

Learning Actions that Reduce

Variation in Objects

by

James Bebbington

A thesis

submitted to the Victoria University of Wellington

in fulfillment of the

requirements for the degree of

Master of Science

in Computer Science.

Victoria University of Wellington

2011

Abstract

The variation in the data that a robot in the real world receives from its

sensory inputs (i.e. its sensory data) will come from many sources. Much

of this variation is the result of ground truths about the world, such as

what class an object belongs to, its shape, its condition, and so on. Robots

would like to infer this information so they can use it to reason. A

considerable amount of additional variation in the data, however, arises

as a result of the robot’s relative configuration compared to an object; that

is, its relative position, orientation, focal depth, etc. Fortunately, a robot

has direct control over this configural variation: it can perform actions

such as tilting its head or shifting its gaze.

The task of inferring ground truth from data is difficult, and is made

much more difficult when data is affected by configural variation. This

thesis explores an approach in which the robot learns to perform actions

that minimize the amount of configural variation in its sensory data,

making the task of inferring information about objects considerably

easier. The value of this approach is demonstrated by classifying digits

from the MNIST and USPS datasets that have been transformed in

various ways so that they include various kinds of configural variation.

 i

Contents

1 Introduction .. 1

1.1 Contributions of the Thesis .. 5

1.2 Outline of the Thesis ... 6

2 Reinforcement Learning ... 7

2.1 Problem Description ... 7

2.2 Value Function Learning .. 9

2.2.1 Temporal Difference Methods ... 11

2.2.2 Action Selection: Exploitation versus Exploration 12

2.3 Function Approximation .. 12

2.4 Policy Gradient Methods ... 13

3 Restricted Boltzmann Machines ... 16

3.1 Belief Networks ... 16

3.2 Energy-Based Models ... 18

3.3 Boltzmann Machines and Restricted Boltzmann Machines 19

3.3.1 Contrastive Divergence and Persistent Contrastive Divergence 23

3.4 Deep Belief Networks ... 25

3.5 Other Similar Systems .. 26

4 Systems that account for some kind of Configural Variation 28

4.1 Convolutional Neural Networks .. 28

4.1.1 Exploiting Local Features ... 30

4.2 Other Convolutional Models ... 31

4.3 Modeling Transformations .. 32

4.4 Techniques other than Machine Learning ... 34

 ii

4.5 Systems that drive actions from a learned internal representation 34

5 Learning a classifier that is invariant to Configural Variation 36

5.1 System Architecture .. 38

5.2 Choice of Datasets for Experiments .. 43

5.3 Choice of Reinforcement Value ... 44

5.4 Q-Learning and Policy Gradient ... 48

5.4.1 Network Structure ... 50

5.4.2 Choice of Activation Function ... 54

5.5 Other Network Parameters .. 55

5.6 Data Classification Method .. 56

5.7 Experiments on Rotated Digits ... 58

5.7.1 Traces ... 63

5.7.2 Hidden Units as Feature Detectors ... 69

6 Discussion ... 71

6.1 Initial Convergence difficulties: Garbage In, Garbage Out 71

6.1.1 Methods to provide a stronger guarantee of Convergence 76

6.2 Convergence Stability Issues ... 76

6.2.1 Methods to improve Stability .. 78

6.3 Sixes and Nines .. 79

6.4 Transformations to Nothing .. 80

7 Additional Experiments .. 83

7.1 Using shaping to learn more complex actions .. 85

7.2 Experiments on Translated Digits .. 86

7.2.1 Traces ... 87

7.2.2 Hidden Units as Feature Detectors ... 90

7.3 Experiments with two Transformations at once ... 91

8 Conclusions ... 93

 iii

8.1 Future Work ... 95

8.1.1 A Multi-Layer Internal Representation .. 95

8.1.2 Using Dimensionally Reduced Data ... 96

Appendix ... 98

A System Information ... 98

B Full Algorithm ... 99

C Possible GPU Optimization ... 101

Bibliography ... 103

 iv

List of Figures

Figure 1.1: The difficulty of interpreting data .. 2

Figure 1.2: Making data easier to interpret ... 3

Figure 2.1: The agent-environment interaction .. 8

Figure 3.1: Graphical Models .. 23

Figure 3.2: Restricted Boltzmann Machine ... 25

Figure 3.3: Deep Belief Network .. 26

Figure 4.1: Convolutional Neural Network .. 30

Figure 4.2: Gated Restricted Boltzmann Machine .. 33

Figure 5.1: An object viewed from two different perspectives 36

Figure 5.2: Classifying transformed images ... 38

Figure 5.3: High Level Diagram of System Architecture .. 41

Figure 5.4: Low level Diagram of System Architecture .. 42

Figure 5.5: MNIST and USPS images ... 44

Figure 5.6: Sample values of various reinforcement value alternatives 47

Figure 5.7: The reinforcement learning network with discrete output units 52

Figure 5.8: Traces from several different configurations of the network 53

Figure 5.9: Normalized histogram of activation values .. 55

Figure 5.10: Error rate on the validation set over time .. 62

Figure 5.11: Traces of actions performed on digits .. 64

Figure 5.12: Analysis of Trained System I ... 66

Figure 5.13: Analysis of Trained System II ... 67

Figure 5.14: Analysis of Trained System III .. 68

Figure 5.15: The visualized RBM weight values .. 70

Figure 5.16: The visualized reinforcement learning network weight values 70

 v

Table 5.1: Classification results for different reinforcement learning algorithms 50

Table 5.2: Classification results on rotated digits ... 60

Figure 6.1: Dendrogram of sample “ones” ... 73

Figure 6.2: Dendrogram of sample “sixes” ... 73

Figure 6.3: Multiple valleys in a two dimensional free energy state space 75

Figure 6.4: Flattening of the RBM energy landscape ... 78

Figure 6.5: Orientation Leaking .. 80

Figure 6.6: Transforming an object to blank ... 81

Figure 7.1: Learning how to translate an image ... 84

Figure 7.2: Reinforcement signals for a robot learning to move 85

Figure 7.3: Traces of translation actions .. 88

Figure 7.4: Analysis of trained System .. 89

Figure 7.5: The visualized RBM weight values .. 90

Figure 7.6: The visualized reinforcement learning network weight values 91

Table 7.1: Classification results on translated digits .. 87

Figure 8.1: The system architecture including a Deep Belief Network 96

Figure A.1: Screenshot I ... 98

Figure A.2: Screenshot II .. 99

Chapter 1. Introduction 1

Chapter 1

1 Introduction

It is hard for robots to interpret data in the real world, because there is a wide range

of variation in how objects appear. Even a single object will appear drastically

different to a robot when viewed from different perspectives.

The variation in data (that is, the sensory input to a robot) comes from many

sources. We divide this variation into two categories: (i) native variation in the world

that is the result of ground truths about objects, such as their shape and style, and (ii)

configural variation that arises as a result of the relative configuration of the robots

sensors compared to an object’s position, such as the relative orientation of the

object. The key distinction between these two types of variation is that the sources of

native variation are unknown to the robot, whereas the robot has direct control over

configural variation. It can perform actions, such as moving or tilting its head, to

alter the configuration of its sensors (relative to an object). Actions that directly

interact with an object, such as pushing or pulling, usually also alter the agent’s

relative configuration.

Configural variation makes up an enormous amount of the variation in the

data that a robot (or any agent) is expected to see in the real world. But since these

sources of variation are under the robot’s control, steps can be taken to reduce, or

even eliminate, their impact on the data. It is much easier to interpret data (that is, to

infer ground truths about the data such as what class an object belongs to) that only

includes native variation. This thesis looks at how to improve an agent’s ability to

interpret data by directly controlling configural variation, specifically looking at how

to classify data (a relatively straightforward recognition task).

Figure 1.1 demonstrates the difficult task faced by a robot trying to interpret

data in the world.

Chapter 1. Introduction 2

Figure 1.1: The difficulty of interpreting data. The sensory input (or data) that an

agent receives is influenced by both native variation (variation in the world that

arises due to unknown ground truths) and configural variation (variation that arises

due to the configuration of agent’s sensors relative to an object). It is difficult to infer

ground truths about data due to the various sources of native variation, and it is

extremely difficult to infer ground truths about data that has additionally been

corrupted by configural variation. In the fictitious example shown, when presented

with a small dataset where the only source of variation in the data is native, an agent

is able to identify around 90% of objects correctly after some standard classification

training. When configural variation is introduced to the same dataset, only 50% of

objects can be identified correctly. When trying to classify objects based on its

sensory input, a naïve agent will create many representations of the same ground

truths that only differ due to configural variation. Dealing with configural variation

separately allows classifiers to generalize much better.

~ 50%
accuracy

Native
Variation

WORLD
Ground Truths

Configural
Variation

Sensory
Input

- class (intended digit)

- unknowns (eg: source)

- etc

- relative orientation (visual)

- gaze direction relative to object (visual)

- presence of occlusions (visual)

- focal depth (visual)

- distance from sound source (audio)

- etc

AGENT
Wants to understand

the World

- includes both native

and configural

variation

recognition

generative

- detect class

INTERNAL

REPRESENTATION

~ 90%
accuracy

- avoid obstacles

 etc

[parameterized by θrecog]

Chapter 1. Introduction 3

We suggest a new approach to interpreting data in which the agent always

adjusts its sensors (by performing actions) in an attempt to minimize the configural

variation before building its internal representation. This generally results in the

agent choosing to perform what could be termed “stabilizing” actions (the agent

likes to see data that consistently looks the same), such as tilting its head to ensure

data is upright. Figure 1.2 demonstrates this solution.

A key question that this thesis attempts to answer is: “Is it easier to first learn

how to eliminate configural variation and then infer ground truths, than it is to learn

ground truths directly from data that includes configural variation?”

Figure 1.2: Making data easier to interpret. While an agent has no control over the

native variation that influences its sensory data, the variation that arises as a result

of the agent’s differing relative configurations with an object can largely be

eliminated by attempting to return to a default/standard relative configuration. This

effectively “collapses” the number of representations required to those that can be

explained by native variation only, thus allowing the agent to more easily infer

ground truths. The classification task is made much simpler; accounting for

differences in objects that are the result of configural variation amounts to selecting

the correct “stabilizing” action.

Performing action(s)

can eliminate

configural variation

?

 
… this removes

unnecessary variation,

making it easier for the

agent to infer information

about ground truths

 eg:

- tilt head / rotate camera

- shift gaze / translation of image

- etc

 parameterized by
θaction

Chapter 1. Introduction 4

Our system uses reinforcement learning techniques (chapter 2) to train an

agent so that it discovers the best actions that it should use to adjust its configuration

to make interpreting the data as easy as possible (it learns θaction in Figure 1.2). A

Restricted Boltzmann Machine (chapter 3), a kind of associative memory, is used to

build the agent’s internal representation, and to classify the data (it learns θrecog in

Figure 1.1). By selecting a reinforcement value that provides feedback based on the

agent’s current internal representation space, we demonstrate a significant

improvement in classification results and discuss a variety of issues that arise during

the implementation of such a system.

The actions that a robot takes to alter its visual configuration result in the data

being transformed. There are a large number of possible configuration-changing

actions that a robot can take. A number of these actions result in transformations

that are relatively straightforward to model: tilting of a robot’s head corresponds to

rotating an image, shifting of a robot’s gaze corresponds to translating an image, and

increasing or decreasing focal depth will blur and sharpen different parts of the

image, etc. Our experimentation focuses on these kinds of actions (and the resulting

kinds of transformations).

It is important to note that the agent does not necessarily need to actually

perform these actions. If the agent has learned a good model of what happens to

objects as they are transformed, then the entire process could take place in the

agent’s mind.

Standard classification systems that naively attempt to use the data obtained

from viewing an object from different perspectives tend to do a poor job at

generalizing away differences that arise purely as a result of configural variation,

and thus tend to perform poorly on such data. Instead, standard classification

systems almost always operate on data that has first been pre-processed. For visual

data, this generally involves being centered, scaled, and oriented before any work is

carried out. Pre-processing techniques, however, require external knowledge and

put limits on the types of configural variation that can be reduced. They often

require a large amount of manual labor, are application specific, and can be prone to

error.

The vast majority of previous work that has looked at interpreting or

classifying data that includes configural variation has focused on using fixed

Chapter 1. Introduction 5

architectures to detect only one or a small number of pre-defined kinds of

transformations. This kind of architecture is limiting and inflexible.

Ideally, we would like to build classifiers that are resilient to any action an

agent may take that changes the way data is perceived. This disallows us from

configuring a fixed network architecture that could aid in generalizing away

differences that arise as a result of specific perspective changes. The proposed

system assumes no outside knowledge about the kinds of configural variation that

might be present in data. The agent discovers these itself in the course of performing

actions.

1.1 Contributions of the Thesis

The main contributions of this thesis are:

 A new conceptual approach to the classification of data, by embodied agents,

that generalizes away the differences in data that are the result of configural

variation and thus can be affected by actions. A system is presented that

incorporates energy-based model techniques (specifically, the Restricted

Boltzmann Machine) and reinforcement learning techniques to show how the

concept can work in practice.

 A demonstration of the classification results that can be achieved by this

system as compared to results achieved by a similar classifier that makes no

attempt to generalize differences in data as a result of configural variation.

Impressive results were achieved in spite of using relatively standard, yet

specially configured, reinforcement learning techniques to determine how data

vectors should be transformed, suggesting that there is substantial room for

improving further on the results.

 A derivation of a tractable method for comparing how likely one data vector is

compared to another in the joint probability of a Restricted Boltzmann

Machine, as well as a discussion of how to classify data accurately and

efficiently in a Restricted Boltzmann Machine.

 A discussion of a variety of issues that arise as a result of the specific system

configuration, including how the adaptive reinforcement values impact on

Chapter 1. Introduction 6

traditional reinforcement learning techniques. Of particular importance is the

issue of how it can be difficult to achieve (and maintain) convergence given the

two-way feedback between the two networks involved.

 A presentation of additional experiments with the system that highlight its

ability to generalize away configural variation that arises from different kinds

of actions, as well as suggestions for future improvements.

1.2 Outline of the Thesis

This thesis is organized as follows:

Chapter 2 provides some background on reinforcement learning techniques,

describing value iteration and policy gradient methods in detail.

Chapter 3 provides some background on deep belief networks, specifically

discussing Restricted Boltzmann Machines, and how they can be used to classify

data.

Chapter 4 examines other systems from the literature that make attempts to

generalize away differences in data that are the result of configural variation.

Chapter 5 presents the system architecture in detail, provides classification

results achieved on the MNIST and USPS datasets, and discusses several

optimizations made to improve the system.

Chapter 6 discusses the implications of some issues that were not directly

resolved in our classification system.

Chapter 7 presents some additional experiments that demonstrate the system’s

ability to learn to model different kinds of configuration-changing actions.

Chapter 8 summarizes the results and limitations of the thesis, and suggests

some possible avenues for future work.

The Appendix describes the software systems that were developed to produce

the results presented in this thesis, gives a technical overview that details the full

algorithm, and discusses the potential efficiency gains that could be achieved by

running the system on a standard GPU.

Chapter 2. Reinforcement Learning 7

Chapter 2

2 Reinforcement Learning

The field of reinforcement learning examines how an agent can learn from

“rewards” that it receives for performing actions [SB98]. The goal is to adapt the

agent’s behavior so that it learns to perform actions that maximize the numerical

(long term) reward that it receives. Reinforcement learning differs from standard

supervised (or unsupervised) learning. Instead of training on a set of specially

constructed examples, the agent learns from data obtained from interacting with its

environment.

Reinforcement learning techniques suit the task we are attempting to achieve;

that is, to build a system capable of working out which actions to perform to

minimize configural variation in data. We will need to work out how to provide

accurate “rewards” to the agent to inform it that configural variation has been

reduced (or increased), as discussed in section 5.3.

This chapter gives an overview of reinforcement learning, specifically focusing

on the techniques that were considered for use in the system presented later in the

thesis.

2.1 Problem Description

All reinforcement learning problems can formally be described in terms of an agent

and an environment. The agent learns which actions it should perform to maximize

its expected reinforcement payoff. The environment determines what will happen

when the agent performs an action, and what reinforcement value should be

provided.

Chapter 2. Reinforcement Learning 8

More formally, the environment consists of a set of states, . At any given

moment, there are a set of actions, , that the agent can choose to take. Each

possible transition between states has an associated reward, , that the agent will

receive if that transition occurs.

The environment is almost always a Markov Decision Process [Bel57] that

specifies the probability of all possible state-action transitions. That is, denotes

the probability of transitioning to state if action is taken while in state . In the

case of deterministic environments, these probabilities will all be zero or one.

The agent’s choice of actions can be described in terms of a policy. A policy

describes a mapping from all possible states to the probabilities of the agent

selecting each possible action. That is, denotes the probability of the agent

selecting action , given that the agent is in state , under the policy .

The goal of reinforcement learning can be described as learning an optimal

policy that ensures the agent will always select actions such that they will receive the

maximum possible expected rewards.

Figure 2.1 depicts the relationship between an agent and the environment.

Figure 2.1: The agent-environment interaction. The classic diagram describing the

interaction between an agent and environment. The agent determines which action

to perform, which affects the environment. The environment, given an action,

determines which state will be transitioned to, as well as what the reward is for the

given transition.

Agent

Environment

action reward state

Chapter 2. Reinforcement Learning 9

2.2 Value Function Learning

The majority of algorithms designed to solve reinforcement learning problems are

based on estimating some kind of value function. Value functions estimate a value

for each state that represents the long-term value of being in that state, based on the

expected future returns of selecting actions based on policy (starting from that

state).

Given a problem that has no expected end, the present value of a state can be

calculated by discounting future rewards:

 [∑

]

where
 is the value of state under policy , is the discount factor, and

 [] is an expectation over the sum of the discounted rewards for following policy

 .

Given this definition of a value function, it follows that there must be at least

one optimal policy that maximizes the expected return (value) in every state; by

simply selecting with certainty the action that maximizes the value of each state.

Note the value of an action in a given state can be expressed similarly:

 [∑

]

where
 is the value of taking action in state under policy .

To come up with a method to evaluate the value function for a given policy,

 , we first note that the value function of state can be described in terms of the

value functions of the states that are reachable from that state:

 [∑

]

 ∑ () ∑ [[]
]

where is the probability that , given that . This condition is

known as the Bellman equation.

Chapter 2. Reinforcement Learning 10

One method for computing the value function is to begin with an initial

approximation, , then successively update this approximation by putting it

through the Bellman equation:

 ∑ () ∑ [[]

] (2.1)

It can be shown that by following this procedure, the value function will

converge to as [SB98].

Once a value function has been approximated reasonably well, the policy can

be improved by updating the policy mapping greedily. That is, always select the

action that maximizes the value of the state based on the value of reachable states

[SB98]:

 ∑ [[]

] (2.2)

Thus, to discover an optimal policy, one can iteratively alternate between

updating the value functions until convergence (2.1), and updating the policy (2.2).

The policy function is guaranteed to improve with each iteration, and since there

must be a limited number of possible policies in a Markov Decision Process, the

process is guaranteed to converge in a finite number of iterations.

Unfortunately this process can be very slow. One fairly straightforward

optimization is to effectively truncate the value function approximation after a single

step, meaning both the value function approximation and the policy improvement

can be achieved in a single update:

 ∑ [[]

]

Iteratively following this update rule is known as Value Iteration. This

algorithm, along with other similar dynamic programming techniques, has been

demonstrated to be quite efficient on small problems, where the number of states

and actions is not large. On high-dimensional problems, however, such techniques

are infeasible. Additionally, to perform these dynamic programming techniques, a

complete model of the environment is needed including the transition probabilities

for every state-action pair, .

Chapter 2. Reinforcement Learning 11

2.2.1 Temporal Difference Methods

Temporal Difference methods, unlike standard dynamic programming techniques,

do not require enumerating every state each iteration, nor do they require

knowledge of state-action transition probabilities, making them more widely

applicable for real problems than standard dynamic processing techniques.

In temporal difference methods, value functions are updated from an agent’s

experience. The agent performs actions according to the current policy (which is

determined by greedily choosing actions based on the current state values). At each

state the agent arrives at, the value of that state is improved by moving the value

towards a better sample of the state’s true value under the current policy. In TD(0),

an approximation of this sample is obtained from the values of the next state. Thus,

the update rule is simply:

 []

An example of a temporal difference method that learns an optimal policy is

Sarsa. In Sarsa, instead of maximizing state values, it is the value of state-action

pairs, , that is maximized:

 [

]

Each iteration the agent will start in a random entry state, and carry out a

sequence of actions, updating Q values based on this rule. The learned optimal

policy will be to select the action with the maximum Q value in each state.

Sarsa is only theoretically guaranteed to converge if all state-action pairs are

visited an infinite number of times. It is clearly important that unvisited states are

explored as they may provide higher rewards than the agent has experienced so far.

This means that while the policy should generally be followed, it will sometimes

have to be deviated from to encourage exploration.

One issue with Sarsa is that any deviations from the policy result in the update

rule pulling the Q value in the wrong direction. The Q-Learning algorithm

overcomes this problem by always pulling Q towards the discounted return that

would follow if the greedy action were taken next, even if it is not actually taken:

 [

]

Chapter 2. Reinforcement Learning 12

This means we have much more freedom to explore off policy actions without

degrading the Q values.

2.2.2 Action Selection: Exploitation versus Exploration

In many reinforcement learning methods, including temporal learning, there is a

tradeoff when selecting actions between exploitation and exploration. To obtain a lot

of reward, and solidify a policy that achieves good rewards, an agent needs to exploit

what it has learned by repeating actions that have provided high reward in the past,

but in order to discover potentially better rewards it needs to explore actions that it

has not tried many times. In many cases, exploration is essential to provide a

guarantee of eventual convergence.

This dilemma is often solved using an -greedy algorithm. The greedy action

(the action with the highest estimated value) is selected most of the time, but a

random alternative action is chosen with probability . This ensures the agent

exploits high reward actions most of the time, but also guarantees that every action

has a chance of being performed over time.

An alternative option is to select non-optimal actions according to their relative

values. This will mean it is more likely second-best actions will be chosen than the

worst actions, while the optimal action will still be chosen most often. Some

variation of the softmax function, shown below, is usually used to determine the

relative probabilities:

 ()

∑

2.3 Function Approximation

In many real problems, the number of possible states is very large (many input

dimensions), or sometimes even infinite, and thus it becomes infeasible, or

impossible, to maintain a complete mapping from states to values, or from actions to

Q-values.

Chapter 2. Reinforcement Learning 13

In such cases, the mapping needs to be approximated somehow. Many

approximations have been suggested, ranging from simple solutions, such as

linearly grouping state patterns [SB98], to complex solutions such as approximating

the mapping using a decision tree [CK91] or a neural network [Lin91].

In order to use a neural network (or any supervised method) to approximate

the mapping, we need to come up with a measure of how well the mapping is

approximated in the network—the standard mean squared error (MSE) function of

the estimated values makes the most sense. This error simply needs to be minimized

using gradient descent. The Temporal Difference update rules effectively follow the

gradient of the Mean Squared Error of the estimated value as they are. For Q-

Learning, for example:

 () ∑ () [(

)
]

 [

]

Thus, a neural network can be used to approximate the mapping; the network

parameters (weights) are updated according to the above equation. This error can be

backpropagated through multiple layers if desired.

One well known case of using a neural network to model a mapping is the TD-

Gammon algorithm, which used a Temporal Difference method to train a

reinforcement learning system to play backgammon, representing the state to value

mapping using a two layer neural network (MLP) [SB98].

All Value Function techniques do, however, have certain limitations. They

focus on finding deterministic policies, when the optimal policy may sometimes be

stochastic. More importantly, arbitrarily small changes in the estimated value of an

action can cause it to be selected or not selected, which can cause issues when a

mapping function is approximated, in some cases preventing convergence [Bai95].

2.4 Policy Gradient Methods

An attractive alternative to Value Function techniques is to train a system by

parameterizing the policy (instead of a value function), and then optimizing these

parameters by following an estimate of the gradient of the policy directly, with

Chapter 2. Reinforcement Learning 14

respect to these parameters. The policy could alternatively be optimized using

techniques other than gradient ascent.

It is actually the expected long term average reward of a policy that is

parameterized:

 ̅

 (∑

)

where () is the expectation over sequences of states that are generated by

following the policy.

Calculating the true gradient of this expected return will be intractable in any

non-trivial problem [BB01]. Instead, under some conditions [SMSM99], the gradient

can be estimated using the following equation, which can be demonstrated to

converge to the true gradient of ̅ in the limit as :

 ∑

To implement this in practice, we use an eligibility trace that keeps record of

discounted past gradients. This leads to the following update rules:

This has several obvious advantages. Since the policy is learned directly, the

system need only learn what the best actions to take in each state are; a seemingly

simpler task than learning the long term value of taking each action. Since the policy

can be parameterized in any way, domain knowledge can be incorporated to make

the learning task easier. Likewise, since learning is achieved by optimizing

parameters instead of learning a state-value mapping, policy optimization

techniques are able to be much more fluidly implemented using standard systems

such as neural networks, and have more convincing convergence guarantees

(though only to local maxima). This would suggest Policy Gradient methods should

perform well on high dimensional problems. There are relatively few experimental

results to support this, though some success has been achieved using policy gradient

techniques to learn robotic locomotion, where good policy parameterizations are

known [Fie05].

Chapter 2. Reinforcement Learning 15

Policy Gradient methods do, however, have several drawbacks. Learning times

can be long as a result of the large variance in gradient estimates, and it can be

difficult to construct policy parameterizations of the appropriate complexity. One

approach to reducing the gradient is to include a reward baseline. The optimal

baseline measures the average reward the agent has received across all timestamps

to date. By subtracting this value from the reinforcement values, variance in the

gradient estimation is drastically reduced, while the gradient estimation itself is not

biased [BB01]. Experimental results suggest that even with a baseline included,

neural network based implementations of Q-Learning are able to converge faster

than neural network based implementations of Policy Gradient, at least in some

complex problem domains [BFHM06].

Chapter 3. Restricted Boltzmann Machines 16

Chapter 3

3 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are an active area of current research. A

tractable method for training RBMs was introduced by Hinton, Osindero, and Teh

[HOT06], and they have since been shown to be capable of representing generative

models of many different types of data, including images [Hin06], voice [MH10],

and motion [TH09, THR09].

This chapter gives an overview of the current state of research into RBMs, as it

relates to the work done in this thesis.

3.1 Belief Networks

As motivation towards Restricted Boltzmann Machines, a brief introduction to belief

(or Bayesian) networks [Mac03, KF09] is presented. A belief network is a

probabilistic graphical model that consists of a set of variables, or nodes, connected

by factors that define the probabilistic relationship—dependencies—between these

nodes. In general, some nodes will represent visible (observed) variables, and others

hidden (unobserved) variables. Factors in belief networks represent the conditional

probabilities between nodes, meaning that belief networks are implicitly normalized:

the sum of the (joint) probabilities of each possible configuration of values equals

one. As such, belief networks can be considered generative models that describe the

probability of different configurations of visible patterns.

The structure of a belief network implies certain independencies between

nodes [KF09]. The value of an individual node is conditionally independent of the

value of all other nodes, given the value of all nodes in its Markov blanket: its

parents (nodes connected to it), its children (nodes it is connected to), and any other

parents of its children. This can be written as:

Chapter 3. Restricted Boltzmann Machines 17

 ()

where is not in the Markov blanket of .

Similarly, the joint probability of a given configuration in a belief network is

equal to the product of the probabilities of each individual variable (factors), which

are conditional only on their parents [KF09]:

 () ∏ (| ()
)

In order to make belief networks scalable, the conditional probability factors

can be parameterized using a weighted sigmoid function, and the nodes treated as

binary stochastic “neurons”—the approximated probability of a node can be

determined by applying a sigmoid function to the sum of the weighted inputs from

each parent node. Belief networks that are parameterized in this way are called

sigmoid belief networks.

In general, we want to be able to train a belief network by adjusting the

weights so that desired visible configurations are more likely to be generated (that is,

the joint probability of desired configurations is increased). Once a network has been

trained, it can be used to infer the probability of unknown nodes.

It would be fairly straightforward to train a sigmoid belief network using a

dataset that included complete information about the states of all units in the

network. Training would simply amount to maximizing the log probability that the

binary state of each unit in a given configuration is generated, given the binary states

of its parents.

To represent any interesting data though, it is imperative to include hidden

(unobservable) variables. When the dataset includes only partial information about

the states of units in the network, training becomes much more difficult. Belief

networks are generally trained by using gradient descent methods to maximize the

log probability of a set of data vectors, . If we let denote visible units, denote

hidden units, and denote the network parameters (weights), then training amounts

to updating the weights as follows (derivation of this formula is omitted here for

brevity) [Mac03]:

Chapter 3. Restricted Boltzmann Machines 18

 () ∑ ∑ ()

 ()

where the inner sum is over all configurations of hidden units.

Summing over all configurations of hidden units, , is intractable, but this

could be approximated by instead taking samples drawn from the posterior (a

sample of the binary values of the hidden units given the values of the visible units).

Unfortunately, standard belief networks have to account for “explaining away”—the

values of hidden parent nodes are conditionally dependent given the values of their

visible children nodes—making even taking a sample from the posterior intractable

[Mac03]. In order to take a sample from the posterior, one would need to perform a

very long Markov chain of Gibbs sampling, where the value of each hidden unit is

repeatedly updated given the values of all other nodes [Mac03].

Attempting to overcome this intractability issue eventually led to the discovery

of Restricted Boltzmann Machines. Before considering Boltzmann Machines in detail

though, a short introduction to energy-based models—specifically probabilistic

energy models—is provided.

3.2 Energy-Based Models

Energy based models (EBMs) are, like most models in machine learning, a method

for encoding dependencies between variables. EBMs do so by associating a scalar

“energy” value to each configuration of variables. Inference consists of finding the

unobserved values that will minimize the energy value, given some observed

values. Learning consists of shaping an energy landscape (by changing the

parameters of the energy function) to have low energy at desired configurations of

the visible variables, and higher energy elsewhere.

Energy based learning can be applied to both probabilistic models, where the

energies have probabilistic meaning as a result of being normalized to sum to one

over all configurations, and non-probabilistic, un-normalized, models. Most

probabilistic models, including Boltzmann Machines, can be seen as special types of

EBMs in which the energy function does satisfy certain normalization conditions

average over posterior

Chapter 3. Restricted Boltzmann Machines 19

[LCHRH06]. The Gibbs measure is commonly used to normalize a collection of

energies such that they can be treated as probabilities:

 ()
 ()

∫ ()

The denominator, or normalizing factor, is commonly known as the “partition

function”, and is sometimes denoted . Where the configurations of are discrete,

the integral is replaced with a sum.

3.3 Boltzmann Machines and Restricted Boltzmann

Machines

Another type of generative neural network (an alternative to sigmoid belief

networks) is a Boltzmann Machine. Boltzmann Machines consist of undirected

connections between nodes. Since connections are undirected, the factors between

pairs of nodes do not represent conditional probabilities, but are instead given by

 , where is the activation value of unit (0 or 1), and parameter is the

weight between units and . Each node can also have a bias factor, where

parameter is the bias term of unit . The joint probability is the normalized

product of all the factors:

 ()
∏

 ∏ ∏

 ∑ ∑ ∑

where ∑ ∑ ∑ ∑

 . A Boltzmann Machine can thus be considered

a probabilistic energy model (section 3.2), where the energy function is:

 () (∑ ∑ ∑

) (3.1)

If has a high value, this energy function will assign low energy to

configurations where units and are both on at the same time, and vice-versa.

In a Boltzmann Machine, the probability of a node activating, if the value of all

other nodes are known, turns out to be equal to the sigmoid function applied to the

weighted inputs:

Chapter 3. Restricted Boltzmann Machines 20

 (|)

 ∑

where is a vector of the value of all nodes except k.

Note that no distinction is made between visible and hidden units in the

equations above, but Boltzmann Machines do generally include hidden units.

Unfortunately, learning is still intractable in Boltzmann Machines, for two

reasons. Firstly, since hidden units can be connected to each other, they are

dependent on each other in both the prior, (), and the posterior, (). Obtaining

a sample from the posterior still requires a long Markov chain of Gibbs sampling (in

which each hidden unit is repeatedly updated in isolation). Secondly, the joint

probability is not automatically normalized; the normalization term needs to be

explicitly dealt with when determining the gradient of the log likelihood.

Both of the issues that make Boltzmann Machine’s intractable are solved in

Restricted Boltzmann Machines (RBMs). The first problem is solved by removing the

connections between hidden-hidden. This makes the hidden unit values

conditionally independent of each other given the visible unit values, and thus

allows a sample from the posterior to be obtained simply by computing the

activation probabilities of each hidden unit once. Likewise, removing connections

between visible-visible units makes the visible unit values conditionally

independent of each other given the hidden unit values.

To see why the second problem (dealing with the normalization term), is an

issue, we derive the update rule for a Boltzmann Machine. In what follows,

denotes hidden unit values, denotes visible unit values, denotes weight values,

denotes visible biases, and denotes hidden biases. Also, is used to index visible

units, and is used to index hidden units.

Note first that since the only connections allowed in an RBM are between

hidden and visible units, the energy term differs slightly from equation (3.1):

 () (∑

 ∑

 ∑

)

Chapter 3. Restricted Boltzmann Machines 21

We begin by expressing the log probability of a data vector in terms of the

Boltzmann Machine energy function:

 () ∏ () ∏
∑ ()

∑ ()

and so:

 () ∑ (∑ ()

 ∑ ()

)

 ∑ (∑ ∑ ∑ ∑

 ∑ ∑ ∑ ∑

)

Next we examine the derivative of the first term. This term represents the un-

normalized probability of the visible units. The negative of this value is called the

free energy, ().

 ()

[∑ ∑ ∑ ∑

]

Note that () factors in the absence of hidden-hidden connections, meaning

there is no term involving an inner sum over hidden units, ∑ ∑ () , in the above

equation, and so we are able to factorize all possible configurations of hidden units

into a product over . The terms not indexed by come out the front.

 ()

[∑ ∏ ∑ (∑)]

[∑ ∑ (∑)]

 (

 ∑
)

 ()

In other words, this is the value of the relevant visible unit from the dataset

multiplied by the probability of the relevant hidden unit activating. This is

commonly written as:

 ()

 〈 〉

negative free energy, ()

Chapter 3. Restricted Boltzmann Machines 22

We follow a similar process when deriving the second term; the gradient of the

log of the normalization factor, :

[∑ ∑ ∑ ∑

]

[∑ (∑ ∏ ∑ (∑))

]

[∑ (∑ ∏ (∑))

]

∑

 ∑ ∏ (
 ∑)

 ∑
 (∑)

If we bring

 inside the summation, we see the terms colored blue equal ().

This is made explicit when we expand the product over into a sum over all

configurations of hidden units (the reverse operation to the factorization performed

above):

 ∑ (

∑
∑ ∑ ∑

)

 (

 ∑
)

 ∑ ()
 ()

In other words, this is the average of the value of the relevant visible unit

multiplied by the probability of the relevant hidden unit activating for each possible

configuration of visible units, weighted by the probability assigned to each

configuration in the joint. This can be rewritten as:

 〈 〉

So, finally, the full derivate of the log probability is:

 ()

 ∑ (() ∑ ()

 ())

And the update rule that follows, for simple gradient ascent of (), is:

 ∑ [〈 〉 〈 〉] (3.2)

Chapter 3. Restricted Boltzmann Machines 23

Note that the derivatives of () taken with respect to the visible and

hidden biases give similar (but simpler) equations.

Equation (3.2) describes how to train RBMs. The first term requires

determining the hidden unit activation values , given the visible unit values.

The second term, which is the derivative of the normalization term, is intractable to

calculate exactly, but can be approximated by taking the average of a few samples

from (). Generating even a single sample from () still requires running a

long Markov chain of Gibbs sampling, where the hidden units and visible units are

updated sequentially. To reduce computational expense, an approximation of

〈 〉 is generally used (as described in the next section).

Figure 3.1: Graphical Models. Left: A standard belief network with directed

connections exhibits “explaining away” (section 3.1). Middle: A Boltzmann Machine

with undirected connections (symmetric weights). It is intractable to generate

samples from, or train, this model. Right: A Restricted Boltzmann Machine with

restricted connections can be efficiently trained using contrastive divergence (section

3.3.1).

3.3.1 Contrastive Divergence and Persistent Contrastive

Divergence

Contrastive Divergence (CD) [Hin02] is a technique used to produce an

approximation to 〈 〉 by taking sample hidden and visible unit values after

a few steps of Gibbs sampling that started from the visible data vector used to

determine the first term in the RBM update rule derived in section 3.3. A key

advantage of generating a sample this way is that the sample will not be far from the

actual data values, and thus will hopefully result in the energy landscape around the

hidden

visible

Directed Belief Net Boltzmann Machine RBM

Chapter 3. Restricted Boltzmann Machines 24

data being pushed down ensuring a local (but not necessarily global) minimum is

created.

An alternative technique is called Persistent Contrastive Divergence (PCD)

[Tie09]. The goal of this approach is to produce a more accurate approximation of

〈 〉 , while avoiding the computational costs associated with running a long

Markov chain. This is achieved by initializing a Markov chain of “fantasy particles” at

the beginning of training. Several steps of Gibbs sampling are performed on the

fantasy particles each time the update rule is applied, and the generated values are

used as an approximation to 〈 〉 . As training goes on, the fantasy particles

will represent fairly accurate samples from the model (since they are generated via a

long chain of Gibbs sampling that has been running since training started), and thus

push up the energy landscape around configurations that the model actually likes

(the deeper valleys). PCD has been shown to speed up the learning of RBMs

significantly over CD in many cases.

Both CD and PCD methods have been shown to be capable of generating a

sample from 〈 〉 that is “good enough” for the purposes of learning a good

model, even when only one step of Gibbs sampling is used each time the network is

updated [Hin02, Tie09] (although increasing the length of the Gibbs chain will

usually improve results).

RBMs can be used to classify data directly by including a softmax unit [Hin06]

() in the visible layer (see Figure 3.2). A softmax unit has possible output values,

but only one can be active at a time. It uses the softmax activation function to

determine the probability with which each output value should be selected:

 ()
 ∑

∑ ∑

 In an RBM, the softmax (or label) unit has its value set according to the known

class of the corresponding data vector during training. The weights into the softmax

unit are trained in conjunction with the data. To infer which class an unlabeled data

vector belongs to, one simply needs to clamp the visible unit values with a data

vector (but not the softmax unit), and perform a chain of Gibbs sampling (alternating

between updating the hidden units and updating the softmax unit). The mean

activation values of the softmax unit, over a long Markov chain, give the posterior

probability for each class.

Chapter 3. Restricted Boltzmann Machines 25

Figure 3.2: Restricted Boltzmann Machine. An RBM is a two layer network with

undirected connections. Hidden unit values can be determined from visible unit

values in a single upward (recognition) pass, and visible unit values can be

determined from hidden units in a single downward (generative) pass. RBMs are

trained using Contrastive Divergence. The visible layer may include a softmax unit,

allowing the RBM to be trained in a supervised manner and used for classification of

new data vectors.

3.4 Deep Belief Networks

RBMs can be used to train a more powerful multi-layer generative model, a Deep

Belief Network (DBN) in a greedy layer-by-layer process [HOT06]. To train a DBN, a

single RBM is first trained on the dataset. The weights of that layer are then frozen,

and a second RBM is trained on the aggregate posterior of the first layer—that is, it

takes as input the hidden unit activations of the first RBM, when given the data as

input. This process can be continued to train multiple layers. After training is

completed, the DBN can be viewed as a single RBM (the top layer) with a directed

network of connections in all the lower layers which can be used to recognize data

vectors (convert them into input for the top layer RBM), or to generate data (convert

samples from the joint probability from the top layer RBM into visible data).

The proof of why a greedy layer-by-layer training process works is given in

[HOT06]. The intuition behind the proof is that in an RBM the undirected weights

ensure that the aggregate posterior over hidden units given the data, (), which

should learn to represent the prior, (), does not factor. This means that training in

successive layers should be able to improve the network’s model of ().

Visible Labels

Hidden

Chapter 3. Restricted Boltzmann Machines 26

Figure 3.3: Deep Belief Network. A DBN is a stack of Restricted Boltzmann

Machines, trained layer by layer in a greedy manner. The RBM in the top layer may

include a softmax label unit.

To classify data in a DBN, the top layer RBM is trained with label units in the

same way as described earlier. An alternative approach to classifying data in a DBN

is to first train the network with no labels, and then use the weights as the

initialization values for a standard multi-layer neural network with a softmax output

layer added. The network can be trained using standard back-propagation. Fine-

tuning the weights with back-propagation has been shown to generally produce

slightly better classification results than training an RBM with label units [Hin06].

3.5 Other Similar Systems

A variety of extensions to RBMs and DBNs have been suggested. Discriminative

RBMs [LB08] adopt a training rule that maximizes the log probability of the correct

label unit given the data, () instead of (). Hybrid RBMs use a

training rule that maximizes some weighted combination of the two. Both systems

have been used to achieve improved classification results over a regular RBM.

Autoencoders are stochastic networks that are trained to capture key variation

in data by running the data through a directed “feed-forward” network and trying

and reproduce the data as output. They consist of an input layer, one or more

smaller hidden layers, and an output layer that is the same size as the input layer. By

Visible Units

Hidden

Hidden Labels

Hidden

Chapter 3. Restricted Boltzmann Machines 27

running the data through small hidden layers, the nodes will have to try and detect

important features in the data in order to reproduce similar values in the output

layer. A greedy layer-by-layer approach to learning a deep network, by stacking

autoencoders (very similar to the approach used when stacking RBMs to produce a

DBN), has been shown to be capable of producing similar classification results,

suggesting the greedy layer training approach may be widely applicable [BLPL07].

There are many other variations of RBMs that allow for modeling of

continuous data, time series data, etc [SH09, SMH07, TH09].

Chapter 4. Systems that account for some kind of Configural Variation 28

Chapter 4

4 Systems that account for some kind of

Configural Variation

There has been a considerable amount of work done in the field of Machine

Learning and Computer Vision towards detecting objects given data that includes

configural variation (i.e. data from the world that has not undergone pre-processing

to fully remove configural variation). Virtually all these systems focus on only one or

a small set of specific kinds of configural variation, and use human expert

knowledge to hardcode the ability to deal with this variation into the network

structure or algorithm.

Of particular note, there are a range of models that are loosely inspired by the

biological structure of the visual cortex, that have proposed different ways to

account for configural variation that arises as a result of viewing objects from

different perspectives. One such model is a Convolutional Neural Network

[LBBH98].

4.1 Convolutional Neural Networks

Convolutional Neural Networks address the problem of recognizing an object no

matter where it appears in an image. Several techniques are employed to achieve

this goal.

Firstly, neurons in one layer receive input from a set of spatially contiguous

neurons from the previous layer; these input units make up a “receptive field”. This

forces the system to learn local features such as edges and corners (see section 4.1.1).

In addition, input weight values are shared between a set of units whose receptive

fields are located at different places in the previous layer. The units in each layer are

thus organized into a set of planes, or “feature maps”, where each plane consists of a

Chapter 4. Systems that account for some kind of Configural Variation 29

set of units who share identical input weight values, allowing a feature to be

detected at any location in the image. Different feature maps will extract different

features from each location. The weights in a convolutional neural network are

trained using standard backpropagation, and the update rule for shared weights is

simply the average of the gradient for each contributing weight. The leftmost part of

Figure 4.1 demonstrates this structure.

Conceptually, inference in this network structure is equivalent to convolving a

window around the image, looking for particular features in any location. If the

input image is translated, the feature map output will be translated by the same

amount, but will remain unchanged otherwise.

Convolutional neural networks also perform some subsampling. Units in

subsampling layers receive input from small non-overlapping rectangles from the

previous layer, and down-sample by taking the average input value, multiplying it

by a trainable coefficient, adding a bias and putting this value through a sigmoid

function (alternatively take the maximum value can simply be taken). Subsampling

layers are important for reducing the computational complexity of convolutional

neural networks, which are generally very large. They also add additional

translation and distortion invariance.

Substantial translation and some distortion invariance is achieved by

interleaving convolutional layers, that learn and detect spatially invariant features,

with subsampling layers, that reduce the spatial resolution of the data. A standard

multiplayer perceptron network can be appended to the output from a

convolutional network to achieve impressive classification results. Figure 4.1 shows

an example of a full network structure.

LeCun, et al. demonstrate how convolutional neural networks can be used to

achieve impressive results on recognizing digits and characters. After a substantial

amount of fine-tuning, they achieved a very low error rate of 0.95% on the standard

MNIST dataset [LBBH98].

Chapter 4. Systems that account for some kind of Configural Variation 30

Figure 4.1: Convolutional Neural Network. Convolutional Layers consist of a set of

feature maps whose input is obtained by convolving a window over the input layer,

thus detecting the same feature but at any location. Subsampling layers down-

sample the input. Nodes in deeper convolutional layers (such as layer 3) take the

combined input from receptive fields from a subset of the feature maps from the

previous layer. This ensures each new feature map learns different features, and

prevents the number of connections in the network from getting too large.

4.1.1 Exploiting Local Features

A common idea when attempting to detect objects in data that includes configural

variation is to restrict nodes to learning local features only, as is done in convolution

neural networks by limiting the input weights into each node. If an image is partly

distorted (eg: skewed, partly out of focus, or occluded, etc), many local features will

still be able to be detected. Some distortion invariance is achieved. When there are no

local connection limitations, long range dependencies become built into the feature

detectors making them very susceptible to small distortions or transformations in

the image.

An RBM trained with connections into hidden units restricted to a set of local

visible units was demonstrated to learn at a much faster rate than a standard RBM

[SMB10]. It has also been shown that by simply adding a constraint, enforcing that

only a sparse amount of hidden units are allowed to be activate at once, to the

learning rule, RBMs will learn more localized features, such as the various strokes

that text is made up of [Eka07].

Input
(1) Convolutions (2) Subsampling (3) Convolutions

Shared

Weights

(4) Subsampling

Fully Connected MLP

Chapter 4. Systems that account for some kind of Configural Variation 31

4.2 Other Convolutional Models

There have been a range of modified versions of convolutional systems proposed. A

slightly modified convolutional network was able to achieve some rotational

invariance by training it on a sizable number of rotated versions of the same image

[FG06]. The nodes in the first hidden layer receive input from each of these images

simultaneously, and since the weights of the feature detectors are shared, the feature

maps will learn to detect various key features from any of the various possible

rotations. Given that this system is trained on data that is obtained by performing

transformations (the potential result of actions) on the original image, it shares some

similarities to the system presented in this thesis. We, however, do not assume any

prior knowledge of how actions will affect the data, and force the agent to learn this

information themselves during the training process—a considerably more difficult

task.

In a tiled convolutional neural network [LNC+06], the constraint that all

weights in a feature map must be shared is not enforced between all units. Instead,

only weights between units that are spatially distant are tied (contribute towards

how each other’s weights are updated). This means that translational invariance is

not automatically built into the system, but the system is capable of learning to be

partially invariant to various kinds of transformations, since the subsampling layers

down-sample over units that have different basis functions. An unsupervised pre-

training algorithm is used to learn a sparse representation of the data. This system

achieved impressive classification results on various visual datasets.

The convolutional network concept has also been applied to Restricted

Boltzmann Machines [LGRN09, NRM09]. Both of the suggested architectures

essentially merge the undirected nature of RBMs with the convolutional (and

subsampling) features of convolutional neural networks. These networks are able to

be trained using a slightly modified version of Contrastive Divergence, but in both

cases, enforcing a sparsity constraint was essential to prevent the network from

learning trivial solutions, where features simply end up detecting single pixels.

Convolutional RBMs can be stacked in a similar manner to regular RBMs to form a

deep network. Impressive classification results were achieved on the MNIST and

other visual datasets using these models. In addition, they demonstrate impressive

generative power.

Chapter 4. Systems that account for some kind of Configural Variation 32

Another method to achieve some transformation invariance involves using

steerable filters [FA91]. Steerable filter systems include units that adaptively control

the orientation (or other transformations) of the filters by performing a hard-coded

rotation operation. This approach has been incorporated into RBMs [KW11]. The

weight values leading into each hidden unit are rotated according to the value of a

corresponding discrete valued orientation unit. Inferring the value of the hidden

units requires summing over all possible orientation values, so learning is

presumably very slow, but the system was demonstrated to learn rotationally

invariant features.

4.3 Modeling Transformations

Some work has been done on modeling transformations (the result of actions that

alter the configural variation in data) themselves. In particular, Gated RBMs can be

used to learn the different ways that input data vectors can be transformed into

output vectors [Mem08]. Gated RBMs consist of an input layer, an output layer, and

a hidden layer. There are undirected three way connections between the nodes in

each layer. Figure 4.2 shows this structure.

The system can be trained like a regular RBM, where the energy function (not

including biases) is specified as:

 () ∑

Note that the energy function is conditioned on x. Since a Gated RBM is

learning how input data is transformed into output data, it does not try to model the

input values themselves. The learning rule is similar to that in a regular RBM, but

computing the activation probability of each node requires substantial extra

computational cost (as each pair of hidden-output nodes receives weighted input

from each node in the input layer). To reduce the computational cost, the

connections may be restricted to local patches.

Chapter 4. Systems that account for some kind of Configural Variation 33

Figure 4.2: Gated Restricted Boltzmann Machine. Left: A Gated RBM is made up of

three layers. An input layer, an output layer (the output of a transformation applied

to the input values), and a hidden layer that captures the many different ways an

input data vector can be converted into an output vector. There is a three way

weight tensor between each configuration of nodes. Middle: As a recognition model,

the hidden units (h) can be thought of “gates”. The learned weights will determine

what slices of information should be blended into a transformation. Right: As a

generative model, the visible units (x) can be considered “gates” to a set of basis

functions that have learned to reconstruct the output (y).

Gated RBMs have been shown to be capable of learning to model various kinds

of affine transformations [MH07]. One application of this system was to train it on

data obtained by performing affine transformations on the USPS digits dataset (see

section 5.2 for a description of this dataset), and then performing PCA to reduce the

number of dimensions [Dun89]. After training this system, digits were classified by

determining how well the system was able to transform prototypical images into the

digit to be classified (the output). The prototype image that is best able to be

transformed into the digit is used to classify the digit. This system does not hard

code information about transformations, meaning this classifier is able to achieve

good results that are invariant to many kinds of transformations. But the system

itself only actually learns transformations. The system does not encode any

information about classes, and classification results are only achieved using

prototype images (which are essentially providing some external information).

xi

yk

hj

xi

hj

yk

xi

yk

hj

Chapter 4. Systems that account for some kind of Configural Variation 34

There are various further extensions of Gated RBMs including Style-Gated

Factored Conditional RBMs, which include multiple input layers (representing

sequential frames) allowing for the building of impressive generative models of

motion data [Tay09, TH09, THR09].

4.4 Techniques other than Machine Learning

There has been a sizable amount of work done in the area of Computer Vision where

non machine learning techniques are used to detect objects in images that explicitly

take into account configural variation. Generally these involve applying a function

over all of the pixels in the image to determine the likely location of features such as

boundary lines. The Hough transform is a commonly used example of one of these

techniques [DH72].

Lowe proposes a method for extracting features from images that achieves

substantial invariance to many affine distortions, changes in 3D viewpoint, and even

changes in illumination [Low04]. This is achieved by using a series of different

operations, including: computing a Gaussian kernel that is convolved with the

image, downsampling, clustering features in pose space using the Hough transform,

and several other computations specific to image processing. By performing this

fixed set of (computationally expensive) operations, the full algorithm is able to do

an impressive job at recognizing specific features in images, and achieves a very

high level of invariance to configural variation.

Many techniques to eliminate various kinds of configural variation by pre-

processing data also exist, such as computing the center of mass of the pixels, and

then translating an image so this point is at the center.

4.5 Systems that drive actions from a learned internal

representation

There are a range of proposed systems that drive actions off of a learned internal

representation of data (as opposed to standard reinforcement learning techniques

which infer which actions to take based solely on the input state). One particular

example of such a system involves using an RBM, which is used to both build a

Chapter 4. Systems that account for some kind of Configural Variation 35

hidden representation of the input data, and to directly infer which actions to take,

to train simulated robots to head towards food locations and avoid walls [Ryb05].

In this system, the visible layer includes both input sensory data as well as

nodes representing the possible (movement) actions the robot can take. During

training the RBM will hopefully learn to associate the move left action with sensory

data that specifies there is food ahead to the left. Once the RBM has been trained, the

best action to be taken can be inferred by clamping the sensory input, and running a

Gibbs chain to draw a sample from the action units to determine which action to

take. The very simple learning rule used (weights were only ever updated when

food was successfully reached) limited the results achieved. Using only a few input

sensors allowed the robots to learn at least some intelligent behavior.

Chapter 5. Learning a classifier that is invariant to Configural Variation 36

Chapter 5

5 Learning a classifier that is invariant to

Configural Variation

In order to construct a powerful model of the world, it is essential to have some

knowledge of how an object can differ as a result of changes in an agent’s

configuration with the object (for example, viewing an object from a different

perspective alters how the object looks—see Figure 5.1). An agent’s configuration

with an object can be controlled by the agent itself by performing actions, such as

tilting its head. These configuration-changing actions transform the agent’s sensory

data.

Figure reproduced from http://www.artyfactory.com/portraits/drawing_techniques/proportions_of_a_head_1.htm

Figure 5.1: An object viewed from two different perspectives. Viewing an object

from a different perspective is the same as seeing a transformed version of the object.

In this case, a head is three-dimensionally rotated by 90°.

Chapter 5. Learning a classifier that is invariant to Configural Variation 37

Agents in the world will be constantly viewing objects from different

perspectives. Thus, it is imperative that they know what can happen to objects after

they have undergone various possible transformations so that they can reliably

identify these objects, and then attempt to interact with them.

Standard networks that build internal models of data simply ignore the fact

that the data might include various kinds of configural variation (some objects will

be transformed differently from others). In a classifier, an object that is, for example,

rotated or translated slightly will be treated the same as any other data element and

the classifier will try to assign that data to the correct class. In a high dimensional

space, it is extremely difficult for any network to accurately determine the

boundaries between classes where each class includes data that differs drastically as

a result of configural variation (illustrated in Figure 5.2).

In classifiers that do not specifically consider configural variation, only limited

generalization is achievable. In these systems, generalization usually occurs as a

result of the structure of the network, which forces similar data vectors to be

classified similarly. In an RBM for example, the update rule will lower the energy of

a visible configuration from the dataset by adjusting the network’s weights. In doing

so, the energy of similar visible configurations will also be lowered somewhat. For

visual data, this means that images that only differ by a few pixels are likely to

belong to the same class. In many cases, this provides useful generalization. But

since configural variation can drastically change all the sensory data values (see

Figure 5.1 for example), regular classifiers do not do a good job of generalizing

classification results across data elements that include configural variation.

Usually data is heavily pre-processed to avoid having to deal with this issue,

and so that good results can be achieved. If regular classifiers are exposed to a very

large amount of data, however, they can still achieve reasonable performance, even

on data that includes sizable amounts of configural variation. This is demonstrated

by the fairly low error rate of 10.47% achieved on a version of the MNIST data set

(see section 5.2) that includes rotated versions of all the images, using a regular

Restricted Boltzmann Machine [LBLL09].

A classifier that explicitly takes account of configural variation can alter the

way data appears (that is, how data can be transformed as a result of configuration-

changing actions), will be able to achieve better generalization, and thus can

Chapter 5. Learning a classifier that is invariant to Configural Variation 38

potentially improve classification performance on almost any challenging realistic

dataset. The degree to which this is true therefore depends on how well the classifier

is able to model the transformations.

5.1 System Architecture

Our approach to improving generalization, when dealing with data that includes

configural variation, is to train an agent to perform configuration-changing actions

that make each data vector appear as similar as possible to data that has been seen

before, before actually updating its internal representation (an associative memory,

or RBM, which is also used to classify the data). When looking at two dimensional

visual data, this essentially amounts to orienting (as well as positioning and scaling,

etc) the images. This does not guarantee that the images will specifically be

transformed to an upright, centered position, but only encourages them to all have

the same orientation. In what follows, when referring to “upright”, we are usually

referring to this randomly selected orientation that images are transformed into.

Figure 5.2: Classifying transformed images. Top: A standard associative memory

will store each digit as it appears. Bottom: Our system first determines how to

transform the images (in this case which way to rotate the digits) before storing the

correctly oriented versions only. This makes the classification task in the associative

memory much easier, avoiding the difficult class boundary separation issues that

can arise when trying to categorize very diverse data. Achieving good results

depends largely on ensuring new data is correctly transformed to look as similar as

possible to previously seen data.

The classifier must

recognize all these as

“2”s.

There is much lower

variability in data that is

oriented, which makes the

classification task easier.

Chapter 5. Learning a classifier that is invariant to Configural Variation 39

It is common to think of systems that drive actions off of some internal

representation of the world that has been learned by an agent. Actually allowing

actions to drive how that internal representation is formed, however, is a seemingly

novel idea.

It may at first seem counter-intuitive to try and make a data vector match what

has been seen before, as this will result in the associative memory itself not ever

learning to recognize versions of the data that include unexpected configural

variation (as it only sees correctly oriented versions of images). But if we are able to

train the system to do a good job of transforming new data to match previously seen

data, then all of the configural variation can be generalized away in this step—that

is, a separate system can focus entirely on these kinds of generalizations. The job of

the classifier is made much easier, since it doesn’t have to distinguish between

objects seen from different perspectives (a source of a large amount of the variability

when viewing objects).

Another way to view the task of the reinforcement learning network in our

system is as an automated pre-processor (one that doesn’t simply use a heuristic

based approach) into a standard classifier. This “pre-processor” can handle a wide

variety of transformations—specifically, those transformations that arise as the result

of actions the agent is physically capable of making.

Although our setup implicitly assumes the agent will actually have to perform

a series of actions in order to classify new data, this is not strictly necessary.

Although we don’t pursue this further here, the agent could build a mental model of

the way in which data is transformed and once this model becomes accurate, use

that to imagine transforming data into an upright position that is desired by the

associative memory. This would mean the internal representation (which includes a

model of upright data, and a model of how data can be transformed) would include

full knowledge of all the various ways an object can look. To generate a sample of a

transformed object, Gibbs sampling would be performed in the Restricted

Boltzmann Machine, then this sample would be transformed by running it through

the network that models transformations. There has been some recent success

producing models capable of representing complex transformations [MH07].

There is evidence that we use both of these methods to identify objects: tilting

our heads slightly to read sloped text on a whiteboard, versus attempting to read

Chapter 5. Learning a classifier that is invariant to Configural Variation 40

upside down text without realigning ourselves (difficult, but possible). Such mental

models could eventually be used by agents when planning how to achieve goals.

Reinforcement learning techniques, as described in Chapter 2, can be applied

to a wide range of problems. The problem only needs to be described in terms of a

set of states (some of which have a reward and/or penalty) in which the probabilities

of transitioning between states, as a result of actions, are known. Thus it seems

natural to use a reinforcement learning algorithm to determine which actions should

be taken, and thus how the data should be transformed, in order to transform a data

vector to make it look like one that has been seen before. This means we are

completely unrestricted in terms of what possible actions can be used. The

reinforcement values are based purely on how strongly the associative memory

recognizes the transformed data vectors; that is, how similar a new data vector looks

compared to previous data that the associative memory has learned to represent.

We implement the reinforcement learning network using a two layer neural

network that maps the input data to various actions, and experiment with both Q-

Learning and Policy Gradient methods. At the same time as the reinforcement

learning network is being trained, we are also training a Restricted Boltzmann

Machine (an associative memory) that includes label units, on the resulting data

after a sequence of actions has been applied. Note that the associative memory could

be trained in an entirely unsupervised manner if desired. We include label units to

demonstrate that the model has an improved ability to infer ground truths about

data; specifically which class the data belongs to.

Figure 5.3 gives a high level overview of the full system, while Figure 5.4

provides a more detailed look at the system architecture, and provides a primer of

the process used to train and classify data. Further details are given throughout the

chapter.

Chapter 5. Learning a classifier that is invariant to Configural Variation 41

Figure 5.3: High Level Diagram of System Architecture. The system consists of a

Restricted Boltzmann Machine, and a neural network that uses reinforcement

learning techniques to transform data. Input data is unoriented; that is, it may include

various kinds of configural variation. The reinforcement learning network learns to

perform actions that eliminate as much of this configural variation as possible by

receiving reinforcement signals that are based on the Restricted Boltzmann

Machine’s internal representation. The output of the reinforcement learning network

is passed to the Restricted Boltzmann Machine so it can improve its model of

oriented data.

H V2

V1

Restricted
Boltzmann Machine

Reinforcement
 Learning
 System

Data transformed to a
Standard Orientation
(configural variation

eliminated)

Sensory data showing
an object (including
configural variation)

Internal
Representation

of Standard
Orientation

Input

Chapter 5. Learning a classifier that is invariant to Configural Variation 42

Figure 5.4: Low level Diagram of System Architecture. To train the system, a data

vector is first run through the reinforcement learning network to get an action as

output. This action is then performed, producing a new transformed data vector.

The new data vector is shown to the Restricted Boltzmann Machine so that a

reinforcement value can be computed; the reinforcement value denotes how similar

the new vector is to data that the RBM has been previously trained on, as compared

the same measure applied to the original vector. Actions that transform data so that

it closely matches data that the RBM has been trained on are thus rewarded, and will

become preferred in the future. The reinforcement gradient is backpropagated

through the reinforcement learning network and used to update the weights. A

sequence of actions is performed until the reinforcement learning network settles on

a data vector. The final transformed data vector is then passed to the RBM, and the

contrastive divergence rule is applied to train the associative memory with this data.

To classify a data vector, it is run through the reinforcement learning network and

actions performed until the network settles on a transformed data vector. This

transformed vector is then passed to the RBM, and the label unit that has the highest

probability when the data vector is clamped on is selected as the class.

Appendix B documents the full algorithm in more detail.

Data Vector (V1)

Hidden Layer

Output Layer
(actions)

Data Vector (V2)

Restricted
Boltzmann Machine

Reinforcement
Learning Network

Provides Reinforcement
Values for training

Perform
actions

Hidden Layer (H)

Labels

Chapter 5. Learning a classifier that is invariant to Configural Variation 43

To test the system on a problem of reasonable difficulty, we consider actions

that can result in affine transformations of two-dimensional images. Our initial

experiments focus on actions that result in only one kind of transformation, starting

with tilting of the head type actions that result in images being rotated.

5.2 Choice of Datasets for Experiments

After choosing to use two dimensional images, the widely used MNIST dataset1 was

a first choice for labeled data that could be used to test the system. The full dataset

consists of 70,000 digits, from a range of different writers (high school students and

government employees). The images have been downscaled to 28x28 pixels; a total

of 784 dimensions. The images were originally converted to black and white, but

additional pre-processing of the original NIST digits to reduce the size, center the

images, and add padding resulted in some grayscale values. The MNIST dataset is

able to be represented using the standard binary form of the Restricted Boltzmann

Machine [Hin06, HOT06]

Given the length of time it can take to run experiments in the system (see

Appendix C), another smaller dataset was considered and eventually used to

perform some experiments that continue on for a longer number of epochs.

The USPS (US Postal Service) dataset2 contains digits taken directly from mail.

The images have been downscaled to 16x16 pixels and include no padding; that is,

256 dimensions and around three times smaller than the MNIST data. The images

are in grayscale, and have been centered and scaled, and any background biases

removed. The dataset itself is also much smaller than MNIST, containing only 9,298

digits in total. The USPS digits are less standardized than MNIST digits, and thus

tend to be more difficult to classify than MNIST [See05]; it was widely used prior to

the MNIST dataset being produced, and is still used in several recent papers mainly

for the purposes of efficiency [HOT06, MH07, Mem08].

1 Dataset available for download from http://yann.lecun.com/exdb/mnist/
2 Dataset available for download from http://www.gaussianprocess.org/gpml/data/

Chapter 5. Learning a classifier that is invariant to Configural Variation 44

Figure 5.5: MNIST and USPS images. Left: A sample of some 28x28 pixel digits

from the MNIST dataset. Right: A sample of some 16x16 pixel digits from the USPS

dataset. The relative size of the digits is preserved.

Note we would run into trouble if we performed actions that transform the

USPS digits out of the bounds, without adding padding (and thus increasing the

dimensionality). Fortunately, rotation transformations only move a very minimal

number of pixels from the corner of an image out of the bounds—these pixels are

usually blank.

5.3 Choice of Reinforcement Value

Determining what reinforcement value to use was critical to achieving good results

in the system. Clearly, the reinforcement value should be high when the RBM is

shown data that is similar (i.e. few pixels are different) to what it has seen before,

and low when the data is unlike what has been seen before.

The log likelihood of a visible data vector in the RBM specifically measures

how much the network likes that data vector: it is the probability that the RBM

would generate that data vector during Gibbs sampling. As described in the

Chapter 5. Learning a classifier that is invariant to Configural Variation 45

introduction to this chapter, when the energy value of a data vector is lowered for a

specific configuration during training, the energy landscape (and thus the log

likelihood) shifts downwards for all similar data vectors as a result of the network

structure and update rule.

What is really needed though is a measure of how much the RBM likes a

transformed data vector, as compared to the original data vector before the action

was performed, thus providing reinforcement for specific actions. For this, the

change in the log likelihood of the data in the RBM can be computed exactly and

reasonably efficiently. Note that computing the actual log likelihood of a data vector

is intractable, but computing the difference in log likelihood between two vectors

becomes tractable because the normalization terms cancel (see below). Also note that

since the label units are visible units as well, their values have to be included in the

computation. As labeled data is used when training the RBM, we can simply activate

the correct label unit (
) in both data vectors, preventing it from having any

significant impact on the result. Simply activating each label unit with probability

 ⁄ when computing this value does not alter the result very much.

To derive the formula for the change in the log likelihood of the data, we begin

by expressing it in terms of probabilities. As usual, stands for the normalization

term (the sum—over all possible configurations of visible and hidden units—of the

joint probability):

 (

) (

) (
∑ (

)

) (

∑ (

)

)

Immediately we can see that because we are computing the difference in

probabilities, the intractable terms will cancel:

 (
 (

)

 (
)

) ∑ (

)

 ∑ (

)

With no terms, the equation is reduced to the difference in the negative free

energy between the two data vectors. For each term, we substitute in the value for

the free energy of the data, and rearrange (note the formula for the free energy of a

data vector in an RBM was given in section 3.3). The only term that cancels is , as

the activated label unit is the same in both cases:

Chapter 5. Learning a classifier that is invariant to Configural Variation 46

 (
 (

)

 (
)

) (∑

) (∑

)

∑ (∑)

 ∑ (∑)

Computing this equation requires summing over all hidden and visible units

separately. It takes a relatively short amount of time to calculate.

There are other alternative values that could be used for the reinforcement

value which also express information about whether or not the RBM has seen similar

data before. One alternative option that was considered was the inverse change in the

entropy of the label units: a measure of how much more certain the RBM now is about

which class a given data vector belongs to. Entropy is highest when there is lots of

uncertainty about the distribution of labels—that is, the RBM is unsure which class

the data vector belongs to. Another option was to use the change in the correct label

probability (or in the case of unsupervised data, the change in the maximum label

probability could be used instead). This alternative uses supervised learning to

ensure the reinforcement learning network is not rewarded for transforming a digit

to look like a digit from another class.

After some experimentation, the suggested alternative measures were found to

be much more susceptible to noise, as compared with using the change in the log

likelihood, and produced significantly inferior results. Figure 5.6 demonstrates this

by showing some samples of the potential (unscaled) reinforcement values given by

each method, when rotating a digit computed on an RBM that was trained on a

moderate number of elements of upright data. The change in log likelihood indicator

is able to start providing steadily increasing reinforcement values from around 25 to

30 degrees from upright (in either direction), and the reinforcement value spikes

particularly high when the digit is transformed to be directly upright. The other

potential indicators spike much less definitively when the digit is transformed to be

upright and (presumably since they are only taking into account the 10 label units

and not the potentially hundreds of visible units) the reinforcement signal is much

noisier.

Given the conceptual reasoning behind the system, it is intuitively very nice to

use a reinforcement value that does not rely on supervised labels, but instead is

computed straight from the internal representation.

Chapter 5. Learning a classifier that is invariant to Configural Variation 47

Figure 5.6: Sample values of various reinforcement value alternatives. The red

lines represent the actual reinforcement values that are computed for actions that

rotate sample images clockwise only one degree at a time. The blue lines are

equivalent to the integral of these functions (shown on a 3x smaller scale). The

plotted values are based on the average reinforcement values obtained from a series

of sample images. Note the somewhat higher reinforcement values on the left side of

each chart are presumably a result of many digits being slanted slightly to the right.

Chapter 5. Learning a classifier that is invariant to Configural Variation 48

5.4 Q-Learning and Policy Gradient

The reinforcement learning task that our system is faced with is quite unique.

Notably, the reinforcement values that are obtained early in training are likely to be

very poor (as the RBM is initialized with random weights, and takes some time to

begin forming valleys where high reinforcement can be obtained), and thus will

result in feedback to the reinforcement learning network that causes it to train to

perform erroneous actions. As such, the system must not become “locked in” to a

solution too early; it must not get stuck in a poor local optimum.

At the same time, however, the reinforcement learning network must be able to

fairly quickly adapt its policy so that it transforms data to match valleys that begin

forming in the RBM’s energy landscape. If it fails to do so, the RBM will receive data

with inconsistent configural variation and begin forming multiple valleys that

confuse the reinforcement signal.

The full ramifications of the two-way feedback between the associative

memory and the reinforcement learner are discussed in some detail in chapter 6.

Here we discuss how the structure of the reinforcement learning network was

refined, in order to obtain good performance in spite of the unique properties of this

problem.

We considered the Q-Learning algorithms (introduced in section 2.2.1), a value

function estimator, and a Policy Gradient algorithm (introduced in section 2.4),

where an attempt is made to follow the gradient of the policy directly.

Q-Learning algorithms, and other similar value function estimators, have been

demonstrated to work well on a wide spectrum of reinforcement learning problems

[SB98], in spite of several documented theoretical drawbacks [Bai95], including the

fact that there is no guarantee of convergence to an optimal policy when the action-

value mapping is approximated. One important problem with Q-Learning, as

mentioned in section 2.3, arises because value function estimator methods make

distinctions between which action the policy should follow based on arbitrarily

small value differences; very small changes in these values can result in drastic

changes to the policy. When the action-to-value mapping is approximated using a

neural network and thus not perfectly accurate, small changes to the weight values

can result in drastic unintended changes in the policy.

Chapter 5. Learning a classifier that is invariant to Configural Variation 49

This appears to cause some negative effects in our system. The error rate on the

validation set fluctuates significantly late in the training process, and sometimes

diverges (see Figure 5.10), presumably largely due to catastrophic forgetting [Rob95,

Fre99] as a result of using a neural network to approximate the state-action

mapping, where the “correct” Q-values do not differ by much, and change over time

(due to improvements in the policy) [Cah10]. A low discount rate and more

explorative policy can both help mitigate this issue to some degree, but it is largely

unavoidable without taking significant steps to avoid catastrophic forgetting. The

issue is discussed further in section 6.2.

While using Q-learning and approximating the state-action mapping using a

neural network can result in some errors due to catastrophic forgetting, it does have

an important advantage over alternative methods. Q-values (and thus the policy)

can adapt very quickly to changes in the makeup of reinforcement values provided

by the RBM (as a result of new valleys forming in the RBM’s energy landscape),

especially early in training. Quick convergence early on is pivotal to the success of

the system.

Policy Gradient algorithms, on the other hand, have a more solid theoretical

guarantee of convergence even when approximated [SMSM99], but have not had

demonstrated success on many real world problems outside of a few specific

domains. They are often noted as taking much longer to converge than value

function estimator approaches due to variance in the gradient estimate [WT01].

Policy Gradient algorithms appear to find it more difficult to adapt to changes in the

makeup of reinforcement values. This is presumably because it takes more learning

time to adjust the network output, and the network is more likely to get stuck in a

“stable” local optimum. To implement policy gradient, we used the standard

OLPOMDP algorithm [BB00], and parameterized the gradient using a Gibbs softmax

policy [SMSM99] in the case of discrete output actions, or a Gaussian policy [Wil92]

in the case of a continuous output action (see section 5.4.1).

Both mini-batch and online (one element at a time) versions of each of these

two algorithms were experimented with, and a range of different learning

parameters were used. Best results were obtained using online learning with a

discount rate of 0.5, and a learning rate of 5.0E-06 (the value is so low because the

reinforcement values need to be scaled down).

Chapter 5. Learning a classifier that is invariant to Configural Variation 50

On a small subset of the data, and with a small network, preliminary results on

rotated digits showed that, as expected, the Q-Learning approach consistently

outperformed the Policy Gradient approach. The Q-Learning algorithm was almost

always quickly able to learn to rotate digits to roughly the same angle, whereas the

Policy Gradient algorithm usually started converging to a “stable” policy (i.e.

consistently rotate all digits to the same orientation), but frequently ended up

diverging. It was also much more vulnerable to changes in learning parameters,

requiring just the right balance between the learning rates to achieve some success.

Table 5.1 shows the best preliminary classification results obtained by the system

using the different algorithms. Policy Gradient performed considerably worse since

it was never able to fully converge. It is possible that a Policy Gradient algorithm

that includes an average reward baseline to reduce the variance of the gradient, such

as OLGARB may improve our results. Figure 5.8 provides further analysis on how

well the different algorithms were able to learn to rotate images to the same

orientation.

Error Rate

(MNIST dataset, 1,000 training, 1,000 validation, 1,000 testing,
75 RBM hidden units, 50 RL hidden units, 30 epochs, no pre-training)

Q-Learning
Algorithm + RBM

15.69%

Policy Gradient
Algorithm+ RBM

24.63%

Table 5.1: Classification results for different reinforcement learning algorithms.

The error rates obtained from training the system using a value function estimator

(Q-Learning) algorithm versus using a Policy Gradient algorithm, with and without

pre-training.

5.4.1 Network Structure

Various alterations were also made to the structure of the reinforcement learning

network to improve its ability to store the state-action mapping. Both algorithms

were implemented as a standard Multilayer Perceptron with units in the hidden

layer given a sigmoid activation function, and standard back-propagation used to

Chapter 5. Learning a classifier that is invariant to Configural Variation 51

propagate the update rule back through the network. Initially, a very simple

solution was implemented for the output layer—a single linear output node was

used. The node’s (scaled) output value represented the number of degrees with

which the data vector should be rotated (as the result of an action). To facilitate some

exploration, some small amount of Gaussian noise was added to the output value.

With this architecture, the system occasionally produced somewhat promising

results, but, in general, struggled to learn the correct manner in which each data

element should be transformed.

Representing high dimensional data in a network with only one set of weights

in the second layer enforces a very large amount of overlap in the way data is

represented in the network. When there is a high level of representational overlap

this can quickly result in catastrophic forgetting, since each update to the system will

disrupt all the previous updates to some degree [Fre91].

Alternative architectures were constructed using varying numbers of discrete

output units, each one representing an action that has the effect of rotating the data a

different number of degrees. We found that the network worked best with a sizable

number of discrete output units.

In the case of Q-Learning, the softmax function was applied to the output layer

to encourage some exploration, and an action randomly selected based on the

corresponding probabilities. In the case of Policy Gradient, the policy is

parameterized directly using the softmax function, and the gradient of this policy is

backpropagated through the network. This version of the system performed

substantially better. In the second layer, only the weights leading into the output

node corresponding to the action that is taken (or should be taken by the optimal

policy) need to be updated. This makes it much easier for the network to represent

the mapping from data vectors to actions, and greatly limits the effect of catastrophic

forgetting. Figure 5.7 gives a diagram of the network layout used to produce the

final results, containing 17 discrete actions.

Taking this a step further, another architecture was considered where entirely

different weights were used in the first layer (as well as the second layer) for each

output node, similar to the networks used in small demonstrative examples [Lin91].

With no weights being shared between the mappings from states to each different

action, the representation overlap of the network is significantly reduced.

Chapter 5. Learning a classifier that is invariant to Configural Variation 52

Unfortunately, after some minor experimentation with this setup using the Q-

Learning algorithm, it quickly became apparent the very large additional

computational costs of implementing this structure (having to run each data element

through a separate network for each action to determine the output values) were too

costly.

Figure 5.7: The reinforcement learning network with discrete output units. A

sigmoid activation function is used to activate hidden units, and the softmax

function is used to determine which output node to activate (which action to

perform). The network is trained using backpropagation. The greatest success was

achieved using the Q-Learning update rule, where the network is used to

approximate an action-to-value mapping.

Figure 5.8 shows some sample traces (sequences of actions) performed by a

several different configurations of the reinforcement learning network that were

trained on 1,000 rotated USPS digits, and at least got close to convergence. When

trained on so few digits, the change in log likelihood reinforcement values should

adapt quickly when images are rotated to the same direction. In particular, note that

the networks with only one continuous output node did a very poor job at

converging (rotating all digits to one orientation).

Data Vector (784 or 256 units)

Hidden Layer (500 units)

Output Layer
(actions)

Softmax Function

-40° -50° -20° -30° -5° -10° -2° 0° -1° 2° 1° 10° 5° 30° 20° 50° 40°

Sigmoid Function

Q-Learning
Update Rule

Back-propagation

Chapter 5. Learning a classifier that is invariant to Configural Variation 53

Figure 5.8: Traces from several different configurations of the network. The y axis

shows the orientation of the data from its original (close to upright) position, so the

actions taken are represented by the vertical movement of the line at each step along

the x axis. Note that traces that rotate an action beyond 180° in either direction are

cut short in the graphs above. Each figure shows 100 traces (sequences of actions)

performed by the reinforcement network after several epochs of training (when it

has started to converge) under different configurations. Top: Policy Gradient with 17

discrete output nodes. Middle Row: Q-Learning with 17 discrete output nodes.

Bottom Row: Q-Learning with three discrete output nodes (-5°, 0°, and +5°).

Chapter 5. Learning a classifier that is invariant to Configural Variation 54

5.4.2 Choice of Activation Function

In addition to determining the best way to structure the reinforcement learning

network, an important consideration was what activation function should be used

for the hidden nodes.

Initially the standard logistic function was used, but this performed

surprisingly poorly. Switching to the hyperbolic tangent improved the results

considerably, but it was the recently proposed softsign function [BDLB09] that

produced by far the best results. The softsign function ()⁄ is similar to the

hyperbolic tangent, and certainly has enough non-linearity to produce interesting

results, but has smoother asymptotes. It has been shown to perform well on several

datasets, including MNIST, and especially in deep (multi-layer) networks.

The softsign function has been shown to exhibit several useful properties

[GB10]. In particular, the activation values tend to not become saturated over time.

With a logistic function, the activation value of almost all nodes tends to end up

close to the limits (0 and 1). Hyperbolic tangent functions can also become saturated

over time, with activation values tending to fall either at zero (the most linear part of

the curve) or at the function limits (-1 and 1). The softsign function, on the other

hand, is more likely to have a wide range of activation values throughout training,

with many nodes having activation values around the function’s knees (avoiding the

asymptotes at -1 and 1, and the linear section of the function around zero). This is

presumably largely a result of the polynomial, rather than exponential, asymptotes.

Saturated nodes generate a very small gradient, and too many saturated nodes

cause the system to become “locked in” to a solution, as it becomes very difficult to

change the weight values once nodes are saturated. Back-propagation of gradients

across multiple layers amplifies this issue. We know that our system in particular is

going to initially be given poor reinforcement values, and that activation values may

need to change substantially even after a few epochs into training, thus it is

imperative that saturated nodes are avoided as much as possible. Presumably this

extra flexibility is what causes the softsign activation function to perform so well in

the reinforcement learning network.

Chapter 5. Learning a classifier that is invariant to Configural Variation 55

Figure 5.9 shows the normalized activation values of units after training a

standard deep neural network (on simple shape images) with a hyperbolic tangent

versus a softsign function.

Figure reproduced from [GB10]

Figure 5.9: Normalized histogram of activation values. The activation values at the

end of training in a five layer network, averaged across units in each layer, and

across 300 elements of data. Top: The hyperbolic tangent activation function is used.

Bottom: The softsign activation function is used.

5.5 Other Network Parameters

The reinforcement learning network’s stopping condition—how many actions

should be performed before passing transformed data to the RBM—was configured

to prevent the reinforcement learning network from spending too much time

Chapter 5. Learning a classifier that is invariant to Configural Variation 56

training on data that was already correctly rotated, while ensuring enough time was

spent exploring.

A maximum of 100 actions turned out to be long enough to allow the

reinforcement learner to discover actions that would achieve high reward, without

spending too much time on an individual digit. The reinforcement learner would

also terminate a sequence of actions at any point where the optimal action over the

past five steps had not involved rotating the digit more than five degrees away from

a given orientation—this includes the case where the optimal action is to not rotate

the image at all, and where the optimal actions suggest rocking the image back and

forth only a couple of degrees.

Small mini-batches of 100 transformed digits were used to train the RBM

network. An attempt was made to optimize all the remaining learning parameters

(the learning rates, the mini-batch size, the discount rate, momentum, etc).

5.6 Data Classification Method

One approach to classifying data in an RBM directly is to clamp the visible units

with a given data vector, and then perform Gibbs sampling. The larger the number

of iterations performed the better; after a long chain of sampling, the average value

of each label unit is likely to be highest for the label unit that maximizes the RBM’s

joint probability given the visible data.

An often used alternative is to complete training of an RBM without label units

and then use the weight values to initialize a multi-layer neural network with label

units as output nodes. This network is then fine-tuned using standard back-

propagation, and can then be used to classify the data directly. Fine-tuning the

network makes the associative memory redundant, but impressive results have been

achieved using this method in a range of problems. We compare our system against

an RBM trained directly on the rotated digits, and would expect that fine-tuning

both systems would only marginally reduce the comparative results. Note though

that the reinforcement learning network cannot be fine-tuned in this way.

The approach used here is to explicitly compute the probability that each label

unit in the RBM will be activated at the end of a long Gibbs chain for a given data

vector, namely (
|). Computing this value is tractable and reasonably efficient

Chapter 5. Learning a classifier that is invariant to Configural Variation 57

[LB08]. The label with the highest probability is the one most likely to be activated,

and is selected as the classification choice. The computation is relatively

straightforward and reasonably efficient—certainly it is much less time consuming

than performing a long chain of Gibbs sampling, and gives more accurate results.

The full process for determining which class a data vector belongs to in our

system first involves transforming the data vector by performing up to 10 actions

that are selected by the reinforcement learning network, until it (hopefully) settles on

a specific orientation. The visible units in the RBM are then clamped with this

transformed vector, and the probability of each label unit being activated is

computed exactly. We begin deriving the formula used to compute these

probabilities by expressing (
|) in terms of joint probabilities:

 (
|)

 ()

 ()

∑ (
)

∑ ∑ ()

The normalization terms cancel. We then directly substitute in the energy

function (is the value of the weight between hidden unit and label unit , and

 is the bias for label):

 (
|)

∑ ∑ ∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

To simplify this equation, we need to (as with the detailed derivation of the

RBM learning rule) realize that a sum over all the configurations of the hidden units

of a product of functions involving the hidden unit values (a sum inside the

exponential) can be expressed as a product over the hidden units of a sum over the

configurations of each hidden unit. The terms not involving a hidden unit value can

come out of the front of this product:

 (
|)

 ∑ ∏ ∑ (∑)

∑ ∑ ∏ ∑ (∑)

Finally, the visible bias terms cancel, and we substitute in the two possible

binary values (0 and 1) for each hidden unit to produce the final formula:

Chapter 5. Learning a classifier that is invariant to Configural Variation 58

 (
|)

 ∏ (∑)

∑ ∏ (∑)

This equation involves a product over all hidden units for each label unit, but

the terms ∑ can be pre-computed and reused each time the product needs

to be computed, making the calculation reasonably efficient. This is the same

formula used to derive the learning rule for Discriminative Restricted Boltzmann

Machines [LB08].

5.7 Experiments on Rotated Digits

The initial experiments were performed on digits from the MNIST and USPS

datasets that are viewed at various different orientations. We split the data into a

training set, validation set, and testing set. The system was trained by giving it input

data vectors from the training set that were randomly oriented at any angle up to 60°

from their initial, roughly upright, orientation in either direction. Note that by

limiting the amount by which digits are initially rotated to less than 90°, the chance

of issues arising as a result of sixes and nines being rotated to look very similar is

also limited—this is discussed further in section 6.3.

The reinforcement learning network is trained using “online learning”: the

input data vectors are run through the reinforcement learning network one at a time,

obtaining as output Q-values for each of the 17 specific discrete actions. The effect of

each action will be to rotate the image a specified number of degrees in a particular

direction (as per Figure 5.7). An action is selected by applying the softmax function

to allow some exploration. After obtaining an output action, the resulting rotation

transformation is simulated as being performed (we do not actually tilt a camera).

The data vector produced from this simulation is then used to compute a

reinforcement value, by comparing the free energy in the Restricted Boltzmann

Machine of the newly produced data vector with the previous one (as described in

section 5.3). Given this reinforcement value, the Q-Learning update rule is then

computed to determine how to update the weights in the reinforcement learning

network, and this gradient is backpropagated through the network.

This process is repeated multiple times for each element in the training set

until either the reinforcement learning network has settled on an angle for the data—

Chapter 5. Learning a classifier that is invariant to Configural Variation 59

that is, it chose to take no action, or to repeatedly rotate the data no more than a few

degrees from a given angle—or a total of 50 actions have been taken. Note that every

time an image is rotated, some quality is lost. In order to ensure the images do not

significantly degrade in quality after a few actions are performed, the actual

transformations are always performed against the original image. Some loss in

quality as a result of a single rotation is unavoidable, and this impacts the

classification results.

Performing sequences of actions allows the reinforcement learner to obtain a

reward for moving progressively towards the target angle in little steps, by taking

some advantage of the (fairly low) discount factor.

The data vectors produced at the end of each trace (sequence of actions) are

stored, and then provided in mini-batches as input to train the Restricted Boltzmann

Machine using a Contrastive Divergence update rule. It was found that better results

were achieved using Contrastive Divergence rather than Persistent Contrastive

Divergence (introduced in section 3.3.1). This may be because Contrastive

Divergence raises the energy of “nearby” data elements. This means that data

vectors that are rotated only a few degrees in either direction are likely to receive

considerably less reward. A reward function that spikes at the best orientation

improves the chances that the system will converge, as mentioned in section 5.3. Five

steps of Gibbs sampling was performed.

The entire system was trained for a number of epochs, with the final weights

used to compute the test error being taken from the epoch that obtained the lowest

error rate against the data in the validation set.

In order to classify data from the validation or test set, the system is given data

vectors that are randomly oriented up to 60° away from the initial orientation. A

series of up to 10 actions are performed, as selected by the reinforcement learning

network according to the optimal policy, until it (hopefully) settles on the optimal

orientation for the digit that best matches the Restricted Boltzmann Machine’s

representation. Then for each transformed data vector, () is computed for each

label unit () and the maximum value used to classify the data. Since the system

classifies digits that are randomly rotated, the error rate will be different each time

classification is performed. We repeat the classification process several times for

each digit in the dataset, and take the average error rate to reduce the variance in

Chapter 5. Learning a classifier that is invariant to Configural Variation 60

classification results that arise as a result of variation in the randomly selected initial

orientations.

Table 5.2 gives the final results obtained on both datasets using this system,

and compares these results to those obtained by using a standard Restricted

Boltzmann Machine with the same number of hidden units trained for the same

number of epochs. No supervised discriminative fine-tuning via backpropagation

(as described in section 3.4) was performed on either system; doing so would have a

fairly minimal effect on the final comparative results, but note that the reinforcement

learning network cannot be fine-tuned in this way.

[A] Error Rate
(MNIST dataset, 5,000 training,
5,000 validation, 5,000 testing,

200 RBM hidd, 200 RL hidd,
30 epochs + 10 pre-training)

[B] Error Rate
(MNIST dataset, 5,000 training,
5,000 validation, 5,000 testing,

200 RBM hidd, 200 RL hidd,
30 epochs, no pre-training)

[C] Error Rate
(USPS dataset, 3,000 training,

3,000 validation, 3,298 testing,
256 RBM hidd, 200 RL hidd,
50 epochs, no pre-training)

Standard RBM 21.47% 14.82%

Reinforcement
Learning + RBM

14.69% 15.33% 12.21%

Table 5.2: Classification results on rotated digits. The percentage of data vectors

from the test set classified incorrectly from three different experiments using

different datasets and network configurations. Epochs denotes the total number of

epochs the system was trained for. Pre-training refers to training the RBM on

“upright” digits for a number of epochs before introducing rotated digits and

training the whole system. The results shown are the average error rate of the three

best results out of five runs. Note that the standard RBM systems were trained using

Persistent Contrastive Divergence to achieve slightly better results.

Remarkably, we discovered that even with no pre-training on fixed/upright

data, after a few iterations, when using the Q-learning algorithm, the classifier is

almost always able to quickly converge to a given perspective that it most “likes”,

and learns to transform any input data to match this perspective (as closely as

possible)—though the stability of the system was not always maintained. Pre-

training the RBM on a small number of “upright” images will ensure the network

Chapter 5. Learning a classifier that is invariant to Configural Variation 61

learns to transform images into a specific upright perspective instead of to a fairly

random one, and ensures the system converges quickly.

This result is particularly impressive considering that we have little control

over the reinforcement values that the system receives for performing actions as

training progresses, as well as the fact that the data we are using includes a fairly

high number of dimensions.

These results show that the system is clearly able to do an impressive job at

determining which direction digits should be rotated; by performing the selected

actions, the classification task is made easier. The results suggest that learning how

to minimize configural variation by performing actions may be an easier task than

classifying the data directly, or at least may make it considerably easier to generalize

away much of the differences in data. These results are achieved in spite of using a

relatively straightforward network structure to approximate the reinforcement

learning algorithm.

Note that the results we achieved by using a regular RBM on the rotated

MNIST test set are relatively poor compared to the 10.47% error rate that has been

achieved on a fully rotated version of the MNIST dataset using an RBM [LBLL09].

This is presumably largely a result of the fact that we had to limit the size of the

RBM, and were not overly concerned with perfectly optimizing learning parameters,

as the system takes a long time to run each experiment (see Appendix C).

Additionally, we did not perform supervised discriminative fine-tuning.

Surprisingly, we achieved better results on the USPS dataset—this is most likely due

to a comparatively larger number of hidden units in the RBM.

So the full list of factors that may explain the difference in results includes: not

as well optimized learning parameters, fewer training examples, fewer hidden units,

and no discriminative fine-tuning via backpropagation. All of these factors affect

both the RBMs we trained and the combined system, so valid comparisons can be

drawn from examining the error rates in Table 5.2.

Figure 5.10 demonstrates how the full system was able to start converging

towards a solution at a very fast rate. In virtually all experiments with the system,

the error rate decreased drastically in the first few epochs as the network rapidly

converged to a stable orientation, whereas the error rate drops at a considerably

slower rate for the standard Restricted Boltzmann Machine network. Presumably the

Chapter 5. Learning a classifier that is invariant to Configural Variation 62

difficulty involved in categorizing very distinct transformed versions of digits into

the same class considerably slows learning.

In later epochs, the validation error rate on the full system tended to fluctuate

significantly. In many experiments, the system would partially diverge and start

producing quite bad error rates after some time (see the blue line in Figure 5.10). We

expect this is the result of a number of factors, including the issues surrounding

approximating an action-to-value mapping using a neural network as discussed in

section 5.4, as well as nuances unique to this system. The ability (or sometimes

inability) of the system to converge and maintain a stable policy is discussed in some

detail in Chapter 6.

Figure 5.10: Error rate on the validation set over time. The validation set error per

epoch for several experiments on the combined reinforcement learning network and

RBM system (with no pretraining) versus a standard RBM.

Chapter 5. Learning a classifier that is invariant to Configural Variation 63

5.7.1 Traces

We can examine the traces—sequences of actions—performed by the agent to

determine how good of a job it was doing at transforming images to all look similar.

Figure 5.11 shows a range of traces at various points throughout training (where the

system was configured according to column [C] in Table 5.2). Note that this system

had no pre-training.

In this experiment, the RBM must have initially begun forming low energy

valleys composed of digits that were rotated around 0-20° (the system is just as

likely to initially lock on to any other orientation). The reinforcement learning

network then quickly discovers that high reinforcement values can be earned by

rotating digits to this orientation. As more data is rotated to roughly this orientation,

the energy landscape corresponding to configurations of input vectors rotated to the

same angle is deepened, strengthening the reward for rotating the data to this

orientation. After a few epochs, almost all traces end up with the images being

rotated in the same way. By the end of training the action selection seems to have

shifted such that most digits are rotated to an orientation of around 30°-40°. This

phenomenon is, once again, presumably due to the way the action-to-value mapping

is approximated. In the case shown, this shift had little impact on the system’s

performance. In other experiments, however, the range of orientations that a digit

was rotated to increased over time, reducing performance (see section 6.2).

Note we would expect some small, but considerable, variation in the

orientation that digits are rotated to, even if the system was working perfectly, as the

digits are not all exactly upright—many are drawn on a slant.

Chapter 5. Learning a classifier that is invariant to Configural Variation 64

Figure 5.11: Traces of actions performed on digits. The y axis shows the orientation

of the data from its original (close to upright) position, so the actions taken are

represented by the vertical movement of the line at each step along the x axis. Note

that traces that rotate an action beyond 180° in either direction are cut short in the

graphs above. Top: 50 traces performed during the first epoch of training as the

system is just beginning to converge. Middle: 50 traces performed during the third

epoch of training. Bottom: 50 traces performed during one of the last few epochs of

training.

Chapter 5. Learning a classifier that is invariant to Configural Variation 65

We can examine how the trained system functions in more detail by examining

a range of key network indicators as sample data elements are rotated. We use the

weights obtained from the system that produced the traces shown in Figure 5.11

(configured according to column [C] in Table 5.2) at epoch 47 (when the validation

set error was minimized) to produce Figures 5.12 to 5.14. Recall from above, this

system learned to rotate digits to an orientation of around 30-40°.

In general, the network performs roughly as we would expect. The log

likelihood of the data is usually maximized at an orientation of around 30-40°. The

RBM usually predicts the correct class label for digits that have been rotated to the

standard orientation, and will often incorrectly predict labels of data elements that

are rotated more than 10-20° from the standard orientation.

The reinforcement learning network usually recommends that actions that will

move the digit towards the standard orientation should be taken. Interestingly, the

reinforcement learning network virtually always learns to favor two particular

actions, in this case rotating 40° clockwise and 10° counterclockwise. Possible

reasons for this are discussed in section 6.2.

The free energy is almost always maximized for digits that are rotated to the

standard orientation, and the reinforcement values are correspondingly positive for

actions that move the digits close to the standard orientation. The free energy

function, however, does tend to become somewhat flatter over time (the last two

rows in Figures 5.12 to 5.14 can be cross referenced with Figure 5.6 which showed

the free energy and reinforcement values that would be produced by an RBM

trained directly on a moderate number of upright digits for a short time).

Chapter 5. Learning a classifier that is invariant to Configural Variation 66

Figure 5.12: Analysis of Trained System I. Top Row: A sample “three” from the test

set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The

probability of each class label, (), for each data vector. From left to right, the

plotted points represent the probabilities for the labels “zero” to “nine”. The highest

predicted class label is printed. Third Row: The Q-values (the output of the

reinforcement learning network) converted to probabilities using the softmax

function, for each data vector. From left to right, the plotted points represent the

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7.

The action that is recommended to be taken under the learned policy is printed.

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector.

Bottom Row: The change in log likelihood between each successive pair of data

vectors. This is the reinforcement value that would be obtained if the images were

rotated 20° clockwise.

40° 40° 40° -10° -10° -10° -10°

3 3 3 3 3 3 5

0

Chapter 5. Learning a classifier that is invariant to Configural Variation 67

Figure 5.13: Analysis of Trained System II. Top Row: A sample “nine” from the test

set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The

probability of each class label, (), for each data vector. From left to right, the

plotted points represent the probabilities for the labels “zero” to “nine”. The highest

predicted class label is printed. Third Row: The Q-values (the output of the

reinforcement learning network) converted to probabilities using the softmax

function, for each data vector. From left to right, the plotted points represent the

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7.

The action that is recommended to be taken under the learned policy is printed.

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector.

Bottom Row: The change in log likelihood between each successive pair of data

vectors. This is the reinforcement value that would be obtained if the images were

rotated 20° clockwise.

40° 5° -10° -10° -10° -10° 40°

4 4 9 9 9 4 4

0

Chapter 5. Learning a classifier that is invariant to Configural Variation 68

Figure 5.14: Analysis of Trained System III. Top Row: A sample “seven” from the

test set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The

probability of each class label, (), for each data vector. From left to right, the

plotted points represent the probabilities for the labels “zero” to “nine”. The highest

predicted class label is printed. Third Row: The Q-values (the output of the

reinforcement learning network) converted to probabilities using the softmax

function, for each data vector. From left to right, the plotted points represent the

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7.

The action that is recommended to be taken under the learned policy is printed.

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector.

Bottom Row: The change in log likelihood between each successive pair of data

vectors. This is the reinforcement value that would be obtained if the images were

rotated 20° clockwise.

40° 40° 1° -10° -10° -10° -10°

7 7 7 7 2 4 4

0

Chapter 5. Learning a classifier that is invariant to Configural Variation 69

5.7.2 Hidden Units as Feature Detectors

Examining the weights leading into each hidden unit for both systems provides

some interesting insights as to what features are being detected. The hidden units

are visualized as feature detectors by plotting the values of each weight leading into

a hidden unit from all of the visible units; a sample of these images produced from

the same system again (configured according to column [C] in Table 5.2) are shown

in Figures 5.15 and 5.16. In Figure 5.15, the weight values are compared against

those of an RBM trained directly on rotated digits.

In the RBM, the hidden units activate in response to certain digits types, or

specific strokes that are important to reconstruct parts of digits. All of the features

appear to be oriented at an angle of around 30°-40° clockwise as expected. In

particular, the first hidden unit shown in the first row of Figure 5.15 clearly shows a

slanted nine. The seventh unit in the second row shows a similarly slanted one.

Other than this, the detected features appear similar to the feature detector images

that would be produced by an RBM trained on upright data only [Hin06]. The

hidden units of the RBM trained on rotated digits, on the other hand, detect various

features of digits at a range of different orientations. This leads to poor classification

results, and causes samples generated from the RBM to look distorted.

In the reinforcement learning network, the hidden units detect much less

specific features, but ones that signify a digit may be offset from the desired

orientation by a certain amount. There are areas where active pixels virtually assure

that large rotation actions will (or will not) be taken, allowing a considerable amount

of generalization to be achieved.

The diversity among the hidden unit weights is of some concern (many of

them look quite similar), and the second layer weights are considerably larger for a

couple of actions than all the others. Possible reasons for this are discussed in section

6.2.

Chapter 5. Learning a classifier that is invariant to Configural Variation 70

Figure 5.15: The visualized RBM weight values. Some images of the weights from

each input pixel leading into hidden units in the RBM. The 10 shaded values above

each image represent the weights from that hidden unit to each of the label units (0-9

from left to right). Left: Weight values of an RBM trained using the combined system

(with no pre-training). Right: Weight values of an RBM trained directly on rotated

digits.

Figure 5.16: The visualized reinforcement learning network weight values. Some

images of the weights from each input pixel leading into hidden units in the

reinforcement learning network. The 17 shaded values above each weight represent

the weights from that unit to each of the discrete output units representing the Q-

values of actions (from left to right as per Figure 5.7).

Chapter 6. Discussion 71

Chapter 6

6 Discussion

In the previous chapter, a number of problems were addressed and solved. Others

remain, and some interesting insights can be gleaned from considering these issues

in some detail. In particular, we discuss the implications of the two-way feedback

that occurs between the reinforcement learning network (which determines the

input to the Restricted Boltzmann Machine) and the Restricted Boltzmann Machine

(which provides reinforcement values to the reinforcement learning system).

6.1 Initial Convergence difficulties: Garbage In, Garbage

Out

The design of our system architecture creates an interesting dynamic between the

two networks. Since both networks are completely untrained to start with, they both

provide erroneous input to the other system early in the training process. Because

the energy landscape of the Restricted Boltzmann Machine is randomly initialized,

the reinforcement learning network will initially receive ambiguous reinforcement

value signals for the actions it performs. Simultaneously, because the actions

performed by the reinforcement learning network are a result of its random initial

weight values, the Restricted Boltzmann Machine will initially receive data with

considerable amounts of configural variation.

In layman’s terms: if either system receives garbage input, it will learn to

produce garbage output. The two-way feedback between the two networks can

make it very difficult for the system to converge (that is, to learn to transform all the

data to look as similar as possible). If either network diverges from this solution, it

will encourage the other network to diverge as well.

Early on in training, as a result of receiving poor input from the reinforcement

learning network, multiple valleys (or “basins of attraction”) would start to form (for

each class) in the RBM, as images with different configural variation are given to the

Chapter 6. Discussion 72

RBM as input. Note that multiple valleys will also form as a result of the different

ways an object can look—for example, some people write sevens with a line through

the middle. These separate valleys capture important native variation that cannot be

generalized away through actions. We are only concerned when multiple valleys

form that represent the exact same native data, that simply appears different due to

a different relative configuration (as this would mean the reinforcement learning

network is not doing its job properly).

In spite of this seemingly debilitating problem, the system was able to

converge under a variety of different configurations. It was not uncommon to see the

system begin rotating digits to two distinct orientations, then as training continues

gradually rotate more and more digits to one of these orientations only until almost

all data was converted to the same orientation. We examined if there might be

multiple valleys of significant size for each class remaining in the RBM after training

is completed by generating a range of samples from the RBM for a range of different

experiments. At the end of a long chain of Gibbs sampling where a given label unit

is clamped, the visible unit activations will correspond to areas of low free energy

(i.e. valleys) where the given class label is active.

Figure 6.1 shows 60 samples of “ones” generated by a system that was trained

on MNIST digits, and also shows a dendrogram computed from these samples by

taking the pairwise distance between each pair of data vectors. The samples were

obtained by taking the RBM’s visible unit values at the end of 60 different Gibbs

chains of 1,000 steps, each with the label unit corresponding to “one” clamped on.

Both the samples and the dendrogram confirm that a single valley is dominating. All

the samples generated appear to be from this one valley, so if other valleys do exist,

they must be considerably smaller. Figure 6.2 shows 60 samples of “sixes” generated

by another system, also trained on MNIST digits, using the same process. There

appears to be slightly more variation in these digits. Looking at the digits though,

they are all rotated to within roughly 20° of each other. As we would hope, the vast

majority of the variation appears to be native—sixes are drawn with varying sized

loops, and stalks that are straight or swirly.

Chapter 6. Discussion 73

Figure 6.1: Dendrogram of sample “ones”. Left: 60 samples of “ones” generated by

the system. Right: A dendrogram produced by computing the pairwise differences

between each pair of data vectors.

Figure 6.2: Dendrogram of sample “sixes”. Left: 60 samples of “sixes” generated by

the system. Right: A dendrogram produced by computing the pairwise differences

between each pair of data vectors.

Chapter 6. Discussion 74

To determine what allows the system to converge, in spite of the two-way

feedback, it makes sense to consider how the RBM’s free energy landscape (the

negative of the un-normalized log likelihood for all configurations of data) might

change over time. Figure 6.3 is a conceptual diagram of how the free energy function

could look in an RBM, if reduced to two dimensions.

After some time training, it is inevitable that some of the valleys in the RBM

will grow a little deeper than others. A deeper valley will provide more

reinforcement, and thus quickly cause the reinforcement learning network, using the

Q-Learning algorithm, to transform a higher proportion of digits to look like the

data vectors represented by the deep valley. If this cycle repeats, eventually a single

deep valley is likely to emerge for each type of data.

So while it is possible for the system to get trapped in a cycle of erroneous

feedback that is impossible to escape, the two-way feedback usually favors the

convergence of the system. The driving factor that determines whether the system is

able to converge may be the speed with which the reinforcement learning network is

able to adapt to changes in the RBM’s energy landscape, as opposed to the RBM

adapting to model the various transformed versions of images.

This would suggest a stronger guarantee of convergence may be achievable

simply by having the reinforcement learning network spend more time “playing

with” each object (i.e. performing several long sequences of actions per object, where

its weights are updated during each epoch). This would ensure the reinforcement

learning network adapts relatively quickly to changes in the RBM’s energy

landscape.

We would expect that valleys that start to form in the RBM early in training, as

a result of receiving data involving different configural variation, would decrease in

magnitude over time. All distributed connectionist networks trained using standard

gradient descent exhibit some form of forgetting. This is a direct consequence of

their ability to adapt to new data, or plasticity. Often this forgetting can be

catastrophic, resulting in the complete loss of all previously trained information

[Rob95]. Other times, they may exhibit only a slow, gradual loss of information. It is

gradual, non-catastrophic, forgetting in the RBM that allows the shallower valleys to

be eroded once the system has begun to converge.

Chapter 6. Discussion 75

Figure 6.3: Multiple valleys in a two dimensional free energy state space. This

diagram represents how the Restricted Boltzmann Machine’s free energy function

might look (if there were only two dimensions) after a few epochs of training. As

multiple valleys begin to form, as a result of the RBM initially training on many data

elements that differ largely due to different configural variation, the reinforcement

learning network will gain rewards for transforming data in multiple different ways.

This will result in the RBM being given data that contains more configural variation.

It appears that this negative cycle does not usually continue for long. It would seem

that the reward from slightly deeper valleys slowly overwhelms the reward from

shallower valleys, causing the reinforcement learning network to transform new

data to look like the data in the deeper valleys where possible. The deepest valley

will grow at a much faster rate than the other valleys that represent different relative

configurations of objects belonging to the same class, and eventually overwhelm

them all.

Other

Valleys

Deepest

Valley

Deepens as

training

continues

The smaller valleys

seem to be eroded over

time

Chapter 6. Discussion 76

6.1.1 Methods to provide a stronger guarantee of Convergence

There are a number of potential methods that could be implemented to reduce the

likelihood that the RBM will produce multiple valleys, representing objects

differentiated only by configural variation, by dealing with the problem more

explicitly. These could potentially improve the results achieved by the current

system, and may be required to allow the system to converge when considering

more complex input data or kinds of configural variation.

One possible solution is to explicitly try to determine where valleys are

forming. This could be achieved by clustering the last 1,000 elements of data that are

passed to the RBM, or by generating samples from the RBM directly. This

information could then be used to ensure that if it is possible to transform the next

data vector to look like data that corresponds to any of these valleys via any kind of

action (starting from the deepest valley), the reinforcement learner does so. Making

this determination would only be tractable if the number of valleys and number of

actions were both relatively small. Iterating over all possible actions may not always

be feasible.

Following the procedure described above (or something similar) would limit

the RBM’s ability to train multiple peaks and definitely speed up convergence. We

did some experimentation using a system that performed this kind of optimization,

but in the end found that it was generally not necessary, and slowed down training

considerably. For the digit transformations that were considered, the system was

able to converge regardless.

6.2 Convergence Stability Issues

Even though the system did converge in most cases, there were a few concerns

brought up in the analysis of the results presented in section 5.7. Firstly, the

orientation that the system converged to (the orientation to which most digits are

rotated to) often appeared to shift slightly over time. Of more concern is the fact that

the system appeared to occasionally diverge from a “stable” orientation; that is, the

range of orientations that digits are rotated to widens over time and classification

error can increase. In fact, the consistent classification results reported in Table 5.2

Chapter 6. Discussion 77

were only able to be achieved due to the fact that the system almost always

converged to a solution (that provided as good or better classification results than a

standard RBM) very quickly.

Firstly, as discussed in section 2.3 and 5.4, approximating the state-action Q-

value mapping in a neural network can be prone to error [Cah10]. The plasticity of

neural networks can mean that updates as the result of the most recent action can

cause undesirable changes to previously learned state-action values. Given that most

of the Q-values in our system tend to be very similar (they are separated by

arbitrarily small values), catastrophic forgetting of the policy does indeed seem to

occur. The adaptability of Q-values can be beneficial early in training as the “true”

Q-values change significantly due to changes in the RBM’s energy landscape

changes. Later in training, however, it can cause spurious actions to be chosen.

Furthermore, we note that the system usually learned to favor two actions (one

rotating clockwise action, and one rotating counter clockwise action), that it would,

on average, tend to assign much higher Q-values to. The high Q-values are generally

associated with digits that have been rotated a considerable number of degrees from

the stable orientation, so are perhaps in part due to several abnormally high

reinforcement values early on in learning. Additionally, the weights into each

hidden unit in the first layer did not greatly differ. Thus, some catastrophic

forgetting was inevitable—these overvalued actions were likely to be incorrectly

selected fairly often, and are presumably a large part of the reason for shifts in the

stable orientation. It may be that a more explorative method for selecting actions

(rather than just using the softmax function) could help mitigate this problem.

Unfortunately, any spurious output from the reinforcement learner can

potentially corrupt the RBM’s energy landscape. As discussed in section 6.1, the

system turned out to be very adaptive and was able to converge to a particular

orientation quite well. What remains a more pertinent issue, however, is that the

“stable” valley (that represents digits of a particular orientation) in the RBM’s energy

landscape can sometimes flatten and widen over time. Figure 6.4 is a conceptual

diagram of how the energy landscape might change over time. If this flattening

occurs, the reinforcement signals become considerably weaker, and the

reinforcement learner will eventually become less precise in its efforts to minimize

configural variation, causing the classification error rates to rise.

Chapter 6. Discussion 78

To what degree the energy landscape flattens as a result of (a) receiving

spurious input from the reinforcement learning network, (b) “native” variation (or

other configural variation that is not completely captured by rotation actions) that

causes slightly rotated versions of digits to appear similar, or (c) the RBM update

rule being only an approximation (meaning some energy is assigned to invalid

configurations) is unknown. The fact that Contrastive Divergence worked better

than Persistent Contrastive Divergence suggests that (c) may play a significant part

in causing this issue.

Figure 6.4: Flattening of the RBM energy landscape. A conceptual diagram of how,

as training progresses, the RBM’s energy landscape appears to flatten, leading to

weaker reinforcement signals. The blue line represents how the energy landscape

might look early on in the training process (as shown in Figure 5.6, top row) and the

red line represents how the energy landscape might grow to look after many epochs

of training (as shown in Figures 5.12 to 5.14, bottom two rows).

6.2.1 Methods to improve Stability

In order to improve the system’s ability to maintain a stable convergence, any of the

techniques suggested in literature to reduce catastrophic forgetting could be

implemented, such as Pseudorehearsal [Rob95] or Context Biasing [Fre94]. Another

option, since we know the Q-values (target mappings) are changing over time as a

Chapter 6. Discussion 79

result of the policy changing (conceptual drift), is to consistently update the model

so that it reflects only more recent data [WK96].

A more explorative method for selecting actions, monitoring of reinforcement

values, and a decaying learning rate could also have some impact on reducing the

likelihood of the system diverging. Some testing of learning rate decay and scaling

of reinforcement values did show some appreciable change in results, but did not

prevent divergence in all cases.

It is difficult to imagine how we could enforce RBM’s energy landscape to

remain “sharp”. The effect on the RBM’s energy landscape as a result of training on

more data or on data with a higher number of dimensions is unknown, though it is

likely that adding more hidden units to the network (thus increasing its

representational power) will reduce the chance of valleys flattening. This may be

why we found divergence less likely to occur on the USPS dataset (where we used a

much larger number of hidden units relative to the number of input dimensions).

6.3 Sixes and Nines

An obvious issue that arises when performing actions that transform images is that

sometimes transformations will make objects look the same (even though they are

not actually the same). When considering digits, a six rotated 180° will look

extremely similar to a nine, and vice-versa.

This issue was avoided in our system by providing as input digits that were

rotated less than 90° from upright. In conjunction with the limited output actions

available and low discount factor, this made it very unlikely that the reinforcement

learning network would rotate one class of digits completely upside down, and

virtually guaranteed that the six and nine classes would remain distinct (note that

rotated sixes do usually look slightly different from nines anyway).

When considering three dimensions, there are some perspectives where

completely different objects can look the same. In order to be more robust, the

system could, at least in part, use reinforcement values that take into account which

class the object belongs to (if available). This will mean the system will get its

maximum rewards by transforming three-dimensional objects that belong to

different classes to look different, and objects that belong to the same class to look

Chapter 6. Discussion 80

the same. Otherwise, if the system uses a reinforcement value based purely on how

closely the data matches what the RBM has seen before, the system will achieve

maximum rewards by transforming objects belonging to different classes to look the

same, which will have a detrimental effect on classification results (the agent’s

ability to infer ground truths could potentially diminish).

Furthermore, the meaning of certain objects change depending on the context

(the surrounding data). To distinguish a six and nine, for example, some context is

required. If a six digit is looked at in isolation, and the text is in fact upside down, it

will appear to be a nine and there would be no reason to think otherwise. Figure 6.5

shows the importance of context when looking at images. The orientation of nearby

text leaks over to nearby digits, and this context information can perhaps be more

important when classifying an object than the actual specifics of its shape.

Figure 6.5: Orientation Leaking. Left: The number is interpreted by the brain as 29.

Right: The number is interpreted as 26. In fact, the 6/9 digit is completely identical in

both cases. Only the orientation of the 2 differs.

6.4 Transformations to Nothing

A similar, but more severe issue is that there are several actions that can be

performed that have the effect of clearing the agent’s sensory data. For example, an

agent that closes its eyes will receive “blank” visual data. This cannot happen when

the only actions considered are ones that cause rotation transformations, but is an

issue for other basic kinds of transformations including translation, and scaling. For

example, the agent could turn its head until an object is out of view (the object is

translated past the edge of the image).

If the reinforcement learning network discovers that it can perform actions that

transform images to blank, and the RBM is trained on several of these blank images,

then the system may suddenly very quickly converge by transforming everything to

Chapter 6. Discussion 81

blank. The RBM will be very happy to see blank images as they are identical to other

blank images that have been seen before.

The issue arises because the way the system is set up means it thinks that if an

action exists that makes two objects look very similar, then they must in fact be very

similar objects, belonging to the same class (and so generalizes away the differences

that can be explained by a transformation). Obviously, this is not always true.

Figure 6.6: Transforming an object to blank. Three different digits are translated

right until the image becomes blank, and all three images look the same.

In our system, this issue was avoided simply because the actions that were

made available to the reinforcement learning system made it difficult/impossible to

transform objects to be completely blank. Even when training more complex actions

than rotation without using shaping (see section 7.1), this issue never really

appeared to cause any problems. We could have gone further and explicitly

restricted images from being translated or scaled too far if this problem had turned

out to be pertinent.

Preventing this issue from occurring in general could be achieved via the same

solutions suggested in section 6.3—changing the reward function to incorporate

some reward for being able to distinguish/classify different objects (the RBM will do

a very poor job trying to classify blank images). Additionally, if the agent had some

notion of what an object is, then this issue could be avoided—performing an action

Chapter 6. Discussion 82

that transforms the agent’s sensory data to appear blank means the object that was

being viewed no longer appears in the agent’s sensory data.

Chapter 7. Additional Experiments 83

Chapter 7

7 Additional Experiments

In Chapter 5 we presented results obtained by training the system on actions that

result in rotation transformations only. In this Chapter, we examine the system’s

ability to learn to correctly perform actions that result in more complex

transformations (such as to minimize the configural variation in the data), or to

represent multiple actions at once.

Learning to generalize away configural variation that arises due to complex

transformations can be considerably more difficult than doing so for the rotation

example presented so far. By performing any random sequence of rotations, the

agent is likely to arrive at the “upright” orientation in a fairly short period of time.

Additionally, digits that are rotated only slightly in either direction only partially

distort an image—many of the pixels remain similar. This means that the

reinforcement signals that the RBM reports for digits as they approach upright from

a way off are usually positive. More complex transformations such as translation, are

inherently more difficult to learn; images can be moved in four different directions

(rather than being rotated in only two directions), and even a movement of just a

couple of pixels drastically distorts an image; altering which visible units are

activated (this is partly due to the small size of the images used here).

As valleys begin to form in the RBM’s energy landscape, corresponding to

digits translated to a given position, positive reinforcement can generally only be

found by moving the image into this exact position or a position that is only one

pixel away. This makes it more difficult for the reinforcement learning network to

discover that it should transform to match the data configurations represented by

this valley, and can make it difficult for the system to converge. Figure 7.1

demonstrates the difficulty of attempting to translate an image correctly. In this case,

high reinforcement is only achievable if the image is moved to the green circle (the

position corresponding to where a valley has begun to form in the RBM). Outside of

Chapter 7. Additional Experiments 84

Figure 7.1: Learning how to translate an image. The red trace shows a sequence of

actions that translate the center of an image around inside a bounded area. High

reinforcement is achieved if the center of the image is translated into the green zone.

It will take a considerable amount of time for the agent to learn to translate an image

to this position.

this area, the agent will receive ambiguous reinforcement signals (usually

small, but potentially sometimes large) that do not help it learn the correct actions.

Since the agent can perform movement actions that transform the data in any

direction, it may perform long sequences of actions without discovering the high

reinforcement values that exist if the data is translated correctly.

If we allowed the reinforcement learning network to perform many long traces

for each digit that it views, it would presumably eventually learn to perform the

correct actions. Unfortunately, since we are training on data with a fairly high

number of dimensions, however, this is not practical. Experiments on translated

digits with traces (sequences of actions) of length 100 revealed that actions resulting

in translation transformations could not be effectively learned without some pre-

training. Some pre-training on centered images, however, allowed the system to

begin to converge. To mitigate this problem further, the system was trained using

“shaping”, described in the next section.

High

Reinforcement

Ambiguous

Reinforcement

Signals

Chapter 7. Additional Experiments 85

7.1 Using shaping to learn more complex actions

The concept of shaping (or guided learning) originated in behavioral psychology

[Skin38]. The basic idea is to give the learning agent a series of relatively easy

problems that eventually build up to the completion of a more difficult problem that

would be very difficult or time-consuming to learn directly [SB98]. Once a subtask is

learned, it becomes much easier to learn a more complex task; that is, a task

involving (at least partially) the subtask plus additional steps. Figure 7.2 illustrates

schematically how training a robot to run could be achieved by training it in

successively more difficult forms of movement.

Figure 7.2: Reinforcement signals for a robot learning to move. To train a robot

how to run, it may be easier to teach it successively more complex movements.

By rewarding animals for performing more and more difficult subtasks,

psychologists have been able to train animals to perform complex actions such

having pigs eat breakfast at a table, or vacuum floors [AASBN96]. Shaping has been

successfully used in reinforcement learning problems to speed up the learning

process, and has allowed reinforcement learning techniques to be applied to many

complex problems. Examples include training a system to ride a bicycle to a goal

destination while remaining balanced [RA98], and training a system to balance a

pole under very difficult conditions by first learning to balance a heavy pole with a

long track and gradually moving to a light pole with a shorter length [SSB85].

There are many different ways in which shaping has been implemented in

reinforcement learning systems. One common approach is to modify the reward

function so that the learning agent gains positive reward, or receives “progress

indicators” [Mat97], for achieving subtasks that can lead to achieving the ultimate

goal. Another approach is to modify the dynamics of the system itself; in particular,

Learn to run

Learn to walk

Learn to crawl

crawling Learn to roll

Chapter 7. Additional Experiments 86

the learning agent can be given a task that is easier to solve than the actual goal task,

and use the policy it learns from performing this task to speed up learning as the

task becomes more complex. Note this process is very similar to how shaping is

described in psychology literature.

When implementing complex actions in our system, we incorporated simple

“task shaping” (the process of learning progressively more difficult versions of a

task as described above). In the case of translation, the system was first shown digits

that were not far from centered. Once it had correctly learned to translate these

digits, it was then shown digits that were progressively further away.

This makes it somewhat easier for the reinforcement learning system to

determine which way images should be translated early on in training; as soon as

the RBM starts forming a deep valley around centered images, any actions that

move images away from the center will receive negative reinforcement.

7.2 Experiments on Translated Digits

The system was trained on translated digits in a similar manner as described in

section 5.7. Best results were obtained using nine discrete output nodes, representing

the actions corresponding to no movement, or movement of one or two pixels up,

down, left or right (diagonal movement was not considered).

The system was initially shown images that were no more than one pixel away

from being centered. Every five epochs, the system was shown images that were an

additional pixel away from the center, until a maximum of eight pixels.

Table 7.1 gives the final results obtained on the MNIST dataset, with the use of

shaping. Again, these results are compared with results obtained by using a

standard Restricted Boltzmann Machine with the same number of hidden units

trained on the same data for the same number of epochs. When using shaping as

described, the classifier always successfully learned to center input data.

Chapter 7. Additional Experiments 87

[A] Error Rate
(MNIST dataset, 5,000 training,
5,000 validation, 5,000 testing,

200 RBM hidden, 200 RL hidden,
40 epochs, no shaping)

[B] Error Rate
(MNIST dataset, 5,000 training,
5,000 validation, 5,000 testing,

200 RBM hidden, 200 RL hidden,
40 epochs, with shaping)

Standard RBM 40.32%

Reinforcement
Learning + RBM

88.76% 13.32%

Table 7.1: Classification results on translated digits. The percentage of data vectors

from the test set classified incorrectly. Epochs denotes the total number of epochs the

system was trained for. The results shown are the average error rate of the three best

results out of five runs. Note that the standard RBM systems were trained using

Persistent Contrastive Divergence to achieve slightly better results.

These results show that the system, when trained using shaping, is able to

improve classification significantly by generalizing away differences resulting from

digits being in different locations inside an image. A standard RBM greatly struggles

to learn to model variously translated versions of images, since they significantly

differ in terms of which pixels are activated. Without using shaping, the

reinforcement learning network gets confused and translates digits randomly,

greatly increasing the amount of configural variation and making it almost

impossible for the classifier to learn any ground truths.

Note that when training the system on randomly translated digits, it did

frequently diverge late in the training process (it slowly transformed digits to a

wider range of positions, further away from the center over time), as discussed in

section 6.2.

7.2.1 Traces

As before, we can examine the traces—sequences of actions—performed by the

agent to determine how good of a job it was doing at transforming images to all look

similar. Figure 7.3 shows some traces performed by the reinforcement learning

network after being trained on actions that result in translations.

Chapter 7. Additional Experiments 88

At the point in training where the validation set error was minimized, the

reinforcement learning network is able to translate almost all images to be close to

centered. Note that we would expect some small, but considerable, variation in the

position that digits are translated to even if the system was working perfectly, as the

digits are not all perfectly centered.

Figure 7.3: Traces of translation actions. 20 sequences of translation actions (traces).

The y axis shows the vertical distance of the data from the origin (close to centered)

position, and the x axis shows the horizontal distance of the data from the origin

(close to centered) position. Translation actions are represented by the movement of

the line at each step along the z axis.

To compare with the results on rotated digits, Figure 7.4 shows a range of key

network indicators, as a sample data element is translated along the x-axis. In

general, the free energy function appeared considerably flatter when digits were

close to centered than it was for rotated digits close to “upright”. This presumably is

what led to the system diverging more frequently than it did when trained on

rotated digits.

Chapter 7. Additional Experiments 89

Figure 7.4: Analysis of trained System. Top Row: A sample “two” from the test set

is translated to the right from three pixels left of center to three pixels right of center,

in one pixel intervals. Second Row: The probability of each class label, (), for

each data vector. From left to right, the plotted points represent the probabilities for

the labels “zero” to “nine”. The highest predicted class label is printed. Third Row:

The Q-values (the output of the reinforcement learning network) converted to

probabilities using the softmax function, for each data vector. From left to right, the

plotted points represent the softmax probability of selecting to not move the image,

or to translate the image left, down, up, or right. The action that is recommended to

be taken under the learned policy is printed. Fourth Row: The Free Energy (un-

normalized log likelihood) of each data vector. Bottom Row: The change in log

likelihood between each successive pair of data vectors. This is the reinforcement

value that would be obtained if the images were translated right by one pixel.

1 1 1 1 1 1 1

2 2 2 2 2 2 6

0

Chapter 7. Additional Experiments 90

7.2.2 Hidden Units as Feature Detectors

Finally, we present the weights learned by the system in Figures 7.5 and 7.6. The

hidden units of an RBM that was trained as part of the full system were able to

detect global dependencies between pixels (which is especially important given the

limited number of hidden units used), and includes some nodes that are detecting

quite class specific features, such as the first weight on the third row, which captures

the key features of a seven. The hidden units of the RBM trained directly on

translated digits, on the other hand, were unable to capture global dependencies.

Additionally, even at the end of training, many of the units capture little

information, as they struggle to learn given the large amount of noise (a result of

considerable configural variation in the data).

The hidden units of the reinforcement learning network have detected that

active pixels near the edge of an image send a strong signal about which way it

should be translated.

Figure 7.5: The visualized RBM weight values. Some images of the weights from

each input pixel leading into hidden units in the RBM. The 10 shaded values above

each image represent the weights from that hidden unit to each of the label units (0-9

from left to right). Left: Weight values of an RBM trained using the combined system

(with no pre-training). Right: Weight values of an RBM trained directly on translated

digits.

Chapter 7. Additional Experiments 91

Figure 7.6: The visualized reinforcement learning network weight values. The

visualized reinforcement learning network weight values. Some images of the

weights from each input pixel leading into hidden units in the reinforcement

learning network. The nine shaded values above each weight represent the weights

from that unit to each of the discrete output units representing the Q-values of

actions (from left to right as shown in Figure 7.4, third row).

7.3 Experiments with two Transformations at once

We had little success attempting to train the system to learn multiple different kinds

of other configuration-changing actions at once. Specifically, we were successfully

able to train the system to perform scaling actions (that is, actions that result in the

image being scaled up or down by a given percentage), achieving similar

classification improvements over a standard RBM. However, the system appeared to

be unable to learn to perform both rotation and scaling actions correctly at the same

time (where the reinforcement learning network included both kinds of actions in

the output layer).

We ran experiments using various different numbers of discrete output units,

and scaling methods, but found that the reinforcement learning network could not

learn to correctly perform both kinds of actions at once, even if the RBM was pre-

trained on upright centered images, and its weights then fixed.

It appears that there is sufficient noise in the free energy landscape such that an

agent who performs actions that result in multiple different kinds of configural

Chapter 7. Additional Experiments 92

variation at once is likely to discover reward for performing undesired actions.

Additionally, and perhaps more importantly, the reinforcement values from scaling

actions appeared to largely overwhelm the reinforcement values from rotation

actions, leading to rotation actions rarely being selected as training progressed.

Chapter 8. Conclusions 93

Chapter 8

8 Conclusions

This thesis has presented a conceptual system architecture that uses an associative

memory, specifically a Restricted Boltzmann Machine, along with reinforcement

learning techniques, to generalize away differences in objects that are purely a result

of configural variation. The system design is in no way limited to specific actions, so

the system could theoretically learn to generalize away differences that are the result

of any configuration-changing actions an agent may perform.

This system was implemented and achieved good classification results on a

variety of two-dimensional translations of digits. The results support the notion that

explicitly generalizing away configural variation can make it easier for an agent to

infer ground truths about data (in particular, to classify the data).

Constructing a system capable of achieving these results required significant

experimentation. A Q-Learning algorithm, with action-to-value mappings modeled

by a multilayer network, was found to perform well. Specifically, the algorithm

applied the softmax function on a set of discrete output nodes to determine its choice

of action while training. Hidden nodes used the softsign activation function.

Reinforcement values based on the difference in the log likelihood of the pre- and

post-transformed data provided good feedback to the reinforcement learning

network allowing it to train data.

Experiments with the system revealed that it learns transformations that

gradually distort an image (such as rotation) more easily than transformations that

can cause an image to quickly look very different (such as translation). Presumably

convergence (learning to transform almost all data of the same class to look similar)

will always occur as long as the reinforcement learning system is able to adapt to

changes in the associative memory’s energy landscape faster than the landscape

itself changes.

Chapter 8. Conclusions 94

A summary of the positives and negatives of the final system that was

presented follows:

 Was almost always able to learn to transform data to look similar (thus

eliminating configural variation) very quickly, even with no pre-training,

on particular tested transformations.

 Consistently beat the best classification results a regular RBM could

achieve on the same data, and usually achieved these results in only a few

epochs.

 Was able to learn to correctly perform complex/multiple transformations

with the aid of shaping techniques.

 The reinforcement learner can suffer from catastrophic forgetting as it uses

a neural network to approximate the value function. This issue appears to

be heightened to some degree due to the reinforcement values adapting

over time (as the RBM’s energy landscape changes).

 Occasionally diverges somewhat after finding a solution, presumably as a

result of the RBM’s energy landscape flattening over time.

 The system sometimes struggles (or fails) to converge; it can be sensitive to

changes in certain learning parameters, particularly when considering

more complex kinds of transformations.

While using a reinforcement learning network to minimize configural variation

may not be the ultimate solution to improving object classification, this thesis has

shown that there definitely appears to be significant value in generalizing away

differences in data that arise due to configural variation, and that it is possible to

perform such generalization without requiring an architecture that uses external

knowledge of transformations.

Chapter 8. Conclusions 95

8.1 Future Work

There are a range of possible ways in which this work could be extended. Some

suggestions are:

 A further investigation into the limitations of the system. Specifically, one

could examine if improvements can be achieved by applying techniques to

reduce catastrophic forgetting in the reinforcement learning network, such

as pseudorehearsal. Results may improve as a result of other small

changes such as selecting actions with more of a focus on exploration, or

giving the reinforcement learner more time to learn per update of the

RBM.

 Training the system on tougher datasets, and/or learning to perform

actions that result in other kinds of transformations, such as three

dimensional rotations.

 Comparing with alternative architectures. It is not necessary to use

reinforcement learning techniques to generalize away the configural

variation in data. One alternative option could be to use a more guided

system where the best action that should be taken (to make a new data

vector appear as similar as possible to data the associative memory has

seen before) is known (or discovered through extensive trial and error),

and trained using a standard feed-forward neural network.

 A potentially powerful extension to the system would be to have it learn to

model transformations that occur as a result of actions, at the same time as

learning how to eliminate configural variation by performing those

actions. This could potentially be achieved using a variation of Gated

RBMs.

8.1.1 A Multi-Layer Internal Representation

It would be possible to extend the system to train on multiple layers of Restricted

Boltzmann Machines following the standard greedy layer-by-layer training

procedure described in section 3.4.

Chapter 8. Conclusions 96

After having fully trained our system (without including labels in the bottom

layer), a new Restricted Boltzmann Machine could be trained, using as input the

hidden unit activations of the original Restricted Boltzmann Machine, when given

data vectors from the reinforcement learning network. When training the second (or

subsequent) layers, the weights in the reinforcement learning network weights could

continue to be updated based on feedback from the new Restricted Boltzmann

Machine. Alternatively, they could be fixed.

We would expect that using a Deep Belief Network (a stack of RBMs) would

lead to an improvement in the agent’s internal representation, and ability to classify

data correctly, though this has not been tested. Figure 8.1 shows how the system

architecture would look if a Deep Belief Network were used for the agent’s internal

representation.

Figure 8.1: The system architecture including a Deep Belief Network. The section

colored purple shows how an additional RBM could be added to the standard

architecture.

8.1.2 Using Dimensionally Reduced Data

It would also be possible to perform dimensionality reduction on the agent’s sensory

data, before feeding it into our system, in order to speed up the training process.

Data Vector (V1)

Hidden Layer

Output Layer
(actions)

Data Vector (V2)

Deep
Belief Network

Reinforcement
Learning Network

Provides Reinforcement
Values for training

Perform
actions

Hidden Layer (H2)

 Hidden Layer (H1)

Labels

Chapter 8. Conclusions 97

However, since the data that the system receives as input is constructed by

performing random affine transformations, a dimensionality reduction algorithm

would have to be implemented in an online fashion (meaning the performance of the

system may suffer).

Appendix 98

Appendix

A System Information

I produced a program from scratch, using Java (and some matrix libraries), for

running experiments on various types of Restricted Boltzmann Machines & Deep

Belief Nets, as well as to train and evaluate our system. Screenshots of the program

are shown in Figures A.1 and A.2.

Figure A.1: Screenshot I. A screenshot of some of the configuration options available

in the program.

Appendix 99

Figure A.2: Screenshot II. A screenshot of the system generating samples. Left: The

reinforcement learning network’s hidden units are active and the outputted Q-

values specify a “rotate clockwise” action should be performed. Right: The digit has

been rotated upright, and Gibbs sampling is being performed on the RBM, with

samples displayed every few steps.

B Full Algorithm

Pseudo-code for the full training algorithm is presented below. Note for brevity, the

bias weight updates are omitted.

Note on some notation:

Appendix 100

Part One: Training the reinforcement learning network

1)

 ()

2) ()

3)

4) (as described in section 5.3)

 ()

5)

 {
(

)

 []

 [
 (() ())]

Labels

 (L)
Data Vector (V1)

Hidden Layer (H)

Output Layer
(actions)

Data Vector (V2)

Receives
Reinforcement

Perform
actions

Hidden Layer (H2)

W1

W2

WR

Appendix 101

Part Two: Training the Restricted Boltzmann Machine

6)

 ()

 ()

7)

 (()
)

 ()

8) :

 [
(

) (
)

]

C Possible GPU Optimization

Because the system uses reinforcement learning techniques on a high dimensional

problem, it can take a long time to train. A sequence of up to 100 actions is

performed for each data vector, and the reinforcement value (which involves a

product over all hidden units in the RBM) and backpropagation error are computed

at each step. Additionally, the transformations (that occur as a result of actions) also

have to be simulated unless a physical robotic infrastructure is available.

Data Vector (V1)

Hidden Layer (H)

Output Layer
(actions)

Data Vector (V2)

Perform
actions

Hidden Layer (H2)

WR W1

W2

Receives
Reinforcement

Labels

 (L)

Appendix 102

Training the system involves a large number of matrix operations which are

mostly parallelizable, as well as simulating visual transformations. GPU’s have 100s

of small processors, and as such, an order of magnitude reduction in the time taken

to run experiments could be achieved by implementing many of the operations

involved in training the system—including actually simulating the image

transformations— in a GPU using the CUDA3 framework.

In order to achieve maximum gains, all the data and weight matrices need to

be copied into GPU memory at the start of training and be updated directly in the

GPU, only being copied back to Main Memory upon completion (or at occasional

intervals to backup to the hard drive).

Given the length of time the system can take to train, training on larger

datasets or implementing any additional extensions would essentially require

making use of a GPU.

3 http://developer.nvidia.com/cuda-toolkit

Bibliography 103

Bibliography

[Bai95] Leemon C. Baird. Residual algorithms: Reinforcement learning with

function approximation. In Proceedings of the Twelfth International

Conference on Machine Learning, Morgan Kaufmann, 1995.

[BB00] Peter L. Bartlett and Jonathan Baxter. Stochastic optimization of

controlled partially observable Markov decision processes. In

Proceedings of the Thirty Ninth IEEE Conference on Decision and Control,

Sydney, Australia, 2000.

[BB01] Peter L. Bartlett and Jonathan Baxter. Infinite-Horizon Policy-Gradient

Estimation. Journal of Artificial Intelligence Research, 15:319-350, 2001.

[BDLB09] James Bergstra, Guillaume Desjardins, Pascal Lamblin, Yoshua Bengio.

Quadratic Polynomials Learn Better Image Features. Technical Report,

1337, University of Montreal, 2009.

[Bel57] Richard E. Bellman. A Markovian decision process. Journal of

Mathematics and Mechanics, 6:679-684, 1957.

[Ben09] Yoshua Bengio. Learning Deep Architectures for AI. Foundations and

Trends® in Machine Learning, 2(1): 1–127, 2009.

[BFHM06] Josh Beitelspacher, Jason Fager, Greg Henriques, and Amy McGovern.

Policy Gradient vs. Value Function Approximation: A Reinforcement

Learning Shootout. Technical Report, CS-TR-06-001, University of

Oklahoma, 2006.

[BLPL07] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.

Greedy Layer-Wise Training of Deep Networks. In Advances in Neural

Information Processing Systems, 19: 153-160, MIT Press, 2007.

Bibliography 104

[Cah10] Andrew Cahill. Catastrophic Forgetting in Reinforcement-Learning

Environments. Masters Thesis, University of Otago, Dunedin, NZ, 2010.

[CK91] David Chapman and Leslie Pack Kaelbling. Input generalization in

delayed reinforcement learning: An algorithm and performance

comparisons. In Proceedings of the International Joint Conference on

Artificial Intelligence. Sydney, Australia, 1991.

[CM02] Hsin Chen and Alan Murray. A Continuous Restricted Boltzmann

Machine with a Hardware-Amenable Learning Algorithm. In

Proceedings of the International Conference on Artificial Neural Networks,

Madrid, Spain, 2002.

[CM03] Hsin Chen and Alan Murray. A Continuous Restricted Boltzmann

Machine with an implementable training algorithm. Vision, Image and

Signal Processing, IEE Proceedings, 150(3): 153-158, 2003.

[DH72] Richard O. Duda and Peter E. Hart. Use of the Hough Transformation

to detect lines and curves in Pictures. Communications of the ACM,

15(1):11-15, 1972.

[Dun89] George H. Dunteman. Principal components analysis. SAGE

Publications, 1989.

[ECR05] Andres El-Fakdi, Marc Carreras and Pere Ridao. Direct gradient-based

reinforcement learning for robot behavior learning. In Proceedings of the

Second International Conference on Informatics in Control, Automatition

and Robots, Barcelona, Spain, 2005.

[Eka07] Chaitanya Ekanadham. Sparse deep belief net models for visual area

V2. Undergraduate Honors Thesis, Symbolic Systems Program,

Stanford University, 2007.

[ES08] Tom Erez and William D. Smart. What does Shaping Mean for

Computational Reinforcement Learning? In Proceedings of the Seventh

IEEE International Conference on Development and Learning, Monterey,

CA, 2008.

[FA91] William T. Freeman and Edward H. Adelson. The Design and Use of

Steerable Filters. IEEE Transactions on Pattern Analysis and Mach

Intelligence, 13(9):891-906, 1991.

Bibliography 105

[FG06] Beat Fasel and Daniel Gatica-Perez. Rotation-Invariant Neoperceptron.

In Proceedings of the Eighteenth International Conference on Pattern

Recognition, volume 3, 2006.

[Fie05] Timothy Field. Policy Gradient Learning for Motor Control. Masters

Thesis, University of Victoria, Wellington, NZ, 2005.

[Fre91] Robert M. French. Using Semi-Distributed Representations to

Overcome Catastrophic Forgetting in Connectionist Networks. In

Proceedings of the Thirteenth Annual Cognitive Science Society Conference,

173-178, 1991.

[Fre94] Robert M. French. (1994). Dynamically constraining connectionist

networks to produce distributed, orthogonal representations to reduce

catastrophic interference. In Proceedings of the Sixteenth Annual

Cognitive Science Society Conference, 1994.

[Fre99] Robert M. French. Catastrophic Forgetting in Connectionist Networks.

Trends in Cognitive Sciences, 3(4):128-135, 1999.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics,

Volume 9 of JMLR: W&CP 9, Sardinia, Italy, 2010.

[GK09] Marek Grzes and Daniel Kudenko. Learning Shaping Rewards in

Model-based Reinforcement Learning. In Proceedings of the Autonomous

Agents and Multiagent Systems Workshop on Adaptive Learning Agents,

May 2009, Budapest, Hungary.

[Hin06] Geoffrey E. Hinton. To Recognize Shapes, First Learn to Generate

Images. In P. Cisek, T. Drew, and J. Kalaska (editors), Computational

Neuroscience: Theoretical Insights Into Brain Function, Elsevier, 2006.

[Hin02] Geoffrey E. Hinton. Training Products of Experts by Minimizing

Contrastive Divergence. Neural Computation, 14:1771-1800, 2002.

[HL85] Geoffrey E. Hinton and Kevin J. Lang. Shape recognition and illusory

conjunctions. In Proceedings of the Ninth International Joint Conference on

Artificial Intelligence, Los Angeles, CA, 1985.

Bibliography 106

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast

Learning Algorithm for Deep Belief Nets. In Neural Computation,

18:1527-1554, 2006.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. Springer-

Verlag, New York, NY, 2001.

[Hul94] Jonathon J. Hull. A Database for Handwritten Text Recognition

Research. IEEE Transactions on pattern analysis and Machine Intelligence,

16(5):550-554, 1994.

[JJ94] Michael I. Jordan and Robert A. Jacobs. Hierarchical Mixtures of

Experts and the EM Algorithm. Neural Computation, 6(2):181-214, 1994.

[KB06] George Konidaris and Andrew Barto. Autonomous Shaping:

Knowledge Transfer in Reinforcement Learning. In Proceedings of the

Twenty Third International Conference on Machine Learning, Pittsburgh,

PA, 2006.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models:

Principles and Techniques. The MIT Press, Cambridge, Massachusetts,

2009.

[KW11] Jyri J. Kivinen and Christopher K. I. Williams. Transformation

Equivariant Boltzmann Machines. In Proceedings of the International

Conference on Artificial Neural Networks, Espoo, Finland, 2011.

[LB08] Hugo Larochelle and Yoshua Bengio. Classification using

Discriminative Restricted Boltzmann Machines. In Proceedings of the

Twenty Fifth International Conference on Machine Learning, Helsinki,

Finland, 2008.

[LBLL09] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal

Lamblin. Exploring Strategies for Training Deep Neural Networks.

Journal of Machine Learning Research, 1:1-40, 2009.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-Based Learning Applied to Document Recognition. In

Proceedings of the IEEE, 86(11):2278-2324, 1998.

Bibliography 107

[LBOM98] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus-Robert

Müller. Efficient BackProp. In G. Orr and K. Muller (editors), Neural

Networks: Tricks of the trade, Springer, 1998.

[LCHRH06] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and

Fu Jie Huang. A Tutorial on Energy-Based Learning. In G. Bakir, T.

Hofman, B. Schölkopf, A. Smola, and B. Taskar, (editors), Predicting

Structured Data, MIT Press, 2006.

[LGRN09] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng.

Convolutional Deep Belief Networks for Scalable Unsupervised

Learning of Hierarchical Representations. In Proceedings of the Twenty

Sixth International Conference on Machine Learning, Montreal, Canada,

2009.

[Lin91] Long-Ji Lin. Programming robots using reinforcement learning and

teaching. In Proceedings of the Ninth National Conference on Artificial

Intelligence, 1991.

[LNC+06] Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Wei

Koh, Andrew Y. Ng. Tiled Convolutional Neural Networks. Advances

in Neural Information Processing Systems, 23, Canada, 2010.

[Low04] David G. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. In International Journal of Computer Vision, 60(2):91-110,

2004.

[Mac03] David MacKay. Information Theory, Inference, and Learning Algorithms.

Cambridge University Press, Cambridge, 2003.

[Mem08] Roland Memisevic. Non-linear latent factor models for revealing structure

in high-dimensional data. PhD thesis, University of Toronto, 2008.

[MH07] Roland Memisevic and Geoffrey Hinton. Unsupervised Learning of

Image Transformations. In Proceedings IEEE Computer Society

Conference on Computer Vision and Pattern, Minneapolis, MN, 2007.

[MH10] Abdel-rahman Mohamed and Geoffrey Hinton. Phone Recognition

using Restricted Boltzmann Machines. In Proceedings of the Thirty Fifth

International Conference on Acoustics Speech and Signal Processing, 4354-

4357, Dallas, TX, 2010.

Bibliography 108

[NRM09] Mohammad Norouzi, Mani Ranjbar, and Greg Mori. Stacks of

Convolutional Restricted Boltzmann Machines for Shift-Invariant

Feature Learning. In IEEE Computer Vision and Pattern Recognition,

2009.

[Roj96] Ra´ul Rojas. The Backpropagation Algorithm. In Neural Networks.

Springer-Verlag, Berlin, Germany, 1996.

[RA98] Jette Randlov and Preben Alstrom. Learning to Drive a Bicycle using

Reinforcement Learning and Shaping. In Proceedings of the Fifteenth

International Conference on Machine Learning, Madison, WI, 1998.

[Rob95] Anthony Robins. Catastrophic forgetting, rehearsal, and

pseudorehearsal. Connection Science: Journal of Neural Computing,

Artificial Intelligence and Cognitive Research, 7 : 123 – 146, 1995.

[RPCL06] Marc’Aurelio Ranzato Christopher Poultney Sumit Chopra Yann

LeCun. Efficient Learning of Sparse Representations with an Energy-

Based Model. In Proceedings of the Twentieth Annual Conference on

Neural Information Processing Systems, Vancouver, B.C., Canada, 2006.

[Ryb05] Leszek Rybicki. Simulating artificial life using Boltzmann machines. In

Proceedings of the International Joint Conference on Neural Networks,

Montreal, Canada, 2005.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, 1998.

[SH09] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann

Machines. In Proceedings of the Twelth International Conference on

Artificial Intelligence and Statistics, volume 5 of JMLR:W&CP 5,

Clearwater Beach, FL. 2009.

[SHT09] Ilya Sutskever, Geoffrey Hinton, and Graham Taylor. The Recurrent

Temporal Restricted Boltzmann Machine. Advances in Neural

Information Processing Systems, 21, MIT Press, Cambridge, MA, 2009.

[See05] Alexander K. Seewald. Digits - A Dataset for Handwritten Digit

Recognition. Technical Report, Austrian Research Institute for

Artificial Intelligence, TR-2005-27, 2005.

Bibliography 109

[See09] Alexander K. Seewald. On the Brittleness of Handwritten Digit

Recognition Models. Technical Report, Seewald Solutions, Wien, 2009.

[SMB10] Hannes Scuhlz, Andreas Müller, and Sven Bejnke. Exploiting Local

Structure in Stacked Boltzmann Machines. In Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning,

Bruges, Belgium, 2010.

[SMH07] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted

Boltzmann Machines for Collaborative Filtering. In Proceedings of the

Twenty Fourth International Conference on Machine Learning, Corvallis,

OR, 2007.

[SMSM99] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay

Mansour. Policy Gradient Methods for Reinforcement Learning with

Function Approximation. In Advances in Neural Information Processing

Systems, 12:1057-1063, MIT Press, 1999.

[SSB85] Oliver G. Selfridge, Richard S. Sutton, and Andrew G. Barto. Training

and Tracking in Robotics. In Proceedings of the Ninth International Joint

Conference on Artificial Intelligence, volume 1, San Francisco, CA, 1985.

[SWBR07] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber

and Tomaso Poggio. Robust object recognition with cortex-like

mechanisms. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(3):411–426, 2007.

[Tay09] Graham W. Taylor. Composable, distributed-state models for high-

dimensional time series. PhD thesis, University of Toronto, 2009.

[TH09] Graham W. Taylor and Geoffrey E. Hinton. Factored Conditional

Restricted Boltzmann Machines for Modeling Motion Style. In

Proceedings of the Twenty Sixth International Conference on Machine

Learning, Montreal, Canada, 2009.

[THR09] Graham W. Taylor, Geoffrey E. Hinton and Sam Roweis. Modeling

Human Motion Using Binary Latent Variables. Advances in Neural

Information Processing Systems, 19, MIT Press, Cambridge, MA, 2009.

[Tie09] Tijmen Tieleman. Training Restricted Boltzmann Machines using

Approximations to the Likelihood Gradient. In Proceedings of the

Bibliography 110

Twenty Fifth International Conference on Machine Learning, Helsinki,

Finland, 2008.

[Wil92] Ronald J. Williams. Simple Statistical Gradient-Following Algorithms

for Connectionist Reinforcement Learning. Machine Learning, 8:229-

256, 1992.

[WJ05] John Winn and Nebojsa. LOCUS: Learning Object Classes with

Unsupervised Segmentation. In Proceedings of the Tenth IEEE

International Conference on Computer Vision, Beijing, China, 2005.

[WK96] Gerhard Widmer and Miroslav Kubat. Learning in the presence of

concept drift and hidden contexts. Machine Learning 23:69-101, 1996.

[WT01] Lex Weaver and Nigel Tao. The Optimal Reward Baseline for

Gradient-Based Reinforcement Learning. In Proceedings of the

Seventeenth Conference on Uncertainty in Artificial Intelligence, 2001.

