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Abstract

This thesis describes the mechanization of Tarski’s axioms of plane geom-
etry in the proof verification program Isabelle. The real Cartesian plane
is mechanically verified to be a model of Tarski’s axioms, thus verifying
the consistency of the axiom system.

The Klein—Beltrami model of the hyperbolic plane is also defined in Is-
abelle; in order to achieve this, the projective plane is defined and several
theorems about it are proven. The Klein—Beltrami model is then shown
in Isabelle to be a model of all of Tarski’s axioms except his Euclidean
axiom, thus mechanically verifying the independence of the Euclidean
axiom — the primary goal of this project.

For some of Tarski’s axioms, only an insufficient or an inconvenient
published proof was found for the theorem that states that the Klein-
Beltrami model satisfies the axiom; in these cases, alternative proofs were
devised and mechanically verified. These proofs are described in this
thesis — most notably, the proof that the model satisfies the axiom of
segment construction, and the proof that it satisfies the five-segments
axiom. The proof that the model satisfies the upper 2-dimensional axiom
also uses some of the lemmas that were used to prove that the model

satisfies the five-segments axiom.
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Chapter 1

Introduction

1.1 Euclid’s Elements and the axiomatic method

Approximately twenty-three centuries ago, Euclid wrote his Elements,
possibly history’s most enduring textbook in mathematics — or, indeed,
in any subject — (see [7, pages v—vi, 2]). The Elements documents an
impressive breadth of ancient mathematics, starting from geometry and
framing other topics in geometrical ways (see [23, pages 103-104]). One
important feature of Euclid’s work was his pioneering use of the axiomatic
method.

The axiomatic method, understood in modern terms, requires that the
mathematician states from the outset exactly what they will assume (the
axioms); then they may derive logical consequences from the axioms, but
they may not make any other assumptions, either implicitly or explicitly.
This ensures that if the axioms are true of some mathematical structure
(called a model), then all the consequences must also be true of the model.

Euclid’s axioms are divided into two groups, which T. L. Heath’s
translation calls postulates and common notions (see [7, pages 154-155]).
The common notions are primarily concerned with the nature of equality,
but the postulates are more geometrical in nature. Quoting from [7], the

postulates are:
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Figure 1.1: An illustration of Euclid’s fifth postulate

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.

5. That, if a straight line [/] falling on two straight lines [m and ]
make the interior angles [« and ] on the same side [of ] less than
two right angles [when added together], the two straight lines, if
produced indefinitely, meet [at P] on that side [of /] on which are
the angles less than the two right angles.

To a modern mathematician, the first three postulates look somewhat
strange as axioms, since they appear to postulate a procedure, rather than
a proposition; such a mathematician might be more inclined to assert the
existence of a straight line from any point to any point in the first postulate,
for example.

To aid in understanding the fifth postulate, I have constructed Figure
1.1 and inserted matching labels and other explanatory phrases into the
statement of the postulate. The fifth postulate is often called the “parallels
postulate”, since it prescribes a situation in which two lines (m and 7 in
Figure 1.1) must not be parallel (and has many consequences regarding
lines that are parallel). This postulate should be understood as referring

to the behaviour of lines in a plane, not lines in higher dimensions.



CHAPTER 1. INTRODUCTION 3

1.2 Consistency and independence

Two important properties related to axiom systems are consistency and
independence.

A set of axioms is said to be consistent if no logical contradictions can
be derived from the axioms. One way of establishing the consistency of an
axiom system is to exhibit a model of the axioms. Then any contradiction
that can be derived from the axioms must imply a contradiction in the
logical setting in which the model was defined. Consistency is important
because without it, everything is provable from the axioms, and we learn
nothing from any of the proofs.

Within an axiom system, a particular axiom, (A), is said to be in-
dependent of the other axioms if it is not a logical consequence of the
other axioms. The independence of (A) can be established by exhibiting
a model of the other axioms that does not satisfy (A); if (A) can be false
when all the other axioms are true, then it cannot possibly be a logical
consequence of the other axioms.

Independence is of interest because if an axiom is not independent,
then it can be removed from the axiom system without reducing that
system’s power; the truth of the removed axiom can be proven from the
other axioms, allowing the subsequent proof of other theorems whose
proofs might have used that axiom. The simplified axiom system may
then better elucidate the essence of the theory it defines, and fewer axioms
must be checked when establishing that a particular model satisfies the

axioms.

1.3 Independence of the parallels postulate

For many centuries, various mathematicians were suspicious of the par-
allels postulate, believing that it was in the nature of a theorem requiring

proof, rather than an axiom. (Axioms were, for much of the history of
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Figure 1.2: An illustration of Playfair’s axiom

mathematics, regarded as self-evident truths, rather than somewhat arbi-
trary propositions used as the basis of an abstract theory, ideally consis-
tent, independent, and interesting.)

Numerous mathematicians believed that they had proven the parallels
postulate from Euclid’s other axioms, thus proving that it was not inde-
pendent. Such “proofs” range from Claudius Ptolemy’s “proof” in the
second century to Adrien-Marie Legendre’s “proofs” in the eighteenth
and nineteenth centuries (see [7, pages 204-219] and [8, page 304]). All
such attempted proofs involved an extra assumption (usually equivalent
to the parallels postulate), but the mathematicians in question seldom
realized that they were making an unjustified assumption.

Honourable mention should go to Omar Khayyam, the first mathe-
matician to deliberately and explicitly assume an alternative axiom and
prove that the parallels postulate was a consequence of that axiom — in
the context of Euclid’s other axioms (see [20, page 64]).

Perhaps the most famous alternative axiom equivalent to the parallels
postulate is the one known as Playfair’s axiom (although John Playfair
himself wrote of earlier use — see [8, page 303]). Playfair stated it like
this:

That two straight lines, which cut one another, cannot be both

parallel to the same straight line.

Equivalently, given a line  and a point P not on [, there is at most one line
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through P that does not intersect I. This is illustrated in Figure 1.2, where
the axiom asserts that either m or n (or perhaps both) must intersect [,
when sufficiently extended.

In the nineteenth century, a number of mathematicians — most no-
tably Janos Bolyai and Nikolai Ivanovich Lobachevsky, who worked inde-
pendently — believed (in modern terms) that the parallels postulate was
independent of Euclid’s other axioms (see [3, page 4]). They assumed
the negation of the parallels postulate and systematically investigated the
consequences. However, their work was not mainstream; according to [3,
page 4], “they were regarded as eccentric and pathological”.

Finally, in 1868, Eugenio Beltrami provided several models of what is
now known as hyperbolic geometry (see, for example [2]). These models sat-
isfy all of Euclid’s axioms except the parallels postulate, thus establishing
that the parallels postulate is independent. Within hyperbolic geometry,
Beltrami also provided a model of all of Euclid’s axioms, establishing that
Euclidean geometry (where the parallels postulate holds) is just as consis-
tent as hyperbolic geometry; a logical contradiction in one would imply

a logical contradiction in the other.”

1.4 Mechanical proof verification

Although the axiomatic method adds rigour to mathematics, it relies on
human mathematicians to apply it flawlessly. As can be seen by the num-
ber of flawed “proofs” of the non-independence of the parallels postulate
(see Section 1.3), human mathematicians are all too likely to make unjus-
tified assumptions. Their readers can easily fall into the same reasoning

flaws; Playfair, for example, believed at least one of Legendre’s “proofs”

*Beltrami probably did not understand consistency and independence in the modern
sense; for a discussion of the emergence of these ideas, see [25]. Nevertheless, Bel-
trami was the first to provide these models, from which a modern mathematician may
immediately deduce the independence of the parallels postulate.
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of the non-independence of the parallels postulate (see [8, page 305]).

To mitigate human fallibility, computers are now sometimes used for
proof verification, taking the rigour of the axiomatic method even further.
Provided that a computer is programmed correctly and does not suffer
from physical faults, it can infallibly strictly apply the axioms and allow-
able rules of inference that it is given. A mathematician who attempts to
provide a faulty proof to such a proof verification program will inevitably
fail, and, with luck, will realize their error sooner, rather than later.

Because computers and their programmers can also be fallible, me-
chanical proof verification does not give complete certainty. However, it
can provide much more certainty than merely human-checked proofs.

A number of techniques can be used to increase the certainty given
by mechanical verification. For example, the program could be run sev-
eral times on different computers, to mitigate the possibility of hardware
faults. It is also possible to write independent proof verification pro-
grams that read the same proof scripts, lessening the likelihood that an
unnoticed error in the program will permit a mathematician to make an
unnoticed logical error. So-called “soft errors” caused by cosmic rays (see
[30]) could be mitigated by making proofs (and their checking process)
modular. This would ensure that individual parts of a proof are checked
quickly; if they are checked twice, it would be vanishingly unlikely that
a soft error occurred during both checks.

Proof verification should be distinguished from other mathematical
uses of computers. Specifically, it differs from computation and proof
search. Although both computation and proof search can be used in
proof verification systems, their intent is different.

It is particularly important to distinguish between proof search and
proof verification. Proof search involves the computer finding a proof;
proof verification requires a human mathematician (or, indeed a proof
search program) to provide in meticulous detail the proof that is to be
verified. If a proof search program finds a valid proof of a desired theo-
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rem, it has served its purpose, even if the program has errors; an error in
a proof verification program, however, may put into doubt the validity of

every judgement the program has ever made.

1.5 Thesis outline

There is a somewhat arbitrary list of 100 famous mathematical theorems
at [34]. This list indicates which of those theorems have been mechani-
cally verified. At the time of writing this thesis, the list shows that thir-
teen of the theorems have not yet been mechanically verified. One of the
unverified theorems is the independence of the parallels postulate. This
thesis describes what I believe to be the first mechanical verification of
this theorem.

This thesis begins by describing the choice of an axiom system for
geometry (in Chapter 2), and the choice of a proof verification program
(in Chapter 3). Then, Chapter 4 explains how the axioms were formalized
in the proof verification program.

Chapter 5 describes how a model of Euclidean geometry is defined
and used to mechanically verify the consistency of the chosen system of
axioms (relative to the correctness of the proof verification program and
the consistency of the logic it implements).

Chapter 6 explains the choice of a model of the hyperbolic plane; this
second model requires the formalization of the projective plane, described
in Chapter 7, and, as explained in Chapter 8, it is used to mechanically
verify the independence of the axiom that is equivalent to the parallels
postulate.

Finally, Chapter 9 summarizes what has been achieved, and notes pos-

sible future work in this area.
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1.6 Previous related work

Some impressive work has already been done in mechanizing geometry.
For example, Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang
have published work on mechanical proof search in Euclidean geometry
(see, for example, [4]). This differs from the goals of my work in a number
of ways: for example, it is work in proof search, as opposed to proof
verification; also, it is concerned with the consequences of the axioms,
rather than models of the axioms.

Similarly, much of the existing work in proof verification in geometry
is also concerned with the consequences of sets of geometrical axioms;
see, for example, [15], [16], and [22]. In particular, [15, page 333] explicitly
notes that future work might involve the construction of a model of their
chosen set of axioms for geometry.

I am aware of one example of a mechanical verification that a partic-
ular model of geometry satisfies a certain set of axioms. Jacques Fleuriot
chose some axioms based on those of Chou and his collaborators (see
[9, pages 22-23]); then, in a proof verification program called Isabellet, he
defined a model of the axioms and proved that it was indeed a model (see
[9, pages 67-74]). It is worth noting that his chosen axioms are not cate-
gorical; that is, there are multiple inequivalent (technically, non-isomorphic)
models of the axioms. Indeed, Fleuriot’s model is not the standard real
Cartesian model of Euclidean geometry; he uses the hyperreals, in or-
der to write mechanically verifiable proofs that more faithfully represent
some of the infinitesimal reasoning in Sir Isaac Newton’s Philosophize Nat-
uralis Principia Mathematica [17].

fIncidentally, Isabelle is the program used in the project that this thesis describes; see
Chapter 3



Chapter 2

The choice of an axiom system

2.1 Euclid’s axioms

When discussing the choice of an axiom system for which to demonstrate
the independence of Euclid’s parallels postulate, we must first address
the question: Why should we not use Euclid’s axioms?

By modern standards, Euclid was not careful enough in his applica-
tion of the axiomatic method. A commonly cited fault is in the proof of
his very first proposition in Book 1 (see [7, pages 241-242]); he implic-
itly assumes that if two circles each pass through the centre of the other,
then they intersect; this is not justified by the axioms. Another example
is that in the proof of 1.16 (that is, Book 1, Proposition 16; see [7, pages
279-280]), Euclid implicitly makes an assumption about betweenness; the
elliptic plane satisfies all of Euclid’s explicitly stated postulates,” but in
the elliptic plane, 1.16 is false.

This being said, Euclid should not be denigrated too much. He was,

after all, a very early pioneer of the axiomatic method, so it is not sur-

*However, if the parallels postulate is not replaced by, for example, Playfair’s axiom,
then the reader must do some semantic acrobatics to understand phrases like “on the
same side”. For example, the reader may wish to interpret statements like “The points
P and Q are on the same side of the line !” as tautologies.
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prising that his work is not perfect according to modern standards. To
his credit, he shows great insight in the axioms that he chose to state
explicitly. It has already been noted (see Section 1.3) that many highly
capable mathematicians over about two thousand years believed that Eu-
clid need not have stated the parallels postulate as an axiom; they were
wrong, and Euclid was right to have explicitly stated it. Even Euclid’s
fourth postulate (about the equality of all right angles) is something that
could easily have been implicitly assumed without justification by a less
careful mathematician.

Having established that Euclid’s axioms are not suitable for highly
strict mechanical reasoning, we must now decide which axiom system to
use. Many axiom systems are available; for example, the axiom systems
used by H. S. M. Coxeter [5], by Karol Borsuk and Wanda Szmielew [3],
or by F. Bachmann [1].

In addition, we have already discussed in Section 1.6 an axiom system
adapted by Fleuriot from the work of Chou and his colleagues; this has
the disadvantage that it is not categorical. If we can show the indepen-
dence of the parallels postulate in a categorical axiom system, we can be
sure that the parallels postulate is not implied by any other “missing”
axioms that would more fully characterize geometry as we understand it.

Let us consider in more detail two axiom systems that I am aware
have been used in mechanical proof verification. First, in Section 2.2, we
consider David Hilbert’s axioms, used in mechanical proof verification by
Christophe Dehlinger, Jean-Frangois Dufourd, and Pascal Schreck in [6],
by Laura Meikle and Jacques Fleuriot in [15], and by Phil Scott in [22];
then, in Section 2.3, we consider Alfred Tarski’s axioms, used by Julien
Narboux in [16]. Section 2.4 lists and explains the axioms of the chosen
system.
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2.2 Hilbert's Grundlagen

In 1899, Hilbert published the first edition of his now famous Grundlagen
der Geometrie (available in English translation as [12]). In it he presented
twenty-one axioms of geometry, proved some consequences of the ax-
ioms, and discussed some consistency and independence results about
the axioms. His work greatly improved on Euclid’s rigour, but Hilbert
was not infallible, either.

Although Hilbert was trying to eschew reasoning justified only by
intuition, he appears (for example) to have at least once made the un-
justified assumption that a particular point in one of his proofs lay in a
particular plane; in this case, Meikle and Fleuriot mechanically verified
a corrected version of Hilbert’s proof (see [15, page 327]), showing that
Hilbert’s intuition was correct that the point lay in the plane, but his rea-
soning was flawed.

For now, we are interested in whether Hilbert’s axiom system is suit-
able for establishing the independence of his version of the parallels pos-
tulate; this is not the case. Hilbert’s axioms require distinct primitive
notions for points, lines, and planes, and many distinct primitive rela-
tions: point-line incidence, point-plane incidence, betweenness of points,
congruence of line segments, and congruence of angles.

To establish the independence of the parallels postulate, we would
have to define a model of all of Hilbert’s axioms except the parallels pos-
tulate. Even if we restrict ourselves to the plane, our model would have
to provide interpretations of points and lines, and definitions for each of
the primitive relations except point-plane incidence; then we would have
to prove that the model satisfies the large number of relevant axioms (and
the negation of the parallels postulate). This is a daunting task.
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2.3 Tarski’s axioms

As described in [29] and [16], Tarski’s axioms for geometry have been re-
fined and improved over time. His system was first described in lectures
in 1926-1927, but not published until 1948 in [27, pages 55-57] (see [29,
pages 188-189]). Incorporating many possible improvements that had
been discovered by then, a more concise version of the axioms appeared
in [21, pages 11-15] in 1983.

The axiom system uses just one primitive notion — that of points —
and two primitive relations — congruence of line segments, and between-
ness.

For betweenness, Babc can be understood as asserting that a, b, and
c are collinear and that b lies between 4 and c. This betweenness is not
strict; if b = a or b = ¢, then Babc is true.

For congruence, ab = cd can be understood as asserting that the line
segment with endpoints a and b is congruent to the line segment with
endpoints ¢ and d. Alternatively, the reader may wish to interpret it as
asserting that the distance from a to b is equal to the distance from c to 4.

Since we have noted in Section 2.2 Hilbert’s flawed reasoning, it is only
fair to point out that Narboux found some missing steps in the reasoning
of Wolfram Schwabhéduser, Wanda Szmielew, and Alfred Tarski in [21]
— see [16, pages 147-148]. However, as before, we are less interested
in whether the axiom systems are always used perfectly by their authors,
and more interested in whether they are useful for mechanically verifying
the independence of the parallels postulate.

The eleven axioms adopted by Schwabhduser and his colleagues in
[21] are categorical (see [29, page 195]), satisfying one of the properties
desirable for our purposes. In addition, one of the axioms (the tenth) is
identified as the Euclidean axiom — the axiom equivalent to the parallels
postulate. Also, there is a discussion in [29, pages 199-200] about the
independence of many of the axioms (including the Euclidean axiom),
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assuring us of two things: first, in the case of those axioms known to
be independent, we know that we are not performing unnecessary work
when we verify that our model satisfies those axioms; second, we are
assured that our goal of verifying the independence of the parallels pos-
tulate is not impossible. Finally, [29, pages 192-195] praises the relative
simplicity of Tarski’s axioms, giving us even more confidence that we will
not be performing unnecessarily complicated verifications that a model
satisfies the axioms.

For these reasons Tarski’s axioms — as adopted in [21] — are suit-
able for this project’s mechanical verification of the independence of the

parallels postulate.

2.4 Statement and explanation of Tarski’s axioms

The axioms are as follows. For each axiom, the name (adapted from its
name in [29, pages 177-185]) is given first, then the formal statement of
the axiom, and then a less precise, more intuitive explanation of the role

of the axiom, to assist in understanding.
1. Reflexivity axiom for equidistance
Vab. ab = ba
A line segment is congruent to its reverse.
2. Transitivity axiom for equidistance
Vabpqrs.ab=pgNab=rs — pq =rs

If a line segment is congruent to two other line segments, then the
latter are congruent to each other.

3. Identity axiom for equidistance

Yabc.ab=cc—a=0»b
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X

Figure 2.1: Tarski’s axiom 4 — the axiom of segment construction

If a line segment is congruent to a degenerate segment, then it must
also be degenerate.

4. Axiom of segment construction (see Figure 2.1)
Vabeg. Ix. Bgax N ax = bc

Given a segment (bc), a point (a), and a direction (that of ga), we can
construct a segment (ax) congruent to the given segment, starting
from the given point, and proceeding in the given direction.

5. Five-segments axiom (see Figure 2.2)

Vabeda't'c'd’.a # b ABabc ABa'b'c’
Nab=db ANbc=bd Nad =d'd ANbd =b'd

—cd=cdd

Coxeter [5, page 180] usefully and succinctly describes a slight vari-
ant of this axiom as “ensuring the rigidity of a “triangle with tail””.
In Figure 2.2, the triangle is abd, and the “tail” is bc. More generally
and less precisely, this axiom can be thought of as being responsi-

ble for ensuring that figures are not distorted when they are moved
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a b c ,
a

Figure 2.2: Tarski’s axiom 5 — the five-segments axiom

Figure 2.3: Tarski’s axiom 7 — the axiom of Pasch

around by translations, reflections, and so on (but it does not guar-
antee that the plane can be dilated in a non-distorting way).

6. Identity axiom for betweenness
Vab. Baba — a =1
The only point between a and a is a itself.
7. Axiom of Pasch (see Figure 2.3)

Vabcpg. Bapc ABbgc — 3x. Bpxb ABgxa
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This axiom is a variant of one published by Moritz Pasch in [19,
page 21]. Although the hypotheses of Tarski’s version of the axiom
are (in some ways) stricter, it can be understood as ensuring that if a
line intersects one side of a triangle, it must also intersect another of
the sides; this latter formulation is closer to Pasch’s original axiom,
and very similar to Hilbert’s formulation (see [12, pages 4-5]).

In Figure 2.3, line bp intersects side ac of triangle acg, so it must also
intersect another of the sides; in this case, it must be side ag, since
bp intersects the line cq outside the segment cq."

8. Lower 2-dimensional axiom
dabc. = Babc A —Bbca A —Bcab

There are three non-collinear points. This ensures that the geometry
that this axiom system describes has at least 2 dimensions.

9. Upper 2-dimensional axiom (see Figure 2.4)
Vabecpq. p #qNap =aqgANbp = bgAcp =cq — BabcVBbcaV Bcab

The perpendicular bisector of two distinct points (p and g in Figure
2.4) is a line. (More strictly, this axiom ensures only that the per-
pendicular bisector is a subset of a line, although we have not yet
defined terms such as line.) This ensures that the geometry has at
most 2 dimensions; in 3 dimensions, for example, the “perpendicu-

lar bisector” of two distinct points is a plane.
10. Euclidean axiom (see Figure 2.5)
Vabedt. Badt ANBbdc Aa # d — Jxy. Babx A Bacy A Bxty

It is not immediately obvious how this axiom relates to Euclid’s

TRemember, this is intended as an explanation, not a proof; we have not proven that
the line bp cannot intersect the line cq more than once; in fact, it does so in the special
case where p = c.
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q

Figure 2.4: Tarski’s axiom 9 — the upper 2-dimensional axiom

X t y

Figure 2.5: Tarski’s axiom 10 — the Euclidean axiom
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X Y

11.

b

Figure 2.6: Tarski’s axiom 11 — the axiom of continuity

fifth postulate or to Playfair’s axiom. Without going into too much
detail, it may be beneficial to observe how this axiom succeeds in
Euclidean geometry in a general case, and how it fails in hyperbolic

geometry.

In Euclidean geometry, suppose we are given a, b, ¢, d, and t such
that the hypotheses of the axiom hold. For non-degeneracy of this
explanation, assume also that a4, b, and d are not collinear. Then
we can construct the line xy parallel to bc. That is, we can draw
a line through t that makes the same angle with the line at as the
line bc makes with at; this new line is, in fact, parallel to bc, and,
more importantly for the truth of the axiom, it intersects the lines
ab and ac; we take these intersection points as our choices of x and

y, respectively.

In the hyperbolic case, suppose again that we are given 4, b, ¢, d,
and t as before, and that in addition, ¢ # d. We may again draw a
line through t making the same angle with at as bc makes with at.
However, it may be the case that ¢ is so far from a that this newly
constructed line fails to intersect lines ab and ac. Pivoting the new
line around t will allow us to ensure that it intersects either line ab

or line ac at an appropriate point, but it cannot do both.

Axiom of continuity (see Figure 2.6)

VXY. (Ja.Vxy.x € XAy € Y — Baxy)
— (Fb.Vxy. x € XAy € Y — Buxby)

The first thing to note about this axiom is that it is not a first-order
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axiom; the variables X and Y range over sets of points rather than
over points themselves. If we wanted a purely first-order axiom
system, we could replace this axiom with an axiom schema; that is,

we could instead adopt every axiom of the form
(Ja. Vxy. a A B — Baxy) — (3b. Vxy. « A B — Bxby)

where a and B are first-order formulas such that a has no free oc-
currences of a, b, or y, and B has no free occurrences of 4, b, or x
(see [29, page 185]). In our case, this is neither necessary nor desir-
able: it is unnecessary because there are proof verification programs
that work well with higher-order logic; and it is undesirable because
a purely first-order axiom system for geometry would be suscepti-
ble to the Lowenheim-Skolem theorem, which would imply that it
could not possibly be categorical. For these reasons, we adopt the

higher-order version of this axiom.

This axiom has some of the flavour of the Dedekind-cuts construc-
tion of the real numbers, or of the theorem that a non-empty set of
reals must have an infimum if it is bounded below (see [29, pages
198-199]). To aid in understanding it, let us examine how this axiom
rules out the rational Cartesian plane Q? as a model of the system

of axioms.}

Take X = {(p,0) | p > 0Ap> <2}and Y = {(p,0) | p > 0 A p? >
2}. Take a = (0,0). Then it is certainly the case (with the natural
definition of betweenness for this “model”) that for each x € X and
each y € Y, we have Baxy. However, our only possible choice for b
is (1/2,0), which is not present in Q2.

In fact, axiom 4 — the segment construction axiom — also rules out Q? as a model.
To establish that axiom 11 is independent, we must replace Q with a Pythagorean or-
dered field not isomorphic to R (see [21, pages 16-17]); the hyperreals form such a field,
but pursuing this in detail is beyond the scope of this work.



Chapter 3

The choice of a proof verification

program

3.1 Wiedijk’s Seventeen Provers

When a mathematician or computer scientist is choosing a proof verifi-
cation program, one excellent resource is Freek Wiedijk’s The Seventeen
Provers of the World [33]. It is a comparison of the features of seventeen
worthy proof verification programs. The bulk of the text is provided by
users of the systems, each of whom was asked to demonstrate a proof
of the irrationality of v/2 in their system. Users were also asked some
other questions about the systems, such as “What are the books about
the system?”, and “What is the logic of the system?”.

Wiedijk himself provides a particularly useful table of features, show-
ing which proof verification programs have which features — see [33,
page 11]. In Section 3.2 we consider some of the features that are essen-
tial for reliable proof verification programs; in Section 3.3 we consider
features that are not essential, but would be useful for a broad range of
proof verification work; and in Section 3.4 we consider features that are
particularly relevant to this project’s verification of the independence of
the parallels postulate.

20
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Section 3.5 concludes this chapter by describing the proof verification
program that was chosen for this project.

3.2 Essential features

The first feature in Wiedijk’s table of features is a “small proof kernel”.
The idea behind this is that a small part (the “kernel”) of the proof verifi-
cation program checks everything that the software verifies. This way, if
the software incorrectly validates a proof, there must be an error within
the kernel; contrapositively, if there is no error in the kernel, then every
proof that the software validates must indeed be valid.

Suppose a user wishes to convince themself that the software only
allows valid proofs; then they need only check the correctness of the
kernel.

If proof verification software lacks a small kernel, then doubt may be
cast on the validity of its judgements. A bug may easily remain hidden in
thousands of lines of source code, and without a separate kernel, a bug
anywhere may be fatal to the soundness of the system as a whole.

On the other hand, if the software has a small kernel, programmers
may freely add features outside the kernel — such as automated calcula-
tion and proof search — safe in the knowledge that even if their additions
contain bugs, these bugs will not affect the soundness of the whole pro-
gram.

Related to this is another important feature not mentioned in Wiedijk’s
table. In order to be sure about the correctness of a proof verification pro-
gram, the user must have access to its source code; without the source
code, the task of checking the correctness of the kernel is made unnec-
essarily difficult, if not impossible without the assistance of automated
machine-code analysis (which would raise questions about the program
used to analyse the machine code).

Most of the most popular proof verification programs are free, open
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source software, including HOL Light, Coq, and Isabelle. However, at
least one of the proof verification programs discussed in [33] does not

have publicly available source code — specifically, Mizar (see [31]).

3.3 Desirable features

One feature that is desirable in any proof verification program is a large
body of proofs already verified by the program (called a “large mathe-
matical standard library” in Wiedijk’s table). Users of the program can
then refer to already proven theorems when they use them in their own
proofs, without having to prove everything from scratch.

Another desirable feature is that the input files written by mathemati-
cians are readable. This is perhaps best illustrated by example.

The following is the proof in HOL Light of the irrationality of v/2 given
in [33, page 18] (after necessary definitions and lemmas). Line-breaks are

adjusted to fit the present margins.

let SQRT_2_IRRATIONAL = prove
(‘"rational (sqrt(&2)),
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS;
NOT_EXISTS_THM] THEN

REPEAT GEN_TAC THEN

DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN

DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN

ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV;
REAL_POW_2; REAL_LT_SQUARE;
REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN

ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ;
REAL_OF_NUM_MULD) ; ;

In contrast, here is an excerpt from the Mizar proof, taken from [33,

page 28].



CHAPTER 3. THE CHOICE OF A PROVER 23

theorem
sqrt 2 is irratiomal
proof
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
W1l: n<>0 and
W2: sqrt 2=i/n and
W3: for il being Integer, nl being Nat st
nl<>0 & sqrt 2=i1/nl1 holds n<=nl
by RAT_1:25;
A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
then i>=0 by A5,REAL_2:121;
then reconsider m = i as Nat by INT_1:16;
A6: m*m = n*n*(sqrt 2xsqrt 2) by A5
n*n*(sqrt 2)°2 by SQUARE_1:def 3
2x(n*n) by SQUARE_1:def 4;
then 2 divides m*m by NAT_1:def 3;
then 2 divides m by INT_2:44,NEWTON:98;

A mathematician who has no experience with Mizar has a good chance
of being able to understand the nature of this proof.

The HOL Light proof, on the other hand, is quite opaque. There is a
danger that a proof that is verified by HOL Light is subtly (or even sig-
nificantly) different from the proof in the readers’ (or even the authors’)
minds, denying these mathematicians insights into the true nature of the
proof; the proof in the mathematicians” minds may even be logically in-
valid, even if HOL Light has found a valid proof.

Apart from ensuring that a proof script is indicative of the nature of
the proof, human-readability of input files serves another purpose: aid-
ing the maintenance of proof scripts. If, for example, SIMP_TAC becomes
more powerful in a future version of HOL Light, it may cause the internal
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state of the proof after that line to differ depending on the version of HOL
Light used; subsequent commands in the proof shown above may then
fail because the proof state is different from that which the author of the
proof expected. To fix this, a proof maintainer may need to try to com-
prehend the original proof and reconstruct it using a different sequence
of commands.

Compare this scenario with a similar one in Mizar. Suppose that,
in a future version of Mizar, REAL_2:121 is altered in a way that causes
that line of the above proof to fail. Then a proof maintainer can quickly
see that from 2 > 0, n > 0, and i = /2#n, the author of the proof
deduced that i > 0; the maintainer can then replace REAL_2:121 with
the appropriate theorem or rule of inference, and the rest of the proof is
unaffected and need not be revisited.

3.4 Features useful for this project

With the particular purpose in mind of establishing the independence of
the Euclidean axiom within Tarski’s axiom system for plane geometry, we
can consider which features of various proof verification programs might
be useful for this project.

One useful feature would be a pre-existing formalized theory of the
real numbers. Without this, we would essentially need to construct our
own model of R in order to establish the consistency of Tarski’s axioms
of plane geometry, because IR? is the only model (up to isomorphism) of
Tarski’s axioms. In particular, the greatest-lower-bound property of the
real numbers would be a major asset in proving that a model of Tarski’s
axioms satisfies the axiom of continuity.

The real numbers will certainly also be useful in establishing the inde-
pendence result, as well as the consistency result discussed in the pre-
vious paragraph. For this reason, we desire a proof verification pro-

gram with pre-defined real numbers, and suitable theorems about great-
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est lower bounds.

As discussed in Section 2.4, we wish to use the higher-order version
of the axiom of continuity. In order to do so without undue hassle, we
need a proof verification program that supports higher-order logic. For-
tunately, there are several such proof verification programs, and most of
them support typed higher-order logic.

In such systems, there are many different types, such as a type of
natural numbers, a type of real numbers (if the system supports the real
numbers), a type of functions from R to R, and a type of sets of real
numbers. This ensures that users of the system cannot inadvertently form
propositions about whether a real number is equal to the cosine function,
for example; the system would complain about type correctness. This
safety is impossible in first-order Zermelo—Fraenkel set theory, because
/3 (considered as a real number) and the cosine function are both simply
sets, and as far as the logic is concerned, they may or may not be equal to
each other.

Of course, when a mathematician proves that a certain structure is
isomorphic to a substructure of a larger structure that was defined later,
they often wish to identify the earlier structure with the isomorphic sub-
structure of the later structure; for example, mathematicians often treat
natural numbers as if they are integers, even if they have defined integers
to be equivalence classes of ordered pairs of natural numbers. Accommo-
dating this is difficult in any highly formalized system, but it is easy to
provide users of the system with suitable injection functions, including,
for example, a function from the type of natural numbers to the type of

integers.

3.5 Isabelle

Considering all of the essential and desirable features mentioned in Sec-
tions 3.2-3.4, one proof verification program stands out as being the most



CHAPTER 3. THE CHOICE OF A PROVER 26

suitable: Isabelle. Indeed, according to Wiedijk’s table (which is, admit-
tedly, several years old), Isabelle is the only system that has both a small
proof kernel and a system allowing human-readable input files.

In fact, the only desirable feature that Isabelle is noted as lacking in
Wiedijk’s table is “dependent types”. Isabelle does allow the definition
of types that depend on other types — for example, product types and
function types. However, it does not allow the definition of types that
depend on elements of other types. Such a feature would be useful in
defining quotient rings, for example.

This defect may be partially mitigated by the “quotient type” feature
introduced in Isabelle 2009-2 in June 2010. However, this project to me-
chanically verify the independence of the parallels postulate was started
in early 2009 using Isabelle 2008; although the project was subsequently
altered to work with Isabelle 2009-2 (but not yet with any later version
of Isabelle), the parts that might have benefited from quotient types had
already been written, and adjusting them to make use of quotient types
would have created unnecessary work.

One particularly useful feature of Isabelle is its locales. Locales al-
low the user to develop axiomatic theories, such as the theory of metric
spaces. The user could define a locale for metric spaces, giving the ax-
ioms of metric spaces. Then the user is able to prove consequences of
those axioms, and provide models for the axioms (with proof).

The major benefit of this is that once the user has proven that real
vector spaces, for example, satisfy the axioms of a metric space, then they
may immediately use the theorems that they have proven about metric
spaces, without having to re-prove them in the specific case of real vector
spaces.

As is mentioned in Section 5.2, a very brief version of this programme

regarding metric spaces was carried out for this project.
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Locales

4.1 Overview

Isabelle’s locales can build on previously defined locales, so instead of
only a single locale being used for Tarski’s axioms, the axioms were bro-
ken up into groups for various reasons.

Section 4.2 describes the locale that was defined in Isabelle to formal-
ize the first three of Tarski’s axioms; this section covers the locale in some
detail, to familiarize the reader with Isabelle’s notation. Then, Section 4.3
covers the locale that formalizes Tarski’s first five axioms. With the first
five axioms formalized, Section 4.4 explains the formalization of a simple
theorem that is a consequence of those axioms; using this theorem as an
example, Section 4.5 illustrates the benefit of using many incremental lo-
cales to formalize Tarski’s axioms, instead of just one locale. Section 4.6
then describes the formalization of Tarski’s remaining axioms.

The formalization that was written for this project is very long — far
too long to include in this thesis. However, this and subsequent chapters
contain a number of excerpts from the formalization; these were typeset
using Isabelle’s automatic typesetting facility. A typeset version of the

entire formalization is available as [14].

27
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locale tarski-first3 =
fixesC::p="p="p= "p=bool (--=--[99,99,99,99] 50)
assumes Al: Vab.ab=ba
and A2:Vabpgrs.ab=pgqAab=rs—pqg=rs

and A3:Vabc.ab=cc—a=0b

Figure 4.1: Tarski’s first three axioms formalized in Isabelle

4.2 A locale for Tarski’s first three axioms

Tarski’s first three axioms use only congruence, not betweenness, so a
locale was defined for those axioms; users need not define a betweenness
relation for a structure that they wish to prove is a model of those axioms.
The locale was defined as in Figure 4.1.

In the first line, the locale is named tarski-first3, for future reference.

In the second line, a function C is fixed, to act as the four-place relation
of congruence on the type p; this type represents the type of points of the
geometry. Internally, the four-place relation is represented by a function
from the type ’p to the type '» = '» = 'p = bool; this latter type is the
type of functions from p to p = 'p = bool, and so on; bool is a Boolean
type whose only elements are True and False. The end of the second line
establishes an optional notation for the congruence relation, so that we
can write the first axiom, for example, as Va b. a b = b a instead of Va b.
Cabba.

The final three lines in Figure 4.1 state the axioms, which are given
labels A1, A2, and A3, for future reference.

4.3 A locale for Tarski’s first five axioms

Figure 4.2 shows the next locale, tarski-first5, whose first line causes it to
inherit the relation C and the axioms of tarski-first3. This locale fixes the

betweenness relation B, but it stops short of listing all of Tarski’s remain-
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locale tarski-firstb = tarski-first3 +
fixes B :: 'p = 'p = 'p = bool
assumes A4: Vgabc. 3x.BgaxNax=bc
and A5:Vabcda'b'c’d . a#bANBabcABa'b'c’
ANab=a'b'ANbc=b'c'Nad=a’d’ Nbd=0b"d’
—cd=c'd

Figure 4.2: A locale for Tarski’s first five axioms

theorem (in tarski-first5) th3-1: Ba b b

proof —
from A4 [rule-format, of a b b b] obtain x where Ba b x and b x = b b by auto
from A3 [rule-format, of b x b] and & x = b b) have b = x by simp
with B a b x) show B a b b by simp

qed

Figure 4.3: A short proof in Isabelle

ing axioms. This is because there are some results that can be proven
from only the first five axioms; by using locales with only the necessary
axioms, we obtain a stronger result than if we had written proofs with all
of Tarski’s axioms as initial assumptions.

In fact, Schwabhduser and his colleagues wrote a short chapter (see
[21, pages 27-29]) on some of the consequences of the first five axioms.
Some of these results were formalized in Isabelle (following quite closely
the proofs — and even theorem numbering — in [21]); see [14, pages
16-22].

4.4 A simple proof in a locale

Although Schwabhéduser and his colleagues left it until the next chapter,
their Satz 3.1 (see [21, page 30]) is also a consequence of the first five
axioms; this fact is verified in Isabelle, and shown in Figure 4.3. Isabelle’s
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human-readable language makes this relatively easy to follow, but a few
notes may be beneficial.

The first line ensures that the theorem is proven (and can later be
used) in the context of tarski-first5; it also names the theorem th3-1 and
gives the statement: B a b b. Notice that the variables are not explicitly
quantified; when using this theorem, the variables can be instantiated by
any elements of the correct type.

The axioms A3 and A4 are now treated as ordinary theorems, but are
manipulated for use here. First, rule-format instructs Isabelle to attempt
to derive a version of the theorem in the form of an inference rule. For
example, A3 [rule-format] means ?a ?b = ?c ?c = ?a = ?b. The schematic
variables (preceded by question marks) are then instantiated by listing the
desired instantiations in order after of; so, A3 [rule-format, of b x b] means
bx=bb=b=nux.

The words simp and auto in Figure 4.3 are the names of methods de-
signed to find simple proofs from the given facts and some standard sim-
plification theorems; the proofs are then checked by the Isabelle kernel.
There are ways of manipulating which facts and theorems are made avail-
able to simp and auto, and there are other methods used sometimes in this
project, including blast and fast.

Many of the methods, including simp and auto, can often provide the
necessary instantiations of variables in the theorems that they use; the au-
thor of the proof can manually provide the instantiations if the automatic

methods fail, or if they take too long to find the correct instantiations.

4.5 The benefit of many locales

Later in the formalization, when it had been established that R? is a
model of tarski-first5, it was convenient to have th3-1 already proven; this
theorem was used to dispose of a degenerate case in the proof of a lemma
called Col-dep2; this lemma was, in turn, used in the proof that R? is a



CHAPTER 4. LOCALES 31

locale tarski-absolute-space = tarski-firsts +
assumes A6: Vab.Baba —a=1b
and A7:VabcpqgBapcABbgc— (3x.BpxbABgxa)
and A11: VX Y. (Ja.Vxy.xe XAyeY —Baxy)
— (3b.Vxy.xeXANyeY —Bxby)

Figure 4.4: A locale for Tarski’s axioms of absolute geometry

model of the lower and upper 2-dimensional axioms. This illustrates
the usefulness of many incremental locales; with only one monolithic
locale for Tarski’s axioms of the Euclidean plane, the lower and upper
2-dimensional axioms would need to have been verified before th3-1 was
able to be applied to IR?, so the essence of the proof of th3-1 would need
to have been repeated, unless another proof was found to verify those
later axioms.

Similarly, Satz 2.2 from [21, page 27] (th2-2 in Isabelle) is (and was
verified to be) a theorem in tarski-first3 (see [14, page 17]). Then, after
our model of the hyperbolic plane was shown to satisfy tarski-first3, th2-
2 was used in the proof that the model satisfies the axiom of segment
construction (see [14, pages 179-181]).

4.6 Locales for the remaining axioms

On top of tarski-first5, we now add the remainder of Tarski’s axioms of the
absolute geometry of (n-dimensional) space — encompassing both the Eu-
clidean and the hyperbolic cases, and having no restriction on dimension.
Figure 4.4 shows the locale defined for this purpose.

For some purposes, it may be beneficial to break this locale down
even further; for instance, the axiom of continuity could be deferred in
order to investigate the independence of that axiom, and to rigorously
demonstrate which theorems do and do not rely on it. For this project, it

was not found necessary to have such a fine-grained locale structure.
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locale tarski-absolute = tarski-absolute-space +

assumes A8: dabc. ~BabcAN—-BbcaA—-Bcab

and A9:Vpqabcp#qhap=aqgANbp=bgAcp=cq
—BabcVBbcaVBcab

Figure 4.5: A locale for Tarski’s axioms of absolute plane geometry

locale tarski-space = tarski-absolute-space +
assumes A10:Vabcdt. Badt N\BbdcNa#d
— (3xy.Babx ANBacy ANBxty)

Figure 4.6: A locale for Tarski’s axioms of Euclidean space

locale tarski = tarski-absolute + tarski-space

Figure 4.7: A locale for Tarski’s axioms of the Euclidean plane

Next, the dimension-specific axioms are added in another locale —
see Figure 4.5.

Unlike Euclid’s original parallels postulate, or some forms of Play-
fair’s axiom, Tarski’s Euclidean axiom unequivocally carries the intended
meaning regardless of how many dimensions the geometry has. There-
fore, we can specialize tarski-absolute-space by adding only the Euclidean
axiom, leaving out the dimension-specific axioms of tarski-absolute — see
Figure 4.6.

Finally, having stated all the axioms in various locales, we can define
a locale for all of Tarski’s axioms of plane Euclidean geometry simply by

unifying tarski-absolute and tarski-space — see Figure 4.7.
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The consistency of Tarski’s

axioms

5.1 The model

Before moving on to the main goal of establishing the independence of
Tarski’s Euclidean axiom, it is worthwhile first verifying the consistency
of Tarski’s axioms; after all, if the axioms are inconsistent, then either
Tarski’s Euclidean axiom not only can, but must be false, or the incon-
sistency lies within Tarski’s other ten axioms, and any question of the
independence of the Euclidean axiom is necessarily meaningless.

In order to verify the consistency of Tarski’s axioms, the easiest method
is to provide a model of the axioms and prove that it is a model. As was
mentioned in Section 3.4, every model of Tarski’s axioms is isomorphic to
IR2. Isabelle already has a type defined for R and a two-element type 2;
it also has a type constructor for Cartesian products of types; therefore, it
is relatively easy to construct the appropriate model.

In fact, the model was defined for IR”, and was proven to be a model of
tarski-space in this more general case. Only for the two dimension-specific
axioms was it necessary to write proofs specific to IR?.

The Isabelle definitions of the relations intended to interpret B and C

33
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abbreviation
real-euclid-C :: [real”('n::finite), real”('n), real”('n), real*('n)] = bool
(- - =r --[99,99,99,99] 50) where

. A .
real-euclid-C = norm-metric.smC

definition real-euclid-B :: [real’('n::finite), real”('n), real”('n)] = bool
(BRr - - - [99,99,99] 50) where
Brabc23LO<IANI<IAb—a=1Ixg (c—a)

Figure 5.1: Definitions of congruence and betweenness in IR”

are shown in Figure 5.1.

The definition of congruence is actually an abbreviation for a defini-
tion given in a more general context; this is covered in the next section.
The difference between definitions and abbreviations in Isabelle primarily
relates to whether or not they are automatically unfolded in proofs.

Betweenness for real vectors is called in Isabelle real-euclid-B (but given
optional notation). The type of the relation, in the first line of the defi-
nition, is an abbreviation for the longer form analogous to the type of B
in the definition of the tarski-first5 locale in Figure 4.2. Notice that the
type variable ‘p will be instantiated by real*’n. The type variable 1 is con-
strained to be of a particular sort called finite; this guarantees that there
are only finitely many elements of type "n.

The definition of betweenness ensures that Bg a b c is true if and only
if the vector representing b is a convex combination of the vectors repre-

senting a and c.
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context semimetric
begin
definition smC :: p = p = 'p = 'p = bool (- - =sm - - [99,99,99,99] 50)
where [simp|: ab =g cd = dista b = dist cd

end

sublocale semimetric < tarski-first3 smC

proof
from symm show Va b. a b =g, b a by simp
showVabpqgrs.ab=snpgqNab=sumrs— pq=smrsbysimp
show Vabc.ab =g cc—> a=Dbbysimp

qed

Figure 5.2: Semimetric spaces satisfy Tarski’s first three axioms

5.2 Congruence in semimetric spaces

Metric and semimetric* spaces were defined in Isabelle for this project,
and it was shown that a normed space is a metric space and that a metric
space is a semimetric space (see [14, pages 2-3]); normed spaces had
already been defined in Isabelle, and real vector spaces had been shown
to be normed spaces.

Figure 5.2 shows how congruence was defined on an arbitrary semi-
metric space, and how it was shown to satisfy Tarski’s first three axioms.
The definition of congruence for semimetric spaces is declared to be part
of the simpset — the set of theorems that can be automatically used by
simp and auto when these methods are used to prove other theorems.

Because congruence on real vector spaces is defined as a special case
of semimetric congruence, Isabelle immediately knows that it satisfies

Tarski’s first three axioms.

*A semimetric space is like a metric space: the distance function must be non-
negative, it must be 0 if and only if its arguments are equal, and it must be symmetric;
however, it need not satisfy the triangle inequality.
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The proofs that real congruence and betweenness satisfy Tarski’s other
axioms vary in complexity. Some of the more interesting proofs are de-
scribed in the remaining sections of this chapter; other proofs are omitted
from this thesis, but the interested reader can refer to [14, pages 24-39].

5.3 The five-segments axiom

Suppose the five-segments axiom is considered as a theorem requiring
proof, and suppose that the mathematician asked to prove it is familiar
with Euclid’s Elements and the style of proofs in that work. This mathe-

matician might come up with a proof somewhat like the following:

By side-side-side congruence of triangles, we have triangle bad
congruent to triangle b'a’d’; therefore angle bad is equal to an-
gle b'a’d’. Because ab = a'b’, bc = V'c’, Babc, and Ba'b'c’, we
must have ca = ¢’a’. By side-angle-side congruence of trian-
gles, we have triangle cad congruent to triangle ¢’a’d’; therefore

cd = 'd’, as required.

It may seem tempting to formalize this simple proof in Isabelle, to
establish that our model does indeed satisfy the five-segments axiom.
However, to do so would necessitate first formalizing the notion of angles
in our model, and then proving theorems about the congruence of angles
and triangles. It is desirable to find a simpler proof to formalize.

The cosine rule states that in a triangle whose sides are the vectors u,
v, and w,

@]l = [l + ol|* — 2[[ulllo] cos §

where 6 is the angle between u and v, which both emanate from their
common vertex. At first, this may seem to complicate things more, by
requiring not only angles to be formalized, but also the cosine function.
Fortunately, it is also the case that u-v = |lu||[|v|| cosf; this suggests

a substitution that results in an easily proven vector identity: ||wl||?> =
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{fixXY

assume Ja. Vxy.x € XAy€Y — Braxy

then obtain 2 where Vxy. x € X Ay € Y — Br a x y by auto
have 3b.Vxy.xc XANyeY — Brxby

Figure 5.3: Beginning to verify the continuity axiom

|u||> + ||o||*> — 2u - v (think about what it means for u, v, and w to be the
sides of a triangle). This allows us to effectively use a function of an angle
(its cosine) without having to define angles; the informal proof given at
the start of this section can be adjusted to avoid any mention of angles.

The above strategy was used in the Isabelle verification that real Carte-
sian space satisfies the five-segments axiom (see [14, pages 26-29]). The
proof is similar to an argument given by Henry George Forder in [10,
page 201]; I did not discover Forder’s argument until after writing the
Isabelle formalization, otherwise the formalization might have been sim-
pler.

5.4 The axiom of continuity

A mathematician writing a human-readable proof that R” satisfies the
axiom of continuity might begin by

e fixing the sets X and Y,
e assuming the hypothesis Ja. Vxy. x € XAy € Y — Baxy,
e choosing such an 4, and

e trying to prove the conclusion 3b. Vxy. x € X Ay € Y — Bxby by

constructing such a b.

This is exactly how the formalized Isabelle proof begins — see Figure 5.3.
This axiom, as Figure 2.6 suggests, is primarily about the behaviour of

points and sets of points that are constrained to a line. However, in order
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to carry out this proof rigorously, we must consider some degenerate
cases. The most obvious degenerate cases occur when X or Y is empty; in
these cases, the hypothesis and conclusion are both vacuously true, even
if Y or X, respectively, is the set of all points.

There is another, less obvious degenerate case. If X has only a single
element, then 2 may have been chosen to be that element, and Y may
again be any set of points; Baay is always true. In this case, b can be
chosen to be 4, and the conclusion is easily verified.

It was only after starting and struggling with the formalized proof of
the non-degenerate case that I noticed the existence of this last degenerate
case. This illustrates one of the benefits of writing computer-verifiable
proofs: because the computer applies only the logic that it is explicitly
allowed to apply, the mathematician who writes the proof is forced to do
the same; no invalid logical steps can be made, and no special cases can
be left unconsidered.

Figure 5.4 picks up where Figure 5.3 left off; it shows how all of the
degenerate cases were considered at once in Isabelle, and also shows the
start of the formalized proof in the non-degenerate case. The variable
?thesis refers to the goal currently requiring proof — in this case 3b. Vx y.
xeXANyeY —Brxby.

The non-degenerate case is too long to reproduce here in full, but a
sketch may be interesting; the full formalized proof can be found at [14,
pages 32-34].

Recall that the non-degenerate case occurs when X ¢ {a} and Y is
non-empty. First, a point ¢ € X — {a} is chosen. As will be explained,
the segment ac is effectively chosen as a unit to measure the positions of
other points along the line, with a acting as the origin; Figure 5.5 may
assist in understanding this.

For each y € Y, we have Bacy, which, by the definition of betweenness
in this model, allows us to conclude that there is a scalar j such that

y —a = j(c — a); furthermore, j > 1.
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proof cases
assume X C {a} VY = {}
let?b =a
{fixxy
assumex € Xandy €Y
with X C {a} VY = {}) have x = a by auto
from Vxy.xe XANye€Y —Braxyandxc Xrand y € Y
have BR a x y by simp
with x = a) have Bg x ?b y by simp }
henceVxy.x e X ANy €Y — Br x ?by by simp
thus ?thesis by auto
next
assume ~(X C {a} VY ={})

Figure 5.4: Degenerate cases considered simultaneously

Figure 5.5: Measuring distances from a using the segment ac
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Because Y is non-empty, we can choose a point d € Y. Associated with
d is the scalar j; such thatd —a = j;(c — a).

For each x € X, we have Baxd, which allows us, via j;, to prove the
existence of a scalar i such that x —a = i(c — a); thus each element of X
or Y is equal to 4 plus some scalar multiple of ¢ — a.

Now consider the set S of scalars j such that a + j(c —a) € Y. Itis non-
empty, because j; € S, and it is bounded below, by 1; therefore S must
have an infimum, say k. The point b is chosen so that b —a = k(¢ — a);
essentially, b can be thought of as the “right-most left-hand bound” of the
set Y, if the picture is oriented as in Figure 5.5 (although other choices of
b may have been possible, as in Figure 2.6).

Given an arbitrary x € X, choose i such that x —a = i(c — a). Because
Baxy for each y € Y, it can be shown that i is a lower bound of S; because
k is the greatest lower bound, we have i < k. For arbitrary y € Y, we
can choose j such that y —a = j(c —a); then j € S, and since k is a lower
bound of S, we have k < j. Finally, with i < k < j, we can show that B xby
always holds, as required.

5.5 The Euclidean axiom

In Section 2.4, after stating Tarski’s version of the Euclidean axiom, we
informally considered the way in which the axiom succeeds in Euclidean
geometry; the proof that R" satisfies the Euclidean axiom is similar in
spirit to the explanation given there. However, we can now refer specif-
ically to coordinates in R", rather than points in some generic model of
Euclidean geometry; as a result, we can write a proof that avoids treating
as a degenerate case the situation where 4, b, and d are collinear.
Suppose we are given a, b, ¢, d, and t that satisfy the hypotheses of
the axiom. Because Badt, there is some j such that d —a = j(t —a);
because a # d, we have j # 0. We can then choose x and y such that
b—a=j(x—a)and c —a = j(y —a) (see Figure 5.6). These choices of x
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a

Figure 5.6: A construction for Tarski’s Euclidean axiom

and y immediately ensure that Babx and B acy; using the fact that Bbdc, a
little rearrangement reveals that it is also the case that B xty, as required.
The above proof is an informal summary of the proof that was formal-
ized in Isabelle — see [14, page 35].
Another way to understand this construction is as follows: the figure
abcd is dilated (with centre a) so that the image of d is t; the images of b

and c are chosen to be the points x and y, respectively.



Chapter 6

The independence of the

Euclidean axiom

6.1 Existing proofs

As explained in Section 1.3, the independence of the parallels postulate
can be immediately derived from Beltrami’s work published in 1868.
However, this “independence” result is imprecise unless we specify a
particular set of axioms from which a particular version of the parallels
postulate is claimed to be independent. It is meaningful to say that Bel-
trami’s work establishes the independence of Euclid’s parallels postulate
from Euclid’s other axioms; however, as discussed in Section 2.1, Euclid’s
axioms are not suitable for highly formalized mechanical reasoning.

We may reasonably ask who first proved the independence of Tarski’s
Euclidean axiom from Tarski’s other axioms of plane geometry, or where
such a proof is published. Such a proof seems very difficult to find.

In [21, page 208], given an ordered field §, a structure K, (F) is defined
that is intended to be a model of an n-dimensional hyperbolic version
H, of Tarski’s axioms of geometry. It is then asserted that for a natural

number n > 2, a given structure is a model of H, if and only if it is
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isomorphic to £,(F) for some Euclidean* ordered field §. As well as
leading up to a categoricity result on the same page, this assertion entails
the independence of Tarski’s Euclidean axiom from his other ten axioms
of plane geometry.

The proof of the assertion is omitted from [21], but several citations are
given for the various results asserted on that page, without any indication
about which citations contain the proofs of which assertions. I believe that
the only citation relating to the assertion that the structure is a model
of the axioms is Szmielew’s [26]. Indeed, [18, page 333] also repeats a
version of the same assertion, and cites [26] for the proof (with a note to
see also [21]).

Unfortunately, where Szmielew states the theorem in question (see [26,
page 49]), her proof begins by asserting that her model is “well known”
to be a model of the axioms in question; she proves in more detail the
other part of the theorem — that every model of the hyperbolic axioms is
isomorphic to her model over some field. The assertion that the result we
are interested in is “well known” is slightly curious, because the paper
immediately preceding [26] is [28], which may have been only the second
time that any version of Tarski’s axioms was published, the first having
been in an endnote in [27, pages 55-57] (see [29, pages 188-189]).

As will be seen in the rest of this thesis, this “well known” indepen-
dence result is not necessarily trivial to prove formally, although it may
still be reasonable to assert that it was well known in an informal sense,
on the basis of what was known about various models of hyperbolic ge-
ometry, and about the theorems that hold in those models.

The difficulty of the proof will, of course, depend on the model cho-
sen, and different models might make different axioms easier or more
difficult to verify; furthermore, formalization of the independence result
may be aided by existing published proofs that particular models satisfy

*A field § is called Euclidean if for each a € §, either a or —a is the square of an
element of §; see [21, page 225].
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particular axioms. In Section 6.2 we discuss the choice of a hyperbolic

model for our formal verification.

6.2 Choosing the model

Considering only the 2-dimensional real case, the model given in [21,
page 208] uses the open unit disc in R? as its set of points; betweenness
is defined as in the Cartesian model of Euclidean geometry (see Section
5.1); congruence is defined so that xy = uv is true if and only if

(1—x-y) (1—u-0)

(=[x (A =lyl?) (= flull?) (1= [o]?)

Some features of this model make it a good candidate to work with for
formal verification. For example, because betweenness is defined as in the
Cartesian model, some of the results about betweenness in the Cartesian
plane may be used to verify that axioms about betweenness also hold in
this model of the hyperbolic plane. Also, the definition of congruence
suggests a semimetric distance function where the distance between x
and y is defined to be

(1-x-y)? T
(1= lx]1?) (1= 1yl1?)
Verifying that this does indeed define a semimetric space would allow
us to immediately conclude that the definition of congruence satisfies
Tarski’s first three axioms.

I know of no published proof that a model with this definition of
congruence satisfies, for example, the five-segments axiom (or any of the
other relatively difficult axioms).

Other candidate models of the hyperbolic plane include the so-called
Poincaré disc and Poincaré half-plane models (both of which are originally
due to Beltrami — see [24, pages 263-266]). In these models, most lines
are represented by arcs of circles in the Cartesian plane, complicating
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the definition of betweenness. Because betweenness is one of Tarski’s
primitive relations, a simple definition is preferable.

Another model is defined by Borsuk and Szmielew in [3, pages 245-
250], and is called the Klein—Beltrami model. It is very similar to the model
in [21, page 208], but it is defined in the projective plane, rather than in
IR,

A bijection is fixed between the projective plane (minus a single line)
and IR?. The open unit disc in R? (or rather, its image in the projective
plane) is again used as the set of points in the model of the hyperbolic
plane; the circle bounding the disc is called the absolute.

Again, betweenness is defined to be equivalent to betweenness in the
Cartesian plane, so that results about betweenness in the Cartesian plane
can be used to establish similar results about betweenness in the Klein-
Beltrami model of the hyperbolic plane.

If an invertible linear transformation from the projective plane to itself
(what is sometimes called a collineation — see [3, page 233]) maps the
absolute to itself, then it is called a K-isometry. Congruence in the Klein—
Beltrami model is then defined so that ab = cd is true if and only if there
is a K-isometry f such that f(a) = cand f(b) = d.

While retaining the advantage of a simple definition of betweenness,
this model has the additional advantage that it is built in the projective
plane, where any two lines must intersect; this means that proofs need
not consider degenerate cases where two lines that usually intersect may
sometimes be parallel. Furthermore, Borsuk and Szmielew published
proofs verifying that the Klein—Beltrami model satisfies their own axioms
of geometry (see [3, pages 250-258]); some of their axioms are very similar
to some of Tarski’s axioms, so the published proofs could be considered
likely to assist in writing the necessary computer-verifiable proofs for this
project.

These advantages were sufficient to encourage me to choose Borsuk

and Szmielew’s Klein—Beltrami model for the computer verification of the
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independence of Tarski’s Euclidean axiom. As will be seen in Chapter 8,
the advantage of access to Borsuk and Szmielew’s published proofs was
not always as great as was anticipated, either because their justification
was insufficient, or because following their proof would have required
formalizing too many extra concepts and theorems about them. Never-
theless, Borsuk and Szmielew’s [3] was quite helpful during this project,

and I referred to it frequently during my formalization work.



Chapter 7

Formalizing the projective plane

7.1 Overview

In order to formalize the Klein—Beltrami model of the hyperbolic plane,
it was first necessary to define the projective plane, in which the Klein-
Beltrami model is defined. Of course, a definition on its own is not partic-
ularly useful; theorems about the projective plane must also be formally
proven. This proved to be a larger task than initially expected. One file
was used to collect the formalized theorems about the projective plane
and about a bijection between (most of) it and the Cartesian plane; this
file is over three thousand lines long — more than half the length of the
file used to formalize the Klein—Beltrami model itself and prove the nec-
essary theorems about it.

Section 7.2 describes the formalization of the points of the projective
plane. Then, Section 7.3 uses the points of the projective plane as an
example to explain how much detail is required in formal proofs when
repeatedly switching between an abstract concept and its representation.
Section 7.4 covers the way in which projective lines were formalized in Is-
abelle, and Section 7.5 covers collineations of the projective plane. Finally,
Section 7.6 explains a particular bijection between the Cartesian plane and
most of the projective plane, and how it was formalized in Isabelle.

47
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context vector-space

begin

definition proportionality :: ('b x 'b) set where
proportionality = {(x,y). x #0 Ay # 0 A (3k. x = scale k y)}

definition non-zero-vectors :: 'b set where

non-zero-vectors = {x. x # 0}

Figure 7.1: Definition of proportionality and non-zero vectors

typedef proj2 =
(real-vector.non-zero-vectors :: (real’3) set)/ / real-vector.proportionality
proof
from basis-nonzero
have (basis 1 :: real’3) € real-vector.non-zero-vectors
unfolding real-vector.non-zero-vectors-def ..
thus real-vector.proportionality ** {basis 1} €
(real-vector.non-zero-vectors :: (real’3) set)/ / real-vector.proportionality
unfolding quotient-def
by auto
qed

Figure 7.2: Defining a type for the points of the real projective plane

7.2 Points of the projective plane

The first step in formalizing the projective plane was to formalize pro-
portionality, which is an equivalence relation on non-zero vectors. See
Figure 7.1 for the definition, which is made in the context of the locale
called vector-space; the proof that it is an equivalence relation on non-zero
vectors can be found at [14, pages 53-54].

Next, a new type is defined to represent points of the real projective

plane — see Figure 7.2.
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Isabelle allows the definition of a new type that is isomorphic to a non-
empty subset of an existing type. In this case, the new type is isomorphic
to the partition of non-zero real vectors of dimension three that is defined
by the equivalence relation of proportionality.

Because Isabelle does not allow empty types, the user must supply a
proof (if one cannot be found automatically) that the subset defining the
new type is non-empty. In Figure 7.2, basis 1 is a particular element of the
standard basis of IR?, and real-vector.proportionality ** {basis 1} is the cell in
which basis 1 belongs in the partition defined by proportionality.

7.3 Abstraction and representation

After the new type proj2 is successfully defined, Isabelle automatically
defines representation and abstraction functions, Rep-proj2 and Abs-proj2,
respectively. The former is from the type proj2 to the type (real"3) set, and
the latter from (real”3) set to proj2.

Given a point p of type proj2, we can write Rep-proj2 p, which is the
cell of the partition that represents the point p.

Conversely, given a subset S of R3, we can write Abs-proj2 S. If S is
a cell of the partition, then Abs-proj2 S is the point of type proj2 that the
cell represents; if S is some subset of R® that is not a cell of the partition,
then Abs-proj2 S is an arbitrary point of proj2 — soundness is guaranteed
because we were forced to prove that this type is non-empty.

However, instead of working with cells of a partition, mathematicians
often choose to work with representative members of the cells instead; it
would be more convenient to have representation and abstraction func-
tions directly between the types proj2 and real”3. These functions were
defined as in Figure 7.3. The symbol € in the definition of proj2-rep repre-
sents Hilbert’s indefinite description operator; an arbitrary element of the
appropriate cell is chosen to be the real-vector representative of a given
point in proj2.
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definition proj2-rep :: proj2 = real"3 where
proj2-rep x = € v.v € Rep-proj2 x

definition proj2-abs :: real"3 = proj2 where

r0j2-abs v = Abs-proj2 (real-vector.proportionality ** {v})
proj proj prop Yy

Figure 7.3: Useful abstraction and representation functions for proj2

In ordinary mathematical prose, mathematicians often silently employ
representation and abstraction functions without introducing or consis-
tently using notation for them; they leave their readers to convince them-
selves that everything can be made rigorous if necessary. Of course, this
is not possible with computer verifiable proofs; the computer demands
that every detail is made rigorous, either by automatic proof search or by
the human author of the proof.

To illustrate the level of detail that explicit abstraction and represen-
tation require, see Figure 7.4, the proof that taking the representative of
a point and abstracting again behaves as the identity function. This is
only one of many similar technical lemmas; consider the proof that if v is
non-zero, then proj2-rep (proj2-abs v) is a non-zero scalar multiple of v, the
proof that for non-zero vectors v and w, we have proj2-abs v = proj2-abs w
if and only if v and w are scalar multiples of each other, and so on. Then,
when we later formalize lines in and collineations of the projective plane,
we must prove many similar theorems for each of those types, as well as
theorems about the interactions between the types.

For this reason, proj2-abs and proj2-rep appear frequently in this for-
malization, highlighting by contrast how often mathematical prose glosses
over abstraction and representation. This is both encouraging and wor-
rying: encouraging because it demonstrates mathematicians’ ability to
quickly and accurately convince themselves that the necessary abstrac-
tion and representation steps can be rigorously introduced; worrying be-

cause the mathematicians in question are not always perfectly accurate,
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lemma proj2-abs-rep: proj2-abs (proj2-rep x) = x
proof —
from partition-Image-element
[of real-vector.non-zero-vectors
real-vector.proportionality
Rep-proj2 x
proj2-rep x|
and real-vector.proportionality-equiv
and Rep-proj2 [of x| and proj2-rep-in [of x|
have real-vector.proportionality ** {proj2-rep x} = Rep-proj2 x
unfolding proj2-def
by simp
with Rep-proj2-inverse show proj2-abs (proj2-rep x) = x
unfolding proj2-abs-def
by simp
qed

Figure 7.4: Abstracting a representative
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and sometimes a fully rigorous proof is not as straightforward as the
published text suggests.

The frequent use of abstraction and representation functions in this
project might have been mitigated if Isabelle’s quotient types had been
available when the project was started.

7.4 Lines in the projective plane

Collinearity in the projective plane can be characterized in several equiv-
alent ways.

The points of the projective plane are represented by cells of a partition
of R®> — {(0,0,0)}. The partition is defined by the equivalence relation of
proportionality, so that each cell is almost a line through the origin in
R3; by inserting (0,0,0) into each cell, we can define a bijection between
points of the projective plane and lines through the origin in R3.

Similarly, lines of the projective plane can be represented by planes
through the origin in R3; a point p of the projective plane is incident with
a line [ if and only if the line in IR3 representing p is a subset of the plane
representing .

However, just as it is convenient to represent points of the projective
plane by individual vectors in R? instead of cells of a partition, it is also
convenient to represent lines of the projective plane in a similar manner. It
may seem natural to represent lines by pairs of vectors in R®> whose span
is the representative plane; however, in the case of the projective plane
— as opposed to higher-dimensional projective spaces — it is possible
to represent lines even more simply: by non-zero vectors of R® that are
normal to the representative plane.

This representation has the benefit that if u is a vector representing a
point of the projective plane, and v a vector representing a line, then the
point and line are incident if and only if u - v = 0. This was the manner in
which lines in the projective plane were formalized in Isabelle, although
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datatype proj2-line = P2L proj2

definition L2P :: proj2-line = proj2 where
L2P 1 £ casel of P2Lp = p

Figure 7.5: Defining a type for lines of the projective plane

definition proj2-line-abs :: real"3 = proj2-line where
proj2-line-abs v = P2L (proj2-abs v)

definition proj2-line-rep :: proj2-line = real”3 where

proj2-line-rep | = proj2-rep (L2P 1)

Figure 7.6: Abstraction and representation functions for proj2-line

collinearity of three points was also characterized in an equivalent way:
three points are collinear if and only if their representative vectors in R3
are linearly dependent (see [14, pages 59-73]).

Instead of formalizing lines of the projective plane by repeating the
entire process required to formalize points, it was more convenient to
formalize the type proj2-line of lines as a new type isomorphic to the type
of points, with trivial abstraction and representation functions between
them — P2L and L2P. Figure 7.5 shows the definition. Of course, the
purpose was to represent lines of the projective plane by vectors in IR, so
representation and abstraction functions were defined for that purpose,
too — see Figure 7.6.

With these definitions, it was possible to easily lift proofs about points
of the projective plane to prove similar results about lines; for example,
compare Figure 7.7 with Figure 7.4.
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lemma proj2-line-abs-rep [simp]: proj2-line-abs (proj2-line-rep 1) =1

unfolding proj2-line-abs-def and proj2-line-rep-def

by (simp add: proj2-abs-rep)

Figure 7.7: Abstracting a representative using a similar theorem

7.5 Collineations of the projective plane

As was mentioned in Section 6.2, a collineation of the projective plane
is an invertible linear transformation from the projective plane to itself.
A collineation can be represented by a 3 x 3 invertible matrix. If u is a
non-zero (row) vector and C is an invertible matrix, then the collineation
represented by C maps the point represented by u to the point repre-
sented by uC.

For any non-zero scalar k, the point represented by uC is equal to
the point represented by u(kC), so the matrix kC represents the same
collineation as C; apart from scalar multiples of C, no other matrices rep-
resent the same collineation as C. Therefore, the equivalence classes of
invertible 3 x 3 matrices under proportionality were used in Isabelle to
define a type cltn2 of collineations of the projective plane. As with the
points and lines of the projective plane, useful abstraction and represen-
tation functions were defined — this time between cltn2 and real”3"3, the
type of 3 x 3 matrices with real entries. For these definitions, see [14,
page 77].

Collineations can be composed and inverted, and the collineation rep-
resented by the identity matrix acts as the identity collineation. In this
way, the collineations form a group; this was formalized in Isabelle — see
[14, pages 81-84].

A function was defined to apply a collineation to a point of the pro-
jective plane — see Figure 7.8.

Collineations can also be applied to lines of the projective plane, but

care needs to be taken. If v is the (column) vector representing a line, and
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definition apply-cltn2 :: proj2 = cltn2 = proj2 where
apply-cltn2 x A = proj2-abs (proj2-rep x v« cltn2-rep A)

Figure 7.8: Applying a collineation to a point

definition apply-cltn2-line :: proj2-line = cltn2 = proj2-line where
apply-cltn2-line | A
£ P2L (apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A)))

Figure 7.9: Applying a collineation to a line

C is a matrix representing a collineation, then C~!v represents the image
of the line under the collineation.

To understand this, recall from Section 7.4 that if u and v represent a
point and a line, respectively, then u - v = 0 if and only if the line and the
point are incident with each other; now that we consider u to be a row
vector and v to be a column vector, uv = (0) characterizes incidence.

So, the images of the point and line are incident with each other if and
only if (uC)(C~'v) = (0), which is equivalent to uv = (0). Therefore,
the collineation preserves incidence, proving that it deserves the name
“collineation”.

The formalization of the application of collineations to projective lines
is shown in Figure 7.9. The Isabelle functions P2L and L2P can be thought
of as transposing the representative vectors, to maintain the idea that
points are represented by row vectors and lines by column vectors.

Once these functions (apply-cltn2 and apply-cltn2-line) have been de-
fined, it can then be shown that they each define a group action (see [14,
pages 84-87]). In order to formalize this, it was first necessary to write
a brief formalization of group actions (see [14, pages 51-52]), but groups

were already formalized.
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definition cart2-pt :: proj2 = real”2 where
cart2-pt p =
vector [(proj2-rep p)$1 / (proj2-rep p)$3, (proj2-rep p)$2 / (proj2-rep p)$3]

Figure 7.10: A map from the projective plane to the Cartesian plane

7.6 A mapping to the Cartesian plane

As was mentioned in Section 6.2, Borsuk and Szmielew’s Klein—-Beltrami
model of the hyperbolic plane relies on fixing a bijection between the
Cartesian plane and most of the projective plane. Many suitable bijections
are possible; in fact, any line of the projective plane can be deleted, and
the remainder of the projective plane can be put in bijection with the
Cartesian plane in a way that preserves collinearity.

For our purposes, we must choose a specific bijection. The bijection
used in [3] and in this project is as follows. The Cartesian point (x,y) is
mapped to the projective point represented by (x,y,1); for the inverse,
a projective point represented by (x,y,z) (with z # 0) is mapped to the
Cartesian point (£,Z); the line where z = 0 (that is, the line represented
by (0,0,1) ") is the line deleted from the projective plane for the purposes
of this bijection.

When this was formalized in Isabelle (see [14, pages 106-109]), the
map from real”2 to proj2 was called proj2-pt, and was untroublesome. The
inverse map was defined from all of proj2 (without deleting a line) to
real"2 as in Figure 7.10.

This may appear to be ill-defined when the third coordinate of the
representative is 0, but Isabelle makes division a total function by spec-
ifying that j = 0. Theorems about division must then specify that the
denominator is non-zero (unless the theorem also happens to hold with
Isabelle’s definition of division). For example, the statement of one of
the theorems expressing that proj2-pt and cart2-pt are inverses is shown
in Figure 7.11; it is necessary to include the hypothesis that the third co-
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lemma proj2-cart2:

assumes z-non-zero p

shows proj2-pt (cart2-pt p) = p

Figure 7.11: proj2-pt and cart2-pt are inverses

ordinate of the representative of p is non-zero (for which an abbreviation
has been previously defined — see [14, pages 106-107]).

For this project, it is important that this bijection preserves collinearity;
that is, our characterizations of collinearity in the projective plane must
coincide with collinearity in the Cartesian plane when this bijection is ap-
plied. Several theorems expressing this in different ways were formalized
in Isabelle; these can be found at [14, pages 109-115].



Chapter 8

Formalizing our model of the
hyperbolic plane

8.1 Defining the model

As mentioned in Section 6.2, the set of points of the hyperbolic plane is
represented by the open unit disc in IR?, or by its image in the projective
plane, according to our fixed bijection. Specifically, we consider in the
Cartesian plane the unit circle centred at (0,0); its image in the projective
plane is taken as the absolute, and the image of its interior is taken as the
set of projective points representing the points of the hyperbolic plane;
the former set we call S and the latter K5, following [3, page 245].
This situation can be characterized more directly in the projective
plane by fixing a matrix
1 0
M=1|0 0
0

S = O

-1

The points of the absolute S are the projective points whose representa-
tives u satisfy uMu' = (0), and the points of K; (representing the points

of the hyperbolic plane) are the projective points whose representatives

58
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definition real-hyp2-B :: [hyp2, hyp2, hyp2] = bool
(Bk - --1[99,99,99] 50) where
Bx p qr = Br (hyp2-rep p) (hyp2-rep q) (hyp2-rep 1)

Figure 8.1: Lifting betweenness from the Cartesian plane

in R? satisfy uMu' = (x), with x < 0.

Furthermore, given a projective point p represented by a vector u, the
polar of p with respect to the conic is represented by Mu "; similarly, if v
represents a projective line /, then the pole of [ with respect to the conic is
represented by v M~ = v M (because our choice of M has M~! = M).

In fact, any conic in the projective plane can be characterized in this
way by replacing M with a different symmetric matrix (see [32, page
177]). This project needs only this specific conic, characterized using this
specific matrix M; see [14, pages 119-124] for the formalization.

A new type hyp2 is defined to represent the points of the hyper-
bolic plane; application of collineations is lifted to this new type, and
K-isometries are defined to be collineations that map the absolute to it-
self; these are easily shown to form a subgroup of collineations. Finally,
as promised in Section 6.2, congruence of the hyperbolic plane is defined
so that ab = cd if and only if there is a K-isometry f such that f(a) = ¢
and f(b) = d. See [14, pages 133, 136-138] for the formalized definitions
and results mentioned in this paragraph.

Betweenness of the hyperbolic plane is lifted from betweenness in the
Cartesian plane; see Figure 8.1. In that figure, hyp2-rep has already been
defined so that hyp2-rep p denotes the Cartesian equivalent of the projec-

tive representative of the hyperbolic point p.

8.1.1 Preliminary results

An important theorem about K-isometries is that if f is a K-isometry and
p € Ky, then f(p) € Kp. As suggested in [3, pages 245-246], this can
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be proven by first characterizing points in K, as points p such that every
line through p intersects S twice; because collineations are invertible and
preserve incidence of points with lines, and because K-isometries in par-
ticular preserve incidence of points with the absolute, the result follows;
see [14, pages 138-152] for the formalization.

This result can then be used to establish that the application of K-
isometries defines a group action on points of the hyperbolic plane — see
[14, pages 154-155].

In order to formalize the theorem mentioned above that all K-isome-
tries map K to itself, it was first necessary to formalize the quadratic
formula in Isabelle (see [14, pages 115-118]). The omission of this from
Isabelle is surprising, given how much non-trivial mathematics is avail-
able in Isabelle, including, for example, the Hahn-Banach theorem. It is
especially surprising considering that the general solutions of cubics and
quartics are said to have been formalized in Isabelle (see [34]), although
I was unable to find the proofs of these either in the Isabelle release or
in Isabelle’s Archive of Formal Proofs [13]; I also sent a query to the Is-
abelle users’ email list asking about existing work on discriminants of

quadratics, but I received no response.

8.2 The reflexivity axiom for equidistance

It took a surprisingly long time to formalize the proof that the Klein-
Beltrami model of the hyperbolic plane satisfies the first of Tarski’s ax-
ioms — the reflexivity axiom for equidistance. It would have been triv-
ial to verify it if the definition of congruence had been changed so that
ab = cd is defined to be true if and only if there is a K-isometry f such
that f(a) = d and f(b) = c; the identity K-isometry would have sufficed.

Although this definition of congruence would have been equivalent to
the one chosen, it would merely have postponed the difficulties encoun-

tered until the verification of the second axiom — the transitivity axiom
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for equidistance. With the definition that was used, the second axiom
is a consequence of the fact that the application of K-isometries defines
a group action on the points of the hyperbolic plane. (The third axiom
is also a consequence of this fact, whichever definition of congruence is
used.)

Borsuk and Szmielew’s Statement 68 (see [3, page 249]) is the essence
of what must be proven in order to show that Tarski’s first axiom holds
in the Klein—-Beltrami model of the hyperbolic plane: given a and b in K,
there is a K-isometry f such that f(a) = b and f(b) = a. The proof for-
malized in Isabelle follows the general outline of Borsuk and Szmielew’s
proof. This required first formalizing some theorems about the projective
plane, such as part of Borsuk and Szmielew’s Statement 53 (see [3, page
240]): essentially, in the projective plane, any four points in general posi-
tion can be mapped to any other four points in general position by some
collineation; see [14, pages 90-96] for the formalization.

8.2.1 Abstraction and representation in the proof of State-

ment 66

During the attempt to formalize Borsuk and Szmielew’s proof of State-
ment 68, one clear example arose of the tendency of ordinary mathe-
matical prose to take abstractions and representations for granted. This
arose in the formalization of the proof of part of Borsuk and Szmielew’s
Statement 66 (see [3, pages 247-248]). For our purposes, the pertinent
part of Statement 66 says that given a;,a2 € K; and pq, p2 € S, there is a
K-isometry f such that f(a1) = a and f(p1) = p2.

Borsuk and Szmielew’s proof of Statement 66 involves some construc-
tions shown in Figure 8.2. Given a € K; and p € S, first construct the
other intersection of line ap with the absolute S; this is possible because
any line through a point in K; (such as a) must intersect S twice.

Next, construct the tangents to S at p and 4. (Note that the tangent at
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Figure 8.2: Constructions for the proof of Statement 66

a point of S is the polar of that point.) Borsuk and Szmielew then take
r to be the intersection of these two tangents. They do not consider the
degenerate case that would occur in the Cartesian plane when p and g
are at diametrically opposite points; in this case, the tangents would not
intersect, so Borsuk and Szmielew must be making this construction not
in the Cartesian plane, but in the projective plane, where any two lines
intersect.

On the other hand, in order to construct s, Borsuk and Szmielew then
appeal to their “Theorem 37”, by which they mean “Statement 37" (see
[3, page 229]); this statement is about the Cartesian plane, and they have
not explicitly shown how it can be lifted to the projective plane.

Instead of formalizing Statement 37 in the Cartesian plane and then
lifting it to the projective plane, it was simpler to formally prove the nec-
essary result directly; indeed, it is an immediate consequence of the fact
(already discussed) that any line through a point in K, must intersect S
twice, although only one of the intersections was needed in this case.

Borsuk and Szmielew chose to use their Statement 37 because their
Statement 66 requires s to be in a particular arc of S; the Isabelle formal-
ization proves only statement66-existence (see [14, pages 160-165]), which

is weaker, and which is not sensitive to which intersection of line ar with
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S is chosen as the point s.

Borsuk and Szmielew’s casual appeal to a Cartesian theorem in a pro-
jective construction serves to illustrate the way in which mathematical
prose often glosses over questions of abstraction and representation. This
can make proofs more difficult to formalize than the prose suggests; if the
Isabelle formalization had proven all of Statement 66, and had followed
Borsuk and Szmielew’s proof, it would have been much more compli-
cated than it is — not least because arcs of S would first need to have

been formalized, lifting them from arcs in the Cartesian plane.

8.2.2 Proof that Statement 66 and axiom 1 hold

The rest of the proof of the relevant part of Statement 66 proceeds as
follows. The constructions of Figure 8.2 are performed for a; and py,
and also for a; and p;. Then, where i = 1 or i = 2, it is the case that
pi, qi, i, and s; are in general position (see [14, pages 155-157]), so a
collineation f is chosen such that f(x1) = xp, for x € {p,q,7,s}. Using a
version of Borsuk and Szmielew’s Statement 65 (see [3, page 247] and [14,
pages 157-160]), we can ensure that f is a K-isometry. We already have
f(p1) = p2, and because collineations preserve incidence of points with
lines, and g4; is the intersection of lines p;q; and r;s;, we can also conclude
that f(a;) = ap, as required.

Finally, in order to prove that Tarski’s axiom 1 holds, we must show
that given a,b € Kj, there is a K-isometry f such that f(a) = b and
f(b) = a. If a = b, the identity K-isometry suffices as a choice for f;
otherwise, let p and g denote the two intersections of line ab with S —
see Figure 8.3. By Statement 66, choose a K-isometry f such that f(a) = b
and f(p) = q.

Because f is a collineation, it preserves incidence of points with lines,
so it is easily seen that it maps the line ab to itself. Because f is a K-

isometry, it also preserves incidence of points with S. Therefore, f(q)
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Figure 8.3: Constructions for the verification of axiom 1

must be one of the two intersections of line ab with S. We cannot have
f(g) = g, because f(p) = g and f is invertible, but p # g. Therefore, the
only possibility is that f(g) = p.

Because f is a collineation such that f(p) = g and f(q) = p, we can
use Statement 55 (see [3, page 242] and [14, pages 97-98]) to conclude
that f is an involution on the line pg; that is, for any point x on line pg,
we have f(f(x)) = x.

In particular, since f(a) = b, we have f(b) = f(f(a)) = a, as required.

8.3 Some betweenness-only axioms

One of the reasons for choosing the Klein—Beltrami model of the hyper-
bolic plane was that its definition of betweenness is lifted from the Carte-
sian definition of betweenness. Several of Tarski’s axioms involve only
betweenness, not congruence. Because these axioms have already been
verified for the Cartesian plane, the results are often easy to lift to equiv-
alent results in the Klein-Beltrami model. For example, axiom 6 is fairly
easily lifted from the Cartesian plane to the Klein—Beltrami model — see
Figure 8.4.
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theorem hyp2-axiom6:V ab. Bxaba — a =10
proof default+
fixab
let ?ca = cart2-pt (Rep-hyp2 a)
and ?cb = cart2-pt (Rep-hyp2 b)
assume Bxaba
hence Br ?ca ?cb ?ca by (unfold real-hyp2-B-def hyp2-rep-def)
hence ?ca = ?cb by (rule real-euclid . A6’)
hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
thus a = b by (unfold Rep-hyp2-inject)
qed

Figure 8.4: Lifting axiom 6 from the Cartesian plane

The attentive reader may notice that Tarski’s axiom 10 — the Euclidean
axiom — is also a betweenness-only axiom. The question arises as to
why this result cannot also be lifted from the Cartesian plane, thus prov-
ing that the Klein—Beltrami model does not, in fact, establish the inde-
pendence of the Euclidean axiom. The answer is that only part of the
Cartesian plane corresponds to the points of the hyperbolic plane in the
Klein—Beltrami model.

The hypotheses of the Euclidean axiom can be assumed in the Klein—
Beltrami model, and this configuration does indeed correspond to a sim-
ilar configuration in the Cartesian plane. The Euclidean axiom in the
Cartesian case can then be applied to conclude that the necessary points
exist and have the necessary properties. However, the points constructed
in this way may fall outside the open unit disc corresponding to the set
of points of the hyperbolic plane; it cannot then be concluded that there
are points in the Klein-Beltrami model with the necessary properties.

This obstacle also exists for axioms 7, 8, and 11; they all assert that
points with certain properties can be constructed. However, for those

axioms, the obstacle can be skirted.
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For axiom 7, the point that is constructed is guaranteed to be between
two of the given points; because the given points are in the open unit disc,
the constructed point must also be in the open unit disc, and can therefore
be lifted back to the Klein—-Beltrami model — see [14, pages 230-231].

Similarly, for axiom 11, in the general case the constructed point b is
guaranteed to be between a point of X and a point of Y. However, the
degenerate cases where X or Y is empty must be handled separately; this
is dealt with quickly by Isabelle’s auto method — see [14, pages 231-232].

For axiom 8, a careful choice of three non-collinear points for the proof
in the Cartesian case allowed the same points to be lifted to the Klein-
Beltrami model. For the formalization, see [14, pages 37-38, 232-233].

8.4 The axiom of segment construction

Borsuk and Szmielew’s axiom C5 (see [3, page 81]) is similar in spirit to
Tarski’s axiom of segment construction. Borsuk and Szmielew prove (see
[3, pages 255-256]) that the Klein—Beltrami model satisfies their axiom C5.
This proof might seem appealing to emulate in order to formally verify
that the Klein—Beltrami model satisfies Tarski’s axiom of segment con-
struction. However, closer examination reveals that Borsuk and Szmie-
lew’s proof relies on a previous statement for which their justification is

insufficient.

8.4.1 Statement 62

In particular, Borsuk and Szmielew use their Statement 62 (see [3, page
246]) to prove that the Klein-Beltrami model satisfies their axiom C5.
Statement 62 asserts that any K-isometry maps any open segment of K;
to another open segment of K; (with end-points mapped to end-points).
The only justification given for Statement 62 is “Since K-isometries, as

linear transformations, are collineations, then, by Statement 60, we also
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have [Statement 62]”. Statement 60 asserts that K-isometries map K to
Ks.

Nothing in the justification given explains why an open segment in K;
might not be mapped to two non-adjacent but collinear open segments in
Kj, for example.

It is possible, given that Statement 62 is about open segments, that Bor-
suk and Szmielew are implicitly appealing to continuity, as they did ex-
plicitly in their terse justification of Statement 61: “Since the K-isometries,
as linear transformations, are continuous, then [Statement 61]”. In this
case, it is not clear what they mean by “continuous”.

Although the elliptic plane is essentially equivalent to the projective
plane equipped with a metric (and therefore with notions of continuity),
Borsuk and Szmielew have not discussed this, except for briefly mention-
ing the fact in their introduction (see [3, page 6]). Therefore, the reader
is left to conclude that Borsuk and Szmielew refer to continuity in the
Cartesian plane.

However, it is not the case that all collineations (or even all K-isome-
tries) are continuous in their action on the Cartesian plane. Consider, for

example, the action of the collineation represented by

—_ O O
o~ O
S O =

on the projective equivalents of the Cartesian points (4,0) and (—J,0),
with § > 0. The former is mapped to the projective equivalent of (3,0)
and the latter to the equivalent of (_71, 0); these can be arbitrarily distant
from each other for arbitrarily small 6. In fact, just as the objection above
suggested, the open segment with endpoints (1,0) and (—1,0) is mapped
to two non-adjacent but collinear open segments, although the point (0, 0)
is mapped to a projective point that has no Cartesian counterpart accord-
ing to our fixed (almost-) bijection.
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The collineation in the example above was chosen for clarity, but it is
not a K-isometry. However, there are K-isometries that affect the Carte-
sian plane in similarly discontinuous ways. For example, the collineation
represented by

0 -1
V3 0

0 -2

—_ O N

is a K-isometry, and given any open segment that crosses the Cartesian
line parametrized by (—2,y), this K-isometry maps the open segment to
two non-adjacent collinear open segments (with the same caveat about
one point being mapped to a projective point that has no Cartesian coun-
terpart).

It is now thoroughly demonstrated that Borsuk and Szmielew’s justi-
fication is insufficient, but the question arises as to whether Statement 62
is true. Although it was not formally verified in Isabelle, I believe that it
is true.

It may be argued that although the action of a collineation on the
Cartesian plane is not necessarily defined everywhere, it is continuous
at all points at which it is defined. This argument is now quite distant
from Borsuk and Szmielew’s original justification of Statement 62. More
importantly, formalizing this argument in Isabelle could be quite compli-
cated; for example, because open segments in IR? are not actually open
sets, it may be necessary to associate with each open segment a continu-
ous map from an open interval in R to the segment, and prove various
theorems about these maps.

8.4.2 Statement 63

Borsuk and Szmielew’s Statement 63, rather than Statement 62, was used
in this project’s proof that the Klein—Beltrami model satisfies Tarski’s

axiom 4. Statement 63 asserts that given a K-isometry f and p,q,r €
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Ky US such that B pgr (in the Cartesian plane), it must be the case that
Bf(p)f(q)f(r). Borsuk and Szmielew’s justification of this statement is
that it is “an immediate conclusion from” Statement 62 (see [3, page 246]).
Therefore, a new proof of Statement 63 was required for the verification
in Isabelle of Tarski’s axiom 4. This verification can be found at [14, pages
175-181]; an outline of the proof is given below.

Given a projective point p € K, US, we can be sure that the third
coordinate of its representative is not 0. By dividing a representative
in R3 of p by its own third coordinate, we obtain another, standardized
representative of p, which we can denote by p, so that p; = 1.

Alternatively, if p € R? is the Cartesian equivalent of the projective
point p, we can obtain p by appending a 1 to p; that is, if p = (x,y), then
p=(xy1).

Suppose we are given an invertible 3 x 3 matrix | that represents a
K-isometry f. If p € K, US, then p]J represents f(p), which must be in
K> US, since f is a K-isometry. Therefore, (5])3 # 0 and BJ = (5])3f(p).

Given another point r € K, U S, suppose that the signs of (p])s and
(7])3 are opposite. Then let

(P
()3 = (7])s

so that 0 < k < 1. Let g be the projective point represented by kr +
(1—-k)p; by considering the third coordinate, we see that this is, in fact,
the standardized representative of 4. Hence § = k7 + (1 — k)p, so B pgr.
From this, and from the fact that p,r € K, US, we can conclude that
g € KUS, so (q])s # 0. But since § = k¥ + (1 — k)p, we have (§])3 =
k(7])s+ (1 —k)(pJ)s, which reduces to (§])3 = 0. From this contradiction,
we conclude that for any points p,r € K, U S, we must have that the signs
of (p])3 and (7])3 are the same.

Now suppose we are given points p, g, and r in K, U S such that B pgr.
Choose k such that 0 < k < 1 and § = k¥ + (1 — k)p. By appending
1 to each of these vectors, we also have that § = k7 4+ (1 — k)p. Then
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Figure 8.5: Constructions for the verification of axiom 4

q] = kiJ + (1 — k)pJ, so that (4])s = k(7])3 + (1 — k)(P])s. Let

_ k(@))s
@])s

From the previous equation, and because the signs of (p])3, (4])3, and

(7])3 are the same, we have 0 < ¢ < 1.
From g] = kr] + (1 —k)p] we have (§])3f(q) = k(7])sf(r) —l—(L—
©(7))s/(p). Dividing by (7])s, we obtain f(g) = c7(r) + (1 —)f(p
), an

Discarding the third coordinate, we have f ( ) =cf(r ( )+ (1 —c)f(p
therefore B f(p)f(q)f(r ( ). Therefore Statement 63 holds.

Q.

8.4.3 Proof that axiom 4 holds

To prove that Tarski’s axiom 4 holds, assume we are given a,b,c,q € Ky,
as in Figure 8.5. Extend the segment bc in that direction to intersect S
at p (so that BEEﬁ), and similarly extend the segment ga in that direction
to intersect S at r. Using Statement 66, choose a K-isometry f such that
f(b) =aand f(p) =r. Let x = f(c), so that by definition of congruence
in the hyperbolic plane, we immediately have ax = bc, which is part of

what we require.
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From BEE]/?\, Statement 63 can be used to conclude that Bax7. Together
with Bgar, this lets us conclude that B gax, by part of Satz 3.5 (see [21,
page 30] and [14, page 23]). By the definition of betweenness in the hy-
perbolic plane, we have established all that is required.

8.5 The five-segments axiom

Borsuk and Szmielew give a simple proof in [3, page 256] that the Klein-
Beltrami model satisfies the five-segments axiom. Although this proof
is relatively easy to formalize, it depends on a lemma — Borsuk and
Szmielew’s Statement 69 — for which their proof is long and messy.

Statement 69 says that if we are given a,b,¢,a’,b',c’ € K, such that
ab=a'b’, bc = b'c’, and ac = a’c’ (in the hyperbolic plane), then there is
a K-isometry f such that f(a) = a/, f(b) = U/, and f(c) = ¢’. The first
two hypotheses alone assure us that there are K-isometries f and g such
that f(a) = a’, f(b) =V, g(b) =1/, and g(c) = ¢/, but we seek a single
K-isometry that maps 4, b, and c to a’, b/, and ¢/, respectively.

Borsuk and Szmielew’s proof of Statement 69 (see [3, pages 251-255])
is quite long, making it daunting to write an inevitably longer formal-
ization. In their nearly four-page proof, they consider in detail only the
case where segment ab is shorter than segment ac (after assuming, with-
out loss of generality, that ab is no longer than ac); for the case where
ab = ac, although they give a diagram, they say only that “The argument
is analogous, but simpler, since [various points] do not enter into it”.

Further complicating a possible formalization is the fact that Borsuk
and Szmielew’s proof involves half-lines, half-planes, and a betweenness
relation on half-lines in the Cartesian plane. Because these are not needed
for the verification of any of Tarski’s other axioms, the formalization of
these concepts can be added to the cost of formalizing Borsuk and Szmie-
lew’s proof of Statement 69.

For these reasons, a new proof of Statement 69 was sought — and



CHAPTER 8. FORMALIZING THE HYPERBOLIC PLANE 72

found. This new proof is not without its own complications. It required
the formalization of what turns out to be perpendicularity in the model
of the hyperbolic plane, as well as formalization of cross ratios in the pro-
jective plane; it even came very close to formalizing a distance function
on the points of the hyperbolic plane. However, many of the definitions
and lemmas required to prove Statement 69 were also useful in the ver-
ification that the Klein—-Beltrami model satisfies Tarski’s axiom 9 — see
Section 8.6.

8.5.1 Perpendicularity

Perpendicularity in the hyperbolic plane can be characterized in the Klein—
Beltrami model as follows. Given a line / that passes through Kj, let p
and g denote the intersections of I with S. Let r denote the intersection of
the tangents to S at p and g; this is the pole of I. The lines through r that
pass through Kj are the lines perpendicular to /.

A right angle in the Klein—Beltrami model can be defined to consist of
three points, p, a, and g, such that p and g are in S, a is in Kj, and the
lines pa and aq are perpendicular.

The constructions used in the definition of perpendicularity are sim-
ilar to those shown in Figure 8.2. In fact, by using arguments similar
to those in Subsection 8.2.2, it can be shown that any right angle can be
mapped to any other right angle by a K-isometry.

See [14, pages 190-203] for the full formalization of perpendicularity
and right angles.

8.5.2 Cross ratios

The cross ratio is a function that takes four collinear projective points as
its arguments; its values are taken from IR. The cross ratio of p, g, r, and
s is denoted (p,q;7,s). This function has several useful properties; for

example:
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collineations preserve cross ratios;

e if p, g, and r are distinct and collinear, then the value of (p,q;r,s)

uniquely determines the point s on the line pg;

e if p and g are distinct, and r, s, and t are collinear with, but distinct
from, p and ¢, then (p,q;7,s)(p,q;s,t) = (p,q; 1, 1);

e in particular, (p,q;7,7) =1 and

(pgirs) = ——
Pt = s

For more on cross ratios, see [3, pages 235-238] and [14, pages 98-106].

8.5.3 Distance

Given points a and b in Ky, let p and g denote the intersections of the line
ab with the absolute S (if 2 = b, then any line through a will do). We can
define the distance between the hyperbolic points represented by a and b
to be p(a,b) = % |log(p, q;a,b)|, where log denotes the natural logarithm.

In Section 5.3, when verifying that the Cartesian plane satistfies Tarski’s
five-segments axiom, we found it convenient to use the cosine of an angle,
rather than formalizing angles themselves. Similarly, when verifying that
the Klein—Beltrami model satisfies Tarski’s five-segments axiom, it is more
convenient to use the hyperbolic cosine of segment lengths, rather than

formalizing lengths themselves. For convenience, this simplifies to

cosh(p(a, b)) = VP 9:%0) ;L V(p.g:b,a)

K-isometries, as collineations, preserve cross ratios; given a line /, a
K-isometry will also map the intersections of S with I to the intersections
of S with the image of /. Consequently, K-isometries must preserve the
above function of distance. Therefore, by the definition of congruence, if
ab = a'l’, then cosh(p(a, b)) = cosh(p(d’,b")).
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Among the theorems about this function of distance, a notable one is
a formula for cosh(p(a,b)) in terms of representatives of a and b. Given
any representatives 4 and b of the projective points a and b (which in turn
represent hyperbolic points),

|amb|
VaMa bMbT

By recalling our choice of M, and by using the standardized representa-

cosh(p(a,b)) =

tives 4 = 7 and b = b, it can be seen that

~\ 2
omiplamy= 0
’ (1 la]2) (1 - 1))
This is clearly suggestive of the model in [21, page 208], mentioned above
in Section 6.2.

Recall that this model was avoided because of the lack of published
proofs that it satisfies Tarski’s axioms, including the five-segments ax-
iom; instead, Borsuk and Szmielew’s Klein—Beltrami model was chosen
because they did verify that it satisfies the five-segments axiom. Now,
when it comes to formalizing their proof, it is judged to be so difficult
that an alternative proof is sought; the alternative proof that was found
takes us strikingly close to the model we tried to avoid.

It would be interesting to know whether verifying Tarski’s axioms
would be easier if we started with the model in [21, page 208] and tried to
avoid having to formalize projective geometry. It may be the case that an
attempt to do so would involve considering numerous degenerate cases
where lines are parallel in the Cartesian plane; such an attempt may lead
to the conclusion that it is simpler to use the projective plane to define
the model of the hyperbolic plane.

Another useful theorem about distance in the hyperbolic plane is the
hyperbolic equivalent of the so-called theorem of Pythagoras: if a, b, and
c are the vertices of a right-angled triangle, with the right angle at b, then
cosh(p(a,c)) = cosh(p(b,a)) cosh(p(b,c)).
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For the formalization of the concepts discussed in this subsection, see
[14, pages 203-220].

8.5.4 A formula for a cross ratio involving a perpendicular

foot

Suppose we are given points 4, b, and ¢ in the Klein—Beltrami model, with

a # b. Let d denote the perpendicular foot of ¢ on line ab. Then
cosh(p(a,c)) = cosh(p(d,a))cosh(p(d,c)) and
cosh(p(b,c)) = cosh(p(d,b))cosh(p(d,c))

Dividing the first equation by the second gives us

cosh(p(a,c)) _ cosh(p(d, a))
cosh(p(b,c))  cosh(p(d,b))

If p and g are the intersections of line ab with S, then

cosh(p(a,c)) _ /(p.g:d,a) +/(p,g;0,d)

cosh(p(b,¢)) V(p,g;:d,b)+/(p,q;b,d)

Multiplying the top and bottom of the right-hand side by /(p,q;4d,b),

and recalling some properties of cross ratios — particularly (p,q;d,b) =
(p,q;d,a)(p,q;a,b) — we obtain

cosh(p(a,c))  (p,q;d,a)\/(p.9;a,b) ++/(p.q;a,b)

cosh(p(b,c)) (p,q:d,a)(p,q;a,b) +1
Rearranging for (p, q;d,a) yields

cosh(p(b,c))v/(p.g;a,b) — cosh(p(a,c))
cosh(p(a,c))(p,q;a,b) — cosh(p(b,c))+/(p, q;4,b)

Although this formula is somewhat messy, it establishes the cross ratio

(p.q;d,a) =

involving the perpendicular foot d in terms of cross ratios that do not
involve d.
The formalization of this formula can be found at [14, pages 220-223].
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n

q

Figure 8.6: Constructions for the proof of Statement 69

8.5.5 Proof that Statement 69 and axiom 5 hold

To prove that Statement 69 holds, a degenerate case is first considered.
If a = b, then because ab = a'l’, it can be shown that a/ = b’. By the
hypothesis that bc = b'c’, choose a K-isometry f such that f(b) = b’ and
f(c) = ¢’. Furthermore, f(a) = f(b) = b’ = d/, so f is the K-isometry
required.

Suppose instead that a # b. We perform some constructions shown in
Figure 8.6. First, segment ab is extended in that direction to intersect S at
p. Let g denote the other intersection of line ab with S. Let d denote the
foot of the perpendicular dropped from c to the line pg. Extend segment
dc in that direction to intersect S at s.

These same constructions are performed on 4/, b/, and ¢/, to obtain p/,
g, d,and ¢

A K-isometry f is chosen to map right angle pds to right angle p'd’s’.

Both f(g) and ¢4’ are in S on the line p’d’, and neither can coincide
with f(p) = p’. Because there are only two intersections of line p’d" with
S, and we have ruled out p’, we must have f(gq) = 4.

From ab = a'b’ we can establish that (p,q;a,b) = (p/,q’;4d’,b’). Also,
from bc = b'c’ and ac = a'c’ we have cosh(p(b,c)) = cosh(p(b/,¢’)) and



CHAPTER 8. FORMALIZING THE HYPERBOLIC PLANE 77

cosh(p(a,c)) = cosh(p(a’,c’)). Therefore, using the formula derived in
Subsection 8.5.4, we can conclude that (p,q;d,a) = (p/,q’;d',a’). But
because collineations preserve cross ratios, we also have (p,q;d,a) =
(F(p), f@); f(d), f(a)) = (p',q'sd", f(a)). The uniqueness property of
cross ratios then tells us that f(a) = a’.

Similarly, because we have (p,q;a,b) = (p’,q’;a’,b’) and now also
(p,q;a,b) = (p',q';d, f(b)), we can conclude that f(b) =V’

Because f(c) and ¢’ both lie on line s'd’, and line a’d’ is perpendicular,

we have

cosh(p(a, £(c))) = cosh(p(d,)) cosh(p(d, f(c)))  and
cosh(p(a’,c’)) = cosh(p(d’,a’))cosh(p(d, "))

But we already have cosh(p(a,c)) = cosh(p(a’,¢’)), and because f is a K-
isometry we have cosh(p(a,c)) = cosh(p(f(a), f(c))) = cosh(p(a’, f(c))).
All together, these let us conclude that cosh(p(d’, f(c))) = cosh(p(d’,c")).

There is a theorem that lets us conclude, from Bd f/(?)é7 , B dicls’ , and
cosh(p(d’, f(c))) = cosh(p(d’,c’)), that we must have f(c) = ¢’. (Essen-
tially, the theorem ensures that if we fix x, the direction of xy, and the
value of cosh(p(x,y)), then we have fixed the point y.)

We have finally shown that our choice of f — which initially fixed only
f(p)=p', f(d) =4d,and f(s) = s’ — must also fix f(a) = d’, f(b) =V,
and f(c) = ¢’. The existence of such a K-isometry proves Statement 69.

Now, to prove that axiom 5 holds, suppose we have BZZ\/B(/S\, Ba'b CA’,
ab=a't/,bc =b'c',ad = a'd',bd =b'd’, and a # b.

From ab = a'b/, bd = b'd’, and ad = a’d’, we can use Statement 69 to
choose a K-isometry such that f(a) =4/, f(b) =V, and f(d) =d'.

Now Babé gives us Ba'b’ f/(?), and we already have Ba'b'c’. Because
a # b (and therefore a’ # V'), this fixes the direction of b'f(c) to be the
same as the direction of b'c’. Because bc = b'(/, this fixes cosh(p(V', f(¢))) =
cosh(p(b’,c’)) also. Therefore, we must have f(c) = ¢’.

With f(c) = ¢’ and f(d) = d’, the definition of congruence lets us
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conclude cd = ¢'d’, as required.
The proofs discussed in this subsection are formalized in Isabelle in
[14, pages 218-219, 223-229].

8.6 The upper 2-dimensional axiom

8.6.1 Non-categoricity of Borsuk and Szmielew’s axioms

Given that the model that we are using was taken from [3], it is natural to
look there for a proof of something similar to Tarski’s axiom 9; after all,
we found proofs there of theorems similar to axioms 1, 4, and 5, although
they were of varying helpfulness.

One encouragement is that Borsuk and Szmielew conclude Part One
of their book with Proposition 7, which states that “The axiom system
(GBLy) of plane Lobachevskian [that is, hyperbolic] geometry is categor-
ical” — see [3, pages 344-345]. If this is true, then their axioms must
somehow restrict the geometry to two dimensions. It may be the case
that for this purpose they use an axiom similar to Tarski’s axiom 9; if
so, then it is probably worthwhile consulting their proof that the Klein-
Beltrami model satisfies this axiom. However, closer inspection of their
axiom system (GBL;) reveals that it does not, in fact, restrict geometry to
two dimensions, and that Proposition 7 must be false, although it may be
possible to repair it without much disruption to Borsuk and Szmielew’s
argument.

Borsuk and Szmielew discuss their various axioms in [3, pages 196—
197]. The axiom system (GAj3) of 3-dimensional absolute geometry con-
sists of nine axioms of incidence, 11-19, nine axioms of order, O1-09,
seven axioms of congruence, C1-C7, and one axiom of continuity, Co.
One model of (GA3) is 3-dimensional real Cartesian space, R3.

The axiom system (GAj) of absolute plane geometry consists of ax-
ioms I1-14, O1-09, C1-C7, and Co, omitting axioms I5-19. In this system,
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axiom I4 is weakened to assert only the existence of three non-collinear
points, rather than that every plane has three non-collinear points. It is
clear then that any model of (GA3) is also a model of (GA»); in particular,
R? is a model of (GA,).

In [3, page 344], the axiom system (GBL;) is defined to consist of
the axioms of (GA;) together with a non-Euclidean axiom BL, which is
essentially the negation of Playfair’s axiom. But in R3, given a line / and
a point P not on /, many lines pass through P that do not intersect !
— any line through P that does not lie in a plane with /, for example.
Therefore R® is a model of (GBL,). Because the Klein-Beltrami model is
also a model of (GBL,) — and is not isomorphic to R? (because R® does
not satisfy Tarski’s upper 2-dimensional axiom) — we see that (GBL;) is
not categorical and Proposition 7 is false.

This situation may be remedied by altering axiom O9 in the systems
(GA) and (GBLp). Axiom O9 is defined in [3, page 42] and is a version
of the axiom of Pasch. It is called the “plane axiom of order” and its
hypotheses explicitly restrict it to a plane. If we remove this restriction
to a plane in the hypotheses, then it may force the whole geometry to lie
in a single plane. This would need to be checked carefully. In any case,
it is not similar to Tarski’s axiom 9, so any proof that the Klein—Beltrami
model satisfies this stricter axiom O9 may not be useful in proving that
it satisties Tarski’s axiom 9. Therefore, we require another proof that the

Klein—Beltrami model satisfies Tarski’s axiom 9.

8.6.2 Proof that axiom 9 holds

In the proof that axiom 9 holds in the Klein—Beltrami model, we re-use
much of the infrastructure that was developed for the proof of axiom 5.
Suppose p and g are distinct points in K,. Extend segment pg in that
direction to intersect S at s (see Figure 8.7). Let t be the other intersection
of line pgq with S. Let r be the intersection of the tangents to S at s and ¢.
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s %ﬁ\\

Figure 8.7: Constructions for the verification of axiom 9

Suppose we have a point d € Kj such that dp = dg. Let e denote the
perpendicular foot of d on line st; that is, let e be the intersection of line
dr and line st. According to the formula derived in Subsection 8.5.4,

cosh(p(q,4))\/(s,; p,9) — cosh(p(p.d))
cosh(p(p,d))(s,t; p,q) — cosh(p(q,d))\/(s,t;p,q)
Because dp = dgq, we have cosh(p(p,d)) = cosh(p(gq,d)), so the above

(s,t;e,p) =

simplifies to
1

(s,tie,p) = ———=
(s,;p,9)

or (s,t;p,e) = +\/(s,£p,9).

Now, suppose we have points a4, b, and ¢ in K; such that ap = ag,
bp = bg, and cp = cq. The above, together with the uniqueness property
of cross ratios, lets us conclude that the perpendicular feet of a, b, and ¢
on line st all coincide; let e denote this perpendicular foot.

Now, by the definition of perpendicular foot, we know that a lies on
the line er. Similarly, b and c also lie on the line er. Because e € K, and
r ¢ Ky, we know that e and r are distinct, so we can conclude that a, b,
and c are collinear. This is sufficient to prove that Babc V Bbca V B cab, as
required.

The Isabelle formalization of this proof is in [14, pages 233-235].
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interpretation hyp2: tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-axiom9
by unfold-locales

Figure 8.8: The model satisfies the axioms of absolute plane geometry

8.7 The negation of the Euclidean axiom

We have now discussed the proofs that the Klein—Beltrami model satis-
fies each of Tarski’s axioms except the Euclidean axiom. This result is
summarized by the Isabelle extract shown in Figure 8.8 — recall that the
locale tarski-absolute embodies all of Tarski’s axioms except the Euclidean
axiom. The Isabelle proof merely recalls the already-verified theorems
that axioms 8 and 9 hold; none of the other axioms are mentioned be-
cause it has already been verified that the Klein—Beltrami model satisfies
tarski-absolute-space.

All that is left is to check whether the Klein—-Beltrami model satisfies
the Euclidean axiom. If it does satisfy the Euclidean axiom, then either
Tarski’s axioms are not actually categorical, or the Klein—Beltrami model
is a very elaborate model of the Euclidean plane.

In fact, Tarski’s Euclidean axiom does not hold in the Klein—Beltrami
model. For a counter-example, we can take 4, b, ¢, d, and t to be the projec-
tive equivalents of (0,0), (%,0), (O, %), (}L,%), and (%, %), respectively,
according to our fixed bijection — see Figure 8.9. It is then relatively
straightforward to check that these points are in K, (and therefore repre-
sent points of the hyperbolic plane) and that they satisfy the hypotheses
of Tarski’s Euclidean axiom.

It is also not difficult to prove that the conclusion of axiom 10 does not
hold. Consider a line through ¢ that intersects line ab at x and line ac at
y. In order to ensure B abx and B acy, we must have either x or y (or both)
outside K, (although, as Figure 8.9 suggests, it may be that x and y are
both in S, which is disjoint from K3). Therefore there can be no suitable
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Figure 8.9: A counter-example to the Euclidean axiom

theorem hyp2-not-tarski: — (tarski real-hyp2-C real-hyp2-B)
using hyp2-axiom10-false

by (unfold tarski-def tarski-space-def tarski-space-axioms-def ) simp

Figure 8.10: The model does not satisfy all of the axioms

points x and y that represent points of the hyperbolic plane.

The Isabelle formalization of this counter-example can be found in [14,
pages 235-237]. The Isabelle extract in Figure 8.10 is the final demonstra-
tion that what we showed in Figure 8.8 is a model of tarski-absolute is not
also a model of tarski.

This concludes the verification that Tarski’s Euclidean axiom is inde-
pendent of his other axioms of the Euclidean plane.
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Conclusion

9.1 Success

The initial goal of this project was to mechanically verify the indepen-
dence of the parallels postulate. In order to make this verification as
meaningful as possible, Tarski’s axiom system for plane geometry was
chosen — in part because it is categorical.

Tarski’s axioms were successfully formalized in the proof verification
program Isabelle. A model was provided for the axioms, establishing
that they are consistent. Then, the Klein-Beltrami model of the hyper-
bolic plane was formalized and shown to be a model of all of Tarski’s
axioms except the Euclidean axiom, which it violates. This established
that Tarski’s Euclidean axiom is independent of Tarski’s other axioms of
plane geometry.

Along the way, the projective plane was also formalized, and many
theorems were proven about it. Some published proofs about a model of
the hyperbolic plane were questioned, and alternative proofs were found

and verified.

83
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9.2 Equivalent axioms

This success is not quite the whole story, if the goal was to verify the in-
dependence of the parallels postulate; although Tarski’s Euclidean axiom
is equivalent to Euclid’s original parallels postulate, it is not obviously so.

Therefore, a natural extension of the work described in this thesis
would be to mechanically verify that — in the context of Tarski’s other
axioms — Tarski’s Euclidean axiom is equivalent to Euclid’s parallels pos-
tulate. This would require the formalization of concepts in and conse-
quences of Tarski’s axioms of absolute plane geometry; this thesis was
primarily concerned with models, rather than consequences, of Tarski’s
axioms.

In order even to state Euclid’s parallels postulate in the context of
Tarski’s axioms, several notions would first need to be defined — for ex-
ample: lines, intersection of lines, angles, addition of angles, and what it
means for an angle to be on a particular side of a line. As a first step to-
wards this goal (and as a worthy goal in itself), it may be worthwhile first
proving that Playfair’s axiom is equivalent to Tarski’s Euclidean axiom.
The statement of Playfair’s axiom would require the formalization only
of lines, intersection of lines, and parallelism of lines.

For the formalization within Tarski’s axiom system of concepts such
as lines and angles, a useful resource would be [21] — particularly Teil
I. Also of likely usefulness would be Narboux’s existing work [16] on

formalizing in Coq some parts of [21].

9.3 Other possible future work

A possible complement to the work described in this thesis would be me-
chanically verified proofs of the independence of some of Tarski’s other
axioms. Two of these independence proofs — those relating to the lower
and upper 2-dimensional axioms — could be completed relatively swiftly,
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since, as Section 5.1 mentions, all of the other axioms have already been
verified for R".

Another metamathematical result relating to Tarski’s axioms is the
categoricity of the axiom system; this result would also be nice to have
formally verified. Also, similar independence and categoricity questions
arise when Tarski’s Euclidean axiom is replaced with a hyperbolic axiom,
as in [21, page 204]. Answers to at least some of these questions are
known; these answers, too, would be interesting to have mechanically
verified.

Finally, as was briefly discussed in Subsection 8.5.3, it may be inter-
esting to know whether it would be easier to avoid the projective plane
in the proof of the independence of Tarski’s Euclidean axiom. If it turns
out to be easier to avoid the projective plane, it is hoped that this project’s
mechanically verified theory of the projective plane is considered worth-
while in its own right.
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