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Abstract 

The variation in the data that a robot in the real world receives from its 

sensory inputs (i.e. its sensory data) will come from many sources. Much 

of this variation is the result of ground truths about the world, such as 

what class an object belongs to, its shape, its condition, and so on. Robots 

would like to infer this information so they can use it to reason. A 

considerable amount of additional variation in the data, however, arises 

as a result of the robot’s relative configuration compared to an object; that 

is, its relative position, orientation, focal depth, etc. Fortunately, a robot 

has direct control over this configural variation: it can perform actions 

such as tilting its head or shifting its gaze. 

The task of inferring ground truth from data is difficult, and is made 

much more difficult when data is affected by configural variation. This 

thesis explores an approach in which the robot learns to perform actions 

that minimize the amount of configural variation in its sensory data, 

making the task of inferring information about objects considerably 

easier. The value of this approach is demonstrated by classifying digits 

from the MNIST and USPS datasets that have been transformed in 

various ways so that they include various kinds of configural variation. 
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Chapter 1 

1 Introduction 

It is hard for robots to interpret data in the real world, because there is a wide range 

of variation in how objects appear. Even a single object will appear drastically 

different to a robot when viewed from different perspectives. 

The variation in data (that is, the sensory input to a robot) comes from many 

sources. We divide this variation into two categories: (i) native variation in the world 

that is the result of ground truths about objects, such as their shape and style, and (ii) 

configural variation that arises as a result of the relative configuration of the robots 

sensors compared to an object’s position, such as the relative orientation of the 

object. The key distinction between these two types of variation is that the sources of 

native variation are unknown to the robot, whereas the robot has direct control over 

configural variation. It can perform actions, such as moving or tilting its head, to 

alter the configuration of its sensors (relative to an object). Actions that directly 

interact with an object, such as pushing or pulling, usually also alter the agent’s 

relative configuration. 

Configural variation makes up an enormous amount of the variation in the 

data that a robot (or any agent) is expected to see in the real world. But since these 

sources of variation are under the robot’s control, steps can be taken to reduce, or 

even eliminate, their impact on the data. It is much easier to interpret data (that is, to 

infer ground truths about the data such as what class an object belongs to) that only 

includes native variation. This thesis looks at how to improve an agent’s ability to 

interpret data by directly controlling configural variation, specifically looking at how 

to classify data (a relatively straightforward recognition task). 

Figure 1.1 demonstrates the difficult task faced by a robot trying to interpret 

data in the world. 
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Figure 1.1: The difficulty of interpreting data. The sensory input (or data) that an 

agent receives is influenced by both native variation (variation in the world that 

arises due to unknown ground truths) and configural variation (variation that arises 

due to the configuration of agent’s sensors relative to an object). It is difficult to infer 

ground truths about data due to the various sources of native variation, and it is 

extremely difficult to infer ground truths about data that has additionally been 

corrupted by configural variation. In the fictitious example shown, when presented 

with a small dataset where the only source of variation in the data is native, an agent 

is able to identify around 90% of objects correctly after some standard classification 

training. When configural variation is introduced to the same dataset, only 50% of 

objects can be identified correctly. When trying to classify objects based on its 

sensory input, a naïve agent will create many representations of the same ground 

truths that only differ due to configural variation. Dealing with configural variation 

separately allows classifiers to generalize much better. 
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We suggest a new approach to interpreting data in which the agent always 

adjusts its sensors (by performing actions) in an attempt to minimize the configural 

variation before building its internal representation. This generally results in the 

agent choosing to perform what could be termed “stabilizing” actions (the agent 

likes to see data that consistently looks the same), such as tilting its head to ensure 

data is upright. Figure 1.2 demonstrates this solution. 

A key question that this thesis attempts to answer is: “Is it easier to first learn 

how to eliminate configural variation and then infer ground truths, than it is to learn 

ground truths directly from data that includes configural variation?” 

 

Figure 1.2: Making data easier to interpret. While an agent has no control over the 

native variation that influences its sensory data, the variation that arises as a result 

of the agent’s differing relative configurations with an object can largely be 

eliminated by attempting to return to a default/standard relative configuration. This 

effectively “collapses” the number of representations required to those that can be 

explained by native variation only, thus allowing the agent to more easily infer 

ground truths. The classification task is made much simpler; accounting for 

differences in objects that are the result of configural variation amounts to selecting 

the correct “stabilizing” action. 

Performing action(s) 

can eliminate 

configural variation 
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     eg: 
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Our system uses reinforcement learning techniques (chapter 2) to train an 

agent so that it discovers the best actions that it should use to adjust its configuration 

to make interpreting the data as easy as possible (it learns θaction in Figure 1.2). A 

Restricted Boltzmann Machine (chapter 3), a kind of associative memory, is used to 

build the agent’s internal representation, and to classify the data (it learns θrecog in 

Figure 1.1). By selecting a reinforcement value that provides feedback based on the 

agent’s current internal representation space, we demonstrate a significant 

improvement in classification results and discuss a variety of issues that arise during 

the implementation of such a system. 

The actions that a robot takes to alter its visual configuration result in the data 

being transformed. There are a large number of possible configuration-changing 

actions that a robot can take. A number of these actions result in transformations 

that are relatively straightforward to model: tilting of a robot’s head corresponds to 

rotating an image, shifting of a robot’s gaze corresponds to translating an image, and 

increasing or decreasing focal depth will blur and sharpen different parts of the 

image, etc. Our experimentation focuses on these kinds of actions (and the resulting 

kinds of transformations). 

It is important to note that the agent does not necessarily need to actually 

perform these actions. If the agent has learned a good model of what happens to 

objects as they are transformed, then the entire process could take place in the 

agent’s mind. 

Standard classification systems that naively attempt to use the data obtained 

from viewing an object from different perspectives tend to do a poor job at 

generalizing away differences that arise purely as a result of configural variation, 

and thus tend to perform poorly on such data. Instead, standard classification 

systems almost always operate on data that has first been pre-processed. For visual 

data, this generally involves being centered, scaled, and oriented before any work is 

carried out. Pre-processing techniques, however, require external knowledge and 

put limits on the types of configural variation that can be reduced. They often 

require a large amount of manual labor, are application specific, and can be prone to 

error. 

The vast majority of previous work that has looked at interpreting or 

classifying data that includes configural variation has focused on using fixed 
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architectures to detect only one or a small number of pre-defined kinds of 

transformations. This kind of architecture is limiting and inflexible. 

Ideally, we would like to build classifiers that are resilient to any action an 

agent may take that changes the way data is perceived. This disallows us from 

configuring a fixed network architecture that could aid in generalizing away 

differences that arise as a result of specific perspective changes. The proposed 

system assumes no outside knowledge about the kinds of configural variation that 

might be present in data. The agent discovers these itself in the course of performing 

actions. 

1.1 Contributions of the Thesis 

The main contributions of this thesis are: 

 A new conceptual approach to the classification of data, by embodied agents, 

that generalizes away the differences in data that are the result of configural 

variation and thus can be affected by actions. A system is presented that 

incorporates energy-based model techniques (specifically, the Restricted 

Boltzmann Machine) and reinforcement learning techniques to show how the 

concept can work in practice. 

 A demonstration of the classification results that can be achieved by this 

system as compared to results achieved by a similar classifier that makes no 

attempt to generalize differences in data as a result of configural variation. 

Impressive results were achieved in spite of using relatively standard, yet 

specially configured, reinforcement learning techniques to determine how data 

vectors should be transformed, suggesting that there is substantial room for 

improving further on the results. 

 A derivation of a tractable method for comparing how likely one data vector is 

compared to another in the joint probability of a Restricted Boltzmann 

Machine, as well as a discussion of how to classify data accurately and 

efficiently in a Restricted Boltzmann Machine. 

 A discussion of a variety of issues that arise as a result of the specific system 

configuration, including how the adaptive reinforcement values impact on 



 

Chapter 1. Introduction  6 

 

 

traditional reinforcement learning techniques. Of particular importance is the 

issue of how it can be difficult to achieve (and maintain) convergence given the 

two-way feedback between the two networks involved. 

 A presentation of additional experiments with the system that highlight its 

ability to generalize away configural variation that arises from different kinds 

of actions, as well as suggestions for future improvements. 

1.2 Outline of the Thesis 

This thesis is organized as follows: 

Chapter 2 provides some background on reinforcement learning techniques, 

describing value iteration and policy gradient methods in detail. 

Chapter 3 provides some background on deep belief networks, specifically 

discussing Restricted Boltzmann Machines, and how they can be used to classify 

data. 

Chapter 4 examines other systems from the literature that make attempts to 

generalize away differences in data that are the result of configural variation. 

Chapter 5 presents the system architecture in detail, provides classification 

results achieved on the MNIST and USPS datasets, and discusses several 

optimizations made to improve the system. 

Chapter 6 discusses the implications of some issues that were not directly 

resolved in our classification system. 

Chapter 7 presents some additional experiments that demonstrate the system’s 

ability to learn to model different kinds of configuration-changing actions. 

Chapter 8 summarizes the results and limitations of the thesis, and suggests 

some possible avenues for future work. 

The Appendix describes the software systems that were developed to produce 

the results presented in this thesis, gives a technical overview that details the full 

algorithm, and discusses the potential efficiency gains that could be achieved by 

running the system on a standard GPU.  
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Chapter 2 

2 Reinforcement Learning 

The field of reinforcement learning examines how an agent can learn from 

“rewards” that it receives for performing actions [SB98]. The goal is to adapt the 

agent’s behavior so that it learns to perform actions that maximize the numerical 

(long term) reward that it receives. Reinforcement learning differs from standard 

supervised (or unsupervised) learning. Instead of training on a set of specially 

constructed examples, the agent learns from data obtained from interacting with its 

environment. 

Reinforcement learning techniques suit the task we are attempting to achieve; 

that is, to build a system capable of working out which actions to perform to 

minimize configural variation in data. We will need to work out how to provide 

accurate “rewards” to the agent to inform it that configural variation has been 

reduced (or increased), as discussed in section 5.3. 

This chapter gives an overview of reinforcement learning, specifically focusing 

on the techniques that were considered for use in the system presented later in the 

thesis. 

2.1 Problem Description 

All reinforcement learning problems can formally be described in terms of an agent 

and an environment. The agent learns which actions it should perform to maximize 

its expected reinforcement payoff. The environment determines what will happen 

when the agent performs an action, and what reinforcement value should be 

provided. 
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More formally, the environment consists of a set of states,  . At any given 

moment, there are a set of actions,  , that the agent can choose to take. Each 

possible transition between states has an associated reward,  , that the agent will 

receive if that transition occurs. 

The environment is almost always a Markov Decision Process [Bel57] that 

specifies the probability of all possible state-action transitions. That is,         denotes 

the probability of transitioning to state    if action   is taken while in state  . In the 

case of deterministic environments, these probabilities will all be zero or one. 

The agent’s choice of actions can be described in terms of a policy. A policy 

describes a mapping from all possible states to the probabilities of the agent 

selecting each possible action. That is,      denotes the probability of the agent 

selecting action  , given that the agent is in state  , under the policy  . 

The goal of reinforcement learning can be described as learning an optimal 

policy that ensures the agent will always select actions such that they will receive the 

maximum possible expected rewards. 

Figure 2.1 depicts the relationship between an agent and the environment. 

 

Figure 2.1: The agent-environment interaction. The classic diagram describing the 

interaction between an agent and environment. The agent determines which action 

to perform, which affects the environment. The environment, given an action, 

determines which state will be transitioned to, as well as what the reward is for the 

given transition. 

 

Agent 

Environment 

action reward state 
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2.2 Value Function Learning 

The majority of algorithms designed to solve reinforcement learning problems are 

based on estimating some kind of value function. Value functions estimate a value 

for each state that represents the long-term value of being in that state, based on the 

expected future returns of selecting actions based on policy   (starting from that 

state). 

Given a problem that has no expected end, the present value of a state can be 

calculated by discounting future rewards: 

  
    [∑         

 

   
     ] 

where   
  is the value of state   under policy  ,   is the discount factor, and 

  [ ] is an expectation over the sum of the discounted rewards for following policy 

 . 

Given this definition of a value function, it follows that there must be at least 

one optimal policy that maximizes the expected return (value) in every state; by 

simply selecting with certainty the action that maximizes the value of each state. 

Note the value of an action in a given state can be expressed similarly: 

    
    [∑         

 

   
          ] 

where     
  is the value of taking action   in state   under policy  . 

To come up with a method to evaluate the value function for a given policy, 

  , we first note that the value function of state   can be described in terms of the 

value functions of the states that are reachable from that state: 

   
     [      ∑         

 
        ] 

   ∑  (   ) ∑          [ [ ]      
 ]  

where         is the probability that        , given that     . This condition is 

known as the Bellman equation. 
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One method for computing the value function is to begin with an initial 

approximation,   , then successively update this approximation by putting it 

through the Bellman equation: 

   
    ∑  (   ) ∑          [ [ ]      

 ]  (2.1) 

It can be shown that by following this procedure, the value function will 

converge to    as     [SB98]. 

Once a value function has been approximated reasonably well, the policy can 

be improved by updating the policy mapping greedily. That is, always select the 

action that maximizes the value of the state based on the value of reachable states 

[SB98]: 

   
     

 
 ∑          [ [ ]      

 ] (2.2) 

Thus, to discover an optimal policy, one can iteratively alternate between 

updating the value functions until convergence (2.1), and updating the policy (2.2). 

The policy function is guaranteed to improve with each iteration, and since there 

must be a limited number of possible policies in a Markov Decision Process, the 

process is guaranteed to converge in a finite number of iterations. 

Unfortunately this process can be very slow. One fairly straightforward 

optimization is to effectively truncate the value function approximation after a single 

step, meaning both the value function approximation and the policy improvement 

can be achieved in a single update: 

   
       

 
 ∑          [ [ ]      

 ] 

Iteratively following this update rule is known as Value Iteration. This 

algorithm, along with other similar dynamic programming techniques, has been 

demonstrated to be quite efficient on small problems, where the number of states 

and actions is not large. On high-dimensional problems, however, such techniques 

are infeasible. Additionally, to perform these dynamic programming techniques, a 

complete model of the environment is needed including the transition probabilities 

for every state-action pair,        . 
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2.2.1 Temporal Difference Methods 

Temporal Difference methods, unlike standard dynamic programming techniques, 

do not require enumerating every state each iteration, nor do they require 

knowledge of state-action transition probabilities, making them more widely 

applicable for real problems than standard dynamic processing techniques. 

In temporal difference methods, value functions are updated from an agent’s 

experience. The agent performs actions according to the current policy (which is 

determined by greedily choosing actions based on the current state values). At each 

state the agent arrives at, the value of that state is improved by moving the value 

towards a better sample of the state’s true value under the current policy. In TD(0), 

an approximation of this sample is obtained from the values of the next state. Thus, 

the update rule is simply: 

       [               ] 

An example of a temporal difference method that learns an optimal policy is 

Sarsa. In Sarsa, instead of maximizing state values, it is the value of state-action 

pairs,  , that is maximized: 

        
  [                       

] 

Each iteration the agent will start in a random entry state, and carry out a 

sequence of actions, updating Q values based on this rule. The learned optimal 

policy will be to select the action with the maximum Q value in each state. 

Sarsa is only theoretically guaranteed to converge if all state-action pairs are 

visited an infinite number of times. It is clearly important that unvisited states are 

explored as they may provide higher rewards than the agent has experienced so far. 

This means that while the policy should generally be followed, it will sometimes 

have to be deviated from to encourage exploration. 

One issue with Sarsa is that any deviations from the policy result in the update 

rule pulling the Q value in the wrong direction. The Q-Learning algorithm 

overcomes this problem by always pulling Q towards the discounted return that 

would follow if the greedy action were taken next, even if it is not actually taken: 

        
  [         

 
                

] 
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This means we have much more freedom to explore off policy actions without 

degrading the Q values. 

2.2.2 Action Selection: Exploitation versus Exploration 

In many reinforcement learning methods, including temporal learning, there is a 

tradeoff when selecting actions between exploitation and exploration. To obtain a lot 

of reward, and solidify a policy that achieves good rewards, an agent needs to exploit 

what it has learned by repeating actions that have provided high reward in the past, 

but in order to discover potentially better rewards it needs to explore actions that it 

has not tried many times. In many cases, exploration is essential to provide a 

guarantee of eventual convergence. 

This dilemma is often solved using an  -greedy algorithm. The greedy action 

(the action with the highest estimated value) is selected most of the time, but a 

random alternative action is chosen with probability  . This ensures the agent 

exploits high reward actions most of the time, but also guarantees that every action 

has a chance of being performed over time. 

An alternative option is to select non-optimal actions according to their relative 

values. This will mean it is more likely second-best actions will be chosen than the 

worst actions, while the optimal action will still be chosen most often. Some 

variation of the softmax function, shown below, is usually used to determine the 

relative probabilities: 

 ( )  
   

∑    
 

 

2.3 Function Approximation 

In many real problems, the number of possible states is very large (many input 

dimensions), or sometimes even infinite, and thus it becomes infeasible, or 

impossible, to maintain a complete mapping from states to values, or from actions to 

Q-values. 
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In such cases, the mapping needs to be approximated somehow. Many 

approximations have been suggested, ranging from simple solutions, such as 

linearly grouping state patterns [SB98], to complex solutions such as approximating 

the mapping using a decision tree [CK91] or a neural network [Lin91]. 

In order to use a neural network (or any supervised method) to approximate 

the mapping, we need to come up with a measure of how well the mapping is 

approximated in the network—the standard mean squared error (MSE) function of 

the estimated values makes the most sense. This error simply needs to be minimized 

using gradient descent. The Temporal Difference update rules effectively follow the 

gradient of the Mean Squared Error of the estimated value as they are. For Q-

Learning, for example: 

    ( )  ∑  ( ) [(         
 

         )        
]
 

    

     
    

  
  [         

 
                

] 

Thus, a neural network can be used to approximate the mapping; the network 

parameters (weights) are updated according to the above equation. This error can be 

backpropagated through multiple layers if desired. 

One well known case of using a neural network to model a mapping is the TD-

Gammon algorithm, which used a Temporal Difference method to train a 

reinforcement learning system to play backgammon, representing the state to value 

mapping using a two layer neural network (MLP) [SB98]. 

All Value Function techniques do, however, have certain limitations. They 

focus on finding deterministic policies, when the optimal policy may sometimes be 

stochastic. More importantly, arbitrarily small changes in the estimated value of an 

action can cause it to be selected or not selected, which can cause issues when a 

mapping function is approximated, in some cases preventing convergence [Bai95]. 

2.4 Policy Gradient Methods 

An attractive alternative to Value Function techniques is to train a system by 

parameterizing the policy (instead of a value function), and then optimizing these 

parameters by following an estimate of the gradient of the policy directly, with 
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respect to these parameters. The policy could alternatively be optimized using 

techniques other than gradient ascent. 

It is actually the expected long term average reward of a policy that is 

parameterized: 

 ̅     
   

 

 
 (∑   

 

   
) 

where  ( ) is the expectation over sequences of states that are generated by 

following the policy. 

Calculating the true gradient of this expected return will be intractable in any 

non-trivial problem [BB01]. Instead, under some conditions [SMSM99], the gradient 

can be estimated using the following equation, which can be demonstrated to 

converge to the true gradient of  ̅ in the limit as    : 

       ∑                   

 

   
 

To implement this in practice, we use an eligibility trace that keeps record of 

discounted past gradients. This leads to the following update rules: 

                    
 

                  

This has several obvious advantages. Since the policy is learned directly, the 

system need only learn what the best actions to take in each state are; a seemingly 

simpler task than learning the long term value of taking each action. Since the policy 

can be parameterized in any way, domain knowledge can be incorporated to make 

the learning task easier. Likewise, since learning is achieved by optimizing 

parameters instead of learning a state-value mapping, policy optimization 

techniques are able to be much more fluidly implemented using standard systems 

such as neural networks, and have more convincing convergence guarantees 

(though only to local maxima). This would suggest Policy Gradient methods should 

perform well on high dimensional problems. There are relatively few experimental 

results to support this, though some success has been achieved using policy gradient 

techniques to learn robotic locomotion, where good policy parameterizations are 

known [Fie05]. 
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Policy Gradient methods do, however, have several drawbacks. Learning times 

can be long as a result of the large variance in gradient estimates, and it can be 

difficult to construct policy parameterizations of the appropriate complexity. One 

approach to reducing the gradient is to include a reward baseline. The optimal 

baseline measures the average reward the agent has received across all timestamps 

to date. By subtracting this value from the reinforcement values, variance in the 

gradient estimation is drastically reduced, while the gradient estimation itself is not 

biased [BB01]. Experimental results suggest that even with a baseline included, 

neural network based implementations of Q-Learning are able to converge faster 

than neural network based implementations of Policy Gradient, at least in some 

complex problem domains [BFHM06]. 

 



 

Chapter 3. Restricted Boltzmann Machines  16 

 

 

Chapter 3 

3 Restricted Boltzmann Machines 

Restricted Boltzmann Machines (RBMs) are an active area of current research. A 

tractable method for training RBMs was introduced by Hinton, Osindero, and Teh 

[HOT06], and they have since been shown to be capable of representing generative 

models of many different types of data, including images [Hin06], voice [MH10], 

and motion [TH09, THR09]. 

This chapter gives an overview of the current state of research into RBMs, as it 

relates to the work done in this thesis. 

3.1 Belief Networks 

As motivation towards Restricted Boltzmann Machines, a brief introduction to belief 

(or Bayesian) networks [Mac03, KF09] is presented. A belief network is a 

probabilistic graphical model that consists of a set of variables, or nodes, connected 

by factors that define the probabilistic relationship—dependencies—between these 

nodes. In general, some nodes will represent visible (observed) variables, and others 

hidden (unobserved) variables. Factors in belief networks represent the conditional 

probabilities between nodes, meaning that belief networks are implicitly normalized: 

the sum of the (joint) probabilities of each possible configuration of values equals 

one. As such, belief networks can be considered generative models that describe the 

probability of different configurations of visible patterns. 

The structure of a belief network implies certain independencies between 

nodes [KF09]. The value of an individual node is conditionally independent of the 

value of all other nodes, given the value of all nodes in its Markov blanket: its 

parents (nodes connected to it), its children (nodes it is connected to), and any other 

parents of its children. This can be written as: 
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                    ( ) 

where   is not in the Markov blanket of  . 

Similarly, the joint probability of a given configuration in a belief network is 

equal to the product of the probabilities of each individual variable (factors), which 

are conditional only on their parents [KF09]: 

 ( )  ∏  (  |        (  )
)

 
 

In order to make belief networks scalable, the conditional probability factors 

can be parameterized using a weighted sigmoid function, and the nodes treated as 

binary stochastic “neurons”—the approximated probability of a node can be 

determined by applying a sigmoid function to the sum of the weighted inputs from 

each parent node. Belief networks that are parameterized in this way are called 

sigmoid belief networks. 

In general, we want to be able to train a belief network by adjusting the 

weights so that desired visible configurations are more likely to be generated (that is, 

the joint probability of desired configurations is increased). Once a network has been 

trained, it can be used to infer the probability of unknown nodes. 

It would be fairly straightforward to train a sigmoid belief network using a 

dataset that included complete information about the states of all units in the 

network. Training would simply amount to maximizing the log probability that the 

binary state of each unit in a given configuration is generated, given the binary states 

of its parents. 

To represent any interesting data though, it is imperative to include hidden 

(unobservable) variables. When the dataset includes only partial information about 

the states of units in the network, training becomes much more difficult. Belief 

networks are generally trained by using gradient descent methods to maximize the 

log probability of a set of data vectors,  . If we let   denote visible units,   denote 

hidden units, and   denote the network parameters (weights), then training amounts 

to updating the weights as follows (derivation of this formula is omitted here for 

brevity) [Mac03]: 
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where the inner sum is over all configurations of hidden units. 

Summing over all configurations of hidden units,  , is intractable, but this 

could be approximated by instead taking samples drawn from the posterior (a 

sample of the binary values of the hidden units given the values of the visible units). 

Unfortunately, standard belief networks have to account for “explaining away”—the 

values of hidden parent nodes are conditionally dependent given the values of their 

visible children nodes—making even taking a sample from the posterior intractable 

[Mac03]. In order to take a sample from the posterior, one would need to perform a 

very long Markov chain of Gibbs sampling, where the value of each hidden unit is 

repeatedly updated given the values of all other nodes [Mac03]. 

Attempting to overcome this intractability issue eventually led to the discovery 

of Restricted Boltzmann Machines. Before considering Boltzmann Machines in detail 

though, a short introduction to energy-based models—specifically probabilistic 

energy models—is provided. 

3.2 Energy-Based Models 

Energy based models (EBMs) are, like most models in machine learning, a method 

for encoding dependencies between variables. EBMs do so by associating a scalar 

“energy” value to each configuration of variables. Inference consists of finding the 

unobserved values that will minimize the energy value, given some observed 

values. Learning consists of shaping an energy landscape (by changing the 

parameters of the energy function) to have low energy at desired configurations of 

the visible variables, and higher energy elsewhere. 

Energy based learning can be applied to both probabilistic models, where the 

energies have probabilistic meaning as a result of being normalized to sum to one 

over all configurations, and non-probabilistic, un-normalized, models. Most 

probabilistic models, including Boltzmann Machines, can be seen as special types of 

EBMs in which the energy function does satisfy certain normalization conditions 

average over posterior 



 

Chapter 3. Restricted Boltzmann Machines  19 

 

 

[LCHRH06]. The Gibbs measure is commonly used to normalize a collection of 

energies such that they can be treated as probabilities: 

 ( )  
    ( )

∫     ( )
  

 

 

The denominator, or normalizing factor, is commonly known as the “partition 

function”, and is sometimes denoted  . Where the configurations of   are discrete, 

the integral is replaced with a sum. 

3.3 Boltzmann Machines and Restricted Boltzmann 

Machines 

Another type of generative neural network (an alternative to sigmoid belief 

networks) is a Boltzmann Machine. Boltzmann Machines consist of undirected 

connections between nodes. Since connections are undirected, the factors between 

pairs of nodes do not represent conditional probabilities, but are instead given by 

        , where    is the activation value of unit   (0 or 1), and parameter     is the 

weight between units   and  . Each node can also have a bias factor,        where 

parameter    is the bias term of unit  . The joint probability is the normalized 

product of all the factors: 

 ( )  
∏       

  ∏ ∏         
   

 
 

 
 

 ∑       ∑ ∑           
 
 

 
 

where   ∑  ∑       ∑ ∑           
 
 

  
 . A Boltzmann Machine can thus be considered 

a probabilistic energy model (section 3.2), where the energy function is: 

  ( )   (∑       ∑ ∑           
 
 ) (3.1) 

If     has a high value, this energy function will assign low energy to 

configurations where units   and   are both on at the same time, and vice-versa. 

In a Boltzmann Machine, the probability of a node activating, if the value of all 

other nodes are known, turns out to be equal to the sigmoid function applied to the 

weighted inputs: 
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       ∑       
 

where     is a vector of the value of all nodes except k. 

Note that no distinction is made between visible and hidden units in the 

equations above, but Boltzmann Machines do generally include hidden units. 

Unfortunately, learning is still intractable in Boltzmann Machines, for two 

reasons. Firstly, since hidden units can be connected to each other, they are 

dependent on each other in both the prior,  ( ), and the posterior,  (   ). Obtaining 

a sample from the posterior still requires a long Markov chain of Gibbs sampling (in 

which each hidden unit is repeatedly updated in isolation). Secondly, the joint 

probability is not automatically normalized; the normalization term   needs to be 

explicitly dealt with when determining the gradient of the log likelihood. 

Both of the issues that make Boltzmann Machine’s intractable are solved in 

Restricted Boltzmann Machines (RBMs). The first problem is solved by removing the 

connections between hidden-hidden. This makes the hidden unit values 

conditionally independent of each other given the visible unit values, and thus 

allows a sample from the posterior to be obtained simply by computing the 

activation probabilities of each hidden unit once. Likewise, removing connections 

between visible-visible units makes the visible unit values conditionally 

independent of each other given the hidden unit values. 

To see why the second problem (dealing with the normalization term  ), is an 

issue, we derive the update rule for a Boltzmann Machine. In what follows,   

denotes hidden unit values,   denotes visible unit values,   denotes weight values,   

denotes visible biases, and   denotes hidden biases. Also,   is used to index visible 

units, and   is used to index hidden units. 

Note first that since the only connections allowed in an RBM are between 

hidden and visible units, the energy term differs slightly from equation (3.1): 

    ( )   (∑     
 

 ∑     
 

 ∑        
  

) 
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We begin by expressing the log probability of a data vector in terms of the 

Boltzmann Machine energy function: 

 ( )  ∏  ( )    ∏
∑    (   )

  
 

∑    (   )
  

   
 

     

and so: 

     ( )  ∑ (   ∑    (   )
  

     ∑    (   )
  

   
 )    

    ∑ (   ∑  ∑       ∑       ∑          
  

     ∑  ∑       ∑       ∑          
  

   
 )    

 

Next we examine the derivative of the first term. This term represents the un-

normalized probability of the visible units. The negative of this value is called the 

free energy,  ( ). 

  
  ( )

    
  

 

    
[    ∑  ∑       ∑       ∑          

  
 ] 

Note that  (   ) factors in the absence of hidden-hidden connections, meaning 

there is no term involving an inner sum over hidden units, ∑ ∑ ( )     , in the above 

equation, and so we are able to factorize all possible configurations of hidden units 

into a product over  . The terms not indexed by   come out the front. 

  
  ( )

    
  

 

    
[     ∑      ∏ ∑ (      ∑         )         ] 

   
 

    
[    ∑       ∑     (      ∑       ) ] 

   (
 

       ∑       
)     

    (    )     

In other words, this is the value of the relevant visible unit from the dataset 

multiplied by the probability of the relevant hidden unit activating. This is 

commonly written as: 

 
  ( )

    

 〈     〉     

negative free energy,   ( )      
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We follow a similar process when deriving the second term; the gradient of the 

log of the normalization factor,  : 

 
     

    
  

 

    
[    ∑  ∑       ∑       ∑          
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      ∑         
  (    ∑       )     

If we bring 
 

 
 inside the summation, we see the terms colored blue equal  ( ). 

This is made explicit when we expand the product over   into a sum over all 

configurations of hidden units (the reverse operation to the factorization performed 

above): 

 
     

    
  ∑ (

∑  
∑       ∑       ∑          

  
 

 
)  

  (
 

       ∑       
)     

   ∑  ( )  
   (    )     

In other words, this is the average of the value of the relevant visible unit 

multiplied by the probability of the relevant hidden unit activating for each possible 

configuration of visible units, weighted by the probability assigned to each 

configuration in the joint. This can be rewritten as: 

     

    

 〈     〉      

 

So, finally, the full derivate of the log probability is:  

     ( )

    

 ∑ ( (    )     ∑  ( )
  

 
  (    )    )

   
 

And the update rule that follows, for simple gradient ascent of     ( ), is: 

       ∑ [ 〈     〉     〈     〉     ]    (3.2) 
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Note that the derivatives of     ( ) taken with respect to the visible and 

hidden biases give similar (but simpler) equations. 

Equation (3.2) describes how to train RBMs. The first term requires 

determining the hidden unit activation values       , given the visible unit values. 

The second term, which is the derivative of the normalization term, is intractable to 

calculate exactly, but can be approximated by taking the average of a few samples 

from  (   ). Generating even a single sample from  (   ) still requires running a 

long Markov chain of Gibbs sampling, where the hidden units and visible units are 

updated sequentially. To reduce computational expense, an approximation of 

〈     〉      is generally used (as described in the next section). 

 

Figure 3.1: Graphical Models. Left: A standard belief network with directed 

connections exhibits “explaining away” (section 3.1). Middle: A Boltzmann Machine 

with undirected connections (symmetric weights). It is intractable to generate 

samples from, or train, this model. Right: A Restricted Boltzmann Machine with 

restricted connections can be efficiently trained using contrastive divergence (section 

3.3.1). 

3.3.1 Contrastive Divergence and Persistent Contrastive 

Divergence 

Contrastive Divergence (CD) [Hin02] is a technique used to produce an 

approximation to 〈     〉      by taking sample hidden and visible unit values after 

a few steps of Gibbs sampling that started from the visible data vector used to 

determine the first term in the RBM update rule derived in section 3.3. A key 

advantage of generating a sample this way is that the sample will not be far from the 

actual data values, and thus will hopefully result in the energy landscape around the 

hidden 

visible 

Directed Belief Net Boltzmann Machine RBM 
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data being pushed down ensuring a local (but not necessarily global) minimum is 

created. 

An alternative technique is called Persistent Contrastive Divergence (PCD) 

[Tie09]. The goal of this approach is to produce a more accurate approximation of 

〈     〉     , while avoiding the computational costs associated with running a long 

Markov chain. This is achieved by initializing a Markov chain of “fantasy particles” at 

the beginning of training. Several steps of Gibbs sampling are performed on the 

fantasy particles each time the update rule is applied, and the generated values are 

used as an approximation to 〈     〉     . As training goes on, the fantasy particles 

will represent fairly accurate samples from the model (since they are generated via a 

long chain of Gibbs sampling that has been running since training started), and thus 

push up the energy landscape around configurations that the model actually likes 

(the deeper valleys). PCD has been shown to speed up the learning of RBMs 

significantly over CD in many cases. 

Both CD and PCD methods have been shown to be capable of generating a 

sample from 〈     〉      that is “good enough” for the purposes of learning a good 

model, even when only one step of Gibbs sampling is used each time the network is 

updated [Hin02, Tie09] (although increasing the length of the Gibbs chain will 

usually improve results). 

RBMs can be used to classify data directly by including a softmax unit [Hin06] 

( ) in the visible layer (see Figure 3.2). A softmax unit has     possible output values, 

but only one can be active at a time. It uses the softmax activation function to 

determine the probability with which each output value should be selected: 

 (     )  
    ∑        

∑     ∑       
 

 

 In an RBM, the softmax (or label) unit has its value set according to the known 

class of the corresponding data vector during training. The weights into the softmax 

unit are trained in conjunction with the data. To infer which class an unlabeled data 

vector belongs to, one simply needs to clamp the visible unit values with a data 

vector (but not the softmax unit), and perform a chain of Gibbs sampling (alternating 

between updating the hidden units and updating the softmax unit). The mean 

activation values of the softmax unit, over a long Markov chain, give the posterior 

probability for each class. 
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Figure 3.2: Restricted Boltzmann Machine. An RBM is a two layer network with 

undirected connections. Hidden unit values can be determined from visible unit 

values in a single upward (recognition) pass, and visible unit values can be 

determined from hidden units in a single downward (generative) pass. RBMs are 

trained using Contrastive Divergence. The visible layer may include a softmax unit, 

allowing the RBM to be trained in a supervised manner and used for classification of 

new data vectors. 

3.4 Deep Belief Networks 

RBMs can be used to train a more powerful multi-layer generative model, a Deep 

Belief Network (DBN) in a greedy layer-by-layer process [HOT06]. To train a DBN, a 

single RBM is first trained on the dataset. The weights of that layer are then frozen, 

and a second RBM is trained on the aggregate posterior of the first layer—that is, it 

takes as input the hidden unit activations of the first RBM, when given the data as 

input. This process can be continued to train multiple layers. After training is 

completed, the DBN can be viewed as a single RBM (the top layer) with a directed 

network of connections in all the lower layers which can be used to recognize data 

vectors (convert them into input for the top layer RBM), or to generate data (convert 

samples from the joint probability from the top layer RBM into visible data). 

The proof of why a greedy layer-by-layer training process works is given in 

[HOT06]. The intuition behind the proof is that in an RBM the undirected weights 

ensure that the aggregate posterior over hidden units given the data,  (   ), which 

should learn to represent the prior,  ( ), does not factor. This means that training in 

successive layers should be able to improve the network’s model of  ( ). 

Visible Labels 

Hidden 
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Figure 3.3: Deep Belief Network. A DBN is a stack of Restricted Boltzmann 

Machines, trained layer by layer in a greedy manner. The RBM in the top layer may 

include a softmax label unit. 

To classify data in a DBN, the top layer RBM is trained with label units in the 

same way as described earlier. An alternative approach to classifying data in a DBN 

is to first train the network with no labels, and then use the weights as the 

initialization values for a standard multi-layer neural network with a softmax output 

layer added. The network can be trained using standard back-propagation. Fine-

tuning the weights with back-propagation has been shown to generally produce 

slightly better classification results than training an RBM with label units [Hin06]. 

3.5 Other Similar Systems 

A variety of extensions to RBMs and DBNs have been suggested. Discriminative 

RBMs [LB08] adopt a training rule that maximizes the log probability of the correct 

label unit given the data,     (     )  instead of     ( ). Hybrid RBMs use a 

training rule that maximizes some weighted combination of the two. Both systems 

have been used to achieve improved classification results over a regular RBM. 

Autoencoders are stochastic networks that are trained to capture key variation 

in data by running the data through a directed “feed-forward” network and trying 

and reproduce the data as output. They consist of an input layer, one or more 

smaller hidden layers, and an output layer that is the same size as the input layer. By 

Visible Units 

Hidden 

Hidden Labels 

Hidden 
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running the data through small hidden layers, the nodes will have to try and detect 

important features in the data in order to reproduce similar values in the output 

layer. A greedy layer-by-layer approach to learning a deep network, by stacking 

autoencoders (very similar to the approach used when stacking RBMs to produce a 

DBN), has been shown to be capable of producing similar classification results, 

suggesting the greedy layer training approach may be widely applicable [BLPL07]. 

There are many other variations of RBMs that allow for modeling of 

continuous data, time series data, etc [SH09, SMH07, TH09]. 
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Chapter 4 

4 Systems that account for some kind of 

Configural Variation 

There has been a considerable amount of work done in the field of Machine 

Learning and Computer Vision towards detecting objects given data that includes 

configural variation (i.e. data from the world that has not undergone pre-processing 

to fully remove configural variation). Virtually all these systems focus on only one or 

a small set of specific kinds of configural variation, and use human expert 

knowledge to hardcode the ability to deal with this variation into the network 

structure or algorithm. 

Of particular note, there are a range of models that are loosely inspired by the 

biological structure of the visual cortex, that have proposed different ways to 

account for configural variation that arises as a result of viewing objects from 

different perspectives. One such model is a Convolutional Neural Network 

[LBBH98]. 

4.1 Convolutional Neural Networks 

Convolutional Neural Networks address the problem of recognizing an object no 

matter where it appears in an image. Several techniques are employed to achieve 

this goal. 

Firstly, neurons in one layer receive input from a set of spatially contiguous 

neurons from the previous layer; these input units make up a “receptive field”. This 

forces the system to learn local features such as edges and corners (see section 4.1.1). 

In addition, input weight values are shared between a set of units whose receptive 

fields are located at different places in the previous layer. The units in each layer are 

thus organized into a set of planes, or “feature maps”, where each plane consists of a 
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set of units who share identical input weight values, allowing a feature to be 

detected at any location in the image. Different feature maps will extract different 

features from each location. The weights in a convolutional neural network are 

trained using standard backpropagation, and the update rule for shared weights is 

simply the average of the gradient for each contributing weight. The leftmost part of 

Figure 4.1 demonstrates this structure. 

Conceptually, inference in this network structure is equivalent to convolving a 

window around the image, looking for particular features in any location. If the 

input image is translated, the feature map output will be translated by the same 

amount, but will remain unchanged otherwise. 

Convolutional neural networks also perform some subsampling. Units in 

subsampling layers receive input from small non-overlapping rectangles from the 

previous layer, and down-sample by taking the average input value, multiplying it 

by a trainable coefficient, adding a bias and putting this value through a sigmoid 

function (alternatively take the maximum value can simply be taken). Subsampling 

layers are important for reducing the computational complexity of convolutional 

neural networks, which are generally very large. They also add additional 

translation and distortion invariance. 

Substantial translation and some distortion invariance is achieved by 

interleaving convolutional layers, that learn and detect spatially invariant features, 

with subsampling layers, that reduce the spatial resolution of the data. A standard 

multiplayer perceptron network can be appended to the output from a 

convolutional network to achieve impressive classification results. Figure 4.1 shows 

an example of a full network structure. 

LeCun, et al. demonstrate how convolutional neural networks can be used to 

achieve impressive results on recognizing digits and characters. After a substantial 

amount of fine-tuning, they achieved a very low error rate of 0.95% on the standard 

MNIST dataset [LBBH98]. 
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Figure 4.1: Convolutional Neural Network. Convolutional Layers consist of a set of 

feature maps whose input is obtained by convolving a window over the input layer, 

thus detecting the same feature but at any location. Subsampling layers down-

sample the input. Nodes in deeper convolutional layers (such as layer 3) take the 

combined input from receptive fields from a subset of the feature maps from the 

previous layer. This ensures each new feature map learns different features, and 

prevents the number of connections in the network from getting too large. 

4.1.1 Exploiting Local Features 

A common idea when attempting to detect objects in data that includes configural 

variation is to restrict nodes to learning local features only, as is done in convolution 

neural networks by limiting the input weights into each node. If an image is partly 

distorted (eg: skewed, partly out of focus, or occluded, etc), many local features will 

still be able to be detected. Some distortion invariance is achieved. When there are no 

local connection limitations, long range dependencies become built into the feature 

detectors making them very susceptible to small distortions or transformations in 

the image. 

An RBM trained with connections into hidden units restricted to a set of local 

visible units was demonstrated to learn at a much faster rate than a standard RBM 

[SMB10]. It has also been shown that by simply adding a constraint, enforcing that 

only a sparse amount of hidden units are allowed to be activate at once, to the 

learning rule, RBMs will learn more localized features, such as the various strokes 

that text is made up of [Eka07]. 
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4.2 Other Convolutional Models 

There have been a range of modified versions of convolutional systems proposed. A 

slightly modified convolutional network was able to achieve some rotational 

invariance by training it on a sizable number of rotated versions of the same image 

[FG06]. The nodes in the first hidden layer receive input from each of these images 

simultaneously, and since the weights of the feature detectors are shared, the feature 

maps will learn to detect various key features from any of the various possible 

rotations. Given that this system is trained on data that is obtained by performing 

transformations (the potential result of actions) on the original image, it shares some 

similarities to the system presented in this thesis. We, however, do not assume any 

prior knowledge of how actions will affect the data, and force the agent to learn this 

information themselves during the training process—a considerably more difficult 

task. 

In a tiled convolutional neural network [LNC+06], the constraint that all 

weights in a feature map must be shared is not enforced between all units. Instead, 

only weights between units that are spatially distant are tied (contribute towards 

how each other’s weights are updated). This means that translational invariance is 

not automatically built into the system, but the system is capable of learning to be 

partially invariant to various kinds of transformations, since the subsampling layers 

down-sample over units that have different basis functions. An unsupervised pre-

training algorithm is used to learn a sparse representation of the data. This system 

achieved impressive classification results on various visual datasets. 

The convolutional network concept has also been applied to Restricted 

Boltzmann Machines [LGRN09, NRM09]. Both of the suggested architectures 

essentially merge the undirected nature of RBMs with the convolutional (and 

subsampling) features of convolutional neural networks. These networks are able to 

be trained using a slightly modified version of Contrastive Divergence, but in both 

cases, enforcing a sparsity constraint was essential to prevent the network from 

learning trivial solutions, where features simply end up detecting single pixels. 

Convolutional RBMs can be stacked in a similar manner to regular RBMs to form a 

deep network. Impressive classification results were achieved on the MNIST and 

other visual datasets using these models. In addition, they demonstrate impressive 

generative power. 
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Another method to achieve some transformation invariance involves using 

steerable filters [FA91]. Steerable filter systems include units that adaptively control 

the orientation (or other transformations) of the filters by performing a hard-coded 

rotation operation. This approach has been incorporated into RBMs [KW11]. The 

weight values leading into each hidden unit are rotated according to the value of a 

corresponding discrete valued orientation unit. Inferring the value of the hidden 

units requires summing over all possible orientation values, so learning is 

presumably very slow, but the system was demonstrated to learn rotationally 

invariant features. 

4.3 Modeling Transformations 

Some work has been done on modeling transformations (the result of actions that 

alter the configural variation in data) themselves. In particular, Gated RBMs can be 

used to learn the different ways that input data vectors can be transformed into 

output vectors [Mem08]. Gated RBMs consist of an input layer, an output layer, and 

a hidden layer. There are undirected three way connections between the nodes in 

each layer. Figure 4.2 shows this structure. 

The system can be trained like a regular RBM, where the energy function (not 

including biases) is specified as: 

 (     )   ∑           
   

 

Note that the energy function is conditioned on x. Since a Gated RBM is 

learning how input data is transformed into output data, it does not try to model the 

input values themselves. The learning rule is similar to that in a regular RBM, but 

computing the activation probability of each node requires substantial extra 

computational cost (as each pair of hidden-output nodes receives weighted input 

from each node in the input layer). To reduce the computational cost, the 

connections may be restricted to local patches. 
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Figure 4.2: Gated Restricted Boltzmann Machine. Left: A Gated RBM is made up of 

three layers. An input layer, an output layer (the output of a transformation applied 

to the input values), and a hidden layer that captures the many different ways an 

input data vector can be converted into an output vector. There is a three way 

weight tensor between each configuration of nodes. Middle: As a recognition model, 

the hidden units (h) can be thought of “gates”. The learned weights will determine 

what slices of information should be blended into a transformation. Right: As a 

generative model, the visible units (x) can be considered “gates” to a set of basis 

functions that have learned to reconstruct the output (y). 

Gated RBMs have been shown to be capable of learning to model various kinds 

of affine transformations [MH07]. One application of this system was to train it on 

data obtained by performing affine transformations on the USPS digits dataset (see 

section 5.2 for a description of this dataset), and then performing PCA to reduce the 

number of dimensions [Dun89]. After training this system, digits were classified by 

determining how well the system was able to transform prototypical images into the 

digit to be classified (the output). The prototype image that is best able to be 

transformed into the digit is used to classify the digit. This system does not hard 

code information about transformations, meaning this classifier is able to achieve 

good results that are invariant to many kinds of transformations. But the system 

itself only actually learns transformations. The system does not encode any 

information about classes, and classification results are only achieved using 

prototype images (which are essentially providing some external information). 
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There are various further extensions of Gated RBMs including Style-Gated 

Factored Conditional RBMs, which include multiple input layers (representing 

sequential frames) allowing for the building of impressive generative models of 

motion data [Tay09, TH09, THR09]. 

4.4 Techniques other than Machine Learning 

There has been a sizable amount of work done in the area of Computer Vision where 

non machine learning techniques are used to detect objects in images that explicitly 

take into account configural variation. Generally these involve applying a function 

over all of the pixels in the image to determine the likely location of features such as 

boundary lines. The Hough transform is a commonly used example of one of these 

techniques [DH72]. 

Lowe proposes a method for extracting features from images that achieves 

substantial invariance to many affine distortions, changes in 3D viewpoint, and even 

changes in illumination [Low04]. This is achieved by using a series of different 

operations, including: computing a Gaussian kernel that is convolved with the 

image, downsampling, clustering features in pose space using the Hough transform, 

and several other computations specific to image processing. By performing this 

fixed set of (computationally expensive) operations, the full algorithm is able to do 

an impressive job at recognizing specific features in images, and achieves a very 

high level of invariance to configural variation. 

Many techniques to eliminate various kinds of configural variation by pre-

processing data also exist, such as computing the center of mass of the pixels, and 

then translating an image so this point is at the center. 

4.5 Systems that drive actions from a learned internal 

representation 

There are a range of proposed systems that drive actions off of a learned internal 

representation of data (as opposed to standard reinforcement learning techniques 

which infer which actions to take based solely on the input state). One particular 

example of such a system involves using an RBM, which is used to both build a 
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hidden representation of the input data, and to directly infer which actions to take, 

to train simulated robots to head towards food locations and avoid walls [Ryb05]. 

In this system, the visible layer includes both input sensory data as well as 

nodes representing the possible (movement) actions the robot can take. During 

training the RBM will hopefully learn to associate the move left action with sensory 

data that specifies there is food ahead to the left. Once the RBM has been trained, the 

best action to be taken can be inferred by clamping the sensory input, and running a 

Gibbs chain to draw a sample from the action units to determine which action to 

take. The very simple learning rule used (weights were only ever updated when 

food was successfully reached) limited the results achieved. Using only a few input 

sensors allowed the robots to learn at least some intelligent behavior. 
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Chapter 5 

5 Learning a classifier that is invariant to 

Configural Variation 

In order to construct a powerful model of the world, it is essential to have some 

knowledge of how an object can differ as a result of changes in an agent’s 

configuration with the object (for example, viewing an object from a different 

perspective alters how the object looks—see Figure 5.1). An agent’s configuration 

with an object can be controlled by the agent itself by performing actions, such as 

tilting its head. These configuration-changing actions transform the agent’s sensory 

data. 

 

Figure reproduced from http://www.artyfactory.com/portraits/drawing_techniques/proportions_of_a_head_1.htm 
 

Figure 5.1: An object viewed from two different perspectives. Viewing an object 

from a different perspective is the same as seeing a transformed version of the object. 

In this case, a head is three-dimensionally rotated by 90°. 
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Agents in the world will be constantly viewing objects from different 

perspectives. Thus, it is imperative that they know what can happen to objects after 

they have undergone various possible transformations so that they can reliably 

identify these objects, and then attempt to interact with them. 

Standard networks that build internal models of data simply ignore the fact 

that the data might include various kinds of configural variation (some objects will 

be transformed differently from others). In a classifier, an object that is, for example, 

rotated or translated slightly will be treated the same as any other data element and 

the classifier will try to assign that data to the correct class. In a high dimensional 

space, it is extremely difficult for any network to accurately determine the 

boundaries between classes where each class includes data that differs drastically as 

a result of configural variation (illustrated in Figure 5.2). 

In classifiers that do not specifically consider configural variation, only limited 

generalization is achievable. In these systems, generalization usually occurs as a 

result of the structure of the network, which forces similar data vectors to be 

classified similarly. In an RBM for example, the update rule will lower the energy of 

a visible configuration from the dataset by adjusting the network’s weights. In doing 

so, the energy of similar visible configurations will also be lowered somewhat. For 

visual data, this means that images that only differ by a few pixels are likely to 

belong to the same class. In many cases, this provides useful generalization. But 

since configural variation can drastically change all the sensory data values (see 

Figure 5.1 for example), regular classifiers do not do a good job of generalizing 

classification results across data elements that include configural variation. 

Usually data is heavily pre-processed to avoid having to deal with this issue, 

and so that good results can be achieved. If regular classifiers are exposed to a very 

large amount of data, however, they can still achieve reasonable performance, even 

on data that includes sizable amounts of configural variation. This is demonstrated 

by the fairly low error rate of 10.47% achieved on a version of the MNIST data set 

(see section 5.2) that includes rotated versions of all the images, using a regular 

Restricted Boltzmann Machine [LBLL09]. 

A classifier that explicitly takes account of configural variation can alter the 

way data appears (that is, how data can be transformed as a result of configuration-

changing actions), will be able to achieve better generalization, and thus can 
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potentially improve classification performance on almost any challenging realistic 

dataset. The degree to which this is true therefore depends on how well the classifier 

is able to model the transformations. 

5.1 System Architecture 

Our approach to improving generalization, when dealing with data that includes 

configural variation, is to train an agent to perform configuration-changing actions 

that make each data vector appear as similar as possible to data that has been seen 

before, before actually updating its internal representation (an associative memory, 

or RBM, which is also used to classify the data). When looking at two dimensional 

visual data, this essentially amounts to orienting (as well as positioning and scaling, 

etc) the images. This does not guarantee that the images will specifically be 

transformed to an upright, centered position, but only encourages them to all have 

the same orientation. In what follows, when referring to “upright”, we are usually 

referring to this randomly selected orientation that images are transformed into. 

 

Figure 5.2: Classifying transformed images. Top: A standard associative memory 

will store each digit as it appears. Bottom: Our system first determines how to 

transform the images (in this case which way to rotate the digits) before storing the 

correctly oriented versions only. This makes the classification task in the associative 

memory much easier, avoiding the difficult class boundary separation issues that 

can arise when trying to categorize very diverse data. Achieving good results 

depends largely on ensuring new data is correctly transformed to look as similar as 

possible to previously seen data. 

The classifier must 

recognize all these as 

“2”s. 

There is much lower 

variability in data that is 

oriented, which makes the 

classification task easier. 
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It is common to think of systems that drive actions off of some internal 

representation of the world that has been learned by an agent. Actually allowing 

actions to drive how that internal representation is formed, however, is a seemingly 

novel idea. 

It may at first seem counter-intuitive to try and make a data vector match what 

has been seen before, as this will result in the associative memory itself not ever 

learning to recognize versions of the data that include unexpected configural 

variation (as it only sees correctly oriented versions of images). But if we are able to 

train the system to do a good job of transforming new data to match previously seen 

data, then all of the configural variation can be generalized away in this step—that 

is, a separate system can focus entirely on these kinds of generalizations. The job of 

the classifier is made much easier, since it doesn’t have to distinguish between 

objects seen from different perspectives (a source of a large amount of the variability 

when viewing objects). 

Another way to view the task of the reinforcement learning network in our 

system is as an automated pre-processor (one that doesn’t simply use a heuristic 

based approach) into a standard classifier. This “pre-processor” can handle a wide 

variety of transformations—specifically, those transformations that arise as the result 

of actions the agent is physically capable of making. 

Although our setup implicitly assumes the agent will actually have to perform 

a series of actions in order to classify new data, this is not strictly necessary. 

Although we don’t pursue this further here, the agent could build a mental model of 

the way in which data is transformed and once this model becomes accurate, use 

that to imagine transforming data into an upright position that is desired by the 

associative memory. This would mean the internal representation (which includes a 

model of upright data, and a model of how data can be transformed) would include 

full knowledge of all the various ways an object can look. To generate a sample of a 

transformed object, Gibbs sampling would be performed in the Restricted 

Boltzmann Machine, then this sample would be transformed by running it through 

the network that models transformations. There has been some recent success 

producing models capable of representing complex transformations [MH07]. 

There is evidence that we use both of these methods to identify objects: tilting 

our heads slightly to read sloped text on a whiteboard, versus attempting to read 
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upside down text without realigning ourselves (difficult, but possible). Such mental 

models could eventually be used by agents when planning how to achieve goals. 

Reinforcement learning techniques, as described in Chapter 2, can be applied 

to a wide range of problems. The problem only needs to be described in terms of a 

set of states (some of which have a reward and/or penalty) in which the probabilities 

of transitioning between states, as a result of actions, are known. Thus it seems 

natural to use a reinforcement learning algorithm to determine which actions should 

be taken, and thus how the data should be transformed, in order to transform a data 

vector to make it look like one that has been seen before. This means we are 

completely unrestricted in terms of what possible actions can be used. The 

reinforcement values are based purely on how strongly the associative memory 

recognizes the transformed data vectors; that is, how similar a new data vector looks 

compared to previous data that the associative memory has learned to represent. 

We implement the reinforcement learning network using a two layer neural 

network that maps the input data to various actions, and experiment with both Q-

Learning and Policy Gradient methods. At the same time as the reinforcement 

learning network is being trained, we are also training a Restricted Boltzmann 

Machine (an associative memory) that includes label units, on the resulting data 

after a sequence of actions has been applied. Note that the associative memory could 

be trained in an entirely unsupervised manner if desired. We include label units to 

demonstrate that the model has an improved ability to infer ground truths about 

data; specifically which class the data belongs to. 

Figure 5.3 gives a high level overview of the full system, while Figure 5.4 

provides a more detailed look at the system architecture, and provides a primer of 

the process used to train and classify data. Further details are given throughout the 

chapter. 
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Figure 5.3: High Level Diagram of System Architecture. The system consists of a 

Restricted Boltzmann Machine, and a neural network that uses reinforcement 

learning techniques to transform data. Input data is unoriented; that is, it may include 

various kinds of configural variation. The reinforcement learning network learns to 

perform actions that eliminate as much of this configural variation as possible by 

receiving reinforcement signals that are based on the Restricted Boltzmann 

Machine’s internal representation. The output of the reinforcement learning network 

is passed to the Restricted Boltzmann Machine so it can improve its model of 

oriented data. 
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Figure 5.4: Low level Diagram of System Architecture. To train the system, a data 

vector is first run through the reinforcement learning network to get an action as 

output. This action is then performed, producing a new transformed data vector. 

The new data vector is shown to the Restricted Boltzmann Machine so that a 

reinforcement value can be computed; the reinforcement value denotes how similar 

the new vector is to data that the RBM has been previously trained on, as compared 

the same measure applied to the original vector. Actions that transform data so that 

it closely matches data that the RBM has been trained on are thus rewarded, and will 

become preferred in the future. The reinforcement gradient is backpropagated 

through the reinforcement learning network and used to update the weights. A 

sequence of actions is performed until the reinforcement learning network settles on 

a data vector. The final transformed data vector is then passed to the RBM, and the 

contrastive divergence rule is applied to train the associative memory with this data. 
 

To classify a data vector, it is run through the reinforcement learning network and 

actions performed until the network settles on a transformed data vector. This 

transformed vector is then passed to the RBM, and the label unit that has the highest 

probability when the data vector is clamped on is selected as the class. 
  

Appendix B documents the full algorithm in more detail. 
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To test the system on a problem of reasonable difficulty, we consider actions 

that can result in affine transformations of two-dimensional images. Our initial 

experiments focus on actions that result in only one kind of transformation, starting 

with tilting of the head type actions that result in images being rotated. 

5.2 Choice of Datasets for Experiments 

After choosing to use two dimensional images, the widely used MNIST dataset1 was 

a first choice for labeled data that could be used to test the system. The full dataset 

consists of 70,000 digits, from a range of different writers (high school students and 

government employees). The images have been downscaled to 28x28 pixels; a total 

of 784 dimensions. The images were originally converted to black and white, but 

additional pre-processing of the original NIST digits to reduce the size, center the 

images, and add padding resulted in some grayscale values. The MNIST dataset is 

able to be represented using the standard binary form of the Restricted Boltzmann 

Machine [Hin06, HOT06] 

Given the length of time it can take to run experiments in the system (see 

Appendix C), another smaller dataset was considered and eventually used to 

perform some experiments that continue on for a longer number of epochs. 

The USPS (US Postal Service) dataset2 contains digits taken directly from mail. 

The images have been downscaled to 16x16 pixels and include no padding; that is, 

256 dimensions and around three times smaller than the MNIST data. The images 

are in grayscale, and have been centered and scaled, and any background biases 

removed. The dataset itself is also much smaller than MNIST, containing only 9,298 

digits in total. The USPS digits are less standardized than MNIST digits, and thus 

tend to be more difficult to classify than MNIST [See05]; it was widely used prior to 

the MNIST dataset being produced, and is still used in several recent papers mainly 

for the purposes of efficiency [HOT06, MH07, Mem08]. 

                                                   
1 Dataset available for download from http://yann.lecun.com/exdb/mnist/ 
2 Dataset available for download from http://www.gaussianprocess.org/gpml/data/ 
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Figure 5.5: MNIST and USPS images. Left: A sample of some 28x28 pixel digits 

from the MNIST dataset. Right: A sample of some 16x16 pixel digits from the USPS 

dataset. The relative size of the digits is preserved. 

Note we would run into trouble if we performed actions that transform the 

USPS digits out of the bounds, without adding padding (and thus increasing the 

dimensionality). Fortunately, rotation transformations only move a very minimal 

number of pixels from the corner of an image out of the bounds—these pixels are 

usually blank. 

5.3 Choice of Reinforcement Value 

Determining what reinforcement value to use was critical to achieving good results 

in the system. Clearly, the reinforcement value should be high when the RBM is 

shown data that is similar (i.e. few pixels are different) to what it has seen before, 

and low when the data is unlike what has been seen before. 

The log likelihood of a visible data vector in the RBM specifically measures 

how much the network likes that data vector: it is the probability that the RBM 

would generate that data vector during Gibbs sampling. As described in the 
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introduction to this chapter, when the energy value of a data vector is lowered for a 

specific configuration during training, the energy landscape (and thus the log 

likelihood) shifts downwards for all similar data vectors as a result of the network 

structure and update rule. 

What is really needed though is a measure of how much the RBM likes a 

transformed data vector, as compared to the original data vector before the action 

was performed, thus providing reinforcement for specific actions. For this, the 

change in the log likelihood of the data in the RBM can be computed exactly and 

reasonably efficiently. Note that computing the actual log likelihood of a data vector 

is intractable, but computing the difference in log likelihood between two vectors 

becomes tractable because the normalization terms cancel (see below). Also note that 

since the label units are visible units as well, their values have to be included in the 

computation. As labeled data is used when training the RBM, we can simply activate 

the correct label unit (   
) in both data vectors, preventing it from having any 

significant impact on the result. Simply activating each label unit with probability 

    ⁄  when computing this value does not alter the result very much. 

To derive the formula for the change in the log likelihood of the data, we begin 

by expressing it in terms of probabilities. As usual,   stands for the normalization 

term (the sum—over all possible configurations of visible and hidden units—of the 

joint probability): 
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Immediately we can see that because we are computing the difference in 

probabilities, the intractable   terms will cancel: 
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With no   terms, the equation is reduced to the difference in the negative free 

energy between the two data vectors. For each term, we substitute in the value for 

the free energy of the data, and rearrange (note the formula for the free energy of a 

data vector in an RBM was given in section 3.3). The only term that cancels is    , as 

the activated label unit is the same in both cases: 
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Computing this equation requires summing over all hidden and visible units 

separately. It takes a relatively short amount of time to calculate. 

There are other alternative values that could be used for the reinforcement 

value which also express information about whether or not the RBM has seen similar 

data before. One alternative option that was considered was the inverse change in the 

entropy of the label units: a measure of how much more certain the RBM now is about 

which class a given data vector belongs to. Entropy is highest when there is lots of 

uncertainty about the distribution of labels—that is, the RBM is unsure which class 

the data vector belongs to. Another option was to use the change in the correct label 

probability (or in the case of unsupervised data, the change in the maximum label 

probability could be used instead). This alternative uses supervised learning to 

ensure the reinforcement learning network is not rewarded for transforming a digit 

to look like a digit from another class. 

After some experimentation, the suggested alternative measures were found to 

be much more susceptible to noise, as compared with using the change in the log 

likelihood, and produced significantly inferior results. Figure 5.6 demonstrates this 

by showing some samples of the potential (unscaled) reinforcement values given by 

each method, when rotating a digit computed on an RBM that was trained on a 

moderate number of elements of upright data. The change in log likelihood indicator 

is able to start providing steadily increasing reinforcement values from around 25 to 

30 degrees from upright (in either direction), and the reinforcement value spikes 

particularly high when the digit is transformed to be directly upright. The other 

potential indicators spike much less definitively when the digit is transformed to be 

upright and (presumably since they are only taking into account the 10 label units 

and not the potentially hundreds of visible units) the reinforcement signal is much 

noisier. 

Given the conceptual reasoning behind the system, it is intuitively very nice to 

use a reinforcement value that does not rely on supervised labels, but instead is 

computed straight from the internal representation. 
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Figure 5.6: Sample values of various reinforcement value alternatives. The red 

lines represent the actual reinforcement values that are computed for actions that 

rotate sample images clockwise only one degree at a time. The blue lines are 

equivalent to the integral of these functions (shown on a 3x smaller scale). The 

plotted values are based on the average reinforcement values obtained from a series 

of sample images. Note the somewhat higher reinforcement values on the left side of 

each chart are presumably a result of many digits being slanted slightly to the right. 
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5.4 Q-Learning and Policy Gradient 

The reinforcement learning task that our system is faced with is quite unique. 

Notably, the reinforcement values that are obtained early in training are likely to be 

very poor (as the RBM is initialized with random weights, and takes some time to 

begin forming valleys where high reinforcement can be obtained), and thus will 

result in feedback to the reinforcement learning network that causes it to train to 

perform erroneous actions. As such, the system must not become “locked in” to a 

solution too early; it must not get stuck in a poor local optimum. 

At the same time, however, the reinforcement learning network must be able to 

fairly quickly adapt its policy so that it transforms data to match valleys that begin 

forming in the RBM’s energy landscape. If it fails to do so, the RBM will receive data 

with inconsistent configural variation and begin forming multiple valleys that 

confuse the reinforcement signal. 

The full ramifications of the two-way feedback between the associative 

memory and the reinforcement learner are discussed in some detail in chapter 6. 

Here we discuss how the structure of the reinforcement learning network was 

refined, in order to obtain good performance in spite of the unique properties of this 

problem. 

We considered the Q-Learning algorithms (introduced in section 2.2.1), a value 

function estimator, and a Policy Gradient algorithm (introduced in section 2.4), 

where an attempt is made to follow the gradient of the policy directly. 

Q-Learning algorithms, and other similar value function estimators, have been 

demonstrated to work well on a wide spectrum of reinforcement learning problems 

[SB98], in spite of several documented theoretical drawbacks [Bai95], including the 

fact that there is no guarantee of convergence to an optimal policy when the action-

value mapping is approximated. One important problem with Q-Learning, as 

mentioned in section 2.3, arises because value function estimator methods make 

distinctions between which action the policy should follow based on arbitrarily 

small value differences; very small changes in these values can result in drastic 

changes to the policy. When the action-to-value mapping is approximated using a 

neural network and thus not perfectly accurate, small changes to the weight values 

can result in drastic unintended changes in the policy. 
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This appears to cause some negative effects in our system. The error rate on the 

validation set fluctuates significantly late in the training process, and sometimes 

diverges (see Figure 5.10), presumably largely due to catastrophic forgetting [Rob95, 

Fre99] as a result of using a neural network to approximate the state-action 

mapping, where the “correct” Q-values do not differ by much, and change over time 

(due to improvements in the policy) [Cah10]. A low discount rate and more 

explorative policy can both help mitigate this issue to some degree, but it is largely 

unavoidable without taking significant steps to avoid catastrophic forgetting. The 

issue is discussed further in section 6.2. 

While using Q-learning and approximating the state-action mapping using a 

neural network can result in some errors due to catastrophic forgetting, it does have 

an important advantage over alternative methods. Q-values (and thus the policy) 

can adapt very quickly to changes in the makeup of reinforcement values provided 

by the RBM (as a result of new valleys forming in the RBM’s energy landscape), 

especially early in training. Quick convergence early on is pivotal to the success of 

the system. 

Policy Gradient algorithms, on the other hand, have a more solid theoretical 

guarantee of convergence even when approximated [SMSM99], but have not had 

demonstrated success on many real world problems outside of a few specific 

domains. They are often noted as taking much longer to converge than value 

function estimator approaches due to variance in the gradient estimate [WT01]. 

Policy Gradient algorithms appear to find it more difficult to adapt to changes in the 

makeup of reinforcement values. This is presumably because it takes more learning 

time to adjust the network output, and the network is more likely to get stuck in a 

“stable” local optimum. To implement policy gradient, we used the standard 

OLPOMDP algorithm [BB00], and parameterized the gradient using a Gibbs softmax 

policy [SMSM99] in the case of discrete output actions, or a Gaussian policy [Wil92] 

in the case of a continuous output action (see section 5.4.1). 

Both mini-batch and online (one element at a time) versions of each of these 

two algorithms were experimented with, and a range of different learning 

parameters were used. Best results were obtained using online learning with a 

discount rate of 0.5, and a learning rate of 5.0E-06 (the value is so low because the 

reinforcement values need to be scaled down). 
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On a small subset of the data, and with a small network, preliminary results on 

rotated digits showed that, as expected, the Q-Learning approach consistently 

outperformed the Policy Gradient approach. The Q-Learning algorithm was almost 

always quickly able to learn to rotate digits to roughly the same angle, whereas the 

Policy Gradient algorithm usually started converging to a “stable” policy (i.e. 

consistently rotate all digits to the same orientation), but frequently ended up 

diverging. It was also much more vulnerable to changes in learning parameters, 

requiring just the right balance between the learning rates to achieve some success. 

Table 5.1 shows the best preliminary classification results obtained by the system 

using the different algorithms. Policy Gradient performed considerably worse since 

it was never able to fully converge. It is possible that a Policy Gradient algorithm 

that includes an average reward baseline to reduce the variance of the gradient, such 

as OLGARB may improve our results. Figure 5.8 provides further analysis on how 

well the different algorithms were able to learn to rotate images to the same 

orientation. 

 

 
Error Rate 

(MNIST dataset, 1,000 training, 1,000 validation, 1,000 testing, 
75 RBM hidden units, 50 RL hidden units, 30 epochs, no pre-training) 

Q-Learning 
Algorithm + RBM 

15.69% 

Policy Gradient 
Algorithm+ RBM 

24.63% 

 

Table 5.1: Classification results for different reinforcement learning algorithms. 

The error rates obtained from training the system using a value function estimator 

(Q-Learning) algorithm versus using a Policy Gradient algorithm, with and without 

pre-training. 

5.4.1 Network Structure 

Various alterations were also made to the structure of the reinforcement learning 

network to improve its ability to store the state-action mapping. Both algorithms 

were implemented as a standard Multilayer Perceptron with units in the hidden 

layer given a sigmoid activation function, and standard back-propagation used to 
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propagate the update rule back through the network. Initially, a very simple 

solution was implemented for the output layer—a single linear output node was 

used. The node’s (scaled) output value represented the number of degrees with 

which the data vector should be rotated (as the result of an action). To facilitate some 

exploration, some small amount of Gaussian noise was added to the output value. 

With this architecture, the system occasionally produced somewhat promising 

results, but, in general, struggled to learn the correct manner in which each data 

element should be transformed. 

Representing high dimensional data in a network with only one set of weights 

in the second layer enforces a very large amount of overlap in the way data is 

represented in the network. When there is a high level of representational overlap 

this can quickly result in catastrophic forgetting, since each update to the system will 

disrupt all the previous updates to some degree [Fre91]. 

Alternative architectures were constructed using varying numbers of discrete 

output units, each one representing an action that has the effect of rotating the data a 

different number of degrees. We found that the network worked best with a sizable 

number of discrete output units. 

In the case of Q-Learning, the softmax function was applied to the output layer 

to encourage some exploration, and an action randomly selected based on the 

corresponding probabilities. In the case of Policy Gradient, the policy is 

parameterized directly using the softmax function, and the gradient of this policy is 

backpropagated through the network. This version of the system performed 

substantially better. In the second layer, only the weights leading into the output 

node corresponding to the action that is taken (or should be taken by the optimal 

policy) need to be updated. This makes it much easier for the network to represent 

the mapping from data vectors to actions, and greatly limits the effect of catastrophic 

forgetting. Figure 5.7 gives a diagram of the network layout used to produce the 

final results, containing 17 discrete actions. 

Taking this a step further, another architecture was considered where entirely 

different weights were used in the first layer (as well as the second layer) for each 

output node, similar to the networks used in small demonstrative examples [Lin91]. 

With no weights being shared between the mappings from states to each different 

action, the representation overlap of the network is significantly reduced. 
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Unfortunately, after some minor experimentation with this setup using the Q-

Learning algorithm, it quickly became apparent the very large additional 

computational costs of implementing this structure (having to run each data element 

through a separate network for each action to determine the output values) were too 

costly. 

 

Figure 5.7: The reinforcement learning network with discrete output units. A 

sigmoid activation function is used to activate hidden units, and the softmax 

function is used to determine which output node to activate (which action to 

perform). The network is trained using backpropagation. The greatest success was 

achieved using the Q-Learning update rule, where the network is used to 

approximate an action-to-value mapping. 

Figure 5.8 shows some sample traces (sequences of actions) performed by a 

several different configurations of the reinforcement learning network that were 

trained on 1,000 rotated USPS digits, and at least got close to convergence. When 

trained on so few digits, the change in log likelihood reinforcement values should 

adapt quickly when images are rotated to the same direction. In particular, note that 

the networks with only one continuous output node did a very poor job at 

converging (rotating all digits to one orientation). 
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Figure 5.8: Traces from several different configurations of the network. The y axis 

shows the orientation of the data from its original (close to upright) position, so the 

actions taken are represented by the vertical movement of the line at each step along 

the x axis. Note that traces that rotate an action beyond 180° in either direction are 

cut short in the graphs above. Each figure shows 100 traces (sequences of actions) 

performed by the reinforcement network after several epochs of training (when it 

has started to converge) under different configurations. Top: Policy Gradient with 17 

discrete output nodes. Middle Row: Q-Learning with 17 discrete output nodes. 

Bottom Row: Q-Learning with three discrete output nodes (-5°, 0°, and +5°). 
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5.4.2 Choice of Activation Function 

In addition to determining the best way to structure the reinforcement learning 

network, an important consideration was what activation function should be used 

for the hidden nodes. 

Initially the standard logistic function was used, but this performed 

surprisingly poorly. Switching to the hyperbolic tangent improved the results 

considerably, but it was the recently proposed softsign function [BDLB09] that 

produced by far the best results. The softsign function  (     )⁄  is similar to the 

hyperbolic tangent, and certainly has enough non-linearity to produce interesting 

results, but has smoother asymptotes. It has been shown to perform well on several 

datasets, including MNIST, and especially in deep (multi-layer) networks. 

The softsign function has been shown to exhibit several useful properties 

[GB10]. In particular, the activation values tend to not become saturated over time. 

With a logistic function, the activation value of almost all nodes tends to end up 

close to the limits (0 and 1). Hyperbolic tangent functions can also become saturated 

over time, with activation values tending to fall either at zero (the most linear part of 

the curve) or at the function limits (-1 and 1). The softsign function, on the other 

hand, is more likely to have a wide range of activation values throughout training, 

with many nodes having activation values around the function’s knees (avoiding the 

asymptotes at -1 and 1, and the linear section of the function around zero). This is 

presumably largely a result of the polynomial, rather than exponential, asymptotes. 

Saturated nodes generate a very small gradient, and too many saturated nodes 

cause the system to become “locked in” to a solution, as it becomes very difficult to 

change the weight values once nodes are saturated. Back-propagation of gradients 

across multiple layers amplifies this issue. We know that our system in particular is 

going to initially be given poor reinforcement values, and that activation values may 

need to change substantially even after a few epochs into training, thus it is 

imperative that saturated nodes are avoided as much as possible. Presumably this 

extra flexibility is what causes the softsign activation function to perform so well in 

the reinforcement learning network. 
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Figure 5.9 shows the normalized activation values of units after training a 

standard deep neural network (on simple shape images) with a hyperbolic tangent 

versus a softsign function. 

 

Figure reproduced from [GB10] 
 

Figure 5.9: Normalized histogram of activation values. The activation values at the 

end of training in a five layer network, averaged across units in each layer, and 

across 300 elements of data. Top: The hyperbolic tangent activation function is used. 

Bottom: The softsign activation function is used. 

5.5 Other Network Parameters 

The reinforcement learning network’s stopping condition—how many actions 

should be performed before passing transformed data to the RBM—was configured 

to prevent the reinforcement learning network from spending too much time 
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training on data that was already correctly rotated, while ensuring enough time was 

spent exploring. 

A maximum of 100 actions turned out to be long enough to allow the 

reinforcement learner to discover actions that would achieve high reward, without 

spending too much time on an individual digit. The reinforcement learner would 

also terminate a sequence of actions at any point where the optimal action over the 

past five steps had not involved rotating the digit more than five degrees away from 

a given orientation—this includes the case where the optimal action is to not rotate 

the image at all, and where the optimal actions suggest rocking the image back and 

forth only a couple of degrees. 

Small mini-batches of 100 transformed digits were used to train the RBM 

network. An attempt was made to optimize all the remaining learning parameters 

(the learning rates, the mini-batch size, the discount rate, momentum, etc). 

5.6 Data Classification Method 

One approach to classifying data in an RBM directly is to clamp the visible units 

with a given data vector, and then perform Gibbs sampling. The larger the number 

of iterations performed the better; after a long chain of sampling, the average value 

of each label unit is likely to be highest for the label unit that maximizes the RBM’s 

joint probability given the visible data. 

An often used alternative is to complete training of an RBM without label units 

and then use the weight values to initialize a multi-layer neural network with label 

units as output nodes. This network is then fine-tuned using standard back-

propagation, and can then be used to classify the data directly. Fine-tuning the 

network makes the associative memory redundant, but impressive results have been 

achieved using this method in a range of problems. We compare our system against 

an RBM trained directly on the rotated digits, and would expect that fine-tuning 

both systems would only marginally reduce the comparative results. Note though 

that the reinforcement learning network cannot be fine-tuned in this way. 

The approach used here is to explicitly compute the probability that each label 

unit in the RBM will be activated at the end of a long Gibbs chain for a given data 

vector, namely  (   
| ). Computing this value is tractable and reasonably efficient 



 

Chapter 5. Learning a classifier that is invariant to Configural Variation 57 

 

 

[LB08]. The label with the highest probability is the one most likely to be activated, 

and is selected as the classification choice. The computation is relatively 

straightforward and reasonably efficient—certainly it is much less time consuming 

than performing a long chain of Gibbs sampling, and gives more accurate results. 

The full process for determining which class a data vector belongs to in our 

system first involves transforming the data vector by performing up to 10 actions 

that are selected by the reinforcement learning network, until it (hopefully) settles on 

a specific orientation. The visible units in the RBM are then clamped with this 

transformed vector, and the probability of each label unit being activated is 

computed exactly. We begin deriving the formula used to compute these 

probabilities by expressing  (   
| ) in terms of joint probabilities: 

 (   
| )  

 (   )

 ( )
 

∑    (     
  )

  
 

 
∑ ∑    (      )

  
  

 

 

The normalization terms   cancel. We then directly substitute in the energy 

function (    is the value of the weight between hidden unit   and label unit  , and 

   is the bias for label  ): 

 (   
| )  

∑  ∑       ∑           ∑         ∑          
  

 

∑ ∑   
∑       ∑          ∑        ∑          

  
  

 

To simplify this equation, we need to (as with the detailed derivation of the 

RBM learning rule) realize that a sum over all the configurations of the hidden units 

of a product of functions involving the hidden unit values (a sum inside the 

exponential) can be expressed as a product over the hidden units of a sum over the 

configurations of each hidden unit. The terms not involving a hidden unit value can 

come out of the front of this product: 

 (   
| )  

 ∑          ∏ ∑ (             ∑         )         

∑  ∑         ∏ ∑ (            ∑         )          

 

Finally, the visible bias terms cancel, and we substitute in the two possible 

binary values (0 and 1) for each hidden unit to produce the final formula: 
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This equation involves a product over all hidden units for each label unit, but 

the terms    ∑        can be pre-computed and reused each time the product needs 

to be computed, making the calculation reasonably efficient. This is the same 

formula used to derive the learning rule for Discriminative Restricted Boltzmann 

Machines [LB08]. 

5.7 Experiments on Rotated Digits 

The initial experiments were performed on digits from the MNIST and USPS 

datasets that are viewed at various different orientations. We split the data into a 

training set, validation set, and testing set. The system was trained by giving it input 

data vectors from the training set that were randomly oriented at any angle up to 60° 

from their initial, roughly upright, orientation in either direction. Note that by 

limiting the amount by which digits are initially rotated to less than 90°, the chance 

of issues arising as a result of sixes and nines being rotated to look very similar is 

also limited—this is discussed further in section 6.3. 

The reinforcement learning network is trained using “online learning”: the 

input data vectors are run through the reinforcement learning network one at a time, 

obtaining as output Q-values for each of the 17 specific discrete actions. The effect of 

each action will be to rotate the image a specified number of degrees in a particular 

direction (as per Figure 5.7). An action is selected by applying the softmax function 

to allow some exploration. After obtaining an output action, the resulting rotation 

transformation is simulated as being performed (we do not actually tilt a camera). 

The data vector produced from this simulation is then used to compute a 

reinforcement value, by comparing the free energy in the Restricted Boltzmann 

Machine of the newly produced data vector with the previous one (as described in 

section 5.3). Given this reinforcement value, the Q-Learning update rule is then 

computed to determine how to update the weights in the reinforcement learning 

network, and this gradient is backpropagated through the network. 

This process is repeated multiple times for each element in the training set 

until either the reinforcement learning network has settled on an angle for the data—
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that is, it chose to take no action, or to repeatedly rotate the data no more than a few 

degrees from a given angle—or a total of 50 actions have been taken. Note that every 

time an image is rotated, some quality is lost. In order to ensure the images do not 

significantly degrade in quality after a few actions are performed, the actual 

transformations are always performed against the original image. Some loss in 

quality as a result of a single rotation is unavoidable, and this impacts the 

classification results. 

Performing sequences of actions allows the reinforcement learner to obtain a 

reward for moving progressively towards the target angle in little steps, by taking 

some advantage of the (fairly low) discount factor. 

The data vectors produced at the end of each trace (sequence of actions) are 

stored, and then provided in mini-batches as input to train the Restricted Boltzmann 

Machine using a Contrastive Divergence update rule. It was found that better results 

were achieved using Contrastive Divergence rather than Persistent Contrastive 

Divergence (introduced in section 3.3.1). This may be because Contrastive 

Divergence raises the energy of “nearby” data elements. This means that data 

vectors that are rotated only a few degrees in either direction are likely to receive 

considerably less reward. A reward function that spikes at the best orientation 

improves the chances that the system will converge, as mentioned in section 5.3. Five 

steps of Gibbs sampling was performed. 

The entire system was trained for a number of epochs, with the final weights 

used to compute the test error being taken from the epoch that obtained the lowest 

error rate against the data in the validation set. 

In order to classify data from the validation or test set, the system is given data 

vectors that are randomly oriented up to 60° away from the initial orientation. A 

series of up to 10 actions are performed, as selected by the reinforcement learning 

network according to the optimal policy, until it (hopefully) settles on the optimal 

orientation for the digit that best matches the Restricted Boltzmann Machine’s 

representation. Then for each transformed data vector,  (   ) is computed for each 

label unit ( ) and the maximum value used to classify the data. Since the system 

classifies digits that are randomly rotated, the error rate will be different each time 

classification is performed. We repeat the classification process several times for 

each digit in the dataset, and take the average error rate to reduce the variance in 
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classification results that arise as a result of variation in the randomly selected initial 

orientations. 

Table 5.2 gives the final results obtained on both datasets using this system, 

and compares these results to those obtained by using a standard Restricted 

Boltzmann Machine with the same number of hidden units trained for the same 

number of epochs. No supervised discriminative fine-tuning via backpropagation 

(as described in section 3.4) was performed on either system; doing so would have a 

fairly minimal effect on the final comparative results, but note that the reinforcement 

learning network cannot be fine-tuned in this way. 

 

 

[A] Error Rate 
(MNIST dataset, 5,000 training, 
5,000 validation, 5,000 testing, 

200 RBM hidd, 200 RL hidd, 
30 epochs + 10 pre-training) 

[B] Error Rate 
(MNIST dataset, 5,000 training, 
5,000 validation, 5,000 testing, 

200 RBM hidd, 200 RL hidd, 
30 epochs, no pre-training) 

[C] Error Rate 
(USPS dataset, 3,000 training, 

3,000 validation, 3,298 testing, 
256 RBM hidd, 200 RL hidd, 
50 epochs, no pre-training) 

Standard RBM 21.47% 14.82% 

Reinforcement 
Learning + RBM 

14.69% 15.33% 12.21% 

 

Table 5.2: Classification results on rotated digits. The percentage of data vectors 

from the test set classified incorrectly from three different experiments using 

different datasets and network configurations. Epochs denotes the total number of 

epochs the system was trained for. Pre-training refers to training the RBM on 

“upright” digits for a number of epochs before introducing rotated digits and 

training the whole system. The results shown are the average error rate of the three 

best results out of five runs. Note that the standard RBM systems were trained using 

Persistent Contrastive Divergence to achieve slightly better results. 

Remarkably, we discovered that even with no pre-training on fixed/upright 

data, after a few iterations, when using the Q-learning algorithm, the classifier is 

almost always able to quickly converge to a given perspective that it most “likes”, 

and learns to transform any input data to match this perspective (as closely as 

possible)—though the stability of the system was not always maintained. Pre-

training the RBM on a small number of “upright” images will ensure the network 
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learns to transform images into a specific upright perspective instead of to a fairly 

random one, and ensures the system converges quickly. 

This result is particularly impressive considering that we have little control 

over the reinforcement values that the system receives for performing actions as 

training progresses, as well as the fact that the data we are using includes a fairly 

high number of dimensions. 

These results show that the system is clearly able to do an impressive job at 

determining which direction digits should be rotated; by performing the selected 

actions, the classification task is made easier. The results suggest that learning how 

to minimize configural variation by performing actions may be an easier task than 

classifying the data directly, or at least may make it considerably easier to generalize 

away much of the differences in data. These results are achieved in spite of using a 

relatively straightforward network structure to approximate the reinforcement 

learning algorithm. 

Note that the results we achieved by using a regular RBM on the rotated 

MNIST test set are relatively poor compared to the 10.47% error rate that has been 

achieved on a fully rotated version of the MNIST dataset using an RBM [LBLL09]. 

This is presumably largely a result of the fact that we had to limit the size of the 

RBM, and were not overly concerned with perfectly optimizing learning parameters, 

as the system takes a long time to run each experiment (see Appendix C). 

Additionally, we did not perform supervised discriminative fine-tuning. 

Surprisingly, we achieved better results on the USPS dataset—this is most likely due 

to a comparatively larger number of hidden units in the RBM. 

So the full list of factors that may explain the difference in results includes: not 

as well optimized learning parameters, fewer training examples, fewer hidden units, 

and no discriminative fine-tuning via backpropagation. All of these factors affect 

both the RBMs we trained and the combined system, so valid comparisons can be 

drawn from examining the error rates in Table 5.2. 

Figure 5.10 demonstrates how the full system was able to start converging 

towards a solution at a very fast rate. In virtually all experiments with the system, 

the error rate decreased drastically in the first few epochs as the network rapidly 

converged to a stable orientation, whereas the error rate drops at a considerably 

slower rate for the standard Restricted Boltzmann Machine network. Presumably the 
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difficulty involved in categorizing very distinct transformed versions of digits into 

the same class considerably slows learning. 

In later epochs, the validation error rate on the full system tended to fluctuate 

significantly. In many experiments, the system would partially diverge and start 

producing quite bad error rates after some time (see the blue line in Figure 5.10). We 

expect this is the result of a number of factors, including the issues surrounding 

approximating an action-to-value mapping using a neural network as discussed in 

section 5.4, as well as nuances unique to this system. The ability (or sometimes 

inability) of the system to converge and maintain a stable policy is discussed in some 

detail in Chapter 6. 

 

Figure 5.10: Error rate on the validation set over time. The validation set error per 

epoch for several experiments on the combined reinforcement learning network and 

RBM system (with no pretraining) versus a standard RBM. 
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5.7.1 Traces 

We can examine the traces—sequences of actions—performed by the agent to 

determine how good of a job it was doing at transforming images to all look similar. 

Figure 5.11 shows a range of traces at various points throughout training (where the 

system was configured according to column [C] in Table 5.2). Note that this system 

had no pre-training. 

In this experiment, the RBM must have initially begun forming low energy 

valleys composed of digits that were rotated around 0-20° (the system is just as 

likely to initially lock on to any other orientation). The reinforcement learning 

network then quickly discovers that high reinforcement values can be earned by 

rotating digits to this orientation. As more data is rotated to roughly this orientation, 

the energy landscape corresponding to configurations of input vectors rotated to the 

same angle is deepened, strengthening the reward for rotating the data to this 

orientation. After a few epochs, almost all traces end up with the images being 

rotated in the same way. By the end of training the action selection seems to have 

shifted such that most digits are rotated to an orientation of around 30°-40°. This 

phenomenon is, once again, presumably due to the way the action-to-value mapping 

is approximated. In the case shown, this shift had little impact on the system’s 

performance. In other experiments, however, the range of orientations that a digit 

was rotated to increased over time, reducing performance (see section 6.2). 

Note we would expect some small, but considerable, variation in the 

orientation that digits are rotated to, even if the system was working perfectly, as the 

digits are not all exactly upright—many are drawn on a slant. 
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Figure 5.11: Traces of actions performed on digits. The y axis shows the orientation 

of the data from its original (close to upright) position, so the actions taken are 

represented by the vertical movement of the line at each step along the x axis. Note 

that traces that rotate an action beyond 180° in either direction are cut short in the 

graphs above. Top: 50 traces performed during the first epoch of training as the 

system is just beginning to converge. Middle: 50 traces performed during the third 

epoch of training. Bottom: 50 traces performed during one of the last few epochs of 

training. 
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We can examine how the trained system functions in more detail by examining 

a range of key network indicators as sample data elements are rotated. We use the 

weights obtained from the system that produced the traces shown in Figure 5.11 

(configured according to column [C] in Table 5.2) at epoch 47 (when the validation 

set error was minimized) to produce Figures 5.12 to 5.14. Recall from above, this 

system learned to rotate digits to an orientation of around 30-40°. 

In general, the network performs roughly as we would expect. The log 

likelihood of the data is usually maximized at an orientation of around 30-40°. The 

RBM usually predicts the correct class label for digits that have been rotated to the 

standard orientation, and will often incorrectly predict labels of data elements that 

are rotated more than 10-20° from the standard orientation. 

The reinforcement learning network usually recommends that actions that will 

move the digit towards the standard orientation should be taken. Interestingly, the 

reinforcement learning network virtually always learns to favor two particular 

actions, in this case rotating 40° clockwise and 10° counterclockwise. Possible 

reasons for this are discussed in section 6.2. 

The free energy is almost always maximized for digits that are rotated to the 

standard orientation, and the reinforcement values are correspondingly positive for 

actions that move the digits close to the standard orientation. The free energy 

function, however, does tend to become somewhat flatter over time (the last two 

rows in Figures 5.12 to 5.14 can be cross referenced with Figure 5.6 which showed 

the free energy and reinforcement values that would be produced by an RBM 

trained directly on a moderate number of upright digits for a short time). 
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Figure 5.12: Analysis of Trained System I. Top Row: A sample “three” from the test 

set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The 

probability of each class label,  (   ), for each data vector. From left to right, the 

plotted points represent the probabilities for the labels “zero” to “nine”. The highest 

predicted class label is printed. Third Row: The Q-values (the output of the 

reinforcement learning network) converted to probabilities using the softmax 

function, for each data vector. From left to right, the plotted points represent the 

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7. 

The action that is recommended to be taken under the learned policy is printed. 

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector. 

Bottom Row: The change in log likelihood between each successive pair of data 

vectors. This is the reinforcement value that would be obtained if the images were 

rotated 20° clockwise. 

40° 40° 40° -10° -10° -10° -10° 

3 3 3 3 3 3 5 

0 
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Figure 5.13: Analysis of Trained System II. Top Row: A sample “nine” from the test 

set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The 

probability of each class label,  (   ), for each data vector. From left to right, the 

plotted points represent the probabilities for the labels “zero” to “nine”. The highest 

predicted class label is printed. Third Row: The Q-values (the output of the 

reinforcement learning network) converted to probabilities using the softmax 

function, for each data vector. From left to right, the plotted points represent the 

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7. 

The action that is recommended to be taken under the learned policy is printed. 

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector. 

Bottom Row: The change in log likelihood between each successive pair of data 

vectors. This is the reinforcement value that would be obtained if the images were 

rotated 20° clockwise. 

40° 5° -10° -10° -10° -10° 40° 

4 4 9 9 9 4 4 

0 
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Figure 5.14: Analysis of Trained System III. Top Row: A sample “seven” from the 

test set is rotated clockwise from -10° to 110°, in 20° intervals. Second Row: The 

probability of each class label,  (   ), for each data vector. From left to right, the 

plotted points represent the probabilities for the labels “zero” to “nine”. The highest 

predicted class label is printed. Third Row: The Q-values (the output of the 

reinforcement learning network) converted to probabilities using the softmax 

function, for each data vector. From left to right, the plotted points represent the 

softmax probability of selecting rotation actions from -50° to +50°, as per Figure 5.7. 

The action that is recommended to be taken under the learned policy is printed. 

Fourth Row: The Free Energy (un-normalized log likelihood) of each data vector. 

Bottom Row: The change in log likelihood between each successive pair of data 

vectors. This is the reinforcement value that would be obtained if the images were 

rotated 20° clockwise. 

40° 40° 1° -10° -10° -10° -10° 

7 7 7 7 2 4 4 

0 
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5.7.2 Hidden Units as Feature Detectors 

Examining the weights leading into each hidden unit for both systems provides 

some interesting insights as to what features are being detected. The hidden units 

are visualized as feature detectors by plotting the values of each weight leading into 

a hidden unit from all of the visible units; a sample of these images produced from 

the same system again (configured according to column [C] in Table 5.2) are shown 

in Figures 5.15 and 5.16. In Figure 5.15, the weight values are compared against 

those of an RBM trained directly on rotated digits. 

In the RBM, the hidden units activate in response to certain digits types, or 

specific strokes that are important to reconstruct parts of digits. All of the features 

appear to be oriented at an angle of around 30°-40° clockwise as expected. In 

particular, the first hidden unit shown in the first row of Figure 5.15 clearly shows a 

slanted nine. The seventh unit in the second row shows a similarly slanted one. 

Other than this, the detected features appear similar to the feature detector images 

that would be produced by an RBM trained on upright data only [Hin06]. The 

hidden units of the RBM trained on rotated digits, on the other hand, detect various 

features of digits at a range of different orientations. This leads to poor classification 

results, and causes samples generated from the RBM to look distorted. 

In the reinforcement learning network, the hidden units detect much less 

specific features, but ones that signify a digit may be offset from the desired 

orientation by a certain amount. There are areas where active pixels virtually assure 

that large rotation actions will (or will not) be taken, allowing a considerable amount 

of generalization to be achieved. 

The diversity among the hidden unit weights is of some concern (many of 

them look quite similar), and the second layer weights are considerably larger for a 

couple of actions than all the others. Possible reasons for this are discussed in section 

6.2. 
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Figure 5.15: The visualized RBM weight values. Some images of the weights from 

each input pixel leading into hidden units in the RBM. The 10 shaded values above 

each image represent the weights from that hidden unit to each of the label units (0-9 

from left to right). Left: Weight values of an RBM trained using the combined system 

(with no pre-training). Right: Weight values of an RBM trained directly on rotated 

digits. 

 

Figure 5.16: The visualized reinforcement learning network weight values. Some 

images of the weights from each input pixel leading into hidden units in the 

reinforcement learning network. The 17 shaded values above each weight represent 

the weights from that unit to each of the discrete output units representing the Q-

values of actions (from left to right as per Figure 5.7).  
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Chapter 6 

6 Discussion 

In the previous chapter, a number of problems were addressed and solved. Others 

remain, and some interesting insights can be gleaned from considering these issues 

in some detail. In particular, we discuss the implications of the two-way feedback 

that occurs between the reinforcement learning network (which determines the 

input to the Restricted Boltzmann Machine) and the Restricted Boltzmann Machine 

(which provides reinforcement values to the reinforcement learning system). 

6.1 Initial Convergence difficulties: Garbage In, Garbage 

Out 

The design of our system architecture creates an interesting dynamic between the 

two networks. Since both networks are completely untrained to start with, they both 

provide erroneous input to the other system early in the training process. Because 

the energy landscape of the Restricted Boltzmann Machine is randomly initialized, 

the reinforcement learning network will initially receive ambiguous reinforcement 

value signals for the actions it performs. Simultaneously, because the actions 

performed by the reinforcement learning network are a result of its random initial 

weight values, the Restricted Boltzmann Machine will initially receive data with 

considerable amounts of configural variation. 

In layman’s terms: if either system receives garbage input, it will learn to 

produce garbage output. The two-way feedback between the two networks can 

make it very difficult for the system to converge (that is, to learn to transform all the 

data to look as similar as possible). If either network diverges from this solution, it 

will encourage the other network to diverge as well. 

Early on in training, as a result of receiving poor input from the reinforcement 

learning network, multiple valleys (or “basins of attraction”) would start to form (for 

each class) in the RBM, as images with different configural variation are given to the 
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RBM as input. Note that multiple valleys will also form as a result of the different 

ways an object can look—for example, some people write sevens with a line through 

the middle. These separate valleys capture important native variation that cannot be 

generalized away through actions. We are only concerned when multiple valleys 

form that represent the exact same native data, that simply appears different due to 

a different relative configuration (as this would mean the reinforcement learning 

network is not doing its job properly). 

In spite of this seemingly debilitating problem, the system was able to 

converge under a variety of different configurations. It was not uncommon to see the 

system begin rotating digits to two distinct orientations, then as training continues 

gradually rotate more and more digits to one of these orientations only until almost 

all data was converted to the same orientation. We examined if there might be 

multiple valleys of significant size for each class remaining in the RBM after training 

is completed by generating a range of samples from the RBM for a range of different 

experiments. At the end of a long chain of Gibbs sampling where a given label unit 

is clamped, the visible unit activations will correspond to areas of low free energy 

(i.e. valleys) where the given class label is active. 

Figure 6.1 shows 60 samples of “ones” generated by a system that was trained 

on MNIST digits, and also shows a dendrogram computed from these samples by 

taking the pairwise distance between each pair of data vectors. The samples were 

obtained by taking the RBM’s visible unit values at the end of 60 different Gibbs 

chains of 1,000 steps, each with the label unit corresponding to “one” clamped on. 

Both the samples and the dendrogram confirm that a single valley is dominating. All 

the samples generated appear to be from this one valley, so if other valleys do exist, 

they must be considerably smaller. Figure 6.2 shows 60 samples of “sixes” generated 

by another system, also trained on MNIST digits, using the same process. There 

appears to be slightly more variation in these digits. Looking at the digits though, 

they are all rotated to within roughly 20° of each other. As we would hope, the vast 

majority of the variation appears to be native—sixes are drawn with varying sized 

loops, and stalks that are straight or swirly. 
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Figure 6.1: Dendrogram of sample “ones”. Left: 60 samples of “ones” generated by 

the system. Right: A dendrogram produced by computing the pairwise differences 

between each pair of data vectors. 

 

 

Figure 6.2: Dendrogram of sample “sixes”. Left: 60 samples of “sixes” generated by 

the system. Right: A dendrogram produced by computing the pairwise differences 

between each pair of data vectors. 
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To determine what allows the system to converge, in spite of the two-way 

feedback, it makes sense to consider how the RBM’s free energy landscape (the 

negative of the un-normalized log likelihood for all configurations of data) might 

change over time. Figure 6.3 is a conceptual diagram of how the free energy function 

could look in an RBM, if reduced to two dimensions. 

After some time training, it is inevitable that some of the valleys in the RBM 

will grow a little deeper than others. A deeper valley will provide more 

reinforcement, and thus quickly cause the reinforcement learning network, using the 

Q-Learning algorithm, to transform a higher proportion of digits to look like the 

data vectors represented by the deep valley. If this cycle repeats, eventually a single 

deep valley is likely to emerge for each type of data. 

So while it is possible for the system to get trapped in a cycle of erroneous 

feedback that is impossible to escape, the two-way feedback usually favors the 

convergence of the system. The driving factor that determines whether the system is 

able to converge may be the speed with which the reinforcement learning network is 

able to adapt to changes in the RBM’s energy landscape, as opposed to the RBM 

adapting to model the various transformed versions of images.  

This would suggest a stronger guarantee of convergence may be achievable 

simply by having the reinforcement learning network spend more time “playing 

with” each object (i.e. performing several long sequences of actions per object, where 

its weights are updated during each epoch). This would ensure the reinforcement 

learning network adapts relatively quickly to changes in the RBM’s energy 

landscape. 

We would expect that valleys that start to form in the RBM early in training, as 

a result of receiving data involving different configural variation, would decrease in 

magnitude over time. All distributed connectionist networks trained using standard 

gradient descent exhibit some form of forgetting. This is a direct consequence of 

their ability to adapt to new data, or plasticity. Often this forgetting can be 

catastrophic, resulting in the complete loss of all previously trained information 

[Rob95]. Other times, they may exhibit only a slow, gradual loss of information. It is 

gradual, non-catastrophic, forgetting in the RBM that allows the shallower valleys to 

be eroded once the system has begun to converge. 
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Figure 6.3: Multiple valleys in a two dimensional free energy state space. This 

diagram represents how the Restricted Boltzmann Machine’s free energy function 

might look (if there were only two dimensions) after a few epochs of training. As 

multiple valleys begin to form, as a result of the RBM initially training on many data 

elements that differ largely due to different configural variation, the reinforcement 

learning network will gain rewards for transforming data in multiple different ways. 

This will result in the RBM being given data that contains more configural variation. 
 

It appears that this negative cycle does not usually continue for long. It would seem 

that the reward from slightly deeper valleys slowly overwhelms the reward from 

shallower valleys, causing the reinforcement learning network to transform new 

data to look like the data in the deeper valleys where possible. The deepest valley 

will grow at a much faster rate than the other valleys that represent different relative 

configurations of objects belonging to the same class, and eventually overwhelm 

them all. 
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6.1.1 Methods to provide a stronger guarantee of Convergence 

There are a number of potential methods that could be implemented to reduce the 

likelihood that the RBM will produce multiple valleys, representing objects 

differentiated only by configural variation, by dealing with the problem more 

explicitly. These could potentially improve the results achieved by the current 

system, and may be required to allow the system to converge when considering 

more complex input data or kinds of configural variation. 

One possible solution is to explicitly try to determine where valleys are 

forming. This could be achieved by clustering the last 1,000 elements of data that are 

passed to the RBM, or by generating samples from the RBM directly. This 

information could then be used to ensure that if it is possible to transform the next 

data vector to look like data that corresponds to any of these valleys via any kind of 

action (starting from the deepest valley), the reinforcement learner does so. Making 

this determination would only be tractable if the number of valleys and number of 

actions were both relatively small. Iterating over all possible actions may not always 

be feasible. 

Following the procedure described above (or something similar) would limit 

the RBM’s ability to train multiple peaks and definitely speed up convergence. We 

did some experimentation using a system that performed this kind of optimization, 

but in the end found that it was generally not necessary, and slowed down training 

considerably. For the digit transformations that were considered, the system was 

able to converge regardless. 

6.2 Convergence Stability Issues 

Even though the system did converge in most cases, there were a few concerns 

brought up in the analysis of the results presented in section 5.7. Firstly, the 

orientation that the system converged to (the orientation to which most digits are 

rotated to) often appeared to shift slightly over time. Of more concern is the fact that 

the system appeared to occasionally diverge from a “stable” orientation; that is, the 

range of orientations that digits are rotated to widens over time and classification 

error can increase. In fact, the consistent classification results reported in Table 5.2 
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were only able to be achieved due to the fact that the system almost always 

converged to a solution (that provided as good or better classification results than a 

standard RBM) very quickly. 

Firstly, as discussed in section 2.3 and 5.4, approximating the state-action Q-

value mapping in a neural network can be prone to error [Cah10]. The plasticity of 

neural networks can mean that updates as the result of the most recent action can 

cause undesirable changes to previously learned state-action values. Given that most 

of the Q-values in our system tend to be very similar (they are separated by 

arbitrarily small values), catastrophic forgetting of the policy does indeed seem to 

occur. The adaptability of Q-values can be beneficial early in training as the “true” 

Q-values change significantly due to changes in the RBM’s energy landscape 

changes. Later in training, however, it can cause spurious actions to be chosen. 

Furthermore, we note that the system usually learned to favor two actions (one 

rotating clockwise action, and one rotating counter clockwise action), that it would, 

on average, tend to assign much higher Q-values to. The high Q-values are generally 

associated with digits that have been rotated a considerable number of degrees from 

the stable orientation, so are perhaps in part due to several abnormally high 

reinforcement values early on in learning. Additionally, the weights into each 

hidden unit in the first layer did not greatly differ. Thus, some catastrophic 

forgetting was inevitable—these overvalued actions were likely to be incorrectly 

selected fairly often, and are presumably a large part of the reason for shifts in the 

stable orientation. It may be that a more explorative method for selecting actions 

(rather than just using the softmax function) could help mitigate this problem. 

Unfortunately, any spurious output from the reinforcement learner can 

potentially corrupt the RBM’s energy landscape. As discussed in section 6.1, the 

system turned out to be very adaptive and was able to converge to a particular 

orientation quite well. What remains a more pertinent issue, however, is that the 

“stable” valley (that represents digits of a particular orientation) in the RBM’s energy 

landscape can sometimes flatten and widen over time. Figure 6.4 is a conceptual 

diagram of how the energy landscape might change over time. If this flattening 

occurs, the reinforcement signals become considerably weaker, and the 

reinforcement learner will eventually become less precise in its efforts to minimize 

configural variation, causing the classification error rates to rise. 



 

Chapter 6. Discussion  78 

 

 

To what degree the energy landscape flattens as a result of (a) receiving 

spurious input from the reinforcement learning network, (b) “native” variation (or 

other configural variation that is not completely captured by rotation actions) that 

causes slightly rotated versions of digits to appear similar, or (c) the RBM update 

rule being only an approximation (meaning some energy is assigned to invalid 

configurations) is unknown. The fact that Contrastive Divergence worked better 

than Persistent Contrastive Divergence suggests that (c) may play a significant part 

in causing this issue. 

 

Figure 6.4: Flattening of the RBM energy landscape. A conceptual diagram of how, 

as training progresses, the RBM’s energy landscape appears to flatten, leading to 

weaker reinforcement signals. The blue line represents how the energy landscape 

might look early on in the training process (as shown in Figure 5.6, top row) and the 

red line represents how the energy landscape might grow to look after many epochs 

of training (as shown in Figures 5.12 to 5.14, bottom two rows). 

6.2.1 Methods to improve Stability 

In order to improve the system’s ability to maintain a stable convergence, any of the 

techniques suggested in literature to reduce catastrophic forgetting could be 

implemented, such as Pseudorehearsal [Rob95] or Context Biasing [Fre94]. Another 

option, since we know the Q-values (target mappings) are changing over time as a 
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result of the policy changing (conceptual drift), is to consistently update the model 

so that it reflects only more recent data [WK96]. 

A more explorative method for selecting actions, monitoring of reinforcement 

values, and a decaying learning rate could also have some impact on reducing the 

likelihood of the system diverging. Some testing of learning rate decay and scaling 

of reinforcement values did show some appreciable change in results, but did not 

prevent divergence in all cases. 

It is difficult to imagine how we could enforce RBM’s energy landscape to 

remain “sharp”. The effect on the RBM’s energy landscape as a result of training on 

more data or on data with a higher number of dimensions is unknown, though it is 

likely that adding more hidden units to the network (thus increasing its 

representational power) will reduce the chance of valleys flattening. This may be 

why we found divergence less likely to occur on the USPS dataset (where we used a 

much larger number of hidden units relative to the number of input dimensions). 

6.3 Sixes and Nines 

An obvious issue that arises when performing actions that transform images is that 

sometimes transformations will make objects look the same (even though they are 

not actually the same). When considering digits, a six rotated 180° will look 

extremely similar to a nine, and vice-versa. 

This issue was avoided in our system by providing as input digits that were 

rotated less than 90° from upright. In conjunction with the limited output actions 

available and low discount factor, this made it very unlikely that the reinforcement 

learning network would rotate one class of digits completely upside down, and 

virtually guaranteed that the six and nine classes would remain distinct (note that 

rotated sixes do usually look slightly different from nines anyway). 

When considering three dimensions, there are some perspectives where 

completely different objects can look the same. In order to be more robust, the 

system could, at least in part, use reinforcement values that take into account which 

class the object belongs to (if available). This will mean the system will get its 

maximum rewards by transforming three-dimensional objects that belong to 

different classes to look different, and objects that belong to the same class to look 
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the same. Otherwise, if the system uses a reinforcement value based purely on how 

closely the data matches what the RBM has seen before, the system will achieve 

maximum rewards by transforming objects belonging to different classes to look the 

same, which will have a detrimental effect on classification results (the agent’s 

ability to infer ground truths could potentially diminish). 

Furthermore, the meaning of certain objects change depending on the context 

(the surrounding data). To distinguish a six and nine, for example, some context is 

required. If a six digit is looked at in isolation, and the text is in fact upside down, it 

will appear to be a nine and there would be no reason to think otherwise. Figure 6.5 

shows the importance of context when looking at images. The orientation of nearby 

text leaks over to nearby digits, and this context information can perhaps be more 

important when classifying an object than the actual specifics of its shape. 

 

Figure 6.5: Orientation Leaking. Left: The number is interpreted by the brain as 29. 

Right: The number is interpreted as 26. In fact, the 6/9 digit is completely identical in 

both cases. Only the orientation of the 2 differs. 

6.4 Transformations to Nothing 

A similar, but more severe issue is that there are several actions that can be 

performed that have the effect of clearing the agent’s sensory data. For example, an 

agent that closes its eyes will receive “blank” visual data. This cannot happen when 

the only actions considered are ones that cause rotation transformations, but is an 

issue for other basic kinds of transformations including translation, and scaling. For 

example, the agent could turn its head until an object is out of view (the object is 

translated past the edge of the image). 

If the reinforcement learning network discovers that it can perform actions that 

transform images to blank, and the RBM is trained on several of these blank images, 

then the system may suddenly very quickly converge by transforming everything to 
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blank. The RBM will be very happy to see blank images as they are identical to other 

blank images that have been seen before. 

The issue arises because the way the system is set up means it thinks that if an 

action exists that makes two objects look very similar, then they must in fact be very 

similar objects, belonging to the same class (and so generalizes away the differences 

that can be explained by a transformation). Obviously, this is not always true. 

 

Figure 6.6: Transforming an object to blank. Three different digits are translated 

right until the image becomes blank, and all three images look the same. 

In our system, this issue was avoided simply because the actions that were 

made available to the reinforcement learning system made it difficult/impossible to 

transform objects to be completely blank. Even when training more complex actions 

than rotation without using shaping (see section 7.1), this issue never really 

appeared to cause any problems. We could have gone further and explicitly 

restricted images from being translated or scaled too far if this problem had turned 

out to be pertinent. 

Preventing this issue from occurring in general could be achieved via the same 

solutions suggested in section 6.3—changing the reward function to incorporate 

some reward for being able to distinguish/classify different objects (the RBM will do 

a very poor job trying to classify blank images). Additionally, if the agent had some 

notion of what an object is, then this issue could be avoided—performing an action 
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that transforms the agent’s sensory data to appear blank means the object that was 

being viewed no longer appears in the agent’s sensory data. 
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Chapter 7 

7 Additional Experiments 

In Chapter 5 we presented results obtained by training the system on actions that 

result in rotation transformations only. In this Chapter, we examine the system’s 

ability to learn to correctly perform actions that result in more complex 

transformations (such as to minimize the configural variation in the data), or to 

represent multiple actions at once. 

Learning to generalize away configural variation that arises due to complex 

transformations can be considerably more difficult than doing so for the rotation 

example presented so far. By performing any random sequence of rotations, the 

agent is likely to arrive at the “upright” orientation in a fairly short period of time. 

Additionally, digits that are rotated only slightly in either direction only partially 

distort an image—many of the pixels remain similar. This means that the 

reinforcement signals that the RBM reports for digits as they approach upright from 

a way off are usually positive. More complex transformations such as translation, are 

inherently more difficult to learn; images can be moved in four different directions 

(rather than being rotated in only two directions), and even a movement of just a 

couple of pixels drastically distorts an image; altering which visible units are 

activated (this is partly due to the small size of the images used here). 

As valleys begin to form in the RBM’s energy landscape, corresponding to 

digits translated to a given position, positive reinforcement can generally only be 

found by moving the image into this exact position or a position that is only one 

pixel away. This makes it more difficult for the reinforcement learning network to 

discover that it should transform to match the data configurations represented by 

this valley, and can make it difficult for the system to converge. Figure 7.1 

demonstrates the difficulty of attempting to translate an image correctly. In this case, 

high reinforcement is only achievable if the image is moved to the green circle (the 

position corresponding to where a valley has begun to form in the RBM). Outside of  
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Figure 7.1: Learning how to translate an image. The red trace shows a sequence of 

actions that translate the center of an image around inside a bounded area. High 

reinforcement is achieved if the center of the image is translated into the green zone. 

It will take a considerable amount of time for the agent to learn to translate an image 

to this position. 

this area, the agent will receive ambiguous reinforcement signals (usually 

small, but potentially sometimes large) that do not help it learn the correct actions. 

Since the agent can perform movement actions that transform the data in any 

direction, it may perform long sequences of actions without discovering the high 

reinforcement values that exist if the data is translated correctly. 

If we allowed the reinforcement learning network to perform many long traces 

for each digit that it views, it would presumably eventually learn to perform the 

correct actions. Unfortunately, since we are training on data with a fairly high 

number of dimensions, however, this is not practical. Experiments on translated 

digits with traces (sequences of actions) of length 100 revealed that actions resulting 

in translation transformations could not be effectively learned without some pre-

training. Some pre-training on centered images, however, allowed the system to 

begin to converge. To mitigate this problem further, the system was trained using 

“shaping”, described in the next section. 

High 
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Reinforcement 
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7.1 Using shaping to learn more complex actions 

The concept of shaping (or guided learning) originated in behavioral psychology 

[Skin38]. The basic idea is to give the learning agent a series of relatively easy 

problems that eventually build up to the completion of a more difficult problem that 

would be very difficult or time-consuming to learn directly [SB98]. Once a subtask is 

learned, it becomes much easier to learn a more complex task; that is, a task 

involving (at least partially) the subtask plus additional steps. Figure 7.2 illustrates 

schematically how training a robot to run could be achieved by training it in 

successively more difficult forms of movement. 

 

Figure 7.2: Reinforcement signals for a robot learning to move. To train a robot 

how to run, it may be easier to teach it successively more complex movements. 

By rewarding animals for performing more and more difficult subtasks, 

psychologists have been able to train animals to perform complex actions such 

having pigs eat breakfast at a table, or vacuum floors [AASBN96]. Shaping has been 

successfully used in reinforcement learning problems to speed up the learning 

process, and has allowed reinforcement learning techniques to be applied to many 

complex problems. Examples include training a system to ride a bicycle to a goal 

destination while remaining balanced [RA98], and training a system to balance a 

pole under very difficult conditions by first learning to balance a heavy pole with a 

long track and gradually moving to a light pole with a shorter length [SSB85]. 

There are many different ways in which shaping has been implemented in 

reinforcement learning systems. One common approach is to modify the reward 

function so that the learning agent gains positive reward, or receives “progress 

indicators” [Mat97], for achieving subtasks that can lead to achieving the ultimate 

goal. Another approach is to modify the dynamics of the system itself; in particular, 

Learn to run 

Learn to walk 

Learn to crawl 

crawling Learn to roll 



 

Chapter 7. Additional Experiments  86 

 

 

the learning agent can be given a task that is easier to solve than the actual goal task, 

and use the policy it learns from performing this task to speed up learning as the 

task becomes more complex. Note this process is very similar to how shaping is 

described in psychology literature. 

When implementing complex actions in our system, we incorporated simple 

“task shaping” (the process of learning progressively more difficult versions of a 

task as described above). In the case of translation, the system was first shown digits 

that were not far from centered. Once it had correctly learned to translate these 

digits, it was then shown digits that were progressively further away. 

This makes it somewhat easier for the reinforcement learning system to 

determine which way images should be translated early on in training; as soon as 

the RBM starts forming a deep valley around centered images, any actions that 

move images away from the center will receive negative reinforcement. 

7.2 Experiments on Translated Digits 

The system was trained on translated digits in a similar manner as described in 

section 5.7. Best results were obtained using nine discrete output nodes, representing 

the actions corresponding to no movement, or movement of one or two pixels up, 

down, left or right (diagonal movement was not considered). 

The system was initially shown images that were no more than one pixel away 

from being centered. Every five epochs, the system was shown images that were an 

additional pixel away from the center, until a maximum of eight pixels. 

Table 7.1 gives the final results obtained on the MNIST dataset, with the use of 

shaping. Again, these results are compared with results obtained by using a 

standard Restricted Boltzmann Machine with the same number of hidden units 

trained on the same data for the same number of epochs. When using shaping as 

described, the classifier always successfully learned to center input data. 
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[A] Error Rate 
(MNIST dataset, 5,000 training, 
5,000 validation, 5,000 testing, 

200 RBM hidden, 200 RL hidden, 
40 epochs, no shaping) 

[B] Error Rate 
(MNIST dataset, 5,000 training, 
5,000 validation, 5,000 testing, 

200 RBM hidden, 200 RL hidden, 
40 epochs, with shaping) 

Standard RBM 40.32% 

Reinforcement 
Learning + RBM 

88.76% 13.32% 

 

Table 7.1: Classification results on translated digits. The percentage of data vectors 

from the test set classified incorrectly. Epochs denotes the total number of epochs the 

system was trained for. The results shown are the average error rate of the three best 

results out of five runs. Note that the standard RBM systems were trained using 

Persistent Contrastive Divergence to achieve slightly better results. 

These results show that the system, when trained using shaping, is able to 

improve classification significantly by generalizing away differences resulting from 

digits being in different locations inside an image. A standard RBM greatly struggles 

to learn to model variously translated versions of images, since they significantly 

differ in terms of which pixels are activated. Without using shaping, the 

reinforcement learning network gets confused and translates digits randomly, 

greatly increasing the amount of configural variation and making it almost 

impossible for the classifier to learn any ground truths. 

Note that when training the system on randomly translated digits, it did 

frequently diverge late in the training process (it slowly transformed digits to a 

wider range of positions, further away from the center over time), as discussed in 

section 6.2. 

7.2.1 Traces 

As before, we can examine the traces—sequences of actions—performed by the 

agent to determine how good of a job it was doing at transforming images to all look 

similar. Figure 7.3 shows some traces performed by the reinforcement learning 

network after being trained on actions that result in translations. 
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At the point in training where the validation set error was minimized, the 

reinforcement learning network is able to translate almost all images to be close to 

centered. Note that we would expect some small, but considerable, variation in the 

position that digits are translated to even if the system was working perfectly, as the 

digits are not all perfectly centered. 

 

Figure 7.3: Traces of translation actions. 20 sequences of translation actions (traces). 

The y axis shows the vertical distance of the data from the origin (close to centered) 

position, and the x axis shows the horizontal distance of the data from the origin 

(close to centered) position. Translation actions are represented by the movement of 

the line at each step along the z axis. 

To compare with the results on rotated digits, Figure 7.4 shows a range of key 

network indicators, as a sample data element is translated along the x-axis. In 

general, the free energy function appeared considerably flatter when digits were 

close to centered than it was for rotated digits close to “upright”. This presumably is 

what led to the system diverging more frequently than it did when trained on 

rotated digits. 
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Figure 7.4: Analysis of trained System. Top Row: A sample “two” from the test set 

is translated to the right from three pixels left of center to three pixels right of center, 

in one pixel intervals. Second Row: The probability of each class label,  (   ), for 

each data vector. From left to right, the plotted points represent the probabilities for 

the labels “zero” to “nine”. The highest predicted class label is printed. Third Row: 

The Q-values (the output of the reinforcement learning network) converted to 

probabilities using the softmax function, for each data vector. From left to right, the 

plotted points represent the softmax probability of selecting to not move the image, 

or to translate the image left, down, up, or right. The action that is recommended to 

be taken under the learned policy is printed. Fourth Row: The Free Energy (un-

normalized log likelihood) of each data vector. Bottom Row: The change in log 

likelihood between each successive pair of data vectors. This is the reinforcement 

value that would be obtained if the images were translated right by one pixel. 
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7.2.2 Hidden Units as Feature Detectors 

Finally, we present the weights learned by the system in Figures 7.5 and 7.6. The 

hidden units of an RBM that was trained as part of the full system were able to 

detect global dependencies between pixels (which is especially important given the 

limited number of hidden units used), and includes some nodes that are detecting 

quite class specific features, such as the first weight on the third row, which captures 

the key features of a seven. The hidden units of the RBM trained directly on 

translated digits, on the other hand, were unable to capture global dependencies. 

Additionally, even at the end of training, many of the units capture little 

information, as they struggle to learn given the large amount of noise (a result of 

considerable configural variation in the data). 

The hidden units of the reinforcement learning network have detected that 

active pixels near the edge of an image send a strong signal about which way it 

should be translated. 

 

  

Figure 7.5: The visualized RBM weight values. Some images of the weights from 

each input pixel leading into hidden units in the RBM. The 10 shaded values above 

each image represent the weights from that hidden unit to each of the label units (0-9 

from left to right). Left: Weight values of an RBM trained using the combined system 

(with no pre-training). Right: Weight values of an RBM trained directly on translated 

digits. 
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Figure 7.6: The visualized reinforcement learning network weight values. The 

visualized reinforcement learning network weight values. Some images of the 

weights from each input pixel leading into hidden units in the reinforcement 

learning network. The nine shaded values above each weight represent the weights 

from that unit to each of the discrete output units representing the Q-values of 

actions (from left to right as shown in Figure 7.4, third row). 

7.3 Experiments with two Transformations at once 

We had little success attempting to train the system to learn multiple different kinds 

of other configuration-changing actions at once. Specifically, we were successfully 

able to train the system to perform scaling actions (that is, actions that result in the 

image being scaled up or down by a given percentage), achieving similar 

classification improvements over a standard RBM. However, the system appeared to 

be unable to learn to perform both rotation and scaling actions correctly at the same 

time (where the reinforcement learning network included both kinds of actions in 

the output layer). 

We ran experiments using various different numbers of discrete output units, 

and scaling methods, but found that the reinforcement learning network could not 

learn to correctly perform both kinds of actions at once, even if the RBM was pre-

trained on upright centered images, and its weights then fixed. 

It appears that there is sufficient noise in the free energy landscape such that an 

agent who performs actions that result in multiple different kinds of configural 
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variation at once is likely to discover reward for performing undesired actions. 

Additionally, and perhaps more importantly, the reinforcement values from scaling 

actions appeared to largely overwhelm the reinforcement values from rotation 

actions, leading to rotation actions rarely being selected as training progressed. 
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Chapter 8 

8 Conclusions 

This thesis has presented a conceptual system architecture that uses an associative 

memory, specifically a Restricted Boltzmann Machine, along with reinforcement 

learning techniques, to generalize away differences in objects that are purely a result 

of configural variation. The system design is in no way limited to specific actions, so 

the system could theoretically learn to generalize away differences that are the result 

of any configuration-changing actions an agent may perform. 

This system was implemented and achieved good classification results on a 

variety of two-dimensional translations of digits. The results support the notion that 

explicitly generalizing away configural variation can make it easier for an agent to 

infer ground truths about data (in particular, to classify the data). 

Constructing a system capable of achieving these results required significant 

experimentation. A Q-Learning algorithm, with action-to-value mappings modeled 

by a multilayer network, was found to perform well. Specifically, the algorithm 

applied the softmax function on a set of discrete output nodes to determine its choice 

of action while training. Hidden nodes used the softsign activation function. 

Reinforcement values based on the difference in the log likelihood of the pre- and 

post-transformed data provided good feedback to the reinforcement learning 

network allowing it to train data. 

Experiments with the system revealed that it learns transformations that 

gradually distort an image (such as rotation) more easily than transformations that 

can cause an image to quickly look very different (such as translation). Presumably 

convergence (learning to transform almost all data of the same class to look similar) 

will always occur as long as the reinforcement learning system is able to adapt to 

changes in the associative memory’s energy landscape faster than the landscape 

itself changes. 
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A summary of the positives and negatives of the final system that was 

presented follows: 

 Was almost always able to learn to transform data to look similar (thus 

eliminating configural variation) very quickly, even with no pre-training, 

on particular tested transformations. 

 Consistently beat the best classification results a regular RBM could 

achieve on the same data, and usually achieved these results in only a few 

epochs. 

 Was able to learn to correctly perform complex/multiple transformations 

with the aid of shaping techniques. 

 The reinforcement learner can suffer from catastrophic forgetting as it uses 

a neural network to approximate the value function. This issue appears to 

be heightened to some degree due to the reinforcement values adapting 

over time (as the RBM’s energy landscape changes). 

 Occasionally diverges somewhat after finding a solution, presumably as a 

result of the RBM’s energy landscape flattening over time. 

 The system sometimes struggles (or fails) to converge; it can be sensitive to 

changes in certain learning parameters, particularly when considering 

more complex kinds of transformations. 

While using a reinforcement learning network to minimize configural variation 

may not be the ultimate solution to improving object classification, this thesis has 

shown that there definitely appears to be significant value in generalizing away 

differences in data that arise due to configural variation, and that it is possible to 

perform such generalization without requiring an architecture that uses external 

knowledge of transformations. 

 

 

 

 

 



 

Chapter 8. Conclusions  95 

 

 

8.1 Future Work 

There are a range of possible ways in which this work could be extended. Some 

suggestions are: 

 A further investigation into the limitations of the system. Specifically, one 

could examine if improvements can be achieved by applying techniques to 

reduce catastrophic forgetting in the reinforcement learning network, such 

as pseudorehearsal. Results may improve as a result of other small 

changes such as selecting actions with more of a focus on exploration, or 

giving the reinforcement learner more time to learn per update of the 

RBM. 

 Training the system on tougher datasets, and/or learning to perform 

actions that result in other kinds of transformations, such as three 

dimensional rotations. 

 Comparing with alternative architectures. It is not necessary to use 

reinforcement learning techniques to generalize away the configural 

variation in data. One alternative option could be to use a more guided 

system where the best action that should be taken (to make a new data 

vector appear as similar as possible to data the associative memory has 

seen before) is known (or discovered through extensive trial and error), 

and trained using a standard feed-forward neural network. 

 A potentially powerful extension to the system would be to have it learn to 

model transformations that occur as a result of actions, at the same time as 

learning how to eliminate configural variation by performing those 

actions. This could potentially be achieved using a variation of Gated 

RBMs. 

8.1.1 A Multi-Layer Internal Representation 

It would be possible to extend the system to train on multiple layers of Restricted 

Boltzmann Machines following the standard greedy layer-by-layer training 

procedure described in section 3.4. 
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After having fully trained our system (without including labels in the bottom 

layer), a new Restricted Boltzmann Machine could be trained, using as input the 

hidden unit activations of the original Restricted Boltzmann Machine, when given 

data vectors from the reinforcement learning network. When training the second (or 

subsequent) layers, the weights in the reinforcement learning network weights could 

continue to be updated based on feedback from the new Restricted Boltzmann 

Machine. Alternatively, they could be fixed. 

We would expect that using a Deep Belief Network (a stack of RBMs) would 

lead to an improvement in the agent’s internal representation, and ability to classify 

data correctly, though this has not been tested. Figure 8.1 shows how the system 

architecture would look if a Deep Belief Network were used for the agent’s internal 

representation. 

 

Figure 8.1: The system architecture including a Deep Belief Network. The section 

colored purple shows how an additional RBM could be added to the standard 

architecture. 

8.1.2 Using Dimensionally Reduced Data 

It would also be possible to perform dimensionality reduction on the agent’s sensory 

data, before feeding it into our system, in order to speed up the training process. 
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However, since the data that the system receives as input is constructed by 

performing random affine transformations, a dimensionality reduction algorithm 

would have to be implemented in an online fashion (meaning the performance of the 

system may suffer). 
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Appendix 

A System Information 

I produced a program from scratch, using Java (and some matrix libraries), for 

running experiments on various types of Restricted Boltzmann Machines & Deep 

Belief Nets, as well as to train and evaluate our system. Screenshots of the program 

are shown in Figures A.1 and A.2. 

 

 
 

Figure A.1: Screenshot I. A screenshot of some of the configuration options available 

in the program. 
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Figure A.2: Screenshot II. A screenshot of the system generating samples. Left: The 

reinforcement learning network’s hidden units are active and the outputted Q-

values specify a “rotate clockwise” action should be performed. Right: The digit has 

been rotated upright, and Gibbs sampling is being performed on the RBM, with 

samples displayed every few steps. 

B Full Algorithm 

Pseudo-code for the full training algorithm is presented below. Note for brevity, the 

bias weight updates are omitted. 

Note on some notation: 
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Part One: Training the reinforcement learning network 
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Part Two: Training the Restricted Boltzmann Machine 
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C Possible GPU Optimization 

Because the system uses reinforcement learning techniques on a high dimensional 

problem, it can take a long time to train. A sequence of up to 100 actions is 

performed for each data vector, and the reinforcement value (which involves a 

product over all hidden units in the RBM) and backpropagation error are computed 

at each step. Additionally, the transformations (that occur as a result of actions) also 

have to be simulated unless a physical robotic infrastructure is available. 
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Training the system involves a large number of matrix operations which are 

mostly parallelizable, as well as simulating visual transformations. GPU’s have 100s 

of small processors, and as such, an order of magnitude reduction in the time taken 

to run experiments could be achieved by implementing many of the operations 

involved in training the system—including actually simulating the image 

transformations— in a GPU using the CUDA3 framework. 

In order to achieve maximum gains, all the data and weight matrices need to 

be copied into GPU memory at the start of training and be updated directly in the 

GPU, only being copied back to Main Memory upon completion (or at occasional 

intervals to backup to the hard drive). 

Given the length of time the system can take to train, training on larger 

datasets or implementing any additional extensions would essentially require 

making use of a GPU. 

 

                                                   
3 http://developer.nvidia.com/cuda-toolkit 
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