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Abstract

Linear Genetic Programming (LGP) is a powerful problem-solving tech-
nique, but one with several significant weaknesses. LGP programs con-
sist of a linear sequence of instructions, where each instruction may reuse
previously computed results. This structure makes LGP programs com-
pact and powerful, however it also introduces the problem of instruction
dependencies. The notion of instruction dependencies expresses the con-
cept that certain instructions rely on other instructions. Instruction de-
pendencies are often disrupted during crossover or mutation when one or
more instructions undergo modification. This disruption can cause dis-
proportionately large changes in program output resulting in non-viable
offspring and poor algorithm performance.

Motivated by biological inspiration and the issue of code disruption,
we develop a new form of LGP called Parallel LGP (PLGP). PLGP programs
consist of n lists of instructions. These lists are executed in parallel, and
the resulting vectors are summed to produce the overall program output.
PLGP limits the disruptive effects of crossover and mutation, which allows
PLGP to significantly outperform regular LGP.

We examine the PLGP architecture and determine that large PLGP pro-
grams can be slow to converge. To improve the convergence time of large
PLGP programs we develop a new form of PLGP called Cooperative Co-
evolution PLGP (CC PLGP). CC PLGP adapts the concept of cooperative
coevolution to the PLGP architecture. CC PLGP optimizes all program
components in parallel, allowing CC PLGP to converge significantly faster
than conventional PLGP.

We examine the CC PLGP architecture and determine that performance



is compromised by poor fitness estimates. To alleviate this problem we de-
velop an extension of CC PLGP called Blueprint Search PLGP (BS PLGP).
BS PLGP uses Particle Swarm Optimization (PSO) to search a specially
constructed search space for good fitness estimates. BS PLGP significantly
outperforms both PLGP and CC PLGP.

The applicability of all LGP algorithms is severely compromised by
poor efficiency. Many problem domains have strict time constraints. Al-
gorithms which cannot produce an acceptable solution within these time
constraints cannot be applied to these problems. LGP algorithms are well
known for their extensive run times, severely limiting applicability. To
improve the applicability of our new algorithms we develop a number of
complementary caching techniques. In all cases we present both theoret-
ical and empirical results to confirm the effectiveness of our new caching
algorithms.

We develop the execution trace caching algorithm for LGP to serve as
a baseline estimate as well as a standalone improvement. We show that
execution trace caching can decrease the execution time of LGP programs
by up to 50%.

We develop a new caching algorithm for PLGP. We show that caching
for PLGP can decrease the execution time of PLGP by up to an order of
magnitude.

We develop a new caching algorithm for CC PLGP and BS PLGP. We
show that caching for CC PLGP and BS PLGP can decrease the execution
time of CC PLGP and BS PLGP by up to an order of magnitude.



Acknowledgments

First and foremost I would like to thank my supervisor, Mengjie Zhang,
for the time and effort he has invested in teaching me how to perform re-
search. Mengjie has always found the time to help me, despite his myriad
commitments, and for his friendship and support I will always be grateful.

I would also like to thank my family, my father Rod, my mother Kristin,
and my brother Alex for their continued love and support throughout the
highs and lows of my masters. No matter the circumstance they have
always been there for me.

I would like to thank my friends for understanding my unusual hours
and helping to keep me sane. You were always there to distract me when-
ever my experiments failed to work as planned.

Finally I would like to thank the members of the VUW Evolutionary
Computation Research Group for acting as a source of both inspiration
and criticism.

This work was supported in part by Victoria University of Wellington
(VUW Masters Scholarship) and the Royal Society of New Zealand Mars-
den Fund (Grant VUW0806).

iii



iv



Contents

1 Introduction 1
1.1 Linear Genetic Programming . . . . . . . . . . . . . . . . . . 1
1.2 Issues in LGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Instruction Dependencies . . . . . . . . . . . . . . . . 2
1.2.2 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Survey 9
2.1 Overview of Machine Learning . . . . . . . . . . . . . . . . . 9

2.1.1 Learning Strategies . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Learning Paradigms . . . . . . . . . . . . . . . . . . . 11
2.1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Overview of Evolutionary Computation . . . . . . . . . . . . 13
2.2.1 Basic Structure . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Representation . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Overview of Genetic Programming . . . . . . . . . . . . . . . 20
2.3.1 Tree GP . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Linear GP . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



vi CONTENTS

2.4 Overview of Particle Swarm Optimization . . . . . . . . . . . 26
2.5 Overview of Cooperative Coevolution . . . . . . . . . . . . . 27

2.5.1 SANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Overview of Distance Metrics . . . . . . . . . . . . . . . . . . 31
2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 GP with Caching . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 GP for Classification . . . . . . . . . . . . . . . . . . . 35

3 Data Sets 39
3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Hand Written Digits . . . . . . . . . . . . . . . . . . . 39
3.1.2 Artificial Characters . . . . . . . . . . . . . . . . . . . 40
3.1.3 Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 GP Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Implementation and Hardware . . . . . . . . . . . . . . . . . 45

4 Parallel Linear Genetic Programming 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Parallel Linear Genetic Programming . . . . . . . . . . . . . 52
4.2.1 Program Structure . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Evolution of PLGP Programs . . . . . . . . . . . . . . 54
4.2.3 PLGP Program Topologies . . . . . . . . . . . . . . . . 58

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Program Topologies . . . . . . . . . . . . . . . . . . . 60
4.3.3 Parameter Configurations . . . . . . . . . . . . . . . . 60
4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS vii

4.5.1 Next Step . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Cooperative Coevolution for PLGP 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 CC for PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Program Structure . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Hybrid PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Changeover Point . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Parameter Configurations . . . . . . . . . . . . . . . . 84
5.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.1 CC PLGP . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Hybrid PLGP . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Next Step . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Blueprint Search for PLGP 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Blueprint Search . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Spatial Locality . . . . . . . . . . . . . . . . . . . . . . 106
6.2.3 Calculating the Distance Between Factors . . . . . . . 108
6.2.4 Constructing the Search Space . . . . . . . . . . . . . 113
6.2.5 Searching the Blueprint Space . . . . . . . . . . . . . . 116



viii CONTENTS

6.2.6 Estimating Factor Fitness . . . . . . . . . . . . . . . . 117

6.2.7 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.2 Factor Ordering . . . . . . . . . . . . . . . . . . . . . . 119

6.3.3 Parameter Configurations . . . . . . . . . . . . . . . . 120

6.3.4 Nearest Neighbour Parameters . . . . . . . . . . . . . 120

6.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6.1 Next Step . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Execution Trace Caching for LGP 133

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Execution Trace Caching for LGP . . . . . . . . . . . . . . . . 135

7.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Complete Caching . . . . . . . . . . . . . . . . . . . . 137

7.2.3 Approximate Caching . . . . . . . . . . . . . . . . . . 138

7.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5.1 Caching vs. No Caching . . . . . . . . . . . . . . . . . 147

7.5.2 Theoretical Performance . . . . . . . . . . . . . . . . . 149

7.5.3 Number of Cache Points . . . . . . . . . . . . . . . . . 149



CONTENTS ix

7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.6.1 Next Step . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Caching for PLGP 153
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Caching for PLGP . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2.1 Basic Caching . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.2 Difference Caching . . . . . . . . . . . . . . . . . . . . 158
8.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . 161

8.3 Caching for CC PLGP and BS PLGP . . . . . . . . . . . . . . 167
8.3.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . 168

8.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 173
8.4.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.4.2 Parameter Configurations . . . . . . . . . . . . . . . . 174
8.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 174

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.5.1 PLGP (No Caching) . . . . . . . . . . . . . . . . . . . 177
8.5.2 PLGP (Caching) . . . . . . . . . . . . . . . . . . . . . . 178
8.5.3 CC PLGP/BS PLGP (No Caching) . . . . . . . . . . . 180
8.5.4 CC PLGP/BS PLGP (Caching) . . . . . . . . . . . . . 182

8.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Conclusions 187
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.1.1 PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.1.2 CC PLGP . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1.3 BS PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.1.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.1 PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.2 CC PLGP . . . . . . . . . . . . . . . . . . . . . . . . . 193



x CONTENTS

9.2.3 BS PLGP . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.5 General . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



Chapter 1

Introduction

In this chapter we will introduce some general concepts of LGP, identify
a number of current problems with LGP, and form several research ques-
tions which this thesis will aim to answer. We will also summarise both
the major contributions made by this thesis, and the overall organisation
of this thesis.

1.1 Linear Genetic Programming

Genetic Programming (GP) is a method of automatically generating com-
puter programs which solve a user defined task, inspired by the principles
of biological evolution [46]. Linear genetic programming (LGP) [12, 8]
is a GP variant where each program is a linear sequence of instructions
in some imperative programming language. LGP begins with an initial
group of randomly generated programs called the population. Program
performance is calculated via a fitness function, which uses a training set
of problem examples to determine a numerical representation of program
quality known as the program fitness. Fitness values are used to select indi-
viduals as a basis for the next program generation. The crossover, mutation,
and elitism genetic operators are applied to the selected programs to create
a new population of programs. Recombination exchanges code between

1
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programs; mutation randomly modifies part of a program; and elitism re-
tains the best programs in the population. The process of creating a new
population by selecting high quality individuals and applying the genetic
operators, is repeated until certain user-defined termination criteria are
met. Algorithm output is typically the “best” program found during the
entirety of evolution. LGP can be viewed as a genetic beam search through
the space of all possible programs.

GP in all forms is an emerging field in the area of evolutionary compu-
tation and machine learning. GP has been successfully applied to a wide
variety of tasks [46, 47], including image analysis [69], object detection
[95], symbolic regression [46], and actuator control for robotics [14]. LGP
in particular has seen great success, with algorithms based on the LGP
architecture often outperforming alternative GP approaches [12, 26, 97].

1.2 Issues in LGP

1.2.1 Instruction Dependencies

Instruction dependencies are a fundamental problem in LGP. LGP pro-
grams consist of a sequence of instructions to be executed in order. In-
struction dependencies occur when instructions interact; in other words,
the output of one instruction forms the input for another instruction. In-
struction dependencies allow LGP programs to be concise, yet powerful,
as results computed early in the program can be reused many times. Un-
fortunately they also represent a significant barrier to effective evolution.

Instruction dependencies are often disrupted during evolution, result-
ing in low quality offspring. Instruction dependencies express the notion
that certain instructions “depend” on other instructions for intput. Evolu-
tion, in the form of crossover or mutation, modifies a randomly selected
instruction sequence. Modified instructions will produce different output,
disrupting those instructions which depended on the modified instruc-
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tions for input. Disrupted instructions will produce random output, re-
sulting in offspring likely to have poor performance.

Decreasing the number of instruction dependencies disrupted during
evolution is an important step towards improving LGP. The performance
of current LGP algorithms is severly compromised by evolution produc-
ing low quality offspring, due to disrupted instruction dependencies. If
the number of instruction dependencies disrupted during evolution is de-
creased, the number of high quality offspring produced can be expected
to increase. This would increase the overall algorithm performance.

1.2.2 Fitness Evaluation

Fitness evaluation is the most computationally intensive procedure in GP
[30]. In each generation all programs typically need to be evaluated for fit-
ness. In many problem domains this can mean evaluating each program
on hundreds, or even thousands, of training examples. The cost of fitness
evaluation dwarfs that of all other algorithm components, and is the pri-
mary reason behind the extensive execution times of GP algorithms.

Minimising the cost of fitness evaluation improves the efficiency and
applicability of any GP variant. The flexibility and applicability of search
algorithms such as GP is directly related to how long they take to run.
Many problems have rigid time constraints which prevent algorithms which
execute too slowly from being applied. Hence algorithms which execute
more rapidly can be applied to a wider range of problems.

1.3 Thesis Objectives

The overall goal of this thesis is to improve the effectiveness, and increase
the efficiency and applicability of Linear Genetic Programming. This over-
all goal encompasses three complementary subgoals. The first subgoal
is to design and develop a new LGP architecture where fewer depeden-
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cies are disrupted during evolution. Disrupted dependencies result in
low quality offspring and overall poor algorithm performance. The sec-
ond subgoal is to explore new directions in LGP suggested by such an
architecture to improve system effectiveness. By reducing the number of
instruction dependencies disrupted during evolution we grant access to
many novel algorithms. The third subgoal is to use caching to decrease
program execution time for each of these new algorithms. Large program
execution times significantly reduce algorithm applicability.

In order to achieve these goals, this thesis will focus on answering the
following research questions.

1. How do we develop a LGP architecture where fewer dependencies are dis-
rupted during evolution? Instruction dependencies compromise the
performance of conventional LGP architectures by reducing the num-
ber of viable offspring. Evolutionary operators such as crossover and
mutation disrupt instruction dependencies, causing large, and unde-
sirable changes in program output. In this thesis, we will develop a
new LGP architecture, based on the concept of independently exe-
cuted code sequences, in which fewer instruction dependencies are
disrupted during evolution. We expect that the use of this LGP ar-
chitecture will give improved performance over conventional LGP.

2. What novel algorithms are suggested by our new LGP architecture? By
adopting a new LGP architecture, we have laid the groundwork for
developing novel LGP algorithms. Existing LGP algorithms are struc-
tured to exploit the strengths of the conventional LGP architecture.
Our new architecture will posses different strengths to those of the
conventional LGP architecture, offering up new algorithm opportu-
nities. In this thesis we will develop new LGP algorithms based on
our novel LGP architecture, with the aim of further improving per-
formance over that of conventional LGP.

3. How can caching best be applied to each new algorithm? It is important
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that our new algorithms are fast. Producing high fitness solutions is
an important aspect of any algorithm, however if the algorithm does
not run within a reasonable time frame it will rarely be deployed.
This is particularly true in the case of population based search algo-
rithms such as LGP, which are well known for their extensive run
times. In this thesis, we will develop caching techniques for each
new architecture. We expect these techniques to significantly reduce
program execution time.

1.4 Major Contributions

This thesis makes the following contributions towards the field of LGP.

• Parallel Linear Genetic Programming
We have developed a new LGP architecture called Parallel LGP (PLGP)
where each program consists of multiple independently executed
factors. PLGP programs have fewer instruction dependencies which
means fewer programs disrupted during evolution. This work shows
how a straightforward change in program structure can give excel-
lent results. Our results show that PLGP gives significantly superior
performance on a range of classification problems, particularly when
large programs are used. In addition, the PLGP program structure
provides a versatile base from which to develop powerful new LGP
algorithms.

Part of this work has been published in:

– Carlton Downey, Mengjie Zhang. ”Parallel Linear Genetic Pro-
gramming”. Proceedings of the 14th European Conference on
Genetic Programming. Lecture Notes in Computer Science. Vol.
6621. Springer. Torino, Italy 2011. pp. 178-189. ( Nominated for
the Best Paper Award)
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• Novel Algorithms based on the PLGP architecture
We have developed two novel algorithms based on the PLGP archi-
tecture. These algorithms exploit the parallel structure of the PLGP
architecture to evolve solutions in ways not previous possible. We
combined the highly successful concept of cooperative coevolution
with the PLGP program structure to develop the Cooperative Coevo-
lution PLGP (CC PLPG) algorithm. Our results show that CC PLGP
significantly outperforms PLGP during initial generations. We ex-
tended the CC PLGP algorithm by introducing the notion of a struc-
tured solution space together with a Particle Swarm Optimization
based search to develop the Blueprint Search PLGP (BS PLGP) al-
gorithm. Our results show that BS PLGP significantly outperforms
both CC PLGP and PLGP.

• Caching Techniques
We have developed three novel caching techniques which signifi-
cantly improve algorithm efficiency. Firstly, we developed the execu-
tion trace caching technique for LGP as both a baseline indicator, and
as a standalone improvement to LGP. We provided theoretical and
empirical results which show that execution trace caching can de-
crease the execution time of LGP programs by up to 50%. Secondly,
we developed a novel caching technique for PLGP which exploits
the parallel PLGP architecture. We provided theoretical and empir-
ical resluts which show caching can decrease PLGP program execu-
tion time by an order of magnitude. Thirdly we developed a novel
caching technique for CC PLGP and BS PLGP which exploits the
dual population architecture used by both of these algorithms. Once
again we provided theoretical and empirical results which show that
caching can reduce execution time of both CC PLGP and BS PLGP by
an order of magnitude.

Part of this work has been published in:
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– Carlton Downey and Mengjie Zhang. ”Execution Trace Caching
for Linear Genetic Programming”. Proceeding of the 2011 IEEE
Congress on Evolutionary Computation. IEEE Press. New Or-
leans, USA. June 5-8, 2011. pp. 1191-1198.

– Carlton Downey, Mengjie Zhang. ”Caching for Parallel Linear Ge-
netic Programming”. Proceedings of Genetic and Evolutionary
Computation Conference (GECCO’11), ACM Press. pp 201-202.

1.5 Structure

The remainder of this thesis is structured as follows.

• Chapter 2 provides a survey of relevant background concepts to-
gether with a detailed discussion of work related to this thesis.

• Chapter 3 describes the data sets, settings, and parameters used in
experiments throughout this thesis.

• Chapter 4 investigates our first research question. It presents our
new LGP architecture which reduces the number of instruction de-
pendencies disrupted during evolution. We perform experiments
comparing the performance of our new architecture to that of con-
ventional LGP.

• Chapters 5 and 6 investigate our second research question. Chapter
5 presents a new algorithm which combines the concept of cooper-
ative coevolution and the architecture developed in chapter 4. We
perform experiments comparing the performance of our new algo-
rithm to that of vanilla PLGP. Chapter 6 presents an extension of the
algorithm developed in chapter 5. We perform experiments compar-
ing the performance of this extension to that of the original algorithm
developed in chapter 5.
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• Chapters 7 and 8 investigate our third research question. Chapter 7
presents a new caching technique for LGP which can act as a baseline
for future work. We perform a theoretical analysis of this caching al-
gorithm as well as experiments to obtain empirical results. Chapter
8 presents new caching techniques for the algorithms introduced in
chapters 4, 5, and 6. We perform a theoretical analysis for each of
these caching algorithms, as well as experiments using various clas-
sification problems to obtain empirical results.

• Finally chapter 9 presents the major conclusions of the work pre-
sented in this thesis, together with potential future work directions.



Chapter 2

Literature Survey

This section covers some necessary background material vital to under-
standing the work presented in this thesis. Our intention is to present only
a brief overview of this material, sufficient only to familiarize the reader
with the broadest outline of these concepts. For an in-depth study of this
material we refer the reader to the citations provided.

2.1 Overview of Machine Learning

Machine Learning (ML) [59, 56, 2, 10] is a major sub-field of Artificial In-
telligence (AI) which concerns the design and development of algorithms
which enable computers to “learn”. ML is primarily focused on using
empirical data to infer characteristics of the underlying probability dis-
tribution for the purposes of predicting future behavior. Common ML
applications include medical diagnosis, handwriting recognition, actuator
control, financial analysis, etc.

ML algorithms are categorized according to their Learning Strategy and
their Learning Paradigm. The learning Strategy corresponds to the way in
which data is presented to the algorithm. The Learning Paradigm corre-
sponds to the inspiration behind the algorithm; in other words, the way in
which inputs are mapped to outputs.

9
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2.1.1 Learning Strategies

ML techniques are separated into a number of techniques based on as-
sumptions about how learning occurs. These include Supervised Learn-
ing, Unsupervised Learning, Reinforcement Learning, Semi-Supervised
Learning, etc. The work presented in this thesis is concerned with Super-
vised Learning, however we briefly outline the three major approaches.

• Supervised Learning
Supervised learning algorithms [10] use a set of labeled training in-
stances to infer a function which maps inputs to desired outputs.
The labeled data is manually specified by an expert in the area. In
other words, supervised learning can be viewed as learning to mimic
the behavior of a human expert. The work presented in this thesis
belongs to the area of supervised learning.

The difficulty with supervised learning lies with the limited num-
ber of training examples. Problem domains often contain infinitely
many possible input combinations, while the training set is limited
to some finite subset of input combinations. The aim of supervised
learning is to produce a learner which can correctly predict the out-
put of previously unseen instances based solely on the limited num-
ber of training examples provided.

• Unsupervised Learning
Unsupervised learning algorithms [39] seek to discover hidden struc-
ture in unlabeled data. Unlike supervised learning the data instances
are not labeled with a desired output, so there is no “correct” answer.

• Reinforcement Learning
Reinforcement learning algorithms [85] interactively learn within the
environment. The learner is not provided with a fixed training set of
data. Instead, the learner generates its own training data by tak-
ing actions and receiving rewards. Rewards are real numbers which
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indicate how well the learner is performing, and are used to select
future actions.

• Hybrid Learning
Hybrid learning algorithms use any combination of supervised learn-
ing, unsupervised learning, and reinforcement learning.

2.1.2 Learning Paradigms

There are generally four major paradigms in machine learning: Evolution-
ary Paradigm, Connectionist Paradigm, Case-Based Learning Paradigm,
and Inductive Learning Paradigm [79].

• Evolutionary Paradigm
Evolutionary computation methods evolve a population of poten-
tial solutions through the repeated application of evolutionary op-
erators. This learning paradigm was inspired by Darwinian evolu-
tion in biological systems. Evolutionary computation is central to the
work presented in this thesis, and is covered in detail in section 2.2.

• Connectionist Paradigm
Connectionist methods represent a solution as a network of con-
nected nodes. This learning paradigm was inspired by the struc-
ture of biological neural networks within the human brain. Learning
is achieved by optimizing the network parameter values until each
input produces the correct output. Connectionist methods include
Artificial Neural Networks (ANNs) [78, 93] and Parallel Distributed
Processing Systems (PDPs) [55].

• Case-Based Learning Paradigm
Case-Based methods directly compare each new example to the en-
tire training set. This approach is attractive in its simplicity, how-
ever it has the significant disadvantage that execution time is pro-
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portional to the size of the training set. An example of Case-Based
learning is the Nearest Neighbor (NN) algorithm [5].

• Inductive Learning Paradigm
Inductive methods derive explicit rules from the training data, and
apply these rules to the test data. These methods are distinct because
each rule is a standalone entity, unlike a connectionist approach where
implicit rules are contained within a single large network. Inductive
approaches include Decision Trees [74].

2.1.3 Classification

Classification problems involve determining the type or class of an object
instance based on some limited information or features. Formally the goal
of classification is to take an input vector x and to assign it to one of K
discrete classes Ck where k = 1, ..., K [10]. Solving classification problems
involves learning a classifier, a program which can automatically perform
classification on an object with unknown class. The classifier is a model
encoding a set of criteria that allows a data instance to be assigned to a
particular class depending on the value of certain variables. A classifi-
cation algorithm is a method for constructing a classifier. Classification
problems form the basis of empirical testing in this paper.

Classification problems are categorized based on the number of classes
which must be distinguished between. Binary classification problems are
those which require distinguishing between two classes. In contrast, mul-
ticlass classification problems require distinguishing between more than
two classes. Multiclass classification problems are often extremely chal-
lenging for GP based classifiers [26, 99].
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2.1.4 Data Sets

Supervised learning methods, such as the algorithms developed in this
thesis, require a labeled data set. A data set consists of sample instances
from the problem domain. In the case of labeled data, each instance con-
sists of several inputs, together with a desired output. In the case of unla-
beled data, outputs are not provided.

Training, Test, and Validation Sets

In supervised learning the data set is typically partitioned into three sub-
sets. The training set is used to train the learner by optimizing parameter
values. The validation set provides an estimate of test set performance.
The test set is used as a measure of performance on unseen data.

The validation set is a mechanism used to prevent overfitting [1, 87].
Overfitting occurs when the learner fails to generalize, resulting in high
training set performance but low test set performance. Overfitting can be
seen as a model with an excess of parameters for a particular problem [56].
When a validation set is not used, other mechanisms must be put in place
to avoid overfitting.

A graphical representation of overfitting is shown in figure 2.1. The
green line shows a model with good generalization which will make rea-
sonable predictions for unseen x values. The red line shows an overfitting
model. This model performs well on the training set, but will make outra-
geously bad predictions for any unseen data points.

2.2 Overview of Evolutionary Computation

Evolutionary Computation (EC) [38, 22, 25] is concerned with develop-
ing solutions to problems through algorithms inspired by the process of
biological evolution [83]. EC algorithms maintain a population of individ-
uals, each of which is a potential solution to the problem. High quality
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Figure 2.1: A simple example of overfitting

individuals are stochastically selected from the population and modified
via algorithm specific genetic operators. These operators vary from algo-
rithm to algorithm, but often have their roots in biological evolution.

There are a wide variety of algorithms which fall under the umbrella
of EC. Some of these include:

• Evolutionary Algorithms
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– Genetic Algorithms (GA) [58]

– Evolutionary Programming (EP) [22]

– Evolution Strategies (ES) [9]

– Genetic Programming (GP) [46]

• Swarm Intelligence

– Ant Colony Optimization (ACO) [19]

– Particle Swarm Optimization (PSO) [45]

• Others

– Differential Evolution (DE) [84]

– Artificial Immune Systems (AIS) [15]

– Learning Classifier Systems (LCS) [13]

2.2.1 Basic Structure

EC algorithms differ in a variety of ways, however they all follow the same
underlying procedure: A population of individuals is initialized. Individ-
ual quality is evaluated, and good solutions are selected as a basis for a
new population. Finally the selected individuals undergo modification to
produce a population of new solutions. These three steps are discussed in
more detail below.

• Initialization
Each algorithm begins by initializing a collection, or population of in-
dividuals. Each individual is a potential solution to the problem, and
can be viewed as a single point within the search space of all possible
solutions. There is ongoing research into the best way to generate the
individuals in the initialization [4], however many algorithms sim-
ply generate individuals at random.
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• Selection
Each algorithm iteratively generates a new population by stochasti-
cally sampling the individuals in the previous generation. Selection
is biased towards higher quality solutions, resulting in an overall in-
crease in solution quality within the population. In order to compare
solution quality, algorithms possess a fitness function which provides
a quantitative assessment of an individual with regards to its quality
as a solution to the problem, called the fitness. It is important to note
that individuals can be selected more than once, and that solutions
with higher fitness will contribute more to later generations.

• Reproduction 1

Each algorithm uses genetic operators to modify the individuals se-
lected, with the aim of discovering new, high fitness solutions. The
exact form of the genetic operators used varies from algorithm to
algorithm, but the majority fit three categories:

– Mutation operators randomly modify part of a single individ-
ual. Mutation acts to maintain genetic diversity within the pop-
ulation, as well as being a form of local search in some cases.

– Recombination operators combine the information from two par-
ents into a single offspring. Recombination acts to combine ex-
isting genetic material in new ways, with the aim of producing
offspring bearing the strengths of both parents.

– Elitism operators directly copy a single individual. Elitism acts
to preserve high quality solutions to ensure that population fit-
ness does not drop.

1Note that the term reproduction is sometimes used to refer solely to elitism. In this in-
stance we use the word reproduction to mean the generation of new individuals through
the application of any genetic operator. However, for the remainder of this thesis we do
not include elitism in the set of genetic operators as it does not modify the program in
any way.
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The effect of the Mutation, Recombination, and Elitism operators is
illustrated in figure 2.2.

Elitism

Crossover

Mutation

Figure 2.2: The three types of genetic operators

2.2.2 Representation

Different EC methods use different representations for the individuals in
the population. Many representations exist, including bitstrings, vectors
of real valued numbers, trees, and graphs. The choice of representation
is extremely important as it dictates many other aspects of the algorithm,
such as the form of the genetic operators.

Different representations possess different strengths and weaknesses
and are appropriate for different problems. The representation controls
the size and shape of the search space. For example the search space of
all possible bit strings of length n is both finite and countable, whereas the
search space of all possible graphs is infinite and continuous. In addition,
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some search spaces are easier to search than others, something which must
be considered when selecting a representation.

2.2.3 Selection

EC algorithms use fitness values to stochastically select individuals for use
in a new population. Selection requires that individuals with high fitness
are chosen more often than individuals with low fitness. There are sev-
eral methods used to select individuals including proportional selection,
tournament selection, and rank selection [58]:

• Proportional Selection
Proportional Selection samples individuals with probability propor-
tional to their fitness [6]. The probability of any single individual
being sampled is calculated as fx/

∑n
i=0 fi. This type of selection is

also known as “roulette wheel selection” as it can be viewed as spin-
ning a roulette wheel, where each individual has a segment on the
wheel proportional in size to its fitness.

Unfortunately there are several problems with proportional selec-
tion. In particular, proportional selection can easily result in ho-
mogenous populations, where a small number of individuals are
oversampled [51]. If there is large disparity between the fitness of
individuals within the population then there will be also be a large
disparity in how many times each individual is sampled. This is
extremely problematic if a small number of individuals have much
higher fitness than the rest of the population. The high fitness indi-
viduals will be selected too often, resulting in the population con-
verging to a single genotype within a small number of generations.
Premature population convergence prevents effective search result-
ing in poor algorithm performance.

• Tournament selection
Tournament Selection samples individuals according to the results
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of a tournament [57]. n individuals are sampled uniformly at ran-
dom from the population to compete against each other, where n is
a user-defined parameter. The individual with the best fitness auto-
matically wins the tournament, and is selected.

Tournament selection has the advantage of preventing convergence
to a single homogenous population [51]. The disparity in fitness is
irrelevant because individuals are sampled uniformly at random to
participate in tournaments. High fitness individuals will be sampled
more than low fitness individuals, as they will win the tournaments
they participate in. However the number of times any single indi-
vidual can be selected is controlled by the number of tournaments
that individual participates in. With this in mind population conver-
gence rates are controlled by the size of the tournament, which in
turn is controlled by the user defined parameter n. n acts to adjust
the selection pressure. It is more difficult to win larger tournaments,
therefore larger tournaments favour high fitness solutions leading to
population convergence.

• Rank Selection
Rank Selection samples individuals with probability proportional to
their rank [34]. The entire population of individuals is ranked ac-
cording to their fitness values. The probability of any single individ-
ual being selected is a function of that individual’s rank within the
population.

Rank selection also has the advantage of preventing convergence to a
single homogenous population. The disparity in fitness is irrelevant
because the probability of any single individual being selected is a
function of that individual’s rank within the population. High qual-
ity solutions will be sampled more often than low quality solutions
as they will possess higher rank. However the difference in fitness is
irrelevant when determining rank.
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2.2.4 Parameters

When deploying an EC algorithm there are a number of parameters which
need to be specified by the user. It is important that good values are cho-
sen for these parameters, as a poor choice of parameters results in slow
algorithm convergence and low quality final solutions. The particular pa-
rameters pertaining to the algorithms used in this thesis are covered in
chapter 3.

Note that these parameters are typically static, however several meth-
ods exist which dynamically adjust the GP parameters during evolution
[54, 82]. Note that dynamic values are not used in this thesis as this is not
the goal of this work.

2.3 Overview of Genetic Programming

Genetic Programming (GP) [71, 51] is an EC method where the individu-
als being evolved are simple computer programs. GP was derived from
genetic algorithms [40], and popularized by Koza in 1992 [46].

GP algorithms are categorized based on the type of programs used.
Major categories include Tree GP, Linear GP, Graph GP [70], and Gram-
matical GP [88, 89]. This thesis only reviews Tree GP (the conventional
and most commonly used form of GP) and Linear GP (which is used in
the work presented in this thesis).

2.3.1 Tree GP

The original, and most widely used form of GP is called tree-based GP
(TGP). In TGP the programs are LISP-S expressions stored in a tree struc-
ture. An example of a TGP program is shown in figure 2.3.

Each TGP program consists of a single tree. The internal nodes of the
tree, called non-terminal nodes, are nested functions. These functions use
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+

- *

f1 3 f2 -1

=(f1 – 3) + (f2 * -1)

Figure 2.3: An example of a TGP program

the output of their children as inputs. The leaf nodes of the tree, called ter-
minal nodes, are constants or features instantiated by the training instance.

Strongly Typed GP

Strongly Typed GP (STGP) [60] is an extension of the basic TGP approach,
which does not require closure. An example of a STGP program is shown
in figure 2.4.

In conventional TGP all variables, constants, features, and values re-
turned by features must be of the same data type, typically real numbers.
This is known as the closure property. Closure has the advantage of ensur-
ing any possible program produced during reproduction is valid. Unfor-
tunately requiring closure has the disadvantage of greatly restricting the
function set.

In STGP we allow data values of different types to occur in the same
program. For instance, functions which take real numbers as input and
produce a single Boolean value as output. STGP has the advantage of
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If

- *

f1 3 f2 -1

=If( F && T ){f1 - 3} else{f2 * -1}

&&

F T

Figure 2.4: An example of a STGP program

a more flexible program structure which allows a wider range of func-
tions. Unfortunately reproduction of STGP programs can often result in
non-viable offspring. These are programs where the function types do not
match, preventing program execution.

2.3.2 Linear GP

In Linear GP (LGP) [66, 23, 7, 64, 11] the individuals in the population
are programs in some imperative programming language. Each program
consists of a number of lines of code, to be executed in sequence. The LGP
used in this paper follows the ideas of register machine LGP [?]. In reg-
ister machine LGP each individual program is represented by a sequence
of register machine instructions, typically expressed in human-readable
form as C-style code. Each instruction has three components: an operator,
2 arguments and a destination register. To execute the instruction, the op-
erator is applied to the two arguments and the resulting value is stored in
the destination register. The operators can be simple standard arithmetic
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operators or complex specific functions predefined for a particular task.
The arguments can be constants, registers, or features from the current
instance. An example of a LGP program is shown in figure 2.5.

r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

Figure 2.5: An example of a LGP program

After a LGP program has been executed the registers will each hold a
real valued number. For presentation convenience, the state of the regis-
ters after execution is represented by a vector of reals r. These numbers
are the outputs of the LGP program and can be interpreted appropriately
depending on the problem at hand. A step by step example of LGP pro-
gram execution can be found in figure 2.6.

Genetic Operators

LGP algorithms use three genetic operators adapted to the LGP architec-
ture [?]:

• Elitism: Elitism makes a perfect copy of the selected LGP program.

• Mutation: Mutation replaces a randomly selected instruction sequence
with a randomly generated instruction sequence.

• Crossover: Crossover exchanges two randomly selected instruction
sequences.

The operation of these three operators is illustrated in figure 2.7.
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Program
Inputs

f1 f2 f3
0.1 3.0 1.0

(a)

Program Execution
Program Registers

index Instruction r[1] r[2] r[3]

0 - 0 0 0
1 r[1] = 3.1 + f1; 3.2 0 0
2 r[3] = f2 / r[1]; 3.2 0 0.94
3 r[2] = r[1] * r[1]; 3.2 10.24 0.94
4 r[1] = f1 - f1; 0 10.24 0.94
5 r[1] = r[1] - 1.5; -1.5 10.24 0.94
6 r[2] = r[2] + r[1]; -1.5 8.74 0.94

(b)

Program
Outputs

r[1] r[2] r[3]
-1.5 8.74 0.94

(c)

Figure 2.6: Example of LGP program execution on a specific training ex-
ample.

Classification using LGP

LGP is particularly well suited to solving multiclass classification prob-
lems [21, 26, 97, 67, 20]. The number of outputs from a LGP program is
determined by the number of registers, and the number of registers can
be arbitrarily large. Hence we can map each class to a particular output
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r[1] = 3.1  + f1;

r[3] = f2   / r[1];

R[5] = 1    * 1;

R[5] = 10   * 10;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[4] = 3  * 3;

r[4] = 4  - 4;

r[2] = r[1] * r[1];

r[1] = f1   - f1;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[4] = 1  + 1;

r[4] = 2  / 2;

r[4] = 3  * 3;

r[4] = 4  - 4;

r[4] = 5  + 5;

r[4] = 6  + 6;

Elitism

Crossover

Mutation
r[1] = 3.1  + f1;

r[3] = f2   / r[1];

r[2] = r[1] * r[1];

r[1] = f1   - f1;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[1] = 3.1  + f1;

r[3] = f2   / r[1];

r[2] = r[1] * r[1];

r[1] = f1   - f1;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[1] = 3.1  + f1;

r[3] = f2   / r[1];

r[2] = r[1] * r[1];

r[1] = f1   - f1;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[1] = 3.1  + f1;

r[3] = f2   / r[1];

r[2] = r[1] * r[1];

r[1] = f1   - f1;

r[1] = r[1] – 1.5;

r[2] = r[2] + r[1];

r[1] = 3.1 + f1;

r[3] = f2  \ r[1];

r[4] = 3   * 3;

r[4] = 4   - 4;

R[4] = 5   + 5;

r[4] = 6   + 6;

Figure 2.7: Three common LGP genetic operators

in the form of a single register. Classification then proceeds by selecting
the register with the largest final value and classifying the instance as the
associated class. For example, if registers (r1, r2, r3) held the values (-1.5,
8.74, 0.94) then the object would be classified as class 2, since register 2 has
the largest final value (8.74).

This thesis will use multiclass classification tasks as example data sets
to examine new algorithms and structure/representations.
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2.4 Overview of Particle Swarm Optimization

Particle Swarm Optimization (PSO) [44] is a population based search tech-
nique inspired by the social behavior of various organisms known as ”Swarm
Intelligence”. PSO uses a population of solutions called ”particles” with
a position and velocity in the search space, and updates these particles
based on a combination of local and global optima. PSO can be envi-
sioned as a swarm of particles moving around the search space, over time
converging on the optimal values discovered by the swarm as a whole.

Let S be the number of particles in the swarm, each having a position
xi ∈ Rn and a velocity vi ∈ Rn. Let pi be the best known position of particle
i and let g be the best known position of the entire swarm. Let blo and bhi

be the lower and upper bounds of the search space. Finally let f() be the
fitness function which takes a particle and returns its fitness value. A basic
PSO algorithm is shown in algorithm 1.

PSO has a number of important strengths:

• PSO does not use the gradient of the search space being explored, al-
lowing PSO to solve problems which are not differentiable, are noisy,
or change over time.

• PSO can produce a population of distinct, high fitness solutions.

• PSO offers rapid particle convergence when compared to evolution-
ary computation algorithms.

• PSO is easy to implement and there are few parameters to adjust.

• PSO is computationally inexpensive both in terms of memory and
CPU.

An example of PSO is shown in figure 2.8. In this example PSO is
searching a discrete 2-dimensional search space, so each PSO particle will
have a discrete two-dimensional position, and a two-dimensional velocity.
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Algorithm 1 Generalized PSO Algorithm

for ( each particle i = 1, ..., S ) do
Initialize the particle’s position with a uniformly distributed random
vector xi := U(blo, bhi);
Initialize the particle’s best known position to its initial position: pi :=
xi;
if ( f(pi) < f(g) ) then

update the swarm’s best known position: g := pi;

Initialize the particle’s velocity: vi := U(−|bup − blo|, |bup, blo|);

while ( generations < max ) do
for ( each particle i = 1,...,S ) do

Pick random numbers rp, rg ∈ U(0, 1);
Update the particle’s velocity: vi := ωvi+ϕprp(pi−xi)+ϕgrg(g−x);
Update the particle’s position: xi := xi + vi;
if ( f(xi < f(pi) ) then

Update the particle’s best known position: pi := xi;
if ( f(pi) < f(g) ) then

Update the swarm’s best known position: g := pi;

Each cross represents the position of a particle, and each arrow shows
its velocity. The particles will converge on high fitness solutions result-
ing in a clustering of particles in areas of high fitness. An example of a
converged PSO population is shown in figure 2.9.

2.5 Overview of Cooperative Coevolution

Cooperative Coevolution (CC) [72, 73, 92] is a recently popularized EC
framework where each individual is a partial solution. Conventional evolu-
tionary algorithms have a single population containing complete solutions
to the problem. In CC there are n populations, called sub-populations,
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Figure 2.8: PSO searching the Blueprint Space

each of which contains partial solutions to the problem. A complete solu-
tion consists of n partial solutions, one from each population.

In a CC model each individual aims to optimize one part of the solu-
tion through cooperation with other individuals. The underlying concept
of CC is to produce several homogeneous populations of individuals, each
of which optimizes one aspect of the final solution. A complete solution to
the problem can then be obtained by combining partial solutions from the
various populations. Evolving these populations in parallel is equivalent
to performing several parallel searches for different pieces of the solution.
It is hypothesized that in many situations this is more efficient than a sin-
gle search for the entire solution [62].

Through its use of multiple populations CC also encourages the nich-
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Figure 2.9: Converged PSO

ing of components [62]. Components which vary too widely in their geno-
type often produce non-viable offspring when mated. This is particularly a
problem with single population evolutionary techniques. Good solutions
often require a range of diverse genetic components, and evolving these
components within a single population often gives poor results. By al-
lowing multiple populations, components are free to evolve within a niche
consisting solely of similar individuals.

2.5.1 SANE

SANE [62, 61, 63] is a CC algorithm for evolving neural networks first
described by Moriarty and Miikkulainen in 1997 [62]. The distinguishing
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Pop 1

Pop 2

Pop 3

Blueprints

Figure 2.10: Architecture of the SANE algorithm.

feature of SANE is its two level population structure. SANE features both
low level populations of neurons, and high level populations of neuron
combinations known as blueprints. The SANE architecture is shown in
figure 2.10.

The blueprints act as a mechanism for discovering and remembering
high quality combinations of neurons. Both populations undergo evolu-
tion, but in slightly different ways. Evolution of the neurons proceeds as
in a conventional EA, with crossover and mutation between genetic infor-
mation. Evolution of the blueprints has no effect on the genetic material
itself, it simply changes which combinations of genetic material are eval-
uated together. SANE gives excellent performance on a number of impor-
tant problems [62].
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2.6 Overview of Distance Metrics

A distance metric is a function which defines a distance between elements
of a set. A distance is a real valued number representing how far apart
objects are. Distances can also be used to represent how similar two objects
are. Similar objects have a small distance between them, while dissimilar
objects have a large distance between them.

In order to qualify as a distance metric a function needs to satisfy our
intuitive notions about the concept of distance. For example, the distance
from x to y should be same as the distance from y to x. Formally, a distance
metric on a set X is a function d : X×X → R which satisfies the following
four conditions:

1. d(x, y) ≥ 0. (non-negativity)

2. d(x, y) = 0 if and only if x = y. (identity of indiscernibles)

3. d(x, y) = d(y, x). (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

There exist a number of useful distance metrics. Some of these include:

• Discrete Distance
If x = y, d(x, y) = 0; otherwise d(x, y) = 1. This is the simplest pos-
sible distance metric. The discrete distance encodes the concept that
all points are isolated from each other [42]. For example,
d((3, 1, 2), (1, 1, 1)) = 1.

• Euclidean Distance
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2. The euclidean

distance is the “ordinary” distance between two points that one would
measure with a ruler [17]. For example, d((3, 1, 2), (1, 1, 1)) = 2.24(2dp).
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• Taxicab Distance
d(x, y) =

∑n
i=1 |xi − yi|. Also known as the Manhattan Distance. The

taxicab distance is best envisioned as the distance which must be
traveled when moving along the lines of a grid [48]. For example,
d((3, 1, 2), (1, 1, 1)) = 3.

• Hamming Distance
d(x, y) is the number of places in which x and y differ [36]. For ex-
ample, d((3, 1, 2), (1, 1, 1)) = 2.

Distance metrics are often used in machine learning to calculate the
similarity between potential solutions. This can be useful for a number
of purposes, including measuring and maintaining diversity, and aiding
with local search.

2.7 Related Work

In this section we present a review of the most relevant literature with
regards to the contributions presented in this thesis.

2.7.1 GP with Caching

The Problem

GP algorithms often require a long time to produce an acceptable solution,
severely limiting algorithm applicability.

Many machine learning problem domains include tasks with strict time
constraints. These tasks require algorithms which can produce useful so-
lutions quickly. Algorithms which cannot produce useful solutions quickly
cannot be applied to these tasks.

GP algorithms are often computationally expensive. Fitness evaluation
requires each potential solution to be executed on a large number of train-
ing examples. While a single fitness evaluation is usually fast, there are
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often hundreds of individuals or thousands of training examples, result-
ing in significant running times.

In short, the extensive execution time of many GP algorithms nega-
tively impacts their applicability. When designing and developing new
algorithms it is vital to maximize algorithm efficiency. In this way algo-
rithm applicability is also maximized, increasing the number of tasks the
algorithm is suited to solve.

There exist a number of techniques for reducing the execution time of
GP algorithms. One technique is to reduce the number of training exam-
ples by carefully selecting a representative subset [30, 29, 94]. Another is
to improve the fitness evaluation procedure directly, typically by paral-
lelizing the fitness evaluations and the use of Graphics Processing Units
[16, 77]. A third approach, and the approach focused on in this thesis, is to
use caching. In the remainder of this section we explore related work on
the use of caching for reducing the execution time of GP algorithms.

Caching for GP

Caching is one approach to reducing the execution time of GP algorithms.
Caching stores partially computed results in memory and uses them to
increase the efficiency of later computations. In this way caching trades a
cost in memory for a saving in execution time.

Caching is a general technique successfully applied in virtually every
computer science domain. Caches can be found in operating systems, web
servers, hard drives, data bases, and search engines - to name a few exam-
ples. Caching can be successfully applied to any system where the same
partial results are computed multiple times. Caching is a natural fit for GP
given the repeated code in many GP programs.

A number of caching techniques have been proposed for decreasing
the execution time of GP, with varying degrees of success.

Roberts [75] develops an inter-generational caching technique for im-
age segmentation using Strongly Typed GP. Commonly occurring sub-
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trees, together with their output, are cached using a combination of mem-
ory and hard disk. The paper shows that this technique can decrease the
number of evaluations needed by up to 66%, resulting in a decrease in
elapsed time of up to 52%.

Handley [37] develops an inter-generational caching technique for TGP
by using a Directed Acyclic Graph (DAG) to represent the population of
individuals. This approach conserves space by not duplicating identical
subtrees. In addition, values computed by each subtree for each fitness
evaluation is cached. This saves computation time by using a single ex-
ecution to evaluate all instances of a repeated subtree. The paper shows
that this approach can result in 30 fold reduction in the number of nodes
executed. This result highlights the degree of repetition present in GP pro-
grams, and the potential savings if redundant executions can be avoided.

Langdon [50] uses caching to reduce the runtime of his GP algorithm.
Despite the presence of side effects which severely limit the effectiveness
of caching, runtime is still reduced by 32%.

Keijzer [43] examines a number of subtree caching mechanisms for
TGP that are capable of adapting during the course of a run while main-
taining a fixed size cache of already evaluated subtrees. One approach
presented in this paper is to represent the population using a DAG. A sec-
ond is to store a cache of subtrees represented as a DAG. Both approaches
are shown to greatly reduce run time. In addition the results show large
benefits for the use of even very small subtree caches.

Wong [91] develops a caching algorithm for TGP called SCHEME, based
on subtree caching. TGP subtrees are hashed using a hashing algorithm
developed by the author. This hash is used to position subtrees within the
cache and determine subtree equivalence. SCHEME has the advantage of
recognizing functionally equivalent subtrees. Subtrees which are function-
ally equivalent despite structural differences will hash to the same value,
greatly increasing cache efficiency.

It should be noted that these techniques are all for TGP. To the author’s
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knowledge, there are no caching techniques specifically developed for the
LGP architecture.

2.7.2 GP for Classification

Classification is an important problem domain, and one which forms the
basis of empirical testing in this thesis. Furthermore, the classification
tasks used in this thesis are all multiclass classification problems. There-
fore in this section we briefly review related work on GP for classification,
with a focus on multiclass classification.

There has been an enormous quantity of work in the area of GP for
classification, and it is not the intent of this thesis to act as a comprehensive
survey paper. To this end we limit ourselves to a representative sampling
of important papers. Esperjo et al [24] provides an excellent survey of GP
for classification for the interested reader.

GP can be applied to classification tasks in a variety of ways. The three
major application categories Preprocessing [65], Model Extraction, and En-
semble Classifiers. Most of the papers published related to GP and clas-
sification focus on the application of GP to model extraction, that is, the
induction of classifiers [24]. As this thesis focuses on Model Extraction via
Discriminant Functions in the form of LGP programs, we will limit our re-
view appropriately.

TGP for Classification

We begin by reviewing papers related to TGP for classification. While not
the focus of this thesis, TGP is the conventional form of GP, used in the
vast majority of literature. In addition, the use of LGP for classification is
typically motivated by the drawbacks associated with using TGP for clas-
sification. Hence it is important give a brief overview of relevant literature
related to TGP for classification.

TGP has been widely applied to various classification problems [49,
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52, 68, 86, 96, 98, 100]. TGP has proven to be a highly effective approach
for solving binary classification problems. Unfortunately TGP is not well
suited to solving multiclass classification problems [99]. TGP programs
output a single real number, which is difficult to interpret effectively as a
class label in the context of multiple classes. Hence TGP classifiers often
perform poorly on multiclass classification problems.

Several attempts have been made to improve the performance of TGP
on multiclass classification problems. The majority of these approaches
focus on new mapping functions for converting the single program output
into a class label.

Loveard [53] applies GP to several binary and multiclass medical data
sets. The methods of binary decomposition, static range selection, dy-
namic range selection, class enumeration and evidence accumulation are
described. Dynamic range selection was found to be the method with the
best mix of speed and accuracy.

Zhang and Smart [99, 81] introduce two mapping functions: centered
dynamic range selection and slotted dynamic range selection. These two
approaches outperform the basic static range selection on more difficult
multiclass classification problems with many classes.

Smart and Zhang [80] introduce a probability based mapping function
which uses a parameterized Gaussian to map tree output to a class label.
This approach gives significantly improved performance on a number of
multiclass classification problems, however performance suffers when the
underlying output distribution is not a Gaussian.

LGP for Classification

In this subsubsection we review papers related to LGP for classification.
While LGP is an effective technique for solving binary classification prob-
lems [?] it has particularly come into its own as a method for solving mul-
ticlass classification problems. With this in mind this thesis uses multi-
class classification problems as the basis of empirical testing. Hence this
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subsection will review LGP for classification with a focus on multiclass
classification.

LGP is particularly well suited to solving multiclass classification prob-
lems. It has been demonstrated that LGP has significantly superior perfor-
mance to conventional LGP on many multiclass classification problems
[26, 67]. Despite this, relatively little work has been done in the area of
linear genetic programming for multiclass classification.

Olague et al [67] develop a LGP approach for image classification which
simultaneously solves the region selection and feature extraction tasks.
The method searches for optimal regions of interest, using texture infor-
mation as its feature space and classification accuracy as the fitness func-
tion. The paper shows that this LGP based approach gives superior per-
formance to previous methods.

Fogelberg and Zhang [97] apply LGP to a number of multiclass image
recognition problems with favorable results. The paper demonstrates that
a LGP based approach significantly outperforms the basic TGP based ap-
proach. It also provides heuristic guidelines for initially setting system
parameters.

Downey and Zhang [20] introduce a new mutation operator called se-
lective mutation. Selective mutation identifies “bad”2 instructions within
the program and focuses mutation on these instructions. The paper shows
that selective mutation significantly outperforms conventional mutation
on several multiclass classification problems.

Downey, Zhang and Browne [21] introduce two crossover operators:
Class Graph Crossover, and Selective Crossover. These operators are specifi-
cally designed for multiclass classification problems. Class graph crossover
examines program struture to determine which instructions are responsi-
ble for each output. Selective crossover examines program performance
on the training set, and attempts to select the most useful program code
from each parent during crossover. The paper shows that these opera-

2bad instructions are those which contribute to incorrect output
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tors significantly outperform conventional crossover on several multiclass
classification problems.



Chapter 3

Data Sets

This chapter describes the data sets, GP parameters, implementation, and
hardware used throughout the experiments in this thesis.

3.1 Data Sets

The algorithms presented in this thesis are evaluated on three tasks from
the important problem domain of object classification. Object classification
problems are ideal for comparing and contrasting LGP algorithm perfor-
mance. They occur naturally in a wide range of applications,

The three tasks chosen are Hand Written Digits, a problem in classify-
ing hand written digits; Artificial Characters, a problem in classifying ar-
tificial characters; and Yeast, a problem in predicting protein localization
sites in yeast. These tasks are highly challenging due to a high number of
attributes, a high number of classes, and noise in some sets. All three tasks
are sourced from the UCI machine learning database [27].

3.1.1 Hand Written Digits

This data set consists of hand written digits with added noise. Each in-
stance consists of an 8x8 square pixel array where each element is an in-

39
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teger in the range 0 to 16. Each fitness case was generated by scanning a
printed form to produce a 32x32 bitmap. This bitmap was divided into
nonoverlapping 4x4 blocks, and the number of pixels in each block was
summed to produce an integer in the range 0 to 16. Further details about
the Hand Written Digits data set can be found in table 3.1.

Data Type Multivariate
Task Classification
Attribute Types Real
Instances 3750
Attributes 64
Classes 10

Table 3.1: Hand Written Digits dataset information

3.1.2 Artificial Characters

This data set consists of vector representations of 10 capital letters from
the English language. The capital letters represented are the following: A,
C, D, E, F, G, H, L, P, R. Each instance is described by a set of segments
(lines) which resemble the way an automatic program would segment an
image. The data set has been artificially generated by using a first order
theory which describes the letter structure together with a random choice
theorem prover which accounts for heterogeneity in the instances. Further
details about the Artificial Characters data set can be found in table 3.2.

3.1.3 Yeast

This data set consists of information about yeast cells, together with their
protein localization site. Each yeast instance consists of 8 real numbered
attributes giving the results of various tests performed on the yeast cells.
These attributes are listed in table 3.3.
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Data Type Multivariate
Task Classification
Attribute Types Real
Instances 5000
Attributes 56
Classes 10

Table 3.2: Artificial Characters dataset information

Attribute Value Type
1 McGeoch’s method for signal sequence recogni-

tion
Real

2 von Heijne’s method for signal sequence recog-
nition

Real

3 Score of the ALOM membrane spanning region
prediction program

Real

4 Score of discriminant analysis of the amino acid
content of the N-terminal region (20 residues
long) of mitochondrial and non-mitochondrial
proteins

Real

5 Presence of “HDEL” substring (thought to act as
a signal for retention in the endoplasmic reticu-
lum lumen)

Binary

6 Peroxisomal targeting signal in the C-terminus Real
7 Score of discriminant analysis of the amino acid

content of vacuolar and extracellular proteins
Real

8 Score of discriminant analysis of nuclear local-
ization signals of nuclear and non-nuclear pro-
teins

Real

Table 3.3: Yeast attribute information
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Further details about the Yeast data set can be found in table 3.4.

Data Type Multivariate
Task Classification
Attribute Types Real, Binary
Instances 1484
Attributes 8
Classes 10

Table 3.4: Yeast dataset information

3.2 GP Settings

In this section we describe the common parameters used in a typical LGP
system.

• Population Size: This parameter controls the number of individuals
in each generation. A typical setting for this parameter may be 500-
1000 programs per generation.

• Generations: This parameter controls the number of times the evo-
lutionary process is iterated before the LGP system is halted and a
solution is given. A typical setting for this parameter may be 50-400
generations.

• Instructions: This parameter controls the number of instructions
present in each program. In some GP systems the number of instruc-
tions is allowed to vary between programs, however in this thesis all
programs have the same number of instructions. Program size is a
problem dependent parameter, and a typical setting for this param-
eter may be 20-600 instructions.



3.2. GP SETTINGS 43

• Registers: This parameter controls the number of registers available
for use.

• Terminal Set: The terminal set consists of variables, features, and
constants. In LGP the variables are the set of available registers. The
features are problem dependent, and represent the set of all possible
inputs. The constants are randomly generated floating point num-
bers in a user determined range.

• Function Set: The function set consists of functions available for use
in solution programs. The function set is heavily problem depen-
dent, but commonly used functions include { +, −, ×, ÷, if }. The
if function returns 1 if the first argument is smaller than the second
argument, and returns 0 otherwise. Note that ÷ is the protected di-
vision operator which returns 1 if when the denominator is 0. This
function set is used for all experiments present in this thesis.

• Selection: This controls the method used to sample programs from
the population. All experiments in this thesis used tournament se-
lection. Tournament selection has an addition parameter which con-
trols the number of individuals which participate in each tourna-
ment. All experiments in this thesis use a tournament size of 5.

• Crossover, Mutation, and Elitism Rates: These three complemen-
tary parameters control what proportion of the program population
in each generation will be formed using Crossover, Mutation, or
Elitism. Each of these parameters is a fraction in the range [0,1], and
all three parameters must sum to 1.0. Common parameter values
are crossover = 0.6, mutation = 0.3, and elitism = 0.1. These are the
parameter values used in this thesis.
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Comparing TGP Depth to LGP Length

For those readers more familiar with TGP systems we briefly contrast the
TGP depth parameter to the LGP length parameter. Both parameters serve
to limit the maximum program size. The LGP length controls the size of
each LGP program by specifying the maximum number of instructions
present in each program. The TGP depth parameter controls the size of
each TGP program by specifying the maximum depth of each tree.

In order to facilitate the comparison of LGP length and TGP depth we
use a heuristic which relates the number of nodes in a maximum depth
TGP program to the number of instructions in a maximum length LGP
program. Each TGP program can be expressed in terms of LGP instruc-
tions. Therefore one way to relate TGP depth and LGP length is to calcu-
late the number of LGP instructions required to encode a TGP tree.

Each TGP operator node must be represented by a single LGP instruc-
tion. Each TGP argument node will be contained within one of the oper-
ator node instructions. Therefore we require as many LGP instructions as
there are operator nodes in the TGP tree. Assuming each TGP node must
have 2 children, 1/2 of all nodes are operator nodes. Therefore we require
1/2 as many LGP instructions as there are TGP nodes. Hence each LGP
instruction is equivalent to 2 TGP nodes.

Table 3.5 lists various TGP tree depth values, together with the number
of instructions in an equivalent size LGP program. Note that numbers are
rounded to the nearest integer as it is not possible to use half an instruc-
tion.

TGP typically uses trees of depth 4-10 (some rare cases use up to 17)
[46] . Table 3.5 shows that this is equivalent to using LGP programs with
15-512 instructions. This is consistent with the number of instructions used
in experiments in this thesis.
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TGP LGP
Tree Depth Instructions
1 1
2 1
3 4
4 8
5 16
6 32
7 64
8 128
9 256
10 512

Table 3.5: Comparison of LGP instructions and TGP tree depth

3.3 Implementation and Hardware

The LGP system that we use in our experiments was written by the author
for the purposes of this thesis. JVUWLGP is a PLGP library written in
the java programming language, designed for high execution speed over
modularity.

All timed experiments were performed on a single machine with con-
stant hardware. The machine used was a Dell Optiplex GX745 with the
following specifications:

• Company: Dell

• Model: Optiplex 745

• CPU: Pentium D 2.8GHz

• Chipset: Intel Q965 (ICH8) Express Chipset

• Ram: 2048MB DDR SDRAM
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• Network: Broadcom 5754 Gigabit Ethernet LAN

• Hard Disk: 80GB Serial ATA 7200rpm disk

• OS: NetBSD

Experiments which did not require timing measurements were exe-
cuted in parallel on a large number of machines (50-100) with similar hard-
ware configurations (grids).



Chapter 4

Parallel Linear Genetic
Programming

4.1 Introduction

4.1.1 Motivation

LGP programs can be viewed as a tangled web of dependencies. The input
to instruction n is the state of the registers after the first n− 1 instructions
have been executed. Therefore the output of instruction n depends on the
output of the first n − 1 instructions. As a consequence, instructions can-
not operate independently, and they only have meaning when executed
together and in the correct sequence.

Specifically each instruction uses up to 2 registers as input, and writes
to a single register as output. The value held in each input register is the
output of some number of prior registers. We say that there is an Instruc-
tion Dependency between instruction a and instruction b if a > b and b is
responsible for the value held in a register which a takes as input.

An example of a LGP program with dependencies marked is shown in
figure 4.1. In this example we represent each instruction dependency by
an arrow between two instructions. For instance instruction 2 depends on

47
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1: r[1] = 3.1 + f1;1: r[1] = 3.1 + f1;

2: r[3] = f2 / r[1];

3: r[2] = r[1] * r[1];

4: r[1] = f1 - f1;

5: r[1] = r[1] - 1.5;

6: r[2] = r[2] + r[1]

= dependency

Figure 4.1: An example LGP program with the dependencies marked.

instruction 1, while instruction 6 depends on instruction 3 and instruction
5.

The power of the LGP paradigm is tightly linked to the concept of in-
struction dependencies. Results computed early in a LGP program can be
reused many times by later instruction sequences. This makes it possible
to express complicated solutions compactly with a short sequence of LGP
instructions. At the same time each time we reuse a result we introduce
a new instruction dependecy. The upshot of this is that the number of
dependencies is directly proportional to the complexity of the solution.

Dependencies allow LGP programs to be compact and powerful, how-
ever they can make it extremely difficult to evolve good solutions. Depen-
dencies often interfere with evolution by causing large, random changes
in program output when the program is modified in any way. Each in-
struction directly or transitively affects the output of many other instruc-
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tions. Hence modifying any single instruction can affect the output of a
large number of subsequent instructions. This ultimately results in mas-
sive changes to the final register values, and hence program output. An
example of how dependencies can disrupt LGP programs during evolu-
tion is shown in figure 4.2.

r[1] = 3.1 + f1;

r[3] = f2 / r[1];

r[2] = r[1] * r[1];

r[1] = f1 - f1;

r[1] = r[1] - 1.5;

r[2] = r[2] + r[1];

-

1

1

-

4

3,5

Depends
on

Modified

Disrupted

Disrupted

Disrupted

Disrupted

Figure 4.2: An example of program disruption. Modifying the first in-
struction disrupts the execution of three other instructions.

Large, random changes to program output are detrimental to evolu-
tionary computation because they interfere with spatial locality. Spatial
locality is the concept that similar solutions should have similar output,
and hence similar fitness. As a direct consequence of spatial locality, small
changes to the program should result in small changes to program output.
This property allows us to perform local search by taking existing good
solutions and making small changes to them. In other words we can ex-
ploit known good solutions to find other good solutions by investigating
similar individuals.

Instruction dependencies make it difficult to perform local search on
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LGP programs, since there is no longer a link between programs with sim-
ilar structure, and programs with similar output. Local search relies on
finding programs with similar outputs by examining programs with simi-
lar instructions. Instruction dependencies mean small changes to the pro-
gram can result in massive changes to program output. Hence instruction
dependencies prevent effective local search in the space of LGP programs.

By preventing effective local search, instruction dependencies interfere
with the evolution of LGP programs in a number of ways. We now discuss
some of these problems in detail.

Mutation

The primary goal of mutation is to maintain diversity in the population.
However in many systems mutation also acts as a local search operator.
Mutation takes programs stochastically selected for their high fitness and
makes small random changes to the program code. According to the the-
ory of spatial locality, mutation should result in programs with similar
output and similar fitness.

Unfortunately, mutation becomes an ineffective local search operator
in a LGP system due to the presence of instruction dependencies. In LGP
programs the small changes caused by mutation often result in disrupted
dependencies. Disrupted dependencies cause large changes in program
output, invalidating the assumptions we used to motivate mutation. In
summary, mutation often results in low fitness offspring due to large changes
in program output, preventing effective local search.

Crossover

Crossover becomes an ineffective operator in a LGP system due to the
presence of instruction dependencies [18]. Crossover takes two programs
selected for their high fitness and exchanges code between them. Crossover
relies on the concept of building blocks: short, high fitness instruction se-
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quences which can be exchanged between programs. Unfortunately the
concept of building blocks is fundamentally flawed in a LGP system, be-
cause code cannot be exchanged intact between programs. Instruction se-
quences in LGP programs consist of two parts: the code itself, and the de-
pendencies which that code relies on. When code is exchanged between
programs, dependencies are disrupted, meaning that any exchanged in-
struction sequence will execute differently in crossover offspring. In sum-
mary, code exchanged between LGP programs performs differently in donor
and offspring due to disrupted instruction dependencies. This makes crossover
in LGP more of a macromutation operator, rather than an effective method
of combining the strengths of two programs [3, ?].

Large Programs

Instruction dependencies are a particular problem for large LGP programs.
As the size of the LGP programs increases, the number of chained and
interwoven dependencies also increases. Each instruction may influence
many subsequent instructions through instruction dependencies. In long
programs there are a greater number of potential instruction dependen-
cies. As a direct consequence of this, instructions positioned early in large
LGP programs have a disproportionately large effect on the final program
output. Furthermore, if these instructions are modified, a large number
of instruction dependencies will be broken, causing a large change in pro-
gram output.

Due to a larger number of instruction dependencies, the disruptive ef-
fect of crossover and mutation is particularly pronounced in large LGP
programs. Unfortunately, it is often necessary to use large LGP programs.
Large programs often have more power, as they are able to explore a larger
solution space. To solve complicated problems we often require complex
solutions which can only be expressed by large programs.

In summary, LGP programs do not scale well. It is difficult to evolve
large LGP programs because crossover and mutation are ineffective. Each
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time a large LGP program is modified, many instruction dependencies are
broken. Broken dependencies cause large changes in program output, pre-
venting local search and negating the advantages of maintaining a popu-
lation of individuals. To solve this problem it appears necessary to devise
a form of LGP where few instruction dependencies are disrupted during
evolution.

4.1.2 Chapter Goals

In this chapter, we aim to develop a new program structure for LGP which
limits the number of instruction dependencies while still allowing com-
pact, powerful programs. By limiting the number of instruction depen-
dencies disrupted during evolution, we aim to increase the usefulness of
crossover and mutation, and hence improve the overall performance of
LGP. Specifically, this chapter has the following research objectives:

• To isolate and identify the features of conventional LGP program
structure which prevent effective crossover and mutation.

• To develop a new program structure for LGP which limits these prob-
lems while preserving the power of conventional LGP.

• To compare the performance of the new program structure with the
performance of a conventional program structure over a range of
parameter settings on several classification problems.

4.2 Parallel Linear Genetic Programming

The simplest way to ensure there are no dependencies between any two
given instructions is to execute them independently. This idea is the driv-
ing force behind Parallel Linear Genetic Programming (PLGP). Suppose
we separate each LGP program into a number of short instruction se-
quences, and execute these instruction sequences independently. Then
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there will be no instruction dependencies between any two instructions
in different sequences, as no instruction in one sequence can affect the
output of any instruction in any other sequence. Based on this idea we
have developed a new program structure, called Parallel Linear Genetic
Programming (PLGP).

4.2.1 Program Structure

Parallel LGP (PLGP) is a LGP system where each LGP program consists
of n independent instruction sequences called Factors. An example PLGP
program is shown in figure 4.3. A PLGP program consists of n factors
which are evaluated independently, to give n results vectors. These vec-
tors are then summed to produce a single results vector. Formally let Vi

be the ith results vector and let S be the summed results vectors. Then
S =

∑n
i=1 Vi.

r[1] = 3.1 + f1;
r[3] = f2 / r[1];

r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

r[2] = r[1] * r[1];
r[1] = f1 - f1;

Factor 1

Factor 2

Factor 3

Figure 4.3: An example of a PLGP program with three factors, each with
two instructions.

An example of PLGP program execution is shown in figure 4.4 and con-
trasted to an example of LGP program execution. In LGP all instructions
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are executed in sequence using a single set of registers, to produce a single
results vector as output. In PLGP the instructions in each program factor
are executed on their own set of registers to produce n (in this case 3) results
vectors. In this example the program factors are separated by horizontal
lines, so our PLGP program consists of 3 factors. These results vectors are
then summed to produce the final program output. Notice how our LGP
program and our PLGP program have the same instructions but produce
different outputs. This is because in our LGP program the results of earlier
computations are stored in the registers and can be reused by later com-
putations, while in PLGP each factor begins execution with all registers
initialized to zero.

PLGP programs may consist of a large number of instructions, but each
instruction is executed as if it was part of a very short program. Each fac-
tor is executed independently, so it is impossible for any instruction to
influence the output of an instruction in a different factor. Hence there are
no instruction dependencies between instructions in different factors. In
other words the maximum number of chained instruction dependencies
is now limited by the number of instructions per factor, rather than the
number of instructions per program. Furthermore modifying the instruc-
tions in one factor cannot disrupt the instructions in any other factor as no
inter-factor instruction dependencies exist.

4.2.2 Evolution of PLGP Programs

Our initial motivation for developing the PLGP program structure was
based on the ineffectiveness of crossover and mutation when applied to
conventional LGP programs. We have already outlined a form of LGP
which minimizes the number of instruction dependencies disrupted dur-
ing evolution. We now consider how best to adapt the crossover and mu-
tation operators to work with our new PLGP program structure.
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LGP program execution

r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

=

−1.58.74

0.94



PLGP program execution

r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

=

 3.2

0

0.94

+

00
0

+

−1.5−1.5
0

 =

 1.7

−1.5
0.94



Figure 4.4: Contrasting PLGP program execution with LGP program exe-
cution

Factors

Each PLGP program consists of a number of factors, therefore it is im-
portant to decide how many of these factors will participate in any single
evolution. As discussed in the motivation, it is important that offspring
typically generate similar output to their parents. This is difficult to en-
sure with conventional LGP programs, but simple to achieve with PLGP
programs. As each factor is executed independently, any factor which is
not modified during evolution will continue to produce identical output,
regardless of how other factors are modified. The similarity in output be-
tween parents and offspring will be directly related to the number of fac-
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tors which are left unchanged during evolution.

Therefore we specify that each evolution should only affect a single
program factor. In this way we maximize the number of unchanged fac-
tors. This ensures that program offspring will produce similar output to
their parents regardless of the changes which occur during evolution.

Mutation

The mutation operator for PLGP is simply the mutation operator for LGP
applied to a single factor. Although this may appear to be a simple change,
in reality it has far reaching consequences. By limiting mutation to a sin-
gle PLGP program factor we ensure that regardless of the mutation, the
offspring’s output will be similar to that of its parent. This is a significant
advance, as it allows the mutation operator to be an effective local search
operator, in addition to its role in maintaining population diversity. PLGP
offspring produced by mutation will have similar output, and hence are
likely to be of similar fitness. In contrast, LGP offspring produced by mu-
tation often have very different output, and hence have random fitness.

Crossover

The crossover operator for PLGP exists in two forms, each with their own
distinct advantages.

The first approach to crossover in PLGP is to exchange entire factors
between PLGP programs. Factors are a natural level of granularity for
crossover because they are entirely self contained in their execution. Each
factor is executed independently, so each factor will produce identical out-
put in both parent and offspring. This is extremely important as it al-
lows crossover to exchange program code with the guarantee that no in-
struction dependencies will be disrupted. The only downside of factor
crossover is that it severely limits the ways in which code can be recom-
bined.
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The second approach to crossover in PLGP is to exchange instructions
between factors. The idea is to select two factors, and perform crossover be-
tween them as if they were LGP programs. This approach allows us to ex-
change code between PLGP programs at a lower level of granularity. The
downside of this approach is that crossover can now disrupt instruction
dependencies. Instruction dependencies still exist between instructions in
the same PLGP program, therefore exchanging code between factors may
cause a large change in factor output. On the other hand, this effect is
countered by the face that all other factors continue to produce identical
output.

When exchanging instructions between factors it is important to care-
fully consider whether the factors in PLGP programs have an ordering.
While program output will remain constant regardless of the order in
which the factors are executed, it can be useful to define an explicit first
factor, second factor etc. If program factors are not ordered, then we can
view each PLGP program as a set of factors. Conversely if the program fac-
tors are ordered, then we can view each PLGP program as an ordered list
of factors. These two approaches to PLGP have a large impact on how we
perform crossover, regardless of whether we perform crossover between
instructions or factors. Furthermore each approach determines how we
view the population gene pool.

If each PLGP program is a set of factors, then we are forced to perform
crossover between randomly selected factors. Selecting factors at random
allows program code to be exchanged between any two factors in any two
programs. If we allow random crossover in this way, then we can view
all genetic code as belonging to a single ‘genetic population’ where any
instruction can be exchanged with any other instruction.

Conversely, if each PLGP program is an ordered list of factors, then
we can limit which factors we exchange code between. Specifically, we
can limit crossover to factors with the same position, which we will refer
to as equivalent factors. The concept of equivalent factors is illustrated in
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figure 4.5. If we restrict crossover based on factor number then we are ef-
fectively creating a number of genetic sub-populations where there is no
inter-population genetic flow. In other words genetic material can be ex-
changed within each sub population, but there is no transfer of genetic ma-
terial between sub populations. We borrow some terminology from the area
of Cooperative Coevolution and term this kind of crossover as crossover
with enforced sub populations (ESP) [31].

r[1] = 3.1 + f1;
r[3] = f2 / r[1];

r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

r[2] = r[1] * r[1];
r[1] = f1 - f1;

r[1] = 3.1 + f1;
r[3] = f2 / r[1];

r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

r[2] = r[1] * r[1];
r[1] = f1 - f1;

Equivalent

Not
Equivalent

1

2

3

11

2

3

Figure 4.5: An example of a PLGP program with three factors, each with
two instructions.

Using ESP crossover has been shown to give improved classification
accuracy when applied in the area of cooperative coevolution. The theory
is that by limiting the exchange of genetic material to within sub popu-
lations we encourage speciation. This in turn increases the likelihood of
crossover between compatible segments, and hence improves the likeli-
hood of a favorable crossover outcome. This theory is supported by pre-
liminary results, which demonstrate that PLGP using ESP significantly
outperforms constraint free crossover.

4.2.3 PLGP Program Topologies

It is important to note that there are many different ways of arranging the
instructions in a PLGP program. For instance a PLGP program with 10 in-
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structions could consist of either 2 factors of 5 instructions, or 5 factors of
2 instructions. We refer to these different arrangements as Program Topolo-
gies. By choosing between different program topologies we control the
average number of instruction dependencies present. Program topologies
with a large number of small factors have few instruction dependencies.
Conversely, topologies with a small number of large factors have many
instruction dependencies.

The relationship between program topologies and instruction depen-
dencies is particularly clear if we examine the extreme cases. On the one
hand, program topologies where each factor consists of a single instruction
have no instruction dependencies. On the other hand, topologies consist-
ing of only a single factor containing all of the instructions are equivalent
to conventional LGP programs, and have equally many instruction depen-
dencies.

It is important to choose an appropriate program topology. The topol-
ogy controls the number of instruction dependencies, which in turn con-
trols the solution complexity. If too many factors are used, instructions
cannot interact, and we limit ourselves to overly simplistic solutions. In
contrast, if too few factors are used, then there are too many instruction
dependencies interfering with evolution.

In addition, the number of factors controls the number of unique com-
ponents available to solve the problem. Many problems can be naturally
decomposed into a number of subproblems. In this case a good solution
should consist of a solution to each of the subproblems. The key to solving
such a problem is to use an appropriate number of factors, and hence an
appropriate number of subpopulations.

4.3 Experimental Setup

We compare the performance of PLGP to that of conventional LGP. This
section outlines the experiments and parameters used to facilitate this com-
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parison.

4.3.1 Data Sets

The three data sets described in chapter 3 will form the basis for our ex-
periments.

4.3.2 Program Topologies

Preliminary results show that a large number of reasonable topologies give
near optimal results. The program topologies used in our experiments
have been previously determined to be optimal to within some small tol-
erance.

4.3.3 Parameter Configurations

The parameters in table 4.1 are constant parameters. These are the param-
eters which will remain constant throughout all experiments. These pa-
rameters are either experimentally determined optima, or common values
whose reasonableness is well established in literature [46].

Table 4.1: Experimental Parameters

Parameter Value
Population 1000
Generations 400
Mutation 30%
Elitism 10%
Crossover 60%
Tournament Size 5
Registers 10
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We allow terminal constants in the range [-1,1], and a function set con-
taining Addition, Subtraction, Multiplication, Protected Division, and If.
The data set is divided equally into a training set, validation set, and test
set, and results are averaged over 30 runs. All reported results are for per-
formance on the test set. The fitness function used is the number of mis-
classified training examples. Finally all initial programs in the population
consist of randomly chosen instructions.

4.3.4 Experiments

The parameters in table 4.2 are the experiment specific parameters. Each col-
umn of the table corresponds to the parameter settings for a specific ex-
periment. Each experiment has two components, a LGP stage and a PLGP
stage. In the LGP stage we determine the classification accuracy of a LGP
system using programs of the specified length. In the PLGP stage we
repeat our experiment but we use PLGP programs of equivalent length.
Note that we repeat each experiment 30 times and average the results.

Table 4.2: Experiments

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Total Instructions 10 20 35 50 100 400
# PLGP factors 2 4 5 5 10 20
PLGP factor Size 5 5 7 10 10 20

4.4 Results

In this section we compare the effectiveness of LPG and PLGP. We present
the results of the experiments detailed in section 4.3 together with discus-
sion.
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The following graphs compare the performance of LGP with PLGP as a
classification technique on the three data sets described in chapter 4.3. Fig-
ure 4.6 compares performance on the Hand Written Digits data set, Figure
4.7 compares performance on the Artificial Characters data set and Figure
4.8 compares performance on the Yeast data set. Each line corresponds to
an experiment with programs of a certain fixed length. Program lengths
vary from very short (10 instructions) to very long (400 instructions).

We examine the statistical significance of these results by performing a
students t-test on the fitness at generation 400. Figure 4.9a tests the signif-
icance of the results in figure 4.6. Figure 4.9b tests the significance of the
results in figure 4.7. Figure 4.9c tests the significance of the results in figure
4.8. In these results n is the number of trials, SD is the standard deviation,
and p is the p-value resulting from the t-test. Note that by convention a p
value smaller than 0.05 is considered significant.

4.4.1 Discussion

These results are entirely in line with our expectations.

Performance with small programs

LGP performs at least as well as PLGP when small programs are used. In the
Hand Written Digits data set LGP significantly outperforms PLGP for pro-
grams of length 10-20. In the Artificial Characters data set the performance
of LGP and PLGP is comparable for programs of length 10. In the Yeast
data set the performance of LGP and PLGP is comparable for programs of
length 10-35.

Short programs have few instruction dependencies and short instruc-
tion dependency chains. This means crossover and mutation are less dis-
ruptive when applied to short LGP programs. Hence minimising the num-
ber of instruction dependencies by dividing each program into numerous
factors is of negligible benefit for short programs.
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Figure 4.6: LGP vs. PLGP on the Hand Written Digits data set
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Figure 4.7: LGP vs. PLGP on the Artificial Characters data set
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Figure 4.8: LGP vs. PLGP on the Yeast data set
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Figure 4.9: Significance of Results: LGP vs. PLGP

LGP PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 10 503.3 31.86 597.2 35.81 30 0.0001 YES (-)

Exp2 20 361.4 36.88 451.63 47.78 30 0.0001 YES (-)

Exp3 35 363.7 65.30 309.6 47.57 30 0.0005 YES (+)

Exp4 50 348.4 45.62 284.73 53.69 30 0.0001 YES (+)

Exp5 100 387.2 61.83 256.23 42.44 30 0.0001 YES (+)

Exp6 400 437.5 36.82 278.96 52.79 30 0.0001 YES (+)

(a) Hand Written Digits

LGP PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 10 379.1 86.88 340.24 93.60 30 0.0971 NO

Exp2 20 264.7 53.36 192.44 53.22 30 0.0001 YES (+)

Exp3 35 234.93 102.84 139.6 73.49 30 0.0001 YES (+)

Exp4 50 269.8 92.68 127.28 79.98 30 0.0001 YES (+)

Exp5 100 269.7 100.08 166.52 78.88 30 0.0001 YES (+)

Exp6 400 390.6 153.93 118.68 46.75 30 0.0001 YES (+)

(b) Artificial Characters

LGP PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 10 224.3 12.48 220.56 11.95 30 0.1836 NO

Exp2 20 206.7 8.1 209.13 10.1 30 0.3082 NO

Exp3 35 208 15.5 205.5 15.2 30 0.4522 NO

Exp4 50 223 15.2 205.9 11.31 30 0.0001 YES (+)

Exp5 100 216.7 18.1 208.9 11.0 30 0.0001 YES (+)

Exp6 400 245.7 14.9 227.56 13.41 30 0.0001 YES (+)

(c) Yeast
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Furthermore, short PLGP programs often have insufficient power to
solve interesting (and difficult) problems. Instruction dependencies cause
disruption during evolution, however their primary purpose is to allow
results to be reused. If we remove too many instruction dependencies,
then we severely limit the power of our LGP programs. This is the case
with short PLGP programs. Factors in short PLGP programs are small,
preventing dependency chains forming, and limiting short PLGP programs
to expressing simplistic solutions.

However the flip side of this result is that short LGP programs are not
what we are really interested in. Typically, short programs are not power-
ful enough for most interesting applications. On difficult problems neither
LGP or PLGP can achieve good performance using short programs.

Performance with large programs

PLGP significantly outperforms LGP for large programs. In all three data sets
PLGP significantly outperforms LGP whenever program length exceeds
some minimum. For the Hand Written Digits this holds for all programs
larger than 20 instructions. For the Artificial Characters data set this holds
for all programs larger than 10 instructions. For the yeast data set this
holds for all programs larger than 35 instructions.

Large LGP programs have many instruction dependencies and long
instruction dependency chains. These dependencies result in major dis-
ruptions occurring during program evolution. In contrast long PLGP pro-
grams have fewer instruction dependencies, and the length of each in-
struction dependency chain is strictly limited. This means crossover and
mutation can be applied to PLGP programs with minimal disruption oc-
curring. Hence evolution of PLGP programs results in a larger number of
viable offspring than evolution of LGP programs, greatly improving algo-
rithm convergence time.

Furthermore, large PLGP programs are usually powerful and expres-
sive despite the limited instruction dependencies. In large PLGP programs
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it is possible to divide each program into factors of moderate size. Depen-
dency chains can form within the factors, allowing for complicated, yet
compact solutions. Hence large PLGP programs are both expressive and
robust.

This result is important because many interesting problems require the
expressive power of large programs. Traditionally it has been difficult to
solve these problems using LGP. We hypothesize that this is because large
LGP programs are disrupted during evolution. With this in mind it is clear
that PLGP is better suited to solving problems which require complicated
solutions.

Optimal Size

There is an optimal size for programs. Short programs are insufficiently
expressive: it is not possible to easily express good solutions using only
a very small number of instructions. Long programs are overly expres-
sive: while it is possible to express good solutions the search space is too
large, making it inefficient/difficult to find good solutions. This optimal
size is problem dependent, as more complicated problems typically re-
quire more complicated solutions. Hence there is an optimal program size
for each problem, a balance between expressive power and search space
complexity.

The optimal size for PLGP programs is significantly larger that the optimal
size for LGP programs. In our three experiments the optimal size for LGP
programs occurs between 20-50 instructions. However in these same three
experiments the optimal size for PLGP programs occurs between 50-400
instructions.

Instruction dependencies in large LGP programs cause major disrup-
tions during evolution, negatively impacting algorithm performance. Con-
versely the PLGP program structure alleviates this problem, allowing large
PLGP programs to give good performance. Hence the optimal size of LGP
programs is smaller than the optimal size of PLGP programs.
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Optimal Performance

It is clear that PLGP gives rise to better fitness solutions than LGP. This
is intrinsically linked to the optimal program size for each of these two
methods: PLGP has a higher optimal program size than LGP. Both pro-
gram representations are equally able to express powerful solutions, how-
ever only PLGP is able to actually find these powerful solutions.

It is difficult to find good solutions when using large LGP programs
because evolution is often disruptive. Large LGP programs may be able to
express many high fitness solutions, however it is difficult to locate these
solutions within the search space. Hence LGP often achieves the best per-
formance using shorter programs, not because these are the best possible
solutions, but rather because these are the only solutions it is possible to
find.

It is possible to find good solutions when using large PLGP programs
because evolution is typically less disruptive. Evolutionary search us-
ing crossover and mutation is effective for finding large PLGP programs
with high fitness. Hence PLGP often achieves the best performance using
longer programs, representing more complicated solutions.

In summary, when using LGP we are forced to limit our search to sim-
pler solutions, whereas when using PLGP we can broaden our search to
include more complicated solutions. Hence PLGP can effectively explore
a broader range of potential solutions, allowing the discovery of higher
fitness solutions.

Optimal Parameter Range

One of the most time consuming steps in deploying a computational ma-
chine learning system is determining good parameter values. If poor pa-
rameter values are chosen, then the system will give poor results. Hence
choosing good parameter values is critical to the successful deployment of
a machine learning system. Unfortunately, the optimal parameter values
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are strongly problem dependent, and often the only option is to determine
them experimentally. This involves performing numerous trial runs with
different parameter settings until a good setting is found. If the number
of good parameter settings is very small, many experiments may be re-
quired, and parameter determination can be extremely costly. Conversely
if the number of good parameter settings is large, few experiments will
be required, and parameter determination can be accomplished cheaply.
Therefore the time required to find good parameter values is tightly bound
to the number of good parameter settings, and a system with a large number
of good parameter settings is highly desirable.

It is significantly easier to determine a good value for the program
length parameter in PLGP than LPG. In LGP there are only a small num-
ber of program lengths which give good performance. Both small pro-
grams and large programs give poor performance, leaving only a small
number of acceptable settings. This means experimentally determining
a good value for the program length parameter is expensive in LGP. In
PLGP there are a large number of program lengths which give good per-
formance. Small programs give poor performance, but in contrast to LGP,
large programs still give good performance. This is a significant advan-
tage since it greatly simplifies the task of determining a good value for the
program length parameter.

4.5 Chapter Summary

PLGP is a technique designed to minimize building block and program
disruption by parallelizing the standard LGP architecture. Longer LGP
programs are easily disrupted during evolution due to large instruction
dependency chains. These chains mean that small changes to program
structure can often result in massive changes to program output. To re-
duce the number of instruction dependencies disrupted during evolution
and limit the length of instruction dependency chains we introduced the
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PLGP architecture. PLGP programs consist of n short instruction sequences
called factors which are executed independently. The final program out-
put is calculated by summing all program factors to produce a single re-
sults vector.

PLGP programs are better suited to evolutionary search. Because each
factor is executed independently there are no inter-factor instruction de-
pendencies. While intra-factor instruction dependencies still exist, the
length of instruction dependency chains is limited by the factor size. Hence
crossover and mutation can be applied to PLGP programs without signif-
icant program disruption occurring. This allows PLGP to effectively ex-
ploit larger programs for significantly superior results. Our empirical tests
support this: long PLGP programs significantly outperform long LGP pro-
grams on all data sets. In addition our results show that by exploiting the
ability of PLGP to utilize large programs it is possible to obtain a signifi-
cant overall improvement in performance. Both theory and results clearly
demonstrate the benefits of this new parallel architecture.

4.5.1 Next Step

PLGP is an important improvement over conventional LGP, however there
remain several unsolved issues. In particular, large PLGP programs with
many factors are slow to converge, because evolution is limited to a single
factor in each generation. This issue will be addressed in chapter 5.
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Chapter 5

Cooperative Coevolution for
PLGP

5.1 Introduction

One major problem with PLGP is its slow initial convergence speed. It is
important to be able to iteratively improve good existing solutions through
small changes, however it is equally important to be able to rapidly im-
prove the initial population through large scale changes. PLGP is highly
successful at improving existing solutions through small changes and lo-
cal search. Because evolution is limited to a single factor in each gener-
ation, evolution is constrained to small changes in program output. The
downside of this is that it is not possible to rapidly improve bad PLGP
programs.

Each PLGP program is separated into n factors which together produce
the final program output. In order for the program to produce the correct
output, each of these factors needs to be “correct” 1. During each algo-
rithm iteration a single factor is modified during evolution. Furthermore,
a factor will often require several iterations of the evolutionary operators

1A correct factor is one which cooperates with the other factors to produce correct
output.

73
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before it becomes correct. Therefore to arrive at a program consisting en-
tirely of correct factors it is necessary to evolve each factor many times.
In other words it will typically take many iterations to evolve programs
which produce the desirable output.

Slow PLGP program convergence is particularly pronounced in large
PLGP programs. The time taken for PLGP programs to converge is di-
rectly related to the number of factors present. Each factor must be inde-
pendently evolved, and PLGP can only evolve a single factor in each gen-
eration. The slow convergence of large PLGP programs is compounded
by the high execution time of large programs.

If we want to improve the convergence time of PLGP we need to con-
currently improve multiple factors within a single generation. Improving
a single factor in each generation is an excellent approach for fine tuning
high fitness solutions, however it is a slow and cumbersome method for
improving an initial population of randomly generated programs.

The simplest approach is to evolve multiple factors in each program
during each generation, however this would negate the hard won benefits
of PLGP. Evolving multiple factors within a single program would cause
massive changes in program output, preventing effective search. Further-
more, it would be difficult to identify good factors when they occurred,
as both good and bad factors would concurrently evolve within the same
program, giving overall poor fitness.

We turn to the method of Cooperative Coevolution (CC) to improve the
convergence time of PLGP. Cooperative coevolution rapidly evolves high
fitness partial solutions (building blocks), which are combined into high
fitness solutions. If we can use CC to rapidly evolve high fitness factors
in parallel, then we expect to combine those factors to form high fitness
PLGP programs. By evolving the factors in parallel, we hypothesize that
CC could greatly decrease the number of generations required to improve
an initial population.

Our task then, is to adapt the CC algorithm to function effectively with
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the PLGP architecture, with the goal of greatly decreasing PLGP conver-
gence time.

5.1.1 Chapter Goals

In this chapter, we aim to develop a cooperative coevolution algorithm
for PLGP. By using CC to evolve PLGP programs we aim to improve the
convergence time of large PLGP programs with many factors. Specifically
this chapter has the following research objectives:

• Develop a CC algorithm for PLGP.

• Develop a hybrid algorithm which exploits the strengths of both
PLGP and CC PLGP.

• Empirically compare the performance and execution time of all three
algorithms.

5.2 CC for PLGP

We construct a Cooperative Coevolution algorithm for PLGP, using as in-
spiration the ideas of the SANE [62] algorithm.

5.2.1 Program Structure

SANE is a CC framework which evolves both partial and complete solu-
tions in parallel. If each complete solution consists of n partial solutions,
then SANE makes use of n populations to evolve these partial solutions in
parallel. In CC, a Population is a set of individuals which are allowed to
exchange genetic material. If two individuals are in different populations
they cannot undergo recombination. A population of partial solutions is
called a subpopulation. SANE has a single additional population of com-
plete solutions. Complete solutions, called blueprints, consist of pointers to
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partial solutions, and serve as a means of remembering high fitness partial
solution combinations.

To implement our own CC PLGP algorithm we construct n + 1 popu-
lations, where n is the number of PLGP program factors. n of these popu-
lations are subpopulations of factors. The single remaining population is
a population of blueprints. A blueprint consists of a sequence of n point-
ers, each of which points to a factor from one of the subpopulations. Note
that the first pointer points to a factor from the first subpopulation, the
second pointer points to a factor from the second subpopulation, etc. In
other words a blueprint consists of n pointers, each of which points to a
single subpopulation in a predetermined order, with all blueprints pos-
sessing identical pointer ordering. The only variation between blueprints
is which individual in each subpopulation is pointed to. The architecture
of our CC PLGP algorithm is shown in figure 5.1.

In this example we have three subpopulations each consisting of four
factors, and one population with five blueprints. Each blueprint consists of
three pointers, one pointer for each subpopulation. Each program factor
consists of three instructions. Therefore each blueprint has a total of 9
instructions.

Note that the mapping from blueprints to factors is neither injective
nor surjective. The number of blueprints each factor participates in varies
from factor to factor. Some factors may participate in many blueprints,
while others may participate in none. Due to selection pressures, factors
which perform well will participate in more blueprints. However muta-
tion acts to maintain diversity in the blueprint population by modifying
blueprints with factors selected uniformly at random. Hence assuming a
reasonable number of blueprints, statistical arguments show that in gen-
eral each factor participates in a reasonable number of blueprints.
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Figure 5.1: Architecture of our CC PLGP algorithm

5.2.2 Evaluation

In the CC framework partial solutions must be combined into complete
solutions before fitness evaluation can occur. These complete solutions are
evaluated, and the resulting fitness values are used to calculate the fitness
of the partial solutions. In our CC PLGP system, complete solutions take
the form of blueprints. Blueprints serve as a means of remembering high
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fitness complete solutions. Thus program fitness evaluation consists of
two distinct stages: blueprint evaluation followed by factor evaluation.

In the first stage, the blueprints are evaluated against the training ex-
amples to determine their fitness. Blueprints are complete potential solu-
tions, so blueprint execution is identical to PLGP program execution.

In the second stage, the fitness values for the blueprints are used to
calculate fitness values for the factors. A good factor is one which is used
in many high quality blueprints, and conversely a poor factor is one which
participates solely in low quality blueprints.

Accordingly, we calculate the fitness of a factor as the average fitness of
all blueprints to which it contributes. In other words if factor f participates
in blueprints b1, ..., bn then fitness(f) = 1

n

∑n
i=1 fitness(bi). For example,

if factor f was used in three blueprints with fitness values of 1, 2, and 3,
then fitness(f) = 1

3
(1 + 2 + 3) = 2 .

If a factor does not participate in any blueprints then we have no spe-
cific information with which to estimate its fitness. Therefore such a factor
is assigned the overall average fitness of all blueprints, as this is the best
fitness estimate we can make, using the information available to us.

Factor Filtering

It has been suggested by several sources (e.g. [62, 61]) that a better method
would be to restrict or filter the blueprints used in factor fitness evaluation.
Specifically, the fitness of factor f should be calculated as the average fit-
ness of the best n blueprints in which f participates. Thus when evaluating
factor fitness we ignore those blueprints which use the factor, but have
poor performance.

The proponents for this approach argue that factors which produce
high fitness blueprints are good, regardless of how many poor blueprints
they participate in. The reasoning is that it is better to produce a few out-
standing blueprints, rather than a large number of mediocre blueprints. It
is argued that by averaging over all blueprints we are ignoring specialized
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factors which are highly useful, but only in a select number of situations.

Unfortunately there are several flaws with this approach. First and
foremost, by restricting the number of blueprints used for factor fitness
estimation, we are decreasing the accuracy of these estimates. Factor fit-
ness is calculated as an estimate, not an exact value. The accuracy of this
estimate will be directly related to the number of data points, in the form
of blueprints, used to form the estimate. Using more blueprints will re-
sult in fitness estimates with greater accuracy. By discarding all but the
best few blueprints we greatly decrease the accuracy of our factor fitness
estimates.

If the accuracy of our factor fitness estimates decreases, then algorithm
performance will suffer. Factor fitness values are used to decide which
factors are selected for reproduction. If bad fitness values exist, then the
wrong factors will be selected for evolution. Selecting the wrong factors
will greatly hamper the evolutionary process and retard the formation of
good individuals. Hence it is vital that we maximize the accuracy of our
factor fitness estimates.

With this in mind we have decided to use all blueprints when estimat-
ing factor fitness. This decision is supported by preliminary results, which
show that restricting the blueprints used in factor fitness evaluation has a
detrimental effect on algorithm performance. Hence the factor fitness is
defined as the average fitness of all blueprints in which the factor partici-
pates.

5.2.3 Evolution

Once the fitness of each blueprint and factor has been determined, each
population independently undergoes evolution. In the CC framework,
factors are evaluated together but evolved separately. In the blueprint pop-
ulation, high fitness blueprints are stochastically selected and used as a
basis for the next generation of blueprints. In each factor, subpopulation
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high fitness factors are selected and used as a basis for the next generation
of factors in that specific subpopulation. It is important to note that no
genetic material is exchanged between subpopulations during evolution.

• Factor Subpopulations. Each subpopulation individually under-
goes evolution in an identical fashion to a population of conventional
LGP programs. Elitism preserves the best factors, mutation ran-
domly modifies factors, and crossover exchanges segments of code
between any two factors within the subpopulation. Note that there
is no exchange of genetic material between individuals in different
subpopulations. This follows the ideas of a SANE variant known
as Enforced Sub Populations (ESP) and is shown to enhance perfor-
mance [32, 33].

• Blueprint Population. Evolution in the blueprints occurs solely at
the pointer level. Elitism preserves the best blueprints, mutation
changes a pointer into a new random pointer, and crossover exchanges
randomly selected pointers between two blueprints. Blueprint evo-
lution affects which factors cooperate as solutions, not the factors
themselves.

5.3 Hybrid PLGP

In this section we combine PLGP and CC PLGP to produce an algorithm
which posses the strengths of both approaches.

5.3.1 Motivation

We expect that PLGP and CC PLGP will have unique strengths and weak-
nesses. CC PLGP was motivated by a desire to improve the convergence
time of PLGP during the first stage of evolution. CC PLGP evolves all
program factors in parallel, allowing rapid convergence to a population
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of high fitness individuals. Therefore we expect CC PLGP to outperform
PLGP during the first stage of evolution. Unfortunately we expect PLGP
to outperform CC PLGP during the latter stages of evolution. PLGP ex-
cels at fine tuning existing high fitness solutions as evolution is localized
to a single factor in any generation. In contrast, CC PLGP always makes
large changes to program output, as all factors undergo evolution in each
generation. Hence we expect CC PLGP to perform well during the first
stage of evolution, and PLGP to perform well during the latter stages of
evolution.

We hypothesize that these strengths are complementary. CC PLGP al-
lows us to rapidly generate high quality solutions, while PLGP allows us
to rapidly improve existing high quality solutions. Therefore it is natural
to ask if we can combine these two techniques into a hybrid form which
posseses the strengths of both. We expect such an algorithm to rapidly
evolve high quality solutions, yet allow continued improvement through-
out later generations.

5.3.2 Implementation

Hybrid PLGP is a form of PLGP which combines the strengths of PLGP
and CC PLGP. The key idea is to use CC PLGP for the first x generations,
then switch to PLGP for the remaining generations. Using CC PLGP dur-
ing the first stage of evolution will allow us to rapidly evolve high quality
individuals, while using PLGP for the later generations will allow us to
further improve the high quality solutions generated by CC PLGP. In or-
der to implement such a hybrid scheme we need to be able to convert CC
PLGP blueprints into PLGP programs. This conversion must be fitness
preserving, and the converted programs must have identical fitness to the
original blueprints.

We note that PLGP programs and CC PLGP blueprints are closely re-
lated. Both programs and blueprints consist of n factors, each of which is a
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sequence of instructions, and both programs and blueprints have identical
program execution. There are two major differences:

• PLGP programs contain a private copy of each factor, while CC PLGP
blueprints contain a pointer to a shared copy for each factor.

• PLGP programs undergo evolution on the instructions themselves,
while CC PLGP program evolution affects only the pointers, leaving
the instructions themselves unchanged.

The difference in evolution is not significant, as it is simply a manipula-
tion of an existing program. If we can convert between program structures
then changing the evolution is easily achieved. Therefore to convert from
CC PLGP to PLGP we need to replace each factor pointer with an identical
concrete factor. We achieve this by replacing each factor pointer with a deep
clone of the appropriate concrete factor. A deep clone is an exact copy of the
factor being cloned.

It is clear that the PLGP programs produced as a result of this conver-
sion will have identical fitness to the original CC PLGP blueprints. They
contain identical instructions, which when executed on the problem in-
stances will give identical results. The difference is that code is no longer
shared between individuals. This means that evolutionary changes will be
local. The mutation of one individual will have no effect on the rest of the
population.

To complete the conversion we switch to PLGP using the individu-
als generated through our conversion as the starting population. It is im-
portant to note that this conversion is extremely fast, adding a negligible
amount to the running time of the algorithm.

5.4 Experimental Setup

We compare the performance of CC PLGP to that of PLGP. This section
outlines the experiments and parameters used to facilitate this compari-
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son.

5.4.1 Data Sets

The three data sets described in chapter 3 will form the basis for our ex-
periments.

5.4.2 Changeover Point

The changeover point n is an important parameter required for the de-
ployment of the Hybrid PLGP algorithm. Hybrid PLGP uses CC PLGP
for the first n generations, and PLGP for all subsequent generations. An
optimal value for n is the point at which PLGP first becomes more effec-
tive than CC PLGP. If n is too small we will prematurely switch from CC
PLGP to PLGP, preventing rapid convergence of the initial population. If
n is too large we will continue to use CC PLGP even after fitness begins to
stagnate due to an inability to fine tune existing solutions.

The optimum changeover point occurs when the performance differ-
ence between CC PLGP and PLGP is maximum. To this end we exam-
ine the results presented in chapter 5. We note that for different program
lengths and different problems the maximum performance difference oc-
curs at different times. We are most interested in optimizing the perfor-
mance of Hybrid PLGP for large programs, as it is under these conditions
CC PLGP is most effective. Furthermore given that CC PLGP does not
improve performance on the yeast data set we can likewise ignore these
results. Therefore we choose the value n = 25, as this is the point at which
the maximum performance difference occurs when using large programs
on the Hand Written Digits and Artificial Characters data sets.
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5.4.3 Parameter Configurations

The parameters in table 5.1 are constant parameters. These are the param-
eters which will remain constant throughout all experiments. These pa-
rameters are either experimentally determined optima, or common values
whose reasonableness is well established in literature [46].

Table 5.1: Experimental Parameters

Parameter Value
Population 1000
Generations 400
Mutation 30%
Elitism 10%
Crossover 60%
Tournament Size 5
Runs 30
Registers 10

We allow terminal constants in the range [-1,1], and a function set con-
taining Addition, Subtraction, Multiplication, Protected Division, and If.
The data set is divided equally into a training set, validation set, and test
set, and results are averaged over 30 runs. All reported results are for per-
formance on the test set. The fitness function used is the number of miss-
classified training examples. Finally all initial programs in the population
consist of randomly chosen instructions.

5.4.4 Experiments

The parameters in table 5.2 are the experiment specific parameters. Each col-
umn of the table corresponds to the parameter settings for a specific ex-
periment. Each experiment has two components, a PLGP stage and a CC
PLGP stage. In the PLGP stage we determine the classification accuracy
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of a PLGP system using programs of the specified length. In the CC PLGP
stage we repeat our experiment but we use CC PLGP programs of equiv-
alent length. Note that we repeat each experiment 30 times and average
the results.

Table 5.2: Experiments

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Total Instructions 20 50 100 200 400 600
# PLGP factors 4 5 10 10 20 30
PLGP factor Size 5 10 10 20 20 20

5.5 Results

In this section we compare the effectiveness of PLGP, CC PLGP, and Hy-
brid PLGP. We present the results of the experiments detailed in section
5.4 together with discussion.

5.5.1 CC PLGP

Figure 5.2, figure 5.3, and figure 5.4 compare the effectiveness of PLGP
with that of CC PLGP as a classification techniques on the three data sets
described in chapter 3. Figure 5.2 compares performance on the Hand Writ-
ten Digits data set, Figure 5.3 compares performance on the Artificial Char-
acters data set and Figure 5.4 compares performance on the Yeast data set.
Each line corresponds to an experiment with programs of a certain fixed
length. Program lengths vary from very short (10 instructions) to very
long (600 instructions).

We examine the statistical significance of these results by performing
a students t-test on the fitness at generation 25. We choose generation 25
because we wish to examine relative performance during the initial stages
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Figure 5.2: PLGP vs CC PLGP on the Hand Written Digits data set
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Figure 5.3: PLGP vs CC PLGP on the Artificial Characters data set
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Figure 5.4: PLGP vs CC PLGP on the Yeast data set
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of evolution. Figure 5.5a tests the significance of the results in figure 5.2.
Figure 5.5b tests the significance of the results in figure 5.3. Figure 5.5c
tests the significance of the results in figure 5.4. In these results n is the
number of trials, SD is the standard deviation, and p is the p-value result-
ing from the t-test. Note that by convention a p value smaller than 0.05 is
considered significant.

Discussion

The results on the Hand Written Digits and Artificial Characters data sets are
consistent with our initial hypothesis, and perfectly illustrate the strengths
and weaknesses of both the CC PLGP and PLGP approaches. These results
are discussed in more detail below.

The results on the Yeast data set show that PLGP significantly outper-
forms CC PLGP for all program lengths. We hypothesize that this is be-
cause the Yeast data set is not well suited to a cooperative coevolutionary
approach. Cooperative coevolution excels at solving problems which can
be decomposed into multiple cooperating subcomponents. If the problem
cannot be decomposed into cooperating subcomponents, then there is no
advantage to using cooperative coevolution. In fact cooperative coevolu-
tion is often slower, since the multiple subcomponents in each solution
will make it difficult to evolve a non-decomposed solution.

We now discuss in detail the results on the Hand Written Digits and
Artificial Characters data sets. We note that these results only generalize
to problems which can be decomposed into cooperating subproblems, as
shown by the yeast data set.

• Overall Performance
CC PLGP does well during the first stage of evolution, as it rapidly
establishes a population of high fitness blueprints. Unfortunately,
the performance of CC PLGP rapidly falls off in later generations as
the algorithm struggles to fine tune existing high fitness solutions.
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Figure 5.5: Significance of Results: PLGP vs. CC PLGP

PLGP CC PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 748.23 43.95 732.70 55.63 30 0.2144 NO

Exp2 50 692.13 35.91 670.20 52.93 30 0.0595 NO

Exp3 100 693.83 42.94 645.99 54.60 30 0.0003 YES (+)

Exp4 200 695.33 48.74 615.50 60.28 30 0.0001 YES (+)

Exp5 400 725.83 37.84 585.83 56.27 30 0.0001 YES (+)

Exp6 600 746.26 37.09 574.80 77.59 30 0.0001 YES (+)

(a) Hand Written Digits

PLGP CC PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 678.12 90.73 582.03 103.87 30 0.0003 YES (+)

Exp2 50 590.36 99.33 515.53 90.52 30 0.0033 YES (+)

Exp3 100 644.32 97.53 465.06 81.03 30 0.0001 YES (+)

Exp4 200 596.68 79.43 486.56 88.81 30 0.0001 YES (+)

Exp5 400 676.28 80.31 537.03 123.80 30 0.0001 YES (+)

Exp6 600 735.48 80.80 527.33 136.96 30 0.0001 YES (+)

(b) Artificial Characters

PLGP CC PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 265.36 19.10 273.43 20.78 30 0.1251 NO

Exp2 50 261.3 18.59 282.73 21.93 30 0.0002 YES (-)

Exp3 100 273.56 23.93 287.20 20.14 30 0.0147 YES (-)

Exp4 200 281.96 22.22 289.83 20.97 30 0.1460 NO

Exp5 400 282.06 18.33 296.03 19.51 30 0.0057 YES (-)

Exp6 600 291.06 18.32 298.96 16.55 30 0.1292 NO

(c) Yeast
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In contrast PLGP has poorer fitness values during the first stage of
evolution, as it struggles to produce a population of high fitness in-
dividuals from an initial random population. Fortunately, the per-
formance of PLGP rapidly improves in later generations, as the algo-
rithm excels at fine tuning.

These results are consistent with our initial hypothesis.

• Fast Convergence
CC PLGP excels at identifying and promoting the components re-
quired for high quality solutions. By concurrently optimizing all
program factors CC can significantly reduce the time required to pro-
duce high quality solutions from an initial population. In contrast
PLGP can only optimize a single program factor in each generation.
This means PLGP requires many more generations before high qual-
ity solutions can be produced.

• Slow Fine Tuning
CC PLGP performs poorly when attempting to fine tune high quality
solutions. Improving existing high quality solutions requires small
steps within the search space, in other words small changes to the
program code. In a CC system it is likely that many of the compo-
nents within a blueprint will undergo mutation or crossover concur-
rently, causing massive code changes. In contrast PLGP excels at fine
tuning existing solutions. The PLGP architecture was specifically de-
signed to minimize the disruptive effects of crossover and mutation,
allowing small changes to be achieved with ease.

• Small Programs
Small programs can be more effectively evolved using standard PLGP.

Because small programs have few factors it is efficient to evolve a sin-
gle factor during each generation. Hence CC PLGP lacks any initial
performance advantage, since both methods can efficiently evolve
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an initial random population.

Furthermore CC PLGP still struggles to fine tune existing high fit-
ness solutions. Therefore PLGP and CC PLGP have comparable per-
formance during the first stage of evolution, however CC PLGP has
distinct performance advantages during later generations.

In addition, the number of factors per program is directly related to
the average number of blueprints each factor participates in. When
programs have few factors, each factor participates in only a small
number of blueprints. This reduces the accuracy of factor fitness es-
timates, retarding evolution.

Hence PLGP is the superior method for small programs.

• Large Programs
Large programs can be more effectively evolved using CC PLGP.

Because large programs have many factors it is very inefficient to
evolve a single factor during each generation. Hence CC PLGP has
an initial performance advantage as it can concurrently optimize all
program factors. This advantage scales with the number of factors,
so CC PLGP has a greater initial performance advantage on larger
programs.

At the same time the performance of PLGP will eventually exceed
that of CC PLGP even on large programs. Because CC PLGP strug-
gles to fine tune existing high fitness solutions the fitness will plateau
at lower level. Hence CC PLGP is the superior technique, only if
computation resources are at a premium.

5.5.2 Hybrid PLGP

Figure 5.6, figure 5.7, and figure 5.8 compare the effectiveness of PLGP
with that of Hybrid PLGP as classification techniques on the three data
sets described in chapter 3. Figure 5.6 compares performance on the Hand
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Written Digits data set, Figure 5.7 compares performance on the Artificial
Characters data set and Figure 5.8 compares performance on the Yeast data
set. Each line corresponds to an experiment with programs of a certain
fixed length. Program lengths vary from very short (10 instructions) to
very long (600 instructions).

We examine the statistical significance of these results by performing a
students t-test on the fitness at generation 400. Figure 5.9a tests the signif-
icance of the results in figure 5.6. Figure 5.9b tests the significance of the
results in figure 5.7. Figure 5.9c tests the significance of the results in figure
5.8. In these results n is the number of trials, SD is the standard deviation,
and p is the p-value resulting from the t-test. Note that by convention a p
value smaller than 0.05 is considered significant.

Discussion

These results are precisely in line with our expectations.
The results on the Hand Written Digits and Artificial Characters data sets

show that Hybrid PLGP performs at least as well as PLGP for all program
sizes. Furthermore Hybrid PLGP converges far more rapidly than PLGP
during initial generations. This is particularly true for large PLGP pro-
grams with many factors.

The results on the Yeast data set show that PLGP significantly outper-
forms Hybrid PLGP for the majority of program lengths. This it to be ex-
pected as we have already shown that CC PLGP is not well suited to this
data set. PLGP significantly outperforms CC PLGP on the yeast data set,
so we did not expect a hybrid PLGP/CC PLGP algorithm to outperform
PLGP.

We now discuss in detail the results on the Hand Written Digits and
Artificial Characters data sets. We note that these results only generalize
to problems which can be decomposed into cooperating subproblems, as
shown by the yeast data set.

PLGP works well when the number of factors is small and tuning one
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Figure 5.6: PLGP vs Hybrid PLGP on the Hand Written Digits data set
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Figure 5.7: PLGP vs Hybrid PLGP on the Artificial Characters data set
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Figure 5.8: PLGP vs Hybrid PLGP on the Yeast data set
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Figure 5.9: Significance of Results: PLGP vs. Hybrid PLGP

PLGP Hybrid PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 451.63 47.78 427.00 45.46 30 0.0480 YES (+)

Exp2 50 284.73 53.69 287.46 51.87 30 0.8664 NO

Exp3 100 256.23 42.43 251.70 53.88 30 0.7323 NO

Exp4 200 238.93 53.87 254.10 43.41 30 0.2346 NO

Exp5 400 278.96 52.79 240.50 36.52 30 0.0013 YES (+)

Exp6 600 280.63 51.46 277.80 52.73 30 0.8223 NO

(a) Hand Written Digits

PLGP Hybrid PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 192.44 53.21 181.90 62.04 30 0.4631 NO

Exp2 50 127.28 79.98 124.30 52.11 30 0.8627 NO

Exp3 100 166.52 78.88 103.50 59.53 30 0.0005 YES (+)

Exp4 200 118.68 46.75 109.53 85.41 30 0.6087 NO

Exp5 400 127.80 64.89 126.16 66.27 30 0.9235 NO

Exp6 600 192.60 104.05 180.23 115.09 30 0.6640 NO

(b) Artificial Characters

PLGP Hybrid PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 209.13 10.14 212.06 15.29 30 0.3658 NO

Exp2 50 205.50 11.31 218.50 18.81 30 0.0009 YES (-)

Exp3 100 208.90 21.79 224.03 17.14 30 0.0019 YES (-)

Exp4 200 217.63 19.13 227.53 21.16 30 0.0580 NO

Exp5 400 227.56 24.18 245.00 24.93 30 0.0069 YES (-)

Exp6 600 233.70 17.40 250.00 25.35 30 0.0032 YES (-)

(c) Yeast
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factor per generation is reasonably effective. CC PLGP offers no advantage
for small PLGP programs, so hybrid PLGP gives comparable performance
to conventional PLGP.

PLGP performs relatively poorly when the number of factors is large
and tuning one factor per generation is impractical. CC PLGP allows us to
tune multiple factors in parallel, allowing for rapid fitness improvement
during initial generations. This allows hybrid PLGP to significantly out-
perform PLGP during the first stage of evolution, after which it switches to
conventional PLGP to fine tune these high quality solutions. During this
stage of the algorithm both PLGP and hybrid PLGP operate in an identi-
cal fashion, however hybrid PLGP has a headstart, allowing it to converge
more rapidly.

5.6 Chapter Summary

Cooperative Coevolution (CC) is a highly effective and widely used frame-
work for evolutionary algorithms. PLGP is naturally suited to CC due to
its independent factors and implicit subpopulations. We have exploited
these attributes to develop a CC algorithm for PLGP based on the SANE
CC architecture. We have shown that CC PLGP has significantly superior
performance during the first stage of evolution, particularly on programs
with a large number of factors.

We combined PLGP and CC PLGP into a hybrid algorithm possessing
the strengths of both approaches. We begin evolution using CC PLGP in
order to rapidly obtain high quality components, and complete execution
using PLGP in order to fine tune these components. We have shown that
hybrid PLGP has comparable effectiveness to PLGP but converges more
rapidly.



5.6. CHAPTER SUMMARY 99

5.6.1 Next Step

CC PLGP is most effective if we can find good factor combinations. The
current approach uses blueprints to keep track of previously encountered
successful factor combinations. A better approach would be to indepen-
dently identify high quality factor combinations for each generation. This
issue will be addressed in chapter 6.
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Chapter 6

Blueprint Search for PLGP

6.1 Introduction

The effectiveness of CC PLGP evolution depends heavily on which blue-
prints are chosen for execution. Blueprints are used to estimate factor fit-
ness, so if the blueprints are chosen badly then it is not possible to obtain
a good fitness estimate. Poor fitness estimates result in the wrong factors
being selected for evolution, greatly hampering the evolutionary process.
Therefore it is vital to select good blueprints.

To estimate factor fitness values effectively we require high fitness blue-
prints. Unfortunately, finding high fitness blueprints is difficult. If we
have p subpopulations of n blueprints then there are np possible blueprints,
the vast majority of which will be of low fitness. Ideally we would evalu-
ate all possible blueprints in order to find those with high fitness, however
this is computationally infeasible. In practice we are forced to limit our-
selves to evaluating some small subset of blueprints.

In conventional CC PLGP, described in chapter 5, we use the results
from the previous generations to predict which blueprints to evaluate in
the current generation. This predictive approach is used because each
blueprint is extremely costly to evaluate, requiring p factors to be executed
against the entire training set. It is assumed that blueprints which had high

101
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fitness in generation n can be used as a basis for the blueprints in genera-
tion n + 1, despite the fact that many of the factors have changed. Hence
we maintain a population of blueprints and evolve them in the same way
as we evolve the factors.

Unfortunately, using a population of blueprints to evaluate the fac-
tor populations has a critical weakness. Namely, the blueprints are al-
ways several generations out of date. For each generation we “guess”’
blueprints based on historical results. This means the current factors will
have no influence on the blueprints used to evaluate their performance.
Using out of date factors to predict which blueprints to use is clearly a
critically flawed approach to factor fitness evaluation.

We wish to develop an approach to finding good blueprints which
bases its decisions on the current factors, not an out of date estimate. We
believe that by improving the quality of the blueprints used during factor
evaluation we can improve the accuracy of the fitness estimates, and the
effectiveness of the evolutionary process. This in turn is expected to lead
to greatly improved algorithm performance.

6.1.1 Objectives

In this chapter we aim to improve the CC PLGP algorithm by developing
a new approach to factor fitness evaluation. Our goal is to improve the
quality of the blueprints used to evaluate the factors, and in doing so im-
prove the accuracy of factor fitness evaluation. Specifically, this chapter
has the following research objectives:

• To study the relationship between blueprints and factors.

• To determine how to use the current factors to produce high fitness
blueprints.

• To combine our method for finding high fitness blueprints with the
CC PLGP algorithm to produce a new PLGP algorithm.
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• To compare the performance of our new algorithm to that of CC
PLGP and PLGP.

6.2 Blueprint Search

We propose to improve blueprint quality by searching the space of poten-
tial blueprints. By searching for high fitness blueprints based on current
factors we can be sure that any blueprints found will not be out of date.

Specifically, we propose to use an algorithm which iteratively improves
a population of solutions by using the solutions from the previous itera-
tion to select those in the current iteration. Assuming the search space
has some sort of structure, then each evaluated solution gives us informa-
tion about where to focus our search. This sort of algorithm can be highly
efficient in terms of solution evaluations [44].

This leaves us with several unsolved problems:

• How do we formalize the problem of finding high fitness blueprints
through the notion of a search space?

• How do we measure the “distance” or “similarity” between two
blueprints?

• How do we construct a blueprint search space with useful “struc-
ture”?

• How do we search our blueprint search space?

• How do we use these blueprints to calculate factor fitness?

The remainder of this chapter will focus on answering these questions.

6.2.1 Formalization

In this section we formalize the problem of finding high fitness blueprints.
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Blueprints as Vectors

It is important to formalize the concept of a blueprint in order to gain a
better understanding of the problem. To this end we represent blueprints
as vectors. Let the following assumptions hold:

• There are n subpopulations.

• Each subpopulation consists of f factors.

• Each factor in each subpopulation is associated with a unique integer
label in the range 1 to f .

Then we can formally define vectors as follows:
A blueprint consists of an integer vector of length n. Each entry in the

vector is an integer in the range 1 to f . We interpret the vector as consisting
of n factor labels, one for each subpopulation. The first entry in the vector
corresponds to a factor in the first subpopulation, the second entry in the
vector corresponds to a factor in the second subpopulation, etc.

Defining the Blueprint Space

Representing blueprints as vectors allows us to formalize the notion of
a blueprint search space. We represent our population of blueprints as
a population of n-dimensional vectors. Therefore the problem of find-
ing high fitness blueprints can be viewed as a search through a discrete,
bounded, n-dimensional search space.

The best way to picture this is to think about a 2-dimensional problem,
one where each blueprint consists of two factors. In this case all possi-
ble blueprints can be mapped into a two dimensional grid on the plane.
Selecting any point on the plane gives x and y coordinates for that point,
which can be interpreted as factor labels in the appropriate subpopula-
tions. For instance suppose the point (3,6) was selected, then this corre-
sponds to a blueprint consisting of the third factor from subpopulation 1
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and the sixth factor from subpopulation 2. This idea generalizes to an n-
dimensional space, where selecting any point corresponds to selecting an
n-dimensional coordinate vector which can be interpreted as a blueprint.
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Figure 6.1: The Vectorspace of Blueprints

An example of a 2-dimensional blueprint space is shown in figure 6.1.
This blueprint space has 2 subpopulations, each consisting of 10 factors.
Each box in the grid corresponds to a single possible blueprint with two
coordinates between 1 and 10. Therefore there are 100 different possible
blueprints, corresponding to the 100 possible positions in the grid. The
blueprint (3,6) consisting of the third factor from population 1, and the
sixth factor from subpopulation 2 is marked on the blueprint space.
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6.2.2 Spatial Locality

On the surface it appears that our n-dimensional Blueprint Space should
be easy to search, however there is a significant problem which limits
the effectiveness of any attempt to search this space. Namely the dis-
tance between points in our search space is unrelated to the similarity of
blueprints.

In a conventional search space the similarity of potential solutions is in-
versely proportional to the distance between them within the search space.
In other words two solutions located at opposite ends of the search space
are likely to be very different, while two solutions located close to each
other are likely to have similar structure. This property is known as Spa-
tial Locality and is vital to the success of many search algorithms.

Search algorithms exploit spatial locality in order to find good solu-
tions by focusing their search on regions of the search space which have
been found to contain good solutions. Spatial locality ensures that solu-
tions in these regions will have similar structure to solutions known to
give good performance. It is assumed that because these solutions are
similar in structure they will also have similar performance, an assump-
tion which often holds. In this case it means that solutions which lie close
to known good solutions are highly likely to give good performance. This
is in contrast to a randomly chosen solution, of which the vast majority
will give poor performance.

Unfortunately in our Blueprint Space the factor index has no relation
to the factor structure. This means that two factors which have similar
indices are may or may not have similar structure. Suppose we have three
n-dimensional vectors (1, 1) (1, 2) and (1, 100). Intuitively speaking we
would expect vectors (1, 1) and (1, 2) to be more similar than vectors (1, 1)
and (1, 100). However in our formalization of the problem this is not the
case. There is no reason to assume that factor 1 and factor 2 are any more
similar than factor 1 and factor 100, as each is a random factor within the
population. This problem is illustrated in figure 6.2.
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Figure 6.2: A bad Blueprint Space

Figure 6.2 clearly shows the problems with searching a space consisting
of apparently randomly distributed solutions. Finding one good solution
tells us nothing about the location of other good solutions. In contrast fig-
ure 6.3 illustrates the concept of a good search space. In this search space
solutions with similar structure are located close to each other, which causes
good solutions to also occur close to each other. Searching this space is
much simpler, since we use the location of known good solutions to find
other good solutions.
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Figure 6.3: A good Blueprint Space

6.2.3 Calculating the Distance Between Factors

In this subsection we develop methods for measuring the distance be-
tween two blueprints.

In our Blueprint Space we require any two factors which have simi-
lar indices to also have similar structure. In other words the difference
between factor indices should be proportional to the difference in factor
structure. Since every factor must be assigned an integer index between 1

and n this is equivalent to finding an ordering of the factors which has the
property of spatial locality.

In order to find an ordering of the factors which has the spatial locality
property, we need to formalize the notion of ”similarity“ between factors
through the use of a distance metric. A distance metric is a function which
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outputs a single real valued number for each pair of inputs. This value
represents the similarity or distance between the pair of inputs.

When comparing factors we are comparing two lists of instructions.
There are several ways in which these lists can be similar, we list them in
order of decreasing importance:

• The lists may be the same.

• The lists may contain many of the same instructions at the same lo-
cations.

• The lists may contain similar instructions at the same locations.

• The lists may contain similar instructions in the same order but at
different locations.

• The lists may contain similar instructions in a different order at dif-
ferent locations.

• The lists are completely different.

We want our distance metric to give a low distance to lists which are
strongly related, and a high distance to lists which have no relation. Ide-
ally, we would devise a distance metric which examines two instruction
lists in detail and takes into account the most subtle of relationships. Un-
fortunately devising such a metric is extremely difficult, and such metrics
are generally computationally expensive. Therefore for now we restrict
ourselves to a metric which only takes into account those relationships
which are easy to check for. Specifically our metric will look for factors
which have similar instructions at the same locations.

Converting Factors to Vectors

To calculate our distance metric we begin by converting each factor into a
vector of integers. There are many existing distance metrics which can be
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used to compare vectors, therefore by converting our factors into vectors
we can transform the problem into one which has already been solved.

To transform our factors into vectors we first note that each factor is
an ordered list of instructions, and each instruction is an ordered list of
objects. Therefore we will convert each instruction into a vector and lay
these vectors end to end, resulting in a single lengthy vector representing
the entire factor.

Each instruction consists of 4 objects: A destination register, two argu-
ments, and an operator. The arguments can be either constants, features,
or registers. We now associate a single integer value with each of these 4
objects, allowing us to represent each instruction as an integer vector of
length 4.

Each object is encoded as an integer as follows:

Register: we use the register index to encode a register. i.e. ri is encoded
as i.

Feature: we use the feature index to encode a feature. i.e. fj is encoded as
j.

Operator: if there are n operators, then we enumerate the operators from
1 to n and encode each operator as its enumerated value. i.e. if + is
the third operator, then all instances of + are encoded as 3.

Constant: We use bins to encode the constants. If there are x bins then
each constant is scaled to the range 1 to x, after which the constant
is cast to an integer. In other words constant c is encoded to c′ as
follows. c′ = floor(c×(x/cmax)) where cmax is the maximum possible
constant value.

Each instruction is encoded as a vector consisting of the 4 encoded in-
struction objects. These vectors are laid end-to-end to produce the final
factor vector. If each factor has i instructions then the vector representa-
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tions of each factor will have length 4i. An example of vectorization is
shown in figure 6.4.

1 1     2 3
2 2     1 1

r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

r[1] = 3.1 + f1;
r[3] = f2 / r[1];

r[2] = r[1] * r[1];
r[1] = f1 - f1;

1 6     1 1
3 2     4 1

2 1     3 1
1 1     2 1

c_max = 5
x = 10
+ →  1
-  →  2
*  →  3
/  →  4

1, 6, 1, 1, 3, 2, 4, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 1, 1

Figure 6.4: An example of how to vectorize a CC PLGP blueprint consist-
ing of three factors

It is important to note that these vectors will not be unique. Two dif-
ferent programs can result in the same vector due to the overlap in the
encoding scheme. For example feature f4 and register r4 both encode to 4.
While it is possible to avoid this overlap by using a more advanced cod-
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ing scheme, it is not necessary. The purpose of our distance metric is to
provide information about the relative similarity of solutions, not provide
a precise measurement of similarity. To achieve this, our distance metric
only needs to give a rough approximation of distance between two fac-
tors. Fortunately any two factors with significant differences are virtually
certain to encode to significantly different vectors. Factors often consist of
tens of instructions, each of which is encoded by four integers. Therefore
encoded vectors will often be hundreds of integers long. The probability
of two different factors encoding to the same vector is so small as to be
negligible. Hence our simple encoding scheme suffices.

Choosing a Distance Metric

A number of useful distance metrics are outlined in chapter 2, however
we need to be careful when choosing a distance metric due to the way in
which we have set up our vectors. In our vectors the difference between
the values has no actual meaning. For instance suppose we have three vec-
tors representing encoded instructions (1, 1, 1, 1), (1, 1, 2, 1), and (1, 1, 10,
1). Intuitively we would assume that the instructions encoded by (1, 1, 1,
1) and (1, 1, 2, 1) are more similar than the instructions encoded by (1, 1, 1,
1) and (1, 1, 10, 1). However on close inspection the only information con-
veyed by these vectors is that they have different operators. Specifically
(1, 1, 1, 1) has the operator enumerated first, (1, 1, 2, 1) has the operator
enumerated second, and (1, 1, 10, 1) has the operator enumerated tenth. In
other words these three vectors are all equidistant from one other. Unfor-
tunately many distance metrics would give undesired behavior insofar as
they would show that (1, 1, 1, 1), (1, 1, 2, 1) are closer than (1, 1, 1, 1), (1, 1,
10, 1). We need a distance metric which calculates distance based only on
the number of places in which our vectors differ.

Fortunately this notion of distance is formalized in the well known
metric called the Hamming Distance. Hence we choose to use the Ham-
ming distance to calculate the distance between factors. The Hamming
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distance is defined as the number of places in which one n-dimensional
vector differs from another. For example the vectors 1111 and 1142 have
Hamming distance 2, since they differ in two places.

It is important to note that there are several disadvantages to using the
Hamming distance as our distance metric. For example the two instruc-
tions r1 = 1 + 3 and r1 = 3 + 1 have the same effect, however these two
instructions would have a hamming distance of 2, since they differ in two
locations. However trying to capture these subtle relationships between
instructions is extremely challenging and is left for future work.

6.2.4 Constructing the Search Space

Now that we have formalized the distance between factors we can proceed
with constructing a search space which has the spatial locality property.

We require that any two factors which have similar indices should have
similar structure. In other words we need to enumerate our factors in such
a way that similar indices are assigned to factors with similar structure.
Another way to view this problem is in terms of orderings. We want to or-
der the factors so that all neighboring factors in the ordering share similar
structure. Furthermore we want the difference between factor indices to
be inversely related to the similarity in structure.

If factors 1 and 2 are similar, and factors 2 and 3 are similar, then ac-
cording to the properties of the Hamming distance factors 2 and 3 must
be similar. Therefore our new goal is to find an ordering of the factors
which minimizes the distance between neighboring factors. This goal is
illustrated in figure 6.5.

Unfortunately, the problem of finding a factor ordering which mini-
mizes neighbor distance is NP-Complete. Specifically it is equivalent to
the traveling salesman problem. Suppose we have a complete weighted
graph with one node for each factor, and each edge is labeled with the fac-
tor distance between the adjacent nodes. Then a factor ordering is equiva-
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A B C D8 5 7

(a) An example of a bad factor ordering

A C B D3 5 2

(b) The same factors rearranged into a good factor ordering

Figure 6.5: Four Factors arranged in two different orderings

lent to a path through the graph visiting each node precisely once, in other
words a Hamiltonian path. We wish to find such a path with minimal to-
tal weight, in other words the traveling salesman problem. A example of
the factor ordering problem expressed in terms of the travelleing salesman
problem is shown in figure 6.6. Note that this is the same example used in
figure 6.5.

Fortunately it is not necessary for us to find the optimal factor order-
ing. As long as factors which are similar are close together in the ordering
it is still possible to perform local search effectively. Therefore it is reason-
able to use an ordering which is approximately correct. Equivalently it is
reasonable to approximately solve the traveling salesman problem. The
traveling salesman problem has been widely studied, and a number of
approximation algorithms exist. One simple but effective approximation
algorithm is Nearest Neighbor [35]. Note that the nearest neighbor algo-
rithm used here differs somewhat from the nearest neighbour method for
machine learning and classification.
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(a) Four Factors expressed as a graph

A B

DC

8

23

7

510

(b) A bad path

A B

DC

8

23

7

510

(c) A good path

Figure 6.6: The Factor Ordering problem as a Graph

The nearest neighbor algorithm works as follows: Select an arbitrary
node. Find the closest node which has not yet been visited and move to
that node. Repeat until all nodes have been visited. Note that we initial-
ize the nearest neighbour algorithm with a randomly selected factor. On
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average the nearest neighbor algorithm yields a path 25% longer than the
optimal path [41], although it is easy to construct special cases which give
the worst possible route.

Nearest Neighbor is a simple, fast algorithm that provides a reason-
able approximation to the optimal solution. These properties make nearest
neighbor our algorithm of choice for determining factor orderings.

6.2.5 Searching the Blueprint Space

In this subsection we develop a method for effectively and efficiently search-
ing the blueprint space constructed in the previous subsection.

The simplest possible search algorithm is random guessing. In a ran-
dom guessing approach we would execute a large number of randomly
selected blueprints and select those with the best fitness as our final popu-
lation. While simple, random guessing is also an extremely poor choice of
algorithm, as it has no local search aspect and completely fails to exploit
information about known good solutions. However random search is use-
ful for comparing baseline performance, and for determining the extent to
which we gain from our carefully organized blueprint space.

A much more sensible alternative is to use an iterative style search al-
gorithm. Iterative style algorithms repeatedly test a small number of po-
tential solutions, using the solutions from the previous iteration to select
those in the current iteration. These algorithms work on the assumption
that each solution evaluation gives us information about where we should
look for good solutions. Iterative style algorithms are typically much more
efficient in terms of solution evaluations than random guessing.

The goal of this chapter is to find high fitness blueprints. So far we
have reduced this problem to searching the space of n-dimensional vec-
tors of natural numbers. The next question is how do we search this space?.
A numerical solution is difficult due to the absence of gradient informa-
tion, and an approach based on GP or GA is infeasible due to time re-
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strictions. Based on these restrictions we propose to search by using the
Particle Swarm Optimization (PSO) algorithm.

6.2.6 Estimating Factor Fitness

We use the PSO algorithm to locate high fitness blueprints. The PSO al-
gorithm generates n generations of blueprints, with the average blueprint
fitness increasing over the generations as the population converges. The
final task is to use these blueprints to estimate the fitness of the factors. We
calculate factor fitness as the average fitness of all blueprints in which the
factor participates.

Blueprint Filtering

Many CC algorithms filter the blueprints used for factor fitness evaluation,
using only the best n blueprints in which that factor participates. There are
good reasons for doing this. In particular, we want to promote blueprints
which are useful in forming high fitness solutions, regardless of whether
they can also be used as constituents in poor solutions.

The problem with limiting factor fitness evaluation to the best n blueprints
is choosing a good value for n. If n is too small we will discard blueprints
which communicate important information about the fitness of n. If n is
too large then limiting ourselves to n blueprints has no effect. In short, if
n is chosen badly the performance of the algorithm will suffer.

Fortunately it is not necessary to explicitly limit factors fitness evalu-
ation to the best n blueprints. PSO already rewards factors which partic-
ipate in high fitness blueprints regardless of participation in low fitness
blueprints.

There is an intentional and beneficial skew in how many times each fac-
tor is evaluated during PSO. The proposed new algorithm focuses blueprint
search on areas of the search space which contain high fitness solutions.
The blueprints in these areas will share many common factors, so a small
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number of factors will participate in a large number of high fitness blueprints.
In contrast areas of the search space which contain low fitness solutions
will rarely be visited. In other words a large number of factors will partic-
ipate in a small number of low fitness blueprints.

Factors may participate in blueprints in three possible ways: a factor
may participate in only high fitness blueprints; a factor may participate in
only low fitness blueprints; or a factor may participate in both high and
low fitness blueprints. In the first two cases the result of averaging the
blueprint fitness values is clear, therefore we turn to examine the third
case.

A large number of factors participate in a small number of low fitness
blueprints. On average any single factor which participates in low fitness
blueprints will participate in only a small number of low fitness blueprints.
In contrast a small number of factors participate in a large number of
high fitness blueprints. On average any single factor which participates
in high fitness blueprints will participate in a large number of high fitness
blueprints. Therefore any factor which participates in both high and low
fitness blueprints will participate in a far larger number of high fitness
blueprints.

Another way to consider this mechanism is that it focuses computa-
tional resources where it is most important to do so. Factors which partic-
ipate only in low fitness blueprints will rarely be executed, while factors
which participate in high fitness blueprints will frequently be executed.
This makes sense because we want to spend the minimum amount of time
possible executing poor quality factors which will later be dropped from
the gene pool.

6.2.7 Algorithm

We can now present our new algorithm in its entirity. We refer to this
algorithm as Blueprint Search PLGP or BS PLGP.
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• Initialize n subpopulations of randomly generated factors.

• For n GP generations:

– Order the factors to form the search space.

– Initialize a population of randomly generated blueprints.

– For x PSO iterations:

∗ Execute the blueprints.

∗ Store the resulting fitness values.

∗ Update blueprint positions within the search space.

– Use blueprint fitness values to calculate factor fitness values.

– Select and evolve factors.

6.3 Experimental Setup

We compare the performance of BS PLGP to that of PLGP and CC PLGP.
This section outlines the experiments and parameters used to facilitate this
comparison.

6.3.1 Data Sets

The three data sets described in chapter 3 will form the basis for our ex-
periments.

6.3.2 Factor Ordering

The nearest neighbor factor ordering algorithm was used throughout these
experiments. This is important as different algorithms result in different
factor orderings of varying quality.
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6.3.3 Parameter Configurations

When deploying the BS PLGP algorithm there are a large number of pa-
rameters which need to be instantiated. This is due to the complexity of BS
PLGP, and the large number of existing techniques used as components in
the BS PLGP algorithm. BS PLGP uses CC PLGP, PSO, and Nearest Neigh-
bor, each of which has its own parameters which need to be instantiated
to reasonable values.

GP parameters

The GP parameters used in these experiments are provided in table 6.1.

Table 6.1: GP Parameter Configurations

Parameter Value
Population 1000
Max Gens 400
Mutation 30%

Elitism 10%
Crossover 60%

Tournament Size 5
Runs 30

Registers 10

PSO parameters

The PSO parameters used in these experiments are provided in table 6.2.
These values are experimentally determined optima.

6.3.4 Nearest Neighbour Parameters

The nearest neighbour algorithm requires no parameters to be defined.
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Table 6.2: PSO parameter Configurations

Parameter Value
Iterations 10

Velocity weight -0.3
Local Best Weight 0.5

Global Best Weight 0.1

6.3.5 Experiments

The parameters in table 6.3 are the experiment specific parameters. Each col-
umn of the table corresponds to the parameter settings for a specific exper-
iment. Each experiment has three components, a PLGP stage, a CC PLGP
stage, and a BS PLGP stage. In the PLGP stage we determine the classifi-
cation accuracy of a PLGP system using programs of the specified length.
In the CC PLGP stage we repeat our experiment but we use CC PLGP
programs of equivalent length. In the BS PLGP stage we repeat our exper-
iment a third time, but we use BS PLGP programs of equivalent length.
Note that we repeat each experiment 30 times and average the results.

Table 6.3: Experiments

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Total Instructions 20 50 100 200 400 600
# PLGP factors 4 5 10 10 20 30
PLGP factor Size 5 10 10 20 20 20

6.4 Results

Figure 6.7, figure 6.8, and figure 6.9 compare the effectiveness of BS PLGP
with that of PLGP and CC PLGP as classification techniques on the three
data sets described in chapter 3. Figure 6.7 compares performance on the
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Hand Written Digits data set, Figure 6.8 compares performance on the Arti-
ficial Characters data set and Figure 6.9 compares performance on the Yeast
data set. Each line corresponds to an experiment with programs of a cer-
tain fixed length. Program lengths vary from very short (10 instructions)
to very long (600 instructions).

We examine the statistical significance of these results by performing
a students t-test on the fitness at generation 400. We compare BS PLGP
to both PLGP and CC PLGP. Figure 6.10a and figure 6.11a test the signif-
icance of the results in figure 6.7. Figure 6.10b and figure 6.11b test the
significance of the results in figure 6.8. Figure 6.10c and figure 6.11c test
the significance of the results in figure 6.9. In these results n is the number
of trials, SD is the standard deviation, and p is the p-value resulting from
the t-test. Note that by convention a p value smaller than 0.05 is consid-
ered significant.

6.5 Discussion

These results are precisely in line with our expectations. BS PLGP sig-
nificantly outperforms both PLGP and CC PLGP. We now discuss these
results in detail.

• BS PLGP vs PLGP: BS PLGP demonstrates significantly superior
performance to PLGP. BS PLGP significantly outperforms PLGP on
both the Hand Written Digits and Artificial Characters data sets, and
has generally comparable performance on the Yeast data set.

• BS PLGP vs CC PLGP
BS PLGP demonstrates significantly superior performance to CC PLGP
on all data sets (save experiment 1 of the yeast data set).

• Fast Convergence
BS PLGP converges more rapidly than either PLGP or CC PLGP dur-
ing the first stage of evolution.



6.5. DISCUSSION 123

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

20 Instructions

PLGP
CC PLGP
BS PLGP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

50 Instructions

PLGP
CC PLGP
BS PLGP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

100 Instructions

PLGP
CC PLGP
BS PLGP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

200 Instructions

PLGP
CC PLGP
BS PLGP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

400 Instructions

PLGP
CC PLGP
BS PLGP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

E
rr

or
 R

at
e 

on
 T

es
t S

et

Generation

600 Instructions

PLGP
CC PLGP
BS PLGP

Figure 6.7: PLGP vs CC PLGP vs BS PLGP on the Hand Written Digits data
set
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Figure 6.8: PLGP vs CC PLGP vs BS PLGP on the Artificial Characters data
set
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Figure 6.9: PLGP vs CC PLGP vs BS PLGP on the Yeast data set
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Figure 6.10: Significance of Results: BS PLGP vs. PLGP

PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 451.63 47.78 412.00 48.64 30 0.0024 YES (+)

Exp2 50 284.73 53.69 259.46 43.37 30 0.0495 YES (+)

Exp3 100 256.23 42.43 236.83 36.73 30 0.0499 YES (+)

Exp4 200 238.93 53.87 213.80 29.56 30 0.0271 YES (+)

Exp5 400 278.96 52.79 194.43 33.63 30 0.0001 YES (+)

Exp6 600 280.63 51.46 194.50 24.45 30 0.0001 YES (+)

(a) Hand Written Digits

PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 192.44 53.21 140.96 32.83 30 0.0001 YES (+)

Exp2 50 127.28 79.98 65.00 34.21 30 0.0002 YES (+)

Exp3 100 166.52 78.88 62.63 34.23 30 0.0001 YES (+)

Exp4 200 118.68 46.75 60.63 34.02 30 0.0001 YES (+)

Exp5 400 127.80 64.89 58.20 38.05 30 0.0001 YES (+)

Exp6 600 192.60 104.05 78.30 30.93 30 0.0001 YES (+)

(b) Artificial Characters

PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 209.13 10.14 217.43 11.83 30 0.0044 YES (-)

Exp2 50 205.50 11.31 213.90 13.89 30 0.0128 YES (-)

Exp3 100 208.90 21.79 214.93 12.20 30 0.1813 NO

Exp4 200 217.63 19.13 211.13 16.18 30 0.1591 NO

Exp5 400 227.56 24.18 221.40 18.73 30 0.3201 NO

Exp6 600 233.70 17.40 230.63 19.62 30 0.5239 NO

(c) Yeast
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Figure 6.11: Significance of Results: BS PLGP vs. CC PLGP

CC PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 482.90 44.64 412.00 48.64 30 0.0001 YES (+)

Exp2 50 390.66 50.20 259.46 43.37 30 0.0001 YES (+)

Exp3 100 381.66 54.14 236.83 36.73 30 0.0001 YES (+)

Exp4 200 322.33 33.58 213.80 29.56 30 0.0001 YES (+)

Exp5 400 300.00 57.20 194.43 33.63 30 0.0001 YES (+)

Exp6 600 300.53 53.85 194.50 24.45 30 0.0001 YES (+)

(a) Hand Written Digits

CC PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 220.00 44.51 140.96 32.83 30 0.0001 YES (+)

Exp2 50 197.00 55.98 65.00 34.21 30 0.0001 YES (+)

Exp3 100 184.00 67.69 62.63 34.23 30 0.0001 YES (+)

Exp4 200 171.00 77.34 60.63 34.02 30 0.0001 YES (+)

Exp5 400 188.00 68.12 58.20 38.05 30 0.0001 YES (+)

Exp6 600 192.00 71.80 78.30 30.93 30 0.0001 YES (+)

(b) Artificial Characters

CC PLGP BS PLGP

# Ins Mean SD Mean SD n p Significant?

Exp1 20 221.07 19.02 217.43 11.83 30 0.3225 NO

Exp2 50 224.97 13.47 213.90 13.89 30 0.0018 YES (+)

Exp3 100 239.93 19.97 214.93 12.20 30 0.0001 YES (+)

Exp4 200 245.70 19.74 211.13 16.18 30 0.0001 YES (+)

Exp5 400 249.07 20.12 221.40 18.73 30 0.0001 YES (+)

Exp6 600 246.23 16.49 230.63 19.62 30 0.0008 YES (+)

(c) Yeast
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It is expected that BS PLGP will converge more rapidly than PLGP
during the first stage of evolution. BS PLGP uses a cooperative co-
evolutionary architecture to optimize multiple factors in parallel. In
contrast PLGP is limited to optimizing a single factor in each pro-
gram in each generation. Hence BS PLGP will clearly converge more
rapidly than PLGP during the first stage of evolution.

It is significant that BS PLGP converges more rapidly than CC PLGP
during the first stage of evolution. Both CC PLGP and BS PLGP use
an identical cooperative coevolution architecture to optimize multi-
ple factors in parallel. The key difference between these two meth-
ods lies in which blueprints are selected for factor fitness evaluation.
CC PLGP uses an out of date estimate for which blueprints should
be selected. BS PLGP uses PSO to search for high quality blueprints
based on the current population of factors. The fast convergence of
BS PLGP during the first stage of evolution demonstrates the impor-
tance of selecting the right blueprints for factor fitness evaluation. By
using active search to locate high quality blueprints we have greatly
improved the convergence rate of the CC PLGP architecture.

• Fast Fine Tuning
BS PLGP converges more rapidly than CC PLGP and PLGP during
the later stages of evolution, resulting in higher fitness final solu-
tions.

It is significant that BS PLGP converges more rapidly than PLGP dur-
ing the later stages of evolution. As shown in chapter 5 CC PLGP
excels at initial convergence, but fails at fine tuning high fitness so-
lutions. In virtually all cases it was shown that if the system was run
for a significantly long time the performance of PLGP would eventu-
ally surpass that of CC PLGP. Despite using the same basic CC archi-
tecture as CC PLGP, BS PLGP still excels are fine tuning high fitness
solutions. Clearly locating high fitness blueprints greatly improves
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the fine tuning ability of the CC PLGP architecture.

• Small Programs
The performance difference is less noticible when small programs
with few factors are used. This is to be expected as small programs
with few factors are not well suited to CC PLGP, and by extension
BS PLGP. The reasons behind this are discussed in detail in chapter
5.

It is significant that when small programs are used BS PLGP signif-
icantly outperforms PLGP on both the Hand Written Digits and Ar-
tificial Characters data sets. BS PLGP uses the same architecture as
CC PLGP, and as discussed in chapter 5 CC PLGP performs poorly
when small programs with few factors are used. Therefore it is par-
ticularly noteworthy that when small programs are used BS PLGP
outperforms PLGP on two of our data sets and has comparable per-
formance on the third.

Finally it is important to note that short BS PLGP programs are not
what we are really interested in. Typically, short programs are not
powerful enough for most interesting applications. On difficult prob-
lems neither PLGP, CC PLGP, or BS PLGP can achieve good perfor-
mance using short programs.

• Large Programs
BS PLGP is particularly effective when large programs with many
factors are used. This is to be expected as BS PLGP is an adaptation
of CC PLGP, and CC PLGP is also particularly effective when large
programs with many factors are used.

PLGP performs poorly when large programs are used as each pro-
gram has many factors, and PLGP can only optimize one factor at
a time. CC PLGP performs well during the first stage of evolution
when large programs are used, however it is difficult to find high
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fitness solutions due to the difficulty of fine tuning. BS PLGP al-
lows fast initial convergence and fine tuning of high fitness solu-
tions. Therefore BS PLGP can produce outstanding results when
large programs are used, significantly outperforming both alterna-
tive approaches.

6.6 Chapter Summary

Selecting high fitness blueprints for factor evaluation is critical to the suc-
cess of the CC PLGP algorithm. Selecting blueprints with poor fitness
disrupts the evolution of factors and negatively impacts algorithm per-
formance. The SANE inspired method considered in chapter 5 where a
population of blueprints is evolved in parallel with the factor subpopula-
tions has clear disadvantages. Most importantly, the blueprints generated
through this approach are not based on the current population of factors.
Hence this approach leads to poor blueprints being selected for fitness
evaluation, and overall poor algorithm performance.

In this chapter we have introduced a new approach to blueprint selec-
tion based on searching a carefully defined blueprint space through par-
ticle swarm optimization. This approach, called Blueprint Search PLGP
(BS PLPG) bases its blueprint selections on the current factors, not an out
of date estimate. BS PLGP significantly outperforms both PLGP and CC
PLGP, demonstrating the importance of good blueprint selection.

6.6.1 Next Step

All of the algorithms we have developed thus far offer significant advan-
tages in terms of classification accuracy. Unfortunately many of these algo-
rithms have extra processing steps, introducing additional overhead and
slowing fitness evaluation. This is particularly true for algorithms such
as BS PLGP where PSO requires a large number of blueprint evaluations.
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Therefore from this point onwards this thesis will change tack and focus
on optimizing the efficiency of the algorithms already developed. In this
way we will maximise the applicability of this work.
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Chapter 7

Execution Trace Caching for
Linear Genetic Programming

7.1 Introduction

A major problem present in all GP variants is the extensive time required
to arrive at a satisfactory solution. The quality of the solutions produced
by GP depends heavily on the time available. Increasing the training time
of a GP system results in greater exploration of the search space, and hence
the discovery of superior fitness solutions. Unfortunately real world prob-
lems often impose severe restrictions on the available training time. These
time constraints limit the applicability of GP, as the majority of GP systems
cannot evolve effective solutions within the available time.

In order to maximize the applicability of the algorithms presented in
this thesis it is vital to minimize the time they require to find satisfactory
solutions. Producing high quality solutions is meaningless if these solu-
tions cannot be found within the time constraints of the problem. Hence
for the remainder of this thesis we will focus on minimizing the training
time of our new LGP algorithms. This chapter in particular will focus on
minimizing the training time of conventional LGP in order to establish a
baseline for this work (PLGP algorithms).

133



134 CHAPTER 7. EXECUTION TRACE CACHING FOR LGP

Fitness evaluation is the most computationally costly component of GP.
GP requires each potential solution to be executed on a large number of
training examples. While a single fitness evaluation is usually fast, there
are often hundreds of individuals and thousands of training examples,
resulting in significant running times.

There are a few major approaches to reducing the time required for fit-
ness evaluation in GP. One approach is to reduce the number of training
examples by carefully selecting a representative subset [30, 29, 94]. An-
other is to improve the fitness evaluation procedure directly, typically by
parallelizing the fitness evaluations and the use of Graphics Processing
Units [16, 77]. Unfortunately these two approaches have clear limitations,
either needing extra work expertise for selecting good representations, or
requiring additional hardware support in addition to a parallel algorithm.

Caching is a third approach which lacks the limitations of the first
two methods. We choose to focus on minimizing algorithm training time
through the use of caching. Caching is a commonly used technique for de-
creasing execution time in many domains. Caching trades a cost in mem-
ory for a saving in execution time by storing partial results, preventing the
redundant reevaluation of many already computed functions. Caching
is a natural fit for linear genetic programming, where we repeatedly ex-
ecute similar functions many times on the same data. By caching partial
programs it is possible to recycle prior results, hence decreasing execution
times [43, 75, 90]. Due to crossover, many programs in the same generation
will be related, sharing common program code. Caching can take advan-
tage of this by storing common results and fetching them when required
[43, 75]. Caching has been applied to TGP with a certain level of success
[43, 75, 90, 28, 91, 76] but caching has not been extensively used in LGP.

Therefore this chapter will focus on minimizing the execution time of
conventional LGP through the use of caching. This work will serve as
both a baseline indicator for the work in later chapters, and a standalone
improvement to LGP. By comparing the execution time of cached LGP
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to that of cached PLGP we will gain some insight into the comparative
advantages of these two architectures. Furthermore, we will be able to
directly compare the optimized execution time of all algorithms presented
in this thesis.

7.1.1 Chapter Goals

The overall goal of this chapter is to decrease the training time of LGP.
The execution time savings presented in this chapter will serve as both a
baseline for work in later chapters, and a standalone improvement. Specif-
ically, this chapter has the following research objectives:

• Develop a new caching technique for linear genetic programming
which decreases the time it takes to evaluate LGP programs.

• Derive an equation which describes the cost-benefit trade off associ-
ated with caching.

• Use this equation to optimize the caching parameters, and hence de-
termine in which situations caching is cost effective.

• Empirically confirm the theoretical results presented in this paper.

7.2 Execution Trace Caching for LGP

In many ways LGP presents a natural environment for caching. The com-
bination of crossover and selection ensures that the vast majority of in-
dividuals which occur during evolution will be closely related. These
related individuals will share many common program components. Ex-
isting caching techniques already exploit common program components.
Programs are decomposed into code segments, and the results of segment
execution are cached. Therefore if several programs share common code
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segments then execution can often be avoided by fetching partial results
from the cache.

Existing caching techniques have a single universal cache. When a par-
ticular instruction sequence is recognized to occur frequently within the
population, that instruction sequence is then cached. Each time a program
is executed we consult the entire cache to determine whether part or all of
the required result can be fetched.

Universal caching can be effective [90] but leaves significant room for
improvement. In particular universal caching completely ignores useful
information about program relationships. A more intelligent approach to
caching would be to use this information to link specific programs to spe-
cific cached information.

It is possible to track inter-generational program relationships during
the evolution stage of GP. Furthermore it is possible to track precisely
which program code is shared between related programs. Using these
two pieces of information it is possible to cache specific code segments for
each program.

7.2.1 Concept

We develop a new caching algorithm based on exploiting the relationships
between programs. We cache the execution of each parent in order to ex-
pedite the execution of all offspring. By keeping track of its parents, each
offspring will know exactly which cached information it can use to expe-
dite its own execution. We call this execution trace caching.

A LGP program is a linear sequence of instructions. Each instruction
stores the results of its execution in the register collection. The input of
one instruction is the output of all previous instructions, in the form of the
values currently in the register collection. In other words, we can trace
the execution of the program through the values in the registers after each
instruction execution, generating a table like the one in figure 7.1.
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Program Execution
Program Execution Trace

Index Instruction r[1] r[2] r[3]

0 - 0 0 0
1 r[1] = 3.1 + f1; 3.2 0 0
2 r[3] = f2 / r[1]; 3.2 0 0.94
3 r[2] = r[1] * r[1]; 3.2 10.24 0.94
4 r[1] = f1 - f1; 0 10.24 0.94
5 r[1] = r[1] - 1.5; -1.5 10.24 0.94
6 r[2] = r[2] + r[1]; -1.5 8.74 0.94

Figure 7.1: Example of an execution trace

It is important to note that the current state of the registers completely
describes the program execution up until that point in time. In other
words, as long as we are given the correct register collection state, we can
begin program execution from part way through the program. Therefore if
we cache the execution trace for each program applied to each training ex-
ample we can re-execute a specific program on a specific training example
starting from any point in the program.

7.2.2 Complete Caching

The problem is that when the genetic operators are applied to the program
during evolution, the program instructions will change. This means that
the execution trace will also change, and the previous cached execution
trace will no longer be correct.

We assume that reproduction1 occurs by selecting an instruction from
the program uniformly at random, and modifying some number of subse-
quent instructions. All instructions prior to the modification point will be

1ignoring elitism



138 CHAPTER 7. EXECUTION TRACE CACHING FOR LGP

identical to the previous generation. Therefore the execution trace prior
to the modification point will also be identical to the previous generation.
This means that we can always restart execution from the first modified
instruction using the cached execution trace and arrive at the correct re-
sult.

7.2.3 Approximate Caching

Unfortunately caching execution traces incurs a cost, which must be bal-
anced against the savings it generates. Caching every single step in the
execution is prohibitively expensive both in terms of memory and compu-
tation time, so an alternative approach is required.

We decrease the overhead cost of caching to manageable levels by caching
only a small part of each execution trace. We choose a small number of
evenly spaced instructions, and for each of these we cache the state of the
registers. We use the term cache points to describe the number of cached
instructions. This means that for the majority of program instructions no
caching occurs, greatly reducing cache overheads.

Cached program execution remains the same with one minor differ-
ence: We now begin execution from the closest cached instruction. In our
initial caching algorithm we begin execution at the first modified instruc-
tion. When using approximate caching many of the instructions are not
cached. Therefore we search backwards through the program until we
find a cached instruction, and begin execution from this cached value. The
approximate caching algorithm is given in algorithm 3.

It is clear that approximate caching requires more instruction execu-
tions than complete caching. However approximate caching also incurs
much lower overhead costs than complete caching. Hence we expect the
benefits of approximate caching to greatly outweigh the necessary sacri-
fices, giving greatly improved performance.

The performance of the execution trace caching algorithm will be di-
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Algorithm 2 PROGRAM EXECUTION WITH CACHING

begin
Let I = earliest modified instruction
index = I − I MOD num cache

registers = cache[index]
for (i = index . . . |instructions|) do

if (i MOD num cache = 0) then
cache[i] = registers

registers = execute(instruction[i], registers)

rectly related to the number of cache points. The optimum number of
cache points is investigated in detail in section 7.3. For now, assume c

cache points evenly spaced throughout our program of length n, so we
stop every n/c steps in our execution and cache the current state of the
registers. An example of caching using three, or six cache points is given
in table 7.1.

Table 7.1: Caching using two, three, or six cache points

Program c = 6 c = 3

index Instruction Reg1 Reg2 Reg3 Reg1 Reg2 Reg3

0 - - -

1 r[1] = 3.1 + f1; 3.2 0 0 3.2 0 0

2 r[3] = f2 / r[1]; 3.2 0 0.94 -

3 r[2] = r[1] * r[1]; 3.2 10.24 0.94 3.2 10.24 0.94

4 r[1] = f1 - f1; 0 10.24 0.94 -

5 r[1] = r[1] - 1.5; -1.5 10.24 0.94 -1.5 10.24 0.94

6 r[2] = r[2] + r[1]; -1.5 8.74 0.94 -

7.3 Theoretical Analysis

Now that we have established an (efficient) caching algorithm it is impor-
tant to develop theoretically motivated guidelines for optimal algorithm
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deployment. Caching always results in a trade off, with higher levels of
caching granting increased execution time savings, but incurring larger
overhead costs. Badly applied caching can actually result in a net perfor-
mance loss. We wish to determine a general rule for choosing the param-
eter settings which give optimum performance for any given situation.

Choosing the correct number of cache points is the key step in deploy-
ing the LGP execution trace caching algorithm. The level of caching is
completely controlled by this single parameter. If too many cache points
are used the cache will be large, with correspondingly large overheads. If
too few cache points are used then only small performance improvements
are possible.

In this section we investigate how the number of cache points used
affects the performance of the execution trace caching algorithm. In order
to do so we require the following variables:

• p: The number of LGP programs in the population (population size).

• i: The number of instructions per program.

• c: The number of cache points per program.

• r: The number of registers.

• t: The number of training examples for a task.

7.3.1 Savings

We begin this section by formalizing the benefits of caching. We derive an
equation which we can use to calculate the number of instruction execu-
tions saved by caching. We make the following assumptions:

• The cache points are evenly spaced. (A trivial information theory
argument will show this is optimal).
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• We always backtrack as little as possible, i.e we begin program exe-
cution using the closest possible cache point.

• The modification point occurs uniformly at random.

Suppose we modify a program at position x. Then we are required to
backtrack to some cache point y such that y < x. Clearly it makes sense to
backtrack to the greatest cache point y such that y < x, since this will result
in the fewest instructions being executed. If we have c cache points, then
each program is split up into d = c + 1 sections. Each section is equally
large, so each section is of length i/(c+1) and each section has probability
i/(c × i) = 1/c of containing the modified instruction. If the modification
occurs in the first section caching is of no benefit. If it occurs in the second
section, we save i/(c + 1) instruction executions, if it occurs in the third
section, we save 2i/(c+ 1) instruction executions etc.

We now calculate the expected savings. Let a be the index of a specific
section. Let p(a) be the probability of section a containing the modified
instruction. Let s(a) be the number of instruction executions avoided if
section a contains the modified instruction. We calculate E(s(a)), the ex-
pected number of instruction executions saved.

E(s(a)) =
d∑

a=1

p(a)s(a)

=
d∑

a=1

1

d
× (a− 1)i

d

=
i

d2

d∑
a=1

×(a− 1)

=
i

d2
× d(d− 1)

2

=
i

d
× d− 1

2
(7.1)
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=
i

2
− i

2d

=
i

2
− i

2(c+ 1)
(7.2)

This result is exactly what we would expect. Firstly, the more cache points
we have, the fewer instructions we are required to execute, and hence
the greater our execution time savings. Secondly, as the number of cache
points approaches i, the execution time savings asymptotically approaches
i/2. In other words only half of the instructions are executed.

7.3.2 Cost

By caching execution traces we incur a cost, both in terms of memory and
in terms of execution time. These costs are actually closely related, since
the primary cost in time is caused by reading from and writing to this
memory. We must cache r registers for each of the d cached instructions.

cost = r × d (7.3)

To begin with we need to check that the memory requirements of caching
are physically practical. Note that the total cost of cahing can be found by
multiplying equation 7.3 by both the number of programs and the number
of training examples. Selecting some large values let:

• b = 4 (float)

• r = 20

• c = 10

• t = 1000

• p = 1000

In this case memory usage would be 420×10×1000×1000 = 800, 000, 000 bytes =

800Mb. While this is a large amount of memory it is still well within prac-
tical limits.
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7.3.3 Optimization

We now determine the optimum number of cache points for any given
problem. We do this by combining our savings and cost equations and
differentiating to find the stationary point.

net savings = savings− cost

=
i

2
− i

2d
− r × d (7.4)

d(net savings)
d(d)

=
i

2d2
− r

0 =
i

2d2
− r

r =
i

2d2

d2 =
i

2r

d =

√
i

2r
(7.5)

Optimal performance is achieved by setting the number of cache points to
be proportional to the square root of the number of instructions over the
number of registers. Hence the optimal number of cache points is always
going to be very small relative to the number of instructions. This confirms
what we already knew: we require only a few cache points in order to
achieve large performance improvements. We are now in a position to
calculate the net benefit of caching by substituting our optimal value for d
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back into equation 7.4:

net savings =
i

2
− i

2d
− r × d

=
i

2
− i

2
√

i
2r

− r

√
i

2r

=
i

2
− i

2
√
i√
2r

− r

√
i√
2r

=
i

2
−
√
i
√
2r

2
−
√
i
√
2r

=
i− 3

√
i
√
2r

2
(7.6)

We want to know what fraction of the execution time we are saving. Our
current calculation is in terms of the number of instruction executions
saved. Hence we calculate the fractional savings by dividing equation 7.6
by the number of instructions.

fraction savings =
i− 3

√
i
√
2r

2i

=
1− 3

√
2r
i

2
(7.7)

We are now in a position to calculate the critical point at which caching
becomes cost effective. The overhead cost of caching depends solely on
the number of registers. The expected execution time savings depends
on both the number of registers and the number of instructions. Hence a
large instruction to register ratio (i/r) will give good caching performance,
while a low instruction to register ratio (i/r) will give poor caching perfor-
mance. We calculate the minimum instruction to register ratio which still
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allows performance improvement from caching.

0 <
i− 3

√
i
√
2r

2

3
√
i
√
2r < i

3
√
2r <

i√
i

3
√
2r <

√
i

i > 18r (7.8)

Caching is effective when the number of instructions (i) is at least 18 times
larger than the number of registers (r).

It is important to note that these results rely on the assumption that the
cost of copying r registers is equal to r times the cost of copying one regis-
ter. This is not the case in modern programming languages where utilities
exist to rapidly copy whole blocks of memory (such as r registers stored
in an array). In other words, 18r is an upper bound on the number of in-
structions required before caching becomes worthwhile, and in practice it
is highly likely that caching can be made cost effective for much smaller
instruction to register ratios (i/r).

7.4 Experimental Design

We conduct a series of three experiments. The following parameter set-
tings are common to all three experiments.

7.4.1 Experiments

Experiment One

In the first experiment we will compare the execution time of LGP pro-
grams with and without caching. In this experiment we will vary the size
of our LGP programs between 10 and 150 while using the optimum num-
ber of cache points calculated using equation 7.6.
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Table 7.2: Parameter Configurations

Parameter Value
Population 1000
Max Gens 400
Mutation 30%

Elitism 10%
Crossover 60%

Tournament Size 5
Runs 30

Registers 2

Experiment Two

In the second experiment we will compare the execution time of LGP pro-
grams with caching with our theoretical estimates. Once again we will
vary the size of our LGP programs between 10 and 150 while using the
optimum number of cache points calculated using equation 7.6.

Experiment Three

In the third experiment we investigate how LGP program execution time
changes when we vary the number of cache points (c). In this experiment
we vary the number of cache points between 0 and 20 while keeping all
other parameters constant. We wish to determine the trend in execution
time caused by varying the number of cache points. This trend will be
most obvious when we can cause large variation in the execution time sav-
ings. Large variation is only possible with large LGP programs. Therefore
in this experiment we use large LGP programs with 200 instructions.
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7.4.2 Data Set

The choice of data set for running the experiments is not important for
this work. The classification accuracy will remain the same for LGP with
or without caching. We are not interested in the performance of the LGP
system, and the program execution time is independent of the data set
used. The data set simply serves as a source of inputs to the programs,
and to this end a series of random numbers would suffice equally well.
The only important parameters are the number of instructions, the number
of registers and the number of cache points used, although details of the
other parameters can be found in Table 7.2.

Purely for convenience we chose the Hand Written Digits data set de-
scribed in chapter 3 for the purposes of testing our algorithm. In order to
limit the number of registers and to clearly present the results we reduce
this problem from a 10 class problem to a two class problem.

7.5 Results

In this section we compare our theoretical estimates with empirical results.
We present the results of the experiments detailed in section 7.4.1 together
with discussion.

7.5.1 Caching vs. No Caching

In this section we investigate how our new caching algorithm affects the
running time of the LGP algorithm. Specifically we aim to determine
whether our new caching algorithm, on average, significantly decreases
the time required to execute a LGP program.

There are three important results present in figure 7.2:

• Caching is detrimental for small LGP programs.

• Caching is beneficial for large LGP programs.
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Figure 7.2: Comparing the running time of LGP programs of various
lengths with and without caching

• The critical point at which caching becomes cost effective occurs at
roughly 32 instructions.

The empirical results shown in figure 7.2 are precisely in line with our
expectations.

Caching grants a percentage saving in return for a constant overhead cost.
Caching is beneficial only if the percentage saving exceeds the constant over-
head. Small LGP programs already execute extremely rapidly. Therefore
the percentage savings of caching are outweighed by the overhead costs.
Hence caching is not cost effective for small LGP programs. Conversely
large LGP programs are slow to execute. Therefore the percentage sav-
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ings of caching outweigh the overhead cost. Hence caching is extremely
effective for large programs.

In section 7.3 we calculated that caching is cost effective when the num-
ber of instructions is at least 18 times as large as the number of registers.
In this experiment our programs use 2 registers, so we expect caching to
be cost effective when programs have at least 36 instructions. Our empiri-
cally determined value for the critical point is approximately 32, however
as we discussed in section 7.3 our theoretical value is an upper bound.
These results suggest that our theoretical predictions for the critical point
are in precise agreement with our empirical results.

7.5.2 Theoretical Performance

In this section we investigate whether our theoretical predictions are borne
out in practice. Specifically we aim to determine whether it is possible to
achieve the theoretical results of section 7.3 in a practical implementation.

The empirical results shown in figure 7.3 are precisely in line with our
theoretical predictions. For all parameter settings our concrete implemen-
tation achieves the expected execution time savings. In fact it appears that
for large LGP programs our implementation slightly outperforms the sug-
gested theoretical values. This is reasonable, since in our calculations we
made worst case assumptions about the overhead cost of caching. It is
likely that our implementation was highly efficient at memory manipu-
lation, allowing for slightly faster program execution than we calculated
based on our theoretical analysis.

7.5.3 Number of Cache Points

In this section we investigate how the number of cache points affects the
performance of our caching algorithm. In particular we wish to empiri-
cally determine the optimum number of cache points, and confirm whether
this agrees with our theoretical estimate.



150 CHAPTER 7. EXECUTION TRACE CACHING FOR LGP

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120  140  160

E
xe

cu
tio

n 
T

im
e 

(m
s)

# Instructions

Theoretical Cached Execution Time

Theoretical
Actual

Figure 7.3: Comparing the theoretical running time calculated in section
7.3 to the empirically measured running time

The empirical results shown in figure 7.4 agree precisely with our the-
oretical estimates. Using equation 7.5 we estimate that the optimum num-
ber of cache points is 7. Our empirical results agree with this result, show-
ing programs execute most rapidly when using approximately 7 cache
points.

It is interesting to study the shape of the results curve. Performance im-
proves rapidly with the addition of cache points up to the critical point, in
this case 7 cache points. Further increasing the number of cache points
beyond the optimum number causes programs to execute slightly less
rapidly, but the difference is minor. In other words using fewer than the
optimum number of cache points greatly impairs efficiency, while using
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Figure 7.4: Comparing the running time of LGP programs when various
numbers of cache points are used

more than the optimum number of cache points causes only slightly im-
pairs efficiency. Considering the space cost for large numbers of cache
points we suggest that when in doubt it is better to use slightly more cache
points.

7.6 Chapter Summary

The goal of this chapter was to develop a caching technique for LGP which
significantly decreases program execution time. This goal was success-
fully achieved by the development of the execution trace caching algo-
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rithm. Execution trace caching exploits the inter-generational relation-
ships between between individuals to associate specific cache material
with specific programs. Programs use their parents’ execution trace from
the previous generation to expedite their own execution.

The theoretical results suggest that an optimal number of cache points
exists, and that this optimal value is dependent on the parameter con-
figuration. Specifically using

√
i/2r cache points is optimal, and caching

is cost effective whenever the inequality i > 18r is satisfied. These two
equations provide precise guidelines for when and how the execution trace
caching algorithm should be deployed.

The empirical experimental results confirm the effectiveness of execu-
tion trace caching. LGP systems demonstrated a significant decrease in
program execution time when the execution trace caching algorithm was
applied. In addition our empirical results precisely match our theoretical
results, strongly supporting the validity of the equations in section 7.3.

7.6.1 Next Step

This material forms a useful baseline for future work. The next chapter
will focus on using caching to decrease the execution time of various PLGP
algorithms. Using the results detailed in this chapter we will be able to
empirically compare optimized algorithm execution time. This will grant
us significant insight into the pros and cons of specific algorithms.



Chapter 8

Caching for Parallel Linear
Genetic Programming

8.1 Introduction

Algorithms based on the PLGP architecture have significant performance
advantages, however at present these advances come at the cost of an in-
crease in algorithm run time. PLGP, CC PLGP, and BS PLGP all have sig-
nificantly superior effectiveness over conventional LGP. Unfortunately, all
three algorithms are significantly less efficient than conventional LGP, as
it takes significantly longer to evaluate each individual.

As discussed in chapter 7, algorithms are most useful if they can pro-
duce high quality solutions quickly. If we can decrease algorithm execution
time we can greatly increase algorithm usefulness by increasing the num-
ber of solvable problems. The usefulness of PLGP, CC PLGP, and BS PLGP
is currently limited because all three algorithms execute slowly. Hence this
chapter focuses on increasing the usefulness of PLGP, CC PLGP, and BS
PLGP by decreasing the execution time of all three algorithms.

Decreasing algorithm execution time also has the effect of indirectly
improving algorithm performance. For difficult problems LGP systems
rarely converge to a perfect solution within the specified time constraints.

153
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Under such circumstances the quality of the final solution produced us-
ing a LGP algorithm depends on how long it takes to complete each gen-
eration. As execution time decreases, the number of iterations increases,
allowing more solutions to be explored, and a stochastically better final so-
lution. In other words if we can decrease the execution time of the PLGP,
CC PLGP, and BS PLGP algorithms, then we can increase algorithm per-
formance for time sensitive problems.

Techniques which decrease the execution time of PLGP, CC PLGP, and
BS PLGP complement the performance advantages these algorithms al-
ready possess. If performance is limited by time constraints which restrict
the number of generations, then reducing algorithm execution time will
enhance performance. Furthermore, the greater the degree of execution
time reductions, the better the algorithm performance. As in chapter 7,
we will focus on improving algorithm run time through caching. We have
already shown that caching is effective in decreasing the execution time of
LGP. Now we wish to extend the ideas developed in chapter 7 to the PLGP
architecture.

The PLGP architecture is particularly well suited to caching due to the
parallel form of its programs. Caching is of limited effectiveness for LGP
programs due to interwoven instruction dependencies. These dependen-
cies make it difficult to localize the changes which occur during evolution,
compromising effective caching. In contrast PLGP programs consist of in-
dependently executed factors with no dependencies between factors. Evo-
lutionary changes are localized to a single factor, giving the PLGP architec-
ture the potential for enormous execution time savings through caching. If
we can realize this potential then we can further improve the performance
of PLGP, CC PLGP, and BS PLGP above and beyond what is possible using
conventional LGP algorithms.
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8.1.1 Objectives

In this chapter, we aim to develop two caching techniques which can sig-
nificantly reduce algorithm execution time. One caching technique will be
for PLGP, the other will be for both CC PLGP and BS PLGP. These caching
techniques should exploit PLGP’s parallel architecture and lack of depen-
dencies. The primary goal is to significantly improve the system efficiency
by reducing the CPU time required for each fitness evaluation. Specifically
this chapter has the following research objectives:

• Develop a new caching technique for PLGP which decreases the time
it takes to evaluate PLGP programs.

• Develop a new caching technique for both CC PLGP and BS PLGP
which significantly decreases the time it takes to evaluate both CC
PLGP programs and BS PLGP programs.

• Derive equations which describe the cost-benefit trade off associated
with caching.

• Use these equations to optimize the caching parameters, and hence
determine in which situations caching is cost effective.

• Empirically confirm the theoretical results presented in this chapter.

8.2 Caching for PLGP

In this section we introduce a new caching algorithm for PLGP. As we will
see PLGP is naturally suited to caching due to its parallel architecture.
We focus on caching between related individuals in different generations
as described in chapter 2. By caching the execution of each program it
is possible to speed up the execution of related programs in subsequent
generations.
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8.2.1 Basic Caching

In this subsection we develop a basic approach to caching PLGP programs
which avoids a large number of instruction executions, but also incurs
significant overhead.

In PLGP, each program consists of n sequences of instructions or fac-
tors. PLGP program execution proceeds by executing all program factors
in parallel to produce a set of result vectors, and then summing these re-
sult vectors (see figure 4.4, page 55). When program evolution occurs, pre-
cisely one of these factors is modified (genetic operators will apply to in-
structions within a single factor). Hence only the instructions in the mod-
ified factor will be affected, and only a single result vector will change.
In other words all program factors which were not modified during evolution
will produce identical output to the previous generation. Suppose we cache the
factor result vectors from generation to generation. We can use the cached
factor result vectors to compute the new program result vector. In this way
we can avoid executing the majority of the program factors, and hence the
majority of program instructions.

In figure 8.1 an example of normal PLGP program execution is com-
pared to an example of cached PLGP program execution. In this example
the second factor has undergone modification. Hence the result vectors
for factors one and three can be retrieved from the cache, while the result
vector for factor two must be recalculated. Notice that the cache holds one
result vector for each factor executed on each training example.

Basic caching avoids a large number of instruction executions. All fac-
tor result vectors are cached, and only the single modified vector needs to
be executed. Hence basic caching avoids the majority of instruction exe-
cutions. Furthermore the savings associated with basic caching will scale
beneficially with the number of factors.

Unfortunately basic caching has a large memory footprint and signifi-
cant computational overhead. It requires us to store one result vector for
each factor, for each program executed, on each training example. The
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Normal Execution

Program
r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

=

 3.2

0

0.94

+

00
0

+

−1.5−1.5
0

 =

 1.7

−1.5
0.94



Cached Execution

Program
FROM CACHE

r[2] = r[1] * r[1];
r[1] = f1 - f1;

FROM CACHE

=

 3.2

0

0.94

+

00
0

+

−1.5−1.5
0

 =

 1.7

−1.5
0.94



Cache
3.2 0 0.94
...

...
...

- - -
-1.5 -1.5 0
...

...
...

Figure 8.1: Contrasting normal PLGP program execution to basic cached
program execution

high cost associated with managing such a large quantity of memory sig-
nificantly offsets the intended savings. Furthermore, the memory required
will increase as the number of factors increases, causing greater overheads
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with larger programs.

Therefore, although basic caching offers significant savings, the associ-
ated overhead prevents this being an effective caching technique.

8.2.2 Difference Caching

In this subsection we refine our PLGP caching technique to remove the
large overhead associated with caching.

We wish to cache program results in such a way that the cost of caching
is independent of the number of program factors. In this way greater par-
allelization will result in greater execution time savings without greater
overheads.

Caching with constant overhead is the best way to achieve large exe-
cution time savings. If execution time savings increase with program size,
while overhead remains constant, then net savings will increase drasti-
cally with size. While small programs will enjoy only minor benefits from
caching, these programs hardly need it, as small programs execute rapidly.
On the other hand large programs which are slow to execute will experi-
ence massive benefits from caching, a highly desirable outcome.

It is possible to achieve constant overhead caching if we change the
information we keep in the cache. We note that at each generation we
calculate the same sum with one minor difference — the factor that under-
went modification. The idea is that instead of storing one result vector for
each factor we will store only the final output — the sum of these factors.
To calculate the new program output we begin by retrieving the program
result vector for the previous generation from the cache. From this sum
we subtract the result vector for the previous version of the modified fac-
tor. Finally we add a new result vector for the current (post modification)
version of the modified factor. The subtraction and addition steps serve to
remove the outdated and incorrect values from the sum and replace them
with corrected values. The following equations express this idea more
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concisely. Let V m
i be the output of the i’th factor at the m’th generation and

let Sm be the program output at the m’th generation. Then:

Sm =
n∑

i=1

V m
i

Sm =
n−1∑
i=1

V m
i + V m

n

Sm+1 =
n−1∑
i=1

V m+1
i + V m+1

n (8.1)

Without loss of generality let Vn be the factor that is modified in generation
m + 1. Then we know that factors V1, ..., Vn−1 will evaluate to the same
vector in generation m+ 1 as they did in generation m. Hence:

Sm+1 =
n−1∑
i=1

V m
i + V m+1

n

Sm+1 = Sm − V m
n + V m+1

n (8.2)

We have arrived at a recursive expression for the value of a PLGP program
after the n + 1’th generation in terms of its value at the n’th generation.
This equation is the key to execution time savings for PLGP programs. It
demonstrates that the value of a PLGP program can be calculated using
only its output from the previous generation, plus the current and pre-
vious output of the modified program factor. Notice that this equation is
independent of the number of program factors, hence very large programs
can be executed very rapidly if they consist of a large number of factors.

The one component of this caching scheme we have not yet discussed
is how to obtain V m

n , the previous value of the modified program factor. One
option is to cache this value for all training examples. Another option is
to cache the previous factor itself (the code), and recalculate all the train-
ing examples on the fly. Caching the value of all training examples will
double the size of the cache, but limit code execution to a single program
factor. Caching a copy of the previous factor causes virtually no increase
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Normal Execution

Program
r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[3] = 1 + 1.5;
r[2] = 0 + 0.5;

=

 3.2

0

0.94

+

00
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3.44
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Cached Execution

Program

r[3] = 1 + 1.5;
r[2] = 0 + 0.5;

=

 1.7

−1.5
0.94

−
−1.5−1.5

0

+

 0

0.5

2.5

 =

 3.2

0.5

3.44



Cache
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

1.7 -1.5 0.94
...

...
...

Figure 8.2: Contrasting normal PLGP program execution with advanced
cached PLGP program execution. Assume the program in figure 8.1 is the
parent of the program in this figure.
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in the size of the cache, however it means we have to execute two fac-
tors for each training example. These two approaches are well suited to
different situations. If program factors are small and contain few instruc-
tions then doubling the number of instruction executions incurs a much
smaller cost than doubling the size of the cache. On the other hand if pro-
gram factors are large and contain many instructions, then doubling the
size of the cache may be significantly cheaper than doubling the number
of instruction executions.

In this thesis we choose to minimize the cache size by storing a copy of
the modified program factor. In other words, when we select a program
factor for modification, we cache a copy of that factor prior to modifica-
tion. When executing the modified program we use the cached factor, the
new factor, and our cached program result vectors to calculate the new
program result vector. This caching process is detailed in figure 8.2. In
this example we have a PLGP program consisting of three factors, each
containing two instructions. This program has three features and three
registers. The cache contains a copy of the program factor prior to mod-
ification, together with the output vector for each training instance in the
previous generation. To execute this program we take the output vector
from the cache, recalculate and subtract the output of the cached program
factor, and finally calculate and add the output of the new program factor.

We refer to this form of caching as Difference Caching. The program out-
put is calculated using the prior output and the difference between pro-
gram execution in two subsequent generations. Difference caching pos-
sesses the same benefits as basic caching, but achieves constant overhead
costs.

8.2.3 Theoretical Analysis

Now that we have established an (efficient) caching algorithm for PLGP it
is vital that we perform a rigorous theoretical analysis. This analysis will
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provide a number of important results. Here we will consider:

• The savings associated with caching.

• The cost associated with caching.

• A general rule for choosing settings for the caching parameters which
give optimum performance for any given situation.

• Deployment guidelines for the situations in which caching is cost effec-
tive.

• The overall benefit associated with caching.

In order to perform our theoretical analysis we require the following
variables. Note that we assume all factors have an equal number of in-
structions:

• p: The number of PLGP programs in the population (population
size).

• f : The number of factors per PLGP program.

• i: The number of instructions per factor.

• r: The number of registers.

• t: The number of training examples for a task.

Savings

In this subsection we formalize the benefits of caching. We derive an equa-
tion to calculate the number of instruction executions saved by caching.

Standard execution of a PLGP program requires all instructions in all
factors to be executed and the resulting vectors to be summed. In other
words f × i instructions are executed and f × r registers are summed.
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Cached execution of a PLGP program requires a single factor to be exe-
cuted and two vectors to be summed. Each vector consists of r registers.
In other words i instructions are executed and 2r registers are summed.
Hence we calculate savings, the savings associated with caching:

savings = standard− cached

= (f × i+ f × r)− (i+ 2r)

= fi+ fr − i− 2r

= (f − 1)i+ (f − 2)r (8.3)

This equation makes sense, as it expresses the notion that we avoid
(f-1) factor evaluations, and we avoid (f-2) vector sums.

Cost

In this subsection we formalize the costs of caching. We derive an equation
which we can use to calculate the additional cost resulting from caching.

Caching requires a single additional factor to be executed, and a sin-
gle factor together with program output to be written to cache. Program
output consists of r registers. Note that the cost of caching the factor is
constant and negligible so can be ignored. The cost of executing an addi-
tional factor is i instructions, and the cost of caching program output is r.
Hence we calculate cost, the cost associated with caching

cost = i+ r (8.4)

Caching Parameters

In this section we determine the caching parameters which optimize caching
performance. While caching for PLGP has no explicit caching parameters,
the values of f , i, and r will affect the efficiency of caching. In particular
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f , the number of factors, will have a big effect on efficiency. We begin by
combining our savings and cost equations to find the net savings.

net savings = savings− cost

= (f − 1)i+ (f − 2)r − (r + i)

= (f − 1)i+ (f − 2)r − r − i

= (f − 2)i+ (f − 3)r (8.5)

According to equation 8.5 there are no optimal values for f , i, and r. In-
stead, increasing the number of factors will always improve the efficiency
of caching, regardless of the number of registers or instructions.

Deployment Guidelines

In this subsection we formalize deployment guidelines for our PLGP caching
algorithm. We derive an equation which we use to calculate the point at
which caching becomes cost effective.

Caching is cost effective when the net savings is positive. We now use
the net savings equation to determine the point at which caching becomes
cost effective.

net savings > 0

(f − 2)i+ (f − 3)r > 0

fi− 2i+ fr − 3r > 0

f(i+ r) > 2i+ 3r

f >
2i+ 3r

i+ r
(8.6)

This result tells us that caching is cost effective when the number of
factors is larger than 2i+3r

i+r
. Table 8.1 gives the number of factors required
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for various values of i and r. In addition, equation 8.6 asymptotically ap-
proaches 3, which tells us that caching is always cost effective if the num-
ber of factors is larger than 3. This makes sense according to the structure
of our caching algorithm, as two factor executions and several vector sums
are required to execute any program.

i
5 10 15 20

r

5 2.5 2.33 2.25 2.2
10 2.66 2.5 2.4 2.33
15 2.75 2.6 2.5 2.43
20 2.8 2.66 2.57 2.5

Table 8.1: The number of factors required to make caching cost effective
for various numbers of registers and instructions.

The overhead cost of caching is independent of the number of factors,
however execution savings is proportional to the number of factors. In-
creasing the number of factors while keeping factor size constant has no
effect on the cost of caching, since precisely two factors will be cached.
In contrast, increasing the number of factors while keeping the number
of instructions constant will greatly decrease program execution time. If
the number of factors increases, then the size of each factor will decrease,
causing a proportional decrease in the number of instruction executions
required. Hence programs with more factors give proportionally greater
execution time savings, and programs with a large number of factors can
be executed extremely rapidly.

Overall Benefit

So far we have obtained several important theoretical results. Caching
is always cost effective when 3 or more factors are used. Increasing the
number of factors always increases the efficiency of caching. In this sub-
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section we study the degree of execution time savings. We derive an equa-
tion which we use to calculate the degree of execution time savings for a
given parameter configuration.

We want to know what fraction of the execution time we are saving.
Our current calculation is in terms of the number of instruction executions
saved. Hence we calculate the fractional savings by dividing equation 8.5
by the total cost.

fractional savings =
net savings
total cost

=
(f − 2)i+ (f − 3)r

fi+ fr

=
fi+ fr − 2i− 3r

fi+ fr

=
fi+ fr

fi+ fr
− 2i+ 3r

fi+ fr

= 1− 2i+ 3r

fi+ fr
(8.7)

Equation 8.7 shows that caching for PLGP can result in enormous ex-
ecution time savings. Examples for the percentage savings in execution
time for various parameter combinations are shown in table 8.2.

i
5 10 15 20

f

5 46.6% 50.0% 52.0% 53.3%
10 73.3% 75.0% 76.0% 76.6%
15 82.2% 83.3% 84.0% 84.4%
20 86.6% 87.5% 88.0% 88.3%

Table 8.2: The fractional savings for r=10, with various instruction/factor
combinations.

These results demonstrate the power of our PLGP caching technique.
We see that using caching it is possible to decrease the execution time of a
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reasonable sized PLGP program by almost an order of magnitude. This is
vastly superior to what was achieved when applying caching to conven-
tional LGP.

8.3 Caching for CC PLGP and BS PLGP

The CC architecture used in CC PLGP and BS PLGP provides unparalleled
opportunities for execution time reductions through caching. Furthermore
these two algorithms both use the CC architecture consisting of blueprints
and factors. Both algorithms use the same programs executed in the same
ways. Hence we developed a caching technique which can be applied to
both of these algorithms in order to improve algorithm efficiency.

Blueprints are simple combinations of PLGP programs. Due to the
CC architecture each program factor will be executed independently. This
means any given factor will have the same result in every single blueprint
it participates in. Operating under normal parameter settings each factor
would be expected to participate in 10 or more blueprints. At present each
blueprint is executed by executing all appropriate program factors and
summing the resulting vectors, causing each factor to undergo 9 or more
wasted executions.

A more intelligent approach would be to execute all program factors
precisely once and cache the resulting vectors. To execute a blueprint we
retrieve the cached output vector for each factor and sum these values
to determine the program output. This caching algorithm is described in
detail in algorithm 3.

The critical advantage of cached PLGP is that the cost of fitness evalua-
tion depends only on the total number of program factors. In other words
the cost of fitness evaluation is independent of the number of blueprints.
Calculating blueprint output requires several vectors to be summed, how-
ever it requires no instruction executions. The cost of vector addition is
trivial compared to the cost of instruction execution, therefore blueprint
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Algorithm 3 PROGRAM EXECUTION WITH CACHING

begin
for t ε Training Set do

for prog ε Programs do
execute prog on t;
cache prog.result;

for b ε Blueprints do
Vector res;
for factor ε b.factors do

res = res + factor.result;
b.result = res;

evaluation has almost no impact on the overall time required for fitness
evaluation.

The efficiency of CC PLGP and BS PLGP is proportional to the num-
ber of factors per blueprint. Both algorithms are based on the concept of
evolving subpopulations of factors which are useful in constructing high
quality solutions. We determine the fitness of a factor by observing its per-
formance in a number of blueprints. By allowing each factor to participate
in a larger number of blueprints we increase the accuracy of the fitness
values we assign to each factor. This in turn leads to subpopulations con-
sisting of superior individuals, which in turn leads to solutions with better
fitness.

Caching allows each factor to participate in a huge number of blueprints
for an extremely low cost. This is not possible without caching, as each ad-
ditional blueprint causes a large increase in program execution time. This
is a huge advantage and can greatly improve algorithm performance.

8.3.1 Theoretical Analysis

Now that we have established an (efficient) caching algorithm for CC PLGP
and BS PLGP it is vital that we perform a rigorous theoretical analysis.
This analysis will provide a number of important results.

• The savings associated with caching.
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• The cost associated with caching.

• A general rule for choosing settings for the caching parameters which
give optimum performance for any given situation.

• Deployment guidelines for the situations in which caching is cost effec-
tive.

• The overall benefit associated with caching.

In order to perform our theoretical analysis we require the following
variables. Note that we assume all factors have an equal number of in-
structions:

• b: The total number of blueprints.

• p: The total number of factors in all subpopulations.

• f : The number of factors per blueprint.

• i: The number of instructions per factor.

• r: The number of registers.

Savings

In this subsubsection we formalize the benefits of caching. We derive an
equation which we can use to calculate the number of instruction execu-
tions saved by caching.

Evaluation without caching requires all instructions, in all factors, in all
blueprints, to be executed; and the resulting vectors to be summed. In
other words i× f × b instructions must be executed, and r × f × b vectors
must be summed. Evaluation with caching requires all instructions, in all
factors, in all subpopulations to be executed; and all registers in all factors
in all blueprints to be summed. In other words i × p instructions must
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be executed, and r × f × b vectors must be summed. Hence we calculate
savings, the savings associated with caching.

savings = standard− cached

= (ifb+ rfb)− (ip+ rfb)

= ifb− ip

= i(fb− p) (8.8)

This equation appeals to our intuitive understanding of the CC archi-
tecture. Evaluation without caching executes all instructions in all factors
in all blueprints, while evaluation with caching executes all instructions in
all factors in all subpopulations.

Cost

In this subsection we formalize the costs of caching. Caching does not
have a significant computational cost associated with it. The only major
cost associated with caching is the memory required to keep all of the re-
sults vectors for all factors in memory at once. Therefore the focus of this
subsection is to ensure that the memory required is reasonable, for all rea-
sonable parameter values. Selecting some large values, let r = 20 and
p = 5000.

memory = r × p× 8(bytes)

= 20× 5000× 8(bytes)

= 800, 000bytes (8.9)

This is easily within the reasonable limits of modern computers.
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Caching Parameters

There are no parameters to optimize for the CC PLGP/BS PLGP caching
algorithm. Furthermore there is no computation cost associated with the
caching algorithm. Therefore the net savings equation is equivalent to the
savings equation.

Deployment Guidelines

In this subsection we formalize deployment guidelines for our CC PLGP/BS
PLGP caching algorithm. We derive an equation which we use to calculate
the point at which caching becomes cost effective.

Caching is cost effective when the net savings is positive. We now use
the net savings equation to determine the point at which caching becomes
cost effective.

net savings > 0

i(fb− p) > 0

fb− p > 0

fb > p (8.10)

Equation 8.10 tells us that caching is cost effective when the total num-
ber of factors in all blueprints is larger than the total number of factors in
all subpopulations. Table 8.3 gives the number of factors required to make
caching cost effective for various values of p and b.

The results in table 8.3 show that in most cases a very small number of
factors per blueprint is required to make caching cost effective. The results
chapter 5 show that the best performance is achieved using programs with
10 or more factors. Hence caching is virtually always cost effective.
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p
250 500 750 1000

b

250 1 2 3 4
500 0.5 1 1.5 2
750 0.33 0.66 1 1.33
1000 0.25 0.5 0.75 1

Table 8.3: The number of factors required to make caching cost effective
for various numbers of registers and instructions.

Overall Benefit

So far we have obtained several important theoretical results. Caching is
always cost effective for all reasonable parameter combinations. Increas-
ing the number of factors increases the efficiency of caching. In this sub-
subsection we study the degree of execution time savings. We derive an
equation which we can use to calculate the degree of execution time sav-
ings for a given parameter configuration.

We want to know what fraction of the execution time we are saving.
Our current calculation is in terms of the number of instruction executions
saved. Hence we calculate the fractional savings by dividing equation 8.10
by the total cost.

fractional savings =
net savings
total cost

=
(ifb+ rfb)− (ip+ rfb)

ifb+ rfb

=
ifb+ rfb

ifb+ rfb
− ip+ rfb

ifb+ rfb

= 1− ip+ rfb

ifb+ rfb
(8.11)

Equation 8.11 shows that caching for CC PLGP can result in enormous
execution time savings. Examples for the percentage savings in execution
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time for various parameter combinations are shown in table 8.4.

p
250 500 750 1000

b

250 60% 53.3% 46.6% 40%
500 63.3% 60% 56.6% 53.3%
750 64.4% 62.2% 60% 57.7%
1000 65% 63.3% 61.6% 60%

Table 8.4: The percentage savings in execution time for i=20, r=10, f=10,
for various combinations of p and b.

These results demonstrate the power of our CC PLGP/BS PLGP caching
technique. We see that using caching it is possible to decrease the execu-
tion time of reasonably sized systems by up to 65%. This is vastly superior
to what was achieved when applying caching to conventional LGP. Fur-
thermore this result is extremely pessimistic as it is likely we have overes-
timated the cost of vector addition. Therefore we can expect our empirical
results to outperform this theoretical estimate.

8.4 Experimental Setup

In this section we describe the experiments and parameter settings used
in this chapter.

8.4.1 Data Set

In these experiments the data set chosen is unimportant. We are not at-
tempting to compare PLGP and LPG program effectiveness, only program
execution time. Hence the data set is simply a convenient way of instan-
tiating features to concrete values so that program execution can proceed.



174 CHAPTER 8. CACHING FOR PLGP

For this purpose, we use the Hand Written Digits data set described in
chapter 3.

8.4.2 Parameter Configurations

The experimental parameter settings in table 8.5 are generic parameters,
i.e. all experiments in this section will use these parameter settings. Since
we are interested only in program execution time these parameters are
not of particular importance and will not be considered in detail, however
they must be instantiated to reasonable values for GP to proceed. These
values in table 8.5 meet this requirement.

Table 8.5: Constant Parameters

Population 1000
Max Gens 400
Mutation 30%
Elitism 10%
Crossover 60%
Tournament Size 5
Runs 30
Registers 10

8.4.3 Experiments

PLGP

We will compare the execution time of LGP with that of PLGP, then the
execution time of PLGP with cached PLGP, and finally the execution time
of LGP with cached PLGP. We do this by determining experimentally the
average program execution time for programs of various lengths. We will
use equivalent LGP and PLGP programs by using the same number of
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instructions for programs of both types. The number of factors in each
PLGP program will be fixed throughout these experiments.

Having established that cached PLGP offers execution time savings, we
will investigate how the number of factors in a PLGP program influences
program execution time. Specifically, according to our theoretical analy-
sis, we expect programs with more factors to offer greater execution time
savings. Investigation proceeds by fixing the total number of instructions
but varying the number of factors.

All experiments in this section will involve the parameter combina-
tions shown in table 8.6. We will repeat these experiments twice, once
with caching active and once without. Note that all results are the col-
lated averages obtained from 30 repetitions using a specific combination
of parameters.

Table 8.6: PLGP Experimental Parameter Combinations

LGP PLGP
# factors - 2 5 10 20

# Ins Length Factor Length
20 20 10 4 2 1
40 40 20 8 4 2
60 60 30 12 6 3
80 80 40 16 8 4

100 100 50 20 10 5
200 200 100 40 20 10
300 300 150 60 30 15

CC PLGP/BS PLGP

We will compare the execution time of PLGP with that of cached PLGP.
We do this by determining experimentally the average program execution
time for programs of various lengths.
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Having established that cached PLGP offers execution time savings,
we will investigate how the number of factors in a CC PLGP/BS PLGP
program influences program execution. Specifically, according to our the-
oretical analysis, we expect programs with more factors to offer greater
execution time savings. Investigation proceeds by fixing the number of
instructions per factor, by varying the number of factors.

All experiments in this section will involve the parameter combina-
tions shown in table 8.7. We will repeat these experiments twice, once
with caching active and once without. Note that all results are the col-
lated averages obtained from 30 repetitions using a specific combination
of parameters.

Table 8.7: CC PLGP/BS PLGP Experimental Parameter Combinations

Instructions Factors Ins Factors Ins Factors Ins
per Factor

5 1 5 5 25 10 50
10 1 10 5 50 10 100
15 1 15 5 75 10 150
20 1 20 5 100 10 200
25 1 25 5 125 10 250
30 1 30 5 150 10 300

8.5 Results

This section presents the results of the experiments described in section
8.4 together with discussions.
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8.5.1 PLGP (No Caching)

In this subsection we compare the efficiency of LGP and PLGP without
caching. It is important to note that no optimizations are applied in this
set of experiments. We are comparing the base running time of the two
algorithms prior to any modifications. Experimental results are shown in
Figure 8.3.
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Figure 8.3: Execution time LGP vs. PLGP for various program lengths

Discussion

There are a number of important results present in figure 8.3.

• LGP Programs execute more rapidly than PLGP programs regardless
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of the number of factors.

• PLGP program execution time is proportional to the number of fac-
tors: programs with more factors execute more slowly.

PLGP programs execute more slowly because there is an additional
step to the execution process. To execute a LGP program we execute all
instructions. To execute a PLGP program we execute all instructions and
calculate a vector sum consisting of one vector per factor. Hence for any LGP
program, a PLGP program with an equivalent number of instructions will
always execute more slowly. It is important to note that the vector addi-
tion cost depends solely on the number of factors, and is independent of the
number of instructions. We are required to perform the same vector addi-
tion irrespective of the number of instructions in the program. This is re-
flected by the fact that all of the trend lines in figure 8.3 are approximately
parallel. Hence when the number of instructions is large, the difference in
execution time between LGP and PLGP programs is small relative to the
overall cost of program execution.

PLGP programs with more factors execute more slowly because the
constant cost of the vector sum is larger. When executing a PLGP program
we are required to sum all of the result vectors. Clearly the cost of this sum
is proportional to the number of vectors we are summing. PLGP programs
produce one result vector for each program factor. Hence programs with a
larger number of factors have a larger number of result vectors, and hence
a larger vector addition cost associated with program execution.

8.5.2 PLGP (Caching)

In this section we compare the efficiency of LGP and PLGP when using
Difference Caching. Experimental results are shown in figure 8.4.
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Figure 8.4: Execution time LGP vs. PLGP with caching for various pro-
gram lengths

Discussion

There are a number of important results present in figure 8.4.

• Cached PLGP programs can be executed far more rapidly than equiv-
alent size LGP programs.

• The execution time of cached PLGP programs depends heavily on
the number of program factors. Programs with more factors exe-
cute more rapidly, while programs with fewer factors execute more
slowly.
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In table 8.8 we use the gradients of the trend lines in figure 8.4 to cal-
culate precise values for the fractional difference in execution time. The
values in this table show how many times more rapidly cached PLGP pro-
grams can be executed than equivalently sized LGP programs. Empirical
results are compared to theoretically calculated values. For instance, ta-
ble 8.8 shows that theoretically cached PLGP programs with 20 factors
should execute 10 times as rapidly as equivalently sized LGP programs,
however experimentally, such programs were found to execute 12.62 times
as rapidly.

Table 8.8: Speedup Factor

LGP Cached PLGP
Factors 1 2 5 10 20
Theoretical Improvement 1 1 2.5 5 10
Empirical Improvement 1 0.97 2.68 6.31 12.62

Table 8.8 shows that in all experiments we achieve execution time sav-
ings at least as good as the values predicted by our theoretical estimates. In
some cases our empirical improvement actually exceeds the theoretical es-
timate. We believe this is due to intron labeling in PLGP programs. When
executing PLGP programs we begin by labeling the structurally redun-
dant instructions, as these should not be executed. In PLGP this labeling
must be performed once for each program factor. However with differ-
ence caching only one of the two factors to be executed requires labeling,
as the other was already labeled from the previous generation. This results
in empirical efficiency which slightly exceeds our theoretical estimates.

8.5.3 CC PLGP/BS PLGP (No Caching)

In this subsection we empirically investigate the efficiency of CC PLGP/BS
PLGP without caching. It is important to note that no optimizations are
applied in this set of experiments. Experimental results are presented in
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figure 8.5. We plot program execution time against the number of instruc-
tions per program factor for various program lengths. We use programs
with 1, 5, and 10 factors. Note that programs with more factors will contain
more instructions, since factor size is fixed. Therefore we expect programs
with more factors to execute more slowly.
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Figure 8.5: Execution time for CC PLGP without caching for various pro-
grams lengths

Discussion

There are a number of important results present in figure 8.5.

• Increasing the number of factors in each blueprint results in a pro-
portional increase in the execution time.



182 CHAPTER 8. CACHING FOR PLGP

Increasing the number of factors causes an increase in the execution
time because more instructions must be executed. Each factor consists of
a constant number of instructions, so blueprints with more factors have
more instructions. Evaluation without caching requires every instruction
in every blueprint to be executed. Therefore increasing the number of in-
structions in each blueprint results in a proportional increase in execution
time.

8.5.4 CC PLGP/BS PLGP (Caching)

In this subsection we empirically investigate the efficiency of CC PLGP/BS
PLGP with caching. Experimental results are presented in figure 8.6. We
plot program execution time against the number of instructions per pro-
gram factor for various program lengths. We use programs with 1, 5, and
10 factors. Note that programs with more factors will contain more in-
structions, since factor size is fixed. Therefore we expect programs with
more factors to execute more slowly.

Discussion

There are a number of important results present in figure 8.6.

• Increasing the number of factors results in a negligible increase in the
execution time.

• When each blueprint consists of a single factor, cached CC PLGP/BS
PLGP executes more slowly than conventional CC PLGP.

• When each blueprint consists of multiple blueprints, cached CC PLGP/BS
PLGP executes far more rapidly than conventional CC PLGP/BS
PLGP.

• CC PLGP/BS PLGP systems with more factors per blueprint receive
more benefit from caching.
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Figure 8.6: Execution time for CC PLGP with caching for various programs
lengths

Increasing the number of factors causes a negligible increase in ex-
ecution time because the number of instructions executed remains the
same. Instructions are only present in factors, and all factor outputs are
pre-calculated prior to blueprint evaluation. Hence the only cost associ-
ated with increasing the number of blueprints is an increase in the num-
ber of vectors which must be summed. Increasing the number of vectors
summed results in a negligible increase in the overall cost. Hence increas-
ing the number of factors causes a negligible increase in execution time.

When using a single factor caching is not cost effective. Evaluation
without caching executes every factor in every blueprint. In contrast eval-
uation with caching executes every factor in every subpopulation. When a
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single factor is used many factors will be present in some subpopulation,
but will not participate in any blueprint. Hence when using a single factor
evaluation without caching is more efficient than evaluation with caching.
Note that this result is largely unimportant as single factor CC PLGP/BS
PLGP systems should never be used.

When using multiple factors caching is extremely cost effective. Eval-
uation with caching executes every factor in every subpopulation. This
means that each factor is only executed once. This is in contrast to evalua-
tion without caching where each factor is executed once for each blueprint
it participates in. When each blueprint consists of multiple factors, each
factor will (on average) participate in multiple blueprints. Hence caching
becomes cost effective.

CC PLGP/BS PLGP systems with more factors per blueprint receive
more benefit from caching. Evaluation without caching executes every
factor in every blueprint. If the number of factors per blueprint increases,
then the cost of execution also increases. In contrast the cost of factors
executed is independent of the number of factors per blueprint. Hence the
savings associated with caching is proportional to the number of factors
in each blueprint.

8.6 Chapter Summary

The goal of this chapter was to develop caching techniques for PLGP,
CC PLGP, and BS PLGP which significantly decrease program execution
time. This goal was successfully achieved by the development of two new
caching algorithms.

We developed a new caching algorithm for PLGP which exploits the
parallel architecture of PLGP programs. PLGP programs are composed
of n independent factors. PLGP program execution consists of executing
these factors and summing the resulting vectors. By caching both the vec-
tor sum and program factor which underwent execution we can cheaply
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execute program offspring in the subsequent generation. By doing this
for all programs in generation n the execution time of generation n + 1 is
hugely decreased.

We presented theoretical results which show that the execution time
of cached PLGP programs depends only on the size of program factors,
and is independent of overall program size. Hence PLGP programs with
a large number of factors can be executed extremely rapidly.

The empirical experimental results confirm the effectiveness of our PLGP
caching algorithm. PLGP systems demonstrated a significant decrease in
program execution time when caching was applied. In addition our em-
pirical results matched, or slightly exceeded theoretical predictions. This
strongly supports the validity of the equations in section 8.2.3.

We developed a new caching algorithm for both CC PLGP and BS
PLGP which exploits the dual population representation of the SANE style
architecture. Both CC PLGP and BS PLGP use a representation which dis-
tinguishes blueprints from factors. Conventional evaluation executes each
factor when required to execute a blueprint. Caching executes all factors
prior to the execution of any blueprints, and caches the results. These
cached results are used to rapidly execute all blueprints.

We presented theoretical results which show that the evaluation time
of CC PLGP/BS PLGP is independent of the number of blueprints. The
major evaluation cost associated with CC PLGP/BS PLGP is the time re-
quired for factor execution. The evaluation cost without caching is pro-
portional to the number of factors in each blueprint. In contrast the evalu-
ation cost with caching is constant, regardless of the number of blueprints.
Hence CC PLGP/BS PLGP systems with many blueprints stand to benefit
greatly from caching.

The empirical experimental results confirm the effectiveness of our CC
PLGP/BS PLGP caching algorithm. CC PLGP/BS PLGP systems demon-
strated a significant decrease in program execution time when caching was
applied. In addition our empirical results matched, or slightly exceeded
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theoretical predictions. This strongly supports the validity of the equa-
tions in section 8.3.1.



Chapter 9

Conclusions

In this chapter we present the conclusions of the work covered in this the-
sis, with respect to the research questions posed in chapter 1. We then
outline some possible future work directions.

9.1 Conclusions

The overall goal of this thesis was to improve the effectiveness and in-
crease the efficiency of LGP. To achieve this we have focused on develop-
ing, extending, and optimizing a new LGP architecture which minimises
the number of instruction dependencies. The overall goal has been suc-
cessfully achieved through our research in this area. This research has led
to the PLGP architecture; the CC PLGP, Hybrid PLGP and BS PLGP algo-
rithms; and caching techniques for LPG, PLGP, CC PLGP and BS PLGP.
These methods constitute a new approach to LGP with improved perfor-
mance and increased efficiency. In the remainder of this section we sum-
marise the conclusions stemming from this work.
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9.1.1 PLGP

We developed a new LGP architecture with fewer instruction dependencies called
PLGP. We showed PLGP significantly outperforms conventional LGP on a range
of classification problems.

PLGP is a natural extension of the LGP architecture, where each pro-
gram consists of n instruction sequences called factors. Each factor is in-
dependently executed to produce n results vectors, which are summed to
produce the final program output. PLGP programs have fewer instruc-
tion dependencies than equally sized LGP programs, as there are no inter-
factor dependencies.

We compared the effectiveness of PLGP to that of LGP on three classi-
fication tasks for a range of program sizes.

We found that PLGP and LGP have comparable performance when
small programs are used. This is to be expected as small programs are not
well suited to factorization. We also found that PLGP significantly outper-
formed LGP on all three problems when using large programs. Large LGP
programs have many dependencies and are easily disrupted during evolu-
tion, whereas large PLGP programs are more robust due to their modular
structure.

We also found that using the PLGP architecture leads to speciation.
PLGP has implicit subpopulations because recombination can only occur
between factors with the same position, and factor position cannot change.
Individuals within each implicit subpopulation specialize to solve some
aspect of the problem resulting in a homogenous subpopulation. The ho-
mogenous subpopulations resulting from speciation contain highly com-
patible individuals, increasing the likelihood of crossover resulting in vi-
able offspring. Speciation is important, because it helps us to understand
why the PLGP architecture is so successful.
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9.1.2 CC PLGP

We developed a new LGP algorithm by applying the concept of Cooperative Co-
evolution to the PLGP architecture. We showed that CC PLGP is significantly
more effective than PLGP during the first stage of evolution, particularly for large
PLGP programs with many factors. We also showed that CC PLGP has signifi-
cant performance disadvantages during the later stages of evolution. Finally we
combined PLGP and CC PLGP into a hybrid algorithm possessing the strengths
of both algorithms.

CC PLGP is an algorithm which applies the ideas of cooperative coevo-
lution to the PLGP architecture. CC PLPG maintains n subpopulations of
factors, together with a single population of fixed size factor combinations
known as blueprints. Blueprints serve as a mechanism for remembering
and evolving good factor combinations. The strength of CC PLGP is its
ability to simultaneously optimize all program factors.

We compared the performance of CC PLGP with that of PLGP on three
classification tasks for a range of program sizes. We found that PLGP sig-
nificantly outperforms CC PLGP when small programs are used. This is
to be expected as small programs have few factors, so there is little ad-
vantage in optimizing all program factors in parallel. We also found that
CC PLGP significantly outperforms PLGP during the first stage of evolu-
tion when large programs are used. Large programs have many factors,
and optimizing these factors in series is time consuming, leading to slow
algorithm convergence. Using CC PLGP we can optimize all program fac-
tors in parallel allowing rapid convergence to a population of high quality
solutions. PLGP still significantly outperforms CC PLGP during the later
stages of evolution, as PLGP excels at fine tuning existing high quality
solutions.

We combined PLGP and CC PLGP into a single hybrid algorithm pos-
sessing the strengths of both approaches. CC PLGP has the advantage
of allowing rapid initial population convergence, while PLGP excels at
fine tuning existing high fitness solutions. Therefore Hybrid PLGP uses
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CC PLGP until population convergence occurs, after which a transition to
PLGP is effected. We compared the performance of Hybrid PLGP with
that of CC PLGP and PLGP on three classification tasks. We found that
Hybrid PLGP is significantly more effective than both CC PLPG and PLGP
in all cases.

9.1.3 BS PLGP

We developed an extension of the CC PLGP algorithm called BS PLGP which uses
PSO to search a structured search space for high fitness blueprints. We showed
that BS PLGP is significantly more effective than LGP, PLGP, and CC PLGP on
a range of classification problems.

BS PLGP is a logical extension of the CC PLGP algorithm which uses
the current factors to search for high fitness blueprints. The effective-
ness of the CC PLGP algorithm is limited by the blueprint quality. Bad
blueprints give rise to bad factor fitness estimates, which in turn lead to
the wrong factors being selected for reproduction. Bad blueprints often oc-
cur because the blueprint population used in CC PLGP provides a dated
guess at which blueprints are good. BS PLGP solves this problem by con-
structing a structured search space of all possible blueprints, and using
PSO to effectively and efficiently search this space for good blueprints.

We compared the performance of BS PLGP to that of CC PLGP and
PLGP on three classification tasks for a range of program sizes.

We found that BS PLGP significantly outperforms both CC PLGP and
PLGP. This performance improvement was caused by an increase in blueprint
quality. Higher quality blueprints lead to better factor fitness estimates
which in turn lead to better factor selection. In addition, high quality
blueprints are the final goal of the system, as they represent high qual-
ity solutions to the problem. CC PLGP struggles to find high quality so-
lutions, as maintaining a blueprint population provides only out of date
estimates. In contrast, BS PLGP actively searches for high quality solutions
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using the current population of factors.

9.1.4 Caching

We developed caching techniques for LGP, PLGP, CC PLGP, and BS PLGP based
on inter-generational caching. We established theoretical results which we used to
predict the optimal cache parameter configuration together with an estimate of the
execution time savings. Finally we obtained empirical results which confirmed
our theoretical predictions.

Algorithms which use the PLGP architecture are naturally suited to
caching. Conventional LGP programs consist of a single instruction se-
quence with many instruction dependencies which interfere with caching.
In contrast PLGP programs consist of n independently executed factors
perfectly suited to caching. We exploited the parallel structure of PLGP to
develop caching algorithms for PLGP, CC PLGP and BS PLGP.

We also developed a caching algorithm for LGP called execution trace
caching. Caching for LGP stores the state of the registers every n in-
structions. This cache is used to expedite the execution of modified pro-
gram offspring by allowing execution to begin part way through the off-
spring programs. We undertook a theoretical analysis of the execution
trace caching algorithm. This analysis showed that the optimal number
of cache points is proportional to the square root of the number of in-
structions. Furthermore we showed that caching is cost effective when
the number of instructions is at least 18 times larger than the number of
registers. We also showed that at best caching can decrease program ex-
ecution time by 50%. As a final step we obtained empirical results which
support our theoretical conclusions.

We developed a caching algorithm for PLGP. Caching for PLGP stores
the final program output together with a copy of the modified program
factor. This cache is used to expedite the execution of modified program
offspring by limiting execution to the single modified program factor. We
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undertook a theoretical analysis of caching for PLGP. This analysis showed
that our PLGP caching algorithm has the potential to decrease execution
time by more than an order of magnitude. Furthermore this savings is
proportional to the number of program factors. As a final step we obtained
empirical results which support our theoretical conclusions.

We developed a caching algorithm for CC PLGP and BS PLGP. Caching
for CC PLGP and BS PLGP caches the output of all factors prior to exe-
cuting any blueprints. This cache is used to expedite the execution of all
blueprints by avoiding factor execution during blueprint evaluation. We
undertook a theoretical analysis of caching for CC PLGP and BS PLGP.
This analysis showed that our caching algorithm has the potential to de-
crease execution time by more than an order of magnitude. Furthermore
this saving is proportional to the number of blueprints, and the size of
the program factors. As a final step we obtained empirical results which
support our theoretical conclusions.

9.2 Future Work

In this section we outline possible future work directions inspired by the
work presented in this thesis.

9.2.1 PLGP

• Weighted PLGP
The output of each PLGP program is calculated by summing the out-
put of all program factors. One obvious approach to further improve
the performance of PLGP is to replace this sum with a weighted sum.
Weighted PLGP would associate a single real valued number called
the weight with each factor. These weights could be optimized us-
ing techniques such as least squares regression to deterministically
improve performance. Furthermore, this optimization could occur
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either during evolution, or as fine tuning for the final solution after
the original algorithm has terminated.

• Variable length factors
One avenue not yet explored involves PLGP programs consisting of
factors with different and variable lengths. In the present approach
all factors are of equal and fixed length. This simplifies many as-
pects of both the implementation, and the calculations, however it is
unknown whether this approach gives the best performance. Many
problems consist of a number of subproblems, with good solutions
consisting of good solutions to each subproblem. PLGP programs
exploit this by enforcing explicit subpopulations, and allowing so-
lutions to subproblems to evolve within these subpopulations. It is
natural to assume that the complexity of subproblems will vary, and
that the solution length will also vary. Hence one possible future
work direction is to relax the constraint on factor sizes, and either ex-
plicitly include factors with different lengths, or allow factor lengths
to vary during evolution.

9.2.2 CC PLGP

• Alternating Hybrid PLGP
A possible future work direction is to develop a hybrid algorithm
which alternates between PLGP and CC PLGP. The current hybrid
PLGP algorithm uses CC PLGP for the first n generations, and uses
PLGP for all subsequent generations. Another possible hybrid al-
gorithm is one which switches between PLGP and CC PLGP every
m generations. Such an algorithm could exploit the strengths of both
PLGP and CC PLGP throughout the entire duration of the algorithm.
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9.2.3 BS PLGP

• Alternative PSO Variants
There are PSO variants in the literature which differ in a variety of
ways from the PSO variant used in this work. For example parti-
cles can be linked together in a graph for the purposes of defining
local optima. Different graphs have been shown to have distinct ad-
vantages on certain problems, and it is likely that there exists a PSO
particle graph we have not explored which gives performance ad-
vantages.

• Alternative Search Algorithms
Another interesting question is whether or not PSO is the best ap-
proach for searching the space of possible blueprints. PSO can be
theoretically motivated, and empirical testing has demonstrated it
gives good results, however it may well be possible to achieve su-
perior performance by using a different search technique. One tech-
nique which might be particularly well suited is genetic algorithms.

• Alternative Distance Metrics
Is it possible to find a better distance metric than the Hamming dis-
tance. The success of this algorithm depends heavily on the assump-
tion that the Hamming distance is a good choice for approximating
the ”difference“ between two programs. The major problem with
the Hamming distance is that it does not take into account the sim-
ilarity between program components. For example, two programs
which differ in the value of a positive constant are far more likely
to have similar output than two programs which differ in an opera-
tor. Therefore one direction for future work is to explore alternative
distance metrics for comparing programs.

• Alternative Traveling Salesman Algorithm
The PSO algorithm used by BS PLGP relies on spacial locality in the
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blueprint search space to find good solutions. If we can improve the
search space by finding a better factor ordering, then we can improve
algorithm performance. Finding a good factor ordering is equivalent
to solving the traveling salesman problem. At present, we find an
approximate solution using the nearest neighbor algorithm. While
this algorithm is attractive in its simplicity, the approximation pro-
vided by this algorithm may differ substantially from what is opti-
mal. There are a number of algorithms which exist in the literature
which provide better approximate solutions than the nearest neigh-
bor algorithm. Therefore one possible future work direction is to
integrate these algorithms with the BS PLGP method.

9.2.4 Caching

• Intra-Generational Caching
We have focused on inter-generational caching: caching between
programs in different generations. Future work may focus on the
alternative and complementary technique of caching between pro-
grams within the same generation. Many of the execution traces are
very similar, indicating we are often computing the same function
multiple times and hence performing unnecessary work. By caching
parts of execution traces and retrieving them when necessary, we
should be able to further decrease the evaluation time of LGP pro-
grams. This form of caching would be complementary to the exist-
ing method of execution trace caching, hence by combining the two
techniques we would hope to arrive at a composite caching tech-
nique which outperforms either of its components.

• Caching using Hashing
Many caching techniques exploit hashing to significantly reduce the
overhead cost associated with caching. In this thesis we have devel-
oped a hashing technique for LGP and PLGP programs. One possi-
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ble future work direction is to use a hashing algorithm to develop an
improved caching algorithm.

• Reducing the cost of Caching
Currently there is a significant cost, both in terms of memory and
time, associated with caching execution traces. While the benefits of
caching already outweigh the cost, decreasing the cost further will
result in greater computational savings as well as making caching
cost effective for a greater range of problems. To this end, we aim
to investigate how the use of more innovative caching techniques
can decrease the cost of caching without negatively impacting on the
benefits already obtained.

9.2.5 General

• More Data Sets It is important that we evaluate the new algorithms
presented in this thesis on additional data sets. The algorithms pre-
sented in this thesis are evaluated on three tasks from the problem
domain of object classification. This an important and challenging
problem domain, and one which serves us well for comparing al-
gorithm performance. However in order to confirm that the results
presented in this thesis generalize to a wide range of problem do-
mains it is vital that we evaluate these new developments on a wider
variety of data sets.
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ary Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. In-
stitute of Physics Publishing and Oxford University Press, Bristol,
New York, 1997, pp. C2.4:1–6.

[35] GUTIN, G., YEO, A., AND ZVEROVICH, A. Traveling salesman
should not be greedy: Domination analysis of greedy-type heuris-
tics for the TSP. Discrete Appl. Math 117 (2002), 81–86.

[36] HAMMING, R. W. Error detecting and error correcting codes. Bell
System Technical Journal 29, 2 (1950), 147–160.

[37] HANDLEY, S. On the use of directed acyclic graph to represent a
population of computer programs. In International Conference on Evo-
lutionary Computation (ICEC) (1994), pp. 154–159.

[38] HEITKTTER, J., AND BEASLEY, D. The hitch-hiker’s guide to evo-
lutionary computation: A list of frequently asked questions (faq),
2000.

[39] HINTON, G., AND SEJNOWSKI, T. Unsupervised Learning: Founda-
tions of Neural Computation. Computational neuroscience. MIT Press,
1999.

[40] HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Ann Arbor : University of Michigan Press, 1975.

[41] JOHNSON, D. S., AND MCGEOCH, L. A. The Traveling Salesman Prob-
lem: A Case Study in Local Optimization. John Wiley and Sons, Lon-
don, 1997, pp. 215–310.



202 BIBLIOGRAPHY

[42] KANAS, S., AND LECKO, A. Metric spaces. Formalized Mathematics
1 (1990).

[43] KEIJZER, M. Alternatives in subtree caching for genetic program-
ming. In Procedings of Genetic Programming 7th European Conference
(EuroGP) (2004), Lecture Notes in Computer Science, pp. 328–337.

[44] KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In
Proceedings of the IEEE International Conference on Neural Networks
(ICNN) (Aug. 1995), vol. 4, pp. 1942–1948.

[45] KENNEDY, J., AND EBERHART, R. C. Swarm Intelligence. Morgan
Kaufmann Publishers, 2001.

[46] KOZA, J. R. On the Programming of Computers by Means of Natural
Selection. A Bradford book. MIT Press, 1996.

[47] KOZA, J. R., KEANE, M. A., STREETER, M. J., MYDLOWEC, M.,
YU, J., AND LANZA, G. Genetic programming IV: Routine human-
competitive machine intelligence. Genetic Programming and Evolvable
Machines 6, 2 (2005), 231–233.

[48] KRAUSE, E. Taxicab Geometry: An Adventure in Non-Euclidean Geom-
etry. Dover Publications, 1986.

[49] KRAWIEC, K., AND BHANU, B. Visual learning by evolutionary and
coevolutionary feature synthesis. IEEE Transactions on Evolutionary
Computation 11, 5 (Oct. 2007), 635–650.

[50] LANGDON, W. B. Pareto, population partitioning, price and genetic
programming. Research Note RN/95/29, University College Lon-
don, Gower Street, London WC1E 6BT, UK, 1995.

[51] LANGDON, W. B., AND POLI, R. Foundations of Genetic Programming,
1 ed. Springer-Verlag, Mar. 2002.



BIBLIOGRAPHY 203

[52] LOVEARD, T. Genetic Programming for Classification Learning Prob-
lems. PhD thesis, RMIT University, School of Computer Science and
Information Technology, 2003.

[53] LOVEARD, T., AND CIESIELSKI, V. Representing classification prob-
lems in genetic programming. In Proceedings of the 2001 Congress on
Evolutionary Computation (May 2001), vol. 2.

[54] LU, H., AND YEN, G. Dynamic population size in multiobjective
evolutionary algorithms. Computational Intelligence, Proceedings of the
World on Congress on Computational Intelligence 2 (2002), 1648–1653.

[55] MACCLELLAND, J., AND RUMELHART, D. Parallel Distributed Pro-
cessing: Explorations in The Microstructure of Cognition. Psychological
and Biological Models. No. v. 2 in Bradford Book. The MIT Press.

[56] MACKAY, D. J. C. Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, 2003.

[57] MILLER, B. L., GOLDBERG, D. E., AND GOLDBERG, D. E. Genetic
algorithms, tournament selection, and the effects of noise. Complex
Systems 9 (1995), 193–212.

[58] MITCHELL, M. An Introduction to Genetic Algorithms. Complex adap-
tive systems. MIT Press, 1998.

[59] MITCHELL, T. M. Machine learning. McGraw Hill, New York, 1997.

[60] MONTANA, D. J. Strongly typed genetic programming. Evolutionary
Computation 3 (1994), 199–230.

[61] MORIARTY, D. E. Symbiotic Evolution of Neural Networks in Sequential
Decision Tasks. PhD thesis, Austin, TX, USA, 1998. UMI Order No.
GAX98-02963.



204 BIBLIOGRAPHY

[62] MORIARTY, D. E., AND MIIKKULAINEN, R. Forming neural net-
works through efficient and adaptive coevolution. Evolutionary Com-
putation 5, 4 (1997), 373–399.

[63] MORIARTY, D. E., MIIKKULAINEN, R., AND KAELBLING, P. Effi-
cient reinforcement learning through symbiotic evolution. In Ma-
chine Learning (1996), pp. 11–32.

[64] NEILSON, T. P., AND PERKIS, T. Stack-based genetic programming.
In Proceedings of the 1994 IEEE World Congress on Computational Intel-
ligence (1994), IEEE Press, pp. 148–153.

[65] NESHATIAN, K., AND ZHANG, M. Genetic programming and class-
wise orthogonal transformation for dimension reduction in classi-
fication problems. In Proceedings of the 11th European conference on
Genetic Programming (EuroGP) (Berlin, Heidelberg, 2008), Springer-
Verlag, pp. 242–253.

[66] NORDIN, P. A compiling genetic programming system that directly
manipulates the machine code. In Advances in genetic programming
(Cambridge, MA, USA, 1994), MIT Press, pp. 311–331.

[67] OLAGUE CABALLERO, G., ROMERO, E., TRUJILLO, L., AND

BHANU, B. Multiclass object recognition based on texture linear
genetic programming. In Applications of Evolutionary Computing
(EvoWorkshops) (11-13 Apr. 2007), vol. 4448 of LNCS, pp. 291–300.

[68] OLAGUEA, G., CAGNONI, S., AND LUTTON, E. (eds.) special issue
on evolutionary computer vision and image understanding, pattern
recognition letters. 27(11), 2006.

[69] POLI, R. Genetic programming for image analysis. In Proceedings of
the First Annual Conference on Genetic Programming (GECCO) (Cam-
bridge, MA, USA, 1996), MIT Press, pp. 363–368.



BIBLIOGRAPHY 205

[70] POLI, R. Discovery of symbolic, neuro-symbolic and neural net-
works with parallel distributed genetic programming. In Proceedings
of the 3rd International Conference on Artificial Neural Networks and Ge-
netic Algorithms (ICANNGA) (1997).

[71] POLI, R., LANGDON, W. B., AND MCPHEE, N. F. A Field Guide to
Genetic Programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[72] POTTER, M. A., AND JONG, K. A. D. A cooperative coevolutionary
approach to function optimization. Springer-Verlag, pp. 249–257.

[73] POTTER, M. A., AND JONG, K. A. D. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary
Computation 8 (2000), 1–29.

[74] QUINLAN, J. C4.5: Programs for Machine Learning. Morgan Kauf-
mann series in machine learning. Morgan Kaufmann Publishers,
1993.

[75] ROBERTS, M. E. The effectiveness of cost based subtree caching
mechanisms in typed genetic programming for image segmentation.
In Proceedings of the 2003 International Conference on Applications of
Evolutionary Computing (Berlin, Heidelberg, 2003), EvoWorkshops,
Springer-Verlag, pp. 444–454.

[76] ROBERTS, M. E. The effectiveness of cost based subtree caching
mechanisms in typed genetic programming for image segmenta-
tion. In Proceedings of the 2003 International Conference on Applica-
tions of Evolutionary Computation (EvoApplications) (Berlin, Heidel-
berg, 2003), EvoWorkshops, Springer-Verlag, pp. 444–454.



206 BIBLIOGRAPHY

[77] ROBILLIARD, D., MARION-POTY, V., AND FONLUPT, C. Genetic
programming on graphics processing units. Genetic Programming
and Evolvable Machines 10 (December 2009), 447–471.

[78] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning
Internal Representations by Error Propagation. MIT Press, Cambridge,
MA, USA, 1986, pp. 318–362.

[79] SCHLIMMER, J. C., AND LANGLEY, P. Paradigms for Machine Learn-
ing. John Wiley and Sons, 1991.

[80] SMART, W., AND ZHANG, M. Probability based genetic program-
ming for multiclass object classification. In Proceedings of the 8th
Pacific Rim International Conference on Artificial Intelligence (PRICAI)
(2004), vol. 3157 of LNCS, Springer-Verlag, pp. 251–261.

[81] SMART, W. R., AND ZHANG, M. Classification strategies for image
classification in genetic programming. In Proceedings of the Interna-
tional Conference on Image and Vision Computing NZ (IVCNZ) (Nov.
2003), Massey University, pp. 402–407.

[82] SMITH, J. Modelling GAs with self adaptive mutation rates. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) (2001), Morgan Kaufmann Publishers, pp. 599–606.

[83] SPEARS, W. M., JONG, K. A. D., BÄCK, T., FOGEL, D. B., AND

GARIS, H. D. An overview of evolutionary computation. In Pro-
ceedings of the European Conference on Machine Learning (London, UK,
1993), Springer-Verlag, pp. 442–459.

[84] STORN, R., AND PRICE, K. Differential evolution, a simple and effi-
cient heuristic for global optimization over continuous spaces. Jour-
nal of Global Optimization 11 (December 1997), 341–359.

[85] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: An Intro-
duction. The MIT Press, Mar. 1998.



BIBLIOGRAPHY 207

[86] TACKETT, W. A. Genetic programming for feature discovery and
image discrimination. In Proceedings of the 5th International Conference
on Genetic Algorithms (ICGA) (1993), Morgan Kaufmann Publishers,
pp. 303–309.

[87] TETKO, I. V., LIVINGSTONE, D. J., AND LUIK, A. I. Neural net-
work studies, 1. comparison of overfitting and overtraining. Journal
of Chemical Information and Computer Sciences 35, 5 (1995), 826–833.

[88] WHIGHAM, P. A. Grammatically-based genetic programming. In
Proceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications (1995), J. P. Rosca, Ed., pp. 33–41.

[89] WONG, M. L., AND LEUNG, K. S. Evolutionary program induction
directed by logic grammars. Evolutionary Computation 5, 2 (1997),
143–180.

[90] WONG, P. Removing redundancy and reducing fitness evaluation
costs in genetic programming. Master’s thesis, School of Mathemat-
ics and Computer Science, Victoria University of Wellington, 2008.

[91] WONG, P., AND ZHANG, M. Scheme: Caching subtrees in genetic
programming. In IEEE Congress on Evolutionary Computation (2008),
IEEE, pp. 2678–2685.

[92] YANG, Z., TANG, K., AND YAO, X. Large scale evolutionary opti-
mization using cooperative coevolution. Inf. Sci. 178 (August 2008),
2985–2999.

[93] YAO, X. Evolving artificial neural networks. Proceedings of the IEEE
87, 9 (1999), 1423–1447.

[94] ZHANG, B.-T., AND CHO, D.-Y. Genetic programming with active
data selection. In Selected papers from the Second Asia-Pacific Conference



208 BIBLIOGRAPHY

on Simulated Evolution and Learning (SEAL) (1999), Springer-Verlag,
pp. 146–153.

[95] ZHANG, M., AND CIESIELSKI, V. Genetic programming for multiple
class object detection. In Proceedings of the 12th Australian Joint Con-
ference on Artificial Intelligence (1999), Springer-Verlag, pp. 180–192.

[96] ZHANG, M., CIESIELSKI, V. B., AND ANDREAE, P. A domain-
independent window approach to multiclass object detection using
genetic programming. EURASIP Journal on Applied Signal Processing
2003, 8 (July 2003), 841–859. Special Issue on Genetic and Evolution-
ary Computation for Signal Processing and Image Analysis.

[97] ZHANG, M., AND FOGELBERG, C. G. Genetic programming for
image recognition: An LGP approach. In Proceedings of the 2007
EvoWorkshops on Applications of Evolutionary Computing (Berlin, Hei-
delberg, 2007), Springer-Verlag, pp. 340–350.

[98] ZHANG, M., GAO, X., AND LOU, W. A new crossover operator in
genetic programming for object classification. IEEE Transactions on
Systems, Man and Cybernetics, Part B 37, 5 (Oct. 2007), 1332–1343.

[99] ZHANG, M., AND SMART, W. Multiclass object classification us-
ing genetic programming. In Applications of Evolutionary Computing,
EvoWorkshops (2004), vol. 3005 of LNCS, Springer-Verlag, pp. 369–
378.

[100] ZHANG, M., AND SMART, W. Using gaussian distribution to con-
struct fitness functions in genetic programming for multiclass object
classification. Pattern Recognition Letters 27, 11 (Aug. 2006), 1266–
1274.


