
Referential Integrity in
Cloud NoSQL Databases

by

Harsha Raja

A thesis
submitted to the Victoria University of Wellington

in partial fulfilment of the
requirements for the degree of

Master of Engineering
in Software Engineering.

Victoria University of Wellington
2012

Abstract
Cloud computing delivers on-demand access to essential computing ser-
vices providing benefits such as reduced maintenance, lower costs, global
access, and others. One of its important and prominent services is Database
as a Service (DaaS) which includes cloud Database Management Systems
(DBMSs). Cloud DBMSs commonly adopt the key-value data model and
are called Not only SQL (NoSQL) DBMSs. These provide cloud suitable
features like scalability, flexibility and robustness, but in order to provide
these, features such as referential integrity are often sacrificed. In such
cases, referential integrity is left to be dealt with by the applications instead
of being handled by the cloud DBMSs. Thus, applications are required
to either deal with inconsistency in the data (e.g. dangling references) or
to incorporate the necessary logic to ensure that referential integrity is
maintained.

This thesis presents an Application Programming Interface (API) that
serves as a middle layer between the applications and the cloud DBMS
in order to maintain referential integrity. The API provides the necessary
Create, Read, Update and Delete (CRUD) operations to be performed
on the DBMS while ensuring that the referential integrity constraints are
satisfied. These constraints are represented as metadata and four different
approaches are provided to store it. Furthermore, the performance of these
approaches is measured with different referential integrity constraints and
evaluated upon a set of experiments in Apache Cassandra, a prominent
cloud NoSQL DBMS. The results showed significant differences between
the approaches in terms of performance. However, the final word on
which one is better depends on the application demands as each approach
presents different trade-offs.

ii

Acknowledgements

First of all, I would like to thank my family for the support they provided
me throughout my life and without whose support and encouragement, I
would not have finished this thesis.

I am grateful to my supervisor, Pavle Mogin, for his understanding,
continuous guidance and patience all through my thesis.

A very special thanks goes to Juan Rada-Vilela, for his invaluable help
and support whenever I needed it. His time and patience is greatly appre-
ciated.

Many thanks to Yi-Jing Chung and Jan Larres for all their help through-
out the two years of my study.

iii

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Objectives . 3

1.1.1 General Objective . 4
1.1.2 Specific Objectives . 4

1.2 Organization . 4

2 Background 5
2.1 Cloud Computing . 5
2.2 Cloud Databases . 7

2.2.1 CAP Theorem . 10
2.3 Cloud Data Models . 13
2.4 Key-Value Data Model . 15

2.4.1 Columns . 18
2.4.2 Super Columns . 20
2.4.3 Column Family . 21
2.4.4 Keyspace . 22

2.5 Challenges in the Key-Value Data Model 26
2.6 Referential Integrity in Key-Value Model 29

2.6.1 Insert rule . 30
2.6.2 Update rule . 31
2.6.3 Delete rule . 31

2.7 Apache Cassandra . 32
2.7.1 Architecture . 33
2.7.2 Write and Read Operations 35

iv

CONTENTS CONTENTS

2.8 Summary . 36

3 Design of Referential Integrity Constraints in NoSQL databases 37
3.1 Metadata . 38
3.2 Solution 1: Metadata in Super Columns 42
3.3 Solution 2: Metadata as a Top Row 46
3.4 Solution 3: Metadata Column Family 47
3.5 Solution 4: Metadata Cluster 50
3.6 Summary . 51

4 Implementation of Referential Integrity Constraints in NoSQL
DBMSs 53
4.1 Experimental API . 54

4.1.1 Entities . 56
4.1.2 EntityManager . 56
4.1.3 ValidationHandler . 61

4.2 Metadata Retrieval Approaches in Solutions 65
4.2.1 Metadata as an Entity 66
4.2.2 Metadata as Text . 66

4.3 Summary . 68

5 Experimental Design 69
5.1 Example application . 70
5.2 Cassandra cluster . 71
5.3 Experimental setup . 74

5.3.1 Insert . 75
5.3.2 Update . 75
5.3.3 Delete . 76

5.4 Performance Indicators . 77
5.5 Summary . 78

6 Results and Discussions 79
6.1 Overview of Results . 80

v

CONTENTS CONTENTS

6.2 Baseline Experiment . 84
6.3 Insert . 86
6.4 Update . 90
6.5 Delete . 94
6.6 Comparison of the Operations 97
6.7 Summary . 98

7 Conclusions and Future Work 101

Appendices 109

A Insert 109

B Update 113

C Delete 117

vi

List of Figures

2.1 University example as a Relational database 17

2.2 A column in Cassandra . 18

2.3 Columns in Cassandra . 19

2.4 Relational Table - Student . 19

2.5 JSON notation for a column 19

2.6 A Super Column . 20

2.7 A Super Column for Student ’John’ in Cassandra 20

2.8 JSON notation for a super column 21

2.9 Column Family in Cassandra 22

2.10 Column Family User in Cassandra 23

2.11 JSON notation for a column family in Cassandra 24

2.12 A keyspace in Cassandra . 25

2.13 Referential Integrity Rules . 30

2.14 A cluster of nodes in Cassandra 33

3.1 Metadata Column in Solution 1 43

3.2 Metadata in Solution 1 . 44

3.3 Metadata storage in Solution 2 47

3.4 Metadata Column Family in Solution 3 49

3.5 Metadata Cluster in Solution 4 51

4.1 Class Diagram for the API . 55

4.2 Metadata Entity Class . 67

5.1 Class diagram for University 71

vii

LIST OF FIGURES LIST OF FIGURES

6.1 Performance of Baseline . 85
6.2 Performance of Solutions in Insert 87
6.3 Response time inserting entities 89
6.4 Throughput inserting entities 89
6.5 Performance of Solutions in Update 90
6.6 Response time updating entities 93
6.7 Throughput updating entities 93
6.8 Performance of Solutions in Update 94
6.9 Response time deleting entities 96
6.10 Throughput deleting entities 96
6.11 Response Time of the Solutions 99
6.12 Throughput of the Solutions 99

A.1 Performance of insert . 110
A.2 Performance of insert students 110
A.3 Performance of insert courses 111
A.4 Performance of insert enrolments 111

B.1 Performance of update . 114
B.2 Performance of update students 114
B.3 Performance of update courses 115
B.4 Performance of update enrolments 115

C.1 Performance of delete . 118
C.2 Performance of delete students 118
C.3 Performance of delete courses 119
C.4 Performance of delete enrolments 119

viii

List of Tables

3.1 Metadata for the Solutions 40

5.1 Metadata . 72

6.1 Response time in milliseconds per entity 81
6.2 Response time ratio with respect to Baseline 81
6.3 Throughput in entities per second 82
6.4 Throughput ratio with respect to Baseline 82

List of Algorithms

4.1 Insert algorithm in EntityManager 58
4.2 Find algorithm in EntityManager 58
4.3 Query algorithm in EntityManager 59
4.4 Read algorithm in EntityManager 59
4.5 Update algorithm in EntityManager 60
4.6 Delete algorithm in EntityManager 61
4.7 Validation onInsert . 62
4.8 Validation onUpdate . 63
4.9 Validation onDelete . 65

ix

LIST OF FIGURES LIST OF FIGURES

x

Chapter 1

Introduction

Cloud computing is a paradigm that is rapidly shifting the way IT ser-
vices and tools are being used. The fundamental reason is that it provides
essential computing services that can be accessed through the Internet.
Amongst these services, cloud providers offer platforms that include hard-
ware equipment and software applications, infrastructures such as servers
and other network equipments, data storage and Database Management
Systems (DBMSs), and others. All these services come with major bene-
fits such as reduced maintenance costs, resource optimisation, and global
access [56]. Moreover, such cloud services and other resources are hosted
on the Internet and offered to users for availing according to their needs.
Such characteristics made it natural for the cloud to become the backbone
of application providers and users, and promoted the creation of novel
theories and more applications to enhance the cloud.

Cloud data storage is an important service that has been progressing,
evolving and adapting alongside cloud computing. As the number of
applications and users keep increasing, so does the demand for scalable,
efficient, and consistent data storage mechanisms offered by application
providers. These storage mechanisms allow users to store their data on the
cloud without having to deal with the hassle of buying and maintaining
database servers [48].

1

CHAPTER 1

The distributed nature of the cloud data storage, requires cloud DBMSs
to satisfy essential requirements that are inherent to these environments.
Some of these requirements are related to a) scalability by matching the
increase and decrease of active users and allowing the storage of large
amounts of data, b) robustness by maintaining several copies of data to
make data available despite failures, c) flexibility by allowing the storage
of unstructured data, and d) consistency of data by making sure data is
never stale. These requirements are not necessarily met by traditional
Relational Database Management Systems (RDBMSs). For example, scala-
bility in RDBMSs is limited as these are designed to run on a single node.
Robustness is lacking in terms of a single point of failure would make data
unavailable. Also, rigid schemas for databases reduce the flexibility of
storing unstructured data on the cloud. Thus, the prevalent features of
traditional RDBMSs become issues when moved to the cloud. Nonetheless,
there is still one characteristic that is desirable from RDBMSs: referential
integrity in data.

Referential integrity constraints ensure that relationships between data
items are preserved. For example, it ensures that a course exists before stu-
dents can enrol in it. Such relationships are inherent to real-world data and
have to be maintained in databases whether it is a traditional RDBMS or a
cloud DBMS. Moreover, these constraints ensure that no operations violate
the integrity between data items [25]. Despite its importance, referential in-
tegrity is currently not a prominent feature in most cloud column-oriented
key-value DBMSs [47, 51].

Column-oriented key-value DBMSs, also referred to as cloud Not only
SQL (NoSQL) databases, adopts the column-oriented key-value data model
which is a widely used model for cloud DBMSs.These DBMSs support
many features required in cloud, such as elastic scalability to match varying
user demands, data replication, schema-less data storage , and many other
features. In these DBMSs, referential integrity constraints are not provided
because these were not conceived to maintain data relationships, partly

2

CHAPTER 1 1.1. Objectives

due to the denormalized and decentralized nature of data storage [25].
Instead, the responsibility of maintaining referential integrity is delegated
to the application layer. However, such an approach implies a significant
overhead for applications as they have to incorporate the referential in-
tegrity validation themselves. Not to mention that these DBMSs commonly
handle large amounts of interconnected, dependant and widely replicated
data which makes the validation more difficult. Hence, it becomes a critical
problem for applications to handle such data where dependencies have to
be correctly maintained and preserved.

Inspired by such problems, this thesis studies the existing modelling of
data dependencies in cloud NoSQL DBMSs and contributes by providing
four solutions to ensure that referential integrity is effectively maintained.
These solutions extend the consistency of data relationships and ensure
referential integrity even when it is widely replicated or even spread across
data-centers. Also, they are provided as an Application Programming
Interface (API) between the application layer and the database layer. This
approach reduces the workload of applications, as the responsibility of
validating referential integrity is delegated to these solutions.

1.1 Objectives

This thesis focuses particularly on the column-oriented key-value DBMSs
on the cloud. Four solutions using different metadata management tech-
niques are suggested to incorporate referential integrity constraints in such
DBMSs. These solutions are implemented and tested on Apache Cassandra,
a popular and prominent column-oriented key-value DBMS in the cloud.

The performance of these solutions is assessed in terms of response
time and throughput. All the proposed solutions extend data integrity and
preserves the data dependencies regardless of the scalability and workload
of the DBMS.

3

1.2. Organization CHAPTER 1

1.1.1 General Objective

Incorporate validation mechanisms for maintaining referential integrity in
column-oriented key-value DBMSs.

1.1.2 Specific Objectives

• Design four solutions to implement referential integrity constraints,
using metadata in various ways to store the information about data
dependencies.

• Develop an API to implement the four solutions in one of the existing
column-oriented key-value DBMSs, namely Cassandra.

• Analyse the performance of the solutions to determine their feasibility
and practicality.

1.2 Organization

The remainder of this thesis is structured as follows. Chapter 2 presents
cloud computing and describes the column-oriented key-value data model,
its challenges and the general architecture of Cassandra on which the pro-
posed solutions are implemented and tested. Chapter 3 describes the design
of the proposed solutions along with the motivation for the design. Chap-
ter 4 describes the implementation of these solutions in Apache Cassandra.
Chapter 5 details the experimental design used to measure the performance
of the solutions. Chapter 6 presents the analysis of the results from the
experiments. Finally, Chapter 7 presents the conclusions and further ideas
to extend this research.

4

Chapter 2

Background

This chapter presents an overview of some of the significant topics rele-
vant to this thesis. Section 2.1 describes cloud computing and the various
services it provides. Section 2.2 presents cloud databases as one of the
key services provided in the cloud. Section 2.3 describes the prevailing
data models prominently used by cloud databases. Section 2.4 gives a
detailed description of the column-oriented key-value data model, which
is one of the popular and widely used data models in cloud databases.
Section 2.5 presents some of the challenges existing in this key-value model.
Section 2.6 addresses one of the crucial challenges of referential integrity
in column-oriented key-value cloud databases. Section 2.7 introduces the
architectural concepts of Cassandra, the column-oriented key-value cloud
Database Management System (DBMS) used in this thesis.

2.1 Cloud Computing

Cloud computing is a major paradigm that is rapidly shifting the way
Information Technology (IT) services and tools are being used in the indus-
try. It is perceived that cloud computing would help extend the capabilities
of many IT and online services without the need for costly infrastructure.

Similar to remote computing where other machines or computers are

5

2.1. Cloud Computing CHAPTER 2

accessed from the local machine through a network, cloud computing
leverages network connections to provide various services to the users. It
also brings with it the virtualization of applications and services, where it
appears to users as if the applications are running on the user’s machine
rather than a remote cloud machine [14]. This removes the need for in-
stalling the actual software by the users. Thus, both expert and naive users
need not worry about the technical details and configurations to use these
cloud services.

Cloud computing is generally based on a subscription model where
users pay as per their usage, which is very similar to utility services such
as electricity, gas or water. The coalescence of virtualization, where applica-
tions are separated from the infrastructure is what makes cloud computing
easy to use. Users do not have to invest in software applications as they
can access such applications on the cloud. Users pay only for the services
they use. For example, they pay only for the amount of storage their cloud
database uses or pay only for the bandwidth consumed by the servers they
rent from the cloud providers. Applications and databases are stored in
large server farms or data centres owned by companies such as Google and
IBM.

The architecture of cloud computing services has users who avail cloud
services as the front-end. A user is any hardware or software application
that relies on cloud computing to perform its work. Notice that ’users’
represent the end-users, like database administrators or programmers or
anyone who benefits from cloud computing services while ’client’ refers to
any software applications or Application Programming Interfaces (APIs)
that are used to perform cloud computing. The back end of the cloud
architecture includes the cloud servers, databases, and computers, which
are abstracted from users. All the components like the servers, applications,
the data storages work together through a web service to provide the users
with the cloud services.

The overall structure of cloud computing and its various services have

6

CHAPTER 2 2.2. Cloud Databases

been generalised into layers [11, 49, 50].

Software as a Service (SaaS) is the service provided by the cloud providers
where users do not have to install the software applications.

Platform as a Service (PaaS) is the service where a hardware or software
platform is provided to users. A platform could be an operating
system, programming environment, hardware or run-time libraries.

Infrastructure as a Service (IaaS) is the service where users can use the
expensive hardware such as network equipments or servers.

Database as a Service (DaaS) is a cloud storage service that represents the
storage facilities, like DBMSs which are provided as cloud services
for which users pay only for the storage space they use [39, 57].

DaaS involves hosting cloud databases in the cloud which offer data
management, data retrieval, and other database services. Due to the in-
creasing number of users deploying and using web applications on cloud,
cloud databases form a crucial part to store the increasing amounts of data
on the cloud. Many companies like Amazon, Google, IBM, and Microsoft
provide DaaS and offer varying levels of services [39]. The next section
gives a description about cloud databases and its key features.

2.2 Cloud Databases

Most cloud applications store, process and provide large amounts of data
like the user information, application data or some stored data which
maybe accessed by the users. Storage of such data during all times is
essential for the cloud applications to operate correctly [37]. Traditionally,
users store data in files or databases residing on dedicated database servers
or on local disks, but the requirements for data storage on the cloud are
very different and need a distributed approach in data storage, where data
is spread across several machines.

7

2.2. Cloud Databases CHAPTER 2

Generally, DBMSs on the cloud (also known as cloud databases) are
replicated so that multiple copies of data are available to cater to many
users who access the same data at the same time [15]. This also helps
in cases of server crashes or network failures, as copies of the data are
available. Since data is replicated on several machines, these databases are
distributed.

Being distributed, these DBMSs are spread across several machines that
commonly belong to data centers owned by hosting companies such as
Google and Amazon. These data centres house many servers, computers
and telecommunication infrastructure, including back up and security
facilities and users can rent or buy the storage space they need. Within
such data centres, data is stored on remote machines, which can be any
server within the same or a different data centre. Thus, when users connect
to cloud databases through the Internet, they remain unaware of the exact
location of their stored data and are guided to their databases by APIs of
the cloud DBMS [57].

Cloud databases have to be scalable across these servers so that data is
available to any user at any given point in time. Scalability in the context
of cloud storage refers to the ability of dynamically incorporating changes
to the number of users or storage space, without affecting the functioning
of the databases or the availability of data to the users. In other words,
when more machines are added to increase storage capacity, or when more
users access the same data, cloud databases should cope with the increased
workload and yet maintain the same throughput.

In order to scale in such a distributed environment, most cloud DBMSs
split data into distinct individual parts and save these parts on differ-
ent nodes in the data centre across several databases. Hogan [36] claims
that such data partitioning in cloud databases increases complexity as a
database is spread across several servers and querying the database in-
volves complex Joins and more time. As a result of the data partitioning,
nodes have a subset of data or rows from each table in the database which

8

CHAPTER 2 2.2. Cloud Databases

moves the databases and the user applications farther apart, thus increasing
latency [23].

In general, cloud DBMSs require more features than the traditional
DBMSs for an efficient data management on the cloud and are found to
be less efficient than traditional DBMSs because of the dynamic scalability
required to support a changing user-base [2, 26, 30, 36, 47, 51, 52]. Most
traditional Relational Database Management Systems (RDBMSs) give data
a structure, that adheres to a schema. This is mainly achieved through the
process of normalisation where each table in a database is evaluated accord-
ing to its functional dependencies and primary keys, to reduce redundancy
and minimise integrity anomalies [25]. Normalisation causes databases to
have smaller and structured tables by removing duplicate data from large
and badly organised tables and by imposing constraints on the data. Tables
are normalised to at-least First Normal Form (1-NF) ensuring data is organ-
ised and less redundant. Redundancy is further reduced by bringing the
database schema into at-least Third Normal Form (3-NF) (or Boyce Codd
Normal Form (BCNF)). Throughout the chapters normalization refers to
making databases at least in 1-NF.

Unlike traditional DBMSs, cloud DBMSs are simple in their structure
with minimum querying support and have a simple API for database ad-
ministration. These have been made scalable to support the diverse and
large number of users who store structured data and to support various
applications that users use. Most such cloud DBMSs are non relational
and follow a different data model, which is explained in Section 2.3. Such
Cloud DBMSs are loosely termed as cloud Not only SQL (NoSQL) DBMSs
and do not provide support for efficient querying or query languages
such as SQL. Unlike RDBMSs, cloud NoSQL DBMSs do not aim to be
ACID-compliant [26, 31, 51, 52]. ACID stands for the properties Atomicity,
Consistency, Isolation and Durability, which ensure the completeness and
reliability of a database operation. In general, unless operations are not
ACID compliant in RDBMSs, it is not considered valid. But ACID com-

9

2.2. Cloud Databases CHAPTER 2

patibility in cloud NoSQL DBMSs is a bottleneck as it does not suit the
distributed nature of the cloud environment [51, 55].

Cloud NoSQL DBMSs require to have high throughput, high availabil-
ity and also require to be elastically scalable to increasing resources or users.
This requires cloud NoSQL DBMSs to part with some traditional RDBMS
functionalities (like JOINS) and ACID operations mainly because of its
distributed nature [55]. Due to this distributed nature across different envi-
ronments, cloud NoSQL DBMSs are prone to node failures. Node failures
and the elasticity prevailing in cloud environments affect consistency of
data, which adversely affect the ’C’ of ACID properties, i. e., Consistency.
Moreover, network and data partitioning play a major role in affecting con-
sistency and availability of data. A partition takes place when a node fails
or there is a network failure at some point in the network. Such partitions
pose problems in cloud NoSQL DBMSs as cloud databases rely on more
than one server. Hence, these DBMSs aim for partition tolerance, which is
the ability to continue their operations despite node failures and partitions.
To achieve these features it is commonly found that cloud NoSQL DBMSs
sacrifice data consistency. Commonly, most web applications aim to have
their data available at anytime, as many users could access the data at the
same time and in a business model, applications lose valuable customers if
they are not kept satisfied with the services in terms of speed, availability
and consistency. Hence, cloud NoSQL DBMSs aim to achieve properties
that are different from the traditional ACID properties. These DBMSs aim
to achieve Consistency, Availability and Partition-tolerance (CAP) prop-
erties as stated in the CAP theorem [29, 46, 55]. These properties and the
CAP theorem are explained next.

2.2.1 CAP Theorem

In distributed environments or web-based applications, the three main
system requirements necessary for designing and deploying applications
are: Consistency, Availability and Partition tolerance [8, 29, 46, 55]. The

10

CHAPTER 2 2.2. Cloud Databases

CAP theorem, proposed by Brewer [8], claims that it is not possible for a
distributed system to achieve all these three properties at the same time.

• Consistency: When a request is made to access data, a system is
called consistent if it provides the correct and latest version of the
data [4, 10, 34, 46, 55]. For example, in the case of an online shopping
website, consistency ensures that the stock of items is always correct.
When a user attempts to buy an item and the same item is being
bought by another user, the system will have to ensure that both
the users get the most recent stock details available. So if there is
only a single item remaining, then the second user is informed that
his request can not be completed as there is no stock available. This
means that the data is consistent and users do not get stale data.

• Availability: A system is considered highly available when all parts
of the system are always available, despite any failures or problems.
It is expected that all requests will be addressed at any given point
of time [4, 10, 46, 55]. In the previous example, this means that even
when the website is busy, with many users accessing it, it is expected
to have all user requests addressed and to be up and running always.

• Partition-tolerance: Generally, distributed services are run on sev-
eral machines across different networks and these services are prone
to network partitions [8, 29, 46]. Network partitions happen when
there is a failure of a segment or component of a network such that
nodes cannot communicate with each other. A system is considered
partition-tolerant when despite such partitions, it continues to pro-
vide its services and address user requests.

The CAP theorem states that at a given point of time, only two of these
properties can be achieved or satisfied by any application. This means that
distributed applications, such as cloud NoSQL DBMSs, have to make trade-
offs on one of the properties always. Such trade-offs are always considered

11

2.2. Cloud Databases CHAPTER 2

from the design stages in most distributed applications. Similarly, most
cloud NoSQL DBMSs have chosen its priorities and the trade-offs that suits
it the best. For example, Cassandra focuses on ’A’ and ’P’ while Bigtable
focuses on ’C’ and ’A’ [13].

What such trade-offs mean in relation to the CAP theorem is examined
below [1, 4, 9, 34, 46]:

Case 1: Achieving ’C’ and ’A’ properties: This means that when an appli-
cation aims to achieve consistency and availability, it will be less
partition tolerant. When data is partitioned, there is more time in-
volved in accessing the data from the various points in the distributed
network. Moreover, failures mean more time delays. Thus, in order
to achieve high consistency and availability the application depends
on fewer nodes. However, when applications that are not partition
tolerant face a partition, it becomes unreliable. It could either give
inconsistent data or become unavailable or both.

Case 2: Achieving ’A’ and ’P’ properties: Commonly, this is what most
cloud NoSQL DBMSs aim to achieve and in this case less attention
is paid to consistency of data [55]. A system lacking consistency is
thus mostly available even during partitions, but may give stale data
or incorrect data occasionally to the users. This suits most business
models as it ensures that data is always accessible to users. For ex-
ample, in the online shopping example, when data is not available or
the request fails, users can get anxious whether they lost their money
during the transaction. In order to avoid this, users are presented
with data as soon as possible, despite being stale, since users will be
able to see the data rather than being left unsure.

Case 3: Achieving ’C’ and ’P’ properties: This means that while a system
is consistent and tolerant to partitions or failures, it may not always
be available and running. Such a system provides correct data while
tolerating network failures but may not be accessible during failures

12

CHAPTER 2 2.3. Cloud Data Models

preventing operations to be performed on data. This leads to a less
reliable system, where data is correct but unavailable and inaccessible
during network failures.

Interestingly, while cloud NoSQL DBMSs do not comply with ACID
properties, the CAP theorem has lead to a new set of properties called BASE
and is considered as an alternative of ACID properties in distributed and
scalable systems [44]. BASE refers to the properties Basically Available,
Soft-state and Eventually consistent. This means that data is basically
available, although, at some point not all data will be available. Soft-state
indicates that data could be lost if not properly maintained, i.e., data has
to be refreshed and version-checked for it to remain saved. Eventually
consistent, as mentioned previously, is a weak form of consistency where
in a cluster of nodes, nodes do not get the updates immediately. BASE
could be understood as being closer to Case 2 mentioned above, where
consistency takes a back seat. But this leads to conflicts where a new update
or a new read request is made before all nodes get the latest update. In
order to resolve such conflicts there are some types of repairs used by cloud
NoSQL DBMSs, such as read and write repairs [53]. When a read or write
operation takes place, such repairs check for inconsistency in data before
correctly updating the data. Some cloud NoSQL DBMSs also rely on APIs
to work around such issues.

All these characteristics make cloud NoSQL DBMSs very different from
traditional DBMSs that are used outside cloud networks. As mentioned
previously, the underlying data model of the cloud NoSQL DBMSs is
fundamentally different from the relational data model of RDBMSs and
this is explored in the following sections.

2.3 Cloud Data Models

Data models describe the structure of a database and give the users in-
formation on how a database can be used or implemented. On the cloud,

13

2.3. Cloud Data Models CHAPTER 2

different types of data models exist. The selection of a data model for a
cloud database depends on the problem the cloud database is specialised
to address or a feature it is incorporating. Some of the current popular data
models on the cloud are:

• Key Value data model

• Document data model

• Relational data model

Both key-value and document data models store data in key-value
pairs, where in databases using the document data model, documents are
stored with a key and this key is used to retrieve the document [45]. In
databases using the key-value data model, data is stored with a key which
is used to retrieve the data. On the other hand, relational data model on the
cloud adopts the traditional relational data model and store data in rows in
tables [40].

In general, cloud DBMSs are non-relational and most cloud DBMSs
adopt the key-value data model to maintain the data replication, con-
sistency and scalability that are part of cloud data storage [2, 52]). The
key-value databases, document databases and other databases that sup-
port non-relational data models on the cloud are loosely termed as NoSQL
databases. NoSQL DBMSs are considered the next generation cloud DBMSs
that aim to provide non-relational distributed DBMSs with open-source
content and development for the cloud [52]. Many NoSQL DBMSs, that
are inherently key-value DBMSs, have evolved by adopting various fea-
tures from other popular cloud NoSQL DBMSs. For example, Cassandra
adopts the column oriented data model of Google’s Bigtable [13] while
Riak () is influenced by Amazon’s Dynamo [22]. This thesis focuses on the
column-oriented key-value data model and is explained in Section 2.4.

Although RDBMSs on the cloud are not widely used, there exist some
cloud capable RDBMSs such as Amazon Relational Data Service and Mi-
crosoft SQL Azure. Just like the traditional relational model, relational

14

CHAPTER 2 2.4. Key-Value Data Model

model on the cloud also supports relations or tables with rows and columns
to store structured data and adheres to a schema [12, 40]. These RDBMSs
provide users with database administration facilities and APIs to perform
operations on stored data, such as updating, inserting and deleting data.
However, the replication of data is restrained due to the relational nature
of such RDBMSs and affects its scalability and performance.

2.4 Key-Value Data Model

In basic terms, the key-value data model represents data as a key-value
tuple consisting of a key, a value and a timestamp. A key is a unique string
commonly encoded as UTF-8. A value is the actual data that has to be
saved and it is associated with a key that is used to retrieve the value from
a key-value database. The value is commonly of the string data type. This
is similar to the way data is stored in a map. A timestamp is a 64-bit integer
that records the time at which the value was inserted or updated in any
way.

Generally, the key-value data model on cloud implements the column-
oriented approach, which is adopted from Google’s Bigtable [13]. The data
model explored in this section is the column-oriented key-value data model
adopted by Cassandra. This type of data model is fundamentally different
from the relational data model. It sacrifices ACID properties as well as
normalisation in order to achieve high scalability, fault tolerance, data
partitioning among others. To understand this new type of data model and
cloud DBMSs that adopt this model, comparisons are drawn to RDBMSs
that adopt the relational model. For this purpose a simple example of a
University database is used throughout the chapters, where it is assumed
that students enrol into different courses. This example is illustrated below.

When the University database is saved in an RDBMS, a schema will
be applied. This example assumes that the details of the students are
saved in a table called Student and the course details in the Course table.

15

2.4. Key-Value Data Model CHAPTER 2

The Student-Course relationship is maintained in a separate table called
Enrolment which has foreign keys for both Student and Course tables.
This can be seen in Figure 2.1.

This shows how the University database example is deployed as a
Relational Database (RDB). When data in the University example is mod-
elled using the column-oriented key-value data model, the way it is stored
is different. Although key-value DBMSs are schema-less, column-oriented
key-value DBMSs are not entirely schema-less and hold some informa-
tion about the databases as metadata , as seen in Cassandra [18]. Such
DBMSs allow applications to model the way data is organised in a tradi-
tional RDBMS, whilst bringing more flexibility by denormalising data and
imposing no rigid structures or schema requirements [18, 33, 38]. There-
fore, it allows applications to add data in the way they want and change
their schema (if needed), without adhering to a rigid schema unlike the
traditional RDBMSs.

The building blocks of column-oriented key-value DBMSs are the columns,
the Super Columns, the Column Family and the Key Space. Using the Uni-
versity example, these terminologies are explained below. Appropriate
analogies are drawn with the RDB University, as seen in Figure 2.1, to
better understand these column-oriented key-value concepts. Since the
focus is on Cassandra’s data model, these concepts are explained in the
way Cassandra deploys them. The example used to describe the Cassandra

16

CHAPTER 2 2.4. Key-Value Data Model

Fi
gu

re
2.

1:
U

ni
ve

rs
it

y
ex

am
pl

e
as

a
R

el
at

io
na

ld
at

ab
as

e

17

2.4. Key-Value Data Model CHAPTER 2

data model adopts a simple and flexible schema that allows some structure
in the way data is stored.

As previously mentioned, cloud NoSQL DBMSs are generally spe-
cialised to address specific problems like partition-tolerance, high avail-
ability among others and for this some trade-offs are made when these are
developed. Some of the challenges and problems present in such DBMSs
are discussed in the following section.

2.4.1 Columns

A column is the basic unit of data in this data model. It is a tuple containing
a column name, a value and a timestamp (Figure 2.2).

Figure 2.2: A column in Cassandra

The column names are labels and it is mandatory that a column has
a name. Column names and values are stored as Bytes Type, Long Type,
Ascii Type, binary values Lexical UUID Type, Time UUID Type or as UTF8
serialized strings [18, 33]. Timstamps are used to store the time of the latest
update made to the column and are thus used for conflict resolutions. The
timestamp values are commonly stored as microseconds, but could be in
any format that the application chooses. However, timestamp formats have
to be consistent across the database so that is the same format across all
columns.

Cassandra allows indexes to be created on column names. These are
called Secondary indexes and are of type Keys in Cassandra. When such
secondary indexes are used, efficient queries can be specified using equality
predicates, and can be made on ranges of columns too. The latter ones are
called range queries.

18

CHAPTER 2 2.4. Key-Value Data Model

A column name can be considered analogous to an attribute name in a ta-
ble in any traditional RDBMS. To illustrate this analogy, Figures 2.3 and 2.4
show the differences between the representation of values in Student

in Cassandra and in an RDBMS. It can be seen from these figures that a
column in the column-oriented key-value data model is similar to a single
value in a row of a relational table. For example, the data ’John’ in the
relational table Student can be considered equivalent to a single column
in Cassandra.

Figure 2.3: Columns in Cassandra

Figure 2.4: Relational Table - Student

The JSON notation for columns in Cassandra is shown in Figure 2.5.

Figure 2.5: JSON notation for a column

19

2.4. Key-Value Data Model CHAPTER 2

2.4.2 Super Columns

A super column is a different kind of a column where the values are an
array of regular columns (Figure 2.6). It consists of a super column name
and an ordered map of columns. The columns within the values of a super
column are grouped together using a common look-up value, which is
commonly referred to as the RowKey. In other words, a super column is a
nested key-value pair of columns. The outer key-value pair forms the super
column while the inner nested key-value pairs are the columns. Unlike
regular columns, super columns do not have timestamps for its key-value
pairs.

Figure 2.6: A Super Column

A super column can be considered roughly similar to a whole record in
a relational table in an RDB. For example, the super column for a student,
as seen in Figure 2.7, is analogous to a single record in the relational table
Student (Figure 2.4).

Figure 2.7: A Super Column for Student ’John’ in Cassandra

20

CHAPTER 2 2.4. Key-Value Data Model

The JSON notation for a super column is shown in Figure 2.8.

Figure 2.8: JSON notation for a super column

2.4.3 Column Family

A column family contains columns or super columns that are grouped
together using a unique row key. It is a set of key-value pairs, where the
key is the row key and the value is a map of column names (Figure 2.9).
The row key groups the columns together, just as in super columns.

21

2.4. Key-Value Data Model CHAPTER 2

Figure 2.9: Column Family in Cassandra

Applications can define column families and metadata about the columns.
It is commonly practised to have columns that are related or accessed to-
gether to be grouped in the same column family. Column families require
that some attributes are always defined, like name, column type and others.
It also has optional attributes that can be defined if the application requires
so. Some of the optional attributes are number of keys cached, comments,
read repairs, column metadata among others.

Column families can have rows that are identified by their unique row
keys. This is similar to a table in an RDB, as seen for table Student in
Figure 2.4, where every row in the table has the same number of columns
and primary keys are used to identify a row. An example of a column family
is shown in Figure 2.10. Unlike relational tables in an RDB, column families
do not require all the rows to define the same number of columns [18, 33].

The JSON notation for a single row of a column family in Cassandra is
shown in Figure 2.11

2.4.4 Keyspace

A keyspace is a container to hold the data that the application uses. Keyspaces
have one or more column families, although it is not strictly required that a
keyspace should always have column families. Any relationships existing
between column families in a keyspace are not preserved.

A keyspace can be considered similar to a database in traditional rela-

22

CHAPTER 2 2.4. Key-Value Data Model

Figure 2.10: Column Family User in Cassandra

tional databases, without any relationships. An example of the keyspace
University is shown in Figure 2.12.

Keyspaces require that some attributes are defined, like a user defined
name, replication strategy and others. Some optional elements that can be
defined are the details of the column families in the keyspace and other
options for replication of data.

23

2.4. Key-Value Data Model CHAPTER 2

Figure 2.11: JSON notation for a column family in Cassandra

24

CHAPTER 2 2.4. Key-Value Data Model

Fi
gu

re
2.

12
:A

ke
ys

pa
ce

in
C

as
sa

nd
ra

25

2.5. Challenges in the Key-Value Data Model CHAPTER 2

2.5 Challenges in the Key-Value Data Model

Fundamentally, the key-value data model is different from the relational
model in many ways. While the relational data model aims at giving data a
structure and providing data integrity, the key-value data model just store
data as Binary Large Objectss (blobs) or string values and generally do not
maintain relationships between data. In the column-oriented key-value
model, the key-value association and the grouping of columns in column
families can be considered as the minimum relationship that is maintained.

According to Bell and Brockhausen [3], data dependencies are the most
common types of semantic constraints in relational databases and these
determine the database design. Data dependencies are the various relation-
ships that may exist between data entities in a database. For example, in
the University database, a student can enrol into more than one course and
this means that there is a many-to-many relationship between Student

and Course since one course can have many students enrolled in it.

As seen in Section 2.4, the Enrolment table contains the StudentID
and the CourseID as foreign keys, thus showing the dependency or rela-
tionship between students and courses (Figure 2.1). In the University
RDB, any attempt to delete a course from the Course table is prevented
by a constraint, unless the dependency itself is removed first. In RDBMSs,
such constraints are the referential integrity constraints , which ensure that
references between data entities are valid, consistent and intact [6, 21]. Nor-
malisation, as well as modelling real world data and relationships enforce
such dependencies in the schema and this causes integrity constraints like
referential integrity constraints, to be imposed on data entities.

When such constraints are not imposed, the database is prone to dan-
gling dependencies. Consider the case of foreign key references between
Course and Enrolment in the University database. If a course is deleted
from the Course table, without removing its dependencies in Enrolment,
the latter will contain active references to the deleted course. Another ex-

26

CHAPTER 2 2.5. Challenges in the Key-Value Data Model

ample of a dangling reference occurs during insertion of data, where a new
student is entered in the Enrolment table, with a CourseID, that does
not exist in the Course table (i.e., wrong CourseID). A dangling reference
occurs because this inserted student refers to a nonexistent course. Such
problems violate data integrity and cause inconsistent data to be stored
in databases. In order to ensure that users get consistent and valid infor-
mation, applications have to implement mechanisms to check or prevent
dangling references. However, if referential integrity constraints are ap-
plied as in NoSQL DBMSs, as in RDBMSs, operations on data that adversely
affect referential integrity will not be permitted.

As previously mentioned, NoSQL DBMSs do not normalise data and
nor are any relationships maintained. However, relationships or dependen-
cies between data are common when real world data is stored in databases.
For example, in the real world, a course can be taught by more than one
lecturer or a student with an Art major is restricted entry into Chemistry
courses etc. These relationships and constraints have to be preserved upon
storage in cloud NoSQL database systems as well. As mentioned in Sec-
tion 2.2, cloud databases (both relational and NoSQL, have to replicate data
across several machines and need to be scalable to match the needs of the
applications. The replicated and distributed nature makes maintaining
data dependencies complex and unfeasible in terms of speed and efficiency.
In cloud NoSQL DBMSs, this effectively means that the relationship be-
tween Enrolment, Student and Course will not be strictly enforced and
deleting a course in cloud NoSQL DBMSs is allowed because of the absence
of constraints. As mentioned before, this means that students could still
be enrolled in deleted courses as there are no constraints to prevent such
deletions or changes in cloud NoSQL DBMSs.

Commonly, developers impose such constraints and reference integrity
checks on NoSQL data at the application side. Another way to implement
such checks is to impose these constraints at the persistence layer of the
application server. Both these ways eventually have to handle all the pro-

27

2.5. Challenges in the Key-Value Data Model CHAPTER 2

cessing and managing of these constraint checks for all the widely spread
data in NoSQL DBMSs. However, this could mean immense workload on
the application or the application server, especially if the data volume is
large in the NoSQL database or if it is has many replicas that have to be
checked.

This is a serious problem when data is interconnected and dependant
on other data entities as is commonly the case. For example, consider a
banking application that uses cloud NoSQL DBMSs where its data is inter-
connected and spread across several nodes. Any debit or credit transactions
made to a customer’s account will have to be replicated across all the nodes
and correctly persisted. In such applications, many constraints will exist
for transfer of funds between user accounts and such constraints need to
be validated correctly. If a user has multiple accounts, the relationship
between the accounts have to be maintained. When such constraints are
not validated correctly, it leads to incorrect account balances and wrong
updates in the user accounts. On the other hand, when such applications
use an RDBMS, referential integrity constraints are imposed to maintain
the relationships between the accounts. In such cases, the referential in-
tegrity constraints are defined when tables are created and validations are
triggered whenever any operations are performed on the data.

Although such problems affect most applications using cloud NoSQL
DBMS, its impact is application dependant. For instance, a banking sys-
tem as mentioned above could be gravely affected because of dangling
references while in a simple game application such problems can be trivial.
Motivated by such problems of data dependencies, this thesis studies the
existing modelling of data dependencies in cloud NoSQL DBMSs and con-
tributes by proposing four solutions to effectively maintain and validate
referential integrity. The following section describes referential integrity
and the rules that have to be imposed within a database system to validate
referential integrity.

28

CHAPTER 2 2.6. Referential Integrity in Key-Value Model

2.6 Referential Integrity in Key-Value Model

Referential integrity is a fundamental property of data within databases,
which ensures that data dependencies between tables are maintained cor-
rectly in the database [6, 21, 25, 28]. These dependencies are generally a
part of the business rule and are enforced using referential integrity con-
straints to ensure proper data integrity. These constraints have been a
relational feature in traditional RDBMSs and are imposed due to the way
the RDBMSs enforce normalisation. Such constraints are defined on the ta-
bles in a database, and have to be mandatorily satisfied at all times in order
to ensure that users or applications do not enter incorrect or inconsistent
data into the databases.

Generally in RDBMSs, referential integrity constraints ensure that the
value of foreign keys in a table matches the values of primary keys in
another table. That is, referential integrity is enforced by the combination
of a primary (or unique) key and a foreign key such that every foreign key
matches the primary key [6, 25, 28, 42]. In the University example, every
foreign key in the Enrolment table must match one of the primary keys
in the Student and Course tables. Hence, if any foreign key refers to a
non-existing primary key, the referential integrity constraint is violated. For
example, if ’StudID100’ is a foreign key for a student in the Enrolment
table, but ’StudID100’ does not exist as a primary key in the Student
table, it is a violation of referential integrity. Notice that the table containing
the foreign key is the referencing table (or child table), while the table with
the primary or unique key is the referenced table (or parent table). For
example, Enrolment is the referencing table while Student and Course

are the referenced tables. Foreign keys are also known as referencing keys
and the primary keys as referenced keys.

Referential integrity constraints also describe the data manipulation
that is allowed on the referenced values. Some of the widely associated
rules are:

29

2.6. Referential Integrity in Key-Value Model CHAPTER 2

• Restrict or No delete: which prevents any update or deletion of
data that has references.

• Set to NULL: which sets all foreign keys to NULL values, on up-
dating or deleting the referenced key.

• Set to Default: which sets all the foreign keys to a default value,
on updating or deleting the referenced key.

• Cascade: which updates or deletes all the associated dependant
values accordingly, when the referenced data is updated or deleted.

• No Action: which performs checks only at the end of a statement
and is similar to Restrict

Existing DBMSs may not always support all of the above rules. Some
DBMSs may have the Cascade rule by default like Oracle, while some
may have the Restrict rule by default.

Generally, in RDBMSs the database manager enforces a set of rules to
prevent any data operation, like insert, update or delete, to change data in
such a way that referential integrity is not violated as seen in Figure 2.13.

Figure 2.13: Referential Integrity Rules

2.6.1 Insert rule

An insert operation triggers a referential integrity validation when data
is being inserted into a referencing table, i. e. , the child table. In such an

30

CHAPTER 2 2.6. Referential Integrity in Key-Value Model

event, prior to entering the values in the referencing table, it is checked
if the foreign keys exist in the referenced table. For example, in the Uni-
versity RDB, when a row is inserted in the Enrolment table with foreign
key values for StudentID and CourseID, a check is triggered to verify
whether these foreign keys exist in the Student and Course tables as
primary keys. If the foreign keys do not exist in the referenced tables, then
the insert operation is not allowed.

2.6.2 Update rule

When data is updated either in the referencing table or the referenced
table, a referential integrity validation is required. When any primary key
is updated in the referenced table, then it is verified whether this key is
a foreign key in any of the referencing tables. If a dependency is found
to exist in the referencing tables, then the applicable data manipulation
rule is checked. For instance, if it is a Cascade rule, then the associated
foreign keys in the referencing table are updated prior to updating the
primary key in the referenced table. Consider the University RDB, if the
primary key ’SWEN100’ for a course is updated to ’SWEN101’, then all the
records in Enrolment that have ’SWEN100’ as a foreign key are updated
to ’SWEN101’, if it has a Cascade rule.

When any foreign key is updated in a referencing table, then a referential
integrity validation has to be performed. It is ensured that the new updated
value exists as a primary key in the referenced table. For example, in the
Enrolment table, if CourseID in a row is updated to a new value, then
it is verified that the new value is an existing primary key in the Course
table. If the new value does not exist, the update is not allowed generally.

2.6.3 Delete rule

A delete operation triggers a referential integrity validation when data
is deleted from the referenced table. When data that is marked for dele-

31

2.7. Apache Cassandra CHAPTER 2

tion is found to have dependencies in other referencing tables, the data
manipulation rule applicable for this operation is checked. That is, if the
rule is Cascade, then the depending values in the referencing table have
to be removed prior to deleting values from the referenced tables. For
example, when a student record is deleted from the Student table, a check
is performed to see if the StudentID is a foreign key in any other table.
Therefore, Enrolment is checked and when the StudentID is found as a
foreign key, the appropriate action is performed depending on the data ma-
nipulation rule. If it is Cascade, the enrolment details for the StudentID
are removed from Enrolment and then the student record is deleted from
Student.

2.7 Apache Cassandra

Cassandra is a distributed data storage system initially developed by Face-
book for satisfying the needs of large web applications that handle large
volumes of data [33]. Its development has been undertaken by Apache and
it is currently used by many large web applications and large organisations
like Facebook, Twitter, Cisco, Digg, Reddit, and others [20].

Cassandra is based on the column-oriented key-value data model and
stores data as columns, super columns, column families and keyspaces,
all of which are explained in Section 2.4. Being a distributed system, Cas-
sandra can run on multiple machines and provides the option to work
across different machines and across multiple data centers, even if these are
geographically distributed [33]. These machines are configured to operate
together and run as a single cluster, where these machines form a ring of
nodes [17, 33]. Such nodes are connected to each other and each node is
aware of all their peers in the cluster (Figure 2.14).

The nodes in a cluster communicate with each other to send their state
information at regular time intervals, so that other nodes in the ring know
their status [33, 38]. Such communication between the nodes support

32

CHAPTER 2 2.7. Apache Cassandra

Figure 2.14: A cluster of nodes in Cassandra

failure detection in Cassandra as when a node fails, it stops responding
to messages from other active nodes and in this way the rest of the nodes
know of its inactive state. In the event of a node failure, operations sent to
it are not lost since another active node ensures these are performed [38].

In such a cluster, every node applies the same architectural features
fundamental to Cassandra, namely, load balancing, replicating and parti-
tioning data, failure detection mechanisms, among others. Some of the key
architectural concepts of Cassandra are explained next.

2.7.1 Architecture

Cassandra adopts many of its architectural concepts from other popular
distributed key-value data storage systems on the cloud, like Google’s
Bigtable and Amazon’s Dynamo [16, 22]. Over time, these adopted con-
cepts evolved and developed new features, some of which became specific
to Cassandra’s architecture. Some of these concepts are, peer-peer distribu-
tion model, data partitioning, eventual consistency, among others. These
concepts gave Cassandra features such as elastic scalability, fault tolerance,
high availability and high performance.

33

2.7. Apache Cassandra CHAPTER 2

Peer-Peer Distribution Model

Cassandra is a decentralised system where all the nodes are considered
equal or identical (i.e. nodes are peers) in sharing responsibilities and
performing operations, without any master or slave nodes [20, 33]. This
model provides high data availability since failure of a node does not affect
the service of the cluster because other nodes carry out the same operation.

Data Partitioning

Cassandra partitions data between the nodes in a cluster so that data items
from overloaded or failed nodes are assigned to other nodes or new nodes.
For this, Cassandra uses consistent hashing where data items are hashed
on its key. After hashing the key, the data items are assigned to the node
whose position in the ring is larger than the hashed value of the key [33].
Data partitioning makes Cassandra elastically scalable since the load is
balanced and distributed in the cluster irrespective of addition or removal
of nodes [33, 38].

Replication strategy

In order to ensure high data availability irrespective of failures, Cassandra
uses a replication strategy where every data item is replicated across a
number of nodes. Applications can set the level of replication to suit its
requirements, that is, the replication factor is set to the number of nodes on
which the application wants to create replicas [33, 38]. The replication factor
tells the cluster how many copies to create of a single data item. Setting the
replication factor to a large number will help in higher consistency of data
items, but replicating data items to a large number of nodes can adversely
affect the performance.

Once data items are partitioned and assigned to a node, these are repli-
cated onto other nodes and a list of the nodes responsible for storing the
data items are maintained. Thus, every node in the cluster knows which

34

CHAPTER 2 2.7. Apache Cassandra

nodes are responsible for a data item [33, 38]. Such a replication strategy
makes data highly available since data items can be accessed from any
node in a cluster regardless of node failures.

Eventual Consistency

In any strongly consistent DBMSs, data items immediately reflect the new
values upon an insert or update operation. However, Cassandra uses
the eventual consistency model where replicas do not agree to the most
recent value immediately but will do so eventually. This is because the new
values are propagated to all the replicas in a cluster in an asynchronous
way [4, 16, 32, 54].

2.7.2 Write and Read Operations

In order to write data into Cassandra column families, a write request
is sent to a random node in the cluster, which acts as a proxy node and
replicates the data in the cluster [17, 33, 38]. The number of nodes on which
data is to be replicated can be changed to suit the application requirements.
Moreover, these nodes can be in the same data centre and other data centres.

When a read request is issued to a node, it acts as a proxy node and
forwards the request to all the other nodes in the cluster. These nodes return
their copy of the data item to the proxy node and the proxy node checks
the versions of the replicas and sends the latest replica to the user [19]. If
the replicas received from a node are not consistent with other replicas,
a read repair is performed on the node with the outdated replicas. This
means that the nodes with outdated replicas are sent a write operation with
the latest data. Thus, data consistency is maintained whenever conflicting
versions of data items are found.

When rows or columns are deleted in Cassandra, the data within these
rows or columns is not removed immediately from the disk [17, 33]. Instead,
data is deleted after a time period that is configurable by applications. This

35

2.8. Summary CHAPTER 2

is called a tombstone delete in Cassandra, where the columns that are
to be deleted are only marked for deletion and empty values are written
into such columns. Once the configured time period expires, the data is
physically removed from the disk. However, the row keys of the deleted
columns continue to persist. Such a tombstone delete is useful when a
failed node is active again as this node can update its replicas correctly to
show the deletions.

2.8 Summary

This chapter presented the background about the underlying concepts in
cloud computing and cloud databases. It is clear that cloud computing is
gaining prevalence due to its many benefits like high data availability, cheap
storage, and others. With an increase in the number of users migrating to
cloud computing, cloud data storage is gaining prominence as well, for
easy and simple data storage. This has paved the way for the existence
of many different data models and databases on the cloud. Amongst the
many data models, the key-value data model has been most widely used on
the cloud as it is more adapted to the cloud environment due to its support
for replication and scalability and other cloud related features [51, 52].

This chapter also discussed a few architectural concepts of Cassandra
that form its foundation , providing it with BASE properties and many
important features like high data availability, failure management, fault
tolerance and scalability among others. The architectural concepts and
operations of Cassandra are designed to make it a highly available and
scalable DBMS. Cassandra is used to implement the four solutions designed
to impose referential integrity validations in cloud NoSQL DBMSs. The
design of these solutions and the approaches used to implement such
validations are explained in the following chapter.

36

Chapter 3

Design of Referential Integrity
Constraints in NoSQL databases

Traditionally, referential integrity constraints are imposed on data items
of a database to maintain foreign key relationships. These relationships
are maintained by correctly identifying and preserving the data dependen-
cies existing between the data items. Most popular traditional Relational
Database Management Systems (RDBMSs) preserve such dependency in-
formation in their System tables or data dictionaries. These tables store the
necessary information which is required to maintain valid dependencies.
The information stored in such tables include table names, primary and
foreign keys, among others. This can be seen in popular RDBMSs like MS
SQL Server, PostgreSQL, Oracle, and so on.

For example, in MS SQL Server 2000, sysforeignkeys is a System
table which stores the information of all foreign keys of every table in a
database, and sysreferences stores the mappings of foreign keys to
the referenced primary key columns [41]. Information in these System
tables consist of the names of tables and its constraints, unique identifiers
of referenced and referencing columns and others. In PostgreSQL, such
information is presented to users as views but it is stored in base tables
which contain the dependency information of data items in a database. The

37

3.1. Metadata CHAPTER 3

view table constraints show the information about all the constraints
in every table owned by the current user [43]. Similarly, Oracle uses a
SYSTEM meta-database to hold such constraint information. In general,
System tables or views with information about the existing dependencies
are looked up by these RDBMSs whenever referential integrity checks are
triggered [41].

The solutions presented in this thesis save the dependency information
as metadata. This metadata contains relevant information about primary
keys of column families and foreign key relationships in keyspaces. Thus,
metadata is accessed whenever an operation is performed on the data and
referential integrity needs to be validated. These solutions are implemented
using an experimental Application Programming Interface (API) which is
discussed in Chapter 4.

This chapter presents the design of four solutions that implement ref-
erential integrity constraints in a cloud Not only SQL (NoSQL) Database
Management System (DBMS). Section 3.1 describes the metadata used by
the solutions to store the dependency information. Sections 3.2, 3.3, 3.4,
3.5 present the design and motivation of the four solutions. Section 3.6
summarises the design of the four solutions.

3.1 Metadata

Metadata in DBMSs provide information about the data stored within the
databases. It may contain details related to schemas, constraints, primary
and foreign keys, and so on. As previously mentioned, most traditional
RDBMSs maintain such metadata within their System tables or data dic-
tionaries. In Apache Cassandra, the DBMS of interest, metadata is stored
in a keyspace named System and it contains information about the cluster
and its nodes along with information related to the keyspaces, column
families, and so on [33]. Even when Cassandra has a System keyspace
to store metadata, it is read-only and therefore it cannot be modified to

38

CHAPTER 3 3.1. Metadata

store additional metadata about referential integrity constraints. Hence,
for preserving the metadata, each of the solutions implement a different
strategy in which metadata is associated with actual data. Solutions 1 and 2
use embedded metadata, that is, metadata is created with the actual data;
while solutions 3 and 4 associate metadata separately from the actual data.
Notice that, the structure of the metadata is kept the same across all the
solutions even when the way of storing and associating this metadata is
different in each.

The role of metadata in the solutions is primarily to hold the neces-
sary information required to maintain referential integrity. The metadata
contains information about primary keys, foreign keys, referenced and
referencing column family details, constraints, and others. The constraints
considered in the solutions can be either Primary Key (PK) or Foreign
Key (FK) constraints. PK constraints specify which column is the primary
key of a column family. FK constraints (or referential integrity constraints)
determine the foreign key relationship between two column families, that
is, the column of a column family which is dependent on the primary key
column of another column family. Hence, for each column family with
a primary key, the metadata contains one PK constraint and as many FK
constraints as foreign key relationships the column family has.

The structure of the metadata is shown in Table 3.1. This structure
contains information about a University keyspace example in which a
simple schema is applied for the keyspace. In this example, the details
of the students are saved in the Student column family and the course
details in the Course column family. The enrolment details of students are
saved in the Enrolment column family by associating students to courses
and hence having foreign key relationships to both Student and Course

column families. All the column families have unique primary keys and
their PK constraints are saved in the metadata as presented in Table 3.1
while the foreign key relationships between Enrolment, Student and
Course are saved as FK constraints. For instance, consider in Table 3.1

39

3.1. Metadata CHAPTER 3

the PK constraint CONST100, for the Student column family, and the FK
constraint CONST400 for the foreign key relationship between Enrolment
and Student. Notice that only single column primary keys are considered
in the solutions.

Constraint Keyspace Constraint Column RKeyspace RConstraint RColumn DeleteRule
Name Type Family Name

CONST100 University P Student University StudentId

CONST200 University P Course University CourseId

CONST300 University P Enrolment University RowId

CONST400 University R Enrolment University CONST100 StudentId CASCADE

CONST500 University R Enrolment University CONST200 CourseId NODELETE

CONST600 University F Course University CONST500 CourseId NODELETE

CONST700 University F Student University CONST400 StudentId CASCADE

Table 3.1: Metadata for the Solutions

Specifically, the structure of the metadata contains:

• ConstraintName: is the name assigned for every constraint and it
uniquely identifies an existing PK or FK constraint in the metadata.
For example, CONST100 and CONST400 are ConstraintNames.

• Keyspace:represents the name of the Keyspace the constraint be-
longs to.

• ConstraintType: denotes the type of the constraint and the possi-
ble values are ’P’, ’R’ and ’F’. A PK constraint is referred by ’P’, while
’R’ and ’F’ are two representations of FK constraints. ’R’ represents
the referential integrity constraint (or FK constraint) a child entity has
on a parent primary key, and ’F’ represents the existing dependencies
on a parent entity . For example, CONST400 shows that the parent en-
tity for Enrolment is Student by looking up RConstraintName.
CONST700 shows that parent entity Student has child dependencies
on it by following CONST400. Notice that, the constraint type ’F’ is

40

CHAPTER 3 3.1. Metadata

primarily used to locate the child dependencies for a parent when it
is deleted or updated.

• ColumnFamily: refers to the column family this constraint ap-
plies to. For example, the PK constraint CONST100 applies on col-
umn family Student, and the FK constraint CONST400 applies on
Enrolment.

• RKeyspace: is the name of the keyspace on which this constraint is
applied. In the example, all the constraints are applied in the keyspace
University.

• RConstraintName: represents the constraint that is referenced. For
the constraint type ’R’, this represents the referenced PK constraint;
and for the constraint type ’F’, it shows the child dependencies for a
parent entity. In the example, the FK constraint CONST400 references
the PK constraint CONST100, which means that Enrolment has a
foreign key relationship with Student. In CONST700 this field indi-
cates that FK constraint CONST400 exists for Student. Notice that
this field is left blank in a PK constraint since it has no references to
other keys.

• RColumn: indicates the primary key column on which this constraint
is applicable. For PK constraints, this holds the name of the primary
key column. For FK constraints, this field denotes the referenced
column. This example shows that the PK constraint CONST100 is
applied on the primary key column StudentId of Student column
family . The FK constraint CONST400 shows that the referenced col-
umn is StudentId, indicating that Enrolment references primary
key column StudentId of Student.

• DeleteRule: stores the type of data manipulation rule applicable
on this constraint for a delete operation. Notice that for the sake of
simplicity, this rule is also used for update operations. The possible

41

3.2. Solution 1: Metadata in Super Columns CHAPTER 3

rules considered in this thesis are Cascade and NoDelete, other
rules such as Null or Default are out of the scope of this thesis.
Notice that, this field is not applicable for PK constraints since data
manipulation rules are associated with constraints that hold depen-
dency information like the FK constraints.

In the solutions, metadata is accessed whenever referential integrity
validations are triggered by Create, Read, Update and Delete (CRUD)1 op-
erations performed on a column family. Thus, the relevant FK constraints to
perform such validations are accessed from the metadata. Notice that, each
solution stores metadata in a distinct way and provides specific methods
to access and process the metadata to support the validation. The logic for
validating the referential integrity is consistent across all the solutions. The
way these solutions store metadata and the motivation behind the design
of its metadata storage is presented in the following sections.

3.2 Solution 1: Metadata in Super Columns

In this solution, metadata is embedded with the actual data by storing it
within each super column. That is, each super column of a column family
stores the metadata in its Metadata column (Figure 3.1). Since metadata
is common in a keyspace, all the super columns in every column family
contains the same value in the Metadata column. Figure 3.2 presents how
metadata is stored in every super column of the example Student column
family in the University keyspace.

Metadata contains all the parts as described in Section 3.1 and each super
column stores all the constraints belonging to the keyspace in its Metadata
column. Since all the constraints are stored together, it is possible to retrieve
all the relevant constraints of a super column from its Metadata column.

1Notice that Read does not trigger any referential integrity validations, but the CRUD
acronym is still used all throughout this thesis for the sake of familiarity.

42

CHAPTER 3 3.2. Solution 1: Metadata in Super Columns

Figure 3.1: Metadata Column in Solution 1

Since all the constraints of a column family are saved together in the
Metadata column, it is essential for each constraint to be easily identifiable
and accessible. Thus, special characters are used within the metadata to
separate the constraints and to identify its different parts, as shown in
Figure 3.1. These characters are curly brackets (’{’, ’}’) and semi-colon and
colon (’;’, ’:’). These special characters are used as follows.

• Each constraint is enclosed within curly brackets and the constraints
are separated from each other with a ’;’. For example, CONST100 and
CONST200 are enclosed in curly braces and separated by ’;’. Thus,
’};’ marks the end of every constraint in the metadata.

43

3.2. Solution 1: Metadata in Super Columns CHAPTER 3

Fi
gu

re
3.

2:
M

et
ad

at
a

in
So

lu
ti

on
1

44

CHAPTER 3 3.2. Solution 1: Metadata in Super Columns

• The different parts in a constraint are separated by the special charac-
ter ’;’. For example, the ConstraintName and Keyspace and other
parts in the constraints CONST100 and CONST200 are separated with
a ’;’.

• Each part and its respective value are separated by the special charac-
ter ’:’. For example, ConstraintName is separated from its value
CONST100 with a ’:’.

The special characters help in identifying the values of every constraint
in the metadata information for this solution. Thus, the metadata is ex-
tracted from each super column and processed by specific methods within
the solution so that relevant constraints are used for validating referential
integrity.

This design was inspired by the experiments done by Hackl et al. [30] on
a popular NoSQL DBMS named Tokyo Cabinet. Tokyo Cabinet is similar
to Cassandra as data is stored in key-value pairs but it does not involve
data types or columns and column families as in Cassandra [30, 35]. As a
part of their experiments to manage metadata for huge file systems, they
adopted an approach to store metadata as a part of the value in a key-value
pair. In their approach, this value is associated with a unique key and the
different parts of the metadata are separated by semicolons. Their results
showed that such a metadata storage provided high speed metadata access
where valuable information was integrated with the actual data.

Solution 1 derives this method of saving metadata using special char-
acters and integrating it with the actual data as value in a key-value pair
in Cassandra. The metadata in this solution contains all the constraints
pertinent to a keyspace and uses the special characters to distinguish the
relevant constraints and its various parts.

45

3.3. Solution 2: Metadata as a Top Row CHAPTER 3

3.3 Solution 2: Metadata as a Top Row

In Solution 2, metadata is embedded with the actual data and exists within
the same column family as the actual data, which is similar to Solution 1.
However, in this solution, metadata is saved only once in the column family
as a top row. Specifically, it is stored in the first super column in a column
family) with the unique RowId ’-1’. This top row has only the Metadata
column which contains the metadata information as its value while the rest
of the super columns in the same column family have different columns
containing the actual data. This design is possible since Cassandra allows
rows to have different number of columns within a column family. The
Metadata column is similar to the Solution 1 as shown in Figure 3.1. Thus,
for each column family, the metadata exists only once as a single row and is
common for all its super columns. In the University example, the Student
column family has the metadata stored as a top row as shown in Figure 3.3.

In this solution, metadata for each column family contains all the con-
straints belonging to the keyspace. The metadata contains the same special
characters ’{’, ’}’, ’;’ and ’:’ to distinguish all the constraints and its differ-
ent parts and values, as seen in Solution 1. For example, the metadata for
Student contains all the constraints as listed in Table 3.1 as its metadata
in the top row as shown in Figure 3.3.

The motivation behind this solution is to overcome the redundancy of
metadata storage in Solution 1 where metadata is stored in every super
column of a column family and replicated across the cluster along with
the column family. Solution 2 reduces this redundancy and centralises the
metadata as a top row within the column family. Thus, when metadata
is large, lesser space is consumed since it is not replicated as widely as in
Solution 1. Furthermore, this solution ensures that, when changes are made
to the metadata, the actual data is not accessed and only the column family
is accessed to fetch the top row containing the metadata.

46

CHAPTER 3 3.4. Solution 3: Metadata Column Family

Figure 3.3: Metadata storage in Solution 2

3.4 Solution 3: Metadata Column Family

In Solution 3, metadata for all the column families in a keyspace is stored in
a separate column family called Metadata. In this approach, the metadata
is decoupled from the actual data and stored in a centralised way where
all the PK and FK constraints of all the column families within a keyspace
are saved in a single location. The other column families contain only the
actual data and do not store any metadata. Using this approach, all the

47

3.4. Solution 3: Metadata Column Family CHAPTER 3

existing constraints are saved as super columns in the Metadata column
family. Figure 3.4 shows an example of the Metadata column family with
some of the constraints of the University keyspace.

The different parts of the constraints are saved as separate columns in
the Metadata column family. Thus, no special characters are required to
identify the various parts as seen in Solutions 1 and 2. When an opera-
tion is invoked on a column family in the keyspace referential integrity
validations are triggered. For these validations, it is necessary to connect
to Metadata column family and retrieves the relevant constraints for the
column family on which the operation is invoked. Thus, the different parts
of the constraints are accessed by identifying the correct columns in the
Metadata column family and necessary values are retrieved to do the
validation.

This approach is similar to the way dependency information is stored
in traditional RDBMSs, where metadata holds information about tables, its
dependencies and its many other properties. Commonly, such metadata
is maintained in System tables, separated from the tables containing the
actual data, as seen in this approach.

The design to decouple metadata from the actual data is inspired from
the potential challenges in Solutions 1 and 2 where a column family with
several constraints will have a large value in the Metadata column, hence
making it cumbersome to maintain such metadata within a single string.
Moreover, in these solutions metadata has to be changed at every place
it is repeated in the event of any alterations to the metadata. Consider
Solution 1, where the Metadata column in every super column of every
column family has to be updated every time a constraint is added, removed
or changed; similarly, in Solution 2 where the top row has to be updated
for all the column families.

48

CHAPTER 3 3.4. Solution 3: Metadata Column Family

Fi
gu

re
3.

4:
M

et
ad

at
a

C
ol

um
n

Fa
m

ily
in

So
lu

ti
on

3

49

3.5. Solution 4: Metadata Cluster CHAPTER 3

Decoupling the metadata from the actual data allows accessing and
retrieving the various parts of the constraints by fetching the respective col-
umn names. More importantly, adding, removing or changing constraints
require access only to the centralised metadata. In such cases, changes
affect only the Metadata column family and access to the actual data is
not needed to perform such changes.

3.5 Solution 4: Metadata Cluster

In Solution 4, metadata is stored in a separate column family similar to
Solution 3. However, in this solution, the Metadata column family is
located in a separate Cassandra cluster instead of within the same cluster.
Since such a cluster does not require many nodes, metadata is not as widely
replicated as in the previous solutions since the replication of Metadata is
only within the metadata cluster. Figure 3.5 shows an example of how the
University keyspace is saved in a separate cluster (nodes A, B, C, D) and the
metadata is saved in the separate cluster called Metadata cluster (nodes L,
M, N, O). In this example, Metadata is inserted into MetadataCluster,
while the column families Student, Course and Enrolment are stored
into another cluster (KeyspaceCluster).

In this case, it is necessary to connect to the Metadata cluster and to the
cluster containing the keyspace to perform any operations on the actual
data. Whenever a CRUD operation is invoked on a column family, the rele-
vant metadata must be accessed from the MetadataCluster. However,
since such external connection requires more time, a cache is implemented
to re-use it for future operations on this column family. The advantages of
a cache is that if the metadata cluster becomes unresponsive or not active,
the metadata can still be retrieved from the cache to continue performing
validations despite such disruptions. Having metadata cached is effective
since metadata is not expected to be as frequently changed as the actual
data. This also saves operational time by not having to connect to the

50

CHAPTER 3 3.6. Summary

Figure 3.5: Metadata Cluster in Solution 4

Metadata column family each time metadata is accessed.
This approach is inspired from the way most distributed systems save

metadata in Metadata Server clusters [5, 27, 58]. For better scalability and
efficient access of metadata, these clusters are often separately maintained
in large distributed environments where master and subordinate metadata
servers handle various responsibilities within the cluster. In Solution 4 such
delegations of tasks are not required since all nodes in a Cassandra cluster
have the same responsibilities and do not have a master-slave configuration.
Thus, Solution 4 adopts the design of having a cluster of dedicated nodes
to save metadata information and to have a central location to preserve and
maintain metadata for any number of keyspaces.

3.6 Summary

The main difference in the design of all the solutions is the way each of
the solutions store metadata. Solution 1 stores metadata with the data in
every super column providing fast access to the metadata but increasing
its redundancy. Solution 2 has a similar approach as Solution 1 but stores
metadata in a single super column in every column family. This approach

51

3.6. Summary CHAPTER 3

is useful when the metadata is large since it consumes less space when
compared to Solution 1. Both Solutions 1 and 2 use special characters in
the metadata in order to distinguish the constraints relevant to an entity.
Solution 3 separates the metadata from the actual data and stores all the
constraints together for all column families of a keyspace in a centralised
way. This is useful when metadata has to be altered because it simplifies the
management of metadata. Solution 4 has a similar approach as Solution 3,
but saves the Metadata column family in a separate cluster on different
nodes. It also caches the metadata to save operational time and reduce
database connections to a different cluster.

The next chapter presents the experimental API which provides meth-
ods for retrieving and processing the metadata as well as handling all the
CRUD operations and referential integrity validations.

52

Chapter 4

Implementation of Referential
Integrity Constraints in NoSQL
DBMSs

The four solutions presented in this thesis store the referential integrity
constraints of column families as metadata, and each solution stores it
in its own unique way. Such metadata is accessed whenever referential
integrity validations are triggered, that is, when Create, Read, Update and
Delete (CRUD)1 operations are invoked on column families. The validations
require to access the relevant Foreign Key (FK) constraints of a column
family and its associated Primary Key (PK) constraints from its metadata
and processed in order to extract the values held in the constraints. The
design of the four solutions presented in the previous chapter was shown
as an abstract representation of the way metadata is stored.

The metadata storage is different in every solution, and retrieving it
and processing it is different in each solution as well. Specific methods
are designed in all the solutions to retrieve and process the metadata, and
these methods along with all the solutions are incorporated into a single

1Notice that Read does not trigger any referential integrity validations, but the CRUD
acronym is used for the sake of familiarity.

53

4.1. Experimental API CHAPTER 4

experimental Application Programming Interface (API). The experimen-
tal API implements the design of the solutions and provides handlers to
execute the CRUD operations and perform referential integrity validations.

This chapter describes the experimental API and the implementation
details of the four solutions. Section 4.1 presents the experimental API
and describes its most relevant components. Section 4.2 describes the
approaches taken by the four solutions to retrieve and process metadata.
Lastly, Section 4.3 presents a summary of the chapter.

4.1 Experimental API

The experimental API2 was designed generically in order to ensure that
it can be used by applications to maintain dependencies within their
keyspaces irrespective of keyspace schemas or structures of column fam-
ilies. However, applications using this API still have to supply the list
of referential integrity constraints as these are not automatically deduced
from their implementation. Instead, the constraints have to be introduced
according to the solution as it is explained in detail in Section 4.2.

This API validates the referential integrity based on the metadata pro-
vided for the application and its column families. It provides the imple-
mentation of all the four solutions as well as the required components to
successfully maintain referential integrity in Cassandra.

The class diagram of the API is presented in Figure 4.1 alongside with
the classes that belong to the University keyspace example. The design
of the API follows the Entity Relationship (ER) model and the main com-
ponents are the entities, entity managers, and validation handlers, all of
which are described in the next sections. Notice that for the sake of clarity
and brevity, the class diagram only contains the relevant methods of the
classes, favoring a simpler explanation of the functioning of the API.

2The source code is available at http://code.google.com/p/harsha-api/.

54

http://code.google.com/p/harsha-api/

CHAPTER 4 4.1. Experimental API

Fi
gu

re
4.

1:
C

la
ss

D
ia

gr
am

fo
r

th
e

A
PI

55

4.1. Experimental API CHAPTER 4

4.1.1 Entities

An Entity class contains attributes (with respective getters and setters)
that map to columns within a specific column family. As such, the con-
tents of a column family can be represented by a list of entity objects. All
entities in the API extend from the class Entity to aid the API towards
their management. Particularly, the attributes that Entity contains are
columnFamily which determines the column family to which the entity
maps, and keyForUpdate which shall contain the new value in case the
primary key of the entity is to be updated.

For example, considering the University keyspace example, Enrolment
is an entity class that maps to the Enrolment column family, thus con-
taining the attributes RowId, CourseId and StudentId which represent
its respective columns. As such, an instance of Enrolment contains the
values of one super column. Likewise, Student and Course are entity
classes and their instances map to super columns in their respective column
families. Thus, the CRUD operations that are performed on these entities
and are handled by the EntityManager class, are explained next.

4.1.2 EntityManager

The EntityManager class implements all the CRUD operations to be
performed on the entities. In order to perform these operations, the
EntityManager interacts with the respective keyspace the entity belongs.
Moreover, it ensures to trigger the referential integrity validation process
whenever a CRUD operation requires it. The validation is triggered by in-
voking the respective methods on the ValidationHandler object which
is contained within the EntityManager.

The EntityManager, before performing any operation, requires a
connection to the keyspace. This connection is established using a third-
party API named Hector [24]. Hector encapsulates the driver-level interface
provided by Cassandra (known as Thrift) and simplifies the interaction

56

CHAPTER 4 4.1. Experimental API

with it. Regarding the CRUD operations, Hector provides a Mutator class
that encapsulates the necessary procedures to create, update, and delete ,
and different classes to query for data (e.g. SliceQuery).

Notice that the EntityManager is able to generically deal with any
entity that derives from the Entity class. This can be seen in the class
diagram where T is a generic type which extends Entity and is used
across the CRUD methods. The EntityManager is able to deal with any
entity by using reflection, a Java feature that performs an introspection
of a class to retrieve its attributes, methods, annotations, among others.
Moreover, the methods retrieved from such a class can be invoked on an
object in run-time. Thus, the EntityManager uses reflection to invoke
the respective getter and setter methods of an entity in order to load it with
data from the column family or to write the data into a column family.

Create

The create (or insert) operation stores an entity in its respective col-
umn family. This operation triggers a referential integrity validation when-
ever an entity is inserted. Such validation is performed by the onInsert
method of ValidationHandler. Finally, if the ValidationHandler
allows it, the EntityManager passes the entity details including row key
and column family as parameters to the addInsertion method of the
Hector Mutator object to perform the insertion. This operation is detailed
in Algorithm 4.1

Read

The read operation retrieves entities from the column family mapped by
the entity class. This API provides three methods for retrieving entities:
find, query and read. The find method retrieves a single entity given
the class and the value of its primary key. The querymethod retrieves a list
of entities from a column family given the class and a conditional expression
(< , ≤ , = , ≥ , >) on a column name and and its column value. The read

57

4.1. Experimental API CHAPTER 4

Input: Entity e to insert
begin

invoke onInsert on validationHandler passing entity e;
if no exception is thrown then

retrieve the attributes of e;
foreach attribute do

invoke addInsertion on Mutator passing attribute;
invoke execute on Mutator;

end

Algorithm 4.1: Insert algorithm in EntityManager

method retrieves the list of entities contained in the column family. These
methods are detailed in Algorithms 4.2, 4.3 and 4.4, respectively.

Notice that, these operations do not prompt any referential integrity
validation since entities are only read and their state is not changed, unlike
in the other operations.

Input: Class<T extends Entity> clazz, String value
Result: <T extends Entity>
begin

retrieve attributes of clazz;
create SliceQuery of clazz where PK = value;
if no result is found then

return null;
else

create instance of clazz;
load instance with result;
return instance;

end

Algorithm 4.2: Find algorithm in EntityManager

58

CHAPTER 4 4.1. Experimental API

Input: Class<T extends Entity> clazz,
String columnName, Expression expression, String
columnValue

Result: List of <T extends Entity>
begin

retrieve attributes of clazz;
create IndexedSlicesQuery of clazz where

columnName expression columnValue;
foreach result found do

create instance of clazz;
load instance with result;
add instance to list;

return list
end

Algorithm 4.3: Query algorithm in EntityManager

Input: Class<T extends Entity> clazz

Result: List of <T extends Entity>

begin
retrieve attributes of clazz;

create RangeSlicesQuery of clazz

foreach result found do
create instance of clazz;

load instance with result;

add instance to list;
return list

end

Algorithm 4.4: Read algorithm in EntityManager

Update

The update operation changes the columns of an existing entity. If the
changes to be performed are on columns which are not the primary key,
then an insert operation is performed as it uses the primary key value
of the entity to locate and replace the column values. Otherwise, if the
primary key value is to be updated, then more actions need to be performed.

59

4.1. Experimental API CHAPTER 4

Firstly, the entity with new primary key value has to be inserted, then all
the children entities have to be located and their foreign keys updated
to reflect the new primary key value, and finally the old entity has to be
removed.

This operation triggers referential integrity constraints which are val-
idated by the method onUpdate of the ValidationHandler when the
primary key value is to be updated, otherwise, the respective validations
are performed when the entity is inserted.

Input: Entity e to update
begin

if primary key value of e is not changed then
invoke insert on this EntityManager passing e;
return

insert entity with keyForUpdate as primary key;
invoke onUpdate on validationHandler passing entity e;
if no exception is thrown then

invoke delete from this EntityManager passing e;

else
delete entity with keyForUpdate as primary key;

end

Algorithm 4.5: Update algorithm in EntityManager

Delete

The Delete operation removes an entity from its respective column family.
As mentioned before, primary key values will never cease to exist in Cassan-
dra due to the tombstone delete, hence, this operation empties the values
of the columns represented within the entity to be deleted. Even when
primary key values exist within the column families for deleted entities,
these are ignored on read operations.

The Delete operation triggers referential integrity validations every
time an entity is deleted. This validation is performed by the onDelete
method of the ValidationHandler. Finally, if the ValidationHandler

60

CHAPTER 4 4.1. Experimental API

allows it, the EntityManager passes the necessary information to the
delete method of the Hector Mutator object. This operation is detailed
in Algorithm 4.6.

Input: Entity e to delete

begin
invoke onDelete on validationHandler passing entity e;

if no exception is thrown then
retrieve attributes of e;

invoke delete on Mutator passing primary key and column family

of e;

end

Algorithm 4.6: Delete algorithm in EntityManager

4.1.3 ValidationHandler

The ValidationHandler is used by the EntityManager every time an
operation triggers referential integrity validations on any entity. It contains
the logic that checks if an entity has dependencies, verifies whether the
insert, update or delete operations performed on an entity violate
referential integrity constraints, and it also applies referential integrity
rules when operations are cascaded or updates nor deletes are allowed.

The ValidationHandler is just an interface that has to be imple-
mented to deal with each solution. However, since the validations are the
same across solutions, it is sufficient to provide a generic class that imple-
ments the ValidationHandler for CRUD operations. Thus, it is left for
each solution to extend the generic ValidationHandler and implement
the retrieveMetadata method accordingly.

Validation: onInsert

This validation is triggered every time the EntityManager is asked to
insert an entity. It occurs before the insertion of the actual data as the
validation has to check whether the entity has foreign keys to other column

61

4.1. Experimental API CHAPTER 4

families. This is determined by retrieving the constraints relevant to the
entity, and if a constraint indicates that the entity has foreign keys, this
validation must ensure that they match the primary keys of the respective
column families they reference. This validation is detailed in Algorithm 4.7.

Input: Entity e to be inserted

begin
retrieve the metadata of e;

foreach constraint of type R ∈ metadata do
retrieve referenced constraint RConstraintName;

determine the entity class that maps to the parent column family;

use EntityManager to find parent entity;

if parent entity does not exist then
throw Exception;

end

Algorithm 4.7: Validation onInsert

For example, when an Enrolment entity is to be inserted, the Validat-
ionHandler identifies the parent column families by looking up at the FK
constraints of the entity. In this case, there is only CONST400 which identi-
fies Student as a parent column family. Hence, the ValidationHandler
makes sure there is a Student entity whose primary key value matches
the foreign key value of the Enrolment entity to be inserted. If such a
parent entity exists, then the EntityManager is allowed to insert the
entity.

Validation: onUpdate

This validation is triggered every time the EntityManager is asked to
update an entity that has its primary key value changed. Recall that if the
changes of the entity to be updated do not involve the primary key, then
an insert takes place instead and hence the validation is performed by
onInsert. Otherwise, if the primary key value of the entity is changed,
the new entity is inserted, the foreign keys of the dependencies are updated

62

CHAPTER 4 4.1. Experimental API

to the new primary key value, and the old entity is deleted. Clearly, the
referential integrity rules apply in this validation. These are assumed to be
contained within the DeleteRule3 field of the constraints relevant to the
children entities. Thus, the validation finds all the child dependencies of the
entity and, if the DeleteRule is CASCADE, updates their corresponding
foreign keys to the new primary key value. Otherwise, if the DeleteRule
is NODELETE, the update is only allowed if there are no child dependencies.
Notice that this operation assumes the entity with new primary key value
has already been inserted. This validation is detailed in Algorithm 4.8.

Input: Entity e to be updated
begin

retrieve the metadata of e;
foreach constraint of type F ∈ metadata do

retrieve referenced constraint RConstraintName;
if DeleteRule is CASCADE then

determine the entity class that maps to the child column family;
use EntityManager to query for the children of e;
add children to list;

else if DeleteRule is NODELETE then
determine the entity class that maps to the child column family;
use EntityManager to query for the children of e;
if e has children then

throw Exception;

foreach child ∈ list do
use EntityManager to update child;

end

Algorithm 4.8: Validation onUpdate

For example, in the University keyspace, if the primary key of a Course
entity is to be updated, the ValidationHandler locates the FK con-
straints which reference Course. In this case, only CONST600 references
Course, which follows up to CONST500 from which the child entity can
be retrieved. Since the DeleteRule is NODELETE, it is checked if there are

3Notice that for the sake of simplicity, this rule is also used for update operations

63

4.1. Experimental API CHAPTER 4

any Enrolment entities which reference the course to be updated. If there
are child entities, an exception is thrown and the update of the Course
entity is not allowed. Otherwise, if no Enrolment entities refer to such a
course, the EntityManager is allowed to update its primary key value.

Validation: onDelete

This validation is triggered every time the EntityManager is asked to
delete an entity. This validation ensures that referential integrity rules are
applied when the entity is referenced by other entities. That is, the entity to
be deleted is parent of other entities. The referential integrity rule to apply
can be CASCADE or NODELETE. In the former case, child dependencies
on the entity are deleted, while deletion in the latter case is only allowed
when the entity has no child dependencies. This validation is detailed in
Algorithm 4.9.

For example, in the University keyspace, if a Student entity is re-
quested to be deleted, the ValidationHandler locates the FK constraints
which reference Student. In this case, only CONST700 references Student,
which follows up to CONST400 from which the child entity can be retrieved.
Since the DeleteRule is Cascade, the child entities are deleted from
Enrolment and no exception is thrown, hence allowing the EntityManager
to delete the entity from its Student column family.

64

CHAPTER 4 4.2. Metadata Retrieval Approaches in Solutions

Input: Entity e to be deleted

begin
retrieve the metadata of e;

foreach constraint of type F ∈ metadata do
retrieve referenced constraint RConstraintName;

if DeleteRule is CASCADE then
determine the entity class that maps to the child column family;

use EntityManager to query for the children of e;

add children to list;

else if DeleteRule is NODELETE then
determine the entity class that maps to the child column family;

use EntityManager to query for the children of e;

if e has children then
throw Exception;

foreach child ∈ list do
use EntityManager to delete child;

end

Algorithm 4.9: Validation onDelete

4.2 Metadata Retrieval Approaches in Solutions

In every solution, every time referential integrity validations are triggered
by operations performed on any entity, the ValidationHandler requires
access to its metadata. Even when metadata storage is different in each
solution, all of them adopt one of the following two methods for retriev-
ing and processing the metadata. One method handles metadata as an
entity and the other handles metadata as text. These approaches and their
implementation are explained next.

65

4.2. Metadata Retrieval Approaches in Solutions CHAPTER 4

4.2.1 Metadata as an Entity

Solutions 3 and 4 store metadata in separate column families, either in the
same cluster or in a different one (respectively). As such, in the API, the
metadata column family is mapped by the entity class Metadata which
contains the necessary information for each constraint. These constraints
are inserted by the EntityManager the same way as other entities are
inserted, only without performing referential integrity validations. Notice
that the constraints required by an application must be explicitly provided
to the API by inserting them upon initialization of the keyspace .

The Metadata entity class stores the various parts of a constraint as its
attributes and provides their respective getter and setter methods. Since all
the constraints in a keyspace are stored in the Metadata column family, a
single metadata entity refers to a single constraint. Thus, a list of Metadata
entities contains all the relevant constraints for an entity. The class diagram
of the Metadata entity class is shown in Figure 4.2.

The ValidationHandler retrieves the list of Metadata entities rel-
evant to the entity upon validation. In this case, it does so by using the
EntityManager to read the constraints from Metadata. The Validation-
Handler iterates through the list of Metadata entities and uses the re-
spective getter methods in order to retrieve the different attributes of the
metadata to complete the validation. Notice that, in Solution 4, the list
of metadata is maintained in cache in order to re-use it for future valida-
tions and to avoid additional connections to the metadata cluster each time
validation needs to be performed.

4.2.2 Metadata as Text

Solutions 1 and 2 store metadata as a string of text. Solution 1 stores
the metadata within each entity in its Metadata column, and Solution 2
stores the metadata in the top row of the respective column families. No-
tice that, Solution 2 performs an additional search to locate the top row

66

CHAPTER 4 4.2. Metadata Retrieval Approaches in Solutions

Figure 4.2: Metadata Entity Class

(RowId=‘-1’) where the metadata is stored, and then loads it within the
entity.

The string of metadata within each entity contains all the constraints
separated using special characters as explained in Section 3.2. These special
characters serve as delimiters to parse and extract the information about
the relevant constraints. This information is then loaded into the attributes
of an instance of the Metadata entity class and, from then on, metadata is
handled as an entity as explained in the previous section. Notice that the
parsing algorithms for metadata as string are provided as static members
of Metadata class.

67

4.3. Summary CHAPTER 4

4.3 Summary

This chapter presented the implementation details of the experimental
API and the way the solutions retrieve and process metadata. The ex-
perimental API is composed of a class Entity instances of which map
to single super columns in column families, a class EntityManager in-
stances of which perform all the CRUD operations on the entities, and
a ValidationHandler interface for which a generic implementation is
provided and is in charge of checking and ensuring that referential integrity
is maintained in the keyspace at all times.

In order for the ValidationHandler to ensure referential integrity, it
must retrieve the metadata associated to the entity upon validation. The
metadata retrieval is different in each solution, yet its handling is either
from a string of text or as an entity directly. On the one hand, Solution 1
and 2 store the metadata as text, the former within the entities while the lat-
ter in the top row of the column family. Hence, in both solutions, the meta-
data needs to be parsed and the necessary information of the constraints
needs to be extracted to then load these into a list of Metadata entities
such that its handling is simplified. On the other hand, Solution 3 and 4
store the metadata in column families, the former within the same cluster
while the latter uses a dedicated metadata cluster. Since metadata has its
own column family, each constraint is naturally mapped into a Metadata
entity. Thus, metadata can be retrieved by using the EntityManager and
handling the Metadata as any other entity. Notice that all these classes,
while providing the fundamental operations on generic entities, can be
derived to suit custom application requirements.

The next chapter presents the experimental design used to evaluate the
performance of each solution implemented within the API.

68

Chapter 5

Experimental Design

The implementation of the four solutions introduces referential integrity
constraints and validations in Cassandra, which are not provided by this
Database Management System (DBMS) at the moment of writing. In order
to evaluate the performance of these four solutions, experiments are con-
ducted by using the implemented Application Programming Interface (API)
described in Section 4.1. The goal of the experiments is to determine how
each solution affects the performance of Cassandra in Create, Read, Up-
date and Delete (CRUD) operations, specifically in those where referential
integrity validations are triggered (namely Create, Update and Delete).

The experimentation is performed on the example application presented
across chapters: the University keyspace. In such an application, different
constraints are added and their performance is tested under such different
application requirements. The performance of the solutions provided for
ensuring referential integrity is measured based on response time and
throughput.

This chapter is structured as follows. Section 5.1 describes the example
application used for the experiments. Section 5.2 provides the details of the
nodes used in the Cassandra cluster. Section 5.3 describes the experimental
setup to evaluate the performance of the solutions. Section 5.4 presents
the performance indicators considered for measuring the results from the

69

5.1. Example application CHAPTER 5

experiments. Finally, Section 5.5 presents a summary of the chapter.

5.1 Example application

The API designed and implemented in the previous chapters is validated
and tested by performing CRUD operations on an example application
specifically designed for this purpose. This application has been referred to
as the University keyspace in previous chapters, and it contains different
constraints in order to assess the performance of the API and the solutions
on each of them. This application stores the details of students and courses
along with the enrolment details of the students. The class diagram for the
University keyspace is shown in Figure 5.1, and each entity is saved into
its respective column family in a Cassandra cluster.

• Student stores the following attributes of students: StudentId
(primary key), FirstName, LastName, Email and Age.

• Course stores the following attributes of courses: CourseId (pri-
mary key), CourseName, Trimester, Level and Year.

• Enrolment stores the relationship between students and courses,
that is, it stores the courses each student is enrolled into. The at-
tributes for Enrolment are RowId (primary key), StudentId and
CourseId, where StudentId and CourseId are foreign keys.

The list of constraints created for the University keyspace can be seen in
Table 5.1. Constraints CONST100, CONST200 and CONST300 are the respec-
tive Primary Key (PK) constraints for the three column families. CONST400
and CONST500 are the Foreign Key (FK) constraints of Enrolment which
specify the respective parent column family for its foreign keys. CONST600
and CONST700 show the child column family for Course and Student

respectively.

70

CHAPTER 5 5.2. Cassandra cluster

Figure 5.1: Class diagram for University

5.2 Cassandra cluster

Cassandra is deployed in an homogeneous cluster conformed by 10 nodes.
That is, all 10 nodes have the same characteristics in software and hardware.
These nodes emulate a cloud environment in which each node saves the
data on the local disks of the machines. Notice that, for Solution 4, an

71

5.2. Cassandra cluster CHAPTER 5

Table 5.1: Metadata
Constraint Keyspace Constraint Column RKeyspace RConstraint RColumn DeleteRule

Name Type Family Name

CONST100 University P Student University StudentId

CONST200 University P Course University CourseId

CONST300 University P Enrolment University RowId

CONST400 University R Enrolment University CONST100 StudentId CASCADE

CONST500 University R Enrolment University CONST200 CourseId NODELETE

CONST600 University F Course University CONST500 CourseId NODELETE

CONST700 University F Student University CONST400 StudentId CASCADE

additional node is used to emulate an external cluster dedicated to provide
metadata of the entities upon request. The following are the characteristics
of these nodes.

• Hardware:

– 2.8 GHz Intel(R) Core(TM) 2 Quad Processor

– 16 GB main memory (RAM)

– 1000 GB SATA hard disk

– 1000 Mbit/s, 802.11n Networking options

• Software:

– Operating system: Linux 3.2.4-1-ARCH i686 (64-bit)

– Java JDK 1.6.0 31 (Java 6)

– Cassandra version 0.8.4

– Hector version 0.8.0-2

The nodes used in the cluster are part of the Engineering and Com-
puter Science grid system of Victoria University of Wellington. Notice that,
such a cluster is not a controlled environment and it is not possible to use

72

CHAPTER 5 5.2. Cassandra cluster

it as a dedicated cluster as it can be used for other grid jobs or by stu-
dents. Nonetheless, the experiments can be performed over night during
weekends when the external usage of these nodes is minimal.

Some values in the configuration files on each node are changed before
starting the cluster of nodes. For every node, the listen address and
rpc address are set to the hostname. The nodes are added to the cluster
in a sequential order. One of the nodes is chosen as the first node and is
made a host node (a. k. a. seed node). This node becomes the contact
point for the following node to join the cluster. The hosts for any given
node are specified in its configuration file under the seeds option. For the
first node, this option is set to its loopback address “127.0.0.1” since no
other nodes have joined the cluster yet. For nodes that are not seed nodes,
this option contains the hostnames that it can contact to learn about the
cluster. In the experiments, except for the first node, the remaining nodes
have two neighboring hosts as seeds.

The seed node has its auto bootstrap option set to true to allow
other nodes to migrate data from it when data is partitioned or when other
nodes join the cluster. For nodes that are not seed nodes, this option is set
to false. This is because all the nodes are started prior to the experiments
and do not have data to partition yet.

All the remaining settings in the Cassandra configuration file are set
to the default values for all the nodes. The directories for saving the data,
commit logs and saved caches are saved on the local disk of each node in
its temporary folder (/local/tmp).

73

5.3. Experimental setup CHAPTER 5

5.3 Experimental setup

The experimentation consists of performing CRUD operations upon ar-
tificial data created for the University example application. Specifically,
the operations of interest are insert, update and delete as these are
the ones that trigger referential integrity validations. Notice that, since
the experiments are not performed in a controlled environment, all the
operations are repeated 100 times such that the effect of external factors (e.g.
network latency, parallel processes running in nodes, etc.) is minimized.

The artificial data upon which operations are performed is made up
of 500 students, 500 courses, and 5000 enrolments. These numbers were
chosen such that the experiments could be performed in a reasonable
amount of time. The format of the artificial data is:

• Student has a unit-increasing StudentId which is merged into
the fields FirstName and LastName as “First Name (StudentId)”
and “Last Name (StudentId)”. Email is composed in a similar way
as “First.Last@email.(StudentId).com” and Age is a random number
between 18 and 60.

• Course has a unit-increasing CourseId which is appended to the
prefix “COMP”. It also has a composed CourseName as “Engineering
(CourseId)”. Trimester, Level and Year are randomly generated
numbers.

• Enrolment contains a unit-increasing RowId and the respective for-
eign keys of student and course, which are StudentId and CourseId.

The order of the operations to be performed on the data in each run
is as follows. The insert operation inserts all the entities for Student,
Course and Enrolment. The update operation performs changes on
the primary keys of Student and Course entities, and on the foreign
keys of Enrolment (the one relative to courses, specifically). Finally, the

74

CHAPTER 5 5.3. Experimental setup

delete operation removes all the Student, Course and Enrolment

entities. Notice that the primary keys in every column family are different
in each run (create, update, delete), in order to avoid introducing biases to
the results as product of the tombstone delete paradigm that Cassandra
utilizes. That is, since Cassandra does not completely remove the primary
keys of the inserted entities (tombstone delete), reinsertion using the same
primary key might yield faster times as the key already exists. After each
run, all the column families (Student, Course, and Enrolment) are
emptied and ready for the next run. The details of the insert, update
and delete operations are explained further in the following sections.

5.3.1 Insert

The insert operation inserts all the Student, Course and Enrolment

entities in that precise order due to the nature of the referential integrity
constraints presented in Table 5.1. In the Student and Course column
families, the insert operation on these entities do not require referential
integrity constraints to be satisfied as these entities do not contain foreign
keys. Contrarily, insert on Enrolment triggers foreign key validation
checks on both Student and Course column families.

5.3.2 Update

The update operation is performed after the creation of all entities. First,
an attempt is made to update the primary key of each Course entity. This
operation triggers referential integrity validations that result in exceptions
thrown as the DeleteRule 1 for all Course entities is NoDelete and
enrolments referencing the courses are still present in Enrolment. Hence,
the times recorded for updating the Course column family represent the
time required to identify a constraint violation and throw the respective
exceptions.

1Notice that for the sake of simplicity, this rule is also used for update operations.

75

5.3. Experimental setup CHAPTER 5

Next, the Enrolment column family is updated. In this case, the
CourseId for each Enrolment entity is changed to a different existing
value, ensuring that the distribution of Student and Course entities re-
mains the same. The update on the Enrolment column family triggers
referential integrity validation checks to ensure that the course to which ev-
ery Enrolment entity is being updated actually exists in Course column
family.

Finally, the primary key for each Student entity is updated to a new
integer value that has never existed in the column family. Thus, given
the DeleteRule for Student (i.e. Cascade), this operation triggers a
cascaded update on the Enrolment column family by respectively updat-
ing the student foreign key (StudentId) in all its existing Enrolment

entities.

5.3.3 Delete

The deletion of entities occurs first on the Enrolment column family,
where all of its records are deleted without requiring referential integrity
checks as this is a child entity. The times are recorded for each delete

operation and then all of the entities are reinserted with the same primary
keys in order to assess the cascaded delete of Student entities next.

Secondly, all the Student entities are deleted from the Student col-
umn family. Hence, given the Cascade DeleteRule of these entities, the
ValidationHandler ensures to delete first all of the child entities before
deleting a Student entity. Thus, the times recorded for this operation also
include the time required for performing a cascaded delete on the student
dependencies in Enrolment. Notice that the dependencies exist at this
point as they will have been reinserted into Enrolment in the previous
step.

Finally, all the Course entities are deleted. Despite the courses having
a NoDelete rule, notice that at this point the Enrolment column family
is empty, so courses can be deleted as there are no child dependencies.

76

CHAPTER 5 5.4. Performance Indicators

Thus, the times recorded for this operation measure referential integrity
validation as well as the delete operation of the Course entity. After
this final operation, all column families are emptied but all the primary
keys still exist due to Cassandra’s tombstone delete. However, the whole
keyspace is ready for the next batch of operations as the primary keys of all
column families will be different.

5.4 Performance Indicators

Response time and throughput are the indicators used to gauge the perfor-
mance of the four solutions under the implemented API and the respective
referential integrity constraints specified by the example application. Re-
sponse time refers to the time a DBMS takes to process an operation and
produce results to the end user [7]. Throughput refers to the number of
operations that can be processed by the DBMS in a unit of time.

In the experiments, the response time is computed by dividing the
total execution time of an operation for a set of entities by the number of
entities. In other words, the response time measures the average amount
of time required to perform a single operation on one entity. On the other
hand, the throughput is the inverse of the response time and is computed
accordingly by dividing the number of entities by the total execution time of
an operation for a set of entities. In other words, the throughput measures
the number of operations that are performed in a unit of time. The following
equations define the response time r and throughput t,

r =
1

n

n∑
i=1

oi t = n/
n∑

i=1

oi

where oi is the time for an operation over entity i, and n is the number of
entities.

Notice that external variables such as network latency, simultaneous
processes in the operating systems of each node, and other variables are

77

5.5. Summary CHAPTER 5

not considered for the analysis of results. Even when they are present, it is
expected that results will not be significantly biased by them. Nonetheless,
the experiments will be performed at night time over weekends as this is
the time when the cluster is least used, thus reducing the presence of such
variables and hence their impact on the results.

5.5 Summary

This chapter presented the experimental design to evaluate the performance
of each solution and the API itself on the University application, which is
used as an example in previous chapters as well. This application contains
different constraints that makes it useful for assessing the performance of
the API as well as that of the solutions since the constraints will trigger
different referential integrity validations in order to maintain integrity
within the keyspace. The validations are triggered on different CRUD
operations performed upon artificial data intentionally created for the
application. All the operations are performed several times such that the
effect of external factors (e.g. network latency) is mitigated. The response
time of each operation is recorded and used as a performance indicator
together with throughput, thus providing guidelines to help assess the
trade-offs between the different solutions proposed.

The next chapter presents the results obtained from the experimentation
as well as their discussion.

78

Chapter 6

Results and Discussions

The performance of the solutions is measured in terms of response time
and throughput while validating referential integrity in the experiments.
Response time and throughput are common Database Management System
(DBMS) performance indicators. The response time indicates the time taken
for an operation to be completed while throughput measures the number of
operations that can be completed in a unit of time. The performance of the
operations when referential integrity validations are not enforced is also
measured and considered as the baseline with which the solutions are com-
pared. Such a comparison determines the difference in performance when
such additional validations are enforced using the Application Program-
ming Interface (API) and provides a guideline to assess the performance
impact of each solution.

The results from the experiments are analysed and discussed in this
chapter. Section 6.1 presents an overview of the performance of the four
solutions. Section 6.2 presents the performance without referential integrity
validations. Sections 6.3, 6.4 and 6.5 compare the results of all the so-
lutions for the insert, update and delete operations (respectively).
Section 6.6 presents an overall comparison of the operations. Finally, Sec-
tion 6.7 presents a summary of this chapter.

79

6.1. Overview of Results CHAPTER 6

6.1 Overview of Results

The experiments were performed to evaluate the response time and through-
put of the solutions in order to determine the impact of the metadata storage
and referential integrity validations on the performance of Cassandra. No-
tice that the performance is measured and analysed for only the operations
that trigger referential integrity validations. That is, the response time and
throughput are measured for the insert, update and delete operations
across the solutions.

The response time measures the average amount of time required to
perform a single operation on one entity. Conversely, the throughput is the
inverse of the response time and measures the number of operations that
are performed in a unit of time. Tables 6.1 and 6.3 present the mean and
standard deviation of the average response time and the throughput for
all the solutions. Notice that the solution with the lowest response time
and highest throughput has a better performance than the other solutions,
while the solution with the highest response time and lowest throughput
has the worst performance. In other words, the better performing solution
is the one that executes operations using the least amount of time and hence
completes more operations in a unit of time.

As seen in these tables, Solution 4 performs the best amongst all since it
has better response times and throughput for all the operations on every
entity. Notice that Solution 4 performs similar to baseline only when
inserting Course and Student and when deleting Enrolment entities as
in these cases, there are no referential integrity constraints to be satisfied.
Conversely, Solution 3 performs the worst as it has the worst response
times and throughput for all the operations. Regarding Solutions 1 and 2,
they perform similarly, although, Solution 1 is faster with slightly smaller
response times and higher throughput than Solution 2.

This can be further seen in the ratio of the response time and that of the
throughput presented in Tables 6.2 and 6.4. Notice that, in all the tables

80

CHAPTER 6 6.1. Overview of Results

Table 6.1: Response time in milliseconds per entity
Baseline Solution1 Solution2 Solution3 Solution4

insert
s 0.366 (0.08) 0.568 (0.03) 0.820 (0.09) 2.108 (0.05) 0.364 (0.02)
c 0.352 (0.05) 0.547 (0.04) 0.803 (0.05) 2.092 (0.06) 0.351 (0.01)
e 0.305 (0.01) 1.239 (0.04) 1.405 (0.02) 3.484 (0.05) 0.936 (0.01)

update
s 0.730 (0.16) 19.144 (0.39) 20.840 (0.43) 46.394 (0.73) 14.997 (0.37)
c 0.759 (0.06) 5.810 (0.50) 5.991 (0.27) 10.419 (0.30) 4.751 (0.28)
e 0.404 (0.03) 1.353 (0.03) 1.500 (0.02) 3.579 (0.05) 1.031 (0.01)

delete
s 0.314 (0.03) 7.425 (0.44) 10.533 (0.41) 26.023 (0.55) 5.638 (0.37)
c 0.287 (0.05) 2.037 (0.08) 2.367 (0.09) 3.958 (0.12) 1.964 (0.09)
e 0.290 (0.03) 0.410 (0.02) 0.744 (0.02) 2.132 (0.04) 0.299 (0.02)

Table 6.2: Response time ratio with respect to Baseline
Solution1 Solution2 Solution3 Solution4

insert
s 1.55 2.24 5.76 0.99
c 1.56 2.28 5.95 1.00
e 4.06 4.61 11.42 3.07

update
s 26.21 28.53 63.51 20.53
c 7.66 7.90 13.74 6.26
e 3.35 3.71 8.86 2.55

delete
s 23.61 33.50 82.76 17.93
c 7.09 8.24 13.78 6.84
e 1.41 2.57 7.36 1.03

Lower values mean faster response

and figures, the entities Student, Course and Enrolment are referred to
as ’s’, ’c’ and ’e’ for the sake of brevity.

The former shows the ratio of the response time of each solution when
compared to that of the baseline, and it indicates the factor by which a
solution is slower than the baseline; while the latter shows the ratio of
the throughput with respect to that of the baseline. The differences in
the performance of the solutions is caused by the ways these store and
handle metadata. Recall that Solutions 1 and 2 store metadata along with
the actual data, where Solution 1 stores it in every super column and

81

6.1. Overview of Results CHAPTER 6

Table 6.3: Throughput in entities per second
Baseline Solution1 Solution2 Solution3 Solution4

insert
s 2790 (291) 1764 (85) 1228 (82) 475 (12) 2755 (125)
c 2880 (264) 1837 (112) 1250 (69) 478 (13) 2856 (96)
e 3282 (116) 807 (22) 712 (11) 287 (4) 1069 (15)

update
s 1394 (121) 52 (1) 48 (1) 22 (0) 67 (2)
c 1325 (97) 173 (14) 167 (7) 96 (3) 211 (12)
e 2483 (119) 739 (15) 667 (11) 279 (4) 970 (12)

delete
s 3198 (205) 135 (8) 95 (4) 38 (1) 178 (11)
c 3574 (567) 492 (19) 423 (15) 253 (7) 510 (21)
e 3470 (206) 2443 (95) 1346 (44) 469 (9) 3351 (167)

Table 6.4: Throughput ratio with respect to Baseline
Solution1 Solution2 Solution3 Solution4

insert
s 0.63 0.44 0.17 0.99
c 0.64 0.43 0.17 0.99
e 0.25 0.22 0.09 0.33

update
s 0.04 0.03 0.02 0.05
c 0.13 0.13 0.07 0.16
e 0.30 0.27 0.11 0.39

delete
s 0.04 0.03 0.01 0.06
c 0.14 0.12 0.07 0.14
e 0.70 0.39 0.14 0.97

Higher values mean more throughput

Solution 2 stores it as the top super column of a column family. On the
other hand, Solutions 3 and 4 store metadata separately from the actual data
in a Metadata column family, but such a column family is in a separate
cluster in Solution 4.

From these results, it can be seen that Solution 4 is faster than the
other solutions when performing the validations since it caches the list
of constraints and avoids connecting to the external cluster to access the
Metadata column family each time operations are invoked on entities.
Therefore, to locate the relevant Foreign Key (FK) and Primary Key (PK)
constraints of an entity, the constraints stored in the cache memory are re-

82

CHAPTER 6 6.1. Overview of Results

used. Performance is improved significantly just by caching the Metadata
column family as it reduces the number of accesses to the column family.

On the other hand, Solution 3 is the slowest because it accesses the
metadata from Metadata column family every time it is required. That
is, for each operation on an entity, the constraints relative to the entity are
retrieved from Metadata and then, Metadata is accessed again to retrieve
the referencing constraints. Thus, in order to complete each validation,
Metadata is accessed more than once. Unlike Solution 4, metadata is not
cached for re-use thus costing multiple access to the Metadata column
family.

Meanwhile, Solutions 1 and 2 have approximately similar response
times as both the solutions store the whole list of constraints with the actual
data and require no additional accesses to retrieve the relevant constraints
of an entity. Note that, Solution 1 performs slightly better than Solution 2
because the former has the constraints stored within each entity while the
latter requires an additional search operation to identify the top row of
a column family to locate the constraints. Both solutions are faster than
Solution 3 mainly because these have the whole list of constraints along
with the actual data. However, they are slower than Solution 4 as these
have to access the keyspace to retrieve the constraints from each entity and
do not use a cache.

The standard deviation of each operation is presented within parenthe-
ses in Tables 6.1 and 6.3. The standard deviation measures the dispersion
of the response time and throughput of an operation from the mean. Note
that in the experiments, an operation is executed over a set of entities 100
times, which means that one run of the experiment produces 100 values for
an operation. Thus, the standard deviation measures the dispersion of the
100 values for every operation with respect to the mean. A low standard
deviation means that the values of the response time and throughput of
an operation are concentrated around the mean values. Conversely, as the
standard deviation increases the response time and throughput values of

83

6.2. Baseline Experiment CHAPTER 6

the operations are more spread.

Note that the experiments are run 100 times as external factors such as
network latency affect the performance of the operations and the solutions,
and thus these 100 values are expected to be different. As can be seen, the
network latency is generally a factor that affects the performance of the
baseline and the solutions as a network connection is always required to
perform operations. This can be deduced by the higher standard deviation
present in the results of the solutions which require more accesses to the
keyspace. For instance, Solution 4 generally has a low standard deviation
as metadata is retrieved once from the keyspace and then it is cached, thus
requiring no additional information from the cluster; whereas Solution 3
generally has a high standard deviation as it accesses Metadata multiple
times in every operation. Solution 2 retrieves all the metadata in one
additional access to the keyspace, so its standard deviation is generally
lower than Solution 3 and mostly higher than that in Solution 1 which
retrieves metadata alongside with the entities.

The performance of the solutions in each operation performed on the
entities is discussed in detail in the following sections.

6.2 Baseline Experiment

This experiment was designed to measure the performance of the Create,
Read, Update and Delete (CRUD) operations when no referential integrity
validations are triggered. That is, a) no checks are performed to ensure
that parent entities exist before inserting or updating child entities; and
b) no checks are performed to ensure that child entities exist before deleting
parent entities or updating their primary key values. Thus, this experiment
is taken as a baseline to assess the impact in performance of the CRUD
operations when referential integrity validations are incorporated and the
list of constraints on the entities is stored in different locations and handled
according to each of the solutions.

84

CHAPTER 6 6.2. Baseline Experiment

The results from this experiment can be seen in Figure 6.1. Specifically,
Figure 6.1(a) presents the average response time of the operations on a sin-
gle entity in the three column families. Similarly, Figure 6.1(b) presents the
throughput of such operations. These results show that the performance
of the insert operation is rather similar between the entities, like the
delete operation. On the update operation, the performance for updat-
ing Student and Course is rather similar, but drastically better when it
comes to updating Enrolment.

s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

insert update delete

(a) Response time

s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

2500

3000

insert update delete

(b) Throughput

Figure 6.1: Performance of Baseline

The performance of the insert operation is expected to be similar
across solutions since no referential integrity validations are performed.
However, the figure shows a slightly better average performance when
inserting in Enrolment. This subtle difference might be due to the smaller
number of columns as well as the smaller size of the contents that Enrolment
entities have when compared to Course and even more when compared
to Student. Also, external factors such as network latency are expected to
affect the performance slightly.

85

6.3. Insert CHAPTER 6

The performance of delete operations is similar across entities as well,
and quite similar to the performance of the insert operations. This is
because the tombstone delete paradigm in Cassandra does not allow a
complete removal of the super columns, but rather it keeps the row keys
and writes empty values to the columns to mark the super column as
deleted. Thus, it is expected as well to perform similar to the insert

operations.
Finally, the performance of the update operation is worse as it takes

more time to complete because it involves insert and delete operations
in the cases of Course and Student. However, the update operation
in Enrolment is much better as it does not change the primary keys of
these entities, instead, since only the foreign keys are changed. Thus, this
operation on Enrolment acts as an insert operation.

6.3 Insert

Across all the solutions in the experiments, insert triggers a validation
when Enrolment entities are inserted as it is a child entity containing
foreign keys referencing to Student and Course. On the other hand,
Student and Course entities have no referential integrity constraints to
be checked as these do not contain any references to other column families.

The average response time and throughput for completing an insert

on a single entity for all the solutions is presented in Figure 6.2. Specifically,
Figure 6.2(a) shows the average time consumed by the baseline and each
solution to complete an insert operation, and Figure 6.2(b) shows the
number of insert operations that can be completed in one second.

86

CHAPTER 6 6.3. Insert

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time for Insert operation

s c e s c e s c e s c e s c e
E

nt
iti

es
 p

er
 s

ec
on

d
0

500

1000

1500

2000

2500

3000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput for Insert operation

Figure 6.2: Performance of Solutions in Insert

These results show that insert on a single entity of Student and
Course take approximately the same time to complete, and this is consis-
tent across solutions. Inserting Student and Course entities into their
respective column families is faster than insert in Enrolment because
these are parent column families that have no referencing constraints. Thus,
the insert operation on these entities involves only accessing the relevant
FK constraints from the metadata in order to determine whether it is a
parent or child entity. On the other hand, insert on Enrolment takes
the most time in all the solutions as these entities have existing FK con-
straints. This indicates that they reference a parent entity and require to
retrieve additional constraints. Moreover, its validation involves not only
identifying its relevant constraints but also accessing its parent column
families (Student and Course) to ensure that foreign keys match primary
keys. The results highlight the difference in response time when foreign
key validations are required in the case of Enrolment. Note that these
observations stand true across all the solutions.

More detailed information about the performance of each solution when

87

6.3. Insert CHAPTER 6

insert operations are performed is presented in Figures 6.3 and 6.4. These
figures show the average response time and throughput for the insert
operation on each entity individually. It can be seen that Solution 4 takes
the least time to complete an insert on all the entities while Solution 3
takes the most time. Solution 4 takes the least time since it caches all the
metadata thus avoiding multiple accesses to the Metadata column family,
whereas Solution 3 requires accessing Metadata each time a constraint is
required. Regarding Solutions 1 and 2, both perform similarly although
Solution 2 takes slightly more time than Solution 1 due to its additional
search operation to locate the top row. Both the solutions are slightly
slower than Solution 4 as constraints from these solutions are retrieved
from the column family and not from a cache. However, both solutions
are faster than Solution 3 since retrieving constraints require no additional
connections to access the metadata.

When compared to the baseline, it is clear that the referential integrity
validations as well as metadata access caused the increased response time
for insert in all the solutions. Since the validations are the same for all so-
lutions, the performance differences in the solutions are due to the different
ways of accessing and processing the metadata. From Table 6.2, Solutions 1
and 2 are almost 4 times slower than the baseline, while Solution 3 is more
than 11 times slower, and Solution 4 is almost 3 times slower than the
baseline.

Notice that when no referential integrity constraints need to be satisfied
(e.g. Student and Course), Solutions 1 and 2 are nearly 2 times slower
than the baseline, Solution 3 more than 5 times slower, and Solution 4
almost similar to the baseline. Such differences are due to the computational
cost incurred while retrieving the metadata.

88

CHAPTER 6 6.3. Insert

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0.
0

0.
5

1.
0

1.
5

2.
0

(a
)

In
se

rt
on

St
ud

en
t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0.
0

0.
5

1.
0

1.
5

2.
0

(b
)

In
se

rt
on

C
ou

rs
e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(c
)

In
se

rt
on

En
ro

lm
en

t

Fi
gu

re
6.

3:
R

es
po

ns
e

ti
m

e
in

se
rt

in
g

en
ti

ti
es

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

(a
)

In
se

rt
on

St
ud

en
t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

(b
)

In
se

rt
on

C
ou

rs
e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

30
00

(c
)

In
se

rt
on

En
ro

lm
en

t

Fi
gu

re
6.

4:
Th

ro
ug

hp
ut

in
se

rt
in

g
en

ti
ti

es

89

6.4. Update CHAPTER 6

6.4 Update

The update operation triggers referential integrity validations whenever
entities of Student, Course and Enrolment are updated with new val-
ues. Notice that the Update operation is performed on the primary keys
of Student and Course entities, and on the foreign keys (CourseId)
of Enrolment. Figure 6.5 presents the results of the update operation
on each entity for all the solutions. Specifically, Figures 6.5(a) and 6.5(b)
present the average response time and throughput of update respectively.

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0

10

20

30

40

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time for Update operation

s c e s c e s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput for Update operation

Figure 6.5: Performance of Solutions in Update

It can be seen from the results that the update operation on Enrolment
is faster than update on Student and Course in all the solutions. Up-
dating Enrolment is faster since before inserting the new values, it only
involves identifying relevant FK constraints in the metadata and access-
ing the parent column families Student and Course to ensure that the
new foreign key values exist. Moreover, update in Enrolment involves
changing the foreign key attributes and not the primary key column.

90

CHAPTER 6 6.4. Update

The update operation on Student is slower since the primary key
is changed and it is a cascaded operation that updates Enrolment as
well. After accessing the relevant FK constraints, the child dependencies
are retrieved from Enrolment and updated with the new value for the
StudentId. As such, this operation involves inserting a Student entity
with a new StudentId, updating all the child entities of the old entity to
the new entity and deleting the old Student entity.

Finally, the update operation on a Course takes less time than update
on Student because it is not a cascaded operation as the DeleteRule1 for
Course entities is NoDelete and has child dependencies in Enrolment.
Thus, exceptions are raised each time an update is attempted on Course

entities, which is represented by the response time and throughput. That is,
these indicators consider the time taken for referential integrity validations
and exceptions. The update on Course is slower than on Enrolment

because it involves accessing the Enrolment column family to identify
existing child dependencies. Since these child dependencies exist when the
experiments are run, the exceptions are raised each time.

More detailed information about the performance of each solution is
presented in Figures 6.6 and 6.7. These figures show that Solution 4 is the
fastest amongst all the solutions, while Solution 3 is the slowest. Solutions 1
and 2 perform almost similarly although the additional search for the top
row in Solution 2 makes it just slightly slower than Solution 1. Note that
in Solution 3 the Metadata column family is accessed multiple times in
each validation, thus making it the slowest. Multiple accesses are needed
in such a case, to first retrieve the relevant FK constraints and then to
retrieve information about the child or parent entities. Although Solution 4
stores metadata separately like Solution 3, it caches and re-uses the list of
constraints, thus avoiding additional connections to the metadata cluster
to access the Metadata column family each time operations are invoked
on the entities.

1Notice that for the sake of simplicity, this rule is also used for update operations.

91

6.4. Update CHAPTER 6

When compared to the baseline, the update operation takes consid-
erably more time in all the solutions because of their different metadata
storage and retrieval mechanisms. In this operation, when entities have
child dependencies (Student and Course), Solutions 1 and 2 are more
than 26 times slower than baseline, Solution 3 almost 60 times slower, while
Solution 4 is only 20 times slower than the baseline in such updates. Differ-
ently, updates on child entities make Solution 1 and 2 more than 3 times
slower than the baseline, Solution 3 nearly 8 times slower, while Solution 4
is only 2 times slower than the baseline in such updates.

92

CHAPTER 6 6.4. Update

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

010203040

(a
)

U
pd

at
e

on
St

ud
en

t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0246810

(b
)

U
pd

at
e

on
C

ou
rs

e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

(c
)

U
pd

at
e

on
En

ro
lm

en
t

Fi
gu

re
6.

6:
R

es
po

ns
e

ti
m

e
up

da
ti

ng
en

ti
ti

es

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

20
0

40
0

60
0

80
0

10
00

12
00

(a
)

U
pd

at
e

on
St

ud
en

t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

20
0

40
0

60
0

80
0

10
00

12
00

(b
)

U
pd

at
e

on
C

ou
rs

e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

(c
)

U
pd

at
e

on
En

ro
lm

en
t

Fi
gu

re
6.

7:
Th

ro
ug

hp
ut

up
da

ti
ng

en
ti

ti
es

93

6.5. Delete CHAPTER 6

6.5 Delete

The delete operation triggers referential integrity validations whenever
entities are deleted. Figure 6.8 presents the results of the delete operation
on each entity for all the solutions. Specifically, Figure 6.8(a) shows the
average response time to perform a single delete on each entity according
to each solution and Figure 6.8(b) presents the respective throughput for
this operation.

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0

5

10

15

20

25

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time for Update operation

s c e s c e s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

2500

3000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput for Update operation

Figure 6.8: Performance of Solutions in Update

The results show that the delete operation on Enrolment is the
fastest in all the solutions. Deleting Enrolment entities is faster as these
have no referential integrity constraints to satisfy since Enrolment has
no child dependencies in it. Nonetheless, this operation is slower than
the baseline in all the solutions because it involves accessing metadata to
retrieve the relevant constraints of Enrolment in order to determine if any
child dependencies exist or not.

The delete operation on Student is the slowest. Deleting Student

94

CHAPTER 6 6.5. Delete

entities is a cascaded operation which involves deleting the child entities in
the Enrolment column family. This operation is the slowest because the
child entities in Enrolment which have a reference to Student have to
be deleted first.

Finally, the delete operation on Course is faster than deleting Student
entities. Deleting Course entities also involves accessing the relevant con-
straints and finding the child dependencies in Enrolment. However, at
this stage, all the entities in Enrolment are already deleted before delete
is invoked on Course entities. Hence, delete in Course actually deletes
the entities as there are no existing child dependencies.

More detailed information about the performance of this operation
can be seen in Figures 6.9 and 6.10. It can be seen from these results that
Solution 4 takes the least time to complete a delete operation on each
entity, while Solution 3 takes the most time. Since Solution 4 caches the
metadata of all the entities, it avoids multiple accesses to the Metadata
column family, whereas Solution 3 requires accessing Metadata each time
a constraint has to be accessed for an entity. The performance of Solutions 1
and 2 are comparable to each other even though Solution 2 takes slightly
more time due to its additional search operation to locate the top row.

When compared to the baseline, all the solutions take longer to delete
entities. As mentioned previously, this is because all the solutions involve
accessing relevant constraints and performing referential integrity valida-
tions. In this operation, when entities have child dependencies (Student
and Course), Solutions 1 and 2 are more than 23 times slower than the
baseline, Solution 3 almost 80 times slower and Solution 4 up to 17 times
slower than the baseline. On the other hand, deletes on child entities make
Solutions 1 and 2 almost 2 times slower than baseline, Solution 3 almost
7 times slower ,while Solution 4 is almost similar to the baseline, which
shows that accessing the metadata does not cause much difference in the
performance.

95

6.5. Delete CHAPTER 6

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0510152025

(a
)

D
el

et
e

on
St

ud
en

t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0123

(b
)

D
el

et
e

on
C

ou
rs

e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Milliseconds per entity

0.
0

0.
5

1.
0

1.
5

2.
0

(c
)

D
el

et
e

on
En

ro
lm

en
t

Fi
gu

re
6.

9:
R

es
po

ns
e

ti
m

e
de

le
ti

ng
en

ti
ti

es

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

30
00

(a
)

D
el

et
e

on
St

ud
en

t

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

30
00

(b
)

D
el

et
e

on
C

ou
rs

e

B
as

el
in

e
S

ol
ut

io
n1

S
ol

ut
io

n2
S

ol
ut

io
n3

S
ol

ut
io

n4

Entities per second

0

50
0

10
00

15
00

20
00

25
00

30
00

(c
)

D
el

et
e

on
En

ro
lm

en
t

Fi
gu

re
6.

10
:T

hr
ou

gh
pu

td
el

et
in

g
en

ti
ti

es

96

CHAPTER 6 6.6. Comparison of the Operations

6.6 Comparison of the Operations

In order to compare the operations, their performance is grouped by so-
lutions and presented in Figures 6.11 and 6.12. Generally, the insert

operation takes the least time across the solutions as it does not involve
any cascaded operations and referential integrity constraints have to be
satisfied only for the child entities. This involves ensuring the existence of
foreign keys as primary keys in the parent column families and inserting
the child entities into their respective column families.

On the other hand, the update operation takes the most time in every
solution, mainly due to its cascaded behaviour on parent entities, which
involves changing the parent primary key, accessing child column families
and changing its foreign key values. Note that update on Enrolment

is similar to insert on Enrolment across the solutions, because both
operations involve checking whether the foreign keys exist in the parent
column families and inserting the values only in Enrolment. However,
update on parent entities (Student and Course) take more time than
inserting parent entities because update involves additional searches and
operations (insert and delete) in both the parent and child column
families.

The delete operation is slower than the insert in the case of parent
entities and faster than insert in the case of child entities. This is because
referential integrity constraints have to be satisfied only in the case of the
parent entities for this operation. However, in general, deleting entities is
faster than updating them. This is because updating entities involves more
operations as both insert and delete are performed on child and parent
column families, while deleting entities involves inserting empty values in
the place of the entity attributes to mark them as deleted (tombstone effect).
Moreover, in update, referential integrity constraints need to be satisfied
for both parent and child entities, but in delete, these have to be satisfied
only for the parent entities.

97

6.7. Summary CHAPTER 6

Further information about the results for the operations and solutions
are provided in Appendices A, B, and C.

6.7 Summary

This chapter presented the results and discussions from the experiments
designed to evaluate the performance of the different CRUD operations,
under different referential integrity constraints, in each of the solutions. The
results were assessed in terms of the average response time and through-
put of each operation. The results reflected that Solution 4 performs the
best amongst the solutions, and performs similar to the baseline when no
referential integrity constraints need to be satisfied (e.g. inserting parent
entities), because it caches the metadata and re-uses it to avoid multiple
access to the Metadata column family. Solution 3 performs the worst
amongst all solutions and is slower than the baseline even when no referen-
tial integrity constraints need to be satisfied because simply accessing the
metadata from a separate column family each time affects its performance.
Solutions 1 and 2 perform similarly in all the operations on the entities,
which is mainly because the metadata is embedded with the actual data.
Solution 2 consumes slightly more time than Solution 1 as it searches for
the top row to identify constraints on each operation.

The results showed that amongst the operations, insert took the
least time while update took the most time, and delete was faster than
insert only in the case of child entities. These variations were mainly
due to the different referential integrity rules that are applied on parent
and child entities, especially because of the DeleteRule applied on these
entities.

98

CHAPTER 6 6.7. Summary

s
c

e
s

c
e

s
c

e

Milliseconds per entity

051015

in
se

rt
up

da
te

de
le

te

(a
)

So
lu

ti
on

1

s
c

e
s

c
e

s
c

e

Milliseconds per entity

05101520

in
se

rt
up

da
te

de
le

te

(b
)

So
lu

ti
on

2

s
c

e
s

c
e

s
c

e

Milliseconds per entity

010203040

in
se

rt
up

da
te

de
le

te

(c
)

So
lu

ti
on

3

s
c

e
s

c
e

s
c

e

Milliseconds per entity

02468101214

in
se

rt
up

da
te

de
le

te

(d
)

So
lu

ti
on

4

Fi
gu

re
6.

11
:R

es
po

ns
e

Ti
m

e
of

th
e

So
lu

ti
on

s

s
c

e
s

c
e

s
c

e

Entities per second

0

50
0

10
00

15
00

20
00

in
se

rt
up

da
te

de
le

te

(a
)

So
lu

ti
on

1

s
c

e
s

c
e

s
c

e

Entities per second

0

20
0

40
0

60
0

80
0

10
00

12
00

in
se

rt
up

da
te

de
le

te

(b
)

So
lu

ti
on

2

s
c

e
s

c
e

s
c

e
Entities per second

0

10
0

20
0

30
0

40
0

in
se

rt
up

da
te

de
le

te

(c
)

So
lu

ti
on

3

s
c

e
s

c
e

s
c

e

Entities per second

0

50
0

10
00

15
00

20
00

25
00

30
00

in
se

rt
up

da
te

de
le

te

(d
)

So
lu

ti
on

4

Fi
gu

re
6.

12
:T

hr
ou

gh
pu

to
ft

he
So

lu
ti

on
s

99

6.7. Summary CHAPTER 6

The entities required different behaviours in each operation due to
the various referential integrity rules as well as the data manipulation
rules applied on them. Enrolment entities required to satisfy referential
integrity constraints during insert and update operations as it is a child
entity, while Student and Course are parent entities and required to
satisfy these constraints in both update and delete. Thus, parent entities
are faster to operate upon in an insert operation, while child entities are
faster only in a delete operation.

100

Chapter 7

Conclusions and Future Work

Database Management Systems (DBMSs) on the cloud commonly adopt
the key-value data model which stores data as key-value pairs without
strict or rigid schemas (contrary to the traditional relational model). This
key-value data model provides cloud Not only SQL (NoSQL) DBMSs with
features like scalability, flexibility and robustness, which are essential in
the cloud environment. However, in order to provide these, other features
such as referential integrity are often sacrificed.

In such cloud DBMSs, maintaining referential integrity incurs an ad-
ditional computational cost that is avoided in order to provide high data
availability and partition-tolerance, following the CAP theorem [8, 52].
However, when referential integrity is not maintained, data dependencies
are not necessarily correct as dangling references can be introduced. Hence,
maintaining referential integrity is left to be dealt with by the application.

This thesis has incorporated validation mechanisms for maintaining ref-
erential integrity in Apache Cassandra, a prominent cloud column-oriented
key-value DBMS. These mechanisms are provided within an Application
Programming Interface (API) that serves as a middle layer between the
applications and the DBMS. The API prevents the execution of operations
that violate referential integrity constraints and does so by triggering vali-
dations which ensure that referential integrity constraints applied on data

101

CHAPTER 7

are always satisfied. More importantly, the API presents four approaches,
as solutions, to store the referential integrity constraints as metadata.

The performance of each solution is analyzed in terms of response time
and throughput upon a set of experiments. These experiments were de-
signed to validate and test the API and the four solutions and performed
Create, Read, Update and Delete (CRUD) operations upon artificial data
created for an example application, specifically designed for this purpose.
These experiments were developed to determine how each solution affects
the performance of the CRUD operations, specifically those where referen-
tial integrity validations are triggered (namely Create, Update and Delete).
In order to perform reliable experiments and obtain unbiased results, a
homogeneous set of nodes in the university labs were used and manually
configured to form a Cassandra cluster. These experiments presented re-
sults which showed clear differences in performance across the solutions.
The results helped in clearly understanding the performance of each so-
lution as it was compared and analysed against the baseline experiment
where no referential integrity validations were implemented. However,
the final word on which one is better depends on the application as each
solution presents different trade-offs.

The first solution has the second-best performance as it embeds the
metadata within each entity, thus providing immediate access to the con-
straints once the entity is retrieved. However, this solution requires a large
amount of disk space as it stores the metadata within every entity. Ad-
ditionally, if changes are to be performed on the metadata, these must
be updated in all entities, thus making its management difficult. While
this solution has a rather good performance due to its quick access to the
constraints, the trade-off involves large space requirements coupled with
complex metadata management versus good performance.

The second solution has a slightly worse performance than the first one
as it stores the metadata in the top row of each column family. This solution
requires less disk space as metadata is not included within each entity.

102

CHAPTER 7

Also, its management is much simpler as changes in metadata require only
updating it in every column family. However, compared with the previous
solution, this one requires an additional search operation to retrieve the
metadata, therefore the performance is slightly worse. In this case, the trade-
off to decide upon involves lower disk space requirements and simpler
management of metadata versus the delay induced by an additional search
operation to retrieve the metadata.

The third solution has the worst performance of all. In this case, the
constraints relevant to every entity are stored in a single column family
named Metadata, thus providing centralized metadata storage. Moreover,
changes to the constraints require updating only the Metadata column
family. However, the performance is significantly reduced because vali-
dations have to perform additional accesses to Metadata to retrieve the
relevant constraints. Thus, the trade-off in this approach is low disk space
requirements and simple management of metadata versus a poor perfor-
mance.

Lastly, the fourth solution has the best performance of all. It stores the
metadata in a single column family (as the previous solution), but in a
separate dedicated cluster. This approach requires to connect to such a
cluster every time metadata needs to be accessed. However, once metadata
is retrieved for the first time, it is stored in cache in order to re-use it
and avoid future connections to the cluster. Caching is the key aspect
that makes this solution have a superior performance than the rest, but
when metadata is altered, additional mechanisms are required to properly
have the cache updated. The trade-off here is between high performance,
low disk space requirements, and simple management of metadata versus
having a potentially stale cache or implementing mechanisms to prevent it.

In summary, this thesis has presented a study about the existing data
models used by cloud DBMSs, and explored the challenge of imposing ref-
erential integrity constraints, especially in cloud NoSQLs DBMSs. Based on
this, an API is designed and implemented to maintain referential integrity

103

CHAPTER 7

in Apache Cassandra. More importantly, four solutions to store the referen-
tial integrity constraints were devised and incorporated into the API. A set
of experiments was performed and their results were analysed to assess
the performance of the solutions. The results consolidated the metadata
storage as an influential and important aspect regarding the performance
of referential integrity validations in cloud NoSQL DBMSs. Furthermore,
it was concluded that the solutions present different trade-offs between
performance, disk space requirements, and metadata management, all of
which have to be carefully considered by applications in order to choose
the most appropriate solution according to their demands.

This research can be further extended by:

• Incorporating mechanisms in the API to support thread-safe opera-
tions on the data such that referential integrity is not compromised
when multiple concurrent operations take place. In order to achieve
this, locking mechanisms and transaction support for Apache Cassan-
dra might be implemented using libraries such as Cages.

• Implementing trigger procedures in order to initiate events before and
after performing any CRUD operations. This could be implemented
by extending the validation handlers to execute methods for such
events in every operation. Also, entities could provide annotations
for such methods.

• Implementing the four solutions on another key-value DBMS such
as Google’s BigTable or Apache’s HBase in order to compare the
performance with the results presented in this thesis.

• Making the API DBMS-agnostic. That is, allowing the possibility to
switch the underlying cloud NoSQL DBMS with minimal reconfigu-
ration in order to provide consistent usage of the API on DBMSs such
as BigTable, HBase, and others.

104

CHAPTER 7

• Incorporating constraints for composite primary keys and implement-
ing their respective handling.

• Evaluating the performance impact of Hector by experimenting with
other APIs for Cassandra such as Pelops or Kundera.

• Adapting the API to work on a real cloud environment such as Ama-
zon EC2 where heterogeneity and dynamism are inherent properties
as nodes may have different characteristics and more nodes can be
added or removed as well. Moreover, useful information about the
solutions proposed in this thesis can be drawn from performing the
experiments in such environments.

• Consolidating the performance of the API and the solutions by us-
ing additional benchmarks such as Yahoo Cloud Service Benchmark
(YCSB) which measures latency, scalability, and other features of
cloud DBMSs.

105

CHAPTER 7

106

Appendices

107

Appendix A
Insert

109

CHAPTER A

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time

s c e s c e s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

2500

3000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput

Figure A.1: Performance of insert

●

●●●

●

●

●
●
●

●
●

●

●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●

●

●

●

●

●
●

●

●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure A.2: Performance of insert students

110

CHAPTER A

●

●

●

●

●●

●

●●●●●●●
●●●

●

●
●

●

●

●●
●
●●
●
●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure A.3: Performance of insert courses

●

●●●
●
●

●
●●●●
●●

●

●
●●●●

●●
●

●

●
●
●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●
●●

●

●●●●●●●
●

●●●●●
●●●

●

●
●
●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure A.4: Performance of insert enrolments

111

CHAPTER A

112

Appendix B
Update

113

CHAPTER B

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0

10

20

30

40

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time

s c e s c e s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput

Figure B.1: Performance of update

●

●

●

Baseline Solution1 Solution2 Solution3 Solution4

0

10

20

30

40

50

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●

●●

Baseline Solution1 Solution2 Solution3 Solution4

0.0

0.5

1.0

1.5

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure B.2: Performance of update students

114

CHAPTER B

●

●

Baseline Solution1 Solution2 Solution3 Solution4

2

4

6

8

10

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

Baseline Solution1 Solution2 Solution3 Solution4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure B.3: Performance of update courses

●

●●

●

●

●●
●●

●

●

●

●●

●●

●

●●
●

●●

●

●

●●●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●●

●

●

●●●
●

●

●
●●

●●
●
●●
●
●●

●

●

●●●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure B.4: Performance of update enrolments

115

CHAPTER B

116

Appendix C
Delete

117

CHAPTER C

s c e s c e s c e s c e s c e

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

0

5

10

15

20

25

Baseline Solution1 Solution2 Solution3 Solution4

(a) Response time

s c e s c e s c e s c e s c e

E
nt

iti
es

 p
er

 s
ec

on
d

0

500

1000

1500

2000

2500

3000

Baseline Solution1 Solution2 Solution3 Solution4

(b) Throughput

Figure C.1: Performance of delete

●●●●
●●●●●●●●●●●●

●
●●

Baseline Solution1 Solution2 Solution3 Solution4

0

5

10

15

20

25

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●●●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

Baseline Solution1 Solution2 Solution3 Solution4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure C.2: Performance of delete students

118

CHAPTER C

●

●

●

●

Baseline Solution1 Solution2 Solution3 Solution4

1

2

3

4

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●●

Baseline Solution1 Solution2 Solution3 Solution4

1

2

3

4

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure C.3: Performance of delete courses

●
●
●

●

●
●

●●
●
●●

●●
●

●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

M
ill

is
ec

on
ds

 p
er

 e
nt

ity

(a) Response time

●

●

●

●

●

●

●
●

●

●

●
●●

Baseline Solution1 Solution2 Solution3 Solution4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
nt

iti
es

 p
er

 s
ec

on
d

(b) Throughput

Figure C.4: Performance of delete enrolments

119

CHAPTER C

120

Bibliography

[1] D. Abadi. Problems with CAP, and Yahoo’s little known NoSQL sys-
tem, 2010. [Online]. Available: http://dbmsmusings.blogspot.
co.nz/2010/04/problems-with-cap-and-yahoos-little.

html [Accessed: July 2011].

[2] D. J. Abadi. Data Management in the Cloud: Limitations and Oppor-
tunities. IEEE Data Engineering Bulletin, 32(1):3–12, 2009.

[3] S. Bell and P. Brockhausen. Discovery of constraints and data de-
pendencies in relational databases (extended abstract). In Machine
Learning: ECML-95, volume 912, pages 267–270. Springer Berlin /
Heidelberg, 1995.

[4] D. Bermbach and S. Tai. Eventual Consistency: How soon is even-
tual? An evaluation of Amazon S3’s consistency behavior. In Proceed-
ings of the 6th Workshop on Middleware for Service Oriented Computing,
MW4SOC ’11, pages 1–6, New York, NY, USA, 2011. ACM.

[5] H. Bin and P. Yuxing. A Novel Metadata Management Scheme in
Cloud Computing. In Proceedings of the 2nd International Conference on
Software Technology and Engineering, volume 1, pages 433–438, 2010.

[6] M. Blaha. Referential integrity is important for databases, 2005. Mod-
elsoft Consulting Corporation.

121

http://dbmsmusings.blogspot.co.nz/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.co.nz/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.co.nz/2010/04/problems-with-cap-and-yahoos-little.html

BIBLIOGRAPHY BIBLIOGRAPHY

[7] H. Boral and D. J. DeWitt. A Methodology for Database System
Performance Evaluation. In Proceedings of the 1984 ACM SIGMOD
International Conference on Management of data, SIGMOD’84, page 176,
Boston, Massachusetts, 1984.

[8] E. A. Brewer. Towards robust distributed systems (abstract). In Pro-
ceedings of the 19th annual ACM Symposium on Principles of distributed
computing, PODC ’00, page 7, New York, NY, USA, 2000. ACM.

[9] E. A. Brewer. Pushing the CAP: Strategies for Consistency and Avail-
ability. IEEE Computer, 45(2):23–29, 2012.

[10] J. Browne. Brewer’s CAP Theorem, 2009. [Online]. Avail-
able: http://www.julianbrowne.com/article/viewer/

brewers-cap-theorem [Accessed: August 2011].

[11] R. Buyya, J. Broberg, and A. M. Goscinski. Cloud Computing Principles
and Paradigms. Wiley Publishing, 2011.

[12] D. G. Campbell, G. Kakivaya, and N. Ellis. Extreme scale with full
SQL language support in microsoft SQL Azure. In Proceedings of the
2010 international conference on Management of data, SIGMOD ’10, pages
1021–1024, New York, NY, USA, 2010. ACM.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a Distributed
Storage System for Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7,
OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[14] CloudComputingDefined. Cloud computing defined. [Online]. Avail-
able: http://www.cloudcomputingdefined.com/ [Accessed:
March 2012].

[15] B. F. Cooper. The Prickly Side of Building Clouds. IEEE Internet
Computing, 14:64–67, 2010.

122

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.cloudcomputingdefined.com/

BIBLIOGRAPHY BIBLIOGRAPHY

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SOCC ’10, pages 143–154,
New York, NY, USA, 2010. ACM.

[17] DataStax. Apache Cassandra 0.8 Documentation, 2011. [On-
line]. Available: http://www.datastax.com/docs/0.8/dml/

about_writes [Accessed: January 2012].

[18] DataStax. Understanding the Cassandra Data Model, 2011. [Online].
Available: http://www.datastax.com/docs/0.8/ddl/index

[Accessed: October 2011].

[19] DataStax. Apache Cassandra 0.8 Documentation, 2011. [On-
line]. Available: http://www.datastax.com/docs/0.8/dml/

about_reads [Accessed: January 2012].

[20] DataStax. Apache Cassandra Backgrounder, 2012. [Online].
Available: http://www.datastax.com/wp-content/uploads/
2011/02/DataStax-cBackgrounder.pdf [Accessed: February
2012].

[21] C. J. Date. Referential Integrity. In Proceedings of the 7th International
Conference on Very Large Data Bases, volume 7, pages 2–12, Cannes,
France, 1981. VLDB Endowment.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[23] D. DeWitt, S. Madden, and M. Stonebraker. How to build a high-
performance data warehouse. [Online]. Available: http://db.lcs.
mit.edu/madden/high_perf.pdf [Accessed: June 2011].

123

http://www.datastax.com/docs/0.8/dml/about_writes
http://www.datastax.com/docs/0.8/dml/about_writes
http://www.datastax.com/docs/0.8/ddl/index
http://www.datastax.com/docs/0.8/dml/about_reads
http://www.datastax.com/docs/0.8/dml/about_reads
http://www.datastax.com/wp-content/uploads/2011/02/DataStax-cBackgrounder.pdf
http://www.datastax.com/wp-content/uploads/2011/02/DataStax-cBackgrounder.pdf
http://db.lcs.mit.edu/madden/high_perf.pdf
http://db.lcs.mit.edu/madden/high_perf.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[24] P. Echague. Hector A high level Java client for Apache Cassandra,
2011. [Online]. Available: http://rantav.github.com/hector/
build/html/index.html [Accessed: October 2011].

[25] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd
Edition. Benjamin/Cummings, 1994.

[26] D. Florescu and D. Kossmann. Rethinking Cost and Performance of
Database Systems. ACM Special Interest Group on Management of Data,
38(1):43–48, 2009.

[27] Y. Fu, N. Xiao, and E. Zhou. A Novel Dynamic Metadata Management
Scheme for Large Distributed Storage Systems. In Proceedings of the
10th IEEE International Conference on High Performance Computing and
Communications, pages 987–992, 2008.

[28] C. George, H. Miao, and M. Hale. Maintaining Referential Integrity
on the Web. In Formal Methods and Software Engineering, volume 2495,
pages 20–21. Springer Berlin / Heidelberg, 2002.

[29] S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. ACM Special
Interest Group on Algorithms and Computation Theory News, 33(2):51–59,
2002.

[30] G. Hackl, W. Pausch, S. Schonherr, G. Specht, and G. Thiel. Syn-
chronous Metadata Management of Large Storage Systems. In Pro-
ceedings of the 14th International Database Engineering ; Applications
Symposium, IDEAS ’10, pages 1–6, New York, NY, USA, 2010. ACM.

[31] J. Han, E. Haihong, G. Le, and J. Du. Survey on NoSQL databases. In
Proceedings of the 6th International Conference on Pervasive Computing and
Applications, ICPCA 2011, pages 363 –366, 2011.

124

http://rantav.github.com/hector/build/html/index.html
http://rantav.github.com/hector/build/html/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Henry. Consistency and Availability in Amazon’s Dynamo,
2008. [Online]. Available: http://the-paper-trail.org/blog/
consistency-and-availability-in-amazons-dynamo/ [Ac-
cessed: February 2012].

[33] E. Hewitt. Cassandra: The Definitive Guide. Definitive Guide Series.
O’Reilly Media, 2010.

[34] Hewlett Packard. There is no free lunch with distributed data, 2005.
[Online]. Available: ftp://ftp.compaq.com/pub/products/

storageworks/whitepapers/5983-2544EN.pdf [Accessed:
August 2011].

[35] M. Hirabayashi. Tokyo Cabinet: A Modern Implementation of DBM,
2010. [Online]. Available: http://fallabs.com/tokyocabinet/
[Accessed: May 2011].

[36] M. Hogan. Cloud Computing and Databases, 2008. Scale DB Inc.

[37] N. Kennedy. The Anatomy of Cloud Computing, 2009. [On-
line]. Available: http://www.niallkennedy.com/blog/2009/
03/cloud-computing-stack.html [Accessed: Jan 2012].

[38] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System. ACM SIGOPS Operating Systems Review, 44(2):35–40,
2010.

[39] V. Mateljan, D. Cisic, and D. Ogrizovic. Cloud Database-as-a-Service
(DaaS)-ROI. In Proceedings of the 33rd International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics,
MIPRO ’10, pages 1185 –1188. Rijeka, 2010.

[40] Microsoft. Scaling out with SQL Azure, 2010. [Online]. Available:
http://www.microsoft.com/download/en/details.aspx?

id=13300 [Accessed: October 2011].

125

http://the-paper-trail.org/blog/consistency-and-availability-in-amazons-dynamo/
http://the-paper-trail.org/blog/consistency-and-availability-in-amazons-dynamo/
ftp://ftp.compaq.com/pub/products/storageworks/whitepapers/5983-2544EN.pdf
ftp://ftp.compaq.com/pub/products/storageworks/whitepapers/5983-2544EN.pdf
http://fallabs.com/tokyocabinet/
http://www.niallkennedy.com/blog/2009/03/cloud-computing-stack.html
http://www.niallkennedy.com/blog/2009/03/cloud-computing-stack.html
http://www.microsoft.com/download/en/details.aspx?id=13300
http://www.microsoft.com/download/en/details.aspx?id=13300

BIBLIOGRAPHY BIBLIOGRAPHY

[41] Microsoft. System Tables SQL Server 2000, 2011. [Online].
Available: http://msdn.microsoft.com/en-us/library/

aa260604(v=sql.80).aspx [Accessed: May 2011].

[42] C. Pathivada. Avoid Referential Integrity Errors When Deleting
Records from Databases. SQL Server Magazine, 11(6):15, 2009.

[43] PostgreSQL Global Development Group. PostgreSQL 8.3.17 Documen-
tation, 2011. [Online]. Available: http://www.postgresql.org/
docs/8.3/static/infoschema-table-constraints.html

[Accessed: May 2011].

[44] D. Pritchett. BASE: An ACID Alternative. ACM Queue - Object-
Relational Mapping, 6(3):48–55, 2008.

[45] A. Rahien. Scaling out with SQL Azure, 2010. [Online].
Available: http://ayende.com/Blog/archive/2010/04/11/

that-no-sql-thing-ndash-document-databases.aspx [Ac-
cessed: June 2011].

[46] R. Ramakrishnan. CAP and Cloud Data Management. IEEE Computer,
45(2):43 –49, 2012.

[47] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang. Benchmarking
Cloud-based Data Management Systems. In Proceedings of the 2nd
International Workshop on Cloud Data Management, CloudDB ’10, pages
47–54, New York, NY, USA, 2010. ACM.

[48] SNIA. Cloud storage for cloud computing, 2009. [On-
line]. Available: http://ogf.org/Resources/documents/

CloudStorageForCloudComputing.pdf [Accessed: April 2011].

[49] J. Spring. Monitoring Cloud Computing by Layer, Part 1. Security
Privacy, IEEE, 9(2):66 –68, 2011.

126

http://msdn.microsoft.com/en-us/library/aa260604(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa260604(v=sql.80).aspx
http://www.postgresql.org/docs/8.3/static/infoschema-table-constraints.html
http://www.postgresql.org/docs/8.3/static/infoschema-table-constraints.html
http://ayende.com/Blog/archive/2010/04/11/that-no-sql-thing-ndash-document-databases.aspx
http://ayende.com/Blog/archive/2010/04/11/that-no-sql-thing-ndash-document-databases.aspx
http://ogf.org/Resources/documents/CloudStorageForCloudComputing.pdf
http://ogf.org/Resources/documents/CloudStorageForCloudComputing.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[50] J. Spring. Monitoring Cloud Computing by Layer, Part 2. Security
Privacy, IEEE, 9(3):52 –55, 2011.

[51] M. Stonebraker. SQL databases vs. NoSQL databases. Communications
of the ACM, 53(4):10–11, 2010.

[52] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era: (it’s time for a complete
rewrite). In Proceedings of the 33rd International Conference on Very large
data bases, VLDB ’07, pages 1150–1160. VLDB Endowment, 2007.

[53] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. In Proceedings of the 15th ACM
Symposium on Operating systems principles, SOSP ’95, pages 172–182,
New York, NY, USA, 1995. ACM.

[54] W. Vogels. Eventually consistent. Communications of the ACM, 52(1):
40–44, 2009.

[55] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the con-
sumers’ perspective. In Proceedings of the 5th Biennial Conference on
Innovative Data Systems Research, CIDR ’11, pages 134–143, 2011.

[56] I. Wilkes. Cloud storage in a post-SQL world, 2010. [Online]. Avail-
able: http://arstechnica.com/business/data-centers/

2010/02/-since-the-rise-of.ars [Accessed: March 2011].

[57] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu. Cloud Storage as the Infras-
tructure of Cloud Computing. In Proceedings of International Conference
on Intelligent Computing and Cognitive Informatics, ICICCI ’10, pages
380 –383, 2010.

127

http://arstechnica.com/business/data-centers/2010/02/-since-the-rise-of.ars
http://arstechnica.com/business/data-centers/2010/02/-since-the-rise-of.ars

BIBLIOGRAPHY BIBLIOGRAPHY

[58] L. Xia, H. Duan, L. Li, and X. Nie. A Design of Efficient Metadata Clus-
ter in Large Distributed Storage Systems. In Proceedings of International
Conference on Apperceiving Computing and Intelligence Analysis, ICACIA
’09., pages 294–296, 2009.

128

	Introduction
	Objectives
	General Objective
	Specific Objectives

	Organization

	Background
	Cloud Computing
	Cloud Databases
	CAP Theorem

	Cloud Data Models
	Key-Value Data Model
	Columns
	Super Columns
	Column Family
	Keyspace

	Challenges in the Key-Value Data Model
	Referential Integrity in Key-Value Model
	Insert rule
	Update rule
	Delete rule

	Apache Cassandra
	Architecture
	Write and Read Operations

	Summary

	Design of Referential Integrity Constraints in NoSQL databases
	Metadata
	Solution 1: Metadata in Super Columns
	Solution 2: Metadata as a Top Row
	Solution 3: Metadata Column Family
	Solution 4: Metadata Cluster
	Summary

	Implementation of Referential Integrity Constraints in NoSQL DBMSs
	Experimental API
	Entities
	EntityManager
	ValidationHandler

	Metadata Retrieval Approaches in Solutions
	Metadata as an Entity
	Metadata as Text

	Summary

	Experimental Design
	Example application
	Cassandra cluster
	Experimental setup
	Insert
	Update
	Delete

	Performance Indicators
	Summary

	Results and Discussions
	Overview of Results
	Baseline Experiment
	Insert
	Update
	Delete
	Comparison of the Operations
	Summary

	Conclusions and Future Work
	Appendices
	Insert
	Update
	Delete

