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ABSTRACT 
 

Biological invasion by non-native plant species has often been cited as a cause of 

native biodiversity loss. While the outcome of species invasions depends on interactions 

between exotic and resident native species, most studies of biological invasions have 

focused solely on the direct negative impacts of non-indigenous species on native biota. 

Although investigations of the role of competition in shaping natural plant communities 

were dominant in the previous generations and are still popular, more recent experimental 

research has uncovered the striking influence of facilitation on community dynamics. This 

thesis aims to investigate competitive and facilitative influence of the invasive South African 

iceplant (Carpobrotus edulis) on Spinifex sericeus, a native foredune grass species, with 

particular reference to implications of these interactions for dune restoration in New 

Zealand. It further explores the growth rates, substrate preferences and mating systems of 

the exotic and native iceplant taxa found in New Zealand. 

I begin by briefly outlining the influence of competition and facilitation on natural 

plant communities with reference to the role of facilitation in eco-restoration. I also give a 

few examples where exotic species have been found to facilitate native ones. Secondly, a 

neighbour removal experiment was conducted on coastal sand dunes with the main aim of 

studying the effects of Carpobrotus edulis on establishment of Spinifex sericeus at the 

foredune region. Finally, I compared the growth rates of the most widely distributed 

iceplant taxa in New Zealand in different substrates and the breeding systems of the exotic 

Carpobrotus.  

Examples abound in literature of exotic plant species facilitating native ones 

especially in forestry. In the neighbour removal study, Carpobrotus edulis protected Spinifex 

seedlings against storm erosion, sandblasting and salt sprays while at the same time 

suppressing its leaf production. Suppression of Spinifex leaf production was more 

pronounced at top of the dune where stress elements is presumably more benign. There 

was no evidence of allelopathic suppression of Spinifex by C. edulis. Only Carpobrotus 

chilensis displayed some level of substrate preference by putting on relatively lower biomass 

in gravel. The exotic Carpobrotus spp. put on greater dry matter content than the native 
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Disphyma australe and the Carpobrotus-x-Disphyma hybrid. The hybrid displayed a faster 

vegetative growth rate whereas D. australe allocated relatively more biomass to the roots 

than the shoot. Both Carpobrotus spp. are self compatible and highly capable of intrageneric 

and intergeneric hybridisation. 

Mass removal of the existing exotic iceplant stands from foredunes along high 

energy coasts is not advisable as they serve as useful stabilisers. The intergeneric hybrid is 

sexually sterile with sparsely spread stolons that could allow co-occurrence with other 

species and therefore is more suitable for foredune stabilisation. However, more research 

needs to be conducted on the ecology of the intergeneric hybrid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENTS 
 

  I want to register my sincere gratitude and appreciation to several individuals and 

organisations without whose support this project could not have been realized. 

 I am profoundly grateful to my supervisor Dr. Stephen Hartley for his wise guidance, 

commitment and patience throughout this project. His critical comments, insistence on 

quality and exceptional data manipulation skills have not only helped me accomplish this 

research but have also made me develop a keen interest in the discipline. I would like to 

thank my other supervisor Prof. Kevin Gould for his support, guidance and willingness to 

share knowledge. I also want to sincerely thank Dr. Hannah Buckley, Bradley, and Sam Case 

for their hospitality and help with sampling plants during my visit to Christchurch. Special 

thanks to Mark Ross the ranger at Queen Elizabeth Park and Hamish Carson for all the 

support in setting up my field study.  

My gratitude also goes to Dr. Lesley Milicich for her resourcefulness and assistance 

with field and laboratory work. Thanks a lot Susanne Krejcek and Bridget Johnson for always 

being there for me and helping with fieldwork, and to the other members of my lab group 

for their invaluable critique of my work.   

My studies at Victoria University would not have been possible without NZAID, who 

gave me a scholarship. I am greatly indebted to Julia Harrison, the current NZAID contract 

manager at Victoria International for all her support and understanding throughout my 

study period; Inge De Leeuw the former contract manager for among other things ensuring 

that I got timely treatment for my fractured knee. Thank you Mr. Gregg, my orthopaedic 

surgeon at Wellington Hospital for fixing my knee and giving me back my life.  

My deep appreciation also goes to Wellington Botanical Society for a research grant; 

members of the Dune Restoration Trust of New Zealand for sharing their knowledge and 

firsthand experience in restoration during their various conferences. 



v 

 

Finally, I wish to sincerely thank my dear wife for bearing the agony of separation 

during my first year of study, for convincing me to come over to New Zealand at a time 

when I felt I didn't have the energy to study, and for her constant support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Table of contents 

ABSTRACT .......................................................................................................................................... ii 

ACKNOWLEDGEMENTS ................................................................................................................. iv 

List of figures ..................................................................................................................................... x 

List of Tables ................................................................................................................................... xii 

1. Chapter one: Plant interactions and the role of exotic species in eco-restoration 

plantings ............................................................................................................................................. 1 

1.1. Abstract ....................................................................................................................................... 2 

1.2. Introduction ................................................................................................................................ 2 

1.3. Role of competition in shaping plant community structure ................................................... 4 

1.4. Facilitative interactions among plants ..................................................................................... 7 

1.5. Competition-facilitation interplay and its influence on plant community structure .......... 10 

1.6. Role of facilitation by exotic plant species in eco-restoration .............................................. 13 

1.7. Research aims ........................................................................................................................... 16 

1.8. Thesis structure ........................................................................................................................ 16 

2. Chapter two: Mixed effects of invasive Carpobrotus edulis (Aizoaceae) on 

Spinifex sericeus and its implications for sand dune restoration................................. 24 

2.1. Abstract ...................................................................................................................................... 25 

2.2. Introduction ............................................................................................................................... 25 

2.2.1. Invasive species as threats to native biodiversity ............................................................... 25 

2.2.2. Threats to New Zealand coastal sand dunes ...................................................................... 26 

2.2.3. Sand dune restoration efforts in New Zealand ................................................................... 27 

2.3. Purpose of the study .................................................................................................................. 28 

2.4. MATERIALS AND METHODS ....................................................................................................... 30 

2.4.1. Study site ............................................................................................................................. 30 

2.4.2. Study species ....................................................................................................................... 32 



vii 

 

2.4.2.1. Spinifex (Spinifex sericeus) ........................................................................................... 32 

2.4.2.2. South African iceplant (Carpobrotus edulis) ................................................................ 32 

2.4.3. Experimental set-up ............................................................................................................ 33 

2.4.3.1. Experiment 1 (manual removal) .................................................................................. 33 

2.4.3.2. Experiment 2 (herbicide treatments) .......................................................................... 35 

2.4.4. Physical properties of dunes with and without iceplant .................................................... 35 

2.4.5. Statistical analysis ............................................................................................................... 36 

2.5. RESULTS...................................................................................................................................... 36 

2.5.1. Spinifex seedling Survival .................................................................................................... 36 

2.5.1.1. Experiment 1 ................................................................................................................ 36 

2.5.1.2. Herbicide treatments ................................................................................................... 40 

2.5.2. Number of leaves produced by Spinifex seedlings ............................................................. 42 

2.5.2.1. Experiment 1 ................................................................................................................ 42 

2.5.2.2. Experiment 2 (herbicide removal) ............................................................................... 45 

2.5.3. Physical parameters ............................................................................................................ 47 

2.5.3.1. Slope gradient .............................................................................................................. 47 

2.5.3.2. Soil moisture and organic matter ................................................................................ 47 

2.5.3.3. Electrical conductivity .................................................................................................. 50 

2.6. DISCUSSION ................................................................................................................................ 51 

2.6.1. Confounding factors to Spinifex seedling survival and growth ........................................... 51 

2.6.2. Positive effects of C. edulis on Spinifex seedlings ............................................................... 53 

2.6.3. Negative effects of C. edulis on Spinifex seedlings ............................................................. 54 

2.6.4. Soil seed bank legacy .......................................................................................................... 56 

2.7. Conclusion and management recommendations ...................................................................... 56 

REFERENCES ...................................................................................................................................... 58 

 



viii 

 

3. Chapter three: Substrate preference and breeding systems in introduced 

Carpobrotus spp., native Disphyma australe and their hybrid. ..................................... 64 

3.1. Abstract ...................................................................................................................................... 65 

3.2. Introduction ............................................................................................................................... 65 

3.2.1. Aims of the study ................................................................................................................ 69 

3.3. STUDY SPECIES ........................................................................................................................... 69 

3.3.1. Carpobrotus spp. and their intrageneric hybrid ................................................................. 69 

3.3.2. Disphyma species ................................................................................................................ 71 

3.3.3. xCarpophyma mutabilis Heenan and Sykes 2010 ............................................................... 71 

3.4. METHODS ................................................................................................................................... 72 

3.4.1. Experiment 1 (Common garden experiment – growth characteristics in different 

substrates) .................................................................................................................................... 72 

3.4.2. Experiment 2 (Field Growth monitoring) ............................................................................ 75 

3.4.3. Experiment 3 (Mating systems) .......................................................................................... 75 

3.4.4. Statistical analysis ............................................................................................................... 76 

3.4.4.1. Experiment 1: common garden experiment ................................................................ 77 

3.4.4.2. Experiment 2: field growth monitoring ....................................................................... 77 

3.4.4.3. Experiment 3: breeding and cross-pollination ............................................................. 78 

3.5. RESULTS...................................................................................................................................... 78 

3.5.1. Growth of cuttings in the common garden experiment ..................................................... 78 

3.5.2. Field growth monitoring ..................................................................................................... 89 

3.5.3. Breeding systems .............................................................................................................. 102 

3.6. DISCUSSION .............................................................................................................................. 106 

3.6.1. Growth comparison and substrate preference ................................................................ 106 

3.6.2. Mating systems ................................................................................................................. 108 

3.6.3. Implications of the Hybrid (xCarpophyma mutabilis Heenan and Sykes 2010) for D. 

australe ....................................................................................................................................... 110 



ix 

 

3.7. Conclusion and implications for management ........................................................................ 111 

REFERENCES .................................................................................................................................... 112 

4. Chapter four: Overall conclusions and recommendations ..................................... 117 

4.1. Interactive effects of C. edulis on Spinifex sericeus and its role in sand dune restoration ...... 118 

4.2. Growth, substrate preference and mating systems of the various iceplant taxa ................... 120 

4.3. Recommendations for restoration of Carpobrotus dominated sand dunes ........................... 122 

4.4. Suggestions for future studies ................................................................................................. 124 

REFERENCES .................................................................................................................................... 126 

Appendices ................................................................................................................................... 128 

Appendix 1: Geographical coordinates of the various sites ........................................................... 128 

Appendix 2: Initial biomass of sample cuttings .............................................................................. 130 

Appendix 3: Allozyme Detection in Disphyma and Carpobrotus .................................................... 132 

Appendix 4: Iceplant - Insect interactions ...................................................................................... 140 

 

 

 

 

 

 

 

 

 

 



x 

 

List of figures 
 

Figure 1.1: Carpobrotus edulis dominated foredune with some Spinifex sericeus ................... 1 

Figure 2:1: Seedlings of Spinifex sericeus ready to be transplanted ....................................... 24 

Fig. 2.2: Map showing the location of Queen Elizabeth Park .................................................. 31 

Fig. 2.3: Error plot  showing the effect of plant location on Spinifex seedling survival in 

December 2010. ............................................................................................................... 37 

Fig. 2.4: A graph showing effect of treatment on Spinifex seedling survival. ......................... 38 

Fig. 2.5: A graph showing effect of plant location on Spinifex survival ................................... 40 

Fig. 2.6: Effect of treatment on Spinifex survival in the herbicide treated plots  .................... 41 

Fig. 2.7: Mean cumulative number of leaves produced by Spinifex plants in experiment 1 in 

relation to treatment over time. ...................................................................................... 43 

Fig. 2.8: Mean cumulative number of leaves per plant in Experiment 1 in relation to plant 

location over time............................................................................................................. 44 

Fig. 2.9: Average number of leaves produced by each Spinifex plant in the Iceplant 

treatment of Experiment 1 in relation to plant location. ................................................. 45 

Fig. 2.10: Graph showing leaf production of Spinifex in the herbicide-treated plots. ............ 46 

Fig. 2.11: Slope gradients of the plots of the different treatments in experiment 1 .............. 47 

Fig. 2.12: Percentage soil organic matter at the bottom and top of the dunes ...................... 48 

Fig. 2.13: Percentage soil moisture content of soil . ............................................................... 49 

Fig. 2.14: Electrical conductivity of soil samples obtained from the top and bottom of the 

dunes ................................................................................................................................ 50 

Fig. 3.1. Photos showing flower colours of the different iceplant taxa found in New Zealand

 .......................................................................................................................................... 64 

Fig. 3.2: Map showing sites from where the iceplant cuttings were obtained. ...................... 73 

Fig. 3.3: Photo of a hybrid stolon showing morphological features referred to frequently ... 74 

Fig.3.4: Boxplots showing final biomass of the cuttings of the various taxa growing in 

different substrate types.   ............................................................................................... 80 

Fig. 3.5: Boxplots showing variability in final biomass of C. chilensis cuttings growing in 

different substrates .......................................................................................................... 81 



xi 

 

Fig. 3.6: The final root mass ratio (RMR) of cuttings of each taxon growing in the various 

substrates ......................................................................................................................... 82 

Fig. 3.7: Boxplots showing leaf production by the cuttings over the four month field growth 

period. ............................................................................................................................... 84 

Fig. 3.8: Average internode length of cuttings of each taxon in the various substrates grown 

over a period of six months. ............................................................................................. 86 

Fig. 3.9: Increase in stolon lengths of the various taxa over the four-month field exposure 

period ................................................................................................................................ 87 

Fig. 3.10: Bivariate correlation between shoot dry weight and number of leaves, and stolon 

lengths .............................................................................................................................. 88 

Fig. 3.11: Final biomass of the hybrid cuttings from the various populations. ....................... 89 

Fig. 3.12: Number of leaves produced by stolons of sample plants of the various taxa over 

each of the growth periods in the field growth experiment ............................................ 91 

Fig. 3.13: Mean lengths of stolons of each taxon over the various growth periods in the field 

growth experiment. .......................................................................................................... 93 

Fig. 3.14: Net number of nodes produced along the main axes of stolons of plants of each 

taxon during the various growth periods in the field growth experiment ...................... 95 

Fig. 3.15: Number of lateral branches produced by a stolon of plants of each taxon over the 

various growth periods in the field growth experiment .................................................. 97 

Fig. 3.16: Estimated shoot dry weight put on by the sample plants of each taxon over the 

various growth periods in the field growth experiment ................................................ 100 

Fig. 3.17: The dry weight to fresh weight ratios of the sample shoots harvested from the 

field. ................................................................................................................................ 102 

Fig. 3.18: Mean flower density of sample plants  of the various taxa during the main 

flowering season of the year 2011. ................................................................................ 103 

Fig. 3.19: Number of seeds per fruit produced by each of the two Carpobrotus species 

subjected to the different breeding treatments. ........................................................... 105 

Fig. 4.1: XCarpohyma mutabilis  on the beach at Day’s Bay, Wellington .............................. 117 

 

 



xii 

 

List of Tables 
 

Table 2.1: ANOVA table showing effect of treatment and location on Spinifex seedling 

survival for the month of December ................................................................................ 37 

Table 2.2: A summary ANOVA table showing effect of treatment and location on Spinifex 

survival for the months of July 2011 through October 2011. .......................................... 39 

Table 2.3: ANOVA table showing effect of treatment and location on Spinifex seedling 

survival in the herbicide removal experiment 1 ............................................................... 41 

Table 2.4: ANOVA table showing effect of treatment and location on the cumulative number 

of leaves produced by plants in experiment. ................................................................... 42 

Table 2.5: ANOVA table showing effect of treatment and location on survival of Spinifex 

plants in experiment 2 during August. ............................................................................. 46 

Table 2.6: Soil organic matter difference between bare and iceplant sites ............................ 48 

Table 3.1: Two-way ANOVA table showing that total dry weights of the cuttings. ................ 79 

Table 3.2: Tukey HSD table comparing biomass of C. chilensis cuttings growing in gravel and 

sand................................................................................................................................... 80 

Table 3.3: Two-way ANOVA table showing effect of substrate on root mass ratio of the 

cuttings. ............................................................................................................................ 82 

Table 3.4: ANOVA table showing effect of substrate and its interaction with taxon on 

increase in the number of leaves of the cuttings over the four-month field exposure 

period. ............................................................................................................................... 84 

Table 3.5: Summary of separate ANOVAs showing that over the four month field exposure 

period substrate had an effect on leaf increase of C. chilensis only. ............................... 85 

Table 3.6:  ANOVA table comparing the lengths of stolon internodes of the various taxa 

growing in different substrate types. ............................................................................... 85 

Table 3.7: Bivariate correlation (Pearson’s R-squared) between shoot dry weight and 

measured parameters of the cuttings and the stolons harvested from the sample field 

plants. ............................................................................................................................... 88 

Table 3.8: Nested ANOVA summary table comparing the number of leaves produced by the 

field sample plants of each taxon over the various growth periods ................................ 90 



xiii 

 

Table 3.9: Tukey HSD table comparing variability in the average number of leaves produced 

by plants of each taxon over the different growth periods ............................................. 92 

Table 3.10: Nested ANOVA table of lengths of the main axes stolons.................................... 92 

Table 3.11: A summary Tukey HSD test table comparing mean stolon lengths  

the different growth periods ................................................................................................... 93 

Table 3.12: Nested ANOVA table showing variability among taxa and among plants of the 

same taxon in the total number of their nodes over each growth period. ..................... 94 

Table 3.13: A summary Tukey HSD test table comparing the aggregate number of nodes 

produced along the main stolons and lateral branches by plants of the various taxa over 

the different growth periods. ........................................................................................... 96 

Table 3.14: Nested ANOVA table showing variability in the number of lateral branches 

produced by the plants in the field growth experiment. ................................................. 96 

Table 3.15: A Tukey HSD table comparing the mean number of lateral branches produced by 

the plants of various taxa in the different growth periods .............................................. 98 

Table 3.16: Summary of multiple linear regressions used to estimate shoot dry weights of 

plants in the field growth experiment .............................................................................. 99 

Table 3.17: Nested ANOVA table showing variability in estimated shoot dry weights among 

the various taxa and plants of each taxon in the field growth experiment. .................... 99 

Table 3.18: A Tukey HSD table comparing the means of the aggregate estimated dry weights 

put on by the shoots of the various taxa over the different growth periods ................ 101 

Table 3.19: Descriptive statistics of number of seeds produced per fruit by the two 

Carpobrotus species subjected to different breeding treatments. ................................ 104 

  



1 

 

Chapter one 

1. Plant interactions and the role of 

exotic species in eco-restoration 

plantings 
 

 

Figure 1.1: Carpobrotus edulis plants dominating the foredune with some Spinifex sericeus 
(foreground) surviving among them. Photo taken by author at Queen Elizabeth Park in November 
2010. 
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1.1. Abstract 
 

Plant community structure is determined by both biotic and abiotic environmental 

conditions.  Investigations of the role of competition in shaping natural plant communities 

were prevalent in previous generations and are still popular.  However, more recent 

experimental research has uncovered the striking influence of facilitation on community 

dynamics.  There is general consensus on the importance of facilitation and competition in 

natural communities, but the importance of competition in highly stressful environments is 

widely contested by plant ecologists.  With the current climatic change, land-use change and 

widespread biotic exchange, natural ecosystems are threatened and ecological functions are 

being lost.  In response to loss of biodiversity, ecological restoration enables us to regain at 

least some of the ecological services.  Ecological restoration will normally aim at managing 

negative plant interactions while enhancing the positive ones.  Here, I outline the influence 

of competition and facilitation on natural plant communities with reference to the role of 

facilitation in eco-restoration.  I also highlight a few examples where exotic species have 

been found to facilitate native ones. 

 

1.2. Introduction 
 

Plant interactions play a key role in regulation of communities and ecosystems 

(Padilla and Pugnaire 2006), and may mediate the impacts of environmental change 

(Brooker 2006). Interactions among plants may have positive, negative or neutral effects.  A 

negative interaction occurs when the presence of a neighbour has detrimental effects on 

the relative success of a plant. Ecologists are said to have been preoccupied with 

competitive processes for a long time (Bertness and Callaway 1994) with nearly all 

influential ecologists since Darwin having held the view that the natural world is shaped by 

conflict (Bruno, Stachowicz et al. 2003).  Notable examples given by Bruno et al. (2003 pp 

119) include “the mathematical models of interspecific competition developed by Lotka and 

Volterra, Gause’s principle of competitive exclusion, and both Hutchinson’s and MacArthur’s 

work on niche and species packing”.  Examples of negative plant interactions include 
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exploitative competition and interference.  Exploitative competition involves a struggle to 

pre-empt space and limiting resources such as light, water and nutrients (Callaway and 

Walker 1997) that determine growth, survival, and fecundity of individual plants (Lamb and 

Cahill 2008). On the other hand, interference includes strategies that improve competitive 

position of a species against competitors by killing, poisoning or intimidation (Levine 1976). 

Chemical-mediated growth inhibition (e.g. allelopathy) is therefore a form of interference.   

 

Facilitation loosely refers to a relationship between two organisms in which at least 

one participant benefits and neither suffers (Bruno, Stachowicz et al. 2003).  Though it was a 

central theme during the initial periods of the development of Ecology as a science, the 

topic of facilitation has suffered some neglect along the way (Brooker and Callaghan 1998).  

However, more recent research clearly indicates that the influence of facilitation on 

population- and community-level variables is at least as important as other factors (Bruno, 

Stachowicz et al. 2003; Padilla and Pugnaire 2006).  Neighbouring plants may provide 

benefits for each other, such as nutrients, shade, more available moisture and protection 

from herbivores (Callaway 1998; Padilla and Pugnaire 2006), but the general importance of 

positive interactions to community diversity, structure and productivity is not always 

acknowledged (Bertness and Callaway 1994).  Recently, there has been an increasing 

interest in facilitation, and its importance for plant community dynamics (Maestre, Bautista 

et al. 2003), in spite of which, little has been done to incorporate it into the conceptual 

framework of ecology (Bertness and Leonard 1997; Bruno, Stachowicz et al. 2003). 

 

The study of plant interactions is as old as the discipline of Ecology itself.  In this 

chapter, I attempt to explore the importance of competition and facilitation in determining 

plant community structure, drawing attention to the role of facilitation, particularly of exotic 

species in ecological restoration. This exercise is by no means exhaustive. Here, interference 

is treated as a mechanism of competition, and facilitation encompasses both commensalism 

and mutualism.   I begin by briefly examining the importance of competition and facilitation 

to community structure before highlighting the impacts of the interplay between the two 

processes. Finally, I sum up with examples where facilitation by exotic species has been 

used in ecological restoration. This chapter does not treat ecological restoration in its strict 
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sense (return to a pre-existing state) and so includes rehabilitation and reclamation as well 

(for terminologies see Aronson, Floret et al. 1993). While there is a lot of literature on 

facilitation and competition, there seems to be significantly less research documenting how 

exotic species influence ecological restoration (D'Antonio and Meyerson 2002). 

 

1.3. Role of competition in shaping plant community structure 

 

Competition has been a central component of many of the basic ecological theories 

that guided plant ecologists (Brooker 2006).   It is frequent among plants, and may be 

absent only in the early stages of the initial colonization (Bazzaz 1979) when density is low.  

Competition has also been found to influence both fitness components of individuals 

(Bengtsson, Fagerström et al. 1994) and the local plant species abundance (Bengtsson, 

Fagerström et al. 1994; Howard and Goldberg 2001).  It is generally believed that the 

structure and function of plant communities are strongly influenced by resource 

competition (Boyden, Binkley et al. 2005) since traits associated with competitive 

dominance also have effects on ecosystem nutrient cycling (Aerts 1999).  For instance, 

according to Aerts (1999), plants in nutrient-poor environments typically exhibit slow 

growth rates as well as low tissue turn-over and thus more nutrient retention ("stress 

tolerant" sensu Grime 1977).  The flipside of this is that those plants of nutrient-rich 

environments typically have greater resource capture and higher tissue turn-over, hence 

faster nutrient recycling. Therefore, by regulating nutrient recycling and in effect its 

availability to other species, competition influences the structure of plant communities. It 

has been suggested that for plant species to coexist they have to be differentiated in their 

abilities to compete for the various limiting resources (Tilman 1980). The principle of 

competitive exclusion posits that closely related taxa cannot coexist because they have 

similar requirements for which they compete more intensely than with their distantly 

related counterparts (Mayfield and Levine 2010).  This implies that competition results in 

local diversity because resource partitioning would allow unrelated taxa to coexist but not 

closely related ones with similar resource requirements.  On the other hand, Bengtsson et al. 

(1994) noted in a review that species richness generally increases when dominants are 
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removed, supporting the assumption that dominant species often have negative effects on 

diversity.   This seems to be in agreement with Grime (1977) that a superior competitor for 

one resource is also a superior competitor for all the other resources, in effect suppressing 

diversity. Although many plant scientists agree that interspecific competition is an 

important determinant of structure and dynamics of plant communities, there is much less 

concurrence on the mechanisms involved and its significance to community dynamics in 

different environments (Aerts 1999).  

 

Environmental productivity is said to influence the intensity with which plants 

compete for resources as well as the specific resources for which they compete. According 

to Tilman (1988), the intensity of competition remains the same but the resources for which 

plants compete may change depending on habitat productivity. In fertile environments with 

dense canopies, competition is mainly for light and the successful competitor will have traits 

that lead to overtopping of its neighbours (Aerts 1999).  In nutrient-poor environments 

competition is mainly for nutrients (Aerts 1999) but the importance, or even existence, of 

competition in such an environment has been strongly debated and persistently questioned 

throughout the history of ecological science (Fowler 1986; Grace 1993). This debate on the 

significance of competition to plant community structure has recently been dominated by 

the Grime and Tilman schools of thought, especially as relates to its importance in low 

productivity habitats (Grace 1991).  Grime (1977) noted that the observed mortality of 

neighbours could not be exclusively a result of competition but could just as well be 

attributed to the capacity of a plant to exploit the features of the environment.  Grime 

(1977) argues that in a nutrient-poor environment plant success is a result of nutrient 

capture and retention (also Aerts 1999) and not superior competitive ability, concluding that 

competition is rather unimportant in such habitats. Tilman (1989) on the other hand, 

demonstrated in an experiment involving bunchgrass (Schizachyrium scoparium) that 

competition may be strong regardless of  habitat productivity, and that plant success is a 

result of its ability to deplete resources to levels too low for other species but to which it is 

tolerant (Tilman 1989). The Grime-Tilman debate (Thompson 1987; Tilman 1987; Thompson 

and Grime 1988) has been synthesised by Grace (1991) who concluded that their 
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disagreements are mostly about different aspects of competition; while Tilman discusses 

intensity of competition, Grime refers to its importance (see also Brooker, Kikvidze et al. 

2005; Brooker and Kikvidze 2008; Kikvidze and Brooker 2010). Competition intensity refers 

to the reduction in the level of performance of a plant as a consequence of presence of a 

neighbour while competition importance refers to the impact of a neighbour as a 

proportion of the combined effects of all biotic and abiotic environmental factors (Welden 

and Slauson 1986). The persistent debate on competition is said to stem mainly from failure 

of researchers to distinguish between competition intensity and its importance (Brooker 

and Kikvidze 2008). 

 

Another negative plant interaction is allelopathy, a non-resource interaction where 

one plant has negative effects on another through release of chemical compounds into the 

environment (Inderjit, Wardle et al. 2011).  This phenomenon has been suggested as a 

mechanism for the remarkable success of invasive plants that frequently establish virtual 

monocultures where diverse communities once thrived (Hierro and Callaway 2003).  For 

example, the diffuse knapweed (Centaurea diffusa) invades and dominates native 

bunchgrass communities of North America through allelopathic effects of its root exudates 

(Brooker 2006) to which native communities lack co-evolved tolerance (Callaway and 

Aschehoug 2000).  Bazzaz (1979) noted that several members of pioneer plants produce 

toxins, mostly phenolic compounds that are inhibitory to several other species.  Unlike 

resource competition that may produce diversity, allelopathy generally promotes the 

establishment of monocultures. 

 

Competition plays an important role in biological invasions.  Colonization, along with 

modification of many ecosystems throughout the world by exotic plants, and a resultant 

reduction in biodiversity, has become a commonly observed phenomenon (Vitousek 1990).  

A review of competitive interactions between native and exotic plants suggested that the 

spread and establishment of the exotic species is related to their ability to competitively 

suppress resident species (Levine, Vilà  et al. 2003).  The extent to which the success of an 

invader is explained by its competitive superiority, or the disturbances and dispersal that 

allow them to become established, is central to the debate on the importance of 
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competition and plant invasion and is valuable to the design of strategies to control invaders 

(Cuesta, Villar-Salvador et al. 2004). While there are many other explanations for plant 

invasions, such as enemy release (Keane and Crawley 2002), evolution of increased 

competitive ability (Blossey and Notzold 1995), and novel weapons hypothesis (Callaway 

and Ridenour 2004), competition still remains a central driver of biological invasions in 

addition to regulation of community composition. 

 

1.4. Facilitative interactions among plants 

 

Facilitative interactions have been demonstrated in a broad range of ecosystems, 

with most evidence coming from severely stressful environments such as semi-arid areas 

(Gomez-Aparicio, Zamora et al. 2004), salt marshes (Bertness and Shumway 1993; Didham, 

Tylianakis et al. 2007), and intertidal zones (Bertness and Leonard 1997).  Direct positive 

interactions occur when neighbours modify environmental conditions, leading to positive 

effects (Bertness and Callaway 1994) for others. Presence of stress-tolerant plants can 

ameliorate potentially limiting physical stress in their immediate vicinity, thereby providing 

favorable sites where less tolerant species can then succeed (Bertness and Callaway 1994; 

King 2008).  

 

The positive effect of an adult plant on seedlings of another species is called the 

“nurse-plant” effect (Bertness and Callaway 1994; Padilla and Pugnaire 2006) and has been 

found in harsh habitats, suggesting that habitat amelioration by neighbours is important for 

positive recruitment events (Bertness and Callaway 1994).  Nurse plants concentrate 

nutrient cycling directly under their canopies (Callaway 1995; King 2008).  For example, Kahi 

and colleagues (2009) observed that soil nitrogen content under canopy of mesquite 

(Prosopis juliflora) was 45% higher than in open areas.  Other plants respond positively to 

such nutrient islands, leading to the formation and maintenance of vegetation patches 

around shrubs (King 2008).  It has been experimentally determined that many shrubs acted 

as nurse-plants, resulting in increased survival of planted seedlings (Castro, Zamora et al. 

2004; Gomez-Aparicio, Zamora et al. 2004).  Generally, nurse-plant effects contribute to 
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recruitment and survivorship of regenerating beneficiary species and have been used widely 

in forestry (e.g. Castro, Zamora et al. 2004; Cuesta, Villar-Salvador et al. 2004; Gómez-

Aparicio, Gómez et al. 2005; Sullivan, Williams et al. 2007; Smit, den Ouden et al. 2008).  For 

instance, Aerts et al. (2007) found that seedlings of African wild olive (Olea europaea), 

survived better under shrub canopy of Euclea racemosa than in open fields.  

There is improvement in soil moisture under the canopies of benefactor plants. This 

may be due to hydraulic lift (Richards and Caldwell 1987; Prieto, Martínez-Tillería et al. 2010) 

by the deeper roots of the larger plant.  At night when transpiration is low, water absorbed 

by the roots of benefactor plants from the deeper soil layers tends to seep into the 

superficial layer (Caldwell and Richards 1989) where the beneficiary herbaceous species 

have their roots concentrated and consequently get access to this water.  For example, 

Caldwell and Richards (1989) conducted a field experiment where they dipped roots of 

Artemisia tridentata (a deep rooted shrub) in water that has been highly enriched with 

hydrogen isotope, deuterium and observed that the stable isotopes appeared in the 

neighbouring tussock grass, Agropyron desertorum (shallow-rooted) confirming the 

phenomenon of hydraulic lift. Prieto and colleagues (2010) demonstrated that there was 

increased soil water potential in superficial layers after covering shrubs of five different 

species with opaque plastic bags for 48-72 hours. The shading effect of the nurse plant 

species also produces a microhabitat with lower temperature and wind speeds, as well as 

higher humidity, resulting in reduced transpiration demands and thermal stress (Holmgren, 

Scheffer et al. 1997; Aerts, Negussie et al. 2007) that further contributes to positive 

recruitment of the under-story beneficiary species. 

 

Plants growing in oxygen limited soils are known to passively conduct oxygen from 

leaves to their roots that may then diffuse into the surrounding medium where it could 

oxidize harmful dissolved chemicals and ameliorate anoxia for other species (Callaway 1995). 

In a field and greenhouse experiment, Callaway and King (1996) found that narrow-leaved 

willow (Salix exigua) seedlings survived only in the presence of earenchymatous Typha 

latifolia at environmental temperatures of 11-12°C.   Black rush (Juncus gerardi), has also 

been observed to oxygenate the surrounding soil through its aerenchyma tissues that serve 
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as conduits for oxygen delivery to the rhizosphere (Hacker and Bertness 1999). This shows 

that under certain environmental conditions highly aerenchymatous species can aerate soil 

near its roots, improving growth of the less aerenchymatous neighbours that would 

otherwise not perform well in anoxic habitats like marshes (Callaway and King 1996).  

 

Benefactor plants modify the substrate, making it more suitable for supporting other 

species. Sand-binding species stabilize the substrate for eventual colonization by successive 

sand dune plants (Lichter 2000). Leaf litter of such pioneer plants has been observed to 

improve soil structure and increase its cation exchange capacity, and water holding capacity 

(Hunter and Aarssen 1988). Later arriving species can then respond positively to the 

improved soil micro-conditions. 

 

Protection from herbivores is an indirect form of facilitation where highly palatable 

species gain protection by growing among thorny (Callaway 1995) or less palatable 

neighbours (Callaway, Kikvidze et al. 2000; Brooker, Maestre et al. 2008). This phenomenon 

is widespread in rangelands where grasses find refuge among undesirable neighbours. 

 

Co-flowering species have been shown to facilitate each other when the pollinator 

attraction of one species is greater than that of its neighbour (Callaway 1995; Padilla and 

Pugnaire 2006). In a field experiment, Hegland et al. (2009) found that positive interactions 

for pollinator attraction were more numerous than negative ones. In an experiment to test 

whether pollination of Raphanus raphanistrum was enhanced by other co-flowering species, 

Ghazoul (2006) found that pollination visits increased when it occurred with at least one of 

Cirsium arvense, Hypericum perforatum and Solidago canadensis compared to when it 

occurred alone. 

 

There is widespread resource sharing among neighbouring plants through root grafts 

(Graham and Bormann 1966) and mycorrhizal networks (Hunter and Aarssen 1988; Selosse, 

Richard et al. 2006).  An example is nitrogen transfer between Casuarina cunninghamiana 

and Eucalyptus maculata (He, Critchley et al. 2005). Woods and Brock (1964) found that 

radioisotopes of phosphorous and calcium introduced into the stumps of red maple (Acer 
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rubrum) appeared in 19 other neighbouring species.  Although they did not come up with a 

definitive mechanism of the transfer, Woods’ and Brock’s (1964) experiment shows that 

transfer of materials among neighbouring plants is widespread. The breadth of literature on 

plant facilitation is extensive and the bottom line is that facilitation is a ubiquitous process 

in harsh environments where the presence of a neighbour enhances recruitment, 

survivorship, and performance of a beneficiary plant. 

 

1.5. Competition-facilitation interplay and its influence on plant community 

structure 

 

The composition and structure of a community are shaped by both abiotic factors 

and interactions among organisms, though the specific types of interactions partly 

responsible are usually less evident in plant communities (Holzapfel and Mahall 1999).  In 

current models of plant community structure, it is widely accepted that positive and 

negative interactions operate simultaneously (Bertness and Callaway 1994; Callaway and 

Walker 1997; Holmgren, Scheffer et al. 1997; Brooker and Callaghan 1998). A growing 

number of studies indicate that the net outcome of most interactions between 

neighbouring plants is determined by the relative strength of facilitation and competition 

(Aguiar, Soriano et al. 1992; Callaway and Walker 1997; Holmgren, Scheffer et al. 1997; 

Holzapfel and Mahall 1999; Michalet, Brooker et al. 2006; Villarreal-Barajas and Martorell 

2009). In highly stressful conditions, initial colonizers tend to ameliorate stress and facilitate 

further plant colonization (Bertness and Shumway 1993). However, the search for general 

patterns in the relationship between resource availability and the intensity or importance of 

competition has been controversial in population and community ecology (Boyden, Binkley 

et al. 2005). Reviews on these patterns (Callaway 1995; Bruno, Stachowicz et al. 2003; 

Brooker, Maestre et al. 2008) generally suggest that plant interactions shift from 

competition to facilitation along stress gradients (Bertness and Callaway 1994).  Positive 

interactions are suggested to be more important in plant communities as abiotic stress or 

consumer pressure increases, while competition dominates when physical stress and 

consumer pressure are both relatively subtle (Bertness and Callaway 1994). The reasoning is 

that harsh environments may restrict plants from acquiring resources, and any amelioration 
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of these conditions will favour growth to the extent that it outweighs the competitive 

impacts of growing in close associations, whereas in benign environments amelioration of 

environmental conditions has a minimal impact and the balance is tipped towards negative 

effects (Olofsson, Jon et al. 1999). Grime (1977) reasons that while the prevalent plant 

coping strategy in productive, less disturbed environments is competition, stress tolerance 

is more important in persistently unproductive habitats.  Brooker and Callaghan (1998) also 

claim that competition is rather unimportant in nutrient-poor environments and its intensity 

increases only with increasing productivity. Pugnaire and Luque (2001) compared biomass 

of understory species of the shrub Retama sphaerocarpa at a highly fertile valley bottom 

site and steeper rocky outcrops with their counterparts growing outside the shrub canopy 

and concluded that facilitation weakened with increase in soil fertility. Small-flowered 

forget-me-not (Myosotis laxa) was observed to have benefited significantly from soil 

oxygenation when grown with Typha latifolia at low soil temperatures, but the positive 

effects disappeared at higher soil temperatures and the interaction became competitive 

(Callaway and King 1996). Holmgren and Scheffer (2010) however, propose that facilitation 

is more important in mild, not severe environments, arguing that although the relative role 

of facilitation increases along stress gradient, its absolute effect is largest at moderately 

stressful conditions. They argue that under highly stressful conditions facilitation by a 

neighbour may not be sufficient enough to allow any growth as competition by the 

“benefactor” for the same resource may cancel out the effect of facilitation (Holmgren and 

Scheffer 2010).   

 

The magnitude of competition experienced by species is said to vary among life-

history stages and size asymmetry (Howard and Goldberg 2001), and may affect the 

outcome of interactions between plant species (Callaway and Walker 1997). In many cases, 

seedlings of beneficiary species are found spatially associated with nurse plants, whereas 

adults are not, suggesting that the importance of competition and facilitation shifts among 

the various life-history stages (Callaway and Walker 1997; Miriti 2006).  Whereas naturally 

established seedlings of African wild olive (Olea europaea ssp. Cuspidata) were found 

restricted to sites under the canopy of pioneer shrub Bush guarri (Euclea racemosa ssp. 

Schimperi), the adults were not (Aerts, Negussie et al. 2007). Similarly, the sahuaro (saguaro) 
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cactus (Carnegiea gigantean) of the Sonoran Desert is commonly limited to areas beneath 

the canopy of its nurse-plant, the foothill paloverde (Cercidium microphyllum), but the close 

proximity was observed to lead to increased stem die-back and greater mortality of the 

nurse tree, C. microphyllum (McAuliffe 1984).  Archer et al. (1988) found that once Prosopis 

glandulosa created habitat suitable for colonization by other woody perennials, the 

colonizers were able either to outcompete the original Prosopis nurse plant or to prevent it 

from reproducing in the clusters. Such patterns of nurse plant mortality indicate that some 

native species that begin their lives as the beneficiaries become significant competitors with 

their former exotic benefactors as they mature (Callaway and Walker 1997). These 

observations suggest that the positive effects of benefactors are strong when beneficiaries 

are young but competitive interactions dominate as the beneficiaries get older and larger 

(Callaway and Walker 1997; Schwinning and Weiner 1998; Miriti 2006). It is suggested that 

acquisition of resources usually depends more on plant size than on species identity 

(Bengtsson, Fagerström et al. 1994) and therefore asymmetry in competition is mainly a 

result of differences in plant size rather than species differences. Some benefactor species 

seem to play an altruistic role by contributing to survivorship of other species at their own 

expense. In summary, relationships between plant species can change from positive to 

negative with changes in size of the interacting species. 

Other than degrees of environmental stress, ontogeny, and size asymmetry, shifts in 

dominance between facilitative and competitive outcomes also depend on density and 

successional stage. Thickets of early successional species often inhibit colonization by later 

successional species (Berkowitz, Canham et al. 1995) by using up resources and starving 

later arrivals (Bazzaz 1979). 
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1.6. Role of facilitation by exotic plant species in eco-restoration 

 

Control of the introduction and spread of invasive exotic species is a highly costly 

and time-consuming undertaking. For instance, invasive species are reported to have cost 

New Zealand about $3.4 billion (just under 2% of GDP) in control expenditure and 

production losses in the year 2008 (Biosecurity 2009). In the United States, the annual costs 

of invasive species are estimated at between US$120-138 billion (Pimentel, Lach et al. 2000; 

Pimentel, Zuniga et al. 2005). In addition to economic costs, exotic plant invasions pose 

serious threats to native biodiversity and ecosystem functioning (Spence, Ross et al. 2010). 

It has been suggested that there is need for development of novel, low-cost and effective 

restoration techniques for maintaining these ecosystem functions and services (Hobbs, 

Arico et al. 2006). Facilitation, having been recognized as an important structuring force, is 

increasingly being considered as an ecological mechanism for developing vegetation 

restoration tools, particularly for severe and highly disturbed environments (Brooker and 

Callaghan 1998; Brooker, Maestre et al. 2008).  Most restoration projects are typically 

preceded by mechanical or chemical removal of weed species (Berger 1993). For example, in 

reforestation, shrub cover is cleared before planting tree seedlings (Aerts, Negussie et al. 

2007) as they are thought to compete with the seedlings (Gomez-Aparicio, Zamora et al. 

2004). This may not be advisable given that shrubs may sometimes have positive impacts on 

the seedlings (Castro, Zamora et al. 2004) as demonstrated by studies referred to in the 

sections above. Removal of plants, even exotic ones, is said to have negative impacts on the 

ecosystem (Zavaleta, Hobbs et al. 2001; D'Antonio and Meyerson 2002). Moreover, clearing 

shrub cover is a disturbance that would create empty niches which may favour 

establishment of undesirable invasive species (Hierro and Callaway 2003). It is prudent to 

find ways of using the extant exotics positively as it may sometimes be necessary to use 

fast-growing exotic species in restoration of highly degraded sites (D'Antonio and Meyerson 

2002).  

 

Most studies of biological invasions have focused solely on the direct negative 

impacts of non-indigenous species on native biota (Rodriguez 2006). Incorporating 

facilitative interactions of invasive species into future ecological research will be important 
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to determine their relative strength in comparison to competition and changes in ecosystem 

processes and biodiversity (Rodriguez 2006). Some ecological traits of invasive exotic 

species, including nitrogen fixation, fast growth, and resistance to stress contribute to their 

ability for colonizing new areas (Noble 1989). On the other hand, these traits can be of 

relevance to fostering ecological restoration as an alteration of ecological conditions, and 

resource flow may promote the establishment of late successional species (Ehrenfeld 2003; 

Levine, Vilà  et al. 2003; Ewel and Putz 2004). There are however, very few examples of 

research where facilitation by exotic species have been exploited for restoration. In a study 

at a degraded coastal pasture site in Puerto Rico it was observed that seedlings of several 

secondary forest species were abundant in the understory of exotic Albizia lebbek 

plantation but absent from grass control plots (Parrotta 1992), suggesting an important role 

played by such exotic plantations in forest regeneration. Similar observations were made by 

Chapman and Chapman (1996) in Pinus spp. and Cupressus lusitanica plantations, and under 

the canopies of the exotic Acacia mangium by Kuusipalo et al. (1995). While undisturbed 

forest habitats are important for conservation at a landscape scale, it has been suggested 

that exotic plantations may complement them by providing additional habitats for forest 

plant species (Hylander and Nemomissa 2009). 

 

Invasive nitrogen-fixing plants can facilitate neighbouring plants. For example, in the 

lowland pampas of Argentina, the vegetative growth and aboveground biomass of native 

perennial grass Paspalum dilatatum increased in the presence of non-indigenous nitrogen-

fixer, Lotus tenuis (Quinos, Insausti et al. 1998). Gorse (Ulex europaeus) is an invasive 

pioneer nitrogen-fixer introduced to New Zealand that has been observed to enrich the soil, 

making way for native forest regeneration (McQueen, Tozer et al. 2006; Sullivan, Williams et 

al. 2007). Gorse is also said to shade out invasive grasses in old fields, creating suitable 

microsites for regeneration of native woody species such as Pittosporum eugenioides that 

eventually replace it (Norton 2009).  An invasive aquatic species (Hydrilla verticillata) that 

was originally thought to have an extremely high potential of eliminating submerged aquatic 

species in the United States has recently been reported to have beneficial effects on habitat 

quality, allowing native species to re-establish and maintain themselves (Hershner and 

Havens 2008). 
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According to Van Aarde et al. (1996), Richards Bay Mining Company in South Africa 

removed all the vegetation from sand dunes before mining.  After mining, the dunes were 

stabilized by sowing seeds of a mixture of exotic species such as babala grass (Pennisetum 

americanum), sun hemp (Crotalaria juncea), and a mixture of native grass seeds, forming a 

dense cover within a month. After 6-8 months the introduced grass species died off, leaving 

the local weeping love grass (Eragrostis curvula) after ameliorating surface microclimate for 

germination and subsequent establishment of the indigenous species (Van Aarde, Ferreira 

et al. 1996).  Berens et al. (2008) quantified seed rain and seedling establishment of 

heterospecific woody species under fruiting exotic guava (Psidium guajava) trees in farms 

around Kakamega, Kenya and found that 93% of the seedlings were animal dispersed native 

species from the nearby Kakamega forest. Guava tree, though invasive in some regions, can 

serve as focal points for restoration in degraded areas by attracting seed dispersers (Berens, 

Farwig et al. 2008).  Similarly, reclamation of derelict old quarries at Bamburi, Kenya using 

the exotic whistling pine (Casuarina equisetifolia) succeeded in ameliorating the salinity and 

nutrient deficiency, allowing regeneration of native bird-dispersed plants (Siachoono 2010). 

The abandoned gaping quarries at Bamburi are now a nature park where native plants are 

increasing in abundance and diversity (pers. observation).  Fischer et al. (2009) tested 

whether the invasive Cinchona species had facilitative effects in simplified tropical Hawaiian 

systems and found that there were significantly more endemic herbs and shrubs under 

canopy of the invader than in uninvaded plots. Similar observations were made under 

invasive shrub Pyracantha angustifolia by Tecco and colleagues (2006).  

 

Another area that may not have received sufficient attention is the mediation by 

exotic ecosystem engineers in creating micro-conditions suitable for native species 

colonization or substituting extinct native species by providing the same ecological services 

(Griffiths and Harris 2010). For example, Aldabra giant tortoises (Aldabrachelys gigantea) 

introduced to several small islands surrounding Mauritius, appear to have successfully 

substituted the herbivory and seed dispersal functions of native tortoises that recently 

became extinct (Griffiths, Jones et al. 2010). Taxon substitutions have been proposed as a 

new approach for ecological restoration (Donlan, Berger et al. 2006) and Hansen (2010 pp 
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124-125) has outlined proposals where extinct plant species could be substituted by related 

extant ones. 

 

1.7. Research aims 

 

Various studies (e.g. Castro, Zamora et al. 2004; Gomez-Aparicio, Zamora et al. 2004; 

Aerts, Negussie et al. 2007) have shown that restoration via nurse-plant facilitation is viable. 

However, there are only a few examples of restoration using facilitation by exotic species. 

There is need for more research into facilitative effects of exotic plants on native species 

and their possible role in ecological restoration. 

 

This thesis aims to investigate competitive and facilitative influence of the invasive 

South African iceplant (Carpobrotus edulis) on native plants, specifically Spinifex sericeus, 

with particular reference to implications of these interactions for dune restoration in New 

Zealand. It further explores the growth rates, substrate preferences and mating systems of 

the exotic and native iceplant taxa found in New Zealand. The information gathered will add 

to the existing knowledge base on the ecology of iceplant taxa found in New Zealand and in 

advising coastal sand dune restoration practitioners. 

 

1.8. Thesis structure 

  

The remaining sections of the thesis are divided into three chapters. Chapter two 

investigates the competitive and facilitative effects of C. edulis on Spinifex. Chapter three 

examines the ecology of iceplant taxa found in New Zealand in terms of their in-situ growth, 

substrate preference and mating systems. Chapter four is a summary of the findings of the 

research and recommendations for future work. Chapters two and three have been 

prepared as manuscripts for journal submission and may differ in style, and contain some 

repetition. 
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Chapter two 

2. Mixed effects of invasive Carpobrotus 

edulis (Aizoaceae) on Spinifex sericeus 

and its implications for sand dune 

restoration 

 

 

Figure 2:1: Seedlings of Spinifex sericeus (foreground) ready to be transplanted into plots where 
iceplant (C. edulis) was intact, removed or never existed. Photo taken by author on 15th November 
2010 at Queen Elizabeth Park. 
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2.1. Abstract 
 

New Zealand has experienced catastrophic losses to its native biodiversity as a 

consequence of the impacts of exotic species. While the outcome of species invasions 

depends on interactions between exotic and resident native species, it has been noted that 

most studies of biological invasions have focused solely on the direct negative impacts of 

non-indigenous species on native biota. Yet negative and positive interactions between 

neighbouring plants operate simultaneously. A research project involving neighbour 

removal was initiated on coastal sand dunes with the main aim of studying the effects of 

Carpobrotus edulis on establishment of Spinifex sericeus at the foredune region. 

Carpobrotus edulis protected Spinifex against storm erosion, sand-blasting and salt sprays 

while simultaneously suppressing its leaf production. Suppression of Spinifex leaf production 

was more pronounced at top of the dune where stress elements are presumably more 

benign. There was no evidence of allelopathic suppression of Sinifex by C. edulis. 

 

2.2. Introduction 
 

2.2.1. Invasive species as threats to native biodiversity 

 

Invasion of natural communities by exotic species is often cited as the greatest 

threat to biodiversity, second only to habitat destruction (Vitousek, D'Antonio et al. 1997; 

Kolar and Lodge 2001; Shaw 2003).  Increased international human travel and trade have 

led to widespread dispersal of plant and animal species (Mack, Simberloff et al. 2000) such 

that exotic plants have now colonized and changed many ecosystem properties throughout 

the world (Vitousek 1990).  Invasive species result in global biotic homogenisation and loss 

of biodiversity through replacement of native, locally distributed species with widespread, 

non-native species (Olden, Poff et al. 2004). Globally, about 10% of introduced species are 

reported to have become naturalised, while those that have become invasive constitute 

around 1% (Williams and West 2000; Richardson and Pyšek 2006). Although the proportion 

of exotic naturalised plant species that successfully become invasive seems negligible, they 
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can cause substantial modifications to indigenous biodiversity and ecosystem functions 

(Williams and West 2000). Invasive species simplify communities, causing them to suffer a 

loss of functional diversity, potentially reducing community stability and resistance to 

environmental change (Olden, Poff et al. 2004).  As many as 42% of endangered species are 

said to be on the brink of extinction, primarily due to invasive species (Pimentel, Zuniga et al. 

2005) often stemming from strong competition (Wilcove, Rothstein et al. 1998). Such 

competition may further be underlain by a high propagule pressure (Lockwood, Cassey et al. 

2005), contributing to the success of the invasive species to the detriment of native ones. 

New Zealand has experienced catastrophic losses to its native biodiversity as a 

consequence of the impacts of exotic species (Jay, Morad et al. 2003) that have contributed 

to a decline of 59% of New Zealand’s threatened native plant species (Dopson, de Lange et 

al. 1999).  Over 25,000 species of plants have been introduced deliberately for agriculture, 

horticulture, forestry and as garden ornamentals, as well as accidentally (Taylor and Smith 

1997).  Many of these introduced species have gone on to establish populations in the wild 

so pervasively that naturalised exotic vascular plants now outnumber native New Zealand 

species (Taylor and Smith 1997; Williams and West 2000).  

 

2.2.2. Threats to New Zealand coastal sand dunes  

 

One distinctive feature of New Zealand’s natural landscape that is now classified as a 

highly threatened ecosystem, partly by exotic species, is its coastal sand dunes (Sawyer 

2004; Hilton 2006). The natural character of the coastal dunes has been lost from over 70% 

of their extent between the 1950s and 1990s (Hilton 2006) due to a combination of factors 

such as coastal development, farming, and forestry  in addition to invasion by introduced 

plant and animal species (Hilton, Macauley et al. 2000). Comprehensive reviews of these 

threats have been carried out in recent years by researchers (e.g. Gadgil and Ede 1998; 

Hilton 2006).  Frequent disturbance regimes by wave and wind erosion that create open 

niches make coastal sand dunes highly susceptible to invasions by exotic plants.  The fact 

that a large population of New Zealanders live within 10 km of the coastline (Spence, Bergin 
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et al. 2007) may increase propagule pressure of exotic plants, some of which have been 

successful garden escapees. Sand dune erosion has been further exacerbated by 

inappropriate use of four-wheel drive vehicles and trampling by humans (Milne and Sawyer 

2002). Yet, they are important ecosystems that are a popular place for recreation (Spence, 

Bergin et al. 2007).  The fluid form of the sand dunes and their ability to regenerate provides 

excellent natural buffering of the coastline against storm actions (Carter 1991; Dahm, Jenks 

et al. 2005) – a function which will become increasingly important in the face of the 

expected rise in sea levels and greater frequency of storm events (NIWA 2008). Native sand 

dune plant species like pīngao (Ficinia spiralis) are of cultural significance to the Māori 

where they were used for weaving. Together with other foredune species such as Spinifex 

sericeus (Kowhangatara), they provide habitat for many rare and specialised plant and 

animal species like the endemic katipō (Latrodectus katipō) (Patrick 2002).  Despite their 

conservation value, coastal dunes are constantly under threat from human constructions 

and leisure activities, and from biological invasions by exotic plants (Maltez-Mouro, Maestre 

et al. 2010). 

 

2.2.3. Sand dune restoration efforts in New Zealand 

  

In some early restoration projects in New Zealand, marram grass (Ammophila 

arenaria), the South African iceplant Carpobrotus edulis, and Carpobrotus chilensis were 

used to stabilise bare sand, because of their rapid growth, and tolerance to exposed 

conditions and sand burial.  These exotic species have displaced native sand binding plants 

in the majority of sand dune areas (Partridge 1995 ), significantly altering the natural form 

and function of the dunes (Hilton, Macauley et al. 2000). Carpobrotus edulis, which is the 

focus of the present study, has been reported to be a problem species in areas outside its 

native range, including in California (Albert, D'Antonio et al. 1997; Vilà, Weber et al. 1998)  

and the Mediterranean Basin (Suehs, Affre et al. 2004; Vilà, Siamantziouras et al. 2008), 

displaying properties typical of an invader.  Carpobrotus edulis often forms dense 

impenetrable mats which seem barely affected by herbivory or competition from native 

plants (Maltez-Mouro, Maestre et al. 2010). It causes smothering, thus suppressing growth 
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and regeneration of native flora (Bartomeus and Vilà 2009; Maltez-Mouro, Maestre et al. 

2010). It is said to compete aggressively with native plant species for space and resources 

(D'Antonio and Mahall 1991; D'Antonio 1993). Because of its invasiveness and presumed 

threats to native flora, Carpobrotus edulis is considered an unwanted organism in New 

Zealand (Biosecurity New Zealand 2008).   

Many New Zealand coastal community groups are taking action to restore their local 

patches of sand dunes; typically by removing the exotic species and planting foredune sand-

binding grasses and sedges (e.g. the native Spinifex and pingaō, Ficinia spiralis).  Yet these 

exotic plants may have some facilitative effect on the native species.  Although Carpobrotus 

edulis is said to displace native foredune flora, few, if any studies, have documented how 

native pioneer plants that are well adapted to frequent disturbance events have been 

displaced by this adventive species.  The displacement notion may have been inferred from 

the fact that C. edulis stands are simple, nearly homogenous communities with very few co-

occurring native plants, which may not necessarily be a product of displacement but a 

colonization of an empty niche by the adventive species in the absence of propagules of 

native pioneer species.  Carpobrotus edulis may as well have a role as a useful stabiliser, 

creating appropriate micro-conditions suitable for establishment of native species.  

However, there is little quantitative information on how it interacts with other fore-dune 

species.  

 

2.3. Purpose of the study 
 

The outcome of species invasions depends on interactions between exotic and 

resident native species (Diez, Sullivan et al. 2008).  It has been noted that most studies of 

biological invasions have focused solely on the direct negative impacts of non-indigenous 

species on native biota (Traveset, Brundu et al. 2008). However, negative and positive plant 

interactions between neighbouring plants operate simultaneously (Bertness and Callaway 

1994; Brooker and Callaghan 1998) and the net outcome is determined by the relative 

strength of each process (Michalet, Brooker et al. 2006; Villarreal-Barajas and Martorell 
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2009). Therefore, incorporating facilitative interactions of invasive species into ecological 

research is important to help determine the relative contribution of competition and 

facilitation to changes in ecosystem processes and biodiversity (Traveset, Brundu et al. 

2008). On one hand, some ecological traits of invasive exotic species such as nitrogen 

fixation, fast growth, and resistance to stress, contribute to their ability to colonize new 

areas (Noble 1989). On the other, these traits can be exploited to foster ecological 

restoration, since alteration of ecological conditions and resource flow may promote the 

establishment of other species (Ehrenfeld 2003; Levine, Vilà et al. 2003; Ewel and Putz 2004). 

I initiated a research project at Queen Elizabeth Park along Kapiti Coast, New 

Zealand where erosion of the dunes by the high seas during occasional storms has been of 

increasing concern to the management.  Natural dune repair after storm events depends on 

presence of appropriate sand-trapping vegetation on the dune face (Bergin, Miller et al. 

2007).  While exotic species such as C. edulis have been used to stabilise dunes, it is deemed 

ineffective in repairing storm-damaged dunes between storm episodes (Bergin, Miller et al. 

2007), probably because its prostrate growth form may not help trap as much sand as 

upright plants.  To enhance self repair by the dunes, the management of Queen Elizabeth 

Park have initiated some restoration projects in gentler sections by removing C. edulis and 

planting Spinifex sericeus, a native stoloniferous sand-binding grass, in addition to pingaō 

(formerly Desmoschoenus spiralis) – now renamed Ficinia spiralis (Muasya and de Lange 

2010).  In line with the restoration goals of the management, the research project was 

initiated with the main aim of studying the effects of Carpobrotus edulis on establishment of 

Spinifex sericeus at the foredune region.  The aims of this experiment were to determine (i) 

whether C. edulis has positive facilitative effects or negative competitive effects on Spinifex; 

(ii) whether the effects differ along the gradient of the dune face, (iii) if C. edulis has any 

allelopathic legacy that hampers establishment of Spinifex. 
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2.4. MATERIALS AND METHODS 

2.4.1. Study site 

 

Queen Elizabeth Park is located 40km North of Wellington, New Zealand between 

Paekakariki and Raumati South (40°56’S, 174°57’E and 40°58’S, 174°59’E).  The terrain 

consists of undulating dunes characterised by steep seaward slopes exposed to prevailing 

westerly winds.  There are two small streams that run into the sea at this section supplying 

some sand (Fig. 2.2) but the main sand supply seems to be from blowouts at the dune face 

that is blown inland at intervals by the westerly winds.  The highest points of the dunes are 

elevated roughly between 4-10m above sea level with slope of the eroding foredune face 

ranging from 32-52°.  The dunes of the park were recognised as “Recommended Area for 

Protection” in the 1992 Protected Natural Areas Programme Survey of Foxton Ecological 

District (Ravine 1992).  The dune face is dominated by South African iceplant, Carpobrotus 

edulis interspersed with bare spaces.  Other plants present include marram (Ammophila 

arenaria), spinifex (Spinifex sericeus), shore bindweed (Calystegia soldanella), and purple 

groundsel (Senecio elegans).   
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 Fig. 2.2: Map of North Island, New Zealand (A) and Wellington region (B) showing the 
location of Queen Elizabeth Park. 
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2.4.2. Study species 

 

2.4.2.1. Spinifex (Spinifex sericeus) 

 

Spinifex is a short stoloniferous, dioecioes, perennial grass that is commonly found 

on the sand dunes along the coasts of Australia, New Zealand and New Caledonia.  It is up to 

40cm tall (Bergin, Miller et al. 2007) with strong creeping runners that produce roots and 

numerous upright leafy tillers at the nodes.  The leaf blades are in-rolled, measuring 30-40 

cm long and 7-8 mm wide when flattened (DERM 2011).  The leaves are silvery on the upper 

surface, with a dense covering of short silky hairs on the underside.  It is regarded as the 

most important pioneer sand-stabilising native plant in New Zealand (Connor 1984).  It is 

tolerant of sand burial and salt spray (Maze and Whalley 1992). The upright leafy shoots 

reduce wind velocity, resulting in sand accretion. It grows well on all parts of the frontal 

dune and predominates particularly on the dynamic incipient foredunes, though it often 

appears to be less vigorous in the more stabilized semi-established and established dunes 

(Maze and Whalley 1992).  The growth habit and ability of S. sericeus to grow vigorously in 

the most species-poor part of the foredune make it an ideal foredune stabilizer. For this 

reason, it is the main species used in planting programs for revegetation of foredunes 

around New Zealand.  

 

2.4.2.2. South African ice plant (Carpobrotus edulis) 

 

The South African iceplant is a succulent stoloniferous prostrate perennial that roots 

extensively at its nodes.  It has its origin in the Karoo of South Africa but has now spread to 

the Mediterranean region, Australia, New Zealand and California (D'Antonio and Mahall 

1991; Draper, Rossello-Graell et al. 2003; Suehs, Charpentier et al. 2006).  It is a mat-forming 

species and seems to exclude other species by smothering them.  Studies in the 

Mediterranean Basin and California have suggested that it alters soil chemistry to the 

detriment of native flora (Vilà, Tessier et al. 2006; Traveset, Brundu et al. 2008; Conser and 

Connor 2009).  Carpobrotus edulis is a clonal species where growth is characterized by 
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vegetative production of numerous physically interconnected ramets that could quickly 

expand horizontally to efficiently colonize the surrounding area (Roiloa, Rodriguez-

Echeverria et al. 2010).  The ramets are physiologically integrated such that essential 

resources are translocated from established to developing ones (Noble and Marshall 1983; 

Price and Marshall 1999) and from those growing in favourable microhabitats to the ones 

growing under more adverse conditions (Hartnett and Bazzaz 1983; Shumway 1995; Stuefer, 

DeKroon et al. 1996; Roiloa and Retuerto 2006). Clones can therefore act as cooperative 

systems (Stuefer, DeKroon et al. 1996), buffering the negative effects of microhabitats, 

colonizing patches that otherwise would be unexploitable by independent plants (Salzman 

and Parker 1985; Yu, Dong et al. 2004; Roiloa and Retuerto 2006).   

Carpobrotus edulis employs flexible sexual and asexual reproductive strategies 

(Suehs, Affre et al. 2004)  to increase its invasion success (Baker 1974).  It is tolerant to salt 

sprays, sand burial and water stress, making it an ideal foredune pioneer species.  The 

species also seems to form a simplistic community that tends towards monoculture.  Its 

status in New Zealand is that of an unwanted organism, probably because of its weed status 

in the aforementioned regions (Sheppard, Shaw et al. 2006; Andreu, Vilà et al. 2009) and the 

fact that it hybridises with the native iceplant, Disphyma australe, genetically modifying 

native flora (Chinnock 1971).  Carpobrotus edulis was introduced as an ornamental plant 

which escaped from cultivation and was later used for sand dune stabilisation.  The species 

is said to have naturalised in New Zealand around 1883 (Webb, Sykes et al. 1988; D'Antonio 

and Mahall 1991).   

 

2.4.3. Experimental set-up 

 

2.4.3.1. Experiment 1 (manual removal) 

 

To investigate the effects of Carpobrotus edulis on restoration plantings of Spinifex 

sericeus, a manipulative field experiment was conducted. Study plots were assigned to three 

treatments, each replicated seven times (21 plots in total). The treatments involved planting 

Spinifex: (i) into stands of C. edulis (=Iceplant plots), (ii) into areas where C. edulis has been 
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removed manually (=Removal plots), and (iii) in open spaces where there was no pre-

existing vegetation (=Bare plots).  Twelve seedlings of Spinifex sericeus (obtained from 

Taupo Native Nursery in root trainer sleeves measuring 5cm x 5cm and 20cm in depth) were 

planted per plot.  Six seedlings were planted at the bottom of the dune face and six near the 

top (= two subplots measuring 2m x 1.5m each).  The distance between the subplots at the 

foot of the foredune and the ones towards the back varied between 2 – 4m according to the 

size of dune face. The seedlings were planted between 15th and 17th November 2010, 

spaced 40-50cm apart within a plot, since wider spacing is thought to increase vulnerability 

to wind erosion (Bergin, Miller et al. 2007).  Seedlings were planted at a depth of at least 20 

cm - equivalent to the depth at which the seedlings were in the root trainer sleeves.  Two 

pellets of a slow release compound fertilizer (AgproTM; 20:4:2; N: P: K) were applied in each 

planting hole before transplanting the seedlings.  Since the dunes varied in shape and 

elevation above the sea level, the seedlings were not all planted at the same heights.  Due 

to warm weather the plots were sprayed with 500 l of water from an industrial sprayer on 

one occasion at the end of November. 

During the uprooting of the iceplant to create the plots for removal treatment, other 

plants such as clovers (Trifolium spp and Medicago spp), shore bindweed (Calystegia 

soldanella) and grasses (Holcus lanatus and Lagurus ovatus) that were within the iceplant 

crop were not targeted for removal but some still got removed due to soil disturbance.  No 

specific effort was made to clear all the underground structures of C. edulis and as a result, 

some below ground tissues of the iceplant still remained. This would help in determining 

whether underground structures can regenerate to contribute to recolonization of the plots 

by the iceplant.  

Survival of the Spinifex seedlings was assessed periodically at an interval of about 

four weeks.  The location of each plant was mapped, and once survival rate seemed to have 

stabilised, a cumulative number of fully formed leaves per plant was recorded beginning 21st 

March 2011 at monthly intervals, as a proxy for plant performance.    Young leaves that 

were still rolled and not fully open, and dry ones, were excluded.  Survival and leaf 

production data were not collected in the month of September 2011. 
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2.4.3.2. Experiment 2 (herbicide treatments) 

 

Two additional types of removal plots were created on 10th May 2011 by spraying 

out iceplant using glyphosate (Agpro Glyphosate 360 at 10ml/Litre of water).  During manual 

removal of live plants in November 2010 for experiment 1, transportation of the plant 

material to a dump site about 2km away proved labour intensive.  This time the plants were 

chemically killed before manual removal to save on the effort required for disposal of the 

vegetative material and to minimize chances of exacerbating invasion.  Dead debris of 

iceplant was left intact in three plots as mulching material, creating a treatment referred to 

as “dead debris intact”.  It was hoped that the plant debris left intact would moderate sand 

blasting and soil moisture loss, increasing survivorship and plant performance.  On 25th of 

May 2011, dead debris of iceplant was removed manually from three of the plots to create 

the alternative treatment called “dead debris removed”.  16 Spinifex seedlings were planted 

per plot, eight at the top and eight at the bottom section of each plot (two subplots) on 1st 

of June 2011, giving a total of 96 seedlings.  However, the distance between the top and 

bottom band of the seedlings was 1-2m, due to size of the dune face.  Planting techniques 

were the same as used in Experiment 1 except that planting depth was approximately 30cm 

(i.e. about 10 cm above the level of root trainer sleeves). Seedlings were chosen and 

assigned to treatments at random. The initial number of leaves per seedling was counted 

and it was subsequently determined that they were not significant different by treatment or 

location (all P > 0.2).  Plant survival and cumulative number of leaves per plant were 

recorded periodically at 4-5 week intervals.  Plant survival and leaf production data were not 

collected during the month of September, 2011. 

 

2.4.4. Physical properties of dunes with and without iceplant 

 

The slopes of the experimental plots were determined using a spirit level with a dial 

on a wooden plank 3m long to even out small depressions along the slope.  

Soil samples were collected in October 2011 from under the canopy of iceplant and 

from bare sites both at the foot and the top of the dunes.  Ten samples were collected per 
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site, five from the bottom of the dune and five from the top.  Sample cores 4cm in diameter 

were obtained to a depth of 5cm and analysed gravimetrically for moisture, by combustion 

at 360 °C for organic matter content (Salehi, Beni et al. 2011), and by electrical conductivity 

for salinity .  

 

2.4.5. Statistical analysis 

 

Proportional survival of seedlings for each subplot in both experiments was 

calculated and transformed by applying square-root followed by arcsine to meet 

assumptions of ANOVA. The transformed survival data were analysed in SPSS (SPSS Inc. 

2008). The arcsine transformed survival values were used as the dependent variable in a 

two-way ANOVA with “treatment” and “location” on the dune as the independent variables.  

A two-way ANOVA was also calculated for cumulative plant leaves, with log-transformed 

number of leaves as the dependent variable, and “treatment” and “location” as 

independent variables. Similarly, the differences in soil moisture, organic matter, electrical 

conductivity, and gradients of the plots were compared using General Linear Model in SPSS. 

 

2.5. RESULTS 

2.5.1. Spinifex seedling Survival 

2.5.1.1. Experiment 1 

 

Survival data for the first experiment was first collected on 15th December 2010 (four 

weeks after planting), at which point a total of 185 seedlings out of an initial 252 survived 

(73% survival). During the first month (December 2010), survival of seedlings was 

significantly higher for plants at the bottom of the dune face regardless of treatment (F 1, 36 

= 5.423; P= 0.026; Table 2.1; Fig. 2.3), but this did not persist in the subsequent months.  An 

iceplant plot (A4) had lost all the seedlings at its base by January.  By February, one plot (C3) 

from the bare treatment had lost all the seedlings.  A bare treatment plot (C4) also had no 

surviving seedlings at its base by March.  Around the same time, B1, a removal plot lost all 
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its seedlings at the top of the dune.  Survival rate declined gradually to 47% by March and 

remained stable through June.  However, survival was consistently higher in the removal 

plots until July (Fig. 2.4).  

Table 2.1: ANOVA table showing effect of treatment and location on Spinifex seedling survival for the 
month of December (one month after planting). Neither treatment nor location (or the interaction 
of the two factors) had any effect for the months of January through June.  

Source Df Mean Square F Sig. 

Treatment 2 .220 1.764 .186 
Location 1 .676 5.423 .026 
Treatment * Location 2 .010 .078 .925 
Error 36 .125   
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Fig. 2.3: Error plot showing that more Spinifex seedlings survived at the bottom of the dune than at 

the top in Experiment 1 during the month of December 2010. 
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 Fig. 2.4: A graph showing that treatment had no significant effect on Spinifex seedling survival 
except after July (the points are staggered).  

 

There was a storm in July and in total only 36 Spinifex plants of the 114 from the 

previous month survived (17 in iceplant, 15 in bare treatment and 4 in the removal 

treatment) representing a mortality of 68.5% in just a single storm event.  Plants worst 

affected by the storm were those in the removal treatment (Fig. 2.4) and those at the base 

of the dune (Fig. 2.5).  Spinifex plants that survived were moved from the upper parts of the 

dune to just above the high tide mark.  

 

Treatment did not have any effect on plant survival except in July where plants in the 

removal plots were worst affected by the storm, though statistically not significant (F 2, 

36=3.07; P=0.06; Fig. 2.4).  On the other hand, plant location had a highly significant effect on 
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survival during the same month (F 1, 36=22.323; P<0.001; Table 2.2), which is a consequence 

of storm disturbance rather than the continuous dynamics of environmental conditions at 

these parts of the dunes.  The highly significant effect of plant location persisted in 

subsequent months (Table 2.2; Fig. 2.5).  

 

Table 2.2: A summary ANOVA table showing effect of treatment and location on Spinifex survival for 
the months of July 2011 through October 2011.  Location had a highly significant effect but 
treatment and interaction of the two factors did not.  

 

 Treatment Location 

Month F df Sig. F df Sig 

July 3.070 2, 36 .059 22.323 1, 36 < .001 

August 2.955 2, 36 .065 21.237 1, 36 < .001 

October 1.286 2, 36 .289 13.569 1, 36 .001 
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 Fig. 2.5: Spinifex survival graph (points are staggered) showing that plant location had significant 
effect from July 2011 through to October 2011 (F 1, 36=22.323; P<0.001) 

 

Spread of Carpobrotus edulis into neighbouring removal plots was minimal and no 

sprouts from buried structures were noted at the removal plots. 

 

2.5.1.2. Herbicide treatments 

 

Survival of seedlings in the modified removal treatment was poor since only 52% of 

the seedlings survived to July,   just a fifth of which were at the bottom of the dunes. By 

October, total survivorship for this batch of plants had declined further to 34%.  Using dead 

iceplant debris as mulching material did not have any effect on survival of Spinifex (Fig. 2.6; 

Table 2.3). However, location of the Spinifex seedlings mattered significantly, with those at 

the top of the dune surviving much better than those at the bottom (Fig. 2.6; Table 2.3). 
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Fig. 2.6: Graph of seedlings in the herbicide treated plots showing that treatment had no significant 
effect on survival but plant location did (points are staggered).  

 

Table 2.3: ANOVA table showing effect of treatment and location on Spinifex seedling survival in the 
herbicide removal experiment (Location had a significant influence due to storm but treatment or 
the interaction of the two did not). 

 

 Treatment Location 

Month F Df Sig. F df Sig 

July .031 1, 8 .864 14.0 1, 8 .006 

August .004 1, 8 .952 10.3 1, 8 .012 

October .514 1, 8 .494 9.2 1, 8 .016 
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2.5.2. Number of leaves produced by Spinifex seedlings 

2.5.2.1. Experiment 1 

 

On average, Spinifex plants in the removal plots had a higher number of leaves from 

month to month while the plants in iceplant stands had the lowest (Fig. 2.7).  There was a 

highly significant effect of treatment on the number of leaves from March through to June 

(all P < 0.002; Fig. 2.6; Table 2.4). Plant location however, did not seem to have any effect on 

the number of leaves for the plants (Fig. 2.8) although plants at the bottom of iceplant plots 

had significantly higher numbers of leaves than their counterparts at the top of the dune 

until the condition was reversed by loss of plants in July (F1, 201=5.392; P=0.021; Fig. 2.9). The 

interaction between treatment and location did not have any effect on leaf production. 

Table 2.4: ANOVA table showing effect of treatment and location on the cumulative number of 
leaves produced by plants in experiment 1 from March 2011 through October 2011 (treatment 
mostly had a highly significant effect but location and interaction of the two factors did not).  

 

  Treatment Location 

Month N F df Sig. F df Sig 

March 115 6.537 2, 109 .002 .331 1, 109  .566 

April 115 8.401 2, 109 < .001 .327 1, 109 .569 

May 115 9.434 2, 109 < .001 .077 1, 109 .783 

June 115 8.157 2, 109 < .001 1.011 1, 109 .317 

July   36 4.835 2, 32 .015 .722 1, 32 .402 

August    35 4.945 2, 31 .014 .005 1, 31 .945 

October   27 3.997 2, 23 .032 .010 1, 23 .920 
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Fig. 2.7: Mean cumulative number of leaves produced by Spinifex plants in experiment 1 in relation 
to treatment over time (points are staggered). Treatment had a highly significant effect on number 
of leaves produced from March through to June (all P < 0.002). 
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Fig. 2.8: Mean cumulative number of leaves per plant in Experiment 1 in relation to plant location 
over time (points are staggered). Plant location had no effect on number of leaves produced. The 
decline in leaf number from July to October was partially caused by dieback of surviving plants, but 
also from the loss of large plants to storm events. 
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Fig. 2.9: Average number of leaves produced by each Spinifex plant in the Iceplant treatment of 
Experiment 1 in relation to plant location over time (points are staggered). 

 

2.5.2.2. Experiment 2 (herbicide removal) 

 

Leaf production of the seedlings in the herbicide-treated experiment was not 

affected by either treatment or location except in August where the interactive effect of 

treatment and location was highly significant (F 1, 43=9.864; P=0.003; Fig. 2.10; Table 2.5).  

This was because all plants except the ones at the top of “debris intact” plots lost a lot of 

leaves between July and August (Fig. 2.10). 

 

 

 



46 

 

Table 2.5: ANOVA table showing a highly significant interactive effect of treatment and location on 
survival of Spinifex plants in experiment 2 (herbicide removal) during August. 

 

Source Type III Sum 
of Squares 

df Mean Square F Sig. 

Treatment 4.299 1 4.299 1.390 .245 
Location 5.519 1 5.519 1.785 .189 
Treatment * Location 30.493 1 30.493 9.864 .003 
Error 132.932 43 3.091   
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Fig. 2.10: Graph showing leaf production of Spinifex in the herbicide-treated plots (points are 
staggered).  Plant location and treatment only had an effect in August. 
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2.5.3. Physical parameters 

2.5.3.1. Slope gradient 

 

Gradients in bare plots were significantly gentler (32° – 38°) than the removal (32° – 

52°) and iceplant plots (38° - 50°) (Fig. 2.11).  
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Fig. 2.11: Slope gradients (mean ± SE) of the plots of the different treatments in experiment 1 (Bare 
plots were significantly gentler). 

 

2.5.3.2. Soil moisture and organic matter 

 

There was a significantly higher amount of organic matter in the soil samples from 

the iceplant plots than in bare plots but not between locations within a site (Table 2.6; Fig. 

2.12; F1, 16=21.127; P0.001).  Soil moisture content did not differ either between sites or 
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locations (Fig. 2.13) although the difference approaches significance for bare plots (F1, 

15.62=4.53; P=0.066). 

Table 2.6: Soil organic matter difference between bare and iceplant sites 

 

Source Type III 
Sum of 
Squares 

df Mean Square F Sig. 

Site .238 1 .238 21.127 < .000 
Location .002 1 .002 .182 .676 
Site * Location .015 1 .015 1.291 .273 
Error .180 16 .011  

 
 

 

 

Site

P
e

rc
e

n
ta

g
e

 S
o

il 
O

rg
a

n
ic

 m
a

tt
e

r 
(M

e
a

n
 ±

 S
E)

Bare Iceplant
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

 Bottom
 Top

 

Fig. 2.12: Percentage soil organic matter at the bottom and top of the dunes of the iceplant and bare 
sites 
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Fig. 2.13: Percentage soil moisture content of soil obtained from the two sites and locations of the 
dunes. 
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2.5.3.3. Electrical conductivity 

 

Soil samples obtained from sites under the canopies of C. edulis were significantly 

more saline than the samples from sites in the bare plots (F1, 16= 31.7; P < 0.001; Fig. 2.14).  

Although there was a slight trend in salinity in soil samples from the bottom of the dunes 

when compared with those from the top, this was not statistically significant.  

 

 

 

 Fig. 2.14: Electrical conductivity of soil samples obtained from the top and bottom of the dunes at 
the iceplant and bare sites. 
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2.6. DISCUSSION 
 

2.6.1. Confounding factors to Spinifex seedling survival and growth 

 

There was generally a low Spinifex seedling survival rate regardless of treatment.  

This was not surprising because it has been reported that species capable of vegetative 

propagation, such as Spinifex sericeus, often exhibit low levels of seedling survival (Cook 

1979; Maze and Whalley 1992a).  During the first month (December 2010), seedling survival 

was significantly higher at the bottom of the dune, regardless of the treatment, showing 

that Carpobrotus edulis did not have any influence on initial Spinifex survival.  

The period during planting from November 2010 to early January 2011, was 

characterised by a dry spell, requiring us to spray the plots with about 500L of water two 

weeks after planting.  Since soil moisture is one of the most limiting factors in sand dunes 

(Lichter 1998), drought may have had an influence on the overall initial survival.  The higher 

survival of seedlings at the foot of the dune during the initial periods may be a result of 

more soil moisture due to inundation during high tides and wave splashes.  Although this 

water is not expected to be readily available because of salinity, it has been observed from 

electrical conductivity measurements of macerated Spinifex tissue that it picks up some salt, 

either through leaves or by roots (Maze and Whalley 1992).  Uptake of salt helps plants in 

water absorption or retention, enabling them to survive better.  Therefore the ability of 

Spinifex to utilise salty water may have been responsible for better survivorship at the foot 

of the dune during the month of December 2010.  Death of plants in plots A4, B1, C3 and C4 

between January and March, can be attributed to drought, storm erosion and trampling by 

humans. 

During planting it was noted that the soil under the iceplant and in the removal plots 

was moister than the soil in bare plots, though this was not empirically determined at the 

time. However, in subsequent months, soil samples collected from under the canopy of 

iceplant and in bare spaces did not show any significant difference in moisture content (Fig. 

2.13). Variability in soil moisture changes through time (Wilson and Sykes 1999), and these 

results, do not rule out existence of a moisture gradient.  Soil moisture content did not 
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differ between the bottom and the top of the dunes either, in agreement with Wilson and 

Sykes (1999), although other studies (e.g. Gooding 1947) suggest otherwise.  

Planting technique is an important determinant of seedling survival, especially in 

sand dunes where the substrate is unstable.  It is recommended that planting depth for 

Spinifex seedlings should be up to the lower third of crown (Auckland Regional Council) to 

guard against exposure of the root region by erosion.  However, our seedlings were planted 

at the same level as they were in their root trainer sleeves.  Therefore, insufficient planting 

depth coupled with storm erosion may also have had an impact on the initial overall survival 

since by January some seedlings had about 5cm of their root trainer soil exposed due to 

erosion.  This root exposure was more pronounced for plants in the removal and bare 

treatments than in the iceplant treatment since surface erosion of sand is greater where 

there is a lack of above-ground vegetation.  

Plant location on the dune and the presence/absence of dead debris interacted in 

their effect on Spinifex leaf production in the herbicide treated plots such that plants in the 

“debris intact” plots at the top of the dune put on the greatest number of leaves, although 

this effect was only significant in August (P = 0.003).  The fact that location of the plants did 

not have any effect on their performance means that the 2-4m space between plants at the 

bottom and the top of the dune was not enough to produce a gradient to which plants could 

respond differentially.  This is confirmed by the lack of difference in soil moisture and 

organic matter content, as well as in electrical conductivity between the two sampling 

locations separated by 5-8m (Fig. 2.12 – 2.14). 

The factor that most significantly affected Spinifex seedling survival was storm 

disturbance that decimated plants nearer to high tide mark in the second week of July.  The 

storm caused slumping of the dunes, creating a near-vertical scarp which destabilised even 

the plants that survived. 
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2.6.2. Positive effects of C. edulis on Spinifex seedlings 

 

It is generally argued that in harsh environments like the sand dunes, facilitative 

processes are more important than competition to community structure (Bertness and 

Shumway 1993; Didham, Tylianakis et al. 2007). Spinifex plants in the removal and bare 

treatments of Experiment 1 had their leaves dying back from the tips, probably as a result of 

salt spray (Maze and Whalley 1992; Wilson and Sykes 1999). Abrasive leaf damage by sand 

blasting was also quite evident in the plants growing in absence of iceplant.  Yura and Ogura 

(2006) observed that sand blasting followed by salt spray caused serious injury to Imperata 

cylindrica and Miscanthus sinensis.  The leaves of Spinifex plants in the iceplant treatment, 

on the other hand, appeared intact, suggesting a buffering by iceplant against sand blasting 

and excessive salt spray.  Normally, a stress-tolerant neighbour can ameliorate the harsh 

environmental conditions in its immediate vicinity, thereby providing favorable sites where 

other species can then succeed (King 2008).  Subjective observations of the plants in the 

different treatments also showed that plants within the iceplant stands had leaves that 

appeared darker green than those in the removal and bare treatments.  The positive effect 

of an adult plant on seedlings of another species is called the “nurse-plant” effect (Bertness 

and Callaway 1994; Padilla and Pugnaire 2006) and has been found in harsh habitats, 

suggesting that habitat amelioration by neighbours is important for positive recruitment 

events (Bertness and Callaway 1994). Therefore, the expectation that facilitation would be 

the dominant effect of extant adult plants on seedlings of other species at the fore dune 

seems plausible, at least in buffering against abrasive damage by sand blasting and necrosis, 

due to salt spray.  Moreover, plants at the bottom of the iceplant plots (presumed to be the 

harsher section) had significantly higher numbers of leaves than their counterparts at the 

top of the dune (Fig. 2.9; P = 0.021).  In this study, we have determined that soil salinity was 

higher under the canopy of the iceplant, which may cause the Spinifex seedlings internal 

toxicity or some difficulty in absorbing water (Wilson and Sykes 1999), rendering iceplant 

plots harsher.  In contrast to Wilson and Sykes (1999) however, I did not find a significant 

difference in salinity of soil samples obtained from the bottom and the top of the dune.  
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Despite being statistically insignificant, Spinifex survival was higher in the manual 

removal plots until July.  Soil sample analysis here showed that there was a higher 

percentage of organic matter under the canopy of iceplant, which may have improved soil 

micro-conditions to the benefit of the Spinifex seedlings.  In addition, seedlings in removal 

plots consistently had significantly higher numbers of leaves (Fig. 2.7).  Leaf litter of some 

plants has been observed to improve the structure of the soil, and increase its cation 

exchange capacity and water holding capacity (Hunter and Aarssen 1988).  

Spinifex plants within iceplant plots best survived the July storm because of the soil-

binding nature of the iceplant’s extensive fibrous root system. Sand-binding species are said 

to stabilize the substrate, contributing to eventual colonization by successive sand dune 

plants (Lichter 2000). However, there is no evidence that Carpobrotus spp. lead to a 

succession resulting in dominance by native species. 

 

2.6.3. Negative effects of C. edulis on Spinifex seedlings 

 

The lessening abundance of many native species around the world has been 

considered to be the result of the better "competitive ability" of exotics (D'Antonio and 

Mahall 1991).  A review of competitive interactions between native and exotic plants 

suggested that the  spread and establishment of exotic species is related to their ability to 

competitively suppress resident species (Levine, Vilà et al. 2003).  In the current study, there 

was a highly significant difference in Spinifex leaf production from March through June (Fig. 

2.6; Table 2.4) with plants in the iceplant treatment having significantly lower numbers of 

leaves, suggesting that the presence of iceplant suppresses growth of Spinifex sericeus.  In 

addition, Spinifex seedlings within the iceplant plots appeared more slender.  Carpobrotus 

edulis has been reported to compete aggressively (D'Antonio 1990; Albert, D'Antonio et al. 

1997; Vilà and D'Antonio 1998) and suppress the growth and establishment of other plants 

while achieving high rates of space colonization (D'Antonio and Mahall 1991; Suehs, Affre et 

al. 2004; Vilà, Tessier et al. 2006).  Interspecific competition, being an important 

determinant of structure and dynamics of plant communities (Aerts 1999), has been 
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suggested as a mechanism for the success of invasive plant species (Hierro and Callaway 

2003) such as iceplant.  It was reported that removal of C. edulis from around individuals of 

Haplopappus ericoides shrub species resulted in increased predawn xylem pressure, 

suggesting that the surrounding C. edulis was utilizing water that would otherwise have 

been available to the shrubs (D'Antonio and Mahall 1991).  Carpobrotus edulis has a very 

dense fibrous root system concentrated in the upper 50 cm of the soil that makes it very 

effective at interfering with water uptake by other shallowly rooted species (D'Antonio and 

Mahall 1991).  

Spinifex plants in the removal plots were worst affected by the July storm because 

they were located on a steeper unstable slope (Fig. 2.11) built by sand accretion activity of 

the previously extant iceplant. The disadvantage of iceplant for dune integrity against such a 

heavy storm is that cracks develop on the sand surface as a result of storm undercutting, 

leading to eventual slumping of the dune ridge (Carter, Hesp et al. 1990).  This slumping led 

to the loss of almost all Spinifex plants at the foot of the dune (Fig. 2.5; Table 2.2). 

Carpobrotus edulis is reported to indirectly interact with native species by altering 

soil chemistry (Conser and Connor 2009), causing changes in soil pH and nutrient regimes 

(Bartomeus and Vilà 2009).  It has been suggested to have residual effects on the soil that 

inhibit reestablishment of native plant species after it has been removed (Conser and 

Connor 2009).  However, Spinifex in our removal plots (where iceplant had been present) 

produced a significantly higher number of leaves than plants in the other treatments.  In 

another removal study, Haplopappus ericoides shrubs were shown to have had a marked 

increase in canopy area after removal of C. edulis (D'Antonio and Mahall 1991).  While this 

improved response may be attributed to elimination of competition, plants in the removal 

plots actually performed better that those in bare plots where there was no preexisting 

iceplant.  This suggests that C. edulis did not have a net allelopathic legacy but may have 

actually improved soil micro-conditions. It has been put forward that for allelopathic 

chemicals to be important in structuring a plant community they must have had a significant 

resident time (Choesin and Boerner 1991).  However, the residence time of iceplant at the 

field site is unknown and it may yet be too early for it to be able to significantly alter soil 

chemistry to the detriment of succeeding plants.  In addition, biotic components of 
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ecosystem such as herbivores, competitors, pathogens and decomposers, (Inderjit, Wardle 

et al. 2011) as well as seasons (Barto and Cipollini 2009) can alter concentrations of 

allelochemicals.  Response of plants to inhibitory exudates of neighbours is also said to be 

species-specific (Gómez-Aparicio and Canham 2008).  Since we did not investigate these 

confounding factors we cannot claim that C. edulis is not allelopathic, but we can say that 

Spinifex plantings do not seem to suffer from allelopathic legacies of iceplant. 

2.6.4. Soil seed bank legacy    

 

Assessment of individual removal plots during each monthly visit over a period of 

one year did not reveal any iceplant seedling suggesting that in the short-term, buried seed 

bank is not a major route for its recolonization after eradication. However, soil cores were 

not analysed for presence or absence of seed bank.  

 

2.7. Conclusion and management recommendations 

 

As far as seedling survivorship is concerned, we conclude that low soil moisture, 

storm-induced erosion, steep slope and insufficient planting depth were the influential 

factors affecting Spinifex survival rather than the presumed negative effects of iceplant.  In 

fact, the presence of iceplant ameliorated some of these negative effects.  Carpobrotus 

edulis is a stabilizer and improved soil moisture and organic matter content for other plants 

that also provided buffering against salt spray, as evidenced by less leaf die-back of Spinifex 

within its stand.  Additionally, C. edulis provided protection against abrasive leaf damage by 

sand-blasting, unlike in other treatments where plants had their leaves severely damaged. 

On the other hand, C. edulis had a strong suppressing effect on biomass production, 

as shown by lower numbers of leaves and slenderer stems of Spinifex seedlings growing 

within its stands, and the long-term outcome may have been a failure of these Spinifex 

plants to thrive in the presence of iceplant. There was no evidence of allelopathy since 

plants in the removal treatment showed the best performance among the three treatments.  

If C. edulis is a highly competitive and allelopathic species, Spinifex plants in bare plots in the 
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absence of competition and the inhibitory legacy, would have shown the best performance.  

However, this was not the case.  

Using iceplant as a mulching material did not, in general, result in better survival or 

growth performance of Spinifex seedlings. 

Iceplant has been shown here to create steep slopes, despite its diminutive height 

which has been implicated in its unsuitability for sand accretion (Bergin, Miller et al. 2007).  

This portends poorly for the physical integrity of dunes in the face of storm disturbances, 

especially along high energy coasts.  

Because of the constant storm disturbance along this coast, succession by other 

plants and establishment of pioneer seedlings is made difficult, and it is not advisable to 

remove the iceplant unless the dune morphology is mechanically reshaped to withstand 

wave actions. Spinifex seedlings may establish successfully at this field site if planted in 

winter on the upper parts of the dune face, away from wave impact. At other sites where 

moisture, not storm disturbance, is the main limiting factor, planting Spinifex closer to the 

foot of the dune, where inundation is more likely, may enhance seedling survivorship.  

The combination of increased survival of Spinifex against storms, but lower growth in 

the presence of iceplant, suggests that an intermediate strategy for planting of Spinifex may 

be appropriate.  As a result, I suggest that Spinifex could be interplanted into existing stands 

of iceplant if, at the time of planting, the iceplant is reduced to 25-50% of its original cover.  

This should still provide some nurse effect to aid the establishment of Spinifex, but also 

allow enough space to delay negative competitive effects. In the longer-term, we would like 

to see the Spinifex replace the iceplant. This may not occur through “natural” competition. 

Hence, to achieve the conversion, a second round of manual removal of iceplant may be 

necessary after 1-2 years, once the Spinifex has established. 
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Chapter three 

3. Substrate preference and breeding 

systems in introduced Carpobrotus spp., 

native Disphyma australe and their 

hybrid.  
 

 

 Fig. 3.1. Photos showing flower colours of the different iceplant taxa found in New Zealand 
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3.1. Abstract  
 

Biological invasion by non-native plant species has often been cited as a cause of 

native biodiversity loss.  Some exotic plant species tend to hybridise with related native taxa, 

altering genetic diversity while a majority grow aggressively to competitively displace the 

pre-existing native flora.  In this study, I compared the growth rates of the most widely 

distributed iceplant taxa in New Zealand in different substrates and the breeding systems of 

the exotic taxa.  The exotic Carpobrotus spp. put on greater dry matter content than the 

native Disphyma australe and the Carpobrotus-x-Disphyma hybrid.  The hybrid displayed a 

fast vegetative growth rate whereas D. australe allocated relatively more biomass to the 

roots than the shoot.   Carpobrotus chilensis put on relatively lower biomass in gravel but 

the other taxa did equally well across the different substrate types.  Both Carpobrotus spp. 

are self compatible and highly capable of intrageneric and intergeneric hybridisation. 

 

3.2. Introduction 
 

Increased worldwide human travel and trade have moved species beyond their 

native ranges both intentionally and inadvertently (Mack, Simberloff et al. 2000), breaking 

down the biogeographic barriers that have shaped and maintained the major floral and 

faunal regions of the Earth (Vitousek, D'Antonio et al. 1997).  Many of these species become 

established and proliferate in their new habitat (Vitousek, D'Antonio et al. 1997).  When an 

introduced species establishes new self-perpetuating populations in the wild and becomes 

incorporated within the resident flora it is said to have naturalised (Richardson, Allsopp et al. 

2000).  Naturalised species that proliferate, spread and endure in ecosystems in which they 

were formerly absent to the detriment of the pre-existing native ecosystem are considered 

invasive (Mack, Simberloff et al. 2000).  (Vilà, Siamantziouras et al. 2008) further suggested 

that a species should be considered invasive when it has spread more than 6 m away from 

the input focus in less than three years, and if its reproduction is vegetative through 

rhizomes or stolons. Naturalised species that have become invasive constitute only around 1% 

of all exotic introductions (Williamson 1996; Richardson and Pyšek 2006) but they can still 
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cause substantial modifications to indigenous biodiversity and ecosystem functions 

(Williams and West 2000).  In due course, invasive species lead to a progressive and often 

irreparable homogenization of plant communities, with a single species dominating and 

influencing the processes of the whole ecosystem (Vitousek, D'Antonio et al. 1997; Mack, 

Simberloff et al. 2000). Nowadays, biological invasions by non-native plant species are 

considered to be among the most important triggers of biodiversity loss and one of the main 

drivers of environmental modifications (Sala, Chapin et al. 2000) at both the global and local 

scales (Zedda, Cogoni et al. 2010). Globally, biological invasions have been considered the 

second most important cause of change in the composition, structure, and functioning of 

natural ecosystems, after habitat destruction (Walther, Post et al. 2002; Simberloff, Parker 

et al. 2005; Thuiller, Richardson et al. 2005).  

Many invasive plant species were deliberately introduced, often for their aesthetic 

value and sale as garden ornamentals (Carboni, Santoro et al. 2010).  In New Zealand for 

example, almost all exotic plant species that have naturalised have been purposely 

introduced by people (Jay, Morad et al. 2003).  The New Zealand Department of 

Conservation considers more than 240 naturalised exotic plant species as weeds that 

actually or potentially jeopardise the survival of nationally rare or endangered native plants 

(Green, 2000 as cited by Jay, Morad et al. 2003). Alien plant species are largely restricted to 

human dominated habitats (Affre, Suehs et al. 2010) as a result of both higher disturbance 

and propagule pressure (Chytrý, Pyšek et al. 2009).  This is particularly pertinent for coastal 

dune communities, since human pressure on coastal zones with sandy interfaces around the 

world has progressively increased in the last 50 years (Curr, Koh et al. 2000).  Although 

extreme abiotic factors such as low soil fertility, sand burial, and salt spray may represent a 

strong filtering mechanism on which species can survive in sand dunes (Wilson and Sykes 

1999; Carboni, Santoro et al. 2010), a relatively large number of alien species have managed 

to successfully invade.  This is because costal dune plant communities are very dynamic 

ecosystems, with many open spaces that allow the quick settlement of some exotic species 

with high colonizing ability (Campos, Herrera et al. 2004).  Disturbances may take out 

competitively superior native species, eradicate natural enemies that curb invasion, and/or 

alter the resource base directly, in favour of non-native species (D'Antonio 1993).  
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In New Zealand, South African iceplant (Carpobrotus edulis) is among a highly 

invasive group of alien plants that were originally introduced as ornamentals (Weber 2003) 

but have gone on to naturally produce populations in the wild.  They were later used for 

coastal sand dune stabilisation, because of their rapid growth rates and ability to cope with 

harsh dune environment (D'Antonio, Odion et al. 1993).  Furthermore, they regularly form 

monoculture stands, suggesting a displacement of the pre-existing native flora.  Other 

ecological impacts of iceplant include aggressive competition with native species (D'Antonio 

and Mahall 1991; Sheppard, Shaw et al. 2006), destabilization of native dune communities 

(Campos, Herrera et al. 2004; Acosta, Carranza et al. 2008), modification of soil pH (Vilà, 

Tessier et al. 2006) and likely the alteration of ecosystem function in terms of successional 

dynamics (Carranza, Carboni et al. 2010).  Consequently, C. edulis is considered among the 

worst invasive alien species threatening biodiversity in Europe (Sheppard, Shaw et al. 2006) 

and is included in the list of the most invasive alien plants in the World (Weber 2003). Owing 

to the large extent of invaded areas in coastal communities, it is considered one of the most 

costly invasive species in Spain (Andreu, Manzano-Piedras et al. 2010).  However, invasion 

success and impacts of C. edulis are reported to be habitat and context specific processes 

(D'Antonio 1993; Maltez-Mouro, Maestre et al. 2010).  In New Zealand, as of October 2006, 

C. edulis and its hybrids are classified as unwanted organisms (Biosecurity New Zealand 

2008), yet there is a paucity of information as to their impacts locally.  Clonal growth form, 

flexible mating systems, and ability to hybridise with related taxa may be among the most 

important characteristics of the exotic iceplant species that contribute to their invasion 

success.  

Hybridisation between native and non-native species as a consequence of species 

introduction (Abbott 1992) may result in invasive hybrid morphotypes that, in turn, have 

negative implications for the conservation of native species assemblages (Vilà, Weber et al. 

1998).  In the invasive ranges of the Aizoaceae, hybridizations have been recorded between 

C. edulis and different species: native C. chilensis (Molina) N.E. Br. in California (Albert, 

D'Antonio et al. 1997; Gallagher, Schierenbeck et al. 1997), native C. virescens (Haw.) 

Schwantes in Australia (Blake 1969 as cited by Verlaque, Affre et al. 2011), native D. australe 

in New Zealand (Chinnock 1972), and, introduced C. acinaciformis in France (Suehs, Affre et 
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al. 2004).  While most of these hybridisations are intrageneric, it is only in New Zealand that 

it is intergeneric.  It has been suggested that interbreeding increases the threat of extinction 

for a number of species due to hybridization introgression (Levin, Francisco-Ortega et al. 

1996; Rhymer and Simberloff 1996).  Hybrids can exhibit novel characters that neither 

parental species expresses (Rieseberg, Ellstrand et al. 1993; Rieseberg 1995) and may have 

advantages over parental individuals in certain habitats (Vilà and D'Antonio 1998).  Novel 

gene combinations can extend the gene pool of a species and its ecological range, including 

the spread into new habitats (Lewontin and Birch 1966).  A classic example of this is where 

seed-sterile Spartina Xtownsendii, an intrageneric hybrid of native S. maritima and exotic S. 

alterniflora in southern England, formed a fertile S. anglica by chromosome doubling (Ayres 

and Strong 2001).  Hybridisation has the potential to dilute the gene pool of native species 

and create highly aggressive genotypes that may be undesirable in terms of management 

for native species (Ellstrand 1992; Rhymer and Simberloff 1996).  It is believed to be a factor 

that allows the spread of plant species into areas they did not previously occupy (Abbott 

1992) and hybrid vigour for vegetative growth may be one of the reasons for displacement 

of parental morphotypes or native species (Vilà and D'Antonio 1998).  In the case of S. 

anglica, which has now become predominant in the estuarine salt marshes of the British 

Isles (Thompson 1991), neither of its parental species is present at its presumed site of 

origin in Hythe, England, and its native parent S. maritima is considered extremely rare or 

extinct in most of its former British range (Raybould, Gray et al. 1991). 

One of the characteristics which increase the probability of successful invasion is the 

ability of clonal growth (Heger and Trepl 2003; Mack 2003) which is suggested as one of the 

most successful growth strategies in the plant world (Traveset, Moragues et al. 2008).  

Carpobrotus species are clonal plants capable of achieving high rates of space colonization 

(Sintes, Moragues et al. 2007), which suppresses the growth and establishment of other 

plants (D'Antonio and Mahall 1991; Albert, D'Antonio et al. 1997; Suehs, Affre et al. 2004; 

Vilà, Tessier et al. 2006).  A characteristic of clonal growth that confers competitiveness is 

the efficient distribution of tasks among ramets which, coupled with phenotypic plasticity, 

can lead to enhanced resource exploitation (Stuefer, DeKroon et al. 1996). Clonal growth 

and its ability to survive in extreme environmental conditions make C. edulis a very 
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competitive plant with a subsequent negative impact on native flora (D'Antonio and Mahall 

1991; D'Antonio, Odion et al. 1993; Moragues and Traveset 2005; Vilà, Tessier et al. 2006). 

 

3.2.1. Aims of the study 

 
To be able to understand the possible impacts of exotic iceplant species on native 

biodiversity, a useful starting point is the study of the mechanisms that are implicated for 

their success as invaders. The aim of this study is to compare growth rates and breeding 

systems of the iceplant taxa commonly found in New Zealand.  The following research 

questions were explored in this study: (i) how do the field growth rates of the exotic and 

native iceplant, and their hybrids compare? (ii) What is the substrate preference of the 

various iceplant species? (iii) What is the potential implication of the growth rates on the 

native Disphyma australe? (iv) To what extent do flower phenology of the iceplant species 

overlap? (v) How do the exotic species differ in their mating systems and interbreeding with 

native Disphyma? This knowledge will then be evaluated in the context of environmental 

management of coastal dune habitats.   

 

3.3. STUDY SPECIES 
 

3.3.1. Carpobrotus spp. and their intrageneric hybrid 

 

Carpobrotus species are members of Aizoaceae, many of which are native to the 

Karoo region of South Africa.  They are succulent perennial plants with creeping, prostrate 

growth habits, capable of crawling over shrubs, fences and other obstacles (D'Antonio 1990).  

Leaves are opposite and sharply three-angled with variable keel serrations.  Carpobrotus 

forms large mats on coastal rocks, cliffs, and sand dunes owing to its profuse clonal growth 

(D'Antonio 1990; 1993; Traveset, Brundu et al. 2008).  Active growth occurs primarily along 

main axes, although lateral branches may also grow, particularly following death of the 

apical meristem of the main axis (D'Antonio 1990).  Rooting occurs where nodes contact the 

soil and they spread radially with an individual branch elongating more than 1 m in a year 
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(D'Antonio 1990).  Branches tend to grow over each other, resulting in the accumulation of 

up to 40 cm of live and dead plant material (D'Antonio 1990).  A single individual of C. edulis 

has been reported to form dense, circular mats up to 20 m wide and over 50 cm deep 

(D'Antonio and Mahall 1991) that are nearly impenetrable and appear to totally eliminate all 

other vegetation in the immediate area (Campos, Herrera et al. 2004).  Carpobrotus chilensis 

mats are said to be shallower in depth and have more bare space within them (Vilà and 

D'Antonio 1998).  

Flowers are solitary and terminal, borne on vertical shoots and do not seem to 

require specific pollinators.  They are unique within Aizoaceae in that they have fleshy 

indehiscent fruits (Albert, D'Antonio et al. 1997).  In California, C. edulis hybridises with C. 

chilensis (N.E.Br.) and hybrids are also self-compatible (Vilà and D'Antonio 1998).  

Introgressive hybridization is very common (Vilà, Weber et al. 1998), occurring throughout 

coastal California between the non-native Carpobrotus edulis and the putative native C. 

chilensis, leading to a high abundance of invasive hybrid morphotypes that compete 

aggressively with native plant coastal species (D'Antonio 1990; Albert, D'Antonio et al. 1997; 

Vilà and D'Antonio 1998).  The fleshy fruits bear a large number, often over a thousand, of 

small seeds (Bartomeus and Vilà 2009)that are eaten and widely dispersed by several 

mammals such as rabbits (D'Antonio 1990) and rats (Bourgeois, Suehs et al. 2005).  

Carpobrotus has a long-lived seed bank that can remain viable in the soil for at least two 

years (D'Antonio 1990). 

There are two naturalized species of Carpobrotus (C. edulis (L.) N.E.Br., and C. 

chilensis (Molina) N.E.Br.) that occur widely in coastal parts of New Zealand (Heenan and 

Sykes 2010).  These species have been introduced in different parts of the world as 

ornamental plants and for erosion prevention (Weber 2003).  While C. edulis is native to 

South Africa, the origin of C. chilensis is not known (Albert, D'Antonio et al. 1997).   

Carpobrotus chilensis is no longer present in Chile (Schierenbeck, Symonds et al. 2005) if 

indeed this was its origin, as suggested by its scientific name.  It is widely spread in California 

and is believed to be native in this region (Schierenbeck, Symonds et al. 2005). Carpobrotus 

edulis was introduced to New Zealand from South Africa as an ornamental plant and 

naturalised around 1883 (Webb, Sykes et al. 1988; D'Antonio and Mahall 1991).  In New 
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Zealand they often occur in association with D. australe subsp. australe (Heenan and Sykes 

2010).  Of these two exotics, C. edulis and its hybrids are regarded as invasive in New 

Zealand. 

 

3.3.2. Disphyma species 

 

There are two species of the genus Disphyma native to New Zealand.  Of these, D. 

papillatum is endemic to Chatham Island (Chinnock 1971; Webb, Sykes et al. 1988).  The 

other, Disphyma australe (W.T. Aiton) N.E.Br is subdivided into two subspecies: D. australe 

subsp. stricticaule Chinnock is endemic to Kermadec Islands while D. australe subsp. 

australe occurs on North, South, Stewart and Chatham Islands (Chinnock 1976).  Disphyma 

maclavellatum (Haw.) is of Australian origin but is considered naturalised (Webb, Sykes et al. 

1988). There are two forms of D. australe subsp. australe that are distinguishable by the 

colour of their vegetative parts (Chinnock 1971).  One produces red betanin pigments in 

response to changing environmental conditions while the other always remains green 

(Chinnock 1972). Unlike their exotic counterparts Disphyma spp. have dehiscent, 

hygrochastic capsules (Chinnock 1971).  Very little is known about the ecology of Disphyma.  

An electronic search of the word “Disphyma” in the Web of Knowledge databases returns 

only 25 articles, most of which are floras that only mention presence/absence of the species. 

 

3.3.3. xCarpophyma mutabilis Heenan and Sykes 2010 

 

xCarpophyma mutabilis is the name given to the hybrid produced by intergeneric 

hybridisation between C. edulis and D. australe (Heenan and Sykes 2010).  These plants have 

characteristics intermediate to their parents (Chinnock 1971; Heenan and Sykes 2010).  They 

are highly sterile with chromosome count being 2n=27 (Chinnock 1972).  Flowers rarely 

develop into fruits and if they do they are seedless (Pers. obs.; Chinnock 1972).  Intergeneric 

hybridisation of C. chilensis and D. australe results in a hybrid named xCarpophyma pallida 

that is said to be found in the Canterbury region and on Chatham Island of New Zealand 
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(Heenan and Sykes 2010).  xCarpophyma mutabilis is said to be the more common 

intergeneric hybrid in New Zealand (Heenan and Sykes 2010).  Detailed morphological 

descriptions of these hybrids (as well as of their putative parents) have been given by 

(Chinnock 1972) and (Heenan and Sykes 2010)but they are quite similar and therefore 

difficult to distinguish.  For this study, all the intergeneric sample plants were obtained from 

Wellington region and are therefore assumed to be xCarpophyma mutabilis.  

 

3.4. METHODS 
 

3.4.1. Experiment 1 (Common garden experiment – growth characteristics in different 

substrates) 

 

Cuttings of the four different taxa of iceplant were obtained from 2-5 different 

populations around Wellington (Fig. 3.2; Appendix 1, Table 3) and planted in gravel (7.5mm 

diameter), coarse sand (commercial propagation sand No.2, 0.3-4.75mm) and fine sand 

(commercial propagation sand No.1, 0.15-2.35mm) in the Victoria University glasshouse 

between 13th and 19th June 2011.  Samples of cuttings of each taxon were dried in an oven 

at 70°C for 48 hours to compare their initial biomass.  Morphometric data (Chinnock 1972), 

especially flower colour, was used in identifying the different species earlier in the previous 

year when plants were flowering.  It is possible that the two exotic  species (Carpobrotus 

spp.) do not always (or often) exist as pure species in New Zealand and may in fact be 

thought of as different colour morphs or different ends of a hybrid swarm between C. edulis 

and C. chilensis (see Gallagher et al. 1997; Schierenbeck et al. 2005; Suehs et al. 2004).  For 

the purposes of this thesis we continue to use the two names C. edulis for large yellow-

flowered Carpobrotus and C. chilensis for large magenta-flowered Carpobrotus.  Due to the 

limited distribution of C. chilensis, cuttings were only obtained from two populations.  Each 

cutting was made up of two nodes with two true leaves for Carpobrotus and four true leaves 

for Disphyma and the hybrid.  Leaves were considered true when they were fully open.   
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Fig. 3.2: Map of North Island New Zealand (A) showing Wellington region and sites from where the 
iceplant cuttings were obtained (B and C). 

 

Twelve cuttings were obtained from each site and four of them planted in each 

medium except for C. Chilensis which was only found at two sites.  Each cutting was planted 

in a container measuring 9cm X 9cm X 11cm in a medium formed by mixing two parts gravel 

or sand and one part potting mix.  The cuttings were planted with one internode below the 

soil surface and the terminal node at soil-air interface.  In total, 60 cuttings per species were 

distributed among the three substrate types.  The cuttings were watered every second day 

for the period of the time that they were in the glasshouse (until the end of August) and 

moved around every two weeks to prevent positional effects. 

On 4th of September all plants were relocated to the Victoria University Coastal 

Ecology Laboratory (VUCEL) at Island Bay.  The pots were placed in trays holding 24 plants 

each arranged in an open area where they are exposed to natural weather elements.  The 

trays were lined parallel to the coastline, 8m from the high tide mark so that they received 
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similar amounts of salt spray.  The number of leaves, length and number of nodes of each 

plant were measured at the time of relocation and repeated at two-monthly intervals over 

the spring season.  At the end of the experiment (28th December 2011) number of leaves, 

length of the main axis, number of main axis nodes, number of lateral branches and the 

number of nodes along lateral branches (Fig. 3.3) were recorded.  Plants were then 

destructively harvested and separated into shoot and root portions.  Roots were then 

thoroughly but gently washed under a running tap to remove all the soil.  Each shoot and 

root was then dried in marked paper envelopes to a constant weight in an oven at 70°C. 

 

 

Fig. 3.3: Photo of a hybrid stolon showing morphological features referred to frequently in the 
sections that follow.  The tag was originally placed just below the cut in September and the stolon 
harvested in December.  Growth of the illustrated sample occurred over a three month period. 
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Lateral branches 
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Leaves 
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3.4.2. Experiment 2 (Field Growth monitoring) 

 

On 10th of January 2011 one plant each of C. edulis and C. chilensis at the back dune 

were selected and fifty stolons per plant were tagged at a node just below the terminal bud. 

These were the only easily identifiable Carpobrotus plants in this section of the dune 

because they were in flower.  Around the same time, ten stolons on each of four C. chilensis 

plants at the foredune were tagged at a node below the terminal bud.  Ten stolons each 

were also tagged on five hybrid and D. australe plants at one and two nodes below each 

terminal bud respectively.  The number of nodes along the main axis forward of the tag was 

counted at two to three month intervals.  On 24th of September 2011, the total number of 

internodes, lateral branches and leaves forward of the tags were counted on all the stolons.  

Between 21st and 24th September 2011, ten additional stolons were tagged on the old 

Carpobrotus plants at Eastbourne.  In addition, two new C. chilensis plants at the backdune 

and four new C. edulis plants (one at the foredune and the others at the rear) were selected 

and ten stolons tagged on each at the same site.  Similarly, new tags were placed on an 

additional five stolons per plant of the old D. australe, and ten per plant on the hybrids at 

Day’s Bay.  Around the same time, ten stolons per plant of C. edulis at Queen Elizabeth Park 

were tagged on four plants each at the rear and foredunes.  At the end of the experiment 

(after their vegetative growth characters were measured) 7-10 stolons tagged in September 

were harvested from a plant of each taxon, except Disphyma australe for conservation 

reasons.  These stolons were transported quickly in air-tight zip-lock polythene bags and 

their fresh weight determined in the laboratory before they were dried to a constant weight 

at 70°C in an oven and their dry weights measured. 

 

3.4.3. Experiment 3 (Mating systems) 

 

A breeding experiment was conducted at Eastbourne between 17th and 18th of 

September 2011.  Fifty flower buds each of C. edulis and C. chilensis were selected and 

assigned to five breeding treatments (10 flowers per treatment): (i) agamospermy 

(emasculated, stigmas clipped and flowers bagged), (ii) spontaneous self-fertilisation 
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(bagged flowers not manipulated), (iii) artificial self pollination (pollen donor was a different 

flower of the same individual plant), (iv) artificial pollination with the other congener, and (v) 

artificial pollination with D. australe.  The flowers were selected before they opened up to 

ensure that no self pollination would have taken place naturally before manipulation.  All 

flower buds were bagged using fine meshed nylon bags (0.25mm x 0.22mm) to exclude 

insect pollinators.  However, no insecticides to exclude very small arthropods like mites and 

aphids that might crawl up the pedicels were applied, although no such potential pollinators 

were observed.  Artificial self pollination involved dusting of pollen of other flowers of the 

same plant on to the stigmas of experimental flowers.  During emasculation, the calyx and 

corolla were also removed since at that stage it was impossible to remove stamens only.  

However, I did not remove the corolla and calyx of the non-emasculated flowers to control 

for any independent effects these structures may have on seed production.  Hand 

pollination was done about eight days later and on two consecutive days by plucking mature 

flowers of the pollen donor and dusting the fresh pollen onto the stigmas of the recipient 

using a fine painting brush.  Care was taken to ensure that the brush used for one pollen 

donor was not used with the other.  Hand pollination was done one flower at a time, after 

which the flower was bagged again.  The flowers remained bagged until fruits were 

harvested on 3rd of January 2012.  Each fruit was opened up and seeds removed from each 

carpel.  The seeds were washed in a muslin bag under running water to remove the 

mucilaginous sap and the numbers of seeds contained were recorded.  

In addition, five plants per taxon in fixed quadrats measuring 4m2 were selected at 

Eastbourne and Day’s Bay for monitoring of flower phenology starting 21st of September at 

about four week intervals until the end of December 2011.  All twelve D. australe plants 

were monitored for flower phenology. 

 

3.4.4. Statistical analysis  

 

All data were analysed in SPSS statistical package (SPSS Inc. 2008). 
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3.4.4.1. Experiment 1: common garden experiment 

 

For the cuttings, growth was measured as dry weights (root, shoot, total and root 

mass ratio), and net increase in stolon length, number of nodes and leaves over the field 

growth period (September to December 2011) at the Island Bay field site.  Two-way ANOVA 

with the substrate and taxon as independent variables, including their interaction, and the 

measured growth parameters (biomass measurements, number of stolons, etc) as 

dependent variables were used.  The data were then split by taxa and one-way ANOVA run 

with substrate as the fixed variable to test how plants of the same taxon performed in the 

different substrate types.  Further one-way ANOVA was calculated after splitting the data by 

substrates to test how plants of the different taxa performed in the same substrate types.  

In addition, the source plant from which the cuttings were obtained was used as a random 

factor in a mixed model analysis.  Bivariate correlation between biomass and other 

measured parameters was also assessed to determine which vegetative growth aspect best 

predicts biomass. 

 

3.4.4.2. Experiment 2: field growth monitoring 

 

Although there were some outliers, the data were mostly distributed normally and 

there was no need for transformation.  For field growth experiments, the data were split 

into the different growth periods (January-December, January-September, and September-

December) because additional plants were tagged in September and comprehensive 

measurements conducted periodically.  Therefore, the January-September and September-

December periods are subsets of the January-December period for most plants.  Data for 

the September period are the difference of the other two periods for most plants and 

therefore some negative growth is expected.  Nested ANOVAs were calculated in SPSS for 

the growth experiments with net incremental values of the measured parameters (increase 

in length, number of main axis nodes, etc) for each taxon as the dependent variable and the 

individual plants as a random variable nested within “taxon.”  Where variability in a 

parameter among taxa was found, the values were aggregated and post hoc tests run to 
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compare their performance.  The data of the sample shoots destructively harvested were 

combined with those relating to the shoots of the cuttings and used in generating a linear 

regression model for estimating biomass (dry weights) of the field stolons. 

 

3.4.4.3. Experiment 3: breeding and cross-pollination 

 

Descriptive statistics and one-way ANOVA in SPSS was calculated for the number of 

seeds produced by the Carpobrotus spp. subjected to different breeding treatments with 

number of seeds as the dependent variable and the breeding treatment as the independent 

factor.  

 

 

3.5. RESULTS 
 

3.5.1. Growth of cuttings in the common garden experiment 

 

Only 16 cuttings (6.7%) of the 240 planted died during the life of the experiment, 

mostly due to herbivory during exposure to field conditions.  The initial biomass of the 

sample cuttings showed that C. edulis cuttings had a significantly higher biomass than those 

of the other taxa (P < 0.001).  Carpobrotus chilensis also had a higher biomass than D. 

australe and the intergeneric hybrid (P < 0.001).  However, there was no difference in the 

initial biomass of D. australe and the hybrid sample cuttings (Appendix 2, Table 1). 

  The final biomass (root plus shoot) was affected by the substrate (F2, 200=5.415; P = 

0.005; Table 3.1), taxon (F3, 200=77.930; P < 0.001) and the interaction of these two (F6, 

200=2.558; P = 0.021).  In post hoc tests there was no difference between the two 

Carpobrotus species, but both had a significantly higher total biomass than the hybrid and D. 

australe (P < 0.001). Comparisons of plants of different taxa growing in the same substrate 

showed that in all substrate types, C. chilensis and C. edulis plants accumulated greater 
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biomass than D. australe (P < 0.001) and the hybrid at various levels of significance except in 

gravel where biomass of C. chilensis did not differ from that of the hybrid (Fig. 3.4).  The 

hybrid also had a higher total biomass than Disphyma australe (P < 0.001). Only C. chilensis 

showed a significant difference in performance across the various substrates (F2, 54=8.951; P 

< 0.001; Table 3.2; Fig. 3.5) where those plants in coarse and fine sand did better than those 

in gravel (P = 0.011 and P < 0.001 respectively). 

  

Table 3.1: Two-way ANOVA table showing that total dry weights of the cuttings varied with substrate 
type, taxa and interaction of the two factors (Type III Sum of Squares).  

 

Source df Mean Square F Sig. 

Substrate 2 4.8 5.415 .005 

Taxon 3 68.9 77.930 <.001 

Substrate * Taxon 6 2.3 2.558 .021 

Error 200 .9   
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Fig.3.4: Boxplots showing final biomass of the cuttings of the various taxa growing in different 
substrate types.  Different letters at the top of the bars indicate significant (P < 0.05) variability in 
post-hoc test between taxa in the same substrate type. 

 

Table 3.2: Tukey HSD table showing that C. chilensis cuttings growing in gravel put on less final 
biomass than those growing in fine and coarse sand.  

 

Taxon   (I) Subst (J) Subst Mean Difference 

 (I-J) 

Std. Error Sig. 

C. chilensis  Coarse  Gravel .96 .31950 .011 

Fine  Gravel 1.33 .32346 <.001 
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Fig. 3.5: Boxplots showing variability in final biomass of C. chilensis cuttings growing in different 
substrates (different letters above the bars represent significant differences at P < 0.05). 

 

Biomass allocation to above- or below-ground structures, in terms of root mass ratio 

(root dry weight/total biomass), was not affected by the substrate but regardless, there was 

significant variability among the various taxa (F3, 200=164.799; P < 0.001; Table 3.3).  On the 

whole, there was no difference in RMR between Carpobrotus species.  Disphyma australe 

had a significantly higher root mass ratio (RMR) than the other three (Fig. 3.6; P < 0.001), 

with the hybrid also having a higher RMR than the two Carpobrotus (P < 0.001).  However, 

RMR did not differ between D. australe and the hybrid in fine sand.  Plants of the same 

taxon growing in different substrate types did not differ in their RMR.  
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Table 3.3: Two-way ANOVA table showing root mass ratio of the cuttings was not affected by the 
substrate but varied among taxa. 

 

Source df Mean Square F Sig. 

Substrate 2 .003 2.618 .075 

Taxon 3 .177 164.799 <.001 

Substrate * Taxon 6 .001 1.136 .343 

Error 200 .001   

     

 

 

 

Fig. 3.6: The final root mass ratio (RMR) of cuttings of each taxon growing in the various substrates. 
Letters above the bars indicate variability among taxa growing in the same substrate at P < 0.05 
significance levels. 
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Substrate type did not have any influence on the number of leaves produced in the 

field but there was significant variability among taxa (F3, 212=61.093; P < 0.001; Fig. 3.7; Table 

3.4), except between the two Carpobrotus species.  Comparison of plants of the same taxon 

in different substrate types showed variability only among C. chilensis plants (F2, 56=5.74; P = 

0.005; Table 3.5) where plants growing in fine sand, on average, produced four more leaves 

than those in gravel (P = 0.004).  There was significant variability among plants of different 

taxa growing in the same substrate type, except between the two Carpobrotus species.  The 

hybrid produce more leaves than Carpobrotus in all substrates (P < 0.001), and more than D. 

australe in coarse sand (P = 0.003) as well as in gravel (P = 0.004).  Disphyma australe 

performed better than Carpobrotus in coarse sand (P = 0.002).  In addition, D. australe 

accumulated more leaves than C. chilensis (P = 0.004) and C. edulis (P = 0.001) in fine sand 

as well as gravel (P = 0.001 and P = 0.004 respectively).  However, there was no difference 

between D. australe and hybrid in fine sand.  
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Fig. 3.7: Boxplots showing that the hybrid cuttings produced more leaves in the field than the other 
taxa and that D. australe produced more leaves than Carpobrotus spp. over the four month period. 
Different letters above the bars represent significant differences between taxa, within each 
substrate (P < 0.05). 

 

 

 

Table 3.4: ANOVA table showing substrate and its interaction with taxon did not have any effect on 
increase in the number of leaves of cuttings over the four-month field exposure period. 

 

Source df Mean Square F Sig. 

Substrate 2 10.8 .117 .889 

Taxon 3 5642.7 61.093 <.001 

Substrate * Taxon 6 109.5 1.185 .315 

Error 212 92.4   
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Table 3.5: Summary of separate ANOVAs showing that over the four month field exposure period 
substrate had an effect on leaf increase of C. chilensis only. 

 

Taxon Source df Mean Square F Sig. 

C. chilensis Substrate 2, 56 68.1 5.740 .005 

C. edulis Substrate 2, 46 .6 .047 .954 

D. australe Substrate 2, 54 26.1 .161 .852 

Hybrid Substrate 2, 56 246.5 1.443 .245 

 

The net increase in the number of nodes along the main axes did not differ with 

substrate type but variability among taxa was significant (F3, 212=89.969; P < 0.001).  Both the 

hybrid and D. australe had more nodes than Carpobrotus species (P < 0.001).  The hybrid 

also produced more nodes than D. australe (P = 0.041).  There was no variability within 

members of the same taxon growing in different substrates.  Performance of plants of 

different taxa growing in the same substrate type showed that D. australe and the hybrid 

both had significantly more nodes than Carpobrotus species in all substrates (P < 0.001).  

There was no difference in the number of main axis nodes between the Carpobrotus species 

as well as between the hybrid and D. australe.  In addition, there was a highly significant 

variability among taxa in terms of internode length (total length/ (main axis nodes-1)) (F3, 

212=47.046; P < 0.001; Table 3.6) with the hybrid cuttings having longer internodes than all 

the other taxa (P < 0.001; Table 3.4; Fig. 3.8). There was no difference in the internode 

lengths among the other three taxa. 

 

Table 3.6:  ANOVA table showing that the lengths of stolon internodes varied among the taxa but the 
substrate type in which plants were growing did not have any influence. 

 

Source df Mean Square F Sig. 

Taxon 3 13.432 47.046 <.001 

Substrate 2 .005 .018 .982 

Taxon * Substrate 6 .170 .596 .734 

Error 212 .286   
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Fig. 3.8: Average internode length of cuttings of each taxon in the various substrates grown over a 
period of six months. The different letters below the bars indicate variability among plants of 
different taxa growing in the same substrate (P < 0.001).  

 

Net increase in lengths of main axes did not differ with substrate type but variability 

among taxa was significant (F3, 212=68.834; P < 0.001).  The hybrid stolons were longer than 

those of the other taxa (P < 0.001) while D. australe stolons grew longer than C. chilensis (P 

< 0.001) and C. edulis (P = 0.014).  There was no variability within members of the same 

taxon growing in different substrates.  Between substrate comparisons (Fig. 3.9) showed 

that in gravel the hybrid outgrew all the other taxa (P < 0.001).  In coarse and fine sand the 

hybrid grew longer than Carpobrotus (P < 0.001) as well as D. australe (P < 0.001; 0.003 

respectively).  Disphyma australe grew longer than C. chilensis in fine sand only (P = 0.048).  
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Fig. 3.9: The length by which stolons of the various taxa increased over the four-month period of 
exposure to field conditions.  Letters above the bars refer to variability among taxa growing in the 
same substrate (P < 0.05). 

 

An assessment of correlation between total biomass and net increase in leaves, 

nodes, and length of the cuttings showed positive relationships (Fig. 3.10; Table 3.7).  

However, increase in the number of leaves was stronger for all the taxa (R2 = 0.964; P < 

0.001). 

 



88 

 

 

Fig. 3.10: A graph showing a positive correlation between shoot dry weight and number of leaves 
(Left), and stolon length (Right) of the cuttings and the stolons harvested from the field sample 
plants. 

 

Table 3.7: Bivariate correlation (Pearson’s R-squared) showing positive relationships between shoot 
dry weight and measured parameters of the cuttings and the stolons harvested from the field 
sample plants. 

 

Taxon N Leaves Nodes Length 

C. chilensis Shoot Dry wt 67 .964 .952 .944 

C. edulis Shoot Dry wt 58 .920 .883 .831 

D. australe Shoot Dry wt 57 .702 .447 .588 

Hybrid Shoot Dry wt 68 .938 .813 .743 

 

 

 

There were no variations in biomass accumulation among cuttings of the same taxon 

obtained from the different populations (Plants) when site was treated as a random variable 

and substrate as a fixed variable in a mixed effects ANOVA, except among the hybrids (P < 

0.001) where plants obtained from Moa point put on more biomass than those from the 

other sites (Fig. 3.11). 
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Fig. 3.11: Final biomass put on by the hybrid cuttings from the various populations over a period of 
six months indicating that cuttings from the plants at Moa Point put on higher biomass than the 
others. 

 

 

 

3.5.2. Field growth monitoring 

 

There was no significant variability in the number of leaves produced among the taxa 

over the total growth period of January-September (P = 0.152) and January-December (F3, 

9.01=3.753; P = 0.053; Table 3.8).  There was however, a highly significant variability in the 

number of leaves among taxa for the period of September-December (F3, 37.3=10.109; P < 

0.001).  In addition, there was significant variability among the different sample plants 
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within each taxon in terms of the number of leaves (all periods P < 0.001; Table 3.8).  The 

hybrid plants were highly variable in each of the growth periods (P ≤ 0.002), unlike plants of 

other taxa that mostly showed variability in number of leaves during the September-

December period.  There was no variability in the number of leaves among taxa during the 

January-September period.  The hybrid produced more leaves than D. australe in the 

January-December and September-December periods (P = 0.007 and P < 0.001 respectively), 

and C. edulis in the September-December period (P = 0.006; Fig. 3.12; Table 3.9).  During the 

September-December period, C. edulis also produced more leaves than D. australe (P = 

0.036).  Disphyma australe plants actually lost more leaves than they produced during the 

period (Fig. 3.12).  

 

Table 3.8: Nested ANOVA summary table comparing the number of leaves produced by the field 
sample plants of each taxon over the various growth periods.  There was significant variability 
among sample plants of the same taxon in all growth periods.  Variability among taxa was only 
significant in the September-December period. 

 

Period Source Error df Df MS F Sig. 

Jan-Dec Taxon 9.010 3 333913.5 3.753 .053 

Plant(Taxon) 111 11 54424.1 4.718 <.001 

Jan-Sept Taxon 9.276 3 60368.7 2.228 .152 

Plant(Taxon) 111 11 16332.9 5.481 <.001 

Sept-Dec Taxon 37.310 3 90276.8 10.109 <.001 

Plant(Taxon) 296 35 10511.5 6.619 <.001 
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Fig. 3.12: Number of leaves produced by stolons of sample plants of the various taxa over each of 
the growth periods in the field growth experiment.  The letters below the bars indicate variability 
among taxa at significance levels of P < 0.05.  Carpobrotus edulis was not included in the comparison 
for the January-September and January-December periods because there was only one sample plant. 
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Table 3.9: Tukey HSD table comparing variability in the average number of leaves produced by plants 
of each taxon over the different growth periods in the field growth experiment.  The table shows 
only combinations where variability was significant. 

 

Period (I) Taxon (J) Taxon Mean Difference 

(I-J) 

Std. Error Sig. 

Jan-Dec Hybrid Disphyma 237.8 62.1 .007 

Sep-Dec C. chilensis Disphyma 55.7 20.2 .043 

Hybrid Disphyma 104.8 17.5 <.001 

C. edulis 58.1 16.4 .006 

C. edulis Disphyma 46.6 16.5 .036 

    

 

Lengths of the main axes stolons did not differ between the taxa, except during the 

September-December period (F3, 36.5=7.588; P < 0.01; Table 3.10).  However, there was a 

highly significant variability among plants of the same taxon over all of the growth periods 

(all periods P < 0.001), except Disphyma australe plants which differed in the lengths of their 

main axes only over the September-December period (F9, 29=2.329; P = 0.041).  In both the 

January-September and January-December periods, only the hybrid grew longer than D. 

australe (P = 0.003 and 0.008 respectively).  During the September-December period, all the 

other taxa lengthened more than D. australe (least significant P = 0.029) and the hybrid 

lengthened more than C. chilensis (P = 0.026) while the two Carpobrotus species did not 

differ in length (Fig. 3.13; Table 3.11). 

Table 3.10: Nested ANOVA table showing lengths of the main axes stolons did not vary among the 
taxa except in the September-December period but a highly significant variability among plants of 
the same taxon in each growth period. 

Period Source Error df df MS F Sig. 

Jan-Dec Taxon 9.804 3 16815.9 2.888 .090 

Plant(Taxon) 111 11 3415.2 7.995 <.001 

Jan-Sept Taxon 9.902 3 7659.5 2.658 .106 

Plant(Taxon) 111 11 1681.7 8.731 <.001 

Sep-Dec Taxon 36.473 3 3586.7 7.588 <.001 

Plant(Taxon) 296 35 562.8 10.331 <.001 
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Fig. 3.13: Mean lengths of stolons of each taxon over the various growth periods in the field growth 
experiment.  The letters below the bars indicate variability among taxa at significance levels of P < 
0.05. 

 

Table 3.11: A summary Tukey HSD test table comparing mean stolon lengths of plants of the 
different taxa over the various growth periods in the field growth experiment.  The table shows only 
where significant variability was found. 

Period (I) Taxon (J) Taxon Mean Difference 

(I-J) 

Std. Error Sig. 

Jan-Dec Hybrid Disphyma 54.2 12.2 .003 

Jan-Sep Hybrid Disphyma 32.7 8.6 .008 

Sep-Dec C. chilensis Disphyma 11.1 3.8 .029 

Hybrid C. chilensis 11.3 3.8 .026 

Disphyma 22.4 3.3 <.001 

C. edulis Disphyma 15.8 3.1 <.001 
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The number of nodes along the main axes and lateral branches differed significantly 

among the various taxa during all the periods (least significant: P = 0.037; Table 3.12).  

Similarly, there was a high degree of variability among plants of the same taxon in all the 

periods (P < 0.001) except for Disphyma australe plants, which did not show variability in 

any of the growth periods.  The hybrid plants generally produced more nodes than the other 

taxa in all the growth periods except for C. chilensis in the September-December period (P = 

0.057; Fig. 3.14; Table 3.13).  There was no difference among the other taxa in the number 

of their nodes in any of the periods. 

 

Table 3.12: Nested ANOVA table showing significant variability among taxa and among plants of the 
same taxon in the total number of their nodes over each growth period. 

 

Period Source df MS F Sig. 

Jan-Dec Taxon 3, 9.283 235832.1 4.322 .037 

Plant(Taxon) 11, 111 32888.3 5.505 <.001 

Jan-Sept Taxon 3, 9.251 22370.3 5.147 .023 

Plant(Taxon) 11, 111 2623.9 5.398 <.001 

Sept-Dec Taxon 3, 36.848 84468.7 8.394 <.001 

Plant(Taxon) 35, 296 11919.3 8.252 <.001 
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Fig. 3.14: Net number of nodes produced along the main axes of stolons of plants of each taxon 
during the various growth periods in the field growth experiment.  The letters below the bars 
indicate variability among taxa at significance levels of P < 0.05. 
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Table 3.13: A summary Tukey HSD test table comparing the aggregate number of nodes produced 
along the main stolons and lateral branches by plants of the various taxa over the different growth 
periods in the field growth experiment.  The table shows only where variability was significant (P < 
0.05) or approaching significance. 

 

Period (I) Taxon (J) Taxon Mean Difference 

(I-J) 

Std. Error Sig. 

Jan-Dec Hybrid C. chilensis 149.7 51.1 .034 

Disphyma 179.5 48.2 .009 

Jan-Sep Hybrid C. chilensis 44.0 13.6 .020 

Disphyma 39.0 12.8 .027 

Sep-Dec Hybrid C. chilensis 60.5 22.9 .057 

Disphyma 82.4 19.9 .001 

C. edulis 68.2 18.7 .004 

    

 

Number of lateral branches produced along the tagged main axes differed 

significantly among the taxa as well as between plants within a taxon during all or some of 

the growth periods (least significant P = 0.007; Table 3.14).  The hybrid produced more 

lateral branches than C. chilensis in all the periods (P < 0.023) and more than D. australe in 

January-December and September-December (both periods P < 0.002; Fig. 3.15; Table 3.15). 

Carpobrotus spp. produced more lateral branches than D. australe during September-

December (P < 0.002).  There were no differences in number of lateral branches between C. 

edulis and the hybrid and between the two Carpobrotus species in September-December. 

Table 3.14: Nested ANOVA table showing that there was significant variability in the number of 
lateral branches produced by plants of the various taxa and among plants of the same taxon in all 
the growth periods in the field growth experiment. 

Period Source  df MS F Sig. 

Jan-Dec Taxon 3, 9.283 2672.1 7.795 .007 

Plant(Taxon) 11, 111 207.8 5.160 <.001 

Jan-Sept Taxon 3, 9.251 1185.8 7.032 .010 

Plant(Taxon) 11, 111 102.7 4.934 <.001 

Sept-Dec Taxon 3, 36.848 775.1 11.804 <.001 

Plant(Taxon) 35, 296 78.0 9.180 <.001 
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Fig. 3.15: Number of lateral branches produced by a stolon of plant of each taxon over the various 
growth periods in the field growth experiment.  The letters below the bars indicate variability among 
taxa at significance levels of P < 0.05.  Disphyma australe showed loss of lateral branches in the 
September-December period. 
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Table 3.15: A Tukey HSD table comparing the mean number of lateral branches produced by plants 
of the various taxa in the different growth periods in the field growth experiment.  The table only 
summarises where variability was significant. 

 

Period (I) Taxon (J) Taxon Mean Difference 

(I-J) 

Std. Error Sig. 

Jan-Dec Hybrid C. chilensis 12.6 4.0 .023 

Disphyma 18.1 3.8 .002 

Jan-Sep Hybrid C. chilensis 8.8 2.8 .023 

Sep-Dec C. chilensis Disphyma 5.9 1.5 .002 

Hybrid C. chilensis 4.7 1.5 .019 

Disphyma 10.6 1.3 <.001 

C. edulis Disphyma 7.4 1.2 <.001 

    

 

 

The sample stolons that were destructively harvested and their dry weights 

measured showed strong positive correlation between each of the measured parameters 

and the dry weight for each taxon.  Similar observations were made for the experimental 

cuttings. Therefore, these parameters were all put in a multiple regression model to 

generate an equation for estimation of dry weight of the shoots of the field plants (Table 

3.16).  The estimated biomass was then analysed using a two-level nested ANOVA analysis 

with taxon as a fixed factor and individual plants as a random factor (Table 3.17).  There was 

a highly significant variability among the different taxa (F 3, 39.5=9.192; P < 0.001) as well as 

among sample plants of the same taxon (F35, 548=4.885; P < 0.001). 
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Table 3.16: Summary of multiple linear regressions used to estimate shoot dry weights of plants in 
the field growth experiment.  The data were derived from number of leaves, number of nodes and 
main axis length of common-garden cuttings, and the sample stolons harvested from the field. 

 

Taxon Unstandardized Coefficients T Sig. 

B Std. Error 

C. chilensis (Constant) .920 .185 4.975 <.001 

Leaves .184 .038 4.807 <.001 

Nodes .065 .107 .614 .541 

Length .066 .070 .939 .351 

      

C. edulis (Constant) 1.346 .206 6.538 <.001 

Leaves .247 .049 5.054 <.001 

Nodes -.017 .128 -.130 .897 

Length -.018 .075 -.248 .805 

      

D. australe (Constant) .167 .141 1.184 .242 

Leaves .016 .003 5.998 <.001 

Nodes -.008 .028 -.284 .778 

Length .038 .013 2.953 .005 

      

Hybrid (Constant) .350 .103 3.388 .001 

Leaves .032 .004 8.406 <.001 

Nodes .004 .005 .788 .434 

Length .035 .006 5.950 <.001 

 

 

Table 3.17: Nested ANOVA table showing variability in estimated shoot dry weights among the 
various taxa and plants of each taxon in the field growth experiment. 

 

Source df Mean Square F Sig. 

Taxon 3 3477.3 9.192 <.001 

Plant(Taxon) 35 464.8 4.885 <.001 
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Fig. 3.16: Estimated shoot dry weight put on by the sample plants of each taxon over the various 
growth periods in the field growth experiment.  The different letters below the bars indicate 
variability among taxa at P < 0.01.  Carpobrotus edulis was excluded from the comparison in the Jan-
Dec and Jan-Sep periods because there was only one sample plant.  

 

On aggregating the dataset and running a post hoc test to discriminate the variability 

among taxa, it was found that all the other taxa had a significantly higher estimated dry 

weight than D. australe (P < 0.001; Fig. 3.16).  Carpobrotus edulis did not vary from C. 

chilensis but both had a higher dry weight than the hybrid as well (P < 0.05; Table 3.18). 
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Table 3.18: A Tukey HSD table comparing the means of the aggregate estimated dry weights put on 
by the shoots of the various taxa over the different growth periods in the field growth experiment.  
The table summarises only where variability between taxa was significant. 

 

Period (I) Taxon (J) Taxon Mean Difference 

(I-J) 

Std. Error Sig. 

Jan-Dec C. chilensis Disphyma 32.0 5.2 <.001 

Hybrid 20.8 5.2 .005 

Jan-Sep C. chilensis Disphyma 17.5 3.1 <.001 

Hybrid 12.3 3.1 .006 

Sep-Dec C. chilensis Disphyma 12.0 2.1 <.001 

Hybrid 7.4 2.1 .005 

C. edulis Disphyma 9.9 1.7 <.001 

Hybrid 5.4 1.7 .015 

    

 

 

 

While C. edulis is bigger in stature, its biomass was not higher than that of C. 

Chilensis, probably because it stores more water than organic compounds, as shown by the 

ratio of dry weights to fresh weights of the harvested sample stolons (Fig. 3.17).  
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Fig. 3.17: The ratios of shoot dry weight of the stolons harvested from the field to their fresh weight 
showing that the hybrid was the least succulent, with the greatest dry weight: fresh weight ratio. 

 

3.5.3. Breeding systems 

 

The main flowering season was from September to November with peak flowering 

for all the taxa being October-November (Fig. 3.18).  A few plants continued flowering into 

December.  Some C. edulis plants also flowered from May to June, although at much lower 

density and at fewer sites.  



103 

 

 

Fig. 3.18: Mean flower density per sample plant (number of flowers/m2) of the various taxa during 
the flowering season of the year 2011. 

 

It is important to note that although at least ten flower buds were assigned to each 

breeding treatment per taxon, not all were sustained to maturity due to human interference.  

The two exotic iceplant taxa responded differently to the mating experiments in terms of 

seed set (F4, 60=15.833; P < 0.001).  Carpobrotus edulis fruits did not produce any seeds in 

the agamospermy treatment while less than a third of fruits produced an average of only 

two seeds each in the spontaneous selfing treatment.  In artificial selfing, three fruits from 

one plant produced seeds while the fruits of the other plant did not.  Carpobrotus edulis 

produced a lot of seeds when supplied with pollen of C. chilensis and D. australe.  

Carpobrotus chilensis plants, on the other hand, responded positively to all treatments, 

although at low levels for agamospermy, where one of the two fruits produced only a single 

seed and the other produced 36 seeds (Table 3.19; Fig. 3.19).  
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Table 3.19: Descriptive statistics of number of seeds produced per fruit by the two Carpobrotus 
species subjected to different breeding treatments. 

 

Taxon Statistic Agamospermy Spontaneous 

selfing 

Artificial 

selfing 

X congener X D. australe  

 

C. 

chilensis 

 

Mean ± 

S.D. 

 

18.5 ± 24.7 

 

442.0 ±87.2 

 

317.2±97.5 

 

377.6 ± 114.6 

 

231.1 ± 36.9 

Range 1 - 36 32 5 - 568 212 - 422 234 - 545 160 - 285 

N 2 5 5 7 10 

C. edulis Mean ± 

S.D 

     .00 2.0 ± 3.5 77.7 ± 98.9 1310.4±694.5 493.8±323.0 

Range 0 0 - 9 0 - 202 805 - 2663 55 - 1095 

N 7 9 7 9 10 
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Fig. 3.19: Number of seeds per fruit produced by each of the two Carpobrotus species subjected to 
the different breeding treatments. 
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3.6. DISCUSSION 
 

3.6.1. Growth comparison and substrate preference 

 

The results of the experimental study showed that there was no difference in the 

final biomass of the two Carpobrotus spp., regardless of the substrate, although C. edulis 

cuttings had a higher indicative initial biomass.  In a field study in several Mediterranean 

islands, (Traveset, Brundu et al. 2008) found that Carpobrotus species displayed similar 

growth rates in dune systems and rocky shores, concluding that their growth rate was more 

dependent on microsite type than on habitat type (Traveset, Brundu et al. 2008).  The two 

exotics performed comparably in the field growth monitoring study.  The actual and 

estimated final dry weights of the Carpobrotus cuttings were significantly higher than those 

of their hybrid and D. australe counterparts.  This was not surprising because the same 

trend was evident from the initial biomass of the sample cuttings.   The hybrids had 

significantly higher final dry weights (actual and estimated) than D. australe plants even 

though the initial dry weights of their sample cuttings did not differ.  Carpobrotus chilensis 

cuttings growing in sand accumulated significantly higher dry weight and produced more 

leaves than those growing in gravel, showing some substrate preference.  In terms of actual 

biomass allocation, Disphyma australe allocated relatively more to the roots than the shoot, 

compared to the other taxa, while the hybrid also invested relatively more in the roots than 

the two Carpobrotus spp.  

In the present study, stolons of Carpobrotus spp. elongated by up to 130 cm over the 

eleven month field growth period, although there was high variability among stolons 

because of smothering of some by others.  Similarly, the hybrids elongated by up to 127 cm 

over the same time period.  The main stolons of iceplant species have the capacity to form 

functional individuals (ramets) by rooting at some nodes and spreading independently 

(Traveset, Moragues et al. 2008).  The hybrids had the highest mean number of nodes along 

the main axes and lateral branches that could potentially root and form ramets.  Such 

ramets act as cooperative entities with efficient distribution of tasks that can lead to 

enhanced resource exploitation in heterogeneous habitats (Stuefer, DeKroon et al. 1996).  
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This kind of clonal growth has been proposed as one of the most successful strategies in the 

plant world (Traveset, Moragues et al. 2008), which together with other life history traits 

(Mack 2003) has been shown to increase the probability of successful invasion (Heger and 

Trepl 2003).  The exotics and the hybrid (xCarpophyma mutabilis Heenan and Sykes 2010) 

seem to grow more aggressively than the native D. australe, whose longest stolon was 30cm.  

The high stolon elongation and branching rates allow the exotics and hybrids to rapidly 

occupy and dominate space (Sammul, Kull et al. 2004; Sintes, Moragues et al. 2007).  

Clonality further enhances access to unevenly distributed resources, thereby conferring 

competitiveness with subsequent negative consequences for the native flora (Stuefer, 

DeKroon et al. 1996).  

  The average number of lateral branches produced by an individual stolon over the 

period of just under a year was 16 for the hybrid, 9 for C. chilensis, 4 for D. australe and 5 for 

C. edulis. Lateral branches are vegetative propagules, which are an alternative means of 

dispersal that subsequently root and produce new individuals (Traveset, Moragues et al. 

2008).  It is suggested that vegetative propagules generally result in larger-sized plants with 

higher survival and growth rates than seeds (Nishitani, Takada et al. 1999).  Success of 

iceplant propagules is further enhanced by clonal integration with the parent plant since 

resources can be translocated from the established parent to the developing ramets (Price 

and Marshall 1999).  It is therefore not surprising that the hybrid, being sexually sterile, 

seems to have invested a lot in lateral branches as its only means of proliferation. 

The parent plants (sites) from which the cuttings were obtained did not seem to 

have conferred differential advantages except for the hybrid plant from Moa point, whose 

cuttings performed better than the others in terms of total biomass.  The two varieties of D. 

australe (green and red), did not differ in their performance in either of the substrate types, 

even though in nature the green one seems to predominate at rocky shores (K. Gould pers. 

comm.).  Disphyma australe plants in the field growth study showed some negative growth 

for the period of September to December in all the measured variables, mainly as a result of 

smothering by the hybrid plants with which they grow at the study site. 
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The revelation by nested analysis that there was a high degree of variability among 

plants of the same taxon in all the measured characters suggests that, in future studies, 

more sample plants are needed to increase the sample size.  However, the variability among 

plants in the current study may also be explained in terms of habitat heterogeneity 

(especially for C. Chilensis), where some plants were at the backdune where substrate is 

sandy, while others were at the foredune where soil structure is predominantly shingles.  

Furthermore, plants at the backdune, where the substrate is more stable, were intermingled 

with other plants that would normally curtail their growth compared to those at the 

foredune where storm and wave disturbance would ideally eliminate biotic resistance by 

removing the native residents.  

The Eastbourne site where Carpobrotus spp were growing is about two kilometres 

from Day’s Bay where D. australe and the hybrids were.  The climatic conditions of these 

two sites are quite similar and not much ecotypic difference was expected.  

 

3.6.2. Mating systems 

 

A highly flexible mating system can be a key element in the establishment and 

success of invasive plants (Baker 1955).  Aizoaceae species have been shown to have a high 

capability for intrageneric and intergeneric hybridization (Chinnock 1972; Hammer and 

Liede 1990).  Mating experiments in the present study have shown that Carpobrotus species 

are highly fertile to intrageneric and intergeneric pollen.  However, C. edulis was not 

agamospermic but slightly self-fertile and needing intervention of a pollinator, while C. 

chilensis was slightly agamospermic and self-fertile, contrary to findings of (Vilà, Weber et al. 

1998).  It has been pointed out that ideal weeds (and by extension invasive plants) are self-

compatible, but not completely autogamous or apomictic (Baker 1965 as cited by Vilà, 

Weber et al. 1998).  Unfortunately, there was no time to germinate the seeds to test their 

viability, even using laboratory techniques.  Self-fertilization and agamospermia are said to 

give the advantage for invasive species to start a seed-reproducing colony from a single 

individual and to build up a population quickly (Vilà, Weber et al. 1998).  According to 

morphometric (Albert et al. 1997) and isozyme analyses (Gallagher et al. 1997), C. chilensis 
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appears to be hybridizing and backcrossing with C. edulis individuals (Vila and D’Antonio 

1998), casting doubts on the species integrity of our experimental plants, whose exact 

source is unknown.  In New Zealand, yellow-flowered C. edulis and magenta-flowered C. 

chilensis co-occur at most sites but there are no presence records of their intrageneric 

hybrids (Heenan and Sykes, 2010).  Due to the general lack of morphometric differences, it 

seems possible that they may in fact be two colour morphs of a C. edulis and C. chilensis 

hybrid swarm. 

Both Carpobrotus species in our breeding experiment were highly fertile to 

intergeneric D. australe pollen.  Hybridization between native and non-native plants may 

result in invasive hybrid morphotypes that, in turn, have dramatic effects on the 

communities in which they occur (Thompson 1991).  The hybrid cuttings in my trials 

performed better than those of the other taxa in the characters relating to vegetative 

growth such as number of leaves, number of nodes, main axes length and internode length. 

In the field growth study, performance of the hybrids, in terms of growth characters, was 

always better or comparable to those of the Carpobrotus spp.  For example, they grew 

longer and produced more leaves than C. edulis but were not different from C. chilensis. 

Additionally, they produced more nodes and lateral branches than both Carpobrotus spp. 

The differential fitness of hybrid and parental genotypes can have important evolutionary 

consequences (Ellstrand and Schierenbeck 2000).  Hybridizations between formerly 

allopatric species may result in new alien-derived genotypes (Verlaque, Affre et al. 2011) 

that are frequently competitive (Vilà, Weber et al. 2000) or stress tolerant (Milne and 

Abbott 2000).  They may differently affect the structure and function of native ecosystems 

(Verlaque, Affre et al. 2011).  For instance, Spartina anglica has been shown to cause 

sediment rise by accumulating large volumes of tidal sediment, making intertidal habitats 

more terrestrial (Ainouche, Fortune et al. 2009). Hybridisation has the potential to create 

highly aggressive genotypes that may be undesirable in terms of management for native 

species (Ellstrand 1992; Rhymer and Simberloff 1996).  Xcarpophyma mutabilis, the 

intergeneric hybrid of C. edulis and D. australe is a perennial and clonal plant.  Perennial 

hybrids will persist longer, giving more time for genetic stabilization opportunities to occur, 

especially if clonal reproduction is available (Ellstrand and Schierenbeck 2006).  Clonality on 
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the other hand, would tend to stabilize lineages that would suffer sterility as F1 hybrids 

while fixing hybridity and novelty (Grant 1981).  Alien species and their native-derived 

hybrids can also influence the evolution of natives by exposing them to novel interactions 

(Parker, Simberloff et al. 1999).  For example, Carpobrotus edulis has been shown to interact 

indirectly with native vegetation by altering soil chemistry (Conser and Connor 2009), 

thereby exposing the natives to novel soil micro-conditions. 

 

3.6.3. Implications of the Hybrid (xCarpophyma mutabilis Heenan and Sykes 2010) for D. 

australe  

 

The field growth monitoring and experimental growth of the cuttings have shown 

that the hybrid is at least as aggressive as its exotic parent in space colonisation.  Disphyma 

australe at the Day’s Bay site seem to have been negatively affected by the hybrid where 

the hybrids grew over their stolons, smothering them in some seasons of the year.  In 

addition, the fact that the hybrid cuttings in the common garden experiment did quite well 

in all the substrate types may mean that they are capable of growing in the same natural 

habitats as D. australe.  Hybrid vigour for vegetative growth is thought to contribute to 

displacement of parental morphotypes or native species (Vilà and D'Antonio 1998).  More 

research needs to be done on how the hybrids influence growth and survival of D. australe. 

If they were to grow intermingled, Disphyma australe is likely to stand no chance against the 

exotic mat-forming (Albert, D'Antonio et al. 1997)Carpobrotus spp. that have also been 

shown to crawl over other vegetation (D'Antonio 1990). 

In other systems, hybrid genotypes originating from C. edulis and native congeners 

have been shown to present a major obstacle for managers (Vilà and D'Antonio 1998; 

Schierenbeck and Ellstrand 2009) with negative implications for the conservation of native 

species assemblages (Vilà, Weber et al. 1998).  Human mediated gene flow between 

congeners or conspecific populations is regarded as a form of biotic homogenization both at 

the genetic and community level (Olden, Poff et al. 2004).  However, little is known about 

how non-native taxa or the spread of their foreign alleles to native taxa may affect local 
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adaptation of a species, community composition, or ecosystem function (Levine, Vilà et al. 

2003).  

 

3.7. Conclusion and implications for management 
 

The growth rates of the iceplant taxa in my common garden experiment suggest that 

all of them are capable of colonizing both sandy and shingle coastal habitats, although C. 

chilensis performed comparatively worse in gravel.  The intergeneric hybrid displayed more 

aggressive growth characteristics than its putative parents but its stolons are slender and 

more sparsely spread, with sufficient spaces for other vegetation to grow. However, it 

negatively affected growth of D. australe in the field at a site where they were planted in an 

intermingled pattern.  It is therefore possible that the exotic iceplant and the intergeneric 

hybrid may pose serious threats to native coastal plants.  Thus, it is important to investigate 

the influence of other environmental filters such as salinity and sand burial on these taxa to 

be able to predict in which habitats they are more likely to be a management problem.  

Such a study would also help determine the ability of D. australe to tolerate sand burial and 

therefore its suitability for sand dune restoration.  Due to its sexual sterility, the intergeneric 

hybrid is easier to manage since it does not leave behind any seed legacy and is therefore 

more suitable than Carpobrotus spp. for dune stabilisation. 
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Chapter four 

4. Overall conclusions and 

recommendations 
 

 

 

Fig. 4.1: XCarpohyma mutabilis (foreground) on the beach at Day’s Bay, Wellington accumulating 
some sand. Photo taken by author in April 2012 
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4.1. Interactive effects of C. edulis on Spinifex sericeus and its role in sand 

dune restoration 
 

This was a neighbour removal experiment aimed at investigating the effects of C. 

edulis on survival and growth of Spinifex sericeus.  Presence or absence of C. edulis did not 

have any effect on initial Spinifex seedling survival.  However, seedling survival was 

significantly higher at the sub-plots nearer the high tide water mark than those at the top.  

Given that the formative period after planting was characterised by drought, the only 

confounding factor that could have been responsible for varied survivorship at the two sub-

plots is soil moisture, attributable to inundation during high tides, strong wave splashes, and 

water draining from inland. 

Spinifex seedling survival was consistently higher in the removal plots (iceplant 

removed) until the July storm (eight months after planting), although the difference was not 

statistically significant.  In addition, seedlings in these plots produced significantly higher 

numbers of leaves than those in plots of the other treatments.  This suggests that the 

previously extant iceplant may have improved soil micro-conditions to which the incoming 

seedlings responded positively.  

The most important determinant of Spinifex seedling survival in this experiment was 

storm disturbance.  Spinifex plants within iceplant stands survived storm disturbance better 

than those in the removal and bare plots because of the soil-binding nature of the extensive 

fibrous root system of C. edulis.  Seedlings in the removal plots were the worst affected by 

the storm because of the steeper slope built by sand accretion activity of the previously 

extant iceplant.  Furthermore, these plots were rendered less stable by the removal of the 

iceplant. Steep slopes are generally more prone to slumping and eventual formation of 

vertical scarps after storm undercutting events.  Location of the seedlings (toward the top or 

bottom of the dune face) also mattered since storm disturbance removed plants closest to 

the sea. 

Other environmental conditions that limit growth and survival of plants on coastal 

dunes are sand-blasting and salt sprays.  Sandblasting brings about abrasive damage to 

plant leaves, reducing photosynthetic surface and predisposing plant to infections.  Salt 
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spray, on the other hand, has been observed to cause leaf necrosis beginning at the tips 

(Wilson and Sykes 1999).  In this experiment, Spinifex seedlings in the removal and bare 

treatments had their leaves dying back from the tips, unlike those seedlings growing within 

the iceplant stands. This indicates that seedlings growing with iceplant neighbours were 

buffered from the harmful effects of sandblasting and salt sprays.  Therefore, the 

expectation that facilitation would be the dominant effect of extant adult nurse plants on 

seedlings of other species at the harsher foredune zone (Padilla and Pugnaire 2006) seems 

plausible, at least in buffering against abrasive damage by sandblasting and necrosis due to 

salt spray. 

Despite their better survival and less damage of leaf tips, Spinifex plants in the 

iceplant treatment (iceplant neighbour present) had significantly lower numbers of leaves 

and appeared more slender; confirming that presence of iceplant suppresses growth 

performance of native species (D'Antonio and Mahall 1991; D'Antonio, Odion et al. 1993).  

Salinity has been reported to cause internal plant toxicity (Wilson and Sykes 1999).  In this 

study, soil salinity was higher under the canopy of C. edulis since salt particles trapped by 

leaves during salt sprays are then leached into the soil (Gormally and Donovan 2010).   

Accumulation of salts in leaves and eventual release into the soil after leaf senescence has 

been suggested as a mechanism by which Mesembryanthemum crystallinum (another 

member of Aizoaceae) contributes to desiccation and death of neighbouring plants (Conser 

and Connor 2009). Carpobrotus edulis has also been reported to have led to loss of floristic 

diversity at Berlangas, Portugal (Draper, Rossello-Graell et al. 2003).  My inference from this 

is that C. edulis uses similar mechanisms to M. crystallinum to alter soil osmotic levels, to 

the detriment of neighbouring native plants.  Comparison of the number of leaves produced 

by seedlings at the different sub-plots within a treatment showed that plants at the bottom 

of the iceplant plots had significantly higher numbers of leaves than their counterparts at 

the top of the dune, suggesting that competition from iceplant was less severe in the 

environmentally harsher section of the dune, and thus supporting the stress gradient 

hypothesis (Bertness and Callaway 1994; Brooker and Callaghan 1998). 

Using dead debris of iceplant as a mulching material did not improve Spinifex 

survivorship. Presence of dead iceplant debris resulted in production of more leaves by 
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plants at the top of the dune only in August.  The fact that location of the plants did not 

have much effect on their performance means that the 2-4m space between plants at the 

bottom and the top of the dune was not enough to produce a gradient to which plants 

respond differentially.  This is confirmed by the lack of difference in soil moisture, soil 

organic matter and salinity between the two sampling locations separated by 5-8m.  

It has been suggested that C. edulis has residual effects on the soil inhibiting 

reestablishment of native plant species even after its removal (Conser and Connor 2009).  

Spinifex seedlings in my removal plots (where iceplant had been present) produced 

significantly higher numbers of leaves than plants in the other treatments.  While this 

improved response may be attributed to elimination of competition, plants in the removal 

plots actually performed better that those in bare plots where there was no preexisting 

iceplant.  This suggests that C. edulis did not leave an allelopathic legacy, at least in the 

short-term but actually improved soil micro-conditions. 

 

4.2. Growth, substrate preference and mating systems of the various 

iceplant taxa 
 

The common garden experiment was set up to investigate growth performance of 

the three iceplant species in New Zealand and the intergeneric hybrid across three different 

substrates.  The substrates in the experiment were made of one part potting mix and two 

parts sand or gravel, making them similar in initial fertility.  However, because of differences 

in particle and interstitial pore size there would be variability among them in drainage and 

nutrient adsorption.  It has been suggested that soil texture influences soil Carbon (C) and 

Nitrogen (N) accumulation as well as soil water dynamics (Hook and Burke 2000).  Fine-

textured soils tend to have higher water holding capacity and labile C and N than coarse-

textured ones (Austin, Yahdjian et al. 2004).  Gravel, having bigger particle size and 

interstitial space, is more freely draining and adsorbs less nutrients.  On the other hand, fine 

sand with smaller particle size will be better at moisture retention and nutrient adsorption, 

whereas coarse sand will occupy the intermediate position.  The differences in water 

retention and nutrient adsorption ability of the substrates make it possible to infer 
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tolerance of the taxa to moisture and nutrient deficits. The ratio of dry weight to fresh 

weight showed that Carpobrotus species were more succulent than the intergeneric hybrid, 

indicating that these exotics are more efficient at storing water (Rabas and Martin 2003) 

and may explain why substrate had little influence on growth rates of the two Carpobrotus 

species.  It has further been found that water stress induces a weak Crassulacean Acid 

Metabolism (CAM) in Carpobrotus edulis (Earnshaw, Carver et al. 1987), but see (Rabas and 

Martin 2003). 

According to the results obtained from the common garden experiment, only C. 

chilensis had some level of substrate preference, with plants growing in sand having 

significantly higher dry weight and producing more leaves than those in gravel.  Despite this, 

they have been observed hanging down cliffs, e.g. at Taylor’s Mistake near Christchurch, 

suggesting that the current distribution of the exotics is a product of human introduction 

rather than soil types. There was no difference in performance between the two 

Carpobrotus species, regardless of the substrate in the common garden experiment as well 

as in the field.  The two exotics both had higher actual and estimated dry weights than the 

intergeneric hybrids and D. australe, with the hybrids in turn significantly outperforming D. 

australe.  

The two varieties of D. australe, (green and red), did not differ in their performance 

in either of the substrate types, even though in nature the green one seems to predominate 

at rocky shores (K. Gould pers. comm.).  Compared to the other taxa, D. australe allocated 

more biomass to its roots than shoot.  The hybrid also invested more in the roots than the 

two Carpobrotus species.  This implies that the hybrid and its native parent are better 

adapted morphologically to obtain water under desiccating conditions or in poor soils.  

Partitioning of more photosynthates to roots influences microbial biomass and hence, soil 

organic matter decomposition and nutrient recycling (Van Veen, Merckx et al. 1989).  

Therefore, D. australe contributes more to the “improvement” of soil micro-conditions 

which may not be advantageous to native sand-binders that normally prefer low nutrient 

environments. 
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In terms of characters relating to vegetative growth (number of leaves, number of 

nodes, main axes length, and internode length), the hybrid on the whole performed 

significantly better than the other taxa, both in the field and in the common garden 

experiment.  In the common garden experiment, D. australe had better vegetative growth 

than the exotic Carpobrotus but experienced the least growth in the field study, due to 

smothering by the neighbouring hybrid.  The hybrid that is sexually sterile seems to have 

invested a lot in lateral branches as its only means of proliferation and self perpetuation.  

Vegetative reproduction has been found to be positively correlated with invasiveness (Kolar 

and Lodge 2001) but the scope of my study was not extensive enough to conclude whether 

the intergeneric hybrid will displace D. australe or not.  My observation is that its stolons are 

thin and spread sparsely enough to allow it to intermingle with other plants, more so than 

the Carpobrotus species or D. australe. 

Mating experiments in the present study have shown that flowers of Carpobrotus 

species are highly fertile to intrageneric and intergeneric pollen. However, C. edulis was not 

agamospermic and only slightly self-fertile, needing intervention of a pollinator since 

spontaneous self-fertilisation did not occur in bagged flowers that were not manipulated. 

Carpobrotus chilensis was slightly agamospermic and self-fertile.  

 

4.3. Recommendations for restoration of Carpobrotus dominated sand 

dunes  
 

 Along high energy eroding coasts, such as Kapiti, removal of the exotic iceplant prior 

to establishment of native sand-binder species is not advisable.  Seedlings of native 

sand-binders will most likely be lost before they establish especially if the slope of 

the dune face is steep, unless measures to mitigate erosion are put in place.  For 

future plantings to succeed, gently sloping (probably less than 28°), low disturbance 

sites should be selected.  Although options like mechanical dune reshaping have 

been used with satisfactory results on steep slopes (Bergin, Miller et al. 2007), I 

would personally favour reducing density of existing iceplant and planting Spinifex 
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in-between them.  However, facilitation of Spinifex by Carpobrotus edulis in this 

study is not strong enough to warrant its retention as a nurse plant.  

 If Spring is chosen as the planting season for native sand-binders, as is the case with 

my trials, planting should be done early in the season since the later months tend to 

be quite dry. 

 Spinifex seedlings should be planted deep enough (at least 5cm above the level of 

root trainer sleeve) to enhance root contact with water and guard against root 

exposure by erosion.  Care should be taken to make planting holes perpendicular to 

the horizontal plane, not to the slope incline. 

 Conducting trials with the intergeneric hybrid iceplant on bare foredunes before in-

planting native sand-binders may help mitigate erosion and enhance survivorship of 

the native seedlings.  Seedlings of some native sand-binders are costly and a nurse 

plant may be desirable.  This hybrid, being sexually sterile and therefore dispersal-

limited, can be controlled by mechanical or chemical means if it proves undesirable. 

However more research needs to be conducted to establish its suitability. 

 Even among the stands of invasive iceplant species, there were some invertebrates 

and reptiles.  Dune reshaping, if deemed necessary, needs to include plans for some 

refugia for these animals. 

 Human trampling was an issue at the Queen Elizabeth Park field site and therefore 

some form of fencing is desirable to enhance success.  In urban settings where dunes 

lead onto the beach, adequate walkways should be provided. 
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4.4. Suggestions for future studies 
 

 Building on my trials, large scale longer-term restoration trials can be undertaken to 

further investigate the facilitative and competitive effects of the various iceplant 

taxa on Spinifex at sites that are less disturbed, in order to eliminate the confounding 

effects of storm and human disturbance. 

 Field trials on suitability or otherwise of the intergeneric hybrid and Disphyma for 

sand dune restoration may be conducted at sites that are less disturbed. 

 Molecular studies to identify the iceplant taxa currently found in NZ and further 

investigation of their mating systems would go a long way in providing insights into 

species identity and hybridisation of the iceplant taxa.  Isozyme analysis of the two 

Carpobrotus species in California has been done (Gallagher, Schierenbeck et al. 1997) 

and was attempted in my study (see appendix 3).  Morphological characters alone, of 

which flower colour is the most important, are not enough to assume identity of the 

iceplant morphotypes because of introgressive hybridisation.  Analysis of chloroplast 

DNA (cpDNA) data for C. edulis, C. chilensis, and their hybrid morphotypes, has been 

done by Schierenbeck et al. (2005) and can be used as a basis for further studies. 

 One factor contributing to invasiveness of C. edulis that has been investigated in the 

Mediterranean region is the enemy release hypothesis (release from soil pathogens)   

(Van Grunsven, Bos et al. 2009).  This can be further built on in the context of New 

Zealand.  During my study, I observed scale insects presumed to be Pulvinaria 

mesembryanthemi (Appendix 4) which have infested all iceplant taxa in New 

Zealand.  It would be interesting to investigate how these natural enemies affect the 

various taxa and as a possible bio-control measure.  

 Comparing biodiversity of sites invaded by the exotic iceplant species and 

uninvaded/restored sites would provide useful additional information on them.   

Patterns of co-occurrence may shed some light on intimate associations.  Over the 

course of my study I have observed the presence of leaf-roller caterpillars in terminal 

buds of the exotic iceplant taxa, most of which hatched into moths while a few 

hatched into flies upon incubation (Appendix 4). There may be a guild of native or 

exotic arthropods that depend wholly or partially on these plants to complete their 
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life cycles.  Influence of C. edulis on soil biota has been studied by de la Pena et al. 

(2010) in Portugal and Spain but there is room to explore further in a New Zealand 

context. 

 Studies of Disphyma have been few and far between, especially in recent years. 

(Chinnock 1971; 1972; 1976)studied species biology, but there is a need to develop 

on this and include autecological studies of the species. 
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Appendices 
 

Appendix 1: Geographical coordinates of the various sites  
 

This appendix gives the Geographic co-ordinates (WGS84 geodatum) of some of the 

sites that were visited during the course of this study. Locations of some of experimental 

plots at Queen Elizabeth Park are given in Table 1 while Table 2 shows the locations of the 

sample Carpobrotus plants whose flower phonologies were studied during the main 

flowering season of 2011 (September-December). In addition, the locations of populations 

from which cuttings for experimental growth in different substrates are given in Table 3.  

 

Table 1. Locations of some of the experimental plots at Queen Elizabeth Park 

 

ID Treatment Geographical co-ordinates 

QEP_A1 Iceplant intact S40 57.466 E17458.069 

QEP_A3 Iceplant intact S40 57.475 E17458.065 

QEP_A7 Iceplant intact S40 57.519 E17458.044 

QEP_B1 Iceplant removed S40 57.472 E17458.066 

QEP_B3 Iceplant removed S40 57.478 E17458.063 

QEP_B4 Iceplant removed S40 57.485  E17458.06 

QEP_B6 Iceplant removed S40 57.519 E17458.045 

QEP_B7 Iceplant removed S40 57.521 E17458.045 

QEP_C3 Bare S40 57.492 E17458.058 

QEP_C4 Bare S40 57.494 E17458.058 

QEP_C5 Bare S40 57.504 E17458.052 

QEP_C6 Bare S40 57.509 E17458.049 

QEP_C7 Bare S40 57.517 E17458.047 

SPRAY2 Iceplant sprayed S40 57.59  E17458.006 

SPRAY3 Iceplant sprayed S40 57.601 E17458.001 
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Table 2. Locations of the Carpobrotus plants at Eastbourne whose flower phenologies were 

monitored from September to December 2011. 

 

ID Taxon Geographical co-ordinates 

EAS_CCPL1 C. chilensis S41 17.515 E174 53.605 

EAS_CCPL2 C. chilensis S41 17.502 E174 53.609 

EAS_CCPL3 C. chilensis S41 17.492 E174 53.618 

EAS_CCPL4 C. chilensis S41 17.423 E174 53.702 

EAS_CCPL5 C. chilensis S41 17.467 E174 53.638 

EAS_CEPL1 C. edulis S41 17.48 E174 53.63 

EAS_CEPL2 C. edulis S41 17.408 E174 53.701 

EAS_CEPL3 C. edulis S41 17.397 E174 53.736 

EAS_CEPL4 C. edulis S41 17.377 E174 53.763 

EAS_CEPL5 C. edulis S41 17.392 E174 53.731 

 

 

Table 3. Sites from where iceplant cuttings of the various taxa were obtained for growth 

comparisons in different substrates (WGS84 geodatum) (g=Green, r=Red) 

 

ID Site Taxa Geographic co-ordinates 

 
EASTB01 

 
Eastbourne 

 
C. edulis 

 
S41 17.397  E174 53.735 

EASTB02 Eastbourne C. chilensis S41 17.514  E174 53.602 

ISL01 Island Bay D. australe(g) S41 20.934  E174 45.152 

ISL02 Island Bay Hybrid S41 20.882  E174 45.671 

MOA1 Moa Point D. australe(r), Hybrid,  
C. edulis 

 
S41 20.167  E174 48.474 
 

PET01 Petone D. australe(g) S41 13.547  E174 51.869 

PUK01 Pukerua Bay C. chilensis S41    1.77    E174 53.699 

QEP01 Queen Elizabeth 
Park 

C. edulis S40  57.5      E174 58.051 

QEP02 Queen Elizabeth 
Park 

C. edulis S40 57.664  E174 57.971 

SEAT01 Seatoun D. australe(g) S41 19.394  E174 50.184 

SEAT02 Seatoun Hybrid S41 19.606  E174 50.338 

WOR01 Worser Bay D. australe(r), 
C. edulis 

 
S41 19.075  E174 49.73 

WOR02 
DAY01 

Worser Bay 
Day’s Bay 

Hybrid 
Hybrid, D. australe(r) 

S41 19.061  E174 49.697 
S41 16.764  E174 54.375 
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Appendix 2: Initial biomass of sample cuttings 

 
In order to have an indicator of the initial biomass of the iceplant cuttings referred to 

in chapter two; I randomly selected ten cuttings of each taxon without regard to their 

source population and dried them in an oven for 48 hours at 70°C. One-way ANOVA with dry 

weight as the dependent variable and taxon as the independent variable showed that there 

was significant variability in the initial biomass of the various taxa (Table 1). After running a 

Post-Hoc test of the data, it was found that cuttings C. edulis had a significantly higher initial 

biomass than all the other taxa. Carpobrotus chilensis cuttings also had a higher initial 

biomass than D. australe and the intergeneric hybrid. However, there was no difference in 

the initial biomass of the cuttings of D. australe and the hybrid (Table 2; Fig. 1). 

 
Table 1. ANOVA table showing variability in initial biomass among the taxa 

 

Source Type III Sum of 

Squares 

df Mean Square F Sig. 

Taxon 7.570 3 2.523 91.525 <.001 

Error .992 36 .028   

Total 22.910 40    

      

 
 
Table 2. A Tukey HSD table comparing biomass of the cuttings of the various taxa 
 

 

(I) Taxon (J) Taxon Mean Difference (I-J) Std. Error Sig. 

C. chilensis D. australe .73* .074 <.001 

Hybrid .58* .074 <.001 

    

C. edulis C. chilensis .34* .074 <.001 

D. australe 1.07* .074 <.001 

Hybrid .93* .074 <.001 

 

Hybrid D. australe .15 .074 .218 
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Fig. 1: Boxplots comparing the initial biomass of sample cuttings of the various taxa
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Appendix 3: Allozyme Detection in Disphyma and Carpobrotus 

 

Lesley Milicich and Guyo Gufu 

 

Introduction 

 

In New Zealand the yellow-flowered Carpobrotus edulis and magenta-flowered C. 

chilensis co-occur at most sites.  Carpobrotus chilensis appears to be hybridizing and 

backcrossing with C. edulis individuals (Vila & D’Antonio 1998) according to morphometric 

(Albert et al. 1997) and isozyme analyses (Gallagher et al. 1997), although there are no 

presence records of the intrageneric hybrid in New Zealand (Heenan & Sykes 2010).  The 

widespread hybridisation and backcrossing events of these congeners and their general lack 

of morphometric differences, make it possible that Carpobrotus plants present in New 

Zealand may in fact be two colour morphs of a C. edulis and C. chilensis hybrid swarm.  The 

exotic Carpobrotus species are also known to hybridise with the native horokaka, Disphyma 

australe (Chinnock 1972).  We obtained samples from different populations of the various 

taxa and conducted some allozyme analysis to determine whether the exotic Carpobrotus 

found in Wellington region were pure species or introgressant hybrid swarms before 

attempting artificial cross pollination experiments.  We also wanted to find out the exotic 

parent of the presumed intergeneric hybrid (Carpobrotus x Disphyma). 

 

Study taxa and sites 

 

Cuttings of the following taxa were collected from the Wellington region: Disphyma 

australe (Worser Bay and Titahi Bay), the putative hybrid Disphyma x Carpobrotus (Worser 

Bay, Seatoun, Island Bay and Titahi Bay), Carpobrotus yellow flowered (Worser Bay, QE2 

Park, Waikanae Beach, Peka Peka Beach, Te Horo Beach, Otaki Beach, Hokio Beach, Foxton 

Beach and Himatangi Beach) and Carpobrotus red flowered (Seatoun, Plimmerton, 

Paraparaumu Beach Golf Course, Hokio Beach and Foxton Beach).  The cuttings were grown 

on in a glasshouse prior to allozyme analysis. 
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Materials and methods 

 

Young leaf tips were ground in 75mM Tris/HCl extraction buffer pH 7.5, (Wendel and 

Weeden, 1989).  The resulting crude protein extracts were absorbed on to 3mm x 15mm 

paper wicks and loaded on to 12% starch gels for enzyme electrophoresis. The extraction 

and electrophoresis steps were performed on ice. 

 

Samples representing each of the four taxa above were loaded on to 11 different 

gel/electrode buffer systems: Amine citrate, AC, pH 6.0; Tris citrate1,2 & 3, TC 1,2 &3 pH 6.7, 

7.0 and 8.0 respectively; Phosphate, PH, pH 6.7; Ridgeway, RW, pH 8.5; Histidine citrate, HC, 

pH 5.7; Citrate/histidine, C/H, pH 7.0; Lithium borate tris citrate, LB/TC, pH 8.3; Tris borate 

EDTA, TBE, pH 8.6 and Tris borate histidine citrate, TBHE, pH 8.6.  References: AC, TC1 and 

RW, Allendorf et al., 1977; TC3, PH and TC2, Selander et al, 1971;TBE, LB/TC, HC and C/H, 

Wendel and Weeden, 1989; TBHE Suehs et al 2004. 

 

Among 17 assayed enzyme systems, eight regularly showed scorable results: acid 

phosphatase (ACP; E.C. 3.1.3.2), adenylate kinase (AK; E.C/2.7.4.3), glucose phosphate 

isomerase (GPI; E.C. 5.3.1.9), isocitric dehydrogenase (ICD; E.C.1.1.1.42), malate 

dehydrogenase (MDH; E.C. 1.1.1.37), 6 phosphogluconate dehydrogenase (PGD; E.C. 

1.1.1.44), phosphoglucomutase (PGM; E.C. 5.4.2.2 and shikimate dehydrogenase (SKD; E.C. 

1.1.1.25). 

 

The combinations which gave clearest activity were selected from these eleven 

gel/electrode buffer systems x eight stains (Table 1). 

 

Table 1. The combinations of buffer systems giving optimal staining activity. 

Gel/electrode buffer system Optimal staining

C/H pH = 7.0 ACP, ICD, PGM & SKD.

TC2 pH = 8.0 MDH & GPI.

TBHE pH = 8.6 AK & PGD.
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Samples of young leaf material from one plant from each of the following taxa/ 

locations (Table 2.) were applied to each of the three gels above.   

 

Table 2. Order of the taxa for optimal comparison. 

Sample lane Plant and location

DYE 

1 Disphyma australe Worser Bay

2 Disphyma australe Titahi Bay

3 Disphyma australe Titahi Bay (long leaved)

4 Putative hybrid Disphyma x Carpobrotus Seatoun

5 Putative hybrid Disphyma x Carpobrotus WorserBay

6 Putative hybrid Disphyma x Carpobrotus Island Bay

DYE 

7 Carpobrotus yellow-flowered Worser Bay/Seatoun

8 Carpobrotus yellow-flowered QE2 Park

9 Carpobrotus yellow-flowered Waikanae Beach

10 Carpobrotus yellow-flowered Peka Peka Beach

11 Carpobrotus yellow-flowered Otaki Beach 

12 Carpobrotus yellow-flowered Hokio Beach

13 Carpobrotus yellow-flowered Foxton Beach 

14 Carpobrotus yellow-flowered Himitangi Beach

15 Carpobrotus sp. Te Horo Beach

16 Carpobrotus red-flowered Seatoun

17 Carpobrotus red-flowered Plimmerton 

18 Carpobrotus red-flowered Paraparaumu Beach Golf Club

19 Carpobrotus red-flowered Hokio Beach

20 Carpobrotus red-flowered Foxton Beach

DYE 
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The dye, red food colouring, was applied to track the movement of the buffer front 

as well as to make identification of individual samples easier.  One of each of the eight stains 

was performed on a slice of the gel indicated as giving optimum activity above. 

 

Results 

 

Differences were detected among the taxa Disphyma australe, the putative hybrid 

Disphyma x Carpobrotus and Carpobrotus.  While variable alleles were found in the genus 

Carpobrotus, no consistent differences were found between the yellow-flowered and the 

red-flowered forms of the plant (Fig 1a- 1e).   

 

 

Fig. 1a: ACP bands on CH gel/buffer electrode system 
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Fig. 1b: GPI bands on TC2 gel/buffer electrode system 

 

 

Fig. 1c: MDH bands on TC2 gel/buffer electrode system 
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Fig. 1d: PGD bands on TBHE gel/buffer electrode system 

 

Fig. 1e: PGM bands on CH gel/buffer electrode system 
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Discussion and Conclusion 

 

The two different colour morphs of Carpobrotus did not display any consistent 

differences in allozyme bands; hence the parent of the putative hybrid Disphyma x 

Carpobrotus could not be determined by allozyme analysis. The low variation within and 

between Carpobrotus taxa is contrary to the results of Gallagher et al., (1997). It is possible 

that the taxa introduced into NZ was a hybrid of C. edulis and C. chilensis which has retained 

variation for flower colour, but no detectable variation in allozyme bands.  Further work 

with more sensitive genetic methods is required to investigate this hypothesis more fully. 
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Appendix 4: Iceplant - Insect interactions  
 

The terminal bud of the iceplant taxa initially appears as a single blade that bisects to 

form two leaves or sepals as it matures. Some caterpillars were observed between the 

terminal leaves of stolons of the exotic Carpobrotus at Eastbourne. It is seems that some 

lepidopteran lays its eggs before the bisection of the terminal bud such that the caterpillars 

are found in a tunnel between the two leaves that are held together with silk. When the 

terminal bud develops into a flower the caterpillar burrows a tunnel into the receptacle 

thereby destroying part or whole of the flower. The caterpillars were more abundant on C. 

chilensis plants than on C. edulis. They were also more abundant on plants at the backdune 

than those at the foredune. Samples of these caterpillars were collected with leaves of the 

plants where they occur and later incubated in test tubes with General Purpose Diet in the 

laboratory and the resultant insects preserved for identification. In general, most 

caterpillars hatched into moths while a few hatched into flies or wasps (Table 1; Fig. 1).  

 

Table1: Summary results of the caterpillar incubation 

Plant and 
part 
 

No. of 
caterpillars 

No. of 
pupae 

No. of 
moths 

No. of 
flies 

No. of 
‘wasps’ 

Failed 
pupae 

Failed 
to 
pupate 

C. chilensis 
leaves 

15 12 8 2 1 1 3 

C. chilensis 
flowers 

5 5 3 0 0 2 0 

C. edulis 
leaves 

10 6 6 0 0 0 4 

C. edulis 
flowers 

10 6 6 0 0 0 4 
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Fig. 1: A moth (left) and a wasp (right) that emerged from the incubated caterpillars 

 

In addition, scale insects were observed to have infested some plants of all the 

iceplant taxa in the glasshouse and in the field (Fig. 2). At moa point where C. edulis, D. 

australe and their hybrid co-occur, the scale insects were found only on D. australe plants. 
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Fig. 2: Disphyma australe plant from the field and C. edulis plant in the glasshouse infested by scale 

insect (Pulvinaria mesembryanthemi).  


