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Abstract

An  inorganic  geochemical  study  of  the  Late  Paleocene  organic  matter-rich 

Waipawa and Tartan formations was undertaken in order to investigate the depositional 

environment.  The  formation  varies  in  thickness  between  2  and  50  metres  and  is 

distributed across many of New Zealand’s Cenozoic basins, where it forms an important 

potential hydrocarbon source rock. This study measured major and trace elements which 

can  be  loosely  grouped  into  redox  sensitive,  biologically  influenced,  terrestrially 

sourced, and rare earth elements (REE). The study focused on three sections through the 

Waipawa and Tartan formations: Angora Quarry in the East Coast Basin, and the Great 

South Basin hydrocarbon exploration wells Kawau-1A and Pakaha-1.

At  Angora  Quarry,  x-ray  fluorescence  (XRF)  was  used  to  measure  the  major 

constituents Na2O, MgO, Al2O3,  SiO2,  P2O5, SO3,  K2O, CaO, TiO2,  MnO and Fe2O3. 

inductively-coupled plasma mass spectrometry (ICP-MS) was used to measure Li, Ca, 

Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Ba, REE, Hf,  

Tl, Pb, Th and U.

For  Pakaha-1  and  Kawau-1A side  wall  core  samples,  ICP-MS  was  used  to 

measure Ti, V, Cr, Mn, Co, Ni, Cu, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Hf, Ta, W, 

Tl, Pb, Bi, Th and U. Insufficient sample was available for XRF on these samples.

No major changes in oxygen concentration during deposition were recorded by 

redox-sensitive  elements  from  Angora  Quarry  and  Pakaha-1  sediments;  however 

samples from Kawau-1A and from a section 1 km upstream from Angora Quarry were 

deposited  under  somewhat  oxygen-depleted  conditions.  As  the  anoxic  and  suboxic 

indicators  show  significantly  lower  variations  than  under  present  day  anoxic 

environments,  and  in  Angora  Quarry  CaO  and  SO3 are  significantly  depleted  with 

higher aluminosilicates a rapid deposition is required to explain the preservation of the 

organic matter. In the Great South Basin wells, the clay content correlates directly with 

increased gamma ray levels measured by well logs.

Increased influx of terrestrial clays has been linked to marine transgressions in 

many New Zealand sediments and is been taken to mean the same for the Waipawa and 

Tartan formations. The oxygen depletion indicates that water depths during deposition 
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exceeded 50 metres. The depositional model proposed here, therefore, is that of a major 

marine  transgression  that  flooded  and  eroded  near-shore  swamps,  re-depositing  the 

terrestrial organic matter offshore. The increased nutrients released by this would have 

stimulated  bioproductivity  and locally,  where  conditions  were  suitable,  depleted  the 

oxygen content of the water column.

This  study  also  suggests  ternary  diagrams  are  valuable  for  calculating  the 

enrichment of elements affected by two processes, such as Sr, which is related to both 

detrital Al and related to biological Ca. Ga, Ba and Al content are also related on a 

ternary diagram indicating the similar terrestrial and biological relationships for Ba and 

Ga. W was found to behave in a similar way to Bi. Enrichment factors proved less 

useful than absolute enrichment for Kawau-1A, where detrital input varied greatly and 

was found to be significantly different in composition to average shale as defined by 

Wedephol (1971).
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Chapter 1

Introduction

1.0. Introduction

This thesis is a study of the inorganic geochemistry of the Tartan and Waipawa 

formations. These units are important,  their high organic-matter content makes them 

potential hydrocarbon source rocks, and for the unique yet regionally widespread facies 

they represent.

Late Paleocene and Early Eocene strata contain the record of some unique and 

short-lived  global  climatic  events,  amongst  them  the  Paleocene  carbon  isotope 

maximum (PCIM) representing the increased burial of mainly terrestrial organic-carbon 

(e.g. Shackleton, 1987; Kurtz et al., 2003). The PCIM began around 59.5 Ma and lasted 

about  4  million  years.  It  was  followed  immediately  by  the  Initial  Eocene  Thermal 

Maximum (IETM) that lasted approximately 100,000 years. Sediments rich in organic 

matter were deposited in a number of basins around the world during the IETM (e.g. 

Gavrilov  et  al.,  1997;  Speijer et  al.,  1997),  as  a  result  of  a  maximum  marine 

transgression, warm temperatures and a high influx of terrestrial organic matter into the 

oceans from flooding near shore swamps.

Around New Zealand,  regionally extensive organic-matter  rich  sediments  were 

deposited earlier  during the PCIM (Hollis  et  al.,  2005a);  known as the Waipawa or 

Tartan formations dependant on locality.

While locally in New Zealand there are changes in lithology during the IETM (e.g. 

a  marl-rich  horizon,  Nicolo  et  al.,  2007),  the  Late  Paleocene  Waipawa  and  Tartan 

formations  show more  profound lithological  changes  and these  occur  in  most  New 

Zealand  Cenozoic  sedimentary  basins  (Killops  et  al.,  2000).  A  Late  Paleocene 

unconformity is also common above the Tartan and Waipawa formations (McMillan and 

Wilson,  1997)  and in  the  Late  Paleocene  in  general  with  the  Waipounamu Erosion 

Surface (LeMasurier and Landis, 1996; Beggs, 2010a).

Around  New  Zealand  many  Cenozoic  basins  underwent  significant  marine 
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deposition during the Late Paleocene, yet most of these basins have minimal exposure 

onshore. Most of our information comes from the hydrocarbon exploration industry in 

the  form  of  seismic  surveys  and  exploration  wells.  The  East  Coast  Basin  is  the 

exception,  due  to  the  recent  activity  of  the  Hikurangi  subduction  thrust,  Early 

Cretaceous and younger sediments have been exposed from the East Cape in the north 

to Marlborough in the south (Field et al., 1997).

Organic-matter is mainly degraded through consumption by other life forms; this 

is enhanced by biological reworking due to the mixing of sediments (Demaison and 

Moore, 1980). To be preserved on a geological timescale organic-matter rich sediments 

must be deposited in and environment which is  limited in the amount of life it  can 

support during deposition to avoid degradation and recycling of the organic matter. A 

large influx of organic matter relative to the background detrital matter is also required 

to  produce  significant  organic-matter  enrichment.  In  marine  environments  the  most 

common way to get high organic matter incorporated into sediments is under oxygen-

depleted conditions, where the lack of oxygen limits life forms to sulphate and carbon-

dioxide  reducing  bacteria  (e.g.  Demaison  and  Moore,  1980).  Rapid  deposition  of 

recycled  organic  matter  from another  location  may also  be  possible;  however  high 

organic matter influx can also drive anoxia as was shown to be the case in some Early 

Eocene organic-rich sapropels by Gavrilov  et al. (1997) over a large area of southern 

Russia, adjoining regions of Crimea, to central and southern Asia. The effect of oxygen 

depletion limits processes such as bioturbation, which mixes the upper few cm of the 

sediments (Demaison and Moore, 1980). Under anoxic conditions (no oxygen) bacterial 

degradation is limited to CO2, CH4 and sulphate-reducing bacteria. However none of 

these are as efficient as aerobic (oxygen-reducing) life forms at recycling organic matter 

(e.g. Demaison and Moore, 1980).

1.1. Introduction to the Waipawa and Tartan formations

Waipawa Formation

The Waipawa Formation is an organic-rich Late Paleocene mudstone to siltstone 
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found in most New Zealand Cenozoic basins, excluding the Great South and Canterbury 

basins. The formation rarely exceeds 50 m in thickness, but averages 3.6 % total organic 

carbon  (TOC) and has  a  wide  lateral  distribution,  making it  an  important  potential 

hydrocarbon source rock (e.g. Katz, 1968; Hollis et al., 2005b). The type locality for the 

Waipawa Formation is located in the township of Waipawa (Moore et al., 1986).

Tartan Formation

In the Great South and Canterbury basins (Figure 1.1.1), a formation which is a 

similar facies to the Waipawa Formation, and the same age has been named ‘Tartan 

Formation’. The inability to show correlation across the Chatham Rise has led to the use 

of  a  different  name  (Cook  et  al.,  1999;  Schiøler  et  al.,  2010).  Cook  et  al.,  1999 

suggested Pakaha-1 as the type section between 2503-2551 m, however Schiøler et al., 

(2010) defined the Tartan Formation as 2515.2-2587.2 m in Pakaha-1.  Whether this 

should be taken as the new type section is not yet clear. 

Distribution

In the East Coast Basin the Waipawa Formation is identified throughout most of 

the basin (e.g. Moore, 1988); however, locally (e.g. Tawanui) a greensand unit in the 

uppermost Te Uri member of the Whangai Formation is demonstrated to be the time 

equivalent  of  the  Waipawa  (e.g.  Rogers  et  al.,  2001).  Outside  the  East  Coast,  the 

Waipawa Formation has been identified in the Ariki-1 well in the northern Taranaki 

(Shell BP Todd Oil Services Ltd., 1984; Killops et al., 1994; King and Thrasher, 1996), 

in the Northland (Isaac et al., 1994; Conoco Northland Ltd, 1999; Hollis  et al., 2006) 

and Westland  (Nathan, 1977) basins. Its equivalent has also been suggested as being 

present in the Reinga Basin from seismic facies analysis (Stagpoole et al., 2009).

The  Tartan  Formation  is  has  been  identified  in  both  the  Great  South  and 

Canterbury basins (Killops et al., 1997, 2000; Cook et al., 1999; Schiøler et al., 2010). 

Figure 1.1.1 shows the known locations of the Waipawa and Tartan formations.

In the Great South and Canterbury basins there is  no onshore exposure of the 

Tartan Formation; however it has been intersected in multiple hydrocarbon exploration 
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wells (table 1.1.1; figure 1.1.1). In the Great South Basin, four wells encountered the 

Tartan  Formation  (Kawau-1A,  Pakaha-1,  Hoiho-1C  and  Toroa-1).  In  Pukaki-1  an 

unconformity was recognised near the top of the Late Paleocene and the formation was 

interpreted  to  be  missing  (Cook  et  al.,  1999).  Recently  the  Tartan  Formation  was 
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Figure 1.1.1: Known locations of the Waipawa and Tartan Formation formations around New 

Zealand. Map after Killops et al. (2000)

Pukaki-1 is uncertain, see text.

Well Name  (Great South Basin) Top (mbkb) Bottom (mbkb) Thickness (mbkb)
Toroa-1 2152.1 2187.7 35.6

Pakaha-1 2515.5 2587.2 71.7
Kawau-1A 2233.1 2264.2 31.8
Pukaki-1* 2297.5 2327.6 30.1
Hoiho-1C 1568.8 1596.4 27.6

(Canterbury Basin)
Clipper-1 2756.1 2787.1 31.0

Endeavour-1 1728.8 1757.7 28.9
Galleon-1 2505.8 2522.3 16.5

Table 1.1.1: Depths and thickness of the Tartan Formation in the Great South and Canterbury

basins wells. Depth is in meters below kelly bushing. Depths from Schiøler et al. (2010).

* Pukaki-1 may not actually contain the Tartan Formation, see text for details.



suggested as present (Schiøler and Roncaglia,  2008; Schiøler  et al.,  2010) based on 

cuttings  and the well  log signal,  but  this  does  not  fit  with the most  recent  seismic 

interpretation of reprocessed seismic data (ExxonMobil, 2010a, 2010b). As this well 

was not included in the present study, further discussing this issue is beyond the scope 

of this thesis.

Gamma ray spike

On well logs, the Tartan Formation coincides with a gamma ray spike which is 

considered  one  of  the  defining  characteristics  of  the  formation.  The  spike  may be 

sourced from U-bearing organic matter, terrestrially derived clays, or both (Schiøler et  

al.,  2010) or U salts precipitated due to oxygen depletion (Killops  et al.,  2000). An 

example of the gamma ray spike is shown for Kawau-1A (figure 1.1.2). Trace metals 

may be able to determine the source of the spike.

Nomenclature of the Waipawa Formation

The  name “Waipawa”  was  first  used in  the  literature  by Finlay (1940)  while 

discussing  the  distribution  of  Conotrochammina  whangaia,  a  spiral  foraminiferan 

5

Figure 1.1.2: Gamma ray log response in the Kawau-1A well. The units are in API; 100 API is 

the response of average shale. The Tartan Formation is highlighted in grey.

Log data from Hunt International (1977).
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present in both the Whangai and the “Waipawa Black Shale”. However, the formation 

was  not  adequately described  prior  to  Hornibrook  and  Harrington  (1957),  and  first 

formally defined by Hornibrook (1959). Prior to 1957, depending on the region, the 

Waipawa  Formation  was  included  in  the  Whangai  Formation,  Mangatu  Group  or 

Wanstead Formation, or confused with Tapuwaeroa siltstone (Moore, 1988).

The Waipawa Formation was redefined by Moore (1986) as it was recognised as 

an important stratigraphic marker, and was deemed to be regionally significant. At the 

same time, the Wheturau Lithofacies from the Rakaurma Peninsula was recognised as a 

lateral continuation of the Waipawa Formation.

The Waipawa Formation is present in many New Zealand basins; however, the 

equivalents in the Canterbury and Great South basins have been given the name Tartan 

Formation  by Cook  et  al.  (1999).  The reason for  the  different  names  is  due  to  an 

inability to demonstrate that the formations can be correlated across the Chatham Rise.

Nomenclature of the Tartan Formation

While the Tartan Formation was referred to as the Waipawa Black Shale in several 

well reports (Kawau-1A, Hunt International, 1977; Pakaha-1, HIPCO, 1977a; Hoiho-

1C, Hunt International, 1978), the interval was renamed by Cook et al. (1999) because 

of its wide geographic separation from the original Waipawa Formation and because 

unequivocal correlation between the basins could not be demonstrated.

1.2. Previous work on the Waipawa and Tartan formations

To date most studies of these formations have focused on palaeontology or organic 

or stable isotope geochemistry. A few studies have mapped the seismic extent (Field and 

Brown, 1989; Cook et al., 1999, Uruski et al., 2007; Stagpoole et al., 2009), and some 

major elements have been measured (Moore, 1988). Only one trace element study on 

the  Waipawa  Formation  has  been  produced  (Elgar,  1997);  no  such  study has  been 

undertaken on the Tartan Formation in the Great South Basin. There have also been 

several suggested depositional environments.

Hornibrook  and  Harrington  (1957)  suggested  a  shallow  marine  to  estuarine 
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environment  of  deposition based on difficulties  in lateral  paleontological  correlation 

suggesting  a  more  restricted  environment  than  the  open  ocean;  a  shallow  marine 

environment was later supported by Moore (1988) and Cook et al. (1999).

However a shallow marine environment would require a marine regression, which 

was suggested as unlikely due to the open marine nature of the underlying Whangai and 

overlying  Wanstead  formations,  and  a  general  marine  transgression  during  the  Late 

Paleocene (Killops et al., 2000). The presence of Glomospira charoides and Rzehakina 

epigona which are indicators of bathyal to abyssal depths, and the wide lateral extent of 

the Waipawa Formation and its equivalents make shallow marine environments unlikely 

(Killops  et al., 1996, 2000). Hence a regional upwelling around Late Paleocene New 

Zealand was proposed by these authors. Oxygen-depleted water upwelling at the edge 

of the continental  slope due to  both prevailing westerly winds and changes in  deep 

water circulation was suggested as the likely cause of anoxic conditions affecting the 

upper slope to shelf environment around New Zealand (Killops et al., 2000).

The presence of unusually abundant 24-n-propylcholestanes (Killops et al., 2000) 

was thought to be caused by enhanced bioproductivity, in particular of phytoplankton 

above the oxygen-minimum layer. A high sulphur measurement by Hirner and Robinson 

(1989) was interpreted as a potential  indication of anoxic conditions (Killops  et al., 

2000).  H2S is  only present  in  the water  column in strongly anoxic conditions,  (e.g. 

Berner, 1981), and is precipitated into pyrite through sulphate-reducing bacteria. When 

anoxic conditions occur on the water bottom or shallowest sediments the proximity to 

mobile water allows more access to nutrients and sulphate-reducing bacteria are able to 

precipitate more pyrite. If anoxic conditions only occur deep within the sediments, there 

is limited H2S to be precipitated into pyrite.

Rogers (1995) and Elgar (1997) presented data of both total S and TOC in the 

Waipawa Formation as well as many other formations in the East Coast Basin (appendix 

A).  TOC plotted against  S allows you to differentiate terrestrial  organic and marine 

organic matter as well as whether the depositional environment was anoxic (Leventhal, 

1993). Terrestrial organic matter contains very little sulphur, whereas marine organic 

matter contains a larger proportion of sulphur, and anoxic environments through the 

precipitation of pyrite  add more sulphur  to  the sediments.  Figure 1.2.1 shows these 

results for TOC against S; the variation in the Waipawa Formation seen in figure 1.2.1 

7



indicates the depositional environment cannot be as easily explained by purely anoxic 

conditions.  A  terrestrial  component  to  the  organic  matter  has  also  been  widely 

recognised as one of the characteristics of the Waipawa and Tartan formations (e.g. 

Rogers, 1995, Elgar, 1997, Killops et al., 2000; Schiøler et al., 2010).

Schiøler et al. (2010) conducted a detailed palynofacies analysis of sidewall cores 

from directly above, below and through the Tartan Formation. From this, they identified 

a  high  percentage  of  brown  phytoclasts,  rare  marine  algae  and  amorphous  organic 

matter,  suggesting  a  mixture  of  marine  and  terrestrial  kerogen,  with  a  significant 

proportion  of  the  kerogen  of  terrestrial  origin.  This  was  suggested  to  indicate  a 

marginally marine environment of deposition with bottom waters varying between oxic 

and  anoxic  dependant  on  locality.  Low  abundances  of  foraminifera  suggested  a 

hyposaline  proximal  environment,  existing  during  a  time  of  maximum  marine 

regression. The high terrestrial organic matter input was suggested to result from an 

influx  of  woody  material  from  onshore,  and  the  characteristic  gamma  ray  spike 

identifying the Tartan Formation was potentially associated with terrestrial clays. The 

high  influx  of  terrestrial  matter  potentially  resulted  in  increased  productivity  in  the 

water column and at the surface.

Rock Eval Pyrolysis  studies performed on the Waipawa and Tartan formations 
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Figure 1.2.1:  S vs TOC for multiple formations in the East Coast Basin. The Waipawa 

Formation shows large variation on this graph including samples which look to be anoxic and 

ones which look to be a mixture of marine and non marine organic matter. Data sourced from 

Rogers (1995) and Elgar (1997).



measured the source rock properties (figure 1.2.2; 1.2.3), indicating whether they are oil 

or  gas  prone amongst  other  things.  The hydrogen index (HI)  is  an  indicator  of  the 

amount of hydrogen is available for the production of hydrocarbons - the higher the 

hydrogen index, the more oil prone a formation is.

In the East Coast Basin (figure 1.2.2) a large variation in all source rock properties 

is observed. The formation varies between being oil, oil and gas, and gas prone, as does 

the Whangai Formation.

The Tartan Formation in the Great South Basin (figure 1.2.3) shows less variation 

in the HI values, but whether this is due to a limited number of samples analysed or a 

more homogenous unit in the Great South Basin is unknown.

The  Schiøler  et  al.  (2010)  model  is  able  to  explain  the  distribution  and  the 

variation in the organic geochemistry of the Tartan Formation (figure 1.2.3). However, 
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Figure 1.2.2:  Compilation of Rock Eval results for Waipawa and Whangai formations. The 

great variation in organic geochemistry shows the formations have a broad range of organic 

geochemistry properties. The red squares are from Angora Stream, the same field area as in 

the present study. Figure based on Hollis et al. (2005b).



the East Coast Basin samples of the Waipawa Formation show a greater variation in 

kerogen types (figure 1.2.2) and there is evidence from sulphur and TOC that at some 

locations  the  Waipawa  Formation  consists  largely  of  marine  organic  matter  (figure 

1.2.1).  The Waipawa Formation  is  also not  as  thick,  averaging 17 m (Hollis  et  al., 

2005b) whereas the Tartan formation is on average 34 m thick (Schiøler  et al., 2010). 

Waipawa Formation has also been linked to isotopically light liquid crude oil (Killops et  

al., 1994; Rogers  et al., 1999) that is characteristic of marine, not terrestrial organic-

matter.  An  explanation  for  fully  marine  organic-matter  in  some  locations  of  the 

Waipawa Formation is not addressed by the Schiøler et al., (2010) model.
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Figure 1.2.3: Rock Eval results from for SWC samples in the Great South Basin. Aside from 

samples for which no more material is available, the red and blue SWC samples are the 

same as were used in this study. Figure edited from Schiøler et al. (2010).



Elgar  (1997) conducted  the  first  trace  element  measurements  on  the  Waipawa 

Formation in the East Coast Basin. The study, however, was a regional study and no 

detailed sections were examined through the Waipawa Formation. This study will be 

addressed later.

1.3. Introduction to Anoxic Environments and Trace Metal 
Variations

Due to differing definitions of the terms ‘anoxic,’ ‘dysoxic,’ ‘suboxic’ and ‘oxic’ 

in the literature, it is important to first determine which set of definitions are used to 

describe the different environments in this and subsequent chapters. Multiple attempts at 

providing terminology have been made (e.g. Rhoads and Morse, 1971; Berner, 1981; 

Tyson and Pearson, 1991), while some early authors set their own boundaries for anoxic 

conditions  (e.g.  Demaison and Moore,  1980 at  0.5ml/L).  Tyson and Pearson (1991) 

attempted to come up with a universal system in response to the multiple terminologies 

already in use. However, presently the literature remains confused. 

Tyson and Pearson (1991) suggested oxic as 8.0-2.0ml/L (O2),  dysoxic as 2.0-

0.2ml/L,  suboxic  as  0.2-0.0  ml/L  and  anoxic  as  0.0ml/L,  with  the  latter  also 

characterised by the presence of H2S. Corresponding biofacies were defined as: aerobic, 

dysaerobic, quasi-anaerobic, and anaerobic. This study will use these terminologies and 

where possible will apply these terms to the interpretation of previous literature. The 

main issues occur in the exchangeable use of dysoxic and suboxic across the literature, 

and the definition of anoxic as varying between 0.5 ml/L and 0.0 ml/L. The presence of 

H2S is not always treated as the defining factor for anoxic conditions, however, H2S can 

only exist in the absence of oxygen (Berner, 1981).

An  oxygen-depleted  environment  is  important  for  the  preservation  of  organic 

carbon, and 80% of the world’s hydrocarbon source-rocks are thought to be deposited 

under  oxygen  depleted  regimes  (Tyson  and  Pearson,  1991).  Increased  primary 

productivity (Pedersen and Calvert, 1990) or increases in rates of deposition (Lee, 1992) 
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can  also  lead  to  the  enhanced  preservation  of  organic  matter.  Under  laboratory 

conditions the rates of organic matter degradation may show little difference between 

oxic and anoxic environments (Lee, 1992; Henrichs and Reeburgh, 1987; Westrich and 

Berner,  1984; Otsuki and Hanya 1972a, b). However, over longer time scales under 

oxygen-depleted conditions there is a less chemical energy available for life, and hence 

less organic-matter degradation (Demaison and Moore, 1980; Berner, 1981; Lee, 1992)

Anoxic  conditions  occur  in  most  sediments  during  some  stage  of  digenesis 

(Demason and Moore, 1980; Berner, 1981; Tyson and Pearson, 1991); however when 

the  water  column  is  stratified,  anoxic  conditions  can  occur  at  the  sediment-water 

interface  or  in  the  lowermost  water  column  (Tyson  and  Pearson,  1991).  Oxygen 

depletion  in  the  water  column does  not  need to  be  stable  throughout  the  year,  and 

seasonal  oxygen depletions  can occur  in  situations  where the water  column is  only 

seasonally stratified.

Trace  metal  variations  in  organic-matter  rich  sediments  have  been studied  for 

many years with one of the earliest  studies being that by Goldschmit (1954).  Some 

earlier  studies have noted the relationship between black shales and particular  trace 

metals; for example, McKelvey and Nelson (1950) discussed the enrichment of U and 

depletion of Mn in black shales. Since these early studies the understanding of trace 

metal distributions has increased, as has the precision with which trace metals can be 

measured. The environments in which organic-rich rocks are deposited are now also 

better understood. While there are still many gaps in our understanding of trace metals 

in  sediments,  many enrichment  processes  are  well  known and  can  be  used  to  help 

constrain the environments of deposition and the palaeoceanic conditions.

The concentration of trace metals in organic matter-rich sediments varies due to 

several different processes. The detrital sediment source provides a background amount 

of trace metals.  If there is a variation in sediment source or there is some sediment 

sorting  which  increases  or  decreases  particular  mineral  abundances,  then  the 

background  detrital  input  can  contain  trace  metal  variations  (Dellwig  et  al.,  2000; 

Brumsack,  2006).  Biological  processes  in  the  water  column  can  collect  particular 

elements from seawater, and the preservation of the resulting organic matter can give a 

biological  enrichment.  At  the  sediment-water  interface  biological  processes 

(bioturbation) can disturb the sediments, causing the water to be mixed within the upper 
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layer  of  sediments.  This  is  most  common in  oxic  conditions  and  helps  provide  an 

oxidising environment to the upper sediments (Demaison and Moore, 1980).

Diagenetic processes affect trace elements concentrations. Diagenetic processes 

start  after  deposition,  and hence include all  processes which occur at  and below the 

sediment-water interface.  Many of the processes related to oxygen concentration are 

diagenetic  when  the  correct  conditions  occur  below  the  sediment-water  interface. 

Diagenetic  processes  which  occur  at  later  stages  may affect  trace  metals,  but  their 

influences  are  poorly  understood.  These  processes  include  changes  in  the  bulk 

composition of the sediments, such as cementation and dissolution, that may affect trace 

metal concentrations if the cement is externally sourced or the dissolved material moves 

into other formations. With heat and pressure, organic matter-rich rocks expel oil and 

gas. The extent to which this affects trace metal concentrations is unknown, although 

Ross and Bustin (2009) measured trace metal in thermally mature shales and noted that 

trace  metals  were  still  enriched.  Without  comparable  studies  of  otherwise  identical 

immature and mature source rocks, the quantitative effects of hydrocarbon generation 

on trace metal concentrations and expulsion are unknown.

Trace metals  can be enriched under oxygen depleted conditions through either 

direct precipitation as governed by redox chemistry, or indirectly through inclusions of 

trace  amounts  of  an  element  within  precipitating  minerals  such  as  sulphates  and 

phosphates.  Direct precipitation is  relatively well  understood and there are chemical 

formulae for the enrichment or depletion of several elements. The indirect precipitation 

method  is  more  complex  and  depends  on  many  factors  such  as  the  minerals 

precipitating  (most  commonly  pyrite)  and  the  trace  elements  present  in  the  water 

column  (e.g.  Brumsack,  2006).  As  these  methods  affect  different  elements  it  is 

important to separate them.

Frankenberger  (1994)  measured  the  trace  metal  content  of  oils  which  were 

subsequently linked to the Waipawa Formation and underlying Whangai Formation due 

to biomarker content (Rogers  et al., 1999, Killops  et al., 1994). Whether or not these 

oils  contain  significant  concentrations  of  trace  metals  in  relation  to  the  Waipawa 

Formation or underlying Whangai Formation will be investigated in this study.

13



1.4. Aim.

The primary aim of this study is to review the depositional environment of the 

Tartan and Waipawa Formations using trace metal variations.

• Determine  if  there  is  evidence  for  anoxic,  suboxic  or  oxic  conditions 

during deposition of the Tartan and Waipawa Formations. 

• Measure elements related to biological activity in the Tartan and Waipawa 

Formations and see if any conclusions can be drawn from such elements.

• Use S measurements  from this  study and TOC (from Leckie  (1992) to 
identify  if  the  organic  matter  present  in  the  Waipawa  Formation  is  of 
terrestrial or marine origin.

• Determine  whether  there  are  any  changes  in  sediment  source  evident 

within the detritally sourced elements.

• Review the literature of the Tartan and Waipawa formations and determine 

whether our data agrees with the current depositional models.

• Review whether other depositional models can also be reconciled to the 

same data.

The secondary aim of this thesis is to review the science behind trace element 

variations in sediments to assess whether this technique is appropriate for answering the 

primary goals and to help improve the science behind trace element variations.

• Review  whether  using  the  average  shale  standard  is  appropriate  for 

understanding the trace element variations in this study.

• Review which  methods  of  reducing  the  trace  element  data  is  the  most 

appropriate for our data sets.

• Determine whether other methods of data reduction can be developed for 

more complex elements e.g. Sr, Mg.

• Measure a variety of elements which have not been previously measured or 

have been excluded from previous studies. 

• Compare elemental measurements in the Tartan and Waipawa Formation to 

the  TM  concentrations  previously  measured  in  oils  sourced  from  the 
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Waipawa Formation by Frankenberger (1994).

1.5 Thesis outline

Chapter two summarises different environments and processes which affect trace 

element  composition,  and  provides  a  comprehensive  summary  of  sedimentary 

geochemistry on different elements.

Chapter three builds on the introduction to the Waipawa and Tartan formations 

presented in the introduction chapter, describing both the tectonic setting and the units 

surrounding the formations.

Chapter four is the methods chapter.  It  discusses the field work,  describes the 

samples,  the  methods  of  preparation,  the  measurement  of  the  samples,  the  data 

processing, and the measurement errors.

Chapter  five presents the results  of the study one field site  at  a time,  and the 

results are presented in the same order as the trace metals are described in chapter two.

Chapter six discusses the results, and integrates the results into previous work. 

The  first  three  sections  of  the  discussion  deal  with  the  individual  field  sites,  the 

following two deal with first the depositional environment and then the implications the 

results have on the science of trace metal accumulation in sediments.

Chapter  seven summarises  the conclusions  of  the  study,  dealing first  with the 

different field sites, then depositional environments, trace element science, and finally 

future work.
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Chapter 2

Variations in Trace Metals

2.0. Processes governing trace metal variations in organic-rich 
sediments

Variations  in  trace  metal  concentration  in  organic-rich  sediments  have  been 

studied by many authors (e.g. Brumsack; 2006 and references therein), and for some 

elements the reasons for enrichment or depletion are well known (e.g. Al, Ti, V, Mn, Co 

and  Mo).  Some  elements  are  often  not  measured  due  to  various  reasons  including 

difficulty in measuring the elements (e.g. W).

Some processes occur in the water column, others occur below the sediment-water 

interface.  Processes  which  occur  below  the  sediment-water  interface  are  known  as 

diagenetic processes and can be divided into two groups: early and late stage processes. 

The early stage diagenetic processes occur in the upper few metres of the sediments, 

while late stage ones which include oil generation and expulsion occur at greater depths 

of burial. The effects of the processes on bulk rock concentrations occurring below the 

sediment-water interface are limited by the amounts of trace metals supplied or removed 

by moving water or fluids. As sediments are increasingly buried, the amount of water 

which cycles through the system is reduced, limiting the external supply and removal of 

trace elements, (reduced mass transfer). However enrichment and depletion processes 

still occur, as mudrocks often act as open systems that allow for exchange of material 

between  adjacent  sedimentary  units  (e.g.  Bloch  and  Hutcheon,  1992;  Abanda  and 

Hannigan, 2006).

Variations in the concentration of oxygen in the water column and in the pore 

spaces  during  early diagenesis  can  directly cause  the precipitation  of  elements  (e.g. 

Brumsack, 2006), as oxygen is important in determining the oxidation state of many 

elements. Oxidation-reduction reactions (redox) are equilibrium reactions in chemistry 

which are highly dependent on the oxygen content of the water.

Redox reactions have two parts; an oxidation part, which is the loss of an electron 
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causing an increase of the oxidation state of the element, and reduction, the gain of an 

electron giving a decrease in the oxidation state of an element. In marine conditions, 

water can act as either the oxidant under oxic conditions, or the reductant in oxygen-

depleted conditions. For many elements, the oxidation state of the element can govern 

whether the element is more stable in a solid or an aqueous phase. Elements which are 

enriched in sediments deposited under oxygen-depleted conditions include V and Cr, 

while  elements  such  as  Mn  and  Co  are  depleted  from  the  sediments  under  these 

conditions.

The process of redox enrichment and depletion becomes more complicated when 

elements are readily included in a mineral which is precipitating due to change in redox 

conditions  but  is  formed  largely  from  other  elements.  While  many  minerals  can 

precipitate under anoxic conditions, those with the greatest effects on other trace metals 

are sulphides, generally present in the form of sedimentary pyrite. This process occurs 

only in anoxic conditions, due to the requirement for dissolved H2S to be present in the 

water column. Under anoxic conditions H2S, together with Fe, is precipitated as various 

forms  of  sedimentary  pyrite.  The  concentration  of  sulphur  in  sediments  which  are 

deposited under anoxic conditions is often several orders of magnitude higher than the 

concentration  of  many  other  redox-sensitive  trace  elements  and  higher  than  its 

concentration  in  oxic  sediments  (e.g.  Leventhal  1983;  1993;  Brumsack,  2006).  The 

processes involved in the precipitation of pyrite often involve traces of other elements 

and for of the latter elements this may be the dominant enrichment process (Brumsack, 

2006).

Many elements are enriched in living organisms; for example, Cd is involved in 

plankton  growth  (Calvert  and  Pedersen,  1993).  Elements  which  are  included  in 

organisms, though, are not always represented to the same extent in the rock. Although 

enrichments can occur through the burial of dead organic matter, the amount and degree 

of degradation of the organic matter is important to the direct biological enrichment 

process. Elements which are included into the tests of the organisms are generally more 

likely to be preserved (Brumsack 2006). Other forms of biological enrichments occur 

where the biological processes change an element from an aqueous phase into a solid 

phase.  Under  sulphur-rich  conditions  anaerobic  bacteria  which  respirate  H2S  often 

produce metal sulphides such as pyrite (e.g.  Vernadsky  et al.,  1998; Brüchert  et al., 

17



2003).

Late stage diagenetic processes such as mechanical compaction which expel pore 

water, alteration and dissolution of minerals, precipitation of clays with material sourced 

from adjacent units, and hydrocarbon expulsion affect the overall composition of the 

rocks and/or pore fluids, and hence may have a significant affect on the concentration of 

trace elements. The effects of these are currently not well understood and there have 

been few studies to quantify the variations due to such diagenetic effects. Sufficient 

trace elements are preserved in sediments which have undergone late stage diagenesis 

that  the  enrichments  can  be measured  (e.g.  Abanda and Hannigan,  2006;  Ross  and 

Bustin,  2009),  but before any studies beyond qualitative trace element  work can be 

undertaken on ancient sediments, these processes need to be better understood and the 

effects  quantified.  Abanda  and  Hannigan  (2006)  suggested  that  in  particular  oil 

generation may have an effect on black shale composition as large amounts of elements 

(e.g. S, P, Tl, Cd, and Cu), are associated at least partially with the organic fraction of 

the rocks.

For most elements, understanding of the main enrichment processes is still at an 

early stage. Whether and/or how different processes interact with one another and with 

parameters  such  as  salinity,  sedimentation  rate,  and  temperature  is  uncertain.  This 

makes quantitative studies even of recent sediments difficult.  For ancient sediments, 

additional factors such as unknown concentrations of elements in sea water at the time 

of deposition and the uncertainty of the processes controlling late stage diagenesis have 

made  the  interpretation  of  trace  element  enrichments  in  ancient  sediments  more 

qualitative than quantitative.

2.1. Different oxygen depleted environments and the 
representative enrichment processes

There  are  several  different  types  of  oxygen-depleted  environments  present  in 

nature and preserved in the geological record. The combinations of physical, biological 

and chemical conditions and processes in these environments can cause variations in 
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trace metal abundance. While some anoxic environments persist for geological periods, 

others occur only briefly. The latter include environments which are seasonally anoxic, 

such as upwellings caused by changes in prevalent winds causing oxygen depletion and 

stratification of the water column during part of the year (e.g. Tyson and Pearson, 1991).

The  oxidation  of  sediments  which  were  deposited  under  oxygen-depleted 

conditions can reverse many of the processes which caused the elemental enrichments. 

Such  oxidation  can  occur  in  seasonally  anoxic  regions  or  during  sediment  re-

suspension.  Morse  (1994)  showed  that  anoxic  sediments  when  exposed  to  oxic 

conditions for even a day can lose from 20% to over 90% of pyrite-bound metals. Other 

enrichments, as well as the release of pyrite-bound elements, can also be reversed by 

exposure to oxic conditions.

Different oxygen-depleting environments occur in different geographic locations. 

Although not all environments can be differentiated by trace metal variations, several 

major ones can (Brumsack, 2006). Some of the major oxygen-depleting environments 

are:

Closed oxygen-depleted systems
Closed,  oxygen-depleted systems (figure 2.1.1) are generally lakes which have 

water  flowing  into  the  lake  but  none  leaving.  Water  is  only  removed  through 

evaporation. Trace metals are not evaporated into the atmosphere and hence any that are 

introduced either by inflowing water or leached from sediments will be included into 

the sediments, within either the oxic or anoxic parts of the lake.

The classic example of an anoxic lake with no outflow is the Dead Sea. This is 

situated at 410m below sea level in the Dead Sea rift valley. The sediments in the Dead 

Sea were studied by Herut et al. (1997) in respect to trace metal variations. Lateral trace 

metal variations were detected and related to detrital input. Brumsack (2006) included 

the Black Sea in an attempt at differentiating different oxygen-depleted environments, 

using  enrichment  factors  calculated  with  respect  to  average  shale  as  defined  by 

Wedepohl (1971). The use of this technique will be discussed in section 4.4.

In  closed  oxygen-depleted  systems,  H2S  is  often  present  making  the  closed 

systems  “anoxic”  under  the  Tyson  and  Pearson  (1991)  classification  system  (e.g. 
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Brumsack, 2006). When there is insufficient Fe in the system pyrite precipitation may 

not occur or be limited, hence much of the trace metal enrichment which involves the 

precipitation of pyrite may also be limited below the oxic-anoxic boundary.

Silled anoxic basins
Silled anoxic basins (figure 2.1.2) differ mainly from closed anoxic basins in that 

water and trace metals can be cycled through the system as it is not completely isolated.  
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Figure 2.1.2: Diagram of a silled anoxic basin where water flows both in and out of the basin 

but  a physical  barrier prevents mixing of  the entire water column, and a positive net  water  

balance generates a salinity contrast preventing vertical mixing. See text for explanation of the 

different processes. Figure based on Demaison and Moore (1980) and Brumsack (2006).

Figure 2.1.1: Diagram of closed anoxic lakes where water flows into the basin but not out. At 

depth the oxygen is depleted. See text for explanation of the different processes. Figure based 

on Demaison and Moore (1980) and Brumsack (2006).



This ability to cycle water through the system allows trace metals which are more stable 

in solution under reduced conditions to be removed from the sediments into the water, 

while those which are more stable in a solid state are enriched to a greater degree than 

in a closed system.

The redox states of elements along with their residence times in both anoxic and 

oxic waters are important in silled anoxic basins. The enrichments in the silled anoxic 

basins are dependent on the net inflow of water, the net outflow, the cycling of water 

within the basin, the sedimentation rate, and the trace metal concentration in the water.

Marine upwelling
Another source of oxygen depletion is from upwelling deep sea waters. Upwelling 

is generally driven either by ocean currents or wind, causing deep nutrient-rich, oxygen-

poor bottom waters to rise along the continental slope. While life exists at all levels of 

the oceans, the main primary productivity occurs in the photosynthetic zone (e.g. Tyson 

and Pearson, 1991). The nutrient-rich water stimulates life in the photosynthetic zone, 

recycling dead organic-matter and creating a high demand for oxygen, thus depleting 

the  oxygen  and  causing  the  formation  of  an  oxygen-minimum layer  (Figure  2.1.3; 

Demaison and Moore, 1980). At the surface oxygen is again mixed into the water from 

the atmosphere.

The oxygen-minimum layer must be at sufficient depth that oxygen is not mixed in 

by wave action, and stratification through changes either in salinity or temperature of 

the water column is often necessary. The thickness of the oxygen minimum layer can 

vary greatly,  and in  some situations  can be only the bottom few centimetres  of  the 

water-column (Tyson and Pearson, 1991).

For  trace  metal  variations  there  are  two main  denominations  of  upwellings  as 

summarised by Brumsack,  (2006) and depicted in  figure 2.1.3.  A narrow shelf  will 

generally have dysoxic conditions at the sediment-water interface as the water cycles 

through too quickly for anoxic conditions to build up. There is, however, a vast quantity 

of water which cycles through and a large amount of primary productivity in upwelling 

situations, providing both abundant trace metals to be reduced into the sediments and a 
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large influx of organic-matter. On an extended shelf the main difference is that anoxic 

conditions can occur just above the sediment-water interface and thus pyrite can often 

be precipitated.

The  overall  variation in  trace  elements  between  different  types  of  upwelling 

environments is dependent on whether or not H2S is present, the amount of water cycled 

though, the rate of deposition, the trace metals present in the water column, and the 

amount and type of productivity above and within the oxygen-depleted layer as well as 

in the top few cm of sediments.
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Figure 2.1.3: Diagram of upwelling producing an oxygen-minimum layer on a) a narrow shelf, 

and b) an extended shelf. Extended shelves can have anoxic conditions while a narrow shelf 

generally has dysoxic or suboxic conditions. Figure based on Demaison and Moore (1980) and 

Brumsack (2006).



Dysoxic and suboxic conditions above the sediment-water interface are indicators 

that the environment is likely to be that of an upwelling, while anoxic conditions may 

be  present  in  both  basins  or  upwellings  or  on  extended  shelves.  Trace  element 

concentrations  alone  cannot  always  be  used  to  differentiate  between  these 

environments, especially when applied to ancient environments where some elements 

may be an order of magnitude more or less abundant than that observed in modern 

environments.  This  was found to be the case by Brumsack (2006) when applied to 

Cretaceous black shales, where Zn and Ag were found to be an order of magnitude more 

abundant than in modern environments.

2.2 Major and Trace element variations in sediments

The large number of elements examined in the present study have been grouped 

where possible, by their behaviour in marine conditions, and results are presented in the 

same order  for  each of the field sites  in both the results  and discussion sections,  a 

tabulated summary of trace metal variations is provided in Appendix D. Many elements 

are affected differently by multiple processes and hence could not always be grouped 

together.

Many elements in silicate sediments are affected by changes in provenance where 

different mineral assemblages of the detrital elements have differing concentrations of 

elements. Variations in other elements such as sulphur are related to organic matter and 

oceanographic conditions the details of these processes are covered later in this chapter. 

The bulk composition of marine shales is often characterised by three end members: 

silica in  detrital  quartz,  aluminium in the clay fraction and calcite  in  the carbonate 

content. As these elements are normally measured using XRF, the oxides measured are: 

SiO2,  Al2O3 and CaO. Ternary diagrams of these oxides are often produced to show 

major differences in depositional environments (e.g. Brumsack, 1989). Major changes 

in depositional and paleoceanographic conditions, especially with respect to sediment 

source, sorting, rate of deposition and biological input are all likely to have some affect 

on these three end members and may hence aid in differentiating sediments.
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However, treating sediments as consisting of these three end members alone is a 

simplification.  SiO2 is  included  in  some  biological  tests  (e.g.  diatoms,  radiolarians, 

some foraminifera) and in many clay minerals,  and CaO is  also included in detrital 

clays. The overlap of several processes affecting these elements in different sediments 

are often negligible unless dealing with extreme environments where one or more of 

these processes is absent or very minor.

Mainly terrestrially-sourced elements
Aluminium is a structural component of many silicate minerals (e.g. Dean et al., 

1997),  and  generally  makes  up  several  weight  percent  of  marine  shales.  The 

concentration of Al in seawater is generally very low (Orians and Bruland, 1986; Brown 

et al., 1989); however, abundance can vary considerably. For example, while the Pacific 

Ocean contains between 2.7 and 135 ppt (parts per trillion) of Al, the Mediterranean has 

values two orders of magnitude higher (Orians and Bruland, 1986). Compared to the 

concentration in shales (average shale as defined by Wedepohl (1971) contains 16.7% 

Al2O3), concentrations in the ocean are very small. Due to the large amount of Al in 

detrital clays and the relatively insignificant amounts introduced into shales from other 

sources, Al is generally used to correct trace element concentrations in shales for their 

detrial  input  (e.g.  van  der  Weijden,  2002).  At  Palmyra  Atoll,  an  isolated  carbonate 

environment  where  terrestrial  clays  are  insignificant,  sediments  contain  around  4-5 

orders  of  magnitude  less  Al  in  both  anoxic  and oxic  sediments  than  average  shale 

(Collen J.D. pers. com. 2010), supporting the observation that Al variations are mainly 

controlled by terrestrial clay content.

Titanium is mainly introduced through detrital minerals. However, the Al/Ti ratio 

can also be used as an indicator of increased energy within the depositional environment 

as Ti is enriched in heavy mineral phases such as rutile, requiring more energy to move 

relative to other minerals of similar size but lower mass (Dellwig et al., 2000).

Potassium varies little in anoxic sediments; however, variations of K/Al or K/Si 

are used as indicators of changes in provenance or sediment sorting, or with K/Si can 

indicate a dilution by biological Si (Wehausen and Brumsack, 2002; Brumsack, 2006). 

Illite content has been shown to have a major control on the amount of K in sediments 

(Yarincik et al., 2000; Ross and Bustin, 2008, 2009), and changes in detrital elements 
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such  as  K-feldspar  would  have  a  similar  affect.  K  also  exists  in  some  forms  of 

glauconite, which may be relevant for this study.

Rubidium  does  not  vary  significantly  in  sediments  due  to  oceanographic 

conditions as it is related to K in the lithosphere (Plank and Langmuir, 1998) and also 

generally behaves like other terrestrially sourced elements e.g. Zr, Hf and Nb. Although 

Rb  is  often  measured,  mechanisms  for  its  enrichment  in  sediments  have  not  been 

suggested and it is generally considered an element which can be used as a proxy for 

detrital  input.  Ross  and Bustin  (2009) showed little  variation of Rb in a  Devonian-

Mississippian shale sequence in western Canada, with an enrichment factor of close to 

one.

Thorium is  introduced to sediments  mainly through detrital  components but  is 

often  enriched  in  the  presence  of  Fe-Mn  oxyhydroxides,  Th  is  also  absorbed  into 

suspended  particulate  matter,  which  is  at  equilibrium  with  the  surrounding  water 

column (Plank and Langmuir, 1998; Bacon and Anderson, 1982). However, Th in the 

water column is 6 orders of magnitude less abundant than in average shale (Brown et  

al., 1989; Wedepohl, 1971); hence Th generally behaves as a detrital element and any 

variation which occurs due to other processes is generally smaller than measurement 

errors.

Hafnium,  Nb,  Zr  and  Ta  are  elements  which  have  rarely  been  measured  in 

sedimentary rocks, and no enrichments have been noted. They are also elements which 

are immobile and not affected by diagenetic, redox or weathering processes (e.g. Ross 

and Bustin, 2009). The natural sea water concentration of these elements (Brown et al., 

1989) varies between 2 (Ta) and 30 (Zr) ppt, while average shale varies between 2 (Ta) 

and 160 (Zr) ppm (Wedepohl 1971). Hence, oceanic conditions are largely insignificant 

in controlling their abundances in sediments with a large detrital fraction.

Gallium is generally considered to behave similarly to other detrital elements, and 

Staubwasser and Sirocko (2001) used it as an indicator of detrital input. Few studies 

have included Ga, although that of Ross and Bustin (2009) on a Canadian Devonian-

Mississippian shale sequence showed very little variation in Ga from its abundance in 

average shale.
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Indicators of anoxia (major components of sedimentary pyrite)
Iron is  present  in  several  forms;  it  makes  up a  structural  component  of  many 

grains, and is also common as an Fe oxide/hydroxide coating on grains. In upwelling 

environments Fe can be depleted as it is stable in water in its  reduced form. In the 

presence  of  H2S,  Fe combines  with  S to  form pyrite.  The amount  of  H2S which is 

precipitated into pyrite in anoxic conditions is mainly dependent on the amount of Fe in 

the water column (Canfield et al., 1992; Brumsack, 2006).

Sulphur is  generally enriched in organic matter-rich sediments (e.g.  Brumsack, 

2006). Sulphur is enriched in two ways, the first being a directly included into marine 

organic matter, and the second being the precipitation of pyrite under anoxic conditions 

(e.g. Leventhal, 1983; Raiswell and Berner, 1985). Pyrite precipitation generally occurs 

through heterotrophic bacteria (bacteria that respirate sulphur) reducing sulphur from 

sulphate into metallic sulphide and hydrogen sulphides (e.g. Vernadsky  et al.,  1998; 

Brüchert  et  al.,  2003).  In  the presence of  Fe in  the water-column the sulphates  are 

precipitated into pyrites; however, when Fe is not present or only present in insufficient 

amounts, out-gassing of H2S can occur from the sediments (Chapman and Shannon, 

1985; Weeks et al., 2004).

Many elements are included into pyrite precipitates; however, there are several 

different types of sedimentary pyrites, and it has been suggested that some can form in 

dysoxic  conditions  and  will  hence  contain  different  trace  metal  concentrations 

(Tribovillard et al., 2008). Many elements which are included in sedimentary pyrite as 

traces are also affected by other processes. Associated with biological conditions are S, 

Tl, Cu, Cd and Ni, depleted under oxygen-depleted conditions are Mn, Co and Bi, and 

complicated by anthropogenic input are Pb and Bi. These elements have been grouped 

into different subsections in this chapter to discuss these other processes along with the 

inclusion into pyrite.

Indicators of anoxia (included in sedimentary pyrite)
Zinc is enriched in oxygen-depleted environments. Calvert and Pedersen (1993) 

suggested that it is mainly enriched as part of sulphide precipitation.

Molybdenum is a highly studied trace metal in anoxic sediments. It is found to be 
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strongly enriched, and usually included in sulphides (e.g. Elbaz-Poulichet et al., 2005). 

Mo is enriched in both upwellings (e.g. Böning et al., 2004) and anoxic basins (Elbaz-

Poulichet et al., 2005). MoO4
2- is diffused into sediments forming MoS4

- (Erickson and 

Helz, 2000) and then later forms Mo-Fe-S cuboidal clusters on pyrite, from which it is 

reduced to Mo(VI) to stabilise the structure (Vorlicek et al., 2004). Crusius et al. (1996) 

found that enrichment of Mo begins at ~1cm below the sediment water interface in 

anoxic environments, and at >10cm in sub-oxic to oxic environments.

Indicators of anoxia (included in sedimentary pyrite); anthropogenic in recent  
sediments

Lead is generally related to sulphur in anoxic sediments (Heinrich  et al., 1980) 

and has a  short  residence time in the ocean (less than a century)  (e.g.  Schaule and 

Patterson, 1981). The residence time is likely to be due to lead being rapidly scavenged 

by biogenic particles (Brumsack, 1989; Böning et al., 2004). In modern sediments any 

enrichment due to anoxia is comparably less than the enrichments due to anthropogenic 

input (Böning et al., 2004).

The concentration of Bi  in  upwelling zones  is  more closely related to sulphur 

abundance than organic carbon (Heinrich et  al.,  1980; Bertine  et al.,  1996), but the 

exact removal pathways are not yet fully understood (Brumsack, 2006). Understanding 

of the enrichment  of Bi in recent sediments is  hindered by enhanced anthropogenic 

input from mining (Böning  et al., 2004, 2009). Bi is also enriched in ferromanganese 

phases in marine conditions, and hence is often reduced into an aqueous phase in other 

oxygen-depleted conditions (Bertine et al., 1996).

Biological component or involved in biocycling
Barium has been considered a potential proxy for bio-productivity (Schmitz, 1987; 

Dymond  et  al.,  1992;  Prakash  Babu  et  al.,  2002).  However,  it  undergoes  complex 

reactions and may be related to water depth (e.g. von Breymann et al., 1992). Ross and 

Bustin  (2009)  found  little  variation  in  the  enrichment  factor  of  Ba  in  Devonian-

Mississippian shales in  the Western Canadian Sedimentary Basin,  suggesting that in 

their study Ba it was largely of detrital origin. The Ba content from different terrigenous 
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backgrounds is known to vary, and local corrections for detrital Ba were suggested by 

Klump  et al. (2000) in order to avoid using a Ba/Al ratio which doesn’t reflect local 

sediments. Ba is found to be stable only when there is sulphur in the water column 

(Church and Wolgemuth, 1972). In environments where the sulphur has been reduced 

into  solid  form by heterotrophic  organisms  (pyrite  precipitation),  Ba  is  mobile  and 

hence  not  included  in  sediments  (Brumsack,  2006;  Brumsack  and  Gieskes,  1983; 

McManus et al., 1998). There has thus been caution in the use of Ba as an indicator of 

either bio-productivity or water depth for sediments which were deposited under anoxic 

conditions.

Calcium is generally present in marine shales, mostly carbonate shells. Ca from 

other sources is normally minor in comparison (e.g. Brumsack, 2006). Dissolution of Ca 

in the water column can occur, although the rates of dissolution are slow (e.g. Peterson, 

1966).  Calcite  dissolution  can  also  occur  in  the  upper  sediments.  Dissolution  is 

generally more extensive in more highly bioturbidated areas where alkalinity buildup 

from sulphate reduction has not occurred (e.g. Aller, 1982).

Phosphorus is enriched in organic-matter rich and anoxic sediments. P is a micro-

nutrient, and hence it is more effectively enriched with enhanced organic-matter burial. 

Redox-dependent  cycling  in  anoxic  conditions  may  aid  the  release  of  P,  with  the 

reduction of iron oxide phases at the sediment water interface providing a feed-back 

loop which enhances productivity and hence the degree of anoxia (Ingall and Jahnke, 

1996).

Magnesium is related to the kaolinite and dolomite content in many ancient North 

American black shales (Ross and Bustin,  2008, 2009) and is  hence often related to 

detrital content; trace Mg is also incorporated in CaCO3 (e.g. Vine and Tourtelot, 1970; 

Brumsack, 1989, 2006) with a temperature-dependent relationship.

Strontium is  incorporated  in  CaCO3 as  it  is  significantly enriched through the 

biological precipitation of carbonate tests,  which is  a temperature-dependent process 

(Plank and Langmair, 1998).

Silicon is included as a structural component of clastic grains, a major constituent 

of plankton skeletons (Brumsack, 2006).

Germanium behaves very similarly to Si in marine conditions, and is taken up by 
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siliceous  organisms  (Froelich  and  Andreae,  1981).  Reducing  conditions  with  which 

contain Fe2+ in the water column are also considered a potential sink for Ge (Hammond 

et al., 2000). Very few studies have included Ge in organic-rich sediments.

Biological component or involved in biocycling; indicators of anoxia (included in  
sedimentary pyrite)

Sulphur  can  be  biologically  sourced  (e.g.  Leventhal,  1983),  it  is  also  major 

component of sedimentary pyrite and was hence included in that section.

Thallium is a rarely studied trace element in sediments which is not included in 

many of  the older  studies.  Heinrich  et  al.  (1980) showed that  Tl  was more closely 

related to sulphur than to organic carbon. Thallium may also be involved in biocycling 

as suggested by Böning et al. (2004) with respect to the Peruvian upwelling, but more 

work is required to confirm this.

Cadmium  is  enriched  in  several  ways  under  anoxic  conditions.  The  most 

important is the inclusion of Cd into sulphides (e.g. Heinrichs  et al., 1980; Kreming, 

1983). Heinrichs et al. (1980) showed that Cd was more closely related to sulphur than 

to organic matter in black shales. It also can accumulate in phosphates (Nathan et al., 

1997) which explains some of the differences which are seen in Cd enrichments relative 

to other trace elements that are included in sulphates (Turgeon and Brumsack, 2006). 

Cadmium is also involved in biocycling, and is often associated with plankton growth 

(Calvert and Pedersen, 1993).

Copper is a micronutrient (e.g. Calvert and Pederson, 1993) and through organic 

matter  is  generally  enriched  in  many  anoxic  environments.  Off  the  coast  of  Peru 

biocycling above the oxygen minimum zone is suggested to be the main reason for its 

enrichment (Böning et al., 2004). Cu can also be included into sulphides (e.g. Morse, 

1994).  Another  factor  which  can  complicate  its  enrichment  is  an  increase  in  the 

concentration  of  Cu in  sea water  with  depth  due  to  biological  scavenging near  the 

surface (Calvert and Pederson, 1993).

Nickel is considered a micronutrient in the oceans and is important to plankton 

growth. In anoxic conditions it is also incorporated into sulphides, but requires a solid 

surface to precipitate onto (Calvert and Pederson, 1993). Ni can also be correlated to 
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oxyhydroxides  in  the  water  column,  which  are  dissolved  in  oxygen-depleted  pore 

waters (Calvert and Pederson, 1993).

Depleted under suboxic/dysoxic conditions; indicators of anoxia (included in  
sedimentary pyrite)

Bismuth is  often also reduced under oxygen depleted conditions Bertine et  al. 

(1996), however is presented in the anthropogenic section.

Manganese is generally depleted in oxygen minimum zones (e.g. Huerta-Diaz and 

Morse,  1992;  Böning  et  al.,  2004;  Brumsack,  2006).  Mn  gets  dissolved  from  the 

sediments and transported along the oxygen minima layers to more oxygen-rich waters. 

The processes involved in Mn enrichment or depletion are complex. Enrichment of Mn 

in  sediments  usually correlates  positively with Fe and Co (Roy,  1992).  Mn2+ is  the 

reduced form of manganese and is generally soluble in sea water, but easily oxidised to 

Mn4+ (Huerta-Diaz and Morse, 1992). The latter is more stable as a solid state and often 

forms manganese nodules. MnO2 is the most common form of solid Mn in nature, but is 

not stable in reducing conditions. Thus, Mn depletion is generally observed in upwelling 

environments. Bacteria utilising solid state sulphate can oxidise Mn into a solid state. 

With the lack of oxygen in reducing conditions, Mn4+ formed by bacteria is precipitated 

into calcites  or sulphates,  with only ~20% remaining in  the water  (Aller and Rude, 

1988).

Cobalt is included into sulphides, and can thus be enriched in sulphur-rich anoxic 

conditions (Kreming, 1983). In sulphur-poor anoxic conditions Co behaves similarly to 

Mn and Bi, and in upwellings is generally depleted (Böning et al., 2004).

Enriched under reducing conditions
Arsenic is generally enriched in organic-rich sediments (Brumsack, 2006). Off the 

coast  of Peru it  has  been suggested As may be enriched through diffusion,  and the 

limited  enrichment  there  was  mainly  due  to  sea  water  availability  rather  than  the 

saturation of As in the sediments. However, it may also be related to pyrite as it varies 

similar to Mo (Böning et al., 2004). Huerta-Diaz and Morse (1992) also found that very 

little As is in the pore fluids in anoxic conditions but that most of it is deposited with 

pyrite precipitation. Morse (1994) showed that the oxidation of sedimentary pyrite will 
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release most of the As in a very short period of time. This type of oxidation occurs 

naturally during sediment re-suspension or in seasonally anoxic regions. In outcrop, As 

is considered relatively stable during the weathering of black shales as it has a solid 

state  when oxidised,  with  leaching tests  showing less  than  1% loss  upon oxidation 

(Lavergren et al., 2009).

Chromium is enriched almost purely because of redox sensitivity. It exists in two 

main  forms  in  the  oxic  ocean,  as  CrO4
2- and,  to  a  lesser  extent,  Cr(OH)2

+(H2O)4. 

However,  under reducing conditions,  it  generally forms Cr (H2O)4(OH)2
+  (Elderfield, 

1970), and is quickly moved into the sediments (Calvert and Pederson, 1993). For Cr to 

be effectively scavenged into sediments,  the pore waters must be completely anoxic 

(Morse and Luther, 1999).

Vanadium is  always  enriched in  oxygen depleted marine  settings.  V has  three 

soluble  oxidation  states  which  occur  naturally,  HVO4
2- H2VO4

- and  VO(OH)3
-  (e.g. 

Turner  et  al.,  1981).  When reduced,  however,  V is  precipitated  as  V2O3 or  V(OH)3 

(Wanty and Goldhaber, 1992). V has a strong relationship with organic matter yet its 

concentration is chiefly governed by redox sensitivity (e.g. Shaw et al., 1990). A main 

limiting factor is often sea water availability, as has been suggested for the Peruvian 

upwelling (Böning et al., 2004).

Uranium is enriched in reducing sediments in several ways. Uranium enrichments 

in black shales were noticed very early (e.g. McKelvey and Nelson, 1950), and thus U is 

one of the better studied elements in anoxic conditions, and has been noted to diffuse 

directly into the sediments (e.g. Shaw  et al.,  1990), and to precipitate uranium salts 

(Disnar and Sureau, 1990). Phosphates contain the best link to U enrichments in most 

marine  sediments,  with  phosphate-rich  black  shales  considered  generally  the  most 

enriched (e.g. McKelvey and Nelson, 1950). In anoxic conditions the limiting factor on 

U enrichment is generally its availability in sea water.

Enriched under reducing conditions, rarely studied
Selenium is often enriched in upwelling zones, yet the reason for enrichment is not 

clear. Se is involved in biocycling (Cutter, 1989) but is also enriched at the bottom of 

the ocean in the form of Se6+, and thus upwelling intensity may be important in the Se 
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supply in upwelling zones (Crusius and Thompson, 2003). Solid Se is normally related 

to Ag; in sub-oxic conditions biological influences can produce AgSe or Ag2Se (Crusius 

and Thompson, 2003).

Antimony is  a  poorly understood  trace  element  in  respect  to  its  behaviour  in 

anoxic conditions (e.g. Filella et al., 2002). Takayanagi and Cossa (1997) suggested that 

Sb  may  be  included  into  manganese  and  iron  oxide  particles  or  sulphides.  Sb  is 

generally enriched in oxygen-depleted environments (e.g. Böning et al., 2004), but the 

exact process causing the enrichment is unknown.

Rarely studied in sediments
Tin and W are very rarely studied metals in oxygen-depleted conditions, having 

been omitted from most trace element studies on sediments.

Sodium is not considered very well suited to trace element studies in sediments as 

it would require a salt correction (Brumsack, 2006).

Lithium is  a highly reactive element when in solid  form. The mechanisms for 

variation are not  well  understood,  although hydrothermal  fluids are  thought  to  be a 

major cause of Li enrichments (e.g. Chan and Kastner, 2000). It may hence be affected 

by late stage diagenesis,  especially with regards to illite and smectite (e.g. Howard, 

1981).  Variation  in  Li  is  likely  to  occur  in  fluid-sediment  processes,  as  clay  ion 

exchange with ammonium and volcanic ash alteration are known to change the isotopic 

composition of Li in the pore waters (Chan and Kastner, 2000).

Rare earth elements (REE)
Yttrium is occasionally measured in trace metal studies on anoxic sediments (e.g. 

Ross and Bustin, 2009), but it rarely shows much variation. Y generally behaves in a 

similar  way to  the  REE (e.g.  Haskin  and  Gehl,  1962),  and  many  techniques  have 

difficulty separating these elements. For this reason Y is presented with the other REE 

in this study.

The lanthanides, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are 

relatively unique in that their abundances are usually addressed relative to one another, 
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not in relation to Al. With the exception of Ce, the lanthanides are all trivalent and are 

fractionated  from the  neighbouring  lanthanides  by  various  chemical  processes.  The 

fractionation is caused by having similar chemical properties but with decreasing atomic 

radii with increasing atomic number (e.g. Bryne and Kim, 1993). The measurement of 

these  elements  in  sediments  is  not  new, and has  been done by many authors;  it  is 

normally compared to shale or chondrite standards.

Caesium has been found to behave similar to Mn in sea water (e.g. de Baar et al., 

1988; German and Elderfield, 1989;  Sholkovitz  et al., 1992). Ce is generally depleted 

from the  sediments  in  anoxic  conditions  due  to  redox  forcing,  and  is  often  found 

enriched in ferromanganese nodules. Redox depletion starts under suboxic conditions 

well above the O2/H2S interface in the Saanich Inlet, British Columbia (German and 

Elderfield, 1989).

Europium may also  be  reduced under  strong anoxic  conditions;  however  it  is 

generally more stable in its reduced form and hence would be expected to be enriched in 

anoxic conditions. Eu is, however, difficult to reduce and this is more likely to occur at 

higher  temperatures,  such  as  under  hydrothermal  and  metamorphic  conditions 

(Sverjensky, 1984).

In sea water Gd behaves in the opposite way to Tb, where it is often enriched 

slightly while Tb is depleted. This is thought to be due to different behaviours when 

scavenged by falling particles in the water column (de Baar et al., 1985). This may not 

always to be reflected in the sediments, however, as what is scavenged from the water 

column is not always added to the sediments (Brown et al., 1989).

The  remaining  lanthanides  are  often  thought  to  be  sourced  mainly  from 

siliciclastic  detritus  (Schröder  and  Grutzinger,  2007);  however,  they  may  also  be 

included in the organic fraction, with the organic component having up to an order of 

magnitude  greater  lanthanide  fraction  than  the  rest  of  the  sample  (Abanda  and 

Hannigan, 2006).
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Chapter 3

Stratigraphy and regional setting

3.0. Regional setting

During the Late Paleocene, the New Zealand landmass was entering a passive 

margin state  dominated mainly by thermal  subsidence.  However,  greater  subsidence 

rates than  those expected from thermal subsidence alone occurred in the Great South 

Basin and over much of the Campbell Plateau, suggested to be due to mantle convection 

(Sutherland et al., 2010). Whether the thermal subsidence or mantle convection related 

subsidence  had  begun  by the  time  the  Tartan  and  Waipawa  formations  were  being 

deposited is uncertain (Schiøler et al., 2010; Beggs 2010a).

Late Cretaceous to Eocene sediments in New Zealand represent a general marine 

transgression as facies changed from the non calcareous sandstones and mudstones to a 

calcareous mudstones. In the East Coast Basin this is represented by the transition from 

the  Whangai  Formation,  a  late  Cretaceous  to  Late  Palaeocene  formation,  to  the 

Wanstead Formation (Moore, 1988; Field et al., 1997). A similar change occurs in the 

Great South Basin where the Wickliffe Formation is replaced by the Laing Formation, 

then  later  by  an  even  more  distal  facies,  the  Tucker  Cove  Formation,  an  Eocene-

Oligocene chalk present in the most distal parts of the basin (e.g. Beggs, 1993; Cook et  

al., 1999; Schiøler et al., 2010).

The East Coast Basin is characterised by marine sediments through the Paleocene 

and Eocene,  however  the sediments  suggests  a  relatively proximal  shoreline.  In  the 

Great South Basin both terrestrial and marine deposits occur through this time, and a 

fluctuation  paleoshoreline  can  be  traced  through  time on seismic  reflection  profiles 

(Lipski, 2004). Figure 3.0.1 shows the evolution of the New Zealand continent through 

time, from 65-40 Ma. This figure shows a general marine transgression across the New 

Zealand landmass and indicates where the Waipawa Formation was deposited in relation 

to the shoreline location.
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Figure 3.0.1:  Maps of New Zealand 

through time. These maps show the 

changes which the New Zealand 

continent went through between 65 and 

40 Ma.

These maps show the Paleocene rifting, 

and the subsequent passive margin 

state.

While a shoreline has been invoked in 

the East Coast Basin, any terrestrial 

deposits have long since been eroded 

away.

Figure from King (2000).

TB = Taranaki Basin, ECB = East Coast 

Basin, CB  = Canterbury Basin, GSB  = 

Great South Basin, WS  = Western 

Southland Basin, NCB  = New 

Caledonia Basin, EB  = Emerald Basin, 

ChP  = Challenger Plateau, CP  = 

Campbell Plateau, CR = Chatham Rise.



3.1. The East Coast Basin.

Introduction

The East Coast Basin is structurally complex due to the initiation of the Hikurangi 

Subduction Zone. Erosion of Paleogene sediments such that Pliocene sediments directly 

overlie  Mesozoic  basement  (Beanland  et  al.,  1998)  is  common in the  forearc basin 

region to the west; the eastern section is dominated by a complex fold thrust belt, which 

locally exposes Paleogene sediments in the onshore section (Ballance, 1993; Lewis and 

Pettinga, 1993; Field et al., 1997).

Stratigraphy

A generalised stratigraphy for the East Coast Basin is provided in figure 3.1.1; 

most  of  the  basin  is  dominated  by  a  marine  setting  during  the  period  of  interest 

(Paleocene and Eocene).
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Figure 3.1.1: Generalised stratigraphy of the East Coast Basin, figure from Field et al., (2004).



Whangai Formation

The Whangai Formation is a Late Cretaceous to Late Paleocene marine mudstone 

which consists of several members. Three members are regionally extensive and two 

only appear only locally (Moore, 1988).

The  Rakauroa  Member  (Moore,  1988)  is  a  hard,  poorly-bedded,  bioturbated, 

medium grey,  non-calcareous,  micaceous mudstone that  is  rusty when weathered.  It 

contains thin glaconitic sandstone beds, scattered concretions and pyrite nodules, with 

rare chert and calcareous beds (Moore, 1988).

The Porangahau Member (Moore, 1988) is a hard, well bedded, light to very light 

grey, highly calcareous mudstone. Glauconitic sandstone beds are common, as are red, 

brown, and green mudstones and ripple laminated sandstones. Thin light and dark grey 

alternating mudstone beds within are often referred to as the zebra beds”. The mudstone 

beds within the Porangahau Member are generally moderately to highly bioturbated.

The Upper Calcareous Member is generally a hard (Moore, 1988), poorly bedded, 

medium-grey micaceous mudstone.  This member is  slightly calcareous (1-15%) and 

generally bioturbated,  can contain calcareous concretions, pyrite nodules, glauconitic 

sandstone beds, and rare brecia.  The Upper Calcareous Member is generally a light 

blue-grey  when  weathered  (Moore,  1988)  but  a  white  patchy  coating,  possibly  of 

gypsum, was noticed on some outcrops during fieldwork.

Kirk's Breccia Member (Moore, 1988) is only present in a few localities and only 

at the base of the Whangai Formation, and is not important to this study.

The Te Uri Member (Moore, 1988) is only present at some localities, and is not 

present in the Angora Quarry area. However, Rogers et al. (2001) showed it contains a 

unit  that  can  be  correlated  to  the  Waipawa  Formation.  It  consists  of  glauconitic 

sandstone inter-bedded with glauconitic, slightly calcareous, laminated siltstone.

Waipawa Formation

The  Waipawa Formation  is  dark  brown to  black,  poorly  bedded mudstone  to 

siltstone that is occasionally laminated and often glauconitic. The formation generally 

has a gradational lower contact with a sharp but conformable upper contact. It rarely 
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exceeds 50 meters in thickness; however, it is regionally pervasive throughout the East 

Coast Basin and is common elsewhere around New Zealand.

Many of the geochemical (figure 1.2.1) and lithological properties of the Waipawa 

Formation  vary greatly  throughout  the  East  Coast  and further  afield.  The thickness 

varies from 2 to 60 m within the East Coast Basin (Hollis  et al., 2005b). The colour 

varies from dark brown to grey black, while the general lithology varies from mudstone 

to siltstone or occasionally fine sandstone (Moore, 1986). 

Wanstead Formation

‘Wanstead Formation’ is  often used in the East Coast Basin as a generic term 

referring to fine grained smectite-rich sediments of Paleocene to Eocene age (Moore 

and Morgans, 1987; Field  et al., 1997). The Wanstead Formation is generally poorly 

bedded and is greenish grey to grey in colour, but can, however, have a bluish tinge 

locally  (Moore  and  Morgans,  1987).  There  are  occasional  glauconitic  beds.  The 

formation is generally considered mid-bathyal, and lower bathyal-abyssal in parts (Field 

et al., 1997).

3.2. Great South Basin

Introduction

The Great South Basin is located south of the South Island of New Zealand. It is a 

completely offshore basin. While the extent of the basin can be traced using gravity 

anomalies (e.g. Cook  et al., 1999), the bulk of the data on the basin comes from the 

petroleum industry in the form of eight offshore exploration wells, over 30,000 km of 

2D and 1200km2 3D seismic data (Crown Minerals, 2010).

The  Tartan  Formation  was  first  encountered  in  the  Canterbury  Basin,  in  the 

Endeavour-1 hydrocarbon exploration well which was drilled in 1971. However it was 

it  was  not  recognised  as  the  Waipawa  equivalent  and  the  interval  was  tentatively 

38



correlated to the Otepopo Formation - a Late Paleocene glauconitic sandstone (Wilding 

and Sweetman, 1971). The Toroa-1 well was the first well in the Great South Basin to 

penetrate the Tartan Formation in 1976 (HIPCO, 1977b).

Stratigraphy

Since the rifting of the Great South Basin in the mid Cretaceous (e.g. Cook et al., 

1999)  it  has  become  progressively  dominated  by  marine  sediments.  A  shrinking 

terrestrial facies persisted, however, at the north-western basin margin until the Eocene. 

A generalised stratigraphy for the Great South Basin is presented in figure 3.2.1.

Wickliffe Formation

The Wickliffe Formation has its type section in Kawau-1A (Cook  et al., 1999), 
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Figure 3.2.1:  Generalised stratigraphy for the Great South Basin, figure from Cook et al., 

(1999), updated with changes from Schiøler et al., (2010)



where it was first defined as both a 25 m section above and an ~1000 m section below 

the  Tartan Formation.  This  was later  revised  to  include only the interval  below the 

Tartan Formation after  a  re-examination of cuttings and side wall  cores  (SWCs) by 

Schiøler et al. (2010). Both the Wickliffe and Tartan formations are part of the Pakaha 

Group.

The Wickliffe Formation is described as light grey clay with subordinate darker 

brown shales. The formation contains muddy sandstone units up to 10m thick, which 

are more prevalent in the western part of the basin. The sandstones are composed of 

quartz with pyrite, glauconite and mica. Overall, the well logs suggest the formation is 

composed of a series of fining upwards sequences (Cook  et al., 1999). The Wickliffe 

Formation is also described as similar to the Whangai Formation on the East Coast of 

the North Island (Beggs, 1993; Cook et al., 1999).

Tartan Formation

The Tartan Formation is dark brown, carbonaceous and slightly calcareous, very 

micaceous and slightly glauconitic shale (Cook et al., 1999). The gamma ray logs show 

a characteristic spike; however, in the more landward wells the spike is more difficult to 

identify (Schiøler et al., 2010). 

Similarly to the East Coast Basin, a greensand formation (the Otepopo Greensand 

Formation) has been suggested as a possible time equivalent to the Tartan Formation 

(Wilding and Sweetman, 1971; Meadows, 2009). Study confirming this has yet to be 

done.

Only limited samples of the Tartan and associated formations are now available 

from Great South Basin wells. The thickness of the Tartan Formation in the Great South 

Basin varies between 27.6 and 71.7 m but is as thin as 16.5 m in the Canterbury Basin 

(Schiøler et al., 2010).

Rakiura-1  contained  a  coarse  siltstone  to  fine  sandstone  facies  that  was  light 

brown in colour, very micaceous and only locally carbonaceous. The formation was not 

originally assigned to the Tartan Formation due to its coarser grain size and lower TOC 

(Cook  et  al.,  1999).  From seismic  data  and  well  correlation  the  Late  Paleocene  is 

interpreted at  Rakiura-1 as consisting mainly of a regressive package of off-lapping 
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sands with the Tartan Formation beginning further to the south-east and representing 

sediment possibly deposited during maximum sea level regression (Beggs, 2010b).

Laing Formation

Overlying the Tartan Formation is the Laing Formation, the oldest member of the 

Rakiura Group. The Laing Formation varies laterally, and at the more proximal wells 

Rakiura-1,  Tora-1  and  Tara-1  consists  of  30  to  50  m  thickness  of  sandstone  with 

siltstone interbeds. The fine-grained beds are light grey to buff in colour, moderately 

calcareous  and  contain  glauconite  and  traces  of  pyrite  (Cook  et  al.,  1999).  The 

sandstones are generally fine to medium grained, subangular, quartzose, and moderately 

sorted.  The  same  interval  in  the  more  distal  Hoiho-1C,  Kawau-1A,  Pakaha-1  and 

Pukaki-1 wells consists of calcareous claystones and shales, with some hard crystalline 

dolomite beds.
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Chapter 4

Methods and field work

4.0. Introduction

This study utilised field samples from the East Coast Basin and side wall core 

(SWC) samples from the Pakaha-1 and Kawau-1A exploration wells in the Great South 

Basin.  Measurement  of  trace  elements  was  undertaken  using  inductively-coupled 

plasma mass spectrometry (ICP-MS) on an Agilent 7500CS ICPMS of the geochemistry 

labratory at Victoria University of Wellington, while major elements and sulphur were 

measured commercially by SpectraChem Analytical, part of CRL Energy Ltd using x-

ray  fluorescence  (XRF)  on  a  Siemens  SRS3000  wavelength  dispersive  XRF 

spectrometer.

Total organic carbon (TOC) has previously been measured for the Great South 

Basin samples by Meadows (2008), and for Angora Quarry samples by Leckie  et al. 

(1992). However, as the samples collected during the present study from Angora Quarry 

are not identical to those of Leckie et al. (1992), their TOC values can only be regarded 

as indicative.

4.1. East Coast Basin fieldwork and samples

Angora Quarry is an abandoned quarry located on Angora Road in the southern 

Hawkes Bay region of the East Coast (figure 4.1.1). The quarry is located in a stream-

cut valley, and several faults affect this region (Leckie et al., 1992). The main section, 

including the  quarry and the  stream below,  does  not  show the  contact  between the 

Waipawa and Wanstead formations; further upstream both the Waipawa and Wanstead 

formations are exposed, although the actual contact here is also obscured.

Field work was conducted during May, 2010. Sampling began 44 m below the 
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Waipawa Formation, within the Upper Calcareous Member of the Whangai Formation. 

Thirteen samples were collected at the quarry and in the stream directly below, eight of 

which  were  within  the  Upper  Calcareous  Member  and  five  within  the  Waipawa 

Formation. Approximately 1 km upstream another 2 samples were collected, one within 

the Waipawa Formation and one within the Wanstead Formation. At this location both 

formations were very weathered and fresh samples required considerable excavation. 

Separate stratigraphic columns were measured for both sites (Figure 4.1.2). Samples 

labelled  “A-A”  are  from  within  or  directly  below  Angora  Quarry,  while  samples 

labelled  “A-C”  are  from the  field  site  further  upstream.  Photos  of  the  samples  are 

included as figure 4.4.3.

The Upper Calcareous Member varied significantly in colour through the eight 

samples collected. The first five samples (A-A-1 to A-A-5) were relatively uniform, 

blue-grey mudstones when weathered, medium grey when fresh and dry, and light grey 

when powdered. The thickness of bedding varied from tens of cm to massive.

The A-A-6 sample (at 20.5 m) was dark grey when weathered but light brown 

when  fresh  or  powdered.  The  change  occurred  from the  typical  Upper  Calcareous 

Member over a distance of about 50 cm and was gradational. The thickness of this layer  

is uncertain as the next 10 m were obscured.

A-A-7 was again light grey when weathered and medium grey when fresh or dry, 

although  slightly  darker  than  the  samples  1-5.  It  showed  white  spotty  weathering 

(probably gypsum).
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Figure 4.1.1: Location of the Angora Quarry field area. 
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Upstream from Angora 
Quarry.

Angora Quarry and stream 
directly below quarry.

Figure 4.1.2: Simplified stratigraphic 

columns of the Angora Quarry site.

Sample locations are shown as well 

as major changes throughout the 

section. Increases in lamination and in 

Terebellina  abundance are indicated 

by additional symbols.

Laminations and Terebellina  fossils 

are only marked at the sample 

locations as often these were only 

visible under closer examination or 

once dry.
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       A-A-12

   A-A_11

A-A-10

A-A-9

 
A-A-8

A-A-7
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A-A-5
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  A-A-3

  A-A-2
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A-A-8 was darker than the rest of the Upper Calcareous Member. It was slightly 

laminated and contained thin greensand beds between 3-10mm in thickness.

The  aggregated  tubular  foraminiferan  Terebellina is  common  throughout  the 

Waipawa Formation (e.g. Moore 1987, 1988). At Angora Quarry most were fragmented 

to various degrees. Figure 4.1.4 compares a possible fragment from sample A-A-7, and 

one of the best preserved fossils images from sample A-A-12. Whether or not sample A-

A-7 contains Terebellina is uncertain and not important to the conclusions of this study.

The Waipawa Formation conformably overlies the upper calcareous member, with 

a half metre gradational contact. The Waipawa Formation in this location is dark brown 

to  dark  grey  in  colour,  often  stained  with  a  red-brown  or  yellow  mineral  which 

precipitates on the outer surface.  The red-brown and yellow has been interpreted as 

jarosite (Moore, 1988), and as gypsum (Hornibrook, 1959). This staining, however, is 
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Figure 4.1.4: A comparison between a white speck which may potentially be part of a 

Terribellina fossil in sample A-A-7 left, and one of the best preserved samples right (sample A-

A-12). The image to the right is a compilation of 11 images in order to get everything in focus.

Figure 4.1.3: Images of samples from Angora Quarry on white paper background to show 

colour variation. 



only on the weathered sections and not on the fresh samples collected, determining the 

exact nature of the mineral is beyond the scope of this study.

Samples A-A-9 to A-A-13 were samples of the Waipawa Formation from within 

Angora Quarry.  All  but sample A-A-10 contained  Terebellina fragments.  The colour 

varied significantly through these samples with sample A-A-10 the lightest and sample 

A-A-13 the darkest. The samples ordered in colour are shown in figure 4.1.5, the photos 

are in black and white in order to easier see differences in how dark the samples are.

The contact between the Waipawa and Wanstead formations was obscured and/or 

faulted  and  Wanstead  Formation  did  not  outcrop  in  this  area,  so  samples  from the 

uppermost Waipawa Formation and the overlying Wanstead Formation were taken from 

~1 km upstream. The contact was once again covered although only 9.5m of rock was 

could not be observed. Pictures of the samples are shown in figure 4.1.3. A black and 

white image of these samples is shown in figure 4.1.6.

In overview, 15 samples were collected during fieldwork, eight samples of which 

were from the Upper Calcareous Member of the Whangai Formation, six were from the 

Waipawa Formation, and one was from the Wanstead Formation.
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Figure 4.1.5: Samples from Angora Quarry ordered by colour. Images are in black and white 

in order to highlight the differences. The same images as in figure 4.1.3 have been used.

Figure 4.1.6: Greyscale images of samples from field site ~1km upstream from Angora Quarry. 

The same images as in Figure 4.1.3 were used.



 4.2. Great South Basin

Pakaha-1

Pakaha-1 had a total of 30 side wall core (SWC) samples attempted between 3376 

and 1935 m below rotary kelly bushing (mbkb); however,  two of the side wall  gun 

bullets failed and three returned empty. The Tartan Formation was encountered in SWC 

samples 17 and 18. The present study used the six samples between SWC 13 through 24 

for which there was still side wall core material remaining after many years of use for 

other research.

Descriptions  of  the  fresh  SWC samples  were  taken from the  well  completion 

report  (HIPCO, 1977) and are presented in table 4.2.1. These descriptions are brief, 

however, and not enough sample remains to do a more detailed description. The shaded 

samples are those used in this study, as there was insufficient material remaining of the 

others. The locations of the SWC samples in relation to the gamma ray log are shown in 

figure 4.2.1.
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GR (api)

Figure 4.2.1:  Gamma ray wireline log from Pakaha-1 

(HIPCO, 1977) plotted alongside the SWC locations. The 

grey section represents the Tartan Formation, the closed 

circles represent samples included in this study, and the open 

circles represent SWC samples which were used up in 

previous studies. 100 api is an approximate gamma ray value 

for average shale.



Kawau-1A

Kawau-1A was included in a preliminary study (Fuerst, 2009) that is included here 

in appendix  B; however these results have been reinterpreted in more detail and in a 

regional context in this thesis. 

Kawau-1A had four sets of SWCs taken, and the Tartan Formation was sampled 

during the fourth run. Thirty sidewall cores were attempted in the latter, with 29 being 

recovered.  The  Tartan  Formation  was  encountered  in  samples  19/4  and  20/4  (Hunt 

International, 1977). In order to use a standard naming convention which fits with other 

studies the '/4' is added consistently to all Kawau-1A samples to represent the 4 th SWC 

run.
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SWC
Depth 

feet bkb
Depth 
mbkb Description

24 7390 2252.47
Medium soft moderately soft silt rich calcareous claystone 
(nannofossil marl) with minor mica and pyrite.

23 7425 2263.14
Medium grey soft silt-rich calcareous claystone (marl) with pyrite plus 
minor mica and carbonaceous debris.

22 7570 2307.34
Medium grey soft silt-rich claystone with pyrite, plus minor mica, 
carbonaceous debris and “glauconite”

21 7710 2350.01
Medium brown-grey soft clay-rich siltstone with pyrite, carbonaceous 
debris and “glauconite” plus minor mica.

20 8115 2473.45

Medium grey moderately soft silt-rich claystone with occasional white 
silty lamina, pyrite and calcite plus minor mica, “glauconite” and 
carbonaceous debris.

19 8218 2504.85
Dark grey soft silt-rich claystone with carbonaceous debris and pyrite 
plus minor mica.

18 8300 2529.84
Dark brown moderately soft clay-rich carbonaceous claystone with 
pyrite plus minor mica

17 8450 2575.56
Dark brown moderately soft clay-rich carbonaceous siltstone with 
pyrite plus minor calcite and mica

16 8655 2638.04
Dark grey moderately hard clay-rich siltstone with calcite, 
carbonaceous debris and pyrite plus minor mica.

15 8720 2657.86
Dark grey moderately hard silt-rich carbonaceous siltstone with mica 
and pyrite plus minor calcite.

14 8920 2718.82
Dark grey moderately soft clay-rich carbonaceous siltstone with mica 
and pyrite plus minor calcite

13 9310 2837.69
Medium grey, moderately hard (fissile) silt-rich claystone with pyrite 
and carbonaceous debris plus minor calcite

Table 4.2.1: SWC descriptions from the Pakaha-1 well report (HIPCO, 1977), although the “as 

above” descriptions in the report have been elaborated for this table. Shaded rows represent the  

SWC samples for which there is still material remaining, and hence which were included in this 

study.



As with Pakaha-1, a gamma ray log is presented with the sample locations (figure 

4.2.2), and the sample descriptions in table 4.2.2. Both Tartan Formation samples were 

shot on gamma ray peaks, thus the character of the interval in-between is less certain.

Figure 4.2.2: Gamma ray wireline log from Kawau-1A (Hunt 

International, 1977) plotted alongside the SWC locations. The 

grey  section  represents  the  Tartan  Formation,  the  closed 

circles represent samples included in this study, and the open 

circles represent SWC shots where the samples have been 

used up in previous studies. 100 api is an approximate value 

for average shale.

SWC

Depth 
feet 
bkb

Depth 
mbkb Description

25/4 7153 2180.23
Shale very light grey, very soft, thin laminations, black carbonaceous 
partings.

24/4 7176 2187.24

Shale, very light grey-buff, soft, semi-waxy, very thin laminations 
sub-fissle, very slight trace carbonaceous inclusions. Trace mica, 
pyrite

23/4 7195 2193.04
Shale light grey-tan, becoming predominantly soft. Very thin 
laminations

22/4 7220 2200.66
Shale light grey-tan, becoming predominantly soft. Very thin 
laminations

21/4 7276 2217.72
Shale, very light grey, firm, soft, semi-waxy, think laminations, sub 
fissile. Rare carbonaceous inclusion. Trace pyrite. Non calcareous.

20/4 7350 2240.28
Shale, chocolate brown, some laminations of dark grey-brown very 
micaeous shale. Slight gas odour.

19/4 7424 2262.84
Shale, chocolate brown, firm, sub fissil-blocky, non calcareous, 
carbonaceous, micaceous, rare trace glauconite. Slight gas odour.

18/4 7550 2301.24
Shale, light-medium, firm, blocky, trace mica, pyrite, glauconite. Non 
calcareous, no carbonaceous partings.

17/4 7794 2375.61
Shale light grey-tan, firm, blocky, slightly calcareous, trace mica, 
pyrite, glauconite. Few carbonaceous partings

16/4 7830 2386.58
Shale, light grey-tan, firm, blocky, slightly calcareous, trace mica, 
pyrite, glauconite. Few carbonaceous partings

Table 4.2.2: SWC descriptions from Kawau-1A (Hunt International, 1977), grey rows represent 

samples included in this study, and white rows are samples which were used up in previous 

studies.
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4.3. Laboratory Techniques

Pre-laboratory sample preparation

Field  samples  were  crushed  and  approximately  15  g  of  fresh  sample  was 

powdered using a  tungsten carbide mill.  The sample was then mixed and split,  and 

approximately 5 g of sample was sent to SpectraChem Analytical, Lower Hutt, for XRF 

analysis of major oxides. Loss on ignition and bulk sulphur were also included in the 

XRF  results.  Standard  XRF  procedures  are  used  and  the  laboratory  is  ISO  17025 

accredited assuring quality and reproducibility of the results. 

Samples from Pakaha-1 and Kawau-1A were not as cemented as the field samples, 

and hence did not require crushing or powdering. Unfortunately there was insufficient 

SWC material  available  for  XRF analysis,  and thus  major  oxide  information  is  not 

available for these samples, ICP-MS was done on the well and field samples.

For Pakaha-1 and Kawau-1A, the primary standard used was USGS BHVO-1 (for 

calibration),  BHVO-2  was  used  as  the  secondary  standard  to  check  accuracy  and 

reproducibility.  For the field samples from Angora Quarry the USGS BHVO-2, was 

used as the primary standard and BCR-2 as the secondary standard. Different standards 

where used due to the limited amounts of BHVO-1 being available.

 

Beaker cleaning

Beakers were first rinsed then soaked in ~7 M Analytical Reagents grade (AR) 

HNO3 and placed on a hotplate for 24 hours. They were then rinsed three times in Milli-

Q water and soaked in 6 M AR HCl for 24 hours, and again rinsed three times with 

Milli-Q.

The beakers were then individually cleaned; 2 ml of 6-7 M HCl sub-boiled (sb) 

was poured into the beakers and they are left on the hotplate for 1-2 days. This acid was 

then disposed of and the beakers rinsed three times with Milli-Q water. The process was 

repeated with 2 ml of 6-7 M HNO3 (sb). A final clean was conducted using 2 ml of 7M 

HNO3 SEASTARTM (ss) with 3-4 drops of HF (ss).

From impurities listed on the containers, AR grade HNO3 contains 0.011 ppm Fe 
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as the highest concentrated impurity; HCl contains 0.13 ppm Al as the greatest impurity. 

The sb grade acids are distilled in the Victoria University geochemical laboratory using 

quartz and Teflon stills, exact concentrations of impurities are unknown, however likely 

a few orders of magnitude higher than the 1-5 ppt impurities in the SEASTARTM acids.

Sample digestion

Sample digestion was performed according to Heinrichs and Herrmann (1990). 

~50 mg of sample were placed in each beaker; weights were recorded to an accuracy of 

0.05 mg. 45 drops of 7 M HF (ss) and 8 drops of 7 M HNO3 (ss) and were left on the 

hotplate for four days. The samples were then opened dried overnight.

45 drops of HNO3 was added and left open on the hotplate overnight to dry.

6 ml of 6 M HCl (sb) was added and left on the hotplate for two days. Beakers 

were then opened left overnight to dry.

45 drops of HNO3 (ss) was added and left open on the hotplate to dry..

9 ml of 1M HNO3 was added and left on the hotplate for two days. The samples 

were then centrifuged.

The sample  was weighed and 0.09ml  was taken and diluted  with 9ml  1 wt% 

HNO3 for analysis using the methodology discussed by Schnetger (1997). The blank 

was not diluted.

4.4. Data Processing

Absolute Concentrations

The raw ICP-MS data came in the form of counts per second and time, with a 

value for each element approximately every second. Figure 4.4.1 shows the raw ICP-

MS data for Ca at Angora Quarry. Each peak represents either a sample or a standard, 

while the troughs represent the cleaning fluids and the local background.
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The first step in calculating concentrations is to take the average background from 

1% HNO3 from the average from the average within the sample, the parts highlighted in 

red in figure 4.4.1. This is done for all samples and standards for all elements.

Concentrations are then calculated from the BHVO-2 standard (the concentrations 

of all standards were taken from the GeoReM database), which was measured five times 

throughout the process, each correction was to the nearest BHVO-2 measurement. The 

formula used was:

ESample = CPSSample / CPSBHVO-2 * EBHVO-2

where E is the element concentration and CPS is the counts per second. For Pakaha-1 

and Kawau-1A BHVO-1 was used instead of BHVO-2.

In the Angora Quarry samples, the measurement of BCR-2 occurred between the 

middle of the measurements of other samples. BCR-2 standard contains approximately 

two orders of magnitude more Mo then the samples. Mo readings dropped slowly after 
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Figure 4.4.1: Raw ICP-MS measurements for Calcite at Angora Quarry. The Y axis gives the 

CPS, the X time through the measurements. Highlighted in red are the sections of the 

measurement used for calculating the concentration in A-A-1. The horizontal lines represent 

two orders of magnitude.
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switching from measuring BCR-2 to the cleaning fluids. The readings were not always 

down to the background values by the time the cleaning liquid cycle was completed. 

Thus, several samples were affected by a significantly higher than background level of 

Mo.  Molybdenum is  an  important  element  used  to  determine  if  an  environment  is 

anoxic, a different background curve for Mo was defined for affected samples.

Molybdenum values for A-A-3, 4, 11, and 12 should be treated with caution, as 

errors may be larger than shown. Figure 4.4.2 shows the raw data for Mo along with the 

newly defined  background  curves  in  red.  The  samples  which  had  new background 

values defined are highlighted in red later in this study.

For the Angora Quarry samples, absolute concentrations from the ICP-MS data 

underwent a final correction step in which data was adjusted to the Ti concentration as 

measured by XRF. This is simply to correct for any systematic errors for a single sample 

which can be caused by inaccuracies in measuring and dilution. All results are included 

as tables in appendix C.

Error calculations

For  Pakaha-1  and  Kawau-1A,  errors  were  calculated  on  BHVO-2,  the 

concentration  of  BHVO-2  was  calculated  using  BHVO-1  in  the  same  way sample 

concentrations where calculated, the errors being represented by the difference between 
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Figure 4.4.2.  Raw data for Mo measurements in the Angora Quarry samples. The red line 

indicates the newly defined background curve for A-A-3, 4, 11 and 12. The graph has a log 

scale on the Y axis. Only every second order of magnitude is labelled. See text for discussion.
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the  measured  and  the  actual  measured  values.  As  Pakaha-1  and  Kawau-1A were 

measured in the same run, the errors apply to both of these. The errors are displayed in 

table 4.4.1 for the Great South Basin samples.

The “range %” in the errors table (table 4.4.1, 4.4.2) indicates the relative error 

between elements across different samples. The “offset from ref value” indicates the 

absolute error which effects all measurements of the same elements identically. The low 

concentration of  Sb and Cd in BHVO-2 may also explain the high errors  in  these, 

whereas the remaining elements with “offset from ref value” above 10% have the * 

symbol, indicating they were published values rather than preferred values, and hence 

may not have been measured to the same accuracy.

Errors for Angora Quarry were measured using BCR-2 otherwise the errors are 

the same. Table 4.4.2 shows the calculated errors using BCR-2. When a “*” or a “**” is 
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First BHVO-2 measure-
ment

Second  BHVO-2 
measurement ref offset from

below above below above average range range% value ref value
Ti (%) 2.60 2.59 2.59 2.64 2.61 ±0.0335 1.3% 2.73 4.5%

V 303 301 305 308 304 ±3.49 1.1% 317 4%
Cr 277 276 275 280 277 ±3.06 1.1% 280 1.1%
Mn 0.161 0.160 0.160 0.162 0.161 ±0.00157 1% 0.17 5.4%
Co 42.5 42.4 42.9 43.9 42.9 ±0.999 2.3% 45 4.6%
Ni 111 111 113 116 113 ±3.04 2.7% 119 5.3%
Cu 122 122 123 127 124 ±3.73 3% 127 2.6%
As 0.516 0.521 0.545 0.534 0.529 ±0.016 3% 0.77* 31%
Se 0.110 0.112 0.111 0.091 0.106 ±0.0148 13.9% 0.1* 6.1%
Rb 8.24 8.03 8.42 8.81 8.38 ±0.431 5.1% 9.11 8.1%
Sr 372 365 369 379 371 ±7.88 2.1% 396 6.2%
Y 24.4 23.6 24.0 25.4 24.4 ±1.02 4.2% 26 6.3%

90Zr 161 157 159 167 161 ±6.14 3.8% 172 6.5%
91Zr 160 158 159 166 161 ±5.02 3.1% 172 6.6%
Nb 17.2 16.9 17.0 17.6 17.2 ±0.414 2.4% 18.1 5.1%
Mo 3.74 3.63 3.67 3.77 3.70 ±0.0693 1.9% 4 7.4%
Cd 0.0807 0.0835 0.0884 0.0859 0.0846 ±0.00395 4.7% 0.06 41%
Sn 1.41 1.40 1.59 1.86 1.56 ±0.292 18.6% 1.7 8%
Sb 0.0833 0.0786 0.0844 0.0911 0.0844 ±0.00675 8% 0.13 35%
Hf 4.01 3.92 4.20 4.37 4.12 ±0.250 6.1% 4.36 5.5%
Ta 1.08 1.09 1.15 1.19 1.12 ±0.0603 5.4% 1.14 1.8%
W 0.152 0.137 0.178 0.195 0.166 ±0.0293 17.7% 0.21* 21%
Tl 0.0185 0.0194 0.0241 0.0246 0.0216 ±0.00315 14.6% 0.03* 28%
Pb 1.53 1.46 1.60 1.67 1.57 ±0.105 6.7% 1.6 2.1%
Bi 0.00662 0.00652 0.0108 0.0124 0.00907 ±0.00331 36.5% 0.15* 94%
Th 1.08 1.08 1.13 1.21 1.12 ±0.0879 7.8% 1.22 7.8%
U 0.360 0.350 0.402 0.431 0.386 ±0.0452 11.7% 0.4 4.3%

Table 4.4.1: Error calculations for Kawau-1A and Pakaha-1. The * in the reference value column 

represents where published values were used instead of  preferred values from GeoReM as 

preferred values were not available. See text for discussion.



next to the reference value, the reference value is less certain, either because values 

have not been measured accurately or have not been measured at all and a value from 

BCR-1 has been taken instead.
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BCR-2 First   Measure-
ment

Second Measure-
ment ref offset from

below above below above average range range% value ref value
Li 10.3 11.1 10.0 10.1 10.4 ±0.693 6.7% 9 15.3%

Ca (%) 7.59 7.76 6.85 6.93 7.28 ±0.476 6.5% 7.12 2.3%
Ti (%) 2.45 2.48 2.19 2.19 2.33 ±0.156 6.7% 2.26 3.1%

V 439 437 405 400 420 ±20.0 4.8% 416 0.96%
Cr 16.9 17.2 14.8 14.7 15.9 ±1.30 8.2% 13** 18.4%
Co 41.0 41.2 36.2 36.4 38.7 ±2.52 6.5% 37 4.6%
Ni 14.1 14.0 12.6 12.3 13.3 ±0.944 7.1% 12** 9.5%
Cu 22.3 22.6 19.9 20.0 21.2 ±1.36 6.4% 21 0.9%
Zn 143 152 128 126 137 ±14.7 10.7% 127 8%
Ga 59.7 60.6 53.5 54.4 57.0 ±3.57 6.3% 23 148%
Ge 2.04 1.96 1.68 1.65 1.83 ±0.207 11.3% 1.49* 22.8%
As 1.17 1.19 1.15 1.16 1.17 ±0.0206 1.8% 0.88* 32%
Se 0.320 0.121 0.030 0.024 0.124 ±0.196 158.4% 0.08* 50.9%
Rb 50.1 49.6 46.0 45.4 47.8 ±2.34 4.9% 46.9 1.8%
Sr 368 377 332 332 352 ±24.9 7.1% 340 3.6%
Y 38.4 38.1 34.9 34.6 36.5 ±1.88 5.2% 37 1.4%

90Zr 200 202 184 183 192 ±9.62 5% 184 4.5%
91Zr 206 207 182 181 194 ±13.1 6.7% 184 5.5%
Nb 13.3 13.2 12.2 11.9 12.6 ±0.736 5.8% 12.6 0.3%
Mo 328 343 325 300 324 ±23.7 7.3% 250 29.6%
Cd 0.156 0.167 0.157 0.154 0.158 ±0.00859 5.4% 0.75* 78.9%
Sn 1.77 1.76 1.57 1.54 1.66 ±0.119 7.2% 2.3* 27.9%
Sb 4.84 4.37 3.87 3.90 4.25 ±0.594 14% 3.5* 21.3%
Ba 740 725 652 657 693 ±46.6 6.7% 677 2.4%
La 27.4 27.5 24.2 24.2 25.8 ±1.66 6.4% 24.9 3.6%
Ce 55.6 55.0 49.8 49.7 52.5 ±3.09 5.9% 52.9 0.71%
Pr 7.49 7.36 6.69 6.64 7.04 ±0.450 6.4% 6.7 5.1%
Nd 31.5 31.2 28.5 28.0 29.8 ±1.81 6.1% 28.7 3.8%
Sm 7.15 7.10 6.49 6.41 6.79 ±0.378 5.6% 6.58 3.1%

151Eu 2.22 2.20 2.01 1.98 2.10 ±0.123 5.9% 1.96 7.1%
153Eu 2.28 2.22 2.06 2.01 2.14 ±0.138 6.4% 1.96 9.3%
Gd 7.57 7.37 6.86 6.61 7.10 ±0.489 6.9% 6.75 5.2%
Tb 1.16 1.12 1.04 1.01 1.08 ±0.0796 7.4% 1.07 1.1%
Dy 7.02 6.83 6.42 6.29 6.64 ±0.379 5.7% 6.41 3.7%
Ho 1.41 1.39 1.30 1.27 1.34 ±0.0716 5.3% 1.28 4.9%
Er 4.07 4.00 3.65 3.58 3.82 ±0.250 6.5% 3.66 4.4%
Tm 0.573 0.565 0.517 0.508 0.540 ±0.0327 6% 0.54 0.09%
Yb 3.68 3.62 3.37 3.31 3.50 ±0.184 5.3% 3.38 3.5%
Lu 0.537 0.517 0.490 0.474 0.505 ±0.0326 6.5% 0.5 0.91%
Hf 5.33 5.26 4.92 4.72 5.06 ±0.332 6.6% 4.9 3.2%
Tl 0.468 0.435 0.418 0.421 0.436 ±0.032 7.3% 0.3* 45.3%
Pb 11.8 11.7 10.9 10.6 11.2 ±0.635 5.7% 11 2.2%
Th 6.52 6.42 5.74 5.63 6.07 ±0.448 7.4% 5.7 6.6%
U 1.78 1.77 1.65 1.58 1.70 ±0.117 6.9% 1.69 0.43%

Table 4.4.2: Errors calculated form BCR-2 for Angora Quarry. The * in the reference value 

column represents the use of the published value due to the lack of a preferred value in 

GeoReM. The ** represents where the value for BCR-1 was used instead. 



Terrestrial background corrections

The  terrestrial  component  of  sediments  generally  consists  largely  of 

aluminosilicate clays, exact mineralogy varies with the sediment source. There are two 

different terrestrial  corrections which remove this  component,  both of which require 

estimates of the concentration of terrestrial  component, and both of which generally 

take Al as an indicator for the amount of detrital clays.

Most  commonly  detrital  corrections  use  the  chemical  composition  of  average 

shale, a compilation of shales by Wedephol (1971). A comparison between this derived 

local background from this study and average shale is shown in figure 4.4.3. 

Variations  in  the local  background relative to average shale  cover  around two 

orders of magnitude (figure 4.4.3), this variation indicates that average shale is not an 

ideal standard to use for this study, therefore a locally defined background will be used 

instead. In this case, the locally defined background is the samples outside the Waipawa 

or Tartan formations which were measured in the same section. Each section will hence 

use its own local background.

Enrichment factor:

The first method for calculating a detrital correction is the standard enrichment 

factor  that  has  become  the  sole  method  for  calculating  enrichment  in  many recent 

studies (e.g. Brumsack, 2006; Ross and Bustin, 2009). This method normalises values to 
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Figure 4.4.3:  A graph comparing the average concentration of the Whangai and Wanstead 

formations at Angora Quarry, and the Laing and Wickliffe formations at Pakaha-1 and Kawau-

1A with average shale from Wedephol (1971), which plots at 1. See text for discussion.



Al and then calculates a factor of enrichment relative a set standard. The formula is:

EF = (ES / AlS) / (EB / AlB)

where EF is the enrichment factor, E is the element being analysed, Al is aluminium, S 

is the sample, and B is the standard or local background.

The enrichment factor calculation has limitations in regions where Al values are 

low (Brumsack, 2006), or in situations where the terrestrial content varies significantly 

throughout the section (this study).

Absolute Enrichment:

The second method of calculating enrichment is the absolute enrichment method, 

and is not often used. A formula for calculating it was suggested by Brumsack (2006):

AE = ES – AlS * (EB / AlB)

where is AE is the absolute enrichment, E is the element measured, Al is aluminium, S is 

the sample, and B is the standard used. Brumsack (2006) suggested using average shale 

for the calculation; however.

The difference between AE and EF comes when there is a significant difference in 

the  terrestrial  component  through  a  section.  In  Kawau-1A the  uppermost  sample 

contains 20% of the detrital  component as the Tartan Formation. While the AE will 

show any enrichment above local background as absolute values, the EF will show five 

times  the  enrichment  due  to  the  low  detritial  component.  Figure  4.4.4  shows  the 

difference between the enrichment factor and absolute enrichment for As in Kawau-1A.

Arsenic was enriched by around 3ppm in the Tartan Formation, and by around 

1.5ppm in the uppermost sample, in the AE graph the enrichment comes across as such, 

however, the EF is a ratio of As relative to the amount of detrital indicators, hence it is  

higher in samples which have lower detritial input.

Enrichment factors may be a better method when dealing with elements such as 

Mn which are depleted under anoxic conditions. Assuming the depletion is leaching the 

element directly from the detrital content of the sediments, an enrichment factor should 

be a more appropriate method to express this as it would then represent the fraction of 

the Mn dissolved, the AE formula would in this case vary with detrital content.
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Sr and Mg have been difficult  to deal with,  as most marine sediments contain 

some biological carbonate. The inclusion of Ca, Sr and Mg in biological carbonate as 

well  as  being  minor  components  in  the  terrestrial  minerals  has  made  extracting 

enrichment  data  difficult.  While  often  measured,  these  elements  generally  are  not 

interpreted any further (e.g. Brumsack, 2006; Ross and Bustin, 2009).

The  present  study suggests  a  technique  for  dealing  with  these  elements  using 

ternary plots. However, to produce meaningful results, this technique should only be 

used in areas where the local background has been defined. This technique will aid in 

making corrections where two mechanisms of enrichment are prevalent, in this case 

biological calcite and detrital component. Sr and Mg are both used in conjunction with 

Ca in palaeothermometry (e.g. Dodd 1967), but if any other environmental conditions 

have an effect on these elements differences may be difficult to detect.

Figure 4.4.5 shows a ternary plot for Ca, Sr and Al for the samples from Angora 

Stream, along with values for average shale from Wedepohl (1971). Average shale has a 

very  different  concentration  to  the  measured  samples  at  Angora  Stream and  hence 

would not be suitable for making corrections. The intersection point between the trend 

line and the edge of the ternary plot occurs where Sr * 500 is equal to 22.9 % of the Sr * 

500 + Al2O3 value.
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Figure 4.4.4: A comparison of EF and AE for Arsenic. The sample most effected is circled in 

red. See text for discussion.



In  an  ideal  situation  where  all  Ca  and  Sr  is  purely  biological  and  none  is 

introduced from a detrital origin or included in another mineral phase (e.g. gypsum), the 

line would plot directly through Al2O3, indicating that Sr/Ca varies independently from 

the detrital content. However, this ideal situation is unlikely so another method must be 

used to correct for both the biological and the detrital sources of Sr and Ca.

An assumption must be made for this form of correction that the element varies in 

the background samples purely due to two sources,  in this  case detrital  content and 

calcareous input. This can be expressed as:

ES = (E/Ca)DETRITAL * Al + (E/Ca)BIOLOGICAL * CaBIO 

where ES is the amount of element in the sample,  (E/Ca) is the element ratio in either 

the  detrital,  or  biological  calcite  fraction,  Al  is  the  amount  of  aluminium,  taken to 

represent the detrital input, and CaBIO is the biological calcite.

The  intersection  point  on  the  ternary  diagram  represents  only  the  difference 

between  the  Sr/Ca  ratio  in  the  detrital  component  and  in  the  calcite.  Applying  a 

correction to the Sr values relative to Al will cause the line to plot directly through the 

100% Al2O3 point. As the intersection point is at 22.9% Sr * 500 or 87.1% Al2O3, the 

correction needs to be:

 Sr*500S-(22.9/87.1)*Al2O3S

59

Figure 4.4.5: Ternary plot used to correct Sr for both local background and carbonate inclusion. 

Average shale as defined by Wedepohl (1971) is significantly different to values for all the East 

Coast Basin formations included in this study.



where S represents sample.

This correction does not remove the entire background Sr, nor does it remove the 

CaO background input. The effect of this correction is purely to apply a correction to 

the detrital fraction of element E such that

(ECORRECTED/Ca)DETRITAL = (E/Ca)BIOLOGICAL.

This correction was applied to a synthetic data set where the amount of detrital Al 

and biological Ca were calculated using random number generators. 1% of the detrital 

Al value was taken to represent detrital Ca, 0.1% of biological Ca value biological Sr, 

and 0.03% of the detrital Al value detrital Sr. Sr was then multiplied by 500. Figure 

4.4.6  shows  the  impact  of  this  correction  on  a  synthetic  data  set  without  random 

measurement errors and assuming a constant Sr/CaBIOLOGICAL (no temperature effects).
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Figure 4.4.6: The first step of the correction method for elements which have two background 

inputs. The points are synthetic data points representing a set of background samples in which 

purely biological calcite and background detrital content are important. See text for details. 



As can be seen from the graphs (figure 4.4.6), a trend with a large amount of 

variation is visible in the Cartesian graph prior to the correction but this variation is 

removed  completely  after  the  correction  in  B.  The  amount  of  variation  before  the 

correction is purely due to the variations in both detrital content and calcite content. The 

correction  is  not  perfect,  as  can  be seen  from the  red  diamond representing  purely 

detrital calcite in C. However, the detrital value has been moved onto the trend line 

indicating that the remaining detrital calcite has the same ratio of Sr/Ca as the biological 

calcite.

While  the  synthetic  data  does  not  have  random  errors  and  we  can  make 

assumptions that Ca/Sr is constant, real data cannot and this correction may under some 

circumstances needs to be adjusted. The value on the ternary diagram is an indication of 

an approximate value; the effect of converting the data to fit in a ternary diagram and 

applying a correction relative to Al are both non-linear corrections relative to the Ca 

values. This limitation causes the trend line calculation to give slightly different results 

after the correction to what might otherwise be expected. The detrital correction may 

hence need to be adjusted using a standard Cartesian graph with SrCORRECTED/Ca. A trend-

line forced through 0,0 should be applied to the data, and the adjustment value altered to 

produce the best possible R2 value. 

Data points at each end of the Cartesian graph can alter the slope of the graph 

significantly  and  hence  the  intercept.  By  forcing  the  intercept  through  zero  and 

adjusting towards the best R2 value, dependent on the errors and the spread of the data 

the difference in the value from that extracted from the ternary diagram may or may not 

be significant; in this study the difference was trivial.

The final step of the correction method is to remove the pseudo-biological input; 

as part of this is still the detrital content which has the same Ca/Sr ratio, this will also be 

removed. A gradient must be extracted from the Cartesian Ca/Sr graph, then a simple 

correction removes an absolute amount of Sr dependent on the amount of Ca in the 

sample. This is similar to the absolute correction formula but with Ca instead of Al.

Several assumptions are made in this correction method. The most important is 

that the section defined as background is only affected by two influences. In the case of 

Sr the assumption is made that it is related purely to Ca and Al. An assumption is also 

made that there are minimal changes in concentration of the element to the background 
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ratio in both the biological sources. In the example used above, it is assumed that the 

temperature effects on the Ca/Sr ratio are minimal and that there is no variation in the 

Sr/Al or Ca/Al ratio of the detrital background.

This method may be applicable for other sediment types and processes; however, 

the same assumptions of constant detrital ratio and a maximum of two sources for the 

element  must  also  be  applicable.  If  two elements  vary identically  due  to  the  same 

environmental conditions a similar straight line will be observed. Ternary graphs can be 

used  in  this  way  to  help  identify  which  elements  are  related  under  different 

environmental influences.

The  technique  of  calculating  enrichments  using  ternary  diagrams  as  described 

above  gives  absolute  encihments;  results  for  elements  such  as  Sr  should  hence  be 

comparable to elements which are affected by a single background corrected using the 

absolute enrichment formula.
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Chapter 5

Results

5.0. Angora Quarry

Overview

51 elements were measured for the Angora Quarry samples using XRF or ICP-

MS. Ti and Ca were measured using both techniques; Ti was used to provide a bulk 

correction to ICP-MS data accounting for any sample loss during digestion. Ca, which 

showed  great  variation  across  the  samples,  was  used  to  ascertain  whether  the  two 

instruments produced compatible data and hence if it would be reasonable to combine 

the two studies into the same data set. Figure 5.0.1 shows a plot of Ca measured by the 

two instruments (CaXRF vs. CaICP-MS). Results are presented in tables in appendix C.

Both  ICP-MS  and  XRF  gave  very  similar  results,  with  the  trend  line  only 
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Figure 5.0.1:  Graph of Ca
XRF 

Vs. Ca
ICP-MS

 to ascertain whether these two techniques are 

comparable for this particular study. See text for discussion



deviating slightly from the 1:1 ratio; such variation is well within the error limits of the 

analyses. The graph (figure 5.0.1) indicates that these two data sets can confidently be 

used conjointly.

Elements are presented in the same groups for all the locations and in the same 

order as in chapter 2.4. Where possible, the processes discussed in chapter 2 will be 

linked  to  results  in  the  discussion  chapter,  although  not  all  of  the  processes  are 

observed.

Major sedimentary components

Ternary plots of CaO, Al2O3, and SiO2 can be used to infer sediment composition, 

(Brumsack,  1989;  section  2.2),  as  these  three  major  oxides  are  the  main  inorganic 

compounds  in  most  sediments.  Moore (1988) measured  oxides  in  many East  Coast 

formations and figure 5.0.2 shows data from both his and the present study.

Values  for  CaO and  Al2O3 are  multiplied  by constants  (2  and  5  respectively) 

making them comparable to SiO2 and consistent with existing literature which uses the 

same values (e.g. Brumsack, 1989). A value for average shale (from Wedepohl, 1971) 

has also been plotted on these ternary diagrams; however, none of the samples analysed 

here  nor  any  other  samples  analysed  from  the  East  Coast  Basin  have  the  same 

concentration as average shale.
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Figure 5.0.2:  Ternary graphs showing three major constituents of the sediments; A  is data 

solely from this study; B  includes this study and similar measurements from Moore (1988). 

Average shale is taken from Wedepohl (1971). In both graphs the Waipawa Formation and the 

Whangai Formation plot in groups, while the Wanstead Formation shows more variation.



This  diagram  already  separates  most  Waipawa  Formation  samples  from  the 

Whangai Formation due to the decrease in calcite. The Te Uri Member of the Whangai 

Formation plots amongst the other Whangai Formation samples.

Aluminium

The graph for Al2O3 (figure 5.0.3) shows considerable variation with depth, from 

7.5  to  12.8  wt  %.  From sample  A-A-1  to  A-A-13 

Al2O3 concentration can be viewed as either a near 

linear increase or a stepped increase with a middle 

step between 20 and 40 m.

For the Angora Quarry samples, Al2O3 is used 

to  correct  the  rest  of  the  data  for  the  terrestrial 

component  and  hence  no  enrichment  factor  or 

absolute enrichment graphs are plotted. For this and 

subsequent  images,  the  grey  band  represents  the 

Waipawa Formation,  the black line represents  field 

site A-A at the Quarry, and the grey line represents 

the  section  field  site  A-C,  ~1  km  upstream.  The 

“average shale” value for Al2O3 (Wedepohl, 1971) is 

16.7 wt %. Where possible this will be denoted with a 

vertical line on the absolute variation sections; however, where this  would require a 

change in scale that would obscure other variations within the formation, average shale 

is not plotted. Although samples have been labelled in figure 5.0.3, the samples are not 

labelled in the other graphs in this section as the graphs are smaller. Hence this graph 

should be used for sample reference.

Mainly terrestrially-sourced elements

Figure 5.0.4 shows the graphs for the other elements for which the variation is 

assumed to be largely due to detrital contribution to the sediments. Most of the elements 

show a similar trend to Al2O3, and have an enrichment factor of about 1 and an absolute 

enrichment close to 0. The single exception is Ga which does not vary along with the 
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other largely terrestrially-sourced elements.

As a cautionary note,  care should be taken when viewing multiple enrichment 

factor graphs. The enrichment factor formula introduces the variation seen in Al into EF 

and  AE graphs,  and  hence  can  increase  the  apparent  correlation  between  unrelated 

elements (van der Weijden, 2002). For detrital elements this is not an issue,  but for 

elements which are largely independent of Al it can falsely lead to an appearance of 

correlation.
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Figure 5.0.4:  Depth vs. Elements thought to be detrital indicators (as discussed in section 

2.2) for Angora Quarry. EF is for enrichment factor, AE is for absolute enrichment.



Loss on ignition (LOI)

LOI is the loss of mass when heated 

in  a  furnace  to  1000°C  and  mainly 

indicates volatile mater. LOI (figure 5.0.5) 

increases through the Waipawa Formation, 

which  may  be  due  to  the  increase  in 

organic  matter,  which  reaches  6%  in 

Angora Quarry (Lecike et al., 1992).

Indicators of anoxia (major components of sedimentary pyrite)

Fe and S are plotted against depth in figure 5.0.6. Fe shows an increase at 20 m, 

significantly below the Waipawa Formation in samples, but otherwise remains relatively 

uniform  once  corrected  for  terrestrial  input.  Sulphur  shows  depletion  through  the 

section; samples at  20.5,  41.9,  48.3,  54.7,  67.5 and 80 metres  all  had SO3 contents 

below the detection limit of 0.01 wt% for XRF. Further study to determine the exact 

concentration was not followed up here.

Indicators of anoxia (included in sedimentary pyrite)

The abundance of Zn with depth (figure 5.0.7) varies significantly between 54 and 

213  ppm,  but  only  the  sample  at  41.9  m  shows  strong  enrichment.  Difficulties  in 

measuring  Mo were  discussed  earlier  in  this  chapter,  and  the  samples  affected  are 

highlighted in red. Concentrations of Mo fluctuate between 1.4 and 8 ppm throughout 
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Figure 5.0.5:  LOI through the 

Angora Quarry section.

Figure 5.0.6: Graphs of Fe and S, which are the major components of pyrite. 



Figure 5.0.8: Depth graphs for Pb at 

Angora Quarry. There is considerably 

less variation in the EF and AE than 

that shown by the absolute 

concentrations.

the section.

Indicators of anoxia (included in sedimentary pyrite); anthropogenic in recent  

sediments

Pb  (figure  5.0.8)  varies  in  a 

similar  way to detrital  content  (figure 

5.0.4),  once  detrital  content  has  been 

corrected for using EF and AE formula, 

Pb  shows  considerably  less  variation 

however  shows  2.7  ppm  AE  in  one 

sample at 54.7 m, during the deposition 

of the Waipawa Formation.

Biological component or involved in biocycling

The elements which have a major biological component to them or which are 

important for biocycling are plotted in figure 5.0.9.
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Figure 5.0.7: Zn and Mo at Angora Quarry. Highlighted in red are the samples which required 

the correction method described in figure 4.4.2 and associated text.



Ba appears to have a similar trend to Ga (figure 5.0.4); however, a plot of Ba/Ga 

with the A-C-2 (80 m) sample removed because it is significantly different only shows 

an R2 correlation of 0.55 (as opposed to 0.96 if A-C-2 is left in). Figure 5.0.10 shows 

Ba/Ga, and a Ba/Al/Ga ternary diagram. Correlation in the ternary diagram is improved, 

with an R2 value of 0.94 without sample A-C-2. A better fit is attained by including 

Al2O3, indicating a these elements share the same detrital and non detrital component.

The  similarities  between  Ca  and  Sr  are  clearly  visible  in  figure  5.0.9.  The 

normalisation technique described in section 4 was applied to Sr to create a version of 

AE which took into account both biological and detrital components (figure 5.0.11). The 
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Figure 5.0.9:  Depth plots of elements which have a major biological component or are 

involved in biocycling. The similarities between Ca, and Sr are quite pronounced. There also 

appear to be to be similarities between Ga (figure 5.0.4) and Ba.
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Figure 5.0.11:  The correction of Sr for both Al and Ca.  A  contains the raw data, B  after the 

detrital correction, C  after adjusting the correction, and D  after applying the biological 

correction.
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Figure 5.0.10: The relationship between Ga and Ba for the Angora Quarry samples. A direct 

relationship between Ba and Ga is not be indicated on the Cartesian graph; however, if the 

ratio differed in the terrigenous background to the biological process involved, the 

relationship would produce a better fit on the ternary diagram. In both cases, the upper R2 

value is with A-C-2 included and the lower value is without A-C-2.

Ba

                                    Ga



depletion of Sr in the Waipawa Formation (D) is real depletion, as can be seen in figure 

5.0.11  A where the Waipawa Formation samples plot further from Sr on the ternary 

diagram.

An attempt was made to correct Mg in the same way as for Sr. However, on a 

ternary diagram (figure 5.0.12), Mg crosses very close to Ca, showing that the variation 

is  only  slightly  influenced  by  Ca.  In  this  study  it  appears  that biological  CaCo3 

contributes  only  a  minor  amount  towards  the  overall  Mg  content,  and  some  other 

process is significant enough to impact on this correction. Therefore Mg could not be 

corrected in the same way as Sr but, in sediments with higher Ca contents and lower 

detrital contributions, it may be possible to correct for both biological and terregionous 

Mg content

The CaO depth graph (figure 5.0.9) has a similar shape to the SO3 depth graph 

(figure 5.0.6). Figure 5.0.13 shows the relationship between SO3 and CaO. There is a 

definite similarity between CaO concentration and SO3, but the relationship is not linear 

and hence a direct linear relationship cannot be inferred.

No correlations were found between the other elements of biological origin.  A 

change in element concentrations between samples 19.5 and 20.5 m (figure 5.0.9) is 

noticeable in all the biologically influenced elements, and appears far more prominent 

than  the  change  in  element  concentration  between  the  Whangai  and  Waipawa 

formations.
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Figure 5.0.12: A ternary diagram for Ca, Mg, and Al (left), and a Cartesian graph (right) showing 

the corrected Mg data after the Al/Mg ratio has been corrected.



Biological component or involved in biocycling; indicators of anoxia (included in  

sedimentary pyrite)

No direct relationship could be found between Cu, Tl, Cd and Ni (figure 5.0.14) 

and any of the other  biological indicators or indicators of anoxia.  The two samples 

enriched in Cu (61.1 and 80 m) are also the two samples with lowest P content, but no 

other  samples  indicate  a  relationship  between  Cu  and  P.  Both  the  AE and  the  EF 
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Figure 5.0.13: A plot of CaO vs. SO
3
 at Angora Stream. See text for discussion.

Figure 5.0.14:  Depth graph for elements affected by both sedimentary pyrite and biological 

processes.



methods introduce high frequency variation (larger variation in nearby samples) into the 

Tl graph. Both Cd and Ni show peaks near the base of the Waipawa Formation; both are 

involved in  biocycling  and are  important  for  plankton growth.  The  peaks  for  these 

enrichments are in different samples therefore the reason for these abundances is not 

clear.

Depleted under reducing conditions; indicators of anoxia (included in sedimentary  

pyrite)

There  is no correlation between Mn and Co (figure 5.0.15). Mn was measured 

using XRF, and could only be measured to  0.01 wt %; hence the results  should be 

treated  with  care.  Co  shows  an  increase  in  concentration  through  the  Waipawa 

Formation. In average shale, Mn is present at 0.085 wt % (Wedepohl, 1971), which is 

considerably higher than the values measured for Angora Quarry.

Enriched under reducing conditions

U, As and Cr all show a slight increase in concentration (figure 5.0.16), even after 

normalisation in the Waipawa Formation and, in the case of As, also in sample 20.5 m. 

V is enriched in some of the Waipawa Formation samples but not to any significant 

degree.  U  is  significantly  more  abundant  than  in  average  shale  through  the  entire 

section,  whereas  As  and  V  are  considerably  less  abundant  than  the  average  shale 
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Figure 5.0.15:  Mn and Co variations with depth. XRF results are measured to an accuracy of 

0.01 wt %.



concentrations of 10 and 130 ppm respectively.

Enriched under reducing conditions, rarely studied

Sb (figure  5.0.17)  shows  no  distinct 

trend  through  the  section,  with  great 

variations  in  concentration  (5 -  8  ppm) in 

the  Whangai  Formation  samples.  After 

correcting  for  detrital  input  Sb  shows 

depletion  in  many  of  the  Waipawa 

Formation samples.

Rarely studied in sediments

Sn  shows  little  variation  prior  to  detrital  corrections  (figure  5.0.18),  and  the 

correction introduces more variation. Aside from a peak in abundance in Li at 48.3 m 
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Figure 5.0.17: Antinomy is rarely studied but 

generally  enriched  under  oxygen-depleted 

conditions.

Figure 5.0.16: Elements which are generally enriched under oxygen depleted conditions. 



the concentration is relatively constant, especially in the AE and EF graphs. Na peaks in 

concentration at 41.9 m, there are other minor fluctuations in the AE and EF sections for 

Na.

Rare Earth Elements (REE)

Rare earth elements all show identical trends through the section, so only La was 

plotted (figure 5.0.19), the most prominent feature being the increase in abundance in 

sample A-A-13. A comparison between the different rare earth elements can be done by 

normalising them to different standards. The two standards used were average chondrite 
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Figure 5.0.18:  Element-depth graphs for elements which are rarely studied in sediments or 

which are generally not considered suitable for sediment studies.

Figure 5.0.19: Depth section for La, all other REE and Y which behaves like REE follow the 

same trend and have the same shape, so they were not plotted separetly.



and NASC (North American Shale Composite) from Taylor and McLennan, (1985).

Comparison  of  Angora  Quarry  rare  earth  concentrations  to  those  of  average 

chondrite shows that all of the former samples are enriched in the light REEs (La-Sm) 

(figure 5.0.20). There is little variation between the different samples, excluding sample 

A-A-13 which appears to be particularly enriched in the mid REEs (Pr- Er). A standard 

which appears to be more appropriate is the NASC standard, as this standard is also 

enriched in light REEs (figure 5.1.21).

When normalised to  NASC it  is  apparent  that  for  the Whangai  and Wanstead 

formations the trend is relatively uniform and flat, aside from A-A-8 which has less La 

and Ce than other Whangai Formation samples. The Waipawa Formation samples show 

more variation. Enrichment in the mid REEs is a lot more apparent in A-A-13, while A-

C-2 shows more variation. In particular the latter is higher in Eu and more strongly 
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Figure 5.0.20: Rare earth elements from the section at Angora Quarry normalised to chondrite. 

The Waipawa Formation samples are plotted separately from the Whangai and Wanstead 

formations.

Chondrite NASC Chondrite NASC Chondrite NASC
La 0.367 32 Eu 0.087 1.24 Er 0.249 3.40
Ce 0.957 73 Gd 0.306 5.20 Tm 0.036 0.50
Pr 0.137 7.9 Tb 0.058 0.85 Yb 0.248 3.10
Nd 0.711 33 Dy 0.381 5.80 Lu 0.038 0.48
Sm 0.231 5.7 Ho 0.085 1.04 Y 2.250 27

Table 5.0.1: Values for average chondrite and NASC from Taylor and McLennan (1985). These 

values represent 1 in figures 5.1.19 and 5.1.20.



depleted in Ce.

5.1. Kawau-1A

Overview

26 elements were measured for Kawau-1A. XRF was not conducted on the SWC 

samples from Kawau-1A as there was insufficient  sample material.  Al could not be 

measured due to the concentration being too high, therefore for EF and AE calculation 

purposes variations in Hf, Zr, Nb and Ta were averaged in this study. These elements 

were chosen as they are elements which are known not to vary fractionate significantly 

in nature (e.g. Ross and Bustin, 2009). Ti was not used as it can vary due to sedimentary 

sorting (Dellwig et al., 2000).

As  no absolute  concentrations  were  available  to  correct  the  data  for  potential 

sample loss,  some samples may have lower concentrations across elements.  The EF 

calculation is based on fractions within the sample and not on absolute concentrations, 

and thus the EF is unaffected; however the absolute concentrations and the AE may be 

affected.
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Figure 5.0.21:  REE from Angora Quarry normalised to NASC. The Waipawa Formation 

samples are plotted separately from the Whangai and Wanstead formations.



A comparison of two of the terrestrial indicators, Ti and Zr, to the gamma ray log 

(figure 5.1.1) shows that the terrestrial background varies similarly to the gamma ray 

log. While the absolute concentrations may still vary slightly, the above indicates that it 

is likely to be approximately correct. However, the gamma ray log may be influenced 

by other factors as well as the terrestrial background and, whereas the side wall core 

represents only a few cm of sample, gamma ray log readings are averaged over several 

metres.

Mainly terrestrially-sourced elements

Variation  in  the  terrestrial  component  within  Kawau-1A is  significant  (figure 

5.1.2). The stratigraphically highest sample 2180 m contains a fifth of the concentration 

compared to the top sample in the Tartan Formation (2240 m).  This large variation 

makes a large difference in the EF; when these samples contain the same AE, the EF is 

five times higher at 2180 m.
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Figure 5.1.1: A comparison between two mainly terrestrially sourced elements Ti and Zr, and 

the gamma ray log in Kawau-1A. The Gamma ray log has a maximum resolution of several 

metres while the SWC samples is a point sample representing only a few cm. Sample 

numbers are shown to the right.
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Indicators of anoxia (included in sedimentary pyrite)
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Figure 5.1.3:  Mo in Kawau-1A well, both AE and EF show enrichment of Mo in the Tartan 

Formation, particularly in the lowermost sample.

Figure 5.1.2: Terrestrial indicators in the Kawau-1A well plotted in their depth location in the 

well. See text for discussion.



Mo shows significant enrichment through the Tartan Formation (figure 5.1.3), but 

otherwise there is minimal variation from the local background. For all samples the Mo 

content is greater than the 2.6 ppm in average shale.

Indicators of anoxia (included in sedimentary pyrite); anthropogenic in recent  

sediments

Pb and Bi both show variation through the section (figure 5.1.4). Pb is depleted in 

the middle three samples (2220 – 2305 m) especially in the AE and EF figures. Bi also 

shows some depletion, although to a lesser degree.

The difference between EF and AE normalisation is evident especially in the top 

Pb sample. The AE is similar for the top samples (2180 and 2200 m) but at 2180 m the 

SWC has a significantly higher EF as a result of having a detrital input some 2.5 times 

lower.

Biological component or involved in biocycling

Sr (figure 5.1.5) varies between 47 and 254 ppm through the Kawau-1A well; 
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Figure 5.1.4: Depth graphs of Pb and Bi in Kawau-1A. 

Figure 5.1.5: Sr variations through the Tartan Formation in the Kawau-1A well.



however, all samples within the Laing Formation (above the Waipawa Formation) are 

the only elements which are enriched above the average background in both the AE and 

EF.

As  the  Ca  concentration  is  unknown,  using  a  ternary  diagram as  for  Angora 

Quarry  is  not  possible.  Ba  and  Ga  were  also  not  measured,  so  a  ternary  diagram 

showing these is similarly not possible.

Biological component or involved in biocycling; indicators of anoxia (included in  

sedimentary pyrite)

Tl, Ni, and especially Cd are enriched in the uppermost sample (figure 5.1.6) from 

the Laing Formation. In the Tartan Formation Cd is relatively constant after the detrital 

correction, and Tl shows only minor changes. Cu and Ni both show increases within the 

Tartan Formation, Cu only in the uppermost sample and Ni in both. 

Ni and Tl are both examples of AE normalisation giving results which are more 

suitable than EFs for the largely varying background composition seen in Kawau-1A.
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Figure 5.1.6:  Elements which are enriched both by inclusion in sedimentary pyrite and 

through biocycling plotted against depth.



Depleted under oxygen-depleted conditions; indicators of anoxia (included in  

sedimentary pyrite)

The Mn content is  relatively constant (figure 5.1.7) except for 2300 m, where 

there  is  50  ppm more  Mn  than  expected.  Co  follows  a  trend  very  similar  to  the 

terrestrial indicators, and its EF is close to 1.

Enriched under reducing conditions
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Figure 5.1.7: Mn and Co in the Kawau-1A well. See text for discussion

Figure 5.1.8: Elements which are generally enriched under oxygen-depleted conditions.



Chromium, As, and U all show some enrichment through the Tartan Formation 

(figure 5.1.8). V shows only slight, insignificant enrichment.

Enriched under reducing conditions, rarely studied

Se is enriched through the Tartan Formation and in the uppermost sample from the 

overlying Laing Formation (figure 5.1.9). Sb shows no enrichment through the Tartan 

Formation, although it does resemble the trend seen for Bi. Ternary diagrams with Bi, 

Sb and Zr or Ti (figure 5.1.10) do support a possible similarity, suggesting a possible 

relationship between Sb and Bi, and a terrestrial component to both of these. However, 

there is  sufficient  variation from this  trend to  indicate  that  the relationship is  more 

complicated. Ti gives a higher R2 value than Zr for ternary diagrams indicating that the 

detrital Bi and Sb is closer to Ti values than Zr.
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Figure 5.1.10:  Ternary diagrams showing a relationship between the local background, Bi 

and Sb. 

Figure 5.1.9: Elements which are rarely studied but usually enriched under oxygen-depleted 

conditions.



Rarely studied in sediments

Sn  and  W are  rarely  measured  in  sediment  geochemistry.  W (figure  5.2.11) 

appears to behave in a similar way to Bi and, when plotted against each other, an R 2 

value of 0.93 is obtained (figure 5.1.12). Sn behaves in a unique way in Kawau-1A and 

could not be correlated to any other element.

Rare Earth Elements (REE)

No REE where  measured,  however,  Y behaves  like  a  rare  earth  element  (e.g. 

Haskin and Gehl, 1962). Y is enriched in the Tartan Formation. Y concentrations are 
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Figure 5.1.12: A plot of W vs. Bi from Kawau-1A. A 

strong correlation (R2  of 0.93) between Bi and W 

indicates there may be a relationship.

Figure 5.1.11: Rarely measured elements, Sn and W in Kawau-1A.

Figure 5.1.13: Depth section for Y in Kawau-1A. Y is enriched through the Tartan Formation.



similar to concentrations at Angora Quarry where, excluding the erroneously high value, 

concentrations ranged from 7.7 to 15.3 ppm.

5.2. Pakaha-1

Overview

The  concentration  of  26 elements  were  measured  in  Pakaha-1.  Samples  were 

reduced and normalised in  the same way as  for  Kawau-1A. The gamma ray log is 

shown with Zr and Ti overlaid (figure 5.2.1). Only the SWC sample at 2480 m (sample 

20) varies greatly from the gamma ray trend. Whether this indicates that this sample has 

a lower absolute concentration across elements, that other effects apply, or that it is a 

resolution issue in the gamma ray log is uncertain.
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Figure 5.2.1:  A comparison between two mainly terrestrially-sourced elements, Ti and Zr, 

and the gamma ray log in Pakaha-1. The gamma ray log has a resolution of several metres 

while the SWC samples represent only a few cm.
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Mainly terrestrially-sourced elements

Most of  the terrestrial  indicators  show less  variation  in  absolute  concentration 

through  the  well  than  at  Kawau-1A.  However,  the  SWC at  2580  m (figure  5.2.2) 

contains significantly higher Rb than the other samples, with an EF of 3 or an AE of 133 

ppm. This may indicate the presence of a mineral particularly rich in Rb. Any other 

elements  which  would  be  included  in  such  a  mineral  could  also  be  significantly 

enriched. At 2570 m is also the only Tartan Formation SWC from Pakaha-1 for which 

sample  remains  and  whether  the  increased  Rb  is  related  to  the  lithology,  oceanic 

conditions, or whether it indicates a different composition of terrestrial background is 

uncertain.
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Figure 5.2.2: Terrestrial indicators in the Pakaha-1 well. A large spike in the Rb concentration 

is visible in the Tartan Formation. See text for discussion. 



Indicators of anoxia (included in sedimentary pyrite)

Molybdenum shows  peak  abundance  in  the  sample  directly  above  the  Tartan 

Formation (figure 5.2.3. 2510 m). The other samples are all considerably lower in Mo. 

Mo concentration  in  this  sample  is  similar  to  the  concentration  in  Kawau-1A.  The 

sample at 2510 m was taken at a gamma ray spike directly above the Tartan Formation 

(figure 5.2.1).

Indicators of anoxia (included in sedimentary pyrite); anthropogenic in recent  

sediments

SWC sample Pakaha-1 24 (2250 m) appears to be enriched in Pb (figure 5.2.4), as 

is the sample from within the Tartan Formation. Bi peaks in the sample above the Tartan 

Formation, which also shows a high GR value (figure 5.2.1) and is enriched in Mo 
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Figure 5.2.4: Pb and Bi values through Pakaha-1. See text for discussion.

Figure 5.2.3: Mo in the Pakaha-1 well. The sample with the highest abundance is SWC 19, 

and was taken at a point with high gamma ray values.



(figure 5.2.3).

Biological component or involved in biocycling

Sr reaches  values  of  up  to  886 ppm in  the  uppermost  sample  from Pakaha-1 

(figure 5.2.5), which far exceeds the Sr concentration in any other samples from any of 

the field locations. Both the AE and EF strongly reflect the absolute concentration graph 

as  the  variations  far  exceed the  variations  in  terrestrial  input.  Sr  contains  a  second 

smaller peak in the Tartan Formation. Sr showed peaks in the same samples as with Pb; 

however, a plot of the two produces a R2 of 0.66, suggesting no direct relationship.

Biological component or involved in biocycling; indicators of anoxia (included in  

sedimentary pyrite)

Tl (figure 5.2.6) shows a peak in abundance within the Tartan Formation, and its 

absolute concentration strongly resembles that of Rb. A plot of Rb against Tl gives an R2 

of 0.99 and, if the large peak at 2576 m is excluded, of 0.88 (figure 5.2.7).

Cd  and  Ni  both  peak  in  abundance  in  the  sample  directly  above  the  Tartan 

Formation,  the  same  sample  as  the  highest  concentrations  of  Mo and  Bi.  A direct 

correlation between these elements was not identified.
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Figure 5.2.5:  Sr values in the Pakaha-1 well. The peak is several times higher than the Sr 

concentration recorded in any other location in this study.



Depleted under oxygen-depleted conditions; indicators of anoxia (included in  

sedimentary pyrite)

Above  the  Tartan  Formation  Mn  appears  to  increase  in  concentration  in  the 

uppermost  two samples  (figure  5.2.8).  However,  the  highest  concentrations  are  still 

below the average shale value of 850 ppm. Co shows considerable variation through the 

entire section, with its peak directly above the Tartan Formation, the same sample as 
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Figure 5.2.6: Elements which are affected by both sedimentary pyrite and biocycling plotted 

in depth sections for the Pakaha-1 well. See text for discussion

Figure 5.2.7:  Graph showing the relationship between Rb and Tl. The R2  of 0.99 includes 

SWC sample 17, whereas the other value excludes this sample.



Mo.

Enriched under reducing conditions

Arsenic,  U and V all  have peak abundances  in  the sample  directly above the 

Tartan Formation at 2500 m (figure 5.2.9). Arsenic and U show slight depletion in the 

other  samples  in  the  Laing  Formation.  Cr  shows  a  strong  depletion  in  the  Laing 

Formation relative to the Tartan and Wickliffe formations.
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Figure 5.2.8: Depth sections of Mn and Co in Pakaha-1.

Figure 5.2.9: Elements generally enriched under oxygen-depleted conditions plotted against 

depth in the Pakaha-1 well. U, As and V all have a spike in the sample directly above the 

Tartan Formation, whereas Cr shows a depletion in concentration through the section.



Enriched under reducing conditions, rarely studied

Sb and Se both show peak abundance in the sample directly above the Tartan 

Formation (figure 5.2.10).  Sb otherwise remains  constant  throughout  the rest  of  the 

section, but in contrast Se is depleted in the Laing Formation compared to the Wickliffe 

Formation.

Rarely studied in sediments

Sn  shows  peak  abundance  above  the  background  variation  within  the  Tartan 

Formation (figure 5.2.11). This may be particularly significant as in both Angora Quarry 

and Kawau-1A the Tartan or Waipawa Formation samples were depleted in Sn after 
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Figure 5.2.11:  Rarely measured elements in Pakaha-1. Sn is enriched in the Tartan 

Formation, whereas W is enriched in the SWC sample above the Tartan Formation.

Figure 5.2.10:  Elements generally enriched under oxygen depletion, but rarely measured. 

Se and Sb both contain the spike above the Tartan Formation, Se otherwise shows 

depletion through the Above the Tartan Formation.



terrestrial input had been taken into account. W is enriched in the sample directly above 

the Tartan Formation.

Rare Earth Elements (REE)

REE were again not measured for Pakaha-1, however Y which behaves like REE 

was. Y show little variation through the section (figure 5.2.12). The sample within the 

Tartan Formation may show some minor enrichment. 

92

Figure 5.2.12: Y vs depth in the Pakaha-1 well Y shows little variation through the section.



Chapter 6

Discussion

6.0. Angora Quarry

Overview

In order to aid interpretation of the data, TOC measurements from Leckie et al., 

(1992)  are  presented  in  figure  6.0.1.  These  measurements  are  only indicative  when 

related to the samples used in this study, as the values for the TOC as different samples 

from those of the present study were used. Leckie et al. (1992) also used a different 

starting point for the base of their section.

Although  the  TOC  has  not  been  measured  directly  in  the  present  study,  the 

samples  were  sorted  by  colour  to  provide  an  approximate  guide  to  the  amount  of 

organic carbon present. While this value is not absolute, and thus precludes quantitative 

comparison, it  does allow elements to be plotted in a specific order to show if  any 

enrichments might covary with organic carbon content.

The  Ternary  diagram  (figure  5.0.2)  shows  a  distinct  separation  between  the 
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Figure 6.0.1:  TOC values for the same interval at Angora Quarry section from Leckie et al. 

(1992). As Leckie et al. (1992) did not present data in tabulated form, this image was 

extracted from Killops et al. (2000) because of the higher resolution of the figure.



Waipawa  Formation  and  the  other  formations  with  respect  to  Ca,  Si  and  Al.  The 

relatively higher aluminium content comes at the expense of most of the calcite content 

and some of the silica.

Figure  6.0.2  shows aluminium content  plotted  against  colour.  A clear  trend is 

visible  for  the  darker  samples  with  presumably higher  TOC.  A-C-1  and  A-C-2 are 

plotted separately as they are not from the same section.  Sample A-A-8 is  the only 

outlier; this sample also contained several 3 mm to 1 cm thick glauconitic beds which 

are not in the photo and significantly lighter in colour, taking these into account would 

move the sample to the left.

The 5 wt% increase in Al2O3 must come at the expense of one or more other 

elements. Both CaO/Al2O3 and SiO2/Al2O3 are plotted similarly in figure 6.03 and 6.0.4 

respectively,  although  without  the  colour  photos.  Calcium  is  mainly  included  in 

sediments through biologically produced CaCO3.  Figure 6.0.3 shows the relationship 

between  CaO/Al2O3,  and  sample  colour.  While  the  Ca  does  partially  dilute  the  Al 

content it also dilutes other elements, and hence the maximum value of 6.8 wt% CaO 

should only make 0.93 wt% difference in the Al2O3 content while affecting elements 
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Figure 6.0.2:  Al
2
O

3
 from Angora Quarry plotted against increasing darkness of the samples. 

Except for sample AA8, a darkening appears to indicate an increase in Al. A-C-1 and A-C-2 

are plotted separately to the right as they are from further upstream, across a fault with 

unknown displacement. See text for discussion.

A
l 2O

3



such as SiO2 to a greater extent due to the high amount of Si present. The irregular 

nature of the plot, suggests that dilution of Al2O3 by CaO is neither the only nor the 

dominant process.

The SiO2 relationship to Al2O3  (figure 6.0.4) is the expected relationship if the 

main element being diluted is SiO2. Using SiO2/Al2O3, and CaO/Al2O3 instead of the 

pure element concentrations removes the dilution effects of other elements and volatiles 

like LOI.

Overall the colour, likely caused by the organic-matter content at Angora Quarry 
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Figure 6.0.3: CaO/Al
2
O

3
 ratio plotted against increasing darkness as in Fig. 6.0.2. . While Ca 

does have some affect towards diluting the Al content of the sediments, the jagged nature 

and lack of similarity to figure 6.0.2 suggests it is not the main factor.

Figure 6.0.4: SiO
2
/Al

2
O

3
 ratio plotted against increasing darkness of samples as for Fig. 6.0.2. 

The ratio between SiO
2
 and Al2O

3
 is what would be expected to explain the colour trend seen 

in Al
2
O

3
 concentration and indicates that the bulk of the increased Al comes at the expense of 

Si. 



covaries with Al content, and increases in Al content is closely related to a decrease in 

Si content and somewhat related to a decrease in biological Ca content.

Terrestrial indicators

Table 6.0.1 shows the correlation between all the elements which are assumed to 

be indicators of terrestrial background. Excluding Ga, the worst correlation is an R2 

coefficient of 0.766 between Al and Zr.

Gallium varies independently of the terrestrial source in this study, suggesting that 

it  is  not  a  suitable  terrestrial  indicator.  A positive  relation  between Ga and Ba was 

noticed and is discussed below with the biological components.

Although Al is  taken to  represent  the bulk detrital  composition,  there is  some 

evidence of variation in the mineralogical detrital composition. Zr and Hf are closely 

related  with  an  R2 value  of  0.979  (figure  6.0.5)  when  plotted  against  one  another; 

however, this ratio is less than 0.8 when plotted against Al.

Having R2 ratios close to one and plotting through the origin indicates the detrital 
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Al Nb Ti Rb Th K Hf Zr Ga
Al N/A 0.970 0.970 0.950 0.949 0.937 0.799 0.766 0.011
Nb 0.970 N/A 0.962 0.913 0.958 0.879 0.800 0.776 0.028
Ti 0.970 0.962 N/A 0.941 0.974 0.924 0.853 0.834 0.030
Rb 0.950 0.913 0.941 N/A 0.922 0.960 0.830 0.786 0.002
Th 0.949 0.958 0.974 0.922 N/A 0.877 0.872 0.848 0.012
K 0.937 0.879 0.924 0.960 0.877 N/A 0.836 0.779 0.000
Hf 0.799 0.800 0.853 0.830 0.872 0.836 N/A 0.979 0.002
Zr 0.766 0.776 0.834 0.786 0.848 0.779 0.979 N/A 0.001
Ga 0.011 0.028 0.030 0.002 0.012 0.000 0.002 0.001 N/A

Table 6.0.1: R2 correlation coefficients for elements thought to be detrital indicators; for each 

element on the vertical  axis only the highest R2 is  coloured.  The best  matches between 

elements are shaded light grey, the highest value for Ga is dark grey, and the low result 

indicates no correlation. The elements are sorted in order from the best correlation to Al to  

the worst. 

Figure 6.0.5: Graphs showing the correlation between Al, Zr and Hf. While Zr and Hf show a 

strong correlation to each other, Al shows some variation independently of these elements.



sediment  source  remained  constant  with  any  variaition  due  to  dilution  from  other 

sources.

Anoxic indicators (sedimentary pyrite)

None  of  the  samples  from the  three  formations  at  Angora  Quarry  show  any 

indication  of  sedimentary  pyrite,  suggesting  that  some  oxygen  was  present  during 

deposition. The sediments contain 2-4 wt% Fe, sufficient (figure 5.0.6) to form pyrite, 

suggesting that the lack of sedimentary pyrite is due to a lack of anoxic conditions.

Oxygen depletion

Manganese and Co are often depleted under reducing conditions. Of these, Mn 

may  show  some  depletion  in  the  Waipawa  Formation  (figure  5.0.15)  but  the 

measurement  errors  are  too  large  for  the  observed  variations  to  be  considered 

significant. Co appears to be enriched through the Waipawa Formation.

From the elements which are normally enriched under oxygen-depleted conditions 

(figures 5.0.16, 5.0.17), only sample A-C-2 shows enrichment in all these (As, U, V, Cr 

and  Sb),  although  not  always  by  significant  amounts.  This  sample  was  from  the 

Waipawa Formation approximately 1km upstream from the other samples.

The enrichment of these elements alone is not enough to confirm whether or not 

the formation was deposited under oxygen-depleted conditions at this location as the 

enrichment is  not significantly higher than for other elements.  REE, however,  allow 

comparison between elements  which otherwise chemically behave in  a  very similar 

way. Caesium is generally depleted under reducing conditions depleted (e.g. de Baar et  

al., 1988; German and Elderfield, 1989; Sholkovitz et al., 1992), and europium may be 

enriched (Sverjensky, 1984; more details given in section 2.2).

As Ce and Eu are enriched under opposite redox conditions, but related as REE, 

depth graphs of Ce/La, and Gd/Eu should show significantly lower values for reduced 

conditions. Figure 6.0.6 shows plots for Ce/La and Gd/Eu, the standard used (vertical 

line) is the North American Shale Composite (NASC), the same standard used in the 

results section. A-C-2 (circled in red) shows the lowest values in both Ce/La and Gd/Eu, 

indicating  that  sample  A-C-2  was  deposited  under  more  oxygen  depleted  during 

deposition.  While  the  distance  between  the  field  sites  is  only  1  km,  a  fault  with 
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unknown displacement separates them and hence the paleogeographic distance as well 

as exact stratigraphic position is uncertain (see section 4.1). 

Biological components and biocycling.

The relationship noticed on a ternary diagram of Ba, Ga and Al concentrations 

(figure 5.0.10) may prove to be significant to interpreting Ba results. Few studies have 

measured Ga, Al and Ba together in sediments. However, a comparison of one set of 

results  from Devonian-Mississippian shales from the Western Canadian Sedimentary 

Basin, (Ross and Bustin, 2009) and those from Angora Quarry (this study) is given in 

figure 6.0.7.

The data from Ross and Bustin (2009) have a larger concentration of Al relative to 

both Ba and Ga, with Ba appearing to vary largely independently of Ga and Al. Ga and 

Ba do not appear to be related in the Western Canadian Sedimentary Basin. Whether the 

relationship  at  Angora  Quarry  is  just  a  local  process  is  uncertain.  There  may  be 

background variation in both Ba and Ga in the Western Canadian Sedimentary Basin. 

Plots between different terrestrial indicators show large amounts of variation, K2O vs 

Al2O3 for the Ross and Bustin (2009) data shows an R2 correlation of 0.52, considerably 
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Figure 6.0.6: A depth graph of redox-sensitive REEs normalised against La and Gd. Sample 

A-C-2 is highlighted in red for reasons discussed in text.



lower than the 0.96 from this study and indicating multiple detrital sources.

Ca is  largely of biological origin,  and hence the EF and AE corrections using 

Al2O3 are  not  a particularly useful  way of  displaying the data.  The depletion in  Ca 

through the Waipawa Formation may either indicate a lack of calcareous shells being 

deposited or the dissolution of calcium minerals after deposition.

At Angora Quarry, the similarity between the SO3 content and CaO (figure 5.0.13) 

is probably indicative of a decrease in the amount of marine productivity relative to the 

sedimentation rate. The S in the Whangai and Wanstead formations would hence be 

sourced from marine organic matter.  Leventhal (1983) suggested that approximately 1 

wt% S for every 3 wt% TOC was approximately the ratio for organic matter deposited 

under normal marine conditions, a value that is consistent with the TOC (figure 6.0.1) 

from Angora Quarry.

In the Whangai and Wanstead formation samples, Sr correlates with Ca and Al on 

a  ternary  diagram  (figure  5.0.11)  although  many  Waipawa  Formation  samples  are 

depleted  after  a  correction  for  both  Al  and  Ca  has  been  made.  The  cause  of  this 

depletion is unknown, and indeterminable from this study. The technique of calculating 

the AE of Sr using both Al and Ca values can aid in gaining a better understanding why 

Sr varies in organic-rich sediments and perhaps in sediments in general.

The variation of Mg with Al and Ca (5.0.12) may indicate an increase in kaolinite 
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Figure 6.0.7:  Ba, Ga and Al
2
O

3
 from the Western Canadian Sedimentary Basin (Ross and 

Bustin, 2009) and Angora Quarry (this study).



or dolomite content as these are what Mg is mainly linked to in North American black 

shales (Ross and Bustin, 2008; 2009). Whether these minerals are causing the increased 

Mg or whether some other process is responsible is not shown by the data.

Germanium  shows  no  correlation  to  Si,  suggesting  either  that  a  significant 

proportion of the variation in either SiO2 or Ge is not of biological origin, or that there is 

a second process involved.

TOC values from Leckie (1992) and S from this study can be combined to show 

where Angora Quarry samples would plot on an S vs TOC graph (figure 6.0.8).  As 

Leckie (1992) did not measure TOC in the Wanstead Formation at Angora Stream, that 

sample has  been omitted from the figure,  previous values  at  other  locations for the 

Wanstead Formation where included. The data are plotted alongside data from Elgar 

(1997) and Rogers (1995), the two previous studies which have measured S in East 

Coast Basin samples.

Overall, the Waipawa and Whangai formations vary across this plot. The anoxic 

and oxic fields on the plot are based on the assumption that the bulk of organic matter in 

the  anoxic  section  is  of  marine  origin  (Leventhal,  1993),  and  thus  high  terrestrial 
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Figure 6.0.8: S plotted against TOC to differentiate types of organic matter and deposition. S 

and TOC data for data points are from Rogers (1995), and Elgar (1997). The circles show S 

from this study plotted against TOC values from Leckie (1992). As separate samples were 

used by Leckie (1992) and this study, the figure shows only approximate locations with circles. 

Graph style after Leventhal (1993).



organic content may move the lower constraining line for anoxic conditions to include 

more samples.  Without  analysing the origin of the S,  this  plot may only be able to 

differentiate non-marine influence and some definitely anoxic samples.

Rare earth elements

Overall, most of the REE are not very different from the NASC (North American 

Shale Composite) (figure 5.0.21) standard. However, the bell-shaped curve in A-A-13 

(figure 5.1.21) showing enrichment in the middle REE is noteworthy. A similar curve 

was  observed  in  apatites  formed  from fish  and  shark  teeth  (Lécuyer  et  al.,  2004); 

however, even the most REE-rich apatites in this study had at the most 0.5% Ce, at this 

concentration 50 times more P would be required to achieve the observed Ce at angora 

Quarry in apatite form.

Another source for the high REE concentration in A-A-13 could be contamination 

of the sample by an REE rich mineral, or a detrital REE-rich mineral being fortuitously 

introduced during deposition. 

Summary of Angora Quarry data

Terrestrial  organic  matter  washed  offshore  was  deposited  in  dysoxic  to  oxic 

conditions.  The increased influx of terrestrial  organic matter coupled with terrestrial 

clays caused a dilution of CaO, SiO2 and marine organic matter (as indicated by the low 

SO3). How much of the SiO2 is of biogenic origin, and how much is of terrestrial origin 

cannot be determined from the data, sedimentary sorting could have led to a change in 

detrital quartz content.

The low SO3 and lack of similarity between other anoxic indicators, along with an 

abundance of Fe2O3, leads to the conclusion that anoxic conditions were not present due 

to the lack of pyrite. Other indicators of oxygen depletion suggest that at the outcrop 1 

km upstream from Angora Quarry, there was increased oxygen depletion in the water 

column or upper sediments during deposition; however, the level of depletion cannot be 

quantified. Minor oxygen depletion during the deposition of the Waipawa Formation at 

the Angora Quarry section cannot be ruled out, however, but is also not indicated by the 

inorganic geochemistry and likely would have had no effect on overall conditions of 

deposition of the Waipawa Formation.
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6.1. Kawau-1A

Overview

TOC measurements were made for the Kawau-1A well by Meadows (2008) for 

the same SWC samples as studies here and his measurements are presented in figure 

6.1.1.

The relationship between the gamma ray log and the detrital  input  appears  to 

indicate that the gamma ray measurements can be used to approximate the terrestrial 

clay content (figure 5.1.1). The lower terrestrial clay content is likely to indicate that the 

terrestrial clays are being diluted, either by calcareous material, silicates or both.

The large influx of terrestrial clays during the deposition of the organic-rich layer 

agrees with the interpretation of Schiøler et al. (2010), who showed the organic matter 

was largely of terrestrial origin.

Terrestrial indicators

Overall, the terrestrial indicators all show a similar trend, with the greatest amount 

of terrestrial clays deposited during the deposition of the Tartan Formation. The lowest 

values  are  in  the  Laing  Formation,  which  is  more  calcareous  than  the  underlying 

Wickliffe and Tartan Formations (Beggs, 1993; Cook et al., 1999).
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Figure 6.1.1: TOC, EF and AE plotted against depth for Kawau-1A. Absolute concentrations 

of TOC from Meadows (2008). 



Correlation  between  the  terrestrial  indicators  is  shown in  table  6.1.1.  The  R2 

correlation between terrestrial indicators is above 0.9 except for Th/Ta and Hf/Ta. Most 

of the elements correlate best to either Zr or Ti, with Rb the only exception and this 

correlates best with Th. Zr and Hf do not vary relative to one another, and produced the 

strongest correlation at 0.997. This indicating that the Kawau-1A results do not appear 

to have large errors when treated as fractions; as EF calculations use only fractions the 

EF are likely to have smaller errors than the other graphs in section 5.1.

The  larger  variation  in  Ta  is  mainly  due  to  its  lower  concentration,  with 

measurements between 0.19 and 0.99 ppm. Ta should correlate most closely with Nb as 

they behave the same way under natural processes (e.g. Ross and Bustin, 2009).

The  large  increase  in  terrestrial  clay  content  (figure  5.1.2)  indicates  limited 

dilution from biological sources and likely very rapid deposition.

Anoxic indicators (sedimentary pyrite)

Some of the elements included as traces within sedimentary pyrite (Mo, Ni and, in 

one  sample,  Cu)  are  enriched  in  the  Tartan  Formation  to  varying  degrees,  but  the 

remaining elements which should also be enriched in pyrite do not show significant 

enrichment (figures 5.1.3, 5.1.4, 5.1.6 and 5.1.7). Many elements, however, are affected 

by multiple processes and it may be possible that very rapid deposition diluted the effect 

of  anoxic  conditions  on  the  inorganic  geochemistry  of  the  Tartan  Formation. 

Unfortunately,  insufficient  sample  remained  to  allow  measurement  of  sulphur 

concentrations by XRF.
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Hf Zr Ti Nb Rb Ta Th
Hf N/A 0.997 0.979 0.939 0.939 0.886 0.941
Zr 0.997 N/A 0.989 0.952 0.947 0.914 0.942
Ti 0.979 0.989 N/A 0.970 0.967 0.950 0.950
Nb 0.939 0.952 0.970 N/A 0.965 0.935 0.937
Rb 0.939 0.947 0.967 0.965 N/A 0.939 0.958
Ta 0.886 0.914 0.950 0.935 0.939 N/A 0.862
Th 0.941 0.942 0.950 0.937 0.958 0.862 N/A

Table 6.1.1: R2 correlation of terrestrial indicators in Kawau-1A. Grey shading indicates the best 

correlation for the element. See text for discussion.



It  cannot  be  conclusively  said  from  the  limited  trace  element  data  available 

whether  or  not  the  water  was  anoxic  during  deposition  of  the  Tartan  Formation  in 

Kawau-1A, although it is unlikely. 

Oxygen depletion

Mn and  Co (figure  5.1.7)  show no significant  signs  of  depletion  through  the 

Tartan Formation; however, As, U, V, Cr, and Se are all enriched through the Tartan 

Formation.  As and U,  may also be enriched in  the uppermost  sample (figure 5.1.8, 

5.1.9). Sb is the only indicator which is normally enriched under conditions of oxygen 

depletion which here does not show enrichment, and in this case Sb behaves in a similar 

way to Bi.

Overall  the  bulk  of  the  elements  measured  suggest  that  oxygen-depleted 

conditions existed during the deposition of the Tartan Formation. While no depletion 

can be shown in Mn and Co, the amounts of these elements present are already very 

low, compared to average shale which has 850 ppm Mn and 19 ppm Co. It may be the 

case that the conditions were already suboxic prior to Tartan Formation time and that 

Mn depletion was already occurring in the Laing and Wickliffe formations.

Biological components and biocycling

Ni is the only element of this group which is enriched in both samples of the 

Tartan Formation (figure 5.1.6) while Cu is  enriched in  the upper Tartan Formation 

sample. Cadmium, Tl and Ni are show increases in AE and EF in the uppermost sample 

of the Laing Formation. Without being able to link Ca to Sr it is not possible to say 

anything definite about the Sr concentration.

Increases  in  Cu and  Ni  were  also  noticed  in  some of  the  samples  in  Angora 

Quarry and are on a similar scale to those observed in Kawau-1A, while the lack of 

variation in Cd apparent in Kawau-1A may be due to the limited numbers of samples. 

While Kawau-1A and Angora Quarry do not show the same variations in trace elements, 

the resolution is different and it  cannot be determined whether or not the biological 

conditions were similar from trace metals alone.
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Rarely studied elements

Tungsten behaves in a similar way to Bi at Kawau-1A (figure 5.1.12), which may 

suggest that Bi and W are affected by similar processes. The processes involved with Bi 

variations  in  sedimentary  environments  are  uncertain,  however,  and  W  has  been 

excluded  in  all  such  previous  studies.  The  variation  of  Sn  is  different  to  all  other 

elements in Kawau-1A, but the processes which affect it are unknown.

Rare Earth Elements

While REE were not measured, Y is affected the same chemically (e.g. Haskin 

and Gehl, 1962). Y was enriched through the Tartan Formation (figure 5.1.13). In the 

other samples, Y behaves like a terrestrial indicator. Without having any REE measured 

in this site, nothing can be said about the source of the REE apart from the suggestion 

that they are probably affected by more than just detrital input. 

Summary of Kawau-1A

Samples from Kawau-1A were deposited in the more distal  setting of the two 

Great South Basin wells studied here. The Tartan Formation in the well is characterised 

by high  gamma ray  levels,  and  the  concentration  of  terrestrial  indicators  follows  a 

similar trend to the GR log.

Fully  anoxic  conditions  during  deposition  of  the  Tartan  Formation  appear 

unlikely, with no agreement across the data, such conditions cannot be completely ruled 

out. An increase in concentrations of the trace metals As, U, Cr and Se through the 

Tartan Formation does indicate that the Tartan Formation was deposited under oxygen 

depleted conditions in Kawau-1A.

It  should be noted that  the SWC samples of the Tartan Formation were taken 

during  drilling operations  from horizons identified  by gamma ray spikes  within the 

formation. Sedimentary and geochemical conditions between these samples, where the 

GR log is on average 20-30 api units lower, are unknown as no sidewall samples exist 

from these levels.
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6.2. Pakaha-1

Overview

TOC measurements were made for the Pakaha-1 well by Meadows (2008) and are 

presented here in figure 6.2.1. These measurements are from the same SWC samples as 

those analyzed in the present study.

The GR log again matches the terrestrial background (figure 5.2.1), and there is 

far less variation in both the gamma ray signal and terrestrial background observed in 

this  well.  This  has  previously  been  interpreted  as  indicating  a  more  rapid  rate  of 

deposition and higher terrestrial influx due to the more proximal location of the Pakaha-

1 well during the Late Paleocene (e.g. Schiøler et al., 2010).

Terrestrial indicators

Significantly less variation is seen within each of the terrestrial indicators than in 

Kawau-1A, and this lower range also corresponds to significantly lower R2 values (table 

6.2.1). While most of the terrestrial indicators show only slight variation, Rb behaves 

completely  independently  to  the  other  terrestrial  indicators  in  Pakaha-1,  and  hence 

shows no correlation.

Zirconium  and  Hf  again  show  the  strongest  correlation.  The  spike  in  Rb  is 

unexpected (figure 5.2.2), and it is not easily explained. Only Tl has a similar variation 
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Figure 6.2.1:  TOC, EF and AE plotted against depth for Pakaha-1. Absolute concentration 

of TOC is from Meadows (2008)



(figure 5.2.7). While Rb changes bear some resemblance to those of the TOC, they do 

not directly correlate with it. The cause of the spike in Rb hence remains unknown.

Anoxic indicators (sedimentary pyrite)

There  is  no  indication  of  sedimentary pyrite  in  the  Tartan  Formation  sample, 

although the sample immediately above the formation has a spike in Mo, Bi, Cu, Cd, Ni 

and Co which are incorporated in sedimentary pyrite (figures 5.2.3, 5.2.4, 5.2.6, 5.2.8). 

This sample was taken at a narrow but pronounced gamma ray spike (figure 5.2.1). Mn, 

Tl, and Pb can be included into sedimentary pyrite but are not enriched in this sample.  

As all the other elements which indicate sedimentary pyrite are enriched, indicating that 

sedimentary pyrite was in fact deposited in this sample.

Schiøler et al., (2010) suggested that the deposition of the Tartan Formation began 

earlier  in  relation  to  eustatic  sea  level  at  Pakaha-1 than  elsewhere.  If  so,  it  is  thus 

possible that at Pakaha-1 the Tartan Formation was deposited during prior to deposition 

of the Tartan elsewhere in the basin, sediments later largely bypassed Pakaha-1 while 

the Tartan Formation was being deposited elsewhere. Increased productivity due to the 

influx of micro nutrients would be needed to lead to anoxic conditions for the sample 

above the Tartan Formation.

An earlier pulse is not inconsistent with the literature, several previous authors 

suggested that  the Waipawa and Tartan formations consist  of  two pulses  of organic 

matter-rich sediment, sometimes separated by a more calcareous unit. The best example 

of a section where the Waipawa Formation is certainly divided into two parts is Mead 

Stream (Hollis et al., 2005a), or two pulses in TOC content such as at Angora Quarry.
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Hf Zr Nb Ta Th Ti Rb
Hf N/A 0.967 0.819 0.693 0.677 0.679 0.003
Zr 0.967 N/A 0.616 0.636 0.712 0.819 0.001
Nb 0.819 0.616 N/A 0.958 0.937 0.629 0.002
Ta 0.693 0.636 0.958 N/A 0.882 0.582 0.001
Th 0.677 0.712 0.937 0.882 N/A 0.770 0.013
Ti 0.679 0.819 0.629 0.582 0.770 N/A 0.021
Rb 0.003 0.001 0.002 0.001 0.013 0.021 N/A

Table 6.2.1: R2 correlation for the terrestrial indicators in Pakaha-1. Grey shading indicates the 

best correlation for the element. See text for discussion.



Oxygen depletion

No  elements  indicate  oxygen  depletion  during  the  deposition  of  the  Tartan 

Formation in Pakaha-1,  although enrichments in As,  U, V, Sb, Se,  and Mn indicate 

oxygen  depletion  in  the  sample  above  the  Tartan  Formation  (figures  5.2.8,  5.2.9, 

5.2.10).  This  agrees  with  the  anoxic  indicators  which  suggest  no  oxygen  and  the 

precipitation of sedimentary pyrite during deposition of this sample.

Biological components and biocycling

Interpreting Sr values without Ca is difficult. In Pakaha-1 Sr values significantly 

higher than were recorded at any other site were encountered in the uppermost sample. 

If the Sr was mainly of biological origin, and was at the same ratio of Sr to Ca as at  

Angora Quarry, the uppermost sample would have to contain 48% calcite. This amount 

is unlikely given that neither the GR log nor the concentrations of terrestrial indicators 

indicate any dilution of the terrestrially-sourced component. This sample also has an 

unusually high concentration of Mn, at 400 ppm.

There is a spike in the Tl concentration in samples from the Tartan Formation 

which can be correlated to Rb with an R2 of 0.88 (figure 5.2.7); however, there are few 

data points and there is little spread, thus whether or not Tl and Rb are controlled by the 

same process in Pakaha-1 cannot be confirmed.

Rarely studied elements

Tungsten  is  significantly  enriched  in  the  sample  directly  above  the  Tartan 

Formation but shows very little variation in all the other samples. This suggests that W 

is affected by some process. W is a chalcophile element, hence the process is probably 

sedimentary pyrite precipitation. Sn is enriched in the Tartan Formation in Pakaha-1, 

although there is no clear reason as to why this happened and variations in Sn have been 

little  studied.  The concentration is  relatively constant  in  the other  samples  once the 

terrestrial input was corrected for. 

Rare earth elements

Yttrium  behaves  like  REEs;  it  shows  little  variation  through  the  section, 
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suggesting that it is sourced largely from detrital input. Measurement of more rare earth 

elements is needed.

Summary of Pakaha-1

There is no indication of oxygen depletion during the deposition of the Tartan 

Formation  at  Pakaha-1;  however,  the  sample  above  the  Tartan  Formation  which 

corresponds with a sharp gamma ray spike appears to indicate anoxic conditions during 

deposition. The anoxic sample in the Pakaha-1 well also corresponds with the highest 

terrestrial input, although it contains only a low TOC content.

6.3. Regional depositional environment

This  section  will  draw  on  data  from  this  and  previous  studies  to  suggest  a 

depositional  environment  for  Waipawa  and  Tartan  formations  on  both  a  local  and 

regional scale.

East Coast Basin trace element work from Elgar (1997)

A plot of Rb against Th from Elgar (1997) and Moore (1980) (figure 6.3.1) was 

used to identify whether the regional East Coast Basin trace metal data could be used 

together. As both Th and Rb are of detrital origin at Angora Quarry (R2 of 0.922), if the 

mineralogy remains constant across the basin they should plot in a straight line.

The  variation  in  Rb/Th  suggests  that  there  are  at  least  two  separate  detrital 

sediment sources with different Rb/Th ratios. Elgar (1997) sampled a wide range of 

different  formations,  including  the  Waipawa  Formaiton  throughout  the  East  Coast 

Basin. Without a larger range of terrestrial indicators identifying which variations in 

other  elements  are  due  to  the  terrestrial  component  and  which  are  due  to  oceanic 

conditions it is not possible to extract new data from his study.

While  a  vague  linear  trend  may  exist  in  the  non-Waipawa  samples,  this  is 

uncertain, and does not appear to pass through zero, more measurements would need to 

be done to investigate this.
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Summary of results

Terrestrial  indicators  indicate  an increase  in  the  abundance  of  terrestrial  clays 

during deposition of the Tartan and Waipawa formations. This was previously suggested 

as one of several potential causes of the gamma ray spike by Schiøler et al., (2010), and 

was  confirmed  in  this  study.  Other  proposed  causes  of  the  gamma  ray  spike  were 

discussed in section 1.1.

Low Ca abundance through the Waipawa Formation was found at  the Angora 

Quarry section, and is in line with XRF measurements have been made previously on 

two Waipawa Formation samples by Moore (1988), suggesting this is a more regional 

phenomena.

Variation  in  the  redox  equilibria  under  which  the  formation  was  deposited 

depended on locality, as first suggested in a S vs. TOC plot by Elgar, (1993) for the East 

Coast  Basin.  This  was  later  supported  by  Schiøler  et  al.,  (2010)  based  on  AOM-

phytoclast-polynomorph kerogen plots for the Great  South Basin.  The present  study 

confirmed that redox conditions change with locality for the deposition of the Waipawa 
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Figure 6.3.1:  A plot of Rb against Th using data from Elgar (1997) and Moore (1988). The 

wide spread of values indicates that there is variation in the composition of the local 

background through the East Coast Basin. 



and Tartan formations.

Water depth at the time of deposition is unknown. It has been suggested that the 

Tartan Formation was deposited in 0-20 m water depth (Raine et al., 1993; Cook et al., 

1999; Schiøler et al., 2010). Shallow hypersaline conditions were suggested due to the 

presence  of  a  low-diversity  foraminiferal  fauna  including  Cyclammina  elegans and 

abundant  terrestrial  organic  matter  (Schiøler  et  al.,  2010).  However,  the  oxygen 

depletion  seen  in  Kawau-1A within  the  Tartan  Formation  and the  anoxic  indicators 

directly above the Tartan Formation in Pakaha-1 would have required deposition below 

the  mixing  caused  by waves  (e.g.  Demaison  and  Moore,  1980),  suggesting  waters 

significantly deeper than 50 m.

The  Waipawa Formation  was  likely  deposited  at  a  very rapid  rate  at  Angora 

Quarry, leading to similarities between CaO and SO3 abundances due to dilution with 

terrestrial clays and terrestrial organic matter, and burying the organic matter before it 

could  be  biologically  degraded.  Without  anoxic  conditions,  only  rapid  burial  can 

preserve organic matter (Gavrilov et al. 1997). It is likely that the formation was also 

deposited  rapidly in  the  Great  South  Basin  as  the  gamma ray peaks  correspond to 

intervals of maximum terrestrial sediment supply.

Supporting a rapid depositional rate is the low amount of enrichment in oxygen 

depleted  samples  in  comparison  to  Brumsack  (2006).  Redox  depletion  can  enrich 

elements by several orders of magnitude, however, even in the Pakaha-1 sample which 

contained anoxic indicators Mo shows only an enrichment factor of 2, in comparison to 

2-3 orders of magnitude in Brumsack (2006). The difference in results to present day 

depositional environments makes present day analogues to the depositional environment 

impossible.

Possible depositional environments

1)  Schiøler  et  al.,  (2010)  suggested  the  Waipawa  and  Tartan  formations  are 

regressive units due to the increasing non-marine proxies, with the top of the Tartan 

Formation representing a Maximum Regressive Surface. They suggested that a fall in 

sea level caused a base level drop and erosion provided the terrestrial material.

Beggs (2010a, b) suggested that the Waipounamu Erosion Surface which followed 

the cessation of sea-floor spreading indicated a “broad domain up-warping,” in which 
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large parts  of  the New Zealand continent  were uplifted and eroded.  This  may have 

provided the mechanism to uplift and erode swamps, giving the high terrestrial input, 

and causing the maximum regression suggested by Schiøler et al., (2010).

2) An alternative explanation is suggested by this study. A marine transgression 

might have flooded coastal swamps and re-deposited the organic matter offshore. This 

model  is  suggested  by the  present  study due  to  the  indication  of  oxygen  depletion 

during deposition of the Tartan Formation in the Great South Basin wells, which in turn 

indicates undisturbed and deeper waters.

Increased influx of detrital sediments during transgression is known to occur in 

New  Zealand  sediments  elsewhere  during  the  Tertiary;  for  example,  increased 

aluminosilicates producing marl beds during the deposition of the Amuri Limestone 

have been linked to marine transgressions in the Early Eocene (e.g. Nicolo et al., 2007).

An organic matter-rich shale up to several m thick and extensive over 2500km 

was deposited during the IETM (Initial  Eocene Thermal  Maximum) in the southern 

territory  of  the  former  Soviet  Union  (Gavrliov  et  al.,  1997;  2000;  2003).  This 

sapropelitic unit contained large amounts of terrestrial organic matter and decreases in 

carbonate content, and other similarities in trace metal content, making it the closest 

analogy found for the inorganic geochemistry of the Waipawa Formation. This organic 

matter-rich shale has been interpreted as a transgression unit which was preceded by a 

regression. With peat swamps and bogs present along the shoreline, eustatic sea level 

transgression caused flooding and rapid erosion, depositing a thin layer of organic mater 

across the basin and causing anoxic conditions.

Due to the widespread but unique nature of the Tartan and Waipawa formations in 

the Late Paleocene to Early Eocene sediments, the relative sea level change must have 

been a unique event whether the transgression suggested herein or regression suggested 

by Schioler  et al.,  (2010) occurred. Regional tectonic events as suggested by Beggs 

(2010a, b) may have played a roll in the sediment deposition but other evidence has yet 

to be presented proving specific tectonic events were synchronous with the deposition.
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Comparison of depositional environments

Either a transgression or a regression may have caused the influx of terrestrial 

organic matter into the Waipawa and Tartan formations. Both models invoke erosion of 

terrestrial organic matter, and both models can cause increased marine productivity due 

to increased nutrients and the increased influx of terrestrial clays. A transgression also 

allows for increased productivity close to shore with the resulting organic matter being 

washed offshore along with the terrestrial organic matter.

The microfossil  assemblages which indicate 0-20 m water depth (Raine  et al., 

1993) are explainable by a transgression regression if water depths are this shallow; 

however,  a  transgression  may have  reworked  shallow  sediments  such  as  peats  and 

swamps  were  eroded,  depositing  reworked  shallow  water  sediments  and  terrestrial 

matter at greater water depths.

For ocean floor  environments  to  be oxygen depleted,  vertical  mixing must  be 

restricted  by  stratification  (Tyson  and  Pearson,  1991).  At  shallow  depths  oxygen 

depletion  only  occurs  seasonally,  and  only  where  there  is  restricted  wave  action. 

Without the re-oxygenation and reversal of many trace metal processes having occurred, 

sections of the Tartan and Waipawa formations which were deposited under oxygen-

depleted  conditions  were  likely  deposited  at  water  depths  greater  than  50  metres. 

Kawau-1A shows  some  indications  for  oxygen  depletion,  whereas  Pakaha-1  shows 

anoxic conditions in the sample directly above the Tartan Formation. Schiøler  et al. 

(2010) suggested in Toroa-1 that the Tartan Formation was deposited under dysoxic to 

anoxic conditions. The deposition of Te Uri member greensand as time equivalents to 

the Waipawa Formation was interpreted by Rogers  et al. (2001) as representing oxic 

bottom waters, in comparison to the Waipawa Formation representing anoxic conditions 

resulting from a regional upwelling as suggested by Killops et al. (2000).

Under a transgressive model, the greensands which are equivalent in time to the 

Waipawa Formation may represent a sediment bypass, and / or regions where near-shore 

swamps  did  not  exist.  At  some  locations  such  as  Te  Hoe  River,  both  the  Te  Uri 

greensand  unit  is  present  as  well  as  the  Waipawa  Formation  (Leckie  et  al.,  1992 

appendix  II).  This  may  be  related  to  the  double  pulse  of  the  Waipawa  Formation 

observed elsewhere.  Under modern conditions glaconite is  generally formed in low-

energy conditions at mid-shelf to deeper-water environments (e.g. Dias and Nittrouer, 

1984), hence glauconite equivalents to the Tartan and Waipawa formations fit  better 
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with a marine transgression. 

Difficulty  in  constraining  the  dates  under  which  the  Waipawa  and  Tartan 

formations  were deposited as  well  as sea level  changes  has  left  much debate about 

whether the formation is transgressive or regressive. Figure 6.3.2 shows two different 

sea  level  curves  along  with  different  age  constraints  for  the  age  of  the  Waipawa 

Formation. The Waipawa Formation may have been deposited very rapidly due to the 

low CaO and SO3 concentrations, at Angora Quarry the Waipawa Formation contains 27 

times less CaO than the surrounding formation, and at least 10 times less SO3 (assuming 

the maximum of 0.01 wt% when below the 0.01 wt% minimum detection level).

The rate of deposition of the Waipawa Formation at Angora Quarry cannot be 

quantified  and  can  only  be  inferred  as  very  rapid;  it  is  probably  well  below  the 

resolution of the sea level curves from figure 6.3.2. Without direct indicators of sea 

level change, neither the Schiøler  et al., (2010), nor the transgressive model proposed 

by this study can be ruled out.

114

Figure 6.3.2: Two sea level curves in green and red, and the estimated age ranges for the 

Waipawa Formation in different shades of grey, see text for discussion. Sea level data 

from Van Sickel et al., (2004).



Summary

Reduced oxygen content in the water column can be ruled out as the forcing factor 

behind the deposition of the Tartan and Waipawa formations, as can extremely shallow 

water depths which preclude oxygen depletion.

Both  transgressive  and  regressive  sea  level  change  are  able  to  explain  the 

deposition  of  the  Tartan  and Waipawa Formation;  however,  the  increased  terrestrial 

content of the sediment indicates transgression with increased erosion. On a regional 

scale,  transgression  better  explains  the  glauconite  content  and  localised  reducing 

conditions.

The  anoxic  conditions  in  Pakaha-1  also  correspond  to  an  increased  terrestrial 

component. Such anoxic conditions suggest that depths were likely significantly deeper 

than 50 metres, and possibly several hundred metres deep.

A regressive model cannot be ruled out, but overall a transgressive model appears 

to fit better with the geochemical properties of the Waipawa Formation, with increased 

terrestrial input coming from erosion of nearshore swamps.

6.4. Discussion of trace metals

Effects of thermal maturation on trace metals

The  Waipawa  Formation  has  been  the  source  of  oil  in  several  New  Zealand 

Basins, including that in the Kora structure in the Taranaki Basin (Killops et al., 1994) 

and the Waitangi oil seeps in the East Coast Basin (Rogers et al., 1999). Frankenberger 

(1994) measured trace elements in oils from both Kora and the Waitangi oil seep, and a 

comparison between the TM content of the oil and of the Waipawa Formation at Angora 

Quarry is shown in figure 6.4.1.

Overall  none of the elements which were measured both in this  study and by 

Frankenberger  (1994) were present in high concentrations in  the oils.  Having lower 

concentrations in the oil than in the rocks suggests that the overall mass lost though oil 

expulsion has the net affect  of increasing trace element  concentration in the mature 

source rock; however, this effect is very small.
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This  is  a  simplification  as  the  oil  has  migrated,  there  is  potential  for  the 

composition of the oils  to  have changed during migration,  and the concentration of 

elements within the Waipawa Formation may vary from place to place.
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Figure 6.4.1:  Trace metal composition of oils divided by the comparison to the Waipawa 

Formation at Angora Quarry. Oil concentrations are from Frankenberger (1994).



Chapter 7

Conclusions

7.0. Angora Quarry section.

• There was no significant change in redox conditions during the deposition of 

the Angora Quarry section of the Waipawa Formation. This rules out anoxic conditions 

caused by upwelling, as suggested in the model of Killops et al., (2000) for deposition 

of the Waipawa Formation.

• The  section  1  km  upstream  from  Angora  Quarry  was  somewhat  oxygen-

depleted  in  comparison  to  samples  in  the  quarry.  This  assessment  is  based  on  the 

enrichment in As, V, U, Cr, Ag, Sb and Se in both AE and EF graphs, as well as the  

significantly  lower  Ce/La  and  Gd/Eu  ratios  than  in  all  other  samples.  The 

paleogeographic distance, and exact stratigraphic relationship is unknown, however, as 

the two sets of samples are separated by a fault.

• Low CaO and SO3 concentrations through the Waipawa Formation at Angora 

Quarry indicate very rapid deposition with little biological calcite and with little marine 

organic  matter  indicated  by  the  low  sulphur.  Terrestrial  clays  increase  through  the 

section, as indicated by the Al2O3.

• SO3 from this study together with TOC values from Leckie (1992) indicate 

that the organic matter from the Waipawa Formation is largely of terrestrial origin. This 

agrees with data presented by Elgar (1997), who found 90% structured organic matter in 

his sample from Angora Quarry in a visual kerogen analysis. Al2O3 values sorted by 

colour  of the sample as  an indicator  of TOC content  shows that  the terrestrial  clay 

content covaries with colour and by extension likely with TOC.

• There is no evidence for a change in terrestrially sourced minerals; the ratios 

of the detrital  elements remain largely constant. However there is larger amounts of 

terrestrially sourced elements during the deposition of the Waipawa Formation.
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7.1. Kawau-1A.

• The gamma ray spike characteristic of the Tartan Formation can be correlated 

in  the  Great  South  Basin  well  Kawau-1A with  purely  detritally-sourced  elements, 

suggesting that it is indicative of increased terrestrial input.

• Kawau-1A was  deposited  under  oxygen-depleted  conditions;  however  it  is 

unlikely  the  conditions  were  completely  anoxic  due  to  the  absence  of  sedimentary 

pyrite.

• Similarities  in  the  scale  of  variations  between  Ni  and  Cu  in  the  Tartan 

Formation at Kawau-1A and the Waipawa Formation at Angora Quarry where observed. 

With only two samples at Kawau-1A confirming whether this correlates is impossible.

• Similarly  to  Angora  Quarry,  no  change  in  sediment  source  was  noticed, 

however there is a variation of a factor of 5 in the amount of terrestrial indicators in 

individual samples.

7.2. Pakaha-1.

• The gamma ray log correlated with the detritally-sourced elements, confirming 

the correlation noticed in Kawau-1A.

• Only material from one sample in the Tartan Formation remained in Pakaha-1 

to be analysed, in this sample there was no indication of oxygen depletion.

• The sample above the Tartan Formation in Pakaha-1 contained indicators for 

both oxygen depletion (enhanced As, U, V, Sb and Se) and anoxic conditions (enhanced 

Mo, Bi, Cu, Cd, Ni and Co), indicating it was likely deposited under anoxic conditions.

• A spike in Rb was noticed in the Tartan Formation sample, the cause of this is 

uncertain, it may indicate a different terrestrial mineralogy or may indicate the presence 

of a single mineral which due to the small sample size caused a large spike. The Rb 

measurement may be related to Tl with an R2 correlation of 0.88.
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7.3. Depositional environment.

• Oxic conditions during deposition of the Waipawa and Tartan formations at 

Angora  Quarry  and  at  Pakaha-1  do  not  fit  with  the  upwelling  model  proposed  by 

Killiops et al., (2000).

• Time-equivalent glauconitic sandstones to the Waipawa and Tartan formations, 

and the dysoxic conditions in the shallow suggested depositional environment in the 

Great South Basin are difficult  to reconcile with the regressive model of deposition 

proposed by Schiøler et al., (2010).

• The  present  study  supports  a  transgressive  model  where  rising  sea  level 

flooded  low-lying  swamps  and  peats.  Rapid  erosion  and  redeposition  diluted  the 

biological  CaO and SiO2 contents  at  Angora  Quarry.  In  the  Great  South Basin,  the 

foraminifera  Cyclammina elegans is  interpreted as indicating 0-20m water  depth by 

Raine et al., (1993). However, oxygen depletion must be significantly below wave base, 

a depth significantly deeper than 50 m is suggested for oxygen depletion by Demaison 

and Moore (1980). The erosion of peat swamps during transgression may have limited 

deposition of sediments in the shallow water with shallow water indicators washed into 

deeper waters.

Increased terrestrial clays are often indicators of marine transgressions, as is also 

observed later in the Early Eocene as marl layers in the Amuri Limestone (e.g. Nicolo et  

al., 2007).

• The overall low enrichment factors in samples which were deposited under 

oxygen-depleted  conditions  are  orders  of  magnitude  lower  than  those  presented  by 

Brumsack (2006), and may indicate very rapid deposition with no present day analogue. 

The closest analogue found was an Early Eocene unit (Gravilov et al. 1997) on which 

the transgressive model proposed in this thesis is based.

7.4. Trace metals in sediments.

• Defining the local background is rarely done in the literature; however, local 

background can vary significantly from “average shale” and other standards. Without 
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defining  local  backgrounds,  comparisons  across  regions  cannot  be  done  without 

introducing biases into the data.

• The large variation in detrital element concentration at Kawau-1A shows the 

difference  between  the  enrichment  factor  (EF)  and  the  absolute  enrichment  (AE) 

formula, especially in regards to the uppermost sample. While EF data has been the 

conventional way of displaying data, in regions where background content varies the 

use of AE is more appropriate.

• Ternary diagrams provide a useful way to calculate absolute enrichments of 

elements  affected  by multiple  processes.  Intersection  points  on  the  ternary diagram 

allow the effects of some processes to be quantified, (e.g. biological Ca/Sr ratio), and 

the identification of other processes which form straight lines on a ternary diagrams 

may  aid  in  working  out  which  processes  occurred  in  ancient  sediments  during 

deposition

• Ga and Ba behave in a similar way, and at Angora Quarry they appear to be 

affected  by the  same two processes,  detrital  input  and biological  enrichment.  On a 

ternary diagram Ga, Ba and Al2O3 plotted in a straight line, with an R2 coefficient of 

0.97. The relationship between Ba and Ga could not be confirmed in other localities 

however, and variation in detrital background composition is a problem.

• Previous studies have not included W among the trace elements measured. In 

the present study, Kawau-1A showed a direct correlation between W and Bi with an R2 

coefficient of 0.93. In contrast, Pakaha-1 showed no such correlation, although a peak in 

W  occurred  in  the  sample  above  the  Tartan  Formation,  the  same  sample  with 

enrichment in Bi and other anoxic indicators. W thus appears to behave in a similar way 

to Bi, and to show enrichment in sedimentary pyrite. As W is a chalcophile element, 

enrichment in pyrite is expected.

• Comparison of the trace metal concentrations of three oils sourced from the 

Waipawa  Formation  with  the  average  concentration  of  the  same  elements  in  the 

Waipawa Formation at Angora Quarry indicates that oils have between one and five 

orders of magnitude lower concentrations. Assuming concentrations did not vary much 

during migration, oil expulsion would have only a minor effect on source rock trace 

metal concentrations through a minor loss of mass.
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7.5. Future work.

This  study  raises  several  questions  which  require  future  work  on  both  the 

Waipawa Formation and on trace metals in general.

• Other evidence for sea level change around New Zealand during the deposition 

of the Waipawa Formation should be examined, to confirm either the transgressive or 

regressive model.

• More inorganic geochemistry studies on the Waipawa Formation are needed to 

better  understand  the  lateral  variations  in  the  lithology.  Studies  would  have  to  be 

conducted  on  sequences  through  the  Waipawa Formation,  including  samples  where 

possible from both the adjacent Whangai and Wanstead formations.

• Investigation should be made into whether the REE anomaly in the A-A-13 

sample at Angora Quarry is just a local phenomenon or whether it occurs elsewhere.

• Ga and Al measurements should be included in studies of Ba to determine 

whether the relationship noted on ternary diagrams here can be used to better correct 

data for detrital Ba content.

• Further  investigation of  the impact  on trace metal  concentrations in  source 

rocks to the trace metals in oils needs to be made to investigate the impacts on thermal 

maturity on trace metal content. Bitumen extracted directly from a known source rock 

may prove useful for this.

• Re, Ag, and Au are indicators of oxygen depletion but were below significance 

level when measured. They showed similar trends to related elements and future work 

could look at measuring these more accurately in the Waipawa and Tartan Formations.
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Previous S and TOC data
Sample Formation S% TOC Sample Formation S% TOC
KR1 Waipawa 1.71 4.34 NE131 Waipawa 0.58 3.84
KR128 Waipawa 0.59 3.08 NE23 Waipawa 1.50 4.99
KR13 Waipawa 2.03 4.31 NE26 Waipawa 0.15 1.16
KR14 Waipawa 1.62 4.32 NE31 Waipawa 1.90 3.69
KR15 Waipawa 2.50 3.78 NE33 Waipawa 1.39 1.3
KR16 Waipawa 2.62 3.17 NE37 Waipawa 1.86 2.42
KR17 Waipawa 1.97 1.28 NE4 Waipawa 1.61 1.35
KR20 Waipawa 1.40 5.81 NE40 Waipawa 1.14 3.89
KR44 Waipawa 1.29 5.99 NE43 Waipawa 1.01 5.58
KR46 Waipawa 1.28 3.54 NE44 Waipawa 1.25 3.17
KR54 Waipawa 1.20 2.89 NE45 Waipawa 1.50 4.24
KR7 Waipawa 2.01 4.62 NE48 Waipawa 0.47 3.27
KR93 Waipawa 1.17 1.97 NE54 Waipawa 0.76 5.58
KR12 Wanstead 0.42 0.2 NE63 Waipawa 1.23 3.79
KR18 Wanstead 0.93 0.98 NE1 Waipawa?? 0.13 0.77
KR26 Wanstead 0.06 0.08 NE141 Wanstead 0.01 0.19
KR33 Wanstead 0.01 0.12 NE18 Wanstead 0.04 0.15
KR42 Wanstead 0.05 0.06 NE22 Wanstead? 0.33 0.24
KR5 Wanstead 0.14 0.35 NE55 Wanstead 0.03 0.2
KR8 Wanstead 0.85 0.47 NE58 Wanstead 0.07 0.03
KR134 Whangai (POR) 0.13 0.75 NE62 Wanstead 0.01 0.22
KR113 Whangai (RAK) 0.83 0.81 NE49 Whangai 0.41 0.96
KR121 Whangai (RAK) 1.24 0.87 NE50 Whangai 0.39 0.84
KR28 Whangai (RAK) 1.14 0.9 NE53 Whangai 0.65 0.88
KR29 Whangai (RAK) 1.01 0.83 NE56 Whangai 0.74 0.93
KR30 Whangai (RAK) 1.11 0.92 NE32 Whangai (other) 0.55 0.73
KR31 Whangai (RAK) 1.02 1.07 NE121 Whangai (RAK) 0.80 1.29
KR32 Whangai (RAK) 1.20 0.93 NE136 Whangai (RAK) 0.74 1.02
KR55 Whangai (RAK) 0.34 0.93 NE144 Whangai (RAK) 0.90 1.64
KR6 Whangai (RAK) 1.00 0.85 NE24 Whangai (UCM) 0.98 1.3
KR9 Whangai (RAK) 1.24 0.96 NE46 Whangai (UCM) 0.61 0.95
KR100 Whangai (UCM) 0.77 0.83 NE113 Whangai (UCM) 0.79 1
KR49 Whangai (UCM) 0.98 1.18 NE111 Whangai? 0.39 0.76
KR57 Whangai (UCM) 0.75 1.26

Rogers (1995) Elgar (1997)
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Appendix B

Preliminary study on Kawau-1A

Trace metal variations through the Tartan Formation, 
Kawau-1A, Great South Basin, New Zealand: Implications for 

the depositional environment.

Abstract

The Tartan Formation is a Late Paleocene organic-rich mudstone found in the Great 

South and Canterbury basins. It is often considered to be the lateral equivalent of the 

Waipawa Formation which occurs in many sedimentary basins New Zealand-wide and 

is an important hydrocarbon source rock. The depositional environment of the Tartan 

and  Waipawa formations  has  been  of  much  debate;  however,  it  has  been  generally 

accepted  that  anoxia  is  the  most  likely  explanation  for  the  high  organic  matter 

preservation. In the Great South Basin limited availability of samples from hydrocarbon 

exploration  wells  and  the  lack  of  outcrops  hinder  detailed  analyses  of  the  Tartan 

Formation.

The cause of the anoxia is unclear and studies have reached different conclusions. 

Recent research has identified much of the organic matter as terrestrial, and suggested a 

possible change in sediment source causing the organic mater enrichment. This differs 

from  earlier  studies  which  have  generally  considered  the  organic  mater  to  be  of 

predominantly marine origin. Whether an influx of organic matter caused the anoxia or 

Whether the anoxia was caused by something else and then allowed better organic mater 

preservation is currently uncertain.

This study used inductively coupled plasma mass spectrometry (ICP-MS), to examine 

trace metal variations in eight side wall cores from the Kawau-1A exploration well in 

order  to examine the depositional  environment  of  the Tartan Formation.  The results 

show significant  enrichments  in  26 of  the  32 trace metals  measured  throughout  the 

Tartan Formation, but when normalised to the background detrital concentrations, both 

enrichments and depletions are noticed.

The highly accurate ICP-MS equipment allowed measurement of twelve of the trace 

Appendix B BII



metals which are not routinely measured in sediments (Bi, Nb, Hf, Rb, Sb, Sn, Sr, Ta, 

Tl,  W, Y and Zr). Many of these have no removal mechanism suggested are poorly 

understood, or very rarely fractionated in nature. The concentration of those elements 

which are rarely fractionated in nature can be used to normalise the other trace metal 

concentrations.  As  Al  was  too  highly  concentrated  to  be  measured  by  ICP-MS, 

enrichment factors in this study were calculated using Hf, Zr and Ti. As this is a new 

technique this approach will be examined in more detail during the thesis research.

Of particular interest is the enrichment of both Zr and Hf by more than a factor of 

two. As these elements generally do not fractionate in nature, anoxia is probably not 

responsible  for  the  enrichments.  Thus  a  change  in  sediment  source  or  a  change  in 

sediment sorting would be more likely models to explain their enrichments.

The enrichment  factors  are  generally on a smaller scale  than those reported from 

studies on other black shales. This may indicate rapid deposition allowing less time for 

redox,  biological  and early diagenetic  enrichment  processes  to  affect  the  sediments, 

and/or a different depositional environment from the standard models for black shale 

enrichments.

1.0 Introduction

The Tartan  Formation  is  an  organic-rich  mudstone  found in  the  Great  South  and 

Canterbury  basins.  It  is  laterally  equivalent  to  the  Waipawa  Formation  which  is 

considered to have been deposited on the outer shelf to upper slope environment around 

Late Paleocene New Zealand (Killops et al., 2000).

The depositional environment of the Tartan Formation is of particular interest due to 

previous studies not having reached a consensus on the paleoceanographic facies that 

the Tartan and Waipawa formations represent. Aspects of the depositional environment 

such as relative sea level are uncertain, and it is unknown whether the Tartan Formation 

represents  high  stand,  regressive,  or  transgressive  sea  level  change.  Schiøler  and 

Roncaglia (2008)  suggested  that  all  these  interpretations  of  relative  sea  level  were 

plausible.

A recent  study by  Schiøler  et  al.  (2010)  suggested  that  deposition  of  the  Tartan 

Appendix B BIII



Formation  occurred  during  peak  regression  in  the  Thanetian.  This  conclusion  was 

reached through study of a broad range of aspects of the Tartan Formation including 

type of organic matter.

Aspects such as the oxygen availability during deposition are of particular interest 

due to high total organic carbon (TOC) values (e.g. Meadows. 2008). Most authors have 

suggested an anoxic environment possibly linked to a regional upwelling, but except for 

the high TOC values, direct evidence of anoxia has not so far been found in the Tartan 

Formation.

Trace  metal  variations  are  complex and governed by redox sensitivity,  biological 

cycling, diagenetic processes, and the precipitation of other minerals (e.g. sulphates and 

phosphates) at  the sediment  water  interface (e.g.  Brumsack,  2006;  Ross and Bustin, 

2009; Turgeon and Brumsack, 2006).

This project is a preliminary study of trace metal variations in the Tartan Formation, 

focusing on samples  from the Kawau-1A hydrocarbon exploration well  in the Great 

South Basin. This well is one of five wells in the Great South Basin which encountered 

the  Tartan  Formation.  The  present  study  examined  a  comprehensive  suite  of  trace 

elements  in  order to  assess  the feasibility of  examining enrichments  in trace metals 

through the Tartan Formation.

2.0 Kawau-1A: summary

Kawau-1A was drilled in 1977 by Hunt International Petroleum Co NZ. The well was 

located 250 km south-south-east of Stewart Island, in ~680 m water depth. The well was 

drilled  to  3826  mrkb  (meters  below  rotary  kelly  bushing),  encountering  the  Tartan 

Formation between 2220 and 2264 mrkb (Cook et al., 1999).

Kawau-1A has more available side wall core material from the Tartan and adjacent 

formations than other exploration wells in the Great South Basin, and thus was chosen 

for this preliminary study. The wells were all drilled more than 30 years ago, and many 

other studies have used up the bulk of the side wall core material.

Appendix B BIV



Four side wall cores (SWC) runs were made at different times during the drilling; the 

samples in and around the Tartan Formation are from the fourth run only (Table 1). 

Samples 23/4 and 24/4 were not analysed as all the side wall core material had been 

previously used up.

Samples from Kawau-1A have been used in many studies, including that of Meadows 

(2008)  who  measured  %C,  %N,  δ13C,  and  TOC.  No  comprehensive  trace  or  major 

element work has yet been carried out on these side wall core samples.

An accurate age is not known for samples of either the Tartan or laterally equivalent 

Waipawa Formation. The best estimate is that the deposition represents a shorter period 

of time between two nano fossil  horizons at 58.7 and 55.8Ma (Schiøler et al., 2010). 

These dates agree with ones in the East Coast Basin (Hollis et al., 2005). The base of the 

Tartan Formation in Pakaha-1 well in the Great South Basin is older than the other wells 

(Schiøler et  al.,  2010).  There have been fewer comprehensive studies  on the Tartan 

Formation in the Great South Basin than on the Waipawa Formation in the East Coast 

Basin,  as  the  only  samples  of  the  Tartan  Formation  come  from  five  hydrocarbon 

exploration  wells,  Pakaha-1,  Kawau-1A, Hoiho-1C,  Toroa-1 and Pukaki-1.  Pukaki-1 

had no side wall cores shot in the Tartan but cutting samples are available.

3.0 Background to trace metal enrichment in sedimentary rocks

Appendix B BV

Table 1) Side wall core samples depths and information on them from Hunt (1977). 
Samples in grey were analysed here, with the darker grey being the Tartan Formation.

SWC descript ion (as in original well report)

15/4 7984 2433.5
16/4 7830 2386.6 shale, light grey-tan as above, light  increase in carbonaceous part ings.

17/4 7794 2375.6 Shale light grey-tan as above

18/4 7550 2301.2

19/4 7424 2262.8

20/4 7350 2240.3

21/4 7276 2217.7

22/4 7220 2200.7 Shale, very light grey, as above

23/4 7195 2193.0

24/4 7176 2187.2

25/4 7153 2180.2

26/4 6912 2106.8

depth feet(rkb) depth mrkb
Shale, light  grey-tan, firm, blocky, slightly calcareous, t race mica, 
pyrite, glauconite. Few carbonaceous part ings

shale, light-medium grey as above. Non calcareous, no carbonaceous 
part ings.
Shale, chocolate brown, firm, sub fissie-blocky, non calcareous, 
carbonaceous, micaceous, rare t race glauconite. Slight  gas odour.
Shale, chocolate brown as above, some laminat ions of dark grey-
brown very micaeous shale. Slight gas odour.
shale, very light  grey, firm, soft , semi-waxy, think laminat ions, sub 
fissile. Rare carbonaceous inclusion. T race pyrite. Non calcareous.

Shale light grey-tan as above, becoming predominant ly soft . Very 
thin laminat ionsshale, very light  grey-buff, soft , semi-waxy, very thin laminat ions 
sub-fissle, very slight  t race carbonaceous inclusions. T race mica, 
pyrite

shale very light  grey, very soft , thin laminations as above, black 
carbonaceous part ings.
shale, very light  grey, firm to soft  as above. Black carbonaceous 
part ings, micaceous, pyrit ic.



Trace metal enrichments have been studied in anoxic sediments for over 50 years 

(e.g.  Goldschmit,  1954).  Many  different  reasons  for  variations  in  trace  metal 

concentration  have  been  noticed  over  the  years,  but  there  are  four  major  processes 

which  enrich  or  deplete  trace  metals.  These  are  enrichment  from  organic  mater, 

diagenetic processes, redox sensitivity in the water column and upper sediments, and 

inclusion  into precipitating minerals.

Most trace metals are enriched by several different processes, but by studying a suite 

of  different  trace  metals  it  is  possible  to  separate  some of  the  processes  and make 

inferences  about  the  depositional  environment.  The  following  section  provides  a 

summary  of  why  trace  metals  vary  in  anoxic  sediments.  Some  trace  metals  have 

undergone much study (e.g. Cd, and Mo) while others (e.g, W) have not been measured 

before in any anoxic sediments. 

The  sediments  in  silicate  rocks  are  generally  dominated  by terrestrial  input  with 

relatively minor input from biological tests. This detrital clastic debris is thus usually 

silicate  and  aluminium-rich.  An  assumption  is  generally  made  that  Al  is  derived 

completely from detrital  aluminosilicate  sources.  Although  this  assumption  may not 

always be accurate, Al makes up a large weight percentage of the sediments, and thus 

any added by another  method is  generally  insignificant.  Plotting  aluminium against 

other elements which are also purely detrital  should give a straight line through the 

origin (e.g. Dean et al., 1997). This of course relies on the assumption that the sediment 

source  and sorting  remain  constant,  as  any change in  these  change the  background 

detrital minerals and thus affects the background element composition.

Variations in trace element composition due to shifts in the redox equilibrium of the 

sea water are seen mainly in anoxic settings. There are two different anoxic settings 

which can produce different trace metal signatures (e.g. Brumsack, 2006). Theses are an 

open system which has a continuous supply of water which gets oxygen depleted but 

moves through the system (e.g. the Peruvian upwelling,  Böning  et al., 2004), and an 

anoxic basin where evaporation is the main process which removes the water (e.g. the 

Black Sea, Brumsack, 1989). Figure 1 shows both the classic anoxic basin and the open 

ocean upwelling.

In an anoxic basin environment  (Figure 2),  most  trace elements entering into the 
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system must be included into the sediments in one way or another. Water enters the 

system and is usually evaporated. In some anoxic basins there is an outflow, which may 

cause  some  depletion  of  those  elements  (e.g.  Mn)  which  are  more  stable  in  oxic 

conditions and are reduced out of the sediments in anoxic conditions. When evaporation 

is the only way for water to leave the system (e.g. in the Dead Sea; Herut et al., 1997), 

even elements such as Mn are not depleted in the sediments. The enrichment factors 

(how much the trace metals are enriched) are dependent in anoxic basins on the rate of 

deposition,  the  rate  of  evaporation,  and  the  concentration  of  elements  in  the  water 

(Brumsack, 2006).

Anoxic basins often have high H2S in the water as well as in the sediments, and this 

can  cause  a  more  intense  precipitation  of  sulphates  (e.g.  Brumsack,  2006).  The 

precipitation of sulphates is a very effective removal mechanism for many trace metals.
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Figure 2) a schematic showing the basic redox 
processes governing trace metal in anoxic basins.

Figure from Brumsack 2006

Figure 1) Two anoxic settings, an anoxic basin, where water enters, but is only removed 
by evaporation wherein all elements must be precipitated, and an upwelling-stem where 
water  cycles  through  the  system,  both  enriching  and  depleting  some  trace  elements 
system.



Upwellings (Figure 1) have the potential to cause anoxia by introducing oxygen-poor 

nutrient-rich  water  from  the  deep  ocean  into  the  photosynthetic  zone,  enhancing 

biological productivity which consumes the oxygen (Demaison and Moore, 1980). The 

result  is  an  oxygen  minimum layer,  above  which  oxygen  again  becomes  available 

through interaction between the water and the atmosphere. The still, nutrient-rich water 

boosts productivity. High productivity can also influence trace metal deposition and is 

generally referred to as biocycling (Brumsack, 2006).

Two major types of upwellings which cause different trace metal enrichments, were 

identified by Brumsack (2006), and are depicted in Figure 3. They are basic upwelling 

(Figure  3A) and upwelling  over  an  extended shelf  (Figure  3B).  The extended shelf 

environment often allows more intense enrichment as H2S can survive at the sediment 

water interface and thus allows the precipitation of sulphates. Aside from H2S there are 

very few differences  between the  enrichment  processes  active  on  an  extended shelf 

compared to a narrow shelf

While anoxic basins generally cause enrichments in a wider range of elements than in 
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Figure  3) Trace  metal  enrichments  coastal   in 
upwellings,  A on a narrow shelf,  B on a extended 
shelf.

Figure from Brumsack, 2006.

A

B



upwelling conditions, some elements can be considerably more enriched in upwellings 

than in anoxic basins. Anoxic basins are limited by the amount of trace metals carried 

into the system by water  and sediments,  with little or no water  cycling through the 

system; in  upwellings  water  gets  cycled  through the  system providing a  continuous 

supply of trace metals which can be reduced into the sediments (Brumsack 2006).

The  overall  enrichment  and  depletion  processes  that  govern  trace  metal 

concentrations occur at different levels throughout the sediments. The depths that these 

occur  at  are  generally  dependent  on  porosity,  sedimentation  rate,  and  depth  of  the 

oxic/anoxic boundary (Böning et al., 2005).

In  average  marine  oxic  conditions  oxygen  is  abundant  in  the  top  tens  of  cm of 

sediments,  allowing  areobic  life  to  flourish.  Below  the  oxygen  layer  less  efficient 

sulphate-reducing bacteria take over, and below this the even less efficient CO2-reducing 

bacteria become dominant (Demaison and Moore, 1980). The tens of cm of sediments 

above the oxic/anoxic boundary limit water flow. 

In  anoxic  conditions  the  sulphate-reducing  bacteria  are  at  or  near  the  surface, 

precipitating out sulphates and phosphates. This process enriches many trace elements 

in the precipitates, especially while fresh nutrient-rich water cycles through. Restricting 

this flow (e.g. by putting more sediments between the oxic/anoxic boundary) limits the 

trace metal enrichments (e.g. Morse and Luther, 1999).

Anoxic  conditions  are  also  favourable  for  the  preservation  of  organic  matter  in 

sediments (Demaison and Moore, 1980).

3.1 Processes governing trace metal variation in sedimentary rocks.

Silver (Ag) is generally enriched in all anoxic sediments (Brumsack, 2006); however, 

it  is  a  poorly  studied  trace  metal  in  organic  rich  sediments.  Böning  et  al.  (2004) 

suggested the main factor in enriching Ag off the coast of Peru was biocycling above the 

oxygen minimum layer caused  by the local upwelling. McKay and Peterson (2002) 

suggesting the main control on Ag precipitation was the increase of Ag with depth in the 

water column. Böning et al. (2005) suggested the increase with depth may be related to 

the deposition of opaline silica, which also increases with depth, but that changes in 
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redox conditions can also influence the concentration of silver.

Morford et al. (2008) collected sediments from a transect off the west coast of North 

America purely to study the Ag enrichments in both the pore water and in solid state in 

the top 30cm of sediment. They noted a potential relationship with Ag, and discovered 

significantly enriched solid state Ag near the base of the upwelling, but concluded that 

the relationship was more complex and required more study.

Arsenic (As) is generally enriched in organic rich sediments (Brumsack, 2006). Off 

the coast of Peru, As was found to be enriched mainly through diffusion, and the limited 

enrichments was mainly due to sea water availability and not saturation of arsenic in the 

sediments (Böning et al., 2004). Huerta-Diaz and Morse (1992) found that very little As 

is in the poor fluids in anoxic conditions but that most of it is deposited with pyrite 

precipitation. Morse (1994) showed that the oxidation of sedimentary pyrite will release 

most of the As in a very short period of time. This type of oxidation occurs naturally 

during  sediment  resuspension  or  in  seasonally  anoxic  regions.  In  outcrop  As  is 

considered relatively stable during the weathering of black shales as it has two solid 

states and with leaching tests showed less than 1% loss upon oxidation (Lavergren et al., 

2009).

Gold (Au) is a very poorly studied trace metal in sediments in general. Koide et al. 

(1986) noted a considerable enrichment of Au in hydrothermal sulphides and suggested 

an involvement of sulphides in the precipitation. Mao et al. (2002) noted a factor of 100 

enrichment  over  standard  continental  crust  in  a  sulphide  layer  in  Lower  Cambrian 

marine black shales from south China.

Jean and Bancroft (1985) noticed solid Au forming on the surface of sulphides on 

individual irregularities, forming relatively quickly and efficiently. They suggested that 

sulphide can act as the reducing agent.  Springer (1985) suggest that there may be a 

relationship between organic carbon and Au precipitation when carbon flakes were seen 

to be coated in Au in a sedimentary Archean black argillite. The mechanism which is 

responsible for this is unknown; it is uncertain whether the carbon flakes are of  organic 

origin or not, but hydrocarbons in the rock indicate that an organic origin is likely.

Bismuth  (Bi)  is  generally  enriched  in  sediments  beneath  upwellings  (Brumsack, 

2006). Bi was mentioned as being more closely related to sulphur than organic carbon 
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(Heinrich  et al.,  1980), but very little more work has been done on it and it is rarely 

studied in organic-rich sediments. Hindering the understanding of Bi in recent sediments 

is  the enrichment  caused by anthropogenic input  from mining (Böning  et  al.,  2004, 

2009).

Cadmium  (Cd)  is  enriched  in  several  ways  under  anoxic  conditions.  The  most 

important is the inclusion of Cd into sulphides (e.g. Heinrichs  et al., 1980; Kreming, 

1983). Heinrichs et al. (1980) showed that Cd was more closely related to sulphur than 

to organic matter in black shales. It also can accumulate in phosphates (Nathan et al., 

1997) which explains some of the differences which are seen in Cd enrichments relative 

to other trace elements that are included in sulphates (Turgeon and Brumsack, 2006). 

Cadmium is also involved in biocycling, and is often associated with plankton growth 

(Calvert and  Pedersen, 1993).

Cobalt  (Co)  is  included  into  sulphides,  and  can  thus  be  enriched  in  sulphur-rich 

anoxic  conditions  (Kreming,  1983).  In  sulphur-poor  anoxic  conditions  Co  behaves 

similarly to Mn, and in upwellings it is generally depleted (Böning et al., 2004).

Chromium (Cr) is enriched almost purely because of redox sensitivity. It exists in two 

main forms in the oxic ocean, as CrO4
2- and to a lesser extent Cr(OH)2

+(H2O)4. However 

under reducing conditions, it generally forms Cr (H2O)4(OH)2
+ (Elderfield, 1970), and is 

quickly moved into the sediments (Calvert and Pederson, 1993). For Cr to be effectively 

scavenged  into  sediments,  the  pore  waters  must  be  completely  anoxic  (Morse  and 

Luther, 1999).

Copper  (Cu)  is  a  micronutrient  (e.g.  Calvert  and  Pederson,  1993)  and  is  thus 

generally enriched in many anoxic environments. Off the coast of Peru biocycling above 

the oxygen minimum zone is suggested to be the main reason for its enrichment (Böning 

et al., 2004). Cu can also included into sulphides (e.g. Morse, 1994). Another factor 

which can complicate its enrichment is an increase in the concentration of Cu in sea 

water with depth (Calvert and Pederson 1993).

Hafnium (Hf) and niobium (Nb) have rarely been measured in sedimentary rocks and 

no enrichments have been noticed. Hf and Nb are usually immobile, and are not affected 

by diagenetic, redox or weathering processes (e.g. Ross and Bustin, 2009).
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Manganese  (Mn)  in  modern  sediments  is  generally depleted  in  oxygen minimum 

zones (e.g. Böning et al., 2004;  Brumsack, 2006; Huerta-Diaz and Morse, 1992). Mn 

gets dissolved from the sediments and transported along the oxygen minima layer to a 

more oxygen rich waters.  The processes involved in Mn enrichment or depletion are 

complex. Enrichment of Mn in sediments usually correlates positively with Fe and Co 

(Roy, 1992).

Mn2+ is the reduced form of manganese and is generally soluble in sea water, but 

easily oxidised to Mn4+ (Huerta-Diaz and Morse, 1992), which is more stable as a solid 

state and often forms manganese nodules. MnO2 is the most common form of solid Mn 

in nature,  but this  is not stable in reducing conditions. Thus, generally in upwelling 

environments a Mn depletion is observed, but bacteria utilising solid state sulphate can 

oxidise Mn. With the lack of oxygen in reducing conditions, Mn4+ formed by bacteria is 

precipitated into calcites or sulphates with only ~20% remaining in the water (Aller and 

Rude, 1987).

Molybdenum (Mo) is a highly studied trace metal in anoxic sediments. It is found to 

be  strongly enriched,  and usually  included in  sulphides  (e.g.  Elbaz-Poulichet  et  al., 

2005). Mo is enriched in both upwellings (e.g. Böning et al., 2004), and in anoxic basins 

(Elbaz-Poulichet et al., 2005).

MoO4
2- is diffused into the sediments forming MoS4

- (Erickson and Helz, 2000) and 

then  later  forms  Mo-Fe-S  cuboïdal  clusters  on  pyrite,  from which  it  is  reduced  to 

Mo(VI) to stabilise the structure (Vorlicek et al., 2004). Crusius et al. (1996) found that 

enrichment  of  Mo  begins  at  ~1cm  below  the  sediment  water  interface  in  anoxic 

environments, and at >10cm in sub-oxic to oxic environments.

Nickel (Ni) is considered a micronutrient in the oceans and is important to plankton 

growth. In anoxic conditions it is also incorporated into sulphides, but requires a solid 

surface to precipitate  on (Calvert  and Pederson, 1993).  Ni can also be correlated to 

oxyhydroxides in the water column, which are dissolved in the pore waters (Calvert and 

Pederson, 1993).

Lead (Pb) is generally related to sulphur in anoxic sediments (Heinrich et al., 1980) 

and has a short residence time in the ocean (Schaule and Patterson, 1981). The residence 

time  is  likely  to  be  due  to  lead  being  rapidly  scavenged  by  biogenic  particles 
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(Brumsack, 1989;  Böning  et al., 2004). In modern sediments any enrichment due do 

anoxia is comparably less than the enrichments due to anthropogenic input (Böning et  

al., 2004).

Rubidium (Rb) is relatively poorly studied in anoxic sediments, but was shown to be 

related to K (Plank and Langmuir, 1998), and is also generally behaves like Zr, Hf, and 

Nb. Although Rb is often measured, mechanisms of enrichment are uncertain and more 

study is required.

Rhenium (Re) is enriched in anoxic sediments, begins at 1 cm below the sediment 

water  interface  in  sub-oxic  and  anoxic  environments,  and  at  >10  cm  in  oxic 

environments (Crusius et al., 1996).  Böning et al. (2004) suggested that the enrichment 

of  Re  is  mainly  a  factor  of  sea  water  availability.  A highly  useful  aspect  of  Re 

enrichment  is  that it  starts  in suboxic environments.  Thus Re can be used with Mo 

(which  requires  completely  anoxic  conditions  to  be  enriched)  to  distinguish 

environments which are sub-oxic at the surface from those that are anoxic (Crusius et  

al.,  1996).  [ReTOT]/[MoTOT]  should be significantly higher than the same ratio in sea 

water if the sediment-water interface is sub-oxic, while the ratio should be similar to sea 

water, or sometimes lower if the sediment-water interface is anoxic (Crusaius  et al., 

1996).  The  use  of  the  [ReTOT]/[MoTOT]  ratio  is  limited  as  pyrite  concretions 

(polyframboids) form in sub-oxic environments and enrichments of Mo within these 

have also been noticed (Tribovillard et al., 2008). Before this ratio is used to form any 

major conclusions on trace elements, the type of pyrite in the sediments needs to be 

assessed to gauge which processes caused the Mo enrichment.

Antimony (Sb) is a poorly understood trace element in respect its behaviour in anoxic 

conditions (e.g. Filella  et al., 2002). Takayanagi and Cossa (1997) suggested that Sb 

may be included into manganese and iron oxide particles or sulphides. Sb is generally 

enriched  in  anoxic  environments  (e.g.  Böning  et  al.,  2004),  but  the  exact  process 

causing the enrichment is unknown.

Selenium (Se) is often enriched in upwellings, yet the reason for enrichment is not 

clear. Se is involved in biocycling (Cutter, 1989) but is also enriched at the bottom of 

the ocean in the form of Se6+, and thus upwelling intensity may be important (Crusius 

and  Thompson,  2003).  Solid  Se  is  normally  related  to  Ag;  in  sub-oxic  conditions 
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biological influences can produce AgSe or Ag2Se (Crusius and Thompson, 2003).

Tin (Sn) is a very poorly studied metal in anoxia and has been omitted from most 

trace element studies on sediments. 

Strontium (Sr) is often dependent on carbonate as it is significantly enriched through 

biological precipitation of carbonate tests,  which is a temperature dependent process 

(Plank and Langmair, 1998). Redox relationships have not been addressed for the effect 

of marine anoxia on strontium.

Tantalum (Ta) is generally unaffected by redox condtions and is generally paired with 

Nb as they are difficult  to  separate  (Ross  and Bustin,  2009).  Ta is  also very rarely 

included into marine trace element studies.

Thorium (Th) is mainly detrital in sediments but may be enriched in the hydrogenous 

Fe-Mn component of sediments (Plank and Langmair, 1998). Generally Th is not very 

strongly enriched and is often related to Hf, Nb, Zr, and Ta.

Titanium (Ti) is generally related to Al in anoxic sediments, but can be enriched in 

sediments by mechanical processes.  Ti is  often contained in heavy minerals such as 

rutile, and thus increases in Ti often indicate increase in energy (Dellwig et al., 2000). Ti 

is  also  involved  in  biocycling,  and its  exact  removal  pathway is  poorly understood 

(Brumsack, 2006). 

Thallium (Tl) is a relatively poorly studied trace element which is not included in 

many of  the  older  studies.  Heinrich  et  al.  (1980)  showed that  Tl  was more closely 

related to sulphur than to organic carbon. Thallium may also be involved in biocycling 

as suggested by Böning et al. (2004) with respect to the Peruvian upwelling, but more 

work is required to confirm this.

Uranium (U) is enriched in anoxic sediments in several ways. U enrichments in black 

shales were noticed very early (e.g. McKelvey and Nelson, 1950), and thus U is one of 

the better studied elements in anoxic conditions. U has been noted to diffuse directly 

into the sediments (e.g. Shaw et al., 1990), and to precipitate uranium salts (Disnar and 

Sureau,  1990).  Phosphates  contain  the  best  link  to  U  enrichments  in  most  marine 

sediments,  with  phosphate-rich  black  shales  considered  generally  the  most  enriched 

(e.g.  McKelvey  and  Nelson,  1950).  In  anoxic  conditions  the  limiting  factor  on  U 
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enrichment is generally its availability in sea water.

Vanadium (V)  is  always  enriched  in  anoxic  marine  settings.  Vanadium has  three 

soluble  oxidation  states  which  occur  naturally,  HVO4
2- H2VO4

- and  VO(OH)3
-  (e.g. 

Turner  et  al.,  1981).  However,  when  reduced  V is  precipitated  as  V2O3 or  V(OH)3 

(Wanty and Goldhaber, 1992). V has a strong relationship with organic matter yet its 

concentration is chiefly governed by redox sensitivity (e.g. Shaw et al., 1990). A main 

limiting factor is often sea water availability, as has been suggested for the Peruvian 

upwelling (Böning et al., 2004).

Tungsten (W) has not been studied with respect to its abundance in anoxic sediments.

Yttrium (Y) is occasionally measured in trace metal studies on anoxic sediments (e.g. 

Ross and Bustin, 2009), yet an explanation for variations of Y in anoxic sediments is 

still required.

Zirconium (Zr)  has been measured in only a few studies and enrichments have not 

generally been noted.  Ross and Bustin  (2009) have suggested that Zirconium is not 

normally enriched due to anoxic conditions, but that it should have a direct relationship 

with  Hf  and  with  other  elements  which  are  insoluble  in  both  oxic  and  anoxic 

environments.

4.0 Methods

This study examined eight side wall core samples from the Kawau-1A well (table 1). 

The samples were digested in the clean laboratory facilities at Victoria University of 

Wellington, then trace metals were measured using inductively coupled plasma mass 

spectrometry (ICP-MS).

50mg of each of the side wall core samples were taken, weighed and digested in 

hydrofluoric (HF) and nitric (HNO3) acids. The USGS BHVO-1 and BHVO-2 standards 

where also digested, and a blank was also run to check for contamination. BHVO-1 was 

used to calculate whole rock values, and BHVO-2 to calculate errors.

A minor issue was encountered with the digestion process as the organic matter was 

very sticky and would often adhere to the lids of the digestion containers. Traces of the 
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samples may have been lost in the digestion process and as this is not measurable this 

provides a potential error for the absolute concentrations of trace metals. However, as 

this  affects  all  elements  in  a  sample  simultaneously,  it  is  not  a  problem  for  the 

enrichment  factors  (EF)  calculated  later.  The following 32 elements  were  measured 

using ICP-MS in an attempt to understand the depositional environment of the Tartan 

Formation: Ag, As, Au, Bi, Ca, Cd, Co, Cr, Cu, Hf, Hg, Mn, Mo, Nb, Ni, Pb, Rb, Re, 

Sb, Se, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Y, Zn and Zr.

5.0 Results

29 of  the  32  measured  elements  gave  potentially  meaningful  results,  Zn  and  Ca 

encountered major interferences in the cleaning liquids, and Hg was not distinguishable 

from  the  background.  All  three  of  these  elements  thus  occasionally  gave  negative 

concentrations and hence were excluded from the results.

Table 2 shows the absolute errors for the trace metal measurements in percent. Most 

seem realistic, but many of the errors are too large due to poor constraints on the USGS 

BHVO-2 concentrations (taken from USGS website). The numbers below Au on the list 

are larger than what the graphs (Figure 4, 5, 6, and 7) indicate. The graphs of elements 

plotted against one another (Figure 5,6) do not support such large errors especially with 

r2 values of up to 0.994 (Figure 5) for a direct linear relationship. The red values indicate 

elements where problems were encountered or which had undetectable amounts of that 

element as explained in the above paragraph.
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Element Element Element
3.58 Zr91 7.81 Au 15

V 4.32 Nb 7.87 W 21.1
Ni 4.48 Rb 8.31 Sn 28.18
Co 4.57 Th 8.78 Pb 34.74
Ti 5.28 Ca 9.13 Bi 43.31
As 5.79 9.43 Sb 43.76
Ta 6.09 9.99 50.81
Y 6.34 U 10.24 Hg 123.92
Sr 6.36 Cu 10.49 178.24
Mn 7.13 Ag 10.5 Re 178.65
Zr90 7.67 Se 10.64 Mo 270.27

Error ±% Error ±% Error ±%
Cr

Hf
Cd Tl

Zn



Re was in very low concentrations in the BHVO-1 and BHVO-2 standards; thus the 

errors show up as far larger than is realistic. In addition for many of the elements (e.g.  

Mo) the concentration was assumed to be the same in BHVO-1 and BHVO-2 as the 

concentration has not been measured and published on the USGS website for BHVO-2.

A table showing the trace metal variations measured in the Kawau-1A samples is 

included as Appendix 1. Figure 4 shows the different trace metal variations in the eight 

samples measured.

As Al was not measured, normalising to elements was difficult. This study attempted 

to get around this by finding another element which should have a similar relationship 

as  aluminium.  Al  is  normally used  as  it  is  thought  to  be  unaffected  by enrichment 

processes  because  it  makes  up  a  structural  component  of  the  silicate  grains.  Many 

authors have commented that Ti has a direct relationship to Al (e.g. Böning et al., 2004). 

Several elements which should be stable in relation to one another and to Ti are Zr, 
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Table 2) calculated errors for trace metal variations in the Tartan Formation as calculated 
from the measurements of the USGS standards BHVO-1 and BHVO-2.

Figure  4)  Depth  profiles  of  trace  metal  variations  in  Kawau-1.  The  TOC 
measurements are from Meadows (2008). All data are plotted against depth (meters 
below rotary kelly bushing). Depths are taken from Hunt (1977).

Most of the data is presented in ppm (parts per million) apart from Mn, Ti, and TOC 
which are in weight percent.

The grey band represents the Tartan Formation. 



Nb, Hf, and Ta (as long as the source of sediments does not change). Figure 5 shows 

plots of these elements against Zr. Zr has a very strong relationship to both Ti and Hf, 

and a slightly weaker relationship to Ta and Nb.

Whether Zr, Nb, Ta or Hf are viable alternatives to measuring Al in sediments still 

needs to be confirmed in a separate study which measures both. A relationship in the 

Tartan Formation between these elements to the detrital contributions of sediments may 

prove to be more complicated. The spike in Zr, Hf, Nb and Ta (Figure 4) within the 

Tartan Formation is large and indicative of a change in sediment type, not an increase in 

the  concentration  of  detrital  sediments  as  can  occur  when  there  is  a  decrease  in 

carbonate or  TOC. High TOC values  make up a  considerable  portion of  the  Tartan 

Formation; thus if sediment source and sorting remains constant, a decrease in elements 
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Figure 5) The relationship of Zr to Hf,Ti, Ta, and Nb is approximately linear. Error 
bars have not been plotted on these graphs.

The  r2 values  are  as  follow Hf/Zr  0.9943,  Ti/Zr  0.9904,  Ta/Zr  0.8891,  and  Nb/Zr 
0.8878.



such as Zr, Hf, Nb, and Ta should be expected.

The relationship between Zr, Hf, Ti, Ta, and Nb is linear (Figure 5), and thus they can 

be assumed to be related to the detrital material in some way. Plotting these against the 

other elements will provide interesting information that at the very least should show 

which of them vary with these other elements and which vary independently or due to 

other processes.

Figure 6 shows several other sets of elements which appear to follow close to a linear 

tread  when  plotted  against  Zr.  The  two  red  points  on  each  graph  are  the  Tartan 

Formation, with the rest of the points being from adjacent  units. Using the background 

work discussed in  section  3.1  V,  Y,  and Tl  should  in  theory be  enriched in  anoxic 

conditions, and plot above the line in Figure 6, while if in the open ocean Mn should be 

depleted  and  plots  below  the  line.  While  these  elements  do  follow  this  trend,  the 

enrichment is not as great as is seen in other anoxic sediments (e.g. Brumsack, 2006). 

The  line  is  an  average  through  all  the  samples,  and  includes  the  Tartan  Formation 

samples; if these are excluded, the difference becomes more obvious.

As these results indicate anoxic conditions when plotted against Zr, an enrichment 

factor  (EF) for these samples can be calculated using a  variation of the enrichment 
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Figure 6) Close to linear concentrations of trace elements when plotted against Zr. Y, 
V, Tl, and possibly Mn when examined in more detail show a slight variation from a 
straight line when the two red points are examined in more detail. The two red points 
are the Tartan Formation and thus should have different concentrations.



factor formula generally used for trace metal enrichments. Enrichment factor is used as 

it  is  the  only  way to  attempt  to  remove  the  background  variation  introduced  from 

variations from the detrital sediment source.

The  general  formula  for  calculating  an  enrichment  factor  (EF)  is:  EF  = 

(element/Al)sample/(element/Al)average shale (e.g. Brumsack, 2006). Although average shale is 

generally used as the background, when looking at  ancient deposits it  is often more 

useful  to  look  at  the  variations  relative  to  the  local  background  as  average  shale 

composition is likely to vary with time. Concentrations of trace metals in sea water are 

not  constant  through  time  and  thus  a  local  background  from  the  overlying  and 

underlying  units  may give  more  meaningful  results  (e.g.  Brumsack,  2006).  Further, 

when plotting against local shales, the processes driving the local variations in trace 

metals may become more noticeable.

The  formula  used  here  is:  EF  =  (element/(Zr,  Hf,  or  Ti))Tartan/(element/(Zr,  Hf  or 

Ti))Adjacent units. The background values are averaged, and a separate EF will be produced 

for each of the Tartan Formation samples. This formula will give identical results as the 

original when the aluminium concentration is directly related to Zr, Hf or Ti. If Al is not 

related then this formula will give a different EF.
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Table 3) Estimates of enrichment factors in the Tartan Formation relative to the 
average background using the formula discussed in text.

Ti Ti Zr Zr Hf Hf
background Tartan 20/4 Tartan 19/4 Tartan 20/4 Tartan 19/4 Tartan 20/4 Tartan 19/4 Tartan 20/4 Tartan 19/4

Ti 0.25 0.57 0.52 - - 1.05 1.03 1.13 1.06
Zr 29.89 63.91 60.11 0.95 0.97 - - 1.08 1.03
Hf 0.904 1.797 1.761 0.89 0.94 0.93 0.97 - -
Au 0.0004 0.0012 0.0012 1.44 1.59 1.51 1.64 1.62 1.69
Re 0.0042 0.0130 0.0138 1.39 1.6 1.46 1.64 1.57 1.7
Ag 0.04 0.08 0.08 0.9 1.05 0.95 1.08 1.02 1.11
Cd 0.301 0.543 0.486 0.8 0.78 0.84 0.8 0.91 0.83
Se 0.23 0.73 0.66 1.45 1.4 1.52 1.44 1.63 1.49
Bi 0.303 0.496 0.467 0.73 0.75 0.77 0.77 0.82 0.79
Tl 0.31 0.64 0.65 0.91 1.01 0.95 1.04 1.03 1.07
Sb 0.62 0.79 0.61 0.57 0.47 0.6 0.49 0.64 0.5
Ta 0.44 0.99 0.76 1.01 0.84 1.06 0.86 1.13 0.89
W 0.902 1.360 1.371 0.67 0.74 0.71 0.76 0.76 0.78
Sn 2.13 3.13 2.86 0.66 0.65 0.69 0.67 0.74 0.69
As 2.17 7.49 6.14 1.54 1.37 1.61 1.41 1.73 1.45
U 3.19 8.47 9.36 1.18 1.42 1.24 1.46 1.34 1.51
Co 2.01 4.58 4.34 1.01 1.04 1.06 1.07 1.14 1.11
Th 4.75 8.51 9.54 0.8 0.97 0.84 1 0.9 1.03
Nb 4.94 9.16 8.74 0.83 0.86 0.87 0.88 0.93 0.91
Y 6.83 17.54 18.07 1.14 1.28 1.2 1.32 1.29 1.36
Mo 8.08 24.99 38.18 1.38 2.28 1.45 2.35 1.56 2.42
Cu 10.92 61.78 20.14 2.52 0.89 2.65 0.92 2.85 0.95
Pb 31.63 38.84 17.11 0.55 0.26 0.57 0.27 0.62 0.28
Ni 21.59 69.22 63.82 1.43 1.43 1.5 1.47 1.61 1.52
V 40.65 101.87 86.2 1.12 1.03 1.17 1.05 1.26 1.09
Rb 41.6 78.13 74.34 0.84 0.86 0.88 0.89 0.94 0.92
Cr 58.21 200.31 150.24 1.53 1.25 1.61 1.28 1.73 1.32
Sr 126.39 186.51 226.47 0.66 0.87 0.69 0.89 0.74 0.92
Mn 0.0065 0.0111 0.0109 0.76 0.81 0.8 0.83 0.86 0.85



Table  3  shows  the  calculated  enrichment  factors  using  the  different  background 

elements. The enrichment factors for many of the elements are less than 1, which is not 

normal for anoxic conditions (Brumsack 2006). Average enrichment factors are plotted 

in Figure 7.

The  depth  profiles  (Figure  4)  are  a  useful  comparison  when  explaining  these 

enrichment  factors.  Three  of  the  four  most  depleted  elements  according  to  the 

enrichment  factors (Sr,  Pb,  and Sb) show no distinctive signal throughout the depth 

profiles. Although from the absolute concentrations it appears as though 26 out of the 29 

elements are enriched. Much of this enrichment is background from the detrital material, 

and only about half the trace metals are enriched (Figure 7).

6.0 Discussion

Trace elements from sediments are generally normalised to Al to take into account the 

input  of  the  detrital  sediments.  In  this  study  this  was  not  possible  as  Al  was  not 

measured,  and Ti,  Zr,  and Hf were  used instead.  This  technique  has  not  been used 

before, but Ti has been shown by many authors (e.g. Brumsack, 2006) to be positively 

correlated to Al. Hf and Zr correlated extremely well to one another, with an r2 of 0.994 

when plotted against a straight line through the origin. Ti/Zr correlated similarly with an 

r2 of 0.990. Zr is very hard to differentiate from Hf, and processes which do differentiate 

them do not generally occur in nature. Neither are soluble in water, and thus changes in 
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Figure 7) Average enrichment factor for each of the Tartan Formation samples. The 
enrichment factors are calculated using the formula provided in the text.



redox equilibriums will have little effect their abundance (Ross and Bustin, 2009).

These elements are not generally used in this  way as they are rarely measured in 

sediments,  yet  the  use  of  several  different  elements  allows  an  extra  control  on  the 

calculated enrichment factor.

The increase in Ti, Hf, and Zr is likely due to a change in sediment source. Schiøler 

et  al.  (2010)  found that  most  of  the  organic  contents  of  the  Tartan  Formation  was 

derived  from terrestrial  material  likely  relating  to  a  maximum regression,  and  also 

suggested a potential increase in terrestrial  derived clays may be responsible for the 

gamma ray spike in the well logs. This study suggests a drastic increase in Ti, Hf, and 

Zr, which may be related to sedimentation suggested by Schiøler et al., (2010), and an 

increase in terrestrial clays may provide the increase noticed in background variation.

An increase in detrital sediments alone can be ruled out as all the Late Paleocene 

sediments in the Great South Basin are almost purely detrital, with very little calcite 

(Cook et al., 1999). Thus a change in sediment source or, possibly, a change in sorting is 

required to produce a significant enrichment in Zr, Hf and Ti.

Trace metal variations suggest an anoxic environment of deposition with depletion. A 

near-anoxic environment has been suggested for the units above and below the Tartan 

Formation  (Schiøler  et  al.,  2010),  thus  the  small  changes  in  EF (Figure  7)  may be 

related to both a shift in the location of the anoxic/oxic boundary,  and potentially a 

dramatic increase in sedimentation rate, somewhat reducing the effect of trace element 

variations as the sediments are buried  too quickly to have much water cycle through 

them.

Some of the elements measured (Pb, Sr, and Sb) showed no noticeable trace metal 

enrichment or depletion within the Tartan Formation, and are probably controlled by a 

different process.

Conclusion

Trace  metal  variations  may  confirm  the  environment  of  deposition  proposed  by 

Schiøler  et al. (2010), where it has been suggested that an influx of terrestrial organic 
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matter helped enhance the anoxic conditions. The trace metal variations also may point 

to an increased depositional rate.

Zr, Hf and Ti are closely related in the sediments of the Tartan Formation. Ti has 

previously  been  shown  to  be  directly  related  to  Al,  thus  this  study  showed  that 

enrichment factors could be calculated for these three elements. The enrichment factors 

are  likely to  be  similar  to  those shown by Al.  Using more  elements  has  the  added 

advantage that  any variation in  one of  the reference elements  will  be noticed when 

plotted against the others.

Future work

The  analysis  of  numerous  elements  simultaneously  to  calculate  trace  metal 

enrichment factors is an exciting prospect and requires more study. A comparison of 

these  elements  to  Al  needs  to  be  made to  see  how these  enrichment  factors  would 

compare to  the standard Al-based enrichment factor.  This  technique would have the 

advantage that a change in sediment source may more often become detectable through 

variations of Al plotted against Zr and Hf, especially if sediment sources have similar 

background Al but different composition of other trace elements.

Other wells which encounter the Tartan Formation should be analysed using the same 

technique as for Kawau-1A to see if the stratigraphic variations are similar and whether 

other sites show the same enrichments. The probably synchronous Waipawa Formation 

should also be studied, as trace metals may indicate whether it was deposited under the 

same conditions.

Many of the variations noticed in this preliminary study are not explained by current 

knowledge of trace metal variations, and more research is required to understand them. 

Importantly, significant depletions in W relative to the normalised values were noticed 

but no removal mechanism has yet been suggested for this element.

Appendix B BXXIII



References
Aller R.C., Rude P.D. 1987. Complete oxidation of solid phase supfides by manganese and bacteria in 

anoxic marine sediments. Geochim. Cosmochim. Acta, 50 751-765.
Böning P., Brumsack H.J., Böttcher M.E., Schnetger B., Kriete C., Kallmeyer J., Borchers S.L. 2004. 

Geochemistry of Peruvian near-surface sediments. Geochim. Cosmochim. Acta, 68/21 4429-4451.
Böning P., Cuypers S., Grunwald M., Schnetger B., Brumsack H.J. 2005. Geochemical characteristics 

of Chilean upwelling sediments at ~36ºS. 2005. Marine Geol. 220, 1-21.
Böning P., Brumsack H.J., Schnetger B., Grunwald M. 2009. Trace element signatures of Chilean 

upwelling sediments at ~36ºS. Marine Geol., 259 112-121.
Brumsack H.J. 1980. Geochemistry fo Cretaceous black shales from the Atlantic Ocean (DSDP legs 

11, 14, 36, and 41). Chem. Geol. 31 1-25.
Brumsack H.J. 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the 

Black Sea. International Journal of Earth Sciences 78/3 851-882.
Brumsack H.J. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for 

Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232 344-
361.

Calvert  S.E.,  Pedersen  T.F.  1993.  Geochemistry  of  Recent  oxic  and  anoxic  marine  sediments:  
Implications for the geological record. Marine Geol., 113 67-88.

Cook R.A., Sutherland R., Shu H., et al. 1999. Cretaceous – Cenozoic geology and petroleum systems 
of the Great South Basin, New Zealand. Institute of Geological and Nuclear Sciences Monograph 
20, Institute of Geological and Nuclear Sciences, Lower Hut, New Zealand.

Crusius  J.,  Calvert  S.,  Pedersen  T.,  Sage  D.  1996.  Rhenium  and  molynemdum  enrichments  in 
sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary 
Science Letters, 145 65-78.

Crusius  J.,  Thompson  J.  2003.  Mobility  of  authigenic  rhenium,  silver  and  selenium  during 
postdepositoonal oxidation in marine sediments. Geochim. Cosmochim. Acta 67/2 265-273.

Cutter G.A. 1989. The estuarine behaviour of selenium in San Francisco bay. Estuar. Coast. Shelf Sci. 
28 13-34.

Cutter G.A., Cutter L.S. 1995. Behaviour of dissolved antimony, arsenic and selenium in the Atlantic-
Ocean. Mar. Chem. 49/4 295-306.

Dean W.E., Gardner J.V., Piper D.Z. 1997. Inorganic geochemical  indicators of glacial-interglacial 
changes in productivity and anoxic on the California continental margin. Geochim. Cosmochim. 
Acta, 61/21, 4507-4518.

Dellwig O., Hinrichs J., Brumsack H.J. 2000. Changing sedimentation in tidal flat sediments of the 
southern North Sea from the Holocene to the present: a geochemical approach. J. Sea Res. 44 
195-208.

Demaison G. J., Moore G. T., 1980. Anoxic Environments and Oil Bed Genesis. Am. Assoc. Pet. Geol. 
Bull. 64/8, 1179-1209.

Disnar J.R., Sireau J.F., 1990. Organic mater in ore genesis: progress and perspectives. Org. Geochem. 
16 577-599.

Elbaz-Poulichet F., Seidel J.L., Jézéquel D., Metzger E., Prévot F., Simmonucci C., Sarazin G., Violler 
E., Etcheber H., Jouanneau J.M., Weber O., Radakovitch O. 2004. Sedimentary record of redox-
sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France). Marine 
Chemistry 95, 271-281.

Elderfield H., 1970. Chromium speciation in sea water. Earth Planet. Sci. Lett., 9 10-16.
Erickson B.E., Helz G.R. 2000. Molybdenum (VI) speciation in sulfidic waters: stability and liability 

of thiomolybdates. Geochim. Cosmochim. Acta, 64, 1149-1158.
Goldschmidt V. M., 1954. Geochemestry. In: Muir, A. (Ed.), The International Series of Monographs 

on Physic. Clarendon Press, Oxford.
Heinrichs H., Schultz-Dobrick B., Wedepohl K.H. 1980. Terrestrial Geochemistry of Cd, Bi, Tl, Pb, 

Zn, Rb. Geochim. Cosmochim. Acta 44 1519-1533.
Herut B., Gavrieli I., Halicz L. 1997. Sources and distribution of trace and minor elements in western 

Dead Sea sediments.

Appendix B BXXIV



Hollis  C.J.,  Dickens,  G.R.,  Field,  B.D.,  Jones,  C.M.,  Strong,  C.P.,  2005.  The  Paleocene–Eocene 
transition at  Mead Stream, New Zealand:  a  southern Pacific  record of  early Cenozoic global  
change. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 313–343

Huertz-Diaz  M.A.,  Morse  J.W.  1992.  Pyritization  of  trace  metals  in  anoxic  marine  sediments.  
Geochim. Cosmochim. Acta, 56 2681-2702.

Hunt International Petroleum Co NZ. 1977. Final well report Kawau-1A. Petroleum report PR716, 
Crown Minerals, Ministry of Economic Development, New Zealand.

Jean G.E., Bancrofft M.G. 1985. An XPS and SEM study of gold deposition at low temperatures on  
sulphide mineral surfaces: Concentration of gold by absorption/reduction. Geochim. Cosmochim. 
Acta, 49 979-987.

Killops  S.  D.,  Hollis  C.  J.  Morgans  H.  E.  G.,  Sutherland  R.,  Field  B.  D.,  Leckie  D.  A.,  2000. 
Paleoceanographic significance of Late Paleocene dysaerobia at the shelf/slope break around New 
Zealand. Palaeogeography, Palaeoclimatology, Paleoecology 156, 51-71.

Koide  M.,  Hodge  V.F.,  Yang  J.S.,  Stallard  M.,  Goldberg  E.G.  1986.  Some  comparative  marine 
chemistries of rhenium. Gold, silver and molybdenum. Applied Geochemistry 1 705-714.

Kremling K. 1983. The behaviour of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic Baltic waters. Mar. 
Chem., 13 87-108.

Lavagren U.,  Åström M.E., Berbäck B., Holmström H., 2009. Mobility of trace  elements in black 
shale assessed by leaching tests and sequential chemical extraction. Geochemistry: Exploration,  
Environment Analysis 9 71-79.

Mao J., Lehmann B., Du A., Zhang G., Ma D., Wang Y., Zeng M., Kerrich R. 2002. Re-Os Dating of 
Polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian Black Shales of South China and 
Its Geologic Significance. Economic Geol. 97 1051-1061

McKay J.L., Pederson T.F., 2002. Accumulation of redox-sensitive trace metals in continental margin  
sediments and their paleo-applications. Ocean Sciences Meet. Suppl. Absract os32b- Eos. Trans. 
AGU, 83 (4).

McKelly V.D., Nelson J.M., Characteristics of marine uranium-bearing sedimentary rocks. Economic 
Geol., 45 35-53.

Meadows D. J., 2008. Geochemistry of the Paleocene Tartan Formation in the Great South Basin, New 
Zealand. Graduate Diploma in Science, SGEES, Victoria University of Wellington.

Montserrat F., Belzile N., Chen Y.W. 2002. Antimony in the environment: a review focused on natural 
waters I. Occurrence. Earth Science Review 57 125-176.

Morford J.L., Kalnejais L.H., Helman P., Yen G., Reinard M. 2008. Geochemical cycling of silver in 
marine sediments along an offshore transect. Marine Chemistry, 110 77-88.

Morse J.W. 1994. Interactions of trace metals with authigenic sulfide minerals: implications for their 
bioavailability. Marine Chemistry 46 1-6

Morse J.W., and Luther G.W. 1999. Chemical influences on trace metal-sulfide interactions in anoxic  
sediments. Geochim. Cosmochim. Acta 63 3373-3378. 

Nathan Y., Soudry D., Levy Y., Shitrit D., Dorfman E. 1997. Geohemistry of cadmium in the Negev 
phosphorites. Chem. Geol. 142 87-107.

Plank T., Langmuir C.H. 1998. The chemical composition of subduction sediment and consequences 
for the crust and mantle

Ross  D.J.K.,  Bustin  R.M.  2009.  Investigating  the  use  of  sedimentary  geochemical  proxies  for 
paleoenvironment  interpretation  of  thermally  mature  organic-rich  strata:  Examples  from 
Devonian-Mississippian shales, Western Canadian Sedimentary Basins. Chemical Geol. 260 1-19.

Roy S. 1992. Environments and processes of Manganese Deposition. Economic Geol., 87 1218-1236
Schaule B.K., Patterson C.C. 1981. Lead concentrations in the Northeast Pacific – evidence for global  

anthropogenic perturbations. Earth Planet. Sci. Lett. 53 97-116. 
Schiøler P., Roncaglia L., 2008. Age and depositional environment of the Tartan Formation, a potential 

source rock in the Great South Basin. NZ Petroleum Conference proceedings, Crown Minerals, 
Minestry of Economic Development, NZ.

Schiøler P., Rogers K., Sykes R., Hollis C.J., Ilg B.,  Meadows D., Roncaglia L., Uruski C. 2010. 
Palynofacies, organic geochemistry and depositional environment of the Tartan Formation (Late 
Paleocene), a potential source rock in the Great South Basin, New Zealand. Marine and Petroleum 
Geol., doi: 10.1016/j.marpetgeo.2009.09.006

Appendix B BXXV



Shaw T.J., Gieskes J.M., Jahnke R.A. 1990. Early diagenesis in differing depositional environments:  
the response of transitions metals in pore water. Geochim. Cosmochim. Acta 54 1233-1246.

Springer J.S. 1985. Cabon in Archean rocks of Abitibi Belt (Ontario-Quebec) and its relation to gold 
distribution. Can. J. Earth Sci. 22 1945-1951.

Takayanagi K., Cossa D. 1997. Vertical distribution of Sb(III) and Sb(V) in Pavin Lake, France. Water 
Res. 31 671-674.

Tribovillard  N.,  Lyons  T.W.,  Riboulleau  A.,  Bout-Roumazeilles  V.  2008.  A possible  capture  of 
molybdenum during early diagenesis of dysoxic sediments. Bull. Soc. Géol. Fr., 179/1 3-12.

Turgeon S., Brumsack H.J. 2006. Chem. Geol. 234 321-339.
Turner D.R., Whitfield M., Dickson A.G. 1981. The equilibrium speciation of dissolved components 

in freshwater and seawater at 25°C and 1 atm pressure. Gechim. Cosmochim. Acta, 45 855-881.
Vorlicek, T.P., Kahn M.D., Kasuya Y., Helz G.R. 2004. Capture of molybdenum in pyrite-forming 

sediments: role of ligand-induced reduction by polysulfides.  Geochim. Cosmochim. Acta, 68/3 
547-566.

Wanty  R.B.,  and  Goldharber  M.B.  1992.  Thermodynamics  and  kinetics  of  reactions  involving 
vanadium  in  natural  systems:  accumulations  of  vanadium  in  sedimentary  rocks.  Geochim. 
Cosmochim. Acta, 56 1471-1483.

Warning B., Brumsack H.J. 2000. Trace metal signatures of eastern Mediterranean 
saporpels. Palaeogeography, Palaeoclimatology, Palaeoecology 158 293-309.

Appendix B BXXVI



Appendix B B



Appendix C

Results
XRF results prior to normalisation for Angora Quarry

Av. Shale A-A-1 A-A-2 A-A-3 A-A-4 A-A-5 A-A-6 A-A-7
Fe2O3 2.8 2.58 2.26 2.41 1.87 2.36 3.59 3.51
MnO 0.1* 0.02 0.02 0.02 0.02 0.02 0.01 0.03
TiO2 0.78 0.38 0.33 0.37 0.33 0.41 0.46 0.47
CaO 2.2 4.91 5.75 3.07 6.78 5.63 1.42 2.43
K2O 3.6 1.26 1.16 1.25 1.12 1.34 1.49 1.51
SO3 0.6* 0.46 0.72 0.09 0.65 0.46 <0.01 0.16
P2O5 0.16 0.08 0.07 0.07 0.06 0.07 0.09 0.08
SiO2 58.9 72.70 72.86 76.56 71.81 70.89 75.72 71.79
Al2O3 16.7 8.30 7.65 8.27 7.51 9.02 10.19 10.33
MgO 2.6 0.78 0.84 0.90 0.77 0.88 0.88 0.92
Na2O 1.6 0.82 0.76 0.80 0.61 0.85 0.93 0.88
LOI 7.65 7.47 5.99 8.25 8.06 5.15 7.83

SUM 99.95 99.89 99.80 99.79 99.99 99.94 99.95

A-A-8 A-A-9 A-A-10 A-A-11 A-A-12 A-A-13 A-C-2 A-C-1
Fe2O3 2.47 3.58 3.02 3.32 2.77 3.56 2.34 2.21
MnO 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01
TiO2 0.38 0.53 0.48 0.54 0.49 0.54 0.46 0.38
CaO 0.14 0.14 0.12 0.13 0.11 0.26 0.09 4.78
K2O 1.44 1.72 1.53 1.73 1.65 1.73 1.40 1.27
SO3 <0.01 <0.01 <0.01 0.04 <0.01 0.10 <0.01 0.28
P2O5 0.07 0.11 0.09 0.04 0.10 0.10 0.05 0.06
SiO2 80.35 70.78 74.57 69.87 71.73 67.85 73.52 73.53
Al2O3 8.70 12.74 11.48 12.29 11.49 12.62 10.02 8.38
MgO 0.72 0.83 0.82 0.80 0.80 0.89 0.59 0.81
Na2O 1.18 1.00 0.76 0.92 0.97 0.89 0.83 0.70
LOI 4.45 8.43 6.89 9.96 9.64 11.22 10.45 7.51

SUM 99.90 99.87 99.77 99.94 99.95 99.90 99.77 99.87
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XRF results after normalisation to 100% for Angora Quarry

Av. Shale A-A-1 A-A-2 A-A-3 A-A-4 A-A-5 A-A-6 A-A-7
Fe2O3 2.8 2.582 2.267 2.414 1.875 2.363 3.590 3.516
MnO 0.1* 0.018 0.018 0.019 0.018 0.018 0.009 0.028
TiO2 0.78 0.378 0.332 0.366 0.329 0.414 0.464 0.469
CaO 2.2 4.915 5.751 3.080 6.797 5.627 1.421 2.430
K2O 3.6 1.256 1.164 1.257 1.126 1.336 1.494 1.515
SO3 0.6* 0.461 0.719 0.094 0.650 0.460 <0.01 0.156
P2O5 0.16 0.083 0.074 0.075 0.064 0.074 0.095 0.083
SiO2 58.9 72.74 72.94 76.71 71.96 70.89 75.76 71.83
Al2O3 16.7 8.308 7.659 8.283 7.529 9.020 10.20 10.34
MgO 2.6 0.784 0.839 0.902 0.768 0.883 0.881 0.920
Na2O 1.6 0.822 0.757 0.799 0.616 0.853 0.931 0.880
LOI 7.654 7.478 6.002 8.267 8.061 5.153 7.834

SUM 100 100 100 100 100 100 100

A-A-8 A-A-9 A-A-10 A-A-11 A-A-12 A-A-13 A-C-2 A-C-1
Fe2O3 2.470 3.587 3.027 3.327 2.771 3.562 2.345 2.211
MnO 0.010 0.009 0.009 0.009 0.018 0.018 0.009 0.009
TiO2 0.381 0.531 0.483 0.539 0.486 0.540 0.456 0.378
CaO 0.143 0.137 0.121 0.126 0.108 0.257 0.089 4.782
K2O 1.446 1.725 1.529 1.731 1.649 1.730 1.399 1.270
SO3 <0.01 <0.01 <0.01 0.036 <0.01 0.097 <0.01 0.276
P2O5 0.067 0.110 0.093 0.045 0.099 0.097 0.054 0.065
SiO2 80.42 70.87 74.74 69.91 71.77 67.92 73.69 73.62
Al2O3 8.706 12.76 11.51 12.30 11.50 12.63 10.04 8.394
MgO 0.725 0.833 0.826 0.800 0.801 0.886 0.591 0.811
Na2O 1.178 1.002 0.758 0.923 0.972 0.892 0.837 0.700
LOI 4.454 8.441 6.906 9.966 9.645 11.23 10.47 7.520

SUM 100 100 100 100 100 100 100 100
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ICP-MS results for Angora Quarry Part 1’

Sample Av.Shale A-A-1 A-A-2 A-A-3 A-A-4 A-A-5 A-A-6 A-A-7
Stratigraphic height NA 0.0 5.5 10.5 16.5 19.5 20.5 35.5

Li 66 35.7 32.6 31.6 34.6 33.8 37.5 38.7
Ca 2.2 4.86 5.71 3.01 6.64 5.71 1.42 2.45
Ti 0.78 0.378 0.331 0.366 0.329 0.414 0.464 0.469
V 130 53.3 49.0 53.5 51.0 64.0 68.0 65.7
Cr 90 47.7 43.3 47.3 39.3 51.5 57.9 72.6
Co 19 14.4 31.6 14.3 12.4 19.4 22.4 34.6
Ni 68 19.7 20.4 20.3 20.9 32.1 15.4 27.1
Cu 45 9.37 10.2 9.49 10.3 12.7 14.6 15.1
Zn 95 56.7 54.8 83.0 53.9 60.9 68.6 107
Ga 19 33.3 34.4 35.4 35.0 41.9 35.9 35.9
Ge 1.6 0.378 0.349 0.370 0.287 0.381 0.561 0.549
As 10 1.45 1.18 1.63 1.30 1.55 4.32 2.37
Rb 140 60.2 57.0 60.6 58.6 66.8 72.3 72.9
Sr 300 138 151 108 171 166 78.5 114
Y 41 10.4 10.8 8.26 8.740 12.3 12.9 11.8

Zr90 160 47.5 42.3 47.3 40.2 51.1 57.7 63.6
Zr91 160 45.7 40.7 45.8 38.9 49.7 55.5 61.4
Nb 18 5.00 4.45 5.33 4.84 5.77 6.03 6.27
Mo 2.6 1.63 3.76 3.94* 3.24* 4.17 6.57 2.49
Cd 0.8 0.0360 0.0445 0.0697 0.0664 0.0686 0.0353 0.0857
Sn 2.5 1.57 1.66 2.19 1.70 1.92 1.61 2.30
Sb 1.5 4.90 5.10 5.25 5.96 6.98 7.72 6.67
Ba 580 507 553 563 582 687 529 536
La 40 12.5 13.4 10.2 10.6 15.2 15.3 13.8
Ce 95 26.3 26.9 21.8 20.2 29.2 30.1 27.0
Pr 9.7 3.12 3.10 2.66 2.43 3.55 3.95 3.48
Nd 39 11.8 11.7 9.93 9.04 13.2 14.9 13.1
Sm 7.3 2.40 2.32 1.967 1.755 2.66 3.01 2.65

Eu151 1.6 0.589 0.573 0.487 0.453 0.652 0.707 0.623
Eu153 1.6 0.624 0.618 0.552 0.527 0.731 0.752 0.695

Gd 7 2.21 2.19 1.83 1.78 2.53 2.73 2.46
Tb 1.2 0.305 0.306 0.258 0.245 0.358 0.393 0.350
Dy 5.5 1.81 1.79 1.49 1.46 2.13 2.25 2.03
Ho 1.6 0.357 0.363 0.292 0.292 0.417 0.437 0.410
Er 3.9 1.08 1.06 0.847 0.867 1.24 1.29 1.23
Tm 0.6 0.159 0.152 0.126 0.131 0.179 0.185 0.184
Yb 3.7 1.05 0.995 0.878 0.868 1.21 1.21 1.21
Lu 0.7 0.148 0.146 0.128 0.130 0.176 0.179 0.178
Hf 2.8 1.33 1.17 1.37 1.13 1.45 1.64 1.84
Tl 1.4 0.440 0.423 0.532 0.515 0.615 0.462 0.560
Pb 20 7.91 7.26 8.58 7.57 9.59 10.3 11.461
Th 12 5.58 5.12 5.59 5.26 6.33 6.96 7.24
U 0.37 1.54 1.82 1.73 1.95 2.53 2.48 2.00

Appendix C CIII



ICP-MS results for Angora Quarry Part 2

Sample A-A-8 A-A-9 A-A-10 A-A-11 A-A-12 A-A-13 A-C-1 A-C-2
Stratigraphic height 41.9 48.3 54.7 61.1 67.5 73.1 95.0* 80.0*

Li 32.6 61.5 42.6 48.4 48.8 54.0 41.7 46.1
Ca 0.139 0.131 0.110 0.122 0.0987 0.250 4.74 0.0766
Ti 0.381 0.530 0.482 0.539 0.486 0.540 0.377 0.455
V 56.3 76.0 68.3 87.6 87.2 78.4 54.9 73.7
Cr 60.1 94.3 71.6 94.8 90.5 82.8 43.3 97.7
Co 48.9 36.4 47.9 73.4 43.1 67.6 24.6 62.2
Ni 32.6 98.9 50.1 38.6 43.1 66.9 20.7 42.2
Cu 12.8 17.1 19.8 32.2 23.7 19.8 10.2 36.5
Zn 213 166 134 78.0 124 157 58.5 107
Ga 32.1 38.5 36.2 36.8 35.7 36.9 37.2 68.3
Ge 0.440 0.561 0.483 0.518 0.471 0.983 0.358 0.378
As 2.80 3.78 2.88 4.65 3.60 6.62 1.58 3.76
Rb 68.2 80.1 77.4 81.4 77.1 82.1 65.0 68.4
Sr 54.7 56.0 45.0 49.7 50.8 68.5 137 54.8
Y 14.0 11.3 10.1 10.3 15.2 84.1 9.48 7.75
Zr 46.0 62.3 57.7 66.9 58.4 56.2 48.8 51.5
Zr 44.9 59.9 55.4 64.2 56.7 54.4 47.4 49.4
Nb 5.00 7.52 6.74 7.34 6.75 7.42 5.22 6.17
Mo 5.12 2.21 6.15 5.99* 8.04* 1.42 3.17 4.69
Cd 0.286 0.0609 0.447 0.141 0.129 0.0584 0.0568 0.118
Sn 1.96 2.06 2.00 1.89 1.91 1.96 1.80 2.21
Sb 7.33 5.85 6.33 6.35 7.39 6.09 4.72 6.97
Ba 472 547 521 505 512 514 594 1210
La 11.8 9.759 11.8 12.9 16.2 63.5 11.1 9.21
Ce 22.5 19.7 21.5 24.0 31.0 197 23.3 14.6
Pr 3.27 2.90 3.17 3.15 4.24 30.3 2.82 2.14
Nd 12.5 11.5 12.1 11.6 16.5 126 10.7 8.136
Sm 2.50 2.26 2.32 2.22 3.60 26.1 2.15 1.69
Eu 0.594 0.562 0.530 0.527 0.860 5.95 0.540 0.475
Eu 0.642 0.615 0.599 0.575 0.921 6.00 0.608 0.594
Gd 2.44 2.15 2.06 1.96 3.19 23.2 2.03 1.36
Tb 0.347 0.311 0.285 0.276 0.456 3.17 0.284 0.196
Dy 2.07 1.87 1.69 1.67 2.68 17.0 1.69 1.18
Ho 0.429 0.394 0.346 0.354 0.537 3.02 0.337 0.250
Er 1.27 1.22 1.08 1.14 1.60 7.62 0.977 0.812
Tm 0.177 0.190 0.167 0.179 0.241 0.932 0.146 0.128
Yb 1.13 1.31 1.10 1.28 1.57 5.45 0.975 0.906
Lu 0.151 0.192 0.168 0.191 0.235 0.706 0.144 0.142
Hf 1.36 1.80 1.62 1.91 1.67 1.71 1.39 1.39
Tl 0.594 0.602 0.720 0.693 0.693 0.639 0.562 0.871
Pb 9.39 12.5 14.4 12.7 10.5 13.0 8.25 12.1
Th 5.53 7.98 7.45 8.33 7.04 8.15 5.72 6.57
U 2.35 2.15 3.07 3.63 4.46 2.05 2.05 2.61
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ICP-MS results for Kawau-1A

KAWAU-
1A 25/4

KAWAU-
1A 22/4

KAWAU-
1A 21/4

KAWAU-
1A 20/4

KAWAU-
1A 19/4

KAWAU-
1A 18/4

KAWAU-
1A 17/4

KAWAU-
1A 16/4

Ti 852 2392 1897 5662 5219 4554 2883 2565
V 18.9 43.9 34.3 102 86.2 67.3 43.4 36.2
Cr 31.6 56.8 43.6 200 150 78.2 71.7 67.3
Mn 26.0 44.6 41.0 111 109 161 68.8 49.7
Co 0.640 2.04 1.57 4.58 4.34 4.07 2.01 1.74
Ni 14.1 19.3 13.9 69.2 63.8 30.5 29.8 21.9
Cu 7.98 23.63 7.55 61.8 20.1 9.7 10.86 5.79
As 2.11 2.76 1.74 7.49 6.14 2.23 2.49 1.7
Se 0.277 0.213 0.158 0.735 0.657 0.300 0.219 0.190
Rb 15.5 46 37.7 78.1 74.3 62.8 46.6 41.0
Sr 87.9 254 145 187 226 119 105 46.6
Y 3.52 7.71 5.41 17.5 18.1 10.2 7.06 7.04
Zr 10.7 28.4 20.9 63.2 59.8 57.7 34.9 28.1
Zr 10.7 28.7 20.8 63.9 60.1 56.9 34.4 28.0
Nb 1.90 4.79 3.89 9.16 8.74 7.49 6.11 5.46
Mo 4.11 8.19 5.82 25.0 38.2 15.0 8.71 6.67
Cd 0.724 0.228 0.200 0.543 0.486 0.302 0.202 0.150
Sn 0.694 2.12 2.39 3.13 2.86 2.77 2.63 2.16
Sb 0.527 0.973 0.702 0.789 0.607 0.540 0.581 0.390
Hf 0.337 0.870 0.648 1.80 1.76 1.72 1.00 0.847
Ta 0.192 0.451 0.358 0.989 0.757 0.660 0.520 0.448
W 0.52 1.07 0.713 1.36 1.37 1.13 1.08 0.90
Tl 0.213 0.311 0.245 0.640 0.654 0.494 0.309 0.311
Pb 38.3 53.4 16.0 38.8 17.1 20.9 48.6 12.7
Bi 0.158 0.402 0.276 0.496 0.467 0.350 0.332 0.300
Th 2.22 5.33 3.70 8.51 9.54 7.34 5.24 4.69
U 2.24 2.79 2.46 8.47 9.36 5.42 3.66 2.55
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ICP-MS results for Pakaha-1

PAKAHA-1 
24

PAKAHA-1 
20

PAKAHA-1 
19

PAKAHA-1 
17

PAKAHA-1 
15

PAKAHA-1 
13

Ti 4525 5372 6614 3989 4827 3599
V 62.5 63.7 103 51.7 72.0 50.0
Cr 52.8 60.0 93.2 99.2 97.0 90.3
Mn 400 293 155 108 100 84.9
Co 8.8 6.09 14.1 5.95 9.70 2.64
Ni 25.9 23.4 52.9 34.5 35.1 26.1
Cu 25.6 13.4 21.3 20.0 15.8 14.7
As 2.61 2.72 7.84 3.78 3.58 3.72
Se 0.0995 0.199 0.447 0.285 0.267 0.280
Rb 65.4 77.4 98.8 201 69.7 61.5
Sr 886 178 126 377 120 69.84
Y 11.8 12.9 13.4 12.3 9.90 10.5
Zr 55.2 76.4 77.1 53.0 52.6 42.7
Zr 54.7 75.6 76.8 52.0 52.5 42.4
Nb 7.85 8.82 10.4 8.00 7.25 8.08
Mo 3.53 3.94 33.4 8.74 14.1 8.25
Cd 0.129 0.241 0.333 0.167 0.221 0.212
Sn 3.33 3.39 3.85 3.93 2.40 2.71
Sb 0.634 0.635 1.18 0.421 0.472 0.399
Hf 1.61 2.44 2.34 1.66 1.46 1.31
Ta 0.712 0.816 0.934 0.685 0.597 0.708
W 2.38 2.07 13.7 1.73 1.01 2.26
Tl 0.356 0.483 0.653 1.31 0.363 0.412
Pb 37.7 15.2 22.0 38.8 14.4 13.1
Bi 0.407 0.275 0.663 0.310 0.396 0.362
Th 7.09 7.90 10.1 7.14 6.31 6.43
U 1.81 2.62 9.70 2.62 3.21 3.81
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Appendix D

Table summarising trace metal variations

Appendix D D1

D
et

rit
al

 c
om

po
ne

nt

H
ea

vy
 m

in
er

al
 p

ha
se

s

Bi
ol

og
ic

al

Ill
ite

 &
 s

m
ec

tit
e 

cl
ay

s

Fe
-M

n 
ox

id
es

W
at

er
 d

ep
th

O
rg

an
ic

 M
at

te
r

R
ed

uc
in

g 
co

nd
iti

on
s

D
ep

le
tio

n

R
ed

uc
in

g 
co

nd
iti

on
s

En
ric

hm
en

t

C
al

ci
um

O
pa

l

Fe
2+

 in
 w

at
er

 c
ol

um
n

P
yr

ite

an
th

ro
po

ge
ni

c

sc
av

en
gi

ng
 e

ffe
ct

s

Ph
os

ph
at

e

O
xy

hy
dr

ox
id

es
 in

 W
.C

.

D
iff

us
io

n

P
re

ci
pi

ta
tio

n 
of

 U
 s

al
ts

Si
lv

er

C
om

m
on

 s
al

t

R
EE

Ti                       
Al          
K                       
Rb                       
Th            
Ta          
Hf                       
Nb                       
Zr          
Ga  ?  ?       
Ba                       
Ca                       
P             
Mg          
Sr                       
Si                       
Ge           
Fe             
S                       
Pb   ?            ?        
Bi              
Mn             
Co                       
Tl   ?                    
Cd            
Cu            
Ni                       
Zn           
Mo                       
Re          
As                       
Cr                       
V          
U            
Au       ?                
Ag   ?   ?     ?            
Se           
Sb     ?        ?          
Sn          
W                       
Na          
Li          
Y                       
La                       
Ce           
Pr          
Nd                       
Sm                       
Eu           
Gd      ?     
Tb               ?        
Dy                       
Ho          
Er          
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Yb                       
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