ 1 84.3% 84.3% 84.4% 84.4% 84.6% 84.8% 85.2% 85.6% 86.0% 100.0%

≥ 0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

(a) The percentage of user pairs that fall into the corresponding scenarios.

β       α ≤ 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8 ≤ 282

 ≥ 5 0.741 0.741 0.740 0.739 0.738 0.737 0.735 0.735 0.736 0.737

≥ 4 0.739 0.739 0.738 0.738 0.737 0.735 0.735 0.735 0.736 0.737

≥ 3 0.738 0.738 0.738 0.736 0.735 0.734 0.733 0.736 0.736 0.737

≥ 2 0.736 0.736 0.736 0.736 0.736 0.735 0.735 0.736 0.736 0.737

≥ 1 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737

≥ 0 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737

(b) The MAE of piecewise partial average with the corresponding thresholds.
A green cell means the performance is better than Pearson’s correlation; a
red cell means the performance is worse.

Figure 4.16: The effect of different α and β threshold.

Figure 4.16(b) presents the MAE of piecewise partial average or PPA
with the respective α and β threshold. The experiments are conducted un-
der the skip-every-10th protocol on the MLS dataset. Each cell corresponds
to applying normal average instead of partial average on a percentage of
similarity computations equal to what is shown in the corresponding cell

15Cases where two users have no common ratings are not included in this study.
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of figure 4.16(a). Note that when α is set to zero and β is set to the maxi-
mum, PAA is equivalent to PA; when α is set to the maximum or when β is
set to zero, PAA is equivalent to PC. They are to be referred as the PA-side
and the PC-side of the threshold scale respectively, and can be viewed as
the diagonal line of figures 4.16(a) and 4.16(b).

In figure 4.16(b), a green colour indicates a better performance than
Pearson’s correlation, and a red cell means the performance is worse. The
figure shows that the idea behind PAA is on the right track. With the right
combination of α and β, piecewise application of partial average is able to
achieve a statistically significant improvement over NNCF.16

4.7.3 Applying AdaBoost on top of partial and double av-

erages

Section 4.7.2 achieved performance improvement by using manually de-
signed heuristics to selectively apply PA. This section investigate an au-
tomatic way of selectively applying partial, double, and normal average
dynamically based on the data. To do this, adaptive boosting or AdaBoost
[37] is used as an ensemble learner, with partial average, double average,
and normal average (standard Pearson’s correlation) as its base learners.
Boosting [7] is an ensemble learning mechanism that generates comple-
mentary learners by actively training the next learner on the mistakes of
the previous learners. AdaBoost is a particular version of boosting that is
chosen here because it is suitable for situations when data is not abundant,
and when the base learners are “weak but not too weak” [7].

Figure 4.17 presents the performance of AdaBoost compared with the
three base learners (Pearsons, partial, and double), and the piecewise par-
tial average. The experiments are carried out under the same settings to
that of section 4.7.1.

The results show that AdaBoost is able to significantly improve the
performance of Pearson’s correlation in terms of both prediction accuracy
and the recommendation accuracy in general situations, and is also able

16With α = 6 and β = 3, the hypothesis of that PAA performs equal to or better than
PC passd the paired t-test with a confidence level of 95%.
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(a) User-oriented Results
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(b) Item-oriented Results

Figure 4.17: Comparison of Pearson’s correlation (PC), partial average (PA), and

double average (DA) with piecewise partial average (PAA) and Adaboosted av-

erage (ADA).

to improve the recommendation accuracy under extreme sparsity. When
both PPA and AdaBoost are able to make a performance improvement,
AdaBoost normally makes the bigger one.

The promising performance of AdaBoost is well expected. Given that
the three types of averages have different weaknesses — with Pearson’s
correlation prone to the biased-average problem, partial average prone to
incomplete voting habit, and double average prone to overvaluing item
averages — ensemble learning is a natural path to investigate. The positive
performance improvements corroborated the hypothesis that the three dif-
ferent type of user averages indeed possess different and offsetting induc-
tive biases.

4.8 Conclusion

This chapter presented two improvements over the nearest neighbour-
based collaborative filtering following the identification of three problems.
The target-aware similarity computation (TASK) presented in section 4.3 adopts
a dynamic relevancy-based item weighting mechanism to tackle the item-
irrelevancy problem and the preference-imbalance problem. The partial and dou-
ble averages presented in section 4.6 provide a rating deviation calculation
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mechanism that is not biased by which of the non-common ratings the
user happen to have rated, thus targets the biased-average problem.

As pointed out in section 4.4, there has been previous attempts to incor-
porate item weights in user similarity computations. What distinguishes
TASK from other weighting mechanisms is its “target-awareness” — the
item weights are aware of and are tailored to the target similarity compu-
tation. Another fundamental difference is that existing weighting mech-
anisms are all designed to discount the importance of universal views,
whereas TASK is designed to explore a completely new aspect — the item-
irrelevancy and the preference-imbalance. For this reason, one future di-
rection is to investigate the possibility of combining TASK with other item-
weighting mechanisms to achieve an even bigger improvement. Another
direction is to find implementational heuristics to improve the computa-
tional speed of TASK.

The PANDA or partial average and double average heuristics do not have
closely-related counterpart algorithms like TASK does. However, their dif-
ferences to the standard Pearson’s correlation is very similar to that of co-
sine similarity. On their own, partial and double averages are not able to
make a performance improvement over the standard Pearson’s correla-
tion due to the “incomplete voting habit” problem and the “overvalued
item averages” problem identified in sections 4.6.3 and 4.6.4. However, as
presented in section 4.7, by carefully tuning the application preconditions
and applying AdaBoost-based ensemble learning, performance improve-
ments can be achieved.

Section 4.7.2 presented two heuristics that control the application pre-
condition of partial average to try to avoid the incomplete voting habit
problem and boost its performance. They are (a) a condition on the num-
ber of common ratings — a common size-based heuristic, and (b) a con-
dition on the rating range differential (RRD). While conducting experiments
on heuristic (b), the importance of the range of ratings starts to manifest.
Sometimes, especially when the user’s voting habits is in play, it is the
range or the distribution of ratings instead of the specific rating values that
is important. This leads to the development of the “distribution rating”
idea presented in chapter 5.
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Chapter 5

Distributional Rating

This chapter explores the concept of distributional rating. Instead of us-
ing scalar numbers between 1 to 5 to express user ratings and their voting
habits, and using scalar numbers between −1 to 1 to represent user simi-
larities, the idea is to use a probabilistic belief distribution to represent user
ratings and their voting habits, and to use a similarity distribution to capture
the users’ relative predictive powers to each other.

The idea arose from the PANDA algorithm described in chapter 4.
While trying to obtain a better formulation of users’ voting habits using
partial and double averages, it was discovered that the range of a user’s
ratings is as important as the mean at capturing the user’s voting pattern.
This led to the idea of using probabilistic distributional vectors instead of
single scalar numbers to represent users’ voting patterns, which expanded
to the idea of using distributional vectors to represent a wider range of
concepts including ratings, rating predictions, and user similarities.

The rest of the chapter is organised as follows: section 5.1 defines a
recommendation-based probability space, which will be the basis of all
discussions of chapters 5 and 6; sections 5.2 and 5.3 define distributional
rating and distributional voting profile respectively, with their utility, pur-
pose, and ramifications discussed in section 5.4; section 5.5 presents the
workflow of using distributional rating and distributional voting profile
to make recommendations; section 5.6 summarises related work; section
5.7 presents experimental results and analysis; section 5.8 concludes the
chapter and indicates future work.

119
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5.1 The Probability Space of Recommendation

In probability theory, a probability space is a mathematical model for study-
ing the probabilities of events regarding a set of variables. It consists of four
parts: 1) a set of variables; 2) a sample space Ω, which represents the set of all
possible outcomes regarding the value assignments of the variables; 3) a set
of events E ⊆ PowerSet(Ω), each of which is a subset of the sample space;
4) a probability function P : E → [0, 1] that assigns probabilities to events.

As pointed out in section 4.1, the three fundamental elements of rec-
ommendation are user, item, and rating, which can be represented as three
variables — the user-variable u that takes on values of user IDs; the item-
variable i that takes on values of item IDs; and the rating-variable r that
takes on numerical values in the range of [rmin, rmax] (or [1, 5] in the datasets
of this thesis). The probability space of collaborative filtering recommen-
dation can be defined regarding the three variables u, i, and r. The task of
recommendation can be thought of as the study of such probability space.

In this probability space, an outcome is a 〈u = ux, i = iy, r = rz〉 triple
representing the outcome of that user ux’s rating on item iy is rz. This
outcome can be an already-observed state of nature, such as an entry in
the training dataset, or an unobserved theoretical state, such as a rating
prediction. An event is a set of outcomes of interest where a probability
can be assigned to express knowledge or belief. Examples include single
observed outcome-based events such as “user Tom has given movie Avatar a
rating of 4”, single unobserved outcome-based events such as “we predict that
Tom will rate movie Inception a 4.7”, or aggregated events such as “Tom’s
average rating across all movies is 2.5”. A training dataset such as table 5.1
or a set of predictions made by a recommender system are also examples
of recommendation events for which probabilities can be assigned.

The rest of this section lists the important probability distributions within
this probability space. In general, this thesis uses variable names as abbre-
viations to the variable-value pairings in probabilistic formulae. For exam-
ple, P(u) is the abbreviation of P(u=ux) for the generic user ux, P(r| u, i)
is the abbreviation of P(r= ra| u=ux, i= iy) for the generic ra, ux, and iy,
and so forth.
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User Item Rating
Tom Titanic Good
Tom Inception Bad
Jerry Titanic Bad
Jerry Avatar Good
Jerry Inception Bad

Table 5.1: An Illustrative Recommendation Dataset

The general prior probabilities regarding the three variables u, i, and r are
P(u), P(i), and P(r), which can be computed by simply “counting-up” the
respective instances in the dataset. In the illustrative dataset of table 5.1,
the prior of the user being Tom would be 2

5
= 0.4; the prior of the item

being Avatar would be 1
5

= 0.2, and the prior of a Bad rating would be
3
5

= 0.6, as illustrated in formulae 5.1a, 5.1b, and 5.1c.

P(u = Tom) =
# entries involving Tom as the user

total # entries
=

2

5
(5.1a)

P(i = Avatar) =
# entries involving Avatar as the item

total # entries
=

1

5
(5.1b)

P(r = Bad) =
# entries that has a Bad rating

total # entries
=

3

5
(5.1c)

The conditional prior probability distributions that involve two variables
are P(i | u), P(u | i), P(r| u), and P(r| i). The other pairings P(u | r) and
P(i | r) are not discussed because they are not of interest. These probabil-
ities can also be calculated by counting up the instances, but only using a
subset of the data that satisfy the specified conditions, namely as follows:

P(u = Tom | i = Avatar) =
If Tom voted for Avatar

# entries regarding Avatar
=

0

1
(5.2a)

P(i = Avatar | u = Jerry) =
If Jerry voted for Avatar
# entries regarding Jerry

=
1

3
(5.2b)

P(r = Bad | u = Jerry) =
# entries that Jerry rated “Bad”

# entries Jerry rated
=

2

3
(5.2c)

P(r = Bad | i = Titanic) =
# “Bad” ratings Titanic has
# entries regarding Titanic

=
1

2
(5.2d)
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The conditional probability distribution of importance that involves all
three variables isP(r| u, i) (i.e. P(r=ra| u=ux, i=iy)). It is the probability of
the outcome that user ux gives item iy a rating of ra. For observed outcomes
such as a training data, this probability is 1; for unobserved outcomes such
as a proposed prediction, the value of P(r=ra| u=ux, i=iy) represents the
degree of belief that a prediction of r= ra on user ux and item iy will be
true.

5.2 Distributional Rating

In recommender system research, the rating datasets contain numerical
rating data that use a single scalar number to represent the user’s prefer-
ence on an item. This section proposes the idea of distributional rating
(DR), which uses a discrete vector representation of the probability distri-
bution P(r|u, i) instead of a single scalar rating ru,i to model user u’s pref-
erence on item i. A distributional rating is a 1 × 5 vector symbolised as
P( r

∼
| u, i), whose entries are specified in formula 5.3:

P( r
∼
| u, i) = ( P(r=1|u,i) P(r=2|u,i) P(r=3|u,i) P(r=4|u,i) P(r=5|u,i) ) (5.3)

where P(r=x| u, i) is the probability that user u gives item i a scalar rat-
ing of x. For observed ratings such as the ones in the training dataset,
this probability is 1 for P(r= ru,i| u, i) and 0 for all other P(r 6= ru,i| u, i),
where ru,i is the observed scalar rating provided by the rating dataset. For
example, an observed rating of 2 would have a distributional rating of
( 0 1 0 0 0 ). For unobserved ratings such as a rating prediction made by the
recommender system, the value of P(r = x| u, i) represents the level of
confidence of the prediction being x. For example, instead of a scalar pre-
diction of 2, the prediction can be a distributional rating of ( .19 .57 .19 .05 0 ).

Just like a scalar number has to be within the range of [1, 5] to qualify
as a valid scalar rating, for a 1× 5 vector ( p1 p2 p3 p4 p5 ) to qualify as a valid
distributional rating, each pi has to be within the range of [0, 1], and the
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sum of the vector has to add up to one:

0 ≤P(r | u, i) ≤ 1 for each r ∈ r
∼∑

r∈ r∼

P(r | u, i) = 1
(5.4)

To provide more perspective, figure 5.1 shows the visualisation of five
distributional ratings whose maxima correspond to the scalar ratings of
1, 2, 3, 4, 5. In each figure, the distributional rating vector is shown at
the bottom; the x-axis represents the rating values from 1 to 5; the y-axis
represents the probability P(r=x| u, i) for each x-value. Take figure 5.1(a)
for example, the decreasing curve communicates that in this prediction,
the system thinks the user is most likely to rate the item a 1, however, the
chances of the rating being 2, 3, 4, and 5 are non-zero with diminishing
probabilities.

0

0.2

0.4

0.6

1 2 3 4 5

(a)(.53 .26 .13 .05 .02)

0

0.2

0.4

0.6

1 2 3 4 5

(b)(.19 .57 .19 .05 0)

0

0.2

0.4

0.6

1 2 3 4 5

(c)(0 .15 .69 .15 0)

0

0.2

0.4

0.6

1 2 3 4 5

(d)(0 .05 .19 .57 .19)

0

0.2

0.4

0.6

1 2 3 4 5

(e)(.02 .05 .13 .26 .53)

Figure 5.1: Distributional rating examples

Advantage over Scalar Ratings

Distributional ratings can also convey the confidence of a recommendation.
Figure 5.2 presents five distributional ratings with the same maxima as
those in figure 5.1, but with a flatter shape, indicating less confidence in
the prediction.
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Figure 5.2: Distributional ratings similar to that of figure 5.1 but with bigger

variances, indicating a lower confidence in the ratings.
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Advantage over Gaussian Distribution

Imposing a Gaussian distribution over the rating range can also capture
the confidence of the recommendation. However, compared to it, distri-
butional rating has the added benefit of being able to communicate the
“ambivalence” in a recommendation. For example, figure 5.3 shows three
distributional ratings with the same expected value of ru,i = 3, so in scalar
terms they would be the same. However, they communicate very different
messages. Rating (a) shows a complete lack of confidence, or an inability
to produce any recommendations; rating (b) suggests a recommendation
of 3 or mediocre; rating (c) communicates an ambivalent recommendation,
stating that “I think you will either like or hate this item, but either ways, it is
definitely going to leave an impression”. For me personally, this is the spot-on
recommendation for the movie Borat.
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Figure 5.3: Three distributional ratings with the same expected value yet very

different semantics. They demonstrate the expressiveness of distributional rat-

ings over scalar ratings and a Gaussian distribution-based representation.

Advantage over a Mixture of Gaussian

In order to capture both the confidence and the “ambivalence” in the rec-
ommendations, an alternative representation would be to use a mixture of
Gaussian. However, this would be very computationally expensive, and
would require a lot of data to construct. The discrete vector representa-
tion used by distributional rating is light-weighted and carries relatively
limited computational and storage overhead.
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5.3 Distributional Voting Profile

Section 5.2 presents the use of a probability distribution P( r
∼
| u, i ) instead

of a scalar number ru,i to represent a single rating. Similarly, this section
presents distributional voting profile or DVP, which uses a discrete represen-
tation of the probability distribution P( r

∼
| u) instead of the scalar average

ru to represent user u’s voting profile. It is defined as follows:

P( r
∼
| u) = ( P(r=1|u) P(r=2|u) P(r=3|u) P(r=4|u) P(r=5|u) ) (5.5)

where, for each x ∈ [1, 5], P(r=x| u) is calculated according to equation
5.6, which is an abstracted formalisation of equation 5.2c.

P(r=x| u) =
1

|Ru|
∑

i∈Iuwhere ru,i=x
1 (5.6)

For example, if a user rated 28 items, 11 of which he rated a 1, 7 of
which he rated a 2, 4 of which he rated a 3, 3 of which he rated a 4, and
3 of which he rated a 5, his DVP would be a discrete vector-represented
probability distribution of ( 11

28
7
28

4
28

3
28

3
28 ) or ( 0.39 0.25 0.14 0.11 0.11 ).

This DVP can be visualised as in figure 5.4. Like distributional ratings,
the x-axis represents the rating values from 1 to 5; the y-axis represents the
probability P(r = x| u) for each corresponding x-value.
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Figure 5.4: The visualisation of the distributional voting profile of

(0.39 0.25 0.14 0.11 0.11).

Semantically, the DVP represents the voting patterns of this user. The
rest of this section explains some typical aspects of it, including shift, spread,
peaks, and simplified mental scale.
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Shift

The shift of a user’s voting pattern can be conceptually interpreted as posi-
tive versus negative voters. In a numerical rating scale from 1 to 5, suppose
there is a user who uses 5 and 3 to express like and dislike, and another
user who uses 3 and 1 to express like and dislike, the first user would be a
relatively positive user, and the second relatively negative. This difference
can be caused by selective voting, different interpretations of the rating
scale, or different personality.

Shift can be fairly well represented by the scalar average rating ru. Con-
sequently, DVP is able to capture shift because it encompasses ru — ru can
be directly calculated as the expected value of DVP. To provide more per-
spective, figure 5.5 plots five DVPs of real users in the MLM dataset. The
DVPs are selected to cover different shift patterns, and are ordered by in-
creasing values of the user’s average rating.
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Figure 5.5: Distributional voting profiles of real users, ordered by increasing ru.

Spread

In addition to shift, there is also the spread, which can be mathematically
captured by σu — the standard deviation (or variance) of user ratings.
Conceptually, it can be construed as broad voting patterns versus narrow
voting patterns. Figure 5.6 plots six real-user-based DVPs with similar
shift (around ru = 3) but different spread. The left-hand-side patterns are
“narrower” with smaller variances, demonstrating a strong tendency for
the user to assign a single rating value (in this case r=3) to the items; the
right-hand-side patterns have larger variances and flatter shapes, demon-
strating a more even use of all five rating values.
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Figure 5.6: Distributional voting profiles with a similar shift of ru=3 but different

spread, ordered by increasing standard deviation σu.

Like shift, the differences in spread can be caused by selective voting,
personalities, preferences, or different interpretations of the rating scale.
For example, users (a), (b), and (c) appear to have seldom used the rating
values 1 and 5, effectively converting the 5-way rating scale into a 3-way
rating scale of “bad-medium-good” represented by the rating values 2, 3,
and 4. Such behaviour is one of the factors that decreased the variance of
their DVPs. Actually, by ignoring the rating values of 1 and 5 and stretch-
ing the middle range from 2 to 4 to the full range, user (b) would appear
to be similar to (d), and user (c) similar to (e).1

Simplified Mental scales

The MLS and MLM datasets use a 5-way input interface, where users
could choose an integer between 1 to 5 to communicate their preferences
on the movie. The five integers can be interpreted as “terrible, no good,
medium, good, and brilliant” respectively. This is a very common rating
interface. In fact, the lecturer evaluation at Victoria University uses this
format. However, analysis of the data shows that this appears to be overly
complex for some users, causing them to consciously or subconsciously
form a simplified mental scale.

As opposed to 5-way voters who make full use of the provided rating
scale, a 2-way voter subconsciously picks two out of the five rating val-
ues, and assigns them the mental interpretation of “good” versus “bad”,

1In general, the DVPs do not suffer from a lack of data support, because the MLS and
MLM datasets guarantee at least 20 ratings for each user. In other words, the obscurely
sharp or flat shapes of the DVP presented here are all caused by the voting habits of users.
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effectively converting the rating scale into a binary scale to simplify the
process. Similarly, a 3-way voter picks three out of the five rating values,
and interprets them as “good”, “medium”, and “bad”. 4-way voters are not
distinguished here because 1) it is intuitively less natural; 2) since there is
only one omitted rating value, it is hard to distinguish if it is caused by
simplified mental scale or simply as a dip of the 5-way voting pattern. To
classify it as a separate mental scale runs the risk of overkill.

Figure 5.7 shows three real user-based DVPs with 5-way, 3-way, and 2-
way mental scales respectively. The simplified mental scale phenomenon
is further addressed in the discussion of peaks.
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Figure 5.7: DVPs with different levels of rating scale simplification. The number

of ratings of each user or |Ru| is also shown in the captions, testifying that the

simplified mental scale is not caused by a lack of data support.

Peaks

One advantage of the discrete vector representation that DVP uses over
the “mean and variance” representation is it is able to clearly display the
different mental scales. Another advantage is it is able to lightly and
smoothly model multiple peaks in a distribution.

Figure 5.8 plots four real-user-based DVPs with multiple peaks. User
(a) has a triple-peaked DVP that peaks at rating values 1, 3, and 5, and
can be viewed as having a 3-way simplified rating scale; users (b), (c),
and (d) have double-peaked DVPs that peaks at (2, 4), (1, 4), and (1, 5)

respectively, and can be viewed as having 2-way simplified rating scales.2

2In a simplified rating scale, the bucket of an omitted rating value does not have to be
completely empty for it to qualify as “omitted”. A 2-way or 3-way voter, if contributing a
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Figure 5.8: Multi-peaked distributional voting profiles of real users.

Although a multi-peaked DVP is more likely to correspond to a sim-
plified mental scale, the two concepts do not imply each other. Figure 5.9
uses 15 real user-based DVPs to demonstrate that different mental rating
scales can happen with all shapes of peaks. In this table, the rows cor-
respond to different mental rating scales, and the columns correspond to
different peak-shapes.
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Figure 5.9: Different mental rating scales can happen with all peak-shapes.

large number of votes, can still realise the existence of the omitted rating values from time
to time, and occasionally assign a few sporadic ratings to them. Whether or not a rating
value is omitted should be decided by its relative bucket size instead of the absolute
number of ratings with this value.
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5.4 Why Distributional?

The advantages of distributional representation lie in its capability of rep-
resenting, preserving, carrying, and communicating more information in
all stages of the recommendation process. This section elaborates on the
necessity, benefits, and power of distributional rating from four aspects.
5.4.1 presents the necessity of using the distributional voting profile to
represent user’s voting habits; 5.4.2 and 5.4.3 explain the benefits of using
distributional rating to represent rating data gathered from users (the in-
puts) and the recommendations provided to the users (the outputs); 5.4.4
clarifies the benefit of using a distributional similarity representation in
the recommendation process.

5.4.1 More Complete Portrayal of Users’ Voting Habits

Distributional voting profile or DVP provides a more complete portrayal
of the user’s voting habit compared to the scalar representation using the
average rating ru. The DVP is able to model various aspects of the voting
patterns, including shift, spread, peak, and user’s mental scale, whereas ru can
only model shift.

Figure 5.10 shows the DVP of six real users from the MLM dataset. All
six users have an equal average rating of ru = 3.0, based on which they
would be considered as having the same voting habit. However, their
DVPs suggest that they are indeed very different: user (a) appears to be
a strongly opinionated extremist who either likes or hates a movie with
limited neutral ground; user (b) is also opinionated but less extreme, as
indicated by the elevated rating count in the middle range; user (c) is not as
balanced (with an asymmetrical DVP) and somewhat negative. He seems
to treat 1 and 4 as “very bad” and “all right” and considers most movies to
fall into these two categories; user (d) clearly utilises the 5-way rating scale
very uniformly, assigning a similar number of ratings to each rating value;
user (e) is a mediocre-to-negative user, who considers most of the movies
he viewed “not very good but not extremely bad”; user (f) is the opposite
of user (a). He considers most of the movies mediocre, and does not seem
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to utilise the rating values of 1 and 5 at all, effectively treating the 5-way
rating scale as a 3-way “bad-medium-good” scale. By only using a single
number ru to capture users’ voting habits, all these differences would be
lost, and all the users treated in exactly the same way.
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Figure 5.10: The distributional voting profiles of six real users selected form the

MLM dataset. All six users have the same average rating of ru=3.0 despite of their

very different voting patterns.

An upgrade would be to use the mean-variance pair (ru, σ2
u) to repre-

sent the user’s voting habit. This method is also inferior to DVP. Figure
5.11 illustrates why using four real users selected from the MLM dataset.
This time, both the rating average and the rating SD are near equal between
user pairs (a) and (b) and user pairs (c) and (d). A mean-variance repre-
sentation would consider them as being the same within the pairs, but the
DVPs still show their differences very clearly. Between the first pair, user
(a) is positive but not extreme, and uses the 5-way rating scale very well;
user (b) appears to be more opinionated, more likely to have strong feel-
ings towards movies, and appears to be having a simplified mental scale.
Between the second pair, user (c) is clearly different from user (d) who is
more conservative and neutral, and is actually more similar to user (a).
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Figure 5.11: The average rating distributions of four real users in the MLM dataset.

Both (a), (b) and (c), (d) have very similar rating average and rating SD, but the

shape of their average rating distributions still differ greatly.
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5.4.2 Noise-Tolerant Representations of User Inputs

The previous section demonstrates that the probability distributionP(r| u)

provides a more complete portrayal of user’s voting habits compared to
a single number ru. Similarly, the probability distribution of P(r| u, i) is
a more expressive and sensible representation of user ratings compared
to a single integer number ru,i. In terms of rating inputs, it is particularly
helpful at modelling the noise in user data, as explained in the rest of this
section; in terms of rating outputs, it is particularly helpful at communicat-
ing the uncertainty of the prediction, as elaborated in section 5.4.3.

Users’ ratings on items are noisy reflections of their true underlying
preferences of these items [112, 48, 3, 155], thus are better handled proba-
bilistically. User studies have shown that users tend to rate the same item
differently when asked to rate it in different sessions [48]. This is poten-
tially caused by accidental wrong inputs, temporal shift of interests, the
user’s physical state such as his stomach content or the lack thereof, the
user’s mental state such as his general mood or alertness, and environ-
mental factors such as the weather, noise, time of the day, or the quality of
the movie he rated right before this one. New subfields of recommender
systems have been established to study these aspects, including temporal
diversity studies [72] and contextual diversity studies [3, 155].

Distributional rating is a simpler way to capture such diversities with-
out the burden of explicitly handling the extra temporal or contextual di-
mensions. On one hand, it can be used to represent the level of confi-
dence based on the condition the data is collected — if the user is known
to be hungry or the time is known to be late, a distribution with a bigger
variance can be imposed to indicate reduced reliability; if the weather is
known to be gloomy, maybe an increased probability on the upper rat-
ing values can be imposed to counteract the negative effect caused by the
weather; a bigger variance can also be imposed on implicitly gathered user
feedbacks,3 which are more prone to noise. Figure 5.12 presents four dis-
tributional ratings all correspond to a scalar input rating of ru,i = 4 to show
the estimated noise patterns in the three aforementioned circumstances as

3Implicit and explicit relevance feedback is described in section 2.1.1.
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well as the standard case.
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Figure 5.12: Four different constructions of distributional ratings for the scalar

input rating ru,i = 4, subject to different noise patterns, with (a) being the normal

circumstance, (b) and (c) demonstrate an increased variance due to reduced reli-

ability, and (d) shows an elevated probability at rating value r = 5 to reflect the

fact that the underlying rating ru,i = 4 may be subject to a negative mental shift

caused by environmental factors such as gloomy weather.

On the other hand, if conditions permit, the same rating could be so-
licited from the user multiple times, preferably in different physical, men-
tal, and environmental conditions through different (implicit or explicit)
interfaces. The different solicitations of the same rating can all be aggre-
gated in the distributional rating to form a more reliable reflection of the
user’s true preference on the item.

5.4.3 More Informative Form of Recommendation Feedback

Distributional ratings are a more informative form of recommendation to
present back to the users. Firstly, it enables the communication of the level
of confidence of the recommendation. Secondly, it allows the feedback
format to be more dynamic, subtle, and user-friendly.

To elaborate on the first point, one of the differences between a rating
provided by the user to the recommender system (i.e. an input rating) and
a rating prediction the system provides to the user (i.e. an output rating) is
the latter is a guess, thus has an innate level of uncertainty that should be
communicated to the users. Distributional rating is able to facilitate this.
For example, figure 5.13 shows three distributional ratings that correspond
to three different “flavours” of the “5” prediction with diminishing degrees
of confidence.
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Figure 5.13: Different “distributional” ways of communicating a prediction rat-

ing of 5 with diminishing degrees of confidence.

Distributional ratings are capable of communicating much more than
just the degree of confidence. They are also able to model fundamentally
different or in a way “higher dimensional” feedbacks that are more dy-
namic, subtle, and friendly to the users. For example, figure 5.14 shows
three distributional rating predictions all with the same expected value of
ru,i = 3. However, they convey totally different messages. From left to
right, they can be interpreted as “Sorry, I do not have enough information to
make a recommendation for you this movie”, “I think you will consider this movie
mediocre”, and “I think you will either love or hate this movie” respectively.

Figure 5.15 presents another three examples with more subtle differ-
ences. All three distributions have the expected rating value of ru,i = 3.6,
so they are equivalent predictions in scalar terms. The messages they con-
vey are similar in general, but different in a subtle way. From left to right,
they can be interpreted as “You may find it a fine movie, not likely to be ex-
tremely good though”, “it could be really good for you, or at least it is unlikely to
be too bad”, and “you are very likely to find the movie not bad, but it is definitely
not a mind-blower”. Since they all have the same expected rating value,
these subtle differences will be lost in a scalar prediction.
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Figure 5.14: Three distributional pre-

diction feedbacks that all have the same

expected value of ru,i = 3, but with very

different interpretations.
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Figure 5.15: Three distributional pre-

diction feedbacks that all have the same

expected value of ru,i = 3.6, but with dif-

ferent interpretations in a subtle way.
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5.4.4 Better Information Carrier in the Recommendation

Process

Standard collaborative filtering algorithms revolve around scalar number-
based controllers. In nearest neighbour methods, a scalar number is used
to model the similarity between a pair of users; in clustering methods, a
scalar number is used to model the membership association between a
user and a cluster; in latent variable methods, a scalar number is used to
model the dependency between a user and a latent variable. We believe
that “distributionalising” these scalar controllers can lead to more flexible
and more expressive knowledge models during the recommendation pro-
cess, and consequently improve the quality of the final recommendations.

This thesis investigates the use of such a “distributionalised controller”
to represent user similarities in nearest neighbour-based collaborative fil-
tering. The idea is presented in section 5.5.3, which allows the communi-
cation of complicated knowledge concepts such as “Ann agrees with Bob on
movies he hates, but not the ones he likes” during the recommendation pro-
cess.

5.5 Distributional Rating-based Recommendation

This section describes how the distributional rating (DR) and the distri-
butional voting profile (DVP) can be used in the nearest neighbour-based
collaborative filtering process to form a Distributional Rating-based Nearest
Neighbour (DRNN) recommender. Section 5.5.1 firstly describes how to
transform distributional ratings to and from scalar ratings, which is the
native rating form provided by the rating datasets. The next three sec-
tions present the DRNN process, with the distributional rating-based nor-
malisation, distributional similarity computation, and distributional rat-
ing prediction explained in sections 5.5.2, 5.5.3, and 5.5.4 respectively.
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5.5.1 Scalar and Distributional Rating Transformation

Rating datasets such as MLS, MLM, and JST all come with scalar ratings.
However, the DRNN recommendation process requires distributional rat-
ings as its input and output format. So in order to use these available
datasets to train the system, there has to be a mechanism for transform-
ing the scalar rating inputs into distributional rating inputs; and in order
to use these datasets to evaluate the system, there has to be a mechanism
for transforming the distributional rating predictions back to scalar pre-
dictions. This section describes this transformation process.

Index Vector

The index vector can be considered as the intermediate step between scalar
and distributional ratings. In an integer rating scale from 1 to 5, the pref-
erence of a user u on an item i is expressed using a single scalar number
ru,i ∈ [1, 5]. The corresponding index vector of this scalar rating is defined
as a 1 × 5 vector of ones and zeros, symbolised as I, and is obtained by
assigning a one to the index that matches the actual rating, and zeros else-
where. For example, a rating of ru,i = 1 would have an index vector of
( 1 0 0 0 0 ), a rating of ru,i = 2 would have an index vector of ( 0 1 0 0 0 ), and
so forth.

An index vector assumes the same form as a distributional rating, yet
contains the same information as a scalar rating. It can also be considered
as an extreme form of distribution rating with absolute certainty, since it
conforms with the conditions described in formula 5.4.

Scalar to Distributional Rating Transformation

Ideally, the scalar to distributional rating transformation should be based
on noise patterns of user inputs backed by real data. As described in sec-
tion 5.4.2, one way to obtain this pattern is to solicit the same rating on
the same item from the same user multiple times under different environ-
mental and temporal conditions, then aggregate them to form the noise-
adjusted probabilistic pattern of this user’s true preference on this item.
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Since this is not feasible, DRNN imposes a manually selected prob-
ability distribution as the assumed noise pattern for all ratings. For ex-
ample, a scalar rating of 3 can be mapped onto a distributional rating of
( .05 .15 .60 .15 .05 ), a scalar rating of 4 can be mapped onto a distributional
rating of ( .04 .06 .12 .65 .13 ), and so on.

Formally, this transformation process is controlled by a 5×5 base matrix
B. Suppose ru,i is the scalar rating to be transformed, the symbol I repre-
sents its index vector, which has dimension 1× 5; the symbol R represents
the transformation result, namely the corresponding distributional rating
of ru,i, and also has dimension 1× 5. The transformation from ru,i to R can
be obtained by firstly transforming it into its index vector I, then following
equation 5.7:

R1×5 = I1×5 ×B5×5 (5.7)

Figure 5.16 shows three example base matrices. Each entry in the base
matrix is a real number between 0 and 1. The ith row of the base ma-
trix corresponds to the distributional rating that the scalar rating i will be
transformed into. For example, with base matrix B2, a scalar rating of 4

will be converted to the fourth row of B2, i.e. ( .04 .06 .12 .65 .13 ), and so forth.

B1 =


.50 .25 .15 .07 .03

.20 .45 .20 .10 .05

.10 .20 .40 .20 .10

.05 .10 .20 .45 .20

.03 .07 .15 .25 .50

 B2 =


.80 .10 .05 .03 .02

.10 .70 .10 .06 .04

.05 .15 .60 .15 .05

.04 .06 .12 .65 .13

.03 .05 .07 .15 .70

 B3 =


.96 .01 .01 .01 .01

.01 .96 .01 .01 .01

.01 .01 .96 .01 .01

.01 .01 .01 .96 .01

.01 .01 .01 .01 .96



Figure 5.16: Three Base Matrices. B1 is flat and “symmetrical”; B2 is sharp and

oblique; B3 is crisp.

Among the three base matrix examples, B1 assumes more noise in the
input ratings than B2, and provides a “flatter” conversion. It is also “sym-
metrical”, meaning that the distributional ratings of 1 and 5 mirror each
other, and so do the ones for 2 and 4. The second base matrix B2 assumes
less noise in the input ratings, thus convert the scalar ratings into sharper
distributions, representing an increased confidence in the correctness of
the scalar ratings. It is also oblique (i.e. non-symmetrical), stating that it
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assumes less noise if the input rating is a 4 compared to if it is a 2. The
third base matrix B3 does not assume the “gradual dropping” effect of the
previous two matrices, stating that when the rating is 1, it is no more likely
for it to actually be a 5 than it is actually a 2.

The base matrix can be considered as a set of tunable parameters of the
DRNN recommender system. The choice of the base matrix carries a cer-
tain inductive bias. One approach to obtaining a good base matrix would
be to learn it from the data, by searching for the base matrix that maximises
recommendation accuracy on a validation dataset. An exploratory exper-
iment using a hill climbing search based on simulated annealing was con-
ducted, but had several problems. Firstly, it was slow, since the entire vali-
dation dataset had to be evaluated in order to make one step of adjustment
to one of the parameters, and there are 5 × 5 = 25 of them; secondly, the
amount of extra performance improvement achieved by tuning this set of
parameters is insignificant compared to the overall performance improve-
ment achieved by DRNN over the scalar-based NNCF method.4 Therefore,
the conclusion from the experiment was that to do significantly better than
a reasonable guess at the base matrix (such as B2 in figure 5.16), one would
either need a much more sophisticated learning strategy, or invest in the
resources to gather multiple solicitations of the same rating from real users
to properly establish the noise pattern of each rating. The results in the rest
of the chapter therefore use the matrix B2.

Distributional to Scalar Rating Transformation

Another benefit of the base matrix is it allows consistent conversion from
the distributional rating back to the scalar rating, which is necessary if a
scalar rating prediction is required for evaluation purposes. Specifically, to
convert a distributional rating R back to a scalar, it is firstly converted back
to the index vector to rid the “contamination” of the base matrix. This is
done by multiplying the distributional rating by the inverse matrix of the

4The experimental results of this exploration is shown in section 5.7.
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base matrix, or B−1, as shown in equation 5.8:

I = R×B−1 (5.8)

The scalar rating r can be subsequently calculated as the expected value
of the index vector, as shown in formula 5.9:

r =
k∑
i=1

i · I1,i (5.9)

This mechanism guarantees that a scalar rating, after being transformed
to a distributional rating, can be transformed back to its original scalar
value without any “contamination”. Note that for most of the distribu-
tional rating predictions, the index vector calculated in this way will not be
vectors of ones and zeros. Only the distributional ratings that match the
base matrix rows will have an index vector of zeros and ones.

5.5.2 Distributional Rating Normalisation

A user’s voting habit is the user’s internal mapping of the rating scale to
their true preference of the items, and can vary greatly from user to user.
It was first noted in Resnick et al. [120], which proposed to normalise the
input ratings against the user’s average rating ru to eliminate the shift bias
caused by the different rating habits before it can be used to aid the pre-
diction for others. This is presented in formula 4.6 in chapter 4, and is
reformatted below in formula 5.10.

Scalar Rating Normalisation — a Reminder

Suppose the task is to predict target user u?’s preference on item i; u repre-
sents other users in u?’s neighbourhood that already rated the item; sim(u, u?)

represents the similarity between u and u?. The normalised prediction or r′u?,i
is calculated by summing over the neighbours’ ratings on i weighted by
their similarities:

r′u?,i =

∑
u sim (u, u?) · r′u,i∑

u sim (u, u?)
(5.10a)
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Where r′u,i is the normalised rating of ru,i to eliminate the voting habits:

r′u,i = ru,i − ru (5.10b)

The final prediction ru?,i is calculated by de-normalising the normalised
prediction r′u?,i obtained in formula 5.10a against the average rating of the
target user in order to translate the prediction back into the “original lan-
guage” of the user, namely:

ru?,i = r′u?,i + ru? (5.10c)

The problem with this method is, user’s average rating ru is only a par-
tial representation of the user’s voting habit. Specifically, it only captures
the shift aspect, but fails to grasp other equally important aspects such as
spread, peaks, or actual mental scale.

Distributional Rating Normalisation

Distributional rating normalisation is a step in the DRNN process. It is
based on the same principle of eliminating users’ voting habits, but in-
stead of normalising scalar ratings against the user’s rating average, it
normalises distributional ratings against the user’s DVP.

Suppose P( r
∼
|u, i) is a distributional rating and P( r

∼
′|u, i) represents

its normalised version, P( r
∼
|u) is user u’s distributional voting profile,

and P( r
∼
) is the global voting profile, which is computed in the same way

as P( r
∼
|u) but across all users, as shown in formula 5.1c. The distribu-

tional rating normalisation process is defined in formula 5.11a, and the
de-normalisation process is defined in formula 5.11b.

P( r
∼
′ | u, i) = F

( P( r
∼
)

P( r
∼
| u)
· P( r

∼
| u, i)

)
(5.11a)

P( r
∼
| u, i) = F

( P( r
∼
| u)

P( r
∼
)
· P( r

∼
′ | u, i)

)
(5.11b)
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where the multiplication and division of the distributional vectors are “element-
wise operations”, namely:

( x1 x2 x3 x4 x5 ) · ( y1 y2 y3 y4 y5 ) = ( x1y1 x2y2 x3y3 x4y4 x5y5 ) (5.11c)

( x1 x2 x3 x4 x5 )

( y1 y2 y3 y4 y5 )
= (

x1
y1

x2
y2

x3
y3

x4
y4

x5
y5 ) (5.11d)

and the function F(x
∼
) formats vector x

∼
back to meet the distributional rat-

ing formatting constraints specified in formula 5.4, namely

F(x
∼
) = F(( x1 x2 x3 x4 x5 )) =

( x1∑
x∼

x2∑
x∼

x3∑
x∼

x4∑
x∼

x5∑
x∼

)
(5.11e)

Figures 5.17 and 5.18 demonstrate the effect of this form of distribu-
tional rating normalisation on two users Ann and Bob. Ann is an extrem-
ist 2-way voter who tends to rate items either a 1 or a 5, whereas Bob is
a positive voter who tends to rate items on the high end. In each figure,
subfigure (a) shows the global DVP and the DVP of the respective user;
(b) shows a distributional rating input and its normalised distributional
value against the user’s DVP based on equation 5.11a; (c) and (d) show
two distributional rating predictions that peak at 4 and 5 respectively, with
their corresponding de-normalised distributional value calculated based
on equation 5.11b.

The examples show that this normalisation process is able to eliminate
the effect of the users’ strong voting habits from the individual distribu-
tional ratings, and the de-normalisation process is able to add the voting
habits back to the ratings and translate the predictions back to the users’
respective vocabularies. Figure 5.18(b) also shows a particularly interest-
ing feature. It normalises a strong 5 by a positive user (mostly a 4 and 5
voter) into a rating that peaks at 3 and 5, stating that the user has a high
chance of really liking the movie (i.e. a 5 being true), but he also has a
solid chance of considering this movie mediocre, because he has given too
many items a high rating, so that his high rating is no longer trustworthy.
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5.5.3 Distributional Similarity Computation

In nearest neighbour collaborative filtering (NNCF), the “learning” resides
within the calculation of user similarities, which are represented as real
scalar numbers in the range of s ∈ [−1, 1], where 1, 0, and −1 correspond
to total positive correlation, a lack of correlation, and total negative corre-
lation respectively.

DRNN proposes to use distributional similarity vectors to model such
learnt knowledge. Specifically, as opposed to using one real number in
the range of s ∈ [−1, 1] to capture the correlation between the preference
patterns of two users, the idea is to use a vector of similarities where each
entry corresponds to a rating value on the rating scale. In a five-way rating
scale, it would use a vector of five, or s

∼
(u1, u2) = ( s1 s2 s3 s4 s5 ) with sx ∈

[−1, 1]. Formally, it can be expressed as formula 5.12:

s
∼

(u1, u2) = ( s1(u1,u2) s2(u1,u2) s3(u1,u2) s4(u1,u2) s5(u1,u2) ) (5.12)

where sx(u1, u2) is the similarity of users u1 and u2 on the rating value x.
Suppose

{
P( r

∼
|u, i)

}
i∈I is the vector of user u’s distributional ratings on

all items i ∈ I ordered by item indices. This vector can be viewed as a
5 × |I| matrix where each column corresponds to the transpose of user
u’s distributional rating on item i. The xth row of this matrix would be a
vector of size |I| consisting of real numbers in the range of 0 to 1, each of
which represents the probability of u giving item i a rating of x, namely{
P(r=x|u, i)

}
i∈I . Then sx(u1, u2) — the similarity of u1 and u2 on rating

value x — can be calculated as the Pearson’s correlation of the two vectors{
P(r=x|u1, i)

}
i

and
{
P(r=x|u2, i)

}
i

namely:

sx(u1, u2) = (5.13)

Pearson’s correlation
({
P(r=x|u1, i)

}
i∈Iu1∩Iu2

,
{
P(r=x|u2, i)

}
i∈Iu1∩Iu2

)

The distributional similarity vector allows the user similarity of differ-
ent rating values to be modelled and learnt separately, thus enables the
discovery, representation, and communication of complicated knowledge
concepts such as “Ann agrees with Bob on movies he hates, but not the ones
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he likes”. Figure 5.19 presents five real user-based distributional similarity
vectors to demonstrate the expressiveness and diversity of the structure.
Figure (a) shows two users who are similar over the entire spectrum; (b)
shows two users who tend to agree on items they like but disagree on
items they don’t like; (c) shows two users who also agree on items they
like, but have no reciprocal predictive power on items they may not like;
(d) shows two users who agree on the “middle range”, but tend to disagree
on the two extreme ends; (e) shows two users who are in a way the oppo-
site of (d) — they agree on the extreme ends, but have limited receiprocal
predictive power in the middle range.
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Figure 5.19: Distributional similarity vector examples based on real users in the

MLS dataset.

5.5.4 Distributional Rating Prediction

Upon obtaining the distributional similarity vectors, the distributional rat-
ing prediction of user u?’s preference on item i? can be calculated based on
the normalised distributional ratings of the neighbouring users, as shown
in equation 5.14:

P( r
∼
′ | u?, i?) =

∑
u s
∼

(u, u?) · P( r
∼
′ | u, i?)∑

u s
∼

(u, u?)
(5.14)

where u represents the neighbouring users of u?; and the multiplication
and division in the formula are element-wise operations as shown in for-
mulae 5.11c and 5.11d.

Equation 5.14 only produces the normalised distributional prediction
P( r

∼
′ | u?, i?), which needs to be de-normalised to P( r

∼
| u?, i?) based on
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formula 5.11b, so that user u?’s voting habits can be added back into the
prediction to ensure that it communicates to the user in his own language.

The de-normalisedP( r
∼
| u?, i?) forms the final distributional prediction

that represents user u?’s projected preference on item i?. To transform it to
a scalar rating prediction, formula 5.8 needs to be applied first to get rid of
the bias of the base matrix, and the final scalar prediction can be calculated
as the weighted sum of the distribution according to formula 5.9, which is
repeated below:

ru,i =
∑

r∈ r∼

r × p(r|u, i) (5.15)

5.6 Related Work

This section outlines related work in the order of increasing relevancy. Sec-
tion 5.6.1 presents studies that use a probability space similar to that de-
scribed in section 5.1; section 5.6.2 presents studies that assume a Gaussian
distribution; section 5.6.3 presents studies that also use a discrete vector-
based representation.

5.6.1 Work that uses a similar probability space

Breese et al. [23] is the earliest publication that views the task of making a
scalar rating prediction as calculating the expected value of its probability
distribution, namely ru,i=

∑rmax
k=rmin

k × P(r=k | u, i,data).

From that point on, various forms of probability-based collaborative
filtering have been developed. Nowadays, most latent-variable based meth-
ods such as aspect model, probabilistic latent semantic analysis, and prob-
abilistic clustering use a probability space similar to the construction de-
scribed in section 5.1. Examples include methods described in section
2.2.4, and [78] which is elaborated in the following section.
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5.6.2 Work that assumes a Gaussian distribution

This section describes studies that assume a Gaussian distribution for vari-
ous probability distributions such as the rating distribution of usersP(r | u)

[49], the rating distribution of items P(r | i) [70], and the rating distribu-
tion of user clusters P(r | i, z) [51, 78].

In collaborative filtering, the most common place to see a Gaussian dis-
tribution is in a probabilistic model-based approach, such as aspect model,
PLSA, or probabilistic clustering. Examples include the probabilistic latent
semantic analysis [51] and latent variable-based clustering [78], both of which
assume a Gaussian distribution over P(r | i, z), where z represents a la-
tent hidden variable or a user cluster, and can be interpreted as the “group
consciousness” or “group preference”. This class of methods is not very
similar to DRNN. It is only mentioned here to provide perspective and
outline the scope of Gaussian distribution in collaborative filtering.

The top-N adjusted filtering [70] noticed the monotonically increasing re-
lationship between the rating variance and the prediction error on items,
and proposed to discount the items with high variance when generating
the ranked recommendation list from rating predictions. This can be in-
terpreted as imposing a Gaussian distribution over P(r | i), and uses it to
improve the list recommendation accuracy instead of the rating prediction
accuracy. This method is similar to DRNN in that they both realised the
importance of identifying (user or item) rating patterns beyond the simple
mean to the recommendation quality of the system. Other than that, they
are still quite different.

The z-score rating normalisation [49] is the Gaussian-based method that
is more similar to DRNN, or specifically, the DVP part of DRNN. It im-
poses a Gaussian distributionN (ru, σu) overP(r | u) to represent the user’s
voting habits, and then uses the Z-score defined as zi =

ru,i−ru
σu

to compute
the offset for rating normalization. It is similar to DRNN in that they both
use more than the simple mean in rating normalisation to eliminate the
different voting patterns of users. However, as demonstrated in section
5.4.1, although a Gaussian representation is able to capture both spread
and shift, it fails to capture more complex aspects such as mental scales and
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peaks, thus is not as powerful a representation as the DVP. Another funda-
mental difference is that DVP normalises distributional ratings, whereas
the z-score only normalises scalar ratings.

5.6.3 Work that uses a discrete vector representation

This section describes studies that use the same discrete vector-based prob-
ability distribution representation as in DRNN to model various concepts,
including the user prior p(r| u) [58], the item prior p(r|i) [57] and the nor-
malised rating differences p(ru,i − ru|u, i) [48].

The halfway accumulative distribution (HAD) [58] is the first to use a dis-
crete vector format to represent users’ voting habits. Specifically, it pro-
poses a new scalar rating normalisation heuristic that converts the scalar
rating ru,i into r′u,i =

∑
r≤ru,i p(r| u)− p(ru,i|u)/2, where the prior probabil-

ity p(r|u) is represented as a discrete vector like the DVP. This method uses
the rating to be normalised (i.e. ru,i) as an index to indicate which part of
the prior vector (i.e. DVP) to count up, instead of using its value directly.
It is similar to DVP in terms of syntax. However, the power of DVP is only
touched superficially, and its expressiveness and its relation to the predic-
tion error are not investigated. It also only normalises scalar ratings in a
scalar-based recommendation process, whereas DVP is used to normalise
distributional ratings in a probability distribution-based recommendation
environment.

The easy recommendation based on probability model (ERPM) [57] is a model-
based collaborative filtering method that uses the underlying idea of dis-
tributional rating without formulating it as such. Essentially, like DRNN,
it calculates the final rating prediction by “summing over” the probability
distribution, namely ru,i =

∑
r∈ r∼

r × p(r|u, i). However, the value of each

p(r=x|u, i) is calculated directly from the priors p(r=x|u) and p(r=x|i)
without an integrated representation for p(r=x|u, i), and the values of the
priors are “counted” from the dataset as in DVP. Like the HAD algorithm
described in the previous paragraph, ERPM only notes the value of using a
full probability distribution representation on the prior ratings p(r|u) and
p(r|i) but not p(r|u, i). Their improvement over HAD is that they use dis-
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tributional prior ratings to make predictions, whereas the former only uses
them in rating normalisation.

The belief distribution algorithm [87] proposes a form of distributional
rating most similar to this thesis. Specifically, it uses a discrete vector to
represent the probability distribution over the normalised rating difference,
namely p(ru,i − ru|u, i). In an integer rating range of 1 to 5, this would be
a discrete vector of size 9, corresponding to the rating difference indices
of ( −4 −3 −2 −1 0 1 2 3 4 ). This difference distribution is only used in the final
prediction stage. The normalisation and the similarity calculation are all
performed using scalar ratings only. This is very different from HAD and
ERPM, and is also different from DRNN. Their rating transformation also
uses a manually defined mapping similar to that of the base matrix. How-
ever, the mechanism is implemented in an arbitrary manner without the
mathematical cohesion of the base matrix, and as a result they do not use
the inverse of the base matrix to get rid of the bias introduced by the base
matrix before producing the final scalar prediction.

5.7 Experimental Analysis

This section evaluates the DRNN recommendation process. Section 5.7.1
outlines the general performance of DRNN by comparing it with scalar-
based nearest neighbour and three other related algorithms. The next
three sections examine the different aspects of DRNN: section 5.7.2 evalu-
ates the power of distributional rating predictions, section 5.7.3 evaluates
the scalar to distributional rating transformation, and section 5.7.4 eval-
uates the concept of distributional similarity. The last two sections show
that DRNN’s performance copes better with users with complicated vot-
ing patterns, such as when the user has multi-peaked DVP (section 5.7.5),
and when the user’s DVP reflects complex mental scale (section 5.7.6).
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5.7.1 The general performance of DRNN

This section presents the general performance of DRNN by comparing it
with four baseline algorithms with increasing relevancy. The first base-
line is the standard scalar-based nearest neighbour method (NNCF). The
second baseline is the z-score method (NNCFz) described in section 5.6.2,
which uses z-score instead of deviation from the mean as the normali-
sation function. This method is scalar-based, but it effectively imposes
a Gaussian distribution to model users’ voting patterns. The third base-
line is the easy recommendation based on probability model method (ERPM)
described in section 5.6.3. This method produces distributional predic-
tions, but only uses distributional representations minimally during the
recommendation process.5 The fourth baseline is the belief distributional al-
gorithm (BDA) described in section 5.6.3. It also produces distributional
predictions, and is most similar to DRNN, but models the probability dis-
tribution p(ru,i − ru|u, i) instead of p(ru,i|u, i), does not use distributional
similarity, and does not perform the inverse base matrix transformation.

Experiments are performed on MLS, MLM, and JST datasets. Since the
JST dataset features continuous floating point ratings instead of discrete
integer ratings, in the scalar to distributional rating transformation, the in-
dex vectors are generated by finding the simplest vector whose expected
value equals the floating point rating. For example, rating 3.8 maps onto
the index vector ( 0 0 .2 .8 0 ), and rating 4.3 maps onto ( 0 0 0 .7 .3 ).6 For the
MLS and MLM datasets, DRNN is implemented in the user-user orien-
tation, and for JST, it is implemented in the item-item orientation. This
ensures there is a reasonable number of ratings for each user or item so
their distributional voting profile and the distributional similarities can be
calculated properly.

Compared with chapter 4, the evaluation of this chapter uses two new
evaluation metrics: “F1 (misses)”, and “NDCG (misses)”. These two met-
rics are the same as the standard F1 and NDCG measures, but in the case a

5The ERPM method here is implemented with the recommended parameter values of
α = 1.2 and β = 10.

6Note that these are only index vectors. To obtain the distributional rating, they need
to be multiplied with the base matrix as described in section 5.5.1.
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recommended item does not appear in the test dataset so that its true user
preference cannot be judged, instead of ignoring this recommendation as
in the standard F1 and NDCG, it is regarded as a miss, and is counted
(negatively) towards the final F1 and NDCG scores. This was explained in
more detail in section 3.3.2.1 and summarised in table 3.5. This is an overly
stringent measure, since at least some of these misses, if their user ratings
were available, would probably be quite positive. However, since this is
true for all algorithms being evaluated, these metrics still provide a com-
parison of the relative recommendation accuracy of different algorithms
and settings.

Table 5.2 presents the experimental results using the skip-every-10th

partitioning protocol with 10-fold cross validation on all three datasets.
The bold numbers indicate the best performers. A threshold cut-off of 3 is
used for prediction to recommendation conversion with precision, recall,
and F1; N = 30 is used for NDCG. The settings of the experiments are
generally similar to that of section 4.5.1.

Table 5.2: The general performance of DRNN and counterpart methods.

Dataset Algorithm MAE RMSE F1 NDCG F1(miss) NDCG(miss)

MLS

NNCF 0.737 0.938 0.881 0.668 0.131 0.155

NNCFz 0.723 0.927 0.888 0.670 0.172 0.170

ERPM 0.787 0.992 0.871 0.635 0.178 0.168

BDA 0.767 0.973 0.902 0.679 0.326 0.298

DRNN 0.749 0.956 0.921 0.698 0.383 0.334

MLM

NNCF 0.718 0.912 0.902 0.655 0.166 0.181

NNCFz 0.709 0.908 0.909 0.667 0.171 0.201

ERPM 0.752 0.968 0.886 0.621 0.179 0.191

BDA 0.744 0.946 0.925 0.672 0.342 0.347

DRNN 0.736 0.938 0.932 0.688 0.402 0.389

JST
NNCF 0.673 0.841 0.774 0.757 0.332 0.379

NNCFz 0.658 0.822 0.782 0.791 0.373 0.408

ERPM 0.701 0.881 0.762 0.748 0.352 0.391

BDA 0.680 0.844 0.803 0.799 0.523 0.605

DRNN 0.676 0.843 0.853 0.813 0.637 0.689
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The result shows that the scalar-based NNCF and NNCFz methods per-
form best in terms of prediction accuracy (i.e. lowest MAE and RMSE).
NNCFz performs better than NNCF, showing that taking into account the
variance of users’ voting profiles indeed helps. In terms of the binary and
ranked recommendation accuracy metrics (i.e. F1, F1(misses), NDCG, and
NDCG(misses)), the distributional rating-based BDA and DRNN methods
perform best, with DRNN being the clear winner. The disparity between
the prediction metrics and the recommendation metrics was also noted by
Mclaughlin and Herlocker [87], who suggest that cause is that scalar-based
methods are “plagued with obscure or highly inaccurate recommendations at the
top positions”, causing their binary and ranked recommendation accuracies
to be low.

The result also shows that DRNN makes a much larger improvement
over other methods under the “miss”-based metrics (i.e. F1(miss) and
NDCG(miss)). For example, it makes a 4% improvement over NNCF on
the MLS dataset under the standard F1, but makes a 25% improvement
under F1(miss). Figure 5.20 plots the results in table 5.2 but only shows
the “miss”-based metrics. The advantage of DRNN (in red) over scalar
methods (in grey) and other distributional rating methods (in blue) can be
clearly observed in this diagram.
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Figure 5.20: Comparison of DRNN and baseline algorithms using the “miss”-

based metrics (i.e. F1 and NDCG with the unverifiable recommendations treated

as misses).

Since both BDA and DRNN are distributional rating-based nearest neigh-
bour algorithms with similar discrete probability representations, the bet-
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ter performance of DRNN over BDA could be due to three reasons: firstly,
DRNN uses the inverse base matrix transformation to eliminate the “con-
taminations” introduced by the manually constructed base matrix (further
evaluated in section 5.7.3); secondly, DRNN uses distributional instead
of scalar similarity computation (evaluated in section 5.7.4); and thirdly,
DRNN provides a “smoother flow” compared to BDA, which requires
many steps of scalar–distributional rating conversion and the “rounding
down” of non-integer ratings during the recommendation process, which
loses information.

5.7.2 Indirectly evaluating distributional rating predictions

in DRNN

As argued in section 5.4.3, one major advantage of DRNN is it can pro-
duce distributional rating predictions, which can serve as a more informa-
tive form of recommendation feedback, and is capable of communicating
complicated recommendations such as “sorry, I don’t have enough informa-
tion to make a recommendation”, “I think you will either love or hate this movie”,
or “you are likely to find the movie not bad, but it is definitely not a mind-blower”.

Due to the lack of higher-order user feedback in the datasets, there is no
way to directly examine the effect of distributional recommendation. This
section proposes to indirectly evaluate distributional recommendations by
measuring its decision support performance using binary and ranked met-
rics, where the binary recommendation sets and ranked recommendation
lists are generated using different manipulations of the distributional pre-
dictions.

Five manipulation approaches are evaluated. They are 1) scalar rating
(SR), which is the standard approach of converting the distributional pre-
dictions into scalar predictions first, then generating the recommendation
set or list based on the scalar predictions; 2) highest peak with scalar rating
or HP(SR), which uses the most prominent peak of a distributional predic-
tion (i.e. the rating value with the highest probability) as the key to sort
the predictions, then generate recommendation set or list based on this or-
dering. In case there is a tie, the converted scalar predictions of the tied
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distributional predictions are used as tie-breakers; 3) highest peak with vari-
ance or HP(VAR), which is the same as HP(SR), but uses the variance of
the distributional predictions instead of the converted scalar rating as tie
breakers (small variance first); 4) sum probability 345 or SP345, which uses
the sum of the probabilities of rating values 3, 4, and 5 as sorting key; 5)
sum probability 45 or SP45, which uses the sum of the probabilities of rating
values 4 and 5 as sorting key.

Figure 5.21 shows the evaluation results of the five approaches on the
MLS dataset, with SR marked in red,7 the highest peak-based approaches
(i.e. HP(SR) and HP(VAR)) marked in yellow, and the probability sum-
based approaches (i.e. SP345 and SP45) marked in purple. The results
show that different conversion approaches indeed make a difference, with
the standard SR (scalar rating) approach used in the rest of this chapter
being only the third best. It demonstrates the potential power of distribu-
tional rating predictions — individual users can set their recommendation
list or set to use a particular approach based on their special needs for
maximum satisfaction.
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Figure 5.21: The recommendation accuracy using different (binary and ranked)

recommendation generation approaches based on distributional predictions.

7The experimental results of this chapter try to use the same colour for the same algo-
rithm and settings. For example, the red colour in figure 5.21 (i.e. DRNN-SR) and the red
colour in figure 5.20 (i.e. DRNN) both correspond to the same algorithm and settings.
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5.7.3 Evaluating the effects of base matrix rating transfor-

mation in DRNN

One unique contribution of DRNN is the use of a base matrix to transform
scalar ratings (i.e. its corresponding index vectors) to distributional rat-
ings, and the use of the matrix inversion of the base matrix to transform
distributional predictions back to scalar predictions. In this way, the bias
introduced by the manually constructed base matrix is eliminated from
the final predictions.

This section evaluates the effect of the inverse base matrix transfor-
mation by comparing predictions generated with this extra step with pre-
dictions generated without it. The results are shown in figure 5.22. The
results suggest that predictions generated without the extra step are gen-
erally less accurate based on both the prediction and the recommendation
metrics.
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Figure 5.22: The performance of DRNN with and without the inverse base ma-

trix transformation step.

This section also examines the effects of different base matrices on the
performance of DRNN. Six base matrices presented in figure 5.23 are ex-
amined here. The six matrices are chosen to show different properties in
terms of their variance, symmetry, and smoothness. The properties are re-
flected in the subscript of the matrix’s name. The subscripts “s” (sharp)
and f (flat) correspond to the variance of the matrix rows. A sharp base
matrix assumes less noise in the input ratings than a flat matrix. The sub-
script c (crisp) corresponds to the smoothness of the base matrix. A crisp
base matrix does not assume the “gradual dropping” effect, implying that
a rating of 5 is just as likely to actually be a rating of 1 as to actually be a
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rating of 4. The subscripts “b” (balanced) and u (unbalanced) correspond
to the symmetry of the base matrix. An unbalanced or non-symmetrical
base matrix assumes different noise level (i.e. variance) between rows 1

and 5 and between rows 2 and 4. Based on this, the six matrices can be
interpreted as: Bsb: sharp and balanced; Bfb: flat and balanced; Bcb: crips
and balanced; Bsu: sharp and unbalanced; Bfu: flat and unbalanced; Bcu:
crips and unbalanced.

Bsb =


.80 .10 .05 .03 .02

.10 .70 .10 .06 .04

.05 .15 .60 .15 .05

.04 .06 .10 .70 .10

.02 .03 .05 .10 .80

 Bfb =


.50 .25 .15 .07 .03

.20 .45 .20 .10 .05

.10 .20 .40 .20 .10

.05 .10 .20 .45 .20

.03 .07 .15 .25 .50

 Bcb =


.96 .01 .01 .01 .01

.01 .96 .01 .01 .01

.01 .01 .96 .01 .01

.01 .01 .01 .96 .01

.01 .01 .01 .01 .96



Bsu =


.80 .10 .05 .03 .02

.10 .70 .10 .06 .04

.05 .15 .60 .15 .05

.04 .06 .12 .65 .13

.03 .05 .07 .15 .70

 Bfu =


.60 .20 .10 .07 .03

.10 .55 .20 .10 .05

.10 .20 .40 .20 .10

.05 .10 .20 .45 .20

.03 .07 .15 .25 .50

 Bcu =


.96 .01 .01 .01 .01

.01 .96 .01 .01 .01

.05 .05 .80 .05 .05

.05 .05 .05 .80 .05

.05 .05 .05 .05 .80



Figure 5.23: Six different base matrices, where the subscripts indicate the prop-

erties of the matrices: s: sharp, f : flat, c: crisp, b: balanced, and u: unbalanced.

Figure 5.24 presents the performance of DRNN with different base ma-
trices on the MLS dataset. It shows that the sharp and smooth matrices
Bsb and Bsu perform the best, with the unbalanced, sharp, and smooth
matrix Bsu (in red) being the best performing matrix by a slight margin.
Bsu is also the base matrix used in other experiments presented in this the-
sis without further specifications. The crisp matrices Bcb and Bcu perform
significantly worse, showing that smoothness is important in designing
base matrices.
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Figure 5.24: The performance of DRNN with different base matrices.
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5.7.4 Examining distributional similarity in DRNN

This section investigates the idea of distributional similarity vector, which
was proposed in section 5.5.3 with its benefits explained in section 5.4.4.
Basically, instead of using one scalar number to capture the correlation be-
tween users, the correlation is captured by a vector of 5, with each entry
corresponds to a rating value on the rating scale. This allows the represen-
tation and learning of more complex user correlations such as “Ann agrees
with Bob on movies she hates, but on not the ones she likes”.

Figure 5.25 plots the correlations between the scalar similarity of NNCF
(x-axis) and the distributional similarities of DRNN (y-axis). In the six di-
agrams, (a) to (e) correspond to the rating values of r = 1 to r = 5 re-
spectively, and (f) is the average of the first five diagrams along the y-axis.
In each diagram, every data point represents a user pair; the x-coordinate
corresponds to the scalar similarity of this user pair; the y-coordinate cor-
responds to the distributional similarity of this user pair at the specified
rating value. Only the user pairs with more than 10 common ratings are
plotted, because below that, there is not enough data to justify calculating
the similarities for different rating values separately, and the similarities
tend to be extreme (i.e. 1 or −1) and erratic.8

Diagram (f) shows a clear positive linear correlation between the scalar
similarity (x-axis) and the distributional similarity averaged over all rating
values (y-axis). This is well expected, since both similarities are supposed
to measure the same thing — the correlations between user ratings.

Diagrams (a) to (e) also show positive linear correlations between the
x and y coordinates, but with much larger variances. This means that, al-
though correlated, the similarity of a user pair on a particular rating value
can be very different from this user pair’s overall similarity across all rat-
ing values. This demonstrates that the key scenario raised by distribu-
tional rating — “A agrees with B on movies he hates, but not on the ones he
likes” — indeed exists and quite prevalent.

8For the same reason, in DRNN, distributional similarity is only used when users have
more than 10 common ratings, and the scalar similarity is used otherwise. This number
is determined by empirical experiments, and includes about 50% of the calculations.
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(a) sr=1(u, v) (b) sr=2(u, v) (c) sr=3(u, v)

(d) sr=4(u, v) (e) sr=5(u, v) (f) Average: 1
5

∑
r sr(u, v)

Figure 5.25: The correlations between the scalar similarity (x-axis) and the dis-

tributional similarities (y-axis) with rating values 1 to 5 (in (a) to (e)), and the

average (in (f)). Each data point corresponds to a user pair in the dataset.

A more interesting observation is the “rounder” shapes of diagrams (c)
and (d) compared to (a), (b), and (e). It means at rating values 3 and 4,
the distributional similarity is more “variegated” and tend to comply less
with the overall similarity. This could be due to the fact that there are more
ratings with values 3 and 4,9 and the distributional similarity has the nice
property of converging to the average when there is less data.

5.7.5 The performance of DRNN on multi-peaked users

This section investigates DRNN’s performance on users with multi-peaked
voting profiles — a concept identified on page 128. It firstly demonstrates
the correlations between the recommendation accuracy and the number
of peaks, proving that the number of peaks is indeed an important metric.
It then shows that DRNN tends to make a bigger improvement over the

961% of the MLS and MLM datasets have these two ratings values (i.e. 3 and 4), and
the other three rating values (i.e. 1, 2, and 5) only occupy 39% of the data. Similarly, 62.4%
of the JST dataset have ratings between 2.5 and 4.5.
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scalar method on multi-peaked users.

A significant portion of users have multi-peaked rating patterns. As
shown in figure 5.26, about 20% of the users in the MLS and MLM datasets
and 33.5% users in the JST datasets have multi-peaked voting patterns,
among which slightly more than 1% are triple-peaked.
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(a) MLS Dataset
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(b) MLM Dataset
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(c) JST Dataset

Figure 5.26: The distribution of single, double, and triple-peaked user voting

patterns in the MLS, MLM, and JST datasets.

The number of peaks is strongly correlated to the prediction error of
NNCF.10 Figure 5.27(a) shows the relationship between the number of
peaks (x-axis) and the user MAE averaged over all users with the same
number of peaks (y-coordinates). The data is based on the MLS dataset
with skip-every-10th. The positive slope of the curve clearly indicates that
more prediction mistakes are made with multi-peaked users.

Figure 5.27(b) further backs up this observation by trying to eliminate
the effect of the number of ratings of users — another factor that also
tends to affect prediction accuracy. In this figure, each circle represents
a user, the x-coordinate is the number of ratings a user has, and the y-
coordinate represents the user’s average MAE. For all x-values, the yel-
low dots (triple-peaked users) tend to have a higher error than the red
dots (double-peaked users), which tend to have a higher error than the
green dots (single-peaked users). It shows that in general, more predic-
tion mistakes are made to users with more peaks despite the number of

10The correlation between the number of peaks and MAE is is also tested on other
recommender algorithms, including TASK, PANDA, naive Bayes, K-means clustering,
and PLSA. The results are very similar to the NNCF results shown here.
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(a) The general effect of the
number of peaks on the predic-
tion MAE.
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of peaks plotted separately.

Figure 5.27: The effect of the number of peaks on the prediction MAE of users.

ratings they have.

Figure 5.28 is similar to figure 5.27(a), but shows the effect of the num-
ber of peaks on the performance of both NNCF and DRNN under the
MAE, the F1 measure, and the NDCG metrics. It can be observed that
in all three subfigures, the curves for DRNN (red) tend to be flatter than
the curves for NNCF (grey). This means that the performance of DRNN
is less affected by the number of peaks. In other words, DRNN is able to
cope better with difficult users who have multi-peaked voting profiles.
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Figure 5.28: The general effect of the number of peaks on the performance of

NNCF and DRNN.
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5.7.6 The performance of DRNN on users with different

mental scales

Another DVP-inspired value that strongly correlates to the recommenda-
tion accuracy is the user’s true mental scale (as presented on page 127).
It refers to how the user actually views and uses the rating scale. Three
mental scales are identified, they are 2-way, 3-way, and 5-way. In a 5-way
mental scale, the user utilises all five rating values as intended; in a 2-way
mental scale, the user ignores three out of the five rating values, and only
uses two rating values to indicate a binary preference of like and dislike; a
3-way mental scale ignores two rating values, and map the rest three onto
the preference of like, mediocre, and dislike.

This section investigates DRNN’s performance on users with different
mental scales by firstly demonstrating the correlations between the mental
scales and recommendation accuracy, then showing that DRNN tends to
make more improvement on users with complicated (i.e. 5-way) mental
scales.

A significantly portion of users have simplified (i.e. 2-way or 3-way)
mental scales. As shown in figure 5.29, about 25%, 30%, and 61% of users
in the MLS, MLM, and JST datasets have simplified mental scales, with
3-way mental scales much more common than 2-way ones.
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Figure 5.29: The distribution of 2-way, 3-way, and 5-way mental scaled users in

the MLS, MLM, and JST datasets.

The simplicity of the mental scales is strongly correlated to the pre-
diction error of NNCF. As shown in figure 5.30(a), the simpler the men-
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tal scale, the lower the average MAE, which indicates better prediction
accuracy. Figure 5.30(b) further backs up this conclusion by eliminating
the effect of the number of ratings of users, which is another factor corre-
lated with the MAE. In this figure, each data point represents a user; the
x-coordinate is the number of ratings this user has; the y-coordinate is the
user’s average MAE across all items tested. The figure shows that across
the entire x-axis, the yellow dots are generally below the red dots, which
are below the green dots. It means that regardless of the number of ratings
the user has, NNCF tends to perform better on users with simpler mental
scales. This is understandable, since a simpler mental scale can be viewed
as an easier recommendation task.
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(a) The general correlation between
mental scales and prediction MAE.
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Figure 5.30: The correlation between the users’ actual mental scales and the pre-

diction MAE under the standard NNCF algorithm.

Figure 5.31 is similar to figure 5.30(a), but shows the effect of different
mental scales on the performance of both NNCF and DRNN under the
MAE, the F1 measure, and the NDCG metrics. It can be observed that in
all three subfigures, the curves for DRNN (red) tend to be flatter than the
curves for NNCF (grey). This means that the performance of DRNN is less
affected by the variation of mental scales. In other words, DRNN is able to
cope better with difficult users who have complicated (i.e. non-simplified
5-way) use of the rating scale.
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Figure 5.31: The general effect of the user’s actual mental scale on the perfor-

mance of NNCF and DRNN.

5.8 Conclusion

This chapter presented DRNN — a distributional rating-based nearest neigh-
bour recommendation process. It includes a proper definition of the prob-
ability space for recommendation (section 5.1), the syntax and semantics of
distributional rating (section 5.2) and distributional voting profile (section
5.3), the transformation from scalar rating to distributional rating (5.5.1),
the normalisation of distributional ratings against distribution voting pro-
files (5.5.2), distributional similarity computation (5.5.3), distributional rat-
ing prediction (in 5.5.4), and if required the transformation from distribu-
tional predictions back to scalar predictions (5.5.1).

As pointed out in section 5.6, there have been previous attempts that
use probability distributions to model various parts and stages of the rec-
ommendation process, ranging from using a Gaussian or a discrete vector
representation to capture user priors, item priors, group or cluster priors,
or rating differences in the rating normalisation, rating prediction, or rec-
ommendation list generation stages. However, each one of these previous
attempts only investigates parts of the whole picture: the algorithms that
study distributional voting profiles do not use distributional rating, and
vice versa; the algorithms that use distributionalised rating normalisation
do not use distributionalised rating prediction, and vice versa. On top of
that, no algorithm has ever addressed the power of distributional similar-
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ity measure, which allows the communication of complicated knowledge
model such as “Ann only agrees with Bob on movies he hates, but not the ones
he likes”.

DRNN is the first implementation that encompasses both distributional
ratings and distributional voting profiles, and uses them in all stages of the
recommendation process, including rating normalisation, similarity com-
putation, and rating prediction. It is also the first to properly define a rat-
ing transformation process between scalar and distributional ratings in a
way that is mathematically consistent — a distributional to scalar transfor-
mation on a distributional rating that was transformed from a scalar rating
is guaranteed to be transformed back to its original value. Apart from the
algorithmic contributions, this chapter also provides a comprehensive dis-
cussion on the utility, purpose, and ramification of distributional rating in
section 5.4.

Empirical studies presented in section 5.7 show that the DRNN pro-
cess is able to improve the recommendation quality of NNCF in terms
of F1-measure and NDCG. Comparison with two existing distributional
implementations also show the advantage of DRNN’s integrated use of
distributional rating, distributional voting profile, and distributional sim-
ilarities in all stages of the recommendation process. More in-depth inves-
tigations show that DRNN is less affected by complicated user patterns
such as multi-peaked voting profiles or non-simplified mental scales.

Future work on DRNN includes the following directions: 1) to con-
struct user studies to establish the proper noise pattern of user input based
on real data, thus eliminating the need to manually constructing a canon-
ical base matrix and the inductive bias brought by this manual construc-
tion; 2) to construct user studies to properly evaluate the effect of distri-
butional rating predictions on end users, instead of having to convert the
distributional predictions back into scalar forms for evaluation; 3) to use
distributional rating and distributional voting profile in other recommen-
dation structures such as clustering or aspect models.

Another less concrete direction is to use the expressiveness and power
of DRNN to explore alternative thoughts and philosophies that were pre-
viously too ethereal to become a concrete algorithm. An example is the
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Diamond algorithm described in chapter 6, which is an alternative way of
implementing hybrid filtering based on a previous idea that is only made
possible by the ecosystem provided by DRNN.



Chapter 6

The Diamond Hybrid Filtering
System

Hybrid filtering is the mechanism of using both collaborative filtering (CF)
and content-based filtering (CBF) techniques to make recommendations.
The concept was first proposed in the late 1990s [9, 32], and quickly grew
to become a prolific field in terms of both research and industrial use. A
detailed survey on current hybrid filtering techniques was provided in
section 2.5.

The core of a hybrid filtering system is its hybridisation strategy [25],
which defines how CF and CBF cooperate to make recommendations. Ex-
isting hybridisation strategies are designed to leverage the different learn-
ing and recommendation properties of the two filterings, and typically im-
plement either a combinatorial or a sequential hybridisation structure.1 This
chapter digs down into the fundamental divisions of recommendation
tasks, and proposes an intrinsically different hybridisation structure —
Diamond— based on the idea of splitting each recommendation task into a
collaborative sub-task and a content-based sub-task, so that both filterings
can shine in their own respective area without interfering with each other.

1Other than combinatorial and sequential, there are also non-communicative hybridisa-
tion strategies (described in section 2.5.3) where CF and CBF merely co-exist but do not
cooperate with each other.
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The chapter is organised as follows: section 6.1 outlines the concep-
tual reasoning behind the design of Diamond; sections 6.2 and 6.3 present
the theoretical basis of Diamond, with 6.2 formulating the probabilistic de-
pendencies, and 6.3 presenting the mathematical calculation; section 6.4
describes the core of the system — its hybridisation strategy; experimen-
tal evaluations are presented in sections 6.5; finally, section 6.6 concludes
the chapter and indicates future work.

6.1 The Conceptual Underpinning of Diamond

This section explains the conceptual underpinning of Diamond by going
through the thinking process that led to its invention. The intention of this
section is to create an abstract and conceptional understanding, instead of
making scientific assertions, thus it contains postulations without citations
or experimental backup.

6.1.1 The Inductive Bias of the Content Representation

Since content-based filtering makes recommendations solely based on item
content, there have been arguments regarding its inability to model user
subjectivity and item quality. For example, Wei et al. [153] wrote “content-
based approaches are based on objective information about the items and
do not take the user’s perceived valuation of such subjective attributes into
account”; Lee [73] stated that “An even more serious drawback to purely
content based methods is that even the state of the art methods are usually
not able to capture subjective qualities that affect ratings in domains such as
movies and music”; Montaner et al. [98] argued that “Content-based ap-
proaches are based on objective information about the items . . . However,
[user] selecting one item or another is based mostly on subjective attributes
of the item (e.g., a well-written document or a product with a spicy taste)
. . . which are not taken into account”.
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Such accusations are both right and wrong. They are right because
CBF has not been seen to capture subjectivity and item quality adequately.
They are wrong because such failure is not due to some intrinsic weak-
nesses of the CBF recommender algorithms, but the incompleteness of the
content representations upon which CBF operates.

As described in section 2.3, the content representation is an often manu-
ally constructed abstract characterisation of the item content that defines
how the items are to be perceived by the CBF learning algorithms. In
content-based filtering, recommendations are made by firstly character-
ising users by the content of the items they are interested in, and then
recommending new items whose content conforms to the user’s preferred
content pattern. If the content representation of items misses important
components essential to the representation of certain parts of the user’s
preference pattern, these parts would never be captured regardless of how
good the actual learning algorithm is. For example, a content representa-
tion of movie items that only provides the names of actresses but not the
actors would not satisfy William Shatner fans; a content representation
that does not provide the composer of the movie’s theme song would not
pick up on John Williams fans; a content representation that does not pro-
vide the author of the movie’s original novel would fail to recommend
Dolores Claiborne to people who loved The Shining.2

Similarly, user subjectivity and item quality are not distinguished prop-
erties but are two broad concepts describing aspects of items the content
representations often fail to adequately represent. To elaborate, the quality
of an item refers to how well the item is made. Although rarely repre-
sented directly, items normally have a set of content attributes which, if
present, would give some indication of its quality. Examples include the
thread-count of a duvet cover, the number of layers of a cake, the turnover
of a movie, or the price of a handbag.

The subjectivity of a user refers to the user’s view on the more sub-
tle aspects of an item where the preferences across all users appear to be
too volatile to capture in any simple way. When a user exhibits different

2Dolores Claiborne and The Shining are completely unrelated in terms of genres, direc-
tors, stars, plots, and so on, except that they are both based on novels by Stephen King.
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preferences on two seemingly identical items, or two users who have oth-
erwise exhibited identical preferences rated oppositely on the same item,
we blame subjectivity. The problem here is that what seems to be identi-
cal is limited by our perception, or in this case the content representation
of the CBF system. When talking about the subjectivity of human prefer-
ences, most of the time, there are some latent yet quantifiable factors that
the users themselves may not even be consciously aware of that resulted
in it. For example, a mother may possess a preference for one of two iden-
tical twins who behave very similarly; she may not know why, but it could
be that it was the twin that she always happened to pick up and tend to
in their infancy, when her and her husband were supposed to tend to one
each at random.

Generally speaking, the more complete and pertinent the content rep-
resentation, the better the chance the CBF algorithms will capture user
subjectivity and item quality. For example, if the content representation
of fine-art items include attributes such as “consistency, skilfulness, creativ-
ity, individuality, imagination, harmony, visual balance, coordination, message”,
rather than the objective “name, author, author-age, genre, medium, year, in-
stitute”, both user subjectity and item quality would be much better rep-
resented, and consequently better recommended by the same CBF algo-
rithm.

To summarise, the pertinence of content representation provides a strong
inductive bias that is vital to the performance of content-based filtering.
A poorly concocted content representation will greatly hinder the recom-
mendation efficacy of the otherwise capable CBF algorithms. The common
observations on CBF’s inability to model user subjectivity or item quality
are merely examples of the leg-dragging of inadequate content represen-
tation — since “item quality” is just a broad concept that generalises many
quality-related attributes; and “user subjectivity”, just like probability, is
just an attempt to explain the lack of knowledge and understanding, or in
this case, content representations.
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6.1.2 The Underlying Meaning of Rating

The rating a user gives to an item represents the user’s overall satisfaction
regarding all aspects of the item. Collaborative filtering treats an item as
a whole and does not distinguish its different aspects. On the other hand,
content-based filtering explicitly categorises each item into different as-
pects based on its content representation. As a result, a numerical rating is
effectively treated as a conglomerated indicator of the user’s preferences
on all the represented aspects of the item, and a rating prediction is pro-
duced by examining how well each represented aspect of the item matches
the target user’s preference pattern.

Like the aforementioned user subjectivity and item quality, all influ-
ential aspects regarding a user’s preference on an item can potentially be
explained, quantified, learned, and properly recommended if adequate
building blocks are available.3 If a system had an impossibly complete
content representation that encompassed all aspects of the item as well
as other temporal and contextual factors, it could in principle (i.e. with a
prefect CBF algorithm) be able to consistently and perfectly accurately map
this representation to the user’s rating. This is presented in the first line
of figure 6.1, where fu represents the perfect CBF algorithm for the target
user.
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Figure 6.1: What a rating truly entails.
3This statement assumes a Deterministic view, which states that “for everything that

happens, there are conditions such that, given them, nothing else could happen —
Wikipedia”.



170 CHAPTER 6. THE DIAMOND HYBRID FILTERING SYSTEM

However, due to our limited understanding of the universe and human
behaviour, some complicated aspects, such as user subjectivity, may ap-
pear to be too chaotic to quantify. In this case, the user’s rating on an item
would depend not only on his preference on the representable content, but
also on his preference of the unmeasurable factors. This is represented in
line 2 of figure 6.1.4 Consequently, even the perfect CBF algorithm would
not be able to perfectly model user preferences due to its inability to model
the unmeasurable factors — as they are absent from the representation.

It is safe to say that, all modern recommendation datasets only feature
a subset of all the representable content. An exhaustive content represen-
tation is not practical due to 1) the complexity of its construction, and 2)
the stress it would put on the content-based learners — current computer
hardware and machine learning methods (such as decision trees and be-
lief nets) cannot yet tractably handle the construction of a model where
there are millions of attributes to choose from. Therefore, given a dataset,
all representable item content can be classified as either available in the
dataset, or missing from the dataset, as presented in line 3 of figure 6.1.

The incompleteness of the content representation indicates the absence
of potentially important factors. Whether it is caused by missing attributes
or innate unmeasurability does need not be distinguished in practice. This
thesis introduces the intangible factor to represent a conglomeration of all
aspects of the item that are pertinent to the modelling of user preferences,
but are absent from the content representation. This is presented in line 4

of figure 6.1.

The intangible factor of an item can be considered as a single attribute
representing a soft-generalisation of all the absent attributes in the content
representation, and therefore complete the representation to some extent
while maintaining tractability. It is also worth noticing that when an item’s
content data is not available, the item’s content representation would be
null, making the user’s rating on the item correspond to the user’s prefer-
ence only on the intangible factor of the item, thus converging to the view
of collaborative filtering.

4Since the thesis does not deal with temporal or contextual factors, they are also
grouped into the unmeasurable factors without affecting the general argument.
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6.1.3 A New Reasoning for Hybrid Filtering

Recommender system data comes in the form of ratings that indicate users’
preferences on items. Based on the last line of figure 6.1 (reformatted here
as figure 6.2), each rating datum can be considered as containing a combi-
nation of two kinds of information — content preference, which is the user’s
preference on the content attributes of the items, and intangible preference,
which is the user’s preference on the other aspects of the items not covered
by its content representation.
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Figure 6.2: This figure is an extension of the last line of figure 6.1. The symbol fu
represents the “perfect recommender system”. It states that user’s rating on item,

which corresponds to the user’s overall preference on the item, can be viewed as

a combination of the user’s content preference and his intangible preference.

The learning mechanisms and knowledge representation of CBF is tai-
lored to model item content, thus are attribute-oriented and highly struc-
tural. Forcing it to model the intangible preferences, which by definition
means “not in the content representation”, is an impossible task and is only
going to confuse the learning engine, resulting in overfitting and inferior
performance. On the other hand, CF mechanisms do not have the nec-
essary building blocks — the content data — to effectively model users’
content preferences, thus are significantly disadvantaged in the learning
process. The extra burden would also result in worse performance at mod-
elling the intangible preferences.

This thesis argues that, ideally, a recommender system should dis-
tinguish the content and the intangible preference, and learn the prefer-
ence functions separately — content preferences should be learned only
by content-based filtering; intangible preferences should be learned only
by collaborative filtering. Because the distinction between content and in-
tangible preferences were not made, all modern hybrid filtering systems
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use user ratings, which encompasses both the content and intangible pref-
erences, to train both its CF and CBF components. This is illustrated in
figure 6.3(a). This is suboptimal, because the incompatible preference type
(i.e. content preference for CF and intangible preference for CBF) does not
fit the learning and modelling bias of the CF and CBF algorithms. Forcing
them to handle both is like forcing a brainy child and a sporty child to ex-
cel both intellectually and athletically. Not only will they not be able to do
very well in their disadvantaged fields, they will also perform worse than
they could have in their advantaged fields due to split attention.
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(a) The conventional approach used by
other hybrid filtering systems — both con-
tent preferences and intangible preferences
are used to train both the collaborative fil-
tering and content-based filtering engines.
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(b) The new approach used by Diamond —
content preferences are handled only by
content-based filtering, intangible prefer-
ences are handled only by collaborative fil-
tering.

Figure 6.3: The different ways that CF and CBF engines in a hybrid filtering

setting treat user’s content preferences and his intangible preferences.

In this chapter, a new hybrid filtering framework — the Diamond—
is proposed. It has a unique separation mechanism that separates users’
general preference data (i.e. user’s rating data) into users’ content prefer-
ence data and users’ intangible preference data prior to training. The two
separated sets of data are then handled separately by the content-based
and the collaborative filtering engines. This is shown in figure 6.3(b). The
separation of data eases the pressure on the filtering engines and allows
them to concentrate on the forms of learning that fit their natural bias.
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6.2 The Two New Variables

The Diamond hybrid filtering system advocates the separate treatment of
the content preferences and the intangible preferences. However, users’
content preferences and their intangible preferences do not come readily
available. Instead, the recommendation datasets only provide a single in-
dicator to represent the user’s overall preference on all aspects of the item,
that is, the user’s rating on the item — ru,i.

To solve this problem, Diamond has a mechanism that enables the sepa-
ration of the content preferences and the intangible preferences from user
ratings. This is presented in section 6.4 as part of Diamond’s hybridisation
strategy. The mechanism has a strong probabilistic basis, so in order to
properly describe it, this section firstly lays out the necessary background
for its presentation.

As pointed out in sections 4.1 and 5.1, the three fundamental variables
in a recommendation problem setting are the user u, the item i, and the
rating ru,i. The Diamond system is effectively proposing to split the item
variable i into two separate variables that represent item content (iC) and
the intangibles (i×) respectively. This section discusses the ramification of
this separation on the probabilistic correlations between the variables.

6.2.1 The Three Original Variables

This section uses belief nets [7] to clarify the probabilistic correlations be-
tween the three original variables — u, i, and r — within the probability
space described in section 5.1. A belief net, as shown in figure 6.4, is a prob-
abilistic graphical model that provides a compact visual view of the proba-
bilistic (in)dependence relationships between a set of random variables. In
a belief net, the nodes represent variables, and the edges represent proba-
bilistic correlations between variables — for two adjacent nodes, an edge
between them represents probabilistic dependency, and a lack thereof rep-
resents probabilistic independence; for non-adjacent nodes, variables are
conditionally independent of their non-descendants given their parents.
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Figure 6.4 is the belief net visualisation of the dependencies between
the three variables u, i, and r postulated by this thesis. In this model,
both u and i are parents of r. This is easy to understand, as it takes both
the preference of a user and the properties of an item for a rating to be
drawn. The user-rating and item-rating relationships can even be viewed
as causal — the fact that user Tom voted item Titanic a rating of good can be
interpreted as that the user being Tom and the item being Titanic “caused”
the rating to take on a value of good.

User
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Tom 0.5 0 0.5

Jerry 0.33 0.33 0.33
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Figure 6.4: A belief nets view of the dependencies of the three original variables.

In terms of variables u and i, firstly, a connection between them defi-
nitely exists because they are not independent from each other. This can
be validated by the fact that P(i) 6= P(i | u), or that formulae 5.1b and 5.2b
do not yield the same result. Secondly, the direction of this particular con-
nection does not matter to the description of the probabilistic relationships
between the three variables, thus can be considered as an “implementation
choice”. However, the direction of i → u is chosen because it makes the
consequent belief nets (such as that of figure 6.5) more semantically sound.

In a belief net, each node is associated with a probability function or
table that takes as input the value(s) of the parent node(s) and returns the
probability of the current node. This allows probabilistic inference [7] to be
carried out throughout the network. Figure 6.4 uses the illustrative dataset
in table 6.1 to demonstrate this. Taking variable r as an example, its asso-
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User Item Rating

Tom Titanic Good

Tom Inception Bad

Jerry Titanic Bad

Jerry Avatar Good

Jerry Inception Bad

Table 6.1: An illustrative recommendation dataset used to construct the prob-

ability tables associated with the belief net nodes in figure 6.4. (This dataset is

identical to that of table 5.1).

ciated probability table contains all combinations of users and items (i.e.
both its parents) on the left, and the corresponding probabilities on the
right. The known or observed entries in the table constitute the training
dataset in table 5.1, whereas the unobserved entries are potential predic-
tion queries waiting to be answered. The process of recommendation can
be viewed as the task of filling in the unknown entries of the table, and
a recommender system can be viewed as a function approximation-based
oracle for such task.

6.2.2 The Two New Variables

The Diamond system introduces two new variables — iC that represents
item i’s content, and i× that represents item i’s intangibles — to replace
the variable i that represents the item as a whole.5 This section describes
the probabilistic consequences of this action.

Upon the substitution of variable iwith its two constitutional variables
iC and i×, the belief net structure in figure 6.4 (repeated as figure 6.5(a))
that represents the statistical correlations between variables u, i, and r also

5In theory, the intangible should represent all relevant factors that are not in the content
representation, thus should theoretically include temporal factors (e.g. time of the day a
recommendation is made) and contextual factors (e.g. the weather was sunny), which are
not strictly properties of the item. However, these aspects are not the focus of this thesis.
For further notes, they have their own dedicated research fields, known as temporal di-
versity study [72] and contextual diversity study [3, 155]. Therefore, this thesis simplifies
the intangible to mean only the intangible part of the item — i×.
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needs to be updated. Since the intangible i× is defined as “everything
about i except iC”, by definition, i× and iC together are supposed to fully
“explain” the statistical correlations that variable i has with the other two
variables u and r. Therefore, in figure 6.5(b), the variable i is replaced by
i× and iC with both the i → u edge and the i → r edge duplicated for the
new variables. This is then tidied up into figure 6.5(c), which is the final
belief net that represents the statistical correlations between variables u,
i×, iC, and r.
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(c) The final probabilistic
dependencies between the
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Figure 6.5: Belief nets that represent the probabilistic correlations between vari-

ables u, r, i, i×, and iC.

Figure 6.5(c) specifies that the value of the rating r depends on the user
u, the item content iC, and the item intangible i×. It also describes the rela-
tionships between the newly introduced variables iC and i×. Firstly, their
prior probabilities are independent, namely i× ⊥⊥ iC. This makes sense,
because the item’s intangible i× is defined as “things that matter but are
not already in (i.e. not dependent on) iC”. Secondly, they are conditionally
dependent given u or r, namely i× ��⊥⊥ iC

∣∣ u and i× ��⊥⊥ iC
∣∣ r. This means

when u or r is observed, the value that iC takes on would bias the prob-
ability of the values of i×. For example, in a simplified world where the
item content iC is “SciFi or not”, and the item intangible i× is “well made or
not”. Given user Tom — who is very picky when viewing SciFi — watched
Star Trek (a SciFi) and really liked it, the probability of Star Trek being well
made has become substantially higher.
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6.3 The Content and the Intangible Preferences

Based on the probability dependencies established in section 6.2, this sec-
tion presents the mathematical relationships between the user’s content
preferences, intangible preferences, and overall preferences. This forms
the theoretical basis of the hybridisation strategy of Diamond, which is to
be presented in section 6.4.

In the probability space defined in section 5.1, the probability distribu-
tion P(r| u, i) represents the likelihood of a rating value (i.e. an integer
from 1 to 5) being representative of user u’s overall preference on item i.
With the introduction of the two new variables iC and i×, there are two
additional “preference distributions”: the content preference distribution
P(r| iC, u), which represents the proability that user u gives the represented
content of item i a certain rating; and the intangible preference distribution
P(r| i×, u), which represents the probability that user u gives the intangible
part of item i a certain rating.

Given certain independence assumptions, the mathematical relation-
ship between the three preference probabilities P(r| u, i), P(r| iC, u), and
P(r| i×, u) is presented in equation 6.1, the derivation of which is presented
in equation 6.2.

P(r| i, u) =
P(r| iC, u) P(r| i×, u)

P(r|u)
(6.1)

P(r| i, u) (6.2)

= P(r| iC, i×, u) The definition of intangible factors (a)

=
P( iC, i×|r, u) · P(r|u)

P( iC, i×|u)
Bayes’ Law (b)

=
P( iC|r, u) · P( i×|r, u) · P(r|u)

P( iC|u) · P( i×|u)
Ind. Asmp. iC ⊥⊥ i×

∣∣ u [ , r ] (c)

=
P( iC|r, u) · P(r|u)

P( iC|u)

P( i×|r, u) · P(r|u)

P( i×|u)

1

P(r|u)
Rearrange (d)

=
P(r| iC, u) · P(r| i×, u)

P(r|u)
Bayes’ Law (e)
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In formula 6.2, line (a) describes the substitution of the item variable i
with iC and i×. Line (b) expands the formula using Bayes’ Law. Line (c)

makes two conditional independence assumptions — the transformation
of the denominator assumes P(iC, i×| u) = P(iC| u) · P(i×| u), or that iC ⊥⊥
i× | u (iC is conditionally independent from i× given the user); the trans-
formation of the numerator assumes P(iC, i×| u, r) = P(iC| u, r) · P(i×| u, r),
or that iC ⊥⊥ i× | u, r (iC is conditionally independent from i× given both
the user and the rating). Line (d) rearranges the formula by multiplying
P(r|u) to both the numerator and the denominator at the same time. Fi-
nally, line (e) simplifies the formula using Bayes’ Law.

The Independence Assumptions

The probabilistic correlations of variables u, i×, iC, r are specified in figure
6.5(c), which is repeated here as figure 6.6(a). The derivation of formula 6.1
requires the independence relationships of iC ⊥⊥ i× | u and iC ⊥⊥ i× | u, r,
which are clearly not satisfied by figure 6.5(c). So to make the derivation,
they are assumed true as two naı̈ve independence assumptions, essentially
transferring the statistical correlations captured by figure 6.6(a) into that
of figure 6.6(b) (note the directional changes of the edges). Since in this
belief net structure, assuming iC ⊥⊥ i× | u, r would automatically enforce
iC ⊥⊥ i× | u, the rest of the discussion only focuses on iC ⊥⊥ i× | u, r.
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(a) Probability correlations
between variables u, i×, iC,
and r; a repeat of figure 6.5(c).
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Figure 6.6: The ramification of the naı̈ve independence assumptions.

To further clarify what the assumption of iC ⊥⊥ i× | u, r entails, con-
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sider a simplified binary world where the user preferences can only be like
or dislike. Intuitively, the user’s overall preference on i, his content pref-
erence on iC, and his intangible preference on i× should follow a logical
relationship varying from a logical OR to a logical AND, with the variability
subject to individual users.

To elaborate, since iC and i× together are supposed to fully capture all
aspects of item i, if both iC and i× are liked (or both are disliked), then item i

as a whole should also be liked (or disliked), since there is no third factor to
explain otherwise. This is displayed as row 1 and 4 in table 6.2. However,
the situation becomes uncertain when the user preferences on iC and i×

disagree, as shown in row 2 and 3. In these cases, the logical relationship
would be up to individual users — a fastidious user would implement
an AND strategy, only liking items whose content and intangibles are both
good; an easy-going user could implement an OR strategy, liking an item
so long as something about it is good; there could also be users who would
like an item so long as the content is good, and so on.

Content Intangible
AND OR

Overall

Preference Preference Preference

1. Like Like Like Like Certainly Like

2. Like Dislike Dislike Like Uncertainty

3. Dislike Like Dislike Like Uncertainty

4. Dislike Dislike Dislike Dislike Certainly Dislike

Table 6.2: The intuitive logical relationships between content preference, intan-

gible preference, and overall preference, assuming a binary and crisp world.

To view it in another way, in a simplified world where movie items
only have two attributes: genre and resolution. Suppose genre is in the
content representation (thus constitutes iC) and resolution is not (thus con-
stitutes i×). Suppose Tom is a SciFi fan who likes dazzling scenes (i.e.
Tom likes SciFi or high resolution). If Tom really likes a Romance movie,
chances are that the movie is in Blu-ray. By assuming the conditional inde-
pendence of iC ⊥⊥ i× | u, r, the system is effectively saying that “Tom likes
this Romance movie” does not say anything about this movie’s potential
resolution, which clearly is a loss of deductive power.
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Compensating for the Independence Assumptions

Based on this understanding, an amendment is made to compensate for
the loss of information (thereby recommendation accuracy) caused by the
assumption of i× ⊥⊥ iC | u, r in the derivation of formula 6.1, which is
repeated here:

P(r| i, u) =
P(r| iC, u) P(r| i×, u)

P(r| u)
(6.1)

This formula effectively describes the user’s overall preferenceP(r| u, i)
as a probabilistic-AND of the user’s content preference P(r| u, iC) and his
intangible preference P(r| u, i×), normalised by the denominator P(r| u).
As explained previously, this is an overly strict restriction. Therefore,
this thesis proposes to relax this relationship by gradually blending the
probabilistic-AND with a probabilistic-OR. The probabilistic-AND and OR are
presented below in figures 6.7 and 6.8 (and equations 6.3 and 6.4).

Figure 6.7: The probabilistic-AND of

two independent variables x1 and x2,

calculated using equation 6.3

P(x1∩x2) = P(x1)P(x2)

(6.3)

Figure 6.8: The probabilistic-OR of

two independent variables x1 and x2,

calculated using equation 6.4

P(x1∪x2) = P(x1)+P(x2)−P(x1)P(x2)

(6.4)

Formally, this thesis defines the blending of a probabilistic-AND and a
probabilistic-OR to be a probabilistic-JOINT, symbolised as x1 ./a x2, where
a ∈ [0, 1] controls the degree of the blend. Its calculation is defined in equa-
tion 6.5 and visualised in figure 6.9. The blending mechanism adopted
here is linear. As a approaches 0, the probabilistic-JOINT converges to a pure
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probabilistic-AND; as a approaches 1, it converges to a pure probabilistic-OR.

Figure 6.9: Probabilistic-JOINT with vary-

ing degrees of a (a = 0, 1
3 , 2

3 , 1), calculated

using equation 6.5:

P(x1 ./a x2) (6.5)

=(1− a) · P(x1 ∩ x2) + a · P(x1 ∪ x2)

=(1− 2a)P(x1)P(x2) + a(P(x1) + P(x2))

Replacing the de facto probabilistic-AND betweenP(r| iC, u) andP(r| i×, u)

in equation 6.1 with a probabilistic-JOINT leads to equation 6.6, which is the
basis of the hybridisation strategy of Diamond.

P(r | i, u) =
(1− 2a) · P(r | iC, u) · P(r | i×, u) + a ·

(
P(r | iC, u) + P(r | i×, u)

)
P(r | u)

(6.6)

Note that this amendment does not completely recover the informa-
tion lost by the assumption of i× ⊥⊥ iC | u, r. Firstly, the probabilistic-JOINT

assumes the two variables x1 and x2 to be conditionally independent — a
condition that the content preference P(r| iC, u) and the intangible prefer-
enceP(r| i×, u) clearly do not meet. Secondly, the relationship between the
two preferences and the overall preference can only be expressed as a lin-
ear combination of an AND and an OR if iC and i× cannot be subdivided
such that the subcomponents can interact in a complex and combinatorial
way. This is not true in general: suppose iC constitutes of two factors: genre
and actor, and i× constitutes of resolution and soundtrack, the overall pref-
erence of Tom is positive if genre is SciFi and resolution is high, or actor
is William Shatner and soundtrack is by John Williams, making P(r| iC, u)

and P(r| i×, u) no longer of a clear-cut relationship. However, through
parameter-tweaking, it will be possible to find an optimal α for each spe-
cific user which gives the best average approximation. Experiments on the
effect of using equation 6.6 with different a values is examined in section
6.5.2.
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6.4 The Hybridisation Strategy of Diamond

The core of a hybrid filtering system is its hybridisation strategy, which is
the part that handles the cooperation of the CF and the CBF engines. Con-
ventional hybridisation strategies (surveyed in section 2.5) are either se-
quential or combinatorial (or not cooperative at all), meaning that CF and
CBF are either applied one after another, or parallel to each other, with
the final recommendation being a simple combination of the predictions
of the two.

The hybridisation strategy of Diamond is fundamentally different from
conventional approaches. Instead of simply combining the two filterings
on an operational level, a divide-and-conquer process on the recommen-
dation task itself is proposed. Firstly, the training data, which represents
users’ overall preference of the items, is separated into the content prefer-
ence data, which represents users’ preference on the content attributes of
the items, and the intangible preference data, which represents users’ prefer-
ence on the intangible factors not covered by the items’ content attributes.
The recommendation task is thus divided into two sub-tasks — the task
of recommending the content preferences, and the task of recommending
the intangible preferences.

The two sub-tasks are then handled separately and independently by
CF and CBF. Since the sub-tasks are divided in a way that matches the
learning biases of the two filtering engines, better recommendation accu-
racy is expected due to reduced complexity and enhanced clarity of the
learning tasks.

The final recommendation output of the system is a mathematically-
justified combination of the intangible preference prediction produced by
CF, and the content preference prediction produced by CBF. This dividing
of the task and conquering of the results can be visually symbolised as a
diamond shape ♦, thus the system name — the Diamond.

This section firstly outlines the overall structure of Diamond in section
6.4.1, then presents the “divide” mechanism — the recommendation task
separator — in section 6.4.2, and the “conquer” mechanism — the recom-
mendation results combinator — in section 6.4.3.
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6.4.1 The Overall Architecture of Diamond

The Diamond hybrid filtering recommender system has four components:
1) a collaborative filtering engine; 2) a content-based filtering engine; 3) a
hybridisation mechanism, which coordinates the collaboration of CF and
CBF; and 4) a distributional rating transformer, which converts scalar rat-
ings to and from distributional ratings.

Figure 6.10 presents the structure and components of Diamond. In this
figure, the three oval shapes represent the data inlets and outlets of the sys-
tem; the four rectangular boxes represent the four components, with the
core component — the hybridisation strategy — highlighted in yellow; the
annotated arrows connecting the shapes represent the data flow. There are
two kinds of data flows. The training flow feeds the training data through
the system for supervised training. After the system is properly trained,
a recommendation flow can be issued to use the trained system to make rec-
ommendations. The rest of this section illustrates the functionality of each
component by going through the training flow and the recommendation
flow respectively.

The Training Flow

The training flow of Diamond is illustrated in the left half of figure 6.10
(with pink background). The flow starts at the intake of the scalar training
data, as represented by the oval shape at the upper-left corner of the figure.
Since Diamond operates on distributional ratings (presented in chapter 5),
before training can start, the scalar ratings in the form of

{
..(u, i, r)..

}
need

to be transformed into distributional ratings in the form of
{
..(u, i,P( r

∼

|i, u))..
}

. This is done by the scalar to distributional rating transformer part of
the rating transformer. The distributional ratings are then separated into the
content preference ratings

{
..(u, i,P( r

∼
|iC, u))..

}
and the intangible preference

ratings
{
..(u, i,P( r

∼
|i×, u))..

}
by the recommendation task separator part of

the hybridisation mechanism. After the separation, the content preference
data is used to train the content-based filtering engine, while the intangible
preference data is used to train the collaborative filtering engine.
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Figure 6.10: The structure and components of the Diamond hybrid filtering sys-

tem. The left hand side (pink) and the right hand side (blue) present the compo-

nents involvements and data flow in the training of the system and the utilisation

of the trained system (i.e. recommendation) respectively.
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The Recommendation Flow

The recommendation flow of Diamond is illustrated in the right half of fig-
ure 6.10 (with blue background). The flow starts at the intake of some rec-
ommendation queries represented by the oval shape labelled “test query”
at the lower-right conner of the figure. For each query, the CF engine
makes a prediction on how much it thinks the user would like the item’s
intangibles; the CBF engine makes a parallel prediction on how much it
thinks the user would like the item’s represented content. The two predic-
tions are then combined together by the recommendation results combiner of
the hybridisation mechanism to form a general prediction, which comes in
the form of a distributional rating P( r

∼
|i, u). This distributional prediction

can be directly given back to the user, providing the user with a more in-
formative recommendation, or it can be transformed back to a single scalar
prediction through the distributional to scalar rating transformer part of the
rating transformer.

6.4.2 The Recommendation Task Separator

The recommendation task separator or RTS separates the learning task into
two sub-tasks, each of which fits the learning bias of CF and CBF respec-
tively. The separation of the task is achieved by the separation of the train-
ing data {. . .P( r

∼
| i, u) . . .} into the training data of users’ intangible prefer-

ences — {. . .P( r
∼
| i×, u) . . .}, which is to be learnt by collaborative filtering,

and the training data of users’ content preferences — {. . .P( r
∼
| iC, u) . . .},

which is to be learnt by content-based filtering.

Note that data separation is different from data set partitioning, as the lat-
ter is an inter-rating splitting while the former being an intra-rating split-
ting. In data separation, the splitting happens within each rating. Each
rating is split into two, resulting in two datasets the same size as the orig-
inal; in data partitioning, the splitting happens for the entire dataset. The
dataset is partitioned into two, resulting in two datasets half the size as the
original.
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6.4.2.1 Obtaining the intangible preference data

Suppose the content preference data is known, the intangible preference
data P( r

∼
| i×, u) can be derived from the general distributional ratings

P( r
∼
| i, u) and the content preference data P( r

∼
| iC, u) based on equation

6.7, which is a rearrangement of equation 6.6.

P( r
∼
|i×, u) =

P( r
∼
| i, u) P( r

∼
| u)− a · P( r

∼
|iC, u)

(1− 2a) · P( r
∼
|iC, u) + a

(6.7)

In this formula, a is the blending factor, which is a system parameter to
be determined by empirical experiments. P( r

∼
| i, u) is the distributional

rating of user u’s preference on item i, which is provided by the training
dataset and the distributional rating transformer. P( r

∼
| u) is the user’s dis-

tributional voting profile, which is also provided by the training dataset.
The only unavailable factor is P( r

∼
| iC, u) — the user’s content preference

on item i. Its calculation is presented in the following subsection.

6.4.2.2 Obtaining the content preference data

The computation of content preference P( r
∼
| iC, u) is closely related to the

content representation, which in the context of this thesis is a set of single-
valued attributes, such as movie-name, era, release-year, production company,
certification (e.g. PG-13), and so on. Set-valued attributes such as genre
and actor can also be represented by “flattening” their values into a set
of single-boolean-valued attributes, such as genre-being-action, genre-being-
comedy, actor-being-william-shatner, and actor-being-brad-pitt.

Let {A1, . . . , An} be the set of single-valued attributes that constitute
the content-representation. The content of item i can thereby be repre-
sented as a set of attribute-value pairings, namely iC = {A1=v

i
1, . . . , An=v

i
n},

or simply iC = {Ai1, . . . , Ain}. For example, if i is the movie Star Trek and
At is the attribute genre-being-sci-fi, Ait or in this case AStar Trek

sci-fi would be the
attribute-value pairing of genre-being-sci-fi = True. AMatrix

sci-fi and AAliens
sci-fi also

represent the same pairing, making the three semantically identical.
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Under the content representation of iC = {Ai1, . . . , Ain}, the user’s con-
tent preference P( r

∼
| iC, u) can be expressed as P( r

∼
| Ai1, . . . , Ain, u), which

can be computed from the user’s preferences of the individual attributes
— the {P( r

∼
| Ait, u)}s — as shown in equation 6.8:

P( r
∼
| iC, u) (6.8)

= P( r
∼
| Ai1, . . . , Ain, u) Single-valued attributes as content-representation (a)

=
P(Ai1 . . . Ain | r∼, u) P( r∼ | u)

P(Ai1 . . . Ain | u)
Bayes’ Law (b)

=
P(Ai1 | r∼, u) . . .P(A

i
n | r∼, u) P( r∼ | u)

P(Ai1 | u) . . .P(Ain | u)
Ind. Asmp. A1 ⊥⊥ . . . ⊥⊥ An | u [, r

∼
] (c)

=
P(Ai1 | r∼, u) P( r∼ | u)

P(Ai1 | u)
. . .
P(Ain | r∼, u) P( r∼ | u)

P(Ain | u)
1

P( r
∼
| u) n−1 Rearrange (d)

=

∏n
t=1 P( r∼ | A

i
t, u)

P( r
∼
| u) n−1 Bayes’ Law (e)

The transformation from line (b) to line (c) assumes that the attributes
are conditionally independent given the user (i.e. A1 ⊥⊥ . . . ⊥⊥ An | u), and
given both the user and the rating (i.e. A1 ⊥⊥ . . . ⊥⊥ An | u, r

∼
).

The attribute preference P( r
∼
|Ait, u) in line (e) can be “counted-up” from

the original scalar rating data. For example, suppose Ait is genre-being-
action = True, the probability that user Tom gives an action movie a rating
of x (∈ [1, 5]) can be calculated according to equation 6.9; the attribute pref-
erence P( r

∼
|Aaction = true, u = Tom) would be a vector of size 5 calculated

according to equation 6.10:6

P(r = x
∣∣ Aaction=True, u=Tom) =

# action movies rated an x by Tom
# action movies rated by Tom

(6.9)

P( r
∼
|Aaction=True, u=Tom) = S

([
P(r=1 |A, u), . . . , P(r=5 |A, u)

])
(6.10)

6The symbol S in equation 6.10 represents the smoothing factor, which in the implemen-
tation of Diamond is calculated using the “scalar to distributional rating transformation”
mechanism described in section 5.5.1, with the x in S(x) treated as an index vector.
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Figure 6.11 provides an integrated view of the recommendation task
separator. The overall processes are as follows: firstly, the user’s attribute
preferences P( r

∼
| A, u) are counted up “vertically” across all items the user

has rated; secondly, the user’s content preference on item i or P( r
∼
| iC, u) is

calculated based on the attribute preferences of the user and the content
representation of the item; the user’s intangible preference P( r

∼
| iC, u) can

then be calculated based on section 6.4.2.1 and formula 6.7.

item 1:  A1  A2  A3  ...  Ak r
u,i1

item 2:  A1  A2  A3  ...  Ak r
u,i2

item n:  A1  A2  A3  ...  Ak r
u,in

.
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.

.
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Counted up ʺverticallyʺ from the dataset.

Userʹs Content Preference p(R|u,i
C

)
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User uʹs Training Data
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X
)

Derived from the overall preference

and the content preference

Figure 6.11: An integrated view of the recommendation task separator.

6.4.3 The Recommendation Results Combinator

This section describes the other half of Diamond’s hybridisation strategy —
the recommendation results combinator. The final prediction P( r

∼
| u, i) is ob-

tained by combining P( r
∼
| iC, u) and P( r

∼
| i×, u) — the prediction made

by CBF on user’s content preference of the item, and the prediction made
by CF on the user’s intangible preference of the item. Basically, the predic-
tions are combined based on equation 6.11, which is a simple rewriting of
equation 6.6.

P( r
∼
| i, u) =

(1− 2a) · P( r
∼
| iC, u) · P( r∼ | i×, u) + a ·

(
P( r
∼
| iC, u) + P( r∼ | i×, u)

)
P( r
∼
| u)

(6.11)
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6.5 Experimental Analysis

The section evaluates the Diamond hybridisation strategy. Section 6.5.1
illustrates the general performance of Diamond, and compares it with pure
CF and CBF algorithms; section 6.5.2 tries to determine the optimal value
for the blending parameter α. The next two sections evaluate Diamond’s
performance under different dataset properties: section 6.5.3 evaluates the
effect of different levels of content availability, and section 6.5.4 evaluates
the effect of different rating dataset sparsity. Finally, section 6.5.6 evaluates
the hybridisation strategy of Diamond by comparing it with other linear or
sequential hybridisation strategies with the same base engines.

6.5.1 The General Performance

This section presents the general performance of the Diamond hybrid fil-
tering system by comparing it with its constituent CF and CBF parts.

In the current implementation of Diamond, user-oriented DRNN (pre-
sented in chapter 5) is used as the base CF engine; and a cosine similarity-
based nearest neighbour approach on the item content matrix (ICM) is used
as the base CBF engine. The ICM is a matrix whose rows are items, and
columns are item attributes. To make a recommendation, the rows of ICM
are compared using cosine similarity, based on which item weights are
generated, and new CBF predictions can be made as a weighted average
of the existing item ratings. This approach is chosen because it can be eas-
ily adapted to process distributional ratings, it is widely used as the base
CBF engine in other hybrid filtering systems [168, 10], and it performs
competitively with more complex CBF algorithms despite its simplicity
[110].

Figure 6.12 presents the general performance of Diamond on the MLS
and MLM datasets. The (distributional rating-based) CF and CBF are
marked in different shades of grey; the Diamond algorithm is marked in
red. The experimental setting and metrics are similar to section 5.7.1: skip-
every-10th with 10-fold cross validation is used as the dataset partitioning
protocol; a threshold cut-off of 3 is used for prediction to recommendation
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conversion with precision, recall, and F1 measure; and N = 30 is used for
NDCG. The Diamond system has an endogenous blending parameter α,
which is set to 0.7 based on empirical experiments (presented in section
6.5.2); the setting of content attributes is explained in section 6.5.3.
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Figure 6.12: The general performance of the Diamond hybrid filtering system.

Experimental results show that Diamond outperforms both CF and CBF
in terms of prediction accuracy (MAE and RMSE), binary recommenda-
tion accuracy (F1, F1miss), and ranked recommendation accuracy (NDCG,
NDCGmiss). A significant improvement is achieved on the prediction ac-
curacies in particular. Compared to CF, Diamond is able to make an 8%

improvement on the MLS dataset (i.e. 0.687 vs. 0.749) and a 10% improve-
ment on the MLM dataset (i.e. 0.662 vs. 0.736) on the MAE metric.

The improvements on the binary and ranked recommendation accura-
cies are not as prominent. It is interesting, because the CF performance
shown here is not the performance of the standard NNCF, but that of the
distributional rating-based DRNN. Since DRNN makes a significant im-
provement over NNCF in terms of the recommendation accuracies but
not the prediction accuracies,7 by transitivity, one can conclude that Di-
amond indeed performs significantly better than standard NNCF under
both the recommendation and the prediction accuracy measures, with its
distributional rating aspect contributing to the improvement on the rec-
ommendation accuraccies, and its hybrid filtering aspect contributing to
the improvement on the prediction accuracies.

7This result was presented in section 5.7.1 on page 149 under the same experimental
settings as this section.



6.5. EXPERIMENTAL ANALYSIS 191

6.5.2 How does Diamond respond to the blending parame-

ter α?

This section evaluates the effect of the blending parameter α introduced in
formula 6.5. While trying to calculate the mathematical relationships be-
tween the overall preference P(r| i, u), the content preference P(r| iC, u),
and the intangible preference P(r| i×, u), various independence assump-
tions were made, which led the calculation to suggest that the overall pref-
erence is a normalised probabilistic AND of the content and intangible
preferences, as shown in equation 6.1. This is overly strict, as argued on
page 180. Therefore, the calculation is refined to formula 6.6 by introduc-
ing the blending parameter α ∈ [0, 1]. As α approaches 0, the calculation
converges to a pure normalised probabilistic AND, as α approaches 1, it
converges to a pure normalised probabilistic OR.

Figure 6.13 shows the effect of α on the performance of Diamond using
the MLS dataset and the MAE evaluation metric. The x-coordinates of the
figures correspond to the α values, and the y-coordinates correspond to
the MAE. Figure 6.13(a) shows the result of applying the same α setting
on the entire dataset. The results suggest that α indeed affects the perfor-
mance of the system. The optimal α appears to be around α = 0.7, which
makes the overall preference P(r| i, u) more towards a probabilistic OR of
the content preference P(r| iC, u) and the intangible preference P(r| i×, u)

than a probabilistic AND. This also means that our previous suspicion of
“a pure probabilistic AND is too strict” is well-founded.
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Figure 6.13: The effect of the blending parameter α.
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Intuitively, the relationship between the overall, content, and intangi-
ble preferences can be very different from user to user. As presented in
table 6.2 on page 179, we can easily imagine a user who likes an item only
if both the content and the intangibles (e.g. quality) of this item are good;
a more easy-going user could be happy with the item so long as one of the
content or the intangibles is good. Therefore, validation set-based empir-
ical experiments are conducted to try to find the optimal α for each user.
In this experiment, the dataset is partitioned into three subsets containing
70%, 20%, and 10% of the data using skip-every-nth to serve as the training,
validation, and test set respectively. The system is trained on the training
set using 11 different α values equal to the x-coordinates of figure 6.13; the
trained systems with different α values are compared using the validation
set, and the best performing α is chosen for each user; the overall perfor-
mance of parameter-turned system is then examined on the test set, which
forms the final result shown in figure 6.13(b).

In figure 6.13(b), the blue curve represents the MAE of dataset-wide
α, and the red line (i.e. its y-coordinate y = 0.693) represents the MAE
of per-user α. All data points in this figure are generated under the same
training and test data.8 It shows that per-user α indeed performs better
than applying the same α on the entire dataset. However, due to the extra
burden of parameter tuning, other experiments in this chapter all use α =

0.7 on the entire dataset without further specification.

Figure 6.14 plots the distribution of users with different α as their per-
sonal optima. It is interesting to see that most users have strong bias
towards either the AND side or the OR side. This means that although
α = 0.7 appears to the optimum of the entire dataset, it is the result of a
dataset-wide compromise from everybody, but not that most users have
α = 0.7 as their personal choice.

8Per-user α requires 20% of the data to be used for parameter tuning. This data is
simply discarded for experiments with dataset-wide α to keep the data supply of all
experiments consistent.



6.5. EXPERIMENTAL ANALYSIS 193

0%

5%

10%

15%

20%

25%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
e
rc
e
n
ta
ge

 o
f 
u
se
rs
 w
it
h
 α
=x

as
 t
h
e
ir
 p
e
rs
o
n
al
 o
p
ti
m
u
m
 

The Blending Parameter α

Figure 6.14: The distribution of users’ personal optimal α.

6.5.3 How does Diamond respond to the extent of content

attributes?

As described in section 3.1.2, Diamond uses movie attributes provided by
IMDb as content data. The set-valued attributes such as genre, actors, and
directors are flattened into single valued attributes by converting the at-
tribute values into individual attributes, such as genre-being-action or actor-
being-will-smith. This results in a large set of attributes, some of which
carry very little value (such as an unimportant actor who only appeared
in one movie). This not only slows down the content-based recommenda-
tion process, but also adds complexity to the recommendation problem.

This thesis uses a forward feature selection-based preprocessing step
[7] to select a set of n most informative attributes based on their expected
information gain [116], and only uses these n attributes in the content-based
recommendation process.

Suppose D : {〈u, i, r〉} is the set of rating data, A : {a} is the set of
available attributes, and suppose an attribute a ∈ A can take on one of a
set of values {a1, . . . , ak}. The information gain of knowing the value of a
on dataset D is represented as IG(a,D), and is defined in formula 6.12:

IG(a,D) = H(D)−
k∑
t=1

P(at)H(D|at) (6.12)

where H(D) is the entropy of the dataset, which is the same for all a thus
can be ignored; H(D|at) is the conditional entropy and is defined as fol-
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lows:

H(D|at) = −
5∑

r′=1

P(D|at, r′) · logP(D|at, r′)

This section investigates the effect of the number of content attributes
n on the performance of Diamond. Figure 6.15 shows the experimental re-
sults of Diamond under varying n. The x-axis represents the number of
attributes n, and the y-axis is the MAE on the MLS dataset with the corre-
sponding number of attributes used in the content-based filtering process.
Note that due to the information gain-based attribute selection that choose
the most informative attribute first, a larger set of attributes generally cor-
respond to lower averaged attribute quality.
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Figure 6.16: The effect of the number

of attributes on the choice of the optimal

dataset-wide blending parameter α.

The results show that “the more attributes the better” is not true. And
for the particular experimental set-ups of this thesis, n = 300 seems to be
the most optimal choice, since it results in near-best performance, and is
the smallest (i.e. simplest and fastest) n value for the curve to start to level
off. It is also the setting chosen for other experiments presented in this
chapter.

The value of n also affects the optimal value of the dataset-wide blend-
ing parameter α. Figure 6.16 shows their correlations. Basically, the opti-
mal value of α seems to be within the range of [0.6, 0.8].

The reason for the declining MAE performance as n gets large could be
twofold. Firstly, as argued at the start of this section, as n gets larger, there
would be more and more attributes that carry little information, and not
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using them reduces data noise and the workload of the system. Secondly,
the independence assumptions made in the derivation of Diamond’s hy-
bridisation strategy tend to be less true as n — the number of attributes
gets bigger. Based on how item attributes are normally collected, the more
attributes there are, the bigger the overlapping among the attributes there
will be, and the more the attributes correlate with each other.

6.5.4 How does Diamond respond to dataset sparsity?

The previous section investigated the effect of the extent of content data
on the performance of Diamond. This section investigates the effect of the
sparsity of collaborative rating data on the performance of Diamond.

The general setting of this experiment is similar to that of section 4.5.5.
The given-n dataset partitioning protocol is applied to control dataset spar-
sity, with n being 5, 10, 20, and all. Figure 6.17 shows the performance of
CF, CBF, and Diamond under these settings. It can be observed that, com-
pared with CF, Diamond is much better at handling sparse datasets. This is
not surprising, since it can rely on the content data and content-based fil-
tering when there are very few collaborative rating data. Compared with
CBF, Diamond is affected more by dataset sparsity, as shown by the steeper
slope of the Diamond curve. However, it recovers relatively quickly and is
able to outperform CBF at “Given-20”, where the dataset sparsity (0.9889)
is still quite high.
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Another interesting observation is that the sparsity of the collaborative
dataset affects the optimal value of the dataset-wide blending parameter
α. Figure 6.18 shows their correlations. Basically, when the dataset is very
sparse, a small α is preferred; as the sparsity reduces, the value of α in-
creases to the normal setting of 0.7.

6.5.5 How does Diamond compare with other hybridisa-

tion strategies?

As described in section 2.5, existing cooperative hybrid filtering systems
can be classified as either linear or sequential. This section evaluates Dia-
mond against the standard linear and sequential hybrid filtering systems.
In order to create a controlled environment and compare only the hybridi-
sation mechanisms, the same CF and CBF algorithms are used as base
engines for all hybrid filtering systems compared.

The following three hybridisation strategies are chosen: 1) static lin-
ear weight (SLW) which uses a linear hybrid of CF and CBF with equal
weight; 2) linear regression (LR), which is another linear strategy that
trains CF and CBF separately, then uses linear regression [7] to find the
optimal weighted combination of the recommendation outputs of the base
CF and CBF algorithms; 3) sequential hybridisation (SH), which applies
content-based filtering first to complete the user-item rating matrix, which
is then used as training data in collaborative filtering, the recommenda-
tion of which constitutes the final recommendation by the hybrid filtering
system.

Figure 6.19 presents the experimental results on the MLS dataset with
10-fold cross validation. The CF and CBF methods are marked in differ-
ent shades of grey; the baseline hybrid filtering algorithms are marked in
different shades of blue; and Diamond is marked in red. The results show
that although the linear and sequential hybrid filtering systems are able to
make good improvements over the base CF and CBF engines, Diamond is
able to outperform all of them, making an even bigger improvement un-
der all evaluation metrics.
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Figure 6.19: Comparison of Diamond with other linear and sequential hybridis-

ation strategies using the same base (CF and CBF) engines.

6.5.6 An integrated comparison of all algorithms proposed

in this thesis

This section provides an integrated comparison of all of the algorithms
proposed in this thesis.

Since the experimental settings used in this thesis consistently follow
the guidelines drawn in chapter 3, many results presented in different
chapters are actually comparable. Figure 6.20 provides an integrated view
of the standard NNCF and all five algorithms proposed in this thesis (TASK,
PA, DA, DRNN, and Diamond) under the MLS dataset and the user-oriented
implementations. The data presented here is a combination of the re-
sults from table 4.5 (for TASK), figure 4.14(a) (for PANDA), table 5.2 (for
DRNN), and figure 6.12(a) (for Diamond).
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The results show that Diamond consistently outperforms all other al-
gorithms under all evaluation metrics. Among the collaborative filter-
ing methods, TASK outperforms the standard NNCF under all metrics;
DRNN performs worse under the predictive accuracy metrics (MAE and
RMSE), but makes a larger improvement under the binary and ranked rec-
ommendation metrics comparing to TASK.

6.6 Conclusions

This chapter presents a new hybrid filtering system — Diamond, which has
a unique diamond-shaped hybridisation structure and a mathematically
deduced hybridisation mechanism, which is based on a unique insight
regarding the underlying meaning of “rating”.

Section 6.1 lays down the conceptual underpinning of Diamond by ar-
guing that rating data reflects two components — the user’s preference
on the item’s represented content (the content preference), and the user’s
preference on the other intangible parts of the item (the intangible prefer-
ence). Content-based filtering algorithms are content-oriented and highly
structural, thus are unfit to model the intangible preferences, which by def-
inition means “not in the content representation”; on the other hand, col-
laborative filtering lacks important building blocks provided by the item
content data, thus is severely disadvantaged at modelling the content pref-
erences.

As described in section 2.5, existing hybrid filtering systems fall into
three categories: linear, sequential, and non-cooperative, all of which train
both their CF and the CBF base engines on both content and intangible
preferences (they simply do not distinguish the two aspects). Diamond takes
notice of the different aspects, actively separating them, and using CBF to
model only the content preferences, and CF to model only the intangible
preferences.

The key of Diamond is a probability-based mechanism that splits each
training data into a content preference training data and an intangible
preference training data, in turn splitting each recommendation task into
two subtasks that fit the learning bias of CBF and CF respectively. This
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mechanism and its derivation is presented in sections 6.2, 6.3, and 6.4. The
empirical evaluations presented in section 6.5 showed that Diamond out-
performs both collaborative and content-based filtering, as well as stan-
dard linear and sequential hybrid filtering structures with the same base
(CF and CBF) engines.

Future work on Diamond include the following directions: 1) to fur-
ther evaluate the idea of content-intangible separation by testing it under
a wide variety of base CF and CBF engines, such as aspect models, PLSA,
and probabilistic clustering; 2) to examine the possibility of combining
Diamond with other linear or sequential hybridisation mechanisms, form-
ing a “hybrid within a hybrid”; 3) to refine the hybridisation strategy of
Diamond by further studying the effects of the independence assumptions
made during the derivation process, and potentially compensate for them;
4) to explore the more general application of “divide of each individual
task and conquer of the results”, which I believe is not only limited to hy-
brid filtering, but can also be applied to general ensemble learning tasks
where the data points possess unique and separable aspects.
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Chapter 7

Conclusions

Recommender systems are rapidly gaining attraction in this information-
flushed century. From a research perspective, it provides an interesting
and unique machine learning environment due to the specific semantics
of recommendation and the extra dimension introduced by the personalised
aspect of the problem, allowing the exploitation of domain-specific repre-
sentations, adaptations, and heuristics.

The goal of this thesis is to provide a general understanding of the
current recommender algorithms, spot weaknesses, and discover through
data analysis and logical reasoning new heuristics that can improve exist-
ing solutions, and new representations that is more “tailor-made” to the
target domain. Specifically, the thesis focuses on achieving these goals
through the exploitation of already-existing but latent information in the
recommendation process.

The thesis has achieved its overall goal. In terms of understanding the
field, it presented a detailed literature review, including four surveys on
recommender system taxonomy, recommendation algorithms, compari-
son of collaborative and content-based filtering, and recommender system
evaluation.

In terms of improving existing recommender algorithms, the thesis fol-
lows a “problem identification→ solution proposition→ algorithm eval-
uation” pipeline, and presented four improvements in the format of two
algorithms (TASK and PANDA), one process (DRNN), and one frame-

201
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work (Diamond) around three different yet correlated directions — nearest
neighbour collaborative filtering, distributional rating-based collaborative
filtering, and distribution rating-based hybrid filtering.

The four improvements are all based on identifying and utilising pre-
viously hidden, neglected, or “tangled” information. Specifically, TASK
and PANDA incorporate the target user of the prediction task — an im-
portant piece of information previously hidden from the computation —
into the similarity computation and rating deviation computation respec-
tively. DRNN explicitly models the distribution of users’ rating inputs,
voting habits, and user similarities — concepts previously only modelled
by a scalar number with their distributional-aspects neglected, and conse-
quently enables the production of more informative distributional predic-
tions and better set- and list-recommendation accuracies. The Diamond hy-
brid filtering system untangles the previously tangled concepts of the “tan-
gibles” and the “intangibles”, thus reducing the workload of individual
collaborative and content-based filtering engines, consequently improv-
ing their combined recommendation performance.

The rest of this chapter concludes this thesis by firstly going through in
section 7.1 the important concepts and major conclusions drawn in each
chapter, and then outlining future work in section 7.2.

7.1 Chapter Summary and Conclusions

Chapter 2 of this thesis firstly presents six classifications of recommender
systems in order to provide a better perspective of where this thesis lies. It
then zooms into the most important classification — collaborative filtering
(CF) and content-based filtering (CBF), and provides a detailed survey on
the standard algorithms in the respective class, as well as a comprehensive
comparison of the two classes. It elaborates that in general, in terms of data
requirements, CF is more sensitive to the sparsity of the overall dataset,
yet CBF is more sensitive to the amount of ratings from the target user,
and requires additional content data on top of rating data. In terms of rec-
ommendation ability, based on current technologies, CF is more accurate
than CBF in general situations, new user situations, and cross-domain sit-
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uations; whereas CBF wins out in new-item situations and non-transitive
association scenarios. In terms of recommendation tendencies, CBF is able
to but is also limited to recommending items with similar contents. In
terms of machine learning properties, CBF generally has better scalability,
adaptivity, stability, and explainability.1 Subsequently, the chapter out-
lines modern approaches to hybrid filtering — the combination of the two
classes, and points out that modern hybridisation strategies are either lin-
ear or sequential, laying down the ground for the Diamond hybrid filtering
system in chapter 6.

Chapter 3 describes evaluation settings of the thesis, including datasets,
experimental protocols, and evaluation metrics, which are classified into
prediction accuracy metrics, binary recommendation metrics, and ranked
list recommendation metrics. The predictive accuracy metrics are quite
similar, with RMSE slightly more sensitive to the highly out-of-whack
predictions than MAE. Binary accuracy metrics include precision, recall,
GROC, CROC, and so on, and are generally similar yet complementary.
Ranked list accuracy metrics such as ARHR, ERU, and NDCG are mostly
different in terms of the decay rate they assume against the rankings. Both
binary and ranked metrics require adaptations in order to be applied to
evaluating rating-based recommender algorithms. The different mecha-
nisms of the adaptations are outlined in the chapter. Other than evaluation
metrics, another important concept in this chapter is the identification of
the systematic testing of different types of dataset sparsity, which include
the similarity computation sparsity and the rating prediction sparsity.

Chapter 4 answers the first research question proposed in section 1.3
with two new algorithms — TASK and PANDA. The chapter firstly presents
the nearest neighbour-based collaborative filtering method, and identifies
three problems with it — item irrelevance, preference imbalance, and bi-
ased average. It also identifies the cause of the problems as the target user
of the prediction being hidden from the similarity computation and the

1The summary here assumes the most general case, thus are subject to “grouping bias”
and may not suit individual cases. For example, although CBF is more scalable than CF in
general, there are many CF algorithms that are more scalable than some CBF algorithm.
Section 2.4 discusses the detail.
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rating deviation computation processes. Two new algorithms — TASK
and PANDA — are subsequently proposed to solve these problems by
utilising the hidden information. Experiments show that TASK consis-
tently outperforms standard NNCF and other rival algorithms in gen-
eral situations under both user- and item-oriented settings. However, it
does not show strong performance under extreme dataset sparsity above
0.994, which is expected, because the extra “digging” requires a reason-
able amount of data to start to take effect. TASK is also more susceptible to
similarity computation sparsity than rating prediction sparsity. PANDA’s
performance is not as prominent as TASK. On its own, it fails to make a
performance improvement over NNCF, with reasons analysed in the chap-
ter. However, by carefully tuning the application preconditions through
a piecewise application or by applying ensemble learning, performance
improvements can be achieved. During the analysis of PANDA’s initial
failure, the importance of the range and the distribution of ratings mani-
fested, and eventually led to the development of the “distributional” ideas
presented in the rest of this thesis.

Chapter 5 answers the second research question proposed in section
1.3 and presents the Distributional Rating-based Nearest Neighbour or DRNN
recommendation process. The chapter firstly establishes the “ground rules”
by formalising the probability space for collaborative filtering recommen-
dation. It then identifies the discrete probability representation as one
of the best ways of modelling rating distributions due to its efficiency
and expressiveness trade-off, and applies it to model rating inputs, users’
voting habits, user similarities, and rating predictions. Compared to the
scalar model, the distributional model allows the preservation, represen-
tation, and communication of a much wider set of concepts — distribu-
tional rating inputs allow the representation of potential noise patterns in
user inputs; distributional voting profiles allow a more complete portrayal
of users’ voting patterns, such as multiple peaks and simplified mental
scales; distributional similarities provide more information carriers in the
recommendation process, and enable the communication of concepts such
as “Users A and B agree on items they both like, but disagree on what each of them
dislikes”; distributional rating predictions allow the communication of the
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uncertainty and potential ambivalence in the predictions. Experiments
show that the DRNN is able to improve the recommendation accuracy of
the system, and performs especially well under difficulty situations such
as multi-peaked users or users with complex mental scales.

Chapter 6 answers the third research question proposed in section 1.3
and presents the Diamond hybrid filtering system. The chapter starts by
arguing that a numerical rating can be construed as the user’s preference
on 1) the item’s content representation and 2) the item’s “intangible fac-
tors”, which include a) missing item content and b) other innately unmea-
surable factors. It then argues that the reason of CBF’s generally worse
performance (compared to CF) is not due to the composition of the CBF
algorithms, but the incompleteness of the content representation that CBF
operates on. If the recommendation problem can be reduced to the ex-
tent where the content representation is reasonably complete, CBF should
be able to provide much better support to CF in a hybrid filtering set-
ting. Based on this, it presents Diamond, which is a distributional rating-
based hybrid filtering system, where the hybridisation strategy is neither
linear nor sequential, but of a mathematically sound divide-and-conquer
(i.e. diamond) shape. The “divide” stage firstly splits every recommenda-
tion task into a content-based subtask and a collaborative subtask, which
the CBF engine and the CF engine can operate on separately to produce
recommendations that correspond to the user’s content preferences and
the user’s intangible preferences respectively. The “conquer” stage then
combines the predictions on the two preferences into one final recommen-
dation. Diamond is evaluated against the linear and sequential hybridis-
ation structures, and outperforms both of them in terms of all evaluation
metrics, but especially on the binary and ranked list-based metrics.

7.2 Future Work

Future work on TASK and PANDA

One future direction with TASK is to combine it with other user-item com-
bining heuristics to improve its performance under extreme dataset spar-
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sity such as in cold-start situations. As pointed out in section 4.4, TASK is
radically different from other algorithms that also combine user- and item-
oriented predictions. Instead of producing more “averaged” predictions
and makes more improvements under extreme sparsity, TASK produces
more targeted predictions and makes more improvements under regular
situations. It would be interesting to see the combining effects of TASK
and these sparsity-targeting algorithms.

Although TASK can be considered as an algorithm that combines the
user and the item orientations, it is still orientation sensitive — a user-
oriented TASK is different from an item-oriented TASK. Therefore, another
direction is to try to combine user- and item-oriented TASK to try to im-
prove the general performance. The same extension can be performed on
PANDA.

Another direction is to further study the effect and extent of preference
imbalance in recommender systems — a problem that is only touched su-
perficially in this thesis as a parasite problem to item irrelevancy.

Future work on DRNN and Diamond

The most fundamental and one of the most important future work of
DRNN is dataset building. In order to fully study distributional rating, it
would be extremely beneficial to have a truly distributional dataset, where
the ratings are distributions based on multiple solicitations of the same
rating from real users under different environmental and temporal con-
ditions. However, this will be very costly and slow, because it involves
building a public interface and more importantly, finding or attracting
willing participants.

Another important work is to properly evaluate through user studies
the effect of distributional rating predictions on user experiences. Due
to resource limitations, this thesis evaluates the performance of distribu-
tional predictions by converting it back into scalar predictions, which is
a big compromise. With the “distributional dataset” proposed in the pre-
vious paragraph, distributional predictions will be able to be better eval-
uated, but it would still be really interesting to hear what the end users
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have to say about the “I think you will either extremely love or extremely hate
this movie, but I cannot tell which” type recommendations.

I believe there is great power to be harnessed from the extended ecosys-
tem provided by distributional rating, and Diamond is only one example.
One future work along this line is to explore the use of distributional rating
and discrete vector representation in other recommendation algorithms,
such as clustering, aspect models, latent semantic models, and so on.

There is also more to be done along the lines of content-intangible
separation. It could be very interesting to consider other mechanisms
or other directions completely different from Diamond that can separate
user’s content-based preference and intangible preference.

I would like to end this thesis by a future direction that I always find
interesting — asymmetrical similarity. When computing the similarity be-
tween two users, the actual question being asked is that, if one wants to
make predictions on user u2, how much can I base the predictions on user
u1. Note that this does not have to be reciprocal — if I think u1 is a really
good basis to predict u2, u2 does not have to be an equally good basis to
predict u1. It would be very interesting to pursuit this insight, design an
algorithm that enables the flexibility of asymmetrical similarity, and study
its implications.
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[55] JÄRVELIN, K., AND KEKÄLÄINEN, J. Cumulated gain-based evalu-
ation of ir techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446.

[56] JENNINGS, A., HIGICHI, H., AND LIU, H. A user model neural
network for a personal news service. Australian Telecommunication
Research 27, 1 (1993), 112.

[57] JIAN, C., JIN, H., AND HUAQING, M. Easy recommendation based
on probability model. In SKG ’08: Proceedings of the 2008 Fourth In-
ternational Conference on Semantics, Knowledge and Grid (Washington,
DC, USA, 2008), IEEE Computer Society, pp. 441–444.



216 BIBLIOGRAPHY

[58] JIN, R., SI, L., AND CALLAN, J. Collaborative filtering with de-
coupled models for preferences and ratings. In Proceedings of the
12th International Conference of Information and Knowledge Management
(CIKM 2003) (Nov 2003).

[59] JIN, R., CHAI, J. Y., AND SI, L. An automatic weighting scheme
for collaborative filtering. In SIGIR ’04: Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in in-
formation retrieval (New York, NY, USA, 2004), ACM, pp. 337–344.

[60] JIN, R., SI, L., AND ZHAI, C. A study of mixture models for collab-
orative filtering. Inf. Retr. 9, 3 (2006), 357–382.

[61] KARYPIS, G. Evaluation of item-based top-n recommendation algo-
rithms. In CIKM ’01: Proceedings of the tenth international conference
on Information and knowledge management (New York, NY, USA, 2001),
ACM, pp. 247–254.

[62] KAWAMAE, N. Serendipitous recommendations via innovators. In
SIGIR ’10: Proceeding of the 33rd international ACM SIGIR conference
on Research and development in information retrieval (New York, NY,
USA, 2010), ACM, pp. 218–225.

[63] KIM, B. M., AND LI, Q. Probabilistic model estimation for collab-
orative filtering based on items attributes. In WI ’04: Proceedings of
the 2004 IEEE/WIC/ACM International Conference on Web Intelligence
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 185–191.

[64] KIM, B. M., LI, Q., PARK, C. S., KIM, S. G., AND KIM, J. Y. A
new approach for combining content-based and collaborative filters.
Journal of intelligent information systems 27, 1 (2006), 79–91.

[65] KOHAVI, R. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. In International Joint Conferences
on Artificial Intelligence (IJCAI) (1995), Morgan Kaufmann, pp. 1137–
1143.

[66] KONSTAN, J. A., MILLER, B. N., MALTZ, D., HERLOCKER, J. L.,
GORDON, L. R., AND RIEDL, J. Grouplens: Applying collaborative



BIBLIOGRAPHY 217

filtering to Usenet news. Communications of the ACM 40, 3 (1997),
77–87.

[67] KONSTAN, J. A., MCNEE, S. M., ZIEGLER, C.-N., TORRES, R.,
KAPOOR, N., AND RIEDL, J. T. Lessons on applying automated rec-
ommender systems to information-seeking tasks. In AAAI’06: pro-
ceedings of the 21st national conference on Artificial intelligence (2006),
AAAI Press, pp. 1630–1633.

[68] KOREN, Y. Tutorial on recent progress in collaborative filtering. In
RecSys ’08: Proceedings of the 2008 ACM conference on Recommender
systems (New York, NY, USA, 2008), ACM, pp. 333–334.

[69] KOWALSKI, G. Information Retrieval Systems: Theory and Implementa-
tion. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[70] KWON, Y. Improving top-n recommendation techniques using rat-
ing variance. In RecSys ’08: Proceedings of the 2008 ACM conference
on Recommender systems (New York, NY, USA, 2008), ACM, pp. 307–
310.

[71] LATHIA, N., HAILES, S., AND CAPRA, L. Private distributed collab-
orative filtering using estimated concordance measures. In Proceed-
ings of the 2007 ACM conference on Recommender systems (New York,
NY, USA, 2007), RecSys ’07, ACM, pp. 1–8.

[72] LATHIA, N., HAILES, S., CAPRA, L., AND AMATRIAIN, X. Temporal
diversity in recommender systems. In SIGIR ’10: Proceeding of the
33rd international ACM SIGIR conference on Research and development
in information retrieval (New York, NY, USA, 2010), ACM, pp. 210–
217.

[73] LEE, W. S. Collaborative learning for recommender systems. In Proc.
18th International Conf. on Machine Learning (2001), Morgan Kauf-
mann, San Francisco, CA, pp. 314–321.
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ating kalas: A social navigation system for food recipes. ACM Trans.
Comput.-Hum. Interact. 12, 3 (2005), 374–400.
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