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FRONTISPIECE 
Subscene of Pel 18821 colour mosaic (courtesy of Physics and Engineering Labratory, D.SJ.R.) 
consists of photos taken by Landsat 1 on 22 Dec 1975 and 15 Feb 1976. The picture shows 
most part of the TVZ, with Lake Taupo Volcanic Centre in the middle. The greywacke 
ranges and ignimbrite plateau to the east and west of the TVZ are distinct from the active 
volcanic region which runs in the north-east direction. Products of the 1800a Taupo eruption 
have covered most part of the area shown. 
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ABSTRACT 

The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and 

consists of three pt'batomagmatic ash deposits, two plinian pumice deposits and a major 

low-aspect ratio and low grade (unwelded) ignimbrite which covered most part of the 

central North Island of New Zealand. The vent area for the eruption is located at 

Horomatangi Reefs in Lake Taupo. 

Lithics in the phreatoplinian ash deposits are negligible in quantity, but the 
plinian pumice deposits contain 5-]0% lithics by volume in most near-vent sections. 

Lithics in the plinian pumice deposits are dominantly banded and spherulitic rhyolite 

with minor welded tuff, dacite and andesite. The ground layer which forms the base of 

the ignimbrite unit consists of dominantly lithics and crystals and is formed by the 

gravitational sedimentation of the 'heavies' from the strongly fluidized head of the 

pyroclastic flow. Lithic blocks in the ground layer are dominantly banded and spherulitic 

phenocryst-poor rhyolite, welded tuff with minor dacite and andesite. Near-vent exposures 

of the ground layer contain boulders upto 2 m in diameter. Friable blocks of 

hydrothermally altered rhyolite, welded tuff and lake sediments are found fractured but 

are preserved intact after transportation. This shows that the fluid / pyroclastic particle 

mixture provided enough support to carry such blocks upto a distance of 10 kID from the 

vent. 

The rhyolite blocks are subdivided into hypersthene rhyolite, hypersthene-hornblende 

rhyolite and biotite-bearing rhyolite on the basis of the dominant ferromagnesian 

phenocryst assamblage. Hypersthene is the dominant ferromagnesian phenocryst in most 

of the rhyolite blocks in the ground layer and forms the major ferromagnesian crystal of 

the Taupo Sub-group tephra. The rhyolite blocks have similar whole rock chemistry to 

the Taupo Sub-group tephra and are probably derived from lava extrusions associated with 

the tephra eruptions from the Taupo Volcanic Centre in the last 10 ka. Older rhyolite 

domes and flows in the area are probably represented by the intensely hydrothe'inally 

altered rhyolite blocks in the ground layer. 

The dacite blocks contain hypersthene and augite as a major ferromagnesian 

phenocryst. Whole rock major and trace element analyses shows that the dacite blocks are 

distinct from the Tauhara dacites and from the dacites of Tongariro Volcanic Centre. The 
occurrence of dacite inclusions in significant quantity in the Taupo Pumice Formation 

indicates the presence of other dacite flows near the vent area. 

Four types of andesite blocks; hornblende andesite, plagioclase-pyroxene andesite, 

pyroxene andesite and olivine andesite occur as lithic blocks in the ground layer. The 

andesites are petrographically distinct from those encountered in deep drillholes at 

Wairakei (Waiora Valley Andesites), and are different from the Rolles Peak andesite in 

having lower Sr content. The andesite blocks show similar major and trace element 

content to those from the Tongariro Volcanic Centre. The roundness of the andesite blocks 

indicates that the blocks were transported as alluvium or lahars in to the lake basin 

before being incorporated into the pyroclastic flow. 

Two types of welded ignimbrite blocks are described. The 

ignimbrite is correlated with a post-Whakamaru Group Ignimbrite (ca. 

erupted from Taupo Volcanic Centre) which crops out to the north of 

lithic-<:rystal rich 

100 ka ignimbrite 

Lake Taupo. The 
crystal rich ignimbrite is tentatively correlated with the Whakamaru Group Ignimbrites. 

The lake sediment boulders, pumiceous mudstone and siltstone in the ground layer 

probably correlate to the Huka Group sediments or younger Holocene sediments in the 

lake basin. 
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A comparative mineral chemistry study of the lithic blocks was done. A change in 
chemistry of individual mineral species was found to a.ccompany the variation in 
whole rock major element constituents in the different types of lithics. 

The large quantity of lithic blocks in the ground layer suggests extensive vent 
widening at the begining of the ignimbrite eruption. A simple model of flaring and 
collapse of the vent area caused by the down ward movement of the fragmentation 
surface is presented to explain the origin of the lithic blocks in the ground layer. The 
lithics in the Taupo Pumice Formation are therfore produced by the disruption of the 
country rock around the vent during the explosion and primary xenoliths from depths of 
magma generation were not found. 

Stratigraphic relations suggest that the most important depth of incorporation of 
lithics is within the post-Whakamaru Group Ignimbrite volcanics and volcaniclastic 
sedimentary units. 
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Chapter I 

INTRODUCTiON 

Taupo Volcano is located near the centre of the North Island of New Zealand and is 

the southern most of the dominantly rhyolitic volcanic centres in the Taupo Volcanic 

Zone (Frontispiece). Taupo Volcano consists of a large basin roughly 50 km across and 

300-500 m deep, the central 600 km 2 of which is covered by Lake Taupo. Even the 

earliest observations suggest that the lake was a result of a unique type of volcanic 

activity. Grange (1937) stated that previous explanations of the origin of the lake were 

centred around the idea that the lake was formed as a result of subsidence through 

withdrawal of support at depth due to volcanic activity and/or craters formed by 

volcanic explosions. He suggested that both phenomena had contributed to the formation of 

the lake basin and later studies have consistently supported this view. Cole (1979) 

suggested that the volcanic centre represents multiple calderas with each major pyroclastic 

eruption having been followed by a collapse of the vent area. Walker (1980 describes it 

as an "inverse volcano" formed by eruptions which have been so powerfully explosive 

that the near vent accumulation of ejecta was insufficient to counterbalance subsidence 

caused by magma withdrawal. 

There have been several pyroclastic and lava eruptions from the Taupo Volcanic 

Centre in the last 350 ka. A study of the volumin ous material erupted from this 

volcano has led to an intimate know lege of its eruptive history. A thick pile of volcanic 

ejecta is well preserved about Lake Taupo, and road cuttings and other construction works 

have provided exposures that have allowed a detailed stratigraphy and distribution of 

these tephras to be established. 

The purpose of this work is to study the lithic inclusions in pyroclastic deposits 

from Taupo Volcano, especially in the youngest series of eruptions which produced the 
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Taupo Pumice Formation. This eruption has been of particular interest for several 

reasons: 

1. It was one of the largest explosive eruptions in the world within the last 7000 

years, and according to Walker (1980) includes the most powerful plinian and 

violent ignimbrite-forming events yet documented. Walker (1980) considered 

various factors in establishing the size of a volcanic eruption. 

(a). Magnitude determined from the total volume. 

(b). Intensity- determined from the discharge rate. 

(c). Dispersive power- the extent of dispersal. 

(d). Violence- the importance of momentum and 

(e). Destructive potential- tbe extent of real or potential destruction of life or 

property. 

The Taupo eruption has a modest volume but bad a high intensity, dispersive 

power, violence and destructive potential as documented by its deposits. 

2. It generated a great variety of pyroclastic deposits; three pbreatoplinian deposits, 

two plinian pumice falls, and three ignimbrite flow units (including some 

intra-plinian units) which bave a great variety of facies and structures. 

3. The vent was located within a large lake and magma/water interaction 

determined the style of parts of the eruption. Furthermore the phreatomagmatic 

deposits are of particular interest on their own. 

4. The eruption occurred at an inverse volcano covered by a lake and represents a 

style of activity which may be typical of such volcanoes. 

The term Ethics in pyroclastic deposits is generally used to describe the dense 

components in the deposit irrespective of their origin. Lithic fragments rarely exceed 5 

percent of the total volume in intermediate to large volume pyroclastic flow and fall 

deposits. Many small volume pyroclastic flow deposits can be composed almost entirely of 

juvenile lithic fragments and broken crystals with adhering matrix derived from the 

explosive disruption of the neck and dome of a volcano. 
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In most pyroclastic flow or fall deposits there are three major sources of lithic 

fragments ; 

1. Slowly cooled and crystallized magma "rinds" from chamber margins or 

non-vesiculated juvenile rock fragments. 

2. Rock fragments from the conduit walls or country rock which has been 

explosively ejected during the eruption. 

3. In the case of pyroclastic flows and surges, rock fragments picked up along the 

path of the pyroclastic flow. 

The three genetic types of lithics in pyroclastic deposits are termed "cognate lithics", 

"accessory Ethics" and "accidental lithics" respectively by Wright ~t a1. __ (1980). Cognate 

and accessory lithics can give information on the depth to the magma chamber if the 

regional stratigraphy is well known. 

The ground layer of the Taupo Ignimbrite in particular offers good exposures of 

lithic rich zones on which most of this study is based. In order to correlate the various 

types of lithics in the pyroclastics from Taupo Volcano with the major stratigraphic units 

in area, it is essential to establish the stratigraphy in the vent area. The Taupo Volcanic 

Centre covers a considerable area but most of the centre is covered by Lake 

Taupo. This presents a problem in the direct study of the stratigraphY. The stratigraphy 

of the vent area has therefore been inferred from regional geologic mapping of the area. 

Variations in intra-caldera lava flow and dome stratigraphy are to be expected, but most 

of the pyroclastic deposits erupted from the centre can be assumed to occur throughout 

the volcanic centre. 

The correlation of the different type of lithics to known stratigraphic units in the 

area is based on petrographic study and major and trace element wholerock analyses of 

the lithic blocks from the ground layer. A comparative mineral chemistry study of the 

various types of lithic blocks in the ground layer was done to demonstrate the difference 

in mineral Chemistry which accompany the wholerock chemical variations. 



2.1 TECTONIC SETTING 

Chapter 11 

REGIONAL GEOLOGY 

The North Island of New Zealand is on the boundary between the Pacific and Indian 

plates. In the vicinity of the North Island, oceanic crust of the Pacific Plate is obliquely 

subducted beneath continental crust of the Indian Plate to form the Taupo--Hikurangi arc 

trench system. The main tectonic elements of this arc trench system are shown on Fig 

2.1. 

The volcanic component of this system is the Taupo Volcanic Zone (TVZ) which 

comprises a Quaternary andesite-dacite are, to the west of which is the Taupo--Rotorua 

Depression, a basin filled with approximately 2 km of low density volcanics. M<St of 

these volcanics are rhyolitic and have been erupted in the last IMy from the volcanic 

centres in the depression (Murphy and Seward, 1981). 

A genetic model for the TVZ has been discussed by Cole (1979) and a model of 

migrating volcanic arc systems is suggested to have preceded the present tectonic setting in 

the TVZ. During the period 18-6 Ma the Northland arc had a north-westerly trend and 

extended from North Auckland to the southern end of the Coromandel Peninsula. Later 

volcanism extended south-eastwards still with a north-westerly trend, until andesite 

volcanism commenced from the Tongariro Volcanic Centre, probably in the early 

Pleistocene. The present NNE trending Taupo arc is very recent and has influenced 

volcanism in the TVZ for the past 1-2 MY. 

Normal faults are common in the Taupo--Rotorua Depression and some have been 

active in historic times. Where open fissures are formed, no strike slip movements have 

been recorded. Based on this evidence together with the presence of basaltic dikes in the 

depression. Cole (1985) suggested that the area is an extensional ensialic marginal basin. 

- 4 -



Figure 2.1 : 
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Tectonic elements of the Taupo-Hikurangi arc-trench system. (From 

Cole 1985, Fig. 9) 
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2.2 THE TAUPO VOLCANIC ZONE 

The TVZ extends for approximately 300 km from Ohakune to White Island (Fig 

2.2). The name Taupo Volcanic Zone was first coined by Healy (1961) for a 15-25 km 

wide belt of Quaternary volcanism in the region. Earlier observations were made by 

Hochstetter (1864) but it was not until Grange (1937) that additional general information 

on the structure and petrology became available. 

Vario.us criteria have been used to define the boundaries of the TVZ. In current 

usage (eg. Cole (1979)) the TVZ consists of a northern segment of the andesite volcanoes 

of Whale and White Island, a central segment of overwhelmingly rhyolitic volcanism 

extending from Okataina to Taupo (Taupo-Rotorua Depression; the ensialic marginal basin) 

and a southern segment containing andesite volcanoes of the Tongariro Volcanic Centre. 

The andesite volcanoes at the northern and southern end of the TVZ are part of the 

andesite-dacite arc to the east of the Taupo-Rotorua Depression. 

Grindley (1961) broadly divided the structural development of the central part of 

the TVZ into two epochs. In the early Pleistocene, a rapidly subsiding basin or series of 

basins formed which extended from Western Bay, Lake Taupo to Rotorua (Taupo-Rotorua 

Basin) and filled with pumiceo us pyroclastic and alluvium of the Ohakuri Group, 

followed by block faulting and tilting. The eastern margin of this depression was most 

probably the Kaingaroa Fault. Following subsidence there was probably a long period 

when the sediments of the basin were block faulted and tilted. 

The second stage commenced with the eruption of thick ignimbrite units [cf. 

Whakamaru Group Ignimbrites of Wilson et. al. (1986)J and a major fault belt (Taupo 

Fault Belt) extending from Ruapehu through Tongariro, Lake Taupo to the Paeroa Range, 

Tarawera and Whakatane became the dominant feature in late Pleistocene. North of Lake 

Taupo the Taupo Fault Belt cuts an older fault (Hauraki Fault) that continues north to 

the Hauraki Graben. Following this a rapidly SUbsiding basin the Taupo-Reporoa Basin 

Was formed on the south eastern side of the Taupo Fault Belt. The structural 

development of the Taupo-Reporoa Basin was accompanied by the accumulation of a 

considerable thickness of Huka Group pyroclastics and sediments. 
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The rhyolites mostly were erupted from large multi-vent caldera volcanoes. Four 

rhyolitic volcanic centres (Rotorua, Okataina, Maroa and Taupo) were defined by Healy 

(1962) (Fig 2.2). Two other rhyolitic centres Mangakino and Kapenga were defined by 

Wilson etA (1984) mainly on geophysical grounds. The rhyolites although mainly coeval 

with Huka Falls Formation deposition are associated with later development of subsidiary 

block faulted structures such as the parallel horst and graben structures on the north side 

of Lake Taupo. South of Wairakei the rhyolites form domes and sill like intrusions in 

the Huka group and have depressed older rocks thus obliteraing part of the earlier 

structural relief. Similar rhyolite intrusions to the north of Wairakei are shown by large 

magnetic anomalies as well as some surface exposures (Grindley, 1965). 

The total amount of downfaulting in the TaurxrRotorua Depression is considerable. 

Modriniak and Studt (1959) consider basement throughout most of the area to be more 

than 2000m below sea-level. Recent gravity modelling in the central TVZ (Rogan, 1982) 

shows a broad basement depression reaching 500--1000 m below sea-level with further 

1-4km deep depressions marking the caldera structures and three other basins. 

Fault movements are still continuing (Nairn, 1971). Nairn and Hull (1986) recorded 

numero us recent faults with visible surface expressions in the Waiotapu-Rotorua region 

and movements on many of the faults has been dated by the relative displacement of the 

tephras. Gregg (1960) has also recorded NNE-trending faults on either side of Tongariro 

massif some of which show recent displacement of up to 15 m; downthrown towards the 

volcanoes. 

The TVZ is flanked by a plateau of flat lying sheets of ignimbrites erupted from 

vents within the zone which together with the TVZ was named the Central Volcanic 

Region by Thompson (1964). 
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2.3 THE TAUPO VOLCANIC CENTRE 

2.3.1 Structures 

As most of the other rhyolitic volcanic centres in the TVZ the boundaries of the 

Taupo Volcanic Centre are not well defined, Briggs (1976) notes a change in the slope of 

the Whakamaru Ignimbrites to the north-west of the Western Bay Lake Taupo, which 

probably reflects the outer limit of a majDr caldera collapse. According to Cole (1979) 

both the northern and the southern boundaries have almost certainly been displaced by 

the NNE-trending faults (Fig 2.3) to such an extent that no surface expressions are now 

visible. The north-eastern boundary has also been totally obscured by Holocene tephras. 

Geophysical data over most of the lake are scarce, depth to basement is· modelled 

from onshore gravity data. Two modest negative gravity anomalies at the north and 

sou th ends of the lake are considered to reflect the extremities of a large area of down 

faulted basement over most of the lake. Rogan (1982) notes that the down faulted 

basement over most of the lake area appears to lie greater than 2 km below sea-level and 

the total basement relief into the basin to be about 4 km below sea-level. 

MajD~ faults associated with the centre are mapped from onshore geology (Grindley, 

1960, 1961) and seismic surveys (Northey, 1982). Faulting in the northern half of the 

lake is complex and reflects localized areas of collapse and tilting associated with young 

volcanism. In contrast, the southern half of the lake is underlain by a nearly continuous 

sub-horizontal 330-230 ka welded ignimbrite reflector and appears to represent a simple 

graben structure. Several large displacements (locally > 400 m) associated with NE-SW 

trending normal faults north of the lake are truncated by a fault with an offset 

exceeding 500 m which curves around and has determined the shape of the Western Bay 

(Fig 2.3; Western Bay Fault and Northern Bays Fault). The Western Bay Fault is 

presumably an old caldera fault. It has been generally accepted that this caldera structure 

which includes most of the northern part of the the lake is related to the Whakamaru 

Ignimbrite eruption ca. 300 ka (Briggs, 1973; Northey, 1983 and others), but Wilson et al. 

(1984) consider that the Western Bay area including the northern part of the lake was a 



11 

remenant caldera structure infilled by the 20 ka Kawakawa eruption. Another caldera 

structure on the NE part of Lake Taupo is interpreted to be a result of the 1800 years 

B.P. Taupo eruption. Central Lake Taupo is bounded by Northern Bay Fault, 

Waihi-Ngangiho(?), Horomatangi Fault and possibly the northward extension of Rangipo 

Fault. All these faults together with Western Bay Fault, have vertical offsets in excess 

of 500 m. 

The southern portion of Lake Taupo is a graben between the Waihi and Rangipo 

Faults. These faults are related to those that control the structures in Northern Bay. 

Both belong to the Taupo Fault Belt and Northey (1983) suggested that they occur in an 

en echelon fashion with a left lateral displacement at Horomatangi Fault. Some seismic 

evidence of faulting in the southern part of the lake has been reported by Northey 

(1983). 

The NE-SW trend is seen on several scales. On a large scale it extends beyond the 

area and reflects the overall structure of the TVZ. On a smaller scale it is seen in both 

vent lineations and fault orientations. Alignment of vents can be seen in the linear array 

of young vents down the east side of Lake Taupo (Froggatt, 1982; Wilson et al., 1984). 

Based on this evidence it was suggested that there are two deep seated fractures which 

determine the vent positiOns (Fig 2.3). Other large NE-SW trending faults are postulated 

to occur east of the lake but are concealed beneath young pyroclastics. North and south of 

the lake, displacement on the NE-SW trending faults decreases markedly. The southern 

extension of the Waihi Fault can however be traced for 25 km into the Tongariro 

Volcanic Centre. 

Lake Taupo can be divided into an 'active' volcanic area in the region of the 

Horomatangi Reefs, and an older volcanic vent beneath the Western Bay. These two 

inferred vent areas have also been defined by magnetic anomalies which occur on both 

the Western Bay and Horomatangi Reefs area. Heatflow measurements beneath Lake Taupo 

show higher than average heatflow in the area of Horomatangi Reefs and Kawakawa Bay 

which is an evidence for the comparatively recent activity in those areas (Northey, 1983). 
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To the north of the Taupo Volcanic Centre is the Maroa Volcanic Centre. Lying 

between Maroa and the Taupo Volcanic Centre is the sediment filled Wairakei Basin, 

with a basement depression of 2 km below sea level. Wilson et al. (1986) postulated a 

major caldera which lies between Maroa and Taupo Volcanic Centre (Whakamaru Group 

Ignimbrite Caldera, the largest caldera yet postulated in the TVZ) The Whakamaru Group 

Ignimbrites which includes most of the 330-230 Ka ignimbrite in the Taupo-Maroa area 

this unit is described in more detail in the next chapter. 

2.3.2 Eruptive History 

The eruptive history of the pyroclastic and lava flows and domes from Taupo 

Volcanic Centre since activity started is summarized by Froggatt (1982), Wilson et aI. 

(1984) and others. Older lava flows and domes from the volcanic centre include a 

rhyolite dome at Karangahape which has a different phenocryst content from the 

ignimbrites erupted from the centre (Ewart, 1968), and is surmounted by a small basic 

andesite scoria cone K-Ar dated as 290 ka (Stipp, 1968). 

Pyroclastic eruptions from the general area of the Taupo Volcanic Centre may have 

started with the Whakamaru Group Ignimbrites. Since then the only significant 

ignimbrite unit from the the Taupo Volcanic Centre until the recent volcanism which 

commenced about 50 ka is a distinctive, poorly welded, brown ignimbrite which occurs on 

the north eastern end of lake Taupo and also occurs as lithic clasts in the 1800 years 

B.P. Taupo Ignimbrite which erupted from the Horomatangi Reefs area. From the presence 

of big boulders of this unit as lithics in the Taupo Ignimbrite, Wilson et al. (1984) 

suggested that the 1800 years vent was underlain by an in situ brown ignimbrite. At 

least two other ignimbrites are seen as vent derived lithics in the 20 ka and 1800a 

ignimbrites but their age and nature are unknown. 

Post-Whakamaru Group, pre-20 ka volcanic domes in the Taupo Volcanic Centre lie 

mostly to the north of the lake. There is no separation of the northern Taupo domes 

from the southern Maroa domes. The northern Taupo domes are given a K/ Ar date of ca. 

110 ka (Stipp, 1968). This is supported by other field evidence (such as their degrees of 
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dissection). Obsidian bearing airfall, flow and surge deposits are associated with some of 

the domes and represent subordinate explosive activity probably preceding or associated 

with dome growth (Wilson et a1., 1986). 

Several small basaltic deposits occur in the vicinity of Lake Taupo. Four scoria 

cones (K-Trig basalts), one of which is KI Ar dated at ca 140 ka (Stipp, 1968), crop out 

along a linear trend west of Taupo township (Grindley, 1961). Tauhara, just east of 

Taupo, consists of several dacite flows and forms a prominent landform in the area. The 

dacite contains an unusual phenocryst assemblage of plagioclase, quartz. orthopyroxene, 

hornblende, magnesian olivine, and Fe-Ti oxide and is interpreted as a hybrid magma 

CLewis, 1960). 

From 50-20 ka five explosive eruptions occurred (Vucetich and Howorth, 1976) 

possibly from vents within the lake, and were substantial enough to generate widespread 

airfall deposits. At 20ka, a major eruption from within the lake generated extremely 

widespread airfall deposits and a volumino.us ignimbrite. Following the 20 ka eruption 

there is no record of any rhyolitic explosive activity until the current cycle of activity 

commenced at ca 10 ka. Since then nine explosive eruptions have occurred. The latest at 

ca 1800 a was the largest since the 20 ka event, and is the topic of this study. 



Chapter I I I 

PRE-TAljPO PUMICE FORMATIQN STRATIGRAPHY 

INTRODUCTION 

The stratigraphy in the vicinity of the Taupo Volcanic Centre has been established 

from surface geological mapping (Grindley, 1960. 1961), volcanological studies on the 

various tephra formations erupted from the Taupo Volcanic Centre and interbedded tephra 

from other volcanic centres in the TVZ (Healy et al, 1964 Vucetich and Pullar, 1973; 

Vucetich and Howorth, 1976; Froggatt, 1981 and others), and from geologic logs of 

geothermal boreholes in Wairakei area (Grindley, 1965; Steiner, 1970). Except for 

Holocene pumice which mantles the whole Wairakei area, and minor Holocene mudstones, 

drilling in the area has shown that the sub-surface rocks are late Tertiary to Pleistocene 

in age and consist of predominantly silicic volcanics and sedimentary rocks derived from 

them. Basic rocks are very rare and are present as xenoliths and basaltic ash. Andesites 

are locally present in subordinate quantities (Grindley, 1965). 

The exact time when rhyolitic volcanism commenced in the central North Island is 

not known. Grindley (1965) considered that volcanism commenced at least as early as late 

Miocene and that it was well under way in the Pliocene reaching a climax in the early 

Pleistocene. Murphy and Seward (1981) have however presented fission-track dates and an 

assesment of available paleomagnetic dates which indicate that most of the ignimbrite 

formations of the Central Volcanic Region are Quaternary in age. The earlier rhyolitic 

volcanics may be buried deeply in the Taupo-Rotorua Depression and include most of the 

volcanics which are intercalated with the sediments of the Ohakuri Group. The oldest 

known ignimbrite formation from a source in the Taupo Volcanic Centre are members 

of the Whakamaru Group Ignimbrite. 

- 14 -
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The stratigraphy in the vicinity of the Taupo Volcanic Centre has to be considered in 

relation to the volcanic history of the area. To the north of Taupo is Maroa. and at least 

four distinct Maroa-derived ignimbrites mapped as Atiamuri, Haparangi, Huka and 

Orakonui ignimbrites and pumice breccias are known. Wilson ~A (1984) stated that 

these ignimbrites are not mapped beyond 40 km from the centre and are more localized 

than most of the other ignimbrites mapped in the TVZ. Field evidence suggests that they 

post-date the youngest of the 330-230 ka (Whakamaru Group) ignimbrites. 

Rhyolitic pyroclastics, domes and flows are dominant in the Taupo Volcanic 

Centre, basalts, andesites and dacites form a minor constituent of the volcanic rocks of in 

the vicinity of Lake Taupo. 

Fig 3.1 shows schematically the stratigraphic relationships of pyroclastic deposits, lava 

extrusions and intrusions and associated volcaniclastic sediments in the vicinity of the 

Taupo Volcanic Centrl1. Distribution and characteristics of each of the units are described 

in the text. The most important units from oldest to youngest are: 

1.0hakuri Group 

2.Whakamaru Group Ignimbrites 

3.Waiora Formation 

4.Waiora Valley Andesites 

S.Haparangi Rhyolite 

6.Huka Falls Formation 

7.Tauhara Dacite 

8.Lake Taupo Group 

a.Okaia Sub-group 

b.Kawakawa Tephra Formation 

c.Lake Taupo Sub-group 
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3.2 PRE-WHAKAMARU GROUP VOLCANICLASTIC SEDIMENTS (Ohakurl 

Group) 

3.2.1 Name: 

17 

The pre-Whakamaru group volcanics and volcaniclastic sediments were originally named 

the Ohakuri Group, for the exposures found in the Waiotapu area. A similar unit 

encountered by drilling at Wairakei underlying the Whakamaru Group ignimbrites 

(Wairakei Ignimbrites) was correlated to the Ohakuri Group (Grindley, 1965). 

3.2.2 Type Locality: 

Healy (1964) and othes designated Ohakuri dam as the type locality for Ohakuri Group. 

But recent studies have shown that the ignimbrite at Ohakuri Dam is younger than most 

of the ignimbrites of the Whakamaru Group, hence a type section at one of the Wairakei 

drillholes would be preferable. 

3.2.3 Age: 

From the relationship of these deposits to Paeroa and Marshall Ignimbrites, Briggs (1973) 

suggests that it is in part younger than 0.69 Ma and also younger than the Nukumaruan 

(Early Pleistocene) age assigned to it by most previous writers, The lower age limit is not 

exactly known. 

3.2.4 Source: 

The pre-Whakamaru Group volcaniclastic deposits accumulated in the rapidly subsiding 

volcano tectonic basins between Lake Taupo and Rotorua (Taupo--Rotorua Basin). Most of 

the pyroclastics have not yet been traced to their eruptive vents. 

3.2.5 Distribution and Stratigraphic Relationships: 

The Ohakuri Group crops out extensively in the Taupo--Rotorua Depression north of the 

Waikato River and has been encountered in deep drillholes in the Taupo--Reporoa Basin 

(Wairakei, Ohaaki, and Waiotapu). In the type area in the Taupo--Rotorua Depression. the 

Ohakuri Group is underlain by Marshall Ignimbrites and interbedded and overlain by 
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ignimbrites of the Paeroa Range Group, which in turn are overlain by the younger 

sediments and pyroclastics of the Huka Group (Briggs, 1973). At Wairakei this unit was 

drilled in only two wells and is overlain by the Wairakei ignimbrite (member of the 

Whakamaru Group Ignimbrites of Wilson ~La1. 1986) Although the holes continued for 

about 320 m below the Wairakei Ignimbrite it did not penetrate the full thickness of the 

deposits (Grindley, 1965). 

3.2.6 Description: 

The deposits comprise light brown to grey, weathered, often hydrothermally altered, 

massive to very thinly bedded pyroclastic flow deposits and interbedded fine-grained 

pumiceous sediments; which generally resemble the younger Waiora Formation. The 

pyroclastics are mainly lightly to non-welded, moderately compacted, pale grey to yellow 

brown, deeply weathered pumice breccia and tuff, and generally contain xenoliths of 

lithoidal rhyolite up to 25 rom in size. All the original glass at least in surface deposits 

is devitrified. The groundmass consists mainly of ash with a few pumice shards. Pumice 

fragments contain extremely flattened vesicles but are not appreciably distorted. Where 

hydrothermally altered (silicified), as at Ohakuri dam site, the pumice breccia form hard 

resistant outcrops. Deposition of the pyroclastics is closely related to accumulation of the 

lake sediments and some were probably deposited sub-aqueously (Briggs, 1973). 

Steiner (1977) describes the unit penetrated by drilling at Wairakei as consisting of 

breccia with interbedded sandy waterlain tuff both essentially made up of varying 

amounts of pumice and rhyolite fragments. Detrital andesine and relatively rare quartz 

together with fine grained cryptocrystalline matrix fill the interstices. Pseudomorphs of 

ferromagnesian minerals are usually present, microscopic calcite veinlets are also common 

and rounded greywacke fragments are also reported. The rarity of quartz distinguishes the 

Ohakuri Group from the overlying Wairakei Ignimbrite. 
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3.3 WHAKAMARU GROUP IGNIMBRITES 

3.3.1 Name: 

The name Whakamaru Group Ignimbrite was informally given for the voluminous 

330--230 ka welded ignimbrites cropping out in the central part of the TVZ by Wilson ~ 

<!L (1986). The Whakamaru Group Ignimbrites include those ignimbrites mapped as 

Manunui and Whakamaru Ignimbrites to the west of the Taupo Volcanic Centre and Te 

Whaiti and Rangitaiki Ig11llllbrites to the east (Grindley, 1960; Martin, 1961; 1965; Briggs, 

1973; 1976; and others). Members of the Whakamaru Group Ignimbrites have been 

encountered in geothermal drillholes in central TVZ. At Wairakei these ignimbrites were 

named Wairakei Ignimbrites (Grindley, 1965). 

3.3.2 Type Locality: 

Type localities for all the members of the Whakamaru Group Ignimbrites have been 

assigned by several previous workers ecL Grindley, 1960; 1961; 1965; Martin, 1961; Briggs, 

1973). 

3.3.3 Age: 

An age of 330--230 ka has been given for all members of the Whakamaru Group 

Ignimbrites based on fission track dates on several members of the group (Wilson et al. 

1986). 

3.3.4 Source: 

It was generally accepted that the Whakamaru Group Ignimbrites were erupted from the 

northern Lake Taupo area and specifically the Western Bay has been considered a source 

caldera for ignimbrites exposed to the west of the lake. A new source represented by a 

major caldera in the northern Taupo-Maroa area is postulated on the basis of the 

distribution, volume and thicknesses of the members on surface outcrops and drillholes 

(Wilson et al., 1986), 
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3.3.5 Distribution and Stratigraphic Relationships: 

The Whakamaru Group Ignimbrites are widespread in the central part of the TVZ. On 

the western side of the presumed source two distinct units, the Manunui and Whakamaru 

Ignimbrites of Martin (1961) were mapped west of the Hauhungaroa Range. The former is 

less crystal rich, having smaller and less numerous quartz phenocrysts, a lower content of 

hornblende and biotite and different lithologies of included lithic clasts. Some workers 

have regarded these two units as proximal (Whakamaru) and distal (Manunui) e4ivalents 

(Blank, 1965; Briggs, 1973), but Wilson et a1. (1986) have suggested that the two units 

are separate. The Manunui Ignimbrite crops out mainly west of the Hauhangaroa Range. 

Between Hauhangaroa Range and Lake Taupo, thick exposures of the Whakamaru 

Ignimbrite, commonly containing Whakamaru-type lithics, forms all the surface outcrops. 

In the Waikato River valley the outcrop has been intensively investigated and has 

been divided on various physical and mineralogical criteria into several sheets.. Briggs 

(1976) reviews these divisions and broadly groups the ignimbrites into three sub-units. 

The Whakamaru Group Ignimbrites occur at the surface or at shallow depth over an area 

of several hundered kilometers east and north of the Waikato valley. 

In the central TVZ, rocks correlated with the Whakamaru Group Ignimbrites have 

been recorded at several geothermal fields. The correlation with surface outcrops is on the 

basis of a very high phenocryst content, especially the presence of large, often corroded 

quartz crystals. From drillhole data Wilson et a!. (1986) inferred that the ignimbrites are 

displaced downwards into the central axis of the TVZ and are also appreciably 

overthickened. At Wairakei only two drillholes penetrated the Whakamaru Group 

Ignimbrites (Wairakei Ignimbrites of Grindley, 1965) and then went in to a sequence of 

pumiceous pyroclastics (Ohakuri Group) and andesite lava. At Rotokawa two holes have 

passed through this group into a thick andesite lava which appears to be a 

pre-Whakamaru cone, at least 800 m high, resting on the basement greywacke. 

In the central axis of the TVZ, Wilson et a1. (1986) suggested that the Paeroa 

Ignimbrites (Martin, 1961; Healy et a1., 1964), which occur to the north east of Maroa, 
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are probable correlatives, or lateral equivalents of one or more members of the 

Whakamaru Group Ignimbrites. 

On the eastern side of the Taupo Volcanic Centre are the Te Whaiti and Rangitaiki 

Ignimbrites. Grindley (1960) mapped them as two separate units, but other workers (eg. 

Martin, 1961) have regarded the Rangitaiki as proximal and Te Whaiti as distal facies of 

the Whakamaru Group Ignimbrites. Wilson et al. (1986) have however presented several 

lines of evidence which suggest that they are entirely separate ignimbrite units. 

3.3.6 J)escription: 

The thickness of the Whakamaru Group Ignimbrites varies from the order of 50-150 m 

in surface exposures, and some drillholes (eg. Waiotapu and Broadlands) to greater than 

300 m thick. From several sections, Wilson et al. (1986) suggest that at least four 

eruptions occurred during the period 330-230 Ka, which have contributed to the formation 

of the Whakamaru Group Ignimbrites. 

Detailed petrographic and modal analysis data (Martin, 1961; Briggs,1973) show that 

these ignimbrites share a generally high crystal content Cin order of decreasing abundance 

are plagioclase, quartz, hypersthene, sanidine, Fe-Ti oxides and· rare biotite and hornblende). 

This assemblage, with abundant large quartz crystals, is very distinctive. As a result 

there has been a tendency to treat all these ignimbrites as the product of a single 

eruptive episode believed to have been centred in the Lake Taupo area. Considerable 

support for this view has been described by Froggatt et al. (1986) who present detailed 

glass major and rare earth element data which demonstrate that there is only one 

correlative distal airfall ash with the high crystal content, mineral assemblage and 

distinctive large quartz crysals typical of the Whakamaru Group Ignimbrites. 
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3.4 WAIORA FORMATION 

3.4.1 Name: 

The name Waiora Formation was given to pyroclastics and interbedded sediments between 

the Huka Formation and the top of the Wairakei Ignimbrites by Grindley (1965). 

3.4.2 ~ L<Xa1ity: 

The type locality for Waiora Formation is drillhole No 213 at Wairakei where Waiora 

Formation occurs between 255.4-154.9 m a.s.l. and between 81.4 m a.s.l.-445 m b.s.l. 

Waiora Formation excludes rhyolite which occur between 154.9-81.4 m a.s.L at the type 

section (Grindley, 1965). 

3:4.3 Age: 

Waiora Formation is considered to be Castlecliffian by Grindley (1960; 1965) 

3.4.4 Source: 

The sediments of the Waiora Formation accumulated in fresh water lakes occupying the 

subsiding volcano-tectonic Taupo-Rotorua Basin. They are intimately associated and partly 

derived from the interbedded pyroclastic units. 

3.4.5 Distribution and Stratigraphic Relationships: 

Waiora Formation forms a thick sequence of pyroclastics and interbedded sediments that 

partially fill the Taupo-Reporoa Basin from Lake Taupo to the northern Paeroa scarp area. 

Outcrops of the Waiora Formation are scarce, apart from Rotokawa thermal area and a 

possible outcrop at the foot of the Kaiapo Fault scarp. Waiora Formation does not crop 

out in the southern part of the basin (Grindley, 1960; 1965). It is well represented in 

drillholes in the Wairakei geothermal field where it forms the main aquifer. At Wairakei 

it rests conformably on the Wairakei Ignimbrite, is capped by Huka Formation and is 

intruded by the Haparangi Rhyolite from the Taupo and Maroa volcanic centres. In the 

western part of the Wairakei geothermal field it is intruded by Waiora Valley andesites 

(Grindley, 1965). 
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Huka Falls Formation 

member thickne 55 at 
type locality 

5 

4 

3 

2 

I 

(metres) ------------------------~------------ may be diachronous&-----

39.6 IGNIMBRITE, pulverulite; 
medium grained with small"- "­
pumice; quartz small and 
minor; thickness to 

inter­
bedded 

thin 
SILT­

STONES 

south 

30.5 Pumiceous SANDSTONE 

'- ... thin or 
absent in 

Taupo-Reporoa 
Basin 

21.3 IGNIMBRITE, as above 

12.2 PUMICE BRECCIA 
/' -----------------------------------------------------------------------------

80.0 

158.5 

Haparangi Rhyolite 

Massive PUMICE BRECCIA with 
rhyolite fragments (dominant), 
RHYOLITE BRECCIAS, tuffaceous 
SANDSTONES; similar to 
Member 3, but lacks quartz 

z 
~ minor SILTSTONE > band, 

6.1 Dark SILTSTONE (marker band) 

115.8 

Alternation of massive PUMICE 
BRECCIA with rhyolite fragments, 
RHYOLITE BRECCIAS (less common 
than -in Member 4), tuffaceous 
SANDSTONE and minor SILTSTONE 
bands (~6 m); quartz absent in 
upper 54.9 m 

interbedded 
IGNIMBRITES, 

. probably of 
local origin 

------------------------------------ grades into 

_________ ~:= ______ ~;~;:;~:~~~~~::~_::::: ___________ ~---waio~d~:~!:y 
Massive pumiceous SANDSTONES; 
GRITS, SILTY SANDSTONES, and \. 
well-bedded grey SILTSTONES ' ?may grade into 

140.2 fragments in lower 54.9 m; / CLASTICS to south 
quartz absent in upper 45.7 mi I and west 

and SANDSTONES; rhyolite Irhyolite PERO- ~ 

locally becomes FAULT BRECCIA I ________________________________________________ L ___________________________ _ 

30.5 

70.1 

? 

IGNIMBRITE, pumiceous, ............... 
pulverulitic 

?grades to 
IGNIMBRITE, medium-dark grey i 
strongly lenticulitic; 
andesite and basalt xenoliths I 
common / 

, ?grades east to 
PUMICE BRECCIAS 

1274 m thick 
I 

Stratified pumiceous SANDSTONES 
and SILTSTONES 

-------------------------------------------------------------- conformable ---------

Wairakei Ignimbrites 

,Ie 3.1 lithOlogy and composItlon of the Waiora Formation in the Wairakei area., based on 
Grindley (1965), Healy (1965), Ewart (1%8); after Briggs (1973). 

" 
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Waiora Formation ranges from about 400 m over the Wairakei block to more than 760 

m in the Tau.rxr-Reporoa Basin to the east and small basins to the west. The pyroclastics 

of the Waiora Formation are apparently the product of numerous small pyroclastic 

eruptions. Grindley (1965) has suggested that much of this pyroclastic material possibly 

represent early rhyolitic eruptions from Taupo Volcanic Centre. The repeated occurrence 

of Atiamuri Ignimbrites within the upper Waiora Formation suggests that pyroclastics 

from the Maroa Volcanic Centre may be present. 

3.4.6 DescriJ?LiQTl; 

Waiora Formation comprises buff coloured massive, non-sorted, non-welded pumice breccias 

commonly 3-5 m thick; tuff and ignimbrites alternating with lacustrine pumiceous 

sandstones and minor thin siltstones. Briggs (1973) further describes the Waiora Formation 

as more dominated by pyroclastics when compared to the Huka Formation, and generally 

similar to the older Ohakuri Group in appearance. The general sequence in the type area 

where Grindley (1965) has defined five members is shown on Table 3.1. 

3.5 W AlORA V ALLEY ANDESITE 

3.5.1 Name: 

The name Waiora Valley andesite was given by Grindley (1965) to andesite flows drilled 

in several of the deep steam wells in Wairakei geothermal field. 

3.5.2 Type Locality: 

The type locality for Waiora valley andesite is drillhole 48 at Wairakei where the 

andesite flows are thickest. 

3.5.3 Age: 

The Waiora Valley andesite is of the same age as member 2 of the Waiora Formation 

(Castlecliffian) according to Grindley (1965) 



3.5.4 Source: 

Grindley (1965) suggested that the andesite was probably extruded as separate plugs or 

pipes at intersection of three NW-trending faults with NE-trending faults in the Wairakei 

area. 

Description: 

In the Wairakei area the andesite is invariably altered and contains numerous large partly 

or completely altered andesine phenocrysts with comparatively small pseudomorphs of 

ferromagnesian minerals in a cryptocrystalline or hyalopilitk altered groundmass (Steiner, 

1977). 

Another andesite flow in the vicinity of Taupo Volcanic Centre occurrs at Rolles 

Peak (Grindley, 1961) north east of Mount Tauhara. It lies on or close to the Kaingaroa 

Fault and may have been erupted along it. Petrographically the rock is holocrystalline, 

containing sparse phenocrysts of zoned andesine and subordinate hypersthene set in a base 

composed of augite, hypersthene and labradorite with accessory magnetite and tridymite. 

From the degree of erosion, Grindley (1965) suggested an early to middle Hawera age for 

the Rolles Peak Andesite. 

3.6 HUKA FALLS FORMATION 

3.6.1 Name: 

The unit occurring between the top of the Waiora Formation and the base of the Oruanui 

Formation (Kawakawa Formation or Wairakei Breccia) at Wairakei was named Huka Falls 

Formation. 

3.6.2 Type Locality: 

The type section of Huka Falls Formation established by Grindley (1965), is Wairakei 

drillhole 213. 
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3.6.3 Age: 

The age of the Huka Falls Formation is from late Castlecliffian to early Hawera (ie. 

from about 300-20 ka) (Grindley, 1965). 

3.6A Source: 

Huka falls Formation consists of fresh water sediments accumulated in lake(s) occupying 

the volcano-tectonic Taupo-Reporoa Basin (Fig 2.3) and smaller subsidence basins to the 

north; the location of source vents for the minor interbedded pyroclastics is uncertain. 

3.6.5 Distribution and Stratigraphic Relationships: 

Huka Falls Formation is a series of widespread, well-bedded, lake sediments and 

interbedded pyroclastics that occur between Lake Taupo and Bay of Plenty. The sediments 

accumulated in fresh water lake(s) formed in the subsiding Taupo-Reporoa basin and some 

areas to the north. Both commencement and termination of the deposits were probably 

diachronous; combined with the cyclic and local nature of the deposits and long period of 

accumulation, this makes correlation between sections and interbedded units generally 

unreliable. Grindley (1965) extended the deposition of the Huka Falls Formation from 

late Castlecliffian to early Haweran, based on dating and correlation of pollen sequences. 

If the correlation between Oruanui Formation and Wairakei Breccia is accepted, the 

uppermost Huka Falls Formation would be considerably younger than Grindley (1965) 

supposed (younger than 20 ka). According to Briggs (1973) deposition of Huka Falls 

Formation started earlier in the Bay of Plenty region than the Taupo-Reporoa Basin and 

elsewhere stratigraphic relationships suggest that deposition ceased somewhat earlier, 

probably due in part to local filling of depositional basins by mapr volcanic eruptions 

such as those producing the Kaingaroa Ignimbrite. 

At the type locality at Wairakei, Huka Falls Formation is overlain by "Wairakei 

Breccia". Grindley (1965) has noted that the contact is conformable with no apparent 

break in depositon between the sandstone of the upper member of the Huka Fails 

Fomation and the basal tuff of the "Wairakei Breccia". 
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4 
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1 

thickness at 
type section 

(metres) ---------------------------------

12.2 

18.3 

24.4 

9.1 

Tuffaceous SANDSTONE with 
pumice and rhyolite lapilli 
and abundant quartz 

Grey-green tuffaceous 
SANDSTONE, thin MUDSTONE 
bands 

Light grey MUDSTONE, thin 
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diatomaceous; locally 
(Taupo-Reporea Basin) pure 
DIATOMITE; cold climate 
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Coarse tuffaceous SANDSTONE; 
interbedded vitric TUFF with 
pumice lapilli and scattered 
andesite-basalt fragments; 
includes (Taupo-Reporoa Basin) 
PUMICE BRECCIAS (Te Mihi Basin) 
thin MUDSTONE bands 
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well bedded with SILTSTONE and 
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indicates warmer climate than 
above; locally (Te Mihi Basin) 
apparently becomes CONGLOMERATE 
(hydrothermal mudflow?) with 
fine-grained pumiceous ground­
mass and interbedded pumiceous 
SANDSTONES 

3 Dark grey MUDSTONE 

Oruanui Formation 
(-Wairakei Breccia") 

conformable ------------

interbedded AIR­
FALL-BEDS, probably 

include Hangaoni 
Lapilli and Rotoehu 

Ash 

------------------------------------------------------ may be diachronous ----------

Waiora Formation 

:>le 3.2 Uthology of Huka Falls Formation in the Wairakei area, based on Healy (1965) 
and Grindley (1965); after Briggs, 1973. 
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In the Taupo~ Rotorua Basin it generally rests on either Waiora Formation or Rangitaiki 

Ignimbrites and is grouped with the Whakamaru Group Ignimbrites. Neither of these 

formations are dated, but Rangitaiki Ignimbrites are similar in age to Whakamaru 

Ignimbrites (ie. ca 330-230 Ka). From the above relationships, Briggs( 1973) sugested that 

deposition of the Huka Falls Formation began in the uppermost Castlecliffian and 

continued through most of the Haweran up to ca 20 Ka. In the Bay of Plenty region and 

locally in the Taupo-Reporoa Basin, deposition ceased at an earlier age. 

J,6.6 Description; 

Huka Falls Formation consists dominantly of thinly bedded, buff-grey to cream, locally 

diatomaceous and carbonaceous lake sediments with interbedded pyroclastics. The general 

fine grain size of the sediments and their dominance over the pyroclastics serve' to 

distinguish it from the Waiora Formation. The Huka Falls Formation ranges from less 

than 61m thick on the Wairakei Block to more than 305m in the Taupo-Reporoa Basin to 

the east. Four members have been distingished at the type area at Wairakei (Grindley, 

1965 Table 3.2). These members extend from the Wairakei Block into the Taupo-Reporoa 

Basin to the east. Correlation of these four members .outside the Wairakei area has not 

been possible (Briggs, 1973). 

3.7 TAUHARA DACITE 

Tauhara is a prominent dacite volcano located NE of the Taupo Volcanic Centre. 

Lewis (1968) describes Tauhara as a multiple volcano, consisting of five youthfully 

disected cumulo-domes with some talus banks surrounding the lower slopes of the two 

domes. He also describes Maunganamu (a rhyolite dome) located 5 krn SW of Tauhara. 

Worthington (1985) recognized previously overlooked domes, and considers Tauhara to 

consist of at least seven (and probably eight) domes, several lava flows and two 

pyroclastic flows. He divided the domes and flows into five groups from structural, 

petrographic and chemical evidence. 
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3.7.1 Age: 

A minimum age of 10 ka (Late Pleistocene) was given to Tauhara Volcano based on 

relation with Waitahanui Breccia which bur~ies the disected base of the volcano 

(Grindley, 1961). Stipp (1968) obtained a KI Ar age of 31±3 ka for the Hipaua Dome of 

the Tauhara dome complex. Worthington (1985), taking into consideration the inherent 

sources of inaccuracy in the KI Ar dating method, suggested tephro.<;tratigraphy is the best 

method in determining the age of Tauhara. Using the complete record of tephrochronology 

from the Taupo Volcanic Centre in the last 50,000 years, Worthington (1985) concluded 

that five of the seven Tauhara domes were extruded between 15 and 20 ka (probably 

19-20 ka). The remaining Tauhara domes (western and central domes) are older but it is 

not known by how much. 

3.7.2 Description; 

The Tauhara dacites contain phenocrysts of plagioclase, orthopyroxene, clinopyroxene, 

amphibole (hornblende), and quartz with accessory olivine, biotite, magnetite, and apatite. 

These are set in a groundmass composed of plagioclase microlites, small crystals of 

magnetite, cristobalite, hornblende, orthopyroxene and rarely clinopyroxene. The texture 

ranges from hyalopilitic through pilotaxitic to felted. Using the phenocryst proportion 

scheme proposed by Clark (1960) for the andesites of the Tongariro Volcanic Centre, 

Worthington (1985) classifies dacites of the Tauhara Dome Complex into seven major 

types based on the proportion of plagioclase, pyroxene, and hornblende phenocrysts. 

3.8 HAPARANGI RHYOLITE 

3.8.1 Name: 

The name Haparangi Rhyolite was first given by Grange (1937) to steep-sided, craterless 

rhyolite volcanic domes, common throughout the central volcanic region. Grindley (1960) 

classified the Haparangi Rhyolite into the younger and older dome building phases and 

gave the name Haparangi Rhyolite to the volcanic domes and Haparangi Rhyolite Pumice 
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to the associated pyroclastics. At Wairakei, Grindley (1965) applied the name to the 

subsurface rhyolites encoutered by drilling to the south-west and north of the production 

area. 

J,8.2 Age; 

The Haparangi Rhyolites cover a wide range of time in the Central Volcanic Region. 

Grindley (1960) mapped them as middle Pleistocene to late Pleistocene in age. The 

rhyolites mostly post date the sediments and pyroclastics of the Huka Group. Several 

large, faulted, compound and simple rhyolite domes just north of the lake appear to have 

an earlier age and one lava has been dated at 120 ka (Stipp, 1968). 

3.8.3 DeSCription: 

The domes generally consist of a core of lithoidal rhyolite, commonly with steep dipping 

flow banding, chilled zones of banded obsidian and a perlitic rhyolite margin. 

Petrographically the rhyolites contain as essential minerals; oligoclase, quartz. and 

hornblende and as accessory minerals; hypersthene, augite, biotite, and magnetite. 

Texturally they may be pumiceous, perlitic, spherulitic, lithoidal or glassy obsidian. 

Following the classification of rhyolitic lavas of TVZ by Ewart (1968), Daorerk 

(1972) classified members of the Haparangi Rhyolite domes in the Taupo Volcanic Centre 

into three types on the basis of their ferromagnesian phenocryst assemblages. Steiner 

(1977) classified the rhyolites encountered by drilling at Wairakei into quartz-free and 

quartz-bearing varieties. 

3.9 LAKE TAUPO GROUj> 

The post-50 ka period was dominated by tephra erupted from Taupo Volcanic Centre. 

Numerous exposures in road cuttings etc. have enabled a particularly complete tephra 

stratigraphy record for this period to be compiled, as well as isopach maps from which 

tephra volumes have been estimated. Radiocarbon dating has enabled a detailed chronology 

to be constructed, particularly for the post-20 ka record. 
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Table 3.3 Stratigraphy of the Taupo Tephras. together with relevant radiocarbon dates 

and ages estimated for the older tephras (From Froggatt. 1982). 
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Howorth et al. (1981) grouped all the tephra erupted from the Taupo Volcanic Centre in 

this period into the Lake Taupo Group which consists of : 

1.0kaia Sub-group 

2.Kawakawa Tephra Formation 

3.Taupo Sub-group 

Table 3.3 shows the stratigraphy of all the post 50 ka tephra erupted from vents 

within the Taupo Volcanic Centre together with relevant radiocarbon dates. 

3.9.1 Okaia Subgroup 

From 50-20 ka five widespread rhyolitic airfall deposits were erupted from vents 

within the Taupo Volcanic Centre (Vucetich and Howorth, 1976), two of which were 

phreatomagmatic in nature. Froggatt (1982) regards the Okaia subgroup tephras as 

mineralogically distinct from the overlying Taupo Subgroup tephras on the basis of the 

mafic mineralogy (Fig 3.2). Other interbedded tephra from Okataina Volcanic Centre of 

this age in the Taupo district are described by Vucetich and Howorth (1976) and include 

Tahuna Tephra Formation and Rotoehu Ash member of the Rotoiti Breccia Formation. 

3.9.2 Kawakawa Tephra Formation 

3.9.2.1 Name: 

The Kawakawa Tephra Formation was first defined by Vucetich and Howorth (1976). 

Their type section for this formation is on the Whangamata Road (N93/373458) and 

comprises three members; the Aokautere Ash, the Scinde Ash and the Oruanui Breccia. 

Self (1983) informally named this formation as the Wairakei Formation and introduced 

new members to the formation and gave volcanological interpretations to the eruption. 

3.9.2.2 Source: 

Froggatt (1982) considered all tephra in the Kawakawa Formation to be from a source 

from the Taupo Volcanic Centre. 
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Ternary plot showing the mafic mineralogy of the Lake Taupo Group 

tephras, data for Kawakawa Tephra from from Howorth et aI. (1981) 

and for Okai Subgroup from Roxburg (1976); (From Froggatt. 1982) 
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Self (1983) has also shown from several isopach and isopleth maps of members of the 

Kawakawa Tephra Formation that the source is in the same general area. Wilson et at 

(1984) postulated that the northern part of Lake Taupo including the Western Bay area is 

a result of caldera subsidence following this eruption. 

3.9.2.3 Age: 

The age of the Kawakawa Tephra Formation, as determined by several C-14 dates, is 20 

ka (Vucetich and Howorth, 1976). 

3.9.2.4 Distribution and Stratigraphic Relationships: 

The Kawakawa Tephra Formation because of its unusually large volume (approximately 

100 km 3 is widespread in the Central Volcanic Region. The eruptive episode which 

produced it was of very short duration and is recorded over a wide area. The deposits are 

widely used as marker horizons even in some marine sediments. The unwelded 

pyroclastic flow member (Oruanui Breccia member) has a similar distribution to that of 

the Taupo Ignimbrite in that it covers most of the central North Island, whereas the 

airfall members of the Kawakawa Tephra Formation are widespread to the south and 

southeast of the vent. 

The Kawakawa Tephra Formation includes members of the Oruanui Formation of 

Vucetich and Pullar (1969) and was considered to be the direct equivalent of the 

"Wairakei Breccia" or "Wairakei Lapilli Tuff" of Steiner (1953) which overlies the Huka 

Falls Formation in many boreholes at Wairakei geothermal field. _-

To the south of Wairakei, members of the Kawakawa Tephra Formation correlate 

with or are equivalent to most or all of the pumice breccia mapped as Waitahanui 

Breccia (Grindley, 1960; 1961). Briggs (1973) has also suggested that the Oruanui Breccia 

may correlate with the Maroa derived Haparangi Rhyolite Pumice of Grindley (1960). 

In the Taupo district the lower contact of the Oruanui Breccia Member is seldom 

exposed, and the top of the formation is almost invariably eroded and overlain by the 

aeolian Mokai Sands and the fluvial Hinuera Formation. 
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of Vucetich and Howorth (1976) are given in parantheses. (From Self, 
1983). 
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The eruption of the Kawakawa Tephra Formation was followed by a period of somewhat 

less than 10,000 years of rapid and extensive erosion and deposition, before the next 

rhyolitic tephra from Taupo was erupted. 

3.9.2.5 Description: 

Vucetich and Howorth (1976) have given a detailed description of the three members of 

the Kawakawa Tephra Formation at their type section on the Whangamata Road. 

Following this work a more comprehensive description supported by grain size analysis on 

several members of the formation was given by Self (1983). In the latter study six 

members were defined in the informally named Wairakei Formation, consisting of 

interbedded fine-grained, pyroclastic fall and flow deposits in the proximal regions. In 

many silicic eruptions ignimbrites are preceded by a plinian deposit (plinian activity). Both 

phreatoplinian units in the Kawakawa Tephra Formation (Wairakei) eruption were 

followed by an ignimbrite-forming phase. This eruption is interpreted to have been 

phreatomagmatic throughout. Each phase of the eruption sequence generated its own 

characteristic deposit. Changes in the eruption style were probably due to fluctuations in 

the mixing ratio of lake water with vesiculating magma, reflecting a complex interplay 

between water access, mixing processes and morphology of the vent area. 

The sequence of events during this eruption is described by Self (1983). The air fall 

members are all of phreatoplinian type. The accretionary lapilli-rich layers represent some 

of the most completely fragmented, finest, ash beds yet documented. Violent rain 

flushing caused particle aggregation and formation of accretionary lapilli. The pyroclastic 

flows generated by the collapse of phreatoplinian eruption columns were steam laden, 

cool, thick and highly mobile. Froggatt (1982) has shown that the Kawakawa Tephra 

Formation is rich in hornblende when compared to other tephra formations erupted from 

vents in the Taupo Volcanic Centre. 
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3.9.3 Taupo Sub-group 

The post 10 ka tephra erupted from vents within the Taupo Volcanic centre are 

collectively classified as the Taupo Sub-group by Howorth et al. (1981). The tephra 

formations are shown on Table3.3 with their radiocarbon ages. Source vents for each of 

the tephra formations have been located from isopach maps (Vucetich and PuUar, 1973). 

Most of the members of the Taupo Sub-group consist of ash, pumice lapilli and rare 

lithics and are of air-fall origin. Two ignimbrite units, namely Waimihia Ignimbrite and 

Taupo Ignimbrite, were erupted during this period (Froggatt, 1982). The latter is among 

the major ignimbrite units erupted from a vent in Lake Taupo and covers a considerable 

area around the volcanic centre. Taupo Ignimbrite is described in detail in the following 

section. Five rhyolitic tephras from Okataina Volcanic Centre, one from Maroa and two 

prominent andesite tephras from Tongariro Volcanic Centre are interbedded with the 

Taupo Sub-group tephras in the Taupo district (Vucetich and Pullar, 1973). Froggatt 

(1982) has shown that the Taupo Sub-group tephras are distinct from other tephra 

formations in the Lake Taupo Group in that they contain orthopyroxene as a dominant 

mafic mineral. 



Chapter IV 

THE TAUPO PUMICli..EORMATIO/y 

4.1 INTRODUCTION 

The Taupo Pumice Formation is a widely dispersed pyroclastic deposit which reached 

most parts of the central North Island east and north-east of Lake Taupo. It is the 

product of the most recent series of eruptions from Lake Taupo. The C-14 age is about 

1800y.B.P. (Healy, 1964) but in a recent work by Wilson et a1. (1980) historical evidence 

has been presented to show that the calendar date of the eruption may be 186 A.D: 

Arguments against the authenticity of the historical evidence have been presented by 

Froggatt (1981). 

From isopach maps of the various members of the Taupo Pumice Formation, Healy 

(1964) deduced that the source vent was to the east of the present Lake Taupo. More 

recently, Froggatt _ (1979. 1981) and Walker et a1. (1981b) have established the source to 

be within Lake Taupo, most probably at Horomatangi Reefs. Other evidence for the 

source of the Taupo Pumice Formation includes orientation of charred logs which are the 

prominent features of the Taupo Ignimbrite (Froggatt et a1., 1981), grainsize distribution of 

pumice and lithic material, absence of ballistic lithics (which in plinian type eruptions 

usually occur in near vent areas) and bathymetry of Lake Taupo (Irwin, 1976). 

The stratigraphy of the Taupo Pumice Formation has been the subject of several 

refinements from the early days of geological work in the area. Grange (1937) first 

defined the formation as the "Taupo Showers" and considered it to be airfall and much 

of the pumice to be water lain. Healy (1964) gave the Taupo eruption products 

formation status and introduced members to the Formation. Froggatt (1981) revised all 

previous works on the stratigraphy of the Taupo Pumice Formation, redefined some of the 

members and introduced new members to the formation. 
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Table 4.1 Summary of the stratigraphy of the TauPo Pumice Formation. 
Volume estimates are from Wilson (1985). 
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Floated Giant Pumice 

Volume 
situ/km 

Volume 
maqma/km 

Volume 
Lith ic s/ltm 

------------------~----------------------------~-----------------------------------------------

Opp4Ir Taupo 
Puaice and 
Rhyolite 
Block Bed 
"""ra 1 Iii 2 

Taupo 

Upper 
unit 

Middle 
unit 

Ignilllbrite 
Lithic laq 

Layer 

Lower 
unit 

Secondary Deposits 

----------------------------r--------------------------------------.---.... ---Taupo Layer 3 

Layer 2 31 10 2.1 
Iqnimbrite 

Layer 1 

-----------------------------.-----------------------------------------------
Early Ignimbrite 
Flow units 

1.5 0.5 0.05 

Taupo Plinian, Pumice ~-;:~-~;~~~~-1-;;:;:-~;~~~~----· -----------------------------------------------
23 5.1 0.13 

(IIIUIber 3) 

Rotongaio Ash 
(IIIUIber 4) 

~--------------, 
Putty-co1oured 
Ash (melllber 5) 

~--------------. 
Hatepe Lapilli 
(members 6-8) 

------------------;------------------------------t-----------------------------------------------Rotonqaio Ash Rotongaio Phreatoplinian 
Ash 

1.3 0.7 0.09 

-----------------~-----------------------------+----------------------------------------------

Hatepe Tephra 
r~:~:~-~~~~::~:::~:~~-~~~----t---:::---------------::~--------------~:::-----

Hatepe Plinian Pumice 

Initial Phreatomaqmatic 
A~ 

6 1.4 0.18 
-----------------------------------------------

0.015 0.005 negl. 
- _____________ -Jl _________________ JL ____________________________ _ 

PALEOSOL DEVELOPED ON OLDER DEPOSITS L-____________________________________ ---_________________________ _ 

Layer 3 deposits of 
Ignimbrite Phases 

Sub total 

~-----------------------------Primary material now 
under Lake Taupo 

65 
upto 
ca.20 

20-60 

18.7 
upto 
ca.7 

8-20 

3.27 
negl. 

? 

-------------_._-------------+-------------------------------- - ---------
Total volumes L _____________________________ _ >105 >35 >3.27 

-----------------------------------------------
W 
\0 
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Wilson and Walker (1985) gave new volcanological names and interpretations to some of 

the members. Table 4.1 summarizes the stratigraphy and volume estimates on the Taupo 

Pumice Formation. Volume estimates are from Wilson and Walker (1985). 

Products of the Taupo eruption are found over a wide area in the central North 

Island and have been used as an important stratigraphic marker units for the Holocene 

tephra in the region. 

4.2 ERUPTION HISTORY 

The stratigraphic sequence of the erupted tephra shows that the Taupo eruption began 

with minor phreatomagmatic activity which generated the initial ash (Wilson and Walker, 

1985). From the pumiceous nature of this unit it is thought that vesiculated magma 

reached the surface to mix with the pre-eruption Lake Taupo resUlting in 

phreatomagmatic activity. 

The initial ash was followed by eruption of the much coarser and more widely 

dispersed Hatepe Plinian Pumice which suggests that the mass eruption rate increased 

rapidly to clear the vent area of water and begin plinian activity. The eruption of the 

Hatepe Plinian Pumice was followed by the Hatepe Phreatoplinian Ash which implies a 

sudden increase in the lake water flux into the vent. However the pumiceous nature of 

the Hatepe Ash and the minor intercalated layers of plinian style material suggests that 

the vesiculation and fragmentation levels were at some depth and that the 

phreatomagmatic activity was caused by a normal plinian eruption column interacting 

with large quantities of surface water. After the eruption of the Hatepe Phreatoplinian 

Ash there was a time break. during which the phreatoplinian ash was eroded by water 

derived from the vent area (an explosive ejection of water due to the interaction of 

magma with the lake water). 

The discharge of material then resumed. generating the phreatoplinian Rotongaio Ash. 

most of which is poorly or non vesiculated obsidian. The wide-spread nature of the 

Hatepe and Rotongaio phreatoplinian deposits suggests that the eruptions were fairly 
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powerful events, sustained by eruption rates comparable to that during the earlier plinian 

event. However, even if there were similar eruption rates, the eruption columun heights 

during the phreatoplinian activity would have been lower than during the plinian event 

owing to the loss of thermal energy in the magma-water interaction (Wilson et al. 1978). 

A t the close of the Rotongaio phreatoplinian phase, the nature of the eruption 

changed abruptly and the "wet" vent reverted to a "dry" vent again. The erupted 

material changed from obsidian or dense pumice to very low density pumice, implying 

that the vent was cleared of water and that both the vesiculation and the fragmentation 

surfaces moved downwards very rapidly. The Taupo plinian event was exceptionally 

energetic with an eruption column probably as high as 50 kID and was classified into a 

new class of ultra-plinian eruption by Walker (1980). 

The sequence to the end of the Rotongaio phreatoplinian phase could be interpreted as 

representing a single magma batch, initially volatile rich Gnitial ash and Hatepe Plinian) 

and later volatile poor (Rotongaio Ash). The abrupt renewal of plinian activity suggests 

the arrival of a new, more volatile rich magma batch, which had a similar phenocryst 

content (Froggatt, 1982). 

The early ignimbrite flow units are undoubttIly intraplinian (formed during the 

eruption of Taupo Plinian Pumice) as described by Froggatt (1981) and the question as to 

whether they were generated synchronously with the plinian deposit or in discrete 

column collapse episodes is discussed by Wilson and Walker (1985). The Taupo Ignimbrite 

was then formed by a column collapse of the erupted material, because of the discharge 

rate wa s much greater than that capable of forming a stable plinian column. The high 

lithic content of pre-Taupo ignimbrite air-fall deposits plus early flow units (ca. 1.2 

km~implies that vent widening by erosion was important and possibly 

column collapse during the course of the eruption. 

led to 

The following sections give a brdf description of the most important members of the 

Taupo Pumice Formation. Description of selected sections of the Taupo Pumice Formation 

is given in Appendix 1.1. Fig 4.1 shows the location of all described and sampled 

sections for the study of the lithics in the Taupo Pumice Formation. 
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4.3 HATEPE TEPlfRA 

The Hatepe Tephra (Froggatt, 1981) is the oldest member of the Taupo Pumice 

sequence, being the ash and lapilli beds paraconfomably overlying the paleosol on the 

Mapara Tephra and includes the initial phreatoplinian ash (Wilson and Walker, 1985). It 

is overlain by the Rotongaio Ash. Hatepe Tephra comprises a coarse lower pumice lapilli 

bed (Hatepe Plinian Pumice) conformably overlain by a uniform fine white ash with 

scattered pumice lapilli (Hatepe Phreatoplinian Ash). 

The Hatepe Plinian Pumice is finer-grained than the Taupo Plinian Pumice, and 

shows no grading, only minor or rudimentary shower bedding. Pumice in this bed is 

white to pale yellow, well sorted, angular and moderately vesicular. Lithic clast content 

is moderate «10%) with clasts being predominantly banded and spherulitic rhyolite with 

minor obsidian. Thicknesses exceeding 2 m near Lake Taupo are observed (Fig 4.2). 

Conformably overlying the Hatepe Plinan Pumice is a generally equal thickness of 

fine, cream to white ash with scattered white pumice lapilli throughout. This fine 

grained nature typifies the Hatepe Phreatoplinian Ash. Bedding commonly occurs as layers 

of pumice lapilli conformable with the underlying topography and is characteristic of an 

air fall origin. The top surface of the Hatepe Ash is eroded by rain water and/or water 

explosively ejected from the vent to form an undulating top surface (Fig 4.2). The lithic 

content is low with lithic clasts generally inconspicuous. The widespread distribution and 

fine grained nature of this bed indicates a phreatoplinian origin (Fig 4.2). 

4.4 ROTONGAlO PHREATOPLINIAN ASH 

Rotongaio Ash is a charcteristic dark steel-grey fine to coarse ash unconformably 

overlying Hatepe Tephra and comformably overlain by Taupo Plinian Pumice. The type 

area is east of Lake Taupo (as defined by Froggatt, 1981). Rotonagaio Ash is finely 

bedded with all the ash material composed of fresh, glassy, non hydrated obsidian. 

Rotongaio aSh is remarkably widespread for such a fine grainsize, and is recognizable even 

when very thin due to its dark grey colour 
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which contrasts with the surrounding white ash. It is thus diagnostic of the Taupo 

Pumice Formation over a large area. Its undulating structure in many outcrops is due to 

the ash mantling erosion gullies on the top surface of the Hatepe Ash, and is very 

characteristic of the unit (Fig 4.3). Lithic inclusions in the phreatoplinian Rotongaio ash 

are absent or rare. 

4.5 TAUPO PLINIAN PUMICE 

The Taupo Plinian Pumice deposit is a coarse and widely dispersed unit and according 

to Walker (1981) represents the most powerful plinian outburst yet documented. The 

Taupo Plinian Pumice occurs as a uniform, well sorted. pumice lapilli and block bed up 

to 2 m thick. Pumice clasts are moderately vesicular (60-70% porosity). yellowish white 

and extremly angular. In the area east of Lake Taupo varying amounts of Taupo Plinian 

Pumice deposit have been eroded by the succeeding pyroclastic, flows which formed the 

Taupo Ignimbrite, so that the true thickness of Taupo Plinian Pumice deposit is never 

seen. Lithic content of the Taupo Plinian Pumice is up to 10% by volume, and consists of 

banded, spherulitc rhyolite with minor ignimbrite, dacite and andesite. 

4.6 THE TAUPO IGNIMBRITE 

The Taupo Ignimbrite was first named as the Upper Taupo Pumice member and 

Rhyolite Block members of the Taupo Pumice Formation by Healy (1964). The name 

Taupo Ignimbrite was first formally introduced by Froggatt (1981) and comprises all the 

primary products of the pyroclastic flow(s) that followed the eruption of the Taupo 

Lapilli (Taupo Plinian Pumice) or those deposits occupying an eqivalent stratigraphic 

position where the Taupo Lapilli is absent. 

Previous work on the Taupo Ignimbrite has covered a variety of aspects, as the 

ignimbrite has been of interest for several reasons. 

1. The Taupo Ignimbrite is young. fresh, entirely non-welded (Iow-grade ignimbrite, 

Walker, 1983) and is exceptionally well preserved. with its full thickness 

exposed over a large area. 
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2. The great range of facies and varieties it displays enables the study of the 

processes of formation. 

3. The distribution of the ignimbrite shows that the eruption was very violent 

which makes it possible to study the effects of violence on emplacement 

mechanisms of large pyroclastic flows (eg. turbulence, degree of expansion of 

flow). 

4. Structures in the ignimbrite show that fluidization processes were important. 

They allow a check on predictions of fluidization behavior of pyroclastic flows 

inferred from experimental studies. 

Wilson (1985) suggested that the ignimbrite was generated in a single short-lived 

episode which formed the eruption climax (about 400 sec ) and that the overall 

distribution of the ignimbrite shows that the parent flow was little influenced by the 

often rugged topography apart from in a limited area south and south-east of Ruapehu. 

The outer limit of the ignimbrite is at 80+/- 10 km from the vent regardless of the 

intervening relief. The ignimbrite covers about 20,000 km 2 a figure which makes it 

among the most widely spread despite its modest volume. The ratio of the average 

thickness of an ignimbrite unit to its lateral spread (the latter is conveniently taken as 

the diameter of a circle which covers the same area as the ignimbrite) was defined as the 

aspect ratio by Walker et al. (1980), and an aspect ratio of 1:70,000 was calculated for 

the Taupo Ignimbrite which is very low compared to many well studied ignimbrites. 

Even around its margins the ignimbrite crops out over a local height range of several 

hundred meters showing that the flow must have travelled at high speed right up to its 

outer limits, and the outer limit was controlled by the flow running out of material 

rather than merely slowing to a halt. The height of the obstacles climbed by the flow 

are used to estimate its velocity at various points. Wilson and Walker (1985) suggested 

that it is likely that the flow exceded 250-300 mls near vent and sustained velocities in 

excess of 150 mls to within a few kilometers of its outer limits. The high flow 

velocity is a result of the high magma dischage rate. 
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A model for depositional regimes in pyroclastic flows was presented by Wilson and 

Walker (1982). This considers a pyroclastic flow to consist of a head, a body and a tail. 

The resulting ignimbrite is described in terms of the layering scheme introduced by 

Sparks et a1. (1973) as modified in Wilson and Walker (1982) into layers 1, 2 and 3 

below: 

Layer #1: consists of deposits which have been generated by processes operating in 

advance of the pyroclastic flow head and consists of two main facies named as layers 

l(P) and l(H). Layer l(P) is a pumiceous, mildly to strongly fines depleted unit and is 

generated by the expUlsion of material from the flow head by explosive expansion of air 

ingested by the flow and is named the "jetted deposit", The overlying unit is layer l(H) 

which is a thinner, crystal and lithic rich fines depleted unit, generated by the 

sedimentation of the coarse/dense constituents segregated out by strong fluidization within 

the flow head and is named the "ground layer" (secA.3). 

Layer #2: is deposited from the bulk of the flow and the tail, which is the trailing part 

slowed by ground friction. Layer 2 consists of two main facies with similar composition 

but contrasting morphologies. The valley ponded ignimbrite (VpI) is material left behind 

by the flow partially drained into depressions during emplacement, and its associated 

ignimbrite veneer deposit (IVD) which represents the basal and trailing part of the flow 

which were slowed by the ground friction and left behind as the flow travelled accross 

the landscape. Localized depositional modes within the body and tail generated distinctive 

coarse pumice concentration zones and lee-side lenses behind obstacles. At its outer limits 

the flow produced a distant facies which combines the features of both layer 1 and 2. 

Layer #3: overlies Layer 2 and is deposited from the winnowing ash cloud elutriated 

from the pyroclastic flow and is very poorly preserved in the Taupo Ignimbrite. 

The Taupo Ignimbrite shows great lateral variations which are documented by 

granulometric and component analyses and studies of maximum clast size and density 
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(Walker and Wilson, 1983). Each facies, and the variety of structures displayed exhibit 

systematic degrees of development with varying distance from vent. Wilson (1985) states 

thz..t near vent, the flow consisted of batches of material which at about 25 km from the 

vent had coalesced into a single wavy flow and by about 40 km into a single wave. 

Three flow units which make up a single cooling unit have been described in near vent 

exposures (Froggatt, 1982). Out to about 13 km, the flow was rather dilute and highly 

turbulent as it deflated from the eruption column. Beyond this distance it was fairly 

concentrated, being about 100% expanded over its original non-fluidized compacted state, 

and had acquired a fluidization induced stable density stratification which strongly 

suppressed turbulence in the flow body. Deflation from the eruption column was largely 

completed by about 13 km but influenced the flow as far as 20-25 km from the vent. 

The main body of the ignimbrite varies in thickness from less than 1 m to about 70 

m and shows considerable colour variations, but mostly it is pale grey to white or stained 

pale brown. The variety of facies and fluidization structures displayed by the ignimbrite 

were discussed in detail by Wilson (1985). Without taking into consideration the various 

segregation structures (the ground layer, pumice concentration zone etc.) the main body of 

the ignimbrite contains variable amounts of lithics and a general decrease in lithic content 

away from the vent was observed. 

4.Z THE GROUND LAYER 

4.7.1 General 

The ground layer of the Taupo Ignimbrite (Walker and Wilson, 1982) was first 

reported by Grange (1937) on the eastern shore of Lake Taupo and was given the name 

"Rhyolite Block Layer" by Healy (1964). Baumgart and Healy (1956) suggested that the 

"Rhyolite Block Member" was an unusual type of shower which when well developed 

consisted almost entirely of lapilli and blocks of banded and spherulitic rhyolite, obsidian 

with minor andesite. mudstone. welded ignimbrite and occasional pumice. 
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The ground layer has a maximum thickness of 3m at station 1 (6 kID 
from the vent). The ground layer overlies the early ignimbrite flow units; 
note the early ignimbrite flow units and the erosive contact at the top and 
bottom of the ground layer. Big blocks of hydrothermally altered rhyolite 
are exposed. These have remained intact during transportation (spade is 0.6 
for scale) (Grid ref. NZMS N94-553230). 

Taupo Ignimbrilt. 

Ground Laytr 

Taupo Lapilli 

ure 4.5 The ground layer has a thickness of = 20 cm and overlies the Taupo 
Plinian Pumice at station 11 (Grid ref. N103-586080; 17 km from the 
vent) 
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They also noted that the upper and lower contacts were strongly erosional and the upper 

contact was planar even on irregular terrain. Healy (1964) suggested that the layer is 

probably formed by secondary transportation but because of the widespread nature of the 

"Rhyolite Block Member" he suggested as an alternative explanation that the eruption may 

have blasted its way through thick buried rhyolite lava which spread huge billowing 

clouds loaded with rhyolite blocks in to the area. 

Recent studies of ignimbrites have shown that the products of ignimbrite eruptions 

are many and varied. Ignimbrites were often considered to be relatively homogeneous rock 

bodies, but detailed studies reveal that there are considerable departures from homogeneity 

in both physical and chemical characterstics. Sparks et at. (1973) first proposed that an 

ignimbrite flow unit usually contains a deposit which is rich in crystals and lithics, 

found between the ignimbrite proper and the pre-ignimbrite plinian pumice (Layer 1). 

This was interpreted as a deposit from a kind of pyroclastic surge or "ground surge" 

which moved outwards from the vent in advance of the pyroclastic flow itself. 

Froggatt (1981) defined the same unit as the "Lithic Lag Layer" in the Taupo 

Ignimbrite and suggested an origin from simple sedimentation or gravity separation of the 

dense lithics from the pyroclastic flow. On the model presented for the deposition of 

pyroclastic flows Wilson and Walker (1982) gave this layer that is rich in crystals and 

lithics which is found at the base of the ignimbrite proper the non genetic name the 

"Ground Layer". An origin by sedimentation of lithics from the more fluidized nose of 

the pyroclastic flow head was proposed. This name will be used in this text henceforth. 

4.7.2 Field occurrence 

The ground layer overlies the Taupo Plinian Pumice or the Raton gaio Ash but in 

some near vent exposures it overlies the lower ignimbrite unit of Froggatt (1981) or the 

early ignimbrite flow units of Wilson (1985). The ground layer is almost always 

thinner than the underlying Layer I(P) at the same locality, but it is more extensive 

laterally, stretching out to the distal limits of the ignimbrite although becoming very 

thin, fine grained and patchy beyond about 60 kID from the vent. Its thickness varies 

from 3 m near vent to less than 1 em in distal exposures (Fig 4.4 & Fig 4.5), 
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but in most sections it has a thickness of 10-30 cm. Because it is discontinuous and 

shows such rapid local thickness variations no attempt is made to construct an isopach 

map. 

The average size of lithics is a function of the thickness of the ground layer. In 

thick exposures (station 1) rhyolite lava (some blocks are intensely hydrothermally 

altered), ignimbrite and lake sediment blocks as big as 1.5-2 m in diameter are found. 

Friable blocks of hydrothermally altered rhyolite, tuff, and lake sediments are fractured 

but are preserved intact and in some cases the fractures are filled with a matrix of fine 

ash (Fig 4.6 and 4.7). Similar blocks of rhyolite and welded tuff up to 1.5 m in size are 

found along the northern shore of lake Taupo (station 3), along Five Mile Beach and 

other localities on the eastern shore of Lake Taupo. These blocks are assumed to have 

been eroded out of the co-ignimbrite lag fall deposit. 

, The ground layer underlies both the valley ponded ignimbrite and the ignimbrite 

veneer deposit. On irregular terrain it almost entirely fills small hollows between ridges 

while on more gentle terrain it thins and becomes fine grained up slope. The ground 

layer has been observed to occur on slopes as steep as 60-70 degrees (Wilson and Walker, 

1982). 

The upper and lower contacts are erosive and are commonly sheared to generate 

material of intermediate grain size. Wilson (1985) notes that apart from near vent 

localities the ground layer or Layer I(H) is extremely poor in fines and rich in crystals 

and lithics. He also notes that the ground layer is normally coarsest at or just above its 

base, while its upper part, immediately below Layer 2 may be rather fine grained. 

4.7.3 Grain size characteristics 

In near source exposures the ground layer is extremely coarse and contains boulders 2 

m or more in size. Rhyolite boulders several metres across which may have been eroded 

out from the ground layer now lie on the surface near the NE shore of Lake Taupo at 

Waitahanui, Five Mile Beach and Wharewaka Point. Fig 4.1 shows the average maximum 

diameter of three largest lithics clasts in the ground layer over the entire extent of the 

Taupo Ignimbrite. 
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Walker et a1. (1981b) noted that the lithic size distribution in the ground layer as well 

as in the pre-ignimbrite plinian pumice indicates that the vent lies within the present 

area of the lake, probably at or near Horomatangi Reefs. 

Wilson and Walker (1982) plotted the maximum lithic size data from the ground 

layer against distance from the vent which showed a progressive decrease in lithic size 

,with increasing distance from the vent, with a break in trend at about 20 km (Fig 4.8). 

They interpreted the steeper near-vent trend as that of a co--ignimbrite lag-fall deposit 

(Wright & Walker, 1977), but since it is evident in the field that all the ground layer 

was emplaced with some lateral flow, it was interpreted to represent a lag-fall deposit 

that has been carried from the vent area by the momentum of the flow. Co-ignimbrite 

lag-fall deposits and other proximal lag breccias can be considered to represent another 

kind of depositional mode which is normally confined to the immediate area of the vent, 

but can be extended (as at Taupo) to greater distances when a lag-fall deposit merges into 

the ground layer deposit. The boundary between the two may be taken at the break in 

slope shown in Fig 4.8. 

The grain size analysis of the ground layer is, characterized by a log normal size 

distribution (Fig 4.9, Walker et al. 1981b) of most samples analysed, but the coarsest 

samples have a bimodal distribution with a coarser mode of boulder-sized clasts. Fig 4.10 

summarizes the grain-size characteristics of the ground layer. It is moderately well sorted 

(most samples falling in the pyroclastic fall field) and compared with the ignimbrite 

shows a noteworthy lack of fines. 

4.7.4 Origin and mechanisms of formation 

Several views were previously proposed on the origin of the ground layer. In view 

of the fact that a shower origin has been proposed; Walker et al. (1981b) presented the 

following evidence against an airfall origin: 

1. The blocks never indent the underlying surface (whether it is plinian pumice or 

underlying paleosol) showing that they cannot have fallen at high velocity to 

their present position. 
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2. Some of the large blocks are relatively delicate (eg. mudstone) and could hardly 

have survived intact after falling from any appreciable height (Fig 4.6). 

3. The area enclosed by any given isopleth (Fig 4.1) is much greater than is 

presently known for any deposit of proven airfall type. The 10 cm isopleth as 

an example, encloses 2750 km 2 as compared to 700 km 2 for the Taupo plinian 

pumice which is claimed to be deposited from the most powerful plinian 

eruption presently known (Walker. 1980). From these lines of evidence the 

large lithics with the associated fine material must have been carried laterally 

by a pyroclastic flow or a pyroclastic surge. 

Walker et al. (1981b) presented two arguments against a pyroclastic surge origin: 

1. All historical pyroclastic surges have developed on high and steep volcanic cones. 

Only on a steep cone can gravity sustain the high velocity on which the 

carrying power of the gas and distance reached by the surge, depends. The 

carrying power of a surge on flat topography such as Taupo and the present 

vent position being lower than any outcrop of the ignimbrite would not be 

capable of moving metre-sized blocks nearly 10 kIn. 

2. The general absence of stratification and cross-stratification in the ground layer 

as in most ground surge deposits. 

Evidence that the ground layer was deposited from the pyroclastic flow include: 

1. When traced outwards from source the ignimbrite becomes at first impoverished 

in lithics then in crystals and towards its distal ends approaches 100% vitric 

material (Fig 4.11). Such a steady impoverishment in heavies must be accounted 

for and is best explained by the loss of heavies into the ground layer. 

2. The maximum lithic size in both the ignimbrite and the ground layer steadily 

decreases outwards. Lithics have a much wider grain-size range than crystals in 

the erupted mixture, and the crystal:lithics ratio accordingly varies as the 

grain-size of the "heavies" in the ground layer decreases from low near source 

where large lithics predominate to high at the distal ends. 



gure 4.11 Plot of percentages of pumice (p), lithics (L) and free crystals (e) in samples of 

the Taupo 19nimbrite and its ground layer, for the classes 1/4mm and 
coarser recalculated to 100% total. The arrows indicate compositional trends 
with increasing distance from vents. (from Walker et 01. 1981b). 
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lre 4.12 Variation in percentages of free crystals (e) and lithics (L) against distance from 
vent in the ground layer, and variation in the elL ratio in the ground 
layer. Note particularly the sympathetic variation of the lithic content in 
the ground layer and ignimbrite (After Walker et 01. 1981b). 
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1 
2 

Proportion of the different rock types in the ground layer, estimated at two 
outcrops about lOkm from the inferred vent position (Location of station 1 
and 2 is given on Fig. 4.2 and Appendix}) 

11 12 

E Rhyolite 
EZ2:I Hyd. alt. Rhyl. 
eZJ Ignimbrite 
CZJ Daclt. 
o Andesite 
£Zl lake sedim. 
o Greywacke 

Estimated proponion of the different rock types in the ground layer at a 
section about 20 km from the inferred vent position (stations 11 and 12). 



gure 4.]3(c) 

ure 4.13(d) 

4b 
4a 

Estimated proportion of the different rock types in the ground layer at a 
section about 20 km from the inferred vent position (stations 4a and 4b). 

IiI'm Rhyolite 
~ Hyd. alt. Rhyl. 
IZ2I Ignimbrite 
CZJ Dacite 
CJ Andesite 
CZJ Lake Sedim. 
o greywacke 

Estimated proportion of the different rock types in the ground layer at a 
section about 30 km from the inferred vent position (station 21). 
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3. Giant boulders of friable lake sediments, welded tuff and hydrothermally altered 

rhyolites were fractured during transportation but are preserved intact. This 

testifies that the pyroclastic flow head, despite its strongly fluidized state caused 

by air ingestion, had enough pressure to support such boulders from all sides, 

behaving like an air cushion during transportation. 

4.7.5 Bulk composition aM Sampling 

Weight percentages of components (pumice plus shards, free crystals and lithics) have 

been determined down to 1/4 mm size (Fig 4.11 & Fig 4.12) (Walker et al. 1981b). A 

strong enrichment in dense components (Ethics and crystals) is shown by the ground 

layer as compared to the main body of the ignimbrite. Furthermore the pumice in the 

ground layer has an average density about 300/0 higher than pumice of a corresponding 

size in the ignimbrite (Froggatt, 1982). 

The proportion of lithic types in the ground layer was estimated by eye at two near 

vent thick exposures (stations 1&2, Fig 4. 13a), where the ground layer was too coarse to 

sample. At outcrops further than 10 km from vent the thickness and grainsize of clasts 

in the ground layer is small enough for the estimation of the proportion of lithic types 

to be done on the lapilli-sized clasts in bulk samples collected from the ground layer. 

About 100 gm of lapilli-sized bulk samples were taken at stations which are about 10, 

20 and 30 Km from the inferred vent position. A binocular microscope was used in the 

separation of the different types of Ethics. Proportions were estimated by weighing the 

separated fractions. Fig 4.13(b,c,d) presents the estimated proportion of the major types of 

lithics in the ground layer. 

In general rhyolites make up about 75% of all the Ethics in the ground layer both 

at near vent and distant exposures. Dacites, andesites, welded ignimbrites and lake 

sediment mud and siltstone blocks make up the remaining 25%. Near vent exposures of 

the ground layer are thicker and hence the size of the blocks in the ground layer is 

bigger than at more distal exposures. The main difference between the near vent and 

distal exposures of the ground layer is that the proportion of soft and friable rocks 

(mudstone. siltstone, welded tuff) rapidly decreases away from the vent. 



Figure 4.14 A single giant pumiceous block enclosed within subhorizontal lake sediments. 
Note cooling contraction joints around the block. Similar pumiceous blocks 
are found at several localities around the lake and were extruded at the 
end of the Taupo eruption. 
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For the petrographic study of lithics in the ground layer, samples from 2& stations 

were collected. Locations of the sampling stations are shown on Fig 4.1 and the grid 

references are given in Appendix 1.2 with some sampling remarks. The chemistry of the 

Ethics in the Taupo Pumice Formation is based only on the lithic blocks collected from 

the ground layer since lithic inclusions in other members of the Taupo Pumice Formation 

are generally smaller in size and fresh unaltered samples large enough for whole rock 

chemical analyses are rarely found. 

Pumice blocks up to 5 m in size are found scattered at exposures on the eastern side 

of Lake Taupo, mostly associated with the cliff line of a lake level some 5 m higher 

than at present and postdating the pyroclastic phases of the eruption. The pumiceous 

blocks show cooling contraction joints (Fig 4.14). Fragments of the pumice vary slightly 

between negatively and positively bouyant in water, (density = 0.9 gm/cc) but field 

evidence suggests that they must have floated into their present position. Samples of these 

dense grey pumiceous blocks were collected and chemically analyzed. 



Chapter V 

PETl~OGRAPHY OF LITHl~BWCKS 

5.1 INTRODUCTION 

About 100 thin sections were examined from the lithic blocks of the ground layer 

and lithic inclusions from the Taupo plinian pumice and Hatepe Tephra. The petrography 

of the main types of lithic inclusions is given in this chapter. Modal content of the main 

types of rocks is presented on Table 5.1 and the list of samples studied and their 

petrographic names are given in the Appendix 2 together with sampling localities. 

5.2 RHYOLITES 

Rhyolites form the major proportion of all the lithics in the Taupo Pumice 

Formation. In the ground layer, rhyolite blocks up to 105m in diameter are found in near 

vent exposures (station 1, Fig 4.1). The rhyolite blocks are commonly angular and appear 

to have been derived from within the vent. Some of the rhyolite blocks show a high 

degree of hydrothermal alteration, which indicates that a hydrothermal system existed at 

some time at or near the vent area. The hydrothermally altered rhyolites remained intact 

despite their highly fractured and friable nature. 

Most of the rhyolite blocks are light-dark grey, show flow banding, contain 

spherulites and have a porphyritic texture with a glassy or cryptocrystalline groundmass. 

The common phenocrysts are plagioclase (andesine), hypersthene, magnetite, ilmenite, 

quartz, hornblende and biotite. Following the classification of Ewart (1968), the rhyolite 

blocks in the ground layer are here sub-divided into three groups based on their 

ferromagnesian phenocryst assemblages. 

l.Hypersthene rhyolite 

2.Hypersthene-hornblende rhyolite 

3.Biotite bearing rhyolite 
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Table 5.1 Modal analyses of selected rock types from the lithic 
inclusion in the Ground Layer based on 1500 point counts. 

VUWN 3112& 31131 31127 31133 31130 31135 31136 31140 31137 31138 31134 31150 31151 
sample lT2 1M7 1Tl 1/6 1/8/6 3/1 4/5 I/M/3 IB1 4/l0R 2/1 4/8 4/9 

(1) (2) (3) (4) (5) (6) (7) (&) (9) (10) (1) (2) (13) 
Glass or 
Croudmass 91.6 94.0 96.1 90.0 79.6 93.1 90.5 82.6 92.6 91.7 89.0 60.2 68.0 
Spherulite 11.2 -
Vesicle 
Quartz 0.3 0.1 0.2 1.4 1.9 0.1 La 1.3 0.9 0.5 2.8 0.3 
Plagioclase 6.7 4 2.3 6.1 4.6 4.6 5.2 8.5 3.2 3.& 6.5 29.1 23.8 
Hypersthene 0.7 0.8 0.8 1.3 1.7 1.1 1.3 2.7 0.2 0.9 2.4 6.0 5.0 
Augi te 0.6 0.5 
Hornblende 0.1 1.0 0.3 
Bioti te 0.5 0.5 0.1 0.1 0.1 0.& 0.5 1.1 2.1 1.1 
Magnetite 0.2 0.5 0.6 1.0 0.8 1.0 1.2 0.4 1.9 0.4 0.9 1.9 2.4 
Xenoliths 2.2 
Total 
xl. content 8.4 6.0 3.9 9.9 9.1 6.9 9.5 14.4 7.3 7.7 14 39.8 32.0 
Plag/Qtz 
ratio 22.3 40.0 11.5 4.3 2.4 46 5.2 6.5 3.6 7.6 2.3 

(1-7) Hypersthene rhyolite. 
(8) Hypersthene-hornblende rh~ite. 
(9-11 ) Biotite-bearing rhyolite. 
( 12-13) Two-pyroxene dacite. 

VUWN 3115~ 31154 31156 31151 VUWN 31166 31165 31168 
sample 2/9 1/2 2/8 1/4 ~ample IBB7 3/6 11/2 

114) 05) (16) (7) (18) (19) (20) 
Class or Ash 
Croudmass 50.0 51.1 54.1 52.0 (matrix)s 78.1 72.4 45.9 
Vesicle Pumice 0.9 
Quartz Ves"icle 0.7 
Plagioclase 40 19.7 18.0 22.0 Quartz 7.0 9.0 14.1 
Hypersthene 7.9 17.3 16.5 20.7 Plagioclase 5.6 9.1 24.3 
Augi te 0.3 11.9 10.9 3.0 Hypersthene 0.8 2.1 4.0 
Hornblende 1.1 Augite 
Biotite Hornblende 0.1 0.7 
Magnetite 0.3 0.6 Biotite 
Olivine 0.2 1.7 Magnetite 0.1 1.6 1.& 
Xenoliths Lithics 4.& 5.7 9.0 
Total Total 
xl. content 49.3 48.9 45.9 48.0 xl. content 13.5 21.9 45.1 
Porphyr i ti c 
pyx. ratio 17.0 59.7 60.4 35.0 

(4) Hornblende andesite. 
US) Plagioclase pyrox,ne andesite. 
(6) Pyroxene andesite. 
(7) Olivine andesite. 
U8-19) Lithic crystal rich ignimbrite. 
(20) Crystal rich igniabrite. 



'igure 5.1 

gure 5.2 

Phenocryst aggregate of plagioclase (p), hypersthene (Hp) and Magnetite (Mg) 
the groundmass is glassy and microcrystalline contains laths of plagioclase. 
Rare xenoliths (X) are found in some of the rhyolite lava (centre left of 
the photo). (VUWN 31141, XPL xlO) 

Hornblende (Hb) phenocrysts in hypersthene-hornblende rhyolite. 
Hypersthene (Hp) and Plagioclase (p) phenocrysts form aggregates and the 
groundmass is cryptocrystalline and shows flow banding. Rare resorbed 
Quartz (Q) occur in lOme samples. (VUWN 31140, XPL xl O) 
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Hypersthene phenocrysts are very common in all of the rhyolites studied, but the 

rhyolites are named hypersthene-hornblende rhyolites when modal phenocrystic hornblende 

is > 1% and biotite bearing rhyolite when biotite phenocrysts are> 1%. When comparing 

the rock types a number of common features are apparent. 

1. The groundmass is either completely or partly glassy and contains spherulites, 

cristobalite and glassy microlites which normally show a flow-line pattern. 

2. Plagioclase occurs as euhedral and subhedral phenocrysts, and are sometimes found 

as glomeroporphyritic clusters. Oscillatory and patchy zoning is present in the 

plagioclase. 

3. Hypersthene phenocrysts occur as fractured euhedral-anhedral crystals with 

inclusions of granular magnetite or as smaller euhedral-subhedral 

microphenocrysts in phenocryst aggregates. 

4. Quartz, if present, is normally cracked and strongly resorbed. 

5.2.1 Hypersthene Rhyolite 

This rock type is the most abundant of the lithic blocks in the ground layer and 

inclusions in other members of the Taupo Pumice Formation. The rocks are grey to dark 

brown, and are frequently banded spherulitic and porphyritic. Plagioclase and hypersthene 

are the major phenocrysts (average phenocryst content is 8%) and commonly form 

glomeroporphyritic aggregates. Inclusions of hypersthene are common in plagioclase 

phenocrysts and magnetite granules occur as inclusions in both the plagioclase and 

hypersthene phenocrysts. The groundmass consists of isotropic glass and microcrystalline 

material. 

Plagioclase phenocrysts are the most abundant and are commonly zoned, euhedral to 

subhedral, rarely broken, and have an average size of 2 mm. 

The major ferromagnesian phenocryst is hypersthene which is commonly euhedral and 

has an average grain size of 1 mm. Many hypersthene phenocrysts are altered to opaque 

oxides along their margins and contain titanomagnetite inclusions. Other ferromagnesian 

phenocrysts include rare augite (VUWN 31129) which is < 0.5 mm in size. Rare xenoliths 



66 

(dacite and andesite?) are found in some of the hypersthene rhyolites (Fig 5.t). 

Accessory minerals include opaque Fe-Ti oxides and apatite. 

5.2.2 Hypersthene-hornblende Rhyolite 

This rock type forms a minor proportion of both the rhyolite blocks in the ground 

layer and inclusions in other members of the Taupo Pumice Formation. The rocks are 

dark grey, banded, spherulitic and porphyritic, rarely altered and have a phenocryst 

content of about 14% (Table 5.l). The main phenocrysts are plagioclase, hypersthene and 

brown hornblende. The ground mass consists of gla&<; and microcrystalline material. 

Phenocrysts of plagioclase (andesine) are commonly euhedral to subhedral, rarely 

rounded and corroded, and range from 1 mm to 3 mm in size. Oscillatory and patchy 

zoning are common. 

Hypersthene phenocrysts are commonly euhedral although some are corroded, and are 

less than 1 mm in size. Some phenocrysts have magnetite rims while others are 

completely altered to magnetite. Hypersthene phenocrysts rarely occur as inclusions in 

plagioclase phenocrysts and commonly form phenocryst aggregates with occasional augite 

microphenocrysts (less than 0.5 mm in diameter). 

Resorbed and occasionally embayed quartz and hornblende are minor phenocrysts. 

Hornblende forms subhedral crystals with an average size of 1 mm, strongly pleochroiC 

from pale red to dark brown and comonly altered to opaque or brown oxides on the rims 

(Fig 5.2). Accessory minerals include Fe-Ti oxides and apatite. 

5.2.3 Biotite bearing Rhyolite 

The biotite-bearing rhyolites form a small proportion of the rhyolite blocks in the 

ground layer and inclusions in other members of the Taupo Pumice Formation. This rock 

is light-yellowish grey, banded and porphyritic. Phenocrysts make up about 15% of the 

rock; the highest phenocryst content of all the varieties of the rhyolites (Table 5.t). The 

groundmass consists of glass and is partly microcrystalline. 
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The rock contains phenocrysts of plagioclase, hypersthene, biotite, and a~ Fe-Ti 

oxides. Plagioclase (andesine) make the major proportion of the phenocrysts commonly 

euhedral have an average size of 1.5 mm and show compositional zoning. 

Hypersthene phenocrysts are euhedral and have an average grain size of 0.5 mm and 

are commonly altered, either completely or around the rims to opaque Fe-Ti oxides. 

Biotite phenocrysts are found in lenticules between flow bands and as crystal aggregates 

about 0.5 mm in size. Quartz phenocrysts are commonly rounded and have an average 

grain size of 1 mm. 

5.3 DACITES 

Dacites are the second most abundant rock type and comprise about 15% of the lithic 

blocks in the ground layer. They commonly occur as angular to sub-angular blocks up to 

30 cm in diameter in the ground layer and show various intensities of hydrothermal 

alteration. 

Two pyroxene dacites form the major proportion of the dacite inclusions in the 

Taupo Pumice Formation. The rock is dense, hard, generally dark grey, greyish green or 

pale red in colour and is porphyritic with large phenocrysts of plagioclase, hypersthene, 

augite and microphenocrysts of Fe-Ti oxides commonly occuring in aggregates. The 

phenocrysts make up about 30% of the rock and are set in a groundmass of 

microcrystalline quartzofeldspathic material containing laths of plagioclase. A flow texture 

is indicated by the orientation of plagioclase microlites in some samples (eg. VUWN 

31151, Fig. 5.3). A verage size of the plagioclase in the groundmass is less than 0.2 mm. 

Rare diorite inclusions are also found in some of the dacites. 

Plagioclase phenocrysts (andesine-labradorite) comprise the major proportion of the 

phenocrysts and have an average size of 1.5 mm x 3 mm. Two types of plagioclase 

phenocrysts are identified (Fig 5.4). The first type is euhedral to anhedral with resorbed 

rims and shows sieve texture or has clouded cores which are commonly jacketed by 

normally zoned material. The other type is euhedral to subhedral, commonly with 



Figure 5.3 Two pyroxene dacite, contains phenocrysts of plagioclase (p), hypersthene 
(Hp) and augite (Ag). Note an inclusion of augite in a hypersthene 
phenocryst. The groundmass is cry ptocrstalline with plagioclase laths 
showing flow align ment. (VUWN 31151, XPL x ] ) 

Phenocryst aggregate of plagioclase, orthopyroxene (Opx), clinopyroxene 
and magnetite (Mg) in two pyroxene dacite. Two generations of plagioclase 
phenocrysts are shown as P1-shows oscillatory zoning with sieve texture 
and gl~ inclusions commonly with an outer jacket of normally zoned 
material. P2-<:ommonly normally, zoned euhedral with clouded cores. 
(VUWN 31149, XPL xlO) 
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oscillatory zonning and rarely has clQuded cores but does not contain any glass or 

pyroxene inclusions. The latter is the most abundant of the plagioclase phenocrysts. 

Hypersthene phenocrysts are often euhedral and have an average size of 1 mm, show 

pleochroism from pale green to pale pink and contain inclusions of granular magnetite. 

Augite is present in considerable amounts as euhedral crystals but is normally smaller 

than the other phenocrysts. Resorbed quartz phenocrysts and rare olivine crystals are 

ocasionally found in some samples. 

5.4 AN DESIT ES 

Andesites are a minor proportion of the lithic blocks in the ground layer and in 

other members of the Taupo Pumice Formation. Most andesites occur as angular to 

subangular blocks <20 em in size, and are grey, weathering to a rusty brown colour. 

Many of the blocks show various degrees of hydrothermal alteration. Some of the 

andesite boulders have a completely altered groundmass with rare, fresh phenocrysts. Four 

types of andesite lithics are identified in the ground layer: 

1. Hornblende andesite 

2. Plagioclase-pyroxene andesite 

3. Pyroxene andesite 

4. Olivine andesite 

The classification of the andesites is based on the modal porphyritic pyroxene ratio of 

Clark (1960) which is expressed as % pyroxene phenocryst x 100 divided by % 

plagioclase phenocrysts + % pyroxene phenocrysts. When this ratio is less than 33% the 

rock is plagioclase andesite, when the ratio is 33-60% the rock is named 

plagioclase-pyroxene andesite and when the ratio is greater than 60% the rock is pyroxene 

andesite. Hornblende andesites are those with phenocrystic hornblende > 1 % and olivine 

andesites where olivine crystals> 1%. 



Figure 5.5 

'igure 5.6 : 

Brown hornblende phenocryst in hornplende andesite; note that the 
phenocryst rims are altered to magnitite. (VUWN 31153, XPL x10) 

Plagioclase-pyroxene andesite, phenocrysts of plagioclase (p) and pyroxene 
(Opx and Cpx) commonly forming aggregates. The groundmass is gl~ 
and contains microcrystals of plagioclase and tridymite. (VUWN 31154, XPL 
x 10) 
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5.4.1 Hornblende Andesite 

A sample of hornblende andesite was collected from the ground layer at station 1 

(Fig 4.2). The rock is red brown, with phenocrysts of plagioclase and hornblende which 

can be identified even in hand specimen. The rock has a seriate porphyritic texture and 

contains phenocrysts of plagioclase, hornblende, hypersthene and augite (in order of 

decreasing abundance; Table 5.1) with accessory magnetite. The phenocrysts comprise 

about 49% of the rock. Groundmass consists of microcrystals of plagioclase, tridymite and 

accessory magnetite, and apatite. 

Plagioclase (labradorite) phenocrysts are euhedral to subhedral and have a maximum 

size of 4 mm. Larger phenocrysts of plagioclase show zoning and sieve texture and 

contain glass inclusions with smoothly zoned jackets of late crystallized phase. Inclusions 

of pyroxene, titanomagnetites, and rare tabula. apatite crystals are common in the 

plagioclase phenocrysts. 

Hornblende phenocrysts are generally subhedral, show strong pleochroism from pale 

yellow to red brown, and are altered to Fe oxides around the rim. They are tabular with 

an average length of 3 mm and commonly occur in aggregates (Fig 5.5). 

Pyroxene phenocrysts are subhedral and smaller than both the plagioclase and 

hornblende phenocrysts. They occur as aggregates which contain granules of magnetite. 

Hypersthene phenocrysts are more abundant than augite. 

5.4.2 Plagioclase-pyroxene andesite 

Usually this rock is porphyritic with about 500/0 phenocrysts of plagioclase, 

hypersthene and augite and accessory magnetite. The phenocrysts are set in a 

microcrystalline ground mass of plagioclase, pyroxene and subordinate crf. stobalite (Fig 5.6). 

Phenocrysts of plagioclase (labradorite-bytownite) comprise about 200/0 of the rock, 

show oscillatory and patchy zoning and have an average size of 1.5 rom. Hypersthene 

phenocrysts are commonly euhedral and have an average size of 1 rom. 



'igure 5.7 : 

rure 5.8 

Pyroxene andesite, megaphenocrysts of clinopyroxene (Cpx) commonly form 
aggregates and rarely contain plagioclase (p) and orthopyroxene (Opx) 
inclusions; (VUWN 31156, XPL ] ) 

The greywacke consists of crystals of quartz and feldspar with minor 
hornblende, biotite and accessory sphene. (VUWN 31181, XPL x]O) 
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Augite phenocrysts occur as euhedral microphenocrysts and larger euhedral to subhedral 

phenocrysts which have an average diameter of 2 mm. The pyroxene phenocrysts 

commonly occur in aggregates with rare magnetite inclusions. Modal analysis of a 

plagioclase-pyroxene andesite is presented in Table 5.1. 

5.4.3 Pyro~enL@4~~11f! 

The rock has a porphyritic texture with phenocrysts of pyroxene, plagioclase and 

accessory magnetite. Pyroxene phenocrysts predominate over plagioclase phenocrysts 

(porphyritic pyroxene ratio of about 600/0) The phenocrysts make up about 30% of the 

rock and are set in a microcrystalline and glassy ground mass. The rock is moderately 

hydrothermally altered. 

Clinopyroxene phenocrysts are more abundant than orthopyroxenes. They are 

commonly subhedral, have an average size of 1 mm; generally bigger than plagioclase 

phenocrysts (Fig 5.7). Orthopyroxene phenocrysts occur as subhedral crystals with an 

average size of 0.5 mm and are rarely replaced by granular magnetite. The pyroxene 

phenocrysts commonly occur in aggregates with plagioclase and rare magnetite and olivine. 

Plagioclase phenocrysts (labradorite-bytownite) are euhedral-subhedral, have an average 

size of 0.7 mm and show oscillatory and patchy zoning, with rare glass, pyroxene and 

titanomagnetite inclusions. 

5.4.4 Olivine andesite 

The olivine andesites have a seriate porphyritic texture with phenocrysts of 

plagioclase, augite, hypersthene, olivine (in order of decreasing abundance) and accessory 

magnetite. The phenocrysts make about 40% of the rock and are set in a fine-grained and 

glassy groundmass. 

Plagioclase (labradorite-bytownite) phenocrysts are euhedral to subhedral < 1 mm in 

size and show oscilliatory and patchy zoning. Augite phenocrysts are commonly euhedral 

to subhedral and occur as glomerophenocrysts and microphenocrysts. Maximum size of the 

augite phenocrysts is 2 mm. Hypersthene phenocrysts are commonly euhedral and have an 

average size of 1 mm and are rarely replaced by granular magnetite. 
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Olivine phenocrysts are commonly anhedral, cracked and altered to a red brown 

iddingsite-smectite mixture along the cracks. The phenocrysts have an average size of 1.5 

rom; and have a reaction coronna of orthopyroxene. Smaller crystals of olivine are found 

in the phenocryst aggregates with pyroxene and plagioclase. 

5.5 IGNIMBRITES 

Welded ignimbrites constitute a minor proportion of the Ethics studied in the ground 

layer and the inclusions in other members of Taupo Pumice Formation. Two types of 

ignimbrites can be distinguished: 

Type 1: Lithic crystal rich ignimbrite 

Type 2: Crystal rich ignimbrite (Whakamaru Group type ignimbrite) 

Type 1 ignimbrite is the most abundant type, while Type 2 is rare and only occurs 

as lapilli sized fragments. Microscopic study of Type 2 ignimbrite shows that it is very 

similar to the crystal rich ignimbrites of the Whakamaru Group (see chapter 3.3). 

5.5.1 Type 1: Uthic crystal rich ignimbrite 

Blocks of Type 1 ignimbrite up to 1.5 m occur in near vent exposures of the ground 

layer. The rock is a light brown to orange coloured, moderately welded, pumiceous lithic 

rich ignimbrite with vitroclastic texture. Crystals of quartz. plagioclase (oligoclase), 

hypersthene and hornblende (in order of decreasing abundance) make up about 25% of the 

rock. Xenoliths of rhyolite, dacite, andesite and rare greywacke pebbles make up about 5% 

of the rock. A representative modal analysis of this type of ignimbrite is given in Table 

5.1. 

Quartz crystals are frequently corroded and embayed, range from 0.2-2 mm in size 

and make up about 10% of the rock. Sorlic plagioclase crystals make up about 8% of the 

rock. They are up to 2 rom in diameter, commonly broken and rarely show oscillatory 

zoning. Ferromagnesian crystals make up the remaining 7% of the rock and are 

frequently altered to dark brown oxide and clay minerals. Unaltered crystals of 

hypersthene have a subhedral shape and an average size of 0.7 mm. Hornblende crystals 
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are anhedral and have an average size of 0.5 mm. The matrix is light brown pumiceous 

ash, containing accessory magnetite. 

5.5.2 Type 2: Crystal rich iummbrite 

Pale yellow, welded crystal rich ignimbrite, with crystals of sadic plagioclase, quartz, 

hypersthene and hornblende which make up about 45% of the rock. Crystals of 

plagioclase make up about 25% of the rock and are commonly broken and show 

oscillatory zoning. Quartz crystals are corroded, fractured and rarely embayed, have an 

average size of 2 mm and makeup about 15% of the rock. Euhedral to subhedral crystals 

of hypersthene (average size 1 mm) make up about 5% of the rock and are frequently 

altered to chlorite. Small amounts of brown hornblende and biotite are found which 

commonly are < 0.5 mm in size. Lithic fragments up to 2 mm in size make up about 

10% of the rock, The matrix is pale yellow ash which contains accessory magnetite. 

5.6 NON VOLCANIC ROCK TYPES 

5.6.1 Lake Sediments 

Lake sediment boulders up to 1 m in diameter are found in near vent exposures of 

the ground layer. The lake sediments are commonly light grey to pale brown or pink 

pumiceous sandstones and siltstones with abundant quartz, rhyolite lapilli, and rounded 

pebbles of greywacke. 

5.6.2 Greywacke 

These rocks are greenish to dark grey. dense meta-sandstones and consist of 

quartzo-feldspathic, poorly sorted coarse to fine sand. The greywacke occurs as subrounded 

to rounded pebbles in the ground layer (Fig 5.S). 

Microscopic study shows that the rocks consist of angular to sub-rounded grains of 

plagioclase which constitute about 50% of the rock. The plagioclase is mainly 

albitH>ligioclase and frequently shows polysynthetic tWinning. Alkali feldspars (orthoclase 

and microcline) occur in subordinate amounts compared to the plagioclase grains. 
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constituting approximately 20% of the total feldspars. Both plagioclase and alkali feldspars 

are commonly altered to illite. 

Quartz constitutes about 35% of the rock and occurs as subrounded grains and 

frequently shows undulose extinction. 

Ferromagnesian minerals constitute about 5% of the rock and are mainly biotite and 

rare hornblende and accessory opaque oxides. Biotite grains are usually deformed and bent 

around more competent minerals, suggesting that the biotites are primary features of 

sedimentation and not post-depositional authigenic minerals. Lithic fragments are rare (less 

than 5%) and are of igneous, metamorphic and sedimentary origin. A matrix of fine 

grained intergranular clay minerals (mainly chlorite which is frequently altered to brown 

oxides) makes up to 100/0 of the rock. 



Chapter VI 

MINERAL CHEMISTRY OF LlTHIC BLOCKS 

6.1 INTROWCTION 

Major rock forming minerals in polished thin sections cut from seven selected rock 

samples from the inclusions in the Taupo Pumice Formation (four andesites, two dacites 

and two rhyolites) were analysed using the JXA-733 electron probe microanalyzer 

(EPMA) in the Research School of Earth Sciences (Victoria University of Wellington). 

Analytical procedures on the EPMA are described in Appendix 3. Mineral chemistry on 

some selected rock samples was studied to undehand the differences in element 

distribution in similar mineral species in the rhyolites, dacites and andesites described in 

chapter 5 which is also reflected in the wholerock chemistry of the analysed lithic blocks 

from the ground layer. 

6.2 OLIVINE 

Olivine occurs as fractured and partially resorbed phenocrysts, rarely enclosed by 

either hypersthene or augite in some andesites and rarely as altered microphenocrysts in 

the dacites. Phenocryst cores are unaltered, but the rims and fractures are partly replaced 

by a brown alteration product, possibly an iddingsite-smectite mixture (Fig 6.1). Some 

olivine crystals contain chrome spinel inclusions. 

Olivine compositions in the andesites range from FO
s22 

to FO
s84 

(Table 6.1). 

Fragmented grains are generally chemically homogeneous. but a slightly higher Fo content 

is shown by most analysed cores. 

MnO content varies from 0.18 to 0.26 wt%, and a negative correlation exists between 

wt% NiO and (mol %) Fa which is consistent with observations made by Nishimura et al. 

(1968) and Simkin and Smith (1970). 

- 77 -



Figure 6.1 

igure 6.2 

Fractured olivine phenocryst, the fractures are filled with an iddingsite­
smectite alteration product. Phenocryst rims have a reaction corona of 
orthopyroxene. (Olivine bearing andesite VUWN 31157, XPL xl O) 

Hypersthene phenocryst is rimmed by pigeonite in pyroxene-andesite this is 
among the evidence of magma mixing in the andesites. (VUWN 31157, XPL 
xlO) 

78 
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Table 6.1 : Electron microprobe analyses of olivines from the lithic blocks in the Taupo 

Pumice Formation. 

VUW 31151 
Sample 1/4 

(1) (2) (3) (4) (5) (6) 
ec) (It) (It) (C) (C) (R) 

-----------

Si02 39.80 38.75 39.40 39.63 41.07 39.23 
Ti02 
Al20 3 0.08 0.07 
FeO· 12.99 15.95 15.33 13.06 11.43 16.78 
MnO 0.2 0.23 0.26 0.23 0.18 0.24 
MgO 46.80 43.56 43.97 45.97 47.82 43.46 
CaO 0.11 0.11 0.10 0.15 0.16 0.09 

Na20 
K20 
NiO 0.30 0.31 0.27 0.19 

Total 100.20 98.99 99.33 99.04 100.92 99.80 

*Total iron as FeO 

A tomic Proportions, 0 = 4 

Si 0.990 0.989 0.999 0.996 0.995 0.995 
Ti 0.002 
Al 
Fe 0.270 0.341 0.325 0.274 0.232 0.356 
Mn 0.004 0.005 0.006 0.005 0.004 0.005 
Mg 1.735 1.658 1.662 1.722 1.763 1.644 
Ca 0.003 0.003 0.003 0.004 0.004 0.002 
Na 
K 
Ni 0.006 0.006 0.006 0.004 0.002 

Total 3.008 3.004 3.001 3.001 3.002 3.004 

M; Fe 
Fe+Mg 0.135 0.170 0.164 0.137 0.116 0.178 

En 13.5 17.1 16.4 13.7 11.6 17.8 
Fs 86.5 82.9 83.6 86.3 88.4 82.2 

Olivine andesite (1-6) 
(C)= phenocryst core; (R)=phenocryst rim 
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Ca content varies from 0.09 to 0.16 wt% and is slightly higher in the more Fe-rich 

olivines. Simkin and Smith (1970) suggested that extrusive olivines have > 0.10 wt% 

CaO as opposed to plutonic olivines which have < 0.10 wt% CaO. Initial Ca content, 

however is dependent upon the silica activity of the magma (Stormer, 1973) and this 

dependence may explain the low CaO content of the analysed olivines. The 

iddingsite-smectite mixture probably results from a hydrothermal reaction with water 

present in the system (Deer et al. 1966). 

Textural evidence indicates that olivine was an early and relatively minor phase in 

the andesites. Partial resorption of olivine phenocrysts and their occurrence only within 

andesites suggests that they are preserved as a relict of an earlier crystallisation 

environment. Hackett (1985) has suggested that coexistence with orthopyroxenes, presence 

of corroded olivines with orthopyroxene coronas, and the occurrence of chrome spinel 

inclusions in andesites all indicate that the olivines were xenocrystic and probably 

originated from magma mixing or the entrainment of the crystallisation product of a 

basaltic magma. While low Ni contents (compared with olivine field of Simkin and 

Smith (1970) of 1-4 wt% Ni ) are probably the result of a low Ni content of the 

magma, low Cao contents may be due to low Si activity and are possibly due to post 

formational alteration. 

6.3 PY ROXEN ES 

Both orthopyroxenes and clinopyroxenes are important phenocryst minerals in the 

studied rocks. Orthopyroxenes have a limited compositional range falling between the end 

members Mg
2 

Si
2 

06 and Fe
2 

Si
2 

06 with minor substitutions of other components. 

Clinopyroxenes have a much wider compositional range but are generally Ca-rich lying 

below the CaMgSi
2 

06 to CaFeSi
2 

06 join. Ca poor clinopyroxene (pigeonite) occurs in one 

olivine andesite (VUWN 31157) and in one pyroxene andesite (VUWN 31156), jacketing 

orthopyroxene phenocrysts and as microphenocrysts (Fig 6.2). 
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Table 6.2 Electron' microprobe analyses of orthopyroxenes from the lithic blocks in the Taupo 
Pumice Formation. 

vuw 
Solple 

31." 
4/tl 

(t) (1) 

31129 
118/3 

(3) (4) (5) (6) 

31155 31146 
4/1 lIM14 

(1) (a) (9) (10) (1 t) (tl) 
(e) (ll) (e) (ll) (el 

(13) 
(It) 

(t4) 

(C) 

- 31153 
2/9 

(15) (16) 
(I) (C) 

(11) 
(It) 

Ita) 
(e) 

(19) 

(It) 

31156 
2IS 
(20) 
(e) 

-----_._-----_._---------------------_. ------~----~---~------~--------------... ---------------~-----.. -------------
Si02 
Ti02 
AI,ol 
Fe{)" 
MoO 
M,o 
c.o 
H.p 
r..p. 

52.6~ 

11.17 
0.37 

21.11 
1.89 

21.89 
0.9'1 

52-5~ 

0.29 
21.22 

2.03 
21.6() 

0.92 

51.97 

(l.33 
20.93 

2.37 
21.85 

1.35 

~1.4.l 

11.14 
0.59 

26.83 
0.96 

17.59 
1.30 

51.46 
0.24 
0.75 

24.92 
0.69 

19.85 
1.05 

51~C;7 

0.15 
0.48 

27.20 
) .oJ 

18.00 
1.31 

50.41 
0.16 
0.56 

28.12 
1.114 

16.77 
1.24 

53.03 
0.21 
0.86 

19.14 
0-57 

23.20 
1-56 

0.16 

52.27 
0.27 
().81 

19.99 
(J.S! 

23.85 
1.20 

52.10 52 .. 16 
n.29 

0.59 0.64 
20.91 21.11 
0.93 1.02 

21.92 21.97 
1.21 1.06 

52.37 

0.66 
21.10 

1.05 
21.85 

1.07 

53.]9 
0.16 
0.98 

19.28 
0.72 

22.74 
1.38 

52.05 
0.25 
1.37 

19.62 
0.79 

22.37 
1.30 

51."7 
0.30 
2.81 

15.86 
0.45 

24.62 
2.03 

52.55 
n.IS 
1.17 

19.08 
0-55 

23.43 
1.18 

53.27 
(J.l" 
1.79 

16.44 
0.42 

24.67 
0.20 

53.90 
0.11 
0.98 

16.60 
0.44 

:1.6.05 
1.12 

52.59 
0.18 
1.91 

17-57 
0.45 

25.37 
1.14 
().QII) 

99.30 Toul 98.86 98-59 98.87 98.84 98.% 99.72 98.36 98.57 99.20 97.82 98.45 
::~~~--~-----------------------------------,L_ _______ _ 98.10 98.65 97.75 98.04 98.14 %.98 99.28 

..,... boD. NO 

Si 
Ti 
AI 
Fe 
Mn 

Ma 
c. 
H. 
r. 

1.985 

0.016 
0.666 
0.061 
1.231 
0.039 

1.991 

0.013 
0.673 
0.065 
1.220 
0.037 

1.971 

om5 
0.664 
0.076 
1.235 
0.055 

A~ I'roportioM. 0 • , 

1.991 
0.004 
0.027 
0.869 
0.032 
l.ot5 
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1.970 
0.007 
0.034 
0.797 
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1.133 
0.043 

1.981 
0.<X14 
0.022 
0.874 
0.0:\3 
lJ)31 
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0,005 
0.026 
0.923 

0.03511 
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0.052 

1.981 
0.006 
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0-598 
om 8 
1.292 
0.062 
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0.008 
Om5 
0.625 
0.026 
].328 
0.048 

Toul 3.998 3.999 4m 6 3.992 3.997 3.999 4.001 3.995 4.022 

Fe 
MrFe 

FMl 

Ma 
Fe 
C. 

11.351 

62.8 

6~.6 

34.4 
2.0 

I'Ml-fM index 

0.355 

61.2 

63.2 
34.9 

1.9 

0.349 

60.8 

63.2 
34.0 

2.8 

0.461 

53.0 

52.4 
44.9 

1.7 

0.413 

58.0 

58.1 
40.8 

1.1 

0.459 

53.2 
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44.6 

:l.8 
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67.1 
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0.005 
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0.040 
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0.0]4 

. 1.420 

0.044 

1.934 
0.005 
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0.014 
1.39] 
0.045 
0.007 

4.004 3.997 3.9% 4J140 3.993 4.000 3.998 3.979 4JlO2 4.019 
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The modal ratio ranges from Cpx = Opx in most of the andesites; to Opx > Cpx in the 

dacites and Opx » Cpx in most of rhyolites. In most of the andesite lava groundmass 

Opx > Cpx. A general increase in plag : pyx and Opx : Cpx ratios with increasing 

SiOz content of bulk rocks is considered to be a result of fractional crystallization while 

aberrant ratios (eg. Cpx » plag or plag » pyx in andesites) are considered to result from 

accidental entrainment of igneous rock fragments from the plutonic enviroment. 

6.3.1 ORTHOPYROXENES 

Orthopyroxenes occur as both a phenocryst phase and a groundmass constituent in 

the andesitic rocks and as a phenocryst phase in the dacite and rhyolites. Orthopyroxene 

analyses from the andesites, dacites and rhyolites show a distinct compositional range. 

Orthopyroxene andesites are bronzite or hypersthene in composition, and most phenocrysts 

have an FM index (=100 Mg/(Mg+Fe+ 2 +Fe+3 +Mn) ranging from 71-81% in most of the 

andesites (Table 6.2). Phenocrysts show a compositional zoning in core rim pairs from 

Mg Fe Ca to Mg Fe Ca and an increase in FM index is observed from 
78.6 17.6 3.11 68.6 27 7 3.7 

core to rim in most of the analysed phenocrysts. 

In the dacites and rhyolites orthopyroxene is hypersthene. It ranges in composition 

from Mg Fe Ca to Mg Fe Ca from core to rim and has an FM m' dex of 
66.3 31.3 2.4 63.5 34.3 2.2 

64-67% in the dacites. In the rhyolites the hypersthene phenocrysts have an FM index of 

50-58% and range in composition from Mg580 Fe408 Ca1.2 to Mg501 Fe,p.2 Ca26 

Cr and Ni occur mainly in Mg rich orthopyroxenes and high contents of Mn are 

found in Fe rich orthopyroxenes in igneous rocks. In most of the analysed orthopyroxenes 

Al is nearly always sufficient to fill the tetrahedral sites with Si and the remaining 

octahedrally coordinated Al is generally less than 1% of the total cations. 
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Of the ions in the orthopyroxenes Si, AI, and Ti show little variation with changing 

FM index, although poorly defined trends suggest an increase in Al and a decrease in Si, 

Ti and Mn with increasing Mg content (Fig 6.4). Cr and Nj are not important in most of 

the orthopyroxenes, being present in cation proportions less than 0.01. 

The orthopyroxene compositions are related to the Mg number of the parent rock. The 

andesitic orthopyroxenes are more magnesian rich than the rhyolitic hypersthenes as would 

be expected. The dacitic orthopyroxenes lie between the andesitic and rhyolitic 

compositions. Ca content in the orthopyroxenes is higher in the andesites and 

progressively decreases in the dacites and rhyolites. It is generally considered that the Ca 

content is related to crystallization temperatures of the individual magmas. 

6.3.2 CLINOPYROXENE 

Clinopyroxenes are both phenocryst and ground mass phases in the andesites and 

commonly contain inclusions of orthopyroxene, plagioclase and magnetite. In the dacites 

clinopyroxene occurs as a phenocryst phase only and is commonly smaller than the 

coexisting orthopyroxene phenocrysts. Rare clinopyroxene nllcrophenocrysts occur in some of 

the rhyolites. 

Clinopyroxenes occur in the andesites as phenocrysts, as glomeroporphyritic aggregates 

and as a groundmass constituent. Subhedral to euhedral clinopyroxene phenocrysts tend to 

be smaller than coexisting hypersthene phenocrysts. In the andesites inclusions of , 

orthopyroxene, plagioclase, magnetite and glass are moderately common, while resorption is 

rare. In the dacites, clinopyroxene occurs as euhedral-subhedral phenocrysts commonly 

smaller in size than the orthopyroxene phenocrysts and forming aggregates. Rare 

clinopyroxene phenocrysts commonly less than 0.5 rom in size are found in some of the 

rhyolites. 

Most clinopyroxenes are augites although in the andesites some have endiopside cores 

with an augite rim. Phenocrysts generally show a normal trend of iron enrichment 

ranging from Mg
49

.4 Feu CaUB to Mg4e1 Fe,B.7 Ca41 .
2 

from core to rim in the andesites. 

A verage composition in the dacites is about Mg Fe Ca and about 
41.5 14.7 34.3 

Mg
572 

FeB.
5 

Ca
343 

in the rhyolites. 
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Si content of the clinopyroxenes varies inversely with Ti and Al and increases with 

increasing Mg content (Fig 6.5). In most of the clinopyroxenes analysed, AI is less than 

0.1 ions per formula unit. When the amount of Si is not enough to fill the Z site, Al is 

assigned into the tetrahedral site. In most analysed clinopyroxenes Si and Al are sufficient 

to fi11 in the tetrahedral sites, and the remaining octahedral1y coordinated Al is generally 

less than 1% of the total cations. 

Ca shows no definite relationship with Mg content of the clinopyroxenes. Mn and Na 

are the only minor elements of any importance and are inversely proportional to the 

amount of Mg. Cr 1S important only in clinopyroxenes of the pyroxene and olivine 

andesites, and shows a marked preference for high Mg cores. These compositions are 

explained by Seward (1971) as due to high octahedral site preference of Cr. 

Most of the analysed clinopyroxenes are smoothly and normally zoned and lack 

zonation reversals or overgrowths, which are attributed to magma mixing. All of the 

analysed pyroxenes in the andesites, dacites and rhyolites show a limited MglFe 

compositional range similar to that of the andesites and dacites of the Tongariro Volcanic 

Centre which was considered to result from the weak iron enrichment trend of orogenic 

andesites (Hackett, 1985). Fig 6.3 shows coexisting orthopyroxene and clinopyroxene pairs 

in the andesites and dacites. It is interesting to note that most of the more basic rocks 

have comparatively Mg rich clino and orthopyroxene pairs. Pyroxenes in the dacites have 

the least Mg content. A more important relationship about the Mg-Fe distribution between 

coexisting orthopyroxene and clinopyroxene pairs during crystallization can also be 

observed on this diagram. Mg is preferentially taken into the clinopyroxenes whereas Fe is 

enriched in the orthopyroxenes. AI, Ti, and Na are enriched in the clinopyroxenes, while 

Mn is enriched in the orthopyroxenes. This observation is in agreement with those of De 

Vore (1957) and Fleet (1974), who found similar element partitioning between 

orthopyroxene and clinopyroxene. 
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6.4 HORNBLENDE 

In the andesites, euhedral to subhedral crystals (up to 3 mm in size) are strongly 

pleochroic, and highly oxidized with small iron oxide crystals concentrated along cleavage 

traces, internal fractures and outer rims (Fig 5.5). Rare hornblende crystals are found in 

some of the dacites where they are 0.3-0.5 mm in size. In the hornblende rhyolites 

hornblende phenocrysts are 1-1.5 mm in size and occur in more than accessory amounts. 

The compositions of hornblendes analysed from VUWN 31153 are presented on Table 

6.4. According to the classification of amphiboles proposed by Leake (1978), the analysed 

hornblende compositions approach that of pargasite - ferrohastingsite, with an A site 

occupancy of 50-60% and Fe:Mg ratios averaging 1 :2. An ideal formula for paragasite is 

NaCa2 Mg
4 

Al Si
6 

022 (OH)z Comparision of the analysed hornblendes with the ideal 

formula shows that they are deficient in AI and have undergone significant Mg-Fe2+ 

substitution. The amount of Ti present is considerable and accounts for the dark brown 

colouration. No significant chemical variation between the core and rim of the 

hornblende phenocrysts was observed. 

Presence of amphiboles in volcanic rocks shows the relatively high degree of water 

saturation in the magma and with it a related high f0
2 

(HeItz, 1973). The low Al 

content suggests crystallization at relatively low pressure (Leake, 1973). 

6.5 BIOTITE 

Biotite occurs as phenocrysts of about 0.5mm in diameter and microphenocryst 

aggregates in the biotite-bearing rhyolites and in the hornblende-hypersthene rhyolites as 

an accessory phase. The biotite is brown and strongly pleochroic from light brown to 

dark brown. Biotite analyses are presented in Table 6.5. In most, the Mg:Fe ratio is nearly 

2:1. The sum of Si and AI is usually sufficient to fill the tetrahedral position, with an 

excess Al of about 0.15 mol% going to the octahedral positions. Other cations include Ti 

and Mn which substitute for Fe and Mg. 



Table 6.4 : E1ectl'OO m~ ...,.. or hornblende from the lithic blocks in the Taupo Table 6.5 : Electron microprobe Ill8lyM11 or lIiotiU from the lithic blocks In the T."JlO ~ 
Pumice Permation. FOl1ll8tion. 

"'"' 31153 VUW 31139 ...... 219 Sample 4/12 
(J) (2) (3) (4) (5) (t) (:0 (3) 

1t02 0.48 0.7n 0.85 0.71 42.6 44.5l SI02 41.54 40.511 38.86 
no2 1.94 l.n 2.OJ 20ll 1.94 2.U TI02 1.19 1.36 1.53 

A~ 1J.()4 10.75 11.33 11.30 10.78 11.07 
AI.f.3 10.11 10.35 10.00 

F • 11.76 11.34 11.13 J1.95 Uol7 12.35 F • 15.32 13.37 14.21 
MaO 0.16 0.16 0.14 0.26 MIlO OA7 0.33 OAO 
MiO 14.17 Il.I3 14.39 14.13 13.97 14,A5 MaO 15.60 14.62 14.97 
ClIO 11m 11.oJ 11.()4 11.31 11.05 JI.07 ClIO 0.10 0.28 0.09 
Nap 2.12 2.02 2.19 2.32 2.11 2.l9 N.p 0.77 1.10 0.49 
Kp 0.l2 O.2S o.J8 0.l9 0.32 0.31 Kp 7.26 7.54 8.47 

T..a 95.91 93.92 95.41 96.l3 95.18 9IM Total 92.36 89A5 89m 

-Total m. .. p.p *Total iron II FeO 

A ..... 1'ropanioM. (0).23 A .............. (O).D 

Ii 6..411 6A81 6A04 6.360 6..4lS 6.466 51 6.J03 6.329 6.115 
n 0.217 O.2lS 0.216 0.l48 0.219 0.231 Ti 0.136 0.161 0.183 
AI 1.931 1.923 U95 1.983 1.917 U95 AI U07 1.907 U16 
Fe 1..463 lA39 1.392 lA8I 1.548 1.500 Fe 1.944 1.145 U92 ... ·.0.019 o.mo 0.018 0.032 MIl 0.061 0D44 0.053 
Nt 3.142 3.131 3.lO6 3.138 3.142 3.127 MI 3.530 3A06 3.5S3 
Ca I.1S1 1.'794 1.161 1.1106 1.115 1.15.- C. 0.016 0.048 MIS 
Na' 0.611 0.593 0.635 o.Ml 0.618 o.M3 Na 0.226 0.334 0.152 
K 0.041 0.048 0.012 0.056 0.062 0.()56 K 1.468 1.503 1.719 

T..a 15.658 15.648 15.718 15.720 15.734 15.704 Total IS.491 15.477 15.628 

F. Fe ....... 0.318 O.3IS 0~'O3 0.322 0.330 0.324 Ma+Fe 0.355 0.339 0""'7 

-. .............. (1-5) Bioti .. • IleuiJl.I rh'JOli" (1-3) 

~ 



Table 6.6 : Electron microprobe analyses of plagioclase from the lithic blocks in the Taupo 
Pumice Formation. 

V\JW 
Sample 

Si02 
Ti02 
Al~) F.o· 
MaO 
MaO 
CliO 
Nap 
Xp 

TO\al 

31139 
41ll 

Cl) 

Ie) 
(2) 

(M) 
(3) 
II) 

W 
ee) 

59~'W S&.70 59.83 58.76 

26.OS 26.12 26.07 26.25 
0.J3 0.2!J o.l9 0.26 

8.16 8.60 7.78 8.<43 
7.03 6.34 7.22 6.83 
0.29 0.23 0.36 0.21 

(5) 
1M) 

(6) 
(I) 

31129 
IN3 

(7) 
(e) 

II) 
(Mil 

191 
(M2) 

59.71> 60.51 55.b6 55.91 56.28 
0.01 

25.59 25.58 26.87 26.81> 26.66 
0.26 o.l2 0.38 0.33 0.33 

7.89 7.67 9.81> 10.05 9.76 
7.09 7.05 5.87 5.66 5.77 
0.45 0.64 0.19 0.19 0.27 

101.20 100.19 101.55 100.74 IOJ.04 101.68 99.02 99.12 99.11 

rrGlal ifOa • no 

Si 
Ti 
AI 
Fe 
MIa 

.sa 
Ca 
Na 
K 

Atoa.ic: Proportioaa, 0 • 31 

10.so1 10..477 10.542 10.541 10.584 10.635 10.135 

5..434 5.495 5.414 5.so2 5.342 5.299 5.766 
Q.049 0.029 0,042 0.038 O.oJ8 0.033 0.058 

0.021 
1.547 1.645 1..468 1.604 1.497 1.439 1.924 
2.413 2.195 2.468 2.355 2.434 2.401 2.073 
O.0b6 0.053 0.081 0.048 0.102 0.144 0.044 

10.160 

5.753 
0.050 

0.008 
1.957 
1.995 
0.043 

10.219 

5.702 
0.G50 

0.011 
1.898 
2.031 
0.059. 

(10) 
(I) 

55.36 

28.13 
0.37 

10.82 
s.so 
0.17 

100..47 

9.956 

5.963 
0.055 

0.005 
2.085 
1.919 
0.043 

31129 
IN3 

(U) 

IMP) 

31155 
1/4 
(ll) 

Ie) 
(13) 
ut) 

(14) 
Ie) 

31146 
- 1IM!4 

OS) (J6) 
(I) (e) 

(17) 

(td) 
(18) 

(I) 
(19) 

(e) ------------_ .. - ... - ... _----
6().01 52.79 52.85 45.75 

24.70 29.29 29.56 33.98 
0.22 0.51 0.32 0.51 

6.87 12..49 1l.76 17.08 
7.17 4.57 4.83 1.74 
0.32 0.11 0.13 

99.29 99.76 99..45 99.06 

10.754 

5.217 
0.333 

1.318 
2.493 
0.074 

9.616 

6.287 
0.078 

2..437 
1.614 
0.026 

9.621 

6.342 
0.049 

2.294 
1.703 
0.030 

8.511 

7..452 
0.079 

3A05 
0.628 

54.82 

26.91 
0.48 

10.87 
5.34 
0,09 

50.52 :'\1.03 52.50 54..46 

:\(1.94 :\().36 29.22 28.12 
0.47 0.48 0..49 0.4 7 

OJ)/) 0.G4 M6 
13.86 14.03 12.14 11AO 

3.43 3.64 4..47 4.93 
0.13 M6 j),10 0.15 

98.51 99.41 99.64 99.02 99.59 

IQ.041 

5.810 
0.074 

2.133 
1.897 
Om5 

9.252 

6.679 
0.072 

0.017 
2.720 
1.218 
0·030 

9.338 

6.548 
0.074 

0.011 
2.751 
1.292 
0.014 

9.6]6 

6.308 
0.0'15 

0.011 
2A02 
J.589 
0.024 

9.882 

6.013 
0.072 

0.017 
2.116 
1.734 
0.034 

(20) 

Uti 

52.52 

n.l)/) 

0.42 

0.05 
12.17 
4.54 
0.12 

97.88 

9.73] 

6.127 
0.tl64 

0.014 
2..416 
1.632 
0.025 

Total 20.1110 19.894 20.015 20.088 19.997 19.951 2O.ol1 19.966 19.970 20.026 20.189 20.058 20.039 20.075 )9.970 19.988 20.028 20.025 J9.968 20.009 

mole .. 
Aa 
Ab 
Or 

38.5 
59.9 

1.6 

42.2 
56.4 

1.4 

36.6 
61.4 

l.() 

40.1 
58.8 

1.2 

37.1 
60.4 

2.5 

Biotite Bearing Rhyolite (l-o~ liypenthene Rhylitt 
(e).. Phenocryst COR (M)..Phenocryst middle 
(PA~ryst .&aRiltt (MP)..microphenocryst 

36.1 
60.3 

3.6 

47.6 
51.3 

1.1 

(7-lll 
(R)..Pbenocryst rim 

(GM)..Ground_ 

49.0 
50.0 

J.() 

47.6 
5t.o 

1.4 

51.5 
47.4 

1.1 

33.9 
64.2 

1.9 

59.8 
39.6 

0.6 

Two pyroxtne dacite (12·15) 
Two pyroxene dacite C16-20) 

57.0 
42 . .3 
0.7 

84.4 
16.6 

52.7 
46.9 
0.4 

68.5 
30.7 

11.8 

67.9 
31.8 
O~l 

59.9 
39.6 
0.5 

55.6 
43.5 

0.9 

59 .. l 
4(1.1 
0.6 

~ 



Table 6.6 : Electron microprobe analyses of plagioclase from the lithic blocks in the Taupo 
Pumice Formation (continued). 

VlJW 3tl$6 
SuDple III 

(21) 

(C) 
(U) 
(M) 

(23) 
(JI) 

(U) 
(C) 

(lS) 

(M) 

31153 
119 

(26) (11) (11) (19) 
(II Ie> (Mt) (M2) 

-----------------------_ .... -
$i02 
Ti02 
AJ~3 
FlO' 
MIlO 

MaO 
c.o 
Na,o 
K,o 

47-25 51.93 51.81 5t.1l7 

31.11 28.19 28.66 30.30 
0.54 0.55 0.15 0.71 

om 0-11 0.15 0.09 
16.99 13-47 13.67 14.34 
1-96 4.02 3.97 2.99 
0.09 0-19 0.15 

48.06 49.32 

32.94 JO.o 7 
0.53 0.82 

0.13 
16.87 15-17 
223 2.82 

5.lA4 54.33 

211.51 27.89 
0.43 0.46 

0.04 0.07 
11.55 10.91 

4.96 5.18 
0.15 0-23 

52.67 

29.06 
0.39 

0.06 
12.32 
4.68 
0.19 

Total 99.01 99.16 99-26 99.57 100.63 98.93 99.08 99.07 99.31 

"'_1 iftlll .. ~ 

Si 
Ti 
AI 
Fe 
MJa 
Ma 
Ca 
N. 
K 

8.191 

1-<l41 
0.083 

0-020 

3.386 
0.706 
0.Q20 

9S44 

5.981 
o.oos 

0-030 
2.652 
1.430 

0-043 

9.537 

6.218 
0.131 

0.040 
2.696 
1.416 
O.oJ5 

Atoak Proportiou. 0 • 32 

9.344 

6.533 
0-120 

0-026 

2.811 
1.059 
0.020 

8.782 

7JJ95 
0.081 

0.Q04 
3.303 
0.789 

9.126 

6.688 
0.126 

0.036 
2.009 
1.013 
0.019 

9.909 

5.995 
0.069 

0.QI8 
2.132 
1.831 
0.053 

9.772 

6.144 
0.066 

O.QII 
2-263 
1.758 
0.035 

9.621 

6.257 
0.059 

O.ot5 
2.411 
1.659 
0.045 

3lt53 
1/9 

(30) (31) 
(M3) (It) 

55.20 5:UO 
0.14 

27.35 28.14 
0.39 0-48 

0.07 0.07 
1027 11.64 

5.57 4.97 
0-21 

(31) 
(e) 

(33) 
(It) 

(34) 
(el 

541.13 54.11 48.82 

3).01 29 .. "l() 31.02 
0-48 0.38 0.50 

14.78 12.16 15.SO 
3.36 4.70 2.88 
0.11 0.19 0'(J9 

9 •. 99 98.61 99.93 100.84 99.41 

10.042 9.772 9.177 9.724 
0.019 
'5.863 6.103 6.703 6.201 
0.059 0.073 0.073 0.057 

0.Ql8 om 5 0.Ql 0 
2.002 2.295 2.899 2.342 
1.965 1.773 1.193 1.638 
0.028 0.050 0.026 0.044 

8.998 

6.869 
0.078 

0.019 
3.061 
1.029 
0.020 

31151 
)/4 

(35) (36) (31) (31) (39) 

(I) (e) (MIl (II (PAl 

52.25 45.81 41.01 46.15 47.57 

29.80 32.56 .l.l.54 34-25 ,).l.85 
0.56 0.02 n.74 0.79 0.84 

13-24 17.30 17.35 11.78 17.01 
4.08 1.63 1.15 J .75 1.61 
0.16 0.06 om 

100.09 98.04 100.48 101.32 100-94 

9-49S 

6.382 
0-008 

0.017 
2.578 
1.438 
0.036 

8.634 

1-221 
Om8 

3.489 
0.594 
0.014 

8.623 8.5l1 

7-2SO 7.358 
0.114 O-J2O 

3-409 JA72 
0.622 Q.618 
0.020 

8.672 

7.275 
0.128 

3...U3 
0.587 
0-011 

(40) 

(MP) 

47.56 

32.84 
0.3b 

17m 
2.07 

99.15 

8.757 

1.126 
0-055 

3.357 
0.738 
0-010 

Total 20.047 19.685 20.Q73 19.914 20.Q54 19.021 20 .. 007 20.049 20.067 19.996 20.08l 20'()81 20.012 20.074 19.954 20.050 20.038 20.090 19.993 19.319 

aole .. 
All 
Ab 
Or 

82.4 
17-2 
0.5 

64.3 
34.1 

J.O 

PynqeM andesite (21-26) 
Hornblende andesite (27-30) 

65.0 
342 
0.8 

72.3 
27-2 
0.5 

SO.7 
19.3 

74.5 
25.1 
0.4 

55.8 
43.3 
U.8 

5.1.1 
45.6 

1.3 

58.6 
40.3 

1.1 

SO. I 
49.2 

0.7 

55.7 
43.1 
12 

7U,4 

29.0 
0.6 

Hornblende andesite (31·35); 
Olivine andf$ite (36-40) 
(C)..phenocry't core; 
(MP )..microphenocrylt; 

58.2 
40.? 
).(J9 

74.5 
25.0 
0.5 

63.6 
35.5 
0.8 

(M)..l'henocryst middle 
(I' A )..pbenocrystallrqate 

85-2 
14.5 
0.3 

84-2 
15.4 
u.s 

84.9 
15.1 

84.7 
15.0 
O~l 

.1.8 
18.0 
0-2 

\C) .... 
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6.6 PLAGIOCLASE 

Plagioclase is the dominant phenocryst and groundmass mineral in the andesites, and 

a dominant phenocryst phase in the dacites and rhyolites. Plagioclase analyses from 

selected rock samples are presented in Table 6.6. Plagioclase compositions are calculated in 

terms of percentage Ab-An-Or and are plotted on Fig 6.6. Plagioclase is often complexly 

zoned, nearly always oscillatory zoned, and in most analysed phenocrysts a general trend 

of normal zoning is superimposed on their outer rims. Plagioclase rim compositions are 

similar to groundmass plagioclase compositions. Inclusions of glass, titanomagnetite, 

pyroxene and tabular apatite are common. 

Plagioclase phenocryst compositions in the andesites usually have a composition of 

An
65

_
82 

with phenocryst cores commonly having the highest anorthite content. Only one 

hornblende andesite has plagioclase phenocrysts which are dominantly labradorite 

(An
53

_
70 

). Plagioclase phenocrysts in the dacites are generally labradorite (An
5Z

_
69 

), 

while those of the rhyolites are andesine (An
33

_
50 

). 

K2 0 contents in all the plagioclases are low (less than 0.2 wt%). Calculated %Or 

in the andesites and dacites is unifomly < 1%; whereas it is 1-2% in the rhyolites. 

FeO content in the plagioclase is moderately high (0.22-0.8 wt%), while Mg and Ti 

are also present as minor components. In general, FeO increases and K2 0 decreases with 

increasing An content (Fig 6.7). Mg is very low or below the detection limit of the 

analysis in the sadic plagioclase and does not show any distinct trend with increasing An 

mol%, however a poorly defined trend shows an increase in the An molecular percent. 

MgO is more dependent on the bulk compositions of the rock from which the plagioclase 

has crystallized. Fe in plagioclase exists as both divalent and trivalent ions, with most of 

the Fe3
+ substituting for Si in the tetrahedral site, as may also be the case for Ti 

(Smith, 1977). 

The plagioclase phenocrysts analyzed are more calcic than the corresponding normative 

feldspars of bulk rocks, which suggests that potassium and to a lesser extent sodium are 

concentrated in finely crystalline to glassy matrices. Plagioclase is often complexly zoned, 

and nearly always oscilliatory zoned. 



Ab Ab 

Figure 6.6 
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Ab Or 

Mole% of Or, Ab, and An in analyzed plagioclase m the rhyolites (1), 
dacites (2) and andesites 0). 
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Thus the textural feature of the plagioclase shows that they have crystallized in a closed 

system, together with pyroxene and oxides from the melt whose residue comprises the 

ground mass, with a variety of evidences for thermal and compositional disequilibrium in 

the course of this crystallization (cL reverse zoning, seive texture etc.). Partial alteration 

of plagioclase cores, evident in some samples, may be due to sudden pressure change at 

the time of the eruption creating a disequilibrium between phenocrysts and the 

surrounding liquid. 

Plagioclase is the most important feldspar in volcanic rocks of the calk-alkaline series 

and in particular in the volcanic rocks of the TVZ. Rare alkali feldspar phenocrysts are 

found in some of the rhyolite lava and ignimbrite inclusions in the Taupo Pumice 

Formation. 

6.7 QU AKI'Z 

Quartz occurs as a phenocryst mineral in most of the rhyolites, ignimbrites, and some 

of the dacites and is commonly resorbed and/or embayed. Microscopic tridymite prisms 

occur as linings to shear cavities in some of the rhyolite, dacite, and andesite lava flows. 

Tridymite is formed from vapour phase crystallization. 

The amount of quartz phenocrysts correlates with the abundance of plagioclase 

phenocrysts and total phenocryst content in the rhyolites of the TVZ (Ewart, 1968). The 

three ferromagnesian assemblages were statistically correlated with both total phenocryst 

content and modal plagioclase to quartz ratio. The hypersthene and hypersthene hornblende 

rhyolites are low in quartz and the majority are quartz free. The biotite-bearing rhyolites 

contain the highest phenocryst content and commonly contain quartz phenocrysts. This 

indicates that the biotite-bearing rhyolites were formed at a comparatively low 

temprature. Quartz crystals in the dacites could be xenocrysts. 



Table 6.7 : E~fOII mlc:roprobe analyaes of magnetite from the lithic blocks in the Taupo Table 6.7 : (continued) Electron microprobe analy .. s of ilmenite and chrome-spinel from the 
Pumice Formation. 

lithic blocks. 

------_. 
VUW 31139 311. 31153 

VUW 31129 31139 31157 Saaple 4/11 tIM/4 219 
SlIm ph: lIB/31 4/11 4/1 HI t:U (3) W (5) (6) (ll (2) (3) (4) (5) 

~--------------------------------

1102 0.12 0.14 0.16 2 .. n 11.09 
S102 0.10 TIO, J6.57 111.61 8.9CJ WAil .1.76 0.67 TI02 49.54 4'1.m 4:'i.20 4u.20 0.5'1 Alp, 1.% 2.55 2.62 2.65 .1.39 .1-";.1 
A1 20 J 0.9.1 0.95 7.1:\ FeO" 69.75 75.13 76.57 76.04 72.88 80.24 FeO" 46.8 48.36 50.51 4950 26.67 MaO 1.09 0.42 U.33 1l.35 
MnO 0.88 0.77 J.03 1.10 MtO 0.51 1.24 1.65 1.66 1.88 1.54 
MtO 1.27 1.30 1.32 1.55 8.25 CaO 0.78 
CaO Nap 
Na20 kp 
kp Crp, 0.22 
Crpl 54.89 

Total 89.88 90.07 90.30 91.26 85.39 86.07 
Total 98.49 99.44 98.99 99.30 97.54 

"Total iron .. FeO 
"Total iron as FeO 

Atcaic ProportjOIU, (0).31 
Atomic Proportiou, (0).6 

Ii 0043 o.osc M59 0.917 0.036 
Sl 0.005 Ti 4.492 2.97. 2.537 2.875 1.109 0.205 
Ti 1.917 1.889 ].778 1.799 0.020 AI 0.835 1.123 1.159 1.147 1.568 1.729 
AI 0.057 0.056 0.044 F. 21.030 23.454 24.006 23.381 24.011 27.880 
Fe 2.015 2.073 2.209 2.134 1.179 M. 0.330 0.132 1.105 0.112 0.02] 0.953 
Mn 0.038 0.033 0.046 O.(l48 0,(104 MI 0.27 0.687 0.992 0.912 1.009 
Mg 0.097 0.099 0,]03 0.119 O.lI50 C- 0.331 
Ca Na 

k Na 
Ie Cr Q.064 
Cr 2.294 

Total 26.957 28.417 28.853 28.486 29.030 28.803 
Total 4.067 Hl9-l 4.193 4.156 4.196 ------------. ,.. -----~------------------.------------------------~ 

Fe Me+", 0.987 0.972 0.%3 0.962 0.956 0.%7 
Mg+Fc 0.954 0.954 0.955 0.947 O.M4 

Biotite .... rilll rhyolite It) Hyperathclle dacite (2-<4) 
Hypersthene rhYolite (1.2) Biotite bearing rhyolite (3,4) ~ Hor.bl.alle alldaeite (5,6) 
Olivine andealte-Chrome .pincU5) 
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6.8 ACCESSORY MINERALS 

The most common accessory minerals in the lithic inclusions of the Tau}X) Pumice 

Formation are opaque Fe-Ti oxides. Oxide minerals are ubiquitous microphenocrysts in the 

groundmass and inclusions in silicate phenocrysts in the andesites, dacites and rhyolites. 

The three oxides which occur as primary minerals in these rocks are titanomagnetite and 

rare ilmenite and chrome spinel. 

6.8.1 Titanomagnetite 

Iron oxides are found as accessory minerals in the rhyolites, dacites and andesites and 

appear as discrete grains up to 0.7 mm in length, as inclusions in pyroxene and 

plagioclase phenocrysts and as alteration rims around hornblende and rarely pyroxene 

phenocrysts. Iron oxides are commonly concentrated in glomero}X)rphyritic' aggregates of 

hypersthene, augite and occasionally plagioclase and may form symplectic intergrowths 

with pyroxene. 

Iron oxide analyses from the rhyolites, dacites and andesites in selected samples are 

presented in Table 6.7 . The analyses show that most of the iron-oxides are titaniferous 

magnetites (titanomagnetites). The titanomagnetites contain between 5 and 20 wt% 

TiOz with minor substitutions of Si, AI, Mn, Mg, and Cr. In most analyzed samples, 

ilmenite was not found together with titanomagnetite. The stoichiometry of magnetite 

allows up to 33 wt% TiOz in the structure. This together with the rarity of coexisting 

ilmenite in most of the samples reflects the Ti-poor bulk compositions of the host rocks. 

6.8.2 Ilmenite 

Ilmenite occurs as a minor accessory in many volcanic rocks. Ilmenite commonly 

occurs as microphenocrysts in the more acidic members of the rock series. Analyses of 

ilmenite from the rhyolites are presented in Table 6.7. The analysed ilmenite phenocrysts 

contain between 41-49 Wt% TiO/ Ilmenite rarely coexists with titanomagnetite due to Ti 

poor melt compositions, hence the magnetite- ilmenite geothermometer could not be used 

on the rhyolite blocks. 
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6.8.3 Chrome Spinel 

Chrome spinel occurs as microscopic subhedral inclusions in forsteritic olivines of 

olivine bearing andesites. One analysis of chrome spinel in an olivine is presented in 

Table 6.7. Hackett (1985) has described chrome spinel inclusions from the olivine 

andesites of the Tongariro Volcanic Centre which are TiOz -FeO-Fe
2 

03 poor and rich in 

Crz 0
3 

-MgO-Al z 03 and have compositions similar to refractory chrome spinels from 

boninites, peridotite nodules, alpine peridotites and layered basic intrusions. 

6.8.1 Apatite 

Apatite is a common accessory mineral in the rhyolites, dacites and andesites; and 

commonly forms elongated rectangular crystals. Apatite occurs both in the groundmass 

and as inclusions in plagioclase phenocrysts. 



Chapter Vll 

WHOLE{ji.OCK-CHEMI£TRY OF LITHIC BLOCKS 

7.1 INTRODUCTION 

Major and trace element analyses of 15 rhyolites, 5 dacites and 4 andesite samples 

from the ground layer of the Taupo Ignimbrite are presented in Table 7.1 together with 

the CIPW norms. The petrographic name of all the analysed rocks is given in Appendix 

2. Major and trace element analyses were made using a Siemens SR5-1 automatic X-ray 

spectrometer, analytical procedures are discribed in Appendix 3. 

7.2 NORMATIVE MINERALOGY 

OPW Norms were calculated using a computer program in the Research School of 

Earth Sciences (Victoria University of Wellington) and incorporated all mapr element data 

(Appendix 3). A ratio of 0.2 was taken for FeO : Fez 03 of the total Fe for the norm 

calculations. All norms were recalculated to 100% anhydrous (Table 7.1). All samples are 

oversaturated with respect to silica but considerable variation is apparent within the 

analysed rocks in the proportion of the individual normative minerals. 

7.3 CLASSIFICATION 

All analysed rocks are calc-alkaline and fall within the series 

basalt-andesite-dacite-rhyolite. Division within this series is usually based on silica content 

(normalized volatile free basis) using the division of Taylor (1969) and Gill (1981). 

<53% Si0
2 

- basalts 

53-57% SiO z - basic andesites 

57-63% SiOz - acid andesite 

63-67% SiO z - dacite 

>67% SiOz - rhyolite 
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Table 7.1 Representative chemical analyses of lithics from the 
tOO 

Taupo Pumice Formation. 

VUW 31127 31128 31133 31131 31132 31129 31140 31138 31170 31171 31141 31142 
Sample ITI IT2 1/6 IM7 liS IB3 1M3 4/10R 2/11 IBBO IBB2 IBB4 

(1) (2) (3) (4) (S) (6) (7) (8) (9) (10) (11) (12) 

Major Elements 

Si02 74.68 73.98 73.96 74.10 74.90 74.14 73.99 74.33 73.77 74.53 73.21 74.27 
Ti02 0.25 0.28 0.28 0.27 0.22 0.25 0.26 0.24 0.28 0.23 0.28 0.28 
A120 3 ) 3.] 5 13.46 13.46 13.50 13.10 13.62 13.35 13.23 13.30 13.10 13.76 13.48 
Fet)3 0.34 1.96 0.79 0.65 0.21 0.81 0.44 0.45 2.14 0.95 1.39 1.60 
Fe 1.72 0.34 1.45 1.56 1.74 1.27 1.72 1.52 0.24 1.17 0.96 0.79 
MnO 0.09 0.10 0.10 0.10 0.07 0.06 0.07 0.09 0.10 0.09 0.06 0.09 
MgO 0.33 0.38 0.37 0.40 0.27 0.39 0.39 0.27 0.35 0.29 0.48 0.41 
CaO 1.61 1.71 1.73 1.71 1.37 1.96 1.95 1.57 1.61 1.43 2.17 1.66 
Na20 4.48 4.59 4.47 4.61 4.19 4.17 4.27 4.45 4.47 4.06 4.21 4.42 
K20 2.88 2.74 2.80 2.75 2.90 2.84 2.91 2.86 2.71 3.21 2.77 2.70 
P20S 0.02 0.04 0.05 0.05 0.04 0.04 0.03 0.03 0.04 0.03 0.06 0.04 
Loss 0.33 0.44 0.28 0.37 0.49 0.59 0.69 0.40 0.88 0.54 0.38 0.29 
Total 100.04 100.02 99.74 100.07 99.51 100.14 100.07 99.44 99.89 99.60 99.73 100.03 

OPW norms 

Q 32.80 31.67 32.04 31.51 35.41 33.36 32.49 33.00 32.77 34.34 31.89 32.99 
C 0.05 0.68 0.22 0.03 0.22 0.42 0.03 0.37 
Or 17.10 16.29 16.64 16.31 17.31 16.87 17.31 17.07 16.21 19.16 16.49 16.02 
Ab 38.09 39.07 38.05 39.14 35.81 35.46 36.36 38.03 38.11 34.69 35.89 37.55 
An 7.30 8.08 8.30 8.05 6.60 9.51 8.72 7.67 7.82 6.96 10.45 8.00 
Di 0.51 0.16 0.12 0.70 
Hy 3.19 3.59 3.73 3.72 3.20 3.52 3.33 3.20 3.71 3.41 4.01 3.90 
01 
Mt 0.50 0.52 0.53 0.53 0.48 0.49 0.52 0.48 0.54 0.44 0.54 0.53 
II 0.48 0.53 0.53 0.51 0.42 0.48 0.50 0.46 0.54 0.44 0.54 0.53 
Ap 0.05 0.09 0.12 0.12 0.09 0.09 0.07 0.07 0.09 0.07 0.14 0.09 

An 
-~-

An+Ab 16.08 17.14 17.92 17.06 15.56 21.15 19.34 16.78 17.02 16.72 22.55 17.57 
TTDI 87.99 87.02 86.74 86.95 88.53 85.69 86.16 88.09 87.08 88.19 84.24 86.55 
Mg no. 25.61 27.51 26.48 28.20 22.77 29.10 27.94 22.77 25.34 23.15 31.32 27.87 

Trace Elements (ppm) 

Ba 588 567 565 571 578 578 564 578 564 581 560 560 
Cr 2 8 4 3 2 8 6 2 5 3 5 4 
Cu 
Ga 15 15 16 15 16 16 15 16 17 16 15 18 
Nb 8 8 7 7 7 6 7 7 7 6 6 8 
Ni 2 2 18 2 3 3 2 
Pb 16 16 16 17 18 17 16 15 19 20 16 16 
Rb 103 97 110 97 102 105 106 105 102 129 101 97 
Sc 10 9 10 11 9 8 9 10 10 9 9 10 
Sr 139 160 163 160 125 141 140 141 159 131 150 161 
Th 11 12 10 na na na na na na na na na 
U 3 na na na na na na na na na 
V 4 5 4 4 3 11 12 6 4 3 16 7 
Y 29 32 33 36 34 34 32 31 36 36 33 35 
Zn 54 63 65 86 54 47 42 49 72 69 51 66 
Zr 221 221 217 215 209 218 219 219 214 220 219 212 

Loss= loss on ignition corrected for FeO oxidation. 
TTDI= Thornton Tuttle differntiation index (text) 
< 2 ppm (-) not analyzed (na) 
Hypersthene Rhyolite (1-6,11,12); Hornblende Rhyolite (7); 
Biotite bearing Rhyolite (8); Rhyolite (obsidian) (9-10) 
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Table 7.1 Representative chemical analyses of lithies from the 

Taupo Pumice Formation (continued). 

VUW 31143 31172 31173 31146 31147 31174 31155 31153 31157 31154 31156 31151 
Sample IBBS 2/12 GPBl IM4 184 .of/l0D .fall 2/9 114 112 2/8 1/12 

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 

Major Elements 

Si02 74.38 71.78 73.18 63.52 63.09 65.33 63.26 61.41 59.80 58.30 58.00 59.13 
Ti02 0.28 0.28 0.31 0.76 0.76 0.76 0.71 0.5] 0.55 0.55 0.54 0.51 
Al 20 ,3 13.52 13.03 13.48 15.95 15.76 15.41 15.71 17.08 14.90 14.82 14.28 14.57 
Fe

b
o,3 1.00 0.85 0.79 3.28 2.68 3.72 2.85 3.66 3.59 4.62 1.38 2.73 

Fe 1.34 1.32 1.62 2.47 3.09 1.80 2.48 1.87 3.03 2.77 5.71 3.81 
MnO 0.10 0.09 0.10 0.13 0.14 0.11 0.13 0.11 0.14 0.12 0.15 0.13 
MgO 0.46 0.43 0.46 2.05 2.11 1.62 1.98 3.33 5.03 6.04 6.76 5.13 
CaO 1.65 1.60 1.78 5.32 5.30 4.52 4.95 5.89 7.85 8.68 8.87 7.68 
Na20 4.38 4.10 4.33 3.93 3.92 3.80 3.15 3.34 2.75 2.39 2.37 2.63 
K20 2.70 2.65 2.66 1.61 1.66 1.98 2.14 1.05 1.14 0.94 0.92 1.12 
P205 0.05 0.05 0.07 0.17 0.17 0.20 0.16 0.13 0.09 0.09 0.09 0.09 
Loss 0.31 3.32 1.01 1.08 1.19 0.74 2.11 1.77 1.19 0.83 1.20 2.52 
Total 100.14 99.60 99.79 100.27 99.87 99.99 99.63 99.96 100.06 100.15 100.27 100.05 

ClPW norms 

Q 33.23 33.96 32.56 18.58 18.1 0 21.92 21.62 18.05 14.73 12.78 11.61 15.11 
C 0.51 0.65 0.41 0.05 
Or 15.99 16.29 15.92 9.62 9.96 11.82 12.99 6.33 6.83 5.61 5.49 6.80 
Ab 37.14 36.09 37.11 21.35 33.68 32.49 27.39 28.81 23.60 20.43 20.25 22.86 
An 7.88 7.92 8.48 21.35 20.82 19.34 23.02 28.92 25.30 27.21 25.85 25.31 
Di 3.51 3.96 1.67 0.95 - 11.10 12.78 14.59 10.78 
Hy 4.05 3.88 4.17 10.14 10.25 9.54 10.98 15.25 15.62 18.19 19.23 16.35 
01 
Mt 0.55 0.53 0.58 1.35 1.37 1.28 1.27 1.29 1.56 1.72 1.73 1.58 
II 0.53 0.55 0.60 1.46 1.47 1.46 1.39 0.99 1.06 1.06 1.04 0.99 
Ap 0.12 0.12 0.16 0.40 0.40 0.47 0.38 0.31 0.21 0.21 0.21 0.21 

An ---"--
An+Ab 17.49 17.99 18.60 38.85 38.20 37.32 45.67 50.10 51.74 57.11 56.08 52.55 
TTDI 86.36 86.34 85.59 61.81 61.73 66.24 62.02 53.19 45.16 38.85 37.35 44.76 
Mg no. 30.15 30.22 29.33 44.31 44.66 39.82 45.20 57.59 62.81 64.70 67.14 63.27 

Traer Elements (ppm) 

Ba 558 545 561 385 408 449 404 442 317 281 240 306 
Cr 4 4 3 11 10 11 12 40 184 221 304 179 
Cu 5.2 2.4 5.3 3.8 22.8 28.6 28.5 65.9 18.7 
Ga 16 16 17 17 18 18 17 17 16 15 14 16 
Nb 6 6.3 6.7 5.5 5.4 5.8 5.4 3.0 2.5 2.8 2.6 2.6 
Ni 2.1 7.5 2.6 19 22 32 41.6 25.4 
Pb 21 19 18 8 10 11 10 58 5 6 6 7 
Rb 96 99 99 58 61 73 57 35 42 33 33 38 
Se 10 10 10 19 20 16 17 16 25 27 30 24 
Sr 163 159 168 262 264 252 258 289 398 270 270 401 
Th na na na 7 7 9 na na 4 5 5 na 
U na na na na na na 
V 5 6 7 137 137 101 113 113 171 185 199 165 
Y 37 36 35 27 27 27 24 17 19 18 18 19 
Zn 104 72 72 71 69 68 71 59 67 70 79 68 
Zr 218 207 210 201 199 184 199 83 92 84 84 90 

Loss= Loss on ignition corrected for FeO oxidation. 
TTDI= Thornton Tuttle differntiation index (text). 
< 2 ppm (-) not analyzed (na) 
Hypersthene Rhyolite (13); Pumice blocks (14,15) 
Dacites (16-19); Andesites (20-24). 
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Table 7.1 Representative chemical analyses of lithics and some 

members of the Taupo Pumice Formation (continued) 

VUW 31175 31176 50222 50223 50224 50225 50226 
Sample 1/11 1/10 

(25) (26) (27) (28) (29) (30) (31) 

Major Elements 

Si02 70.90 66.04 74.31 74.47 74.06 74.51 74.58 
Ti02 0.25 0.18 0.29 0.29 0.31 0.28 0.28 
Al20 3 13.41 12.17 13.55 13.53 13.56 13.60 13.47 
Fe203 2.54 1.72 2.53 2.55 2.71 2.51 2.44 
MnO 0.05 0'()4 0.09 0.09 0.08 0.08 O.IO 
MgO 0.68 0.56 0.43 0.44 0.42 0.39 0.36 
CaO 1.65 1.87 1.74 1.70 1.82 1.67 1.66 
Na20 3.03 2.74 4.18 4.01 4.13 4.10 4.23 
K20 2.72 2.40 2.84 2.87 2.82 2.85 2.84 
P20S 0.04 0.02 0.05 0.05 0.08 0.02 0.04 
Loss 4.06 12.44 2.98 2.93 1.07 3.89 2.70 
Total 99.33 100.18 100.12 99.62 99.94 99.35 99.67 

Trace Elements (ppm) 

Ba 571 556 570 568 577 572 581 
Cr 14 8 36 24 10 50 
Cu 12.3 2.5 7 22 6 15 15 
Ga 14 12 na na na na na 
Nb 4.2 4.2 na na na na na 
Ni 7.1 2.4 4 4 3 6 8 
Pb 18 12 14 16 16 15 17 
Rb 104 109 90 92 96 93 96 
Sc 8 6 na na na na na 
Sr 123 138 152 166 178 160 157 
Th na na 9.9 9.7 8.9 8.3 10.6 
U na na 2.5 2.7 3.0 2.1 1.3 
V 42 15 3 4 4 2 2 
Y 28 24 30 32 28 31 33 
Zn 56.7 41.0 73 75 64 69 75 
Zr 135 125 217 225 226 226 222 

Loss= Loss on ignition corrected for FeO oxidation. 
Hydrothermally altered rhyolite (25) 
Hydrothermally altered dacite (26) 
Taupo Ignimbrite (27) 
Taupo Lapilli (28) 
Rotongaio Ash (29) 
Hatepe Ash (30) 
Ha tepe La pilli (31) 

Analayses 27-31, (VUW 50222-50226) are tephra whole rock analyses from Froggatt (1982) 
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7.4 MAJOR ELEMENTS 

The weight percentage of some of the major element oxides of the analysed rocks are 

plotted against Si0
2 

wt% in Fig 7.1. The analyses shows that a smooth variation exists 

for most analysed element oxides. Steiner (1958) and Clark (1960) considered that such a 

smooth variation probably indicates the strong genetic relationships between the analysed 

rocks. Two major breaks in the continuity of the Si0
2 

wt% can be observed from the 

variation diagram at the dacite-andesite boundary and between the rhyolite and the 

dacites. Cole (1979) has used similar characteristics to distinguish between the volcanic 

rock series from different regions in the TVZ. and has shown that chemically, there is a 

complete gradation from andesite to dacite in the Bay of Plenty region, the boundary 

being arbitrarily taken at 63 wt% Si0
2 

• In the Rotorua-Taupo region there is a complete 

gradation from dacite to rhyolite with the boundary equally arbitrarily taken at 67 wt% 

SiOz . 

Lavas of TVZ are chemically distinctive in having Naz ° > Kz 0. Fig. 7.1 shows 

that Kz ° and Naz ° increase with increasing SiOz . content, while Cao, MgO. Fez 0:; t, 

TiOz ' and MnO decrease with increasing SiOz . Pz 05 shows no significant variation 

throughout the series. Alz 03 is relatively enriched in the andesites and is most 

abundant in the dacites. 

A silica potash diagram (after Gill, 1961) shows that the analysed andesite blocks 

from the ground layer are medium-K orogenic andesites. The dacite contain significantly 

less K" ° than dacite lavas from the Tongariro Volcanic Centre (Fig 7.2). 

7.5 TRACE ELEMENTS 

Trace element analyses for all the analysed rocks are presented in Table 7.1. All the 

trace element contents analysed fall within a reasonable range of concentrations of 

average andesite, dacite, and rhyolite from the TVZ (Cole, 1979) and show a 

compositional continuity from andesite to rhyolite, similar to that of Ewart (1968). Most 

of the incompatible trace elements like Pb, Rb, Ba, Zr, Nb and Y show a postive 

correlation with Si0
2 

wt% (Fig 7.3). 
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Rb is readily taken up in potassium-bearing minerals because it has a similar charge 

and radius. But K-bearing minerals are very rare in most of the analysed rocks (as can 

be observed by the low Kz ° wt% of bulk rock analysis) so Rb behaves incompatibly 

(Fig 7.4). 

Zr seldom substitutes for any element in most rock forming minerals hence zirconium 

behaves as an incompatible element and shows a postive linear correlation with rubidium. 

Zr commonly occurs in the mineral zircon (ZrSi0
4 

) which is an accessory mineral in 

many igneous rocks. Y and Nb also behave incompatibly in many igneous rock series. 

Ba correlates postively with Rb, and Si0
2 

High barium values are characteristic of 

the calc-alkaline series. Hackett (1985) has shown that even basalts from the Tongariro 

Volcanic Centre have 100-200 ppm Ba which is 2-10 times the abundunce reported for 

oceanic tholeiites. 

U and Th behave incompatibly because the large and highly charged U4+ and 

Th4+ are not readily accommodated in the common rock forming minerals. Like the REE 

elements they tend to concentrate in accessory minerals such as apatite. ziricon. and 

sphene. 

Sr, Se, Cr, Ni. V. and Zn behave compatibly. Sr and Se are readily taken in the 

plagioclase structure and since the plagioclase phenocrysts are more abundant in the 

andesites these elements are relatively enriched in the more basic end members. Cr, Ni, V 

and Zn are usually taken in the ferromagnesian minerals. Cr and Ni are especially 

accomodated in the Mg rich cores of olivines and pyroxenes and hence are enriched in the 

andesite. 

Because the radius of cations Ga 3
+ and A1 3

+ is quite similar. Ga can be taken readily 

III the Al structure. The ratio of the two elements remains relatively uniform in the 

andesites, dacites and rhyolites. 
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Chapter VIII 

The rhyolite lavas in the vicinity of the Taupo Volcanic Centre were originally 

divided into younger and older dome building phases by Grindley (1960), mainly on their 

degree of erosion. Detailed work by Ewart (1968) later resulted in further subdivisions on 

the basis of mineralogy, field association and relative percentages of the ferromagnesian 

phenocryst assemblages. At Wairakei, rhyolites encountered by drilling (Haparangi 

Rhyolites) were classified on the basis of presence or absence of quartz phenocrysts 

(Steiner, 1977). Fig 8.1 shows the areal distribution of the different types of rhyolite 

lavas in the vicinity of Lake Taupo and it is evident that hypersthene rhyolite is the 

dominant type. Rhyolite lavas make up about 75% of the lithic inclusions in the Taupo 

Pumice Formation and petrographic study has shown that there are three types of 

rhyolite inclusions (chapter 4). The rhyolite inclusions in order of decreasing abundunce 

are hypersthene, hypersthene-hornblende and biotite-bearing rhyolites. 

Froggatt (1982) has characterized the different members of the Lake Taupo Group 

tephras on the basis of the proportion of mafic minerals present in the tephra and has 

shown that the Taupo Subgroup tephras (tephra formations erupted from vents on the 

easterh side of Lake Taupo; (Vucetich and Pullar, 1973; Froggatt 1982; in the last 10 ka) 

contain dominantly hypersthene as a mafic mineraL The dominance of hypersthene 

rhyolites as inclusions in the Taupo Pumice Formation shows that some of the rhyolite 

blocks are probably genetically related to the Taupo Subgroup. 

Whole rock chemistry of the fresh, unweathered and unwelded pyroclastic deposits 

should closely reflect the chemistry of the magma prior to eruption. However accessory 

b"-fore 
lithics have to be removed assessing the parent magma chemistry_ 
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The major element data of the analysed rhyolite blocks from the ground layer of the 

Taupo Ignimbrite were compared to whole rock analyses of the tephra erupted from the 

Taupo Volcanic Centre (Table 7.1). Froggatt (1982) showed that the Taupo Sub-group 

tephras form a general linear trend of major element components with increasing 

Thornton-Tuttle Differentiation Index <normative quartz + orthoclase + albite) and can be 

subdivided into three groups on the basis of age and differences in OJ. values; Taupo 

Ignimbrite to Mapara, Whakaipo to Motutere, and Opepe to Karapiti. A plot of selected 

element oxides against differentiation index for the analysed rhyolite blocks from the 

ground layer of the Taupo Pumice Formation (Fig 8.2) showed a similar linear trend and 

most of the blocks plot in the area of the tephra erupted from the Taupo Volcanic 

Cen tre in the last 10 Ka. 

The trace element analyses of the rhyolite blocks from the ground layer of the 

Taupo Ignimbrite are compared with whole rock trace element analyses of members of 

the Taupo sub-group tephras. Froggatt (1982) has shown that the trace elements exhibit 

little variation between these tephras except for Rb, Sr, and Zr) and that Sr and Zr are 

useful aids in 'finger printing' tephra units. A plot of Sr and Zr distinguishes the same 

three groups of tephras as indicated by the major elements (Fig 8.3). Included for 

comparision are analyses of Rotorua sub-group Tephras from the Okataina Volcanic Centre, 

each of which plot in distinctive areas. The Kawakawa Tephra Formation shows different 

trace element characteristics from the Taupo Subgroup tephras. All of the analysed 

rhyolite blocks from the ground layer lie in the zone of the Taupo Sub-group tephras. 

And interestingly most of the analysed hypersthene-rhyolites are in the youngest Taupo to 

Ma para group. 

Analysed hornblende-hypersthene rhyolites and biotite-bearing rhyolites do not show 

significant difference in chemistry to those of the hypersthene rhyolites. 

Hypersthen ~hornblende rhyolites are mapped at Motutaiko Island' close to the 

Horomatangi Reefs vent and at several localities to the north and south of the lake. 

Biotite-bearing rhyolites are mapped north of the lake (Fig 8.1) Considering that the 
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rhyolite inclusions in the Taupo Pumice Formation can be of cognate, accessory or 

accidental origin, only some of the hypersthene rhyolite blocks can be of cognate origin. 

Most of the rhyolite blocks are therefore either accessory or accidental. 

Wilson (1985, pers. comm.) has also explained the predominance of rhyolite 

inclusions in the Taupo Pumice Formation by their derivation from rhyolite domes and 

flows extruded from the Taupo Volcanic Centre in the last 20 ka of activity. The 

chemistry of the rhyolite blocks show that most of the hypersthene rhyolites are 

probably from lava dome extrusions associated with the post 10 ka tephra erupted from 

the centre, since most of the tephras erupted during this period contain hypersthene as a 

dominant ferromagnesian phenocryst and show similar major and trace element 

charecteristics. The hornblende-hypersthene and biotite-bearing rhyolites are definitely 

accessory and accidental lithics from the pre-J 0 ka activity in the centre. It has been 

noted that the latest stage of many plinian and ignimbrite forming eruptions is extrusion 

of a lava dome due to degassing and volatile escape during the pyroclastic phases. Many 

of the rhyolite domes in the Taupo Volcanic Centre are therefore late stage magma 

extrusions related to the pyroclastic activity. 

8.2 DACITES 

Dacites make up the second most abundant lithics in the Taupo Pumice Formation. 

Dacite inclusions are found not only in the ground layer but also in the Taupo Plinian 

Pumice and Hatepe Plinian Pumice in minor proportion and in sections both to the east 

and west of the lake. All the studied dacite inclusions are two pyroxene dacites. Outcrops 

of dacite are rare in the Taupo Volcanic Centre and are only known at Tauhara (10 kID 

east of Taupo township) and two smaller dacite domes are mapped south of Lake Taupo 

at Manganamu and Motuoapa (Daorerk, 1972). Hornblende hypersthene dacite, similar to 

that of Tauhara volcano has been mapped (Grindley, 1960) about 5 km south west of 

Tauhara. However drilling for geothermal steam in the area immediately north of Taupo 

Volcanic Centre (Wairakei, Rotokawa, and Tauhara geothermal fields) has shown no 

subsurface occurrence of dacites (Steiner, 1977; Grindley, 1965; Browne and lloyd 1986). 
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The Tauhara dacites show several differences in mineralogy and chemistry to those 

found as inclusions in the Taupo Pumice Formation. Tauhara dacites contain a diverse 

Phenocryst assemblage of plagioclase (An and An? ~ ), orthopyroxene (En 5 and 
25-48 5-~e 4 -5~ 

En?O_80 ), clinopyroxenes (two morphologically distinct types), hornblende, biotite, quartz, 

ojivine (Fo
S2 

) and biotite with accessory magnetite, apatite and cristobalite. Hornblende 

forms 6-26% of the total phenocryst content in all of the dacites. The phenocrysts are not 

in equilibrium with either the groundmass or with each other, and an origin by magma 

mixing has been suggested for these domes (Worthington, 1985). 

The petrography of all the dacite inclusions is quite distinct from those of the 

Tauhara dacites described above. Furthermore, the dacite inclusions show no mineralogical 

evidence of magma mixing (chap 5). Chemically, most of the Tauhara dacite domes 

contain > 65 wt% Si0
2 

and relative to other dacites in the Taupo Volcanic Zone are MgO, 

Ni, and Sr-rich and Kz 0 poor (Worthington, 1985), making them distinct from the 

analysed dacite inclusions. RblSr and Zn/Nb ratios of the dacite inclusions show more 

than 100/0 difference to those of the Tauhara dacites (Fig 8.4). The presence of a 

dominantly hypersthene-augite dacite as inclusions in the Taupo Pumice Formation suggests 

the presence of subsurface dacite flows in the near vent area. This dacite does not have 

any known surface correlative in the area. 

The most important nearby andesite lava occurrence is at the Tongariro Volcanic 

Centre. The Volcanic Centre comprises four major andesite massifs, Kakaramea, Pihanga, 

Tongariro and Ruapehu and four smaller cones and flows, Maungakatote, Pukeonake, 

Hauhungatahi and Ohakune. Older lavas from Kakaramea, Pihanga and Tongariro were 

erupted from a series of vents aligned NW-SE and more recent lavas from vents aligned 

NNE-SSW. 

The most voluminous lava types in the centre are labradorite and 

labradorite-pyroxene andesites containing phenocrysts of 
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orthopyroxene (mainly bronzite) and clinopyroxene in a fine grained ground mass. Smaller 

amounts of pyroxene andesite (from Pihanga), olivine andesite and hornblende andesite also 

occur at the centre. 

Most andesites of the Tongariro Volcanic Centre are acid or basic, low K andesites. 

Major element analysis of the andesites largely reflects variation in phenocryst content. 

Cole (1978) has suggested that the lavas which are more silicic have a lower'" phenocryst 

content and that most of the basic andesites are pyroxene or olivine bearing. With 

increasing modaJ content of the ferromagnesian minerals, the lavas have progressively 

higher FeO(t), MnO, MgO, and DO and correspondingly lower A12 03 ' Naz 0, and K2 0. 

The analysed andesite blocks from the ground layer lie very close to those of the 

andesites of the Tongariro Volcanic Centre. Trace element concentrations are very similar 

and are within the range of the andesites of the Tongariro Volcanic Centre (Cole, 1978). 

An eroded andesite cone occurs at RoUes Peak, north-east of Tauhara (Grindley, 1961) 

close to the Kaingaroa Fault. Petrographically the rock is holocrystalline, containing 

sparse phenocrysts of plagioclase and subordinate hypersthene, set in a groundmass 

consisting of augite, hypersthene and labradorite with accessory magnetite and tridymite. 

Chemically this andesite is calc-alkaline and -is significantly richer in A12 03 and Sr 

and has lower K2 ° compared to many TVZ andesites (Worthington, 1985). The Sr rich 

nature of RoUes Peak andesites is specially noteworthy (919-1035 ppm Sr compared to 

less than 300 ppm for most TVZ andesites). None of the analysed andesite inclusions 

from the Taupo Pumice Formation contain such high Sr concentrations. 

Andesite lava flows up to 180 m thick have been encountered in several drillholes 

at Wairakei, interbedded with the sediments of the Waiora Formation and rarely resting 

directly on the Whakamaru Group Ignimbrites (Grindley 1965, Steiner 1970). This 

andesite contains numerous large, partly or completely altered andesine phenocrysts and 

comparatively small pseudomorphs after ferromagnesian minerals, with accessory magnetite. 

The groundmass is either cryptocrystalline or hyalopilitic and is commonly altered. 
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The petrographY of the andesite inclusions shows that they have not been subject to 

intensive hydrothermal alteration, which indicates that they do not represent intercalations 

of andesite lava flows in the sediments similar to those encountered by drilling at 

Wairakei. The four types of andesite inclusions found in the Taupo Pumice Formation Cie. 

pyroxene andesite, plagioclase-pyroxene andesites, olivine andesites and hornblende andesites) 

have very similar petrography and mineralogy to those described for the lavas of the 

Tongariro Volcanic Centre (Cole, 1978 ; Hackett, 1985). Trace element variation diagrams 

of the analysed andesite blocks from the ground layer (Fig 8.5) shows that they plot in 

the area where 144 analyses from the Tongariro Volcanic Centre plotted (Hackett, 1985). 

However it is important to notice that there is a marked difference in Zr and Rb 

contents of the dacite blocks from the ground layer compared to those of the Tongariro 

V o1canic Centre. 

Most of the andesite blocks found in the ground layer of the Taupo Ignimbrite are 

subangular, and could have been transported as alluvium or lahars into the lake basin 

and incorporated in the lake sediments before being explosively transported by the 

pyroclastic flow. The proximity of the Tongariro Volcanic Centre to the lake basin, and 

its present topographic (drainage) relation to the lake basin indicates that the andesite 

inclusions can easily be transported from the centre. 

tid: IGNIMBRITE 

Most ignimbrite units are highly inhomogeneous rock units, showing a considerable 

variation in texture, degree of welding and crystallization, mineralogy and chemistry both 

laterally and vertically within the same unit. Correlation of the ignimbrite inclusions 

with a particuar ignimbrite unit in the area is therefore difficult. 

There is seismic evidence that the upper surface of the ignimbrite which crops out to 

the east and west of Lake Taupo extends beneath the lake at depths of about 1 km. 

Northey (1985) presents evidence of at least two units in the ignimbrite flows. an upper 

unit with a seismic velocity of 2.2 km/s, overlying one of 3.8 km/s. The upper unit is 
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about 400 m thick near Kawakawa Point and its upper surface is about 500 m below 

lake level (Fig 8.6). Northey (1985) correlates these flow units to the Whakamaru 

Ignim bri tes. Wilson (1984) have presented field evidence which show that there 

has been one major post-Whakamaru Group and pre 50 ka ignimbrite eruption from a 

vent within Lake Taupo. A higher velocity unit underlyingWhakamaru Group 

Ignimbrite seen at Western Bay at depths of about 900 m may relate to the ignimbrite 

and pumice breccia of the Ohakuri Group of Grindley (1960). 

The lithic crystal rich ignimbrite (Type 1) is characteristically pale brown to orange 

and is the most abundant welded ignimbrite inclusion in the Taupo Pumice Formation. 

Blocks of this type of ignimbrite as big as 1-1.5 m in diameter are found in many near 

vent localities in the ground layer. Wilson et a1. (1984) have described a similar 

ignimbrite at the NE end of Lake Taupo and have suggested that the ignimbrite may be 

a product of a post - Whakamaru Group eru ption (100 ka) from the Tau po Volcanic 

Centre. The lithic crystal rich ignimbrite may thus be correlated with the ignimbrite of 

this period from the Taupo Volcanic Centre. 

The northern part of Lake Taupo is a caldera structure in which depth to basement 

is estimated on geophysical grounds to be about 5 km below the surface. The older 

pyroclastics and volcaniclastic sedimentary units are expected to be deeply buried in the 

lake basin during the volcanotectonic activity in the centre. Intensive hydrothermal 

alteration would probably have completely changed the original features of the rocks. 

Most of the Whakamaru Group ignimbrites are considered to be below 2 km from the 

Lake bottom and are underlain by a thick sequence of volcaniclastic deposits (Ohakuri 

Group) which rest directly on the basement (greywacke?) Some of the hydrothermally 

altered blocks of rhyolite and tuff could have possibly been derived from the 

pre-Whakamaru Group volcaniclastic deposits and Whakamru Group Ignimbrites. Crystal 

rich ignimbrites similar to the surface outcrops of the Whakamaru Group Ignimbrites do 

not occur in a significant quantity in the ground layer or as inclusions in other members 

of the Taupo Pumice Formation. Rare I apilli-sized crystal- rich ignimbrite. (Type 2) 

inclusions are tentatively correlated with the Whakamaru Group Ignimbrites. 
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8.5 LAKE SEDIMENTS 

A wide variety of lake sediments (from coarse dominantly volcaniclastic sediments to 

diatomaceous and carbonaceous mudstone and siltstone) occur in the Taupo Basin. The 

diversity of sedimentary rocks in the Huka Falls Formation and the Waiora Formation, 

and the absence of reliable diagnostic characteristics of the two major volcanogenic 

sedimentary formations makes correlation of these sedimentary boulders to known 

stratigraphic units difficult. Furthermore the Taupo Basin has been an active sedimentary 

basin in post-Huka Falls Formation time (i.e.Holocene to Recent), further complicating the 

correlation of the sedimentary boulders. Northey (1983) distinguished two sedimentary 

units: an upper unit with a seismic velocity of 1.5 kmls and a lower thicker unit with 

a seismic velocity of 1.7 km/s. 

The lake sediment boulders are all found in near vent exposures of the ground layer 

and are as big as 1-1.5 m in diameter. From the highly fragile nature of these rocks it 

is not physically possible that they have travelled far in the eruption columun and were 

most probably incorporated in the pyroclastic flow by widening of the vent during the 

eruption. All are near surface vent derived blocks, some of the lake sediments may be 

correlated with the upper Huka Falls Formation, but most of the lake sediment boulders 

probably belong to Holocene deposits on the lake bottom. 

The greywacke pebbles found as inclusions in the Taupo Pumice Formation are 

probably derived from alluvium deposited in the lake basin and were incorporated in the 

lake sediments before being explosively carried out of the vent area and transported with 

the pyroclastic flow. 

The greywacke bordering on, and underlying some parts of the TVZ belong to the 

Torlesse Subgroup (eastern greywacke of Reid (1982)) and are distinguished from basement 

rocks cropping out on the western side of the TVZ on petrographic, geochemical and 

isotopic differences. The sandstones of the western basement are generally poorly sorted 

volcanogenic meta-sedimentary rocks and contain significantly less quartz, more 

ferromagnesian minerals and volcanogenic lithics than those of the eastern basement rocks. 
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Figure 8.7 : 
Schematic diagrams to show the inferred sequence of events which lead to 
the eruption of the Taupo ignimbrite and its ground layer. 
(1) The collapse of the roof the magma chamber caused by the lack of 
support caused by the downward movement of the magma level resulting 
in the formation of a caldera is presented for comrtfision (Williams and 
McBirney, 1979). 
(2) Collapse of the roof of the magma chamber caused by the lowering of 
the fragmentation surface is suggested to explain the high lithic content of 
the ground layer (Wilson and Walker, 1985) 
(3) The high lithic content in the ground layer is shown to result from 
simple vent flaring caused by both the increase in discharge rate of 
pyroclastic material and lowering of the fragmentation surface. Collapse of 
the roof of the magma chamber which occurred at the end of the eruption 
resulted the Taupo eruption caldera. 
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Petrographically the greywacke pebbles in the ground layer of the Taupo Ignimbrite 

similar to the .eastern tiasement rocks. Furthermore, the proximity of the Taupo Basin to 

eastern 9reywacke ranges (Kaimanawa Ranges), and their outcrops being within the basin 

catchment shows that the greywacke pebbles incorporated with the lake sediments were 

probably derived by erosion from the eastern basement. No sample of unreworked, angular 

basement rocks (greywacke) occur as lithic inclusions in the Taupo Pumice Formation. 

8.6 DISCUSSION ON AN ERUPTION MODEL 

Rhyolite magma which produce ash flow tuff similar to the Taupo Pumice 

Formation is commonly generated at depths in excess of 10 kID in the crust and forms 

magma chambers at higher levels. Smith (1979) has discussed the relationship between the 

volumes of ash flow eruptions, size of calderas and magma chambers and zonation in 

magma columns. Silicic magma chambers are believed to be less than 10 km thick, with 

larger chambers being more slab-like and the smaller ones more cylindrical, and not more 

than 1/10 of the chamber volume may be erupted during anyone pyroclastic eruption. 

The depth to which the magma is erupted from a magma chamber during a single 

episode is termed the depth of drawdown and is directly proportional to the volume of 

the magma chamber and the volume of pyroclastic material erupted. The volume of 

pyroclastics erupted is also found to be directly proportional to the diameter of the 

caldera resulting from the eruption which commonly approximates the diameter of the 

underlying magma chambers. 

Froggatt (1982) has suggested two main physiographic features which have resulted 

from the Taupo eruption. A 'saucer-like' land form which has a centre about 2 kID north 

of the Horomatangi Reefs is suggested to be from a post Taupo 

Pumice subsidence, that is radially symmetrical about a centre north of Horomatangi 

Reef. The saucer shape forms only about a 90° sector. Bathymetry of Lake Taupo 

(Irvin, 1972) shows a nearly rectangUlar flat-bottomed depression with Horomatangi Reefs 

in the south east corner and lying about 40 m below the floor of the remaining lake. By 
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approximating the area of caldera subsidence to a rectangle (8 kID x 10 kID x 40 m) and 

an inverted cone (radius 15 km, central hieght 400 m, and 90° segment) the maximum 

total volume of subsidence is about 27 kID 3 
, together with other subsidence which has 

occurred offshore after the eruption. Froggatt (1982) suggested that the total volume of 

the Taupo Pumice 'caldera' subsidence was about 28.5 km 3 which is close to the 

estimated erupted magma volume. 

Depth to basement greywacke in most volcanic centres and depressions in the TVZ is 

inferred to be about 5 km on geophysical grounds. It has also been postulated that the 

greywacke basement has been so extended beneath the TVZ that it is probably absent 

beneath most of the rhyolitic volcanic centres. The lavas of the TVZ do not have a 

simple genetic relationship to each other. Petrologic studies on the origin of rhyolite lava 

in the TVZ have indicated a derivation by about 30% partial melting of the greywacke 

and argillite sediments at depths in excess of 10 kID along the central axis of the TVZ. 

The chemistry of the lava, in particular the lower abundunce of K (2.69 wt9'o), Rb 

(average 108 ppm), Sr (125 ppm), U (2.53 ppm) and Th (11.3 ppm) shows a marked 

contrast from an acid end member derived by fractional crystallization (Cole, 1979). 

Froggatt (1982) presented a model where only a third of the magma generated is erupted, 

the remainder being intruded into the crust to compensate for spreading of the TVZ. The 

crustal structure of the zone is thus greywacke ''blocks'' separated by granitic intrusions. 

Using the empirical relationships of erupted magma volume, depth of magma chamber 

and drawdown and resulting caldera diameter, suggested by Smith (1979) the magma 

chamber of the Taupo Pumice Formation is estimated to have a depth of 3-5 km from 

the surface, with a depth of drawdown of about 3 km below the roof of the magma 

chamber. Fig 8.7 is a schematic cross section of the upper crust through the Taupo 

Volcanic Centre. Seismic studies (Northey, 1983) have shown that there are two 

sedimentary structures beneath Lake Taupo with seismic velocities of 1.5 and 1.7 km/s in 

the central part of the lake. The lake sediments are underlain by two mapr ignimbrite 

layers with seismic velocities of 2.2 and 3.8 km/s in most parts of the lake. Onshore 
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geologic studies and drillhole information (Grindley, 1960, 1961, 1965) show that the 

ignimbrites of the Whakamaru Group are underlain by the Ohakuri Group volcaniclastic 

sediments whose full thickness was not penetrated by drilling at Wairakei. 

Several pyroclastic eruptions have occurred from vents in Lake Taupo in the last 50 

ka. Since most pyroclastic eruptions are followed by extrusion of a rhyolite dome, several 

rhyolite domes and flows are expected to be intercalated with the upper sedimentary unit 

(Huka Falls Formation?) and probably the lower sediments (Waiora Formation?). However 

some of the rhyolite inclusions in the Taupo Pumice Formation can be correlated with 

older Haparangi Rhyolites which are mapped onshore north of Lake Taupo. From the 

occurrence of dacite inclusions in considerable proportions in most members of the Taupo 

Pumice Formation it is inferred that dacite flows exist in the vent area. This dacite 

probably belongs to the post 50 ka period, and can be of similar age to the dacites of the 

Tauhara dome complex despite their petrographic differences. It has been proved from 

heat flow measurements at the bottom of Lake Taupo (Northey, 1983) that an active 

hydrothermal system exists near the Horomatangi Reefs. and the age of this hydrothermal 

system is not exactly known. Some of the hydrothermally altered blocks in the ground 

layer are derived from the geothermal reservoir, however some of the blocks were 

probably derived from an older vent or vents which existed prior to the Taupo eruption. 

It has been suggested that the large quantity of boulders of rhyolites, ignimbrites and 

lake sediments as big as 2 m in diameter in near vent exposures of the ground layer 

probably result from the collapse of the vent area, unroofing the magma chamber at the 

beginning of the ignimbrite eruption (Fig 8.8). As a result, the catastrophic eruption first 

produced material containing a large quantity of coarse lithics (the ground layer); later 

material having smaller and less lithics. This collapse is likely to have resulted from the 

downward movement of the fragmentation surface (i.e. the boundary between coherent, 

vesicular magma and fragmented material) during the Taupo plinian phase; eventually 

leaving the vent area unsupported (Wilson and Walker, 1985). 



127 

However similar collapse of the roof of the magma chamber caused by the 

downward movement of the fragmentation surface and/or the magma level deep into the 

chamber is known to have resulted caldera structures and volcanotectonic depressions 

which accompany major ignimbrite eruptions (Fig 8.8 a) (eg. Toba caldera, Sumatra; 

Bullard, 1976). A model which involves the coll<pse of the roof of the magma chamber 

(Fig 8,8 b) proposed by Wilson and Walker (1985) to explain the large quantity of 

boulders of rhyolite lava, welded tuff and lake sediments does not appear physically 

possible considering the time span and energy envolved in breaking such crustal blocks in 

to a pyroclastic material. 

A simple collapse and flaring of the vent area which resulted from the downward 

movement of the fragmentation surface at the begining of the ignimbrite eruption best 

explains the lithic content in the ground layer. The absence of unreworked (primary) 

basement rock inclusions in the Taupo Pumice Formation probably indicates that the 

magma chamber is located at a higher level in the crust and conform with the fact that 

the lithics are derived by the widening of the vent. 

The lithics in the Taupo Pumice Formation are mainly a product of the explosive 

disruption of the country rock around the vent during the eruption. Primary xenoliths 

from depths of magma generation were not found, and the maximum depth of 

incorporation of lithics in the Taupo Pumice Formation is to a depth of 3-4 km (ie. down 

to the Whakamaru Group Ignimbrites). 



Chapter IX 

SUMMARY _ANI1_ COJ.{CWSIONS 

1. Taupo Volcano is the southernmost of the dominantly rhyolitic volcanic centres in the 

TVZ. The volcano is a negative feature most of which is covered by Lake Taupo and is 

complex consisting of several caldera structures superimposed on the regional NNE trending 

faults of the Taupo Fault Belt. Central and western Lake Taupo are calderas related to 

the Holocene and Pleistocene tephra eruptions. The central Lake Taupo caldera is suggested 

to have resulted from the Taupo eruption of ca. 1800a. The northern bays and southern 

Lake Taupo are graben structures related to the Taupo Fault Belt. Most of the faults 

show significant displacement with throws in excess of 500 m. 

2. The Taupo Pumice Formation is the product of one of the largest explosive sequence 

of volcanic eruptions in the world in the last 7000 years. The vent area for the eruption 

is in Lake Taupo at or near the Horomatangi Reefs as indicated by several isopach and 

isograde maps. The eruption showed a complex interplay between wet and dry vent 

conditions resulting in phreatoplinian Candlor phreatomagmatic) ash deposits and plinian 

pumice deposits producing three phreatoplinian ash deposits, two plinian pumice deposits 

(one of which; the Taupo Plinian Pumice is possibly the most widely dispersed fall 

deposit currently known) and a low-aspect ratio and low-grade ignimbrite which covered 

most of the North Island of New Zealand. Volume estimates on the tephra show that the 

eruption volume increased together with the mass eruption rate (dischage rate) reaching a 

climax at the end of the eruption to produce the Taupo Ignimbrite. The 19nimbrite was 

produced by the collapse of the plinian eruption column which resulted from vent 

widening and collapse of the vent area. The most important factors which control the 

energy and characteristics of an eruption are gas content of magma, vent radius and 
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shape, mass eruption rate and volume of magma erupted. The Taupo eruption, despite the 

modest volume of its products was energetic due to its high volatile content and 

discharge rate. 

3. Lithic content within the three phreatomagmatic ash deposits in all studied sections is 

negli§ble. The lithic content within the two plinian pumice deposits is less than 10% by 

volume in most sections. The main body of the ignimbrite contains variable amount of 

lithics, usually less than 200/0 by volume, and a decrease in lithic content and increase in 

crystal and pumice contents was observed away from the vent. This is considered to have 

resulted from the gravitational separation and sedimentation of the heavies from the 

pyroclastic flow. 

4. Lithic blocks in the Taupo Pumice Formation are mostly concentrated in the ground 

layer which forms the base of the the ignimbrite. The ground layer contains blocks of 

rhyolite. lake sediments and welded tuff up to 2 m in size in near vent exposures where 

it is up to 3 m thick. These big boulders are considered to constitute the co--ignimbrite 

lag-fall deposit which was transported laterally by the momentum of the flow. In most. 

exposures further away from the vent (20 km or more) the ground layer has a thickness 

of 10-30 cm. The erosive upper and lower contacts suggest that sedimentation of 'heavies' 

took place in the more strongly fluidized head of the pyroclastic flow. Giant friable 

boulders of lake sediments, welded tuff and intensely hydrothermally altered rhyolite are 

highly fractured but are exposed intact in the ground layer. This shows that the fluid 

pyroclastic material mixture provided sufficient support during transportation. 

5. Estimation of the proportion of the lithic types in the ground layer shows that 

rhyolites make up about 75% by weight of the lithics in most sections. Dacites, andesites, 

welded ignimbrite and lake sediments (pumiceous mudstones and siltstones) make up the 

remaining 25% of the lithics. The main type of lateral variation in the proportion of 

lithic types in the ground layer is that the soft and friable rocks rapidly decreases away 

from the vent. 
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6. A study of the stratigraphy of the area shows that the units in the vent area consist 

of predominantly silicic volcanics and derivative sedimentary rocks of late Tert.iaIy to 

Pleistocene age. Three volcaniclastic sedimentary units from the oldest to the youngest 

are Ohakuri Group, Waiora Formation and Huka Fall Formation intercalated with 

pyroclastic units erupted from vents in the Taupo Volcanic ('--entre which include some of 

the most widespread ignimbrite units in the Central Volcanic Region (Whakarnaru Group 

Ignimbrites). These ignimbrites are described as the Whakamaru Group Ignimbrites., and 

another undifferentiated younger ignimbrite, Okaia Sub-group, Kawakawa Tephra 

Formation and Lake Taupo Sub-group. Lava extrusions and intrusions intercalated with 

these sediments and pyroclastics in the vicinity of the Taupo Volcanic Centre are 

dominantly rhyolitic with minor dacite and rare andesite and basalt. These are the 

Haparangi Rhyolites, Tauhara Dacites, Waiora Valley Andesites and K-trig &salts. 

7. Three types of rhyolite lithics; hypersthene rhyolite, hypersthene-hornblende rhyolite 

and biotite bearing rhyolite (in order of decreasing abundance were found in the Taupo 

Pumice Formation. The rhyolite inclusions are generally porphyritic (with phenocryst 

content commonly <15 modal%) and contain phenocrysts of plagioclase (Ann _
50

), 

hypersthene (Mg
S8 

Fe., Ca, to Mg
S0 

Fe.
7 

Ca
3 

), quartz, brown hornblende, biotite and 

accessory magnetite and apatite. The phenocrysts rarely form aggregates and occur in a 

cryptocrystalline groundmass which is partly or completely glassy and contains spherulites, 

cristobalite and glassy microlites which normally show flow banding. Hypersthene is the 

dominant mafic phenocryst in the rhyolite lithics in the Taupo Pumice Formation and 

also forms the major mafic mineral in the Taupo Sub-group Tephras. Whole rock 

analyses of Taupo Sub-group tephras show a similar trend in major element oxides to 

those of the rhyolite lithics in the ground layer. Furthermore a Sr Vs Zr plot shows 

that the rhyolite inclusions are very similar to the Taupo Sub-group tephras. This 

indicates that the accessory and accidental lithics in the Taupo Pumice Formation are 

probably derived from the lava extrusions associated with the pyroclastic eruptions from 

the Taupo Volcanic Centre in the last 10 ka. Lithics derived from older rhyolite lava 
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(Haparangi Rhyolites) are probably represented by the intensly hydrothermally altered 

rhyolite blocks in the Taupo Pumice Formation. 

8. Dacites are the second most important type of lithics in the Taupo Pumice Formation 

and comprise about 15 weight % of the lithic blocks in the ground layer at many 

sections. The dacites are always porphyritic and contain phenocrysts of plagioclase 

(An
52

_
e0 

which commonly occur in two generations), orthopyroxenes (Mg
66 

Fe.n Ca
3 

to 

(Mg Fe Ca hypersthene), clinopyroxene (augite; Mg Fe Ca ) and accessory Fe-Ti 
64 34 2 41 15 44 

oxides and apatite. Resorbed quartz and rare olivine phenocrysts are found in some of the 

dacites. The groundmass consists of a quartzo-feldspathic cryptocrysalline material and 

laths of plagioclase which occasionally show a flow texture. Whole rock chemical 

analyses of the dacites shows that most of them 'contain 63-65 wt% Si0
2 

where as most 

dacite analyses from the Tauhara dacite dome complex (Worthington, 1985) contain > 65 

wt% Si0
2

• RblSr and Zn/Nb ratios from the dacite inclusions show a significant 

difference from Tauhara dacites. This indicates that most of the dacite inclusions are not 

genetically related to the Tauhara dacites, and suggests the presence of other dacite flows 

in the vicinity of the vent area covered by the pyroclastics and their derivative lake 

sediments. The presence of dacite lithics in the Taupo Pumice Formation in most localities 

indicates an accessary origin for the lithics. 

9.Four types of andesite blocks hornblende andesite, plagioclase-pyroxene andesite, pyroxene 

andesite and olivine andesite were studied from the ground layer. Hornblende andesites 

contain phenocrysts of plagioclase (An
53

_
70

), orthopyroxene (hypersthene-bronzite), 

clinopyroxene (augite), and hornblende (paragasite-ferrohasingsite). The ground mass consists 

of microcrystals of plagioclase, tridymite and is commonly cryptocrystalline. Except for 

the presence of hornblende the other andesites have a similar mineralogy and texture. 

Plagioclase compositions are An
65

_ eo in the plagioclase-pyroxene andesite and Anes-
52 

in 

the pyroxene and olivine andesites. Orthopyroxenes are mainly bronzite in the latter three 

types of andesites. Clinopyroxene with an endiopside core and augite rim are found in 
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the pyroxene and olivine andesites. Olivine (Fo ) crystals in the olivine andesites are 
82-84 

xenocrystic and probably originated by mixing of the crysallization product of a basaltic 

magma. Other evidence of magma mixing is observed in the pyroxene andesite which 

contain hypersthene phenocrysts jacketted by pigeonite. All the andesites contain accessory 

titanomagnetite, ilmenite, and apatite. Chrome spinel occurs as inclusions in the olivine 

phenocrysts in the olivine andesites. Based on the Gill (1981) classification of 

intermediate volcanic rocks, the wholerock chemistry of these rocks shows that they are 

calc-alkaline, medium-K orogenic andesites and show similar major and trace element 

concentrations to the andesites of the Tongariro Volcanic Centre (Cole, 1978; Hackett,1985). 

The petrography and available wholerock chemistry of the andesite lithic differ from 

those encountered by drilling at Wairakei (Grindley, 1965) and from the andesite cone at 

Rolles Peak. The Rolles Peak andesites in particular are distinct from most TVZ andesites 

in their high Sr content (919-1035 ppm compared to less than 300 ppm for TVZ 

andesites). Most of the andesite blocks found in the ground layer of the Taupo ignimbrite 

are sub-angular and could have been transported as alluvium or lahars into the lake basin 

and incoporated in the lake sediments before being explosively transported by the 

pyroclastic flow. 

10. Two types of welded ignimbrite inclusions were found as lithics in the Taupo Pumice 

Formation; these are described as Type 1- Lithic crystal-rich ignimbrite and Type 2-

Crystal rich ignimbrite. Type 1 ignimbrite is light brown to orange, pumiceous, relatively 

lithic rich, ignimbrite which contains about 25% crystals .quartz, plagioclase (oligioclase), 

hypersthene and hornblende in order of decreasing abundunce] in a matrix of fine glass 

and ash. Type 1 ignimbrite is correlated on the basis of its petrography with an 

ignimbrite cropping out north of Lake Taupo, which has erupted from a vent in the 

Taupo Volcanic Centre in a post Whakamaru Group and pre-50 ka (100 ka) period. 

Boulders as big as 1.5 m of type 1 ignimbrite are found in near vent exposures of the 

ground layer which indicates type 1 ignimbrite forms a major stratigraphic unit in the 

vent area for the 1800 ka Taupo eruption. Type 2 ignimbrite forms a minor proportion 
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of ignimbrite lithics in the Taupo Pumice Formation and contains crystals of quartz, sadic 

plagioclase, hypersthene, and rare hornblende which make up about 45% of the rock. The 

crystals and a minor amount of lithics occur in a matrix of yellow ash. From the 

crysal rich nature of this ignimbrite it is tentatively correlated with the Whakamaru 

Group Ignimbrites. 

11. A variety of non-volcanic rock types are found in near vent exposures of the ground 

layer. These includes lake sediments (pumiceous mudstone, siltstone and sandstone) and 

reworked greywacke pebbles. The lake sediment boulders in the ground layer are near 

surface vent derived lithics and probably correlate with either the Huka Falls Formation 

or younger Holocene sediments. The petrography and roundness of the greywacke pebbles 

in the ground layer shows that they are derived from the Eastern basement ranges and 

were incorporated in the lake sediments after being transported by rivers into the basin. 

12. The study of the lithic content in the Taupo Pumice Formation shows that there is 

an increase in volume and size of lithic fragments in the ground layer compared to in 

other members of the Taupo Pumice Formation. This indicates that extensive vent erosion 

has occured at the begining of the ignimbrite eruption. The scarcity of primary basement 

rocks (greywacke andlor granite?) inclusions in the Taupo Pumice Formation indicates that 

the magma chamber is located above the basement « 5 km depth) and conform with the 

fact that the lithics are derived by vent flaring caused by the down ward movement of 

the fragmentation level. The lithic content of the Taupo Pumice Formation shows that 

the lithics are derived from down to a depth of about 3-4 kID. 
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APPENDIX 1 

1.1 DESCRIPTION OF SELECTED SECTIONS OF THE TAUPO PUMICE 

FORMATION 

1.1.1 Station 1 (Waitahanui Road Deviation) N94-553230 

(300 m from old road junction) 

Thick(m) Stratig.unit 

8 Taupo Ignimbrite 

0.5 Ground layer 

10 Taupe Ignimbrite 

3 Rotongaio Ash 

Description 

Light grey, massive, unsorted pumice lapilli 

and blocks supported by a matrix of ash and 

lithics. 

(sharp erosional contact) 

Lapilli and blocks of lithics with minor glass 

and crystals and rare pumice lapilli. 

(sharp erosional contact) 

Light grey and pink, unsorted pumice lappilli 

and blocks in a matrix of ash and fine crysals 

and lithics. It contains parallel layers (bands) 

of well sorted pumice lappi1li at the lower 

part (Taupo Lapilli?) 

(sharp undulating contact) 

Dark grey ash, and fine vesicular glass 

material with rare rounded accereted ash a 

few mm accross. The layer shows poorly 

developed, fine, wavy, parallel bedding. 
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1.1.2 Station 1 (Waitahanui Road Deviation) 

(500 m from old road junction) 

Thick(m) Stratig.unit 

2 Taupcr Ignimbrite 

3 Ground layer 

Taupe Ignimbrite 

1.1.J Station 2 Te Hue Hue Road 

Thick(m) 

2 

2 

Stratig.unit 

Taupo Ignimbrite 

Ground layer 

Description 

Light grey and pink, massive, unsorted pumice 

lapilli and blocks supported in a matrix of ash 

with minor crystals and lithics. 

(sharp erosional contact) 

Lapilli and blocks of lithics of rhyolite lava 

(some blocks are intensely altered) lake 

sediments, ignimbrite and rare andesite, dacite, 

and rounded greywacke pebbels. Some of the 

lithic blocks are up to 1.5 m in diameter. 

(sharp erosional contact) 

Light grey and pink, masssive, unsorted pumice 

lapilli and blocks supported in a matrix of 

fine ash with minor crystals and Ethics which 

contain bands of well sorted pumice lapilli 

(Taupo Lapilli?) 

Description 

Light grey, massive, unsorted pumice lapilli 

and blocks supported by a matrix of ash with 

minor lithics and crystals. 

(sharp erosional contact) 

Lapilli and blocks of fractured lake sediments 

(=1.5 m in diameter) rhyolite welded tuff, 

with rare dacite and andesite and minor 

crystals and pumice. 



1.5 Taupo Ignimbrite 

0.6 Rotongaio Ash 

0.5 Hatepe Ash 

0.7 Hatepe lapilli 

1.1.4 Station 16a 

Thick(m) 

3 

0.5 

0.7 

0.1 

Stratig.unit 

Taupo Ignimbrite 

Ground layer 

Rotongaio Ash 

Hatepe Ash 
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(sharp erosional contact) 

Light grey to pink, massive unsorted pumice 

lapilli and blocks, matrix supported, contains 

minor ash and fine crysals. 

(sharp undulating contact) 

Dark grey, bedded, obsidian ash with rare 

pumice and lithics, undulating bed mantling 

the previous topography. 

(erosional contact) 

Moderately well sorted light grey pumiceous 

ash which has a gulleyed upper surface. 

Light grey well sorted pumice lapilli. 

Oeseri ption 

White-light grey, unsorted, massive pumice 

lapilli and blocks supported in a matrix of 

fine ash. lithic rich lenses occur near the top 

of the layer. 

(sharp erosional contact) 

Lapilli and blocks of lithics, with minor 

crystals and pumice. 

(sharp erosional contact) 

Dark grey, finely bedded, soft ash with 

rhyolite and obsidian fragments. 

(sharp undulating contact) 

(erosional contact) 

Light grey. pumice lapilli and ash. 



0.7 

Thick(m) 

1 

0.3 

0.2 

0.1 

0.7 

Hatepe Lapilli 

Stratig.unit 

Taupo Ignimbrite 

Ground layer 

Rotongaio Ash 

Hatepe Ash 

Hatepe Lapilli 
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Light grey-white, moderately well sorted 

pumice lapilli with rare Ethics. 

Descri ption 

Light grey to pale brown, uniformly massive, 

unsorted pumice lapilli blocks and ash, with 

charred charcoal logs near the top of the layer. 

(sharp erosional contact) 

Lapilli and blocks of rhyolite, minor dacite, 

welded tuff and rare andesite with minor 

crystals and pumice. 

(sharp erosional contact) 

Dark grey, finely bedded obsidian ash. 

(sharp undulating contact) 

Light grey-white patchy ash. 

Well sorted, white, pumice lapilli which 

overlies undifferentiated pre-Taupo Pumice 

Formation Tephra from Taupo and Maroa 

Volcanic Centres. 
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1.2 S~PLING LOCALITIES 

St.No 

1 

2 

3 

4a 

4b 

5 

6 

7 

8 

9 

10 

11 

12 

13 

G. Ref. 

N94-553230 

N94-495160 

N94-536324 

N94-535425 

N94-514450 

N94-498358 

N94-553096 

N103-510134 

N103-594103 

N103-594103 

NI03-563093 

N103-586080 

NI03-627340 

N103-720129 

Sampling remarks 

Bulk sample was collected from the ground layer the 

fresh bigger boulders were sampled for whole rock 

chemistry. 

Same as above. 

Bigger blocks eroded out from the ground layer were 

sampled from the lake shore. 

Bulk samples were collected from the ground layer. 

Same as above 

Bulk samples were collected from from the ground layer 

and lithics collected from the Tau}X) Plinian Pumice 

-Lithic inclusions were collected from the Tau}X) Plinian 

Pumice and Hatepe Plinian Pumice. 

-Lithic inclusions were collected from the Hatepe Plinian 

Pumice. 

Bulk samples were collected from the ground layer and 

lithic inclusion samples were collected from the Hatepe 

and Tau}X) plinian pumice, and lithic rich lenses in the 

Tau}X) Ignimbrite. 

Inconvenient for sampling 

Samples were collected from the ground layer, lithic size 

range from a few cm to 3Ocm. 

Lithics 

layer 

were collected from the ground 

Lithic inclusions were collected from Hatepe and Tau}X) 

plinian pumice, the ground layer is not exposed. 

Lithics collected from the ground layer. 



14 

15 

16 

16a 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

N103-726133 

N103-654171 

NI03-549156 

N103-551154 

N103-579123 

N94-560350 

N94-542332 

N94-695523 

N94-647512 

N102-163273 

N102-178239 

NI03-181219 

NI03-181195 

N103-199121 

N103-727425 

N103-713390 
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The ground layer is not well developed. bulk samples 

collected from the ground layer. 

Bulk samples were collected from the ground layer, and 

lithics were collected from the Taupo Plinian Pumice. 

Bulk samples were collected from all members of the 

Taupo Pumice Formation including the ground layer. 

Bulk sample was collected from the ground layer. 

Bulk samples were collected from all members of the 

Taupo Pumice Formation including the ground layer. 

-Bulk samples collected from the ground layer. 

Big boulders up to 2 m in diameter exposed alongthe shore 

by erosion were sampled. 

Bulk sample collected from the ground layer. 

Bulk sample collected from the ground layer. 

Bulk samples were collected from the lithic rich base of 

the Taupo ignimbrite. 

Samples collected from the lithic blocks in the ground 

layer. 

Bulk sample collected from the ground layer. 

Lithic blocks were collected from the lithic rich base of 

the Taupo Ignimbrite. 

Same as above. 

Samples collected from the lithic rich base of the Taupo 

Ignimbrite. 

Lithic samples were collected from the ground layer. 



APPENDIX 2 

(A) PETROG_RAPHIC DESCRIPTION OF REPRESENT A TIVE ROCK SAMPLES FROM 

THE LITHIC INCLUSIONS FROM THE 1:AUPO PUMICE FORMATION 

2.1.1 VUW N 31127 - HypersthenLEIIyplite 

Light grey, banded and porphyritic rock, with rare phenocrysts of zone plagioclase, 

orthopyroxene and minor resorbed quartz with accessory Fe-Ti oxides, apatite and biotite. 

The phenocrysts rarely occur in aggregates. Plagioclase phenocrysts contain orthopyroxene 

and magnetite inclusions. Accessory minerals are Fe-Ti oxide, apatite and biotite. The 

ground mass is a cryptocrystalline quartzo-feldspathic material. 

2.1.2 VUWN 31128 - Hypersthene Rhyolite 

Dark grey, banded, porphyritic rock, with rare phenocrysts of zoned plagioclase, 

orthopyroxene, and minor resorbed quartz with accessory Fe-Ti oxides, apatite and biotite. 

The phenocrysts rarely occur in aggregates and are set in a cryptocrystalline groundmass. 

Plagioclase phenocrysts contain orthopyroxene inclusions. 

2.1.3 VUWN 31133 - Hypersthene Rhyolite 

Dark grey, banded, slightly hydrothermally altered rock with phenocrysts of 

plagioclase, quartz, orthopyroxene, and accessory Fe-Ti oxide which rarely occur in 

aggregates. Plagioclase phenocrysts contain orthopyroxene and magnetite inclusions. 

Plagioclase and quartz phenocrysts often show resorption. The phenocrysts are set in a 

cryptocrystalline groundmass. 
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2.1.4 VUW N 31131 - Hypersthene Rhyolite 

Dark grey, banded, porphyritic rock with phenocrysts of zoned plagioclase, 

orthopyroxene and minor quartz and accessory Fe-Ti oxides. Inclusions of Fe-Ti oxides, 

are common in plagioclase and orthopyroxene phenocrysts. The phenocrysts rarely occur in 

aggregates. The groundmass is cryptocrystalline and contains rare biotite microphenocrysts. 

2.1.5 VUW N 31129 - Hypersthene Rhyolite 

Light grey, banded, pc!fphyritic rock with phenocrysts and glomerophenocrysts of 

plagioclase, orthopyroxene and minor clinopyroxene set in a cryptocrystalline groundmass 

of quartzofeldspathic material which contains microcrystals of plagioclase, quartz and 

accessory' Fe-Ti oxides. 

2.1.6 VUW N 31140 - Hypersthene-hornblende Rhyolite 

Dark grey, banded, spherulitic and porphyritic rock, which is slightly altered, and 

contains phenocrysts of plagioclase, orthopyroxene minor hornblende and clinopyroxene 

which make up about 12% of the rock, and are set in' glassy and cryptocrystalline 

groundmass which contains accessory Fe-Ti oxides. The phenocrysts rarely form phenocryst 

aggregates. 

2.1.7 VUWN 31138 - Biotite bearing rhyolite 

Light grey, banded and porphyritic rock with phenocrysts of plagioclase, hypersthene 

and biotite set in a cryptocrystalline groundmass which contains microcrystals of 

plagioclase and quartz and accessory Fe-Ti oxides. 

2.1.8 VUWN 31132 - Hypersthene Rhyolite 

Light grey, banded, and porphyritic rock with phenocrysts of plagioclase, quartz and 

hypersthene set in a fine grained to glassy quartzo-feldspathic ground mass. Accessory 

minerals include Fe-Ti oxides and apatite. 
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2.1.9 VUWN 31137 - Hypersthene Rhyolite 

Yellowish grey, hydrothermally altered rock, porphyritic with phenocrysts of 

plagioclase orthopyroxene and rare resorbed quartz set in a cryptocrystalline groundmass. 

Accessory minerals include Fe-Ti oxide, apatite and microphenocrysts of biotite. The 

phenocrysts rarely form aggregates. 

VUW N 31141 - HyperstJtne Rhyolite 

Light grey, porphyritic rock with phenocrysts of plagioclase hypersthene and 

microphenocrysts of quartz and accessory Fe-Ti oxide set in a cryptocrystalline groundmass 

of microcrystals of plagioclase and quartz with accessory Fe-Ti oxides. Xenoliths of 

(andesite1 dacite?) about 2 mm in diameter are rarely found. The phenocrysts rarely 

occur in aggregates and plagioclase phenocrysts rarely contain hypersthene and magnetite 

inclusions. 

2.2.1 VUW N 31150 - Hypersthene-augite dacite 

Dark grey, porphyritic rock with phenocrysts and glomerophenocrysts of plagioclase 

(which occur in two generations as zoned and sieve textured crystals and smaller euhedral 

phenocrysts), clinopyroxenes, orthopyroxenes and minor quartz and accessory Fe-Ti oxides. 

Plagioclase phenocrysts with sieve texture are often altered to sericite. Orthopyroxene 

phenocrysts often contain inclusions of magnetite. The phenocrysts make about 30% of the 

rock and are set in a cryptocrystalline groundmass which contains laths of plagioclase 

which show flow alignment. 

2.2.2 VUWN 31146 - Hypersthene-augite dacite 

Dark grey, porphyritic rock with phenocrysts and glomerophenocrysts of plagioclase 

(which occurs as zoned and sieve textured and smaller zoned phenocrysts), orthopyroxenes, 
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clinopyroxenes, minor resorbed quartz and and accessory magnetite. Pyroxene phenocrysts 

occur as inclusions in the plagioclase, and magnetite inclusions are common in 

orthopyroxene phenocrysts. The phenocrysts are set in a cryptocrystalline ground mass 

which contains laths of flow aligned plagioclase. 

2.2.1 VUW N 31163 - Hypersthene-au~te dacite 

Dark grey, porphyritic rock with phenocrysts of plagioclase (which occurs as zoned 

and sieve textured crystals up to 2 mm in size and smaller euhedral phenocrysts), 

orthopyroxenes, clinopyroxenes, minor resorbed quartz and and accessory magnetite. The 

phenocrysts rarely form aggregates. Pyroxene phenocrysts occur as inclusions in the 

plagioclase, and magnetite inclusions are common in orthopyroxene phenocrysts. The 

phenocrysts are set in a cryptocrystalline groundmass which contains laths of flow 

aligned plagioclase. 

23 ANDESITES 

23.1 VUWN 31153 - Hornblende _andesite 

Greyish brown seriate porphyritic rock with mega phenocrysts of resorbed brown 

hornblende, zoned plagioclase (bigger phenocrysts show seive texture smaller ones are 

euhedral), clinopyroxenes, and orthopyroxenes with accessory magnetite which form 

inclusions in the orthopyroxene and also forms the rim of the hornblende phenocrysts. 

The groundmass consists of microcrystals of plagioclase, pyroxene and accessory Fe-Ti 

oxides and apatite. 

23.2 VUW N 31154 - Plagioclase-pyroxene Andesite 

Dark grey, porphyritic rock with phenocrysts of plagioclase (labradorite-bytownite), 

orthopyroxene, clinopyroxene. Plagioclase and pyroxene phenocrysts are in almost equal 

quantity and constitute about 500/0 of the rock. The phenocrysts rarely occur in 
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phenocryst aggregates. The groundmass is glassy to cryptocrystalline with rare plagioclase 

laths, tridymite and microcry~ls of pyroxene and accessory titanomagnetites. 

2.3.3 VUW N 31156 - Pyroxene andesite 

Dark grey pophyritic rock with phenocrysts of orthopyroxene, clinopyroxene, 

plagioclase and rare olivine which make up about 400/0 of the rock set in a finegrained 

ground mass of plagioclase laths, pyroxenes and tridymite with accessory titanomagnetite 

and apatite. The phenocrysts commonly form aggregates and, intergrowths between 

orthopyroxene and clinpyroxene phenocrysts are common. Orthopyroxene phenocrysts are 

formed around magnetite core and are frequently jacketed by clinopyroxene (pigeonite). 

Phenocrysts of plagioclase frequently contain pyroxene inclusions. 

2.3.4 VUW N 31157 - Olivine Andi?~ge 

Dark grey, porphyritic rock with phenocrysts of zoned plagioclase, orthopyroxene, 

clinopyroxene and fractured and resorbed olivine which constitute about 40% of the rock. 

Olivine phenocrysts are altered to iddingsite along fractures and and are rarely jacketted 

by orthopyroxenes and contain chrome-spinel inclusions. The groundmass is fine grained 

and consists of laths of plagioclase, pyroxene and tridymite with accessory titanomagnetite 

and apatite. The phenocrysts commonly occur in aggregates and show intergrowths. 

Plagioclase phenocrysts contain pyroxene inclusions and pyroxene phenocrysts commonly 

contain granules of opaque Fe-Ti oxide. 

2.4 IGNIMBRITE 

2.4.1 VUWN 31165 - Lithic crystg.Lrich ignimbrite 

Yellowish brown, moderately welded, pumiceous lithic rich tuff, with corroded 

crystals of quartz, sodic plagioclase minor hypersthene and hornblende. Quartz crystals are 

commonly embayed and corroded and makeup about 200/0 of the rock and are as big as 3 
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mID. Plagioclase phenocrysts up to 3 mm big are commonly corroded and make up about 

5% of the rock. Mafic phenocrysts make up about 5% of the rock. Xenoliths of 

hydrothermally altered rhyolite, dacite, and andesite (up to S mm in size) make up about 

10% of the rock. The crystals and lithics are welded in a matrix of pumiceous ash. 

~4.2 VUJEN 31167 - Lithic crystal rich ig11imlzrjJ(,? 

Yellowish brown, moderately welded pumiceous lithic rich ignimbrite with corroded 

phenocrysts of quartz, plagioclase (andesine) and minor partly altered hypersthene and 

hornblende. Quartz phenocrysts are embayed (=3 mm in size) and makeup about 15% of 

the rock. Plagioclase phenocrysts are up to 2 mm in size and are commonly have corroded 

outline and makeup about 5% of the rock. Hypersthene, hornblende and biotite are minor 

constituents. Xenoliths of andesite. dacite and rhyolite makeup about 10% of the rock and 

are up to 5 mm. 

2.4.3 VUWN 31169 - Crystal ric1LignimbIite 

Light yellow, moderately welded, crystal rich tuff. Consisting of crystals of quartz 

with embayed and corroded outlines (up to 1 rom), sodic plagioclase (=lmm) with minor 

amount of hornblende hypersthene and biotite which are commonly < O.Smm. The crystals 

makeup about 500/0 of the rock. Lithics content is very low « 2%), the crystals and 

lithics are are supported by a matrix of light yellow pumiceous ash. 



(B) LIST OF TIllN SECTIONS FROM THE LITI-IICS IN THE GROUND LAYER. 

St.No. Samp.No. VUW Rock type I Remarks 

1 IITII 31127 * Hypersthene rhyolite, petrography given. 

1 IIT/2 31128 * Hypersthene rhyolite, petrography given. 

1 

1 

1 

1 

1 

2 

3 

4 

1 

4 

4 

1 

lIB/3 *31129 * Hypersthene rhyolite, petrography given. 

I/B/6 31130 Hypersthene rhyolite, banded, spherulitic, 

glomeroporphyritic. 

l/MI7 31131 Hypersthene rhyolite, petrography given, with 

cavities filled by vapour phase crystals. 

31132 * Hypersthene rhyolite, petrography given. 115 

1/6 

2/1 

3/1 

415 

I/B/1 

4/10R 

4/12 

lIM/3 

31133 * Hypersthene rhyolite, petrography given. 

31134 

31135 

31136 

Hypersthene rhyolite, banded with phencrysts of 

plag, Opx, Mag, Ap. 

Hypersthene rhyolite, phenocryst poor, altered. 

Hypersthene rhyolite, massive, phenocryst poor. 

31137 Bt. bearing rhyolite, petrography given 

31138 * Bt. bearing rhyolite, banded. 

*31139 Hypersthene rhyolite, banded. 

31140 Hyp. hb. rhyolite, petrography given. 

1 1/BB12 31141 * Hypersthene rhyolite, petrography given. 

1 1/BB/4 31142 * Hypersthene rhyolite, banded, phenocryst poor 

cavity bands filled with vapour phase crystals. 

1 I/BB/5 31143 * Hypersthene rhyolite, banded, low intensity of 

1 

1 

IIBB/6 31144 

I/M/2 31145 

hydrothermal alteration. 

Rhyolitic breccia. 

Two pyroxene dacite, glomeroporphyritic, 

microcystalline ground mass with flow pattern. 

1 IIM14 *31146 * Two pyroxene dacite, petrography given. 

1 lIB/4 31147 * Two pyroxene dacite, petrography given. 
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2 2/3 

4 4/3 

4 4/8 

4 4/9 

5 5/1 

31148 

31149 

31150 

31151 

31152 

Two pyroxene dacite. banded. glomeroporphyritic 

Two pyroxene dacite, glomeroporphyritic with 

microcrystalline grou nd mass. 

Two pyroxene dacite, petrography given. 

Two pyroxene dacite. glomeroporphyritic with 

microcrystalline groundmass. 

Two pyroxene dacite, glomeroporphyritic, 

moderately altered. 

1 4/1 * 31155 Two pyroxene dacite. 

2 2/9 * 31153 * Hornblende andesite. petrographY gIven. 

1 1/2 31154 * Plag-pyx andesite, glassy ground mass. 

2 2/8 * 31156 * Pyroxene andesite, petrography given. 

1 

1 

3 

1 

1 

11 

2 

2 

114 

1/12 

3/6 

* 31157 * Olivine andesite. petrography given. 

31158 * Olivine andesite. 

31165 

l/BBI7 31166 

1/B/5 31167 

1112 31168 

2/15 31169 

2/13 31159 

Lithic crystal ignimbrite. light brown, 

pumiceous with rare hb, opx, mafic phenocrysts. 

Lithic crystal ignimbrite. light brown, 

pumiceous lithic and crystal rich. 

Lithic crystal rich ignimbrite, light brown 

pumiceous, with lithics, crystals of plag, 

qtz, 0px. 

Crystal rich ignimbrite, with crystals of plag 

qtz, opx, and minor hb in a matrix of ash and 

minor lithics. 

Lithic crystal ignimbrite. with crystals of 

plag. qtz, opx, and minor hb in a matrix of 

ash and minor lithics. 

Hypersthene dacite, glomeroporphyritic (Opx. 

plag) in a microcrystalline groundmass. 
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17 17/1 31160 

25 25/1 31161 

26 st26 3]162 

4 4/10D 31163 * 

4a 4a/l 31164 * 

2 2/11 31170 * 

1 IBBO 31171 * 

2 2/12 31172 * 

1 1/11 31175 * 

1 1/10 31176 * 

1 1/9 31181 

Two pyroxene dacite, glomeroporphyritic 

with a microcrystalline groundmass. 

Two pyroxene dacite, glomeroporphyritic, 

with a microcrystalline groundmass. 

Two pyroxene dacite, glomeroporphyritic, 

hydrothermally altered. 

Two pyroxene dacite, petrgraphy given. 

Two pyroxene dacite, banded, cryptocrystalline 

quartzofeldspathic groundmass. 

Obsidian 

Obsidian 

Pumice, Taupo ignimbrite. 

Hydrothermally altered rhyolite. 

Hydrothermally altered dacite. 

Greywacke pebble. 

LIST OF THIN SECTIONS FROM THE LITHICS IN HA TEPE AND TAUPO LAPILLI. 

6 

7 

8 

7 

OTHERS 

HT6/3 31179 

TP7/2 31177 

TPS/2 31178 

HT7/1 31180 

Hypersthene rhyolite, banded (Hatepe Lapilli). 

Hypersthene rhyolite, banded (Taupo Lapilli). 

Two pyroxene dacite, glomeroporphyritic with 

microcrystalline groundmass (Taupo Lapilli). 

Two pyroxene dacite, glomeroporphritic with 

altered, microcrystalline groundmass 

(Hatepe Lapilli) 

GPB1 31173 * Giant floated pumice. 

VUWN* - Whole rock analysis given. 

*VUWN - Mineral chemistry done on the EPMA. 
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APPENDIX_J 

ANALYTICAL METHODS 

Rock samples were split or crushed into 10-20 mm pieces after all the weathered 

surface had been removed. The pieces were powdered or crushed for 30-45 seconds in a 

tungsten carbide tema mill to produce approximately 200 grams of powdered sample. 

Proper mixing of each batch of powdered material was undertaken to make the powdered 

sample as representative as possible. Oxidation resulting from a grinding time of less than 

one minute is considered minimal (Fitton and Gill, 1910) 

All major and trace element determinations were done on a Siemens SRS-l automatic 

X-ray spectrometer with dat? reduced on-line using a Hewlett-Packard HP-85 desk-top 

computer. The spectrometer was calibrated using several international rock standards 

including those distributed by the U.S. Geological Survey, National Institute of 

Metallurgy, Geological Surveys of Japan and the International Working Group (A.N.R.T. 

and C.R.P.G.). The instrumental condition used in all the major and trace element 

analyses is given on table 1 (p 154b). 

For major element analysis, fused glass discs were prepared using David Brown 

Scientific, Norrish formula "SIGMA" X-ray flux (Norrish and Hutton, 1969). 

NH NO (Ammonium Nitrate) was used as an oxidizing agent to enable direct Na 
4 3 

determinations. Corrections for flux moisture content were applied with a dilution ratio 

of approximately 5:1. Matrix correction factors were those from Norrish and Chappell 

(1977). 
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TABLE 1: Instrument Conditions for XRF Analysis. 

t 

I I MAJOR ELEMENTS TRACE ELEMENTS 

I Elerrent Crystal CoHim. Aperture T~(sec) cps/'/, E 1errent Line Tube KV;'rn.a. Crystal COJrIter VaCUllll Pk.Time(sec) Interf. 

Fe LiF 200 .4 S 20 1100 As Ro Me 55/44 LiP 200 seint No 100 PbL6 
Mn LiF 220 .15 L 40 220 Sa La Au 45/55 LiP 200 Flow Yes 40 TiKa 
Ti LiF 200 .15 L 20 6300 Co Ret Au 45/55 LiF 200 Flow No 40 FeK6 
Ca LiF 200 .15 S 20 2600 Cr Ro Au 45/55 LiF 220 Flow Yes 100 WS 
K PET .4 S 20 3700 Cu Ro Au 55/44 LiF 200 seint No 40 cu· 
P PET .4 L 40 200 Ga Ret Me 55/44 LiP 200 Scint No 40 -
51 PET .4 L 40 150 Mn Ro Au 45/55 LiP 200 Flow Yes 40 .. 
Al PET .4 L 40 140 Me Ket Au 55/44 LiP 200 Scint No 100 ZtKB 
M:J TAP .4 L 100 40 Nt> Ro Au 55/44 LiF 220 Scint No 100 -
Na TAP .4 L 200 15 Ni Ket Au 55/44 LiP 200 seint No 40 Ni· 

Pb L6 Me 55/44 LiF 220 Scint No 40 -
All major elem:mts were ana1yS€d under vacuum using Rb Rex Me 55/44 LiF 220 Scint No 40 Au· 
the Ret line arrl a Cr ancde X-ray tube operated at Sr Ret Au 55/44 LiP 220 Scint No 40 -
45KV and 50nA.. P10 gas (10% lrethane in aIgrn) was Th La Me 55/44 LiP 220 Scint No 200 -
used in tte flow camter which was fitted with a Ti Ka Au 45/55 LiP 200 F1~ Yes 20 -
l\Jlll wiIrlow. U La Me 55/44 LiP 220 Scint No 200 -

V Rex Au 45/55 LiP 220 Flow Yes 100 TiKS 
Y Ret Mo 55/44 LiP 220 Scint No 40 me 
Zn Ret Au 55/44 LiP 200 Scint No 40 -
Zr . Rp: Au 55/44 LiP 220 Scint No 40 5tKB 

* Interference originating fran the X-ray tube arrl/or canpcoents 

within tre spectraneter . 

. -.- ---------- ~ '--- ----

~ 
CT 
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Trace elements were determined on 4 ern diameter boric acid backed pressed pellets 

using 3.5 g of rock powder. Background under peaks were calculated by extrapolation 

from one or more interference free background positions. "SpectrosU" ultra pure Si0
2 

glass 

was used to determine non-linear factors. All analyses were corrected at run-time for 

mass absorption at an appropriate wave-length using the power curve relationship between 

mass absorption and the scattered anode radiation (Compton peak). Correction for the 

absorption edge effect of Fe, Mn, Cr, and Ti were applied to the mass absorption 

measurements. All significant spectral interferences were corrected. 

Sample loss was measured at l000°c (using porcelain crucibles) corrected for oxidation 

assuming complete conversion of FeO to Fez 03 ( FeO was determined by the conventional 

titrimetric method using standard K z Cr 2 07 (Potassium dichm.ate) solution. with 

diphenylamine suI phonic acid as the indicator (Sarver, 1927). The method is described in 

Shapiro and Brannock (1962). 

CIPW Norms were calculated using a computer program in the Research School of 

Earth Sciences (Victoria University of Wellington) and incorporated all major element data 

(given below). A ratio of 0.2 was taken for FeO : Fe
2 

03 of the total Fe for the norm 

calculations. All norms were recalculated on 100% anhydrous basis. 

3.2 ELECTRON PROBE MICROANALYZER 

Major rock forming minerals in polished thin sections cut from seven selected rock 

samples from the inclusions in the Taupo Pumice Formation (four andesites, two dacites 

and two rhyolites) were analysed using the JXA-733 electron probe microanalyzer 

(EPMA) in the Research School of Earth Sciences (Victoria Univesity of Wellington). The 

JXA-733 at Victoria University is fully automated with on line reduction of data using 

Bence and Albee (1968) correction factors, into wt% oxide and structural formulae (atomic 

proportions). All analyses were performed at 15 kv accelerating voltage, 0.12 uA beam 

current, and a focussed beam of about 3 urn diameter for the olivines, pyroxene, 

hornblende, biotite and titanomagnetite analyses and a beam diameter of 10 um for the 



plagioclase analyses to account for the loss of alkali metals. 
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A peak search 

routine was used for each analysis, followed by 3 x 10 sec counts on the peak and one 

lOsec background count either side of the peak (Watanabe et al. 1981). Prior to mineral 

analysis, the probe calibration was checked against standard minerals of pyroxene or 

plagioclase of known chemical composition. 



IS7 

3.2.1 NORM CALCULATION 

A programme in basic for the calculation of the normative components of the fresh 

and unaltered rocks is given below. The calculation was done with an HP-85 desk top 

computer at the RSES. 

1 ~ *1:** C. I . P . W. NORMS PROC~R~~~i. 
N -'" 

15 1=le0 
20 DIM Vt[435].O$[55] 
30 DIM Ml(11),Wi29)/~(li)!B(11) 

,C(11),M(23),K(29) 
40 Of[1.25]="Si02 Ti02 A1203Fe2 

03FeO II 

50 0$[26.55]= II MnO N~O CaD t~a 
20 K2(j F'205" 

66 \'$[1, 45]="Quartz (:.;.t-
undum Orthocla~e » 

76 Y$[46.901="AlbirE' 8" 
Qrrhite Leuclte 

E: (I 'y' :;. [ ~. 1. 1 ::. 5 ]::: " K:d 1 Co F' t"il i 1 r e k. 
n, eta'£'" 1 1 1 r.: .!:/ t e t~ e F h eli n e 

" 

';:'0 '1:f[13t.:.,l;:!(1].:"NAmetasJ llc3te 
Ii c ru 1 teD i (1 F' S i (j e .. 

100 f$[12!,225]:"--~ollast(1ni~e 
--En~1atlte --Fer~Gsilit. 

1I 

110 )$[226,270]="Hypersthene 
--E~~tatite --FerrO~llite 

" 
120 ($[2;1,3!5]=uOllvl~e 

--F0rsle~1~e --~a~allte 

" 
:L 3l~ ( 1: [ ::. 1 tS , 2: 6 ,:" ] = I, C H c' r ~ h 0 £ IIi r.: ate 

,'!a-?ne ,_ ~ 1: e Hem·a tit ~ 

1 401 l [ 3 t.: 1 .' .:.pj 5] = " 11m e n .i. t e 
6pn~n~ Rutile 

" 
.:.50 \·l·[4f16,435l= It AFatl't.:::o 

~'<I.:,112ST(.nl~e It 

!f.0 FOR J=1 TO 11 
170 PEArt "11 (. I :' 
~ :::(1 hE::-:;T I 
190 G~lA 66 09.79.9.181.96,159.7 

,71.85,76.94.46.32,56.08,f.l. 
9::;.,94.;2,141.9;:· 

2?6 FOF 1=1 TO 29 
2 ! (1 ~ E R D /lJ ": I' 
2 2 ~) t·~ E >: T I 
270 D~TA 6009.101.96,556.7,524. 

482,2;8.22,4~6.S2,~16.34,1~4 
2 ~~. ~.: ::;:4 1 2 

:~.:I0 D:=1T8 122 (17 .. 462 ~)4.~j·l16 17, 
1 I:. [1 . 4 1. .. 1 -:z 1 9 4 , (1 , 1 .:i I) 4 1 .' i ::. 1 .51 
4 .' .). 1 -} (\ . {,,:3 

250 08TA 263.79,86.125,231.55,15 
9.7,1~1?5,196.07.'79.7,32S.2 
;:;, 11 t: 1 7 

255 CLEAP @ DISP "00 \OU WANT Fe 
203'FEO R~TIO NORMALISED 

T ,:1 0 2 (V .···N :' tI 

256 I tn::'UT f.:$ 

266 

270 
280 
285 
290 

Z0~3 
31>::.1 
~; 1 1 
312 
"'1-:.' .:.,-
32(1 

~ 33(1 
; 34(1 
! ·35~1 
. :;;FJ1 

I
, 3 7~) 
3 :::f) 

'"390 
4(113 
41(1 
4';:-0 
-I- 3~) 
4411 

4(,0 
48(1 
49(:1 
:·00 
510 
52(1 
53.:, 
540 
55~) 

560 
5-:"(, 
580 
590 
6(1)j 
61(t 

62f:t 
63f~ 
(40 
6:: ~) 
"':'fO 
~;7(! 

CLEAR i OISP "ENTER SHMflE N 
Af1E" ; 
I NF'UT Sf' 
FOR I=! TO 11 
IF Rt·:" 'y'" ANC' I =5 ThE:.t·~ l:::i 
CLEAR @ OISP "ENT~R ";0$[(1-
1 ::. *5+ 1 J 1:45] 
It~PUT A(l) 
NE:'::T 1 
IF F'*·=\I,..~ .. THEfJ 32t' 
Ii I 5 :; ::: fF 4 ) .. , 1 . :: 1 1 3 
A I .• 4 :. = H ' 4 ':t .. 6 '356 '5 
-:,=1) 

FOP I=l TO 11 
:::' = ':: + A '. ~ '. 
HE>:T I 
F Ct t: I = 1 i C, 1 J 

E' ' l' -:: 1'1 ' I' l 1 [1 (. . ':. 
( , II ::: E '. 1, ... t: 1 ' 1 
NE>: T 1 
F (,F: I = 1 i I) :::-:' 
1'1 < I ::0 = l1 
ND:l I 
I tttt P285 TO Hi~iI1~ 

t1 ': .2 3' = ': '. ~ 1 .' 

c ..: :; ) = C ( 5 ..' ... C f., t:. ) 
I F C ( 5 ... - C ': .2 ;. ::: (1 r HEN '5 1 (t 
[1'.1)=C(2 .. 
C~5'=C(5)-M(1) @ G0TO 620 
h'.l >=C':!:;;) 
C '. :: ", "" ( '.: l: ) - t·j 0: .I. ,:. 
t~ .:.:; ",::. (~ 

I~ (l8)-C'2)<0 7rifN570 
i'l !.: 2" = (' '.: .2 ..' 
( '. ::: ) -::: C " E: ... - t1' ;2) I~ I"; (I T (I 6 ;2 0 
t'l ': 2. :0 :-::(. ': :::' 
C f.: 2 :' = c (' .2 :' - t1'·: ::: :' 
"1" 2, "f = C <.'::: ) 
( <: e', =(1 

I titt ~20 TO K~LIOPHILITE 8 
H [, ~; - t'1 E T Ii ':, ILl CIi'f E 
IF ((3.'-((10);0 TrlEN 650 
1'1'.4)==(,.: 1(1:' 
({3).:C~3)-M(4 ... @ GOrO 700 
t, ~ ,', 4 > :; C J. '3) 
I: '. 1 C,' = C '. 1 C' .. - r'l (' 4 ... 
/'1,5 '''''C ,_ 1 (I' 

t· ::: (, ,_ I,. ::: ,":' :::; l,.i 

e:':;~) i * In. tl':1~'O j'J r·H:r'HEL. I r·iE.. H:-' 
I'i I T [. r·4 F, - ME" Ii ':. I L.. I i:. ~ T E 

('eD IF C ( 3)-(9)'0 THEN 730 
7 ) (i 1,1 .. t. = ': ' ~:., ) 
720 
73(1 
;:"40 
?5l) 
7£0 

c 1"::::"1-=:(.1' ~:..'-f·l<";} 
t-1 ' f ' . .: i~ , 2: ) 
( , .':t ::0 = C ': 9 :' .... fo1 .: t: ::. 
L '3'" =0 
IF C ( 4:' - C (, 9 ,:. < () 



770 
7e~ 
79£1 
aee 
81e 
8213 
8313 

840 
850 
86ft 
87.21 
E:80 
890 
geo 
910 

::';2 f1 
~"3e 
94(1 
9:t (i 
::16 ~) 
~i( 
',? :::C1 
:? 9~) 

M(7)=('(.9) 
(:(4)=C(4)-M(7) @ 
11(7)=C(4> 
(( 9) =C (,9) -M (7) 
MU:<i=C(9) 
((4)=0 
! **** A1203TO 
[) CORUNDUM 

t,;OTO 840 

ANORTHITE AN 

THEN 87£1 IF C(8)-(3i<=e 
N ... :3 :'=C(3) 
C(8)=C(8)-M(9) 
t'1':9)=C~:8) 
C(3)=C(3)-M(9) 
M(10)=C(3) 

@ G010 920 

C'::=-,1=0 
I t: l1: 1: F "2 2 0 3 TO (11'1 G NET I T E! t-I 
Et1ATITE 
I~ (4)-('5»121 THEN 95121 
f'l(11)=C(<1> 
(5'=(5)-M(11) @ GOTO 1000 
t'l' 1 1 ,'= c .; :; ) 
L<4.1=C':4J-H(11) 
r'l' l~.J=L '4> 
c ':5 :"=(i 
l ,*l.,**C~O" N~Ct .. FeCI TO OLI'.}!l-iE 
I MON'ICELLITE .. CA-ORTHOSILI 
I:FtTE 

1900 C9=~~~'+C(5) 
! (1 1~) I F C '9:".j THE H C ::: = C .:. 7 :.0 / C 9 I! G 

OTO 1~Y31Z1 
1 (12(1 (:::=13 
1030 I~ C9-C(8»~e ThEN 1&70 
1 (141) t'1 < 2 (" :-: C 9 
t~50 C(8'=C(S)-M(20) 
10~0 M(13)=C(S)/~ @ GOTO 1110 
1 07(1 l'l"~:: (1 :. = C ',: :3 ) 
lJ7i8fl ('9=C::"-('1(20) 
109(1 t1( 21 )=(:9,'2 
i100 i t**t ALLOCATION OF S102 
111(1 (',1,'::[',.1 )-t1o:.2)-2:tt1(4)-M(S)-

2~r1': 6 ... -4lN":?:- -~l':: t: ,) -2*N \: 9:' -t'1 
'" .2 (i l 

- f'T " 1 3 :" - t1 < 2 1 ::. 
1120 IF (.:.1)<0 THEN 2000 
1130 IF C(I)::0 THEN 1610 
1140 I lt~* VALIOPhILITE TO LEUC 

ITE 
11 :10 ;:':;==t,j (4::0 *2 
11':'(1 IF (",,1.'-><>0 THEN 119(j 
1 1 7' (I t.'j ( 1 4' = (. 0:. 1:' ,/ ::. 
1 ! :,:: (I [-, If -= 1-1 " 4 ;. - t'l ", 1 4,' :i G (I E! 1 6 1 (1 
:;. 1 :=: C' ,ei I, 1 't ) = ['1 ( 4 :-
1. ':1 (1 ,,) !: I: 1 ,'I = C (. 1 ) - :-.:: 
,! 2 1 ('1 1'1 I, -1 " = (1 
1220 I ttt~ CA-ORTHOSILICh~E TO 

;"J ,) L L h ,~, 1 (I I'J I T E 
1 .:- '':; (1 i Fe... 1 ') - t'/ 0: 1 ::3 ) ,dj f rl £:: t l 1 26 .Z1 
1 24(, t'l '- 1 ':" " ::;. 2 J ,> 1 .' 
1250 M~13)=M(13)-M(15)'2 ~ GOTO 

lflt' 
1~~~ M(lS)=M(13)l2 

1270 t(1)=C(1)-M f 13) 
12:::0 M(13)=0 
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1290 ! tt*:t MONTICELLITE TO DIOP 
SIDE 

1300 IF C()-M f 2J)0 THEN 1330 
1316 (>1(19.=(.(1> 
1320 M(20)=M(20)-M(19) @ GOTO 16 

1121 
1 3 31) N ( 1 9. = t1 ( 2~) .. 
1340 C(1)=C(1)-M~20) 
1350 t1 C:~3) :::l) 

136121 ! **** LEUCI1E TO O?THOCLPS 
E 

1 3 7 (1 ,::; .:?: = rl', 1 4' t 2 
1~6e IF C(1)-~2'0 THE~ 141121 
13:.:H) N( 16 .. =(,( 1 ':t'2 
1 <1 (1 (, N' 1 4.1 =- N', 1 4' - N ( 1 6,1 '.! G (I T C If 

10 
1 4 1 ij t'1 ( 1 t, ) :::: t,) I 1 -+ ) 
1 4 2 f; C': 1 .. = C ':, 1 " -:-<::. 
t4313 t'l( 14)=0 
1440 I :t~** NEPHELINE TO A~8IrE 
J 450 ;:,3=b.:. t ", :*4 
1460 IF C~1)-><3\0 THE~ 14~0 
1470 M(17)=-C(1)'4 
1480 M~6)=M(6)-M(li) @ ~OTO 161U 
.:. 4 S< [1 N ': 1 ;:: :. :::: f1 ( .;:: .. 
[508 C(1)=C'1)-X3 
1 :' 1 ~i t1 I, t;. " = (1 
152(1 I :p:*,t OLIi,}Ir'iE ru H',PEP·:.TI-,t. 

Ni:. 
1 '5 3 '.:.' I;:: L', 1 ) - r'1 ': 2 1 > : (1 Y HEN 1 ,::;.::.) 
'5~0 M(22.1::::C(1>t: 
l550 '1·:21.r=t1(:21)-I'1"c::2,..,,2 ,~ GOiU 

1610 
l '5 6 Ij "1 I" .2 2 :' = 11 (' ;':' 1 .. l2 
15 7 0 l(1.J=C(1)-M f 21), 
1 :. !:: I:::' t'l';:': 1 ::. = I) 
i r:; ,:. .:; Vi ( 1 !:;, = C .; 1 :. 
! 6~jli I lll';: DETEF:M I HFtT I !)~1 OF t'lHf 

Ie eUNF' ONE ~1'1 ::: 
1 C 1 (1 ;: = 1 - C ':: 
1 6': (1 :'~ 4 = ['1', .2 1 ::0 + M ( 2 (1 ;. .. :2 
163(; Fl=P:t:::~4 

1640 F 2=C:::*;:<4 
l€:.a M(13~:::M(13)+M~.20) ~ 
:t 6 6 (, [i 1 = t" " j So .I 
1 €70 L2==C::::*Dl 
16:::e D3=F'~D 1 
1 6 9 (1 H' = C ::: '* [-j , ~'~.2 I 
170t' H2""PH1' 2':':' 
1710 r,:,': 1=1'1',1:::) (i' r<,,2.'==P!'1.)' I! t, 

~~j==M(!6) @ K(4)=M(1~) @ ~I 
:':-' = ~11 .. 9 ..' 

17.2 (1 to,: '" 6 :' = j', I" 1 4::' I!! 1< < 7 ,.: == f-1 ': 4 ~ v, 
-: :;. == t'l '5, ~ ~::, 9,) = t-1 ': 6 :" l!t f'': 1 (1 " 
:: i-1 ( ;:: " 

l730 1«11)::::t-1(7) I~ t::":12.:o=I'l'19> @ 
kt13,1=[tl I~ ~·,'14)=D2 E: V: l 15) 



1740 

1770 
1786 
, 796 
1800 
181 £1 
1820 
183~1 
1 E:35 

1~: 4(1 

IP45 

i.850 
1 f: 6~j 

1 €:7 0 

!900 
1901 

K(16)=M(22) @ K(17)zHl 
13)=H2 @ K(19)=M~21) @ 
)=F2 
K(21)=Fl @ k(22)=M(13) @ K( 
23)=M(11) @ K(24)=M(12) @ K 
(25)=M('1) 
K(26)=M(2) @ K(2? ) =M(3 ) @ K 
(28)=M(23 ) @ K(29 ) =M ( 15) 
! **** CALCULATE WT % 
FOP. 1=1 TO 29 
1« I )=K( I ) 'HH I ) 
HE~< T I 
K(12)=K ( 13)+K(14 ) +K(15 ) 
K(16)=K(17 ) +k(18 ) 
K ( 19 ) =K(20 ) +K(21)+K(2~ ) 
Kl=K(4)+K ( S) @ IF Kl<=0 THE 
t..j 1 :345 
A7=100*K ( 5 )/( K( 4 ) +K ( S ) 
K2= K( 20)+ K( 21 ) @ IF K2 <=0 T 
HEti 186~1 
F7=100* K( 20 )/(K( 20 ) .K(21 ) ) 
PF'! tH (~ FF:: UH II SAMPLE ,. ; S 
:i @ PI': an 
F' ;;o: I tH II (I >:: I 0 E F: ~.JT 
• . I I 

F ,) F: I = i T (I 1 1 
PRlN T US ING "SA . 2 X.3D.20 . 2 X 
.,3 D 2[1" .. O:i·[ ( I-l >.t.5+1 .. I*Sl 
.; A • I ) .. E: '.: I ::-
t·4E ::: T I 
f ' P I rH II 

" 
~ ::< (1 .:' F' P I t·~ T '-I :3 I t4 G "S H · .2 ~: 2::< .. 3 [! . 2 D :0 

" .; "TOTHL." .; <;: .. T 
1910 PRINT ~ PRINT 
1 9::: (1 P F: I t'i T "t'1I ~4 E F.: A L ~n 

-.. " ...• 
1 9'3 (1 P F' I t·~ T 
1940 FOP 1=1 TO ~9 
~ 9:.0 F' R H~ T U f ; H4 G "1:, A .. :::: .. ~3 [ I . 2 [i " 

i f[ ( I-l ) *15+1 , It15] ; K( I j 
1 9':, (1 t'4 E >, T I 
196 5 IF Kl ( =0 THEN 19 75 
1 9 7 ( , P F: 1 H T I! P F.: I N T U ::' I t·4 r:; II 1 9 A , 3 D 

. 2D " ,; "PI ~<:Ii,:,o:l-3::1? i:: An . -

19 7 5 I~ ~ 2 \ =0 TYEN 1990 
1 9 ::: ~:i F' F.: I t·j T '! F F.: It·; / iJ :: . .l tol C I . 1 ~; A : :3 D 

. 2 [I " .. .. 0 1 i "/ i nl? 1 -:: F·:z . - " .; F 7 
i 9 ~:' (1 ;:; C 1 : ~, 3 1) (1 1) 

2000 BEEP @ WAI T 100 ~ EEEP ~ WA 
1T 10 0 @ BEEF @ WHIT 100 @ 
~,EEP 

2010 ~ L EA~ ~ DISP @ OlSP ~ OI SP 
2 (1 ;:: (1 [, 1 ~: F ., t~ ::' T E tj (I UGH ::' 1 Ct:2 T CI F ':' 

~M UNOERSATUR~TEO M 
I t·J E F: P. L. ::' " 

'2 (1 :3 ~} 0 I -:: P it [ I I ::; P ., C I) 1'1 PUT A T I (I t·4 ::; T • . 
o P P E [I I" ~ GOT G 9999 

3003 PRINT @ PRINT USING "23A .. 30 
. 2: D" ; " T h (t no, 1: I:> n T IJ 1: 1: 1 ~ I to, d 

eo :.,: ::...' ,< < 1 ') + I::: .:: 4 ,) + k '" 3 :' + r-. '. 9 :., + K 
.:. ;:: ) 1- t::: ~: E . ..' 

159 

3802 

PRINT USING "12F1 .. 30 . 2D" j /I 

Kuno Inde x =";A(7j*le~/(A(7 
)+A(4)+FI(5)+A(9)+FI(10» 
PRINT USING "lSFlI3D . 20" ; II 

Ma9nesiuM NQ . ="/10e*A ~ 7 )/ 4 
e . 32 ' (A ( 7) / 4~ . 32+~ ( 5 )/ 71 . 85 

3 e e 9 I MAG E 6 A , 3D . 2 D. " 1.,1 1: ~,~ " 
3(:116 P~: INT @ PRIt·:l U-:,ING 3e09 .' 

"IF' ='' .; A ( 4 ) +Ft ( 5 ) 
30~0 PRINT USING 3009 

h ( 7 .' 
3030 PRINT USING 3009 ; 

f-; ( 9 } ~Fr ( i(1:" 

" , t'1 1 

" ' A ' = I I ; 

'3 e 4 ~3 P ;;:: It·' T (~ P R ! t-i T It F'R ! t·4 I I! F' F: I 
HT It GO TO 260 

9999 Et·JO 
2126::: 


	10001.pdf
	10002.pdf
	10003.pdf
	10004.pdf
	10005.pdf
	10006.pdf
	10007.pdf
	10008.pdf
	10009.pdf
	10010.pdf
	10011.pdf
	10012.pdf
	10013.pdf
	10014.pdf
	10015.pdf
	10016.pdf
	10017.pdf
	10018.pdf
	10019.pdf
	10020.pdf
	10021.pdf
	10022.pdf
	10023.pdf
	10024.pdf
	10025.pdf
	10026.pdf
	10027.pdf
	10028.pdf
	10029.pdf
	10030.pdf
	10031.pdf
	10032.pdf
	10033.pdf
	10034.pdf
	10035.pdf
	10036.pdf
	10037.pdf
	10038.pdf
	10039.pdf
	10040.pdf
	10041.pdf
	10042.pdf
	10043.pdf
	10044.pdf
	10045.pdf
	10046.pdf
	10047.pdf
	10048.pdf
	10049.pdf
	10050.pdf
	10051.pdf
	10052.pdf
	10053.pdf
	10054.pdf
	10055.pdf
	10056.pdf
	10057.pdf
	10058.pdf
	10059.pdf
	10060.pdf
	10061.pdf
	10062.pdf
	10063.pdf
	10064.pdf
	10065.pdf
	10066.pdf
	10067.pdf
	10068.pdf
	10069.pdf
	10070.pdf
	10071.pdf
	10072.pdf
	10073.pdf
	10074.pdf
	10075.pdf
	10076.pdf
	10077.pdf
	10078.pdf
	10079.pdf
	10080.pdf
	10081.pdf
	10082.pdf
	10083.pdf
	10084.pdf
	10085.pdf
	10086.pdf
	10087.pdf
	10088.pdf
	10089.pdf
	10090.pdf
	10091.pdf
	10092.pdf
	10093.pdf
	10094.pdf
	10095.pdf
	10096.pdf
	10097.pdf
	10098.pdf
	10099.pdf
	10100.pdf
	10101.pdf
	10102.pdf
	10103.pdf
	10104.pdf
	10105.pdf
	10106.pdf
	10107.pdf
	10108.pdf
	10109.pdf
	10110.pdf
	10111.pdf
	10112.pdf
	10113.pdf
	10114.pdf
	10115.pdf
	10116.pdf
	10117.pdf
	10118.pdf
	10119.pdf
	10120.pdf
	10121.pdf
	10122.pdf
	10123.pdf
	10124.pdf
	10125.pdf
	10126.pdf
	10127.pdf
	10128.pdf
	10129.pdf
	10130.pdf
	10131.pdf
	10132.pdf
	10133.pdf
	10134.pdf
	10135.pdf
	10136.pdf
	10137.pdf
	10138.pdf
	10139.pdf
	10140.pdf
	10141.pdf
	10142.pdf
	10143.pdf
	10144.pdf
	10145.pdf
	10146.pdf
	10147.pdf
	10148.pdf
	10149.pdf
	10150.pdf
	10151.pdf
	10152.pdf
	10153.pdf
	10154.pdf
	10155.pdf
	10156.pdf
	10157.pdf
	10158.pdf
	10159.pdf
	10160.pdf
	10161.pdf
	10162.pdf
	10163.pdf
	10164.pdf
	10165.pdf
	10166.pdf
	10167.pdf
	10168.pdf
	10169.pdf
	10170.pdf
	10171.pdf
	10172.pdf

