
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering
and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

Anonymously Establishing Digital

Provenance in Reseller Chains

by

Benjamin Philip Palmer

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements

for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2012

Abstract

An increasing number of products are exclusively digital items, such as media

files, licenses, services, or subscriptions. In many cases customers do not

purchase these items directly from the originator of the product but through a

reseller instead. Examples of some well known resellers include GoDaddy, the

iTunes music store, and Amazon.

This thesis considers the concept of provenance of digital items in reseller

chains. Provenance is defined as the origin and ownership history of an item. In

the context of digital items, the origin of the item refers to the supplier that created

it and the ownership history establishes a chain of ownership from the supplier to

the customer. While customers and suppliers are concerned with the provenance

of the digital items, resellers will not want the details of the transactions they have

taken part in made public. Resellers will require the provenance information to

be anonymous and unlinkable to prevent third parties building up large amounts

of information on the transactions of resellers. This thesis develops security

mechanisms that provide customers and suppliers with assurances about the

provenance of a digital item, even when the reseller is untrusted, while providing

anonymity and unlinkability for resellers .

The main contribution of this thesis is the design, development, and analysis

of the tagged transaction protocol. A formal description of the problem and

the security properties for anonymously providing provenance for digital items

in reseller chains are defined. A thorough security analysis using proofs by

contradiction shows the protocol fulfils the security requirements. This security

analysis is supported by modelling the protocol and security requirements

using Communicating Sequential Processes (CSP) and the Failures Divergences

Refinement (FDR) model checker. An extended version of the tagged transaction

protocol is also presented that provides revocable anonymity for resellers that

try to conduct a cloning attack on the protocol. As well as an analysis of the

security of the tagged transaction protocol, a performance analysis is conducted

providing complexity results as well as empirical results from an implementation

of the protocol.

iv

Acknowledgements

I would like to thank my supervisors Kris Bubendorfer and Ian Welch for their

help throughout this thesis. I would also like to thank my examiners for the useful

feedback and discussion. Last but not least I would like to thank my family and

friends for their support and encouragement.

v

vi

Contents

1 Introduction 1

1.1 Use Cases . 4

1.2 Requirements . 7

1.3 Thesis Summary . 8

1.4 Contributions . 10

1.5 Thesis Organisation . 11

2 Related Work 13

2.1 Specific Systems . 15

2.1.1 Apple Fairplay System . 15

2.1.2 Open Mobile Alliance DRM 16

2.1.3 Superdistribution . 16

2.1.4 The Paradiso System . 17

2.1.5 The Potato System . 18

2.1.6 Contracts for a Distribution Chain 19

2.1.7 A Decentralised and Secure Electronic Marketplace 20

2.1.8 IEEE P1817 Working Group 21

2.1.9 Anonymous Credentials . 21

2.1.10 Comparison and Discussion 22

2.1.11 Provenance in Web Services 24

2.2 Summary . 25

3 Domain and Threat Model 27

3.1 Domain Model . 27

3.2 Provenance Model . 28

3.3 Threat Model . 31

3.4 Protocol Definition . 32

3.5 Security Properties . 33

vii

viii CONTENTS

3.5.1 Prevention of Spoofing . 34

3.5.2 Prevention of Fabrication . 35

3.5.3 Prevention of Network Sniffing 35

3.5.4 Prevention of Cloning . 35

3.5.5 Prevention of Identity Revelation 36

3.5.6 Prevention of Linkability . 36

3.5.7 Security Definition . 37

3.6 Summary . 37

4 Tagged Transaction Protocol 39

4.1 Definitions . 41

4.1.1 Identifying Items . 42

4.1.2 Structure of Licenses . 44

4.1.3 Digital Signature Scheme . 46

4.1.4 Encryption Scheme . 47

4.2 Registration Phase . 48

4.3 Supplier Generating Tag with TGC 49

4.4 Reseller Generating Tag with TGC 51

4.5 Security Analysis . 52

4.5.1 Spoofing . 55

4.5.2 Fabrication . 56

4.5.3 Network Sniffing . 58

4.5.4 Cloning . 60

4.5.5 Identity Revelation . 63

4.5.6 Linkability . 64

4.6 Modelling . 64

4.6.1 Safe Simplifying Transformations 65

4.6.2 Registration . 66

4.6.3 Supplier Generating Tag . 67

4.6.4 Reseller Generating Tag . 68

4.6.5 Remarks . 70

4.7 Summary . 70

5 Extended Tagged Transaction Protocol 73

5.1 Restricted Blind Signatures . 74

5.2 Definitions . 75

CONTENTS ix

5.3 Registering with the TGC . 76

5.4 Generating ID Token . 77

5.5 Supplier Generating Tag with TGC 78

5.6 Reseller Generating Tag with TGC 80

5.7 Security Analysis . 82

5.7.1 Fabrication . 83

5.7.2 Network Sniffing . 85

5.7.3 Cloning . 88

5.7.4 Identity Revelation . 90

5.7.5 Linkability . 92

5.8 Modelling . 93

5.8.1 Supplier Generating Tag . 94

5.8.2 Reseller Generating Tag . 95

5.9 Summary . 97

6 Anonymity, Distribution, and Verification 99

6.1 Anonymity . 99

6.1.1 Anonymity provided by the TGC 100

6.1.2 Two Party Anonymity . 100

6.1.3 Anonymous Communication Channel 101

6.2 TGC Distribution and Verification 103

6.2.1 Single Party TGC . 103

6.2.2 Multiple Party TGC . 105

6.3 Summary . 110

7 Complexity and Performance 113

7.1 Complexity . 113

7.1.1 Comparison to Anonymous Credentials 117

7.1.2 Summary . 119

7.2 Implementation Details . 120

7.3 Experimental Setup . 122

7.4 Experimental Results . 125

7.4.1 Registering Items . 125

7.4.2 Tagged Transaction Protocol 128

7.4.3 Extended Tagged Transaction Protocol 130

7.5 Summary . 134

x CONTENTS

8 Provenance in Web Services 135

8.1 Domain Model . 137

8.2 Threat Model . 139

8.3 Provenance Chains . 140

8.4 Analysis . 142

8.4.1 Completeness . 142

8.4.2 Security Analysis . 143

8.5 Preventing Exclusion Attacks . 144

8.5.1 Service Provider Registration 144

8.5.2 User Requesting Service Provider Data 144

8.5.3 Auditing Registration Information 145

8.6 Summary . 147

9 Conclusions and Future Work 149

9.1 Contributions . 152

9.2 Future Work . 153

A CSP Models 155

A.1 Tagged Transaction Protocol . 155

A.1.1 Registration . 155

A.1.2 Supplier Generating Tag . 159

A.1.3 Reseller Generating Tag . 164

A.2 Extended Tagged Transaction Protocol 170

A.2.1 Supplier Generating Tag . 170

A.2.2 Reseller Generating Tag . 176

List of Figures

1.1 The Reseller Model . 2

1.2 An Online Music Store . 5

1.3 An eBook Reseller Chain . 6

1.4 Domain Name Resellers . 7

3.1 Domain Model . 28

3.2 Provenance Graph for Tagged Transaction Protocol 30

4.1 Overview of the Tagged Transaction Protocol 40

4.2 Registering the Item with the TGC 49

4.3 Supplier Generating Tag with TGC 50

4.4 Reseller Generating Tag with TGC 51

4.5 Simulator and Adversary for Signature Schemes 53

4.6 Simulator and Adversary for Tagged Transactions 54

5.1 Registering with the TGC . 77

5.2 Generating ID Token . 78

5.3 Supplier Generating Tag with TGC 79

5.4 Reseller Generating Tag with TGC 80

6.1 Two Party Anonymity . 101

6.2 A Cascade of Mix Nodes . 102

6.3 Single TGC Verification . 104

6.4 Supplier and Reseller Interacting with Multiple TGCs 106

6.5 Adversary Cloning Tag with Multiple TGCs 108

7.1 Implementation Block Diagram . 120

7.2 Experimental Setup . 122

7.3 Key Size vs Total Time to Register Item 126

xi

xii LIST OF FIGURES

7.4 Number of TGCs vs Total Time to Register Item 126

7.5 Key Size vs Total Time to Register Item using TOR 127

7.6 Number of TGCs vs Total Time to Register Item using TOR 127

7.7 Key Size vs Tagged Transaction Total Time 128

7.8 Threshold Number of TGCs vs Tagged Transaction Total Time (no

data point for the threshold value of 2) 128

7.9 Number of Resellers vs Tagged Transaction Total Time 129

7.10 Key Size vs Tagged Transaction Total Time using TOR 129

7.11 Threshold Number of TGCs vs Tagged Transaction Total Time

using TOR (no data point for the threshold value of 2) 130

7.12 Number of Resellers vs Tagged Transaction Total Time using TOR . 130

7.13 Key Size vs Extended Tagged Transaction Total Time 131

7.14 Threshold Number of TGCs vs Extended Tagged Transaction Total

Time (no data point for the threshold value of 2) 131

7.15 Number of Resellers vs Extended Tagged Transaction Total Time . 132

7.16 Key Size vs Extended Tagged Transaction Total Time using TOR . . 132

7.17 Threshold Number of TGCs vs Extended Tagged Transaction Total

Time using TOR (no data point for the threshold value of 2) 133

7.18 Number of Resellers vs Extended Tagged Transaction Total Time

using TOR . 133

8.1 Web Services Model . 136

8.2 Web Services Provenance Graph . 138

8.3 Provenance Chains . 141

8.4 Service Provider Registration . 144

8.5 User Requesting Service Provider Data 145

8.6 Auditing Registration Information 145

8.7 Example Exclusion Attack . 146

A.1 CSP Network Model: Registration 158

A.2 CSP Network Model: Supplier Generating a Tag 164

A.3 CSP Network Model: Reseller Generating a Tag 169

A.4 CSP Network Model: Supplier Generating a Tag 175

A.5 CSP Network Model: Reseller Generating a Tag 182

List of Tables

2.1 Comparison of Related Work . 23

7.1 Tagged Transaction Protocol Computational Complexity 114

7.2 Extended Tagged Transaction Protocol Computational Complexity 115

7.3 Tagged Transaction Protocol Communication Complexity 116

7.4 Extended Tagged Transaction Protocol Communication Complexity 117

7.5 Tagged Transaction Protocol vs Anonymous Credentials 118

7.6 Default Experimental Parameters . 122

9.1 Properties of Developed Protocols 150

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Provenance is defined as the origin and ownership history for an item. In art

history the provenance information for a painting is used to help decide whether

the piece is real or a forgery. Locally, the notion of provenance attracted attention

when in 1985 Karl Sim was arrested for art forgery after copying and selling

art works by famous New Zealand painters such as Charles F. Goldie, Frances

Hodgkins, Rita Angus and Colin McCahon. By signing the artist’s name on the

painting he successfully passed himself off as the artist and sold the art works at

auction. The number of forgotten masterpieces appearing in the same place with

no provenance information alerted authorities to the forgeries.

The concept of provenance can be applied to data as well as art work. Data

provenance provides provenance meta data for scientific workflows [34, 87, 92],

databases [3, 91], geographic information systems (GIS) [53], and web services [39,

89]. This thesis examines the concept of provenance for digital items such

as digital media or more abstract products such as an access ’right’, a license,

a service, or a subscription. In many cases customers purchase digital items

through resellers instead of directly from the suppliers of the items. Some well

known resellers that exist only as on-line traders include Amazon, iTunes, and

domain name resellers, such as GoDaddy.

A simple approach to achieving digital provenance in reseller chains is to

introduce a license server that acts as a trusted third party. This license server

can check at every step in the transaction that the item is legitimate and that it

has not been sold to multiple customers. A downside of this approach is the

potential for privacy breaches because the license server has control over a large

amount of data both on the details of transactions conducted and the identities

1

2 CHAPTER 1. INTRODUCTION

of the parties involved. A better option is to provide verification of the actions of

any third party in the protocol without reducing privacy.

Supplier

ResellerReseller

Reseller

CustomerCustomer

Customer

G
ood

Purchase

G
ood

Purchase

G
oo

d

Pur
ch

as
e

G
oo

d

Pu
rc

ha
se

G
oo

d

Pur
ch

as
e

G
oo

d

P
ur

ch
as

e

Figure 1.1: The Reseller Model

The basic reseller model is shown in Figure 1.1. This work refers to each

individual party in the model as a link and the entire path from the supplier

to a customer as a chain. There are three parties involved:

• The Supplier: Suppliers are the original creators or holders of the rights for

an item.

• The Reseller: The reseller or middleman has a set of customers who

purchase goods from them as well as a set of suppliers that the reseller

purchases the goods from. There may be multiple resellers between the

supplier and the customer.

• The Customer: Any party that is interested in purchasing an item produced

by a supplier and sold by resellers.

This thesis defines the term secure provenance where correct provenance

information is supplied in the presence of active adversaries without reducing

3

privacy for participants in the protocol. Secure provenance provides customers

with confidence in the origin and ownership history for a digital item even when

the reseller they are dealing with is untrusted.

The approach taken in this thesis differs from the use of digital certificates

and Digital Rights Management (DRM) in crucial ways. Most Internet resellers

use a digital certificate to prove their identity and to provide information on

their physical location and contact details. Digital certificates do not provide

mechanisms to establish the provenance of items as they are intended as a way

of establishing identity.

DRM is an aggregation of security technologies to allow content owners to

maintain persistent ownership and control of their content. A DRM system

usually wraps the content in a secure container that prevents unauthorised users

from accessing the content. Most DRM systems assume the reseller is trusted

but this work assumes an untrusted reseller and does not provide methods to

establish the provenance of an item.

When providing provenance information, there are many ways an adver-

sary could create false provenance information or incorrectly modify existing

provenance information. In this thesis, I consider attacks that fit into one of the

following four categories:

1. Spoofing. The adversary claims to be the supplier or tries to subvert the

protocol to make it appear that they are the supplier. In this way the

adversary may be able to take payment for an item without ever paying

the supplier while the customer believes they have correct provenance

information.

2. Counterfeiting. The adversary sells the customer an item but never buys it

from the supplier. There are several ways an adversary could counterfeit

provenance information for an item including:

• Fabrication. The adversary fabricates provenance information for an

item from scratch (or having seen the structure of other provenance

information over the network).

• Cloning. The adversary sells an item they have purchased from the

supplier to multiple customers. The adversary will have legitimately

purchased the item initially but is trying to sell multiple copies when

it has only purchased one.

4 CHAPTER 1. INTRODUCTION

• Network Sniffing. The adversary sees legitimate provenance infor-

mation for another reseller or customer being sent over the network,

copies it, and sends it to a customer.

3. Identity Revelation. An adversary learns the identity of a participant in

the protocol that is not its neighbour in the chain. The participants in the

protocol will know the identity of their neighbours in the chain, for example,

a customer will know the identity of the reseller it is purchasing an item

from.

4. Linkability. An adversary links together the actions of a party, other than the

supplier, in two separate runs of the protocol. The adversary will not need

to discover the identity of the participant, just link their actions together.

The supplier is excluded from these attacks as the supplier is always the

participant that first generates the provenance information for the item,

although they may be anonymous.

1.1 Use Cases

To motivate the requirements and provide context for providing provenance for

digital items in reseller chains three example use cases are considered.

Use Case 1 - Online Music Stores

Online music stores are a development from the traditional bricks and mortar

music store. A bricks and mortar music store sells tapes, CDs, and records to

customers as physical items. Once a customer has purchased an item, they can

play it in any location that the license applies (licenses often do not apply for

public performance of the work or use in a film). In many cases, when the

customer has finished with the item, they can sell it back to the music store who

sells it as a second hand item to other customers. Alternately, the customer can

sell the physical item directly to another customer. When a physical music store

does not have an item, they have to order it in and it is sent to them through the

postal service.

An online music store sells customers a digital copy of the physical items sold

by a physical music store. These digital items contain the music tracks, and a

digital version of any accompanying booklets or information. Unlike a bricks

1.1. USE CASES 5

and mortar music store, an online store cannot ’sell out’ of a digital item as the

customer is sent a copy of an item. The online music store can keep making

as many copies of the digital item as they need. To provide the most efficient

service to customers, the online music store may want to pre-purchase a bulk set

of licenses for the item in one go. These can then be sold to the customers with

no interaction from the supplier.

Customer in Europe

Music Store

EMI

Universal

Warner

Sony BMG

Customer in New Zealand

Customer in United States

Figure 1.2: An Online Music Store

The Apple iTunes music store has become the largest music retailer in the

United States [4] with sales of over five billion songs [5]. While customers may

have a strong incentive to trust such a large business, there are many smaller

music stores that may not have the same amount of pre-existing trust. A customer

who finds a track cheaper at another store requires mechanisms to verify the

provenance of the item.

Digital rights management (DRM) was used by the iTunes music store to limit

the number of times their customers can make a compact disc copy of purchased

songs and the number of computers the customers can access purchased songs

from. However, DRM does not provide methods to establish the provenance of

an item.

Use Case 2 - eBook Resellers

A bricks and mortar book store sells books and magazines to customers. Similar

to the bricks and mortar music store, a book store must order in stock to sell to

customers and can possibly sell out of a title or have to order in extra stock. A

6 CHAPTER 1. INTRODUCTION

large number of second hand book stores exist where customers can take their

unwanted books to resell to other customers.

In the digital model, publishers produce eBooks which are then sold either

direct to customers or through a reseller as shown in Figure 1.3. There may be

several resellers in between the customer and the publisher. An eBook reseller

takes books that they have either self published or brought from a publisher and

sells them to a set of customers. Examples of eBook resellers include Amazon,

Barnes and Noble, and O’Reilly. Some eBooks are protected by DRM that limits

printing, copying, and redistribution. Increasingly eBooks are being sold to

customers using eBook readers such as the Amazon Kindle, smart phones, and

the Apple iPad. As many eBook readers have the capability to remotely disable

access to an eBook, the customer has a strong interest in verifying the provenance

for the eBooks they purchase. As many of these devices are low power devices,

any protocol for establishing the provenance of eBooks must be as efficient as

possible.

Customer
eBook Reader

Publisher

Reseller Reseller

...

Figure 1.3: An eBook Reseller Chain

Combining the properties of the bricks and mortar book store and the online

eBook resellers would give several advantages. When selling eBooks, the reseller

cannot run out of stock as a new copy of the item can be copied. When using

an online reseller, customers can purchase eBooks 24 hours a day 7 days a week

rather than having to wait for the physical book store to be open. Customers

would benefit if they could resell eBooks they had finished reading in the same

way as they can now with a physical book.

Use Case 3 - Domain Name Registrars

Figure 1.4 shows the parties in the domain name marketplace. Domain name

registrars are Internet Corporation for Assigned Names and Numbers (ICANN)

registered companies or organisations that sell top level domain names either to

1.2. REQUIREMENTS 7

customers or to domain name resellers. A domain name reseller sells domain

names to either customers or other resellers. There may be several domain name

resellers between the customer and the domain name registrar. A customer may

not know how many resellers are between it and the registrar, or what registrar

the reseller is using. The reseller may want to keep the identity of the registrar

it uses private to prevent a customer from going straight to the registrar to get a

better deal. Customers can switch their domain names between different resellers

or registrars. Some examples of domain registrars are GoDaddy, OnlineNIC, and

Domainz. Domain name resellers include ImHosted.com and ResellerClub.com.

D o m a in
N a m e

R e g is tra r

C u s to m e r
D o m a in
N a m e

R e s e lle r

D o m a in
N a m e

R e se lle r

D o m a in
N a m e

R e se lle r

Figure 1.4: Domain Name Resellers

Domain name resellers have not always acted honestly. Registerfly was a

domain name registrar accredited by ICANN with over 200,000 customers [41].

Customer complaints with Registerfly included allegations of fraud, incorrectly

altering “whois” data, and suspension of accounts in retaliation for complaints

about over charging. ICANN eventually terminated Registerfly’s accreditation

on March 31st 2007 [49].

1.2 Requirements

Based on the use cases presented, I now list the requirements for a protocol for

anonymously establishing provenance in reseller chains.

• R1: Establish Provenance of Digital Items: The central requirement must

be to enable customers to establish the provenance of digital items they

are purchasing. The customer does not need to know which suppliers or

resellers are in the chain, but they must be confident in the provenance of

the digital items they purchase in the presence of malicious resellers.

• R2: Support Multiple Resellers between the Supplier and the Customer:

There may be several resellers between the supplier and the customer. The

8 CHAPTER 1. INTRODUCTION

protocol must be able to establish the provenance of an item when there are

a dynamic number of resellers between the supplier and the customer.

• R3: Support Customer Reselling of Items: Customers should be able to

resell a digital item they do not require. In this scenario, the customer would

be acting as a reseller and on selling to another customer.

• R4: Provide Anonymity: Suppliers and resellers in the reseller chain need

to be anonymous to prevent a customer or reseller from trying to skip the

middleman and contacting a reseller or supplier who is further up the chain

to obtain a better deal.

• R5: Unlinkability of Actions by Resellers: To prevent a third party from

building up detailed records of past transactions of a particular reseller or

customer, the transactions of a reseller or customer need to be unlinkable

between separate transactions.

• R6: Efficient for Low Powered Devices: As some customers will be using

low powered devices, the protocol needs to be efficient for customers.

• R7: Agnostic to Item Delivery Method: Many methods are used to deliver

digital items from direct downloads to peer to peer systems. The protocol

needs to establish the provenance of a digital item without relying on a

specific delivery method.

• R8: Allow Bulk Buying of Items: A reseller may wish to bulk purchase a set

of items so they do not have to keep interacting with the supplier to sell an

item to a reseller. If a protocol supports bulk buying then the supplier can

be offline when the customer is purchasing items from a reseller.

1.3 Thesis Summary

This thesis examines the problem of providing secure provenance for digital

items in reseller chains. Current schemes that can provide provenance in reseller

chains are presented. These schemes are evaluated and compared based on the

requirements presented in this chapter. This evaluation concludes that none of

the current systems are able to fulfil all the requirements.

Using terms for expressing provenance models, a model of the provenance

information for digital items in reseller chains is then constructed. This model

1.3. THESIS SUMMARY 9

shows the conflict between providing complete provenance information and

privacy. To provide secure provenance a formal definition of secure provenance is

required to evaluate the protocols provided in this thesis and provide convincing

arguments that these protocols are secure. The formal secure provenance

definition is built on the formal definitions of spoofing, fabrication, cloning,

network sniffing, identity revelation, and linkability attacks.

The tagged transaction protocol is developed to provide secure provenance

for digital items in reseller chains. The tagged transaction protocol provides

confidence in provenance information in the presence of active adversaries, pro-

vides anonymity and unlinkability for participants, supports customer reselling

of items, and offline suppliers after the item has initially been sold. The tagged

transaction protocol does not provide enforcement of the terms of licenses. The

tagged transaction protocol uses a third party called the Tag Generation Centre

(TGC) and data structures called tags to provide provenance information. A

thorough security analysis of the tagged transaction is presented showing that the

tagged transaction protocol provides secure provenance. The tagged transaction

protocol is analysed using the Failures Divergences Refinement (FDR) state based

model checker to show that it provides security against spoofing, fabrication,

cloning, and network sniffing attacks.

This thesis also develops a second protocol to provide secure provenance

called the extended tagged transaction protocol. The extended tagged transaction

protocol has the same features as the tagged transaction protocol but also

provides revocable anonymity for resellers who try to perform cloning attacks.

The extended tagged transaction protocol uses ideas from digital cash where

customers and reseller withdraw coins from the TGC and spend these coins when

they regenerate tags. If a customer or reseller clones a tag, the digital coin can

be used to revoke the identity of the customer or reseller but does not reveal

identity or linkability information when the coin is used once. The extended

tagged transaction protocol has had a thorough security analysis and has also

been analysed using the FDR model checker.

The use of the TGC introduces a trusted third party. Two mechanisms have

been developed to verify the actions of the TGC: (1) The use of a public bulletin

board where the TGC publishes all its actions; and, (2) Distribution of trust

over multiple TGC replicas where, as long as a threshold value of the TGCs are

honest, customers, resellers, and suppliers can have confidence in the provenance

information provided. Mechanisms to provide an anonymous communication

10 CHAPTER 1. INTRODUCTION

channel are also considered to provide anonymity for customers, resellers, and

suppliers.

The performance of the tagged transaction protocol and the extended tagged

transaction protocol are examined in terms of computational complexity, commu-

nication complexity, and experimental performance. Both the tagged transaction

protocol and the extended tagged transaction protocol have been implemented

in Java. This implementation has been used to perform experiments to examine

the effects of cryptographic key size, number of resellers, the threshold number

of TGCs when using a distributed TGC, and the anonymous communication

channel on the performance of the protocols.

The ideas and mechanisms developed in the tagged transaction protocol to

provide secure provenance in reseller chains for digital items have been applied

to providing secure provenance in web services. The web services model has

several differences to the digital item model. Web services provide a service that

is on going as opposed to the one off nature of transactions for digital items. Web

services also do not have the same privacy requirements as reseller transactions.

A solution is presented and analysed in terms of the security properties of

the protocol. A definition and discussion of exclusion attacks where a service

provider does not provide all the inputs it uses to provide the service in the

provenance information is also presented.

1.4 Contributions

The main contributions of this thesis are:

1. Formalising the requirements and algorithms for a protocol for anony-

mously providing provenance in reseller chains. Based on the possible

attacks, this results in a formal definition of secure provenance.

2. Development of the tagged transaction protocol and the extended tagged

transaction protocol. Both protocols use tags and a third party called

the Tag Generation Centre (TGC) to anonymously provide provenance in

reseller chains. This contribution has been published as a paper “A Protocol

for Anonymously Establishing Digital Provenance in Reseller Chains” in

Financial Cryptography 2011 [68] and has been patented as “NZ 585382:

Method for Providing Anonymous Authentication”.

1.5. THESIS ORGANISATION 11

3. Security analysis of the tagged transaction protocol using arguments by

contradiction and model checking.

4. Implementation and performance measurements of the tagged transaction

protocol showing the effects of key size, number of resellers, the choice of

distribution, and anonymous communication channel used.

5. Application of the ideas from the tagged transaction protocol to provide

secure provenance in web services. This includes the definition and

discussion of methods to prevent exclusion attacks. This work has been

published as a paper “Verifying Digital Provenance in Web Services” in the

Privacy and Provenance in the Cloud 2011 workshop [69].

1.5 Thesis Organisation

The rest of this thesis is organised as follows: Chapter 2 presents related

work, Chapter 3 provides the formal definition of secure provenance, Chapter

4 presents the tagged transaction protocol and the security analysis of the

tagged transaction protocol, Chapter 5 presents the extended tagged transaction

protocol and the security analysis of the extended tagged transaction protocol,

Chapter 6 presents ways to provide an anonymous communication channel and

mechanisms to verify the actions of the TGC, Chapter 7 presents the details

of the implementation of the tagged transaction protocol and details of the

performance results, Chapter 8 presents the application of the ideas from the

tagged transaction protocol to providing provenance for web services, and

Chapter 9 presents conclusions and future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

Data provenance is a wide area of research that includes work on provenance

in Geographic Information Systems (GIS), scientific workflows, databases, and

attack tracing. Data provenance records the origin and modification history of

data. One of the earliest works in data provenance was by Lanter for GIS [53]

in 1991. In this work, provenance of spatial GIS data was represented as a

bi-directional graph where nodes represent a map layer and edges represent a

transformation from one map layer to another. A frame object was also associated

with each map layer that recorded additional provenance information about the

layer.

Scientific workflows provide means for scientists to perform advanced scien-

tific tasks in a collaboratory environment. A collaborative environment is realised

by the use of publicly accessible data sources, Grid middleware, and web services.

These environments can span multiple organisations or groups of researchers.

Provenance information allows researchers to reproduce results or detect which

data sets an erroneous result has affected. There have been several provenance

systems designed to work with scientific workflows including Chimera [34] and

myGrid [87, 92].

Chimera provides provenance information for data intensive applications.

Provenance is recorded as data derivation steps from one data set to another.

On demand regeneration of data is possible using the provenance information.

Users can query the Chimera provenance system for a directed acyclic graph

that represents the tasks executed to create a specified data product. myGrid

executes workflows and automatically generates provenance records based on

the data set used, execution times, and workflow. Every entry in the experimental

13

14 CHAPTER 2. RELATED WORK

components store has a provenance object associated with it. Scientists can make

annotations to provenance logs with information such as the hypothesis of the

experiment and any thoughts and opinions.

Tioga provides an environment to graphically compose data and programs

in a database environment [3, 91]. The provenance information is represented

as inverse functions. For a function with input I that produces I1 the inverse

function takes I1 and produces I . For functions that do not have a direct inverse

Tioga introduces the concept of a weak inverse function.

Provenance information has also been used to detect the source of attacks in

Grid nodes [38]. The Grid node keeps a record of the file and process identifiers

when a file is read or written and when a process is created. When a Grid node

detects an attack, the provenance graph for the process or file is then extracted

assisting in the identification of the source of the attack.

The Open Provenance Model (OPM) aims to design a shared provenance

model for all provenance systems [59]. The use of a shared provenance model

allows the interchange of provenance information between different provenance

systems. The OPM does not provide details on how provenance systems should

be implemented. OPM defines three main entities. An artifact is piece of state

which could be some data or a physical object. A process is a series of actions

that act on an artifact to produce a new artifact. An agent is an entity that

controls a process. The OPM then provides a series of terms that define causal

relationships between artifacts, processes, and agents. Provenance information

is then represented as a directed graph where artifacts, processes, and agents are

nodes and causal relationships are edges.

The open provenance model is applied to distributed systems in work by

Groth et al [40]. Messages sent between parties are modelled as artifacts sent

between processes. The data items in the message are attributes that are extracted

from received messages. They use a D-Profile to represent distributed systems

in the OPM that provides a more compact representation than the fundamental

OPM constructs but can be expanded into an OPM graph.

A high-level view of the security issues when providing provenance informa-

tion in a distributed environment is presented by Tan et al [89]. They discuss the

issues of access control for provenance information, trust issues with provenance

providers and stores, accountability of provenance information, and long term

storage of provenance information. In the context of this work the issues of

trust for provenance providers and stores and accountability of provenance

2.1. SPECIFIC SYSTEMS 15

information are both of interest. Accountability is normally addressed through

digital signatures. Another issue is the trustworthiness of the provenance

store. This work uses mechanisms to provide verification of the third parties

acting as the provenance stores. Long term storage of provenance information

is an interesting area with important problems as the amount of provenance

information gathered will keep increasing. Other issues include the format of

data that may change and the updating of keys that are used to sign or encrypt

provenance information. Long term storage of provenance information is out of

the scope of this work.

Access control for provenance stores is addressed in a number of works [12,

22, 89]. Provenance information may contain sensitive information. Access

control methods are considered that provide access in varying levels of granu-

larity. Provenance information differs from traditional data in that it is about

relationships and is not a single piece of data. The data resulting from a process

and the provenance information for the process may also have different privacy

requirements. Access control for provenance systems is out of the scope of this

work.

2.1 Specific Systems

This section compares protocols that can be used to provide provenance for

digital items in reseller chains. Two Digital Rights Management (DRM) systems

are included for completeness. These protocols are then compared based on the

requirements listed in Section 1.2. After the comparison, a protocol that provides

provenance in web services in the presence of active adversaries is examined and

compared to the approach in this thesis.

2.1.1 Apple Fairplay System

In the Apple Fairplay system, Advanced Audio Coding (AAC) format audio

streams are encrypted using a master key. This master key is also encrypted and

stored with the encrypted song. The key required to decrypt the master key is

called a user key. When a user purchases a song, a user key is generated for them

and the song encrypted with the master key and the master key encrypted with

the user key are sent to the iTunes music player. The iTunes music player stores

the user key and it is also stored on the iTunes server. Using the user key, the

16 CHAPTER 2. RELATED WORK

iTunes music player can decrypt the master key for the song and then play the

encrypted audio stream. When a user registers a new computer with the iTunes

store, the iTunes store sends the user generated keys corresponding to that user.

The Apple Fairplay system provides no way for the user to check the provenance

of the item they are receiving, they have to trust that the iTunes music store is

sending them legitimate content that it has purchased from the correct supplier.

There is no mechanism for customers to resell content.

2.1.2 Open Mobile Alliance DRM

The Open Mobile Alliance have a DRM system that makes use of a trusted DRM

Agent and a third party known as the Rights Issuer (RI) [66]. Content that has

been protected is encrypted using a key that is delivered in a rights object. When

a DRM Agent downloads content, it contacts the RI responsible for that content.

The rights object for that content is then sent to the DRM Agent encrypted using

a key bound to the DRM Agent. The DRM Agent can then decrypt the rights

object to access the content. The Open Mobile Alliance DRM system depends

on a trusted DRM Agent and a trusted RI. It does not provide any mechanisms

to verify the provenance of the media. There is no mechanism for customers to

resell content.

2.1.3 Superdistribution

The concept of superdistribution was invented in 1983 by Ryoichi Mori who

originally termed it the Software Service System as it was envisaged as a way

of delivering software similar to the way the water system delivered water [60].

A superdistribution model involves the buyers of digital goods in the distribution

process [82]. A superdistribution model involves a content distribution scheme

and a remuneration scheme. The content distribution scheme can be any

technology such as peer to peer (p2p) transfers, http transfers, or blue tooth.

Each digital good distributed over the content distribution scheme contains

license information that describes how the content may be used, by whom,

and what remuneration must be paid and how. The remuneration scheme

provides mechanisms for the buyer of a digital good to make a payment for

the redistribution of a digital good and for the payment to be correctly split

amongst the parties specified in the license. The mechanisms to anonymously

2.1. SPECIFIC SYSTEMS 17

establish provenance for digital items in reseller chains can be applied to the

superdistribution model.

2.1.4 The Paradiso System

The Paradiso system lets customers purchase not only songs and videos from

suppliers but also reseller rights so they can sell a certain number of the

purchased songs and videos to other customers [61, 62]. This system enables

any customer to become a reseller taking advantage of word of mouth and taste-

orientated marketing. Once a customer has bought the rights to redistribute a

certain number of copies from the supplier, they can distribute these without

having to contact the supplier.

The Paradiso system is designed to be run on media devices, like the iPod or

Zune, with a trusted computing module (TCM) to enforce the contracts between

supplier and customer. Each player has a private key that is stored in the secure

hardware of the TCM that is loaded on by the manufacturer. All private key

operations are performed in the secure hardware. All songs are stored encrypted

with an individual symmetric key which is stored in the secure hardware.

To purchase a song and the rights to resell it N times, the player sends

a request to the content provider or supplier containing the request for the

purchase as well as the player’s public key. Once the payment from the customer

has cleared, the provider encrypts the content with a newly generated symmetric

AES key. The content provider then sends the encrypted content along with the

symmetric AES key and any reselling rights encrypted with the player’s public

key. The reselling and license information are signed using the supplier’s secret

key. Once the device receives the license information, it checks that it has been

signed by a valid reseller, and then stores the license information (still encrypted

with the player’s public key) to insecure memory.

The Paradiso system can be used to provide secure provenance information

provided a valid TCM is present in the device. While currently the Paradiso

system does not provide provenance information it could be included with the

license information. The Paradiso system does not provide any anonymity or

unlinkability for participants.

While the Paradiso system has many attractive properties, its security rests

on a valid TCM. Providing every device (computer, media player, netbook) has

a TCM, Paradiso will effectively allow reselling of media without the input of

18 CHAPTER 2. RELATED WORK

the original content provider. The Paradiso system can be used to provide secure

provenance information provided a valid TCM is present in the device.

2.1.5 The Potato System

Fraunhofer and a spin-off company 4FriendsOnly have developed a music

redistribution protocol called the potato system [1, 75]. The central idea of the

potato system is to reward users with a percentage of the song payment for

redistributing content. The users of the potato system do not just pay for content,

they also pay for a re-distribution license. They can then re-distribute the song

as many times as they like and will be rewarded a set proportion of the purchase

cost each time the song is purchased by a user they have distributed the song

to. Content in the potato system is transferred over peer to peer (P2P) networks,

although to transfer or purchase content requires interaction with the centralised

potato system web interface.

Nutzel et al describe using a signed media format for the potato system [64].

In a signed media format (SMF) the media content is symmetrically encrypted

using the advanced encryption standard (AES). The key for the AES encryption

is then encrypted with the private key of the last buyer. A SMF consists of the

encrypted media, the encrypted AES key, the public certificate of the last buyer,

the license from the accounting server, and a signature of the license by the

accounting server. The license includes the name of the content owner, a hash

of the content, the name of the last buyer, the price model used for this media file,

the link to buy the file, and other information. The accounting server in this case

is the potato system. By using a SMF, any player that wants to play the media

has to decrypt the content using the public certificate of the last buyer and can

pop-up a window asking if the user wants to purchase a re-distribution license if

the last buyer was not the current user.

While the potato system allows for redistribution of content using P2P

networks, interaction with a trusted third party in the form of the potato system

web interface is required to purchase songs. The potato system is an interesting

example of the use of financial rewards as opposed to strong cryptographic

methods. The potato system could provide provenance information along with

the chain of ownership and license information for the song provided when

a song is purchased or listened to. This provenance information would be

created and updated by the centralised potato system web interface. Like the

2.1. SPECIFIC SYSTEMS 19

rest of the potato system the provenance information would not be protected by

cryptographic methods but using financial rewards.

2.1.6 Contracts for a Distribution Chain

Durfee et al have designed and implemented a protocol using contracts for

distribution chain security [31]. A contract is a sequence of string tokens written

in a contract language that lists the rights granted to the holder of the contract. A

contract is created for a digital work by the content provider or author. A contract

may include terms that detail obligations to pay royalties to the content provider,

or an expiration date for the right to use the digital work. A contract can be

obfuscated to hide sensitive values in the contract by using commitment values.

Once a contract has been created by a content provider for a reseller it is sent

to a contract certifier who checks the contract is well formed and signs it with a

digital signature. The contract certifier is a third party that certifies any newly

created contracts to ensure that a new contract is faithful to any existing contracts

on the digital work. Contracts sent to the contract certifier can be obfuscated to

hide any sensitive data and shown to be valid using zero knowledge proofs that

a committed value lies in a certain range.

When a reseller has a digital work and certified contract from the content

provider, they can then create a new contract and on sell the digital work to

a customer. A new contract is created by sending the contract certifier an

obfuscated version of the new contract along with the signed obfuscated original

contract. The contract certifier then checks that the new contract is faithful to

the old contract using zero knowledge proofs for proving relations on committed

numbers [17] to verify obfuscated fields. The contract certifier then signs the new

obfuscated contract and sends it to the reseller.

When a customer acquires the digital work from the reseller, the reseller also

sends them the signed obfuscated contract from the contract certifier as well as

an unobfuscated contract. The customer then checks that the new contract is

the same as the new obfuscated contract and that the new obfuscated contract

has been signed by a contract certifier. The customer will only accept digital

works that are accompanied by a valid contract that has been signed by a contract

certifier.

The authors also suggest a similar protocol that does not involve a contract

certifier. The contracts are chained together and the zero knowledge proofs that

20 CHAPTER 2. RELATED WORK

the older contracts are faithful to the new contracts are attached to the contract.

This increases the size of the contracts but has the advantage of removing the

third party.

This work is set in the domain of reseller transactions. Rather than looking at

anonymously establishing the provenance of the digital items, they concentrate

on establishing the correctness of the license while hiding sensitive data. This

protocol could be used in conjunction with a protocol for providing provenance

for digital items to provide a method for resellers to alter the terms of the license

but restricting the modifications to only allow valid modifications for that license.

2.1.7 A Decentralised and Secure Electronic Marketplace

Serban et al introduce the concept of a decentralised electronic marketplace

(DEM) where transactions are subject to a set of trading rules [85]. Trading rules

define the DEM and may be different for different marketplaces. The trading

rules are implemented using a mechanism called Law Governed Interaction

(LGI). LGI is a mode of interaction that allows an open group of distributed

heterogeneous agents to interact with each other with confidence that the agents

are all following the law of the marketplace. In LGI, a law is formulated using an

event-condition-action pattern. Apart from the agents taking part in transactions

in the marketplace, there are also a set of trusted controllers that enforce the law

of the marketplace. Every agent is assigned a controller, and all messages for the

marketplace are sent through the agent’s controller.

The controllers in LGI store information on the local state of the agent they

are monitoring. This enables a controller to pick up on actions that are not

allowed according to the trading laws governing the marketplace. For example,

if a reseller tried to sell a license for digital media they did not own or tried to sell

a license twice to different customers the controller would detect this and prevent

it. The controllers are assumed to be trusted if they have a certificate signed by

the certification authority for this marketplace which is specified in the trading

laws. Several agents in the DEM can share the same controller.

For agents in a DEM to have confidence that other agents in the DEM

are obeying the trading laws, the controllers need to be trusted. The authors

suggest the controllers need to be provided as a public utility by a large financial

or governmental institution that can act as a trusted third party and has no

interest in the computing activities regulated by its controllers. When reselling

2.1. SPECIFIC SYSTEMS 21

digital content in DEM the trusted controllers could be used to create and

update provenance information. Provided the distributed controllers are acting

correctly DEM can provide correct provenance information for digital items. The

controllers build up a large amount of information on the transactions being

done and the identities of the participants in the transactions. If a single party

is in charge of the controllers, this single party gains all the information on the

transactions happening in the marketplace.

2.1.8 IEEE P1817 Working Group

The IEEE P1817 working group has produced an initial description of a system

to allow consumers perpetual ownership and unrestricted use of copyrighted

materials [67]. The only limitation put on the use of copyrighted material is that

a key is required to use a product. The idea of the working group is to allow

users to use, share, lend, give, and resell, but not copy, digital materials. While

the P1817 standard provides options for customers to resell content it relies on a

trusted player to store cryptographic keys and not allow them to be copied. The

working group is still in its early stages and it will be interesting to see how this

develops in the future.

2.1.9 Anonymous Credentials

The Idemix system [13] developed by Camenisch et al is an implementation

of an anonymous credential system [15]. A credential system has users and

organisations. Credentials are issued by organisations to users. Users then

demonstrate possession of these credentials to other organisations. When using

anonymous credentials, users are known to organisations by pseudonyms and a

series of independent transactions by a user are unlinkable. A user has different

pseudonyms with different organisations. Credentials can be multiple use or one-

show. In this thesis I concentrate on one-show credentials as these can be used to

implement a protocol for anonymously establishing digital provenance in reseller

chains. If a user can prove possession of a one-show credential for an item, then

the provenance of the item can be established.

In anonymous credentials, each organisation has a private and public key.

Each user has a private key. A pseudonym for a user is a name by which the

user is known to an organisation and is formed by a user generated section and

22 CHAPTER 2. RELATED WORK

an organisation generated section. A pseudonym is tagged with a validating tag

that is statistically independent of the user’s private key. A credential is a tuple

that cannot be forged for a correctly formed validating tag. To show possession

of a credential a user takes part in a protocol with the organisation using zero

knowledge proofs of knowledge.

Extensions to the basic anonymous credential protocol support one-show

credentials with optional local revocability (revealed to the issuing organisation)

and global revocability (revealed to all parties) when a user tries to use a one-

show credential multiple times. All-or-nothing non transferability prevents

credential pooling where, if a user lends a credential to another user, all the details

about the lending user are revealed to the other user allowing identity theft.

One-show anonymous credentials can provide anonymous digital prove-

nance in reseller chains. When using one-show credentials, the organisation

that generated the original tag would have to be online to verify and generate

a new anonymous credential. Anonymous credentials do not support supplier

anonymity as only the users are anonymous and not the organisations.

2.1.10 Comparison and Discussion

Table 2.1 shows a comparison of related work. The first column of the table lists

the name of the protocol. The second column lists the trust model or what trusted

party and/or cryptographic techniques the protocol uses. The third column lists

whether the protocol can be adjusted to provide secure provenance information.

The fourth column lists whether the protocol provides verification of any third

parties, the fifth whether the protocol supports offline suppliers, and the sixth

column indicates if the protocol supports anonymous suppliers. The final column

indicates whether the protocol supports customer reselling of content.

While the protocols discussed in this chapter achieve some of the goals of a

reseller verification protocol all have disadvantages. The Apple Fairplay system

relies on a trusted reseller and does not provide any methods to establish the

provenance of digital items. The Open Mobile Alliance DRM relies on a trusted

player. Neither of the DRM system provide the option for the customer to resell

content.

The Paradiso system is heavily reliant on a TCM and does not provide the

option for an anonymous supplier. However, the Paradiso system can provide

secure provenance information and provides support for customer reselling of

2.1.
S

P
E

C
IF

IC
S

Y
S

T
E

M
S

23

Protocol Trust Can Provide 3rd Party Offline Anonymous Customer

Model Provenance Verifiable Supplier Supplier Reselling

Apple Fairplay Trusted Reseller X X

and Encrypted Media

Open Mobile Alliance Trusted Player and X X X

DRM and Rights Issuer

Paradiso System [62, 61] Trusted Computing X X X

Module

Potato System [1, 75] Financial X X X

Incentives

IEEE P1817 [67] Trusted Player X

Decentralised Electronic LGI and X X

Marketplace [85] Controllers

Idemix [13] Anonymous X X X

Credentials

Tagged Digital Signatures and X X X X X

Transactions Verifiable Third Party

Table 2.1: Comparison of Related Work

24 CHAPTER 2. RELATED WORK

items with an offline supplier. The potato system takes in to account financial

motivations and rewards for users of the system and can provide provenance in-

formation but uses a centralised trusted third party to verify reseller transactions.

The Decentralised and Secure Electronic Marketplace (DEM) takes the trusted

third party and distributes it across a number of hosts. While the distribution

of the agents provides better reliability with no central point of failure, there is

still no method to verify the agents and they act as a black box. The owners of the

controllers can also build up data on the transactions in the marketplace and what

parties were involved. DEM can be used to provide provenance information for

digital items.

Anonymous credentials provide mechanisms to anonymously establish

provenance for digital items in reseller chains. Anonymous credentials provide

both anonymity and unlinkability for customers and resellers. However, they do

not provide anonymity for suppliers or support for offline suppliers.

2.1.11 Provenance in Web Services

Although there has been research in the area of provenance for web services [39,

89] there has been little work in providing provenance for web services in the

presence of active adversaries. Hasan et al have constructed a protocol for

securely collecting provenance information from distributed sources [43, 44].

Each document in the system has a provenance chain. This chain is composed of

provenance records. When a document is modified, a new provenance record is

added to the provenance chain for that document. A provenance record contains

the identity of the principal modifying the document, a (possibly encrypted)

representation of the actions performed on the document, a hash of the final value

of the document, a hash of some of the contents of the provenance record and

some of the contents of the previous record in the chain signed by the principal

modifying the document (checksum), and a public key certificate of the principal

signed by a trusted certificate authority.

The trust model in this scheme looks at both integrity and confidentiality

properties. A set of auditors are used to check if provenance chains are plausible.

The auditors are assumed to perform and report back the results of reports

correctly. The integrity properties include detecting an adversary adding or

removing provenance records from the provenance chain and detecting an ad-

versary modifying the provenance chain. The confidentiality properties prevent

2.2. SUMMARY 25

unauthorised auditors from accessing sensitive provenance records. Provenance

records can be set to be accessible to a certain subset of auditors, but at least one

auditor must be able to access every provenance record in the provenance chain.

Digital signatures and the hash values of the final document in the provenance

records are used to detect tampering with the provenance records. If an adversary

adds or removes provenance records from the middle of the chain, it will be

detected as the signed checksums in the chain will not follow on from one another.

To check that the provenance chain is for the correct document, an auditor checks

the hash of the document in the final provenance record in the provenance chain

is the same as the current version of the document.

The protocol for providing provenance in web services developed in this

thesis and this protocol both use a similar data structure to represent provenance

information. Both use a chain of provenance information composed of individual

provenance records. In contrast to the work in this thesis, the threat model of

the work by Hasan et al does not include exclusion attacks. Exclusion attacks

involve an adversary taking some data and removing all provenance data from

it and claiming it as their own. In this thesis I do not include the confidentiality

requirements of the work by Hasan et al.

2.2 Summary

This chapter has presented the related work for provenance in reseller chains.

An initial overview of systems that provide data provenance for geographic

information systems, scientific workflows, databases, and tracking the source of

attacks in Grid nodes. This overview shows that the area of digital provenance

research is an expansive one. Provenance systems are an important part of

many Grid computational systems. The Open Provenance Model (OPM) has

been briefly described. The OPM has been applied to the problem of distributed

computing in other work. In this thesis the OPM is used to model information

for provenance of digital items in reseller chains and provenance in web services.

A survey of systems that can be used to provide provenance in reseller chains

has been presented. No single system is able to fulfil all the requirements

established in Section 1.2. Many of the protocols rely on some trusted third party.

These range from a trusted computing module (TCM), to a trusted player, or a

set of trusted controllers. The anonymous credential system can anonymously

26 CHAPTER 2. RELATED WORK

establish provenance for digital items in reseller chains. However, anonymous

credentials do not support anonymous suppliers or offline suppliers.

A protocol for providing provenance for web services has been presented.

This protocol uses similar data structures and methods to the protocol developed

in this thesis but does not discuss exclusion attacks.

Chapter 3

Domain and Threat Model

This chapter defines the domain, provenance, and threat models for anony-

mously establishing digital provenance in reseller chains. These models show in

what domain the protocol operates, what provenance information is provided,

and what threats the protocol protects against. Finally, I construct a formal

definition of secure provenance.

The domain model shows the parties involved in the protocol. The roles of

the parties in the protocol are then defined.

To provide digital provenance information in reseller chains, the required

provenance information needs to be enumerated. The definitions and actions

defined by the Open Provenance Model (OPM) are applied to model the problem

of providing provenance in reseller chains.

Before designing the protocol, a threat model is needed to define any as-

sumptions made about the participants in the protocol, and what environment

the protocol is running in. For example, does the protocol assume passive or

active adversaries? The threat model lists the assumptions about the attacks the

protocol prevents and under what circumstances an attack is considered to be

successful.

A security analysis of the resulting protocol requires a formal definition of

secure provenance. This formal security definition is built from the definitions of

the algorithms involved in the protocol and the possible attacks on the protocol.

3.1 Domain Model

A participant in the reseller domain takes one of three roles:

27

28 CHAPTER 3. DOMAIN AND THREAT MODEL

• The Supplier: Suppliers are the original creators or holders of the rights for

an item.

• The Reseller: The reseller or middleman has a set of customers who

purchase goods from them and a set of suppliers that the reseller purchases

the goods from.

• The Customer: The customer purchases items from a reseller that are

produced by a supplier.

A customer may change roles to become a reseller. For example, once a

customer has purchased an item, it can on-sell this item, in which case the

customer takes the role of the reseller. The changing of roles supports customer

reselling of items.

Customer

Supplier

Provenance
Information

Reseller

1 1 1 1..*
verifies modifies

1

1

creates

Figure 3.1: Domain Model

Figure 3.1 shows the domain model for provenance in reseller chains. A

supplier creates provenance information for an item. For each transaction, a

single supplier generates a single piece of provenance information. Resellers

modify the provenance information generated by the supplier. Many resellers

may modify a single piece of provenance information to support multiple

resellers between the supplier and the customer. A single customer will verify

a single piece of provenance information.

3.2 Provenance Model

The Open Provenance Model (OPM) defines a set of terms and relationships to

record provenance of items [59]. These terms and relationships are used to create

a provenance graph that shows the provenance information for an item. If a

3.2. PROVENANCE MODEL 29

verifier can reconstruct the provenance graph for an item, they can show the

provenance information for the item. The following terms are defined:

• Artifact: An immutable piece of state.

• Process: An action or series of actions performed on or caused by an artifact.

• Agents: A contextual entity controlling a process.

The Open Provenance Model also defines actions used to model provenance

information. The role of the process or agent performing the action parametrises

the actions:

• wascontrolledby(Role): A process is controlled by an agent. The Role

parameter is the role the agent is taking in the protocol.

• wasgeneratedby(Role): An artifact is generated by a process. The Role

parameter is the process generating the artifact.

• usedby(Role): An artifact is used by a process. The Role parameter is the

process that uses the artifact.

Using these terms and definitions, I construct a provenance model for the

domain of reseller transactions. This model instantiates the OPM terms (as shown

in Figure 3.2):

• Artifact: An artifact is an item that the supplier produces and sells, via

resellers, to the customer.

• Process: A process is either “Create” where a supplier generates an item or

“Resell” where a reseller resells an item.

• Agents: All agents are suppliers or resellers. Customers do not feature as

agents as they do not create provenance information.

The constructed model of provenance information in reseller chains instanti-

ates the OPM actions as:

• wascontrolledby(Role): The process of “Create” is controller by a supplier

and “Resell” is controlled by a reseller. The roles are defined as either

“Supplier” or “Reseller”.

30 CHAPTER 3. DOMAIN AND THREAT MODEL

Create

Resell

Item
wascontrolledby(Supplier) wasgeneratedby(Create)

usedby(Resell)

Supplier

Reseller 1
wascontrolledby(Reseller)

Reseller N Resell
wascontrolledby(Reseller)

us
ed

by
(R

es
el

l)

... ...

Key:

Artifact

Process

Agent

Figure 3.2: Provenance Graph for Tagged Transaction Protocol

• wasgeneratedby(Role): The item is generated by the supplier. The role is

defined as “Create”.

• usedby(Role): The item is used by the “Resell” process. The Role parameter

is “Resell”.

Figure 3.2 shows a provenance graph of provenance in reseller chains. The

item is created by the create process that is controlled by the supplier. The item is

then used by the resell process, controlled by a reseller, where the item is resold

down the reseller chain.

To preserve the privacy of parties taking part in the transactions a verifier

needs to be prevented from being able to reconstruct the entire provenance graph

with all identities. However, to verify the provenance of the items purchased, a

verifier needs to be able to have confidence that this provenance graph can be

constructed. This work presents two methods of managing this conflict:

1. The customer reconstructs all the provenance information without learning

the identities of the parties involved in the protocol, or any information to

link together actions of a participant in different runs of the protocol.

3.3. THREAT MODEL 31

2. The customer relies on a third party or a threshold value of a group of

independent third parties to verify this provenance information and trusts

the results it receives.

Chapter 6 describes these approaches as well as the architecture and verification

of the TGC in more detail.

3.3 Threat Model

I make the following assumptions about adversaries and participants in the

protocol design. The reseller is a polynomially bounded active adversary. The

customer and supplier are also polynomially bounded. If the reseller is selling

item x, then the reseller cannot collude with the supplier for item x, but can try

to impersonate the supplier. If the reseller could collude with the supplier for

item x, then the supplier could convince a customer that a malicious reseller is

acting correctly. The verification of the reseller relies on the supplier wanting to

prevent and, if possible, discover malicious resellers for the items it sells. While

the reseller selling item x cannot collude with the supplier for x, the reseller may

collude with any other supplier to try to convince the customer that the other

supplier is the valid supplier for item x.

The customer does not collude with the reseller. If the customer was prepared

to collude with the reseller, then they would have no incentive to take part in

any verification protocol; either they would seek out a malicious reseller to avoid

having to pay full price for the item, or they would acquire the item illegally.

While neither the supplier nor the customer collude with the reseller, it is not

assumed that both are honest. Either the supplier or the customer may try to

discover the identity of anonymous participants in the protocol. Additionally,

either the customer or supplier may try and link together actions of other

participants in the protocol. As the customer is able to resell the item after

purchasing it from a reseller, when the customer plays the role of a reseller it

should be prevented from being able to perform attacks on the protocol.

There may be a third party who tries to discredit a participant in the protocol

by impersonating them. For example, a reseller r1 may try to pose as another

reseller r2 and act in a malicious way so that the verification protocol fails and it

appears r2 is untrustworthy when it is really an act of sabotage by r1.

The adversary follows a Dolev Yao model [30]. In the Dolev Yao model,

32 CHAPTER 3. DOMAIN AND THREAT MODEL

the adversary has full control of the network and can intercept messages, read

messages, drop messages, or insert fake messages. Denial of service attacks,

where an adversary may either drop all messages for a participant in the protocol

or bombard a participant with too many messages, are not considered an attack

unless they result in a spoofing, counterfeiting, identity revelation, or linkability

attack.

Side channel attacks are not considered. There are many potential side

channel attacks that could be made on a protocol for providing provenance in

reseller chains. For example, if an adversary knows the most common times for a

New Zealand participant to be involved in a protocol, the adversary may be able

to gain some information about what country (or time zone) a participant is in

based on the time of the protocol’s execution. This is just one example and there

are many varied side channel attacks that have been applied to many different

security protocols.

As customers directly deal with resellers, a group of customers can link

together the actions of a reseller with respect to this group. As the customers have

to directly deal with the reseller to browse their store and arrange a purchase,

there is no way to prevent the customers from learning the identities of the

resellers they are purchasing items from. This is considered a side channel

attack as the identity revelation is not a direct effect of the protocol to establish

provenance.

When an anonymous communication channel is used, it is assumed to be

a perfect anonymous channel. The design and implementation of anonymous

communication channels is beyond the scope of this work.

3.4 Protocol Definition

In this section, I present a high level description of a protocol for anonymously

establishing digital provenance in reseller chains. This high level description of

the protocol is implementation independent; a variety of implementations could

fulfil the requirements of the description. This work provides implementations

of protocols that fulfil these requirements. The following notation describes the

protocol. The value item is a unique identifier for the item. The notation pk

represents a public key and sk represents a private key. The variable data is

information that is used to generate the license that verifies the provenance of

3.5. SECURITY PROPERTIES 33

item.

A protocol for anonymously establishing digital provenance in reseller chains

is defined as a set of five multi-party algorithms.

1. Setup(k): a probabilistic polynomial time (PPT) algorithm that sets up keys

and global parameters necessary for the protocol with security parameter k.

2. Register(item, pkitem): a polynomial time algorithm where the supplier

for item registers it with some public information pkitem where only the

supplier knows the corresponding private information skitem. Returns 1 or

0 to indicate success or failure of the registration.

3. Generate(item, data, skitem): a PPT algorithm which returns license for item.

The algorithm generates license using the secret information for the item

skitem and data.

4. Regenerate(item, licenseold, dataold, datanew): a PPT algorithm which returns

licensenew for item. The algorithm generates licensenew using datanew as well

as licenseold and dataold from an existing license for item.

5. V erifyLicense(item, data, license): a polynomial time algorithm that veri-

fies the correctness of license for item and data and returns 1 or 0.

The use of the Generate and Regenerate algorithms will result in a set of

licenses {license1, ..., licensen} with corresponding data values {data1, ..., datan}.

These values form a well defined sequence from i = 1, ..., n. The following

formula express the correctness property:

V erifyLicense(item, datai, licensei) = 1

where license1 = Generate(item, data1, skitem)

and licensei = Regenerate(item, licensei−1, datai−1, datai)

3.5 Security Properties

The security of a protocol for anonymously establishing digital provenance in

reseller chains consists of ensuring security against spoofing, fabrication, cloning,

network sniffing, identity revelation, and linkability attacks. Let k be a suitable

security parameter as used in the Setup method. As it is assumed the supplier

34 CHAPTER 3. DOMAIN AND THREAT MODEL

for item is honest for transactions involving item, the Setup(k) method generates

item, pkitem, and skitem.

The following definitions use the public (pkTGC) and private key (skTGC) of the

Tag Generation Centre (TGC) which is a third party used in the tagged transaction

protocol. While these parameters are specific to the tagged transaction protocol

they can be substituted for any other protocol specific values when using the

following definitions for analysing other protocols. For the following definitions,

the TGC acts as a trusted third party. Subsequent work removes this assumption

(Chapter 6).

The notation Prob[x] indicates the probability of action x. The notation

Aa,b(params) indicates the adversary has access to the oracles a and b and the

data in params.

Oracles:

The adversary A has access to three oracles:

1. Oinit(item, pk) registers item using pk. Oinit simulates the Register algo-

rithm.

2. Ogen(item, data) generates a license for item using data. Ogen simulates the

Generate algorithm.

3. Oreg(item,Licenseold, data) generates a new license for item using data and

an old license Licenseold. Oreg simulates the Regenerate algorithm.

3.5.1 Prevention of Spoofing

To claim to be the supplier, the adversary A will have to register the item.

Any probabilistic polynomial time (PPT) adversary A should have negligible

probability of completing the following experiment expspoofing:

Setup(k)→ (skTGC , pkTGC , item, pkitem, skitem)

pkr ← AOinit(pkTGC)

expspoofing = Prob[1← Register(item, pkr)]

where Oinit cannot be used with item.

3.5. SECURITY PROPERTIES 35

3.5.2 Prevention of Fabrication

An adversary A should not be able to produce a valid tag for item and data

without knowledge of the secret key for the item skitem. Any PPT adversary

A should have negligible probability of completing the following experiment

expfabrication:

Setup(k)→ (skTGC , pkTGC , item, pkitem, skitem)

Register(item, pkitem)→ 1

license← AOgen,Oreg(item, data, pkitem, pkTGC)

expfabrication = Prob[1← V erifyLicense(item, data, license)]

where Ogen and Oreg cannot be used with item and data.

3.5.3 Prevention of Network Sniffing

In a network sniffing attack, the adversary sees a valid license on the network and

uses it to generate a new license. Any PPT adversary A should have negligible

probability of completing the following experiment expsniffing:

Setup(k)→ (skTGC , pkTGC , item, pkitem, skitem)

Register(item, pkitem)→ 1

licold ← Generate(item, dataold, skitem)

lic← AOreg(item, data, pkitem, pkTGC , licold)

expsniffing = Prob[1← V erifyLicense(item, data, lic)]

3.5.4 Prevention of Cloning

In a cloning attack, the adversary has access to a valid license which it uses to

create two new valid licenses. Any PPT adversary A should have negligible

probability of completing the following experiment expcloning:

Setup(k)→ (skTGC , pkTGC , item, pkitem, skitem)

Register(item, pkitem)→ 1

licold ← Generate(item, dataold, skitem)

lic1 ← AOreg(item, data1, pkitem, pkTGC , licold)

lic2 ← AOreg(item, data2, pkitem, pkTGC , licold)

36 CHAPTER 3. DOMAIN AND THREAT MODEL

expcloning = Prob[1← V erifyLicense(item, data1, lic1)] AND

Prob[1← V erifyLicense(item, data2, lic2)]

3.5.5 Prevention of Identity Revelation

In an identity revelation attack, the adversary A finds the identity of a participant

in the protocol that is not its neighbour in the reseller chain. The adversary has

access to the set M of all messages sent as part of the protocol and the set N of the

identities of all parties involved in the protocol other than the TGC. The TGC is a

well-known party that signs messages and is not involved in the transactions so

it is excluded from the definition of identity revelation. The symbol idm denotes

the identity of the sender of the message m and Prob[idm] denotes the probability

of identifying the sender of m. Identity revelation is defined in terms of A finding

the identity of the sender of a message. Formally, any PPT adversary A should

have negligible probability of completing the following experiment expidentity:

Given m ∈M

expidentity = Prob[idm]−
1

|N |

3.5.6 Prevention of Linkability

Unlinkability ensures that a user may make multiple uses of resources or services

without others being able to link these uses together (ISO 15408 standard [50]). In

a linkability attack, the adversary A links together actions of a participant other

than the supplier or the TGC based on the messages posted as part of the protocol.

The supplier and the TGC are removed from the set of participants in this case. As

the supplier first generates all licenses for an item, linking together the actions of

the supplier is trivial. In fact, the protocol should ensure that the correct supplier

generates the initial license for an item.

The symbol M denotes the set of all messages sent as part of the protocol

and N denotes the set of the identities of all parties involved in the protocol

other than the TGC and suppliers. The value mi,r is defined as the messages

sent by participant i in run r of the protocol. Informally, the definition of

unlinkability involves the adversary not being able to tell the difference between

a set of messages sent by a random participant, and the set of messages sent

by a participant that they have seen messages from before. The adversary is

3.6. SUMMARY 37

given access to all messages M . Initially, the adversary is also given access to the

identity of a participant i, and the messages mi,r1 sent by participant i in run r1. A

second participant is randomly chosen that is different to the first participant and

a second run of the protocol that features both participants. Either 0 or 1 is chosen

with equal probability. The adversary is then given the challenge of deciding

whether a group of messages mxb,r2 was sent by participant i or j. Formally, any

PPT adversary A should have negligible probability of completing the following

experiment explink:

1. Select participant i, run r1, and mi,r1

2. Choose j ∈R N where i 6= j

3. Select run r2 which features participant i and j

4. Choose b ∈R {0, 1}

5. Set xb = i and x1−b = j

6. b′ ← A(i,mi,r1,mxb,r2,mx1−b,r2)

7. explink = Prob[b′ = b]− 1
2

3.5.7 Security Definition

As a contribution of this work, I define the formal definition of security for

providing digital provenance in reseller chains. The formal definition uses the

definitions already presented to create a top level definition of secure provenance.

This definition can then be used to analyse the protocols constructed in this Thesis

to check they provide secure provenance.

Secure Provenance. Any probabilistic polynomial time adversary (PPT) A should have

negligible probability of completing a spoofing, fabrication, cloning, network sniffing,

identity revelation, or linkability attack.

3.6 Summary

In this chapter, a domain model for reseller chains was presented. This domain

model shows the parties and roles involved in the protocol. A model and graph

38 CHAPTER 3. DOMAIN AND THREAT MODEL

of provenance information for the reseller model was presented in the Open

Provenance Model format. This model shows the information necessary for a

verifier to construct the provenance information for a digital item. The model also

shows the conflict between providing provenance information and providing

anonymity for participants. This conflict is resolved using one of two methods:

removing the identifying information from the provenance information, and

having a third party or group of independent third parties verify the provenance

information.

An in depth threat model has been presented. The threat model explic-

itly states the assumptions made when constructing the protocol to establish

provenance information in reseller chains. The threat model also shows what

is considered an attack on the protocol and what parties may collude together.

I have defined a protocol for anonymously establishing digital provenance

in reseller chains as a set of five algorithms. These algorithms describe any

protocol that is designed to solve this problem and are not limited to the protocols

created in this thesis. The security properties are then formally defined as

prevention of spoofing, fabrication, cloning, network sniffing, identity revelation,

and linkability attacks. These security properties are used in the formal definition

of secure provenance. Using this definition, it can be shown whether a protocol

to establish provenance information in reseller chains is secure.

The next two chapters present two protocols that provide secure provenance

in reseller chains. The protocols are analysed against the specification provided

in this chapter.

Chapter 4

Tagged Transaction Protocol

This chapter presents the design and analysis of the tagged transaction protocol

for anonymously providing provenance of digital items in reseller chains. The

tagged transaction protocol uses a third party called the Tag Generation Centre

(TGC) to generate and sign tags. If a customer has a valid tag that is signed by

the TGC then they can be confident in the provenance of the item that the reseller

has sold them. The properties of the tagged transaction protocol include:

1. It provides a method for customers to check the provenance of an item they

are purchasing, even from an untrusted reseller.

2. It provides anonymity and unlinkability for customers and resellers that are

not neighbours in the reseller chain. It also provides optional anonymity for

suppliers. This prevents other parties from building up information on the

transactions of participants in the protocol.

3. It supports customer reselling of items. If a customer wishes to resell an

item they have purchased from a reseller, they can take the role of a reseller

and sell it to another customer.

4. It does not require the interaction of the supplier once the initial tag has been

generated. The resellers and the TGC co-operate to generate the subsequent

tags.

5. It does not provide enforcement of licenses.

The tagged transaction protocol does not include payment methods. The

implementation of a fair payment scheme is out of the scope of this work.

Chapter 5 describes an extended version of the tagged transaction protocol with

39

40 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Reseller

Reseller

Supplier

Customer

TGC

1) Registeration Phase

2) Supplier Generating Tag

3) Reseller Generating Tag

3) R
eseller G

enerating Tag

tagn

tag1

...

Figure 4.1: Overview of the Tagged Transaction Protocol

revocable anonymity. Chapter 6 describes mechanisms to verify the actions of the

TGC while preserving the anonymity and unlinkability of the parties involved in

the transaction.

The tagged transaction protocol provides secure provenance information

at every step in a reseller transaction. When a customer or reseller receives

provenance information they will want to authenticate the item (make sure that

the item originally came from the correct supplier) and to authenticate the current

owner (make sure the reseller or supplier they are purchasing the item from has

a legitimate copy of the item with correct provenance information). While the

customers and resellers will want to authenticate this provenance information

the identities of the participants in the protocol should remain anonymous and

unlinkable between different runs of the protocol.

Figure 4.1 shows the operation of the tagged transaction protocol. Suppliers

and resellers create tags that are passed to the purchaser of an item, either a

customer or another reseller. There can be many resellers in the chain between

the supplier and the customer. The tagged transaction protocol has three main

4.1. DEFINITIONS 41

phases as shown by the numbers in Figure 4.1:

1. Registration Phase. The supplier initially registers the item with the TGC.

2. Supplier Generating Tag. The supplier and TGC take part in a protocol to

create a tag for an item.

3. Reseller Generating Tag. Resellers and the TGC take part in a protocol to

update the information in the tag. The reseller presents the TGC with a

valid tag before the TGC will update the information in that tag. This phase

is repeated as many times as required depending on the number of resellers

in the chain.

4.1 Definitions

In the tagged transaction protocol, tags are used to represent provenance infor-

mation and are passed from the supplier to the customer via resellers. A tag is

defined as a tuple:

tag = {A = pkx, B = Lx, C = pktag,r}

The parameters of the tag are:

• A = pkx: the public key for the item. This is registered with the TGC when

the supplier first creates the item. The TGC should only sign tags that have

the correct public key for the item in this entry.

• B = Lx = {id = H(x), License}skx : a license signed with the secret key

for the item x. This license contains information such as the identity of the

item id = H(x) and the other terms of the license. Section 4.1.1 discusses

identifying items and Section 4.1.2 discusses the structure of licenses.

• C = pktag,r: the one time public key for the participant r and tag tag.

To preserve the anonymity of the supplier, resellers, and customers, all

communication with the TGC must be done over an anonymous communica-

tion channel. Section 6.1 discusses mechanisms to implement the anonymous

communication channel. The signed license links this tag with the item being

sold. The license contains information to allow any party to check what item

the license is for and the terms of the license. A one time key is used for tags as a

42 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

single key for each participant links together the transactions of that participant in

multiple runs of the protocol. Resellers and customers generate one time public

and private keys and the public key is embedded in the tag. For tag tag and

reseller r, the value pktag,r denotes the public key and sktag,r denotes the secret

key.

The tagged transaction protocol uses a digital signature scheme and an

encryption scheme. The TGC signs tags and the public signing key of the TGC

has to be well known to verify the signed tags. The public encryption key of the

TGC is also well known so that the supplier can encrypt messages to send to the

TGC. Before the protocol is run for the first time, the TGC generates and publishes

public encryption and signing keys. The notation {A}skB denotes the message A

signed using the key skB and {A}pkB denotes the message A encrypted using the

key pkB .

4.1.1 Identifying Items

To establish provenance of digital items, items need to be uniquely identified.

The requirement of identifying digital items is complicated by the fact that digital

items could be modified, either maliciously or as a requirement of functionality.

For example, a music file may be available for sale from a reseller in one of several

formats. To transfer between these formats, a new encoding is applied to the

file and the music file needs to be recognisable as the same digital item under

these transformations. Other transformations may be applied maliciously. For

example, a malicious reseller could cut a small period from the start or end of a

music file, or alternately they could add a small period to the start or end of the

song to try and make it appear as a new item that they can claim ownership

of. There are several techniques used to identify items ranging from simple

techniques such as hash values and string values, to stenographic techniques

such as digital watermarking.

Hash Values

A hash value is a basic form of identification where a cryptographic hash function

H , such as MD5 [76] or SHA-1 [32], is applied to the item x to produce the identity

id = H(x). A hash value is not robust under modifications or transformations of

the item it identifies. Any change to the item will result in a new identity. Hash

4.1. DEFINITIONS 43

functions are efficient to compute, a customer can easily check if the item they

have received is identified by a specific hash value.

String Values

A digital item may also be identified using string values. In its most basic form

a string value can be the title of the digital item, such as the name of a song. A

more complex representation of an item using string values may include extra

meta data such as the artist who recorded the song, the year of release, and the

album name. Meta data values are dependent on the type of item being identified,

with different types of items having different meta data. String values in the form

of XML files are used in the ISO standard 21000-3 Digital Item Identification [51].

An XML file is created that provides a description of the item and an identifier

in a standard identification scheme such as ISBN (International Standard Book

Number) or ISRC (International Standard Recording Code).

String values are robust under transformations applied to the file as they are

not calculated from the data of the item. When using string values to identify

items, customers may not know the exact name identifying an item. For example,

when given two different identifiers “Windows XP” and “Microsoft Windows

XP” it may be difficult for the customer to choose the correct identifier of the item

they wish to purchase.

Digital Watermarking

Digital watermarking is a stenographic technique that embeds information in

data by applying minor modifications to the data in a perceptually invisible

manner. The watermark information can be recovered from the modified data

by detecting the presence of these modifications. There have been many digital

watermarking schemes that have been put forward in the literature [9, 10, 24, 26,

42, 71, 84, 90]. There are many different techniques used to watermark media

files including least significant bit substitution [9, 26, 90], transform domain

techniques [10, 24], and spread spectrum techniques [42].

Digital watermarking may be symmetric or asymmetric. In a symmetric wa-

termarking system, the same key is used to both embed and detect a watermark.

In asymmetric watermarking, a different key is used to embed the watermark

than is used to detect it.

Digital watermarking requires the modification of the item to be watermarked.

44 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Some items, such as a piece of software, may no longer function correctly when

they have been modified with a watermark.

A robust watermarking scheme preserves the watermark when different types

of transformation are applied to the watermarked item. Digital watermarks have

been shown to be secure against certain attacks to remove the watermark. How-

ever, digital watermarks are vulnerable to re-watermarking where an adversary

applies a new watermark to the data without removing the existing watermark.

Discussion

Uniquely identifying items is a difficult problem, especially when there are a

large number of different types of items that may have separate transformations

applied to them. There has been a lot of research work in the area [9, 10, 24, 26,

42, 51, 71, 84, 90]. In general the problem of uniquely identifying items is beyond

the scope of this thesis. However, in the protocols constructed in this thesis a

hash value is used as the identifier for an item. While hash values have problems

identifying items that have had a transformation applied to them, it is a simple

and efficient solution. When a single item has multiple different representations,

a group of hash values can be used to show an item is one of a group. Any

identification scheme could be substituted for the hash value, the constructed

protocols do not require a specific identification scheme.

4.1.2 Structure of Licenses

In the tagged transaction protocol, the supplier creates and signs a license for

the digital item being sold. This license should contain information to identify

the item, as well as any extra terms of the license such as duration of the license.

The main restriction on the license information is that the license cannot contain

any identifying information of the supplier, reseller, or any other parties in the

protocol. The exception to this rule is if the supplier is not anonymous, in which

case the license can include the identity of the supplier. The license may be a well

known license, a pre-defined license, or a one off license. A well known license

is a license that is used for many different items and is well known such as the

GNU General Public License (GPL) 1. A pre-defined license is a license that is

applied to many items of the same sort such as the End User License Agreement

1http://www.gnu.org/copyleft/gpl.html

4.1. DEFINITIONS 45

for Windows XP Home 2. A one-off license is created fresh each time for one user

and one item.

As the tagged transaction protocol sends license information separately from

the digital items themselves, there is no need to embed the license information

in the items. The license information can be in a separate data structure. A

language for expressing license terms is a Rights Expression Language (REL). A

REL presents rights information in an unambiguous machine readable format.

The basic construct of a REL is a rights expression. A rights expression describes

some permission granted for some protected content and may include conditions

on the use of this permission. Several RELs have been developed including the

creative commons Rights Expression Language (ccREL) [2], Open Digital Rights

Language (ODRL) [65], and the MPEG-21 REL [52].

ccREL uses triples in the Resource Description Framework (RDF) format. RDF

is a framework for describing entities on the web and uses URLs (or URIs) to

address entities. An RDF triple for describing the license on a web page would

have the URL of the web page, a URL defining the term license, and a URL

pointing to the license for the web page. RDF triples can be represented in

various ways but a common method is the use of XML. ccREL also provides

definitions of features for providing information on the licensed content as well

as any requirements or prohibitions on the license. While the ccREL is primarily

designed to work with the creative commons license, it can be used with any type

of license.

ODRL uses a Policy object as its core structure [65]. This policy can have

attributes that describe the license such as permissions and prohibitions. A policy

can be structured as an offer where rights are granted if the party performs

certain duties. These duties can be actions such as paying a set amount for the

permission to play a media file. Once the policy has been accepted, an agreement

policy is created. This agreement policy must contain an identifier for the party

the agreement is with. This party field would invalidate our requirement for

anonymity of the parties in the protocol. However, a policy can also be created

in a ticket form which grants the rights in the policy to the holder of the ticket.

ODRL policies can be expressed in XML.

The core element of the MPEG-21 REL is a license [52]. A license contains

one or more grants and an issuer. The issuer is the party that issued the license

and signs the license and timestamps the license. One or more issuers may sign

2http://www.microsoft.com/windowsxp/eula/home.mspx

46 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

the same license. A grant comprises four parts: a principal the grant is issued

to, the resource the grant is for, the right the principal has on the resource, and

any conditions on the grant. To provide anonymity for the tagged transaction

protocol, the principal would need to be generic or obfuscated in some way. The

MPEG-21 REL can be expressed in XML.

Any of the RELs examined here can fulfil the requirements to express licenses

in the tagged transactions protocol. Licenses can be formatted in XML documents

that are sent to the customers. The choice of which REL to use can be left to

the supplier. There are no restrictions on the type of license, other than the lack

of identifying information. The supplier will want to choose a REL that is well-

supported so that it can be sure that customers will be able to interpret the license

when they receive it. The choice of REL may also be influenced by the type of

license, for example, a supplier that uses a creative commons license may want

to use ccREL as its design is closely aligned to the creative commons license.

4.1.3 Digital Signature Scheme

The tagged transaction protocol requires a digital signature scheme that is secure

against existential forgeries under adaptive chosen message attacks. There are

several well known digital signature schemes that provide this security property.

The main signature schemes fall in to two families: El-Gamal based signatures,

and RSA based signatures.

Tahir El-Gamal introduced El-Gamal signatures in 1984 [37]. The El-Gamal

family of signatures rely on the difficulty of computing discrete logarithms

over finite fields. The original signature scheme is subject to existential forgery

attacks. Pointcheval et al developed a modified version of the signature scheme

that is provably secure in the random oracle model against existential forgeries

under adaptive chosen message attacks [74]. Schnorr developed a variant of

the El-Gamal signature scheme that produces a shorter signature [83]. The

Schnorr signature scheme has also been shown to be secure in the random

oracle model against existential forgeries under an adaptive chosen message

attacks [74]. Another popular variant of the El-Gamal signature scheme is the

Digital Signature Standard (DSS) defined in the document FIPS 186-3 [63]. The

DSS requires more computation to compute and verify signatures than either the

modified El-Gamal or the Schnorr signature schemes.

The RSA family of signatures was introduced by Rivest et al in 1978 [77]. It

4.1. DEFINITIONS 47

was the first practical implementation of a digital signature scheme. The family of

RSA signatures relies on the difficulty of factorising large numbers. The original

RSA signature scheme was subject to selective chosen message attacks. Further

work incorporated a randomised padding scheme known as the probabilistic

signature scheme (PSS) [7]. The PSS scheme makes use of two hash functions

and the RSA function to produce randomised signatures. The PSS scheme

has been shown to be secure in the random oracle model against existential

forgeries under adaptive chosen message attacks and is the basis for the PKCS

signature scheme [80]. The RSA-PSS signature scheme is more efficient than

the El-Gamal family of signatures, requiring only one modular exponentiation

and the execution of hash functions to sign and verify messages. The size of

the keys in the RSA-PSS signature scheme is twice the size of the keys in the El-

Gamal family of signatures. The PKCS RSASSA-PSS digital signature scheme is a

well known implementation of the RSA-PSS signature scheme produced by RSA

Security [80].

The tagged transaction protocol uses the Schnorr digital signature scheme [83].

This scheme has been shown to be secure against existential forgeries under an

adaptive chosen message attack. The Schnorr signature scheme has the shortest

signature size of the El-Gamal family of signatures and requires one less modular

exponentiation to verify a signature than the modified El-Gamal scheme. The

RSA-PSS signature scheme has shorter signature lengths and requires only one

modular exponentiation to sign and verify signatures. However, once the initial

system wide parameters for the Schnorr signature scheme are set, generating a

new key pair only requires one modular division. The RSA-PSS scheme requires

two large primes to be generated to create a key pair. As the tagged transaction

protocol makes use of one time keys, the complexity of the key generation

algorithm is an important factor.

4.1.4 Encryption Scheme

The tagged transaction protocol requires an encryption scheme that provides

indistinguishability under adaptive Chosen Ciphertext Attacks (IND-CCA2).

The two most commonly used encryption schemes are the RSA encryption

scheme and the El-Gamal encryption scheme.

The RSA encryption scheme was developed by Rivest et al in 1978 [77]. The

RSA cryptosystem relies on the difficulty of factorising large numbers. The

48 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

original RSA scheme was subject to chosen plaintext attacks. To provide IND-

CCA2 security, various padding schemes have been developed. The most

common of these are Optimal Asymmetric Encryption Padding (OAEP) [6] and

the Probabilistic Signature Scheme with message Recovery (PSS-R) [8, 23]. RSA

with the OAEP padding scheme, RSA-OAEP, has been shown to be IND-CCA2

secure in the random oracle model [6, 36, 86]. PKCS RSAES-OAEP is a well

known encryption standard based on RSA-OAEP produced by RSA Security [80].

The first efficient public key cryptosystem with IND-CCA2 security was the

Cramer Shoup public key cryptosystem [25]. The Cramer Shoup cryptosystem

is an IND-CCA2 enhancement of the El-Gamal cryptosystem [37]. To provide

IND-CCA2 security, the Cramer Shoup cryptosystem uses a hash value and

adds several extra modular exponentiations to both encryptions and decryptions.

General methods for converting one way trapdoor functions to IND-CCA2

encryption schemes have also been developed [35, 73]. These general methods

can be applied to encryption schemes, such as the El-Gamal encryption scheme,

to provide IND-CCA2 security and are more efficient than the Cramer Shoup

cryptosystem.

In the tagged transaction protocol, I make use of the PKCS RSAES-OAEP

encryption scheme. PKCS RSAES-OAEP has been shown to be IND-CCA2 secure

in the random oracle model. To encrypt and decrypt in the PKCS RSAES-

OAEP encryption scheme requires just one modular exponentiation. This is

more efficient than any of the El-Gamal based encryption schemes. While the

key generation for PKCS RSAES-OAEP requires more computation than for El-

Gamal based schemes, the key generation only needs to be done once by the TGC.

The tagged transaction protocol performs many more encryption and decryption

operations than key generation making the efficiency of the encryption and

decryption operations more important than the efficiency of the key generation.

4.2 Registration Phase

This section presents the registration phase of the tagged transaction protocol.

There are two separate registration options. The first option provides anonymity

for suppliers while the second option does not support anonymous suppliers.

The registration process is shown in Figure 4.2. Both of the options involve the

supplier first producing the item x. The supplier will then generate the identity

4.3. SUPPLIER GENERATING TAG WITH TGC 49

Supplier TG C

1) {id=H (x), pkx}pkTG C

2) {id=H(x), pkx}skTGC

Figure 4.2: Registering the Item with the TGC

of the item id = H(x) and a secret key (skx) and public key (pkx) for the item. The

public key and identity of the item are then registered with the TGC by sending

the TGC the message {id, pkx}pkTGC
. The message is encrypted with the public

encryption key of the TGC. This is to prevent an adversary from intercepting

the message, changing the public key for the item and sending the message

on to the TGC. After a successful registration the TGC returns a signed receipt

{id, pkx}skTGC
or if the registration fails the TGC returns 0. If an anonymous

supplier is required, the communication between the supplier and TGC must be

done over an anonymous communication channel.

The anonymous supplier option uses a first-in first-registered style of regis-

tration. When the supplier is anonymous there are no checks the TGC can do to

verify that the supplier registering the item is the correct supplier. When supplier

anonymity is required the supplier should register the item before making it

public to prevent an adversary registering the item before the supplier.

When supplier anonymity is not required the TGC may convince itself with

out of band checks that the party registering the item is the correct supplier

similar to checks done by a certification authority. This approach prevents denial

of service, or brute force, attacks on the registration step where an adversary

floods the TGC with registration requests in the hope of registering a real item.

4.3 Supplier Generating Tag with TGC

To initially generate a tag a protocol takes place between the reseller, the supplier,

and the TGC. The communication between the supplier and the TGC is done over

an anonymous channel if supplier anonymity is required as shown by dotted

lines in Figure 4.3. The generation of a new tag for an item by the supplier takes

50 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Reseller Supplier TGC

1) id=H(x), pktag,r

2) Lx={H(x),Licensex}skx

3) {Lx, pktag,r}skx

4) tag={pkx,Lx,pktag,r}skTGC

5) tag
6) tag

Figure 4.3: Supplier Generating Tag with TGC

place in the six steps shown in Figure 4.3.

1. The reseller sends a purchase request to the supplier containing the identity

of the item they wish to purchase id = H(x) and the one time public key

for the tag pktag,r. The reseller randomly picks a private key and uses this to

generate the public key.

2. The supplier signs a license for the item Lx = {id = H(x), Licensex}skx

where id = H(x) is the identity of the item and Licensex is the license for

the item.

3. The supplier then creates a signed tag request containing the license Lx and

the one time public key pktag,r all signed by skx and sends it to the TGC.

4. The TGC checks the one time public key pktag,r has not been used for this

item before and that the key is correct for this item. If these tests pass, the

TGC constructs and signs tag = {pkx, Lx, pktag,r}skTGC
.

5. The TGC sends the tag to the supplier.

6. The supplier sends the tag to the reseller. The reseller checks the tag has

been signed by the TGC, that the license is for the correct item, and that the

tag contains the correct one time public key.

The supplier signs the license generation request with the secret key for the

item to prevent any other party from being able to generate tags for the item. The

reseller will only accept the tag if the tag is signed by the TGC and contains the

correct one time key.

4.4. RESELLER GENERATING TAG WITH TGC 51

Customer Reseller TGC

1) id=H(x), pktag,c

tag={pkx,Lx,pktag,r}skTGC

2) {tag, pktag,c}sktag,r

3) If tag, pktag,r not seen before generate
tagc={pkx,Lx,pktag,c}skTGC

4) tagc

5) tagc

Figure 4.4: Reseller Generating Tag with TGC

4.4 Reseller Generating Tag with TGC

Now the tag for an item has been generated, signed, and sent to the reseller, the

reseller can use this tag to generate a new tag for a customer or another reseller

without interacting with the supplier.

The generation of a new tag by a reseller takes place in the five steps shown

in Figure 4.4. The communication between the reseller and the TGC is done over

an anonymous channel shown by dotted lines.

1. The customer sends a purchase request comprised of the identity of the item

they wish to purchase, and the one time public key for the tag pktag,c. The

customer randomly picks a private key and uses this to generate the public

key.

2. The reseller sends a message with the one time public key chosen by the

customer pktag,c and the tag signed using the one time secret key used in the

generation of the tag sktag,r to the TGC.

3. The TGC then checks whether the tag has been cloned. The tag signed by

the TGC contains a one time public key from the reseller. When the TGC

generates a new tag for a customer it records the signed message from the

reseller {tag, pktag,c}sktag,r . If a reseller tries to clone a tag then the TGC

will have two signed messages {tag, pktag,c1}sktag,r and {tag, pktag,c2}sktag,r .

The TGC presents these two signed messages as evidence the tag has

been cloned. If the tag has not been cloned the TGC generates a new tag

tagc = {pkx, L, pktag,c}skTGC
.

52 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

4. The TGC sends tagc to the reseller.

5. The reseller sends tagc to the customer.

The message {tag, pktag,c}sktag,r from the reseller to the TGC is signed using the

one time private key for the tag. A reseller will need to know the one time private

key for the tag to generate a new tag with the TGC. This prevents a network

sniffing attack where an adversary sees a tag being sent over the network and

tries to use it to generate a new tag. The signing of the message also prevents

another reseller from being able to frame the original reseller in a cloning attack.

As the message needs to be signed by the one time private key another reseller

cannot modify the message sent to the TGC to alter the customer’s one time key,

or to fabricate a new tag signed using the one time private key. The signing of the

message also allows the TGC to prove to a third party that a tag has been replayed

by presenting the two messages {tag, pktag,c1}sktag,r and {tag, pktag,c2}sktag,r .

This step of the tagged transaction protocol is repeated as many times as

required. The customer will take the role of the reseller and generate a new tag

for another reseller or customer further down the chain of resellers.

4.5 Security Analysis

Thereom 1. The tagged transaction protocol provides Secure Provenance (Section 3.5.7)

in the random oracle model provided that the signature scheme used has provable security

against existential forgeries under adaptive chosen message attacks and the encryption

scheme used has provable security against IND-CCA2 attacks.

I use a reduction to contradiction style of argument to show the tagged

transaction protocol provides security against spoofing, fabrication, network

sniffing, and cloning attacks. I then make arguments showing the security of

the tagged transaction protocol against identity revelation and linkability attacks.

In this security analysis, the TGC is assumed to be acting as a trusted third

party. Chapter 6 removes this assumption and discusses methods to verify

the actions of the TGC. For the security analysis of the identity revelation and

linkability properties the following assumptions are made: a perfect anonymous

communication channel, an anonymous supplier, and the parties in the protocol

not revealing their identities or the identities of the parties with whom they

communicate. This security analysis does not consider side channel attacks.

4.5. SECURITY ANALYSIS 53

Adversary Simulator

Signature Scheme and Public Key

Simulated Signing Training

Educated Forgery

Simulated Random Oracles

Solution to Hard
Problem

Figure 4.5: Simulator and Adversary for Signature Schemes

If the signature scheme provides security against existential forgeries under

adaptive chosen message attacks in the random oracle model, then a simulator

can be constructed that uses an adversary that breaks the signature scheme to

solve a hard problem. This argument for the Schnorr signature scheme was

first made by Pointcheval et al [74]. Figure 4.5 shows the setup for the random

oracle model reduction. There are two parties, a simulator and an adversary.

The adversary is assumed to be able to have a non-negligible advantage of

breaking the signature scheme by outputting a valid message signature pair. The

simulator provides the signature scheme and public key to the adversary. The

simulator provides a signing oracle to the adversary by signing messages sent

by the adversary. The input that the simulator provides to the adversary is

computationally indistinguishable from the input it would receive from messages

signed by a party with knowledge of the private key. The argument is then

by contradiction. If the adversary can break the signature scheme, then the

simulator can use the output of the adversary to solve a hard problem (in

this case the discrete logarithm problem). Therefore, such an adversary cannot

exist if the problem is hard. The simulator has no knowledge of the inner

workings of the adversary which it treats as a black box. It is also important

to note that the simulator does not have access to the private signing key for the

signature scheme, however, it is able to simulate the signing in a computationally

indistinguishable way from a real signer. All input to and output from the

adversary goes through the simulator.

Figure 4.6 shows the setup for the tagged transactions reduction argument

in the random oracle model. The simulator is the same as in the analysis of the

security scheme. The adversary in this case is replaced by a tagged transaction

simulator and a tagged transaction adversary. The simulator provides the same

input to the tagged transaction simulator, namely a signature scheme and a

54 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Simulator
Signature Scheme and Public Key

Simulated Signing Training

Educated Forgery

Simulated Random Oracles

Tagged
Transaction
Adversary

Tagged
Transaction
Simulator

Adversary

Tagged Transaction Data

Tagged Transaction Oracle

Forged Tag

Solution to Hard
Problem

Figure 4.6: Simulator and Adversary for Tagged Transactions

public key. The simulator also provides simulated signature queries to the tagged

transaction simulator. The tagged transaction simulator provides input to the

tagged transaction adversary that is computationally indistinguishable from the

input it would receive in an actual run of the tagged transaction protocol. If

the adversary can break the security of the tagged transaction protocol, then the

tagged transaction simulator can output a valid message signature pair for the

signature scheme. If the tagged transaction simulator can output a valid message

signature pair, then the original simulator can solve a hard problem. While the

argument I have made corresponds to the signature scheme, a similar argument

can be made regarding the encryption scheme.

The tagged transaction simulator provides the tagged transaction adversary

with inputs that are computationally indistinguishable from the inputs it would

receive in an actual run of the protocol. If the tagged transaction adversary breaks

the security of the tagged transaction protocol in this simulated run, then the

tagged transaction simulator can provide an output that can be used to solve one

of two problems thought to be hard:

1. The tagged transaction simulator breaks the security of the signature

scheme. When given public key pk and access to a signing oracle provided

by the original simulator, the tagged transaction simulator outputs a valid

message signature pair (m,σ) with non negligible probability where m was

not used in a query to the signing oracle.

2. The tagged transaction simulator breaks the security of a IND-CCA2 secure

cryptosystem. The tagged transaction simulator is given a public key pk and

access to the encryption and decryption oracles provided by the original

4.5. SECURITY ANALYSIS 55

simulator. The tagged transaction simulator can then make multiple calls

to the encryption and decryption oracles. The tagged transaction simulator

then generates two values m0 and m1 that have not been used in queries to

the oracles and sends them to the original simulator. The original simulator

generates b ∈R {0, 1} and cb = E(mb) and passes cb to the tagged transaction

simulator. The tagged transaction simulator can break the IND-CCA2

cryptosystem if it can guess the value b with probability greater than 1
2
.

When providing inputs to the tagged transaction adversary and analysing the

identity revelation and unlinkability properties, the security arguments involve

showing computational indistinguishability of elements in a group. For a cyclic

group G of order q with generator g, when given an element z chosen at random

from Zq, the element gz is uniformly distributed in G. Two elements uniformly

distributed in G are computationally indistinguishable. If two elements a1 and

a2 are chosen at random from Zq, the elements ga1 and ga2 are computationally

indistinguishable. If two private keys for the Schnorr signature scheme are cho-

sen at random, the public keys are computationally indistinguishable. A random

element from G and a Schnorr public key are computationally indistinguishable.

4.5.1 Spoofing

In a spoofing attack, the tagged transaction simulator is given as input the public

key for the encryption scheme pke and access to the encryption and decryption

oracles provided by the original simulator. The tagged transaction simulator

is then challenged to break the security of the encryption scheme. The tagged

transaction simulator generates the values id0, id1, and pkitem randomly and

constructs m0 = (id0, pkitem) and m1 = (id1, pkitem). The tagged transaction

simulator then sends m0 and m1 to the original simulator which returns cb =

{mb}pke where b ∈R {0, 1}.

Oracles:

The tagged transaction simulator implements the Oinit oracle. The tagged

transaction simulator records in a list the input values (idi and pki) it receives.

When a query is submitted that uses inputs already in the list, the tagged

transaction simulator returns 0. If a query is submitted that does not appear

in the list the tagged transaction simulator sends the message {idi, pki} to the

encryption oracle which will return {idi, pki}ske .

Input:

56 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The tagged transaction simulator provides as input to the

adversary pkTGC = pke. The tagged transaction simulator also provides as input

to the adversary cb = {idb, pkitem}pke . As the adversary is assumed to be in

the Dolev Yao model, they have complete control over the network and can

intercept the registration message sent from the supplier to the TGC. The message

cb = {idb, pkitem}pke is computationally indistinguishable from the real message

sent from the supplier to the TGC.

Adversary:

Suppose adversary A passes the experiment with non negligible probability.

The probability of the adversary guessing item is negligible (2−k where the

output space of the hash function is k). As the adversary succeeds with non

negligible probability, it must have modified the message cb = {idb, pkitem}pke to

cA = {idb, pkA}pke to register the item. The tagged transaction simulator queries

the decryption oracle with the message cA = {idb, pkA}pke . If cA decrypts to

(id0, pkA) then b = 0 otherwise b = 1.

4.5.2 Fabrication

In a fabrication attack, the tagged transaction simulator is given as input the

public key for the signature scheme pk and access to the signing oracle provided

by the original simulator. The tagged transaction simulator is then challenged

to break the security of the signature scheme by outputting a valid message

signature pair. The tagged transactions simulator generates the values item,

data = pkr, and skitem randomly using the random oracle of the original simulator.

As item is the output of a hash function it is computationally indistinguishable

from a random value. The value skitem is then used to generate the value pkitem.

Oracles:

The tagged transaction simulator implements the Ogen and Oreg oracles. To

simulate Ogen in a manner that is computationally indistinguishable from the

real protocol, the tagged transaction simulator records in a list the input values it

receives. The adversary will send the message {id, pktag,r} where itemi = id and

datai = pktag,r. If the values itemi and datai have not been used before the tagged

transaction simulator submits the message:

m = {pkitem, Lx, datai = pktag,r}

4.5. SECURITY ANALYSIS 57

to the signing oracle and returns:

tag = {pkitem, Lx, datai = pktag,r}sk

The value Lx = {item,Licensex}skitem can be generated by the tagged transaction

simulator as it has access to the values item and skitem.

To simulate Oreg in a manner that is computationally indistinguishable from

the real protocol, the tagged transaction simulator records in a list the input

values it receives. The adversary will send the message:

{{pkitem, Lx, pktag,r}skTGC
, pktag,c}sktag,r

where itemj = item in Lx, dataj = pktag,c, and

licold,j = {pkitem, Lx, dataold = pktag,r}skTGC

If the values itemj , licold,j , and dataj have not been used before and the message

is correctly signed with sktag,r, the tagged transaction simulator submits the

message:

{pkitem, Lx, dataj = pktag,c}

to the signing oracle and returns:

{pkitem, Lx, dataj = pktag,c}skTGC

The value Lx = {item,Licensex}skitem is the same value that appears in licold,j .

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data, pkitem,

and pkTGC = pk.

Adversary:

Suppose adversary A passes the experiment with non negligible probability.

The adversary is then able to fabricate a valid tag with non negligible probability:

tag = {pkitem, Lx, pkr}sk

The simulator can then return this to the original simulator as it has a valid

message signature pair:

({pkitem, Lx, pkr}, tag)

The value {pkitem, Lx, pkr}will not have been used in a query to the signing oracle

as neither the Ogen or Oreg oracles can be used with the value data = pkr.

58 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

4.5.3 Network Sniffing

In a network sniffing attack, the tagged transaction simulator is given as input the

public key for the signature scheme pk and access to the signing oracle provided

by the original simulator. The tagged transaction simulator is then challenged

to break the security of the signature scheme by outputting a valid message

signature pair. The tagged transactions simulator generates the values item,

skTGC and skitem randomly using the random oracle of the original simulator. As

item is the output of a hash function it is computationally indistinguishable from

a random value. The values skitem and skTGC are then used to generate the values

pkitem and pkTGC .

Oracles:

The tagged transaction simulator implements the Oreg oracle. To simulate Oreg

in a manner that is computationally indistinguishable from the real protocol, the

tagged transaction simulator records in a list the input values it receives. The

adversary will send the message:

{tag = {pkitem, Lx, pktag,r}skTGC
, pktag,c}sktag,r

where itemi = item in Lx, datai = pktag,c, and

licold,i = tag = {pkitem, Lx, dataold = pktag,r}skTGC

If the values itemi, licold,i, and datai have not been used before and the message is

correctly signed with sktag,r, the tagged transaction simulator signs the message:

{pkitem, Lx, datai = pktag,c}

using the key skTGC it generates and returns:

{pkitem, Lx, datai = pktag,c}skTGC

The value Lx = {item,Licensex}skitem is the same value that appears in licold,i.

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data = pk,

pkitem, and pkTGC . The tagged transaction simulator also gives the simulator

access to the old license by constructing the input:

{pkitem, Lx, data = pk}skTGC

4.5. SECURITY ANALYSIS 59

This can be constructed because the tagged transaction simulator has access to the

values pkitem, data, and the value Lx = {item,Licensex}skitem can be generated by

the tagged transaction simulator as it has access to the values item and skitem.

Adversary:

Suppose adversary A passes the experiment with non negligible probability.

Then the adversary has returned the value:

tagA = {pkitem, Lx, pkr}skTGC

There are then two possible options: either the value tagA was output from the

Oreg oracle, or it was fabricated by the adversary. If the value:

tagA = {pkitem, Lx, pkr}skTGC

was output from the Oreg oracle, then this adversary can be used to break the

security of the signature scheme by completing an existential forgery using

the key sk. Since the adversary is polynomially bounded, it can only make a

maximum of n queries to the Oreg oracle where n is polynomially bounded. The

tagged transaction simulator then goes through this list of input values it has

received for the Oreg oracle. Either one of the values in the input will be:

{tagi = {pkitem, Lx, pk}skTGC
, pktag,c}sk

or the adversary has fabricated a tag which is detailed in the next paragraph. If

the value:

{tagi = {pkitem, Lx, pk}skTGC
, pktag,c}sk

is in the input, then the tagged transaction simulator can use this as a valid

message signature pair:

({tagi, pktag,c}, {tagi, pktag,c}sk)

If the adversary has fabricated a license, the tagged transaction simulator

re-runs the adversary but changes the input to item, data = pktag, pkitem, and

pkTGC = pk, where item, sktag and skitem are randomly chosen and pktag and

pkitem are generated from sktag and skitem. The tagged transaction simulator also

gives the simulator access to the old license by constructing the input:

{pkitem, Lx, data = pktag}sk

60 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

using the signing oracle. The Oreg oracle is also changed. Rather than signing the

message:

{pkitem, Lx, datai = pktag,c}

itself, it will submit it to the signing oracle to sign and return:

{pkitem, Lx, datai = pktag,c}sk

This adversary is then used to break the security of the signature scheme by

completing an existential forgery using the key sk = skTGC . As the adversary

has fabricated a license, they return the value:

tagA = {pkitem, Lx, pkr}sk

that has not been generated by a call to the Oreg query or provided as input. The

tagged transaction simulator can use this message as a valid message signature

pair:

({pkitem, Lx, pkr}, tagA)

4.5.4 Cloning

In a cloning attack, the tagged transaction simulator is given as input the public

key for the signature scheme pk and access to the signing oracle provided by the

original simulator. The tagged transaction simulator is then challenged to break

the security of the signature scheme by outputting a valid message signature

pair. The tagged transactions simulator generates the values item, sktag and skitem

randomly using the random oracle of the original simulator. As item is the output

of a hash function it is computationally indistinguishable from a random value.

The values skitem and sktag are then used to generate the values pkitem and pktag.

Oracles:

The tagged transaction simulator implements the Oreg oracle. To simulate Oreg

in a manner that is computationally indistinguishable from the real protocol, the

tagged transaction simulator records in a list the input values it receives. The

adversary will send the message:

{tag = {pkitem, Lx, pktag,r}skTGC
, pktag,c}sktag,r

where itemi = item in Lx, datai = pktag,c, and

licold,i = {pkitem, Lx, dataold = pktag,r}skTGC

4.5. SECURITY ANALYSIS 61

If the values itemi, licold,i, and datai have not been used before and the message

is correctly signed with sktag,r, the tagged transaction simulator submits the

message:

{pkitem, Lx, datai = pktag,c}

to the signing oracle to sign and returns:

{pkitem, Lx, datai = pktag,c}skTGC

The value Lx = {item,Licensex}skitem is the same value that appears in licold,i.

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data = pktag,

pkitem, and pkTGC = pk. The tagged transaction simulator also gives the simulator

access to the old license by constructing the input:

tag = {pkitem, Lx, data = pktag}skTGC

using the signing oracle as the tagged transaction simulator has access to the

values pkitem, data, and the value Lx = {item,Licensex}skitem .

Adversary:

Suppose adversary A passes the experiment with non negligible probability,

then this adversary can be used to break the security of the signature scheme by

completing an existential forgery using the key skTGC = sk. If the adversary has

passed the experiment, it will have returned two tags:

tag1 = {pkitem, Lx, pkr1}skTGC

and

tag2 = {pkitem, Lx, pkr2}skTGC

There are three possible ways the adversary used the Oreg oracle to generate tag1

and tag2: the Oreg oracle output both tag1 and tag2, the Oreg oracle output one of

tag1 and tag2, the Oreg oracle did not output either tag1 or tag2.

Since the adversary is polynomially bounded, it can only make a maximum

of n queries to the Oreg oracle where n is polynomially bounded. If both tag1

and tag2 were output from the Oreg oracle, then the tagged transaction simulator

can go through the list of n queries to the Oreg oracle to find the queries with the

outputs of tag1 and tag2. The tagged transaction simulator can then repeat this

62 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

step finding the queries with the outputs that are the same as the previous steps’

inputs. After a maximum of n steps, the tagged transaction simulator will have

two lists of query inputs and outputs:

list1 = ({input1,1, output1,1}, ..., {input1,i, tag1})

and

list2 = ({input2,1, output2,1}, ..., {input2,j , tag2})

As the Oreg oracle will not generate two new tags for the same values of itemi,

licold,i, and datai, the values:

input1,1 = {tag1,1 = {{pkitem, Lx, pk1,1}skTGC
, pk1,2}sk1,1

and

input2,1 = {tag2,1 = {{pkitem, Lx, pk2,1}skTGC
, pk2,2}sk2,1

must be different. If pk1,1 = data = pktag, then the tagged transaction simulator

uses:

({pkitem, Lx, pk2,1}, {pkitem, Lx, pk2,1}skTGC
)

as a valid message signature pair for the original simulator. If pk2,1 = data = pktag,

then the tagged transaction simulator uses:

({pkitem, Lx, pk1,1}, {pkitem, Lx, pk1,1}skTGC
)

as a valid message signature pair for the original simulator.

If one (or both) of the values tag1 and tag2 was not in the output from the Oreg

oracle, then the tagged transaction simulator can return a valid message signature

pair to the original simulator. Suppose tag1 was not in the output of the Oreg

oracle, then the valid message signature pair is:

({pkitem, Lx, pkr1}, tag1)

If tag2 was not in the output of the Oreg oracle, then the valid message signature

pair is:

({pkitem, Lx, pkr2}, tag2)

4.5. SECURITY ANALYSIS 63

4.5.5 Identity Revelation

To show that no message in the protocol reveals any information about the sender

of the message, I construct a simulator that can simulate the messages that are

sent in the protocol with no knowledge of the identity of any of the participants

of the protocol. The simulator creates messages that are computationally indistin-

guishable from the messages in an actual run of the protocol. The simulator has

access to the item x and the public variables pkTGC , p, q, and g. The simulator also

has access to a signing oracle for the TGC. This means the simulator can use the

oracle to sign messages using the secret key skTGC . The TGC is not an anonymous

party in the protocol so knowledge that the message was signed by the TGC does

not reveal any information about the other parties in the protocol.

Many of the messages in the protocol are constructed by taking a random

number x and raising a generator of the group g to the power of x to calculate

y = gx mod p. If the simulator and a real participant in the protocol both calculate

these values (the simulator xs and ys = gxs mod p and the actual participant x and

y = gx mod p), the values ys and y are computationally indistinguishable.

{id = H(x), pkx}pkTGC
: The identity of the item id = H(x) is a constant that

can be constructed by the simulator as it has access to the item. The simulator

then constructs the public key for the item by choosing a random value skx and

calculating pkx = g−skx mod p.

{id = H(x), pktag,r}: The identity of the item id = H(x) is a constant that can be

constructed by the simulator as it has access to the item. The simulator will then

construct the one time public key for the reseller and tag by choosing a random

value sktag,r and calculating pktag,r = g−sktag,r mod p.

{Lx, pktag,r}skx : The value pktag,r has already been generated by the simulator.

The value Lx = {id = H(x), License}skx is a signed license signed by the key

skx already generated by the simulator. The value License is a license for item,

it may contain values such as the period of the license and other limitations.

To prevent identity revelation the license must be constructed without using an

identity information. If this is the case, the simulator can also generate the license.

{pkx, Lx, pktag,r}skTGC
: The values pkx, Lx, and pktag,r have already been

generated by the simulator.

{tag, pktag,c}sktag,r : The values sktag,r and tag have already been generated by

the simulator. The simulator will then construct the one time public key for the

customer and tag by choosing a random value sktag,c and calculating pktag,c =

64 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

g−sktag,c mod p.

4.5.6 Linkability

In any particular run of the protocol, a reseller or customer denoted r sends

{id = H(x), pktag,r} and (if the customer resells) {tag, pktag,c}sktag,r . The values

id = H(x) and Lx are constant for every participant (assuming no identifying

information in Lx). The variable values are pktag,r and pktag,c. The public keys

are computationally indistinguishable if the private keys are chosen randomly.

If an adversary is able to link together the actions of a participant in separate

runs of the protocol, then the adversary can distinguish between computationally

indistinguishable values.

4.6 Modelling

To check the security properties of the tagged transaction protocol, I use the

Failures Divergences Refinement (FDR) model checker [33, 78]. The FDR model

checker checks a Concurrent Sequential Processes (CSP) [46] model of a protocol

against a CSP specification. The FDR model checker was chosen because:

• It has been used extensively to analyse security protocols [29, 55, 57, 79, 81].

• It is supported by the Casper CSP compiler [56]. The Casper compiler takes

a protocol description and compiles it to a CSP file that can be checked by

FDR. The use of Casper makes it easier and quicker to construct CSP models

of protocols and specifications although Casper is limited to compiling

secret and authentication properties.

CSP models agents in the protocol as processes and messages are passed

between processes over channels. The adversary is modelled by a process which

starts with a set of initial knowledge. The adversary has the power to perform

any action that a real world attacker could perform if it was in complete control

of the network. These actions include:

• Intercept or overhear any messages sent over the network.

• Decrypt any messages that are encrypted with a key that the adversary

knows.

4.6. MODELLING 65

• Fake new messages based on any information the adversary has or has

learnt.

• Replay any message, even if the adversary cannot decrypt the message.

When analysing security protocols, a CSP model of the protocol is constructed

and FDR checks that the model refines a CSP specification of the protocol. The

FDR model checker is used to check safety properties. An example of a safety

property for a security protocol is the failure of an adversary to discover a secret

value. A CSP model of the protocol with the secret value is constructed, and

the specification that states that the secret value should not be discovered by

the adversary. The FDR model checker will then check all possible states of

the protocol to see if the value is ever revealed to the adversary. When using a

state based model checker to analyse security protocols, any encryption or digital

signatures used are assumed to be perfectly secure. The FDR model checker

enumerates all possible states and transitions between the states to check the

specification against the model.

I have constructed three different models. One to represent the registration

phase of the protocol, one to represent the supplier generating a tag, and one to

represent a reseller generating a tag. The models do not examine anonymity or

unlinkability and concentrate on the properties of spoofing, fabrication, cloning,

and network sniffing. This chapter gives a brief description of the model of the

protocol, followed by a brief description of the CSP specification. Appendix A

shows the detailed CSP models and specifications of the tagged transaction

protocol.

4.6.1 Safe Simplifying Transformations

The initial work on using CSP to verify security properties concentrated on

small protocols like the Needham-Schroeder Public-Key Protocol [55]. Other

security protocols are more complex, often involving more fields, messages,

and layers of encryptions. Lowe et al have done work on safe simplifying

transformations to remove some of these complexities and allow model checkers

to check the security properties of more complex protocols without causing a

state explosion [48]. The concept of a safe simplifying transformation is to apply a

transformation to a protocol description to simplify the protocol while preserving

any insecurities. If an attack exists on the original protocol then the attack still

66 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

exists on the simplified protocol.

Some examples of safe simplifying transformations include:

• Removing encryptions on fields in the messages.

• Removing hash functions on fields in the messages.

• Removing some atomic or hashed fields.

• Renaming atoms. An atomic field in a message can be renamed.

• Coalescing atoms. Two atomic fields in a message can be combined.

The transformations above are renaming of fields in messages within the

protocol, there are also structural transformations that have been shown to be

safe simplifications including:

• Splitting a message in two parts.

• Joining two messages into a single message.

• Redirecting a message that is sent via a third party so it is sent direct.

I make use of safe simplifying transformations to simplify the tagged transaction

protocol before using the FDR model checker.

4.6.2 Registration

In the registration phase of the tagged transaction protocol, the supplier is

registering the identity of a new item with the TGC along with a public key for the

item. The message from the supplier to the TGC is encrypted with the public key

for the TGC and the return message from the TGC is encrypted with the private

key of the TGC. The high level description of the protocol is:

Supplier → TGC : {item, itemkey}pkTGC

TGC → Supplier : {item, itemkey}skTGC

In this model, the identity of the item is represented as the set Items = {item}

and the keys for the item are represented by the set:

ItemKeys = {itemkey, intruderkey}

4.6. MODELLING 67

Each participant in the protocol has a public and private key pair. The initial

knowledge of the adversary is intruderkey, pkTGC , and pkSupplier.

The registration step has to prevent a spoofing attack where an adversary

registers the item before the supplier. The specification states that if the TGC

receives a registration message for an item, the supplier must have sent the

registration message. The FDR model checker returns TRUE after 10 states with

20 transitions.

4.6.3 Supplier Generating Tag

In the second phase of the tagged transaction protocol, the supplier generates a

tag with the TGC. The reseller first sends the supplier the one time public key for

the tag. The supplier then generates a signed license for the item. The supplier

then sends a signed message with the license and the one time public key. The

TGC then creates and signs the tag and sends it back to the supplier who sends it

to the reseller. The high level description of the protocol is:

Reseller → Supplier : item, pktag,r

Supplier → TGC : {Lx = {H(x), Licensex}skx , pktag,r}skx

TGC → Supplier : {pkx, Lx, pktag,r}skTGC

Supplier → Reseller : {pkx, Lx, pktag,r}skTGC

I apply the following safe simplifying transformations before modelling the

supplier generating a tag with the TGC:

1. Removal of the encryption on the field Lx = {H(x), Licensex}skx to make it

{H(x), License}.

2. Removal of the atomic field License.

3. Removal of the atomic field H(x).

4. Removal of the atomic field item.

After the simplification the description of the protocol is:

Reseller → Supplier : pktag,r

Supplier → TGC : {pktag,r}skx

TGC → Supplier : {pkx, pktag,r}skTGC

68 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Supplier → Reseller : {pkx, pktag,r}skTGC

In this model, the set Tags = {pktagreseller, pktagwrong} represents the one time

keys for the tags. As these keys are never used for encryption or signing in this

part of the protocol they do not need to be represented as public and private

key pairs. The value pkx is represented as a public key with private key skx.

Each participant in the protocol has a public and private key pair. The initial

knowledge of the adversary is pktagwrong, pkx, pkTGC , pkSupplier, pkReseller, and

skReseller. The model of the protocol for CSP is:

Reseller → Supplier : pktagreseller

Supplier → TGC : {pktagreseller}skx

TGC → Supplier : {pkx, pktagreseller}skTGC

Supplier → Reseller : {pkx, pktagreseller}skTGC

The generation of a tag has to resist a fabrication attack where an adversary

generates a valid tag. The specification states that if the reseller receives a tag that

it accepts, the supplier must have sent a message to the TGC requesting the tag.

The FDR model checker returns TRUE after 111 states with 387 transitions.

4.6.4 Reseller Generating Tag

In the third phase of the protocol, the reseller generates a tag with the TGC. The

customer sends the one time key to the reseller who then forwards the one time

key and the tag signed with the private key for the tag to the TGC. The TGC then

checks that the tag has not been used before and generates a new tag that is sent

back to the reseller and then back to the customer. This model checks whether

the reseller can replay a tag as well as whether an adversary can network sniff a

license. The high level description of the protocol is:

Customer → Reseller : item, pktag,c

Reseller → TGC : {{pkx, Lx, pktag,r}skTGC
, pktag,c}sktag,r

TGC → Reseller : {pkx, Lx, pktag,c}skTGC

Reseller → Customer : {pkx, Lx, pktag,c}skTGC

I apply the following safe simplifying transformations before modelling the

4.6. MODELLING 69

reseller generating a tag with the TGC:

1. Removal of the encryption on the field Lx = {H(x), Licensex}skx to make it

{H(x), License}.

2. Removal of the atomic field License.

3. Removal of the atomic field H(x).

4. Removal of the atomic field item.

5. Redirecting a message sent via a third party to go direct. Message 3 is

redirected to go straight from the TGC to the customer and not via the

reseller.

This makes the high level description of the protocol after simplification:

Customer → Reseller : pktag,c

Reseller → TGC : {{pkxpktag,r}skTGC
, pktag,c}sktag,r

TGC → Customer : {pkx, pktag,c}skTGC

I model the earlier generation of a tag ({pkx, pktag,r}skTGC
) by the introduction

of an extra set ActualTags = {tag, tag2, tagwrong, tagwrong2} which repre-

sents the tag that has been sent from the supplier to the reseller. To rep-

resent the reseller signing the tag with the one time key embedded in the

tag, the reseller signs the message with its own private key. Including the

complete generation of a tag makes the model intractable. The set Tags =

{pktag, pktag2, pktagwrong, pktagwrong2} represents the one time keys for the

new tags. The value pkx is represented as a public key with private key skx.

To model the possibility of a cloning attack, two runs of the protocol are run

at the same time. The initial knowledge of the adversary is tagwrong, tagwrong2,

pktagwrong, pktagwrong2, pkx, pkTGC , pkSupplier, and pkReseller. The model of the

protocol for CSP is:

Customer → Reseller : pktag, pktag2

Reseller → TGC : {tag, pktag, tag2, pktag2}skR
TGC → Customer : {pkx, tag}skTGC

, {pkx, tag2}skTGC

70 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

There are two specifications for the reseller generating the tag. The first

specification prevents cloning where an adversary creates two new tags from

the same initial tag. The specification states that if the customer receives two

tags, then two different values must have been signed by the TGC. The FDR

model checker returns TRUE after 457 states with 2005 transitions. The second

specification checks for a network sniffing attack where an adversary sees a tag

being sent over the network and tries to use it to generate a new tag. The

specification states that if a customer receives tags signed by the TGC then the

reseller must have sent a message to the TGC to request the generation of the tags.

The FDR model checker returns TRUE after 1423 states with 4835 transitions.

4.6.5 Remarks

Modelling a protocol using CSP can be used to show extra steps in the protocol.

If the protocol is still secure when encryptions or signatures have been removed,

then these extra operations are unnecessary to the security of the protocol. I have

used this technique to refine the tagged transaction protocol.

In the initial design of the tagged transaction protocol a zero knowledge proof

was used when the reseller generated a tag with the TGC. The reseller would

use a zero knowledge proof of knowledge of a discrete logarithm to prove to the

TGC that they knew the secret key that corresponded to the one time public key

in the tag. The TGC could then use the property of witness extraction to discover

the one time secret key if this tag was replayed. While modelling the protocol, I

discovered that this step is unnecessary and the digital signature of the tag and

new one time key are sufficient for the TGC to detect replay. The removing of the

zero knowledge proof makes the tagged transaction protocol more efficient.

4.7 Summary

In this chapter, I have described and analysed the tagged transaction protocol.

The tagged transaction protocol is fully described including the registering of

items, the generation of tags by the supplier, and the subsequent generation

of tags by resellers. The security analysis shows that the tagged transaction

protocol is secure against spoofing, fabrication, cloning, network sniffing, identity

revelation, and linkability attacks in the random oracle model. Finally, the details

and results of the modelling of the tagged transaction protocol using the FDR

4.7. SUMMARY 71

model checker show the protocol prevents spoofing, fabrication, cloning, and

network sniffing attacks.

The tagged transaction protocol can prevent cloning attacks where an adver-

sary tries to submit the same tag twice. In the next chapter, I describe an extended

version of the tagged transaction protocol that not only detects cloning but is able

to reveal the identity of the reseller that tried to clone the tag.

72 CHAPTER 4. TAGGED TRANSACTION PROTOCOL

Chapter 5

Extended Tagged Transaction

Protocol

This chapter describes an extended version of the tagged transaction protocol

that provides revocable anonymity if a reseller tries to clone a tag. The extended

tagged transaction protocol uses restricted blind signatures to provide revocable

reseller anonymity while preserving anonymity and unlinkability. If a reseller

uses a tag once, the reseller will remain anonymous and its independent transac-

tions unlinkable. If the reseller tries to clone a tag by presenting the same tag to

the TGC more than once, the identity of the reseller is revealed.

The extended tagged transaction protocol uses ideas from digital cash where

a digital coin that is double spent reveals the identity of the double spender [18].

The TGCs acts as both the bank and the merchant. The reseller acts as the

customer. The reseller will “withdraw” a coin from the TGC. This coin is then

added to the tag that is signed by the TGC. As the TGC has blind signed the coin,

it cannot link the signed coin to the reseller that withdrew it. When the reseller

generates a new tag with the TGC, the reseller is “spending” the coin. If the

coin is spent more than once, the identity of the reseller is revealed otherwise no

information about the identity of the reseller is revealed.

The extended tagged transactions protocol uses the same protocols as the

tagged transaction protocol with some modifications. All resellers and customers

will have to register with the TGC. If the TGC detects a tag being cloned, it

revokes this registration. Both customers and resellers will need to acquire

identity tokens that have been blind signed by the TGC. Both the registration of

resellers and customers and the acquisition of identity tokens are new protocols.

73

74 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

The protocols that involve the supplier and resellers generating tags with the

TGC have also been modified to use identity tokens. When the supplier generates

the tag with the TGC, they include an identity token from the reseller as well as

the one time public key for this tag. When a reseller generates a tag with the TGC

it takes part in a challenge-response protocol with the TGC to show that they own

the identity token in the tag.

5.1 Restricted Blind Signatures

Chaum introduced the idea of blind signatures in 1982 [18]. This work was

extended giving the first blind signature scheme based on RSA signatures [19].

In a blind signature scheme, the original message is blinded and the signer signs

the blinded message. The blinding is then removed and the signature checked

against the original message. Blind signatures were originally used in digital

cash schemes to provide unlinkability and anonymity for the user when a bank

blind signs a digital coin [20]. When blind signing a message, the signer does

not know any information about the structure of the message being signed. To

detect double spending of coins, the user encodes identifying information in the

blinded digital coin to be signed by the bank in such a way that double spending

the coin reveals their identity. In the paper by Chaum et al [20] they make use

of a cut and choose technique to make sure the correct identifying information is

encoded in a coin.

Restricted blind signatures were introduced by Stefan Brands [11]. In a

restricted blind signature scheme, the signer can restrict the structure of the

message being signed. In the withdrawal phase of the protocol, the bank inserts

the public key of the user in the message to be signed. As this message is then

blinded the bank can only discover the public key if it is spent twice. In digital

cash schemes, this allows the signer to be sure that the user is correctly including

information on their identity to detect double spending. The extended tagged

transactions protocol also requires the encoding of identification information in

the message to be blind signed.

Camenisch et al have produced a restricted blind signature scheme called CL-

signatures [16]. These restricted signatures have been used in digital cash [14]

and anonymous credential schemes [13, 15]. CL-signatures can be used to sign a

committed value and to prove knowledge of a signature using zero knowledge

5.2. DEFINITIONS 75

proofs.

In the extended tagged transaction protocol, the TGC acts as both the bank

and the merchant while the resellers and customers act as users. To generate

restricted blind signed values to use in the tags, customers and resellers take part

in a protocol with the TGC. This protocol can be done in advance. For example,

a customer or reseller may generate ten restricted blind signed values before

taking part in a transaction. For the extended tagged transaction protocol, the

restricted blind signature scheme must be efficient at verifying the signatures.

The restricted blind signature scheme by Brands [11] requires fewer operations

to verify the signature than CL-signatures [16] because Cl-signatures use zero

knowledge proofs to show the value was signed by the TGC.

Recently, Henry et al have introduced the notion of verifier efficient restricted

blind signatures (VERBS) [45]. VERBS require no modular exponentiation to

verify the signature. In the security analysis of VERBS, the authors do not show

the security of the restricted blind signature scheme equivalent to a known hard

problem but do discuss the security of VERBS. In the signature scheme of Brands,

the security is shown to be equivalent to solving the representation problem in

groups of prime order. For this reason, I make use of the restricted signature

scheme by Brands, but the VERBS signature scheme could also be used in the

extended tagged transaction protocol.

5.2 Definitions

The following notation is used to denote restrictive blind signatures:

• IDr the unique identity of the participant r. This corresponds to the account

number in digital cash. It is registered with the TGC and is revealed if a tag

is cloned.

• pkr the public key of participant r. This is used to sign identity token

requests to prevent an adversary from being able to generate tokens for

another party.

• tokentag,r an identity token for participant r and tag. On its own it does not

reveal any information about participant r.

• token′
tag,r a blinded identity token for participant r and tag.

76 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

• pkID and skID are the public and secret key of the TGC for blind signing

identity tokens. The value skID is known only to the TGC. The value pkID

is a well known public value.

In the extended tagged transaction protocol we add a new parameter to the

tag definition. The new parameter is a signature from the TGC on an identity

token that can be used to reveal the identity of a reseller that tries to clone a tag.

An extended tag is a tuple:

tag = {A = pkx, B = Lx, C = {tokentag,r}skID , D = pktag,r}

The definitions of the parameters in the tag are:

• A = pkx: the public key for the item. This is registered with the TGC when

the supplier first creates the item. The TGC should only sign tags that have

the correct public key for the supplier.

• B = Lx = {id = H(x), License}skx : a license signed with the secret key for

the item x. This license contains information such as the identity of the item

id = H(x) and any other important terms of the license. The structure of

licenses is discussed in Section 4.1.2. The identity of the item id = H(x)

is calculated using a well known hash function H . Identifying items is

discussed in Section 4.1.1.

• C = {tokentag,r}skID . The identity token for participant r and tag. The

identity token is signed using the secret key of the TGC for blind signatures

skID. The identity token does not reveal any information about the

participant unless the tag is cloned.

• D = pktag,r: the one time public key for the participant r and tag tag. The

reseller or customer randomly chooses sktag,r and uses it to generate the

public key.

5.3 Registering with the TGC

Initially customers and resellers will need to register with the TGC. This is the

same as opening a bank account in the digital cash scenario. This only needs to

be done once by every customer and reseller.

The process for resellers and customers to register with the TGC takes place

in two steps as shown in Figure 5.1.

5.4. GENERATING ID TOKEN 77

Reseller TGC

If ID r and pkr not registered before
TGC stores ID r and pkr

1) Register ID r, pkr

2) Return success/failure

Figure 5.1: Registering with the TGC

1. The reseller or customer chooses an identity IDr and public key pkr and

sends these to the TGC.

2. The TGC checks whether the identity IDr and public key pkr have been

used before. If the identity and public key are unique, the TGC will store

these values and return a success message. If either the identity IDr or the

public key pkr are not unique, the TGC returns a failure message and the

reseller or customer generates new values and tries again.

5.4 Generating ID Token

Before a customer or reseller can request a tag, they must generate an identity

token signed by the TGC. The TGC will blind sign the identity token submitted

to them. The blind signature prevents the TGC from being able to link this

identity token to the reseller when the identity token is used at a later time to

generate a tag. A restrictive blind signature scheme is used so that customers and

resellers can only obtain identity tokens for identities for whom they know the

secret values.

The process for a reseller to generate a blind signed identity token with the

TGC takes place in five steps as shown in Figure 5.2.

1. The reseller generates a request for a signed identity token and authenti-

cates itself with the TGC by signing the message with its private key. The

TGC can look up the identity that corresponds to this public key.

2. The reseller generates a blinded identity token.

3. The reseller sends this blinded token item to the TGC.

78 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

Reseller TGC

4) {tokenr’}skID

1) {generate request}skr

3) tokenr’

2) Generate tokenr and
blinded tokenr’

5) Remove blinding to
generate {tokenr}skID

Figure 5.2: Generating ID Token

4. The TGC blind signs the identity token.

5. The reseller removes the blinding on the signed identity token.

Due to the restricted blind signature scheme used it should not be possible for

the reseller to have a signed identity token that was not signed by the TGC. The

restricted nature of the blind signature scheme also prevents the reseller from

getting an identity token that does not contain information on the identity it

has registered with the TGC. The final signed identity token does not reveal any

information about the identity of the reseller.

It is worth noting that while the final signed identity token does not reveal any

information about the customer or reseller, the TGC learns how many identity

tokens have been generated by each customer and reseller. This information

could be used to infer how many transactions each customer and reseller is taking

part in, although there does not need to be a one-to-one relationship between the

number of identity tokens generated and the number of transactions.

5.5 Supplier Generating Tag with TGC

To generate a tag for an item, a protocol takes place between the reseller, the

supplier, and the TGC. The communication between the supplier and the TGC is

done over an anonymous channel, if supplier anonymity is required, as shown by

dotted lines in Figure 5.3. Compared to the tagged transaction protocol, the only

differences are the inclusion of the signed identity token in the tag. The process

5.5. SUPPLIER GENERATING TAG WITH TGC 79

Reseller Supplier TGC

1) id=H(x), {token tag,r}skID, pktag,r

2) Lx={H(x),Licensex}skx

3) {Lx, {token tag,r}skID, pktag,r}skx

4) tag={pkx,Lx,{token tag,r}skID, pktag,r}skTGC

5) tag
6) tag

Figure 5.3: Supplier Generating Tag with TGC

for a supplier to generate a tag with the TGC takes part in six steps as shown in

Figure 5.3.

1. The reseller sends a purchase request to the supplier containing the identity

of the item they wish to purchase id = H(x), the signed identity token

{tokentag,r}skID , and the one time public key for the tag pktag,r. The reseller

randomly picks a private key and uses this to generate the public key.

2. The supplier signs a license for the item Lx = {H(x), Licensex}skx where

H(x) is the identity of the item and Licensex is the license for the item.

3. The supplier creates a signed tag request containing the license Lx, the

signed identity token {tokentag,r}skID , and the one time public key pktag,r

all signed by skx and sends it to the TGC.

4. The TGC checks the one time public key pktag,r and the signed identity

token {tokentag,r}skID have not been used for this item before, that the

identity token has been signed using skID, and that the key is correct

for this item. If these tests pass the TGC constructs and signs tag =

{pkx, Lx, {tokentag,r}skID , pktag,r}skTGC
.

5. The TGC sends the tag to the supplier.

6. The supplier sends the tag to the reseller. The reseller checks the tag has

been signed by the TGC, that the license is for the correct item, and that the

tag contains the correct signed identity token and one time public key.

The supplier signs the license generation request with the secret key for the

item to prevent any other party from being able to generate tags for the item with

80 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

Customer Reseller TGC

1) id=H(x), {tokentag,c}skID, pktag,c

tag={pkx,Lx,{tokentag,r}skID, pktag,r}skTGC

2) {tag, {tokentag,c}skID, pktag,c}sktag,r

5) If tag not seen before generate
tagc={pkx,Lx,{tokentag,c}skID,pktag,c}skTGC

otherwise extract IDr

6) tagc

7) tagc

3) challenge

4) {challenge,response}sktag,r

Figure 5.4: Reseller Generating Tag with TGC

the TGC. The reseller will only accept the tag if the tag is signed by the TGC and

contains the correct signed identity token and one time key.

5.6 Reseller Generating Tag with TGC

Now the tag for an item has been generated, signed, and sent to the reseller,

the reseller can use this tag to generate a new tag for a customer or another

reseller without input from the supplier. The generation of a new tag is shown

in Figure 5.4. The communication between the reseller and the TGC is done

over an anonymous channel as shown by dotted lines. Compared to the

tagged transaction protocol, the extended tagged transaction protocol includes a

challenge response protocol on the signed identity token. If the tag has not been

cloned, no information is revealed about the identity of the reseller. If the tag is

cloned, the identity of the reseller is revealed by the challenge response protocol.

The generation of a new tag by a reseller takes place in the seven steps shown

in Figure 5.4.

1. The customer sends a purchase request comprised of the identity of the

item they wish to purchase, the signed identity token {tokentag,c}skID , and

the one time public key for the tag pktag,c. The customer randomly picks a

private key and uses this to generate the public key.

2. The reseller sends a message with the signed identity token {tokentag,c}skID ,

the one time public key chosen by the customer pktag,c, and the tag signed

5.6. RESELLER GENERATING TAG WITH TGC 81

using the one time secret key used in the generation of the tag sktag,r to the

TGC.

3. The TGC sends the reseller a challenge value challenge.

4. The reseller sends the TGC a response value in a signed message

{challenge, response}sktag,r . The reseller can only provide the correct re-

sponse value if they know the secret value associated with the identity

value.

5. If the tag has not been cloned the TGC generates a new tag

tagc = {pkx, L, {tokentag,c}skID , pktag,c}skTGC

and saves the values {tokentag,r}skID and {challenge, response}sktag,r . If

the tag has been cloned, then the TGC will have saved the values

{tokentag,r}skID and {challenge2, response2}sktag,r from the previous run.

Using the value {tokentag,r}skID and the two challenge and response values

challenge, challenge2, response, and response2 the TGC extracts the identity

of the reseller IDr. The TGC presents the values IDr, {tokentag,r}skID ,

{challenge, response}sktag,r , and {challenge2, response2}sktag,r as proof the

tag has been cloned.

6. The TGC sends tagc to the reseller.

7. The reseller sends tagc to the customer. The customer only accepts the tag if

the tag is signed by the TGC and contains the correct signed identity token

and one time key.

In step 5 of the extended tagged transaction protocol, the identity of a reseller

that clones a tag is revealed. To reveal the identity of a reseller who clones a tag, a

challenge response protocol is used. The restricted blind signature {tokentag,r}skID
contains a commitment value. A challenge response protocol takes place between

the reseller and the TGC where the reseller shows the TGC that they know a secret

value embedded in the blind signature. When a challenge response protocol is

executed with the same commitment value and different challenge and response

values the secret value is revealed. If a challenge response protocol takes place

with a commitment value and only one challenge and response value then no

information about the secret value is revealed. This is a property of the restricted

blind signature scheme used. Blind signatures (and restricted blind signatures)

use this property to detect double spending when applied to digital cash.

82 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

5.7 Security Analysis

Thereom 2. The extended tagged transaction protocol provides Secure Provenance

(Section 3.5.7) in the random oracle model provided that the signature scheme used has

provable security against existential forgeries under adaptive chosen message attacks,

the encryption scheme used has provable security against IND-CCA2 attacks, and the

restrictive blind signature scheme provides anonymity and unlinkability.

I use a reduction to contradiction style of argument to show the extended

tagged transaction protocol provides security against fabrication, network sniff-

ing, and cloning attacks. The security argument for the prevention of spoofing

is the same as for the original tagged transaction protocol shown in Section 4.5.

In this security analysis, the TGC is assumed to be acting as a trusted third party.

Chapter 6 removes this assumption and discusses methods to verify the actions of

the TGC. For the security analysis of the identity revelation and linkability prop-

erties the following assumptions are made: a perfect anonymous communication

channel, an anonymous supplier, and the parties in the protocol not revealing

their identities or the identities of the parties they are communicating with. This

security analysis does not consider side channel attacks.

The tagged transaction simulator provides the tagged transaction adversary

with inputs that are computationally indistinguishable from the inputs it would

receive in an actual run of the protocol. If the tagged transaction adversary breaks

the security of the extended tagged transaction protocol in this simulated run,

then the tagged transaction simulator can provide an output that can solve a

problem thought to be hard.

The tagged transaction simulator breaks the security of the signature scheme

if, when given public key pk and access to a signing oracle provided by the

original simulator, the tagged transaction simulator outputs a valid message

signature pair (m,σ) with non negligible probability where m was not used in

a query to the signing oracle.

The tagged transaction simulator will need to be able to simulate the gener-

ation of blind signed ID tokens that are computationally indistinguishable from

the ID tokens generated in an actual run of the protocol. The tagged transaction

simulator initially generates a random private key skID = x and public keys

pkID = {g, g1, g2} for the restricted blind signature scheme. To register a reseller,

the adversary will send the message I to the tagged transaction simulator. The

tagged transaction simulator will check that Ig2 6= 1 and generate and return

5.7. SECURITY ANALYSIS 83

z = (Ig2)
x. As x is chosen randomly this is computationally indistinguishable

from an actual run of the protocol. To generate an id token, the tagged transaction

simulator will send the adversary the messages a = gw and b = (Ig2)
w where

w is chosen randomly. When the adversary sends the challenge message c, the

tagged transaction simulator returns the message r = cx + w mod q. As w is

chosen randomly this is computationally indistinguishable from an actual run of

the protocol.

When providing inputs to the tagged transaction adversary and analysing the

identity revelation and unlinkability properties, the security arguments involve

showing computational indistinguishability of elements in a group. For a cyclic

group G of order q with generator g, when given an element z chosen at random

from Zq, the element gz is uniformly distributed in G. Two elements uniformly

distributed in G are computationally indistinguishable. If two elements a1 and

a2 are chosen at random from Zq, the elements ga1 and ga2 are computationally

indistinguishable. If two private keys for the Schnorr signature scheme are

chosen at random, the public keys are computationally indistinguishable. A

random element from G and a Schnorr public key are computationally indis-

tinguishable. Computational indistinguishability is preserved under efficient

(Probabilistic Polynomial Time) operations.

5.7.1 Fabrication

In a fabrication attack, the tagged transaction simulator is given as input the

public key for the signature scheme pk and access to the signing oracle provided

by the original simulator. The tagged transaction simulator is then challenged

to break the security of the signature scheme by outputting a valid message

signature pair. The tagged transactions simulator generates the values item, pkr,

and skitem randomly using the random oracle of the original simulator. As item

is the output of a hash function it is computationally indistinguishable from a

random value. The value skitem is then used to generate the value pkitem.

Oracles:

The tagged transaction simulator implements the Ogen and Oreg oracles. To

simulate Ogen in a manner that is computationally indistinguishable from the

real protocol, the tagged transaction simulator records in a list the input values it

receives. The adversary will send the message:

{id, {tokentag,r}skID , pktag,r}

84 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

where itemi = id and datai = pktag,r. If the values itemi and datai have not been

used before and the value {tokentag,r}skID is correctly signed by the key skID, the

tagged transaction simulator submits the message

m = {pkitem, Lx, {tokentag,r}skID , pktag,r}

to the signing oracle and returns

tag = {pkitem, Lx, {tokentag,r}skID , pktag,r}sk

The value Lx = {item,Licensex}skitem can be generated by the tagged transaction

simulator as it has access to the values item and skitem.

To simulate Oreg in a manner that is computationally indistinguishable from

the real protocol, the tagged transaction simulator records in a list the input

values it receives. The adversary will send the message:

{{pkitem, Lx, {tokentag,r}skID , pktag,r}skTGC
, {tokentag,c}skID , pktag,c}sktag,r

where itemj = item in Lx, dataj = pktag,c, and

licold,j = {pkitem, Lx, {tokentag,r}skID , pktag,r}skTGC

The tagged transaction simulator checks the message is correctly signed with

sktag,r and that {tokentag,r}skID and {tokentag,c}skID have been correctly signed by

the key skID. The tagged transaction simulator returns the challenge value d to

the adversary and waits for the adversary to reply with the responses r1 and r2.

If the response values are correct and the values itemj , licold,j , and dataj have not

been used before, the tagged transaction simulator submits the message

{pkitem, Lx, {tokentag,c}skID , dataj = pktag,c}

to the signing oracle and returns

{pkitem, Lx, {tokentag,c}skID , pktag,c}skTGC

The value Lx = {item,Licensex}skitem is the same value that appears in licold,j .

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data = pkr,

pkitem, and pkTGC = pk.

5.7. SECURITY ANALYSIS 85

Adversary:

Suppose adversary A passes the experiment with non negligible probability.

The adversary is then able to fabricate a valid tag:

tag = {pkitem, Lx, {tokenr}skID , pkr}sk

with non negligible probability. The simulator returns this to the original

simulator as it has a valid message signature pair

({pkitem, Lx, {tokenr}skID , pkr}, tag)

The value

{pkitem, Lx, {tokenr}skID , pkr}

will not have been used in a query to the signing oracle as neither the Ogen or Oreg

oracles can be used with the value data = pkr.

5.7.2 Network Sniffing

In a network sniffing attack, the tagged transaction simulator is given as input the

public key for the signature scheme pk and access to the signing oracle provided

by the original simulator. The tagged transaction simulator is then challenged

to break the security of the signature scheme by outputting a valid message

signature pair. The tagged transactions simulator generates the values item,

skTGC and skitem randomly using the random oracle of the original simulator. As

item is the output of a hash function it is computationally indistinguishable from

a random value. The values skitem and skTGC are then used to generate the values

pkitem and pkTGC .

Oracles:

The tagged transaction simulator implements the Oreg oracle. To simulate Oreg

in a manner that is computationally indistinguishable from the real protocol, the

tagged transaction simulator records in a list the input values it receives. The

adversary will send the message:

{tag = {pkitem, Lx, {tokentag,r}skID , pktag,r}skTGC
, {tokentag,c}skID , pktag,c}sktag,r

where itemi = item in Lx, datai = pktag,c, and

licold,i = tag = {pkitem, Lx, {tokentag,r}skID , dataold = pktag,r}skTGC

86 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

The tagged transaction simulator checks the message is correctly signed with

sktag,r and that {tokentag,r}skID and {tokentag,c}skID have been correctly signed by

the key skID. The tagged transaction simulator then returns the challenge value

d to the adversary and waits for the adversary to reply with the responses r1 and

r2. If the response values are correct and the values itemj , licold,j , and dataj have

not been used before, the tagged transaction simulator signs the message

{pkitem, Lx, {tokentag,c}skID , datai = pktag,c}

using the key skTGC it generated and returns

{pkitem, Lx, {tokentag,c}skID , datai = pktag,c}skTGC

The value Lx = {item,Licensex}skitem is the same value that appears in licold,i.

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data = pk,

pkitem, and pkTGC . The tagged transaction simulator also gives the simulator

access to the old license by constructing the input:

{pkitem, Lx, {token}skID , data = pk}skTGC

as the tagged transaction simulator has access to the values pkitem, data, and

the value Lx = {item,Licensex}skitem can be generated by the tagged transaction

simulator as it has access to the values item and skitem. The tagged transaction

simulator will also need to generate the value {token}skID . The tagged transaction

simulator can generate this value as it has access to the secret key skID and can

generate token for a random user. This is computationally indistinguishable from

an actual run of the protocol as the actual user will have chosen the value in token

randomly.

Adversary:

Suppose adversary A passes the experiment with non negligible probability.

Then the adversary has returned the value

tagA = {pkitem, Lx, {tokentag,r}skID , pkr}skTGC

There are then two possible options: either the value tagA was output from the

Oreg oracle, or it was fabricated by the adversary.

5.7. SECURITY ANALYSIS 87

If the value

tagA = {pkitem, Lx, {tokentag,r}skID , pkr}skTGC

was output from the Oreg oracle, then this adversary can be used to break the

security of the signature scheme by completing an existential forgery using

the key sk. Since the adversary is polynomially bounded, it can only make a

maximum of n queries to the Oreg oracle where n is polynomially bounded. The

tagged transaction simulator then goes through this list of input values it has

received for the Oreg oracle. Either one of the values in the input will be:

{tagi = {pkitem, Lx, {token}skID , pk}skTGC
, {tokentag,c}skID , pktag,c}sk

or the adversary has fabricated a tag which is the same as the case detailed in the

next paragraph. If the value

{tagi = {pkitem, Lx, {token}skID , pk}skTGC
, {tokentag,c}skID , pktag,c}sk

is in the input, then the tagged transaction simulator can construct a valid

message signature pair

({tagi, {tokentag,c}skID , pktag,c}, {tagi, {tokentag,c}skID , pktag,c}sk)

If the adversary has fabricated a license, the tagged transaction simulator

re-runs the adversary but changes the input to item, data = pktag, pkitem, and

pkTGC = pk, where item, sktag and skitem are randomly chosen and pktag and

pkitem are generated from sktag and skitem. The tagged transaction simulator also

gives the simulator access to the old license by constructing the input

{pkitem, Lx, {token}skID , data = pktag}sk

using the signing oracle. The Oreg oracle is also changed. Rather than signing the

message

{pkitem, Lx, {token}skID , datai = pktag,c}

itself, it will submit it to the signing oracle to sign and return

{pkitem, Lx, {tokentag,c}skID , datai = pktag,c}sk

This adversary is then used to break the security of the signature scheme by

completing an existential forgery using the key sk = skTGC . As the adversary

has fabricated a license, they return the value

tagA = {pkitem, Lx, {tokentag,r}skID , pkr}sk

88 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

that has not been generated by a call to the Oreg query or provided as input. The

tagged transaction simulator can use this message as a valid message signature

pair

({pkitem, Lx, {tokentag,r}skID , pkr}, tagA)

5.7.3 Cloning

In a cloning attack, the tagged transaction simulator is given as input the public

key for the signature scheme pk and access to the signing oracle provided by the

original simulator. The tagged transaction simulator is then challenged to break

the security of the signature scheme by outputting a valid message signature

pair. The tagged transactions simulator generates the values item, sktag and skitem

randomly using the random oracle of the original simulator. As item is the output

of a hash function it is computationally indistinguishable from a random value.

The values skitem and sktag are then used to generate the values pkitem and pktag.

Oracles:

The tagged transaction simulator implements the Oreg oracle. To simulate Oreg

in a manner that is computationally indistinguishable from the real protocol, the

tagged transaction simulator records in a list the input values it receives. The

adversary will send the message:

{tag = {pkitem, Lx, {tokentag,r}skID , pktag,r}skTGC
, {tokentag,c}skID , pktag,c}sktag,r

where itemi = item in Lx, datai = pktag,c, and

licold,i = {pkitem, Lx, {tokentag,r}skID , dataold = pktag,r}skTGC

The tagged transaction simulator checks the message is correctly signed with

sktag,r and that {tokentag,r}skID and {tokentag,c}skID have been correctly signed by

the key skID. The tagged transaction simulator then returns the challenge value

d to the adversary and waits for the adversary to reply with the responses r1 and

r2. If the response values are correct and the values itemj , licold,j , and dataj have

not been used before, the tagged transaction simulator submits the message

{pkitem, Lx, {tokentag,c}skID , datai = pktag,c}

to the signing oracle to sign and returns

{pkitem, Lx, {tokentag,c}skID , datai = pktag,c}sk

5.7. SECURITY ANALYSIS 89

The value Lx = {item,Licensex}skitem is the same value that appears in licold,i.

Input:

The tagged transaction simulator provides input to the adversary that is

computationally indistinguishable from the input it would receive in an actual

run of the protocol. The adversary is given as input the values item, data = pktag,

pkitem, and pkTGC = pk. The tagged transaction simulator also gives the simulator

access to the old license by constructing the input

tag = {pkitem, Lx, {tokentag}skID , data = pktag}sk

using the signing oracle as the tagged transaction simulator has access to the

values pkitem, data, and the value Lx = {item,Licensex}skitem . To generate the

value {tokentag}skID the tagged transaction simulator will need access to the

identifier for the adversary I and the secret key skID. As the only method for

the adversary to register for a token is through the tagged transaction simulator,

the tagged transaction simulator has access to both I and skID.

Adversary:

Suppose adversary A passes the experiment with non negligible probability,

then this adversary can be used to break the security of the signature scheme by

completing an existential forgery using the key skTGC = sk. If the adversary has

passed the experiment, it will have returned two licenses:

tag1 = {pkitem, Lx, {tokenr1}skID , pkr1}sk

and

tag2 = {pkitem, Lx, {tokenr2}skID , pkr2}sk

There are three possible ways the adversary used the Oreg oracle to generate tag1

and tag2: the Oreg oracle output both tag1 and tag2, the Oreg oracle output one of

tag1 and tag2, the Oreg oracle did not output either tag1 or tag2.

Since the adversary is polynomially bounded, it can only make a maximum

of n queries to the Oreg oracle where n is polynomially bounded. If both tag1

and tag2 were output from the Oreg oracle, then the tagged transaction simulator

can go through the list of n queries to the Oreg oracle to find the queries with the

outputs of tag1 and tag2. The tagged transaction simulator can then repeat this

step finding the queries with the outputs that are the same as the previous steps

inputs. After a maximum of n steps, the tagged transaction simulator will have

two lists of query inputs and outputs:

list1 = ({input1,1, output1,1}, ..., {input1,i, tag1})

90 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

and

list2 = ({input2,1, output2,1}, ..., {input2,j , tag2})

As the Oreg oracle will not generate two new tags for the same values of itemi,

licold,i, and datai, the values

input1,1 = {{pkitem, Lx, {token1,1}skID , pk1,1}skTGC
, {token1,2}skID , pk1,2}sk1,1

and

input2,1 = {{pkitem, Lx, {token2,1}skID , pk2,1}skTGC
, {token2,2}skID , pk2,2}sk2,1

must be different. If pk1,1 = data = pktag, then the tagged transaction simulator

uses

({pkitem, Lx, {token2,1}skID , pk2,1}, {pkitem, Lx, {token2,1}skID , pk2,1}sk)

as a valid message signature pair for the original simulator. If pk2,1 = data = pktag,

then the tagged transaction simulator uses

({pkitem, Lx, {token1,1}skID , pk1,1}, {pkitem, Lx, {token1,1}skID , pk1,1}sk)

as a valid message signature pair for the original simulator.

If one (or both) of the values tag1 and tag2 was not in the output from the Oreg

oracle, then the tagged transaction simulator can return a valid message signature

pair to the original simulator. Suppose tag1 was not in the output of the Oreg

oracle, then the valid message signature pair is

({pkitem, Lx, {tokenr1}skID , pkr1}, tag1)

If tag2 was not in the output of the Oreg oracle, then the valid message signature

pair is

({pkitem, Lx, {tokenr2}skID , pkr2}, tag2)

5.7.4 Identity Revelation

To show that no message in the protocol reveals any information about the sender,

I construct a simulator that can simulate the messages that are sent in the protocol

with no knowledge of the identity of any of the participants of the protocol. The

simulator creates messages that are computationally indistinguishable from the

messages in an actual run of the protocol. The simulator has access to the item x,

5.7. SECURITY ANALYSIS 91

the public variables of the system pkTGC , p, q, and g and the public keys {g, g1, g2}

of the restricted blind signature scheme.

The simulator also has access to signing oracles for the TGC. This means the

simulator can use the oracles to sign messages using the secret keys skTGC and

skID. The TGC is not an anonymous party in the protocol so knowledge that the

message was signed by the TGC does not reveal any information about the other

parties in the protocol.

Many of the messages in the protocol are constructed by taking a random

number x and raising a generator of the group g to the power of x to calculate

y = gx mod p. If the simulator and a real participant in the protocol both calculate

these values (the simulator xs and ys = gxs mod p and the actual participant x and

y = gx mod p), the values ys and y are computationally indistinguishable.

{id = H(x), pkx}pkTGC
: The identity of the item id = H(x) is a constant that

can be constructed by the simulator as it has access to the item. The simulator

then constructs the public key for the item by choosing a random value skx and

calculating pkx = g−skx mod p.

{id = H(x), {tokentag,r}skID , pktag,r}: The identity of the item id = H(x) is

a constant that can be constructed by the simulator as it has access to the item.

The value {tokentag,r}skID consists of the value token which is generated using

an identity value Is which the simulator generates at random. This identity

value is computationally indistinguishable from the identity value I that is

randomly chosen in an actual run of the protocol. All other values chosen to

compute {tokentag,r}skID are products of random values that are computationally

indistinguishable from an actual run of the protocol. The simulator can then use

the signing oracle to sign the message tokentag,r. The simulator will then construct

the one time public key for the reseller and tag by choosing a random value sktag,r

and calculating pktag,r = g−sktag,r mod p.

{Lx, {tokentag,r}skID , pktag,r}skx : The values {tokentag,r}skID and pktag,r have

already been generated by the simulator. The value Lx = {id = H(x), License}skx

is a signed license signed by the key skx already generated by the simulator. The

value License is a license for item, it may contain values such as the period of the

license and other limitations. To prevent identity revelation the license must be

constructed without using identity information. If this is the case, the simulator

can also generate the license.

{pkX , Lx, {tokentag,r}skID , pktag,r}skTGC
: The values pkx, Lx, {tokentag,r}skID and

pktag,r have already been generated by the simulator. The message is then signed

92 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

using the signing oracle.

{tag, {tokentag,c}skID , pktag,c}sktag,r : The values sktag,r and tag have already been

generated by the simulator. The simulator can construct the value {tokentag,c}skID
using a second constructed identity value Ic that is chosen randomly and the

signing oracle. The simulator will then construct the one time public key for the

customer and tag by choosing a random value sktag,c and calculating pktag,c =

g−sktag,c mod p.

{challenge, response}sktag,r : The simulator can generate the challenge value

using a hash function and the information on the date and time as well as the

tokentag,r previously created. The response value is generated using the values

used to generate tokentag,r. The message is then signed using the key sktag,r which

has already been generated by the simulator.

5.7.5 Linkability

To show the adversary does not have a chance greater than 1
2

of guessing the ran-

dom order, I show that all the messages sent by a reseller r are computationally

indistinguishable from the messages sent by another reseller c.

Constant values (id = H(x), Lx, and pkx) and computationally indistin-

guishable random values (pktag,r) do not provide linkability information between

different runs of the protocol. In any particular run of the protocol, a reseller

denoted r sends the following messages (if the customer resells):

{id, {tokentag,r}skID , pktag,r}

{{pkx, Lx, {tokentag,r}skID , pktag,r}skTGC
, {tokentag,c}skID , pktag,c}sktag,r

{challenge, response}sktag,r

The values id = H(x) and Lx are constant for every participant (assuming

no identifying information in Lx). The public keys are computationally indistin-

guishable if the private keys are chosen randomly. I now concentrate on the iden-

tity token values {tokentag,r}skID , {tokentag,c}skID , and {challenge, response}sktag,r .

When given an identity token and two different challenge and response

values the identity is revealed by design, so I concentrate on the case where only a

single challenge response value has been issued for each identity token. Suppose

an adversary exists that can break linkability with non negligible probability, then

this adversary can be used to discern between computationally indistinguishable

5.8. MODELLING 93

values. The adversary is initially given a signed identity token {tokentag1,r}skID .

The adversary is then given two other identity tokens {tokentag2,r}skID and

{tokentag,c}skID in a random order. The adversary should not have greater chance

of guessing the random order than 1
2
.

I now show that all elements in {tokentag1,r}skID , {tokentag2,r}skID and

{tokentag,c}skID are computationally indistinguishable. The value {tokentag1,r}skID
is composed of Atag1,r, Btag1,r, and sign{Atag1,r, Btag1,r}.

Atag1,r = (Irg2)
s where Ir = gur

1 , g1 and g2 are generators of the group

and ur and s are random variables. The value Ir is computationally indistin-

guishable from the value Ic. The values Atag1,r, Atag2,r, and Atag,c are composed

of Probabilistic Polynomial Time (PPT) operations applied to computationally

indistinguishable values and so are computationally indistinguishable.

Btag1,r = gx1
1 gx2

2 where g1 and g2 are generators of the group and x1 and x2

are random variables. So the values Btag1,r, Btag2,r, and Btag,c are computationally

indistinguishable.

The signed message sign{Atag1,r, Btag1,r} contains four values ztag1,r, atag1,r,

btag1,r, rtag1,r. The four values are PPT operations applied to values that are either

randomly generated or a generator raised to the power of a random value. So

the values sign{Atag1,r, Btag1,r}, sign{Atag2,r, Btag2,r}, and sign{Atag,c, Btag,c} are

computationally indistinguishable.

The only other message sent in the protocol that could provide linkability

information is {challenge, response}sktag,r . The challenge value is a hash value

that can be calculated by any party with access to the identity of the TGC and the

current date and time. The response value is a combination of PPT operations

applied to random numbers, so the response values of different participants are

computationally indistinguishable.

5.8 Modelling

To check the security properties of the tagged transaction protocol, I use the

Failures Divergences Refinement (FDR) model checker [33, 78]. The FDR

model checker checks a Concurrent Sequential Processes (CSP) [46] model of a

protocol against a CSP specification. As discussed in Section 4.6, the adversary

has complete control of the network. I also make use of safe simplifying

transformations [48]. As the registration step has not changed, this model is

94 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

not repeated. The two models I construct examine the properties of spoofing,

fabrication, cloning, and network sniffing.

5.8.1 Supplier Generating Tag

In the second phase of the extended tagged transaction protocol, the supplier

generates a tag with the TGC. The reseller sends the supplier the one time public

key for the tag and its identity token. The supplier then generates a signed license

for the item. The supplier sends a signed message with the license, identity token,

and the one time public key to the TGC. The TGC then creates and signs the tag

and sends it back to the supplier who sends it to the reseller. The high level

description of the protocol is:

Reseller → Supplier : item, {tokentag,r}skID , pktag,r

Supplier → TGC : {Lx = {H(x), Licensex}skx , {tokentag,r}skID , pktag,r}skx

TGC → Supplier : {pkx, Lx, {tokentag,r}skID , pktag,r}skTGC

Supplier → Reseller : {pkx, Lx, {tokentag,r}skID , pktag,r}skTGC

I apply the following safe simplifying transformations before modelling the

supplier generating a tag with the TGC:

1. Removal of the encryption on the field Lx = {H(x), Licensex}skx to make it

{H(x), License}.

2. Removal of the atomic field License.

3. Removal of the atomic field H(x).

4. Removal of the atomic field item.

5. Removal of the encryption on the field {tokentag,r}skID to make it tokentag,r.

After the simplification the description of the protocol is:

Reseller → Supplier : tokentag,r, pktag,r

Supplier → TGC : {tokentag,r, pktag,r}skx

TGC → Supplier : {pkx, tokentag,r, pktag,r}skTGC

Supplier → Reseller : {pkx, tokentag,r, pktag,r}skTGC

5.8. MODELLING 95

In this model, the set Tags = {pktagreseller, pktagwrong} represents the one time

keys for the tags . As these keys are never used for encryption or signing in this

part of the protocol they do not need to be represented as public and private key

pairs. Each participant in the protocol has a public and private key pair. The value

pkx represents the public key for the item and skx is represents private key. The

set Token = {tokenreseller} represents the identity tokens. The initial knowledge

of the adversary is pktagwrong, tokenreseller, pkx, pkTGC , pkSupplier, pkReseller, and

skReseller. The model of the protocol for CSP is:

Reseller → Supplier : tokenreseller, pktagreseller

Supplier → TGC : {tokenreseller, pktagreseller}skx

TGC → Supplier : {pkx, tokenreseller, pktagreseller}skTGC

Supplier → Reseller : {pkx, tokenreseller, pktagreseller}skTGC

The generation of a tag has to resist a fabrication attack where an adversary

manages to generate a valid tag. The specification states that if the reseller

receives a tag that it accepts, the supplier must have sent a message to the TGC

requesting the tag. The FDR model checker returns TRUE after 111 states with

387 transitions.

5.8.2 Reseller Generating Tag

The CSP description for the reseller generating a tag in the extended tagged

transaction protocol is now examined. The customer sends the reseller the one

time public key for the tag and its identity token. The reseller then sends the tag

from the supplier, the customer’s one time public key and the customer’s identity

token all signed by the one time private key of the tag to the TGC. The TGC then

sends a challenge to the reseller. The reseller returns a signed message with the

challenge and response values. The TGC creates and signs the tag and sends it

back to the reseller who sends it to the customer. The high level description of

the protocol is:

Customer → Reseller : item, {tokentag,c}skID , pktag,c

Reseller → TGC : {{pkx, Lx, pktag,r}skTGC
, {tokentag,c}skID , pktag,c}sktag,r

TGC → Reseller : challenge

Reseller → TGC : {challenge, response}sktag,r

96 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

TGC → Reseller : {pkx, Lx, {tokentag,c}skID , pktag,c}skTGC

Reseller → Customer : {pkx, Lx, {tokentag,c}skID , pktag,c}skTGC

Before we model the reseller generating a tag with the TGC we apply the

following safe simplifying transformations:

1. Removal of the encryption on the field Lx = {H(x), Licensex}skx to make it

{H(x), License}.

2. Removal of the atomic field License.

3. Removal of the atomic field H(x).

4. Removal of the atomic field item.

5. Removal of the encryption on the field {tokentag,c}skID to make it tokentag,c.

6. Removal of the encryption on the field {tokentag,r}skID to make it tokentag,r.

7. Redirecting a message that is sent via a third party to go direct. We direct

message 5 to go straight from the TGC to the customer and not via the

reseller.

After the simplification the description of the protocol is:

Customer → Reseller : tokentag,c, pktag,c

Reseller → TGC : {{pkx, tokentag,r, pktag,r}skTGC
, tokentag,c, pktag,c}sktag,r

TGC → Reseller : challenge

Reseller → TGC : {challenge, response}sktag,r

TGC → Customer : {pkx, tokentag,c, pktag,c}skTGC

I model the earlier generation of a tag ({pkx, tokentag,r, pktag,r}skTGC
) by the

introduction of an extra set ActualTags = {tag, tag2, tagwrong, tagwrong2} that

represents the tags that have been sent from the supplier to the reseller. To

represent the reseller signing the tag with the one time key embedded in the

tag, the reseller signs the message with its own private key. To include the

complete generation of a tag in this model makes the size of the model intractable.

The set Tags = {pktag, pktag2, pktagwrong, pktagwrong2} represents the one

time keys for the new tags. The set Token = {tktag, tktag2} represent identity

tokens. The set Challenge = {c1, c2} represents the challenge values and the

5.9. SUMMARY 97

set Response = {r1, r2} represents the response values. The item key pkx is

represented as a public key with private key skx. To model the possibility of a

cloning attack, two runs of the protocol happen at the same time. The initial

knowledge of the adversary is tagwrong, tagwrong2, pktagwrong, pktagwrong2,

tktag, tktag2, c1, c2, r1, r2, pkx, pkTGC , pkSupplier, and pkReseller. The model of the

protocol for CSP is:

Customer → Reseller : tktag, tktag2, pktag, pktag2

Reseller → TGC : {tag, tktag, pktag, tag2, tktag2, pktag2}skR
TGC → Reseller : c1, c2

Reseller → TGC : {c1, r1, c2, r2}skR
TGC → Customer : {pkx, tktag, pktag}skTGC

, {pkx, tktag2, pktag2}skTGC

There are two specifications for the reseller generating the tag. The first speci-

fication prevents cloning where an adversary creates two new tags from the same

initial tag. The specification states that if the customer receives two tags, then

two different values must have been signed by the TGC. The FDR model checker

returns TRUE after 457 states with 2005 transitions. The second specification

checks for a network sniffing attack where an adversary sees a tag being sent

over the network and tries to use it to generate a new tag. The specification states

that if a customer receives tags signed by the TGC then the reseller must have

sent a message to the TGC to request the generation of the tags. The FDR model

checker returns TRUE after 1423 states with 4835 transitions.

5.9 Summary

This chapter has presented the extended tagged transaction protocol. The

extended tagged transaction protocol uses ideas from digital cash where double

spenders can be identified. In the extended tagged transaction protocol, if a

reseller tries to clone a tag their identity is revealed. Once the identity of a

malicious reseller is known, they can be prevented from generating more identity

tokens.

The extended tagged transaction protocol uses the TGC as both the bank and

the merchant in the digital cash model. A reseller or customer will need to obtain

a restricted blind signed identity token in a protocol with the TGC before they

98 CHAPTER 5. EXTENDED TAGGED TRANSACTION PROTOCOL

can purchase any items. This signed identity token is then added to the tags that

are generated and used by the extended tagged transaction protocol.

A thorough security analysis has been carried out showing that the extended

tagged transaction protocol prevents spoofing, fabrication, network sniffing,

cloning, identity revelation, and linkability attacks. Finally, the details and results

of the modelling of the extended tagged transaction protocol, using the FDR

model checker, show the protocol prevents spoofing, fabrication, cloning, and

network sniffing attacks.

The security analysis in the past two chapters assumes an anonymous commu-

nication channel and that the TGC is acting correctly. In the next chapter, I remove

the assumption that the TGC is acting correctly and discuss ways to provide an

anonymous communication channel and verify the actions of the TGC.

Chapter 6

Anonymity and Tag Generation

Centre Distribution and Verification

This chapter discusses methods to provide anonymous communication and the

distribution and verification of the Tag Generation Centre (TGC). When resellers

(and suppliers when they are anonymous) are communicating with the TGC

they use an anonymous communication channel. This prevents the TGC from

building up large amounts of data on the transactions of a reseller.

In previous chapters, the TGC has been assumed to be acting as a single

trusted third party. In this chapter, I remove this assumption and present different

methods for distributing the TGC over multiple parties and verifying the actions

of the TGC. Having the TGC distributed over multiple parties improves reliability

by not providing a single point of failure. Verifying the actions of the TGC means

that the TGC is no longer acting as a trusted third party. Properties of these

different methods are discussed, and in the next chapter the performance of the

methods are examined.

6.1 Anonymity

Research on anonymous communications began with a paper by David Chaum

in 1981 [21]. Since then there has been a large body of research both devel-

oping anonymous communication protocols and analysing and attacking these

protocols. Anonymity has been defined in work by Pfitzmann et al as the state

of not being identifiable within a set of subjects, the anonymity set [72]. In the

tagged transaction protocol, the set of subjects includes resellers and anonymous

99

100 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

suppliers.

For the tagged transaction protocol, I present three different methods of

providing an anonymous communication channel:

1. Anonymity is provided by the TGC which hides all identification informa-

tion about anonymous parties.

2. Anonymity is provided by a second party. This two party style of

anonymity prevents the TGC from learning the identities of anonymous

parties.

3. Anonymity is provided by an anonymous communication channel.

6.1.1 Anonymity provided by the TGC

Anonymity can be provided by the TGC. When the TGC provides anonymity,

anonymous parties in the tagged transaction protocol communicate directly with

the TGC. The TGC then knows the identity of all resellers and suppliers in the

protocol. When the TGC publishes or sends tags and other information, it does

not publish the identifying information of the participant that sent the message.

The messages sent as part of the tagged transaction protocol and the extended

tagged transaction protocol do not contain identifying information as shown in

Section 4.5.5 and Section 5.7.4.

While the anonymity provided by the TGC prevents any external observers

from learning the identities of the participants in the protocol, it does not prevent

the TGC from learning the identities. The TGC can then build up detailed records

of the transactions of each reseller and supplier in the tagged transaction protocol.

This may be commercially sensitive information and the TGC must be trusted to

not reveal it.

An advantage of the TGC providing anonymity is that any resellers that are

acting maliciously or incorrectly can be identified.

6.1.2 Two Party Anonymity

Two party anonymity uses a second party, an anonymity service, to provide

anonymity in communication between the resellers and anonymous suppliers

and the TGC. Figure 6.1 shows the process for sending messages between a

reseller and the TGC using two party anonymity. The reseller sends the message

6.1. ANONYMITY 101

Reseller
Reply

M essage

TGC

Anonym ity
Service

M essage

Reply

Figure 6.1: Two Party Anonymity

to the anonymity service which sends it on to the TGC. The TGC then replies to

the anonymity service which forwards the reply on to the reseller. As all messages

to the TGC come from the anonymity service, the TGC can gain no information

on the reseller.

Some systems already provide such an anonymity service. An early example

is the anon.penet.fi relay (no longer running). Later examples that are still

running include Anonymizer1, KProxy2, and Hide My Ass!3 among many others.

Similar to anonymity provided by the TGC, the use of two party anonymity

allows the anonymity service to build up records of the participants in the tagged

transaction protocol. The use of the two party anonymity prevents external

parties from building up records of the actions of the participants in the protocol.

Depending on the terms and conditions of the anonymity service, a malicious

reseller can be identified.

6.1.3 Anonymous Communication Channel

Anonymous communication channels have been developed to prevent any party

being able to trace the identity of the senders of messages. These systems use a

group of servers or relays. No single server has the information to link the sender

of a message with the message that is received by the receiver. As long as one of

the relays in the chain is honest, it is hard to link the message and its sender.

Mix networks were first suggested by Chaum [21]. A mix network involves

a party sending an item to a mix node (or a series or cascade of mix nodes)

who then sends it to the addressee. The purpose of the mix node is to hide the

correspondences between the items in its input and those in its output. Figure 6.2

shows a cascade of mix nodes. Suppose we have a party A that wants to send a

1http://www.anonymizer.com/
2http://kproxy.com/
3http://hidemyass.com/

102 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

A B1 N

p k B (M)
p k 1(p k 2 (… (p k N (p k B (M)))…)) p k N (p k B (M))

p k 2(… (pk N (pk B (M)))…)

...

Figure 6.2: A Cascade of Mix Nodes

message M to the recipient B anonymously through a series of 1, ..., N mix nodes.

A will form a message M that is encrypted by the public key of B. Then A will

add an encryption layer for each mix node 1, ..., N using their public keys. As

each mix node receives the message it will wait to receive a batch of messages

before re-arranging, or mixing, the order of the messages, stripping off one of

the encryption layers, and forwarding it on to the next mix node. Finally, B will

receive a message encrypted with its public key.

Onion routing [88] differs from the standard mix network by establishing

a stream connection between the sender and recipient. Messages can be sent

to open or close a circuit through the network. Once a circuit is established,

messages with the same label are sent through the same circuit. The initial

message through the network is encrypted in layers and can only be decrypted

by the nodes chosen by the sender. Once the circuit has been established data

travelling through the network is encrypted with symmetric keys. The mixing

strategy used by each of the nodes is very close to a first in first out mixing. This

means that onion routing is susceptible to a traffic analysis attack, which is made

easier in the absence of large amounts of traffic. This minimal mixing strategy

was employed to provide maximum real time performance.

TOR [28] is a second generation onion router. TOR is also designed to provide

real time anonymous web browsing. Instead of the layered onion approach used

by the original onion network to establish a circuit through the network, TOR

uses an iterative mechanism. A sender in the TOR network connects to the

first node in the circuit it wants to establish, then requests that node connects

to the next one. An authenticated Diffie-Hellman key exchange is used to

establish symmetric keys for the stream. The TOR network does not claim to

provide anonymity in the presence of passive global adversaries but TOR does

provide low latency and there are currently over 2000 TOR publicly available

TOR nodes 4.

The type of anonymous communication channel provided by mix networks

4https://metrics.torproject.org/network.html

6.2. TGC DISTRIBUTION AND VERIFICATION 103

and the TOR network prevent any party from being able to build up records of

the identities of the senders of messages sent to the TGC. This is in contrast to

the TGC providing anonymity or two party anonymity where the information to

link the sender with a message is held by the TGC or anonymity service. A mix

network has no way of revealing the identity of a reseller if malicious actions are

detected by the TGC.

6.2 TGC Distribution and Verification

The choice of the distribution of the TGC affects the verification mechanism used

to verify the actions of the TGC. I present two main distributions and methods of

verification for the TGC.

1. Single party TGC. The TGC is a single well known party or a group of well

known parties where only one is chosen as the TGC for a certain supplier.

Verification of the TGC uses a public bulletin board.

2. Multiple party TGC. The TGC is a group of independent servers. Verifica-

tion is provided by threshold trust, as long as a threshold number of the

servers are acting correctly the TGC can be trusted to be acting correctly.

6.2.1 Single Party TGC

A single party TGC is the simplest distribution. All requests from resellers and

suppliers for tag generation use this single party TGC. Only one public key is

needed to check tags used as part of the tagged transaction protocol. Although

a single party is in charge of the TGC, it can be implemented as a distributed

service similar to services such as gmail5 or hotmail6.

A single party TGC without verification would be a trusted third party. To

prevent this, I introduce a verification technique for the TGC. The TGC has access

to a public bulletin board. Only the TGC can write to the board but any party

can read what is written on the board. The TGC then posts all messages it sends

or receives to the bulletin board. When a reseller or customer receives a tag, they

can check the bulletin board to make sure that the tag was originally produced by

the supplier and that the tag has not been cloned. While this provides a method

5gmail.com
6hotmail.com

104 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

Public Bulletin Board

Supplier TGC{Lx, pktag,r}skx

tag={pkx,Lx,pktag,r}skTGC TGCSupplier

{Lx, pktag,r}skx

tag={pkx,Lx,pktag,r}skTGC

Reseller TGC{tag, pktag,c}sktag,r

tagC={pkx,Lx,pktag,c}skTGC TGCReseller

{tag, pktag,c}sktag,r

tagC={pkx,Lx,pktag,c}skTGC

…
.

…
.

Figure 6.3: Single TGC Verification

to verify the TGC, it leaks the number of resellers between the customer and

supplier. It also reveals the terms of the license produced by the supplier.

Figure 6.3 shows the verification process with the TGC publishing all the

messages it sends or receives to the bulletin board. A verifier will want to check

that the tag they have received was first created by the supplier and that it has not

been cloned. The tag the customer receives will be part of a chain of tags denoted

{tagcustomer, tagreseller1, ..., tagresellern} where there are n resellers in the chain. To

verify the actions of the TGC, a customer will need to check that, for each tag in

the chain, the old tag has only been used to generate one new tag. The customer

will also check that the initial tag tagresellern was generated by a request from

the supplier. Assuming the chance of the TGC cheating is 1
n

, and the chance

of a customer verifying the TGC is 1
m

, then the chance of a cheating TGC being

caught is 1
mn

. If the TGC cheats every time and every customer verifies the TGC,

then the chance of a cheating TGC being caught is 1. If the TGC cheats once every

thousand times, and one of every thousand customers verifies the TGC, then the

chance of a cheating TGC being caught is 1
1000000

. The TGC has more motivation to

act maliciously for high value items, so customers should verify the actions of the

TGC more often for high value items to detect cheating with higher probability.

A second option for a single party TGC is to use multiple independent TGCs.

When a supplier first registers an item, it will choose a TGC to use for this

item. The supplier then advertises this choice using some out of band method

6.2. TGC DISTRIBUTION AND VERIFICATION 105

such as its website. When a customer purchases an item from a supplier, they

check on the supplier’s web site to see what TGC they should use. This allows

suppliers to use a TGC that they trust. For example, if Google was in charge

of the TGC, Microsoft may not want to use it for their products. The use of

multiple independent TGCs also spreads the load over the group. To use multiple

independent TGCs, the suppliers must be known: having multiple independent

TGCs does not support supplier anonymity. The supplier could provide their

own TGC for their items. If the supplier provides their own TGC, then the

supplier must be online for transactions. This removes the offline supplier

property of the tagged transactions protocol.

6.2.2 Multiple Party TGC

Rather than having the TGC as a single party, the TGC can be distributed as a

group of independent heterogeneous servers. A customer will only accept a tag

if it has been signed by a threshold value of the multiple TGCs. For example,

the customer could accept a tag if it is signed by three out of five TGCs. This

would improve availability by only requiring a threshold number of the TGCs to

be online to generate a license. To sign a tag using a threshold value of TGCs,

either each TGC has a separate key that they use to sign a tag, or the TGCs use a

threshold group signature scheme.

Group signature schemes were first introduced by Desmedt et al [27]. In a

threshold group signature scheme, a group of n signers each have access to a

part of a shared secret. To sign a message requires the co operation of t out of

n signers. It is known that t of the n signers were involved in generating the

signature but not which of the t out of n signers. The development of threshold

group signatures began with schemes that need a trusted centre [27] but later

schemes have removed this requirement [47, 54, 58, 70]. Some threshold group

signature schemes support traceability of a signer [54], this property could be

used to detect what TGC has signed an invalid tag. Threshold group signature

schemes involve broadcasting messages between the group of signers.

I use individual keys and signatures instead of threshold group signatures for

two reasons: it allows an individual TGC that is acting incorrectly to be easily

identified, and it requires less co-ordination between the multiple independent

TGCs to sign a tag. The use of individual signatures will result in more network

traffic between the TGCs and the reseller as each TGC will send an independent

106 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

TGC 1

TGC 2

TGC 3

Supplier Reseller

{L x,p
k tag,r}s

kx

tag 3=
{pkx,L x,p

k tag,r}s
kTGC3

{Lx,pktag,r}skx

{Lx ,pktag,r }skx

tag1={pkx ,Lx ,pktag,r}skTGC1

tag2={pkx,Lx,pktag,r}skTGC2

{tag1,tag2,tag3, pktag,c}sktag,r

{pkx,Lx,pktag,c}skTGC2

{tag1 ,tag2,tag3, pktag,c}sktag,r

{pkx,Lx,pktag,c}skTGC3

{tag1,ta
g2,ta

g3, p
k tag,c}s

k tag,r

{pkx,Lx,p
k tag,c}s

kTGC1

Figure 6.4: Supplier and Reseller Interacting with Multiple TGCs

signature over the network rather than having a single signature from the group.

When a supplier or reseller wants to generate a tag, they will have to send the tag

request message to at least the threshold number of TGCs. The TGCs will then

each independently reply as shown in Figure 6.4. When a reseller is generating a

tag, the reseller will need to include all tags signed by the group of TGCs (there

must be at least the threshold number of them).

In the multiple TGC distribution, the actions of an individual TGC are not

verified. As long as fewer than the threshold value of TGCs are acting maliciously,

suppliers, resellers, and customers can have confidence that the TGCs are acting

correctly.

When using a group of TGCs, it is possible that the information seen over

the network may be different for each TGC. This could be caused by a network

outage for one of the TGCs, or malicious actions such as a denial of service attack.

This would result in the state of the TGCs being different, so it is possible that one

of the TGCs has not seen a reseller generating a tag and still has the old tag in its

database. If the TGC is acting correctly and it receives a tag generation request

using a new tag that it does not have in its database, it will not generate the new

tag.

If a TGC receives a tag request for a tag that is not in its database, it queries

the other TGCs for the tag chain for the tag. The other TGCs will send all the

messages they have received from suppliers and resellers for this tag. The other

6.2. TGC DISTRIBUTION AND VERIFICATION 107

TGCs do not need to send a record of what they have sent as these messages can

be recreated from the messages received from the suppliers and resellers. Each of

the TGCs sign the messages with their own private key. The TGC that has been

offline must receive the records of messages from at least the threshold number of

other TGCs to prevent malicious TGCs from being able to give it false information.

Using this method, a TGC in the group that goes offline for a period of time can

synchronise its view with the other TGCs.

A standard (t, n) threshold scheme has n = 2t− 1 as the threshold value. This

means that as long as the majority of participants are honest, the user can trust

the result. In the tagged transaction protocol, an adversary can clone a tag when

using multiple TGCs as shown in Figure 6.5 when using the standard threshold

value. Suppose a group of three TGCs (TGC 1, TGC 2, and TGC 3) and a threshold

value of two (a (2, 3) threshold scheme) are being used. One of these TGCs (TGC

2) is malicious and is acting together with an adversary trying to clone a tag.

Suppose the adversary already has tags:

tag1 = {px, Lx, pktag,r}skTGC1

tag2 = {px, Lx, pktag,r}skTGC2

tag3 = {px, Lx, pktag,r}skTGC3

The adversary then wants to use the malicious TGC to clone two new tags with

the values pktag,c1 and pktag,c2. The adversary sends the following message to TGC

3 and the malicious TGC 2:

{tag1, tag2, tag3, pktag,c1}sktag,r

As TGC 3 is acting correctly it will generate and return the message:

{pkx, Lx, pktag,c1}skTGC3

The malicious TGC will return:

{pkx, Lx, pktag,c1}skTGC2

The adversary sends the following message to TGC 1 and the malicious TGC 2:

{tag1, tag2, tag3, pktag,c2}sktag,r

As TGC 1 is acting correctly it will generate and return the message:

{pkx, Lx, pktag,c2}skTGC1

108 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

TGC 1

Malicious
TGC

(TGC 2)

TGC 3

Adversary

{tag1,ta
g2,ta

g3,p
k tag,c1}s

k tag,r

{pkx,Lx,p
k tag,c1}s

kTGC3

{tag1,tag2,tag3,pktag,c1}sktag,r

{tag
1,tag2,tag3,pktag,c2}sktag,r

{pkx ,Lx ,pktag,c2}skTGC1

{pkx,Lx,pktag,c1}skTGC2

{tag1,tag2,tag3,pktag,c2}sktag,r

{pkx,Lx,pktag,c2}skTGC2

Figure 6.5: Adversary Cloning Tag with Multiple TGCs

The malicious TGC will clone the tag and generate the message:

{pkx, Lx, pktag,c2}skTGC2

The adversary then has cloned two tags from an initial tag using a single

malicious TGC. This has broken the tagged transaction protocol by allowing a

cloning attack when only one out of three TGCs was malicious.

To prevent the attack shown in Figure 6.5, I alter the threshold value that is

used. The adversary (or adversaries) are able to split the honest parties in to

two partitions and give both different information. To prevent this, the threshold

must be set so that all the malicious parties and half the honest parties are not

enough to sign tags. The formula for calculating the number of participants n

when given a threshold t is n < 2t−⌊ t
2
⌋. Examples of safe threshold values to use

include (4, 5), (5, 7), (7, 9), and (9, 13).

To use multiple independent heterogeneous TGCs, the TGCs have to be pre-

selected and well known. The multiple party TGC distribution I have shown

is not dynamic. It does not require all the TGCs to be online at the same time,

but the set of TGCs remains static. The parties in charge of the TGCs must be

carefully chosen. While the threshold model prevents a single malicious or faulty

TGC from breaking the protocol, it is best to choose parties to run the TGCs

that are trustworthy. The choice of TGCs may also reflect commercial interests

where the TGCs may be run by a group of the biggest companies in a particular

6.2. TGC DISTRIBUTION AND VERIFICATION 109

industry. Other issues include ensuring diversity among the multiple TGCs to

prevent them being sensitive to the same attack.

Introducing multiple TGCs will increase the computational and communica-

tion complexity of both the tagged transaction protocol and the extended tagged

transaction protocol. The growth in the complexity of the tagged transaction

protocol when using multiple TGCs is caused by:

• When the reseller sends a tag generation request to the TGCs it must send

the request to at least the threshold number of TGCs and it must include at

least a threshold number of signed tags with the request.

• When a TGC receives a tag generation request from a reseller it needs to

check at least a threshold number of signed tags before it will generate the

new tag.

The design decision to use multiple TGCs with individual signing keys will

result in the complexity of both the tagged transaction protocol and the extended

tagged transaction protocol being O(t2). The use of a threshold group signature

scheme will only require a single tag be sent to the group of TGCs but will

increase the complexity of the TGCs co-operating to sign a tag. More details on

the complexity and performance impacts of increasing the number of TGCs can

be found in chapter 7.

The group of TGCs will be constant and chosen before the protocol starts. The

purpose of multiple TGCs is to distribute the trust over multiple independent

parties. If an increase in the number of customers or transactions creates a large

load on the TGCs and reduces performance then the TGCs would need to be

replicated. It is important to differentiate the replication of a TGC from an

increase in the number of TGCs in the group. Replicating a TGC will involve

using a technique such as a server cluster to increase the performance of the TGC

but will not result in an increase in the number of TGCs in the group. The cost

of adding replicas is maintaining consistency between replicas of the TGC so that

each replica would return the same answer to a query.

Another method of handling scalability issues is to separate the marketplace

in to separate sub-marketplaces. For example, one marketplace could deal with

music, one with video, and one with eBooks. One group of multiple TGCs could

then be in charge of each sub-marketplace. This would split the load of the whole

marketplace over several groups of multiple TGCs in charge of sub-marketplaces.

110 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

6.3 Summary

In this chapter, I have presented options for the anonymous communication

channel and the distribution and verification of the TGC. The choices for both

the anonymity and the distribution provide different characteristics in terms

of computational and communication complexity, verification and anonymity

properties, and legal aspects of anonymity.

I describe three options for the anonymous communication channel: the

use of the TGC as an anonymity server, the use of a third party anonymity

server, and the use of an anonymous communication channel based on mix

networks. The use of the TGC or a third party as the anonymity server

allows revocable anonymity for suppliers and resellers in the tagged transaction

protocol. Depending on legal requirements, this may be a necessary property.

Anonymous communication using a mix network, such as the TOR network,

provides the strongest anonymity properties. However, it is not possible to

provide perfect anonymity with any anonymous communication channel. When

viewing the anonymity network as a black box that provides perfect anonymity, if

an adversary can watch both ends of the anonymous communication, persistent

communication between two parties will be detected. I use both the TGC and

the TOR network to provide anonymity for the tagged transaction protocol. The

TOR network has a large number of active nodes that can be used for testing. I

compare the performance of the tagged transaction protocol using both of these

approaches in the next chapter.

The distribution of the TGC affects the properties and mechanism of the

verification of the TGC. A contribution of this work is to provide methods to

prevent the TGC acting as a trusted third party. I have presented two main

options for verification. The first option is a single (or many single independent)

TGC that uses a public bulletin board to provide verification. This technique leaks

the number of links between the supplier and the customer. To verify the actions

of the TGC the reseller will have a higher communication and computational

complexity as it has to download and verify the signatures of the messages on

the board. The second option is to use multiple TGCs with a threshold value of

them assumed to be acting correctly. As long as this threshold value of TGCs

are acting correctly, the actions of the TGC are verified. The multiple party TGC

distribution does not leak the number of links between the supplier and customer

or require a public bulletin board and customer verification of data. However,

6.3. SUMMARY 111

the multiple party TGC distribution has a greater communication complexity

between the TGCs to prevent cloning attacks and provide methods for an offline

TGC to synchronise with the other TGCs. The multiple party TGC distribution

also provides fault tolerance as a certain percentage of the TGCs (depending on

the threshold value) can fail and suppliers and resellers can still generate tags. In

the following chapter, I present complexity and performance results for the two

distribution options.

112 CHAPTER 6. ANONYMITY, DISTRIBUTION, AND VERIFICATION

Chapter 7

Complexity and Performance

This chapter presents complexity and performance results for both the tagged

transaction protocol and the extended tagged transaction protocol. These results

show the relationship between the distribution of the TGC and the anonymous

communication channel presented in the previous chapter and the performance

of the protocol. This chapter initially shows the computational and communi-

cation complexity. These results are used to compare the tagged transaction

protocol and the extended tagged transaction protocol to anonymous credentials,

a protocol that can anonymously provide provenance in reseller chains.

The second part of this chapter details the implementation of the tagged

transaction protocol and the extended tagged transaction protocol. The details

of the experimental setup are described and the results of the performance tests

done on both the tagged transaction protocol and the extended tagged transaction

protocol are presented. The performance tests shows the effects of changing the

key size of the signature scheme, the distribution of the TGC, the number of

resellers in the chain, and the use of the TOR anonymous communication channel

on the time taken to complete the protocol.

7.1 Complexity

In this section I present the computational and communication complexity of the

tagged transaction protocol. This does not include any extra communication or

computation that is necessary to provide an anonymous communication channel.

Table 7.1 shows the computational complexity for the tagged transaction protocol

and Table 7.2 shows the computational complexity for the extended tagged

113

114 CHAPTER 7. COMPLEXITY AND PERFORMANCE

transaction protocol. These tables use the following notation:

• p and q are large primes where p = 2q + 1. The operations for the digital

signature scheme are done in the group Gp.

• n is the size of the modulus used for the encryption scheme.

• x is the complexity of modular exponentiation.

• y is the complexity of modular division.

• t is the threshold number of TGCs used.

• T is the total number of TGCs used.

• r is the number of resellers in the chain.

The complexity results make the following assumptions: the size of the modulus

for the encryption and group for the signatures are equal (|n| = |p|), and the

registration uses the worse case (|p| = |n| = 1024) value.

Customer Reseller Supplier TGC Total

Registering Item y + 3xT 3xT y + 6xT

Verifying Tag 4xt 4xt

Generating Tag y + 4xt 6xt 5xt y + 15xt

Reseller y + 4xt ry + 9xrt 4xt2 + xrt y + 4xt+ 6xrt+ 4xt2

Generating Tag

Total (no registration) y + 4xt ry + 9xrt 6xt 5xt+ xrt+ 4xt2 y + ry + 15xt+ 10xrt+ 4xt2

Table 7.1: Tagged Transaction Protocol Computational Complexity

There is a linear relationship between the computational complexity of regis-

tering an item and the total number of Tag Generation Centres (TGCs). This is

because the item needs to be registered with every TGC.

To verify a tag requires verifying two separate digital signatures on each tag.

This will require four modular exponentiations for each tag returned by one of

the threshold number of TGCs.

The relationship between the computational complexity of generating a tag

and the threshold number of TGCs is linear. A signed tag request will have to be

sent from the supplier to the threshold number of TGCs who will sign and return

the tag.

To regenerate a tag, all the resellers in the chain have to verify a signature on a

tag for the threshold number of TGCs and sign a tag regeneration request for the

7.1. COMPLEXITY 115

threshold number of TGCs, which would lead to a linear relationship between the

computational complexity and the threshold number of TGCs. However, each

TGC has to check the signature on a threshold number of signed tags for each

reseller. This means that there is a linear relationship between the computational

complexity and the square of the threshold number of TGCs.

The final total value shows the computational complexity of the entire reseller

chain, not including the registration of the item. The registration step is not

included as this only needs to be done once by the supplier and not for every

transaction. There is a linear relationship between the square of the threshold

number of TGCs and the computational complexity of the tagged transaction

protocol and a linear relationship between the number of resellers in the chain

and the computational complexity.

Customer Reseller Supplier TGC Total

Verifying Tag 8xt 8xt

Registering x x 2x

Account

Generating y + 12x 2x y + 14x

ID Token

Checking 4x 4x

ID Token

Generating Tag y + yt+ 18xt 10xt 9xt y + yt+ 37xt

Reseller y + yt+ 16xt ry + ryt+ 35xrt 8xt2 + 6xrt y + 2yt+ 28xt+

Generating Tag 11xrt+ 8xt2

Total y + yt+ 24xt ry + ryt+ 35xrt 10xt 9xt+ 6xrt+ 8xt2 y + yt+ ry + ryt+

(no registration) 41xrt+ 43xt+ 8xt2

Table 7.2: Extended Tagged Transaction Protocol Computational Complexity

To verify a tag requires verifying two separate digital signatures on each tag

and the signed identity token. This will require eight modular exponentiations

for each tag returned by one of the threshold number of TGCs.

Registering an account only requires one modular exponentiation by the

customer (or reseller) registering the account and the TGC. Generating an

ID Token requires twelve modular exponentiation and one modular division

from the customer (or reseller) and two modular exponentiation from the TGC.

Checking an ID Token requires four modular exponentiations.

Generating a tag has a linear relationship between the computational com-

plexity and the threshold number of TGCs. This is because the tag generation

request has to be sent to the threshold number of TGCs from the supplier.

To regenerate a tag requires each TGC to check the signatures for a tag for

a threshold number of tags before they will generate a new tag. This causes a

116 CHAPTER 7. COMPLEXITY AND PERFORMANCE

linear relationship between the computational complexity and the square of the

threshold number of TGCs.

There is a linear relationship between the computational complexity of the

extended tagged transaction protocol and the number of resellers. There is a

linear relationship between the computational complexity of the extended tagged

transaction protocol and the square of the threshold number of TGCs. The extra

computations compared to the tagged transaction protocol are required as each

customer and reseller must generate a signed identity token with the TGCs before

getting signed tags. This increases the number of modular exponentiations and

modular divisions that need to be done to generate a tag.

Table 7.3 and Table 7.4 show the communication complexity for the tagged

transaction protocol and the extended tagged transaction protocol. In this

analysis the communication complexity refers to the amount of data that is sent

by each participant in the protocol. The following notation is used to show the

communication complexity:

• p and q are large primes where p = 2q + 1. The operations for the digital

signature scheme are done in the group Gp.

• n is the size of the modulus used for the encryption scheme.

• h is the size of the output of the hash function used to identify items (or the

size of the output of an alternate identification scheme).

• l is the size of the license for the item.

• t is the threshold number of TGCs used.

• T is the total number of TGCs used.

• r is the number of resellers in the chain.

Customer Reseller Supplier TGC Total

Size of Tag h + l + 2p + 4q

Registering Item 3Tn h + p + 2q 3Tn + h + p + 2q

Generating Tag h + p t(h + l + p + 4q) t(h + l + 2p + 4q) h + p + t(2h + 2l + 3p + 8q)

Reseller h + p t(p + 2q)+ t(h + l + 2p + 4q) h + p + t(h + l + 3p + 6q)+

Generating Tag t2(h + l + 2p + 5q) t2(h + l + 2p + 5q)

Total h + p h + p + t(p + 2q)+ t(h + l + 2p + 4q) 2t(h + l + 2p + 4q) 2h + 2p+

(Without t2(h + l + 2p + 5q) t(3h + 3l + 7p + 14q)+

Registration) t2(h + l + 2p + 5q)

Table 7.3: Tagged Transaction Protocol Communication Complexity

7.1. COMPLEXITY 117

Table 7.3 shows the communication complexity of the tagged transaction

protocol. There is a linear relationship between the total number of TGCs and

the communication complexity to register a tag. This is because the registration

message needs to be sent to every TGC in the group. There is a linear relationship

between the communication complexity of generating a tag and the threshold

number of TGCs as the supplier will need to send the generation request to the

threshold number of TGCs and return the threshold number of signed tags to the

reseller. The total communication complexity has a linear relationship with the

square of the threshold number of TGCs. This is because each TGC needs to be

sent a threshold number of tags before it will sign a new tag.

Customer Reseller Supplier TGC Total

Size of Tag h + l + 7p + 5q h + l + 7p + 5q

Registering tp tp 2tp

Account

Generating tq t(2p + q) t(2p + 2q)

ID Token

Generating h + 6p + q t(h + l + 6p + 5q) t(h + l + 7p + 5q) h + 6p + q+

Tag t(2h + 2l + 12p + 10q)

Reseller h + 6p + q t(5p + 3q)+ t(h + l + 7p + 5q) h + 6p + q+

Generating t2(h + l + 7p + 5q) t(h + l + 12p + 8q)+

Tag t2(h + l + 7p + 5q)

Total h + 6p + q h + 6p + q+ t(h + l + 6p + 5q) 2t(h + l + 7p + 5q) 2h + 12p + 2q+

(Without t(5p + 3q)+ t(3h + 3l + 25p + 18q)+

Registration) t2(h + l + 7p + 5q) t2(h + l + 7p + 5q)

Table 7.4: Extended Tagged Transaction Protocol Communication Complexity

Table 7.4 shows the communication complexity of the extended tagged trans-

action protocol. The communication complexity of registering an account and

generating an ID Token has a linear relationship with the threshold number of

TGCs because the customer or reseller will need to generate a threshold number

of blind signed identity tokens to request a tag. Similar to the tagged transaction

protocol, the communication complexity of the total protocol without registration

scales linearly with the square of the threshold number of TGCs. This is because

the TGCs must be sent a threshold number of tags before they will sign a new

one. The extra communication complexity is caused by the blind signed identity

tokens that must be sent as well as the tags.

7.1.1 Comparison to Anonymous Credentials

This section compares the computational complexity of the tagged transaction

protocol and anonymous credentials [15]. Anonymous credentials can provide

one-show credentials to users that can anonymously establish digital provenance

in reseller chains. One-show credentials can also provide global anonymity

118 CHAPTER 7. COMPLEXITY AND PERFORMANCE

revocation if a one-show credential is replayed. I compare the computational

complexity of the tagged transaction protocol with the computational complexity

of one-show anonymous credentials. Both protocols assume a perfect anonymous

communication channel and these complexity figures do not include the com-

plexity for providing this anonymous communication channel. The second set of

figures compare the extended tagged transaction protocol that provides revocable

anonymity for a tag that is cloned with the one time anonymous credentials with

global anonymity revocation. The figures for the tagged transaction protocol and

the extended tagged transaction protocol do not include the registration step and

assume a single TGC is used. The figures for the anonymous credentials do not

include the generation of the pseudonyms that are used to provide anonymity. It

is assumed that both protocols are using the same key size.

Table 7.5 uses the following notation:

• x is the complexity for modular exponentiation.

• y is the complexity for modular division.

• r is the number of resellers.

Protocol Without Anonymity Revocation With Anonymity Revocation

Tagged Transactions y + 19x+ r(10x+ y) 2y + 51x+ r(2y + 41x)

Anonymous Credentials r(39x+ 6y) r(82x+ 10y)

Table 7.5: Tagged Transaction Protocol vs Anonymous Credentials

Table 7.5 shows the comparison between the computational complexity of the

tagged transactions protocol and anonymous credentials. For one reseller, the

tagged transaction protocol has a lower complexity than anonymous credentials

but the extended tagged transaction protocol has a higher complexity than

anonymous credentials with anonymity revocation. Both the tagged transaction

protocol and the extended tagged transaction protocol scale more efficiently

with the number of resellers. The tagged transaction protocol was designed to

provide efficient transferring of tags from one reseller to another. The anonymous

credential protocol was designed to provide multiple show credentials with

one-show credentials being an extension to the original protocol. For a one-

show credential, each reseller must generate the anonymous credential and then

prove ownership of it using zero knowledge proofs of knowledge to generate

the credential for the next reseller in the chain. The zero knowledge proofs

7.1. COMPLEXITY 119

of knowledge used in anonymous credentials make it more expensive than the

tagged transaction protocol when using multiple resellers.

7.1.2 Summary

In this section I have presented the computational and communication com-

plexity of the tagged transaction protocol and the extended tagged transaction

protocol. The extended tagged transaction protocol has a higher computational

and communication complexity than the tagged transaction protocol due to the

extra operations needed to provide revocable anonymity for resellers that clone

tags using restricted blind signatures. The details of these complexity results

would change if a different signature, encryption, or restricted blind signature

scheme were used.

Both the computational and communication complexity of the protocols scale

linearly with the total number of TGCs when registering items. This is because

the item needs to be registered with every TGC. The complexity scales linearly

with the number of resellers in the chain. The complexity also scales quadratically

with the threshold number of TGCs.

The anonymous credentials protocol can provide one-show credentials to

users that can anonymously establish digital provenance in reseller chains.

Anonymous credentials can be used in two different modes, one without revoca-

ble anonymity and one that provides revocable anonymity. I have compared the

computational complexity of the tagged transaction protocol and the extended

tagged transaction protocol to anonymous credentials. The tagged transaction

protocol has less computational complexity when compared to anonymous

credentials without anonymity revocation and also scales better with the number

of resellers. The extended tagged transaction protocol has a higher computational

complexity than anonymous credentials with revocable anonymity when only

using one reseller but scales better with the number of resellers.

I now consider an example of the computational and communication com-

plexity of the tagged transaction protocol and the extended tagged transaction

protocol. I assume there are three resellers, a (4,5) threshold group of TGCs,

the output of the hash function is 512 bits, the size of the license is 3096 bytes,

and the size of the keys used in the encryption and signature schemes are 2048

bits. Then the computational complexity of the tagged transaction protocol is

5y + 562x and the extended tagged transaction protocol is 33y + 1336x where y

120 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Supplier

Customer
Client

TGC

TGC Server

Customer

Supplier
Server

Reseller

Reseller
Server

Schnorr
Signature

Schnorr
Signature
Scheme

Signed Tag Utility
Signed

Identity Token

Utility Functions

Main Processes

Network Servers

Figure 7.1: Implementation Block Diagram

is the computational complexity of modular division and x is the computational

complexity of modular exponentiation. The communication complexity in this

example would be 342.1 KB and the size of a tag would be 4.6 KB. For the

extended tagged transaction protocol the communication complexity would be

459.7 KB and the size of a tag would be 6.1 KB.

7.2 Implementation Details

To measure the performance of the tagged transaction protocol I have imple-

mented both the tagged transaction protocol and the extended tagged transaction

protocol in Java. Figure 7.1 shows a block diagram for the Java implementation.

The classes implemented are divided in to the network servers, the main

processes, and utility functions.

The utility functions implement any signature or utility functions that are

not provided as part of the Java API. The Schnorr signature scheme is not

implemented as part of the Java API. I have implemented this as two Java classes.

The first class is called SchnorrSignatureScheme that contains all the methods

for generating keys, signing data, and verifying signatures. The second class is

called SchnorrSignature which contains the information that is needed to send

a Schnorr signature. This class is serializable. The class SignedIdentityToken in

the utility functions implements the restricted blind signature scheme. The class

SignedTag contains the information that is needed to send a signed tag across

7.2. IMPLEMENTATION DETAILS 121

the network. This includes any information needed for the extended tagged

transaction protocol. This class is serializable. RSA encryption is implemented

using the bouncy castle Java cryptography APIs 1 (version 1.45). Random number

generation uses the Java SecureRandom class. The SHA-512 hash function is

implemented using the Java MessageDigest class.

The main process classes implement the TGC, suppliers, resellers, and cus-

tomers. Each of these is implemented in a separate class. These classes can make

use of the utility classes to create signatures or verify signed items. Keeping

the utility classes separate from the main process classes allows the type of

signature or encryption to be changed without needing major changes to these

main process classes. The customer and reseller class currently share some code

as both resellers and customers have to verify signed tags and signed identity

tokens. The TGC contains methods to generate, check, and sign tags using the

utility classes.

The network servers implement the communication of the various processes

using Sockets. Using separate classes for the network servers allows the method

of communication to be changed without needing to change the main classes.

Currently the network servers also include code to measure the time taken to

perform various actions which are written to files to allow the performance tests

to take place. The network servers contain the main method for each process

which can be configured using command line arguments to use a variable number

of TGCs to test the performance of the threshold version of the tagged transaction

protocol and a variable number of resellers to test the performance of the protocol

with multiple resellers. The command line interface is currently used to specify

the address and port of other processes that are needed. The customer and

resellers need to know the address and port number of the TGC as well as the

address and port number of the supplier or reseller that is adjacent to them in the

chain of resellers. The supplier needs to know the address and port number of

the TGC.

Tests have been done using the TOR anonymous communication channel us-

ing the TOR Linux client2 (version 2.2.34-2). Connections that requires anonymity

connect via a local proxy provided as part of the TOR library. The TOR library

retains the same anonymised IP address for 10 minutes before attaining a new

anonymised IP address. This means that, in this implementation, the actions of

1http://www.bouncycastle.org/java.html
2https://www.torproject.org/download/download.html.en

122 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Reseller 1

Test Server 3
Reseller M

Reseller 2

...

Customer

Test Server 2

Supplier

Test Server 1

TGC 1

TGC 2

TGC N

...

Figure 7.2: Experimental Setup

an individual reseller or supplier are linkable within the 10 minute window.

7.3 Experimental Setup

Figure 7.2 shows the experimental setup for the performance tests. All three test

server machines are Dell Optiplex GX780s with an Intel Core 2 Duo E8400 3.0Ghz

CPU. Test Server 2 and 3 have 4GB of RAM and Test Server 1 has 16GB of RAM.

Test Server 1 runs the group of TGCs that are used. In these experiments this

number varies from 1 to 7. Test Server 2 runs a customer and a supplier. Test

Server 3 runs any resellers that are used in the protocol. In these experiments

this number varies from 1 to 5. The test servers are all connected to the same

local network. To measure the performance of the tagged transaction protocol

the experiments vary the key size used, the number of TGCs in the group, and

the number of resellers between the supplier and the customer. Table 7.6 shows

the default values of the parameters.

Parameter Value

Key Size 1024 bits

Number of TGCs 1

Number of Resellers 1

Table 7.6: Default Experimental Parameters

The performance measurements for registering an item includes the complete

time for the supplier to:

1. Generate the identity of the item.

7.3. EXPERIMENTAL SETUP 123

2. Generate a private and public key pair for the item.

3. Encrypt the public key and identity of the item with the public encryption

key of the TGC and send this item to the TGC.

4. Receive and check the signed receipt from the TGC.

5. Repeat steps 3 and 4 for all the TGCs in the group.

The performance measurement for the tagged transaction protocol includes

the complete time for the following steps:

1. The customer generates a one time key pair for the transaction and sends

the one time public key and the identity of the item to the first reseller in

the chain.

2. The reseller generates a one time key pair for the transaction and sends the

one time public key and the identity of the item to the next reseller in the

chain (or the supplier if it is the end of the chain).

3. Step 2 is repeated for each reseller in the chain.

4. The supplier sends a signed purchase request including the one time public

key they received and a signed license to the TGC.

5. The TGC checks the signed tag request and generates and returns a signed

tag to the supplier.

6. Steps 4 and 5 are repeated for a threshold number of the TGCs in the group.

7. The supplier returns the signed tags it has received to the reseller.

8. The reseller sends the TGC a regeneration request signed using its one time

private key containing the public key of the participant before it in the

reseller chain. The TGC then signs the new tag and sends it to the reseller.

9. Step 8 is repeated for a threshold number of the TGCs in the group.

10. The customer checks the threshold number of signed tags it has received

from the reseller.

124 CHAPTER 7. COMPLEXITY AND PERFORMANCE

The performance measurements for the tagged transaction protocol do not

include the registration of the item. The registration step only needs to be

completed once for every item and not for every transaction. The performance

results represent the worst case performance. Many of the steps in the protocol

could be pre-computed. For example, a reseller could pre-purchase a group of

tags from the supplier and so not need to complete this step when a customer

tries to purchase the item from them.

The performance measurement for the extended tagged transaction protocol

includes the complete time for the following steps:

1. The customer completes the withdrawal protocol with the TGC to get a

blind signed identity token.

2. Step 1 is repeated for a threshold number of the TGCs in the group.

3. The customer generates a one time key pair for the transaction and sends

the blind signed identity tokens, one time public key, and the identity of the

item to the first reseller in the chain.

4. The reseller completes the withdrawal protocol with the TGC to get a blind

signed identity token.

5. Step 4 is repeated for a threshold number of the TGCs in the group.

6. The reseller generates a one time key pair for the transaction and sends the

blind signed identity tokens, one time public key and the identity of the

item to the next reseller in the chain (or the supplier if it is the end of the

chain).

7. Step 4, 5, and 6 are repeated for each reseller in the chain.

8. The supplier sends a signed purchase request including the blind signed

identity token and one time public key they received and a signed license

to the TGC.

9. The TGC checks the signed tag request and blind signed identity token and

generates and returns a signed tag to the supplier.

10. Steps 8 and 9 are repeated for a threshold number of the TGCs in the group.

11. The supplier returns the signed tags it has received to the reseller.

7.4. EXPERIMENTAL RESULTS 125

12. The reseller sends the TGC a regeneration request signed using its one time

private key containing the public key of the participant before it in the

reseller chain.

13. The reseller and TGC take part in a challenge response protocol to show the

reseller owns the blind signed identity token. The TGC then signs the new

tag and sends it to the reseller.

14. Steps 12 and 13 are repeated for a threshold number of the TGCs in the

group.

15. The customer checks the threshold number of signed tags it has received

from the reseller.

The performance measurements for the extended tagged transaction protocol do

not include the registration of the item or the opening of an account with the

TGCs. Both the registration of the item and the registering of accounts only

need to be completed once for every item and not for every transaction. The

performance results represent the worst case performance. Many of the steps in

the protocol could be pre-computed. For example, a reseller could pre-purchase

a group of tags from the supplier and so not need to complete this step when

a customer tries to purchase the item from them. Alternately, the blind signed

identity tokens could be withdrawn in bulk before the protocol began.

7.4 Experimental Results

This section shows the results of running performance experiments on the

implementation of the tagged transaction protocol and the extended tagged

transaction protocol. The measurements have been made while all the computers

are on the local network as well as using anonymous communication over the

TOR network. The graphs done over the local network are all coloured red and

the graphs using TOR are all shown in blue. Each run was done 30 times and the

averages and standard deviations are shown on the graphs.

7.4.1 Registering Items

Figure 7.3 shows the total time taken to register an item increasing exponentially

when the key size increases linearly. This is because increasing the key size lin-

126 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Figure 7.3: Key Size vs Total Time to Register Item

Figure 7.4: Number of TGCs vs Total Time to Register Item

early increases the time taken to complete the modular exponentiation required

exponentially.

Increasing the number of total TGCs linearly (note this is the total number

of TGCs and not the threshold number) increases the time taken to register the

items linearly as shown in Figure 7.4. When a supplier registers an item it has

to encrypt and decrypt the message to send for each individual TGC as they all

have individual keys. This increases the total time taken linearly.

Using TOR

When using TOR, the time taken to register an item remains almost constant as

the key size increases as shown in Figure 7.5. This indicates that the costs of

sending the information over the TOR network was the main component of the

time taken to register the item and the exponentially increasing time taken to

complete the modular exponentiations was not a large factor.

Figure 7.6 shows the time taken to register an item increasing linearly with

the total number of TGCs. The largest contributor to the time taken is the data

7.4. EXPERIMENTAL RESULTS 127

Figure 7.5: Key Size vs Total Time to Register Item using TOR

Figure 7.6: Number of TGCs vs Total Time to Register Item using TOR

128 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Figure 7.7: Key Size vs Tagged Transaction Total Time

Figure 7.8: Threshold Number of TGCs vs Tagged Transaction Total Time (no

data point for the threshold value of 2)

being sent over the TOR network and this increases linearly as the total number

of TGCs increases.

7.4.2 Tagged Transaction Protocol

Figure 7.7 shows the time taken to complete the tagged transaction protocol

increasing exponentially as the key size increases linearly. This is because

as the size of the keys increases linearly, the time taken to do the modular

exponentiations and modular division increases exponentially.

The time taken to complete the tagged transaction protocol increases quadrat-

ically as the threshold value of TGCs is increased linearly as shown in Figure 7.8.

It is worth noting that there is no data point for the threshold number of TGCs of

two. Both the computation and communication complexity increase as a function

of the square of the threshold value of TGCs (as shown in Table 7.1 and Table 7.3).

This is the reason the time taken to complete the tagged transaction protocol

shows a quadratic growth as the threshold number of TGCs increases linearly.

7.4. EXPERIMENTAL RESULTS 129

Figure 7.9: Number of Resellers vs Tagged Transaction Total Time

Figure 7.10: Key Size vs Tagged Transaction Total Time using TOR

Figure 7.9 shows the time taken to complete the tagged transaction protocol

increasing linearly as the number of resellers increases linearly. Unlike the

increase in the threshold number of TGCs, this is only an increase in series.

The number of operations performed and the amount of data sent both increase

linearly as the number of resellers increases linearly.

Using TOR

Figure 7.10 shows a small exponential increase in time taken for the tagged

transaction protocol using TOR as the key size is increased linearly. The shallow

slope of this graph as opposed to the steeper slope when increasing the key size

without TOR (Figure 7.7) shows that the communication over the TOR network

is still the major contributor to the time taken by the tagged transaction protocol.

The time taken to complete the tagged transaction protocol using TOR

increases quadratically as the threshold value of TGCs is increased linearly as

shown in Figure 7.11. It is worth noting that there is no data point for the

threshold number of TGCs of two. Both the computation and communication

130 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Figure 7.11: Threshold Number of TGCs vs Tagged Transaction Total Time using

TOR (no data point for the threshold value of 2)

Figure 7.12: Number of Resellers vs Tagged Transaction Total Time using TOR

complexity increase with the square of the threshold number of TGCs causing this

quadratic growth in the time taken to complete the tagged transaction protocol.

Figure 7.12 shows the time taken to complete the tagged transaction protocol

using TOR increasing linearly as the number of resellers increases. This is because

the number of operations and the amount of data sent both increase linearly with

the number of resellers. The graph shows a slight curve, but the error bars show

that a linear relationship fits this data.

7.4.3 Extended Tagged Transaction Protocol

Figure 7.13 shows the time taken to complete the extended tagged transaction

protocol increasing exponentially as the key size increases linearly. This is

because as the size of the keys increases linearly, the time taken to do the modular

exponentiations and divisions increases exponentially.

The time taken to complete the extended tagged transaction protocol increases

quadratically as the threshold value of TGCs is increased linearly as shown in

7.4. EXPERIMENTAL RESULTS 131

Figure 7.13: Key Size vs Extended Tagged Transaction Total Time

Figure 7.14: Threshold Number of TGCs vs Extended Tagged Transaction Total

Time (no data point for the threshold value of 2)

132 CHAPTER 7. COMPLEXITY AND PERFORMANCE

Figure 7.15: Number of Resellers vs Extended Tagged Transaction Total Time

Figure 7.16: Key Size vs Extended Tagged Transaction Total Time using TOR

Figure 7.14. It is worth noting that there is no data point for the threshold number

of TGCs of two. Both the computation and communication complexity of the

extended tagged transaction protocol increase as a function of the square of the

threshold value of TGCs (as shown in Table 7.2 and Table 7.4).

Figure 7.15 shows the time taken to complete the extended tagged transaction

protocol increasing linearly as the number of resellers increases linearly. This is

because the number of operations performed and the amount of data sent both

increase linearly as the number of resellers increases linearly.

Using TOR

Figure 7.16 shows a small exponential increase in time taken for the extended

tagged transaction protocol using TOR as the key size is increased linearly. The

shallow slope of this graph as opposed to the steeper slope when increasing

the key size without TOR (Figure 7.13) shows that the communication over the

TOR network is the major contributor to the time taken by the extended tagged

transaction protocol.

7.4. EXPERIMENTAL RESULTS 133

Figure 7.17: Threshold Number of TGCs vs Extended Tagged Transaction Total

Time using TOR (no data point for the threshold value of 2)

Figure 7.18: Number of Resellers vs Extended Tagged Transaction Total Time

using TOR

The time taken to complete the extended tagged transaction protocol using

TOR increases quadratically as the threshold value of TGCs is increased linearly

as shown in Figure 7.17. It is worth noting that there is no data point for the

threshold number of TGCs of two. The computational and communication com-

plexity increases with the square of the threshold number of TGCs causing the

quadratic growth in the time taken to complete the extended tagged transaction

protocol.

Figure 7.18 shows the time taken to complete the extended tagged transaction

protocol increasing with the number of resellers. This graph shows a great deal

of variance between different runs with a large standard deviation. As all the

resellers have to communicate with the TGC using the TOR network, when there

are more resellers and TOR is the major source of variance, then as the resellers

are increased the variance of the time taken to complete the protocol will increase.

134 CHAPTER 7. COMPLEXITY AND PERFORMANCE

7.5 Summary

This chapter has shown the performance of the tagged transaction protocol.

The complexity results show that the amount of computation to complete both

the tagged transaction protocol and the extended tagged transaction protocol

increase linearly with the number of resellers in the chain. The computational

and communication complexity increase linearly with the square of the threshold

number of TGCs.

One-show anonymous credentials can provide anonymous provenance in

reseller chains. This chapter shows the computational complexity of the tagged

transaction protocol compared to anonymous credentials and the computational

complexity of the extended tagged transaction protocol compared to anonymous

credentials with revocable global anonymity. With one reseller in the chain, the

tagged transaction protocol has a lower complexity than anonymous credentials,

but the extended tagged transaction protocol has a higher complexity than

anonymous credentials with revocable anonymity. Both the tagged transaction

protocol and the extended tagged transaction protocol scale more efficiently

when the number of resellers in the chain is increased.

The tagged transaction protocol has been implemented in Java. Using this

implementation tests have been conducted to show the effects of varying the pa-

rameters of the protocol on the time taken to execute the protocol. Increasing the

key size linearly increases the time taken to complete both the tagged transaction

protocol and the extended tagged transaction protocol exponentially. Increasing

the threshold number of TGCs increase the time taken to compute both the tagged

transaction protocol and the extended tagged transaction protocol quadratically.

This is due to the communication complexity of the protocol being increased

as a function of the square of the threshold number of TGCs. Increasing the

number of resellers results in a linear increase in the time taken to complete both

the tagged transaction protocol and the extended tagged transaction protocol.

The performance results follow what is expected given the complexity results

presented earlier in the chapter.

The performance of the tagged transaction protocol has also been shown using

the TOR anonymous communication network. Using the TOR network increases

the time taken to complete the protocol. The performance tests also show that

using TOR introduces a large variance in the time taken to complete the protocol.

The more connections made using the TOR network, the greater the variance.

Chapter 8

Provenance in Web Services

This chapter applies the ideas and mechanisms developed for the tagged transac-

tion protocol to providing provenance for web services. In web services, service

providers collate and present information from a collection of heterogeneous data

sources. These sources can include databases, web applications, and other service

providers.

The basic model for web services is shown in Figure 8.1. Consider an example

of a web service where users display their photos along with a map showing the

location the photo was taken. In this case, the service provider may be using

a storage provider and a mapping provider. So in this example, the service

provider is providing a service to the user that is a combination of the service

provider’s own algorithms and the functionality provided by two external service

providers.

A service may use information from several different service providers.

Depending on the reputation of the service provider being used, users may have

differing expectations of the quality of the data as well as the amount they are

willing to pay for the service. A service provider that is using a premium service

will want to be able to charge more for this service. However, a malicious service

provider could claim to be using a premium service when they are using free

services provided by a different service provider.

Provenance information for web services refers to the origin and modification

history of the data provided as a web service. There are several differences

between providing provenance for web services and for reseller transactions. In

web services, the service is provided as an ongoing series of service requests and

responses as opposed to a one-off item transaction. This means the provenance

135

136 CHAPTER 8. PROVENANCE IN WEB SERVICES

Service Provider

User

User

Service Provider

Service Provider

Service Provider

Service Provider

Figure 8.1: Web Services Model

for the service needs to be continually checked through the duration of the

service.

When providing provenance for digital items, a digital item will be the same

through the reseller chain and have a single supplier. In the web services model,

the result of the service may change as various operations are performed by the

service providers. Additionally, there is no single supplier for web services. The

data can be produced and combined by multiple service providers.

In the reseller model, the participants in the transaction were anonymous

and unlinkable to prevent the revelation of potentially commercially sensitive

data. In the web services model, these privacy requirements are relaxed. The

provenance information provided for a web service lists all the service providers

that provided a source of data or modified the data. The identity of a service

provider may influence the decision of a user to use the web service.

A subtle problem with providing provenance information for web services is

an exclusion attack. In an exclusion attack, the service provider misses out some

of the sources of data from the provenance record. In the reseller model, every

item has only one supplier and so they cannot be removed from the provenance

information without detection but in the web services model a service provider

may have many data sources. This chapter presents a discussion on methods to

prevent exclusion attacks.

8.1. DOMAIN MODEL 137

8.1 Domain Model

I define two roles that a participant in a web service can take: service providers

and users. A participant may change roles. For example, a user may become a

service provider by taking the service provided to it and combining it with some

other service or computation to produce a new service.

• Service Providers. Service Providers make use of a heterogeneous collection

of data sources to provide a service. A service provider is uniquely

identified by a Uniform Resource Identifier (URI). All service providers

have a private and public key pair. The public keys of service providers

are well known values.

• Users. Users are the end user of the service provided by a service provider.

The terms and actions defined in the Open Provenance Model (OPM) [59]

are used to create a model of provenance for web services (similar to the model

created for resellers in Section 3.2). The web services model uses the following

terms:

• Artifact: An immutable piece of state. In the web services model an artifact

is the result of a service. Artifacts are created by service providers and

passed to other service providers or users.

• Process: An action or series of actions performed on or caused by an

artifact. In the web services model a process is either Generate where a

service provider generates some data or TransformCombine where a service

provider takes some artifacts and performs some actions on them to create

a new artifact.

• Agents: A contextual entity controlling a process. In the web services

model all agents are service providers as users do not create provenance

information.

The OPM also defines actions, most of which are parametrised by the role of

the process or agent that is performing the action. The web services model uses

the following actions:

• wascontrolledby(Role): A process is controlled by an agent. The Role

parameter is the role the agent is taking in the protocol. SP defines the role

of service provider.

138 CHAPTER 8. PROVENANCE IN WEB SERVICES

Service
Provider 1

Service
Provider 2

GenerateGenerate

A1 A2

A3

Transform
Combine

wascontrolledby(SP)

wasgeneratedby(Generate)

wascontrolledby(SP)

wasgeneratedby(Generate)

wascontrolledby(SP)

wasderivedfrom

wasgeneratedby(TransformCombine)

usedby(Transform
Com

bine) us
edby(

Tra
nsf

orm
Com

bine
)

wasderivedfrom

Service
Provider 3

Key:

Artifact

Process

Agent

Figure 8.2: Web Services Provenance Graph

• wasgeneratedby(Role): An artifact is generated by a process. The Role

parameter is the process that is generating the artifact, in this model this

is Generate or TransformCombine.

• usedby(Role): An artifact is used by a process. The Role parameter is the

process that uses the artifact, in this model this is the TransformCombine

process.

• wasderivedfrom: Artifacts can be derived from other artifacts. There is no

role associated with this action.

In the Open Provenance Model, provenance is represented as a provenance

graph which is a directed graph where agents are shown as octagons, processes as

rectangles, and artifacts as circles. Directed edges in the graph represent an action

with the source of the action being the end point of the arrow and the start of the

8.2. THREAT MODEL 139

arrow showing the result of the action. Figure 8.2 shows a provenance graph for

a service with two service providers acting as input to a third service provider.

The user does not feature in the provenance graph as they are not a source

of provenance information. Artifact A1 and A2 are generated by the Generate

process controlled by Service Provider 1 and Service Provider 2 respectively.

Artifact A3 is generated by the TransformCombine process controlled by Service

Provider 3 using A1 and A2. The graph also shows that A3 is derived from A1

and A2.

8.2 Threat Model

There are many ways a malicious service provider could try and defraud a user

with incorrect provenance information. This threat model groups them in to the

following categories:

1. Fabrication. The adversary tries to create provenance information for an

honest participant in the protocol when it has never obtained the service

from the participant.

2. Cloning. The adversary tries to provide multiple users the same provenance

information they have obtained from an honest participant in the protocol.

3. Network Sniffing. The adversary replays legitimate provenance informa-

tion it has seen on the network (possibly intended for a different service

provider).

4. Exclusion. The adversary tries to provide information to a user from an hon-

est participant in the protocol without providing providence information.

The service providers are untrusted and may be active adversaries, attempt-

ing to create false provenance data, or modify and delete existing provenance

data. If a service provider is honest and correctly provides provenance informa-

tion, then it should not be possible for an adversary to fabricate, clone, network

sniff, or exclude the honest service providers provenance information. A service

provider may also provide incorrect provenance information to try and discredit

another service provider.

While a service provider should provide provenance information for every

step in the chain to the user, if a set of service providers on the chain colludes

140 CHAPTER 8. PROVENANCE IN WEB SERVICES

together they can make it appear as though they are acting as one service provider.

We do not consider this an attack as the group is colluding and acting as one party.

Side channel attacks are out of the scope of this threat model.

8.3 Provenance Chains

Each time information is created or used by a service provider a provenance tag

is created and passed along with the result. The tag is created by the source of

the provenance information and signed using the secret key of the source. The

tag should contain enough information to recreate the provenance information as

shown in the graph in Section 8.1.

A tag is a tuple: tag = {A,B,C,D,E}sksource . The definitions of the parameters

in the tag are:

• A = source: the Uniform Resource Identifier (URI) of the source of this

provenance tag.

• B = destination: the Uniform Resource Identifier (URI) of the destination

of this provenance tag.

• C = serial: The randomly chosen serial number of this service request. This

is created by the user and sent along with the request for service.

• D = H(data): A hash of the service result that is associated with this

provenance tag.

• E = action: What process was performed on the data, either Generate or

TransformCombine.

The tags are signed using the secret key of the source service provider. The

notation {A}skB denotes the message A signed using the key skB . It is assumed

that all public keys for service providers are well known or discoverable from a

certificate authority.

Figure 8.3 shows the process for passing tags between a user and two service

providers.

1. The user randomly generates a serial number for this request and sends the

request for service to its service provider (Service Provider) along with the

serial number. The serial number is to prevent service providers from being

able to replay provenance information.

8.3. PROVENANCE CHAINS 141

User
Service
Provider

Service
Provider 2

1) request, serial
2) {request, serial, URISP2}skSP

3) tagSP2= {URISP2,URISP,serial,H(data),Generate}skSP2

4) tagSP2

5) tagSP={URISP,user,serial,H(data),TransformCombine}skSP

6) tagSP, tagSP2

Figure 8.3: Provenance Chains

2. The service provider (Service Provider) generates the request for service

from the second service provider (Service Provider 2) and sends it along

with the serial number and the URI of the second service provider to the

second service provider (Service Provider 2). All the requests sent to service

providers are signed using the private key of the sending service provider.

The service provider (Service Provider) will send a request to every service

provider it uses as input in this step, this example shows one for clarity.

3. The second service provider (Service Provider 2) generates a provenance

tag to return to the first service provider. The tag contains the source and

destination, the serial number, a hash of the data returned, and the action

taken, in this case Generate. The tag is then signed using its secret key skSP2.

4. The signed provenance tag is returned to the first service provider.

5. The service provider creates a provenance tag to send to the user. The tag

contains the source and destination, the serial number, a hash of the data to

return to the user, and the action TransformCombine. The service provider

then signs this tag using its secret key skSP .

6. The service provider (Service Provider) sends the user the two signed tags.

The user checks that all provenance information contains the correct serial

number, a tag from all registered inputs, and an unbroken chain of provenance

information.

142 CHAPTER 8. PROVENANCE IN WEB SERVICES

8.4 Analysis

The protocol for providing provenance for web services is now compared to our

requirements discussed in Section 8.1 and Section 8.2. The analysis examines the

protocol in terms of completeness requirements to check that it contains enough

provenance information to recreate the provenance graph. A security analysis is

then completed to check that incorrect provenance information can be detected

in the presence of malicious service providers.

8.4.1 Completeness

A protocol that has complete provenance information should allow the creation

of a provenance graph. Completeness is shown by considering the relationships

shown in the open provenance model and how the provenance tags show these

relationships.

• Artifact: identified by the hash value of the artifact in the provenance tag.

• Process: identified by the process name (either Generate or TransformCom-

bine) in the provenance tag.

• Agent: identified by the source of the provenance tag.

• wascontrolledby(role): is represented by the source of the provenance tag

and the role is identified by the process name.

• wasgeneratedby(role): is represented by the hash of the artifact and the role

by the process name.

• usedby(role): is represented by the set of tags with the destination set as the

controller for the operation of the role.

• wasderivedfrom: can be generated using the source and destination values

of the provenance tags and the hash values of the artifacts. wasderivedfrom

may be over approximated when there are multiple inputs and outputs for

a service provider for a single service request. In this case, the tags show

that the output artifacts were derived from the input artifacts, but not what

individual input artifacts an output artifact was derived from.

8.4. ANALYSIS 143

8.4.2 Security Analysis

Service providers may provide incorrect provenance information or respond

incorrectly to audit requests. This analysis assumes a signature scheme that has

provable security against existential forgeries under adaptive chosen message

attacks in the random oracle model such as PSS RSA [7], the triplet El-Gamal

scheme [74], or the Schnorr signature scheme [83]. If the signature scheme is

secure against existential forgeries, then given a public key pk it is infeasible

to forge a pair (m,σ) where σ is a valid signature on m using the secret key

corresponding to the public key pk. It is assumed that serial numbers are chosen

at random from a large set and that the chance of two users choosing the same

serial number is negligible. Side channel attacks or the possibility of an adversary

gaining access to the secret key of an honest participant are not considered.

Fabrication

If the adversary is able to construct provenance information from an honest

participant in the protocol that they have never used then they must create a tag

signed using the secret key for the participant. This adversary can then be used to

break the signature scheme. The adversary is given as input the public key of the

participant pk. The adversary will then produce a valid provenance tag {tag}sk.

This creates a valid message signature pair for pk, (m = tag, σ = {tag}sk).

Cloning

If the adversary is able to clone provenance information from an honest partici-

pant then the adversary must modify a valid signed tag with a new serial number.

If the adversary can complete this modification, we can use the adversary to break

the signature scheme. The adversary is given as input the public key of the honest

participant and the signed tag to clone {tagoriginal}sk. The adversary will then

produce a new tag that has a different serial number denoted {tagnew}sk. This

creates a valid message signature pair for pk, (m = tagnew, σ = {tagnew}sk).

Network Sniffing

If the adversary is able to use network sniffing to claim ownership of some

provenance information then, similar to a cloning attack, the adversary will have

to alter the tag to have the correct serial number. The adversary is given as

144 CHAPTER 8. PROVENANCE IN WEB SERVICES

S e rv ic e
P r o v id e r

R e g is t r a t io n
S e rv e r

1) { U R I S P , p k S P ,U R I 1 ,… ,U R I N } p k R S

2) { U R I S P , p k S P ,U R I 1 ,… ,U R I N } s k R S

Figure 8.4: Service Provider Registration

input the public key of the honest participant and the tag they have sniffed

{tagoriginal}sk. The adversary will then produce a new tag that has a different

serial number denoted {tagnew}sk. This creates a valid message signature pair for

pk, (m = tagnew, σ = {tagnew}sk).

8.5 Preventing Exclusion Attacks

To prevent exclusion attacks, a service provider registers the URIs of service

providers it uses as input with a third party called a Registration Server which

records these details and is queried by the users to discover the provenance

information it should be receiving from a service. All service providers register

with the registration server even if they have no input services. The auditing

process presented in this section assumes that all input service providers are used

for every service request by the service provider.

8.5.1 Service Provider Registration

Figure 8.4 shows the process used by a service provider to register their service

with the registration server. The service provider submits a record with their URI

URISP , their public key pkSP and the list of URIs of all service providers they

use as inputs URI1, ..., URIN . This record is encrypted with the public key of the

registration server to prevent it being modified by a third party. The registration

server then returns a signed receipt. The inputs that a service provider uses may

also change over time. In this case the service provider should re-register the

service with the new inputs.

8.5.2 User Requesting Service Provider Data

Figure 8.5 shows a user requesting the data on a specific service provider from the

registration server. The user sends a request with the URI of the service provider

URISP to the registration server. The registration server then returns a signed

8.5. PREVENTING EXCLUSION ATTACKS 145

U s e r
R e g is t r a t io n

S e rv e r

1) U R I S P

2) { U R I S P , p k S P ,U R I 1 ,… ,U R I N } s k R S

Figure 8.5: User Requesting Service Provider Data

User

Service Provider 1

Registration Server

Request Audit
on serial
number x

Audit x

{x, {re
quest, x, URISP1} skSP}s

k SP1

Service Provider 2
Audit x

{x,false}skSP2

Audit x
{x,false}skSP3

Audit x

{x,{request,x,URISP4 }skSP }skSP4

true/false

Service Provider 3

Service Provider 4

Figure 8.6: Auditing Registration Information

message with the list of input service providers registered by the service provider

identified by URISP . The user will not need to perform this action every time it

uses the service, it will only need to periodically check for changes to the inputs

to the service provider.

8.5.3 Auditing Registration Information

A service provider may submit incorrect information by excluding some of the

service providers it uses to provide its service, thereby hiding a source of data. A

user can request an audit for a particular query it has done. The user will submit

the serial number it used in the request to the registration server which carries out

checks to confirm the registration information provided by the service provider.

Figure 8.6 shows the process for requesting the audit. The registration server

broadcasts an audit request with the serial number provided by the user. Service

providers then return a signed message containing either false and the serial

number if they did not take part in the request, or the the signed request that was

146 CHAPTER 8. PROVENANCE IN WEB SERVICES

U s e rS e rv ic e P ro v id e rS e rv ic e P ro v id e r

S e r ia l S 1S e ria l S 2

Figure 8.7: Example Exclusion Attack

sent to them when they first responded to the service {request, serial, URI}skSP
.

The service providers return the signed request so that a dishonest service

provider cannot frame another service provider in an exclusion attack. These

messages are put together by the registration server to check the information it

has registered for a service provider.

A broadcast request has to be sent to all service providers, but users do not

request an audit for every service request. The registration server could also

return a time stamp of the last audit time for the service provider with the

information it returns to the user.

If the registration server is acting honestly, then it will send the audit message

to all service providers that have registered. All honest participants will have

registered with the registration server and so will receive the audit message and

respond to it. The registration server can then check the information that is

returned to confirm the registration information that has been provided by the

service provider.

If the registration server is not trusted and may act maliciously, then some

mechanism is needed to verify the actions of the registration server. This analysis

briefly discusses two possible mechanisms for implementing a verifiable registra-

tion server: a public bulletin board and the use of a group of registration servers.

The registration server could publish all its actions to a public bulletin board.

Users could then check that the audits they requested have been completed

and responders to the audit message can check that their response is correctly

recorded. A second option is to use a group of registration servers where a

threshold value of the group is required to sign values sent to the user. As long as

less than this threshold value of registration servers are acting correctly the user

can be confident of receiving correct responses to its queries and audits.

One method for a malicious web service to carry out an exclusion attack in

this model is for the service provider to change the serial number during the

service. The user sends a web service request with a serial number S1 to a service

provider. The service provider then creates a new web service request with a new

8.6. SUMMARY 147

serial number S2 to send to the service provider. When the audit request is made

with the serial number S1, the service provider that received the request with

the serial number S2 will return false even if it is acting honestly. This attack is

shown in Figure 8.7.

To prevent this kind of exclusion attack, service providers need to be pre-

vented or discouraged from being able to generate a serial number. Suppose the

registration server is the only party able to generate serial numbers. An honest

service provider will only provide the service and provenance information if the

service request has a valid serial number signed by the registration server and

users will need to apply to the registration server for valid serial numbers.

To discourage dishonest service providers from generating a serial number a

participant that requests a serial number can be required to solve a computational

challenge or captcha. A user will then need to solve this computational challenge

for every service request they make. This punishes service providers that try to

provide web services that exclude their input services by the loss of computation

that they require to generate serial numbers. While users will also need complete

the computational challenge, it is reasonable to assume that a service provider

will have many users and will need to contribute more computational time for an

exclusion attack.

A second option would be to charge a participant that generates a serial

number a micro-payment. This will mean that an honest user will need to pay

a micro-payment every time they request a service. Again it is reasonable to

assume that a service provider will need to generate more serial numbers than

the users resulting in a significant financial penalty. These micro-payments can

be used to fund the resources required for the registration servers. If the web

service is non-interactive then a captcha will not be possible and a computational

challenge or micro-payment will be necessary.

8.6 Summary

This chapter has applied the techniques and ideas from the tagged transaction

protocol to providing provenance for web services. There are several differences

between web services and static items: a web service is provided as an ongoing

series of requests and responses as opposed to a single item, a web service

may dynamically change the service providers they are using, and web services

148 CHAPTER 8. PROVENANCE IN WEB SERVICES

do not have the same privacy requirements as reseller transactions. A model

of provenance for web services has been constructed using the definitions and

actions of the Open Provenance Model as well as a list of potential attacks.

A protocol for providing provenance for web services has been constructed

using tags that include the source and destination address, a one time serial

number, a hash of the data, and what action was performed on the data. These

provenance tags are then passed from service provider to service provider before

being sent to the user. The user can check the tags contain the correct provenance

information. An analysis of the protocol has been completed showing that the

protocol provides enough information to reconstruct the provenance graph and

that it is secure against fabrication, cloning, and network sniffing attacks.

Exclusion attacks on provenance for web services involve a malicious service

provider missing some of the honest input service providers from the provenance

information. A registration server can be used to audit the inputs to a web service.

To prevent a malicious web service from generating new serial numbers the use

of computational puzzles and micropayments has been discussed.

The work presented in this chapter on provenance for web services has many

avenues for future work. Future work includes: a more in depth security analysis,

more work on preventing exclusion attacks, and measurements on the complexity

and performance of the protocol.

Chapter 9

Conclusions and Future Work

This thesis has addressed the problem of anonymously establishing provenance

for digital items in reseller chains. Increasingly digital items are purchased online

through resellers providing many benefits such as 24-hour access to items and

never having stores sell out of items. However, some properties of bricks and

mortar stores have been lost when purchasing items through online resellers such

as the ability to resell items once customers have finished with them.

Adversaries have many ways to try and defraud suppliers and customers by

trying to pass themselves of as the supplier, fabricate licenses for items, clone

licenses for items, and sniff a valid license on the network and claim it as their

own. There are also privacy issues where a reseller may want to keep their supply

chain anonymous and not allow tracking of their transactions.

Secure provenance has been formally defined in this thesis as anonymously

establishing provenance of digital items in reseller chains in the presence of active

adversaries. The tagged transaction protocol developed in this thesis provides

secure provenance. The tagged transaction protocol uses a third party called

a Tag Generation Centre (TGC) and data structures called tags to provide

secure provenance. A second protocol called the extended tagged transaction

protocol has also been developed that provides secure provenance while allowing

revocable anonymity if a reseller tries to clone a tag. The extended tagged

transaction protocol uses ideas from digital cash to provide revocable anonymity

for resellers that try to clone tags while preserving the privacy of participants that

do not clone tags. Methods have been presented to verify the actions of the TGC

to remove the reliance on the TGC acting as a trusted third party.

Table 9.1 shows the properties of the tagged transactions protocol, the ex-

149

150 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Protocol Model R1 R2 R3 R4 R5 R6 R7 R8

Tagged Transactions Digital Items X X X X X X X X

Extended Tagged Digital Items X X X X X X X X

Transactions

Web Services Web Services X X X X X

Table 9.1: Properties of Developed Protocols

tended tagged transaction protocol, and the protocol for providing provenance

in web services compared to the requirements listed in Section 1.2. These

requirements are briefly restated here as:

• R1: Establish Provenance of Digital Items/Web Services

• R2: Support Multiple Resellers/Service Providers

• R3: Support Customer Reselling

• R4: Provide Anonymity

• R5: Unlinkability of Actions

• R6: Efficient for Low Powered Devices

• R7: Agnostic to Deliver Method

• R8: Allow Bulk Buying

Both the tagged transaction protocol and the extended tagged transaction

protocol achieve all the requirements. The protocol for providing provenance in

web services does not provide anonymity or unlinkability as these requirements

are not required in the model of web services provenance in this work. In the

tagged transaction protocol and the extended tagged transaction protocol the

complexity for a customer increases linearly with the threshold number of TGCs

and is constant for the number of resellers. The complexity of the protocol for

providing provenance for web services scales linearly with the number of service

providers that are contributing to the service.

A thorough security analysis has been performed on both the tagged trans-

action protocol and the extended tagged transaction protocol. This security

analysis uses a provable security style argument of contradiction. If an adversary

can break the properties of secure provenance for either the tagged transaction

151

protocol or the extended tagged transaction protocol then this adversary can be

used to solve a problem thought to be hard. The tagged transaction protocol and

the extended tagged transaction protocol have been shown to be secure against

spoofing, fabrication, cloning, and network sniffing attacks using the Casper

compiler and the Failures Divergences Refinement (FDR) state based model

checker. The FDR model checker takes a description of the protocol and checks

all possible states of the protocol to show that it does not violate a specification.

The adversary in the FDR model checker has complete control of the network and

can add, drop, intercept, and fake messages.

A computational complexity and communication complexity analysis has

been completed on the tagged transaction protocol and the extended tagged

transaction protocol. These results show that the both the computational and

communication complexity scale linearly with the number of resellers. When

multiple TGCs are used the computational and communication complexity scale

linearly with the square of the number of TGCs. A comparison has been done

between the computational complexity of the tagged transaction protocol and

the extended tagged transaction protocol and a protocol called anonymous cre-

dentials. Anonymous credentials can also be used to provide secure provenance

for digital items in reseller chains. This analysis shows that the tagged transaction

protocol has less computational complexity than anonymous credentials, and

scales better with the number of resellers. The extended tagged transaction

protocol has more computational complexity than anonymous credentials when

one reseller is used, but scales better with the number of resellers.

The tagged transaction protocol and extended tagged transaction protocol

have been implemented in Java. Experimental tests have examined the effect of

varying the key size, threshold value of TGCs when using a multiple party TGC

distribution, number of resellers, and degree of anonymity on the time taken

to complete the protocols. These tests show that the time taken to complete

the protocols increases exponentially with the key size, and linearly with the

number of resellers. Implementing threshold-based trust for the TGCs means

that whenever an additional TGC is added the number of tags that each TGC

must receive and check each time a tag is generated by a reseller is increased.

This causes the time taken to increase quadratically with the threshold number

of TGCs. Tests were conducted using the TOR communication network which

showed that most of the time taken was in the communication over TOR and a

large variance in the time taken to send data over the TOR network.

152 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

The ideas and mechanisms from the tagged transaction protocol have been

applied to providing provenance for web services. The web services model has

several differences to the digital item model. Web services provide a service

that is on going and do not have the same privacy requirements as reseller

transactions. The tag data structure has been modified to provide provenance

for web services. A basic analysis of the protocol for providing provenance in

web services has been completed showing that the protocol provides complete

provenance information and security against spoofing, cloning, and network

sniffing attacks. This work defines an exclusion attack where the service provider

misses out some of the sources of data from the provenance record and a

discussion of methods to prevent exclusion attacks.

9.1 Contributions

The main contributions in this thesis are:

1. Formalising the requirements and algorithms for a protocol for anony-

mously providing provenance in reseller chains. Based on the possible

attacks, this results in a formal definition of secure provenance.

2. Development of the tagged transaction protocol and the extended tagged

transaction protocol. Both protocols use tags and a third party called the Tag

Generation Centre (TGC) to anonymously provide provenance in reseller

chains.

3. Security analysis of the tagged transaction protocol using arguments by

contradiction and model checking.

4. Implementation and performance measurements of the tagged transaction

protocol showing the effects of the choice of distribution and anonymous

communication channel used.

5. Application of the ideas from the tagged transaction protocol to provide

secure provenance in web services. This includes the definition and

discussion of methods to prevent exclusion attacks.

9.2. FUTURE WORK 153

9.2 Future Work

There are several areas in this thesis that would provide interesting avenues

for future work. For the tagged transaction protocol and extended tagged

transaction protocol extending the FDR modelling results to include anonymity

and unlinkability would provide a more complete security analysis. The FDR

model checker has been used in the past to model anonymity properties and it

would be good to apply these techniques to these protocols.

The experimental results for the tagged transaction protocol and the extended

tagged transaction protocol currently have only been completed with all the

participants on the local network or communicating through TOR. Extending

these results by distributing the parties in global locations would provide a more

realistic test bed for the protocol. Distributing the parties would also provide a

base line for the results using the TOR network and show whether the variance

and extra time are caused by the TOR network or the communication over the

global network.

An opportunity exists to do a more in depth analysis of provenance in web

services through the application of the FDR model checker as used with the

tagged transaction protocol.

Currently solving exclusion attacks on provenance in web services is an

open problem. While this work has suggested some mechanisms to discourage

service providers from doing exclusion attacks, a mechanism to detect or prevent

exclusion attacks would be interesting to explore.

In the current design of the protocol for providing provenance in web services,

when there are multiple inputs and outputs for a service provider, the protocol

shows that the outputs were derived from the inputs but not what individual

input an output was derived from. Changing the protocol to show the individual

inputs that resulted in an output would provide a more fine-grained view of the

provenance information.

154 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Appendix A

CSP Models

This appendix details the CSP models that are created to check the security

properties of the tagged transaction protocol. The second section shows the

models for the extended tagged transaction protocol.

A.1 Tagged Transaction Protocol

The tagged transaction protocol has three CSP models: registration, the supplier

generating a tag, and a reseller generating a tag.

A.1.1 Registration

In the registration phase, the supplier is registering the identity of a new item

with the TGC along with a public key for the item.

Sets

Agents = {S, T,A}

Items = {item}

ItemKeys = {itemkey, intruderkey}

Key = {PKS, SKS, PKT , SKT , PKA, SKA}

The set Agents is composed of the participants in the registration phase and

the processes in the CSP model. The values S, T , and A represent the supplier,

TGC, and the adversary respectively. The set Items is composed of the items the

supplier wants to register. The set ItemKeys is composed of the public keys that

155

156 APPENDIX A. CSP MODELS

are associated with the item. The set Key is the set of public and private keys

associated with each Agent where PK is the public key and SK is the private

key.

Messages

The two messages that are part of the registration phase of the tagged transaction

protocol are denoted MSG1 and MSG2:

MSG1 =̂ {Msg1.a.b.Encrypt.k.item.itemkey |

a ∈ Agents, b ∈ Agents, k ∈ Key, item ∈ Items, itemkey ∈ ItemKeys}

MSG2 =̂ {Msg2.a.b.Encrypt.k.item.itemkey |

a ∈ Agents, b ∈ Agents, k ∈ Key, item ∈ Items, itemkey ∈ ItemKeys}

The set of all messages in this phase of the protocol is defined as:

MSG =̂ MSG1 ∪MSG2

The channels defined in this system are send, receive, intercept, fake, running,

and commit. The channels send and receive are used by the processes to exchange

messages. The channels intercept and fake are used by the adversary to intercept

messages and insert new messages. The channels running and commit are used

to represent the state of the processes. Formally in CSP the channels are defined

as:

channel send, receive, intercept, fake : MSG

channel running, commit

Processes

The supplier is defined as:

SUPPLIER(item, itemkey, PKT) =̂

send.Msg1.S.T.Encrypt.PKT .item.itemkey →

running.S.T.item.itemkey →

receive.Msg2.T.S.Encrypt.SKT .item.itemkey → SKIP

and the TGC is defined as:

A.1. TAGGED TRANSACTION PROTOCOL 157

TGC(SKT , PKT) =̂

receive.Msg1.S.T.Encrypt.PKT .item.itemkey →

send.Msg2.T.S.Encrypt.SKT .item.itemkey →

commit.T.S.item.itemkey → SKIP

A renaming is applied to the definitions of the supplier and the TGC to allow

the adversary to intercept and fake messages on the communication channels.

The renaming allows the input to come from either the channel receive or from

the channel fake and the output to go to either send or intercept. The supplier

and TGC cannot tell whether a message has been sent from the other party or

from the adversary.

SUPPLIER0 =̂ SUPPLIER(item, itemkey, PKT)

[[send.Msg1← send.Msg1, send.Msg1← intercept.Msg1,

receive.Msg2← receive.Msg2, receive.Msg2← fake.Msg2]]

TGC0 =̂ TGC(SKT , PKT)

[[receive.Msg1← receive.Msg1, receive.Msg1← fake.Msg1,

send.Msg2← send.Msg2, send.Msg2← intercept.Msg2]]

The Adversary

The adversary is parametrised by the information it knows. In this process the

adversary is parametrised by m1s which is the set of all message 1s the adversary

knows, m2s which is the set of all message 2s the adversary knows, i which is

the set of all Items the adversary knows, and ik which is the set of all ItemKeys

the adversary knows. If the adversary knows the key to decrypt a message it

learns the contents of the message, otherwise the adversary learns the encrypted

content of the message. The adversary can fake new messages using any values

it has learnt, it can also fake messages by replaying the encrypted content of a

message it has seen. The CSP definition is:

I(m1s,m2s, i, ik) =̂

receive.Msg1?a.b.Encrypt.k.i′.ik′ →

if k ∈ {SKS, SKT , SKA, PKA} then I(m1s,m2s, i ∪ {i′}, ik ∪ {ik′})

else I(m1s ∪ {Encrypt.k.i′.ik′},m2s, i, ik)

158 APPENDIX A. CSP MODELS

T G C S upp lie r

A dversa ry

rece ive

rece ivesend

sendfake
in te rcept

learn say

runningcom m it

Figure A.1: CSP Network Model: Registration

2 intercept.Msg1?a.b.Encrypt.k.i′.ik′ →

if k ∈ {SKS, SKT , SKA, PKA} then I(m1s,m2s, i ∪ {i′}, ik ∪ {ik′})

else I(m1s ∪ {Encrypt.k.i′.ik′},m2s, i, ik)

2 receive.Msg2?b.a.Encrypt.k.i′.ik′ →

if k ∈ {SKS, SKT , SKA, PKA} then I(m1s,m2s, i ∪ {i′}, ik ∪ {ik′})

else I(m1s,m2s ∪ {Encrypt.k.i′.ik′}, i, ik)

2 intercept.Msg2?b.a.Encrypt.k.i′.ik′ →

if k ∈ {SKS, SKT , SKA, PKA} then I(m1s,m2s, i ∪ {i′}, ik ∪ {ik′})

else I(m1s,m2s ∪ {Encrypt.k.i′.ik′}, i, ik)

fake.Msg1?a.b?m : m1s→ I(m1s,m2s, i, ik)

fake.Msg2?b.a?m : m2s→ I(m1s,m2s, i, ik)

fake.Msg1?a.b!Encrypt?k?i′ : i?ik′ : ik → I(m1s,m2s, i, ik)

fake.Msg2?b.a!Encrypt?k?i′ : i?ik′ : ik → I(m1s,m2s, i, ik)

This model considers an adversary with the initial knowledge of intruderkey:

INTRUDER =̂ I({}, {}, {}, {intruderkey})

Verification

The model of the protocol is now put together with the intruder:

AGENTS =̂ SUPPLIER0|[{|send, receive|}]|TGC0

SY STEM =̂ AGENTS|[{|send, receive, fake, intercept|}]|INTRUDER

Figure A.1 illustrates the processes and channels in the model of the protocol.

The supplier and the TGC process have access to the channels send and receive.

The supplier also has access to the channel running and the TGC has access to the

channel commit. The adversary has access to the channels fake and intercept.

A.1. TAGGED TRANSACTION PROTOCOL 159

FDR takes as input an implementation of the protocol and a specification and

checks that the implementation refines the specification. The registration step

has to prevent a spoofing attack where an adversary registers the item before

the supplier. Informally, if the TGC receives a registration message for an item,

the supplier must have sent the registration message. In CSP the specification is

defined as:

SPEC0 =̂ running.S.T.item.itemkey → commit.T?S.item.itemkey → SPEC

SPEC1 =̂ {|running.S.T.item.itemkey, commit.T.S.item.itemkey|}

SPEC =̂ SPEC0 |||RUN (Σ \ SPEC1)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC ⊑T SY STEM and returns TRUE after 10 states with 20 transitions.

A.1.2 Supplier Generating Tag

In this phase, the supplier generates a tag for a reseller with the TGC.

Sets

Agents = {S, T,R,A}

Items = {item}

Tags = {pktagreseller, pktagwrong}

ItemKeys = {PKItemitem, SKItemitem}

Key = {PKS, SKS, PKT , SKT , PKC , SKC , PKA, SKA}

The set Agents is composed of the participants involved when the supplier

generates the tag with the TGC and the processes in the CSP model. The values

S, T , R, and A represent the supplier, TGC, reseller, and adversary respectively.

The set Items is composed of the items that reseller wants to purchase. The set

Tags is composed of the one time keys that are in the tags. The set ItemKeys is

composed of the private and public keys that are associated with the item where

PKItem is the public key and SKItem is the private key. The set Key is the set of

public and private keys associated with each Agent where PK is the public key

and SK is the private key.

160 APPENDIX A. CSP MODELS

Messages

The four messages that are part of the registration phase of the tagged transaction

protocol denoted MSG1, MSG2, MSG3, and MSG4 are:

MSG1 =̂ {Msg1.a.b.tag |

a ∈ Agents, b ∈ Agents, tag ∈ Tags}

MSG2 =̂ {Msg2.a.b.Encrypt.k.tag |

a ∈ Agents, b ∈ Agents, k ∈ ItemKeys, tag ∈ Tags}

MSG3 =̂ {Msg3.a.b.Encrypt.k.itemkey.tag |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys, tag ∈ Tags}

MSG4 =̂ {Msg4.a.b.Encrypt.k.itemkey.tag |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys, tag ∈ Tags}

The set of all messages in this phase of the protocol is defined as:

MSG =̂ MSG1 ∪MSG2 ∪MSG3 ∪MSG4

The channels defined in this system are send, receive, intercept, fake, running,

and commit. The channels send and receive are used by the processes to exchange

messages. The channels intercept, and fake are used by the adversary to intercept

messages and insert new messages. The channels running and commit are used

to represent the state of the processes. Formally in CSP the channels are defined

as:

channel send, receive, intercept, fake : MSG

channel running, commit

Processes

The reseller is defined as:

RESELLER(item, pktagreseller, PKT) =̂

send.Msg1.R.S.pktagreseller →

receive.Msg4.S.R.Encrypt.SKT .PKItemitem.pktagreseller →

A.1. TAGGED TRANSACTION PROTOCOL 161

commit.R.S.pktagcustomer → SKIP

The supplier is defined as:

SUPPLIER(item, SKItemitem, PKItemitem, PKT) =̂

receive.Msg1.R.S.pktagreseller →

running.R.S.pktagreseller →

send.Msg2.S.T.Encrypt.SKItemitem.pktagreseller →

receive.Msg3.T.S.Encrypt.SKT .PKItem(item).pktagreseller →

send.Msg4.S.R.Encrypt.SKT .PKItem(item).pktagreseller → SKIP

and the TGC is defined as:

TGC(SKT , PKT) =̂

receive.Msg2.S.T.Encrypt.SKItemitem.pktagreseller →

send.Msg3.T.S.Encrypt.SKT .PKItem(item).pktagreseller → SKIP

A renaming is applied to the definitions of the reseller, supplier and the TGC

to allow the adversary to intercept and fake messages on the communication

channels. The input can come either from the channel receive or from the channel

fake and the output can go to either send or intercept. The supplier, reseller, and

TGC cannot tell whether a message has been sent from the other party or from

the adversary.

RESELLER0 =̂ RESELLER(item, pktagreseller, PKT)

[[send.Msg1← send.Msg1, send.Msg1← intercept.Msg1,

receive.Msg4← receive.Msg4, receive.Msg4← fake.Msg4]]

SUPPLIER0 =̂ SUPPLIER(item, SKItemitem, PKItemitem, PKT)

[[receive.Msg1← receive.Msg1, receive.Msg1← fake.Msg1,

send.Msg2← send.Msg2, send.Msg2← intercept.Msg2,

receive.Msg3← receive.Msg3, receive.Msg3← fake.Msg3,

send.Msg4← send.Msg4, send.Msg4← intercept.Msg4]]

TGC0 =̂ TGC(SKT , PKT)

[[receive.Msg2← receive.Msg2, receive.Msg2← fake.Msg2,

162 APPENDIX A. CSP MODELS

send.Msg3← send.Msg3, send.Msg3← intercept.Msg3]]

The Adversary

The adversary is parametrised by the information it knows. In this process the

adversary is parametrised by m1s which is the set of all message 1s the adversary

knows, m2s which is the set of all message 2s the adversary knows, m3s which is

the set of all message 3s the adversary knows, m4s which is the set of all message

4s the adversary knows, and tk which is the set of all Tags the adversary knows.

If the adversary knows the key to decrypt a message it learns the contents of the

message, otherwise the adversary learns the encrypted content of the message.

The adversary can fake new messages using any values it has learnt, it can also

fake messages by replaying the encrypted content of a message it has seen. The

value KnownKeys = {SKItemitem, SKS, SKT , SKA, PKA} is the set of all keys

the adversary knows. The CSP definition is:

I(m1s,m2s,m3s,m4s, tk) =̂

receive.Msg1?a.b.tk′ →

I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

2 intercept.Msg1?a.b.tk′ →

I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

2 receive.Msg2?b.a.Encrypt.k.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

else I(m1s,m2s ∪ {Encrypt.k.tk′},m3s,m4s, tk)

2 intercept.Msg2?b.a.Encrypt.k.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

else I(m1s,m2s ∪ {Encrypt.k.tk′},m3s,m4s, tk)

2 receive.Msg3?b.a.Encrypt.k.pk.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′},m4s, tk)

2 intercept.Msg3?b.a.Encrypt.k.pk.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′},m4s, tk)

2 receive.Msg4?b.a.Encrypt.k.pk.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

A.1. TAGGED TRANSACTION PROTOCOL 163

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.pk.tk′}, tk)

2 intercept.Msg4?b.a.Encrypt.k.pk.tk′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′})

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.pk.tk′}, tk)

fake.Msg1?a.b?m : m1s→ I(m1s,m2s,m3s,m4s, tk)

fake.Msg2?b.a?m : m2s→ I(m1s,m2s,m3s,m4s, tk)

fake.Msg3?b.a?m : m3s→ I(m1s,m2s,m3s,m4s, tk)

fake.Msg4?b.a?m : m4s→ I(m1s,m2s,m3s,m4s, tk)

fake.Msg1?a.b?tk′ : tk → I(m1s,m2s,m3s,m4s, tk)

fake.Msg2?a.b!Encrypt?k?tk′ : tk → I(m1s,m2s,m3s,m4s, tk)

fake.Msg3?a.b!Encrypt?k?pk?tk′ : tk → I(m1s,m2s,m3s,m4s, tk)

fake.Msg4?a.b!Encrypt?k?pk?tk′ : tk → I(m1s,m2s,m3s,m4s, tk)

In this model the adversary has the initial knowledge of pktagwrong:

INTRUDER =̂ I({}, {}, {}, {}, {pktagwrong})

Verification

The model of the protocol is now put together with the intruder:

CHANS =̂ {|send, receive|}

AGENTS =̂ RESELLER0|[CHANS]|SUPPLIER0|[CHANS]|TGC0

SY STEM =̂ AGENTS|[{|send, receive, fake, intercept|}]|INTRUDER

Figure A.4 illustrates the processes and channels in the model of the protocol.

The supplier, reseller, and the TGC processes have access to the channels send

and receive. The supplier also has access to the channel running and the reseller

has access to the channel commit. The adversary has access to the channels fake

and intercept.

FDR takes as input an implementation of the protocol and a specification and

checks that the implementation refines the specification. The generation of a tag

has to resist a fabrication attack. Informally, if the reseller receives a tag that it

accepts, the supplier must have sent a message to the TGC requesting the tag. In

CSP the specification is defined as:

SPEC0 =̂ running.S.R.pktagcustomer → commit.R?S.pktagcustomer → SPEC

164 APPENDIX A. CSP MODELS

TGC Supplier

Adversary

receive

receivesend

sendfake
intercept

learn say

Reseller

send receive
running

commit

Figure A.2: CSP Network Model: Supplier Generating a Tag

SPEC1 =̂ {|running.S.R.pktagcustomer, commit.R.S.pktagcustomer|}

SPEC =̂ SPEC0 |||RUN (Σ \ SPEC1)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC ⊑T SY STEM and returns TRUE after 111 states with 387 transitions.

A.1.3 Reseller Generating Tag

In this phase the reseller generates a tag for a customer with the TGC.

Sets

Agents = {C, T,R,A}

Items = {item}

Tags = {pktag, pktag2, pktagwrong, pktagwrong2}

ActualTags = {tag, tag2, tagwrong, tagwrong2}

ItemKeys = {PKItemitem, SKItemitem}

Key = {PKR, SKR, PKT , SKT , PKC , SKC , PKA, SKA}

The set Agents is composed of the participants involved when the reseller

generates the tag with the TGC and the processes in the CSP model. The values

C, T , R, and A represent the customer, TGC, reseller, and adversary respectively.

The set Items is composed of the items that the customer wants to purchase.

A.1. TAGGED TRANSACTION PROTOCOL 165

The set Tags is composed of the one time keys in the tags. The set ItemKeys is

composed of the private and public keys that are associated with the item where

PKItem is the public key and SKItem is the private key. The set Key is the set of

public and private keys associated with each Agent where PK is the public key

and SK is the private key.

Messages

The three messages that are used when the reseller generates a tag in the tagged

transaction protocol are denoted MSG1, MSG2, and MSG3:

MSG1 =̂ {Msg1.a.b.pktag.pktag2 |

a ∈ Agents, b ∈ Agents, pktag ∈ Tags, pktag2 ∈ Tags}

MSG2 =̂ {Msg2.a.b.Encrypt.k.tag.pktag.tag2.pktag2 |

a ∈ Agents, b ∈ Agents, k ∈ Keys, tag ∈ ActualTags, pktag ∈ Tags,

tag2 ∈ ActualTags, pktag2 ∈ Tags}

MSG3 =̂ {Msg3.a.b.Encrypt.k.itemkey.pktag.Encrypt.k.itemkey.pktag2 |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys,

pktag ∈ Tags, pktag2 ∈ Tags}

The set of all messages in this phase of the protocol is defined as:

MSG =̂ MSG1 ∪MSG2 ∪MSG3

The channels defined in this system are send, receive, intercept, fake, running,

running2, commit, and commit2. The channels send and receive are used by the

processes to exchange messages. The channels intercept, and fake are used by the

adversary to intercept messages and insert new messages. The channels running,

running2, commit and commit2 are used to represent the state of the processes.

Formally in CSP the channels are defined as:

channel send, receive, intercept, fake : MSG

channel running, commit

channel running2, commit2

Processes

The customer is defined as:

166 APPENDIX A. CSP MODELS

CUSTOMER(item, pktag, pktag2, PKT) =̂

send.Msg1.C.R.pktag.pktag2→

receive.Msg3.T.C.Encrypt.SKT .PKItemitem.pktag.

Encrypt.SKT .PKItemitem.pktag2→

commit.C.T.pktag.pktag2→

commit2.C.R.pktag.pktag2→ SKIP

the reseller is defined as:

RESELLER(item, tag, tag2, SKR, PKR, PKT) =̂

receive.Msg1.C.R.pktag.pktag2→

send.Msg2.R.T.Encrypt.SKR.tag.pktag.tag2.pktag2→

running2.R.C.pktag.pktag2→ SKIP

and the TGC is defined as:

TGC(SKT , PKT , PKR) =̂

receive.Msg2.R.T.Encrypt.SKR.tag.pktag.tag2.pktag2→

running.T.C.pktag.pktag2→

send.Msg3.T.C.Encrypt.SKT .PKItemitem.pktag.

Encrypt.SKT .PKItemitem.pktag2→ SKIP

A renaming is applied to the definitions of the customer, reseller, and the TGC

to allow the adversary to intercept and fake messages on the communication

channels. The input can come either from the channel receive or from the channel

fake and the output can go to either send or intercept. The customer, reseller, and

TGC cannot tell whether a message has been sent from the other party or from

the adversary.

CUSTOMER0 =̂ CUSTOMER(item, pktag, pktag2, PKT)

[[send.Msg1← send.Msg1, send.Msg1← intercept.Msg1,

receive.Msg3← receive.Msg3, receive.Msg3← fake.Msg3]]

RESELLER0 =̂ RESELLER(item, tag, tag2, SKR, PKR, PKT)

[[receive.Msg1← receive.Msg1, receive.Msg1← fake.Msg1,

send.Msg2← send.Msg2, send.Msg2← intercept.Msg2]]

A.1. TAGGED TRANSACTION PROTOCOL 167

TGC0 =̂ TGC(SKT , PKT , PKR)

[[receive.Msg2← receive.Msg2, receive.Msg2← fake.Msg2,

send.Msg3← send.Msg3, send.Msg3← intercept.Msg3]]

The Adversary

The adversary is parametrised by the information it knows. In this process the

adversary is parametrised by m1s which is the set of all message 1s the adversary

knows, m2s which is the set of all message 2s the adversary knows, m3s which is

the set of all message 3s the adversary knows, tk which is the set of all Tags the

adversary knows, and at which is the set of all ActualTags the adversary knows.

If the adversary knows the key to decrypt a message it learns the contents of the

message, otherwise the adversary learns the encrypted content of the message.

The adversary can fake new messages using any values it has learnt, it can also

fake messages by replaying the encrypted content of a message it has seen. The

value KnownKeys = {SKItemitem, SKC , SKR, SKT , SKA, PKA} is the set of all

keys known by the adversary. The CSP definition is:

I(m1s,m2s,m3s, tk, at) =̂

receive.Msg1?a.b.tk′.tk2′ →

I(m1s,m2s,m3s, tk ∪ {tk′, tk2′}, at)

2 intercept.Msg1?a.b.tk′.tk2′ →

I(m1s,m2s,m3s, tk ∪ {tk′, tk2′}, at)

2 receive.Msg2?b.a.Encrypt.k.at′.tk′.at2′.tk2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s, tk ∪ {tk′, tk2′},

at ∪ {at′, at2′})

else I(m1s,m2s ∪ {Encrypt.k.at′.tk′.at2′.tk2′},m3s, tk, at)

2 intercept.Msg2?b.a.Encrypt.k.at′.tk′.at2′.tk2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s, tk ∪ {tk′, tk2′},

at ∪ {at′, at2′})

else I(m1s,m2s ∪ {Encrypt.k.at′.tk′.at2′.tk2′},m3s, tk, at)

2 receive.Msg3?b.a.Encrypt.k.pk.tk′.Encrypt.k.pk.tk2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s, tk ∪ {tk′, tk2′}, at)

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′.Encrypt.k.pk.tk2′},

168 APPENDIX A. CSP MODELS

tk, at)

2 intercept.Msg3?b.a.Encrypt.k.pk.tk′.Encrypt.k.pk.tk2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s, tk ∪ {tk′, tk2′}, at)

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′.Encrypt.k.pk.tk2′},

tk, at)

fake.Msg1?a.b?m : m1s→ I(m1s,m2s,m3s, tk, at)

fake.Msg2?b.a?m : m2s→ I(m1s,m2s,m3s, tk, at)

fake.Msg3?b.a?m : m3s→ I(m1s,m2s,m3s, tk, at)

fake.Msg1?a.b?tk′ : tk?tk2′ : tk → I(m1s,m2s,m3s, tk, at)

fake.Msg2?a, b!Encrypt?k?at′ : at?tk′ : tk?at2′ : at?tk2′ : tk →

I(m1s,m2s,m3s, tk, at)

fake.Msg3?a.b!Encrypt?k?pk?tk′ : tk!Encrypt?k?pk?tk2′ : tk →

I(m1s,m2s,m3s, tk, at)

This model considers an adversary with the initial knowledge of pktagwrong,

pktagwrong2, tagwrong, and tagwrong2:

INTRUDER =̂ I({}, {}, {}, {pktagwrong, pktagwrong2}, {tagwrong, tagwrong2})

Verification

The model of the protocol is now put together with the intruder:

CHANS =̂ {|send, receive|}

AGENTS =̂ CUSTOMER0|[CHANS]|RESELLER0|[CHANS]|TGC0

SY STEM =̂ AGENTS|[{|send, receive, fake, intercept|}]|INTRUDER

Figure A.5 illustrates the processes and channels in the model of the protocol.

The customer, reseller, and the TGC processes have access to the channels send

and receive. The TGC has access to the channel running, the reseller has access

to the channel running2 and the customer has access to the channels commit and

commit2. The adversary has access to the channels fake and intercept.

FDR takes as input an implementation of the protocol and a specification and

checks that the implementation refines the specification. This model has two

specifications for the reseller generating the tag. The first specification prevents

replay. Informally, if the customer receives a tag then two different values must

have been signed by the TGC. In CSP the specification is defined as:

A.1. TAGGED TRANSACTION PROTOCOL 169

TG C

Adversary

receive

receivesend

sendfake
intercept

learn say

Reseller

Custom er

send receive
running com m it, com m it2

running2

Figure A.3: CSP Network Model: Reseller Generating a Tag

SPEC0 =̂

running.T.C.pktagcustomer.pktagcustomer2→

commit.C?T.pktagcustomer.pktagcustomer2→ SPEC

SPEC1 =̂

{|running.T.C.pktagcustomer.pktagcustomer2,

commit.C.T.pktagcustomer.pktagcustomer2|}

SPEC =̂ SPEC0 |||RUN (Σ \ SPEC1)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC ⊑T SY STEM and returns TRUE after 457 states with 2005 transitions.

The second specification checks for a network sniffing attack. Informally, if

a customer receives tags signed by the TGC then the reseller must have sent a

message to the TGC to request the generation of the tags. In CSP the specification

is defined as:

SPEC20 =̂

running2.R.C.pktagcustomer.pktagcustomer2→

commit2.C?R.pktagcustomer.pktagcustomer2→ SPEC

SPEC21 =̂

{|running2.R.C.pktagcustomer.pktagcustomer2,

commit2.C.R.pktagcustomer.pktagcustomer2|}

170 APPENDIX A. CSP MODELS

SPEC2 =̂ SPEC20 |||RUN (Σ \ SPEC21)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC2 ⊑T SY STEM and returns TRUE after 1423 states with 4835 transitions.

A.2 Extended Tagged Transaction Protocol

The extended tagged transaction protocol has two models: the supplier generat-

ing the tag, and a reseller generating a tag. The registration model is not repeated

as it is the same as in the tagged transaction protocol.

A.2.1 Supplier Generating Tag

In this phase the supplier is generating a tag for a reseller with the TGC.

Sets

Agents = {S, T,R,A}

Items = {item}

Tags = {pktagreseller, pktagwrong}

ItemKeys = {PKItemitem, SKItemitem}

Token = tokenreseller

Key = {PKS, SKS, PKT , SKT , PKC , SKC , PKA, SKA}

The set Agents is composed of the participants involved when the supplier

generates the tag with the TGC and the processes in the CSP model. The values

S, T , R, and A represent the supplier, TGC, reseller, and adversary respectively.

The set Items is composed of the items that the reseller wants to purchase. The set

Tags is composed of the one time keys in the tags. The set ItemKeys is composed

of the private and public keys that are associated with the item where PKItem

is the public key and SKItem is the private key. The set Key is the set of public

and private keys associated with each Agent where PK is the public key and SK

is the private key.

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 171

Messages

The four messages that are part of the registration phase of the tagged transaction

protocol are denoted MSG1, MSG2, MSG3, and MSG4:

MSG1 =̂ {Msg1.a.b.token.tag |

a ∈ Agents, b ∈ Agents, token ∈ Token, tag ∈ Tags}

MSG2 =̂ {Msg2.a.b.Encrypt.k.token.tag |

a ∈ Agents, b ∈ Agents, k ∈ ItemKeys, token ∈ Token,

tag ∈ Tags}

MSG3 =̂ {Msg3.a.b.Encrypt.k.itemkey.token.tag |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys,

token ∈ Token, tag ∈ Tags}

MSG4 =̂ {Msg4.a.b.Encrypt.k.itemkey.token.tag |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys,

token ∈ Token, tag ∈ Tags}

The set of all messages in this phase of the protocol is defined as:

MSG =̂ MSG1 ∪MSG2 ∪MSG3 ∪MSG4

The channels defined in this system are send, receive, intercept, fake, running,

and commit. The channels send and receive are used by the processes to exchange

messages. The channels intercept, and fake are used by the adversary to intercept

messages and insert new messages. The channels running and commit are used

to represent the state of the processes. Formally in CSP the channels are defined

as:

channel send, receive, intercept, fake : MSG

channel running, commit

Processes

The reseller is defined as:

172 APPENDIX A. CSP MODELS

RESELLER(item, tokenreseller, pktagreseller, PKT) =̂

send.Msg1.R.S.tokenreseller.pktagreseller →

receive.Msg4.S.R.Encrypt.SKT .PKItemitem.tokenreseller.pktagreseller →

commit.R.S.tokenreseller.pktagcustomer → SKIP

The supplier is defined as:

SUPPLIER(item, SKItemitem, PKItemitem, PKT) =̂

receive.Msg1.R.S.tokenreseller.pktagreseller →

running.R.S.tokenreseller.pktagreseller →

send.Msg2.S.T.Encrypt.SKItemitem.tokenreseller.pktagreseller →

receive.Msg3.T.S.Encrypt.SKT .PKItem(item).tokenreseller.

pktagreseller →

send.Msg4.S.R.Encrypt.SKT .PKItem(item).tokenreseller.

pktagreseller → SKIP

and the TGC is defined as:

TGC(SKT , PKT) =̂

receive.Msg2.S.T.Encrypt.SKItemitem.tokenreseller.pktagreseller →

send.Msg3.T.S.Encrypt.SKT .PKItem(item).tokenreseller.

pktagreseller → SKIP

A renaming is applied to the definitions of the reseller, supplier and the TGC

to allow the adversary to intercept and fake messages on the communication

channels. The input can come either from the channel receive or from the channel

fake and the output can go to either send or intercept. The supplier, reseller, and

TGC cannot tell whether a message has been sent from the other party or from

the adversary.

RESELLER0 =̂ RESELLER(item, pktagreseller, PKT)

[[send.Msg1← send.Msg1, send.Msg1← intercept.Msg1,

receive.Msg4← receive.Msg4, receive.Msg4← fake.Msg4]]

SUPPLIER0 =̂ SUPPLIER(item, SKItemitem, PKItemitem, PKT)

[[receive.Msg1← receive.Msg1, receive.Msg1← fake.Msg1,

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 173

send.Msg2← send.Msg2, send.Msg2← intercept.Msg2,

receive.Msg3← receive.Msg3, receive.Msg3← fake.Msg3,

send.Msg4← send.Msg4, send.Msg4← intercept.Msg4]]

TGC0 =̂ TGC(SKT , PKT)

[[receive.Msg2← receive.Msg2, receive.Msg2← fake.Msg2,

send.Msg3← send.Msg3, send.Msg3← intercept.Msg3]]

The Adversary

The adversary is parametrised by the information it knows. In this process

the adversary is parametrised by m1s which is the set of all message 1s the

adversary knows, m2s which is the set of all message 2s the adversary knows,

m3s which is the set of all message 3s the adversary knows, m4s which is the

set of all message 4s the adversary knows, tg which is the set of all Tags the

adversary knows, and tk which is the set of all Token the adversary knows. If

the adversary knows the key to decrypt a message it learns the contents of the

message, otherwise the adversary learns the encrypted content of the message.

The adversary can fake new messages using any values it has learnt, it can also

fake messages by replaying the encrypted content of a message it has seen. The

value KnownKeys = {SKItemitem, SKS, SKT , SKA, PKA}is defined as the keys

the adversary knows. The CSP definition is:

I(m1s,m2s,m3s,m4s, tk, tg) =̂

receive.Msg1?a.b.tk′.tg′ →

I(m1s,m2s,m3s,m4s, tk ∪ {tk′}, tg ∪ {tg′})

2 intercept.Msg1?a.b.tk′.tg′ →

I(m1s,m2s,m3s,m4s, tk ∪ {tk′}, tg ∪ {tg′})

2 receive.Msg2?b.a.Encrypt.k.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

else I(m1s,m2s ∪ {Encrypt.k.tk′.tg′},m3s,m4s, tk, tg)

2 intercept.Msg2?b.a.Encrypt.k.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

174 APPENDIX A. CSP MODELS

else I(m1s,m2s ∪ {Encrypt.k.tk′.tg′},m3s,m4s, tk, tg)

2 receive.Msg3?b.a.Encrypt.k.pk.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′.tg′},m4s, tk, tg)

2 intercept.Msg3?b.a.Encrypt.k.pk.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

else I(m1s,m2s,m3s ∪ {Encrypt.k.pk.tk′.tg′},m4s, tk, tg)

2 receive.Msg4?b.a.Encrypt.k.pk.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.pk.tk′.tg′}, tk, tg)

2 intercept.Msg4?b.a.Encrypt.k.pk.tk′.tg′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s, tk ∪ {tk′},

tg ∪ {tg′})

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.pk.tk′.tg′}, tk, tg)

fake.Msg1?a.b?m : m1s→ I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg2?b.a?m : m2s→ I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg3?b.a?m : m3s→ I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg4?b.a?m : m4s→ I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg1?a.b?tk′ : tk?tg′ : tg → I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg2?a.b!Encrypt?k?tk′ : tk?tg′ : tg →

I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg3?a.b!Encrypt?k?pk?tk′ : tk?tg′ : tg →

I(m1s,m2s,m3s,m4s, tk, tg)

fake.Msg4?a.b!Encrypt?k?pk?tk′ : tk?tg′ : tg →

I(m1s,m2s,m3s,m4s, tk, tg)

In this model the adversary has the initial knowledge of pktagwrong and

tokenreseller:

INTRUDER =̂ I({}, {}, {}, {}, {tokenreseller}, {pktagwrong})

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 175

TGC Supplier

Adversary

receive

receivesend

sendfake
intercept

learn say

Reseller

send receive
running

commit

Figure A.4: CSP Network Model: Supplier Generating a Tag

Verification

The model of the protocol is now put together with the intruder:

CHANS =̂ {|send, receive|}

AGENTS =̂ RESELLER0|[CHANS]|SUPPLIER0|[CHANS]|TGC0

SY STEM =̂ AGENTS|[{|send, receive, fake, intercept|}]|INTRUDER

Figure A.4 illustrates the processes and channels in the model of the protocol.

The supplier, reseller, and the TGC processes have access to the channels send

and receive. The supplier also has access to the channel running and the reseller

has access to the channel commit. The adversary has access to the channels fake

and intercept.

FDR takes as input an implementation of the protocol and a specification and

checks that the implementation refines the specification. The generation of a tag

has to resist a fabrication attack. Informally, if the reseller receives a tag that it

accepts, the supplier must have sent a message to the TGC requesting the tag. In

CSP the specification is defined as:

SPEC0 =̂

running.S.R.tokenreseller.pktagcustomer →

commit.R?S.tokenreseller.pktagcustomer → SPEC

SPEC1 =̂

176 APPENDIX A. CSP MODELS

{|running.S.R.pktagcustomer.tokenreseller,

commit.R.S.pktagcustomer.tokenreseller|}

SPEC =̂ SPEC0 |||RUN (Σ \ SPEC1)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC ⊑T SY STEM and returns TRUE after 111 states with 387 transitions.

A.2.2 Reseller Generating Tag

In this phase, the reseller is generating a tag for the customer with the TGC.

Sets

Agents = {C, T,R,A}

Items = {item}

Tags = {pktag, pktag2, pktagwrong, pktagwrong2}

ActualTags = {tag, tag2, tagwrong, tagwrong2}

Token = {tktag, tktag2}

Challenge = {c1, c2}

Response = {r1, r2}

ItemKeys = {PKItemitem, SKItemitem}

Key = {PKR, SKR, PKT , SKT , PKC , SKC , PKA, SKA}

The set Agents is composed of the participants involved when the reseller

generates the tag with the TGC and the processes in the CSP model. The values

C, T , R, and A represent the customer, TGC, reseller, and adversary respectively.

The set Items is composed of the items that the customer wants to purchase.

The set Tags is composed of the one time keys in the tags. The set ActualTags

is composed of the tags that have previously been generated and sent to the

reseller. The set Token represents the identity tokens. The sets Challenge and

Response represent the challenge and response values used in the protocol. The

set ItemKeys is composed of the private and public keys that are associated with

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 177

the item where PKItem is the public key and SKItem is the private key. The set

Key is the set of public and private keys associated with each Agent where PK

is the public key and SK is the private key.

Messages

The five messages that are used when the reseller generates a tag in the extended

tagged transaction protocol are denoted MSG1, MSG2, MSG3, MSG4, and

MSG5:

MSG1 =̂ {Msg1.a.b.token.pktag.token2.pktag2 |

a ∈ Agents, b ∈ Agents, token ∈ Token, pktag ∈ Tags,

token2 ∈ Token, pktag2 ∈ Tags}

MSG2 =̂ {Msg2.a.b.Encrypt.k.tag.token.pktag.tag2.token2.pktag2 |

a ∈ Agents, b ∈ Agents, k ∈ Keys, tag ∈ ActualTags,

token ∈ Token, pktag ∈ Tags,

tag2 ∈ ActualTags, token2 ∈ Token, pktag2 ∈ Tags}

MSG3 =̂ {Msg3.a.b.c1.c2} |

a ∈ Agents, b ∈ Agents, c1 ∈ Challenge, c2 ∈ Challenge

MSG4 =̂ {Msg4.a.b.Encrypt.k.c1.c2.r1.r2} |

a ∈ Agents, b ∈ Agents, c1 ∈ Challenge, c2 ∈ Challenge,

r1 ∈ Response, r2 ∈ Response

MSG5 =̂ {Msg5.a.b.Encrypt.k.itemkey.token.pktag.Encrypt.k.itemkey.

token2.pktag2 |

a ∈ Agents, b ∈ Agents, k ∈ Key, itemkey ∈ ItemKeys,

token ∈ Token, pktag ∈ Tags, token2 ∈ Token, pktag2 ∈ Tags}

The set of all messages in this phase of the protocol is defined as:

MSG =̂ MSG1 ∪MSG2 ∪MSG3 ∪MSG4 ∪MSG5

The channels defined in this system are send, receive, intercept, fake, running,

running2, commit, and commit2. The channels send and receive are used by the

178 APPENDIX A. CSP MODELS

processes to exchange messages. The channels intercept, and fake are used by the

adversary to intercept messages and insert new messages. The channels running,

running2, commit and commit2 are used to represent the state of the processes.

Formally in CSP the channels are defined as:

channel send, receive, intercept, fake : MSG

channel running, commit

channel running2, commit2

Processes

The customer is defined as:

CUSTOMER(item, tktag, pktag, tktag2, pktag2, PKT) =̂

send.Msg1.C.R.tktag.pktag.tktag2.pktag2→

receive.Msg5.T.C.Encrypt.SKT .PKItemitem.tktag.pktag.

Encrypt.SKT .PKItemitem.tktag2.pktag2→

commit.C.T.tktag.pktag.tktag2.pktag2→

commit2.C.R.tktag.pktag.tktag2.pktag2→ SKIP

the reseller is defined as:

RESELLER(item, tag, tag2, r1, r2, SKR, PKR, PKT) =̂

receive.Msg1.C.R.tktag.pktag.tktag2.pktag2→

send.Msg2.R.T.Encrypt.SKR.tag.tktag.pktag.tag2.tktag2.pktag2→

running2.R.C.tktag.pktag.tktag2.pktag2→

receive.Msg3.T.R.c1.c2→

send.Msg4.R.T.Encrypt.SKR.c1.c2.r1.r2→ SKIP

and the TGC is defined as:

TGC(SKT , PKT , PKR, c1, c2) =̂

receive.Msg2.R.T.Encrypt.SKR.tag.tktag.pktag.tag2.tktag2.pktag2→

running.T.C.tktag.pktag.tktag2.pktag2→

send.Msg3.T.R.c1.c2→

receive.Msg4.R.T.Encrypt.SKR.c1.c2.r1.r2→

send.Msg5.T.C.Encrypt.SKT .PKItemitem.tktag.pktag.

Encrypt.SKT .PKItemitem.tktag2.pktag2→ SKIP

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 179

A renaming is applied to the definitions of the customer, reseller, and the TGC

to allow the adversary to intercept and fake messages on the communication

channels. The input can come either from the channel receive or from the channel

fake and the output can go to either send or intercept. The customer, reseller, and

TGC cannot tell whether a message has been sent from the other party or from

the adversary.

CUSTOMER0 =̂ CUSTOMER(item, pktag, pktag2, PKT)

[[send.Msg1← send.Msg1, send.Msg1← intercept.Msg1,

receive.Msg5← receive.Msg5, receive.Msg5← fake.Msg5]]

RESELLER0 =̂ RESELLER(item, tag, tag2, SKR, PKR, PKT)

[[receive.Msg1← receive.Msg1, receive.Msg1← fake.Msg1,

send.Msg2← send.Msg2, send.Msg2← intercept.Msg2,

receive.Msg3← receive.Msg3, receive.Msg3← fake.Msg3,

send.Msg4← send.Msg4, send.Msg4← intercept.Msg4]]

TGC0 =̂ TGC(SKT , PKT , PKR)

[[receive.Msg2← receive.Msg2, receive.Msg2← fake.Msg2,

send.Msg3← send.Msg3, send.Msg3← intercept.Msg3,

receive.Msg4← receive.Msg4, receive.Msg4← fake.Msg4,

send.Msg5← send.Msg5, send.Msg5← intercept.Msg5]]

The Adversary

The adversary is parametrised by the information it knows. In our process

the adversary is parametrised by m1s which is the set of all message 1s the

adversary knows, m2s which is the set of all message 2s the adversary knows,

m3s which is the set of all message 3s the adversary knows, m4s which is the

set of all message 4s the adversary knows, m5s which is the set of all message

5s the adversary knows, tk which is the set of all Token the adversary knows,

tg which is the set of all Tags the adversary knows, at which is the set of all

ActualTags the adversary knows, c which is the set of all Challenge the adversary

knows, and r which is the set of all Response the adversary knows. If the

adversary knows the key to decrypt a message it learns the contents of the

message, otherwise the adversary learns the encrypted content of the message.

180 APPENDIX A. CSP MODELS

The adversary can fake new messages using any values it has learnt, it can also

fake messages by replaying the encrypted content of a message it has seen. The

value KnownKeys = {SKItemitem, SKC , SKR, SKT , SKA, PKA} is defined as the

keys the adversary knows. The CSP definition is:

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r) =̂

receive.Msg1?a.b.tk′.tg′.tk2′.tg2′ →

I(m1s,m2s,m3s,m4s,m5s, tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at, c, r)

2 intercept.Msg1?a.b.tk′.tg′.tk2′.tg2′ →

I(m1s,m2s,m3s,m4s,m5s, tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at, c, r)

2 receive.Msg2?b.a.Encrypt.k.at′.tk′.tg′.at2′.tk2′.tg2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s,

tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at ∪ {at′, at2′}, c, r)

else I(m1s,m2s ∪ {Encrypt.k.at′.tk′.at2′.tk2′},m3s,m4s,m5s,

tk, tg, at, c, r)

2 intercept.Msg2?b.a.Encrypt.k.at′.tk′.tg′.at2′.tk2′.tg2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s,

tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at ∪ {at′, at2′}, c, r)

else I(m1s,m2s ∪ {Encrypt.k.at′.tk′.at2′.tk2′},m3s,m4s,m5s,

tk, tg, at, c, r)

2 receive.Msg3?a.b.c1′.c2′ →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c ∪ {c1′, c2′}, r)

2 intercept.Msg3?a.b.c1′.c2′ →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c ∪ {c1′, c2′}, r)

2 receive.Msg4?b.a.Encrypt.k.c1′c2′.r1′.r2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s, tk, tg, at,

c ∪ {c1′, c2′}, r ∪ {r1′, r2′})

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.c1′c2′.r1′.r2′},m5s,

tk, tg, at, c, r)

2 intercept.Msg4?b.a.Encrypt.k.c1′c2′.r1′.r2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s, tk, tg, at,

c ∪ {c1′, c2′}, r ∪ {r1′, r2′})

else I(m1s,m2s,m3s,m4s ∪ {Encrypt.k.c1′c2′.r1′.r2′},m5s,

tk, tg, at, c, r)

2 receive.Msg5?b.a.Encrypt.k.pk.tk′.tg′.Encrypt.k.pk.tk2′.tg2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s,

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 181

tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at, c, r)

else I(m1s,m2s,m3s,m4s,m5s ∪ {Encrypt.k.pk.tk′.tg′.

Encrypt.k.pk.tk2′.tg2′}, tk, tg, at, c, r)

2 intercept.Msg5?b.a.Encrypt.k.pk.tk′.tg′.Encrypt.k.pk.tk2′.tg2′ →

if k ∈ KnownKeys then I(m1s,m2s,m3s,m4s,m5s,

tk ∪ {tk′, tk2′}, tg ∪ {tg′, tg2′}, at, c, r)

else I(m1s,m2s,m3s,m4s,m5s ∪ {Encrypt.k.pk.tk′.tg′.

Encrypt.k.pk.tk2′.tg2′}, tk, tg, at, c, r)

fake.Msg1?a.b?m : m1s→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg2?b.a?m : m2s→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg3?b.a?m : m3s→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg4?b.a?m : m4s→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg5?b.a?m : m5s→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg1?a.b?tk′ : tk?tg′ : tg?tk2′ : tk?tg2′ : tg →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg2?a, b!Encrypt?k?at′ : at?tk′ : tk?at2′ : at?tk2′ : tk →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg3?a.b?c1′ : c?c2′ : c→ I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg4?a.b!Encrypt?k?c1′ : c?c2′ : c?r1′ : r?r2′ : r →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

fake.Msg5?a.b!Encrypt?k?pk?tk′ : tk!Encrypt?k?pk?tk2′ : tk →

I(m1s,m2s,m3s,m4s,m5s, tk, tg, at, c, r)

This model considers an adversary who has the initial knowledge of

pktagwrong, pktagwrong2, tagwrong, tagwrong2, tktag, tktag2, c1, c2, r1, and r2:

INTRUDER =̂ I({}, {}, {}, {}, {}, {tktag, tktag2}, {pktagwrong, pktagwrong2},

{tagwrong, tagwrong2}, {c1, c2}, {r1, r2})

Verification

The model of the protocol can now be put together with the intruder:

CHANS =̂ {|send, receive|}

AGENTS =̂ CUSTOMER0|[CHANS]|RESELLER0|[CHANS]|TGC0

182 APPENDIX A. CSP MODELS

TG C

Adversary

receive

receivesend

sendfake
intercept

learn say

Reseller

Custom er

send receive
running com m it, com m it2

running2

Figure A.5: CSP Network Model: Reseller Generating a Tag

SY STEM =̂ AGENTS|[{|send, receive, fake, intercept|}]|INTRUDER

Figure A.5 illustrates the processes and channels in the model of the protocol.

The customer, reseller, and the TGC processes have access to the channels send

and receive. The TGC has access to the channel running, the reseller has access

to the channel running2 and the customer has access to the channels commit and

commit2. The adversary has access to the channels fake and intercept.

FDR takes as input an implementation of the protocol and a specification

and checks that the implementation refines the specification. This phase of the

protocol has two specifications for the reseller generating the tag. The first

specification prevents replay. Informally, if the customer receives a tag then two

different values must have been signed by the TGC. In CSP we the specification

is defined as:

SPEC0 =̂

running.T.C.tktag.pktag.tktag2.pktag2→

commit.C?T.tktag.pktag.tktag2.pktag2→ SPEC

SPEC1 =̂

{|running.T.C.tktag.pktag.tktag2.pktag2,

commit.C.T.tktag.pktag.tktag2.pktag2|}

SPEC =̂ SPEC0 |||RUN (Σ \ SPEC1)

A.2. EXTENDED TAGGED TRANSACTION PROTOCOL 183

The term Σ is the set of all possible events. The FDR model checker checks

SPEC ⊑T SY STEM and returns TRUE after 457 states with 2005 transitions.

The second specification checks for a network sniffing attack. Informally, if

a customer receives tags signed by the TGC then the reseller must have sent a

message to the TGC to request the generation of the tags. In CSP the specification

is defined as:

SPEC20 =̂

running2.R.C.tktag.pktag.tktag2.pktag2→

commit2.C?R.tktag.pktag.tktag2.pktag2→ SPEC

SPEC21 =̂

{|running2.R.C.tktag.pktag.tktag2.pktag2,

commit2.C.R.tktag.pktag.tktag2.pktag2|}

SPEC2 =̂ SPEC20 |||RUN (Σ \ SPEC21)

The term Σ is the set of all possible events. The FDR model checker checks

SPEC2 ⊑T SY STEM and returns TRUE after 1423 states with 4835 transitions.

184 APPENDIX A. CSP MODELS

References

[1] 4FRIENDSONLY. New technologies for virtual goods, 2010. http://www.

4fo.de/en/potato.htm.

[2] ABELSON, H., ADIDA, B., LINKSVAYER, M., AND YERGLER, N. ccREL:

The creative commons rights expression langauge. Tech. rep., Creative

Commons, March 2008.

[3] AIKEN, A., CHEN, J., STONEBRAKER, M., AND WOODRUFF, A. Tioga-2:

a direct manipulation database visualization environment. In Proceedings

of the Twelfth International Conference on Data Engineering, 1996. (Feb-1 Mar

1996), pp. 208 –217.

[4] APPLE. iTunes store top music retailer in the us. http://www.apple.com/

pr/library/2008/04/03itunes.html.

[5] APPLE. iTunes store tops 10 billion songs sold. http://www.apple.com/

pr/library/2010/02/25itunes.html.

[6] BELLARE, M., AND ROGAWAY, P. Optimal asymmetric encryption. In

Proceedings of the 13th International Conference on the Theory and Applications

of Cryptographic Techniques EUROCRYPT’94 (1994), pp. 92–111.

[7] BELLARE, M., AND ROGAWAY, P. The exact security of digital signatures-

how to sign with RSA and Rabin. In Proceedings of the 15th annual interna-

tional conference on Theory and application of cryptographic techniques (Berlin,

Heidelberg, 1996), EUROCRYPT’96, Springer-Verlag, pp. 399–416.

[8] BELLARE, M., AND ROGAWAY, P. The exact security of digital signatures-

how to sign with RSA and Rabin. In Proceedings of the 15th annual international

conference on Theory and application of cryptographic techniques EUROCRYPT’96

(Berlin, Heidelberg, 1996), Springer-Verlag, pp. 399–416.

185

186 REFERENCES

[9] BENDER, W., GRUHL, D., MORIMOTO, N., AND LU, A. Techniques for data

hiding. IBM Systems Journal 35, 3.4 (1996), 313 –336.

[10] BOLAND, F., O’RUANAIDH, J., AND DAUTZENBERG, C. Watermarking

digital images for copyright protection. In Proceedings of the 5th International

Conference on Image Processing and its Applications (Jul 1995), pp. 326 –330.

[11] BRANDS, S. Untraceable off-line cash in wallets with observers (extended

abstract). In Proceedings of the 13th Annual International Cryptology Conference

on Advances in Cryptology (London, UK, 1994), CRYPTO ’93, Springer-Verlag,

pp. 302–318.

[12] BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing provenance. In

The 3rd USENIX Workshop on Hot Topics in Security (Berkeley, CA, USA, July

2008), USENIX HotSec, USENIX Association, pp. 1–5.

[13] CAMENISCH, J., AND HERREWEGHEN, E. V. Design and implementation

of the idemix anonymous credential system. In Proceedings of the 9th ACM

conference on Computer and communications security CCS ’02 (New York, NY,

USA, 2002), ACM, pp. 21–30.

[14] CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A. Compact e-

cash. In Proceedings of the 24th annual international conference on Theory and

application of cryptographic techniques EUROCRYPT’05 (2005), pp. 302–321.

[15] CAMENISCH, J., AND LYSYANSKAYA, A. An efficient system for non-

transferable anonymous credentials with optional anonymity revocation.

In Proceedings of the International Conference on the Theory and Application

of Cryptographic Techniques EUROCRYPT ’01 (London, UK, 2001), Springer-

Verlag, pp. 93–118.

[16] CAMENISCH, J., AND LYSYANSKAYA, A. A signature scheme with efficient

protocols. In Proceedings of the 3rd international conference on Security in

communication networks (Berlin, Heidelberg, 2003), SCN’02, Springer-Verlag,

pp. 268–289.

[17] CAMENISCH, J., AND MICHELS, M. Proving in zero-knowledge that a

number is the product of two safe primes. In Proceedings of the 17th

international conference on Theory and application of cryptographic techniques

EUROCRYPT’99 (Berlin, Heidelberg, 1999), Springer-Verlag, pp. 107–122.

REFERENCES 187

[18] CHAUM, D. Blind signatures for untraceable payments. In Proceedings on

Advances in cryptology CRYPTO ’82 (1982), pp. 199–203.

[19] CHAUM, D. Blind signature system. In Proceedings on Advances in cryptology

CRYPTO ’83 (1983), p. 153.

[20] CHAUM, D., FIAT, A., AND NAOR, M. Untraceable electronic cash. In

Proceedings on Advances in cryptology CRYPTO ’88 (New York, NY, USA, 1990),

Springer-Verlag New York, Inc., pp. 319–327.

[21] CHAUM, D. L. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[22] CHEBOTKO, A., CHANG, S., LU, S., FOTOUHI, F., AND YANG, P. Scientific

workflow provenance querying with security views. In Proceedings of the

International Conference on Web-Age Information Management (Los Alamitos,

CA, USA, 2008), IEEE Computer Society, pp. 349–356.

[23] CORON, J.-S., JOYE, M., NACCACHE, D., AND PAILLIER, P. Universal

padding schemes for RSA. In Proceedings of the 22nd Annual International

Cryptology Conference on Advances in Cryptology (London, UK, UK, 2002),

CRYPTO ’02, Springer-Verlag, pp. 226–241.

[24] COX, I. J., KILIAN, J., LEIGHTON, F. T., AND SHAMOON, T. A secure, robust

watermark for multimedia. In Proceedings of the First International Workshop

on Information Hiding (London, UK, 1996), Springer-Verlag, pp. 185–206.

[25] CRAMER, R., AND SHOUP, V. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In Proceedings of the 18th

Annual International Cryptology Conference on Advances in Cryptology (London,

UK, 1998), Springer-Verlag, pp. 13–25.

[26] D., G., A., L., AND W., B. Fine-grained tracking of grid infections. In

Proceedings of the First International Workshop on Information Hiding (1996),

pp. 295–316.

[27] DESMEDT, Y., AND FRANKEL, Y. Shared generation of authenticators and

signatures (extended abstract). In Proceedings of the 11th Annual International

Cryptology Conference on Advances in Cryptology (London, UK, 1992), CRYPTO

’91, Springer-Verlag, pp. 457–469.

188 REFERENCES

[28] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The second-

generation onion router. In In Proceedings of the 13th USENIX Security

Symposium (2004), pp. 303–320.

[29] DINH, T. T. A., AND RYAN, M. Verifying security property of peer-to-peer

systems using csp. In Proceedings of the 15th European conference on Research

in computer security (Berlin, Heidelberg, 2010), ESORICS’10, Springer-Verlag,

pp. 319–339.

[30] DOLEV, D., AND YAO, A. C. On the security of public key protocols.

Proceedings of the Annual IEEE Symposium on Foundations of Computer Science

0 (1981), 350–357.

[31] DURFEE, G., AND FRANKLIN, M. Distribution chain security. In Proceedings

of the 7th ACM conference on Computer and communications security CCS ’00

(New York, NY, USA, 2000), ACM, pp. 63–70.

[32] EASTLAKE, D., AND JONES, P. RFC 3174: US secure hash algorithm 1

(SHA1), September 2001.

[33] FORMAL SYSTEMS (EUROPE) LTD. Fdr2 user manual.

http://www.fsel.com/documentation/

fdr2/html/index.html.

[34] FOSTER, I., VOCKLER, J., WILDE, M., AND ZHAO, Y. Chimera: a virtual

data system for representing, querying, and automating data derivation.

In Proceedings of the 14th International Conference on Scientific and Statistical

Database Management (2002), pp. 37 – 46.

[35] FUJISAKI, E., AND OKAMOTO, T. How to enhance the security of public-

key encryption at minimum cost. In Proceedings of the Second International

Workshop on Practice and Theory in Public Key Cryptography (London, UK,

1999), PKC ’99, Springer-Verlag, pp. 53–68.

[36] FUJISAKI, E., OKAMOTO, T., POINTCHEVAL, D., AND STERN, J. RSA-OAEP

is secure under the rsa assumption. Journal of Cryptology 17 (March 2004),

81–104.

[37] GAMAL, T. E. A public key cryptosystem and a signature scheme based

on discrete logarithms. In Proceedings on Advances in cryptology CRYPTO 84

(New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 10–18.

REFERENCES 189

[38] GEHANI, A., BAIG, B., MAHMOOD, S., TARIQ, D., AND ZAFFAR, F. Fine-

grained tracking of grid infections. In Proceedings of the 11th IEEE/ACM

International Conference on Grid Computing (GRID), 2010 (oct. 2010), pp. 73

–80.

[39] GROTH, P., MILES, S., AND MOREAU, L. A model of process documentation

to determine provenance in mash-ups. ACM Trans. Internet Technol. 9

(February 2009), 3:1–3:31.

[40] GROTH, P., AND MOREAU, L. Representing distributed systems using the

open provenance model. Future Gener. Comput. Syst. 27 (June 2011), 757–765.

[41] HAMM, S., AND TUCKER, M. How secure is your domain? Business Week

(March 2007).

[42] HARTUNG, F., AND GIROD, B. Watermarking of uncompressed and

compressed video. Signal Process. 66 (May 1998), 283–301.

[43] HASAN, R., SION, R., AND WINSLETT, M. The case of the fake Picasso:

preventing history forgery with secure provenance. In Proccedings of the 7th

conference on File and storage technologies (Berkeley, CA, USA, 2009), USENIX

Association, pp. 1–14.

[44] HASAN, R., SION, R., AND WINSLETT, M. Preventing history forgery with

secure provenance. Trans. Storage 5 (December 2009), 12:1–12:43.

[45] HENRY, R., HENRY, K., AND GOLDBERG, I. Making a nymbler nymble using

verbs. In Proceedings of the 10th international conference on Privacy enhancing

technologies (Berlin, Heidelberg, 2010), PETS’10, Springer-Verlag, pp. 111–

129.

[46] HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21,

8 (1978), 666–677.

[47] HSU, C.-L., WU, T.-S., AND WU, T.-C. Improvements of generalization

of threshold signature and authenticated encryption for group communica-

tions. Inf. Process. Lett. 81, 1 (2002), 41–45.

[48] HUI, M. L., AND LOWE, G. Safe simplifying transformations for security

protocols or not just the Needham Schroeder public key protocol. In Proceed-

190 REFERENCES

ings of the 12th IEEE workshop on Computer Security Foundations (Washington,

DC, USA, 1999), CSFW ’99, IEEE Computer Society, pp. 32–77.

[49] ICANN. Attention registrants: Registerfly pending termination. http://

www.icann.org/en/announcements/announcement-registerfly.

htm.

[50] ISO. Information technology - security techniques. http://standards.

iso.org/ittf/PubliclyAvailableStandards/index.html.

[51] ISO 21000-3:2003. Information Technology - Multimedia Framework (MPEG-

21) - Part 3: Digital Item Identification. ISO, Geneva, Switzerland.

[52] ISO 21000-5:2004. Information Technology - Multimedia Framework (MPEG-

21) - Part 5: Rights Expression Language. ISO, Geneva, Switzerland.

[53] LANTER, D. P. Design of a lineage-based meta-data base for gis. Cartography

And Geographic Information Systems 18, 4 (1991), 255–261.

[54] LEE, W.-B., AND CHANG, C.-C. (t, n) threshold digital signature with

traceability property. J. Inf. Sci. Eng. (1999), 669–678.

[55] LOWE, G. Breaking and fixing the Needham-Schroeder public-key protocol

using fdr. In Proceedings of the Second International Workshop on Tools and

Algorithms for Construction and Analysis of Systems (London, UK, 1996),

Springer-Verlag, pp. 147–166.

[56] LOWE, G. Casper: a compiler for the analysis of security protocols. J. Comput.

Secur. 6, 1-2 (1998), 53–84.

[57] LOWE, G., AND ROSCOE, B. Using CSP to detect errors in the TMN protocol.

IEEE Trans. Softw. Eng. 23 (October 1997), 659–669.

[58] MANUEL, C., TSUTOMU, M., AND HIDEKI, I. Efficient and secure multi-

party generation of digital signatures based on discrete logarithms (special

section on discrete mathematics and its applications). IEICE transactions on

fundamentals of electronics, communications and computer sciences 76, 4 (1993-04-

25), 532–545.

[59] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL, Y., GROTH,

P., KWASNIKOWSKA, N., MILES, S., MISSIER, P., MYERS, J., PLALE, B.,

REFERENCES 191

SIMMHAN, Y., STEPHAN, E., AND DEN BUSSCHE, J. V. The Open Prove-

nance Model core specification (v1.1). Future Generation Computer Systems

(July 2010).

[60] MORI, R., AND KAWAHARA, M. Superdistribution: An electronic infrastruc-

ture for the economy of the future. Transactions of the Information Processing

Society of Japan 38, 7 (1997), 1465–1472.

[61] NAIR, S. K., GERRITS, R., CRISPO, B., AND TANENBAUM, A. S. Turning

teenagers into stores. Computer 41, 2 (2008), 58–62.

[62] NAIR, S. K., POPESCU, B. C., GAMAGE, C., CRISPO, B., AND TANENBAUM,

A. S. Enabling DRM-preserving digital content redistribution. In Proceedings

of the Seventh IEEE International Conference on E-Commerce Technology CEC ’05

(Washington, DC, USA, 2005), IEEE Computer Society, pp. 151–158.

[63] NIST COMPUTER SECURITY DIVISION. Federal information processing

standards 186-3. Tech. rep., NIST Computer Security Division, July 2009.

[64] NUTZEL, J., AND GRIMM, R. Potato system and signed media format -

an alternative approach to online music business. Proceedings of the 3rd

International Conference on Web Delivering of Music WEDELMUSIC’03 (Sept.

2003), 23–26.

[65] ODRL INITIATIVE. ODRL v2.0 - core specification, February 2011. http:

//odrl.net/2.0/DS-ODRL-Model.html.

[66] OPEN MOBILE ALLIANCE. DRM architecture OMA. Tech. rep., Open Mobile

Allicance, 2008.

[67] P1817, I. W. G. Initial technical description of the p1817 standard. Tech.

rep., IEEE, 2010.

[68] PALMER, B., BUBENDORFER, K., AND WELCH, I. A protocol for anony-

mously establishing digital provenance in reseller chains. In to appear

Proceedings of the 15th International Financial Cryptography Conference (FC-

2011) (Jan 2011).

[69] PALMER, B., BUBENDORFER, K., AND WELCH, I. Verifying digital prove-

nance in web services. In to appear Proceedings of the 4th International

192 REFERENCES

IEEE/ACM Conference on Utility and Cloud Computing. Cloud Service Security

and Quality Management Workshop (Dec 2011).

[70] PARK, C., AND KUROSAWA, K. New El-Gamal type threshold digital signa-

ture scheme. IEICE transactions on fundamentals of electronics, communications

and computer sciences 79, 1 (January 1996), 86–93.

[71] PATSAKIS, C., AND ALEXANDRIS, N. Multimedia information security. In

Multimedia Services in Intelligent Environments, G. Tsihrintzis and L. Jain, Eds.,

vol. 120 of Studies in Computational Intelligence. Springer Berlin / Heidelberg,

2008, pp. 257–273.

[72] PFITZMANN, A., AND KÖHNTOPP, M. Anonymity, unobservability, and

pseudeonymity — a proposal for terminology. In International workshop on

Designing privacy enhancing technologies (New York, NY, USA, 2001), Springer-

Verlag New York, Inc., pp. 1–9.

[73] POINTCHEVAL, D. Chosen-ciphertext security for any one-way cryptosys-

tem. In Proceedings of the 3rd International Workshop on Practice and Theory

in Public Key Cryptography, PKC 2000, Melbourne, Victoria, Australia, January

18-20, 2000 (2000), pp. 129–146.

[74] POINTCHEVAL, D., AND STERN, J. Security proofs for signature schemes.

In Proceedings of the workshop on the theory and application of cryptographic

techniques on Advances in cryptology EUROCRYPT ’96 (1996), Springer-Verlag,

pp. 387–398.

[75] POTATO SYSTEM. Potato system - about us, 2010. http://www.

potatosystem.com/info/en/imprint.

[76] RIVEST, R. RFC 1321: The MD5 message-digest algorithm, April 1992.

[77] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining dig-

ital signatures and public-key cryptosystems. Commun. ACM 21 (February

1978), 120–126.

[78] ROSCOE, A. W. Model-checking CSP. In A classical mind: essays in honour of

C. A. R. Hoare. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK,

1994, pp. 353–378.

REFERENCES 193

[79] ROSCOE, A. W. CSP and determinism in security modelling. In Proceedings

of the 1995 IEEE Symposium on Security and Privacy (Washington, DC, USA,

1995), SP ’95, IEEE Computer Society, pp. 114–.

[80] RSA LABORATORIES. Public-key cryptography standards (PKCS): RSA

cryptography specification version 2.1. Tech. rep., RSA Laboratories, June

2002.

[81] RYAN, P., AND SCHNEIDER, S. The modelling and analysis of security protocols:

the csp approach, first ed. Addison-Wesley Professional, 2000.

[82] SCHMIDT, A. U. On the superdistribution of digital goods. Invited paper

at the 2008 International Workshop on Multimedia Security in Communication

(MUSIC’08) (2008).

[83] SCHNORR, C. P. Efficient identification and signatures for smart cards.

In Proceedings of the workshop on the theory and application of cryptographic

techniques on Advances in cryptology EUROCRYPT ’89 (New York, NY, USA,

1990), Springer-Verlag New York, Inc., pp. 688–689.

[84] SEITZ, J. Digital Watermarking For Digital Media. Information Resources Press,

Arlington, VA, USA, 2005.

[85] SERBAN, C., CHEN, Y., ZHANG, W., AND MINSKY, N. The concept

of decentralized and secure electronic marketplace. Electronic Commerce

Research 8, 1-2 (2008), 79–101.

[86] SHOUP, V. Oaep reconsidered. In Proceedings of the 21st Annual International

Cryptology Conference on Advances in Cryptology (London, UK, 2001), CRYPTO

’01, Springer-Verlag, pp. 239–259.

[87] STEVENS, R., ROBINSON, A., AND GOBLE, C. mygrid: personalised

bioinformatics on the information grid. Bioinformatics 19 Suppl 1 (2003), i302–

4.

[88] SYVERSON, P. F., GOLDSCHLAG, D. M., AND REED, M. G. Anonymous

connections and onion routing. In Proceedings of the 1997 IEEE Symposium

on Security and Privacy SP ’97 (Washington, DC, USA, 1997), IEEE Computer

Society, pp. 44–56.

194 REFERENCES

[89] TAN, V., GROTH, P. T., MILES, S., JIANG, S., MUNROE, S., TSASAKOU, S.,

AND MOREAU, L. Security issues in a SOA-based provenance system. In

IPAW (2006), pp. 203–211.

[90] VAN SCHYNDEL, R. G., TIRKEL, A. Z., AND OSBORNE, C. F. A digital

watermark. In Proceedings of the International Conference on Image Processing

1994 (1994), vol. 2, pp. 86–90.

[91] WOODRUFF, A., AND STONEBRAKER, M. Supporting fine-grained data

lineage in a database visualization environment. In Proceedings of the

Thirteenth International Conference on Data Engineering (Washington, DC, USA,

1997), ICDE ’97, IEEE Computer Society, pp. 91–102.

[92] ZHAO, J., GOBLE, C., STEVENS, R., AND BECHHOFER, S. Semantically link-

ing and browsing provenance logs for e-science. In Semantics of a Networked

World, M. Bouzeghoub, C. Goble, V. Kashyap, and S. Spaccapietra, Eds.,

vol. 3226 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

2004, pp. 158–176.

