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ABSTRACf 

Basement rocks within the southeastern Tararua Range belong to two 

associations: a sedimentary association (greywacke, argillite, calcareous 

siltstone, conglomerate and olistostrome) and a volcanogenic association 

(metabasite, chert, red argillite and limestone). Rocks of the 

sedimentary association are more abundant and have been deposited by 

turbidity currents and debris flows in a deep water, marine environment. 

Three turbidite and two intercalated non-turbidite lithofacies are 

recognized. Sedimentological data suggest that the sediment was deposited 

in a submarine fan system (mid-fan environment), probably in a trench. 

The alternating greywacke-argillite beds have detrital compositions which 

are essentially quartzo-feldspathic. Framework mode and geochemical 

analyses indicate that the sediment was derived from an active 

continental margin that was shedding detritus of mainly acid-volcanic and 

metamorphic origin. 

Rocks of the volcanogenic association, although volumetrically 

minor, are widely distributed. Geochemical analyses of metabasites 

suggest that they were erupted in an oceanic environment, both at a 

mid-ocean ridge and an intra-plate setting. The presence of radiolaria 

skeletons in red argillite and chert indicates a hemiplagic depositional 

environment for these rocks. Rocks of the volcanogenic association often 

have conformable contacts. These rocks have a related depositional 

environment and represent seafloor material. Where observed, contacts 

between rocks of the two associations are always faulted. 

Deformation in the field area is characterized by development of 

the following types of structures: several generations of folds, faults 

at both a low angle and high angle to bedding, shear foliation and 

melange. The region has undergone the following deformational events, 

outlined from oldest to youngest: 
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1) folding with at least two fold generations present. 

2) fragmentation and disruption of the beds by faults. Low-angle to 

bedding faults and high-angle to bedding faults have disrupted the 

bedding. Where these structures have occurred to a great extent, a 

chaotically disrupted unit, melange, has formed. 

3) post-melange folding. 

4) recent faulting related to the present strike-slip regime in New 

Zealand. Rocks have undergone prehnite-pumpellyite facies metamorphism. 

The rock types, their field relationships and the deformation that 

the area has undergone is consistent with accretion at a convergent plate 

margin. 

Radiolaria were extracted from two red chert samples. In the study 

the radiolaria define a Middle Jurassic age, which indicates that the 

sediments in the southeastern Tararua Range must be of Middle Jurassic in 

age or younger (possibly Cretaceous). A similar sample from the Manawatu 

Gorge to the north of the study area contained radiolaria of Late 

Jurassic-Early Cretaceous age. Sediments in both areas therefore belong 

to fossil zone 5 (Late Jurassic-Early Cretaceous) of MacKinnon (1983). 
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1.1 REGIONAL GEOLOGY 

CHAPTER ONE 

INTRODUCTION 

New Zealand basement geology is divided into Western and Eastern 

Provinces, separated by the Median Tectonic Line and the active Alpine 

Fault (Landis & Coombs 1967) (Fig. 1-1). The Western Province of 

Precambrian to Cretaceous age, consists of Paleozoic sediments and 

crystalline rocks of Late Precambrian to Cretaceous age (Coombs 

et al. 1976). In the Eastern Province two associations are 

recognized, the Hokonuni and Alpine (Wellman 1952). Transitionally 

between the two associations occurs the Haast Schist, a metamorphosed 

equivalent of the surrounding rocks. 

The most western association of the Eastern Province, the 

Hokonuni, abuts the Median Tectonic Line and contains predominantly 

volcanoclastic sediments and volcanics (Coombs et al. 1976). Based on 

lithologies, the Hokonuni association consists of four units, these being 

from west to east: 

1) Brook Street Volcanics- consists predominantly of calc-alkaline to 

tholeiitic volcanics and intrusives, 

2) Maitai group and Murihiku group- consists of dominantly volcanogenic 

siltstone with minor sandstone, conglomerate, breccia and limestone, 

3) Dun Mountain Ophiolite- consists mainly of ultramafic (now mostly 

serpentinite) rocks, gabbros and pillow lavas, 

4) Caples group, Pelorus group and Waipapa group- consists of poorly 

fossiliferous volcanogenic sandstone and siltstone with minor metabasite, 

chert and limestone. 

The Alpine association, contains quartzo-feldspathic sediments of 

the Torlesse Supergroup (Suggate 1961). The Torlesse Supergroup is a 

complexly deformed, sparsely fossiliferous, interbedded sequence of 

1 
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Figure 1-1: Basement rocks of New Zealand (after Sporli 1978). 

Fossil zones in the Torlesses Supergroup are from 

Landis & Bishop (1972); Speden (1976) and MacKinnon (1983). 



sandstone and siltstone, usually referred to in New Zealand as greywacke 

and argillite, with minor associated conglomerate, basalt, tuff, coloured 

argillite, chert and limestone. 

Five fossil zones have been recognized in the Torlesse Supergroup. 

They are: 1) Atomadesma, Permian; 2) Daonella, Mid-Triassic; 

3) Torlessia, Late Triassic (Oretian-Otamitan); 4) Monotis, Late 

Triassic (Warepan); 5) Late Jurassic-Early Cretaceous (Campbell & Warren 

1965; Webby 1967; Bradshaw 1973; Speden 1976; Andrews~ al. 1976; 

MacKinnon 1983). In the North Island only fossil zones 3-5 have been 

recognised and these young towards the east, but within each zone the 

dominant younging direction is westward . The fossils, being both shallow 

water marine and deep water marine in origin , have led to differing 

opinions as to the site of Torlesse sediment deposition. Some workers 

(Bradshaw 1973; Bradshaw & Andrews 1973) have argued for a dominantly 

shallow marine origin, although now, the general consensus is that the 

Torlesse is dominantly deep water marine with some shallow marine and 

fresh water sediments (Carteret al. 1978). 

The model currently favoured by many workers is that the Torlesse 

Supergroup represents an accretionary prism, forming as a result of 

turbidite deposition within trench, slope and borderland basins. These 

sediments were accreted to the inner trench wall, along with oceanic 

crust, during subduction (Sporli 1978; MacKinnon 1983; Korsch & Wellman 

in press). Subduction would have scraped the turdibity deposits, along 

with some oceanic crust, from the sea floor and stacked the rocks into 

imbricated "packets". Imbricated rock "packets" have been documented from 

many localities within the Torlesse (Sporli & Bell 1976; Sporli 1978). 

Fossil zones and younging directions are consistent with an accretionary 

prism model. The Torlesse has often been compared with the Franciscan 

Complex of California, U.S.A., (Landis & Bishop 1972; Blake~ al. 
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1974), which is regarded as a type accretionary prism (Dickinson 

et al. 1982). 

In the southern part of the North Island, the Torlesse Supergroup 

crops out in the Wellington area and the Rimutaka, Tararua and Ruahine 

Ranges. Age control is minimal. Fossils found in the Wellington area are 

Late Triassic (Oretian-Otamitan) Halobia lilliei (Campbell 1982), 

tube fossils Torlessia and Titahia (Webby 1967; Speden 1976) and 

the trace fossil Scalarituba (Rowe in prep.). At Otaki Forks, Late 

Triassic (Warepan) Monotis occur (Grant-Taylor & Waterhouse 1963; 

Speden 1976). 

Due to complex deformation and a lack of marker beds in the 

Torlesse, most workers have made interpretations of the regional geology 

based on detailed studies of small areas. In 1888 McKay produced two 

geological reports on the south-eastern Tararua Range (McKay 1888a,b). 

The petrography of rocks in the Wellington area has been described by 

Reed (1957a) and Rowe (1980). Other studies have concentrated on 

structural and sedimentalogical aspects (Sporli & Bell 1976; Rattenbury 

1983). 

The main aims of this study are to: 1) geologically map an area, 

attempting to subdivide the rocks into lithofacies based on lithology and 

structure; 2) carry out detailed petrological and geochemical studies, to 

elucidate the provenance and tectonic setting; 3) outline the 

deformational history; 4) relate the area to regional tectonic 

interpretations. 

1.2 FIELD AREA 

The study area is situated in the eastern foothills of the 

southern Tararua Range, 55 kilometres north-east of Wellington (Fig.1-2). 

The area is approachable by road along its eastern margin, 

(Underhill Road) and is bounded to the north and south by Waiohine Gorge 
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Figure 1-2: Map of the southern North Island showing the Torlesse 

Supergroup and the study area. 



Road and State Highway 2 respectively. Over most of the area, (the 

western and central portions) walking tracks are few, with access often 

being restricted to river and stream beds. 

Elevation in the study area ranges from lOOm to 645m above mean 

sea level, resulting in steep and often rugged slopes. Along the eastern 

margin of the foothills these slopes have been cleared for farming. 

Immediately west, the ground cover is regenerated scrub, (mainly manuka 

and gorse) grading into beech forest with scattered rimu, miro and 

kahikatea. Most fresh rock outcrops are confined to river and stream 

beds. 

Rocks in the study area are predominantly sedimentary, with 

alternating greywacke and argillite dominating over minor calcareous 

siltstone, conglomerate and olistostrome. Metabasite, with associated 

chert and red argillite occurs widely throughout the Tararua Range, and 

has sheared contacts with surrounding rocks. 

Bedding strikes roughly north-northeast to northeast. The 

structure is complex, with shearing being pervasive and developed 

predominantly along bedding planes. Highly sheared tectonic melanges have 

developed, with shearing striking roughly parallel to the dominant 

strike. The melanges incorporate all rock types found in the area. 

Kingma (1967) in mapping the Wellington 1:250,000 sheet, assigned 

the rocks of the study area to the Upper Jurassic. However when Speden 

(1976) designated fossil zones within the Torlesse, the Tararua Range 

fell within his Late Triassic (Warepan) Monotis zone. These 

assignments of conflicting ages, have been based on extrapolation from 

other areas in the Torlesse and therefore neither age can be taken as 

definitive. 

All grid references cited refer to the 1975 metric grid of New 

Zealand, based on the NZMS 260 topographical series. Topographic maps and 
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aerial photographs used for the basis of maps and figures are listed in 

Appendix I. 
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CHAPTER TWO 

ROCK TYPFS 

The rocks in the study area are predominantly sandstone 

(greywacke), and siltstone-mudstone (indurated to argillite) with minor 

associated conglomerate, olistostrome, metabasite, argillite, limestone 

and chert. For organisation purposes the rock types are examined in two 

sections. Chapter 2 provides a description and discussion of the main 

clastic sedimentary rocks, eg. greywacke, conglomerate. Chapter 3 

provides a description and discussion of rocks of volcanogenic 

association, eg metabasite, chert, red argillite. 

2.1 SEDIMENTARY ASSOCIATION: SEDIMENT, LITIIOLOGIES AND DEPOSITIONAL 

ENVIRONt-tENT 

Sedimentary rocks in the area are predominantly sandstone and 

argillite, with minor conglomerate and olistostrome. Initially the nature 

of the sediments are described, and a depositional environment is 

proposed, followed by detailed petrographic descriptions (including 

geochemistry) of the sediments. 

Within the Tararua Range a common sequence of sandstone and 

argillite is of a massive fine-grained sandstone within a single graded 

unit, overlying a sharp base. This sandstone grades up into a laminated 

finer-grained sandstone and then siltstone-mudstone. Often the fine 

laminated sandstone is absent. 

The sandstone portions are generally fine-grained, massive with 

grading being distinct in only a number of beds. The units range in size 

up to 20 metres in thickness, although these thicknesses may represent 

the amalgamation of a number of beds, where joint planes could represent 

the amalgamated surfaces. Amalgamated sandstone beds are a common feature 

to see in deep sea sediments but are usually difficult to observe 

(Ingersoll 1978). In the basal sections of the sandstone, clasts of 
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siltstone and mudstone occur . In the upper section, plane parallel 

laminations and ripple cross-laminations , often truncated, are 

occasionally seen . 

The sandstone-argillite contact is frequently sheared with bedding 

plane shears, although gradations between the two can be seen in a large 

number of beds. Within t he argillite unit, plane parallel laminations can 

be observed, grading into a finer mud-size sediment, devoid of any 

sedimentary structures. The massive fine mudstone is suggestive of 

deposition by suspension settling only. 

Typical rock sequences with sedimentary structures can be seen in 

Fig . 2-1a . 

2 .1.1 Turbidites 

The alternating sandstone and argillite beds within the Torlesse 

from the southern North Island have often been ascribed to turbidite 

deposits (Reed 1957a; Rowe 1980; Rattenbury 1983). Turbidite deposits are 

the result of density currents. 

Practically all turbidites have been deposited in a marine 

environment, although turbidites from fresh-water environments are known 

eg. Lake Mead (Gould 1951); Lake Geneva (Bouma 1964). Fossils found in 

the Wellington area and the Tararua Range ie. Torlessia (Webby 1967), 

Titahia (Webby 1967) and Monotis (Grant-Taylor & Waterhouse 

1963), indicate a marine depositional environment for the sediments. 

Turbidity deposits and their features are often described in terms 

of the "ideal" turbidite model, proposed by Bouma (1962). The five 

sections of the "ideal" turbidite model (Fig 2-1b), have a fixed 

sequence, these being from bottom to top: 

1) Graded interval (Ta)-sandstone which shows graded bedding, although 

grading may be indistinct or absent, 

2) Lower interval of parallel lamination (Tb)-graded sandstone interval 
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Figure 2-1b: Bouma model (from Middleton & Hampton 1973) 
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with coarse parallel laminations, 

3) Interval of current ripple lamination (Tc)-sandstone featuring current 

ripples, crossbedding and convolute laminations, 

4) Upper interval of parallel lamination (Td)-fine sandstone to siltstone 

with indistinct parallel lamination, 

5) Pelitic interval (Te)-with no visible sedimentary structures. 

Features of turbidites are commonly those which develop by the 

redeposition of sediment in a deep-water marine environment . Therefore 

turbidite sequences typically lack features indicative of proximity to 

sea-level or terrestrial sites eg. winnowed sands, beach structures, 

river deposits, megaripples, sun cracks, rain pits and reefs. 

Throughout the Tararua Range , most of the typical features listed 

above for turbidites have been found . This, and the lack of features 

indicative of other depositional sites, make it reasonable to ascribe the 

beds to the action of turbidity currents. 

2.1.2 Conglomerate and olistostrome 

Other rocks of sedimentary association formed by sedimentary 

gravity flows (conglomerate and olistostrome) cannot be explained in the 

turbidite model of Bouma (1962). Several different types of sedimentary 

gravity flows are distinguished on the mechanism of grain support. As 

well as turbidity flows (by fluid turbulence) these are: are debris flows 

(clasts supported by matrix), grain flows (by grain to grain 

interactions) and fluidized sediment flow (by expanding pore fluids) 

(Rupke 1978). 

Conglomerates within the Tararua Range are clast supported, with 

some being normally-graded (Chapter 2.2.4). Walker (1975) stated that 

conglomerates associated with turbidites could be deposited by turbulent 

flows, or as mass movements (debris flows). Grading within the 

conglomerate implies deposition by turbulent flow, rather than debris 
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flows, with the deposition of clasts occurring because of decreased 

energy, rather than a "freezing" of mass moving sediment. 

Alternatively, olistostromes (sedimentary chaotic deposits, 

sedimentary "melange") are formed by debris flows or slumps, with mass 

movements of sediments down slope. In the study area, olistostromes are 

internally structureless and consist of mainly rounded clasts in an 

unsheared matrix (Chapter 2.2.5). They are quite commonly found in other 

areas intercalated with turbidite deposits eg. Northern Appennines 

(Mutti & Ricci Lucchi 1972). 

All rocks of the sedimentary association can be interpreted as 

having been deposited in a deep water marine environment, as the result 

of turbulent flows and debris flows. 

2.1.3 Lithofacies 

In the study of turbidites and other deep water marine deposits, 

facies analysis based on lithological and sedimentological observations, 

has been used to determine the nature of the depositional environment 

(eg. Walker 1979). 

A simplified facies classification, after Mutti and Ricci Lucchi 

(1972), is used in this study area. Three turbidite and two intercalated 

non-turbidite lithofacies are recognized. 

Lithofacies 1. consists of polymict conglomerate (clast-supported) 

and pebbly sandstone which corresponds to facies A of Mutti and Ricci 

Lucchi (1972). The conglomerate falls into the inverse- to 

normally-graded facies of Walker (1975). The Bouma sequence is not 

applicable to the description of these beds. Deposition has occured by 

the process of turbulent flows. 

Lithofacies 1. (fig.2-2a) consists of medium grained sandstone with 

thin interbeds of argillite. Sandstone beds range from 30cm to metres 

thick, and the sandstone to argillite ratio is high, ranging from 4:1 to 
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Figure 2-2a: Lithofacies 2; massive sandstone 

with thin interbeds of argillite. Note the 

crushed appearance of the sandstone due to the 

outcrops proximity to the Wairarapa Fault. 

Waiohine River S26D/ 1150 1494, 

geological hammer 31 em long. 

Figure 2-2b: Lithofacies 3; interbedded sandstone 

and argillite with minor calcareous beds (C) and 

massive sandstone beds (S). Note that a number of 

the sandstone beds wedge out. 

Waiohine River S26D/ 1140 1591, width of 

photograph 15 metres. 





20:1; commonly 8:1. Massive beds are jointed and may be an amalgamation 

of a number of sandstone beds. Beds are poorly sorted with occasional 

laminae developed in the fine sandstone-argillite portions. Ripped-up and 

redeposited argillite chips are common. This is equivalent to facies B of 

Mutti and Ricchi Lucchi (1972). These flows, being deposited by turbidity 

flows, can be applied to the Bouma model, where sequences Tade and less 

commonly Tabde and Tabe occur. 

Lithofacies 3, (fig.2-2b) consists predominantly of interbedded 

medium to fine grained sandstone and argillite. The sandstone beds are 

generally less than 30cm thick, whilst the argillite beds, on average, 

are less than 20cm thick. However, both types can be up to 1 metre thick. 

Lithofacies 3 can be subdivided into two types based on sandstone: 

argillite ratios. Lithofacies 3(i) has sandstone to argillite ratios 

greater than 1:1, but less than 4:1, while lithofacies 3(ii) has ratios 

less than 1:1, (corresponding with facies C and D respectively, of Mutti 

and Ricci Lucchi (1972)). Both lithofacies can show grading in the 

sandstone and laminae with minor ripple cross laminations in the upper 

sandstone interval. Bedding surfaces are commonly parallel. The Bouma 

sequence is applicable to these beds with sequences of Tabcde, Tadbe and 

Tade occurring, indicating that they were deposited by turbidity flows. 

Rare calcareous beds (10-15cm thick), conformable with surrounding very 

fine sandstone and argillite, occur. Rattenbury (1983) noted calcareous 

units within thin-bedded alternating sandstone and argillite sequences 

from the Otaki Forks region. Mutti and Ricci Lucchi (1972) found in some 

beds of their facies D (my facies 3ii), that the pelitic interval could 

be represented by micritic limestone. These calcareous beds of the 

Tararua Range could indicate such a fine pelitic layer within the 

turbidites. 

14 



Lithofacies ~. (fig.2-3a) consists of olistostromal units, (Flores 

1955). Clasts within the olistostromes are highly variable in 

composition, shape, size and origin. The matrix (usually very fine 

sandstone or argillite) is generally massive but may show shearing 

(equivalent to facies F of Mutti and Ricci Lucchi (1972)), being 

deposited by mass debris flows. The Bouma model is not applicable. 

Lithofacies 2, (fig.2-3b) consists dominantly of argillite with 

minor, interbedded, fine-grained sandstone. Argillite is often sheared 

and massive. Bedding is visible between fine sandstone and argillite 

layers. Within argillite, occasional pebble-size clasts of various 

lithologies can be found, as well as finely disseminated pyrite 

(equivalent to facies G of Mutti and Ricci Lucchi (1972)). These beds 

represent deposition of hemipelagic silt and mud. 

2.1.4 Environment of deposition 

Based on the study of modern and ancient marine environments, 

early workers were able to show, systematic changes in turbidite-beds 

characteristics (ie, sandstone:siltstone ratio, bed thickness, grain 

size), as a fuction of the distance from the source of the depositional 

site (either proximal or distal; Walker 1967). 

Working in the Appennines, Mutti and Ricci Lucchi (1972) 

distinguished facies associations common to particular marine 

environments. Environments indicated by the facies associations of Mutti 

and Ricci Lucchi are: 

l:Slope and scarp associations, 

2:Deep sea fan or proximal association, 

3:Deep sea plain or distal basin association. 

Table 2-1 shows the facies associations suggested for these 

environments. Figure 2-4 illustrates the position of these marine 

environments. 
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Figure 2-3a: Lithofacies 4; olistostromal unit 

showing sandstone concretions (C) which weather to 

a light grey colour, surrounded by dark argillite. 

Tauherenikau River S26C/ 1788 1290, 

geological hammer head 17 em long. 

0 

Figure 2-3b: Lithofacies 5; argillite (A) with minor 

interbedded sandstone, which passes into massive 

thick bedded sandstone with minor thin interbeds 

of argillite (Lithofacies 2). 

Waiohine River S26D/ 1161 1875, width of 

photograph 15 metres. 





Facies types 
This studies Environments and 

(after Hutti & 
General characteristics 

Ricci Lucchi 1972) lithofacies subenvironments 

G (F) 5 (4) Mudstone and slump textures Slope 

A, F 1, 4, 5 Major channel fill complexes, 
Inner 

(B, E, G) (2) conglomerate 

B, c. A, E 2, 3i, 1 Predominance of thick channelized 

(D, C) (3ii) sandstone bodies; inter-channel Fan Middle 

deposits 

c. D 3i, 3ii Proximal to distal turbidite beds 
Outer 

(B) (2) with little channelization 

G, D 4, 3ii Hemiplegic mudstone with interbedded 
Basin Plain 

(C) (3i) thin sandstone beds 

Table 2-1: Facies associations and relative environments of sedimentation 

(based on Ingersoll 1978, after Mutti & Ricci Lucchi 1972). 

SUBMARINE FAN MODEL 

Figure 2-4: Submarine fan model 

LEGEND 

ooe,o Slope Debris 

~ Trench Flow 
Direction 

- Current Direction 

r- Overbank Current 

IF inner fan 

MF Mid Fan 

OF Outer Fan 
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Throughout the study area, individual lithofacies occur in regions 

up to several tens of metres thick . On the bases of lithofacies 

associations, the study area can be divided into two broad "belts" (Fig. 

2-5) . These belts follow the general trend of the Tararua Range. 

The lithofacies association occurring in the leastern belt is 

dominated by thin, alternating sandstone and argillite beds, with minor 

thick-bedded sandstone and massive argillite (lithofacies 3, minor 2,5). 

The lithofacies association exposed in the western belt is 

dominated by massive, thick-bedded sandstone, with minor conglomerate, 

olistostrome, thin-bedded sandstone and argillite and minor massive 

argillite (lithofacies 2,1,4,3 , minor 5). 

Using criteria from Mutti and Ricci Lucchi (1972), both these 

lithofacies associations imply a submarine mid-fan depositional site for 

the sediments. The occurrence of olistostromal beds may represent changes 

to inner-fan depositional sites, or increased energy of the deposits, 

allowing gravity slide deposits to reach mid-fan sites. Submarine fan 

depositional sites have been suggested for several areas elsewhere in the 

Torlesse (Carteret al • 1978; Howell 1980a; Hicks 1981; MacKinnon --
1983). 

2. 2 PETROGRAPHY AND GEOCHFMISTRY 

The rocks of the clastic sedimentary association have been 

examined petrographically and some greywackes and argillites have been 

analysed for major and trace elements geochemistry (Analytical methods 

are given in Appendix II). 

2.2.1 Greywacke 

The greywackes are fine- to medium-grained, and well indurated, 

with fresh material being light to dark grey, and weathered surfaces a 

light yellow-brown colour. 
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Figure 2-5: Lithofacies associations in the study area. The study area 

can be divided into two broad "belts" which follow the regional trend of 

the Tararua Range. 

The western belt (W) is predominantly massive sandstone with minor 

conglomerate (C), olistostrome (0), thin interbedded sandstone and 

argillite and massive argillite. 

The eastern belt (E) is predominantly thin interbedded sandstone and 

argillite, with minor massive sandstone and massive argillite. 
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Thin section examination reveals a poorly sorted fabric of angular 

detrital grains, predominantly quartz and feldspar (both plagioclase and 

K-feldspar) along with minor lithic fragments, epidote, biotite, 

muscovite, zircon and sphene. Representative modal analyses from 15 sands 

are listed in Table 2-2, with the average grain size for these sands 

being 0.16mm (modal technique and grain size determination are outlined 

in Appendix III & IV respectively). These grains ranged in size from 

1.3mm to >0.01mm. As there is a graduation in grain size from detrital 

grains to clay-sized particles, an arbitrary figure of 0.02mm was taken 

as the maximum size for matrix components (after Reed 1957a). 

Quartz 

Detrital quartz occupies 19.2% to 41% of total rock and occurs as 

angular to sub-rounded grains . The larger grains, (>0.3mm) are more 

rounded in comparison with the smaller grains which are generally angular 

to sub-angular. Grains are predominately monocrystalline and strained 

with moderate to strongly undulose extinction. Polycrystalline quartz 

aggregates are common but only in minor amounts. Graphic intergrowths 

with feldspar are frequent (17010, 17014, 17020*). Inclusions within 

quartz are not common. These are in order of decreasing abundance, fine 

trains of opaque inclusions, zircon (17066, 17011) and acicular laths of 

rutile (17071, 17021). 

Calcite occurs as overgrowths at grain boundaries, (17018) with 

silica being replaced with carbonate. Occasional grain boundaries are 

sutured, showing evidence of pressure solution (17018). 

* Numbers refer to samples housed in the petrology collection, Geology 

Department, Victoria University of Wellington. All samples, with grid 

references and short descriptions are listed in Appendix V. 
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'i'A.iLE 2 - 2 : Lotial anal yses of fifteen fi ne o ·uir:!:: S<"nus Lones 

Sample number 
G ruin s.i ze \phi) 

t1onoerysta llin« Qua r tz 
Polycrys talline Quartz 
Che n ; 
Plag ioclase 
Al kul.i Fe ldspnr 
Fe - 1-lg l·lineruls 
Lith ic Jo'rugme nt:..; 
Other 
~:a t r-i x 

Lith ic Fragments: 
Vo lca nic 
Sedimentary 
Metavolcanic 
f1e tasedimen ta ry 

Sample number 
Gr:1in size (pili) 

Monee rys t '1lline Qur.r t z 
Polycrystall ine Qua rtz 
Ch e r t 
Plag ioclase 
Al kHli Feldspar 
Fe-Ng Hi nerals 
Lithic Fra gmen ts 
Other 
~ia trix 

Lithi c Fra p,mcnts: 
Vo lcan ic 
Sedimentary 
Netavolcanic 
~1etasedimen tary 

Sample number 
Grain size lph i) 

Honocrystalline Quartz 
Polycrystalline Qua rtz 
Chert 
Plagiocla se 
Alk;; li Fe ldsp;; r 
Fe-i·ig Hine r a l s 
Lithic Fragments 
Other 
rlat r.i X 

Lithic Fragments: 
Volt.: l'l nic 
Sedimentary 
He to.volc&ni c 
Netasedimenta ry 

17012 
2 .1 

19 . 6 
1. 6 
0 . 4 

31. 2 
3 · '· 
1 . tl 

2G . 2 
5 .8 

1u . \) 

1701 3 
2. 9 

1 () . !j 
3 . 0 
o .u 

30 . 2 
5 . 6 
0.8 

19 .0 
7.2 

1G. 6 

17014 
2 . j 

2 ) . 6 
5.4 
o.G 

32 . 6 
4 . 6 
0 . 6 

20 . 0 
4 . 2 
!:l . 4 

17015 
2 .8 

16 .8 
6 .8 
o . G 

36 .0 
5 .8 
o . 6 

14 . 6 
5 .2 

1) . 6 

1701 6 
2 .1\ 

1<) .5 
1.4 
2.0 

34 .1 
8 . 0 
o.o 

16.8 
6.6 

11 . G 
-------------------------------------------------
66 . 0 45 . 5 51 . o 44 .0 29.6 

8 . 0 31. 0 w .o 18 .0 31.5 
12 . ) 5 .0 6 .0 2 .0 12. 3 
1) . 5 1 tl. 5 25.0 36 .0 26.6 

170 17 1'101 8 17019 17020 17021 
3 . 1 2 . ) 2 . 8 1. 9 2 .7 

20 . 4 w . 6 2') . 2 2) . 6 30 . 2 
2 . 4 2 .8 ) . 2 5 .6 10.8 
O. !l o .u O. G 0 . 6 1. 1\ 

213 . 0 35 . 8 35 . 2 34 . 2 29.6 
5 . -1 9 .0 ) .8 5. 8 2.8 
o.o o .G 1 . 6 0 . 6 o.o 

11 . B 1) . 4 14. 2 10.8 10. 4 
4.8 6 .8 6 .6 5.8 3.6 

2G . I\ 12 .2 g. G 1) .C 11 .2 
-------------------------------------------------
44.4 5'7. 0 ')) . 5 4'i . ) 44.0 
18 . 6 e.c 12.0 14.4 20.0 

C).O 22 . 0 10 .5 12.3 11 .o 
2!1 .0 13.0 24 .0 26.0 25.0 

17022 1'1023 17024 17010 17011 
2. 4 3.1 2 . 8 3 .1 3.2 

28.0 20.2 17 .o 20 .8 20.0 
5.4 2.2 4.4 3 ·4 4.4 
o.G 0. 6 0.6 0. 6 1.4 

32 .4 31.2 32 .4 35.6 26.0 
5. 6 5·2 4. 6 7.0 4. 1j 
0. 2 0.2 1 .2 0.4 0.2 

1) .0 7. 6 18 .2 11 . 6 1) . 6 
G.U 7.2 7.4 6. 4 6.4 
8 .0 2').6 14.2 14. 2 2) .4 

-------------------------------------------------
52. 0 66 · 3 37 . 0 48 . 6 56.2 
16 . 5 8.3 24.5 2) .4 19. 7 
7.5 8.8 9·5 3 . ') 0. ) 

24.0 16 . 6 29 .0 24.5 23.8 
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Plagioclase 

Plagioclase grains comprises 26% to 36% of total rock . 

Compositions of plagioclase using the Michel-Levy method ranged from An0 

- An30 , the majority being andesine . Electron microprobe analysis (EPMA; 

analytical method is given in Appendix VI) of four plagioclase grains 

have albite compositions ranging from An0.4 Ab99.2 Or0 .4 to An1.9 Ab9740r0 ,7 

The original plagioclase compositions, as implied from the Michel-Levy 

method, have been albitized. The grains are elongate, lath like, angular 

to sub-rounded . Twinning is common, mainly albite and less commonly 

Carlsbad/albite and Carlsbad . Several grains display perthitic 

intergrowths (17019, 17024). Kinked albite twins are common (17063). 

Only rare apatite inclusions (17011) are found, a feature which 

may be due to the masking affects of sericitic alteration. Sericite 

alteration varies from absent to total replacement and occurs 

preferentially along cleavage traces. 

Alkali feldspar 

The alkali feldspar grains (2.8% to 9.0% of total rock), are 

generally sub-angular to sub-rounded. Grains are of orthoclase and 

microcline, the latter shows characteristic cross hatched twinning 

(17011, 17107). Orthoclase is often covered with murky incipient 

alteration to sericite and carbonate containing inclusions of opaque 

oxides. 

Lithic fragments 

Three types of lithic fragments constituting 10.8% to 26.2% of the 

total rock occur in the greywackes. These are discussed in order of 

decreasing abundance. 

Volcanic lithic fragments 

Both acidic and basaltic volcanic fragments were noted. Grains are 

frequently sub-rounded, although they do vary from sub-angular to 
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rounded. The acid volcanic fragments display microporphyritic textures of 

euhedral sodic plagioclase grains set in a fine grained groundmass 

(17068). 

The basaltic volcanic fragments generally show variolitic textures 

with plagioclase laths (euhedral,up to 0.07mm long in 17018) set in a 

dark cryptocrystalline groundmass . Devitrified volcanic fragments are 

also common (17076). 

Metamorphic lithic fragments 

The most common metamorphic fragments are schists and phyllites. 

These are generally angular grains, elongated parallel to their internal 

schistosity (17068). This schistosity is usually defined by the alignment 

of biotite and white mica,(17011, 17088) and, more rarely oxide minerals 

(17039). Deformation prior to incorporation in the greywacke is evident 

from kinked schistose layers (17071), although these are rare. 

Other metamorphic fragments are, metaquartzites occurring as 

equant, sub-angular grains, some with distinct fabric orientation (17087) 

and metavolcanics. 

Sedimentary lithic fragments 

Sedimentary lithic fragments range from fine grained siltstone to 

medium grained sandstone, (based on Folk's 1974 classification) as well 

as chert fragments. Fine-grained siltstone grains are angular, often 

showing soft-sediment deformation, being elongated and moulded around 

other grains (17016, 17075, 17087). These are probably intraformational 

in origin. The siltstones are dark, with only rare individual grains of 

quartz and feldspar(0.06mm) being recognized. 

Sandstone lithic fragments vary from sub-angular to rounded, with 

the medium-grained sandstone fragments tending to be more rounded 

relative to the fine-grained sandstone fragments. Individual fragments 

are consistent in their detrital components having quartz, feldspar and 

23 



lithic fragments i n various amounts. 

Chert frag ments are generally sub-roun~ed to rounded, and form a 

small proportion of sedimentary lithics (17014, 17016). No radiolarian 

skeletons were observed . 

Accessory minerals 

Detrital epidote is a common accessory mineral. The grains are 

round, equant (0.1mm large) and range from colourless to pale yellow in 

colour . Electron microprobe analyses indicate compositional variations 

within grains of Pistacite values from Ps21.5 to Ps24.2. The grains are 

often fractured, resulting in aggregates of several grains (17108). 

Strontium occurs replacing Ca along fractures (determined by electron 

microprobe analyses) . 

Other common accessory minerals are, in order of decreasing 

abundance, biotite (17019, 17075), muscovite (17076, 17077), zircon 

(17015, 17019, 17069), sphene (17010, 17019), hornblende (17088 , 17090), 

apatite (17069), zeolite (17014) and iron oxide minerals (17014). 

2.2.2 Argillite 

In outcrop argillite is dark grey to blue black in colour, well 

indurated and can be massive or laminated. The argillites range in grain 

size from siltstone to claystone (Udden-Wentworth size classes, in 

Folk,1974). 

The siltstone, a fine grained equivalent of the greywacke, has an 

average grain size of 0.04mm. They are poorly sorted, with detrital 

quartz, feldspar, . biotite and less commonly epidote grains, scattered in 

a fine claysize matrix (17064, 17065, 17073, 17094). The detrital grains 

are angular and equant (except for biotite laths). Quartz occurs as 

monocrystalline, often strained grains (17070,17073), and feldspars (some 

with albite twinning) are often altered, and partly obscured by matrix. 

In the matrix, micas are common and in laminated argillites are 
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orientated parallel to bedding. 

The clay size argillite , has occasional detrital grains of quartz 

embedded throughout a dark matrix (17067). 

Stylolites and opaque oxides are common throughout, indicating 

deformation through pressure solution mechanisms. 

2.2.3 Calcareous siltstone 

Calcareous siltstone crop out as thin beds (10cm to 13cm thick). 

These beds consist of ferroan-dolomite rich siltstone with minor grains 

of quartz and feldspar (carbonate determination methods are given in 

Appendix VII). Alternating quartz-rich and quartz-poor layers can be seen 

(17038). Quartz grains (less than 0.1mm) are monocrystalline, subrounded 

and with the exception of fine opaque minerals (17038), are inclusion 

free (17093). Feldspar laths are seen (17085) as are pyrite grains 

(17099). 

2.2.4 Polymict conglomerate 

Exposures occur in the Tauherenikau river, (site 1: S26C/ 0547 

1280, site 2: S26C/ 0512 1274) and on the saddle between Mt. Frith and 

Mt. Finis (site 3: S26C/ 0420 1130). At site 1 beds range in thickness 

from 20cm to 60 em and at site 2 from 50cm to several metres. The 

exposure at site 3 is poor, cropping out over 20 metres. 

The clasts are pebble to cobble size, rounded to subrounded, 

poorly sorted and set in a medium-grained sand matrix. Post-depositional 

fracturing of some clasts has occured. The clasts are, in order of 

decreasing abundance, sedimentary, volcanic and metamorphic. Grading is 

distinct at site 2, with the conglomerate beds grading into sandstone 

then argillite. No imbrication was observed. 

A brief description of clasts are: 

Sedimentary clasts vary from siltstone to coarse-grained 

sandstone. They display a similar mineralogy to the normal greywacke and 
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argillite, being poorly sorted, predominantly quartz, feldspar , lithics 

fragments, with minor epidote, biotite and mica grains . Rounded chert 

clasts are generally hematite-stained and cryptocrystalline . 

Volcanic clasts are predominantly felsic with subordinate amounts 

being mafic . This may be due to the mafic volcanic fragments breaking up 

more readily and being incorporated into the matrix . The clasts show 

trachyitic, ignimbritic and variolitic textures, and also have 

development of both prehnite and pumpellyite minerals (17072). Prior to 

incorporation within the conglomerate some volcanic clasts developed 

quartz veining. 

Metamorphic clasts are predominantly phyllite with foliation 

defined by alignment of biotite and mica minerals . The clasts are 

elongated parallel to foliation. Some metaquartzites with recrystallized 

quartz showing an interlocked mosaic texture occur. 
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The matrix (25% of the total rock) has a similar composition to 

the greywacke, consists of medium sand size grains of detrital quartz, 

feldspar and lithic fragments with minor epidote, biotite, apatite and 

mica, set in a fine grained dark silt. 

2.2.5 Olistostrome 

Olistostromes (sedimentary melanges), are highly mixed rock 

bodies, which are interpreted as forming as results of sub-marine mass 

gravity flows (Rupke 1978). They feature rounded clasts set in a 

dominantly unsheared matrix, in comparison to tectonic melanges , which 

have pervasively deformed matrix and angular clasts surrounded by 

fracture surfaces (Hsu 1974) . Within the study area these exposures 

consist of rounded to sub-angular clasts of a variety of rock types set 

in an unsheared matrix . It is hard to imagine any tectonic process which 

would result in the mixing of rock types, without being reflected in the 

matrix. Also the mixture and shape of clasts appear to be the result of a 



mass debris flow and therefore the exposures are termed olistostromes. 

Olistostromes are exposed in the Tauherenikau River (site 1: S26C/ 

0787 1295; site 2: centered at S26C/ 0661 1359) and along State Highway 2 

(site 3: S27A/ 970 0781). At site 1, the olistostrome crops out over 20 

metres, within a sequence of thin bedded alternating sandstone and 

argillite. The olistostrome at site 2 is exposed over 80 metres of river 

bed. At site 3, the olistostrome crops out over 20 metres surrounded by 

massive sandstone and has been more intensely sheared than the other 

olistostromes. Clasts range in size from a few millimetres to several 

metres, are rounded to angular, poorly sorted and set in a fine grained 

sand to argillite matrix. Pre-depositional fracturing of some clasts has 

occurred. 

The olistostromes are different in that two contains clasts of 

both sedimentary and volcanogenic association (sandstone, argillite, 

basalt, limestone and chert; site 1 & site 3), and the other contains 

only clasts of sedimentary association (sandstone, argillite and 

calcareous siltstone; site 2). Clasts of volcanogenic association are 

discussed in Chapter 3. Clasts of sedimentary association are similar to 

"normal" greywacke and argillite; brief descriptions are: 

Sandstone clasts occur as round concretions or are angular to 

rounded. Concretions weather to a light grey colour (Fig. 2-3a), are up 

to 13cm in diameter, medium grained and poorly sorted. They contain a 

large amount of carbonate cement, with a detrital mineralogy of quartz, 

feldspar, lithic rock fragments, with minor epidote and biotite grains 

(17083). Sandstone fragments are medium to fine grained, poorly sorted 

and have a detrital mineralogy similar to that of concretions, with 

grains set in a fine silt matrix. 

Argillite clasts are dark grey in colour, sub-angular to 

sub-rounded, and are fine grained equivalent of the sandstone clasts. 
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Calcareous siltstone clasts are usuall y angular but are uncommon. 

The matrix (40%-75% of total rock), is dark grey to black in 

colour, and consists of very fine grained sand to silt size detrital 

grains of quartz, feldspar, lithic fragments (sedimentary, volcanic, 

metamorphic), epidote and biotite set in a fine dark silt (17080). 

2.2.6 Geochemistry 

To characterize the greywacke and argillite from the Tararua 

Range, and document geochemical variations between the rock types, nine 

greywacke and four argillite samples were analysed for major and trace 

elements . 

Major elements: 

The greywackes range in Si02content from 64.62-77.03 weight 

percent (all analyses are given as hydrous values), with Al203 content 

between 11.13-16.91 weight percent (Table 2- 3). In contrast, the 

argillites contain less Si02 , between 57.54-63.78 weight percent and 

significantly greater Al203 (16.69-20.28 weight percent). The chemical 

variation between all analysis is dominated by two components, Si02and 

Al203 , which have abundances related to detrital quartz and clay content 

(phyllosilicates) respectively (Pettijohn 1957). The oxides which are 

concentrated in the clay content Al203 , Ti02 , MgO, K20, P2 0
5

and Fe 203 

(total Fe) are all positively correlated in abundance, and all have a 

strong negative correlation with Si02.Correlation coefficients are listed 

in Table 2-4. Chemical variation diagrams (Fig. 2-6) illustrate the 

affect. This variation can be explained as a function of grain size, 

where phyllosilicates are more abundant in the finer grained sediment. 

Although the specific grain size of the samples, for geochemical analysis 

in this study were not determined, variations in relative grain size from 

sand to argillite can be seen. These trends are similar to those observed 

by Rowe (1980) based on grain size. 
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TABLE 2 - )a : Anal yses of gre yw acke s a nd areillites from the Tera rua Range 

Analysis ( 1 ) (2) ()) (4) (5) (6) (7) 

Sample No. 1'/027 170)1 170jb 1'(029 17026 1'/0)4 170)7 

!·:ajar Oxides ( wt. ~) 

Si02 57.54 59.41 62 . '/1 63.'/b 64.62 6'{. ?b 68.74 
Ti02 0.82 0.80 0.72 0.67 0.64 0.47 0.51 
Al203 20.2tl 18 .78 17 .1i:l 16.69 16.91 1) .81 15. 22 
Fe203T 5.64 5. 71 ?.45 4. 93 4.48 3.44 3.85 
HnO 0.0';) 0.09 0.07 0.0'1 O.Oo 0.10 O.OL 
MgO 2.18 2.03 1.92 1 .67 1 . 62 1 .29 1.31 
CaO 1.5) 1.42 1. 3!.l 2.02 1.28 2 . uG 1.02 
Na20 3.30 2.85 3 .03 2.64 ) .73 3.95 3.85 
K20 4.54 4.10 ).19 ).4) ) .)4 2 . 44 2.u:;; 
P205 0.19 0.18 0.16 0.15 0.15 0.11 0.11 
Loss 4.04 4.38 3.Tj 3.7G 3.20 3.04 2. 3'1 

TO'i'AL 100.15 99.75 99.54 99 .tll 100. (:)3 9'.:1.0') 99.b7 

Trace Elements (ppm) 

Ba 607 707 44~ 44) 541 &4 3 644 
Ce 72 66 65 54 60 45 49 
Cr 57 60 52 56 4) 41 34 
Cu 20 22 H3 19 1j 10 10 
Ga 2!:! 25 22 21 22 1':> H3 
La 41 32 35 2'( )1 27 22 
Nb 11 12 10 11 9 8 7 

. IIi 14 17 20 17 8 11 10 
Pb 2i:l 29 27 2) 23 17 22 
Rb 194 176 138 148 138 83 113 
Sc 15 14 1) 12 1U 9 10 
Sr 233 224 172 21) 255 287 )09 
Th 17 16 1? 1") 15 10 11 
u 4 4 3 3 3 2 2 
v 125 120 111 10? b') 71 74 
y 34 34 2':) 2') 2'3 20 23 
Zn 98 101 92 92 77 57 61 
Zr 2b1. 24'1 187 210 312 191 241 
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TABLE 2 - ) b: Analys e s of greywucke s 1md argillites from the 'l'ararua Range 

Ant~ lysis (8) ( 9) ( 10) ( 11 ) ( 12) ( 13) ( 14) 

Sample No. 170)5 1702u 170)2 1'/0)0 17025 1'70 14 1'105 ) 

Mujor Oxides (wt . ~) 

Si02 69 . 69 70.1 5 70 . 9'1 72.04 7) .1 0 T5 . ?5 77 .0) 
Ti02 0.51 0.51 0.46 0.4) 0.44 0 . 3U 0. 38 
Al20) 14.61 1).56 1') . 66 1) .05 12.87 1 2 . ~1 11 .1) 

Fe203T ) . 66 3.90 ).29 3.)2 3 .1 8 2.6b 2 . 62 
!<I nO 0.05 O.Ol> O.Otl 0.06 0.06 0.04 0 . 0 ':) 
MgO 1.28 1. )6 1.17 1.01 1.04 0.91 O. cl6 
CaC 1. 04 1.t:1 1.02 0.':17 0.~~ O.b? 1.11 
Na20 3.52 3.82 4.29 3.56 ) .87 3 .7':J ) .4) 
K20 2 .71 2. 54 2.'j'J 2 . )b 2 . 21 2. ')U 1. '{2 
P205 0.13 0.11 0.10 0.10 0 .10 0 . 07 O.Otl 
Loss 2.)') 2.2':) 2.07 1 . 96 1. 8'j 2 .1 1 1 .';'1 

TO'l'AL 99.55 99 .':J1 99 . '/0 99 . bll ':J9 . 71 9~ . '{'{ ':J9 .<;id 

Trace Elements (ppm) 

Ba 526 59) 5':J& 549 4':i) '700 506 
Ce 47 52 44 4) 45 39 47 
Cr 34 51 )4 2~ 25 22 21 
Cu 9 8 10 8 ':i b 4 
Ga 1U 14 1'j 15 1 j 1) 11 
Lt~ 2) 25 24 Hl 1!j 1& 2? 
Nb 8 6 6 'I 5 5 'j 

Ni 'I 10 ':i 7 6 j 2 
Pb 19 1') w 20 1'; 1'.1 14 
Rb 105 89 99 eG 84 85 62 
Sc 8 9 8 7 7 6 6 
Sr 244 235 248 271 244 265 266 
Th 1) 11 12 10 9 8 9 
u 4 3 3 3 2 2 ) 
v 70 7? 64 56 56 51 42 
y 22 22 19 21 20 1'1 19 
Zn ' 63 56 52 55 50 39 38 
Zr 242 255 221 220 261 150 j j ) 

" 



SI02 TI02 ll203 """ """ ClO NA20 120 P205 f!2031' Bl CE co cu Cl Ll NB II PB RB sc SR TH ,. ZR 

SI02 1.00000 
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N8 -0. 92 8)1 0 .9372 1 0.92227 0.61579 0 . 92299 0 .16HO -0 . 71572 0.89289 0 . 91539 0.9)653 -0.03861 0 . 82127 0.87279 0 .9U25 0 . 92517 0.17961 1.00000 

N1 -0 . 8)010 0 . 8 .. 52 0 . 75961 0 .65260 0. 86l8 1 0 . 50816 -0.59919 0 . 72917 0.81297 0 . 89718 -0 . 1)201 0.7)110 0 . 89221 0 .89571 0.751)9 0.69787 0 .8•680 1.00000 

PI -<l. 92126 0 .93200 0 .91059 0 ... 219 0 .91d29 0.18870 -0 . 65"2 0.92859 0 . 88816 0.91253 0 .09317 0 .81915 0.82895 0 . 91610 0.93399 0. 72217 0.90071 0.82331 1.00000 

RB -0 .96611 0 . 96563 0 .986)5 0.52507 0 .91610 0 . 21153 -0.58869 0 . 98967 0 . 9;61 3 0 . 93813 0 .07380 0 .89320 0 . 82111 0 . 90t53 0 . 98239 0.79Tl6 0 .90505 0.75099 0.93716 1.00000 

SC -0.9Tl85 0 . 97615 0 .9601 6 0 . 6568• 0 . 98513 0 . 11216 -0 . 59617 0 . 92978 0 . 91909 0 .97827 0 .03056 0 .923' 3 0 . 91785 0 . 95310 0 . 93699 0.869'6 0.91607 0.89231 0 .9211 9 0.93998 1.00000 

Sl 0 .• 9709 -0 . 61)98 -0 .18714 -0 .1 6787 -0.59767 -0 . 111)2 0 . 619ll -0 .11 910 -0 . 58106 -0.63980 O.l8)08 -0 . 59101 -0.59527 -0.62225 -0 .168 )8 -0.52217 -0 . 51929 -0 .65683 -0 . 53127 -0 .• 9816 -0.50138 1. 00000 

TH -0 .93768 0 .95507 0 .9.659 0.51 266 0 .9.808 0 . 20085 -0 . 51675 0 . 91755 0.96758 0 . 9)221 -0 .025)1 0 . 92192 0.82953 0.88) l 5 0.95876 0 . 86110 0. 88610 0 .1)8 15 0 .876)9 0 . 93558 0 . 90231 -0 . 575" 1.00000 

-0 . 63218 0 .66670 0 . 6)767 0 .)620 3 0 .66•08 0 .0 19.9 -0.)1911 0 . 66026 0 . 69670 0 . 62698 0 . 11685 0 . 70805 0 . 61261 0 . 5)168 0 . 61709 0 . 715l6 0.59)92 0 .)9509 0 . 58788 0 . 65l)5 0.606)1 -0 .)9173 0 . 79• 38 1.00000 

-0.98365 0.99017 0 .97161 0 . 612)2 0.991•2 0 •• 0325 -0 . 62715 0 . 91537 0 .9680) 0 .9911] -0 .00531 0.92152 0 . 9)18 1 0 .968) 1 0 . 95011 0 . 85531 0.9 3891 0.89 160 0 . 9370) 0 .95362 0 .98795 -0.61to3 0.92817 0.62109 1.00000 

-0 . 90716 0.98211 0 . 95520 0 .51107 0 . 95716 0 . 27990 -0.68161 0.9]282 0 . 97101 0 . 96766 -0.01962 0 . 95111 0 .86135 0 .9311 ) 0.958)1 0 . 80t )l 0 .92839 0 .17570 0.91926 0 .957'9 0 . 91279 -0.51757 0 . 93765 0.660)1 0.95609 1.00000 

,. -0 . 95882 0.98275 0.9566) 0 . 51)01 0.96818 0 . )66]2 -0 . 70160 0 . 92179 0 . 97697 0 .98760 -0 . 10518 0 .89767 0.90162 0.97760 0 . 95183 0.81109 0 . 97022 0 .8858 ] 0.93'9' 0 . 916)2 0 . 96091 -0 . 621)9 0.92768 0 .60120 0 .981)9 0.96866 1. 00000 

Zll -0 . 0)020 0 . 10 671 0.01168] -0 . 080 96 0 . 06111)6 -0.1 681] -0.028U 0 , 0]75) 0 . 15859 0 . 01120) - 0 .22382 0 . )0807 -0 , 01092 -0 . 0119711 0.10622 0 .2157 59 -0.01255 -0 . 211955 -0 .101 67 0 .091119 0 . 0))87 0 .1 1017 0.20))11 0.]7758 0 . 001106 0 . 22611] O. O) l 9S 1.00000 

Table 2-4: Correlation matrix for sediments. 
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Figure 2-6: Major oxide variations in the sandstones and argillites from 

the study area. 
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The major oxides, CaO, Na20 and MnO show no correlation with 

either Si02 or Al20
3 

(Fig. 2-6). The scatter of CaO abundances is 

probably due to calcite veining. Na 20 values show an overall increase 

with Si02 , and is probably related to an overall decrease in sodic 

plagioclase with grain size. In greywacke albitized feldspars are thought 

to be the main source of Na (Pettijohn et al . 1972), therefore with 

increased phyllosilicate content the abundance of feldspar and hence Na 

would decrease. MnO abundances decrease with increasing Si02 and may 

reflect weathering as manganese is readily mobilized in surface 

conditions (Roser 1983). 

Trace elements: 

Most trace elements tend to be concentrated in the fine grained 

argillite relative to greywacke. This is thought to be due to the 

increased amount of phyllosilicates in the argillite, where 

phyllosilicate minerals have a high capacity for chemical absorption eg. 

montmorillonite can have considerable atomic substitution where alumina 

can be replaced by Fe,Zn,Cr,Mn and Ni (Mason 1958). Thirteen of the 18 

trace elements analyses show increased concentrations in the argillite, 

while the concentration of trace elements in both argillite and 

greywacke are similar to the average amounts for these rock types listed 

by Taylor (1965). 

With decreasing abundance of Si02 ,(and hence grain size), the 

trace elements Sc,V,Cr,Ni,Cu,Zn,Ga,Rb,Y,Nb,La,Ce,Pb and Th (Fig. 2-7), 

all have significant negative coefficients with Si02 and show systematic 

increases . Uranium shows an ill-defined trend to increase with decreased 

Si02 content. Such elements are commonly present in phyllosilicates 

(Mason 1958, Pettijohn et al. 1972). 
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substitute for Ca 2 + and K+ in plagioclase and K-feldspar, while Ba 2 + can 

substitute for K+ in feldspar, and to a minor extent in micas (Taylor 

1965). The variability of both Sr and Ba is therefore probably related to 

the presence of a minor feldspar component and is not directly related to 

quartz or phyllosilicate content. The lack of inter-element correlation 

for Zr implies that its abundance is dominated by detrital zircon . Rowe 

(1980) found zircon to have a preferred grain size range, with 

concentrations in coarse siltstones. 

From the analyses, the chemistry is largely determined by Si02and 

Al20
3 

content, with the transition from greywacke to argillite being a 

chemical continuum, rather than discrete end-members. Such a chemical 

continuum can be explained by hydraulic sorting of turbidity currents, 

where the coarser detritus would be deposited initially, followed by the 

settling out of finer and more phyllosilicate rich sediment (ie. 

argillite). 

Greywacke and argillite from other areas in the Torlesse show 

similar bulk chemical analyses (Reed 1957a; Rowe 1980; Roser 1983), 

implying that the Torlesse Supergroup is relatively homogeneous in terms 

of chemistry. Minor differences in chemistry may be related to variations 

in mineral compositions and/or to the relative amounts of minerals 

present. 

2.3 PROVENANCE AND TECTONIC SETTING 

The provenance of the greywacke in the study area can be inferred 

from petrographic and optic modal analysis. The main features of the 

provenance is reflected in the greywackes detrital mineralogy. Evidence 

of source terrane is: 

-the presence of strained quartz, alkali feldspar and biotite, 

-the occurrence of exsolution textures, 
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-the presence of metamorphic fragments (phyllite, schist, 

metaquartzite), 

-the incidence of the heavy minerals, epidote, zircon , sphene and 

apatite. Pettijohn (1957) described detrital mineral suites 

characteristic of source rock types. He found that for rocks derived from 

an acid-igneous source the characteristic detrital mineralogy is of 

apatite, biotite, hornblende, sphene, zircon, quartz (igneous variety), 

microcline and magnetite, while rocks derived from a metamorphic source 

area have a detr i tal mineralogy of phyllite and quartzite fragments and 

quartz (metamorphic variety). From the above, the detrital mineralogy of 

major components in the greywacke indicates an acid-igneous to 

metamorphic source terrane. Sedimentary lithic fragments, which have 

similar detrital mineralogy to the greywackes, are most likely to be 

reworked Torlesse sediment. 

Recently workers have concentrated on the use of detrital 

framework modes to distinguish the provenance of sediments (Dickinson 

1970). Dickinson and Suczek (1979) found that the composition of 

sandstones derived from different source terranes tended to lie within 

discrete and separate fields on various ternary diagrams. Using the 

detrital framework modes of ~uartz, feldspar and lithic rock fragments, 

three provenances could be distinguished: !)continental; 2) magmatic arc; 

3) recycled orogen. 

Detrital framework modes of 15 fine grained greywackes from the 

study area are listed in Table 2-2. On QFL and QmFLt diagrams (Dickinson 

and Suczek 1979, modified by Dickinson et al. 1983) Fig.2-8a & b, the --

framework modal data fall within the dissected magmatic arc field. On 

QpLvmLsm and LmLvLs diagrams (after Ingersoll & Suczek 1979) the data 

fall within the broad field of magmatic arc source (Fig. 2-9a & b). 

Framework modes have also been used to imply tectonic setting of 
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Figure 2-Sa: QFL ternary diagram (after Dickinson et al., 1983) 

Q Total quartzose grains, including polycrystalline lithic 
fragments such as chert and quartzite 

F Monocrystalline feldspar grains 
L Unstable polycrystalline lithic fragments of either 

igneous or sedimentary origin, including metamorphic 
varieties 

Figure 2-Sb: QmFLt ternary diagram (after Dickinson~ al., 1983) 

~= 
F 
Lt = 

Quartz grains that are exclusively monocrystalline 
Monocrystalline feldspar gains 
Total polycrystalline grains (including quartzose 
varieties) 
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Figure 2-9b: LmLvLs ternary diagram (after Ingersoll & Suczek , 1979) 

Lm = Metamorphic Lithic fragments 
Lv Vo l canic Lithic f ragments 
Ls = Sedimentary Li th ic fr a gments 

Figure 2-9a: QpLvmLsm ternary diagram (after Ingersoll & Suczek, 1979 ) 

Qp = Polycrystalline Quartz . 
Lvm Volcanic and Metavolcanic Lithic fragments 
Lsm = Sedimentary and Metasediment~ry Lithic fragments 
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sediments. From analysis of modern sands, Valloni and Maynard (1981) 

defined five different tectonic settings, while Dickinson and Valloni 

(1980) determined detrital modes for three major tectonic settings (Table 

2-5). Data from this study compare best with the leading edge mode of 

Valloni and Maynard (1981) and the active continental margin mode of 

Dickinson and Valloni (1980). 

Detrital framework modes for other greywackes in the southern 

North Island (Rowe 1980; Orr in prep.), are shown in Fig.2-10a. Point 

counts of four thin sections of Rowe (1980) were repeated by me. The 

re~ounted sections, although lower in modal lithic fragments, still fall 

within the same field on a QFL diagram. The fields for QFL of Rowe 

(1980), Orr (in prep.) and myself all overlap (Fig.2-10a). The average 

grain size from thin sections for which modes were determined of Rowe 

(0.15mm), Orr (0.17mm) and myself (0.16mm) are similar, therefore, the 

difference is thought to be real, indicating a minor variation in the 

detritus derived from the source area. 

On QFL diagrams, MacKinnon (1983) was able to define an 

evolutionary trend within his five Torlesse petrofacies from the South 

Island. Data from this study falls near the Triassic petrofacies field of 

MacKinnon (Fig.2-10b). Comparisons will be further discussed in 

Chapter 7. 

2.3.1 Tectonic setting using geochemical analyses 

A recent trend in the literature is to use geochemical analyses to 

distinguish tectonic settings of sands and this has met with limited 

success (Maynard et al. 1982). Maynard et al. (1982) are able to -- --

distinguish between passive margin and arc-related settings. Using their 

criteria (Table 2-6) the sands from the study area, could not have been 

derived from a passive margin. 

Crook (1974) defined three tectonic settings of greywackes using 



Table 2-5: Modal analysis of sandstone from known tectonic setting . 

Tarz rua Re:.ngc 

Fror.1 Valloni &. t·1ayna rd ( 198 1) 
~1argin 

------
Tra ilin g- edge 
Leading-edge 

- subduction 
-strike -slip . 

Back-arc 
Fore-arc 

From Dickinson & Va lloni (1980) 
Ocea n basin adjacent to 

Rift ed continental margin 
-Cratonic block only 
-Craton plus rift belt 
-Craton ·plus orogenic belt 

Orogenic continental margin 
-Tra nsform arc orogen 
-Continental -r.Jargin arc 

Ocea nic isla nd cha in 
-Oceanic island arc 
-In traplate archipelago 

No. of 
s amples 

15 

29 

8 
7 

2 "( 

9 

155 
15 
30 

35 
40 

85 
25 

Q 

33 

61 

16 
31 
16 
3 

76 
69 
63 

31 
20 

11 
0 

F 

26 

53 
36 
34 
16 

18 
26 
26 

45 
41 

34 
5 

L 

19 

13 

31 
33 
50 
81 

6 
5 

11 

24 
39 

55 
95 

40 



Figure 2-lOa: Comparative QFL diagrams for other areas in the Torlesse 
Supergroup 

Data from 

R = Rowe (1980) 

0 = Orr (in prep .) 

• this study 

Figure 2-lOb: Comparative detrital framework modes for the South Island 
and the Tararua R9nge. 

[] = Data from Mackinnon (1983) where numbers refer to 
sediment of known age. Numbers are the same as the 
fossil zones for the Torlesse Supergroup. 

[] Data from this study. 
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T .:ctonic selling SiOc Alc01 Fe cO, MgO CaO K-0 N;t>O 

Sands 
Trailing-edge 77.9 9.H 2.9 u 4. I 2.11 J.lJ 
Strike-slip o7 .!; 15.6 3.7 :u 3.1\ 2.1.) 3.() 
Continental 69.5 1-l . J 3.9 J.l) 4.4 2.t\ 3.6 

margin arc 
Backarc n!l .R 1-l.-l 4.5 2.4 -l .-l 2.11 3.6 
Forea rc 61.5 15 .2 7.7 J.!l 6.7 1.-l J .H 

2 Muds 
Trailing-edge t\5 .9 13.7 5.3 2.R 8.2 2.o 1.5 
Strike-slip 65.R 1-l.-l 6.R 3.-l -1 .9 211 2.7 
Continental 61\ . 1 Jo.9 6.4 3.2 3.0 2.5 2.-l 

ma rgin arc 
Back arc oR .O 1-1.9 6.5 3. I 2.R ~ . 3 2.5 
Fo rearc 68 .9 12.1 7.2 3.0 4.9 u 2.6 

Table 2-6: Bulk chemistry of modern deep-sea sands and associated muds 

(from Maynard et al. 1982). --

Using the criteria of Maynard et al. (1982), the sands and argillites 

from the study area, having Si02 ranges from 77.03- 57.54 weight 

percent and Al203 ranges from 11.13 - 20.28 weight percent, could not 

have been derived from a trailing-edge (passive margin) tectonic setting. 



Si02 , K
2
0 and Na 20 contents, these being: 

1) Atlantic types- greywacke that has been deposited at passive 

margins or in plate interiors, 

2) Andean type- greywacke that are deposited at subducting plate 

margins (off active continental margins), 

3) Pacific type- greywackes that are deposited in trenches off 

active volcanic island arcs . 

Roser (1983) expanded on the work of Crook (1974) and 

discriminated greywacke types using a K20/Na 20 versus Si02diagrams. On 

such a plot, data from the Tararua Range falls within an -Andean margin 

field (Fig. 2-11), implying deposition of sediment at an magmatically 

active continental margin or strike-slip boundary. 

The Torlesse sandstone and argillite samples analysed by Roser 

(1983) also fall within the Andean margin field. 

Framework modes and geochemical analyses indicate that the 

greywacke from the study area was derived from an active continental 

margin, which was shedding sediment of acid-volcanic and metamorphic 

origin. 
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Figure 2-11: Tectonic setting of sediments using a volatile-free 

alkali/silica discriminant (after Roser 1983). 

e = sandstone 

0 = argillite 

Data falls within the Andean field. 



CHAPTER THREE 

ROCKS OF THE VOLCANOGENIC ASSOCIATION 

3 .1 INTRODUCTION 

Rocks of the volcanogenic association, although volumetrically 

minor (less than 3% of the total rock),are widely distributed. Many 

workers have noted the association of metabasite, red argillite, 

limestone and chert within the Torlesse Supergroup, although they may 

crop out alone in some places (Bradshaw 1972). 

This section describes the petrology of volcanogenic association 

rocks and uses major element, trace element and electron microprobe 

analyses, to examine the possible original environment within which the 

metabasite and other rocks of volcanogenic association formed. 

3.1.1 Metabasite 

Metabasite within the Tararua Range, commonly termed spilite by 

earlier workers (Reed 1957a; Barnes 1979), is extensively altered, either 

being hematite stained to a red to red-brown colour, or chloritized and 

green in colour. They crop out as large slivers (up to 120m by 40m in 

Abbots Creek, S26A/ 9967 0880; Fig. 3-1) having sheared contacts with the 

surrounding greywacke and argillite (Fig. 3-2a), or as blocks (1.6m by 

1.4m; S26D/ 1191 1799) or inclusions within melange. Hematite-red pillows 

up to SOcm in diameter are exposed within slivers in Abbots Creek (S27A/ 

9967 0880; S27A/ 9970 0872) Figure 3-2b. Inter-pillow material is 

basaltic. 

In thin section the mineral assemblage consists of predominantly 

sodic plagioclase and clinopyroxene grains set in a dark groundmass. 

Plagioclase grains are albite (ranges of six analyses from four samples 

by electron microprobe is An0 .2 Ab99.7 Or0 .1 to An2.1 Ab96.4 Or1.5 ) , and are 

often covered with carbonate and incipient sericite alteration. 

Clinopyroxene grains are calcic in composition. Salite and some 
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Figure 3-2a: Large outcrop of green metabasite 

(M) with a faulted and sheared contact with 

the surround~ng rocks of sedimentary 

association (predominantly argillite (A)). 

Abbots Creek S27A/ 0401 0790, width of 

photograph 15 metres. 
0 

A 

Figure 3-2b: Hematite-red metabasite with 

pillows (P). Pillows have a maximum diameter 

of 50 centimetres and are facing right way up. 

Abbots Creek S27A/ 9969 0874, 

geological hammer 31 em long. 





endiopside/augite compositions were determined by electron microprobe 

analyses (see Appendix VIII for relevant analysis), with individual 

grains being relatively homogenous. Two varieties of sphene occur in the 

interstitial regions after iron oxide minerals, the most common being a 

"normal" sphene and the other a Fe-Al rich sphene (determined by electron 

microprobe). Disseminated pyrite mineralization is rare. The groundmass 

is dominantly chlorite with some sericite, red oxide grains and clay. 

Glass occurs in sample 17056. 

The metabasite shows variolitic and sub-ophitic to ophitic 

textures. Variolitic textured metabasites exhibit thin plagioclase laths 

arranged in subradial or "bow-tie" sheaves. Laths are generally less than 

0.7mm in length (17042, 17053, 17057), and show simple twinning. Fine 

grained colourless clinopyroxene(<0.1mm) and green chlorite pseudomorphs 

after euhedral olivine (<0.4mm) occur studded between plagioclase laths 

(17058; 17059 and 17061 respectively). Interstitial Al-sphene and 

magnetite are common. In sample 17056, celadonite is found in patches 

surrounded by pumpellyite and Al-Fe rich sphene with glass. 

Sub-ophitic to ophitic textured metabasite contain large well 

developed tabular plagioclase laths, often not twinned, up to 2.5mm by 

1.25mm in size, being partially or wholly enclosed by pinkish to 

colourless, anhedral to sub-hedral clinopyroxene grains (17045, 17055, 

17060, 17062). Clinopyroxene grains range up to 3.25mm by 2.5mm in size 

(17045), are commonly fractured and in the majority of cases are partly 

altered to chlorite (fibrous blue variety) and pumpellyite (determined by 

electron microprobe analyses). 

Minerals associated with metamorphism will be discussed later. 

3.1.2 Red argillite 

Red to brownish-red argillite crops out within metabasite 

sequences and as clasts within melange. Clasts are sub-angular to 
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rounded, generally only millimetres in diameter but can range up to 6 

metres as at S26D/ 1180 1342 . 

In thin section the rock consists of minor amounts of equant 

~onocrystalline quartz grains (0.02mm; 17100) set in dark red to brown 

clay-size particles. Secondary sericite, chlorite and calcite can be 

distinguished. Sample 17096 contains fine grained polycrysta1line quartz 

aggregates in circular regions up to 0.8mm in diameter, possibly 

recrystallized radiolaria. 

3.1.3 Chert 

Chert occurs as a mappable unit cropping out over more than 50 

metres (S26C/ 0610 1208),as fragments within melange and at S27A/ 9969 

0881 as a 2cm by 2cm clast surrounded by metabasite. Fragments within 

melange range from clasts, millimetres in diameter, to blocks, one being 

8m in length (S26D/ 1129 1705). Most cherts are hematite stained and red 

in colour (17074, 17078,17079, 17095), however white (17086), grey 

(17092) and green (17098) coloured varieties occur. Beds ranging from Smm 

to Scm are seen, defined by fine dark silty partings between layers. Some 

bedded cherts are folded. 

The chert consists of microcrystalline quartz grains (less than 

0.02mm in diameter), which form recrystallized mosaics. Fine 

disseminations of pyrite occur, occasionally in clusters, with individual 

cubes ranging from 0.02mm to 0.3mm in diameter (17074). Recrystallized 

radiolarian skeletons are found in several cherts (17078, 17079, 17098), 

and show a tendency to be abundant in the Fe-rich hematite-stained units. 

Radiolarian skeletons were successfully extracted from sample 17078 

(S26C/ 0610 1208); see Chapter 5. 

3.1.4 Limestone 

Limestone occurs as sub-angular to rounded clasts within melange. 

Clasts range up to 1m in diameter, are grey in colour when fresh and 
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weather to a light grey or white colour, having negative relief relative 

to the surrounding rock type . Calcite veining which developed prior to 

incorporation within the melange is common, often with a number of veins 

cross-cutting each other. Stylolites, indicating deformation through 

pressure solution mechanism, are abundant, while pyrite mineralization 

is often associated with the clasts. 

In thin section, the limestones vary from micrite to fossiliferous 

micritic and sparite (1-10% allochems). Within the latter bryozoa and 

mussel fragments, foraminifera and echinoid plates are visible 

(17081,17082-Harmsen pers . com. 1983). The broken allochem assemblage 

indicates redeposition of the al~ochems into micritic material. One 

micritic clast (17097) displays burrows, less than O.Smm in diameter, 

which are infilled with darker micritic material. This burrow rich 

section grades into a fine grained layered micrite, indicating a change 

in depositional environment, to one of increased energy. 

3.2 METABASITE GEOCHEMISTRY 

To characterize the metabasites which occur in the Tararua Range 

and determine their eruptive environment, 16 metabasites from various 

sites were analysed for major and trace elements. Analyses are listed in 

Table 3-1. 

During alteration and metamorphism of basalts, a large number of 

elements are mobile eg. K,Ca,Mg,Na,Si,Fe,Al,Ba,Sr (Pearce 1975). 

Therefore only elements which are considered immobile, that is, resistant 

to mobilization and alteration are used for discrimination of basalt 

types and their tectonic setting eg. Ti,P,Zr,Y,Nb,La (Pearce & Cann 1973, 

Pearce 1975, Erlank & Kable 1976, Saunders 1979). Chemical variations of 

metabasalts from the Torlesse are described by Roser (1983). 

Division into alkaline and tholeiitic magma types can be made 

so 
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TABLE j -1 a : Analysis of m taba s ites f r om the ~bra rua Ra nge 

Analysis ( 1 ) (2) (3) ( 4) (5) (6) (7) (8) 

Sample No. 1704U 1'(041..> 1704') 1'(()4 7 17054 17055 1704) 17040 

Mujor Oxides ( wt:.O) 

Si02 49. ) 8 44. 22 4) . ')!3 41 .2'J 48 . ) 7 44.34 40 .28 43.52 
Ti02 1.5Y 3 .01 2.<;!9 4.06 2.24 ).22 1. 57 1.66 
Al203 16.64 1'( .02 16.~5 14.55 15.20 14.59 14.12 15.93 
Fe203T 9.36 11 .39 12.11 13.19 7.61 13.07 8.56 0.81 
MnO 0.20 0.2? 0. 2G 0. 3) 0.1 b 0.26 0. 1 'J 0.16 
l·lgO 3.61 6.67 6.95 6.39 4.99 3.53 3.24 2.70 
CaO 6. 66 6.10 6.2? 8. ) 2 8.26 7.28 15.54 12.33 
Na20 5.05 4.22 4.11 3.90 5.27 3.81 4.75 4.49 
1\20 1 .?<J o.·ro o.c.o 0.15 0.11 0.40 0.64 1. 74 
P205 0.77 0.74 0.71 0.76 0.41 0.79 0.33 0.34 
Loss 5.16 5.23 5.26 6.56 7.50 8.2') 10.36 8.20 

TOTAL 100.01 99.5? 9'J. 9"/ 9').50 100.14 Y9.56 99.58 99.88 

Trace Elements (ppm) 

Ba 460 272 275 123 100 123 94 214 
Ce 107 87 93 99 45 66 25 30 
Cr 9ti 102 110 20 147 13 212 305 
Cu 18 44 39 61 18 25 46 51 
Ga 29 2) 21 24 18 26 13 16 
La 5Y 40 46 46 1e 24 8 13 
Nb 8) 60 5U 65 31 42 18 19 
Ni 67 59 57 41 112 14 75 106 
Pb ., 5 1 4 8 3 1 1 
Rb 1Y 15 15 3 2 17 14 46 
Sc 13 26 24 41 2) 28 30 25 
Sr 454 638 698 553 424 416 335 359 
Th 9 7 6 7 3 3 1 1 
u 3 3 2 2 1 1 1 1 
v 78 25? 23u 339 1b'J 252 194 168 
y 37 34 34 43 29 50 25 29 
Zn 110 112 107 141 69 1':)7 78 128 
Zr 537 342 342 409 226 409 145 156 
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TABLE 3-1b: Analysis of metabasites from the Tararua Range 

Analysis (9) (10) ( 11 ) (12) ( 13) (14) ( 15) ( 16) 

Sample No. 17041 17042 17052 17049 17050 17044 17053 17051 

Major Oxides (wt%) 

Si02 39.25 34.11 51 .49 54.38 50.49 51.75 34 . 27 44.00 
Ti02 1.58 1.41 0.97 1.04 0.95 0.85 1.10 1.32 
Al203 15.01 12.63 12.83 10.32 9.97 17.39 15.61 16.37 
Fe203T 8.77 7.16 8.31 9.01 7.69 11.56 11 . 48 14.87 
MnO 0.35 0.14 0.16 0.13 0.13 0.35 0.25 0.34 
MgO 3.04 2.81 1.99 1.88 2.53 3.94 2.27 4.42 
CaO 15.75 20.50 14.89 13.97 17.12 2.68 16.72 10.80 
Na20 3.65 2.96 2.33 1.72 0.55 6.24 2.93 1.56 
K20 1.29 1.88 0.06 0.03 0.01 0.41 0.89 0.04 
P205 0.34 0.34 0.10 0.11 0.10 0.07 0.11 0.15 
Loss 10.68 15.71 6.82 6.03 10.13 4.52 13.93 5.79 

TOTAL 99.71 99.65 99.95 98 . 62 99.67 99.76 99.56 99.66 

Trace Elements (ppm) 

Ba 181 275 46 37 91 193 301 145 
Ce 30 19 12 11 9 6 17 17 
Cr 267 210 152 102 121 345 385 185 
Cu 46 32 65 21 254 87 92 48 
Ga 17 12 21 16 16 18 18 21 
La 11 4 :; 3 2 3 7 6 
Nb 18 15 3 <2 <2 <2 <2 <2 
Ni 80 76 51 48 36 61 153 80 
Pb 1 1 2 1 2 7 3 11 
Rb 32 49 1 1 1 16 33 1 
Sc 32 25 30 30 33 45 40 48 
Sr 340 319 173 128 169 429 270 102 
Th 2 2 2 1 1 1 2 2 
u 1 1 1 1 1 1 1 1 
v 233 160 315 304 257 266 262 378 
y 29 28 23 23 24 30 31 39 
Zn 118 74 89 80 69 127 104 166 
Zr 134 130 66 72 64 37 80 74 



usi ng Y/Nb ratios, wher e basalts wi th rat i os less than 1 are alka l i ne; 

ratios betwee n 1-2 are transitiona l; ratios greater t han 2 are tholeiitic 

(Pearce & Cann 1973). Samples analysed from the Tararua Range are evenly 

split between the 3 types (Fig.3-3a). Confirmation of alkaline or 

tholeiitic character of the samples is given using a discrimination 

function based on the immobile elements Ti,P,Y,Nb and Zr, (Grapes & 

Palmer 1984). All 6 samples classified as tholeiitic on the basis of Y/Nb 

ratios are confirmed, as are 4 of 5 of the metabasites as alkaline 

(Fig.3-3b). The remai ning alkali metabasite and 4 of 5 transiti onal 

samples are notionally tholeiitic. The Df values broadly confirm the 

Y/Nb ratios. 

3.2.1 Tectonic setting 

Basalts may be erupted in variety of tectonic settings such as 

back-arc basins, island arcs, ocean islands, intra-arc rifts and at 

mid-ocean ridges. Basalts from different settings can be delineated using 

immobile elements as discriminants (Pearce & Cann 1973; Pearce 1975). 

Using Ti and V, Shervais (1982) separated island-arc basalts, 

mid-ocean ridge basalts (MORB) and alkaline-ocean island basalts by Ti/V 

ratios of <20, 20-50, >50 respectively, with minor overlap. Tararua 

samples defined by Y/Nb ratios (Fig. 3-3a) fall within two areas on the 

Ti/V plot (Fig.3-4). Transitional and alkaline samples have Ti/V ratios 

from 40 to 105, being reasonably distinct from MORB, and similar to 

alkaline and transitional basalts that form in ocean basins as oceanic 

islands and seamounts. A comparable setting is the Hawaiian Island 

tholeiites and alkaline basalts, which have Ti/V ratios of 42-60 and 

50-110 respectively (Shervais 1982). Tholeiitic samples from my field 

area cluster round a Ti/V ratio of 20, suggesting that they have either 

MORB or island-arc basalts affinities. 

Pearce and Cann (1973) utilized the immobile elements Ti,Zr and Y 
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Figure 3-3a: Determination of magma type using Y/Nb ratio 

(after Pearce & Cann 1973). 

Y/Nb < 1 = alkaline 

Y/Nb 1-2~ transitional (between two vertical lines) 

Y/Nb > 2 = tholeiitic 

Range for Guadalupe Ocean Island - Engel et al. 1965 

Galapagos Ocean Island - Pearce & Cann 1973 

Hawaiian Tholeiites Ocean Island - Pearce & Cann 1973 

Mid-Atlantic Ridge Ocean Floor - Sun et al. 1979 

Isand Arc Tholeiites - Pearce & Cann 1973 

Figure 3-3b: Determination of magma type using a discriminant fuction 

utilizing the abundances of Ti, P, Nb, Y and Zr (after 

Grapes & Palmer 1984). 

The discriminant function is: 

Df = -0.2163Ti0 + 7.2431P 0 + 0.0196Nb- 0.1047Y + 0.0019Zr- 0.8983 

Df positive = alkaline 

Df negative = tholeiitic 

No transitional magma type by definition 

Colours as from Figure 3-3a where: 0 = alkaline 

() = transitional 

{) = tholeiitic 
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Figure 3-4: Ti-V discriminant plot for metabasite (after Shervais 1982). 

Trend lines 10, 20, 50 and 100 are Ti/V ratios. 

Colours as from Figure 3-3a where: 0 = alkaline 

0 = transitional 

0 = tholeiitic 



discriminati on diagrams, t o del ineate f our magmati c fields . These fields 

are: 

1) intra-plate basalts (IPB); 

2) ocean-floor basalts (OFB); 

3) i s land-arc low potassium tholeiites (LKT); 

4) calc-alkaline basalts (CAB); 

were: IPB= alkaline-ocean island basalt; OFB= mi d-ocean ridge basalt; 

LKT= island-arc basalt; CAB= island-arc basalt of Shervais (1982). The 

terminology of Pearce and Cann (1973) and Shervais (1982) is used 

throughout the geochemical discussion of metabasite for other binary axes 

discrimination plots. 

On a Ti-Zr-Y diagram (Fig.3-Sa) the transitional and alkaline 

samples plot mainly within the IPB field, with slight overlap into the 

OFB field by some transitional basalts. The tholeiite samples fa l l within 

the OFB field. Prestvik (1982) noted that basalts from tectonically 

anomalous ridge systems fell within the IPB field as well as the OFB 

field on the Ti-Zr-Y diagram, and concluded that this represented a trend 

from "primitive" to "evolved" basalts, with "primitive" basalts falling 

within field B, to "evolved" basalts fall i ng in fields D a nd C. Two 

samples from the Tararua Range fall outside the fields on Fig.3-Sa and 

could represent a "primitive" and "evolved" basalt, as they plot near the 

extension of the trend line of Prestvik (1982). 

The fields for LKT and CAB overlap with that of OFB on Fig.3-6a, 

but further separation can be made using the binary plots Ti versus Zn 

and Zr versus Zr/Y. After plotting samples categorised as OFB on Fig.3-Sa 

alone on a Ti-Zr diagram (Fig.3-Sb; Pearce & Cann 1973), the transitional 

samples and one tholeiitic sample fall within the OFB field, while the 

eruptive settings of the other tholeiitic samples cannot be 

differentiated because they plot within the field common to al l basalts. 
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Figure 3-Sa: Ti - Zr-Y discriminant plot (after Pearce & Cann 1973). 

A + B 

B 

low-potassium tholeiites (LKT) 

ocean-floor basalts (OFB) 

B + C = calc-alkaline basalts (CAB) 

D = intra-plate basalts (IPB) 

Trend line from "primitive" to "evolved " basalts (Prestvik 1982) 

Figure 3-Sb: Ti-Zr discriminant plot (after Pearce & Cann 1973). 

Only OFB metabasites from Figure 3-Sa have been plotted. 

A + B 

B + C 

low-potassium tholeiites (LKT) 

calc-alkaline basalts (CAB) 

B + D = ocean-floor basalts (OFB) 

Figure 3-Sc: Zr/Y-Zr discriminant plot (after Pearce & Norry 1979). 

A = Intraplate basalts 

B = Mid-ocean ridge basalts 

C = Island arc basalts 

Colours as from Figure 3-3a where: 0 = alkaline 

0 = transitional 

= tholeiitic 



57 

T i/ 100 
A 

Zr Y·3 

- B c 

D 

10,000 
Zr /Y 0 

0 

10 
0 

Ti 
ppm 

5 

A 

0 

100 200 10 100 500 

Zr ppm Zr ppm 

Figure 3-5 



On a Zr/Y vs Zr diagram, (Pearce & Norry 1979), the results are again 

ambiguous with the tholeiitic samples falling within the field common to 

both island-arc and MORB (Fig.3-5c ). An unequivocal setting cannot be 

determined for these 6 tholeiite samples using Figure 3-Sa,b or c. 

Saunders et al. (1979) however, proposed that island-arc 

basalts could be separated from ocean floor basalts by using La-Nb. The 

tholeiitic samples have very low La and Nb values and on a La-Nb diagram 

(Fig.3-6) they plot close to the regions defined by the lower detection 

limit for these elements. All samples from the Tararua Range, taken 

together show a trend similar to that defined for ocean floor basalts by 

Mid-Atlantic ridge segments at 36 . N,63 ' N and 45 ' N, rather than the 

island-arc trend seen in the South Shetland Islands or the West Mariana 

Ridge (Saunders et al . 1979) --

Discrimination between island-arc tholeiites and abyssal 

tholeiites (OFB) can also be made using Ni contents, as island-arc 

tholeiites typically contain 0-30 ppm Ni and abyssal tholeiites 30-200 

ppm Ni (Jakes & Gill 1970). From the La-Nb plot and the high Ni contents 

(36-156ppm), the tholeiitic samples are most likely to be ocean floor 

basalts . 

Many workers have shown that the composition of clinopyroxenes 

vary according to the chemistry of their host lavas (eg . Kushiro 1960; Le 

Bas 1962). The composition of relic calic clinopyroxenes from altered and 

metamorphosed basalts can be used to discriminate different magmatic 

settings. Basalts from four magmatic settings were separated by Nisbet 

and Pearce (1977) using clinopyroxene analyses. The settings recognised 

are: 

1) ocean floor basalts (OFB: MORB of Shervais 1982); 

2) volcanic arc basalts erupted above subduction zones in island 

arcs or at active continental margins (VAB: island-arc basalt 
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of Shervais 1982); 

3) tholeiitic basalts erupted within plates in oceanic islands or 

continental rifts (WPT: MORB & alkaline-ocean island basalt of 

Shervais 1982); 

4) alkalic basalts erupted within plates (WPA: alkaline-ocean 

island basalt of Shervais 1982). 

Clinopyroxene grains from three alkaline samples (17045, 17056, 

17062) were analysed by electron microprobe. On a Ti02-MnO-Na20 

discrimination plot (Nisbet & Pearce 1977) the clinopyroxene analyses 

fall mainly within the field unique to WPA (Fig. 3-7). Two analyses fall 

within the field common to all magma types, but as other clinopyroxenes 

from the same sample fall within the WPA field, these two can also be 

considered to represent WPA. Unfortunately clinopyroxene grains were not 

observed in the tholeiitic metabasite. 

Geochemical and microprobe analyses indicate that the metabasites 

from the study area represent both intra-plate volcanics (eg. seamounts) 

and oceanic crust (ocean floor basalts, MORB). Such magmatic settings are 

in agreement with other workers (Sporli 1978; Roser 1983). 

3.3 ORIGINAL ENVIRONMENT OF FORMATION 

Within metabasite, clasts of chert and red argillite are found (at 

Abbots Creek: S27A/ 9969 0880 and Waiohine River: S26D/ 1105 1935), 

while in other areas, metabasite and red argillite have conformable 

contacts (at S26D/ 1108 1950). The field relationships between rocks of 

the volcanogenic association imply a related environment of deposition. 

Many other workers have inferred an associated depositional environment 

for these rock types (Andrews et al. 1976, Sporli 1978). --

The presence of radiolaria skeletons and the clay-size detritus in 
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thin s ecti ons of the red argillite and chert indicate an hemipelagic 

depositional environment. Coloured claystones occur in a number of marine 

environments s uch as at spreading ridges, at seamounts, forming as a 

result of hydrothermal solutions, or as a result of halmyrolytic 

degradation of oceanic basalt (Jenkyns & Hardy 1976, Jenkyns 1978). Reed 

(1957a) considered the coloured argillite at Red Rocks to be in part of 

tuffaceous origin. Roser (1983) updated the work done by Reed and 

considered that the coloured argillite to represent a mixture of normal 

terrigenous sediment (black argillite) and Al-Ti poor sediment from an 

active spreading ridge. On the basis of geochemical analyses, George 

(1983) proposed that the red argillite at Island Bay, Wellington, 

represented a mixture of oceanic basaltic material and pelagic clays. All 

these workers indicate that coloured argillites are deposited in an 

hemipelagic environment, with the sediment being affected by volcanic 

activity, either directly (ie. by degradation of basalt) or indirectly 

(ie. by input from regions affected by hydrothermal solutions; eg. at 

spreading ridges) . 

Chert is considered by Garrison (1974) to be deposited in two 

ways, either as abyssal radiolarian oozes, unrelated to igneous activity, 

or as by products of submarine volcanism. During submarine volcanism 

cherts can form either by precipitation of silica, with silica being 

supplied from the magma (directly or by leaching of the magma), or by 

silica which is released during subaqueous volcanism enhancing the 

productivity and/or preservation of radiolaria (Garrison 1974). Many 

workers view the cherts within the Torlesse as having formed with close 

affinity to submarine basalts (Reed 1957a, Bradshaw 1972, Sporli & Bell 

1976, Roser 1983). 

The limestones, being micrite to sparite with broken allochems and 

burrow traces, indicate deposition in a marine environment . As these 
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features can be found in both shallow marine and deep marine 

environments, the depositional site cannot be further defined. 

As seen from Chapter 3.2, the metabasites are considered to have 

erupted in oceanic environments, forming mid-ocean ridges (eg. Mid­

Atlantic ridge) and seamounts (eg . Hawaii) . Such settings in modern 

environments (and by analogy ancient environments) often have associated 

coloured argillites, chert and limestone deposits eg. Line Island and the 

East-Pacific Rise (Garrison 1974, Jenkyns 1978). The rocks of the 

volcanogenic association from the Tararua Range are therefore thought to 

have been deposited in an oceanic environment, in part related to 

volcanic seamounts and mid-ocean ridges . This setting is unrelated to the 

depositional site of the rocks of the sedimentary association . 
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CHAPTER FOUR 

METAMORPHISM 

Rocks of the Tararua Range, including those from the field area, 

exhibit a number of metamorphic minerals, these being: quartz, 

plagioclase (albite), chlorite, sphene, celadonite, pumpellyite and 

prehnite. Representative analyses of the metamorphic minerals from 

greywacke and metabasite are in Table 4-1. Relevant microprobe analyses 

are given in Appendix VIII. 

Quartz 

Metamorphic quartz in the study area is found as a vein mineral 

and as minute polycrystalline aggregates within the matrix of greywacke. 

Plagioclase 

All plagioclase grains, from both greywacke and metabasite are 

albite (range from An0 .2 Ab99.2 Or0 .1 to An2.1 Ab96.4 Or1.5 in metabasite; 

An0.4 Ab99.2 Or0 .4 to An1.9 Ab97.5 Or 0 .7 in greywacke). 

Chlorite 

Chlorite is frequently found after detrital biotite and within the 

matrix of greywacke. In metabasite, chlorite is commonly found as an 

anomalous blue birefrigent coloured fibrous variety replacing 

clinopyroxene, as complete pseudomorphs after olivine and in the matrix. 

Vein chlorite is also present. 

Sphene 

Sphene is most abundant in interstitial areas in metabasite, 

after iron oxide minerals. Analyses indicate sphene of two compositions 

one being quite alumina and iron rich, up to 29.9 weight percent Al203 

and 15.1 weight percent Fe203 (total Fe), with another more "normal" 

sphene having weight percentage values of 3.0 Al203 and 5.8 Fe203 . 

These are more iron rich when compared with sphene from zeolite and 

actinolite facies schist, Otago (Kawachi et al. 1983) although the 
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Tabl G 4-1: R8presentati ve s n3lys es of PJe t a rr:or·ph ic r1ine r s ls . 

GREYiiACKE 1'1£1 ABA~ITE 

PUf-JPELLYITE SPhEUE CELADOiH TE PU!'1PELLYLTE PREH!HTE 
11 normal 11 Al - Fe Al-rich Fe-rich 

(17014) ( 17056) ( 17056) (17056) ( 17062) (17056) ( 17056) 

Si 02 37 . 37 31 . b3 4:) . 26 5ti.5d 44.23 39 . 04 111 . 9b 
Al 2 03 25 . 25 3 . 32 5 . 41 7 . 84 27 . 01 19 . 11 18.84 
Ti02 0 . 01 33 .04 6 a··· • ;;0 0.02 1. 20 0 . 01 
Feo + 9 . 92 14.71 0 . 94 11. 84 
Fe 203 

+ 2. o-r 15.06 7.40 
t··lnO 0. 37 0 . 05 0 . 64 0.09 0 . 02 
t1g0 O. G5 0 . 17 6. 93 6.40 1. 04 2 . 71 0 . 01 . 
CaO 23.40 26 . 68 21.49 0 . 21 18. 39 16 .53 25 .76 
Na 20 o . .)b 3. 11 0 . 01 O. G9 
K20 0 . 34 0. 10 6 .40 0 . 03 0 . 73 0 .01 

----- ----- ----- ----·~ ----- ----- -----
Total 96 . 37 98 .05 99 . b1 92 . 19 95 . 41 91.26 S4 . 12 

+ Total iron as FeO or Fe 20 3 • 

Pre hnite occurs a s a v~in mincr3 l wi t hin metabasite. 



"normal" sphene from this study does have similar compositions (Fig. 

4-1a). Possible sphene forming reactions are: 

ilmenite + Ca + Si = sphene + rutile + Fe [1] 

Ti-magnetite + Ca + Si = sphene + rutile + Fe [2] 

(Offler et al. 1981). 

Celadonite 

Celadonite, bright emerald green in colour is found only within 

metabasite in close association with chlorite and Fe-rich pumpellyite in 

amygdules (17056). 

Pumpellyite 

Pumpellyite occurs as clusters of very fine needles in amygdules 

and replacing clinopyroxene grains (in metabasite), within the 

matrix of both metabasite and greywacke and as a vein mineral (17062). 

Analyses indicate a wide compositional variation in terms of Al and Fe 

where, FeO (total Fe) weight percent ranges vary from 0.25% (17062) to 

11.84% (17059) while Al203 ranges from 20.56 weight percent (17059) to 

29.79 weight percent (17062). Pumpellyites from Prehnite-Pumpellyite 

Facies rocks from N.S.W, Australia (Offler et al. 1981) show similar 

compositional variations (Fig. 4-1b). It has been suggested by Coombs 

(1953) and noted by Surdam (1969) that the darker coloured blue-green 

pumpellyites are characteristically iron-rich, while colourless pale 

pumpellyites tend to be iron-poor. Pumpellyites from the study area show 

this relationship. 

The compositional range of pumpellyite has been interpreted by 

some workers to reflect the metamorphic grade of formation; the 

pumpellyite becomes more Al-rich with increasing metamorphic grade (eg. 

Kawachi 1975; Evarts & Schiffman 1983). However work by Offler et ·al. --

(1981) has shown that pumpellyites can have a wide variety of 

compositions within rocks of the same metamorphic grade. Therefore, 
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Figure 4-1a: Al- Ti- Fe variation diagram for sphene. 

_, 
1
/ 

1
/ Field of sphene from zeolite and pumpellyite-actinolite schist, 

\ I 
- Otago, New Zealand (Ka\vachi ~ &· 1983). 

e = sphenes from this s tudy 

Sphenes from this study show wide copositional variation, with some 

being much more aluminous and iron rich in comparison with "normal" 

sphenes and those from Otago, New Zealand (from Ka\vachi ~ al. 1983). 

Figure 4-1b: Al - Fe - Mg diagram showing compositional variation in 

pumpellyites. 

0 = pumpellyites from greywacke 

• pumpellyites from metabasite 

,-) = compositional field of pumpellyites from prehnite-pumpellyite facies 
( / 

""" rocks, N.S.W, Australia (Offler ~ al. 1981). 

Analyses from this study fall within the compositional field of 

pumpellyites described by Offler ~ al. (1981). 
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interpretations of metamorphic grade based on Fe and Al composition 

should be made with caution. 

Prehnite 

Prehnite occurs as fan-shaped aggregates and large irregular laths 

(1.3mm by 0.5mm; 17058) within veins. No prehnite was seen within the 

matrix of either metabasite or greywacke. Grains are colourless to pale 

yellow colour i n thin section, and commonly exhibit undulatory 

extinction. Prehnite is associated with calcite, quartz and pumpellyite. 

Analyses show prehnite to be a Fe-rich variety (Fig.4-2), with Fe203 

(total Fe) content ranging from 5.03 to 7.43 weight percent, suggesting 

appreciable replacement of Al by Fe3+ and Fe2+ (Surdam 1969) 

4 .1 VEIN MINERAL ASSEMBLAGES 

Veins are generally less than 0.3mm thick but range up to 3 em in 

thickness. In greywacke, the most common vein minerals are quartz and 

calcite. Where generations of mineral growths are evident in veins, 

quartz is generally the first formed mineral, growing in the 

characteristic "dog tooth" manner, followed by later calcite 

mineralization (17102, 17103, 17104). Calcite is commonl y found in the 

centre of veins which suggests that it is the latter mineral to develop. 

Such veins are often cross-cut by later calcite veining, indicating a 

number of generations of veining (17104). The mineral assemblage quartz+ 

prehnite is observed in a few veins (17101, 17105), and in sample 17105 

is cut by a later quartz vein. 

Veins in metabasite have a more varied mineral assemblage with 

calcite, quartz, chlorite, prehnite and pumpellyite occurring. Veins 

containing all the above mentioned minerals show a sequence of mineral 

development, determined by overprinting relationships, where quartz is 

the first formed, followed by prehnite, pumpellyite and chlorite, and 

lastly calcite (17106). Vein mineral assemblages seen in metabasite 

68 



40 

t 

CaO 

I 

k------------.-----r----------------• • 

69 

e = prehnite 

= compositional range of prehnite in the low-grade metavolcanic rocks, 

British Columba (Surdam 1969). 

Figure 4-2: CaO - Al20 3 - Fe 20 3 (total iron) variation diagram for prehnite. 



are:1)calcite; 2)quartz; 3)calcite + quartz; 4)calcite + chlorite; 

S)calcite + prehnite + pumpellyite; 6)calcite + chlorite + pumpellyite; 

7)quartz + calcite + chlorite + pumpellyite + prehnite . 

4 . 2 METAMORPHIC GRADE 

In both the metabasite and greywacke the metamorphic mineral 

assemblages are; 1)chlorite + pumpellyite + calcite; 2)chlorite + 

pumpellyite; 3)chlorite + pumpellyite + celadonite; as well as those 

mineral assemblages seen in veins (described above) . As both rock types 

show the same metamorphic minerals, it is reasonable to assume that they 

have undergone the same metamorphic history . 

The metamorphic mineral assemblages seen in the study area are 

indicative of the Prehnite- Pumpellyite Facies of Coombs (1960) and 

Winkler (1965) . 
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CHAPI'ER FIVE 

PALEONTOLOGY 

Fossil localities within the Torlesse Supergroup in the southern 

North Island are notably few, being restricted mainly to the eastern 

portion, around the Wellington and Otaki Forks regions. 

In the Wellington region Late Triassi~ (Oretian-Otamitan) annelids 

Torlessia and Titahia (Webby 1967; Speden 1976) and the trace 

fossils Scalarituba (Rowe in prep) have been found, whilst at Otaki 

Forks , Late Triassic (Warepan) Monotis occur (Grant-Taylor & 

Waterhouse 1963; Speden 1976; Rattenbury 1983). 

No in situ fossils have previously been recorded in the field 

area, apart from an indentation of ?organic material in ?breccia from the 

Tauherenikau Valley (N.Z.M.S1 866490; Speden 1976) 

5.1 FOSSIL LOCALITIES WITHIN THE STUDY AREA 

In this study area, fossils were found within limestone and chert. 

Limestone 

Limestone, fossiliferous micrite and sparite, contained bryozoa 

and mussel fragments, foraminifera and echinoid plates (Chapter 3.1.4). 

These fossils were distinguished in thin-section and no taxanomic 

identifications could be made. 

Chert 

In thin-sections of chert from the study area, radiolaria 

skeletons were commonly observed, often as recystallized circular to oval 

shapes, some with well preserved structures visible. 

Recent work by Pessagno and Newport (1972) and Feary and Hill 

(1978) have shown that radiolaria can be successfully extracted from 

chert. Both groups of workers stressed that unless radiolaria were 

abundant and have well preserved structures present in thin-section there 

is very little chance of extracting identifable radiolaria from the 
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chert. 

Examination of numerous radiolaria chert samples from the study 

area show an overall tendancy for the red-hematite rich cherts to contain 

the most abundant and better preserved radiolaria in thin-section. 

Abundant and well preserved radiolaria skeletons were observed in a 

thin-section of sample 17078, from which radiolaria skeletons were 

successfully extracted by digesting the sample in hydrofluoric acid 

(technique outlined below). This same technique was applied to two 

radiolaria-rich samples from the same outcrop in the Manawatu Gorge 

(17109, 17110) and three samples from Red Rocks, Wellington. However, 

only one sample from the Manawatu Gorge yielded radiolaria. 

Extraction technique 

The extraction technique broadly follows that described by 

Pessangno and Newport (1972). The method used is outlined below: 

1) samples were lightly crushed with pestle and mortar, 

2) sieved through a #10 mesh sieve, 

3) the coarse fraction was etched in 40% hydrofluoric acid. 

Etching time ranged from seven hours to seven days depending on the 

sample, 

4) sample throughly washed with tap water through a 100 urn mesh, 

5) sample dried in drying cabinet or under heat lamp, 

6) dried sample put through a #100 mesh sieve, (the plus #100 mesh 

fraction may be saved for re-etching), then checked for radiolaria 

skeletons using normal micropalentological techniques. 

Picking of radiolaria from the washed and dried residue was a time 

consuming process and the amount of sample to be checked was greatly 

reduced by etching pnly the coarse fraction from step 2 (thus removing a 

large amount of fine chert particles), and checking only the #100 urn mesh 

fraction (step 6). 
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The two sites from which the radiolaria were extracted are 

descr i bed below. 

Tararua Range: sample 17078 (S26C/ 0610 1208) · is a dark red chert 

from a horizon of red and pinkish-white coloured chert, that is exposed 

over 50 metres along a ridge. Chert cropped out as large in situ blocks, 

some with dimensions of tens of metres. Some portions of the chert were 

bedded, with beds ranging from 2 em to 5 em . Contacts with the 

surrounding greywacke and argillite were obscured. 

Manawatu Gorge : sample 1710~ (T24/ 492 949) comes from a very dark 

red-brown coloured chert from the Manawatu River. The chert appeared to 

be in a melange zone, although the contact with the surrounding rock 

types was obscured. The site is possibly the same one as described in 

Speden (1976). 

5.1.1 Radiolaria 

Radiolaria have two suborders, Spumellariina and Nassellariina, 

and to date, most work on Mesozoic radiolaria has been done on the 

suborder Nassellariina (eg. Pessagno 1977b; Pessagno & Whalen 1982). 

In both samples (17078, 17109) over 70% of the observed radiolaria 

belong to the suborder Spumellariina, these being rounded, spherical to 

subspherical in shape. At present Mesozoic Spumellariina have not been 

described in any detail and therefore are of little use. Nassellariina 

have been described in detail by several workers (eg. Pessagno 1977; Yao 

1982) and based on their descriptions Nassellariina (which comprise less 

than 30% of radiolaria observed) have been identified from the two 

samples. Systematic descriptions for all identified radiolaria are given 

below. A large number of specimens for which identifications could not be 

made are also described. Scanning electron photomicrographs of all these 

radiolaria can be found at the end of the systematic descriptions in 

Figures 5-2 to S-4. 

73 



My identifications of these radiolaria have been sent to 

Mezosoic radiolaria specialists at the U.S.G.S Menlo Park, Califorina for 

confirmation. A telegram stating "identifications and ages good" was 

recieved from B. Murchey on September 14, 1984. A follow up letter has 

not been ~ecieved as yet. 

Radiolaria assemblages 

Sample 17078: (S26/ f14) In sample 17078 radiolaria skeletons are 

moderately well preserved and a total of five identifications have been 

made, four at generic level with two different species of one genus. 

These identifications are: 

Archaeodictyomitra sp. "C" 

Archaeodictyomitra sp. "E" 

Bagotum sp. 

Parvicingula sp. "B" 

Stichocapsa sp. 

Also a number of unknown specimens (Unknown "A","B","C","E", "F") 

were found . The genus Bagotum has a range of Lower Jurassic, and 

the Family Bagotidae has a range in age from Lower Jurassic to 

Middle Jurassic; based on other radiolaria present in the sample, 

for which identifications are more confident (Archaeodictyomitra and 

Parvingula), a Middle Jurassic age is suggested for the assemblage 

(Fig. 5-1a). 

Sample 17109: (T24/ £25) Sample 17109 contained well preserved 

radiolaria skeletons, with a total of ten taxa identified. These are: 

Archaeodictyomitra sp. "A" 

Archaeodictyomitra sp. "B" 

Archaeodictyomitra sp. "C" 

Archaeodictyomitra sp. "D" 

Pseudodictyomitra sp. 
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Figure 5-la: Age ranges of radiolaria from the study area. 
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Figure 5-lb: Age ranges of radiolaria from the Manawatu Gorge. 
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Parvicingula sp. "A" 

Tricolocapsa sp. 

Zhamoidellum sp. 

Eucyriidium sp. 

Stihocapsa sp. 

A number of unidentifiable radiolaria were also found (Unknown "C","F"). 

Ranges for each genus is shown in Figure 5-lb, suggesting an 

age of Late Jurassic (Tithonian) to Early Cretaceous (upper Valanginian; 

lower Hauterian), for the assemblage. 

The radiolaria assemblages from the chert blocks in the the study 

area and the Manawatu Gorge indicate ages of Middle Jurassic and Late 

Jurassic to Lower Cretaceous respectively. 
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5.2 SYSTEMATIC PALEONTOLOGY 

Phylum PROTOZOA 

Subphylum SARCODINA 

Class RETICULARIA 

Subclass RADIOLARIA 

Order POLCYSTIDA 

Suborder NASSELLARIINA 

Family ARCHAEODICTYOMITRIDAE Pessagno 1976, emend. Pessagno 1977 

Genus ARCHAEODICTYOMITRA Pessagno 1977. 

Archaeodictyomitra sp."A" (Fig. 5-2: 1-6) 

Description: Skeleton subconical, with 10-11 costae visible in 

lateral view. Costae are without constrictions, converge towards the apex 

and occasionally wedge out. Post-cephalis chambers (all but the final 

chamber), increase moderately rapidly in width and length, but the final 

post-cephalis chamber decreases in width. Pore frames are oval. Towards 

the apex, the pores are arranged in transverse rows, each pore separated 

by costa; however on some post-cephalis chambers the pores have a 

diagonal or irregular arrangement. 

Range: Middle Jurassic (Middle Bajocian) to Late Cretaceous 

(Maastrichtian); Pessagno & Whalen 1982. 

A h d. . "B" rc aeo 1ctyom1tra sp. (Fig. 5-2: 7-9) 

Description: Skeleton is subconical, with a subrounded apex. Ten to 

eleven costae are visible in lateral view. The initial post-cephalis 

chambers increase slightly in width, and are then of more or less 

constant width. Final post-cephalis chamber decreases in width. Costae 

are without constrictions, some wedging out towards the apical region. 

Pores are rounded, arranged in transverse rows. 



Remarks: Di f fers from Archaeodictyomitra sp . "A" by having ; 1) a 

larger s kele ton; 2) f ewe r discontinuous costae ; 3) pores arranged in 

t r an s verse r ows , not i n a di a gona l or i rregula r a rrangement . 

Range: same as above. 

Archaeodictyomitra sp. "C" (Fig. S-2: 10-12) 

Description: Subconical to r ectangular in shape, with 10-1 2 costae 

vi s i bl e i n l ateral view. Circumf erential ridges slightly developed, 

possibly def i ned by pores being aligned transversely. The pores are 

rounded to oval . 

Remarks: This species differs from Archaeodictyomitra sp. "A" and 

"B" by havin g 1) a more rectangular shape; 2) greater size; 3) slight 

development of circumferential ridges. 

Range: same as above. 

Archaeodictyomitra sp. "D" (Fig . S-2: 13) 

Description: Skeleton cigar shaped, with eleven costae visible in 

lateral view. Costae are continuous throughout, converging towards the 

apical region. Skeleton greatly increases in width from the apex to 

medial portion, with almost as great a decrease in width from the medial 

section to the last post-cephalis chamber. Pores are rounded to oval . 

Pores have a slightly irregular arrangement on the lower post-cephalis 

chambers, but are otherwise arranged in regular transverse rows between 

costae. 

Remarks : Description is based on a single specimen . This skeleton 

differs from other species by; 1) having a cigar shape; 2) larger pore 

size . 

Range: same as above. 
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Archaeodictyomitra sp. "E" (Fig. 5-2: 14) 

Description: Apical region subconical, with skeleton having a 

constant width in the latter post-cephalis chambers. Twelve costae are 

visible in lateral view. Costae are continuous towards apical region, 

with slight constrictions which define the development of slight 

circumferential ridges. Pores are rounded, arranged in at least seven 

transverse rows . 

Remarks: Description is based on a single specimen. Differs from 

other species by having the development of slight circumferential ridges . 

Range: same as above. 

Family BAGOTIDAE Pessagno & Whalen 1982 

Genus BAGOTUM Pessagno & Whalen 1982 

Bagotum sp. (Fig. S-2: 15) 

Description Skeleton ellipsoidal, with nine costae visible in lateral 

view. Both cephalis and the final post-cephalis chamber are bluntly 

rounded in shape. Pores are rounded, and aligned in transverse rows, with 

each pore separated by costae. 

Remarks: Skeleton is very poorly preserved. 

Range: Lower Jurassic to Middle Jurrasic (Family) 

Lower Jurassic (Genus); Pessagno & Whalen 1982. 

Family EUCYRIDIIDAE Ehrenberg, 1847, emend. Petruskevaskaya 1971 

Genus STICHOCAPSA Haeckel 1881. 

Stichocapsa sp. (Fig. S-3: 7-10) 

Description: Skeleton consists of an apical section and an inflated 

subspherical post-cephalis chamber. The shape of the apical region shows 

considerable variation, from an almost conical shape to a subcylindrical 

dome shape. Skeleton contains uniformly distributed subspherical pores, 
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surrounded by hexagonal frames, in transverse rows. The rows are 

staggered with respect to each other. 

Remark: Specimens are poorly preserved . 

Range: Jurassic to Middle Cretaceous (Middle Cenomanian); Moore 1973; 

Foreman 1976; Yao 1980. 

Family PARVICINGULIDAE Pessagno 1977. 

Genus PARVICINGULA Pessagno 1977. 

Parvicingula sp. "A" (Fig . S-3: 4-5) 

Description: De~cription is based on broken specimens. Contains at 

least four circumferential ridges. Pore frames are subcircular, arranged 

in three rows between circumferential ridges . The central row of pore 

frames are staggered, depressed with respect to those flanking in the 

outer rows . Pore frames of each outer row abut against circumferential 

ridges and slope gently toward the centre row . It appears that the 

circumferential ridges increase in width in the medial portion of the 
• 

skeleton. 

Range: Middle Jurassic (lower Bajocian) to Lower Cretaceous (upper 

Valanginian; lower Hauterivian?) Pessagno & Whalen 1982 . 

Parvicingula sp . "B" (Fig. S-3: 6) 

Description : Description, the same as for Parvicingula sp . "A" 

except that the pores are larger and have well developed hexagonal pore 

frames. 

Range: same as above . 
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Family PSEUDODICTYOMITRIDAE Pessagno 1977 

Genus Pseudodictyomitra Pessagno 1977 

Pseudodictyomitra sp . (Fig. S-2: 16) 

Description: Skeleton conical, consisting of ten segments. Each 

segment is separated by circumferential strictures. The cephalis, thorax 

and abdomen are separated by single rows of pores, as are all but two of 

the post-abdominal chambers (between post-cephalis chambers six, seven 

and eight) . The cephalis and thorax are smooth. On the abdomen, costae 

are weakly developed, but reasonably well developed on the post-abdomen 

chambers. Costae are discontinuous, slightly rounded in the medial 

portion and do not traverse the strictures. 

Remarks: Identification has been based on a single specimen. 

Range: Middle/Late Tithonian to Middle Turonian; Pessagno 1977. 

Family WILLIERIEDELLIDAE Dumitrica 1970 

Genus ZHAMOIDELLUM Dumitrica 1970 

Zhamoidellum sp. (Fig. S-3: 12-13) 

Description: Subspherical cephalis and a greatly inflated spherical 

post-cephalis chamber. Both cephalis and post-cephalis chamber have small 

rounded pores arranged in regular tranverse rows. Between pore rows, 

small nodes or humps occurring randomly give giving the skeleton a 

knobbly appearance. 

Remarks: Specimen is poorly preserved and the small nodes could be a 

function of preservation, rather than the original structure. 

Range: ?Jurassic-Early Cretaceous (?Barremain); Foreman 1975. 
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CYRTOIDEA INCERTAE SEDIS 

Genus TRICOLOCAPSA Haeckel 1881 

Tricolocapsa sp. (Fig. 5-3: 1-3) 

Description: Skeleton has dome shaped, bluntly rounded cephalis, with 

a g~eatly inflated subspherical post-cephalis chamber. Pores are present 

on both the cephalis and post-cephalis chamber. The pores are rounded, 

surrounded by a network of regular hexagonal frames in transverse rows. 

The rows are staggered resulting in a diagonal arrangement of the pores. 

Range: ?Late Triassic-?Late Cretaceous; Yao 1979, De Wever et al. 

1979. 

Genus EUCRYTIDIUM Ehrenberg 1847 

Eucrytidium sp. (Fig. 5-3: 11) 

Description: Skeleton portion subspherical, consisting of eight 

costae visible in lateral view, costae without constrictions. With the 

exception of two ill defined pores, the skeleton is poreless. 

Remarks: Description is based on a fragment of a skeleton. 

Range: Jurassic to Recent; Pessagno 1977b. 

RADIOLARIA INCERTAE SEDIS 

UNKNOWN "A" (fig. 5-4: 1-4) 

Description: Skeleton subspherical with small open circular aperture. 

Pores are rounded, surrounded by hexagonal pore frames, arranged in 

staggered rows. Hexagonal frame is not very well developed in some 

specimens. 

UNKNOWN "B" (Fig. 5-4: 5) 

Description: Skeleton multicrytoid with a post-cephalis chamber being 

greatly inflated . Two short horns protrude from the cephalis. Pores are 

subrounded, ill defined, set in hexagonal pore frames rows of which are 

82 



staggered with respect to each other. 

UNKNOWN "C" (Fig. 5-4: 6) 

Description: Very poorly preserved specimen however the original 

skeleton shape can be seen . Skeleton has a subconical to rounded apex 

that greatly increases in width towards the medial section . Basal portion 

from medial section decreasing in width , giving skeleton an ellipsoidal 

shape . Possibly a slight development of circumferential ridges. 

UNKNOWN "D" (Fig . 5-4 : 7-9) 

Description Skeleton subrounded to ellipsoidal. Both cephalis and 

post-cephalis chamber have an irregular distribution of medium size 

rounded pores . 

UNKNOWN "E" (Fig . 5-4: 10-11) 

Description : Portion of broken skeleton containing a horn. 

UNKNOWN "F" (Fig. 5-4: 12) 

Description: Very poorly preserved; apex conical to subconical, 

increasing in width towards medial section. Medial section greatly 

inflated . Basal portion of skeleton has a downward pointing subconical 

shape . 
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Figure 5-2: 

1) Archaeodictyomitra sp. "A" x 284 17109 

2) Archaeodictyomitra sp. "A" x 368 17109 

3) Archaeodictyomitra sp. "A" x 352 17109 

4) Archaeodictyomitra sp. "A" x 352 17109 

5) Archaeodictyomitra sp. "A" X 323 17109 

6) Archaeodictyomitra sp. "A" x 249 17109 

7) Archaeodictyomitra sp. "B" X260 17109 

8) Archaeodictyomitra sp. "B" x 239 17109 

9) Archaeodictyomitra sp. "B" X 218 17109 

10) Archaeodictyomitra sp. "C" x 284 17078 

ll) Archaeodictyomitra sp. "C" x 228 17109 

12) Archaeodictyomitra sp. "C" x 2l0 17078 

13) Archaeodictyomitra sp. "D" x368 17109 

14) Archaeodictyomitra sp. "E" x 284 17078 

15) Bagotum sp. x284 17078 

16) Pseudodictyomitra sp. x210 17109 
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Figure 5-3: 

1) Tricolocapsa sp. X476 17109 

2) Tricolocapsa sp. x 384 17109 

3) Tricolocapsa sp. )(543 17109 

4) Parvingula sp. "A" X337 17109 

5) Parvingula sp. "A" x438 17109 

6) Parvingula sp. "B" x384 17078 

7) Stichocapsa sp. X476 17078 

8) Stichocapsa sp. X567 17109 

9) Stichocapsa sp. )(459 17078 

10) Stichocapsa sp. X384 17078 

11) Eucrytium sp. x543 17109 

12) Zhamoidellum sp. X522 17109 

13) Zhamoidellum sp. )(620 17109 
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Figure S-4: 

1) Unknown "A" x438 17078 

2) Unknown "A" x476 17078 

3) Unknown "A" x352 17078 

4) Unknown "A" x368 17109 

5) Unknown "B" x459 17078 

6) Unknown "C" x284 17078 

7) Unknown "D" x297 17109 

8) Unknown "D" x384 17109 

9) Unknown "D" x40l 17109 

10) Unknown "E" X272 17078 

ll) Unknown "E" x384 17078 

12) Unknown "F" x184 17078 





CHAPTER SIX 

STRUCfURE 

The aim of this chapter is to describe the deformation seen within 

the study area, to outline the possible sequence of deformation that the 

rocks have undergone, and to relate this sequence to deformation 

described in other regions of the Torlesse Supergroup. 

Initially, mesoscopic structures (those which can be observed in 

outcrop) are described, and this is followed by a description of the 

macroscopic structures in the area, determined mainly by geometric 

analysis. 

6.1 MESOSCOPIC STRUCTURES 

Mesoscopic structures observed in outcrop are folds, shear 

foliation, faults and melange. 

6.1.1 Folds 

Folds are observed only in the eastern portion of the study area, 

cropping out within the lower Tauherenikau River and within melange in 

the Waiohine River. From field observations and overprinting 

relationships, there are at least three generations of folding within the 

study area. 

The three different fold events can be inferred from observations 

within the melange: 

1) a radiolarian chert block within the melange shows an early fold being 

refolded (Fig. 6-1a: first and second fold generations). These folds must 

have developed prior to the block being incorporated into the melange. 

2) the melange has been folded (Fig. 6-lb: third fold generation). 

Other folds observed within blocks in the melange can be ascribed to have 

formed prior to the third fold event. Hobbs et al. (1976) outlined --

how different fold events can produce similar fold styles, although in 

general, they noted that folds with the same style can often be assigned 
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Figure 6-1a: Light green radiolaria rich chert 

(17098) showing an isoclinal fold being 

refolded. Chert occurs as a block within 

melange and is surrounded by sheared argillite. 

Waiohine River S26D/ 1130 1710, 

compass 7 em in diameter. 

Figure 6-1b: Folded melange; with the fold 

defined by folded phacoids (P), lenses (L) 

and shear foliation. 

Waiohine River S26D/ 1126 1700, 

compass 7 em in diameter. 
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to the same fold generation . Therefore, the folds in blocks within the 

melange which cannot definitely be attributed to either the first or 

second fold event (from overprinting relationships) have been grouped 

into the first fold event on the basis of their style. Based on 

structural relationships, folds observed elsewhere in the field area can 

be attributed to have formed during the third fold event. 

Folds produced during the first fold event occur as single folds 

within blocks in melange (Fig. 6-2a). They are isoclinal to close 

(terminology of Fleuty 1964), and have angular hinges with some 

thickening in the hinge region and thinning in the limbs. 

The second fold event produced a gentle fold . This generation is 

observed only in a single outcrop, where the limbs of the isoclinally 
• 

folded chert have been refolded into a gentle fold (Fig . 6-la). The fold 

is similar to those produced during the first fold event, being thicker 

in the hinge region although the hinge region is rounded. 

The third fold event produced close to open folds, with these 

folds being defined by deformation of the melange and in isolated 

greywacke-argillite outcrops. 

6.1.2 Shear Foliation 

Throughout the field area, shearing is evident within argillite, 

producing a shear foliation . Shear foliation is defined by subparallel to 

anastomosing, discrete, shear fracture surfaces which have a scaly 

appearance in outcrop (Fig. 6-2b). In alternating greywacke and argillite 

sequences, the shear foliation is parallel or subparallel to bedding. 

Where argillite is the dominant rock type or matrix material, shear 

foliation is often the dominant mesoscopic structure present. 

In thin section the shear foliation is defined by a concentration 

of darker and opaque minerals associated with the shear fracture 

surfaces. The concentration of darker minerals can be seen anastomosing 



Figure 6-2a: A folded sandstone block within 

melange. The fold is close, defined by 

laminations in the fine-grained sandstone. 

Later faults (F) have displaced the block. 

Waiohine River S26D/ 1126 1702, 

compass 7 em in diameter. 

Figure 6-2b: Massive argillite with well 

developed shear foliation giving the 

outcrop a scaly appearance. 

Waiohine River S26D/ 1126 1695, 

compass 7 em in diameter. 
0 
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on the microscale. There appears to be no new mineral growth nor 

alignment of minerals associated with the development of shear foliation. 

Similar shear surfaces have been described from the Esk Head 

Melange, South Island (shear fabric of Botsford, 1983) and the Franciscan 

Complex in California (Dl foliations of Cowan 1978; shear foliation of 

Kersch 1982). 

6.1.3 Low-angle Faults 

Faults at a low angle to bedding are common. They displace units 

parallel to bedding or at a low angle to the bedding plane, resulting in 

the anastomosing appearance and wedging in and out of beds (Fig. 6-3b). 

The surfaces of the fault planes are often smooth and polished in 

appearance, some of which have been the site of quartz and calcite 

mineral deposition. Later veins of these minerals are also found 

cross-cutting the fault planes at various angles. 

Low-angle faults cut, and are cut by, shear foliation. The amount 

of movement along fault planes is hard to determine, but ranges from 

millimetres to larger than metres. Often, the wedging effect of beds 

makes the correlation of individual beds across some faults difficult. 

6.1.4 High-angle Faults 

Faults at a high angle to bedding are frequent. The high-angle 

faults often cut across bedding, shear foliation and low-angle faults. 

The fault planes are usually very sharp and hence are well defined, 

although, in some places, a small gouge zone of fine clays occurs. 

These faults can define "packets" of beds, with beds on either 

side of the fault plane being slightly reorientated or rotated (Fig. 

6-3a). Displacements along faults vary from millimetres to metres, and 

even to beyond outcrop scale. The occurrence of high angle faults 

outlining "packets" of beds are common on both the mesoscopic and 

microscopic scale. Both sinistral and dextral sense of displacement were 
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Figure 6-3a: High-angle to bedding faults 

(F) which are defining "packets" of beds. 

The "packets" of beds have slightly 

different orientations relative to each 

other giving the outcrop a "folded" 

appearance. 

\.Jaiohine Gorge Road S26D/ 1197 1783, 

geological hammer 31 em long. 

Figure 6-3.b: Wedging of sandstone bed (B) 

caused by low-angle to bedding faults. 

State Highway 2 S27A/ 0244 0559, 

geological hammer is 31 em long. 
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observed. 

At some places, a high-angle fault is displaced by later faulting 

of the same style, inferring that either this fault type occur red over a 

period of time, or that there were at least two separate generations of 

high-angle faults . 

6.1.5. Lozenges 

Lozenges of greywacke occur within the field area, having a 

rhombic form sometimes with rounded corners . Lozenges are produced by 
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the faulting, or jointing of beds, with each fault bounded segment of the 

bed being offset in relation to other segments, with slip occurring along 

the fault plane (Rast 1956). Figure 6-4 shows a cartoon interpretation 

of the development of lozenges. Initially the beds show a "kinked" 

outline (Fig . 6-5) and with increased displacement along the fault plane 

the segments can become completely separated from each other . Lozenges 

are frequently seen within melange in the study area and elsewhere (eg. 

Franciscan Complex, California; Korsch 1982). 

6.1.6 Melange 

The word melange is used here as a non-genetic descriptive term 

which describes mappable, internally fragmented and mixed rock bodies 

that contain a variety of inclusions, commonly in a pervasively-deformed 

matrix (after Silver & Beutner 1980). Thus melange can be used to 

describe any chaotic, mixed rocks. 

Within the field area, melange is recognized at a number of 

localities. Within these melanges, there is a large variety in the shape, 

size and rock types of the inclusions . Inclusions range in size from 

millimetres to metres, while their shape varies in form from phacoids, 

lenses, lozenges, blocks and ellipsoids . The inclusions have sheared 

margins in contact with the surrounding melange matrix and irrespective 

of their shape are usually elongate with their long axis subparallel to 



~~~~~~~® 
@ 

® 

Figure 6-4: Cartoon interpretation of the development of lozenges 

Lozenge shear fabric. 

BD = bedding; 

C = conju_gate fault (~ominant); 

S = beddin~ shear. 
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Figure 6-5: Bed (B) in melange showing 

a "kinked" outline due to displacements 

along fault planes (F). This bed shows 

the beginning of lozenge development. 

Waiohine River S26D/ 1135 1719, 

geological hammer 31 em long. 





the shear foliation within the matrix (Fig. 6-6). 

The most common forms of inclusions are lenses and phaciods where 

lenses occur up to metres in length and only centimetres in width, while 

phaciods are shorter, more squat in comparison with lenses and often have 

tapering ends. Lenses are commonly greywacke and calcareous siltstone, 

and bedding within these rock types is generally parallel to the long 

axis of the lenses, although in some lenses the bedding is at an angle to 

the long axis of the lenses. 

Most of the largest inclusions are blocky (angular) and are often 

fractured. Bedding is often preserved intact within the greywacke and 

chert blocks. Lozenges (Rast 1956) have rhombic forms, although sometimes 

with rounded corners. Ellipsoids are roughly ellipsoidal in plan with 

their surfaces being slightly scalloped and frequently covered with fine 

scaly argillite and are present in the more argillite-matrix dominated 

sections of melange. These forms have been described as oblate ellipsoids 

by Cowan (1978). 

Melange matrix 

The melange matrix is sheared argillite, similar to the matrix of 

melanges described from the Franciscan Complex of California by Hsu 

(1968) and Cowan (1974) and from the Esk Head Melange (Botsford 1983). 

Weathering commonly emphasizes discrete shear planes . Contacts between 

the matrix and the inclusions are sharp and well defined. In melange at 

Waiohine River (S26D/ 1130 1710) where the inclusions have irregular 

margins the shear foliation in the matrix envelops, flows and swirls 

around the inclusions (Fig. 6-7). In some places, shear foliation cross 

cuts and is cut by faults both at a low-angle to bedding and at a 

high-angle to bedding. 

Types of inclusions 

Within melange all the rock types observed within the study area 
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Figure 6-6a: Melange. Note that the 

inclusions are generally elongate with 

their long axis subparallel to the 

shear foliation within the matrix. 

Inclusion (I) contains beds at an 

angle to the dominant shear foliation. 

Waiohine River S26D/ 1133 1716, 

compass 7 em in diameter. 

Figure 6-6b: Melange. Inclusions are 

predominantly greywacke, surrounded by 

a pervasively sheared matrix of argillite. 

Contacts between inclusions and the 

matrix are sheared. 

Waiohine River S26D/ 1133 1716, 

compass 7 em in diameter. 
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Figure 6-7a: Large chert block in melange, 

surrounded by a sheared argillite matrix. 

The chert block is elongate subparallel 

to the dominant shear foliation within 

the matrix. Figure 6-7b shows the contact 

between the chert and matrix in box B. 

Wiaohine River S26D/ 1128 1704, 

geological hammer 31 em long. 

I , ' 

Oo 

Figure 6-7b: Contact between the chert block 

and melange matrix. The shear foliation in 

the matrix flows around the irregular boundary 

of the chert block. Ellipsoides (E) occur, 

surrounded by matrix, most of which are elongate 

subparallel to the shear foliation. Note that 

ellipsoid (E1) is orientated almost 

perpendicular to the dominant shear foliation . 

Waiohine River S26D/ 1128 1704, 

compass 7 em in diameter. 





are present. The inclusions in order of decreasing abundance are: 

greywacke, argillite, calcareous siltstone, chert, metabasite, red 

argillite and limestone . However, individual rock types can be of more 

local importance within particular regions of melange ie. region 

dominated by chert and metabasite rather than greywacke. 

Saleeby (1979) noted that in some regions of the Kaweah 

serpentinite melange, California, inclusions of similar rock types were 

clustered together . Although his melange is on a much larger scale than 

any melanges seen in the study area, I believe that the comparison is 

still valid. This clustering of similar rock types is pronounced only 

within the melange at Waiohine River where one section of the melange is 

dominated by greywacke inclusions, while another section contains 

abundant chert, metabasite and only minor greywacke inclusions . 

The variation in rock types present as inclusions appears to be 

related to the amount of deformation present within melange . The more 

highly deformed sections contain more varied inclusion lithologies , 

whereas the least deformed sections are dominated by greywacke 

inclusions. 

6.2 MESOSCOPIC DEFORMATION EVENTS 

In attempting to define the relative timing of deformational 

events within basement rocks of the Tararua Range, the melange is an 

important unit because mesoscopic structures observed elsewhere can be 

correlated with structures within the melange. Within the melange at the 

Waiohine River (S26 I 1130 1710) most structures observed elsewhere in 

the study area are present and therefore the timing of structural events 

relative to the stages of melange formation can be inferred for the whole 

area. Mesoscopic structures can be separated into those that developed 

prior to the formation of the melange, those that developed during the 

melange formation and those that formed ~fter the melange had developed 
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6.2.1 Pre-melange structure 

Within melange, any deformation that occurred prior to the 

formation of the melange is recorded in the now discrete inclusions 

surrounded by melange matrix. At least two generations of folds are 

observed in the chert and greywacke blocks. The first generation folds 

are isoclinal and the limbs of these folds have been refolded during a 

second period of folding which have an open to gentle fold style (evident 

from a chert block; the folds have been described in chapter 6.1.1). 

The initial deformations recorded in the study area are therefore 

shortening events represented by at least two periods of folding (ie. 

Dl and D2). 

6.2.2 Structures produced during melange formation 

Melange formation has been caused by the disruption and chaotic 

mixing of various rock types. During the formation of melange in the 

study area, faulting at both a low-angle to bedding and at a high-angle 

to bedding has occurred t6 such an extent that a chaotically disrupted 

unit was produced. Shear foliation has developed in response to the 

faulting and shearing. 

The disruption produced by these structures is considered to be an 

ongoing process, with these structures forming concurrently and also 

alternatively with numerous episodes of faulting and development of shear 

foliation. Similar structures throughout the rest of the field area were 

most likely produced during the same deformational episode, although the 

deformation was intense enough to produce melange only in a few areas. 

Faulting at a low-angle to bedding in well-bedded alternating greywacke 

and argillite sequences represent the same deformation as seen in 

melange. 

The type of strain or deformation which has formed the melange can 

be inferred quantitatively from the shape of the inclusions . The form of 
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most of the inclusions can be related to fracturing and faulting (that 

is, a rhombic shape) suggesting a shortening deformation while other 

inclusions, the ellipsoids can be produced during a flattening 

deformation. Detailed work on strain experienced by ellipsoids has been 

outlined by Flinn (1962) where he defined the parameter K for describing 

the shapes of ellipsoids, where K=(a-1)/(b-1), and "a" is the ratio of 

the major to intermediate axes and "b" is the ratio of the intermediate 

to minor axes of the strain ellipsoid. A number of ellipsoidal inclusions 

were collected from the field area, measured and plotted on a Flinn 

diagram (Fig. 6-8). Most of the measurements fall within the region 

defined by the parameter of Flinn where O<K< 1. Such a parameter defines a 

flattening type of strain. As the ellipsoids are predominantly aligned 

parallel to the shear foliation in the matrix, they have probably been 

shortened normal to, and extended parallel, to the shear foliation. 

Similar deformation and structures have been described by Cowan (1978) 

and Korsch (1982) for melange from the Franciscan Complex, California. 

In the study area features of melange such as the disruption and 

mixing of rocks being related to faulting, suggest that the melange has 

been formed.by deformation that is tectonic in origin, rather than 

forming due to sedimentary processes as has been proposed for some 

melanges (eg. Gucwa 1975). Melange from the study area is very similar to 

other melanges formed by tectonic deformation such as the Franciscan 

Complex, California described by Aalto (1981) and Korsch (1982). 

6.2.3 Post-melange structure 

Post-melange deformation in the study area has occurred because 

the melange fabric at the Waiohine River locality (S26D/ 1126 1700) has 

been folded. This deformation obviously occurred after formation of the 

melange because elongate lenses, phacoids and shear foliation of melange 

fabric are folded into close to open folds (described in chapter 6.1.1). 
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a 2 

2 3 

b 

Figure 6-8: Flinn diagram showing the strain experienced by ellipsoids. 

Most of the measurements fall within the region defined by the 

parameter 0 < K < 1. This defines a "flattening" type of strain. 

a 

b = 

major axes 

intermediate axes 

intermediate axes 

minor axes 
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6.3 MACROSCOPIC STRUCTURES 

The monotonous nature of the greywacke and argillite beds and the 

paucity of facing evidence, coupled with the lack of marker beds in the 

Tararua Range, hinders the definition of macroscopic structures in the 

study area . The beds strike predominantly to the north-northeast and dip 

steeply either to the west-northwest or east-southeast. 

In one region, S26 I 0695 1095, two macroscopic folds can be 

inferred from changes in the attitude of beds with younging direction. 

These folds will be discussed later. 
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Using the lithological associations defined in Chapter 2-l, the 

area can be divided into two "belts", which follow the dominant strike of 

bedding in the Tararua .Range (Fig. 6-9). 

Belt l, the western belt, is dominated by massive to thick-bedded 

greywacke, along with conglomerate, olistostrome and minor massive 

argillite. Rocks of volcanogenic association (eg. metabasite, chert) 

occur in this belt, always having faulted contacts with the rocks of 

sedimentary association. 

Belt 2, the eastern belt, contains rock sequences which are 

dominated by thinly-bedded, alternating greywacke and argillite beds, 

with only minor amounts of thick-bedded greywacke and massive argillite. 

Shear foliation and faults at a low-angle to bedding are common, and 

within this belt most of the fold structures are observed, possibly as a 

function of the bedded nature of the sedimentary material. 

The contact between the two belts, in the Waiohine River is 

defined by a zone of melange over 20 metres wide, and elsewhere, where it 

was possible to observe the contact, it is either faulted or a zone of 

sheared argillite. 



•• 
-~. 

•• · ... 

,_ 
-, 

~ 

o ' 2 km 

0") "9 0 .. - -.,. 
0 .. '• 

o• .,., o"'; .,. 

o.,. 0 .. o~ .o• 0" ~ '~v~ 

Figure 6-9: Macroscopic "belts" in the study area. 

The two belts follow the dominant strike of bedding in the Tararua Range. 

1 = Western belt: massive sandstone,conglomerate, olistostrome, and rocks 

of the volcanogenic association. 

2 = Eastern belt: interbedded sandstone and argillite with minor massive 

sandstone and massive argillite. 
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6.4 MACROSCOPIC GEOMETRIC ANALYSIS 

In determining the deformation on the macroscopic scale, the study 

area has been divided into fourteen "domains". The domain boundaries were 

determined by grouping adjacent, structurally-homogeneous outcrops into 

one domain. Orientation data have been plotted on equal-angle 

stereographic projections (Wulff nets) although a number of contoured 

diagrams, plotted on equal-area stereographic projections (Schmidt nets) 

were used to define some great circle traces. The location of the domains 

are shown in Figure 6-10. 

Because the shear foliation is parallel or sub-parallel to bedding 

throughout the study area, both sets of orientation data have been 

plotted undifferentiated on the same net. Within individual domains the 

distribution of poles to bedding and shear foliation (~So) defines a 

great-circle girdle , implying that the beds have been cylindrically 

folded, and that they were planar prior to the deformational event which 

caused the folding. All domains display this pattern (Fig. 6-10). A 

synoptic net (Fig. 6-11) of fold axes (7C pole) defined from 1t"So from each 

domain lie along a great-circle girdle with orientation 030 . /SE/85". In 

comparing domains, thenSo girdles from individual domains show different 

orientations and each~pole has a different orientation. This implies 

that, before this deformation, beds within each domain were planar but 

that the beds had different orientations from one domain to another. 

Hence the rocks of the field area have undergone at least two folding 

events (if the area had only been folded once, the fold axes of all the 

individual domains theoretically should be the same). 

Such a pattern seen in the synoptic net (Fig. 6-11) can be produced 

by two methods: 

Alternative 1. The pattern results from an early fold system that has 

since been refolded. In this case, the orientations of ~so in each domain 



Figure 6-10: Map of the field area showing structural domains. 

Poles to bedding and shear foliation have been plotted for 

each domain ( 71 So) • 

n = number of bedding and shear foliation orientations plotted. 
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Figure 6-11: Synoptic net showing poles to ~So for each domain. 



108 

are for the F1 folds (Fig. 6-12a). The different orientations of F1 for 

each domain (eg. area A, area B in Fig . 6-12a) are the result of refolding 

of the complete F1 fold by F2 and this refolding changes the orientation 

of the F1 folds. The synoptic great-circle defined by poles to ~So in 

this alternative simply represents a plane in which the fold axes of F1 

lie, and bears no relationship to the axial surface of either fold 

(Fl or F2). 

Alternative 2: Folding of a non-planar form surface. If we assume 

that the now planar form surface was produced by a period of folding, 

then here the great-circle girdle of~So for each domain defines the fold 

axes F2 (Fig. 6-12b). In such a case, each domain (eg. area 1, area 2, 

area 3 in Fig. 6-12b) represents a segment which was originally planar 

prior to F2, with each domain having a different orientation relative to 

the others. In this alternative, the synoptic great-circle defined by F2 

represents the axial surface of the second fold event (AS2). 

To help constrain the possibilities outlined above, the geometry 

of mesoscopic folds can be used because these fold styles and axial 

surfaces should reflect those produced on the macroscopic scale (Hobbs 

~al. 1976). 

Fold axes of close to open post-melange mesoscopic folds shown in 

Figure 6-13a lie along a NE-SW striking great-circle girdle. Axial 

surfaces of three of these mesoscopic folds from the Waiohine River have 

orientations similar to the great-circle defined by the fold axes (Fig. 

6-13b). These axial surface orientations have very little variation and 

most likely represent the orientation of the axial surface of the later 

fold event. If these folds were produced during the earlier fold event, 

their axial surfaces should be folded and orientations would be expected 

to be more variable than they are. The axial surface traces also have a 

similar orientation to the great-circle girdle defined by poles to~So 



Figure 6-l2a: Alternative l: The pattern of poles torrSo is for an early 

fold system that has since been refolded. The orientations of ffSo in each 

domain eg. area A, area B, are for the Fl folds. 

'j., = n-So 

Figure 6-l2b: Alternative 2: Folding of a non-planar form surface. The 

orientations of ~SO in each domain eg. area A, area B, area C, are for 

the F2 folds. The synotcic great-circle defined by F2 represents the 

axial surface of AS2. 
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AREA B 

AREA B 



Figure 6-13a : Fold axes of mesoscopic and macroscopic folds 

in the study area . 

e mesoscopic fold axes 

0 macroscopic fold axes 

Figure 6-13b: Axial surface orientations of mesoscopic folds. 

Axial surface orientations of three post-melange folds from melange 

in the Waiohine River. 
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(Fig. 6-11), which suggests that the pattern of poles to ~ so represents 

alternative 2 described above. Macroscopic fold axes (Fig. 6-13a) lie 

near the NE-SW great-circle girdle defined by poles to ~so and these may 

also be reflecting the later fold event . 

6.4.1 High-angle faults 
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Poles to high-angle faults (nSf) within individual domains are 

shown in Figure 6-14. Most of the domains show a scatter, although in 

some (domains 2, 3, 8, 12, 13) the poles define a great-circle girdle. 

This raises the possibility that the high-angle faults have been 

cylindrically folded, with the high-angle faults being planar and 

parallel prior to the fold event . This situation would then represent the 

case of two planar S-surfaces (So and high angle faults) being 

simultaneously folded, and producing a common axial surface, but having 

variable fold axes. Turner & Weiss (1963) described the geometry of 

simultaneous cylindrical folding of two planar surfaces, (Fig. 6-15) and 

showed that the axial surface of the folding event must contain the fold 

axes of the two originally planar surfaces. Following this, a 

great-circle girdle which contains the fold axes ofxSo and~Sf for 

individual domains should define the axial surface of the deformational 

fold event if these two surfaces (So and Sf) have been simultaneous 

folded. Great-circle girdles which contain the fold axes of ~so and ~sf 

for domains 2, 3, 8, 12 and 13 show similar orientations, striking NE-SW 

(Fig. 6-16), which suggests that if these surfaces have been 

simultaneously folded, the deformational fold event had an axial surface 

which trended NE-SW. 

6.4.2 Conclusions 

The geometric analysis of the Tararua Range has been based mainly 

on~So diagrams, due to the scarcity of folds and absence of other 

structural features such as cleavage and lineations. Hence inferences 



Figure 6-14: Map of the field area showing structural domains. 

Poles to high-angle faults have been plotted for each domain (~Sf). 

n = number of high-angle fault orientations plotted. 



Figure 6-10: Map of the field area showing structural domains. 

Poles to bedding and shear foliation have been plotted for 

each domain ( 7r So) • 

n = number of bedding and shear foliation orientations plotted. 
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(a) 

N 

(b) 

Simultaneous cylindrical folding of two planar surfaces S1 and S2 inter­
secting in a lineation L. S 1 is seen in b to be folded about Bt and S2 about B2. The 
folds share the same axial plane Sa. 

Figure 6-15: Simultaneous cylindrical folding to two planar surfaces 

from Turner & Weiss (1963). 
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Figure 6-16: Net showing the great-circle girdles which contain the fold 

axis of So and Sf for domains 2, 3, 8, 12 and 13. 

3 domain number 

e = fold axes for rrSo 

0 = fold axes for rrSf 
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that can be made from the~So diagrams are that: 

1) The area has been affected by at least two fold events; these events 

may be either discrete or two phases in a single progressive deformation. 

2) the high-angle faults may have been planar and were folded along with 

So during at least one folding episode. 

3) By comparing the mesoscopic fold axes with the~pole for individual 

domains, the net orientations for individual domains were most likely 

controlled by the second fold event. The axial surfaces of the 

mesoscopic folds, and the axial surfaces of the possible deformation 

event which simultaneous folded So and Sf strike NE- SW. This suggests 

that the synoptic net pattern (Fig. 6-11) of poles toKSo reflects the 

later fold event . 

On the synoptic diagram (Fig. 6-ll) the KSo lie along a 

great-circle girdle but show a slight spread away from the great-circle 

girdle. This scatter could be due to a number of factors, such as: 

l) the shear foliation was not strictly planar prior to the fold event, 

2) the folds are not purely cylindrical, 

3) beds within individual domains were not totally planar prior to the 

second folding, 

4) there may have been minor very late warping of the second fold event, 

but was not observed in the field. 

6.5 RECENT DEFORMATION 

Evidence for recent deformation in the Tararua Range is restricted 

to the presence of active faults. These faults can be distinguished by 

zones of soft gouge, ranging from centimetres to metres in thickness. The 

most obvious fault is the Wairarapa Fault although smaller recent faults 

can be found throughout the field area. These recent faults are plotted 

as planes in Figure 6-17. Data plotted on the net has a large scatter 
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Figure 6-17: Recent faults plotted as planes on a Wulff net. 



but overall strike northeast-southwest. The orientation of active faults 

from my study area show the same dominant trend as known active faults in 

the southern North Island which predominantly strike north-northeast to 

northeast. The \vairarapa Fault strikes at 035 · (Grapes et al. 1984), 

while in the Tararua Range the Wellington Fault (Cotton 1912) strikes 

between 030 " and 045 " and overall in the southern North Island trends 

approximately to the northeast (Grapes et al. 1984). Recent faults 

described by Reed (1957b) from the Rimutaka-Tararua Range show a similar 

strike (eg . between 022 ·and 040"). 

The Wairarapa Fault forms the southeastern boundary of my field 

area and is recognised in the field as a scarp up to 16 metres in height, 

and also as a zone of intense shearing with an associated gouge zone 

11 7 

which is up to 20 metres wide where the fault crosses the Tauherenikau 

River S26C/ 0852 1187). A number of workers have discussed aspects of the 

Wairarapa Fault (Ongley 1943; Lensen 1958; Lensen & Vella 1971; Grapes 

et al. 1984) and apart from casual observations such as noting that --

approximately 50 metres to 100 metres of the greywacke and argillite 

adjacent to the Wairarapa Fault was intensely sheared, with the shears 

being parallel to the fault (eg. at Boar Creek and Tauherenikau River), l 

have not studied the fault in any detail. 

The Wairarapa Fault has been correlated with the Clarence Fault 

of the South Island (Lensen 1958), and is thought to have been active 

during the Quaternary (Wellman 1969; Suggate 1978), with major 

strike-slip dextral displacements. Movement as recent as that associated 

with the 1855 earthquake has been attributed to the Wairarapa Fault, with 

a dextral horizontal displacement of 13 metres and a vertical 

displacement of 3 metres with the west side being upthrown being 

suggested (Ongley 1943). 

The river terraces at the Waiohine River (S26D/ 1147 1430) display 
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a record of progressive fault movements along the Wairarapa Fault during 

the Quaternary . Detailed work on these faulted terraces by Lensen & Vella 

(1971) inferred that the Wairarapa Fault could possibly have a rate of 

vertical uplift and a rate of horizontal displacement of 0.9mm/year and 

6 .0mm/year respectively (Vella), or of O.Smm/year and 3 . 4mm/year 

respectively (Lensen). These rates were based on the age, and hence 

displacement, of the Waiohine Surface (Vella 1963), thought to be 20,000 

years by Vella, and 35,000 years by Lensen. Wellman (1972) however 

suggested an approximate age for the Waiohine Surface of 10,000 years, 

based on extrapolation from beach ridges at Turakirae Head, 50 kilometres 

south of the Waiohine River, and this would give an approximate average 

rate of horizontal displacement of 12mm/year along the Wairarapa Fault . 

Vella (pers . com. 1984) agrees with an age of 10 ,000 to 11,000 years for 

the Waiohine Surface. Recently, based on adopting an 11,000 year age for 

the Waiohine Surface, Grapes et al . (1984) have inferred the 

Wairarapa Fault, to have a rate of horizontal displacement of llmm/year 

and a rate of vertical uplift of 1.7mm/year. 

Lineaments 

Figure 6-18 shows an interpretation of lineaments observed while 

viewing aerial photograph stereoscopic pairs. The Wairarapa Fault 

(lineament A; Fig. 6-18) is obvious. Other lineaments could represent 

recent faults, or be the eroded traces of now inactive faults. It is 

interesting to note that along the major lineament B (Fig. 6-18), there 

is a zone of rocks of the volcanogenic association. As these rocks (such 

as the metabasite) have faulted contacts with the surrounding clastic 

sediment, the lineament could be reflecting a zone of weakness initially 

caused by the occurrence of the volcanogenic association rock types. 

Other lineaments can be related to recent crush zones (ie. 

lineament C; Fig. 6-18), although, not all lineaments seen on aerial 



0 1 2km 

Figure 6-18: Lineaments observed while viewing aerial photograph 

stereoscopic pairs. 

A= Lineament referred to in the text. 

....... 
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photographs could be related to features observed in the field. 

Recent deformation in the study area, appears to be restricted to 

mainly dextral movement along the Wairarapa Fault, although some minor 

faults could also be active. Uplift of the Tararua Range has been 

occurring since the beginning of the Cenozoic, with major uplift being 

mainly a Quaternary event ( Wellman 1969; Suggate 1978) and uplift is 

still ongoing. An uplift rate of 4mm/year for the Rimutaka-Tararua Range 

has been proposed by Wellman (1969) with the main uplift not taking place 

at the Wairarapa Fault (Lensen & Vella 1971). 

6.6 SUMMARY 

A number of deformational events produced the structures seen in 

the Tararua Range. These are outlined below in ascending chronological 

order. 

The earliest deformational episode (either one event with two 

separate phases, or a single progressive deformation) was one of 

shortening and deformation of soft sediment, resulting in the production 

of at least two fold events with different axial surface orientations. 

This deformation is recorded in blocks within melange. 

The second deformation is characterized by fragmentation and 

disruption of bedding. Structures produced by this deformation are: 

1) faulting at a low-angle to bedding; 

2) shear foliation; 

3) faulting at a high-angle to bedding. 

These structures do not occur in any specific order but rather as ongoing 

or alternating events with repeated faulting and development of shear 

foliation. In places, fragmentation has been so complete that melange has 

formed. 

Post-melange deformation has produced folds. There is positive 
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evidence from field observations for one set of post-melange folds. 

However geometric analysis of bedding a nd shear foliation away from the 

melange i ndicate that two generations of folding has occurred (Fig. 6-11) 

and suggests that the latter fold generation and the mesoscopic 

post-melange folds were produced during the same deformational event. 

Nevertheless the timing of the early fold generation defined from 

geometric analysis is obscure. This event may have occurred either: 1) at 

the same time as the pre-melange mesoscopic folds, or alternatively, 

2) after the melange had formed and hence is a post-melange fold but 

formed prior to the folds that can be seen deforming the melange. 

Cenozoic deformation has resulted in uplift of the Torlesse 

Supergroup to form the Tararua Range, with deformation now being 

dominantly dextral strike-slip movement along the Wairarapa Fault . 

6.6.1 Comparisons with other areas 

The deformation determined in this study area can be related 

to deformation seen in other areas in the Torlesse Supergroup. Table 6-1 

contains the deformational sequence determined by other workers in the 

Torlesse Supergroup, mainly from the southern half of the North Island 

and their possible relationships with other studies. The most obvious 

features to note in comparing the deformation seen in different regions 

are that: 

1) often, the first recorded deformation is one of deformation of 

soft, unlithified, sediment. 

2) a late deformation seen in all the studies (except in the 

Pohangina Melange, Sporli & Bell, 1976) has produced steeply 

plunging NE-SW trending folds . 

3) where melange has developed, it was observed to occur after the 

soft sediment deformation, but before the deformation that 

produced the steeply plunging folds. 



From Table 6-1 the structure and deformation seen within the study 

area, is similar to that observed elsewhere in the Torlesse Supergroup, 

thus implying that the deformation sequence affecting the rocks was of a 

regional scale. 
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CHAPTER SEVEN 

DISCUSSION 

The advent of the plate tectonic theory has spawned a renewal of 

interest in rocks of the Torlesse Supergroup . Many authors have related 

features of the Torlesse Supergroup to processes associated with 

convergent plate margins (eg. Landis & Bishop 1972; Blake et al. 

1974; Coombs et al. 1976; Sporli 1978; Bradshaw et ~· 1981; 

MacKinnon 1983; Korsch & Wellman in press). 

The aim of this discussion is to assess how my observations, data 

and analyses from the Tararua Range contribute to, or constrain, the 

various models proposed for the origin of the Torlesse Supergroup. 

Initially, rock types found within the Tararua Range are outlined, with 

suggestions as to their original source and environment of deposition. 

These rocks can be divided into two groups, those of a sedimentary 

association and those of a volcanogenic association, which have 

depositional environments that are not related (Chapter 2 & 3). 

7.1 SOURCE OF THE SEDIMENTARY ASSOCIATION 
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Rocks of sedimentary association are predominantly sandstone and 

argillite with minor calcareous siltstone, conglomerate and olistostrome. 

From field observations, petrography and geochemical analyses, the rocks 

appear to have been derived from the same source. Greywacke from the 

Tararua Range contains detritus derived from an active continental margin 

which was shedding sediment of acid-volcanic and metamorphic origin 

(Chapter 2-3). 

Although there is little dispute over the type of source rocks 

there are several ideas as to the site of these rocks. Initially, the 

Western Province was considered to be the source area of the Torlesse, 

because of its composition and proximity (Landis & Bishop 1972). However, 

detritus derived from the Western Province would have to cross the 



Hokonui Association. It seems unlikely that this could be achieved 

without the detritus being modified by incorporation of Hokonui 

Association derived sediments (volcanic rich). There is no trace of any 

"by pass" systems (eg. submarine canyons) which would allow 

transportation of sediment through the Hokonui Association from the 

Western Province to the Torlesse Supergroup, and no positive record of 

Hokonui detritus in Torlesse rocks. Recently other possible source areas 

have been proposed, these being an eastern source (Bradshaw 1972; 

Bradshaw & Andrews 1973; Andrews 1974; Andrews et al. 1976; Kamp 

1980) and a source to the south (Blake ~ al. 1974; Mackinnon 1983; 

Korsch & Wellman in press). 

An eastern source for the Torlesse Supergroup has been based on 

regional sedimentological patterns. Andrews et al. (1976) argue that 

conglomerates and more shallow water sediments representing proximal 

sediments occur in the eastern portion of the Torlesse. Such 

observations have occurred not because of an actual abundance of 

conglomerate and shallow marine sediments in the eastern portion of the 

Torlesse Supergroup, but rather as these parts of the Torlesse are more 

accessible to workers (MacKinnon 1983). If such a continental landmass 

did exist to the east of the Torlesse, there is no evidence of it at 

present and it must have been removed, presumably by tectonic processes. 
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The third possible source is to the south, with detritus possibly 

being derived from Lesser Antarctica (Bradshaw~ al. 1981; Dickinson 

1982; MacKinnon 1983; Korsch & Wellman in press). A Lesser Antarctica 

(Gondwana) source is appropriate as it has rocks suitable for deriving 

detritus of Torlesse composition. MacKinnon (1983) and Korsch and Wellman 

(in press), have proposed a southerly source based on reconstructions of 

the New Zealand mass prior to offset by the Alpine Fault and associated 

faults. These reconstructions show that fossil zones in Torlesse 



progressively young and wedge out towards the northeast, suggesting 

derivation of sediment from a source to the south . 

7.1.1 Possible source of Tararua greywacke 

126 

Paleocurrent indicators (eg. flute casts, scours, groove casts) 

were not observed in the study area, although some constraint on the 

original source site is provided by petrographic modal data. During 

dispersal of detritus with increased distance from the source, changes in 

composition of sediments do occur (Pettijohn 1957). With transport the 

grains undergo abrasion (breaking down and fragmenting individual 

grains) and hence with increased distances of transport, the proportion 

of quartz should increase, as these grains are the least susceptible to 

abrasion (ie. compared to feldspar grains, Pettijohn 1957). 

Greywacke of ?Middle Jurassic age (based on the age of radiolaria 

in chert, see below) from the Tararua Range have an average composition 

of Q33F48L19, whereas greywackes of similar age from the South Island 

contain less quartz (Q27F33L40, MacKinnon 1983). This suggests that 

greywacke from the Tararua Range has undergone more transportation prior 

to deposition relative to the greywacke of similar age from the South 

Island. A similar comparison can be made between sediments of known Late 

Triassic (Oretian-Otamitan) age from the Wellington area and the South 

Island. Here again, the average modal data from greywacke from Wellington 

(Q37F39L24, Rowe 1980) have more quartz relative to greywacke from the 

South Island (Q31F59L10, MacKinnon 1983). 

7.1.2 Depositional environment for rocks of the sedimentary 

association 

The rocks of the sedimentary association are interpreted as being 

deposited in a deep water marine environment (chapter 2-1). The 

majority of sediments within the Torlesse Supergroup have been deposited 

by turbiditic flows, although the lack of marker beds and the monotonous 



127 

alternating nature of the greywacke- argillite turbidite beds makes the 

extent and length of each individual turbidite impossible to define . 

Several workers (Carter et al . 1978; Begg 1980; Hicks 1980; --

Howell 1980a; Botsford 1983; Rattenbury 1983; MacKenzie 1983) have 

interpreted the sediments seen within small regions in the Torlesse 

Supergroup in terms of a submarine fan system, with most sediments 

representing deposition in a middle to outer fan environment. These 

systems can occur in trenchs or on the abyssal plains. Sediments 

accumulating in these two types of depositional environments are 

difficult to differentiate because they show similar features (Dickinson 

1982). However it would be expected that abyssal plain sediments would 

contain a larger proportion of hemipelagic and pelagic sediments, while 

trench-fill deposits would contain a higher proportion of coarser 

detritus (eg. sandstone). In the Torlesse Supergroup , the sediments 

contain a high proportion of sandstone (MacKinnon 1983) and it is most 

likely that the turbidites have been deposited in a trench. Other workers 

(MacKinnon 1983; Korsch & Wellman in press) also suggest that the 

Torlesse sediments have been deposited in a trench. The modal differences 

of quartz, feldspar and lithic rock fragments described in Chapter 7.1.1 

could be due to transportation of sediment from south to north in a 

trench. 

7.2 ORIGIN OF THE VOLCANOGENIC ASSOCIATION 

Rocks of the volcanogenic association, namely metabasite, red 

argillite, chert and limestone, can be regarded as representing sections 

of seafloor material. Based on geochemical analyses (chapter 3-2) the 

metabasites are oceanic in character, being erupted at mid-ocean ridges 

and also at intra-plate (ocean plate) settings, that is, seamounts. Other 

geochemical analyses of metabasites from the Torlesse Supergroup (Roser 

1983) indicate also that they have erupted in oceanic settings . Chert, 
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red argillite and limestone all represent seafloor deposits (Chapter 

3-3). Many workers have suggested that rocks of volcanogenic association 

elsewhere in the Torlesse Supergroup are seafloor material (eg. Sporli 

1978; Botsford 1983; Roser 1983; MacKinnon 1983). 

7.3 ORIGIN OF THE TORLESSE SUPERGROUP 

Any model for the origin of the Torlesse Supergroup must explain 

how rocks of the volcanogenic association and rocks of the sediment_ary 

association are now interleaved. 

7.3.1 Proposed model of formation of the Torlesse 

Recent models that discuss the origin of the Torlesse Supergroup 

all involve convergent plate margins. Bradshaw et al. (1981) view the 

older rocks of the Torlesse Supergroup as representing an exotic 

submarine fan system which was bought into contact with the New 

Zealand-Gondwana margin and added to the convergent margin, while the 

younger rocks represent sediments that accumulated in a trench seaward of 

the accreted submarine fan. 

A model favored by several workers (Sporli 1978; MacKinnon 1983; 

Korsch & Wellman in press) is that the Torlesse Supergroup represents 

accretion in a migrating subduction system (terminology follows Karig & 

Sharman 1975). In subduction systems, which are often associated with 

active continental margins, seafloor material and trench-fill sediment 

are scrapped off, undergo decoupling from the subducting plate and are 

incorporated into the accretionary prism at the inner trench wall (Fig. 

7-l). Deposition of sediment in a migrating subduction system will result 

in accretion of similar age sediments into "packets", with subduction 

migrating oceanward to keep pace with the "stacking" of "packets". Many 

subduction systems show a progression from oldest to youngest sediment 

seaward from a converging margin, eg. Alaska (Connelly 1978); Franciscan 

Complex, California (Blake & Jones 1974). Accretion of progressively 
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younger "packets" of sediment is typical of modern subduction systems 

(Karig & Sharman 1975). 

Features of the Torlesse Supergroup indicative of accretion of 

sediment in progressively younger "packets" is the distribution of the 

mutually exclusive fossil zones which young to the east (Speden 1976; 

Sporli 1978; MacKinnon 1983) while within individual fossil zones the 

younging directions are predominantly to the west (Sporli & Bell 1976; 

Sporli 1978). These features infer accretion in a westward dipping 

subduction zone. 

The model that the Torlesse Supergroup represents accretion is 

favored by several workers (eg. Sporli 1978; MacKinnon 1983; Korsch & 

Hellman in press) and appears to best "fit" what is at present known 

about the Torlesse. However there is some disagreement among workers 

as to the site of accretion. 
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Direct accretion of the Torlesse Supergroup onto the New Zealand 

mass has been proposed by Sporli (1978) and Korsch and Wellman (in press) 

with the contact between the Torlesse Supergroup and the Caples Group 

being seen as gradational. Sporli (1978) views the Torlesse as 

representing accretion of a large submarine fan with its source lying to 

the south. Alternately Korsch and Wellman (in press) suggest that the 

Torlesse has been deposited by long distance transport along a trench 

with subsequent ac~retion of these trench-fill sediments. 

In contrast, MacKinnon (1983) suggested that the Torlesse was 

originally accreted to the Western Province-Gondwana margin, with 

deposition occurring in a trench fronting Gondwana and direct accretion 

onto the Western Province-Gondwana margin in that area. The Torlesse 

Supergroup was later "rafted" into its present position in part by 

strike-slip movement. In such a case, the contact between the Caples 

Group and the Torlesse Supergroup would be an abrupt break, such as a 



major fault or suture but now it would be obscured somewhere i n the Haast 

Schist. 

Howel l (1980b) has proposed that New Zealand is made up from at 

least four tectonostratigraphic terranes (l:Tuhua-Western Province, 

2:Hokonui, 3:Caples, 4:Torlesse terranes). In such a model the Torlesse 

represents an ~'exotic" landmass which has been transported from its 

original site of formation and initially sutured to the Caples terrane, 

both of which were then sutured to the Hokonui and Tuhua terranes. Thus 

the Torlesse has been transferred by collision and suturing to the New 

Zealand mass. 

7. 4 SUBDUCTION ZONES 

Factors affecting subduction and in particular the formation of 

the accretionary prism, need to be understood before inferences can be 

made about features seen within the Torlesse Supergroup. 

7.4.1 Style of accretion 

The growth and style of accretion within subduction systems 

varies, being a function of several variables, including the rate of 

subduction and the availability and nature of the sediment on the 

downgoing plate. From studies of ancient and modern subduction complexes 

Karig and Sharman (1975) have shown that the availability and rates of 

sediment supply onto the downgoing plate is more important than the rate 

of subduction. 

The relative proportions of accreted tubiditic and ocean floor 

materials varies, some prisms being dominated by turbiditic, 

landward-derived, trench sediment, eg. Kodiak Island, Alaska (Byre 1982). 

Turbiditic sediment has a relatively low density and strength in 

comparison to that of seafloor material and Moore (1975) suggested that 

during subduction the lower density material would be preferentialy 

accreted. Therefore where turbidite sediment influx into the trench is 
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high, shallow accretion would be dominated by low density turbiditic 

sediment with the denser seafloor mater i al tending to be accreted at 

greater depths or subducted completely. 

Other prisms, eg . Mutki, Turkey (Hall 1976) and Makran, Iran 

(McCall 1982), are dominated by seafloor material indicating little 

influx of sediment into the trench. 

7.4 . 2 Mechanisms of emplacement 

132 

The processes involved in transferring the sediment pile from the 

subducting plate to the accretionary prism have been inferred from 

studies of modern and ancient subduction systems (Karig & Sharman 1975; 

Moore & Wheeler 1978) . The sediment is thought to undergo the following 

sequence of events : 

1) With initial subduction, the sediments are dewatered and lithified . 

Folding of the unconsolidated sediment may occur. 

2) Sediment, being consolidated, passes through a "master" shear zone, 

which represents the initial dislocation of the sediment from the 

subducting plate . 

3) Sediments are sheared, with development of foliation in response to 

underthrusting as sediment is accreted. 

4) With subsequent accretion the sediment is tilted and rotated toward 

the land , with minor movement along thrust faults . 

5) Later folding and shearing 

(Karig & Sharman 1975; Moore & Wheeler 1978; Byrne 1982) . It appears that 

the most intense deformation takes place at the beginning of subduction 

and detachment of the sediment from the subducting plate, with the amount 

of deformation decreasing as the sediment continues to be kneaded into 

the accretionary prism (Karig & Sharman 1975; Byrne 1982) . 
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7.5 DATA FROM THE FIELD AREA 

Many features of the Tararua Range are comparable wi th those 

inferred for accretionary prisms. Trench-fill detritus, derived f rom an 

active continental margin, and seafloor material being accreted in 

"packets" are often documented in subduction systems eg. Sunda Arc (Moore 

et al. 1982) • 

Within the Tararua Range rock types derived from a continental 

margin and also seafloor are juxtaposed ( that is sedimentary association 

and volcanogenic association respectively). Also, the sequence of 

deformation in the study area is similar to that described for 

accretionary prisms. Therefore the data from the study area does not 

contradict an accretionary prism model. The implications of data from 

this study to the accretionary model are outlined below. 

Within the study area, rocks of the volcanogenic association are 

approximately 2-3 % of the total rocks present. However to the west of 

the study area around Wellington and at the Otaki Forks region 

(Rattenbury 1983) the rocks are predominantly clastic sediments with 

negligible rock of seafloor origin. 

In the Wellington region and the Axial Ranges of the southern 

North Island, there is an overall trend from west to east, to have an 

increased amount of rocks of the volcanogenic association ie. more rocks 

representing seafloor deposits, and a decrease in clastic trench 

deposits. This change in rock type across the Torlesse could indicate 

either: 

1) a decrease in the sediment influx into the trench from the continental 

source, 

2) that the rocks exposed at the eastern portion of the Torlesse are 

representing deeper depths within the accretionary prism, 

3) the rate of subduction on the downgoing plate may have increased, 



therefore not allowing sediment in the trench to build up before it i s 

su bd ucted . 
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If the eastern portion of the Torlesse Supergroup had been buried 

to greater depths, relative to the western portion of the Torlesse, it 

might be expected to have a higher grade of metamorphism. However as the 

Torlesse overall has a prehnite-pumpellyite metamorphic facies, 

proposition 2) is unlikel y . Also the rate of the subducting plate does 

not appear to be an important feature of the style and growth of 

accretionary prisms (Karig & Sharman 1975) and therefore proposition 3) 

is doubtful. 

I suggest that the first proposal is most probable, and that the 

change in rock types exposed throughout the Torlesse represents a decline 

in the influx of sediments into the trench with time, allowing more 

seafloor to be incorporated into the accretionary prism. It is 

interesting to note that sediment of Early Jurassic age has not yet been 

found within the Torlesse (MacKinnon 1983), which could be due to a lack 

of sediments in the trench at this time. 

A significant aspect of this study is the occurrence, extraction 

and dating of radiolaria from chert blocks from the Tararua Range and the 

Manawatu Gorge as Middle Jurassic and Late Jurassic age respectively. The 

distribution of diagnostic and identifiable fossils are sparce in the 

North Island, with the fossil age zones in the Torlesse being much less 

well defined than in the South Island. Any additional information as to 

fossil localites and ages of the rocks within the Torlesse Supergroup can 

only aid the delineation of the fossil zones and possible tectonic 

reconstructions. 

The paucity of recorded fossil localities within the Torlesse, and 

in particular the North Island, is probably a reflection on the amount of 
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work that has been done on the rocks, which is mainly controlled by their 

accessibility. Also, turbidites are notoriously fossil-poor. Most work to 

date has been done in the South Island, and in easily accessibly parts of 

the Torlesse in the North Island ie. Wellington. With more work being 

done on the rocks of the Torlesse of the North Island it would be 

expected that the fossil zones will become better defined. 

Feary and Pessagno (1980) found radiolaria from chert blocks in 

melange from the Raukumara Peninsula, North Island, where the radiolaria 

are of Ururoan (Pliensbachian-Toarcian) age while the surrounding clastic 

sediments based on macrofossils are Motuan (Albian) age . These rocks are 

thought to represent accretion in a subduction system (Feary & Pessagno 

1980) which suggests that for at least some of the rocks in the Raukumara 

Peninsula there is approximately 80 million years age difference between 

the seafloor material (represented by the chert block) and the 

trench-fill sediments both of which were later accreted. 

This gives a possible indication of the age difference between the 

two rock associations in the Tararua Range, in so much as, the rocks of 

sedimentary association may be millions of years younger than the age of 

the accreted seafloor material . This raises the possibility that the 

greywacke and other rocks of the sedimentary association may be of Late 

Jurassic or Cretaeous in age. 

The age of radiolaria from chert in the study area suggests that 

part of the seafloor that was being subducted was of Middle Jurassic age 

and that the sediment being deposited in the trench and accreted with 

this seafloor material must be of Middle Jurassic age or younger (ie . 

Cretaeous) . The same inference can be made about the sediments at the 

Manawatu Gorge, that they are either Late Jurassic in age or younger 

based on the age of radiolaria found in the chert block. 

These ages based on radiolaria gives much better constraints as 



to the locations of the fossil zones within the North Island, because the 

sediment associated with the chert blocks must be of Middle Jurassic 

(Tararua Range) or Late Jurassic (Manawatu Gorge) age or younger . Thus, 

the sediment would belong to fossil zone 5 (MacKinnon 1983) in the 

Torlesse Supergroup . A possible delineation of fossil zones within the 

North Island utilizing my data is given in Figure 7-2. 
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Figure 7-2 : Delineation of fossi l zones in the so uthern North Island . 

Symbols 

0 Torlesse Supergroup (exposed) 

---- inferred fossil boundary 

0 fossil localities from this stud y 

0 Monotis localities (from Speden 1976) 

• Torlessia and Titahia localities 

(from Speden 1976) 

Fossil Zones 

5 Late Jurassic- Early Cretaceous 

4 Monotis, Late Triassic (Warepan) 

3 Torlessia, Late Triassic (Oretian-Otamitan) 
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APPENDIX I 

MAPS 

Topographic maps and aerial photographs used in this study are: 

Topographic maps scale 1:25,000 

N.Z.M.S 260 S26/C 

N.Z .M. S 260 S26/D 

N.Z.M.S 260 S27/A 

Aerial photographs scale approximately 1:25,000 

S.N 3672 4731/27 

S. N 3672 4731/28 

S.N 3672 4731/29 

S. N 3672 4732/25 

S.N 3672 4732/26 

S.N 3672 4732/27 

S.N 3672 4732/28 

S.N 3672 4732/29 

S.N 8171 F/5 

S.N 8171 F/6 

S.N 8171 F/7 
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APPENDIX II 

MAJOR AND TRACE ELEMENT ANALYSES 

Procedure 

Thirty-four samples were analysed for major and trace elements 

contents . The rock samples were hydraulically crushed. Chips with obvious 

veining, weathering and other impurities were discarded. "Clean" chips 

were reduced to a fine powder in a "tema" rock mill. 

Analyses were determined in an automated Siemens SR S-1 X-Ray 

Flourescence Spectrometer using fused glass discs (major elements) and 

pressed powder pellets (trace elements) . Full details of the analytical 

procedures are contained in Kennedy et al . (1981) . 
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APPENDIX III 

POINT COUNTING PROCEDURES 

Point counting procedures, follow the method of Glagoleu and Chayes 

(Carver 1971), where modal analysis were determined by point counting 

500 grains noting grain composition (those listed in Table 2-2) from a 

standard thin-section using a Swift automatic point counter . As the total 

lithic rock fragment is low, an extra 150 point counts of lithics 

fragments alone was made . During the initial count of 500 points , quartz 

and feldspar grains within lithic fragments were assigned to the quartz 

and feldspar categories respectively, following Dickinson (1970) . A few 

sandstone thin-sendtones contain mud-stone rip-up clasts and these clasts 

were not included in the point counts . 

Theoritical reliability of values obtained is within 4 .5% of true 

values at the 95% confidence level (Vander Plais & Tobi 1965). 



APPENDIX IV 

GRAIN SIZE 
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The grain size of fifteen sandstone samples (those which had modal 

analyses) was determined from thin-section measurement. The apparent long 

axis of 100 grains were measured using a graduated micrometre eyepiece . 

The grains being measured were determined by a Swift automatic stage (the 

same technique as for modal point counting except instead of noting grain 

composition, the apparent long axis of each grain was measured). 



APPENDIX V 

SAMPLE LIST 

Samples are housed in the petrology collection, Geology Department, 
Victoria University of Wellington. For most rock samples there is a 
hand specimen lodged (* no rock sample), as well as specimens that 
are listed under the column "Sample Type" where : 
T=Thin-section; 
P:Powder; 
M=Electron microprobe section. 

V.U.W No. SAMPLE TYPE GRID REFERENCE 

17010 
17011 
17012 
17013 
17014 
17015 
17016 
17017 
1701 8 
170 19 
17020 
17021 
17022 
17023 
17024 
17025 
17026 
17027 
17028 
17029 
17030 
17031 
17032 
17033 
17034 
17035 
17036 
17037 
17038 
17039 
17040 
1701+ 1 
17042 
17043 
17044 
17045 
17046 
17047 
17048 
17049 
17050 
17051 

T 
T 
T 
T 
T P M 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
p 
p 
p 
p 
p 
p 
p 
p 
p 
p 

p 
p 
p 

T 

p 
T p 
T p 
T p 
T P M 
p 
p 
p 
T p 
T p 
p 

S26C/ 0560 1050 
S27 A/ 0180 0855 
S26C/ 0515 1285 
S26C/ 0582 129 3 
S27A/ 0048 0839 
S27A/ 9972 07 83 
S27A/ 9800 0785 
S27 A/ 9890 0838 
S27A/ 0133 0931 
S27A/ 0100 0983 
S27 A I 0081 1000 
S27P.I 0080 1000 
S27A/ 0039 0960 
S27A/ 0053 0928 
S26D/ 1104 1931 
S26D! 1197 1783 
S26D/ 1197 1783 
S26D/ 1197 178 3 
S26D/ 1125 1912 
S27A/ 0244 0559 
S27A/ 0244 0559 
S27A/ 0244 0559 
S26C/ 0770 1310 
S26C/ 0527 1065 
S26C/ 0688 1380 
S26C/ 0378 1030 
S27A/ 9965 0816 
S27A/ 0455 0923 
S27A/ 0040 0987 
S27A/ 0072 0903 
S27A/ 9968 0852 
S27A/ 9968 0884 
S27A/ 9962 0880 
S27A/ 9970 0872 
S27A/ 0044 0870 
S27A/ 0401 0789 
S27A/ 0401 0790 
S27A/ 0401 0790 
S27A/ 0400 0791 
S26D/ 1108 1937 
S26D/ 1104 1934 
S26D/ 1106 1937 

SHORT DESCRIPTION 

Very fine grianed sandstone 
Very fine grained sandstone 
Fine grained sandstone 
Fine gra ined sandstone 
Fine grained sandstone 
Fine grained sandstone 
Fine grained sandstone 
Very fine grained sandstone 
Fine grained sandstone 
Fine grained sandstone 
Medium grained sandstone 
Fine grained sandstone 
Fine grained sandstone 
Very fine grained sandstone 
Fine grained sandstone 
Fine grained sandstone 
Very fine grained sandstone 
Argillite 
Fine grained sandstone 
Argillite 
Fine grained sandstone 
Argillite 
Fine grained sandstone 
Medium grained sandstone 
Very fine grained sandstone 
Very fine grained sandstone 
Argillite 
Very fine grained sandstone 
Calcareous siltstone 
Very fine grained sandstone 
Metabasite 
Metabasite 
Metabasite 
Metabasite 
Metabasite 
Metabasite 
Metabasite 
Hetabasite 
Metabasite 
Hetabasite 
Metabasite 
Metabasite 
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V. U .w !Jo . SAt~PLE TYPE GRlD REFERENCE SHORT DESCRIPTION 

17052 p S26D/ 1106 19 36 Metabasite 
17053 T p S27A/ 01 80 0850 Metabasite 
17054 p S26D/ 1103 1953 Metabasite 
17055 T p S26D/ 11 92 17 99 Hetabasite 
17056 T M S27A/ 9941 0882 Metabasite 
17 057 T S27 A/ 9965 08?9 t-1etabasi t e 
17058 T M S27A/ 9960 0880 Metabasite 
17059 * T S27A/ 9956 08 80 Metabasite 
17060 ;f T S27A/ 9975 0872 Metabasite 
17061 T S27 A/ 9968 0873 !'le t a basi te 
17062 T M S27AI 9975 0872 Metabasite 
1706 3 T S27A/ 0071 0858 Fine grained sandstone 
17064 T S27A/ 0071 0858 Argillite 
17065 T S27A/ 0403 0788 Argi llite 
17066 T S27A/ 0510 0813 Fine grained sandstone 
17067 T S27A/ 0403 0788 Argillite 
17068 T S27AI 9836 0810 Medium grained sandstone 
17069 T S27 A/ 9962 0825 Very fine grained sandstone 
17070 T S27A/ 9963 0820 Argillite 
17071 T S27A/ 0165 09 35 Fine grained sandstone 
17072 T S26C/ 0428 1130 Conglomerate 
17073 T S26C/ 0382 108 1 Argi llite 
17074 T S27A/ 04 35 0903 Red chert 
17075 T S26C! 058 1 1027 Very fine grained sandstone 
17076 T S26C/ 0521 1072 Very fine grained sandstone 
17077 T S26C/ 0530 1061 Very fin e grained sandstone 
17078 T S26C/ 0601 1205 Red chert 
17079 T S26C/ 0620 1218 Red chert 
17080 T S26C/ 0790 1290 Olistostrome 
1708 1 T S26C/ 0789 1290 Limestone 
17082 T S26C/ 0788 1291 Limestone 
17083 T S26C/ 0640 1341 t-1edium grained sandstone 
17084 T S26C/ 0644 1346 Limestone 
17085 w T S26C/ 0532 1262 Very fine grained sandstone 
17086 T S27A/ 0547 0832 Hhite chert 
17087 T S26C/ 0547 1278 Fine grained sandstone 
17088 T S26C/ 0547 1278 Olistostrome 
17089 T S26C/ 0547 1278 Olistostrome 
17090 T S26C/ 0446 1295 Fine grained sandstone 
1709 1 T S26C/ 0832 1590 Metabasite 
17092 T S26D/ 1151 1890 Grey chert 
17093 T S26D/ 1160 1889 Calcareous siltstone 
17094 T S26D/ 1108 1950 Argillite 
17095 T · S26D/ 1180 1842 Red chert 
17096 T S26D/ 1192 1794 Red argillite 
17097 T S26D/ 1192 1794 Limestone 
17098 T S26D/ 1130 1710 Green chert 
1709 9 T S26D/ 1147 1605 Calcareous siltstone 
17100 T S26D/ 1155 1883 Red argillite 
17101 T S27A/ 9955 0837 Argillite 
17102 T S27A/ 0402 0789 Quartz vein 
17103 T S27A/ 0410 0988 Very fine grained sandstone 
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V. U. ~~ No . SAMPLE TYPE GRID REFERENCE SHORT DESCRI PT ION 

17104 T S27A/ 0430 0957 Fine grained sandstone 
17105 T S26C/ 0549 1175 Very fine grained sandstone 
17106 T S27A/ 9795 0790 Very fine grained sandstone 
17107 T S26C/ 0709 1397 Fine grained sandstone 
17108 T S26C/ 0547 1278 Fine grained sandstone 
17109 Chert(Manawatu Gorge ) 
17110 Chert(Manawatu Gorge) 
17111 S26C/ 11 30 1710 Greywacke ellipsoid 
17112 S26C/ 1130 1710 Greywacke ellipsoid 
17113 S26C/ 1130 1710 Greywacke ellipsoid 
17114 S26C/ 1130 1710 Greywacke ellipsoid 
17115 S26C/ 11 30 1710 Greywacke ellipsoid 
17116 S26C/ 1130 1710 Greywacke ellipsoid 
17117 S26C/ 11 30 1710 Greywacke ellipsoi d 
17118 S26C/ 1130 1710 Greywacke ellipsoid 
1711 9 S26C/ 11 30 1710 Greywacke ellipsoid 
17120 S26C/ 1130 1710 Greywacke ellipsoid 
17121 S26C! 11 30 1710 Greywacke ellipsoid 
17122 S26C/ 1130 1710 Greywacke ellipsoid 
1712 3 S26C/ 1130 1710 Greywacke ellipsoid 
17124 S26C/ 1130 1710 Greywacke ellipsoid 
17125 S26C/ 1130 1710 Greywacke ellipsoid 
17126 S26C/ 1130 1710 Greywacke ellipsoid 



APPENDIX VI 

ELECTRON MICROPROBE ANALYSIS 

Electron microprobe analyses were made using the Jeol 733 Superprobe in 

the Analytical Facility, Victoria University of Wellington . All polished 

mounts were carbon coated. 
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APPENDIX VII 

CARBONATE DETERMINATION 

Thin-sections were stained with alizarin red-S and potassium ferricyanide 

solution, to differentiate carbonates. For staining the thin sections 

were 

1) Etched in dilute (1.0%) HCl solution; 

2) Immersed in a solution of alizarin red-S and potassium 

ferricyanide for 45-75 seconds; 

3) Immersed again in a solution of alizarin red-S to further 

increase the colour differentiation of carbonate; 

4) Washed in distilled water. 
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APPENDIX VIII 

ELECTRON MICROPROBE ANALYSES 

CL INO PYROXENE 
17045 

Si02 49 . 30 4a no 
"" • V ..; 48 . 9.) 4Y . 6 -r 49 . 39 47 . 0G 49 . 4'( 49 . 67 46 . 28 

Al 2 03 3 . 70 3. 68 4 . 17 3. 54 3. 93 6 . 03 4. 02 4 . 15 6 . 59 
Ti02 1. 9 1 1. 85 2 . 13 2 . 04 2. 09 3 . 16 1. 75 1. 7:3 2 . 93 
feO 7 . 56 7 . 79 7 . 79 7 . 68 7. 78 8 . 33 6 . 57 6 . 74 7 . 70 
·lnC O. b 0 . 12 0 . 16 0 . 14 0 . 17 0 . 10 0 . 10 0 . 12 0 . 12 
it'1g0 14 . 48 14.55 14. 15 14 . 02 14 . 20 12.45 14. 60 14.41 12. '6'( 

CaO 22 .42 22 . 2':;) 22 . 2':) 21. 83 22 . 12 21. 62 22 . 1c 21 . 65 22 . 95 
tJa 20 0 . 38 0.36 0 .41 0 . 33 0 . 38 0 . 55 0. 39 0 . 37 0 . 36 
K

2
0 0 . 0 1 0 . 01 0 . 04 0 . 07 0 . 02 

Tot3.l 99 . 90 99 . 7:: 100 . 00 99 . 26 100 . 0'6 99 . 34 99 . 02 99 . (.;0 99 . bO 

CLHWPYROXE NE 
17062 

Si Ol. 4o.4c 4tl . d7 l!d . 02 48 . 19 49 . 6U 51 . .52 4b . d 1 47 . 98 
Al 2 03 4 . 23 4 . 37 5 . 16 5 . 50 4. 06 2 . 49 5. 00 4 . 42 
Ti02 1. 96 2 . 0j 2. 01 2. 06 1. 99 1. 56 2 . 29 2.27 
FeO 7.47 7 . 53 6 . 77 6 . 83 7 . 83 7.22 7.4 6 8 .52 
i·1n0 0 . 19 0 . 15 0 . 1'( 0 . 08 0 . 12 0 . 1 '{ 0 .1 2 0 . 10 
i1g0 13. 89 13 . 86 13 . 7 i~ 13. 79 14 . 05 15. 20 13. 63 13. 46 
CaO 22 . 33 22 . ~~j 22 . 66 22 . 29 22 . 41 21 . 35 21 . 64 21 . 37 
tla 2 0 0.43 0 . 45 0. 39 0 . 40 0. 38 0 . 32 0 . 42 0.44 
K2 0 0.03 0 . 0~ 0 . 04 

Tot a l 99 . C6 99 . 59 98 . 98 99 . 17 100 . 68 99 . 43 9S . 57 98 . 56 

CL INOPYROXENE 
1705 8 

Si02 46 . 63 50.20 50 . 78 49.20 
Al 203 6 .42 4 . 80 4. 82 4. 87 
Ti 02 1. 71 0 . 77 0. 86 0 . 87 
FeO 7. 55 5.78 5.84 5.71 
!·:no 0. 19 0 . 04 0 . 22 0. 17 
~1g0 14. 38 16. 90 16 . 89 16 . 83 
C2.0 19. 73 19. 51 20.2 j 19 . 01 
Ha 2 0 0.34 0 . 33 0. 33 0. 33 
K20 0.01 0. 01 

----- ----- ----- -----
Total 98 . 96 92 . 33 99 . 96 97 . 04 
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PUHPELLYITE 

GREYHACKE l-1ETAI3ASITE 

17014 17056 17062 

Si02 37 . 37 36 . <J7 39 . 04 37 . 38 37 . 75 36 . 58 44 . 23 
Al2 C3 20 . 2') 20 . 6U 1 y . 11 20 . 56 20 . b:, 2~ . 7 9 27 ' (J 1 
Ti02 0 . 01 0 . 06 1. 20 0 . 15 0 . 02 0. 03 0 . 02 
FeO 9 . 92 e . s2 11 . o4 10 . 37 0 . 59 0 . 2/.J O. Y4 
~-l n O 0 . 37 0 . 19 0 . 09 0 . 05 1. 4 3 1. 11 0 . 67 
tv! gO 0 . 05 2 . 66 2 . 'i 1 2 . 2? 0 . 34 0 . ~9 1. 04 
CaO 23. 40 20 . 77 16 . 53 17 . 71 20 . 49 21. 31 18 . 39 
Na 2C 0 . 01 0 . 06 0 . 03 0 . 02 ::, . 11 
K2 0 0 . 73 0 . 38 0 . 03 

----- ----- ----- ----- ----- ----- -----
Total 96 . 37 90 . 07 91. 26 88 . 93 88 . 48 89 . 67 95 . 44 

CE:LADO!IITE: PREH!HTE 
( 1'( 056 ) (17 058 ) 

Si 02 56 . 58 40 . 32 41 . 98 41 . 56 40 . 74 38 . 78 
Al 2 G

3 
7 . 8ll 19 . 96 1t- . e4 1E. 67 2C. 55 20 . 5.) 

TiG2 0 . 09 0 . 01 0 . 01 0 . 05 0 . 07 
FeG 1 Lj • '( 1 
Fe 2l\ 6 . 06 '7. 40 7.42 5 . 03 5 . 80 
t1n0 0 .05 0 . 0 ~ 0.02 0.07 0.09 0 .06 
t<OIO 6 . 40 0 . 02 0. 01 0 . 01 0 . 05 
CaO 0.21 24 . 93 25 . 76 25 . 74 25.27 24 . 49 
NrJ 2 G O. Oi; 0 . 09 0 . 10 0 . 0'1 O. OG 
K20 6 .40 0 . 03 0 .01 0.01 0 . 01 0 . 01 

----- ----- ----- ----- ----- -----
Tota l 92 . 19 91. 4o 94. 12 93 .79 91 . 86 89 . 80 

-· 

Total iron as FeO or Fe 20 . 

SPHENE 

" NORt'J ,~L " i\L- FE RICH 
17056 17056 

SiC'2 31 . 83 29 . 67 32 . 41 2o . 6o 31. 14 43 . 26 35 . 96 
Al 2 03 3.31 2. 53 2.99 2. 8 1 5.09 5.41 6.78 
Ti 02 33 . 04 26 . 8 1 29 . 78 25 . 04 14 . 25 6. 98 10 . 73 
F e 2 03 2 . 67 7 .4 9 5. 86 7.04 11.03 15. 05 11. 46 
LnG 0. 18 0.31 
t·~gO 0 .17 0 . 14 0 .52 0. 17 4. 14 6 .93 5.22 
C2 0 26 . 68 25.56 25 . 52 25.30 21. 35 21.49 19 . 65 
~Ja 2 C 0 . 12 0.30 0.38 0.31 
K2 0 0 . 34 0 . 10 0 . 07 0 . 16 0 "l.! • ..J . 0. 10 0.4C 

----- ----- ----- ----- ----- ----- -----
TOL <l l 96 . 05 92 . 77 97 . 16 o9 . 12 87 . 60 99 . 61 9) . 52 
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