
Genetic Programming for

Classification with

Unbalanced Data

by

Urvesh Bhowan

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2012

Abstract

In classification, machine learning algorithms can suffer a performance bias when

data sets are unbalanced. Binary data sets are unbalanced when one class is

represented by only a small number of training examples (called the minority

class), while the other class makes up the rest (majority class). In this scenario,

the induced classifiers typically have high accuracy on the majority class but

poor accuracy on the minority class. As the minority class typically represents

the main class-of-interest in many real-world problems, accurately classifying

examples from this class can be at least as important as, and in some cases more

important than, accurately classifying examples from the majority class.

Genetic Programming (GP) is a promising machine learning technique based

on the principles of Darwinian evolution to automatically evolve computer

programs to solve problems. While GP has shown much success in evolving

reliable and accurate classifiers for typical classification tasks with balanced data,

GP, like many other learning algorithms, can evolve biased classifiers when data

is unbalanced. This is because traditional training criteria such as the overall

success rate in the fitness function in GP, can be influenced by the larger number

of examples from the majority class.

This thesis proposes a GP approach to classification with unbalanced data.

The goal is to develop new internal cost-adjustment techniques in GP to improve

classification performances on both the minority class and the majority class. By

focusing on internal cost-adjustment within GP rather than the traditional data-

balancing techniques, the unbalanced data can be used directly or “as is” in the

learning process. This removes any dependence on a sampling algorithm to first

artificially re-balance the input data prior to the learning process.

This thesis shows that by developing a number of new methods in GP,

genetic program classifiers with good classification ability on the minority and

the majority classes can be evolved. This thesis evaluates these methods on a

range of binary benchmark classification tasks with unbalanced data.

This thesis demonstrates that unlike tasks with multiple balanced classes

where some dynamic (non-static) classification strategies perform significantly

better than the simple static classification strategy, either a static or dynamic

strategy shows no significant difference in the performance of evolved GP

classifiers on these binary tasks. For this reason, the rest of the thesis uses this

static classification strategy.

This thesis proposes several new fitness functions in GP to perform cost

adjustment between the minority and the majority classes, allowing the unbal-

anced data sets to be used directly in the learning process without sampling.

Using the Area under the Receiver Operating Characteristics (ROC) curve (also

known as the AUC) to measure how well a classifier performs on the minority

and majority classes, these new fitness functions find genetic program classifiers

with high AUC on the tasks on both classes, and with fast GP training times.

These GP methods outperform two popular learning algorithms, namely, Naive

Bayes and Support Vector Machines on the tasks, particularly when the level

of class imbalance is large, where both algorithms show biased classification

performances.

This thesis also proposes a multi-objective GP (MOGP) approach which treats

the accuracies of the minority and majority classes separately in the learning

process. The MOGP approach evolves a good set of trade-off solutions (a Pareto

front) in a single run that perform as well as, and in some cases better than,

multiple runs of canonical single-objective GP (SGP). In SGP, individual genetic

program solutions capture the performance trade-off between the two objectives

(minority and majority class accuracy) using an ROC curve; whereas in MOGP,

this requirement is delegated to multiple genetic program solutions along the

Pareto front.

This thesis also shows how multiple Pareto front classifiers can be combined

into an ensemble where individual members vote on the class label. Two

ensemble diversity measures are developed in the fitness functions which treat

the diversity on both the minority and the majority classes as equally important;

otherwise, these measures risk being biased toward the majority class. The

evolved ensembles outperform their individual members on the tasks due to

good cooperation between members.

This thesis further improves the ensemble performances by developing a GP

approach to ensemble selection, to quickly find small groups of individuals that

cooperate very well together in the ensemble. The pruned ensembles use much

fewer individuals to achieve performances that are as good as larger (unpruned)

ensembles, particularly on tasks with high levels of class imbalance, thereby

reducing the total time to evaluate the ensemble.

Publications Produced

The following fully-referred papers were published during this Ph.D.

1. Urvesh Bhowan, Mark Johnston, Mengjie Zhang, Xin Yao. “Evolving

Diverse Ensembles using Genetic Programming for Classification with

Unbalanced Data”. IEEE Transactions on Evolutionary Computation (Accepted

April 2012).

2. Urvesh Bhowan, Mark Johnston, Mengjie Zhang. “Developing New Fitness

Functions in Genetic Programming for Classification with Unbalanced

Data”. IEEE Transactions on Systems, Man, and Cybernetics (Part B), volume

42, issue 2. 2011. pp 406–421.

3. Urvesh Bhowan, Mengjie Zhang and Mark Johnston. “Ensemble Learning

and Pruning in Multi-Objective Genetic Programming for Classification

with Unbalanced Data”. Proceedings of the 24th Australasian Joint Conference

on Artificial Intelligence (AI 2011). Lecture Notes in Artificial Intelligence. Vol.

7106. Springer. Perth, Australia, December, 2011. pp. 192–202.

4. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “Evolving Ensembles in

Multi-objective Genetic Programming for Classification with Unbalanced

Data”. Proceeding of the Genetic and Evolutionary Computation Conference

(GECCO 2011). ACM Press. Dublin, Ireland. 2011. pp. 1331–1338.

5. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “A Comparison of

Classification Strategies in Genetic Programming with Unbalanced Data”.

Proceedings of the 23rd Australasian Joint Conference on Artificial Intelligence.

AI 2010: Advances in Artificial Intelligence. Lecture Notes in Artificial

Intelligence. Vol. 6464. Springer. Adelaide, Australia, 2010. pp. 243–252.

(Nominated for the Best Student Paper award)

6. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “AUC Analysis of the

Pareto-Front using Multi-objective GP for Classification with Unbalanced

iii

iv

Data”. Proceedings of the 2010 Genetic and Evolutionary Computation Confer-

ence (GECCO 2010). ACM Press. Portland, USA. 2010. pp.845–852.

7. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “Genetic Programming

for Classification with Unbalanced Data”. Proceedings of the 13th European

Conference on Genetic Programming (EuroGP 2010). Lecture Notes in Com-

puter Science, Vol. 6021. Springer. Istanbul, Turkey. 2010. pp. 1–13.

8. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “Multi-Objective Genetic

Programming for Classification with Unbalanced Data”. Proceedings of the

22nd Australasian Joint Conference on Artificial Intelligence (AI 2009). Lecture

Notes in Artificial Intelligence. Vol. 5866, Springer. Melbourne, Australia.

2009. pp. 370–380.

9. Urvesh Bhowan, Mengjie Zhang, Mark Johnston. “Genetic Programming

for Image Classification with Unbalanced Data”. Proceeding of the 24th

International Conference on Image and Vision Computing New Zealand. IEEE

Press. Wellington, NZ. 2009. pp. 316–321.

10. Urvesh Bhowan, Mark Johnston, and Mengjie Zhang. “Differentiating

Between Individual Class Performance in Genetic Programming Fitness for

Classification with Unbalanced Data”. Proceedings of the 2009 IEEE Congress

on Evolutionary Computation (CEC 2009). IEEE Press. Trondheim, Norway.

2009. pp. 2802–2809.

Acknowledgments

I would like to thank my supervisors, Dr Mengjie Zhang and Dr Mark Johnston,

for their guidance and constant encouragement over the past three years, and

constructive feedback in writing this thesis and the articles that came before it.

Thank you to Dr Mengjie Zhang, the Marsden Fund of New Zealand (under

contract number VUW0806), and the BuildIT PhD Scholarship, for the financial

assistance over the past 3 years.

Thank you to the rest of the Evolutionary Computation Research Group, in

particular Dr Kourosh Neshatian, for the many lively and interesting discussions.

Thank you to my Dad for his encouragement. And most of all, thank you to

Niamh (and Murdoch) for the support you’ve given me these three long years.

At times it has been difficult but you have always brought me through it with

your encouragement, love and support.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research goals . 4

1.3 Major Contributions . 5

1.4 Organisation of Thesis . 7

1.5 Benchmark Tasks with Unbalanced Data 9

2 Literature Review 11

2.1 Machine Learning . 11

2.1.1 Classification . 12

2.1.2 Class Imbalance Learning . 14

2.1.3 Evaluating Classifier Performance 15

2.2 Evolutionary Computation . 18

2.2.1 Evolutionary Algorithms . 18

2.2.2 Swarm Intelligence . 21

2.3 Genetic Programming . 21

2.3.1 Overview of Evolutionary Search Process 22

2.3.2 Representation . 22

2.3.3 Creating Programs . 23

2.3.4 Genetic Operators . 23

2.3.5 Fitness and Selection . 25

2.4 Evolutionary Multi-objective Optimisation 25

2.4.1 Learning with Multiple Objectives 26

2.4.2 EMO Search Algorithms . 28

2.4.3 EMO Fitness . 29

2.4.4 Evaluating Pareto Fronts in EMO 30

2.5 Related Work: EAs for Classification (with Balanced Data) 32

2.5.1 GP for Classification . 32

2.5.2 EMO for Classification . 36

vii

viii CONTENTS

2.5.3 Related Aspects in Ensemble Learning 40

2.6 Related Work: Classification with Unbalanced Data 42

2.6.1 External Data-Balancing Approaches 42

2.6.2 Internal Cost Adjustment . 44

2.6.3 Theoretical Analysis in Class Imbalance Tasks 47

2.6.4 Ensemble Methods . 48

2.7 Summary . 51

2.7.1 Next Chapter . 51

3 GP Approach for Classification 53

3.1 Introduction . 53

3.1.1 Classification Strategies . 54

3.1.2 Chapter Goals . 55

3.2 GP Approach to Classification . 55

3.2.1 GP Representation . 55

3.2.2 Classification Strategies in GP 56

3.2.3 Non-static Classification Strategies 58

3.3 Fitness Functions in GP . 61

3.3.1 Overall Accuracy in Fitness 61

3.3.2 Average Class Accuracy in Fitness 62

3.3.3 Area under the ROC curve 63

3.4 GP Experimental Results . 66

3.4.1 Evolutionary Parameters . 66

3.4.2 Comparing Classification Strategies 67

3.4.3 Comparing Fitness Functions with ZT Strategy 69

3.5 Summary . 73

3.5.1 Static Classification Strategy in GP 73

3.5.2 AUC is a Good Measure . 73

3.5.3 Limitations of the Fitness Functions 74

4 Developing New GP Fitness Functions 75

4.1 Introduction . 75

4.1.1 Chapter goals . 77

4.2 Current Approaches in Fitness . 77

4.2.1 GP Framework . 77

4.2.2 Baseline GP Fitness Functions 78

4.3 New Fitness Functions . 81

4.3.1 Improving the Average-Based Measure 81

CONTENTS ix

4.3.2 New Separability-based Measures in Fitness 86

4.4 Experimental Setup . 89

4.4.1 GP Evolutionary Parameters 89

4.4.2 Statistical Significance Testing of the AUC 90

4.4.3 Significance Ranking using S-rank 91

4.5 Experimental Results . 93

4.5.1 AUC of Fitness Functions . 93

4.5.2 Overall AUC Behaviour . 97

4.5.3 Typical GP ROC Curves . 99

4.5.4 Naive Bayes and Support Vector Machines 100

4.6 Results for Weighted-Average Fitness Function 103

4.6.1 Analysis of Results . 105

4.7 Evolved GP Programs . 106

4.7.1 Programs with high AUC . 107

4.7.2 Programs with Average AUC 109

4.7.3 Trends . 109

4.8 Summary . 110

4.8.1 AUC of Fitness Functions . 110

4.8.2 AUC of Wave Frontier . 111

4.8.3 Multi-Objective GP . 112

5 Multi-objective GP Approach 113

5.1 Introduction . 113

5.1.1 Fitness in MOGP . 114

5.1.2 Chapter Goals . 115

5.2 Multi-objective GP Approach . 115

5.2.1 MOGP Fitness . 116

5.2.2 MOGP Search Algorithm . 119

5.3 Performance of Evolved Pareto Fronts in MOGP 120

5.3.1 MOGP Setup and Evolutionary Parameters 120

5.3.2 Evaluating the Performance of the MOGP Fronts 121

5.3.3 MOGP Hyperarea . 122

5.3.4 MOGP and Canonical SGP 124

5.3.5 Overall Pareto Front Behaviour 126

5.4 AUC Analysis of the Pareto front in MOGP 129

5.4.1 Pareto front Solutions with Different Models 129

5.4.2 Pareto front AUC in Regions of Objective-Space 132

x CONTENTS

5.4.3 AUC of MOGP and SGP Solutions 136

5.5 Summary and Discussions . 137

5.5.1 Pareto Dominance Measures in MOGP 138

5.5.2 AUC of Pareto Front Solutions in MOGP 138

5.5.3 MOGP for Ensemble Learning 139

6 MOGP for Ensemble Learning 141

6.1 Introduction . 141

6.1.1 Diversity Between Individuals 142

6.1.2 Ensemble Combination and Selection Strategies 143

6.1.3 Goals . 144

6.2 MOGP Approaches for Ensemble Learning 145

6.2.1 Underlying MOGP Approach 145

6.2.2 Diversity in MOGP Fitness 145

6.2.3 Negative Correlation Learning (NCL) 146

6.2.4 Pairwise Failure Crediting (PFC) 149

6.3 Ensemble Combination and Selection 152

6.3.1 Majority Voting . 152

6.3.2 Fitness-Weighted Majority Voting 152

6.3.3 Accuracy-based Ensemble Selection 153

6.3.4 Off-EEL for Ensemble Selection 153

6.4 Evaluation of Diversity Measures in MOGP 154

6.4.1 MOGP Setup and Evolutionary Parameters 154

6.4.2 MOGP Pareto Front Hyperarea 154

6.5 MOGP Ensemble Classification Results 157

6.5.1 Voting Accuracy for the Pareto Front Ensemble 157

6.5.2 Ensemble Selection . 160

6.5.3 Cooperation of Ensemble Members 163

6.6 Counting Ensemble “Wins” . 166

6.6.1 Wins for Diversity Measure in MOGP 167

6.6.2 Wins for Ensemble Combination Strategies in MOGP 170

6.7 Comparison with SGP, NB and SVM 171

6.7.1 Experimental Setup for SGP, NB and SVM 171

6.7.2 Classification Results . 172

6.8 Evolved MOGP Programs . 175

6.8.1 Evolved Program with Perfect Accuracy 175

6.8.2 Good Programs for the Ensemble 176

CONTENTS xi

6.8.3 Trends . 177

6.9 Summary . 178

6.9.1 Ensemble Combination and Selection 179

6.9.2 Ensemble Diversity in MOGP Fitness 179

6.9.3 Comparison with SGP, SVM and NB 180

6.9.4 Ensemble Optimisation . 180

7 Composite Solutions for Ensemble Selection 181

7.1 Introduction . 181

7.1.1 Ensemble Optimisation . 182

7.1.2 Composite Genetic Program Solutions 183

7.1.3 Chapter Goals . 184

7.2 Composite Solutions . 184

7.2.1 Ensemble Selection as a Combinatorial Optimisation Problem184

7.2.2 Composite Trees for Ensemble Selection 186

7.2.3 Structure of Composite Solutions 187

7.2.4 Functions in Composite Trees 189

7.3 Experimental Setup for Composite Solutions 192

7.3.1 Underlying MOGP Base Classifiers 192

7.3.2 Evolutionary Parameters . 192

7.3.3 Training Sets for Composite Solutions 194

7.4 Experimental Results for Composite Solutions 195

7.4.1 Ensemble Accuracy for Composite Solutions 196

7.4.2 Comparison with Off-EEL for Ensemble Selection 197

7.4.3 Training Performances for Composite Solutions 200

7.4.4 “Validation” Set in Composite Solution Training 201

7.5 Summary . 204

7.5.1 Composite Voting and Logic Solutions 205

7.5.2 Evolving Composite Solutions 205

8 Conclusions 207

8.1 Achieved Objectives . 207

8.2 Main Conclusions . 208

8.2.1 GP for AUC Optimisation . 208

8.2.2 MOGP for Evolving Pareto Fronts 210

8.2.3 MOGP for Ensemble Learning 211

8.2.4 Composite Solutions for Ensemble Selection 212

8.3 Discussions . 213

xii CONTENTS

8.3.1 No “Best” Fitness Function in GP 214

8.3.2 AUC in GP . 214

8.3.3 MOGP vs Canonical GP . 215

8.3.4 Data Mining, Machine Learning and GP 216

8.4 Future Work . 216

8.4.1 Classification with Multiple-classes. 216

8.4.2 Canonical SGP . 218

8.4.3 MOGP . 218

8.4.4 Ensemble Learning in GP . 219

8.4.5 GP in General . 221

A Benchmark Classification Data Sets 241

B Additional Material 243

B.1 Attainment Function in Attainment Surfaces 243

B.1.1 Attainment Function . 244

B.1.2 Attainment sets . 245

B.2 Additional Experimental Results . 245

B.2.1 Configuration of Corr and Dist (Chapter 4) 245

B.2.2 Weighting Coefficients in PFC Fitness (Chapter 6) 246

List of Tables

1.1 Unbalanced classification tasks used in the experiments in the thesis. 9

2.1 Outcomes of a two-class classification problem. 16

3.1 Outcomes of a two-class classification problem. 62

3.2 Average AUC (± standard deviation) of evolved classifiers using a

fixed zero-threshold (ZT) and non-static threshold (NST) classifica-

tion strategies (statistically significantly better AUC highlighted in

bold) over 50 GP runs. 68

3.3 Full classification results using the fitness functions (for the ZT

classification strategy) over 50 GP runs. 70

4.1 Outcomes of a two-class classification problem. 78

4.2 Minority and majority class accuracies of three solutions, and the

corresponding AveM fitness values. 79

4.3 Minority and majority class accuracies, and corresponding fitness

values for Ave, AveM and Bands for four solutions. 86

4.4 Full classification results of the GP fitness functions for the tasks.

The SR denotes the significance rank (s-rank) of a fitness function

and beats denotes other s-rank(s) with a (statistically) significantly

poorer AUC. 94

4.5 Total number and percentage of first, second and third place AUC

positions on a run-by-run basis over 50 GP runs and six tasks (300

total runs). 98

4.6 AUC and training time for a single run using Naive Bayes (NB)

and Support Vector Machines (SVM) on the tasks. 101

4.7 Average (± standard deviation) AUC for weighted-average fitness

function Ave (Eq. 4.2) on the tasks. The SR denotes the significance

rank (s-rank) for a weight value and beats denotes other s-rank(s)

with a (statistically) significantly poorer AUC. 104

xiii

xiv LIST OF TABLES

5.1 Average (± standard deviation) hyperarea of evolved Pareto-

approximated fronts, Pareto optimal (PO) front, and training times

(seconds ’s’ or minutes ’m’) for the MOGP approaches over 50

runs. The (statistically) significantly better average hyperarea is

highlighted in bold, and the higher PO front hyperarea is underlined.122

5.2 The average number of Pareto front solutions that produce distinct

points in objective-space (test set), and the number of Pareto front

solutions with different internal models (different AUC) over 50

runs for the MOGP approaches. 131

5.3 Average AUC (± standard deviation) of the Pareto front solutions

in four regions of objective-space (from Figure 5.8), and the percent-

age of solutions in a given region (over all Pareto front of solutions

from 50 runs) for NSGAII and SPEA2 on the tasks. Significantly

better AUC between NSGAII and SPEA2 is highlighted in bold. . . 134

6.1 Average (± standard deviation) hyperarea of evolved Pareto-

approximated fronts, and hyperarea of the Pareto-optimal (PO)

front for the three MOGP approaches (Baseline, NCL and PFC)

over 50 runs. The pairs of hyperarea results in bold or italics denote

that these two approaches achieve a statistically significantly better

hyperarea than the remaining approach (but not each other). The

highest PO front hyperarea from all three approaches is underlined. 155

6.2 Average training times for the three MOGP approaches in seconds

(s) or minutes (m) over 50 runs. 156

6.3 Average accuracy (± standard deviation) on the test set and

ensembles size for the Pareto Front ensemble using the majority

vote (PF-vote) and fitness-weighted vote (PF-Wvote) over 50 runs. 158

6.4 Average accuracies (± standard deviation) on the test set and en-

sembles sizes using RPF-vote and off-EEL [76] ensemble selection

strategies (50 runs). 161

6.5 ”Win” pairs between two MOGP approaches (on a run-by-run

basis) over 50 runs for two ensemble combination strategies (PF-

Wvote and off-EEL). Total wins (and draws) is the sum of wins

(and draws) over all runs and tasks (50 runs× 6 tasks). Bold results

indicate a statistically significantly better ensemble performance

(95% significance level). 168

LIST OF TABLES xv

6.6 ”Win” pairs between the two ensemble combination strategies (PF-

Wvote and off-EEL) for the MOGP approaches (on a run-by-run

basis) over 50 runs. Bold results indicate a statistically significantly

better ensemble performance (95% significance level) over 50 runs. 170

6.7 Average accuracies (± standard deviation) using canonical single-

objective GP (SGP) on the test set with three fitness functions (Acc,

Ave and Auc) over 50 SGP runs, and a single run of NB and SVM

on the tasks. 173

6.8 Average accuracies (± standard deviation) on the test set using PF-

Wvote (fitness-weighted majority vote) and off-EEL [76] ensemble

selection strategy for the three MOGP approaches (50 runs). These

are repeated from Tables 6.3 and 6.4. 173

7.1 Ensemble accuracy (± standard deviation) on the test set, and

average ensembles size (minimum ensemble size in parenthesis),

for the CSVote and CSLogic approaches to ensemble selection (over

50 runs) when the maximum composite solution tree depth is 2 and 3.196

7.2 Ensemble accuracy (± standard deviation) on the test set and

average ensembles size using off-EEL [76], CSVote and CSLogic

(maximum tree depth of 2) for ensemble selection (over 50 runs). . 198

7.3 ”Win” pairs between two MOGP approaches (on a run-by-run

basis) over 50 runs for three ensemble selection strategies (CSVote,

CSLogic and off-EEL [76]). A “win” is when one approach

dominates the other on a given run. Total wins (and draws) is

the sum of wins (and draws) over all runs and tasks (50 runs ×
6 tasks). Bold results indicate a statistically significantly better

ensemble performance (95% significance level). 199

7.4 Ensemble performances on the training set (TRAIN50) for the ensem-

ble selection approaches (CSVote, CSLogic and off-EEL [76]) over 50 runs. 201

7.5 Average performances of the CSVote approach trained using VALI-

DATION20, and evaluated on TRAIN40 and TEST40 (over 50 runs). . . . 202

7.6 Off-EEL performances using TRAIN40 to train the base classifiers

and VALIDATION20 to select the best ensemble members, and final

performance on the unseen test sets TEST40 (over 50 runs). 203

B.1 Average AUC (± standard deviation) for fitness functions Corr

and Dist using Ave-based approach for class ordering (W = 2)

over 50 GP runs . 245

xvi LIST OF TABLES

B.2 Ensemble accuracy (± standard deviation) on the test set using

Y values of 0.25, 0.75 and 1 in the fitness function for the PFC

approach (with Off -EEL) over 50 runs. 246

B.3 ”Win” pairs when the current PFC approach (PFC0.5) is compared

to other Y values in the fitness function (PFCY) with Off -EEL (on a

run-by-run basis) over 50 runs. Bold results indicate a statistically

significantly better ensemble performance (95% significance level)

over 50 runs. 247

List of Figures

2.1 An ROC curve where operating points A, B and C represent the

classifier’s performance at three different decision thresholds. . . . 17

2.2 Example of an encoded 8 bit binary chromosome (individual) in GA. 18

2.3 Evolutionary search in GP. 22

2.4 Crossover operator in GP. 24

2.5 Mutation operator in GP. 25

2.6 (a) Different sets of non-dominated solutions returned from four

EMO runs; and (b) the median attainment surface with respect to

50 EMO runs. 32

2.7 Classification strategy in GP. 33

3.1 Distributions of minority and majority class outputs for two GP

solutions (output values along the horizontal axis) and target class

regions. 57

3.2 Distributions of class outputs for a GP solution and φ values of the

outputs Pc,i for the two classes. 60

3.3 (a) Shaded area is the trapezoid fitted under two points on an ROC

curve where w is the width, and h and h′ are heights of the trapezoid. 63

3.4 (a) Numeric outputs of a GP solution when it is evaluated on the

input instances, where + and - denote the positive (minority) class

and negative (majority) class outputs, respectively, and Ti and Tj

are two different class thresholds; (b) an ROC curve with two

points. 64

xvii

xviii LIST OF FIGURES

4.1 Genetic program outputs for two classifiers; X denotes the solu-

tion outputs for seven (minority class) instances where equivalent

X values are stacked above each other. Solid circle shows correctly

predicted clusters of outputs and dotted circle shows incorrect

clusters. Solution (b) is better as it earns 14 rewards while (a) only

earns 10, as (b) has more outputs that lie further away from the

class boundary (0). 84

4.2 Regions of fitness bands (for fitness function Bands) where the

objective-space is divided into a 10×10 grid and each grid square

represent the fitness value for the minority and majority class

accuracy of a solution). 85

4.3 Confidence intervals of the AUC for the different fitness func-

tions for the Ion task. In (a), the interval for Acc is statistically

significantly poorer than Dist and Corr. In (b), the confidence

intervals are labelled with their s-ranks where the legend shows

significantly better s-ranks. 91

4.4 Typical ROC Curves (test set) for the GP fitness functions on four

tasks. The true positive (TP) rate is the minority class accuracy,

and false positive (FP) rate is 1−the majority class accuracy. The

axis scopes are different in each figure. 100

4.5 Minority and majority class accuracies (on the test sets) for weight-

ing coefficient W in fitness function Wave (axis scopes are different

in each figure). 106

4.6 Evolved GP classifier with a high AUC (0.98) on Bal. 107

4.7 Evolved GP classifier with an above average AUC (0.92) on Bal. . . 108

4.8 Evolved GP classifier with a typical AUC of 0.85 on Bal. 109

4.9 Smallest evolved GP classifier with an AUC of 0.84 on Bal. 110

5.1 Pareto-based fitness values for NSGAII and SPEA2 where filled

points are dominated solutions and non-filled points are non-

dominated solutions. 118

5.2 The “crowding” distance used in MOGP. 118

LIST OF FIGURES xix

5.3 Classification performance of evolved solutions using two MOGP

approaches (NSGAII and SPEA2), and canonical SGP using fitness

functions Wave. In Ion, Ped and Yst2 (top row), the average

hyperarea for SPEA2 is statistically better than NSGAII. There is no

significant difference in hyperarea for the remaining tasks (bottom

row). 125

5.4 Accuracy of all Pareto front solutions evolved over 50 runs for the

MOGP approaches on three tasks (Ion, Ped and Yst2). Circle size is

proportional to frequency. 127

5.5 Accuracy of all Pareto front solutions evolved over 50 runs (Ped

task) where circle size is proportional to frequency. 128

5.6 Output values denoted by + and − for the positive and negative

class, respectively, for two solutions (p1 and p2). In (a), p1 and p2

have the same accuracy on the two classes relative to zero as the

class threshold; while in (b), p1 and p2 have different accuracy rates

on the two classes relative to class threshold i. 130

5.7 AUC of all Pareto front solutions evolved over 50 MOGP runs for

NSGAII (top) and SPEA2 (bottom) on two tasks (Ped and Yst1).

Each vertical bar represents a Pareto front solution (on the two

objectives) and the heights of the vertical bars represent the AUC. . 132

5.8 The regions of objective-space. 133

6.1 (a) The (processed) outputs for three solutions and the ensemble

output (E) on the five inputs (incorrect predictions are underlined

assuming that the target class label is 1). (b) The three steps to

calculate the NCL for solution a3 where final NCL value for a3 is

0.15
(∑

step 3
M×Nc

= 2.25
3×5

)

. 148

6.2 Pairwise PFC comparisons between three solutions (a1, a2 and a3)

on five inputs (in the same class). 151

6.3 MOGP ensemble performances on the minority and majority class

(test set) using PF-vote over generations for Baseline and PFC. . . . 159

6.4 MOGP ensemble accuracies (on a run-by-run basis) and median

attainment surface (“average” front performance) for Baseline and

PFC approaches with off-EEL for 50 runs. 165

6.5 Evolved MOGP classifier with 100% accuracy on training and test

set for Bal. 175

6.6 An evolved MOGP ensemble program for Bal. 177

xx LIST OF FIGURES

6.7 (a) Overall structure of two GP trees (for Bal) where � represents

a sub-tree (omitted) and the dashed rectangles (around a given

sub-tree) show where in the overall structure the seven differences

occur; and (b) sub-trees in the second GP tree that are different

from Figure 6.6. 177

6.8 A smaller evolved GP tree (for the Bal task). 178

7.1 Overview of the process for ensemble selection using composite so-

lutions and off-EEL [76] for a given set of base classifiers (evolved

Pareto front from a MOGP run). 186

7.2 Combining a subset of Pareto front solutions (from a given MOGP

run) into a single composite solution. 187

7.3 Raw (real-valued) output values and predicted class labels for five

Pareto front solutions pi (when evaluated on a given input). Raw

outputs are mapped to class labels using zero as the class threshold. 188

7.4 Composite voting solution (CSVote) and evaluation of this CSVote

tree using terminal node values from Figure 7.3 (tree output is the

class label 1 denoting the minority class). 190

7.5 Composite logic solution (CSLogic) and evaluation of this CSLogic

tree using terminal node values from Figure 7.3 (tree output is the

class label 1 denoting the minority class). 191

7.6 Fully formed composite trees of depth 2 and 3. 193

A.1 (a) Example pedestrian (left two) and non-pedestrian image (right

two), and (b) local image regions for extracting pixel statistical

features. 242

Chapter 1

Introduction

Classification is the act of placing an object into a set of classes or categories

based on the object’s properties or features [68]. Given the abundance of

real-world information now being captured and stored digitally, systems that

can automatically search for and identify valid and useful patterns in data for

classification, with as little human intervention as possible, are fast becoming

highly desirable.

However, creating intelligent learning systems that perform classification

reliably and with a sufficient level of accuracy, is difficult. Genetic Programming

(GP) is a machine learning and search technique which has been successful in

building reliable classifiers to solve classification problems [104][62][176]. GP

is an evolutionary learning algorithm which uses the principles of Darwinian

evolution and natural selection to evolve computer programs to solve a particular

problem. In GP, programs representing different solutions to a problem are

combined with other programs to create new, hopefully better, programs over

a number of generations, until an good solution is evolved [104].

In many real-world applications, such as fraud detection [157][67][159], med-

ical diagnosis [80][88], bioinformatics [132], or fault diagnostics [142], it is not

uncommon to have a disproportionate number of training examples in one class

compared to the other class(es). This is known as class imbalance and occurs when

at least one class is represented by only a small number of examples (called the

minority class) while the other class(es) make up the rest (called the majority class)

[38].

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Recent work in the machine learning community has highlighted that the class

imbalance problem represents a major obstacle in classifier learning [38][172][93].

This is due to the performance bias that can occur when an uneven distribution

of class examples is used in the learning process. Here learnt classifiers can

exhibit high accuracy on the majority class(es) but poor accuracy on the important

minority class(es) [141][57][173]. As the minority class usually represents the

main class-of-interest in most real-world classification problems, accurately clas-

sifying examples from this class is at least as important as, and in some scenarios

more important than, accurately classifying examples from the majority class

[67][159][142].

Addressing this learning bias to correctly classify examples from both the

minority and the majority classes equally well has become an important area

of research [38]. Work in this area tends to focus on three main aspects. The

first involves sampling [157][12][11], or transforming [173][85], the original un-

balanced data set to create artificially balanced classes for the training process (so-

called “external” approaches). The second aspect involves various forms of cost

adjustment within the learning algorithm to utilise the original unbalanced data

“as is” in the training process; these are known as “internal” approaches as the

learning algorithm itself is adapted to account for the uneven distribution of class

examples [27][60][34]. The third aspect uses ensemble learning where multiple

trained classifiers are aggregated together to determine the final prediction

[159][164][123]. Ensemble learning uses aspects from both external and internal

approaches to train the individual base classifiers. In bagging and boosting

techniques, the training data is partitioned into smaller, balanced subsets of

class examples using sampling techniques [123][118][170][37]; while in other

ensemble learning approaches, a diversity measure is used in the fitness function

to encourage cooperation between the base classifiers [119][36][3].

While external approaches can be effective, they have major disadvantages.

Sampling can add a computationally expensive overhead to the training process

as, in most cases, this must be applied repeatedly for good coverage. These

techniques can also require a priori expert knowledge about the data [157]. More

importantly, sampling techniques can suffer from poor generalisation as potentially

useful learning examples can be excluded from the learning process, and the

learnt models do not capture the underlying rarities that occur in unbalanced

data sets (as the training set is first artificially re-balanced).

1.1. MOTIVATION 3

Due to these limitations, machine learning practitioners have recently focused

on internal approaches using cost adjustment in the learning algorithm. Common

approaches include using fixed misclassification costs for minority and majority

class examples [88][142], or developing improved training criteria that are sensi-

tive to the unbalanced class distributions (unlike the traditional overall accuracy

measure). Improved training criteria for class imbalance includes the average

classification accuracy of the minority and majority class [107][139][5][116], and

the Area under the Receiver Operating Characteristics (ROC) curve (also known

as the AUC) [27][84][149][90]. ROC curves are a useful technique to capture the

performance trade-off between the minority and majority class accuracies in the

learnt models across varying classification thresholds. In GP specifically, much

work has focused on adapting the fitness function to reward solutions that are

accurate on both the minority and the majority classes [141][57].

While these internal cost-adjustment based approaches can substantially

improve minority class accuracy, there are three main limitations. Firstly,

misclassification costs for incorrect class predictions must usually be determined

a priori, where these costs can be problem-specific and require a lengthy trial-

and-error process to configure [157][88][142]. Secondly, improved performance

metrics in the fitness function (such as the AUC) can substantially increase

training times due to the computational overhead required to calculate these

measures, particularly on large data sets [34][179]. Finally, new fitness functions

can be hand-crafted to suit a particular classification problem, requiring a priori

expert knowledge about the problem domain [157][60]. In this area there is a need

to develop new performance measures in the fitness function which can evolve

solutions with good classification ability on both classes, without incurring a

substantial increase in training times, and which are problem-independent.

Evolutionary multi-objective optimisation (EMO) is a fast-growing area of

research which offers a promising solution to learning with multiple objectives

that are in conflict. Unlike single-predictor classifier induction techniques where

the fittest individual is returned from the training process, in EMO a set (or

Pareto front) of solutions is evolved to capture the performance trade-off between

the different objectives. EMO accomplishes this by treating the objectives

independently in the learning process using the notion of Pareto Dominance

in fitness. Pareto Dominance establishes a ranking of the individuals in the

population according to how well they perform on all the objective with respect

to each other [42][78].

EMO has shown success in three main problem domains in classification:

4 CHAPTER 1. INTRODUCTION

model regularization, ROC optimisation and ensemble learning. The first

two of these problem domains typically involves classification tasks where the

class distributions are assumed to be balanced. In model regularization, the

(overall) accuracy is traded-off against the complexity or size of the learnt models

[70][92][50]; while in ROC optimisation, the true positive and false positive rates

are traded-off each against other [162][108][65].

However, in EMO-based ensemble learning for classification with unbalanced

data, most approaches use neural networks, decision trees or Naive Bayes as

the base classifiers [123][118][170][37], and rely on sampling techniques to re-

balance the training data during fitness evaluation [159][123][170][168]. This

means that most of these works assume that the classes are balanced before the

diversity between the solutions are calculated. A GP-based multi-objective GP

approach where the accuracy of the minority and majority classes are traded-off

against each other in the learning process for cost-adjustment, thereby allowing

the original unbalanced training data to be used “as is” in the learning process

(without sampling), has not previously been explored. In addition, very few

works in this area investigate how to adapt the diversity measures in the fitness

function to account for skewed class distributions [168].

1.2 Research goals

To address these limitations, the overall goal of this thesis is to develop new

internal cost-adjustment techniques in GP for binary classification problems with

unbalanced data. To achieve this goal, two GP approaches are proposed, each

with a specific set of research objectives:

1. Develop new improved fitness functions in canonical single-objective

(“single-predictor”) GP using the ROC curves of the evolved classifiers to

represent the performance trade-off between the minority and the majority

class accuracies.

a) Develop a suitable GP approach and classification strategy for binary

classification tasks with unbalanced data.

b) Develop new, improved performance measures in the fitness function

which account for both the minority and the majority class accuracies

in the evolved classifiers.

1.3. MAJOR CONTRIBUTIONS 5

2. Develop a new GP-based multi-objective approach to representing the per-

formance trade-off between the minority and the majority class accuracies.

a) Develop a multi-objective GP approach to evolving a Pareto front of

genetic program classifiers along the minority and majority class trade-

off frontier using Pareto dominance in the fitness function.

b) Develop an ensemble learning approach to combining Pareto front

classifiers using fitness functions that promote diversity between in-

dividuals equally on both classes.

c) Develop new cooperative classification strategies in the ensemble

using small highly-cooperative groups of individuals.

Focusing on internal cost adjustment using the fitness function allows the

unbalanced data to be used “as is” in the learning process, requiring no external

data-balancing techniques to artificially re-balance the input data prior to the

learning process. This thesis focuses on internal methods due to three important

considerations.

• All learning data is assumed to be useful and should not be excluded from

the learning process (external data-balancing techniques can exclude useful

learning instances in training).

• The GP approaches should be problem-independent and not require any a

priori data-specific or expert knowledge about the input data. This means

that the new methods should work well when the unbalanced data sets are

used directly (or “as is”) in the GP learning process, requiring no prior pre-

processing or transformations for data-balancing.

• Using the unbalanced learning data directly in the training process allows

us to concentrate on the properties established by the new cost adjustment

techniques in the GP algorithm. Thus, any improvements can be attributed

to these properties and not a given sampling policy.

1.3 Major Contributions

This thesis makes the following major contributions.

1. The thesis shows how to address binary classification problems with unbal-

anced data using GP, with particular focus on cost-adjustment within GP

6 CHAPTER 1. INTRODUCTION

rather than the traditional data-balancing techniques. In the GP approach,

this thesis finds that there is no major differences in performance using

the traditional (static) classification strategy and a dynamic (non-static)

classification strategy on these binary class imbalance tasks. This shows

that GP can sufficiently tweak the mathematical expressions representing

the classifiers to “shift” its outputs relative to the fixed class boundary. This

is not the case for multiple-class tasks according the the current literature

which shows that the dynamic strategy outperforms the traditional (static)

classification strategy. Rather, this thesis shows that the configuration of

the fitness function in GP is more important for evolving well-performing

classifiers. These results have been published in [16].

2. This thesis proposes several new measures in the fitness function in GP

to perform cost adjustment between the minority and the majority class

accuracies, allowing the unbalanced data sets to be used directly in the

learning process without first re-balancing the data (via sampling). By

treating these two objectives as equally important in the learning process,

these new measures in GP find classifiers with good classification ability on

both classes (high AUC), which outperform Naive Bayes (NB) and Support

Vector Machines (SVM) on tasks with very high levels of class imbalance.

On these tasks, both NB and SVM methods show very biased classification

results. These results have been published in [13][14][17].

3. This thesis proposes a multi-objective GP (MOGP) approach where the

accuracies of the minority and the majority classes are traded-off against

each other in the learning process. The novelty of this approach is that

a Pareto-based fitness function is used to the treat the unbalanced classes

independently (i.e. as separate objectives) for cost adjustment when the

unbalanced data is used directly in the learning process. This allows

multiple trade-off solutions to be evolved in a single optimisation run,

leaving the final choice for the decision-maker; whereas canonical (single-

objective) GP requires a much longer time to get a reasonable front as the

objective preference is specified a priori. MOGP using the SPEA2 [188]

Pareto dominance algorithm is found to perform as well as, and in some

cases better than, multiple runs of canonical single-objective GP; while

MOGP using the NSGAII [53] algorithm cannot achieve this to a sufficient

level of accuracy. These results have been published in [15][20][21].

4. This thesis shows how to adapt the fitness function in MOGP to promote

1.4. ORGANISATION OF THESIS 7

diversity between individuals and combine Pareto front classifiers into an

ensemble where members vote on the class label. Unlike traditional ensem-

ble learning approaches (where the unbalanced data is first re-balanced via

sampling), the measures are adapted to calculate diversity separately for the

two classes (to account for the unequal classes); otherwise, the diversity

measures risk being biased toward the majority class. When diverse

Pareto front solutions work together to classify the data instances, the

evolved ensembles, in particular MOGP with the pairwise failure crediting

diversity measure, perform better than their individual members, due to

good cooperation between members on the tasks. These results have been

published in [22][19].

5. This thesis shows how GP can be used for ensemble selection (and pruning)

to quickly find diverse subsets of Pareto front individuals that cooperate

well together in the ensemble. To avoid “fine tuning” a large weight

vector (as used in traditional ensemble selection), the new approach evolves

composite GP solutions to represent the (final) ensemble, by combining

multiple Pareto front individuals into a single composite solution. The

main novelties of the new approach include using selection pressure in the

evolution to find small groups of diverse members for the ensemble (by

imposing a size constraint on the GP solutions), and different function sets

to manipulate the outputs of the individual members (to control the final

ensemble classification decision). The GP composite solutions use fewer

individuals in the ensemble to produce ensemble results that are as good as,

and in some cases better than, an existing approach to ensemble selection

(Off -EEL [76]), particularly on tasks with very high levels of class imbalance.

These results have been partially published in [18].

1.4 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 carries out a

literature review; the five main contribution chapters, Chapters 3–7, address each

of the five sub-goals in this thesis; and Chapter 8 concludes this thesis.

The literature review in Chapter 2 is split into two parts: background and

related work. The background covers the fundamental concepts in evolution-

ary computation focusing on GP, ensemble learning, and evolutionary multi-

objective optimisation. The related work discusses the recent advances in GP for

8 CHAPTER 1. INTRODUCTION

classification, class imbalance learning with particular focus on GP and ensemble-

based approaches, and EMO for classification. The related work also discusses

the limitations of the current approaches and the challenges that the thesis

attempts to address.

Chapter 3 proposes the GP framework for classification, with particular

emphasis on the classification strategy used in the evolution, and evaluates three

major current approaches in the fitness function to highlight the advantages and

limitations of each approach and why they need to be improved. This evaluation

contrasts the AUC, the overall accuracy, and individual class accuracies of the

evolved GP classifiers to justify why the AUC is a better performance measure in

these class imbalance scenarios, rather than the traditional overall accuracy.

Chapter 4 develops several new performance measures in the fitness function

to address the limitations highlighted in Chapter 3. Focusing on the AUC of the

evolved classifiers, the new methods are compared to several current approaches

in the the fitness function from the literature (including those from Chapter 3),

and two other popular machine learning algorithms (Naive Bayes and Support

Vector Machines). These fitness functions are ranked using a new measure

designed to capture the statistical significance relationships between the new

fitness functions on the unbalanced data sets. Several evolved GP classifiers

are analysed to gain a better understanding of how GP learns to solve a given

problem.

Chapter 5 develops the multi-objective GP (MOGP) approach using the

accuracies of the minority and the majority classes as the two competing learning

objectives. Particular emphasis is placed on how to represent Pareto dominance

in the fitness function, where two popular dominance-based ranking algorithms

from the literature (SPEA2 [188] and NSGAII [53]) are compared in fitness. The

performance of the evolved Pareto-approximated fronts and the AUC of the

Pareto front solutions, are compared to the single-objective GP (SGP) methods

(from Chapter 4) to highlight the major differences between these methods.

Chapter 6 develops an ensemble learning approach to combining the evolved

set of Pareto front classifiers (from the MOGP approach in the previous chapter)

into an ensemble where members vote on the class label. Two ensemble-diversity

measures are developed and incorporated in the fitness function in MOGP to

promote cooperation between solutions, and the diversity-based ensembles are

compared to an MOGP approach using no explicit ensemble-diversity measure

in fitness. The ensembles are evaluated using two combination strategies to

combine the outputs of the individual members, and two selection strategies to

1.5. BENCHMARK TASKS WITH UNBALANCED DATA 9

Table 1.1: Unbalanced classification tasks used in the experiments in the thesis.

Task Full Name Number of Examples Imb. Features

Total Minority Majority Ratio No. Type

Ion Ionosphere [8] 351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spt SPECT Heart [8] 267 55 (20.6%) 212 (79.4%) 1:4 22 Binary

Ped Pedestrian Images [131] 24800 4800 (19.4%) 20000 (80.6%) 1:4 22 Real

Yst1 Yeast (mit) [8] 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real

Yst2 Yeast (me3) [8] 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Bal Balance Scale [8] 625 49 (7.8%) 576 (92.2%) 1:12 4 Integer

only select accurate and diverse individuals for the ensemble. Several evolved

MOGP classifiers are also analysed and compared to canonical SGP classifiers.

Chapter 7 develops a new GP approach to ensemble selection to quickly

find groups of diverse Pareto front individuals that cooperate well together

in the ensemble, improving ensemble performances from the previous chapter.

Composite solutions are developed to represent the (pruned) ensembles; these

amalgamate multiple Pareto front individuals into a single genetic program. Two

types of composite solutions are developed, composite voting solutions and

composite logical solutions, and these are compared to the ensemble selection

strategies from the previous chapter.

Chapter 8 concludes this thesis by summarising the main conclusions and

research objectives achieved in the individual chapters, and provides further

discussions on more general topics covered in the whole thesis, and areas of

future work.

1.5 Benchmark Tasks with Unbalanced Data

Throughout this thesis, the proposed GP methods are evaluated on six real-world

benchmark classification tasks with unbalanced data from the UCI Repository of

Machine Learning Databases [8], and the Intelligent Systems Lab at the University

of Amsterdam [131]. These tasks are summarised in Table 1.1; for a detailed

description of each task, please refer to Appendix A.

In each task, half of the examples in each class are randomly chosen for the

training and the test sets. This ensures that both training and test sets preserve

the same class imbalance ratio as the original data set. While it is possible that

the class distributions in the training set and test set can be different, this thesis

only considers tasks with similar distributions in both sets for comparison and

generalisation purposes.

10 CHAPTER 1. INTRODUCTION

These benchmark data sets are carefully selected to encompass a varied

collection of problem domains to ensure that the evaluation of the different GP

approaches is not problem-specific. These problems have varying levels of class

imbalance (minority class ranges between 7% and 35% of total examples), and

complexity where some tasks are more easily-separable than others. The training

and test sets also range from being well-represented (e.g. Ped has approximately

12000 instances), to sparsely-represented (e.g. Spt only has 27 instances from the

minority class). These tasks also range between high and low dimensionality (e.g.

Ion has 34 features while Bal only has 4), and use different features types (binary,

integer and real features). Therefore, these data sets are expected to represent

class imbalance problems of varying difficulty, dimensionality, size and (feature)

types reasonably well. None of these data sets contains missing attributes — this

is an interesting topic but beyond the scope of this thesis.

Chapter 2

Literature Review

This chapter provides the background and related work for this thesis. The

first four sections of this chapter discuss the background material, including the

following four topics: machine learning and classification, evolutionary compu-

tation, genetic programming (GP), and evolutionary multi-objective optimisation

(EMO). The last two sections of this chapter discuss the related work which is

split into two main categories. The first outlines the related work in GP and EMO

for classification with balanced data, while the second outlines the related work

in the wider machine learning community (including GP) for classification with

unbalanced data.

2.1 Machine Learning

Machine learning is a broad and rapidly developing area of research [114][33][59].

Different artificial intelligence experts in this field vary in their definitions of

what exactly constitutes machine learning but most agree that the central idea

involves computer programs which learn to solve problems without explicitly

being programmed or told how to do so [97][7][24][150].

Traditionally, learning methods have been split into three main strategies: su-

pervised, unsupervised and reinforcement learning [24][150]. Supervised learning

is learning with labeled class examples or instances. In supervised learning, the

actions or desired outputs for a problem are known in advance, and the learning

system tries to find rules or a function to map its outputs to the desired (or target)

outputs. Unsupervised learning is learning without labeled class examples. In

unsupervised learning, there are no correct answers for the learner to explicitly

learn from. Instead, the learner must explore underlying structures or similarities

in the data to find useful patterns such as clusters. In reinforcement learning,

11

12 CHAPTER 2. LITERATURE REVIEW

the learner receives feedback based on its actions (outputs) in terms of rewards

or punishments but unlike supervised learning, the desired outputs are not

explicitly provided.

2.1.1 Classification

Classification is a supervised machine learning task where the system learns from

a set of labeled input examples or instances. Given a set of attributes or features

and their corresponding class labels, classification involves learning a model to

correctly predict the class membership of each attribute [129][32].

Common to supervised learning problems are the concepts of training and test

sets. A training set is a collection of input patterns from which classification rules

are induced. A test set is a similar collection of input patterns, except that these

are not used during the learning process and remain unseen while learning the

rules. The purpose of the test set is to evaluate the performance of the learnt

rules on unseen instances of the problem. This is important as it verifies that

the learnt rules are not over-fitted to the training set. In supervised learning, the

procedure for learning is two-fold: discover/learn the rules or a function for the

input-output mappings using the training set, and apply these rules or functions

to the test set to determine how well the learnt concepts perform (or generalise) on

unseen problem instances.

This thesis focuses on supervised learning. In this area, there are many

different learning paradigms, some include the following (the four paradigms

discussed below are used in the experimental results throughout the thesis).

Bayesian Classifiers

Bayesian classifiers use a probabilistic approach to classification based on

Bayesian probability principles. Naive Bayes (NB) is a simple but popular

Bayesian classifier which uses Bayes’ theorem to compute unknown probability

estimates (i.e. the class of an unseen instance) from known ones (i.e. features

of known instances) [129]. NB is remarkably effective in practice and can

show competitive results compared to other more-complex learning paradigms

[129][178]. However, NB makes strong (naive) assumptions about the conditional

independence of the features where the presence (or absence) of a feature is as-

sumed to be completely unrelated to the presence (or absence) of another feature.

Bayesian belief networks [94] address this issue of conditional independence by

representing dependencies between features as a directed graph.

2.1. MACHINE LEARNING 13

Statistical Paradigms

Support Vector Machines (SVMs) [167] is a statistical supervised learning algo-

rithm. SVMs construct a number of hyperplanes in the (high-dimensional) feature-

space that aim to separate the input instances from the two classes, and then

try to maximise the distance between the decision hyperplanes and the input

instances from both classes (this distance is called the margin). The original

SVM algorithm was a linear classifier where the input instances are assigned a

class label depending on which side of a decision hyperplane they lie on [167].

However, the current version uses kernel functions to construct non-linear decision

surfaces [44].

Genetic Paradigms

Genetic paradigms comprise of a wide range of nature-inspired computational

methodologies that incorporate the modern principles of Darwinian evolution

and natural selection into machine learning. Popular genetic paradigms include

genetic algorithms [86] and genetic programming [104] which is also the focus of

this thesis. These paradigms and other evolutionary computational methodolo-

gies are discussed in more detail in the next section.

Ensemble Paradigms

Ensemble methods combine together multiple learnt models to obtain better

predictive performance than could be obtained from any of the single constituent

models [31][129]. In an ensemble of classifiers, a majority vote is typically used to

combine the outputs of the individual members: for a given input, each member

votes on the output (e.g. predicted class label), and the class label with most

votes is chosen as the ensemble output. Ensemble methods can be used with base

learners from different learning paradigms, provided that the base classifiers are

accurate and diverse with respect to their outputs [54][31]. Diverse ensemble

members should not make the same errors on the same inputs, otherwise the

ensemble will risk misclassifying the same inputs together each time.

Other Paradigms

In addition to the above-mentioned learning paradigms, there are also many

other learning paradigms. Three important categories include the following (the

14 CHAPTER 2. LITERATURE REVIEW

three paradigms discussed below are not used in this thesis but are included to

give the reader a better idea of this field).

Connectionist Paradigms. These include artificial neural networks (ANNs) [23]

which are computational models inspired by biological neural networks. An

ANN consists of an interconnected group of artificial neurons (called nodes),

where information (usually numeric) travels through nodes in different layers of

the network. In classification, ANNs can model complex relationships between

inputs (e.g. features) and outputs (class membership) to find patterns in data.

However, ANNs are typically “black-box” learners as end-users cannot easily

interpret the learned concept to understand how an ANN has learned to solve a

problem.

Case-Based Reasoning. These include the nearest neighbour algorithm [45]

which classifies an unseen instance as the same class of the closest training

instance in feature-space. These learning paradigms are lazy in that they do not

attempt to learn or generalise a classification model using the training data.

Induction Based Reasoning. These include decision tree algorithms which seek

to split features that best separate the input instances from the training set [129].

Decision trees classify instances by traversing a tree in top-down manner, starting

at the root node and ending at a leaf node which represents the class label.

Decision trees are easy to interpret as they represent if-then classification rules;

popular algorithms to build decision tree include ID3 [147] and C4.5 [148].

2.1.2 Class Imbalance Learning

In many real-world applications, it is not uncommon to have disproportionate

numbers of learning instances for one class compared to the other class(es). In

classification with unbalanced data (also known as the class imbalance problem),

at least one class is represented by only a small number of examples (called

the minority class) while the other class(es) make up the rest (called the majority

class). Research in the machine learning community has highlighted that using

unbalanced data in the learning process can leave the learnt classifier with a

performance bias, that is, classifiers exhibit high accuracy on the majority class(es)

but poor accuracy on the minority class(es) [38][93][172][130][69]. Addressing

this learning bias to find classifiers with good accuracy on both the minority and

majority class is an important area of research and the focus of this thesis.

2.1. MACHINE LEARNING 15

The following is list of real-world problems affected by class imbalance.

• In fraud detection tasks such as network intrusion detection [157], telephone

fraud [67], and credit card fraud [159], fraudulent transactions are relatively

small compared to the vast majority of normal transactions.

• In medical diagnosis of rare medical conditions, the majority of patients are

healthy and only a small minority will be diseased [80][88][41].

• In bio-informatics tasks such as protein classification, the target protein class

is small compared to non-target (normal) proteins [132].

• In financial risk modeling such as loan approval or insurance risk modeling,

high-risk applicants are rare in comparison to normal loan or insurance

applicants [143].

• In some data mining tasks such as direct marketing, negative responses are

typically small compared to positive responses [117]; or in churn prediction

[179], relatively few customers switch subscriptions compared to those who

do not.

• In image recognition or object detection tasks such as target [89], face [161] or

pedestrian [162] detection, the important objects-of-interest are typically in

the minority class compared to non-objects (background).

• In fault diagnostics such as industrial defect detection [85] or network trou-

bleshooting [142], faulty instances are typically rare compared to normal

instances.

2.1.3 Evaluating Classifier Performance

The traditional measure to evaluate the goodness or success of a learnt classifier

uses the overall classification accuracy (or overall error rate) on the learning

instances [129]. The overall accuracy is the number of inputs correctly labeled by

the classifier as a proportion of the total number of inputs seen by the classifier.

Using the four different outcomes for binary classification shown in Table 2.1, the

overall accuracy can be expressed by the equation below. In Table 2.1, assume

that the minority class is the positive class.

accuracy = TP+TN
TP+TN+FP+FN

(2.1)

16 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Outcomes of a two-class classification problem.

Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positive (TP) False Negative (FN)

Actual Negative Class False Positive (FP) True Negative (TN)

However, the overall accuracy is known to be unsuitable for classification with

unbalanced data [93][130][172][69]. This is because this measure considers all

learning instances as equally important and does not take into account that the

number of learning instances in the minority class can be much smaller than in the

majority class. A biased classifier which has very poor accuracy on the minority

class but high majority class accuracy, can also have a high overall accuracy due

to the influence of majority class learning instances.

Measuring the individual classification accuracy of the minority and majority

class separately such as the true positive (TP) rate and true negative (TN) rate,

respectively, as shown below, can avoid this learning bias when evaluating

classifier performance in class imbalance scenarios.

TP rate = TP
TP+FN

and TN rate = TN
TN+FP

(2.2)

The TP and TN rates are similar to the sensitivity and specificity, or precision

and recall, as used in the context of other tasks (such as information retrieval)

[178]. These measures all accomplish the same goal in classification, that is,

categorising the type of error made by a classifier. Precision and recall are defined

as:

Precision = TP
TP+FP

and Recall = TP
TP+FN

Sensitivity and specificity are defined as:

Sensitivity = Recall and Specificity = TN
TN+FP

The TP and TN rates are usually in conflict with each other where an

improvement in one class (e.g. TP rate) produces a trade-off in the other (e.g.

TN rate).

ROC Curves

Receiver Operating Characteristic (ROC) curves were originally used in signal

detection theory to characterize the trade-off between hit rate and false alarm

rate over a noisy channel [84]. This is now widely used in machine learn-

ing to evaluate a classifier’s performance across varying decision thresholds

2.1. MACHINE LEARNING 17

 C
1

TP

0 1 FP

 B

A

Figure 2.1: An ROC curve where operating points A, B and C represent the

classifier’s performance at three different decision thresholds.

[111][149][130][172]. On a ROC curve, the TP rate is plotted against the false

positive (FP) rate, as seen in Figure 2.1, where each operating point (e.g. A, B

and C in Figure 2.1) represents the TP and FP rates at a given decision threshold.

In the context of binary classification, assuming the minority class is the positive

class, the TP rate is the minority class accuracy, and FP rate is 1-minority class

accuracy (or 1-TN rate).

The lower-left corner on an ROC curve (when TP and FP rates are 0) represents

the decision threshold where all inputs are classified as belonging to the negative

class. The upper-right corner (when TP and FP rates are 1) is the decision

threshold where all inputs are classified as belonging to the positive class. Perfect

classification accuracy (all inputs correctly classified) is achieved when the TP

rate is 1 and FP rate is 0 (top-left corner). The line x = y represents the strategy of

randomly guessing the class label for a given input.

The area under an ROC curve (AUC) summarises the classification ability of a

classifier across different decision thresholds, and represents the probability that

an input from the positive class is correctly predicted by a given classifier [27][84].

AUC values range between 0 and 1 where the higher the value, the better the

performance. Unlike the overall classification accuracy, the AUC is known to be

invariant to unbalanced data and is not influenced by the larger majority class in

class imbalance scenarios [173][93][130][172].

The AUC is typically approximated using the trapezoidal technique [84]

where the AUC is calculated as the sum of the areas of individual trapezoids

fitted under each pair of points of the ROC curve.

18 CHAPTER 2. LITERATURE REVIEW

2.2 Evolutionary Computation

Evolutionary computation (EC) is a sub-field of artificial intelligence that com-

prises of nature-inspired computational methodologies. The two main categories

in the area include evolutionary algorithms and swarm intelligence [97][99].

2.2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of algorithms that incorporate the

modern principles of biological evolution and Darwinian theories of natural

selection of species into machine learning. These theories assert that only the

fittest organisms will survive to reproduce while the less fit die off. As the

offspring of fit parents will have similar or the same genetic code as their parents,

the new generation of organisms is expected to be fitter, or at least as fit, as

the current generation. An advantage of EA’s is the ability to navigate through

“worse” areas of the search-space in order to avoid becoming stuck in a local

optima.

In EAs, an individual (or member of the population) represents a potential

solution to a given problem, and these individuals are evolved (or improved)

over generations using genetic operators. Genetic operators are mechanisms

inspired by biological evolution such as crossover, mutation or reproduction, to

create and improve individuals in the population. A fitness function determines

the “goodness” of an individual, that is, how well an individual solves a given

problem. Members of the population are selected for recombination (using the

genetic operators) depending on their fitness. The goal in EAs, similar to natural

selection, is to have some useful part of an individual’s genetic code propagated

down generations until an individual with good fitness is evolved.

The main EA techniques include the following.

Genetic Algorithms

Genetic Algorithms (GAs) are one of the earliest representations of an artificial

evolutionary learning system [86][79]. In GA, individuals or chromosomes are

typically encoded as fixed-length bit strings where each element in this string

is called a gene, as shown in Figure 2.2.

1 1 0 0 1 0 0 1

Figure 2.2: Example of an encoded 8 bit binary chromosome (individual) in GA.

2.2. EVOLUTIONARY COMPUTATION 19

However, a major limitation in GA systems is that the chromosome can

require a complex encoding/decoding process. The encoding process is required

to transform a task into the appropriate chromosome representation for the

evolutionary process. The decoding process is required at every fitness iteration

from the start of the evolution to evaluate a GA solution, to convert the individual

from the chromosome representation into a more useful solution representation.

For example, without the specific encoding/decoding knowledge, the meaning

of a chromosome, such as the one shown in Figure 2.2, is almost impossible to

interpret.

Genetic programming

Genetic Programming (GP) extends the idea of GAs by increasing the complexity

of representation of individuals from fixed length bit strings to computer programs

[104]. GP has been highly successful in automatically evolving variable length

computer programs to solve a range of problems, particularly in the areas

of symbolic regression [104][81], classification [176][62][111], automatic feature

selection and construction [112][133][134], and object recognition and detection

in images [163][89][184]. GP has two key advantages over GAs [106]. The first is

the flexibility allowed in the representation (of individuals) [106]. The second

is interpretability of the evolved programs; these can be easily analysed and

decomposed in a meaningful way to understand how GP has learned to solve

a problem [105].

Evolutionary Programming

Evolutionary Programming (EP) was originally used to evolve finite state machines

to represent the learnt predictors [72]. Currently, there is no constraint on

the representation of individuals in EP; this usually follows from the problem.

However, the structure of the individuals to be optimised typically remains

fixed during the evolution, while its numerical parameters are allowed to evolve.

Mutation is the dominant genetic operator in EP; while crossover is not typically

used. In EP, every individual in the population is mutated to generate one

offspring and the level of variation in the offspring depends on a statistical

distribution.

20 CHAPTER 2. LITERATURE REVIEW

Evolution Strategies

Evolution Strategies (ES) are typically used for continuous parameter optimisa-

tion where individuals are represented as fixed-length real-valued vectors [153].

Mutation is also the dominant genetic operator in ES (similar to EP). Since all

elements in the individuals are real-valued, mutation is usually performed by

adding a normally distributed random value to each vector element in a given

individual (to generate an offspring). Unlike GA, GP and EP which typically

use a stochastic selection process, ES uses a deterministic selection process

where individuals with poor fitness are removed from the population at every

generation.

Learning Classifier Systems

Learning Classifier Systems (LCS) share close links with reinforcement learning and

GAs [87]. In general, LCS is an adaptive system that learns based on actions (or

outputs) that generate rewards from the environment for a given input. LCS

was originally a population of binary rules, and a GA was used to update and

select the best rules. Currently, the classifiers or rules can include real-valued and

functional conditions (such as S-expressions). The evolution of classifiers takes

place as the LCS system interacts with its environment. LCS systems can be split

into two types: Pittsburgh LCS which has a population of separate rule sets, and

Michigan LCS which only has a single set of rules in a population.

Differential Evolution

Differential Evolution (DE) was originally developed for multi-dimensional real-

valued function optimisation problems [160]. Recently, DE has also been used

for optimisation problems that are not continuous or which change over time

since DE does not use the gradient of the problem being optimised [100]. In

DE, the population of candidate solutions typically represents parameter vectors.

Unlike many EAs, in DE recombination creates new candidate solutions using

the weighted difference between two randomly selected population members

when added to a third population member [100]. The new candidate solution

is accepted as part of the population, or rejected (discarded), based on its fitness.

2.3. GENETIC PROGRAMMING 21

2.2.2 Swarm Intelligence

Swarm Intelligence (SI) is inspired by the collective behaviour of organisms in a

biological system such as ant colonies, bird flocks and bacterial growth [25]. In

SI, populations comprise of simple agents which follow simple rules; agents can

interact with other agents and with their environment. Although no centralized

control dictates how agents should behave in their environment, interactions

between agents can lead to “intelligent” global behavior by the swarm. Two

popular SI algorithms include the following.

Ant Colony Optimization

In Ant Colony Optimization (ACO) [55][56], the agents represent artificial ants.

Based on the behaviour of ants seeking a path between their colony and a source

of food, ACO methods are useful in problems that search for an optimal path

to a goal. Agents can locate optimal paths by exploring different paths in their

environment; this can be thought of as moving through the parameter-space

which represents different candidate solutions. Ant agents lay down pheromones

while exploring their environment to interact with other agents.

Particle Swarm Optimization

In Particle Swarm Optimization (PSO) [98][99], a population of candidate solu-

tions (called particles) move around an n-dimensional search-space according

to simple mathematical formulae which determine each particle’s position and

velocity. Each particle’s movement in the search-space is influenced by two main

factors: its own local best-known position according to some fitness criterion at

each iteration, and the global best-known positions which are found by other

particles. These movements are expected to move the swarm toward the best

solution in the search-space.

2.3 Genetic Programming

This section introduces the main concepts in GP, including the GP search process,

representation, creating GP programs, the genetic operators, and fitness and

selection in GP.

22 CHAPTER 2. LITERATURE REVIEW

individual

population

Assign fitness

Generate initial

to all individuals

Termination
criteria

Select individuals
for recombination

Apply genetic
operators

Insert offspring
into population

Yes

No

Return fittest

Figure 2.3: Evolutionary search in GP.

2.3.1 Overview of Evolutionary Search Process

An overview of the GP evolutionary search process is shown in Figure 2.3. The

evolution starts by randomly creating an initial population of GP solutions. The

fitness of each individual in the population is then evaluated using the fitness

function (on the training set). If the termination criteria is met, the evolution

is stopped and the fittest individual from the population is returned; otherwise,

individuals are selected for recombination using the genetic operators to create

the next generation of individuals. The termination criteria checks whether an

individual in the population has been found which has a perfect fitness (or close

to perfect fitness according to a pre-defined tolerance), or whether the maximum

number of generations allowed in the evolution is reached.

2.3.2 Representation

An individual can be encoded as a genetic program solution in different ways.

Common program representations include the following.

• Tree-based GP. Programs are represented as tree-like structures which can

vary in length as well as what input alphabet they may contain [104]. The

2.3. GENETIC PROGRAMMING 23

leaf nodes in these genetic program trees correspond to terminals and the

non-leaf nodes functions. This is the original and most common type of GP

representation, and also used in this thesis.

• Linear GP. Programs are represented as variable-length sequences of instruc-

tions similar to an imperative programming language [10][30].

• Graph-based GP. Programs are represented as tree-based graph structures

where partial sub-trees are allowed to be re-used in program execution

such as Cartesian GP [127][128]. In addition to function and terminal nodes,

programs have edges to represent the flow of data in the tree.

• Grammar-based GP. Individuals are represented at fixed-length strings that

are encoded according using a user-specified grammar. Popular implemen-

tations include grammatical evolution (GE) [151][136] and grammar-based

GP [175].

2.3.3 Creating Programs

There are three main ways of creating random individuals in tree-based GP:

full, grow and ramped half-and-half [104]. The full method ensures that fully-

formed trees are constructed according to a maximum allowed tree depth. The

grow method allows trees of different depths and irregular shapes in the initial

population. This method constructs trees by selecting each intermediate node

from either the function or terminal sets, allowing part of a tree to be terminated

whenever a terminal node is selected. The ramped half-and-half method combines

the full and grow methods where half the trees are created using full method and

the other half using the grow method. This method enhances the diversity of the

population.

2.3.4 Genetic Operators

The genetic operators crossover and mutation alter the genetic material in the

individuals to create offspring, while reproduction leaves the genetic makeup of

an individual unaltered.

Crossover

Crossover swaps the sub-trees of two individuals at randomly selected points

(called crossover points) to produce two new offspring, as shown in Figure 2.4.

24 CHAPTER 2. LITERATURE REVIEW

Crossover
points

2 4

−

−

Individual 1

Individual 2

3 1

y x

*

+

−

4 32

y

*

+

x

Offspring 1

Offspring 2Crossover

1

−

Figure 2.4: Crossover operator in GP.

Crossover works on the idea of combining the genetic makeup (i.e. sub-trees)

between two individuals. This is arguably the most predominant operator used

in GP [104]. A strong implication of crossover is that individuals with good

fitness are crossed-over more often than those of weaker fitness. This continues

the idea of “survival of the fittest” as the next generation becomes influenced

by the stronger genetic makeup of the fit individuals from the current generation.

The ideal case is if two individuals chosen for crossover have partially correct sub-

trees, and the crossover points occur precisely on these partially correct sub-trees,

then one offspring will contain both partially correct sub-trees.

Mutation

Mutation replaces a randomly selected sub-tree in a given individual with

another sub-tree, as shown in Figure 2.5. It is performed on one individual,

producing one offspring which is the mutated version of the parent. The new

sub-tree is generated in the same way as the initial population is generated (via

the grow, full or ramped half-and-half method). The mutation operator is the only

one of the three main operators to introduce new genetic code into a population

via an individual during evolution [104]. The motivation for mutation is to ensure

diversity of the population [104].

Reproduction

Reproduction (also called elitism1) simply copies an individual from the current

population into the next population. Unlike crossover and mutation, in repro-

1Reproduction and elitism actually have some differences but we do not distinguish them in

this thesis similar to [144].

2.4. EVOLUTIONARY MULTI-OBJECTIVE OPTIMISATION 25

Offspring 1

Mutation
point

Individual 1

2 4

* x

+

x

y

Mutation

8x

+

−

+

Figure 2.5: Mutation operator in GP.

duction the “offspring” in the next generation can not be worse in terms of

fitness than the original “parent”. For this reason, only the fittest individuals

in the population at each generation are selected for reproduction. This is

important as it ensures that the evolutionary search produces individuals in the

next generation that are at least as fit as individuals from the previous generation.

2.3.5 Fitness and Selection

The fitness of an individual represents the goodness of that individual as

determined by a suitable fitness function [104]. An individual’s fitness affects

its probability of selection for recombination and thus, the survival of its genetic

make-up.

The two most commonly used methods for selecting individuals for recom-

bination are fitness-proportional and tournament selection. In fitness-proportional

selection, the probability of selection for an individual is proportional to its fitness

[104]. This means that each solution competes with every other member in the

population during selection. In tournament selection, a number of individuals

in the population are chosen (sampled) at random; this number is referred to as

the tournament size [104]. The fitnesses of individuals in a particular tournament

are then compared to each other only (and not the rest of the population) during

selection. This means that solutions compete with only those solutions in a given

tournament during selection. GP can be used with either of these (or other)

selection methods.

2.4 Evolutionary Multi-objective Optimisation

Evolutionary multi-objective optimisation (EMO) further extends traditional

genetic paradigms by adapting the learning process to include multiple goals or

objectives. These objectives are usually in conflict with each other which results

26 CHAPTER 2. LITERATURE REVIEW

in a performance trade-off when one is optimised over the other(s). EMO handles

each of the multiple, competing objectives independently in the optimisation

process. This means that candidate individuals in EMO represent compromise

(or trade-off) solutions with respect to the objectives.

2.4.1 Learning with Multiple Objectives

One of the first EMO approaches from the literature, called Vector Evaluated

Genetic Algorithm (VEGA) [152], proposed a simple extension to traditional GAs.

Here the population was divided into a number of different sub-populations, one

for each objective. At each generation, selection was performed according to

each objective function in turn. Nowadays, EMO approaches are classified into

three main search techniques depending on how the objectives are treated in the

learning process [42]. These include a priori, a posteriori or progressive objective

articulation.

In a priori articulation, objectives are combined or aggregated together before

the multi-objective (MO) search according to some pre-defined objective prefer-

ence information. The evolutionary search returns a single solution that is close to

optimal relative to this objective prioritisation. The focus of this technique is how

to combine or aggregate the objectives, and how to determine objective relative

importance prior to the search.

A posteriori objective articulation assumes that the objectives cannot be in-

terrelated with each other. Each objective is therefore treated separately in the

optimisation process. The focus of this method is to find a set of the best trade-

off solutions along the objectives (called the Pareto front). This means that the

end-user may then choose a single solution (with the desired trade-off) from

the Pareto front after the EMO search has evolved a good set of set of trade-off

solutions.

Progressive objective articulation integrates a posteriori EMO search with objec-

tive preference articulation during the optimisation process in an iterative and

interactive manner.

This thesis uses concepts from both a priori and a posteriori objective articula-

tion. These methods are discussed in more detail below. For further details on

earlier EMO approaches (such as VEGA [152]), please refer to [73] and [74].

2.4. EVOLUTIONARY MULTI-OBJECTIVE OPTIMISATION 27

A Priori Search

The simplest and most common technique to learn with multiple objectives uses

a linear aggregating function to combine the multiple objectives together into a

scalar (fitness) value. Weighting coefficients are usually assigned to each objective

to specify the relative importance of each objective. This can be represented

by the simple aggregation function defined by Eq. (2.3) where fi represents

the performance of individual S on the ith objective, wi represents the weighted

relative importance of the ith objective (0 ≤ wi ≤ 1), and k is the number of

objectives.

k
∑

i=1

wifi(S) (2.3)

A major limitation of this technique is that the relative objective importance

must be specified prior to the search. In many real-world problems, determining

suitable weighting coefficients is a non-trivial task. Bad objective prioritisation

can lead to poor performing solutions, and in the worst case, these objectives

cannot be linearly interrelated. Another major limitation is that only one solution

is returned from the search. This means that subsequent changes to the objective

preference information, once a solution has been found, can often require the

optimisation process to begin afresh with an updated weighting preference.

A Posteriori Search

For the reasons stated above, much work in EMO tends to focus on a posteriori

search methods [53][188][156][171]. By assuming no prior knowledge about

the objectives in the optimisation process, these EMO methods strive to find a

diverse set of alternative competing solutions along the optimal objective trade-

off surface. The goal of a posteriori EMO is to push the frontier of trade-off

solutions (Pareto front) closer toward a point which is optimal on all objectives,

while still allowing a sufficient level of diversity (which refers to the “spread” of

solutions along the frontier) with respect to the objectives.

This requires two major adaptations in EMO learning systems compared to

traditional (single-predictor) EAs. The first involves adapting the evolutionary

search algorithm to evolve a set (or Pareto front) of solutions in parallel, where

the Pareto front is the output of the EMO search. In contrast, in traditional EAs

(or a priori search), the evolutionary search is focused on finding only a single

solution with high fitness, where this individual is the output of the evolutionary

28 CHAPTER 2. LITERATURE REVIEW

search. The second adaptation incorporates the notion of Pareto dominance in the

fitness function to measure an individual’s performance on all the objectives and

relative to all others in the population. Pareto dominance is discussed in more

detail in Section 2.4.3.

2.4.2 EMO Search Algorithms

The literature contains many a posteriori EMO search algorithms to evolve a

Pareto front of solutions using multiple objectives [53][188][103][43][156]. All

these algorithms use a Pareto-based fitness scheme which treats each objective

as a separate entity in the learning process. However, each algorithm has

subtle variations in the way Pareto dominance is used in fitness, or in the

selection method to balance exploration or exploitation of a Pareto front. Some

common EMO algorithms include the following (for a more definitive list of EMO

algorithms, see [42]).

• Non-dominated Sorting GA (NSGA/NSGA-II) [53]. The fixed-size archive

population is chosen by combining the parent and child population at

every generation and selecting only the fittest individuals for inclusion.

Dominance ranking and a “crowding” measure are used in fitness. Pareto

ranking and “crowding” is discussed in more detail in Section 2.4.3.

• Strength Pareto Evolution Algorithm (SPEA/SPEA2) [188]. The archive

population can be variable in size. Fitness or strength is determined using

dominance rank and dominance count. A clustering mechanism is used

when the archive size is exceeded.

• Pareto Envelope-based Selection Algorithm (PESA/PESA-II) [43]. This

algorithm consists of a small internal (main) population and a larger archive

(external) population, but unlike other algorithms, PESA allows the archive

population to be only partially filled. Fitness is similar to NSGA/NSGA-II

using dominance ranking and crowding.

• Pareto GP [156]. This GP implementation uses an archive population that is

persistent across generations and runs to re-use good genetic material from

previous independent runs in a population. For diversity in the breeding

pool, crossover is performed on a member of the archive and a randomly

selected member of the current local population.

2.4. EVOLUTIONARY MULTI-OBJECTIVE OPTIMISATION 29

• ǫ-Multi-Objective Evolutionary Algorithm (ǫ-MOEA) [52]. Unlike NSGA-II

[53] and SPEA2 [188], ǫ-MOEA is a steady-state algorithm. At each gener-

ation, one offspring is created using one parent from the main population

and one parent from an (external) archive population, and the offspring

replaces the parent in the main population if it has a better fitness (otherwise

it is discarded). The offspring is considered for the archive population based

on the ǫ-dominance criteria.

• Pareto Archived Evolution Strategy (PAES) [103]. PAES is also a steady-

state algorithm but unlike ǫ-MOEA [52], a (1+1) evolution strategy is used

to generate the child population (i.e. a single parent is mutated to generate

a single child) and the archive population has a fixed size.

These EMO algorithms typically use the same crossover and mutation genetic

operators in the evolution as traditional EA’s. However, EMO typically uses

a secondary or external population, called the archive population. At each

generation, the archive population includes the current set of non-dominated

solutions (Pareto front). The archive population is used to simulate elitism in

the population over generation, to ensure that all no non-dominated are lost

as the evolution progresses. Implementation of this archive population and its

interaction with the main population (e.g. for breeding) can vary between EMO

algorithms.

2.4.3 EMO Fitness

In EMO, the notion of Pareto dominance in fitness allows individuals to be ranked

according to how well they perform on all the objective with respect to all other

individuals in the population. This is important as it affects the way selection

is performed if the objectives are to be treated equivalently in the search process

[42][78]. Pareto dominance between two solutions asserts that a single solution

will dominate the other solution if it is at least as good as the other solution on

all the objectives and better on at least one [42][78]. Solutions are non-dominated

if they are not dominated by any solution in the population with respect to all

objectives. Non-dominated solutions are usually assigned the best fitness for

selection preference over other, dominated solutions. At every generation, the

set of all non-dominated solutions forms the current approximation to the Pareto

front. When a non-dominated solution can no longer be improved with respect to

all objectives it is Pareto-optimal.

30 CHAPTER 2. LITERATURE REVIEW

Pareto Ranking

Pareto ranking creates a partial ordering of solutions in a population according

to their ability on all the objectives. This ordering can then be directly mapped

to a scalar fitness value for selection. Two popular Pareto-based ranking schemes

include dominance rank and dominance count. Dominance rank is the number

of other solutions in the population that dominate a given solution (lower

dominance ranks are better). This fitness scheme rewards exploration at the edges

of the Pareto front (i.e. near the extremes of one objective) [42]. Dominance count

is the number of other solutions in the population dominated by a given solution

(higher dominance counts are better). This fitness scheme rewards exploitation

in the middle of the Pareto front [42].

Niching Techniques

While Pareto-based ranking ensures equal selection preference to all non-

dominated solutions along the Pareto front, it does not guarantee that the Pareto

front will be uniformly sampled during selection [113]. This can lead to genetic

drift in the population toward a single point on the front only. To avoid this,

Pareto-based fitness schemes use niching techniques in the fitness function to

encourage diversity along the Pareto front. Niching techniques typically use

a “crowding” distance measure between solutions in objective-space to favour

solutions from less crowded areas of the Pareto front and penalise solutions in

densely populated regions of the Pareto front. Pareto ranking and “crowding”

are typically combined in the fitness function in a hierarchical manner. Pareto

ranking serves as the primary fitness, while the crowding measure resolves

selection when the Pareto rank is equal between two or more solutions.

2.4.4 Evaluating Pareto Fronts in EMO

As the outcome from an EMO system is a set of evolved non-dominated solutions,

different evaluation metrics are used to measure the “goodness” or quality of

the evolved non-dominated solutions compared to traditional (single-predictor)

learning paradigms where the single best solution is returned from the learning

process. This thesis uses two multi-objective evaluation metrics to measure the

performance of the evolved Pareto fronts: attainment functions and the hyperarea

indicator (these are discussed in more detail below). Another common evaluation

metric is to compare the learned (approximated) front with known fronts (this

method is not used in this thesis).

2.4. EVOLUTIONARY MULTI-OBJECTIVE OPTIMISATION 31

Attainment Functions

Attainment summary surfaces [102][42] are a useful technique in EMO to sum-

marise the outcome of a series of multi-objective optimisation runs, where a

potentially different set of non-dominated solutions is returned from each run.

For example, Figure 2.6(a) shows how different sets of non-dominated solutions

can be returned from four runs of a (stochastic) EMO system, where each is

obtained using a different random initial starting seed in the EMO system. In

this figure, assume that the two objectives (f1 and f2) are to be maximised.

Each non-dominated solution returned from the EMO system over all optimi-

sation runs is assigned an attainment value. Attainment values range between

0 and 1. This value corresponds to the probability that the EMO system

will produce another solution which weakly dominates (i.e. is better than or

equal to) the given solution on all the objectives [102][42]. Non-dominated

solutions that have identical attainment values are then grouped together into

attainment surfaces; the number of attainment surfaces corresponds to the number

of optimisation runs. In general, solutions with low attainment values represent

well-performing solutions as there is a low probability that the EMO system with

evolve another solution that is better on the objectives. In contrast, solutions with

high attainment values represent poor-performing solutions as there is a high

probability that the EMO system will evolve another solution that is better on the

objectives.

Solutions in the median attainment surface (i.e. the set of solutions with

attainment values of 0.5) are of particular interest as these correspond to solutions

with a 50% probability of attainment with respect to all runs. The median

attainment surface approximates the typical (or “average”) set of non-dominated

solutions that an EMO system can be expected to evolve with respect to the series

of optimisation runs. For example, Figure 2.6(b) shows the median attainment

surface with respect to the set of non-dominated solutions obtained from 50

optimisation runs.

For more details on how the attainment values are calculated, please refer to

Appendix B (Section B.1).

Hyperarea Quality Indicator

Unlike attainment summary surfaces, the hyperarea (also known as the hyper-

volume) of an evolved Pareto-approximated front represents a “single figure”

measure to quantify the performance of the entire front on the objectives [102][42].

32 CHAPTER 2. LITERATURE REVIEW

50 60 70 80 90

60

70

80

90

f1

f2

Run 1
Run 2
Run 3
Run 4

50 60 70 80 90
50

60

70

80

90

f1

f2

Median Att. Set
All Solutions

(a) (b)

Figure 2.6: (a) Different sets of non-dominated solutions returned from four EMO

runs; and (b) the median attainment surface with respect to 50 EMO runs.

The hyperarea is the area under the Pareto-approximated front in objective-space,

similar to the area under the ROC curve (or AUC) in a single learnt classifier.

However, while the AUC represents the performance of a single classifier at

varying decision thresholds, the hyperarea represents the classification perfor-

mance of the set of individuals along the evolved front. The hyperarea is typically

calculated in a similar way to the AUC, that is, using the trapezoidal technique

[42]. Hyperarea values range between 0 and 1 where the higher the value, the

better the performance.

2.5 Related Work: EAs for Classification (with Bal-

anced Data)

This section outlines three related areas pertaining to traditional classification

with balanced data. This includes GP and EMO for classification, and related

aspects in EA-based ensemble learning.

2.5.1 GP for Classification

Genetic programming has been widely used to successfully evolve reliable and

accurate classifiers over a range of classification problems [176][62][80][158][61]

[111][155]. While GP for classification (with balanced data) represents a large

area of work, this section provides a brief overview of the four main concepts

in that pertain specifically to this thesis. These include GP classification models,

classification strategies, the fitness function, and GP for ensemble learning.

2.5. RELATED WORK: EAS FOR CLASSIFICATION (WITH BALANCED DATA)33

IF ProgOut > 0 THEN Class1 ELSE Class2;

0.45 F2 0.7

F1 F3

F3

IF*

 −

+

0 8

+

8

Class1Class2

Genetic Program: (+ (* 0.45 F2)
 (IF (− F1 F3) 0.7 F3))

-

Figure 2.7: Classification strategy in GP.

Classification Models in GP

In tree-based GP, different kinds of models can be used to solve a given classifica-

tion task due to the flexibility of the GP representation. Two common approaches

include representing individuals as decision trees or discriminant functions for

classification [64]. In decision trees, leaf nodes represent the class labels while

internal nodes represent conditions on the features; the path from the root node to

a leaf node represents the process of classifying an input instance. A discriminant

function is when the GP classifier is represented as a mathematical expression

where different operators are applied to the features of the input instances to be

classified. This thesis uses discriminant functions for classification.

As a mathematical expression, a discriminant function typically com-

putes a single floating-point number which is the output of the GP tree

[176][80][158][111][155]. This single output value is then translated into a set of

class labels. In binary classification, the division between positive and negative

numbers is typically used as the two class boundaries to determine the class labels

[181][176][80][158][111]. For example, Figure 2.7 illustrates how the numeric

output of a genetic program is used for binary classification, where F1, F2 and F3

represent three input features and ProgOut denotes the genetic program output.

Here an input instance is assigned to class1 if the genetic program output is

greater than zero; otherwise, the input instance is assigned to class2. Using this

strategy, the class threshold is fixed at zero.

34 CHAPTER 2. LITERATURE REVIEW

Dynamic Classification Strategies in Multi-class GP

Recently, new dynamic classification strategies have been developed to translate

the numeric output of a GP individual to a set of class labels for multiple-

class classification tasks (with balanced data) [186][185][154][120]. In these

works, dynamic class boundaries are determined on an individual-by-individual

basis for each member in the population; whereas in the traditional strategy

discussed above for binary classification, the class boundaries remain fixed for

all individuals in the population (i.e. zero is the class threshold). These new

approaches include Dynamic Range Selection (DRS) [120], Centred Dynamic

Class Boundaries (CDCB) [185], Slotted Dynamic Class Boundaries (SDCB) [154]

and a probabilistic classification strategy [186]. As one of the goals in this thesis is

to determine whether the traditional (static) strategy is sufficient for these binary

classification tasks with unbalanced data compared to a dynamic (non-static)

strategy, a brief outline of these approaches is discussed below.

In DRS [120] and SDCB [185], the number line is divided into a fixed number

of “slots”, and the real-valued output of an individual (when evaluated on an

input instance) is mapped to a particular slot (using a truncation operator). Once

all inputs are processed, the class which has the most inputs in a given slot is

taken as the class label of that particular slot. However, a major limitation is that

the slot sizes, slot range and the truncation operator must be determined a priori;

these can be sensitive to the training data where poor initial settings can cause

overfitting.

In CDCB [154], the class threshold is selected as the mid-point between

two adjacent class centres, one for each class. A class centre is the average of

the outputs when all individuals in the population are evaluated on all input

instances from a particular class. While this approach requires no prior parameter

configuration, the class threshold(s) depend on all individuals in the population

at the current generation. This means that more training can be needed to

converge on a good class threshold and accurate GP classifier.

In [186], the outputs of each individual is modeled using Gaussian distribu-

tions, one for each class, and a probabilistic technique is used to find the point(s)

of least overlap between these class distributions. This approach requires no extra

parameter configuration (unlike DRS and SDCB), is relatively fast to compute,

and shows good results compared to the traditional (static) strategy on a range of

multi-class tasks.

2.5. RELATED WORK: EAS FOR CLASSIFICATION (WITH BALANCED DATA)35

Fitness Function

In classification, the fitness function defines a measure to calculate the accuracy

of a solution, by comparing the predicted class labels with the target (or actual)

class labels in the training set. The traditional fitness function for classification

uses the overall classification accuracy (this measure was previously shown in

Section 2.1.3). Recall that this measures the number of examples correctly labeled

by a classifier as a proportion of the total number of training examples.

However, using the overall classification accuracy in the fitness function is

known to drive the evolutionary search toward biased classifiers which have

high majority class accuracy but poor minority class accuracy, when data is un-

balanced [141][57][88][172][130][69]. Also as discussed, this is because the overall

accuracy can be influenced by the larger majority class. Two common approaches

to address this learning bias in GP include using the average accuracy of the

minority and the majority classes, or the AUC in the fitness function [141][57][88].

The reader is directed to Section 3.3 (in the next chapter) for a detailed analysis

and discussion on the major advantages and disadvantages when these three

fitness functions are used in GP for classification with unbalanced data.

Several other related approaches which develop new fitness functions in GP

specifically for classification with unbalanced data are discussed in more detail

later in this chapter in Section 2.6.2 (which focuses on related works for class

imbalance problems).

GP for Ensemble Learning and Combining Classifiers

GP has also shown success is evolving ensembles of classifiers for classification

with balanced data [110][111][126][29][165]. In [110][111], multiple trained

classifiers obtained from several learning algorithms such as Naive Bayes, C4.5

decision trees and ANNs are combined into a single genetic program solution.

Each base learner is trained using different partitions of the input data and

adapted to output a real (floating-point) number (when evaluated on an input

instance). Combining classifiers in this approach is shown to outperform the

individual classifiers (in terms of AUC) on two benchmark binary tasks from the

UCI repository. In [126], an anti-correlation measure is used in the fitness function

along with the overall accuracy to encourage diversity between individuals,

using a grammar-guided GP (on a 6-multiplexer problem). After the evolution,

the entire population is combined into an ensemble.

Cooperative co-evolutionary methods in GP are used in [29] and [165] where

36 CHAPTER 2. LITERATURE REVIEW

teams and individual programs are co-evolved in parallel. In [29], teams are

evolved using linear GP and evaluated with several ensemble combination

schemes on two benchmark classification tasks (from the UCI repository) and

a regression task. To create teams, the population is divided into demes, and

then sub-divided into teams of individual programs. The ensemble combination

schemes include the average of each member’s outputs, a majority vote and two

winner-takes-all strategies; and two weighting schemes where teams and weights

are co-evolved in parallel, or optimised after each generation (using a perceptron).

The best combination scheme is found to be problem-specific (none shows the

best results for all tasks) but the majority vote and weighting schemes consistly

show good results.

In [165], four teaming-based selection methods are compared including a new

class of “orthogonal evolutionary” selection algorithms (on two multi-class UCI

classification tasks). In teaming, selection is done exclusively between teams

or between individuals; while the new algorithms use individual selection with

team replacement, and vice versa. The new methods produce better results than

canonical methods but the best selection method is found to be problem-specific.

It is important to note two major differences between teaming in GP and

the ensemble methods used in this thesis. Firstly, teaming produces teams of

weak individuals that cooperate strongly together, as shown in both [29] and

[165]. Weak individuals have very poor individual classification ability and are

only effective when combined with other weak individuals in a team. Secondly,

in teaming, two selection strategies are typically used (as discussed in [165]):

selection of individuals within a team, and selection of teams. In this thesis, the

GP classifiers are relatively strong individuals with good accuracy on the two

classes, and individuals in the population are only combined into an ensemble

after the training phase.

2.5.2 EMO for Classification

EMO for classification (with balanced data) can be categorised into three main

areas: ROC optimisation, model regularisation, and ensemble learning. In ROC

optimisation, the true and false positive rates are traded-off each against other in

the learning systems. In ensemble learning, the accuracy and diversity of the base

learners are typically traded-off against each other. In model regularisation, the

overall classification accuracy is traded-off against a model regularisation term

such as the complexity or size of the learnt models.

2.5. RELATED WORK: EAS FOR CLASSIFICATION (WITH BALANCED DATA)37

ROC Optimisation

The majority of related work in this area use hybrid EMO algorithms where a GA

is used to optimise the parameters of an underlying base learner (such as ANNs

or SVMs) [108][65][162][66]. Here individuals in GA encode free parameters in

the base learners (e.g. the weights in an ANN), and each solution on the evolved

Pareto front represents a particular configuration of these parameters in the base

learner. These hybrid GA approaches typically use a bi-objective EMO (i.e. true

positive rate vs false positive rate) to trace out the Pareto front. Some examples

include [108] and [65], where the weights of an ANN with a fixed architecture are

optimised using a GA, and the points along the evolved Pareto front correspond

to the optimised ROC curve. Both of these works show that the GA-optimised

ROC curves dominate the ROC curves produced by a traditional ANN with

standard back-propagation. However, these approaches are only evaluated on

simple synthetic binary classification tasks (with two features).

Hybrid GA approaches have shown success in real-world applications

[162][66]. In [66], a bi-objective GA is developed to automatically tune the free

parameters of a Conflicts Alert System for air traffic controllers. In [162], a two-

step detection and classification approach of pedestrians in infrared images is

developed for Driver Assistance Systems using SVM.

There are fewer works in this area using GP [187][140]. In [187], a bi-objective

GP approach for evolving Pareto-optimal decision trees is developed. Sensitivity

and specificity are used as the competing learning objectives with dominance

rank in the fitness function. The AUC of the decision trees evolved from the multi-

objective GP is shown to dominate traditional decision tree classifiers, ANNs and

SVMs on two benchmark tasks from the UCI repository. In [140], three multi-

objective formulations in GP are compared on three benchmark UCI (multiple-

class) tasks. These formulations include using the error rates of each class as the

competing objectives, using an additional parsimony objective with the accuracy-

based objectives (from above), and trading-off the overall accuracy and size of

the learnt models. The first accuracy-based formulation shows the best overall

results from all three methods (and is also better than canonical GP), while the

third formulation shows the worst results. However, in all three formulations,

a single non-dominated solution (which has the lowest deviation of errors on

all classes) is selected from the evolved Pareto front (to represent the output of

the EMO system). This means that no other non-dominated solutions, nor the

evolved Pareto fronts representing the different trade-off solutions, are examined

or compared to traditional GP.

38 CHAPTER 2. LITERATURE REVIEW

Ensemble Learning

In [54], the two main techniques (among others) to generate diverse and accurate

ensembles are discussed. The first involves partitioning the input-space into

smaller subsets (called bootstrap samples) which are used to train the individual

base classifiers, such as bagging and boosting techniques [159][164][137]. The sec-

ond involves injecting randomness into the learning algorithm, and is favoured

in EMO due to its inherent stochastic and population-based nature [36][40][35].

In EMO, a common strategy to promote diversity between individuals uses

an additional penalty term in the fitness function, such as Negative Correlation

Learning (NCL) [36][40][35]. For more details on NCL, please refer to Section

6.2.3 (later in Chapter 6). These approaches differ from typical bagging and

boosting techniques as the full training set is used in learning to promote

interaction and cooperation in the ensemble, whereas bagging relies on sampling

techniques to partition the training data into smaller subsets. This thesis uses

EMO and GP for ensemble learning as this approach does not rely on sampling.

Ensemble learning using bagging and boosting approaches are omitted from the

discussion in this section (which focuses on EMO for ensemble learning) — a

discussion on bagging and boosting approaches can be found later in this chapter

(in Section 2.6.4) with other related works for classification with unbalanced data.

EMO approaches using an ensemble-diversity objective in the fitness function

typically build the ensembles using the set of non-dominated individuals in the

population [36][40][4][35]. In [35], the training accuracy is traded-off against the

NCL in a two-objective EMO (called DIVACE) to evolve ANN ensembles. In

[36], two diversity measures are compared in DIVACE to evolve ANN ensembles:

NCL and a measure called Pairwise Failure Crediting (PFC). PFC is found to

outperform NCL on two benchmark UCI tasks. In [40], EMO with three objectives

is used to evolve a Radial Basis Function (RBF) network ensemble: the accuracy,

NCL and the size of the learnt models.

Some EMO approaches use other mechanisms for ensemble diversity

[95][4][3]. In [95], the structure of the ANN models (e.g. number of hidden

nodes) is varied for diversity, and this is traded-off against the error rates of

the ANN models. In [4][3][2], two multi-objective formulations are proposed

for diversity in ANN-based ensembles. The first splits the training set into two

subsets and uses the error on the subsets as the learning objectives; while the

second adds Gaussian noise to the training set as the second objective. The

first formulation shows better results than the second, and these methods are

competitive compared to NCL on two (binary) benchmark classification tasks.

2.5. RELATED WORK: EAS FOR CLASSIFICATION (WITH BALANCED DATA)39

Model Regularisation

This category of work in EMO trades-off the overall accuracy and complexity

of the learned models. Models with high complexity can overfit the learning

data; while models with lower complexity can offer good generalisation ability,

but very simple models also risk underfitting the data. A posteriori EMO

techniques are typically used to find “compromise solutions” depending on

model complexity and performance. As model regularisation techniques are not

the focus of this thesis, only a brief list of related work is outlined below to give

the reader an idea of the field.

In [70], a simple bi-objective hybrid GA algorithm is used to find the best set

of weights for an MLP classifier using root mean square error (RMSE) and the

number of free MLP weights as the regularisation term. In [92] and [50], multi-

objective rule-based classification systems are developed using rule accuracy and

generality as the competing objectives.

In GP, reducing code bloat is a large area of research [26][96][63][49][48][9].

Bloat occurs when the size of the evolved solutions grow rapidly without any

clear benefit to fitness [48][63]. In classification, the overall accuracy can be

traded-off against the program size (of the evolved GP classifiers) as the two

competing objectives to drive the evolutionary search toward smaller high-

performing solutions [26][96][49][9]. A similar EMO approach can also be used

in program simplification in GP to promote smaller programs for easier program

analysis [109][182].

In the above-mentioned approaches, the parsimony objective in fitness suc-

ceeds in driving the EMO search toward smaller solutions that perform as

well as, or better than, models induced with no regularisation pressure, due to

better generalisation from the EMO-induced solutions [26][96][70][92][50]. An

advantage of the Pareto-based approaches for model regularisation is that the

trade-off between the accuracy and the complexity of the learnt models can be

analysed a posteriori via the Pareto front.

Comments on EMO for ROC Optimisation and Ensemble Learning

This thesis develops a multi-objective GP (MOGP) approach using EMO for

cost adjustment (when data is unbalanced) by trading-off the minority and the

majority class accuracies against each other in the learning process. This MOGP

approach is different from the existing works discussed above which use EMO

for ROC optimisation. Many existing approaches such as [108] and [65], use a

40 CHAPTER 2. LITERATURE REVIEW

GA to evolve the parameters in a single ANN classifier. This means that each

solution on the Pareto front represents a particular configuration of weights in

the ANN classifier. However, in MOGP, each solution on the evolved Pareto

front is a distinct GP classifier with a particular performance bias toward either

the majority or minority class.

While some GP-related works in EMO also evolve a Pareto front of genetic

program classifiers (such as [140]), here only a single classifier is extracted

from the Pareto front to represent the learnt model from the EMO system. By

discarding all but one of the evolved classifiers on Pareto front, this selection

process reduces the EMO search to a traditional single-predictor learning system.

This selection process also makes certain assumptions about the problem as

the other (discarded) Pareto front solutions may also represent useful classifiers.

However, this thesis utilises the set of genetic program classifiers on the evolved

Pareto fronts in two important ways. Firstly, the full set of evolved Pareto front

classifiers is used to evaluate the effectiveness of the MOGP system compared

to a traditional single-predictor GP system. Secondly, the MOGP Pareto front is

then combined into an ensemble, thus utilising the combined classification ability

of the Pareto front of genetic program classifiers to further improve classification

performances on the two classes.

While many related works in EMO (discussed above) also combine the

evolved Pareto fronts into an ensemble for classification [36][40][35][95][4][3],

these works all use GA to evolve ANN-based ensembles. Some works also use

an ensemble diversity measure, NCL, in the fitness function to promote diversity

between individuals [36][40][35]. This MOGP approach is different from the

above-mentioned works as the ensemble-diversity measures used in the fitness

function are adapted for genetic program classifiers, and for classification tasks

with unbalanced data. In MOGP, diversity is measured separately for each class;

otherwise these measures risk being biased toward the larger majority class.

2.5.3 Related Aspects in Ensemble Learning

While ensemble learning in EAs also represents a very large area of related work,

this section provides a brief discussion of two key groups of related work that

address specific concepts pertaining to this thesis. The first includes recent work

which provides a theoretical analysis on how anti-correlation measures such as

NCL work to promote diversity in a population of base learners in ensemble

approaches [126][125], and the second includes recent developments in ensemble

2.5. RELATED WORK: EAS FOR CLASSIFICATION (WITH BALANCED DATA)41

selection strategies in EAs [76][180][138].

Recently, in [125][126], two anti-correlation measures, NCL and a new vari-

ation called root quartic NCL (rqNCL), are theoretically analysed to explain

how each creates diversity in a population. The new variant rqNCL is found

to create widely separated but small clusters of points in the population, while

traditional NCL tries to increase the distances of the individual points to the

overall mean of the points in the population. These measures are compared using

a grammar-guided GP on a 6-multiplexer problem [126], and a benchmark binary

classification task (Australian Credit) using an ANN ensemble [125]. The new

variant (rqNCL) is found to show competitive results compared to traditional

NCL, particularly for large ensembles.

Ensemble selection addresses the question of how to choose which classifiers

to include in the final ensemble, given a large pool of learnt base classifiers

[76][180][138]. In [76], offline and online (off-EEL and on-EEL) ensemble selection

algorithms are proposed using a simple greedy search to construct the ensembles.

Given a pool of learnt base classifiers sorted by fitness, each classifier is removed

from the pool and copied into the ensemble where, at each step, the ensemble is

evaluated (using a majority vote of the current ensemble). Once the pool is empty,

the ensemble with the best performance is taken as the final ensemble. Off-EEL is

run once after the training cycle; while on-EEL interleaves the ensemble learning

and selection process, and is performed at each generation. Off-EEL is shown to

outperform on-EEL on six benchmark UCI tasks, as the co-evolutionary approach

on-EEL is found to be easily prone to noise, particularly in the early stages of the

co-evolution.

In [138], the fittest individuals in the evolved population of ANN classifiers

are selected for the final ensemble using a weighted average of the accuracy

and diversity of each individual. In [180], a GA used to first train an ensemble

of ANN classifiers, and then to optimise the weights specifies each ensemble

member’s contribution in the final ensemble. The GA-optimised ensembles are

found to outperform two other ensemble selection schemes. The first uses a

fitness-weighted majority vote, while the second uses a recursive least-square

(RLS) algorithm to find the best ensemble members.

These ensemble selection approaches show that carefully selecting only the

“best” individuals for the final ensemble is a non-trivial problem. Some use

relatively simple ensemble selection algorithms [76][138], while others optimise

the ensembles using a secondary training phase [37][180]. This thesis tries to

address these issues using GP for classification with unbalanced data by devel-

42 CHAPTER 2. LITERATURE REVIEW

oping two ensemble selection and optimisation strategies, and by comparing the

effectiveness of these approaches to both off-EEL [76] and the traditional majority

vote approach.

2.6 Related Work: Classification with Unbalanced Data

Traditionally, two main approaches are used to address the class imbalance prob-

lem. The first involves transforming, or sampling from, the original unbalanced

data set to create a balanced class distribution in training. These are known

as “external” approaches as the external training data is re-balanced while the

learning algorithm remains relatively unchanged. The second approach uses

various forms of cost adjustment within the learning algorithm to utilise the

original unbalanced data as is in the training process. These are known as

“internal” approaches as the learning algorithm is adapted to factor in the uneven

class distributions. Some approaches also combine these two techniques, that is,

sampling and cost adjustment in the learning algorithm [57][157][139][11][122].

A new and smaller area of work has recently emerged which focuses on

gaining a better theoretical understanding of the nature of the class imbalance

problem [93][159][173].

Ensemble methods using bagging and boosting with data-balanced tech-

niques have also shown some success in class imbalance tasks, as the bootstrap

samples (used to train the ensemble members) can be re-balanced using under-

and over-sampling. These ensemble-based approaches are categorised separately

from the three areas work discussed above as they use multiple classifiers in the

final classification decision. In contrast, the above-mentioned works focus on

canonical single-predictor learning algorithms where a single classifier is trained

to represent the learnt model.

These four main approaches and their limitations are discussed below.

2.6.1 External Data-Balancing Approaches

The most common data-balancing techniques include over-sampling the minority

class to boost representation by replicating known minority examples [41][139],

and under-sampling the majority class to reduce majority class representation

[11][122]. However, as over-sampling does not introduce any new information

into the learning process, and under-sampling can discard potentially useful

learning examples from the majority class, more robust sampling techniques

2.6. RELATED WORK: CLASSIFICATION WITH UNBALANCED DATA 43

such as synthetic over-sampling and editing are also common [107][12][5][91].

Synthetic over-sampling of the minority class (known as SMOTE) creates “new”

minority examples by interpolating between several similar examples [12], while

editing carefully removes noisy or atypical majority class examples [107][5].

Editing techniques include using Euclidean distance measures between majority

class examples in feature-space to eliminate noisy or atypical examples [5], and

removing majority class examples along the border-line between opposite-class

examples nearest to each other [107].

Data-transformation techniques such as self organising maps (SOMs) can also

reduce the size of the majority class while preserving data topology [85]. SOMs

reduce the complexity of the decision boundaries in feature-space to transform

the majority class into a smaller set of examples.

Sampling in GP

In GP, other effective, although more complex, sampling approaches include

Random Subset Selection (RSS) and Dynamic Subset Selection (DSS) [158][46][77].

In [158], a hierarchical two-tier sampling approach is used in LGP to identify

good or bad internet connections for an intrusion detection system with more

than half a million learning examples. First blocks of training examples are

sampled using RSS, and then examples within those blocks are sampled using

DSS. In [46], this work is extended by developing a family of hierarchical DSS

algorithms such as cascaded RSS-DSS and balanced-block DSS for very large data

sets. In [77], DSS is adapted to incorporate a bias toward difficult-to-classify

examples while RSS is scaled toward minority instances; these methods are

applied to benchmark multi-class tasks from the UCI repository.

Limitations of External Data-Balancing Approaches

While sampling techniques are effective in improving minority class performance,

they have major limitations. Some sampling approaches can suffer from poor

generalisation as potentially useful learning examples can be excluded from the

learning process. Similarly, as many sampling techniques aim to artificially re-

balance the training data prior to the learning process, the induced classification

model might not be able to capture or learn the underlying rarities that occur

in a particular problem. In other words, if the problem domain is inherently

unbalanced, a model induced with artifically balanced training data may not

learn to correctly identify the underlying rarities in the original problem domain.

44 CHAPTER 2. LITERATURE REVIEW

For these reasons, recent work comparing sampling techniques to cost-

adjustment shows that the latter can often outperform sampling methods across

a variety of learning algorithms and problem domains [11][122][93]. These works

also show that good results can be achieved using a combination of sampling and

cost-adjustment as opposed to sampling on its own [139].

Another limitation is that many sampling or data transformation techniques

require a priori expert knowledge about the data to develop appropriate sampling

algorithms. For example, a priori knowledge can be needed about which

learning instances are more important in the learning process and should not

be omitted from the sampled sets, compared to other learning instances which

can be omitted. Likewise, data transformation techniques can require complex

representation to ensure minimum information loss.

Sampling can also add a computational overhead to the training process as in

many cases, sampling must be applied repeatedly for good coverage.

2.6.2 Internal Cost Adjustment

For the reasons described above, much work within the machine learning

community focuses on cost adjustment within the learning algorithm to factor

in the uneven representation of class examples. Common approaches include

assigning fixed misclassification costs to incorrect class predictions [88][142], or

developing improved training criteria that are more sensitive to the unbalanced

class distributions (compared to the standard overall accuracy or overall error

rate). Improved training criteria include: the average classification accuracy

of the minority and majority classes where the performance of both classes is

considered equally important in fitness [107][139][5][116], the Area under the

ROC curve (AUC) [27][84][149][90], statistical measures of accuracy such as the

Wilcoxon-Mann-Whitney (WMW) statistic (to approximate the AUC) [179][57],

and the F-measure widely used in information retrieval [34][69].

Fixed Costs

Fixed cost-based approaches tend to specify these costs a priori [88][142]. In

[88], different ratios of penalty factors are compared which control the rate

at which false negatives (FN) are penalised over false positives (FP), using a

population-based rule-inducing classifier. Using real-world medical data with

class imbalance, they show larger penalties for FNs can improve minority class

accuracy. In [142], fixed class costs for misclassified examples are compared

to the overall error rate to train three classifiers for a multi-class network

2.6. RELATED WORK: CLASSIFICATION WITH UNBALANCED DATA 45

troubleshooting problem. Results show that the cost-reducing method reduced

overall costs but produced higher error rates compared to the traditional error-

reducing method. However, fixed class cost can be difficult to determine a priori,

typically requiring a trial-and-error process on a task-by-task basis.

Class Sensitive Training Criteria

Much research in this area also studies what effects different training criteria have

on the learned classifiers in class imbalance scenarios [130][173][179][27][34][69].

In four separate studies [130][173][179][27], the authors show that when data

sets are unbalanced, using the overall accuracy as the training criteria can lead

to biased classification performances by the learnt classifiers. However, when

the class distributions are unbalanced, using the AUC in training can produce

classifiers with better classification ability, where the AUC becomes increasingly

disassociated from the overall error rate as the level of class imbalance increases.

In [179], a Multilayer Perceptron (MLP) classifier, and two benchmark UCI tasks

and a real-world churn-prediction data set, are used in the experiments. In [27],

five machine learning algorithms such as k-nearest neighbour (KNN), decision

trees and MLPs, and five tasks (with balanced and unbalanced data) from the

UCI repository are used on the experiments. In [172], decision trees learners and

26 benchmark unbalanced data sets are used in the experiments.

In [34], nine well-known training criteria such as the AUC, F-measure, and

mean square error (MSE) are compared and analysed in metric-space on three

tasks from the UCI repository with unbalanced data. A new composite measure

based on the average class accuracy, AUC and RMSE is found to be the most

effective in training good solutions. Similarly, in [69], the correlation between 18

training measures such as the overall accuracy, several variants of the AUC, and

several averaging functions (e.g. the F-measure and geometric mean), are studied

using 30 binary and multi-class tasks from the UCI repository with balanced and

unbalanced data. Ranking measures (e.g. AUC) are found to be the most effective

in training classifiers with good class separability, and also the least correlated to

both qualitative (e.g. accuracy) and probabilistic (e.g. WMW statistic or logloss)

measures when data is unbalanced; whereas the different measures are all closely

correlated when data is balanced. Both [34] and [69] used a variety of learning

algorithms (e.g. NB, SVM, ANN, KNN and decision trees, but not any genetic-

based learners) in their experiments.

46 CHAPTER 2. LITERATURE REVIEW

Cost Adjustment in the Fitness Function in GP

Cost-adjustment in GP focuses on developing new fitness functions to reward

solutions which have good accuracy on both classes with better fitness, and

penalise those solutions which have poor accuracy on one class with poor fitness.

In [60], an adaptive cost-based fitness function is developed in GP to assign

and periodically re-weight the error associated with certain hard-to-classify

examples (similar to boosting), typically focused on minority class examples.

This method improves overall classification performance compared to canonical

GP on four benchmark UCI tasks but determining good initial costs is non-trivial.

To address this limitation, a fixed-cost fitness function is used in [6] where

incorrect minority class predictions are penalised by the factor of the class imbal-

ance ratio. This approach is applied to a bankruptcy prediction problem using

data from Spanish companies generated between 1999 and 2000, and is shown to

outperform canonical approaches without class-specific cost adjustment.

In [157], three new fitness functions are developed for a multi-class network

intrusion detection problem using real-world transmission control protocol (TCP)

dump data. The first uses the average accuracy for each minority class, the

second uses a cost-based measure which dynamically re-adjusts weights for

minority class examples, and the third uses a two-level fitness function where

the accuracies on the two smallest classes are used to resolve ties for the primary

criterion (the accuracies of the two largest classes). These methods, particularly

the first two fitness functions, show good accuracy on some of the minority

classes. However, the many free parameters in these approaches are considered

a hindrance where performance is very sensitive to the initial settings; these

methods also use sampling.

In [176], the weighted sum of three criteria are used in the fitness function

for three multi-class tasks with unbalanced data (from the UCI repository).

These measures include the overall error (weighted the highest), a new measure

based on the difference between predicted and expected classifier outputs, and

a separability-based measure (similar to the AUC). Their results show good

accuracy across all minority classes. Similarly, in [57], two metrics are combined

with an equal weighting in the fitness function for five multi-class tasks (from

the UCI repository). A binary decomposition-based approach is used to split

the multiple classes into n binary tasks; the two metrics include the geometric

mean of the two accuracies of the two classes, and an estimate of the AUC using

the WMW statistic. However, this approach also uses sampling in the learning

process.

2.6. RELATED WORK: CLASSIFICATION WITH UNBALANCED DATA 47

In [141], three new fitness functions for binary class imbalance tasks are

developed. These use the average classification accuracy of the minority and

the majority classes, except each used an increasing penalty for poor accuracy

on one class only. Using two benchmark tasks (from UCI) and two synthetic

tasks, the results show that, not surprisingly, the improved fitness functions show

better minority class accuracies (but poorer majority accuracies) compared to the

standard GP fitness function, and that larger penalties lead to better minority

class performance. However, neither the AUC of the evolved classifiers nor the

statistical difference between the three fitness functions is explored.

Limitations of Cost-based Approaches

While these approaches for cost-adjustment in GP are effective, there are four

main limitations. The first is that misclassification costs for incorrect class predic-

tions must usually be determined a priori [157][88][142]. These can be problem-

specific and often require a trial-and-error process to determine an appropriate

set of costs for each class. The second is that improved metrics in the fitness

function (such as the AUC) can increase training times due to the computational

overhead required to calculate these measures, particularly on large data sets

[34][179]. The third limitation is that many new fitness functions are hand-crafted

to suit a particular classification problem [157][60]. These can require expert or

a priori knowledge about the problem domain, whereas problem-independent

fitness functions are more desirable. Finally, while many approaches improve

minority class performance at the expense of overall accuracy, this performance

trade-off is not examined in any depth nor are any techniques proposed to

address or exploit this trade-off. This thesis will try to address some of these

limitations.

2.6.3 Theoretical Analysis in Class Imbalance Tasks

Work in this area tries to gain a better understanding of the nature of the class

imbalance problem, and includes investigating the influence of other factors in

the learning phase [93][145]. In [93], the level of class imbalance, complexity

(class overlap), and the training set size, are varied in training using three learners

(decision tree, MLP and SVM) for a synthetic (binary) classification task. It is

shown that class imbalance is less of a hindrance in larger training sets and lower

complexity problems for all three learners, while SVM is the least susceptible

to the learning bias. However, a limitation in this study is that the test set

48 CHAPTER 2. LITERATURE REVIEW

remains balanced in all the experiments; this can bias the performance of the

learnt classifiers. A similar conclusion, i.e. that performance degradation is not

solely due to the level of class imbalance but is related to the degree of complexity,

is also shown in [145] for decision tree learners on another synthetic (binary)

classification task.

2.6.4 Ensemble Methods

As discussed, combining bagging and boosting with sampling (such as under-

sampling, over-sampling and SMOTE), to create balanced bootstrap samples is

a popular approach to classification with unbalanced data [123][118][170][37].

This means that the base learners are trained using traditional measures such

as the overall error or classification accuracy, as the bootstrap samples are

artificially balanced. While bagging and boosting with balanced bootstrap

sampling represents a large area of work for classification with unbalanced data;

bagging has also recently been combined with EMO [123][124], and NCL in the

fitness function [168] for class imbalance. These two main approaches (traditional

bagging and boosting, and bagging with NCL and EMO) and their limitations are

discussed below.

Bagging and Boosting with Balanced Bootstrap Sampling

Most work in this area uses ANNs, decision trees, NB or SVMs as the base classi-

fiers in the ensembles. Some examples include the following. In [118], two new

under-sampling methods are developed to create balanced bootstrap samples for

a boosting algorithm with decision trees; these are compared to several other

boosting approaches from the literature. A similar under-sampling approach is

developed in [164] using SVMs where the support-vectors are iteratively learned

on balanced bootstrap samples. Both [118] and [164] use benchmark tasks from

the UCI repository. In [135], an ensemble of linear regression classifiers are

trained using under-sampling and AdaBoost for a (binary) classification task

from the PAKDD [1] data mining competition. In [159], a pool of decision tree,

NB and rule-based base classifiers are combined into a “meta-classifier” for an

e-Commerce fraud detection task. Here the base classifiers are trained using a

combination of balanced and unbalanced bootstrap samples.

In [170] and [169], a decision trees-based bagging approach is developed

where ensemble performances on balanced and unbalanced tasks are compared

when the level of diversity in the ensembles are varied during training. Diversity

2.6. RELATED WORK: CLASSIFICATION WITH UNBALANCED DATA 49

is varied by increasing the balanced bootstrap sample sizes where the smaller the

bootstrap size, the better the diversity. These findings show that, as expected, the

accuracies on the minority and majority class improve together when ensemble

diversity is increased in balanced data sets. However, on the unbalanced test sets,

ensembles with high diversity rates show high minority class accuracies but poor

majority class accuracies. These experiments used eight binary and multi-class

benchmark tasks from the UCI repository.

Bagging with NCL, and Bagging with EMO

Recently, bagging (with balanced bootstrap sampling) has been compared with

NCL in the fitness function (for ensembles-diversity) to train ANN-based ensem-

bles [168]. In this work, two formulations of NCL are evaluated in the fitness

function (and compared to bagging) on the same UCI tasks as [169]. However,

the original unbalanced data set is first re-balanced using sampling before NCL

is measured. In the first formulation, NCL is applied to all training instances

in the (re-balanced) training set; in the second formulation, NCL is only applied

to minority class instances in the (re-balanced) training set while majority class

instances are ignored. Both NCL-trained ensembles show better minority class

accuracies than the bagging approach, and the first NCL formulation shows the

best overall diversity from all three approaches. The authors attribute this to

very high diversity on the minority class alone (e.g. the second NCL formulation)

producing high minority class accuracies but poor majority class accuracies.

In [123][124], a co-evolutionary approach with bagging and EMO has been

used in ensemble learning with grammatical evolution (GE). These works use

a problem-decomposition approach (e.g. one-vs-rest) to evolve a population

of classifiers for two multi-class tasks (from the UCI repository) with many

minority classes. Two populations are co-evolved for ensemble diversity: (binary)

classifiers and “points” (which are balanced bootstrap samples). The Pareto

based learning objectives in fitness include the overall error of each classifier, the

level of overlap between correctly learned “points”, and a parsimony objective

favouring smaller solutions. A winner-takes-all approach of the Pareto front

determines the final ensemble prediction. This approach is shown to outperform

traditional single-objective GP on the tasks.

In one related work [37], a bagging approach with unbalanced bootstrap

samples are used for ensemble learning where base classifiers from 16 different

learning algorithms are trained with the F-measure as the training criteria.

However, this work focuses on ensemble selection where a second training

50 CHAPTER 2. LITERATURE REVIEW

phase (using GA) optimises the weights that specify which base classifiers are

represented in the final ensemble. Experiments on five tasks with unbalanced

data from the UCI repository show that the GA-based ensemble selection strategy

outperforms two previous approaches: a fitness-weighted majority vote strategy,

and a traditional majority voting approach where all members contribute equally

in the ensembles. However, this approach represents the only related work which

does not use balanced bootstrap sampling.

Limitations of Ensemble Methods

While these approaches show good results on some unbalanced data sets, there

are some limitations which this thesis tries to address. Most works uses ANNs,

decision trees and NB as the base classifiers [159][168][40][170][37]. In addition,

these works rely on sampling techniques to either create balanced bootstrap

samples in bagging [159][123][124][170], or re-balance the training data when

diversity measures (such as NCL) are used in fitness evaluation [168].

GP has shown much success in evolving reliable and accurate classifiers for

traditional single-predictor classification [176][157][60][141][57][77]. However,

there is very little related work, particularly in GP, which does not rely on

sampling techniques (for cost adjustment) when data is unbalanced. This

thesis uses the original unbalanced training data directly in the GP learning

process (using the EMO component for cost adjustment), without the need to

first artificially re-balance the data. This allows us to concentrate on the cost-

adjustment and diversity measures in GP, and remove the dependence on a

sampling algorithm.

There has also been very little work which focuses on adapting the ensemble

diversity measures in fitness to account for the skewed class distributions [168].

As discussed, most related works measure diversity relative to all examples,

irrespective of class, as the classes are first re-balanced using sampling [168]. While

the work in [168] measures NCL separately for the two classes, diversity on

the majority class is ignored. In contrast, this thesis compares two ensemble-

diversity measures in the fitness function (NCL and PFC) where diversity is

calculated separately for each class using the original unbalanced training data,

and diversity on the minority and the majority classes then contributes equally

in fitness evaluation. This is to ensure that the ensembles are equally diverse on

both classes.

2.7. SUMMARY 51

2.7 Summary

This chapter presents the background and related work for the main topics used

this thesis. The background covers the fundamental concepts in machine learning

and classification, evolutionary computation focusing on genetic programming

(GP), evolutionary multi-objective optimisation (EMO), and ensemble learning.

The related work focuses on recent advances in GP and EMO for classification,

and class imbalance learning with particular emphasis on GP and ensemble-

based approaches. The related work in each of these areas also highlights the

limitations/criticisms of the current approaches, and the challenges that this

thesis attempts to address.

In classification with balanced data (the first part of the related work),

emphasis is given to how to represent classifiers in GP, developing “improved”

classification strategies and fitness functions in GP, and GP for ensemble learning.

EMO for classification is categorised into three main areas: ROC optimisation

where the true and false positive rates are traded-off each against other during

learning, ensemble learning where the accuracy and diversity of the base learners

are traded-off against each other, and model regularisation where the accuracy (of

a learnt model) is traded-off against a model regularisation term.

The second part of the related work for class imbalance learning is cate-

gorised into three main areas. These include sampling-based techniques used

to artificially re-balance the training data prior to learning, cost adjustment

techniques used within the learning algorithm to factor in the unbalanced classes

during learning, and ensemble-based approaches using bagging and boosting

(and other) techniques.

2.7.1 Next Chapter

The next chapter outlines the GP approach to classification where the evolved

GP classifiers are represented as mathematical expressions. Particular emphasis

is placed on how to develop classification strategies and fitness functions in GP.

A classification strategy determines how an output value for a genetic program

is mapped to a class label, while the fitness function defines a measure to

calculate the overall performance of a solution. The next chapter compares

whether the traditional (static) classification strategy in GP is good enough on

the (binary) unbalanced tasks compared to an “improved” (non-static) strategy,

and highlights the main advantages and limitations of the three main current

approaches in the fitness function in GP on the classification tasks.

52 CHAPTER 2. LITERATURE REVIEW

Chapter 3

GP Approach for Classification

This chapter is organised as follows. The first section outlines the chapter

introduction and goals. The second section discusses the GP approach to

classification, and introduces the two main classification strategies in GP. The

third section introduces three existing fitness functions for classification. The

fourth section presents the experimental results comparing the classification

strategies and fitness functions in GP on the tasks. The fifth section summarises

the main ideas in this chapter.

3.1 Introduction

This chapter develops a GP approach to classification focusing on two important

aspects in the evolution. The first aspect is how to develop an effective classi-

fication strategy, and the second is how to develop a good fitness function, for

classification with unbalanced data. By representing the evolved GP classifiers

as mathematical expressions, a GP classifier computes a single output value

(floating-point number) when evaluated on an input instance from the data set.

The classification strategy determines how this output value is translated to a

set of binary class labels (for the minority and the majority classes) in these tasks.

Generally speaking, the fitness function determines how well an evolved solution

solves a given problem.

In classification tasks, the standard GP fitness function measures the overall

accuracy of a solution, that is, the number of input instances assigned the correct

class label by a given solution as a proportion of all input instances in the

training set. However, when data sets are unbalanced, biased classifiers with high

majority class accuracies but poor minority class accuracies are often evolved

using this fitness function in GP [141][57][173]. This is because this standard

53

54 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

measure of performance can be influenced by the larger number of examples

from the majority class. Research shows that adapting the fitness function to

use improved training criteria that are more sensitive to the smaller minority

class can improve performances on the important minority class when data is

unbalanced. Two common approaches for cost adjustment to account for the

unbalanced classes use the average accuracy of the minority and majority classes,

and the area under the ROC curve (also known as the AUC), in fitness. The

AUC is a particularly useful measure of performance when data is unbalanced

as it represents how well a learned classifier approximates the trade-off between

the minority and majority classes across multiple classification thresholds (using

the ROC curve) [27][84][90]. As a result, it is invariant to the unbalanced classes

(unlike the standard measure, the overall accuracy).

3.1.1 Classification Strategies

The traditional classification strategy in binary classification tasks defines a static

class threshold for all solutions in the population, typically using the natural

division between positive and negative numbers to represent the two class labels

(i.e. zero is fixed as the class threshold). However, recent improvements to the

classification strategy in GP uses dynamic class boundaries, determined on a

solution-by-solution basis for each solution in the population [186][185][154][120].

This dynamic (non-static) strategy has been shown to evolve better-performing

solutions than the traditional static strategy on a range of tasks with multiple

balanced classes, as it offers greater flexibility in the evolution. That is to say,

the non-static class boundaries do not need to be defined a priori, since these are

determined a solution-by-solution basis.

However, the effectiveness of a dynamic (non-static) or static strategy has not

previously been compared in the context of binary classification with unbalanced

data, i.e., where there are only two classes and one class has a smaller number

of examples than the other. Previous works (such as [186][185][154][120]) have

compared these two strategies on classification tasks with multiple balanced

classes and, as a result, only the standard GP fitness function was considered in

the evolution. However, this particular fitness function is not suitable when data

sets are unbalanced (as discussed above). Therefore, it is not clear whether the

improved non-static strategy will also outperform the traditional static strategy

(in terms of performance of the evolved solutions) on these binary tasks with

unbalanced data, and when different fitness functions are used in the evolution

3.2. GP APPROACH TO CLASSIFICATION 55

to account for the unbalanced classes.

This chapter compares which of these two classification strategies in GP finds

solutions with better AUC on these tasks, when the standard fitness function and

the two improved fitness functions are used in the evolution. To be more specific,

this chapter investigates whether the traditional (static) strategy is sufficient on

these tasks compared to the dynamic (non-static) strategy, in terms of the AUC of

the evolved solutions. This chapter also examines the main differences between

the evolved GP solutions using the three fitness functions (in terms of their AUC,

minority and majority class accuracies, and overall classification accuracy) to

highlight the advantages and limitations of these fitness functions, and why they

need to be improved. This chapter also demonstrates how the overall accuracy

of a solution can be a misleading measure of performance on these unbalanced

tasks compared to the AUC which is invariant to the unbalanced classes.

3.1.2 Chapter Goals

This chapter has two mains goals. The first goal is to develop a GP approach

to classification, with particular emphasis on the classification strategy to investi-

gate whether the traditional (static) strategy is sufficient for these tasks compared

to the dynamic (non-static) strategy.

The second goal is to highlight the advantages and limitations of three well-

known current approaches in the fitness function, by examining the performances

of the evolved classifiers on the unbalanced tasks.

3.2 GP Approach to Classification

This section outlines the GP representation, discusses the main difference be-

tween static and non-static classification strategies in GP, and presents the non-

static GP strategy used in this study.

3.2.1 GP Representation

A tree-based structure is used to represent genetic programs [104]. The terminal

set consists of feature terminals (features from the data set) and constant termi-

nals (randomly generated floating point numbers). The function set consists of

the four standard arithmetic operators and a conditional operator (if) as defined

below:

56 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

{+,−,%,×, if }

The +,− and × operators have their usual meanings (addition, subtraction

and multiplication) while % means protected division. Protected division is the

typical division except that a divide by zero gives a result of zero. The four

arithmetic operators all take two arguments and return one. The conditional if

function takes three arguments. If the first is negative, the second argument is

returned; otherwise it returns the third argument. The if function is included

in the function set as this allows the solutions to contain a different expression in

different regions of feature space, and allows discontinuities rather than insisting

on smooth functions.

As the terminals and the return types of all the functions are numeric, the

genetic programs represent mathematical expressions. For example, the Lisp

expression (- (+ F1 F2) 0.5) for a genetic program represents the mathemat-

ical expression (F1+F2)− 0.5. In this expression, the arithmetic operators (− and

+) are the functions, and F1, F2 and 0.5 are the feature terminals and the constant

terminal.

3.2.2 Classification Strategies in GP

Using this GP representation, a genetic program classifier represents a mathemat-

ical expression which computes a single output value (floating-point number)

when evaluated on a particular input instance from the training or test sets. This

floating-point number must then be mapped or translated to a set of class labels.

As previously discussed, the traditional technique to translate this number into

a binary class label defines zero as the class threshold, using the natural division

between positive and negative numbers to represent the two class labels. For

the zero-threshold classification strategy, a data example will be assigned to the

majority class if the classifier output is negative, otherwise it will be assigned to

the minority class.

Non-static Class Threshold

Recent research in GP, particularly for classification with more than two classes,

has shown that the static zero-threshold (ZT) strategy can place additional

constraints on the solutions during evolution [186][185][154][120]. This is be-

cause the class boundaries are not relative to the output values unique to each

solution, but remain fixed throughout the evolution. The evolved solutions

3.2. GP APPROACH TO CLASSIFICATION 57

20

Distribution
Minority

Majority
Class

Minority
Class

Distribution
Majority

0

Class
Majority Minority

Class

Distribution
Minority

Distribution
Majority

(a) (b)

Figure 3.1: Distributions of minority and majority class outputs for two GP

solutions (output values along the horizontal axis) and target class regions.

are required to not only separate their outputs for each class, but also ensure

that these outputs adhere to a pre-determined ordering, i.e., minority class

outputs must be non-negative while majority class outputs must be negative.

These previous works argue that a non-static classification strategy, where the

class boundaries are different for each solution (based on its output values),

can lead to better performing classifiers being discovered in the evolutionary

process [186][185][154][120]. It is argued that non-static classification strategies

can potentially identify good solutions early in evolution, whereas the static ZT

strategy risks overlooking/disregarding solutions which do not conform to the

ZT class boundaries.

For example, consider two evolved genetic program classifiers whose outputs

on the two classes are represented by Figures 3.1(a) and 3.1(b). Each figure shows

the distributions of output values when the classifier is evaluated on the input

instances from the two classes, where the horizontal axis corresponds to the

output values and the height of each distribution represents the relative frequency

of observations for the output values. In Figure 3.1(a), the two class distributions

are separated with relatively little overlap between the distributions (darkly-

shaded area in figure). However, using the ZT strategy, this classifier maps most

of its outputs to the incorrect class labels (as shown by the two class boundary

regions in this figure). Consequently, this classifier will exhibit a poorer fitness (as

deemed by the fitness function) than the classifier in Figure 3.1(b), which maps

more of its outputs to the correct class labels but which also has poorer class

separability (larger overlap between distributions) than Figure 3.1(a).

Clearly, selecting 2 as the class threshold in Figure 3.1(a) represents a better

“split point” between the two class distributions. In this case, the majority class

label is returned when an output value is greater than 2; otherwise, the minority

58 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

class label is returned. Using these class boundaries, more outputs are mapped

to the correct class labels than the ZT strategy for the same classifier.

Static or Non-static Classification Strategy in GP?

The above-mentioned examples show how a non-static classification threshold

can potentially identify better-performing solutions than the traditional (static)

strategy. However, in binary classification, GP should be able to automatically

“shift” the outputs of the evolved solutions in the population to conform to the

ZT strategy using the evolutionary process. GP can accomplish this for two

important reasons. Firstly, in binary classification, only two distinct class ranges

are required; while in multi-class tasks, there are more ranges (or intervals) to

consider. Secondly, GP can tweak the mathematical expressions representing the

genetic program solutions using the genetic operators in the evolution.

For example, let a genetic program p represent the expression (F1 + F2) − 0.5

where F1 and F2 are features terminals and 0.5 is a constant terminal. Assuming

that p outputs values in the range [5, 10] when it is evaluated on examples from

majority class, and values in the range [10, 15] for the minority class. If a mutation

or crossover operation on the root node of p creates a new solution p′ during

evolution where p′ = p− 10, then the outputs of p′ will lie in the range [−5, 0] for

the majority class and [0, 5] for minority class. The solution p′ will now output

negative values for majority class examples (except those outputs that are exactly

0) and non-negative numbers for minority class examples. The new genetic

program p′ represents the expression ((F1 + F2)− 0.5)− 10 which can simplified

to (F1 + F2)− 10.5.

The first goal of this chapter tests whether GP can accomplish this, i.e.,

“shift” the outputs of the evolved solutions relative to the ZT strategy during

the evolution, to a sufficient level of accuracy compared to the non-static strategy.

This hypothesis is tested by comparing the AUC performances of the evolved GP

solutions for both strategies, when both strategies are given the same number of

generations to evolve a good solution.

3.2.3 Non-static Classification Strategies

Recently, several non-static classification strategies in GP have been proposed

for classification with multiple classes [186][185][154][120]. These strategies

implement different techniques to accomplish the same end-goal in the evolution,

i.e., to automatically determine dynamic class boundaries for a given solution in

3.2. GP APPROACH TO CLASSIFICATION 59

the population. This study uses the approach from [186] to determine the best

“split point” between two class distributions for a given solution. This approach

uses a probabilistic technique to find the point of least overlap between the class

distributions for a given solution, to represent the class threshold. This approach

is described in more detail below, followed by a brief discussion on why this

approach is selected over the other non-static classification strategies from the

literature.

Probability-based Non-static Classification Strategy

The probability-based classification strategy [186] models the outputs of the

genetic program classifiers using two Gaussian distributions, one for each class,

and uses the probability density function of the class distributions to determine the

class label for a given input instance. The probability density function φ is shown

by Eq. (3.1), where Nc is the number of examples in class c, and µc and σc are

the mean and standard deviation, respectively, of the genetic program outputs

Pc,i (when a solution p is evaluated on all training examples i from class c). In

this equation, x is the (real-valued) genetic program output when a solution is

evaluated on an unknown input instance (i.e. instance to be classified).

φ(µc, σc, x) = exp

(−(x− µc)
2

2σ2
c

)

.
1

σc

√
2π

(3.1)

where

µc =

∑Nc

i=1 Pc,i

Nc

and σc =

√

√

√

√

1

Nc

Nc
∑

i=1

(Pc,i − µc)2

In the training phase, the two class distributions are constructed for a given

solution, by evaluating the solution on all training examples from the two classes

(to obtain the µc and σc values for φ for both classes). To assign a class label to a

particular input instance x from the training set, two φ values are calculated, one

for each class distribution, for the given input instance. The class with the higher

φ value is taken as the class of that particular input instance, where the higher φ

value reflects which of the two class distributions the output value for x is more

likely to belong to.

This technique finds the point of least overlap between these two class distribu-

tions, as shown in Figure 3.2. This figure1 shows the two class distributions for

a GP solution where the output values are plotted along the horizontal axis, and

1The two class distributions in this figure correspond to the actual output values for an evolved

classifier from a particular GP run on the Ped task.

60 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

−10 −8 −6 −4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

P
i

φ

T

A B

Minority Distribution

Majority Distribution

Figure 3.2: Distributions of class outputs for a GP solution and φ values of the

outputs Pc,i for the two classes.

the vertical axis shows the probability density function (φ) for the output values.

When an output value lies in the region A, the majority class label is returned as

φ is larger for the majority class distribution (than the minority class distribution).

Similarly, when an output value lies in the region B, φ is larger for the minority

class distribution (than the majority class distribution), thus the minority class

label is returned. For example, when the output value is −2, φ for the majority

class distribution will be approximately 0.15; whereas φ for the minority class

distribution is under 0.05, as shown in Figure 3.2.

At the point of overlap between these two class distributions, T in Figure

3.2, both φ values will be the same; this represents the class threshold. When

an output value is identical to the class threshold T , the minority class label is

returned (similar to the case when an output value is exactly zero for the static

ZT strategy).

A similar procedure is followed to obtain the class label for an unseen input

instance from the test set. Two φ values are calculated for the genetic program

output x, one for each class distribution using the µc and σc values of the

solution’s outputs on the training set. The class with the higher φ value is taken

as the class of that particular example.

Justification of Probabilistic Strategy for Binary Class Imbalance Tasks

Other popular non-static classification strategies in GP include Centred Dynamic

Class Boundaries (CDCB) [185], Slotted Dynamic Class Boundaries (SDCB) [154],

and Dynamic Range Selection (DRS) [120] (see Section 2.5.1 in Chapter 2 for more

details on these works). The probabilistic approach described above is chosen for

3.3. FITNESS FUNCTIONS IN GP 61

this study for three main reasons.

Firstly, this method is not influenced by the unbalanced classes in these tasks

since the output values for the two classes as modelled using two Gaussian

distributions. This allows the outputs from both classes to be treated as equally

important when calculating the probability density function (φ), as each φ value

is calculated relative to the µc and σc values for the minority and majority classes

alone. In contrast, both the SDCB and DRS methods are “slot”-based; this means

that each slot contains the output values from both classes. When the classes

are unbalanced, the larger majority class can influence the class label of each slot,

as the class with the most number of examples in a given slot determines the

slot’s class label. Secondly, this probabilistic method requires no extra parameter

configuration whereas both “slot”-based methods require some a priori parameter

configuration, e.g., size of each slot, total number of slots, and range values of

slots. These parameters can be problem-specific and require a trial and error

process to configure. Finally, this non-static classification strategy is relatively fast

to compute and does not add a significant cost to the GP training times compared

to the ZT strategy. This probabilistic strategy requires only one additional pass

through the fitness cases to compute the µc and σc values for the two class

distributions during fitness evaluation.

3.3 Fitness Functions in GP

The static and non-static classification strategies (discussed above) determine

how a class label is assigned to a particular input instance. The fitness function

is different; this defines a measure to calculate the accuracy of a solution by

comparing the predicted class labels (as returned by a particular classification

strategy) with the target (or actual) class labels.

This section outlines three typical current approaches in the fitness function

and discusses the advantages and limitations of each. The first is the standard

fitness function for classification: the overall classification accuracy. The other

two are improved fitness functions for classification with unbalanced data: the

average accuracy of the minority and majority classes, and the AUC.

3.3.1 Overall Accuracy in Fitness

The traditional measure for classification, Acc shown below, uses the overall

classification accuracy in the fitness function (as discussed in Section 2.5.1 in

62 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

Table 3.1: Outcomes of a two-class classification problem.

Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positive (TP) False Negative (FN)

Actual Negative Class False Positive (FP) True Negative (TN)

Chapter 2). Using Table 3.1, this corresponds to the number of examples correctly

predicted by a classifier as a proportion of the total number of training examples.

Note that the same confusion matrix as Table 3.1 is also shown in the the previous

chapter (Table 2.1 on page 16) but is repeated here for convenience.

Acc = TP+TN
TP+TN+FP+FN

(3.2)

In Acc, fitness values range between 0 and 1 where 0 is very poor overall accuracy

and 1 is perfect classification accuracy. As Acc treats all correct predictions as

equally important in fitness, the larger number of examples from the majority

class can influence the overall accuracy, rewarding biased solutions with high

fitness values [173][179][130].

For example, consider a data set that contains 100 instances where 10 belong to

the minority class and the rest (90) belong to the majority class. Using this fitness

function, a trivial solution p which classifies all the instances as belonging to the

majority class, can score a relatively high fitness, 0.9 (shown by Accp below). An

alternative solution q with better discrimination ability between examples from

the two classes, e.g., which correctly classifies 8 minority class examples and 72

majority class examples, scores a lower fitness value, 0.8 (shown by Accq below).

Even though q has good accuracy rates on both classes, its fitness is lower than

the biased solution p and thus, q will have a lower selection probability than p in

the evolution.

Accp =
0+90

0+90+10+0
= 90

100
= 0.9

Accq =
8+72

8+72+2+8
= 80

100
= 0.8

3.3.2 Average Class Accuracy in Fitness

To promote solutions which have better accuracy on both classes, the fitness

measure Ave (Eq. 3.3) uses the average classification accuracy of the minority

and majority classes in fitness.

Ave = 1
2

(

TP
TP+FN

+ TN
TN+FP

)

(3.3)

3.3. FITNESS FUNCTIONS IN GP 63

FP rate0 1

h’h

i+1

i

1

w

T
P

 r
at

e

Figure 3.3: (a) Shaded area is the trapezoid fitted under two points on an ROC

curve where w is the width, and h and h′ are heights of the trapezoid.

In Eq. (3.3), the accuracy of each class is treated separately in the fitness

function, where both contribute equally to the final fitness value. Using the

example above, the biased classifier p will now have a poorer fitness of 0.5 (shown

by Avep) than solution q which has a fitness of 0.8 (shown by Aveq). Solution q

has a higher fitness because it has a better accuracy across both classes.

Aveq =
1
2
(0
0+8

+ 90
90+0

) = 1
2
(0
10

+ 90
90
) = 1

2
(0 + 1) = 0.5

Aveq =
1
2
(8
8+2

+ 72
72+18

) = 1
2
(8
10

+ 72
90
) = 1

2
(0.8 + 0.8) = 0.8

3.3.3 Area under the ROC curve

While Ave can find solutions with better minority class accuracies than the

standard Acc, a major limitation of both these measures is that they represent

the performance of a solution when it is evaluated using a single class threshold.

In contrast, the area under the ROC curve (or AUC) measures the classification

performance at multiple class thresholds. The AUC measures the overall quality of

a classifier when the threshold parameter biasing the final classification decision

is varied [130].

Auc =
N−1
∑

i=1

1
2
(FPi+1 − FPi) (TPi+1 + TPi) (3.4)

In Eq. (3.4), N is number of class thresholds and TPi/FPi represent the

performance of the solution at class threshold i. The equation sums the area

of the individual trapezoids2 fitted under the ROC points, as shown in Figure

3.3 for two ROC points. This measure returns values between 0 and 1 where

the higher the value, the better the performance. The AUC corresponds to the

2The area of a trapezoid is 1
2w(h + h′) where w is the width, and h and h′ are heights the

trapezoid [27].

64 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

++++++++
+ 88−

Positive class instances

Negative class instances

−−−−−−−−−−−−−−−−−−−−−−−−

Ti Tj

1

0 1 FP rate

T
P

 r
at

e

Tj
 Ti

(a) (b)

Figure 3.4: (a) Numeric outputs of a GP solution when it is evaluated on the

input instances, where + and - denote the positive (minority) class and negative

(majority) class outputs, respectively, and Ti and Tj are two different class

thresholds; (b) an ROC curve with two points.

probability that a minority class example is correctly predicted across different

class thresholds [84]. As mentioned, the AUC is a particularly useful and

common measure of performance in classification tasks with unbalanced data as

it represents how well a learned classifier approximates the trade-off between the

minority and the majority classes across multiple classification thresholds. The

following procedure is used to generate an ROC curve for a given GP solution.

a) Evaluate the solution on all the input instances from both classes to obtain

the numeric output values (this requires one full pass through the input

instances). Store the numeric output values separately for the two classes

(e.g. in two separate array structures).

b) For each class, sort the numeric output values (stored in the arrays) in

ascending order. For example, Figure 3.4(a) shows the (sorted) numeric

output values for the two classes when a GP solution is evaluated on the

input instances, where + and - denote the positive (minority) class and

negative (majority) class outputs, respectively.

c) Build an ROC curve for each classification threshold value T :

1. Initialise T (i.e. the first class threshold) as the lowest output value for

the positive (minority) class.

2. Iterate through the positive class outputs to count the number of

outputs that are greater than, or equal to, T (i.e. TPs). For example,

using Ti as the current threshold in Figure 3.4(a), seven out of eight

positive class outputs satisfy this constraint (i.e. ≥ Ti) giving a TP rate

of 7
8

(0.875).

3.3. FITNESS FUNCTIONS IN GP 65

3. Similarly, iterate through the negative class outputs to count the num-

ber of outputs that are greater than, or equal to, T (i.e. FPs). For

example, using Ti as the class threshold in Figure 3.4(a), six out of 26

negative class outputs satisfy this constraint (i.e. ≥ Ti), producing a FP

rate of 6
26

(0.23). The TP rate (from the previous step) and this FP rate

correspond to one point on the ROC curve, as shown in Figure 3.4(b).

4. Update the threshold T for the next iteration. The new threshold is

the lowest output value from either the positive class or negative class

output values that is greater than T .

5. Repeat steps (2) to (4) until the largest output value for the positive

(minority) class is reached. Each step produces one ROC point, e.g.,

using Tj is the class threshold in Figure 3.4(a) will produce another

ROC point, as shown in Figure 3.4(b) for Tj .

d) Use Eq. (3.4) to calculate the final AUC value for the ROC curve.

A major limitation of Auc in the fitness function is the increased training times,

due to the computational overhead required to construct an ROC curve. Once

a solution in evaluated on the input instances (i.e. after step (a) in the above

procedure), the extra computational overhead is due to two main factors that are

not required in the calculation of the Acc and Ave measures. These factors are:

sorting the output values for the two classes (i.e. step (b) in the above procedure),

and multiple iterations over these output values to obtain the different ROC points

(i.e. step (c) in the above procedure). When the distance between class thresholds

Ti and Ti+1 is small, more points on the ROC curve are generated (compared to

larger distances), allowing for a highly accurate AUC estimation.

While the above procedure can be optimised using more efficient program-

ming/optimisation techniques to speed up the calculation, this is not used in this

thesis. This is because the full procedure (shown above) represents the traditional

“out-of-the-box” method to calculate the AUC (as outlined in [27]). For example,

a more efficient technique to count the TPs and FPs at a given class threshold T

(after the output values are sorted) in step (c) would be to only count the number

of TPs and FPs in region r where Ti−1 < r ≤ Ti , and reconcile these with the

TPs and FPs from the previous iteration (for the class threshold Ti−1). In this

case, given the number of TPs from the previous iteration (call this tpi−1) and

the number of TPs in the region r for the current iteration (call this tpr), the final

number of TPs in the current iteration (call this tpi) would then be tpi = tpi−1−tpr

(and likewise for the FPs).

66 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

However, in the next chapter, several new measures are developed to approx-

imate the AUC in fitness but with faster training times, and these compared

the traditional AUC measure. One of these includes a lower-precision AUC

measure where the distance between class thresholds is increased (to speed up

the calculation).

3.4 GP Experimental Results

This section first outlines the evolutionary parameters used in the GP exper-

iments, then presents the full experimental results and analysis. The full

experimental results are split into two parts to address the two chapter goals.

In the first part, the AUC of the evolved GP solutions using the traditional ZT

strategy is compared to the non-static strategy for the different fitness functions,

to establish that the traditional ZT strategy performs as well as the non-static

strategy on these tasks. In the second part, the main differences between the

evolved GP solutions are examined (in terms of their AUC, minority and majority

class accuracies, and overall accuracies) for the three fitness functions with the

traditional ZT classification strategy.

3.4.1 Evolutionary Parameters

The ramped half-and-half method is used for generating programs in the initial

population and for the mutation operator [104]. Crossover, mutation and elitism

rates were 60%, 35% and 5%, respectively, and the tournament selection method

is used with a tournament size of 7. The maximum program depth is 8 to restrict

very large programs in the population. The population size is 500. The evolution

is allowed to run for a maximum of 50 generations, or is terminated early if a

solution with an optimal fitness value is found. For the three fitness functions

defined above, the optimal fitness value is 1 for a given solution.

This configuration reflects the recommended settings from the literature

[111][144][26], and is sufficient to train GP classifiers with good AUC on the

tasks. The experimental results aim to compare the different fitness functions and

classification strategies using a good configuration of evolutionary parameters

for all tasks. For this reason, fine-tuning this configuration of evolutionary

parameters is outside the scope of this work.

3.4. GP EXPERIMENTAL RESULTS 67

3.4.2 Comparing Classification Strategies

To address the first goal in this chapter, the experimental results in this section

compare the traditional (static) ZT strategy and non-static threshold (NST)

strategy in GP. This comparison focuses on the AUC of the evolved classifiers

for both strategies using Acc (Eq. 3.2), Ave (Eq. 3.3) and Auc (Eq. 3.4) in the

fitness function. As GP is a stochastic algorithm, each GP experiment is repeated

50 times using a different random starting seed in each run. Table 3.2 shows the

average AUC of the fittest evolved classifiers for both methods on the test sets

over 50 GP runs. The AUC of an evolved solution is calculated using Eq. (3.4).

The common random numbers technique [115] is used to test which classi-

fication strategy (for a given fitness function and task) achieves a statistically

significantly better AUC at a 5% level of significance over 50 runs. The common

random numbers method compares the difference in AUC between the two GP

systems on a run-by-run basis (over 50 runs for a task), and outputs a 95%

confidence interval of the AUC differences [115]. In Table 3.2, the classification

strategy with the (statistically) significantly better AUC for given fitness function

is highlighted in bold, according to the confidence intervals for the tasks. If

neither strategy is highlighted in bold for a given fitness function and task, then

there is no significant difference in AUC.

Analysis of the Differences Between ZT and NST

Table 3.2 shows that for each fitness function, neither classification strategy

consistently outperforms the other (in terms of AUC) on the tasks. In two tasks

(Ion and Spt), the ZT strategy is at least as good as, or statistically significantly

better than, the NST for all fitness functions. In one task (Ped), the NST strategy is

better than the ZT strategy for two fitness functions (Acc and Auc), although the

difference in AUC for fitness function Auc is very small (0.01). In two tasks (Yst1

and Yst2), the ZT strategy is significantly better for fitness function Auc; while the

NST strategy is significantly better for fitness function Ave. This shows that while

the NST strategy is better than ZT for classification with multiple balanced classes,

this is not always the case for these binary tasks with unbalanced data. Rather,

the differences between the ZT and NST strategies in these tasks does not follow

any clear pattern, where both strategies are competitive with respect to each other

on different tasks. This suggests that GP can sufficiently tweak the mathematical

expressions representing the GP solutions to “shift” its outputs relative to the ZT

strategy in the evolution in many tasks.

68 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

Table 3.2: Average AUC (± standard deviation) of evolved classifiers using a

fixed zero-threshold (ZT) and non-static threshold (NST) classification strategies

(statistically significantly better AUC highlighted in bold) over 50 GP runs.

Task Fitness Function Static (ZT) Strategy Non-Static (NST) Strategy

Acc 0.82 ± 0.06 0.74 ± 0.11

Ion Ave 0.80 ± 0.06 0.77 ± 0.10

Auc 0.85 ± 0.04 0.86 ± 0.06

Acc 0.72 ± 0.06 0.64 ± 0.09

Spt Ave 0.71 ± 0.05 0.68 ± 0.10

Auc 0.77 ± 0.04 0.76 ± 0.05

Acc 0.80 ± 0.12 0.85 ± 0.10

Ped Ave 0.87 ± 0.04 0.88 ± 0.09

Auc 0.92 ± 0.01 0.93 ± 0.01

Acc 0.76 ± 0.07 0.73 ± 0.11

Yst1 Ave 0.79 ± 0.03 0.82 ± 0.03

Auc 0.83 ± 0.02 0.80 ± 0.01

Acc 0.91 ± 0.06 0.90 ± 0.11

Yst2 Ave 0.93 ± 0.04 0.95 ± 0.03

Auc 0.95 ± 0.03 0.93 ± 0.03

Acc 0.55 ± 0.09 0.56 ± 0.08

Bal Ave 0.71 ± 0.15 0.54 ± 0.11

Auc 0.84 ± 0.09 0.89 ± 0.07

It must be mentioned that no GP solutions with perfect fitness values on either

the training or test sets are found in any of the runs. Perfect fitness values are

indicated by AUC values of 1, i.e., 100% accuracy on the minority and majority

class. This may be because these tasks represent difficult classification problems

to solve. This means that in all the GP experiments, the evolution is terminated

after 50 generations.

In those cases where the ZT strategy has significantly better AUC results

than the NST strategy, it can be assumed that solutions in the ZT populations

are improving faster (in terms of fitness) than solutions in the NST populations

over generations, or that solutions in the NST populations are not improving

sufficiently (in terms of fitness) compared to solutions in ZT populations. This

is assumed because, in the initial populations, the NST strategy should identify

solutions that perform at least as well as the solutions identified by the ZT

strategy. As the ith GP run for either strategy (for a given fitness function and

task) uses the same initial population of solutions, the NST strategy can select

zero as the class threshold for a solution if this happens to be the best “split point”

between the class outputs. In contrast, the ZT strategy is always fixed at zero.

3.4. GP EXPERIMENTAL RESULTS 69

In those cases where the ZT strategy has significantly better AUC results than

the NST strategy, the ZT strategy may be introducing more uniformity in the

evolved populations, enforced through selection pressure. In other words, as

the evolution progresses (over generations), more solutions are evolved whose

outputs lie within the target class boundaries (for the ZT strategy), as these

represent fitter solutions. In contrast, the populations for the NST strategy can

lack this uniformity, as different solutions are allowed individualised (non-static)

class boundaries, i.e., one solution’s output values on the two classes can be

very different to another while both can be equally fit. This uniformity between

solutions in the population may have contributed to the better AUC results for

the ZT strategy in some tasks. Indeed, on a case-by-case basis over all six tasks

and three fitness functions (18 cases in Table 3.2), the ZT strategy is statistically

significantly better than the NST strategy in 7 cases; while the NST strategy is

statistically significantly better that the ZT strategy in 5 cases. In the remaining 6

cases, the AUC for both strategies are very similar (not statistically significantly

different to each other).

For these reasons, the GP system in the subsequent section, and in the rest

of this study, will use the traditional static ZT strategy to map a given solution’s

outputs to the target class labels.

3.4.3 Comparing Fitness Functions with ZT Strategy

The analysis in the previous section focuses on the AUC between the two

classification strategies in GP. Using the same experimental results, the analysis

in this section focuses on the statistically significant differences in AUC between

the three fitness functions (Acc, Ave and Auc) on a task-by-task basis (over 50

GP runs), using the ZT classification strategy in GP. Table 3.3 summarises these

statistically significant differences (which are explained in the subsequent section)

for each task, alongside the AUC values for the fitness functions (repeated from

Table 3.2 for convenience). Also included in Table 3.3 are the overall classification

accuracies, the individual minority and majority class accuracies of the evolved

GP classifiers, and the GP training times in seconds (s) or minutes (m). The

overall accuracy and individual class accuracies in Table 3.3 represent the per-

formance (on the test sets) of the fittest evolved solution (over 50 GP runs) when

these solutions are evaluated using zero as the class threshold. These performance

measures are included in this analysis to gain a better understanding of the

major differences between the fitness functions, and to contrast the AUC with

70 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

Table 3.3: Full classification results using the fitness functions (for the ZT

classification strategy) over 50 GP runs.

Task Fit. AUC Class Accuracy Overall Train

Func. Average Minority Majority Accuracy Time

Acc 0.82 ± 0.06 ◦ 73.8 ± 7.7 95.3 ± 3.9 88.6 ± 3.7 2.7s ± 0.8

Ion Ave 0.80 ± 0.06 ◦ 76.6 ± 6.3 91.3 ± 6.1 87.0 ± 4.6 2.8s ± 0.9

Auc 0.85 ± 0.04 81.1 ± 5.2 81.3 ± 6.5 81.2 ± 5.8 20.0s ± 5.3

p = 3.1× 10−5

Acc 0.72 ± 0.06 ◦ 47.4 ± 4.6 88.6 ± 2.5 81.6 ± 2.0 2.3s ± 0.6

Spt Ave 0.71 ± 0.05 ◦ 56.7 ± 8.3 82.7 ± 3.6 78.8 ± 2.1 2.6s ± 1.0

Auc 0.77 ± 0.04 70.2 ± 6.7 70.0 ± 5.8 70.0 ± 5.2 12.8s ± 3.8

p = 1.2× 10−6

Acc 0.80 ± 0.12 43.3 ± 14.5 96.6 ± 1.6 86.3 ± 1.9 5.4m ± 1.8

Ped Ave 0.87 ± 0.04 87.7 ± 2.3 85.6 ± 2.8 86.0 ± 2.2 5.0m ± 3.0

Auc 0.92 ± 0.01 86.2 ± 1.5 86.1 ± 1.6 86.1 ± 1.6 71.3m ± 9.9

p = 1.4× 10−13

Acc 0.76 ± 0.07 40.8 ± 4.2 94.6 ± 1.4 86.0 ± 1.1 13.5s ± 5.7

Yst1 Ave 0.79 ± 0.03 60.2 ± 4.6 83.1 ± 3.8 79.6 ± 2.7 13.3s ± 4.7

Auc 0.83 ± 0.02 73.0 ± 1.4 72.8 ± 1.5 72.8 ± 1.4 2.1m ± 0.6

p = 1.7× 10−11

Acc 0.91 ± 0.06 ◦ 64.0 ± 8.1 97.4 ± 0.6 94.0 ± 0.8 11.5s ± 3.5

Yst2 Ave 0.93 ± 0.04 ◦ • 85.9 ± 4.0 93.0 ± 2.1 92.4 ± 1.8 12.6s ± 7.9

Auc 0.95 ± 0.03 • 86.8 ± 2.7 88.2 ± 4.1 88.1 ± 3.8 1.6m ± 0.3

p = 5.9× 10−5

Acc 0.55 ± 0.09 9.0 ± 17.5 98.9 ± 1.1 92.6 ± 1.8 5.1s ± 2.0

Bal Ave 0.71 ± 0.15 85.6 ± 11.4 84.6 ± 11.7 85.3 ± 11.3 4.7s ± 1.5

Auc 0.84 ± 0.09 82.8 ± 8.3 87.1 ± 11.0 86.8 ± 10.7 28.1s ± 7.6

p = 6.6× 10−23

the overall accuracy.

Significance Tests for AUC of Fitness Functions

An ANOVA F-test of the AUC verifies the null hypothesis between these three GP

systems for each task (5% level of significance). The null hypothesis is that there is

no difference in the distribution of AUC values between the fitness functions. The

outcomes of the F-test for each task, i.e., the p-value under the null hypothesis, are

shown in Table 3.3 for each task. These p-values indicate that there is at least one

fitness function whose AUC is significantly different to the other fitness functions

for each task, i.e., null hypothesis rejected, as these are all lower than 0.05 (5%

level of significance).

Therefore, a post-hoc multiple comparisons test using Tukey’s Honestly Signif-

3.4. GP EXPERIMENTAL RESULTS 71

icant Difference (HSD) is used to determine the statistically significant differences

between the group means. Recall that Tukey’s HSD test conducts a series of

pairwise comparisons using the mean AUC from the different GP systems, and

outputs a set of 95% confidence intervals for each comparison. A Shapiro-

Wilk test verified that our experiment data is normally distributed (required for

Tukey’s HSD).

The outcomes of Tukey’s multiple comparisons are shown in Table 3.3

alongside the AUC value for a particular fitness function. The symbols ◦ or

• denote that there is no significant difference in the AUC for the corresponding

pair of fitness functions. This means that between two or more GP systems

(on a particular task), the system with the higher average AUC is statistically

significantly better than the system with the lower average AUC, unless these

systems are marked by the ◦ and • symbols. In other words, two systems that are

marked with either of these symbols show no (statistically) significant difference

in their AUC, even if one system has a higher average AUC than the other.

For example, in Table 3.3 for the Ion and Spt tasks, the fitness function Auc

has a (statistically) significantly better AUC than both Acc and Ave. However, the

AUC for Acc and Ave is not significant different. In Yst2, the AUC for the fitness

function Auc is significantly better than Acc alone; while Acc and Ave, and Ave

and Auc, show no significant differences. In the rest of the tasks (Ped, Yst1 and

Bal), Ave is significantly better than Acc; while fitness function Auc is significantly

better than both Acc and Ave.

Analysis of the Learning Bias using Acc

As expected, Table 3.3 shows that the classifiers evolved using the standard GP

fitness function Acc performs poorly on these tasks compared to Ave and Auc.

The AUC for Acc is (statistically) significantly poorer than the fitness function

Auc in all tasks, and significantly poorer than Ave in three tasks. On some tasks

such as Ped, Yst1 and in particular Bal (which has the highest class imbalance

ratio), this difference in AUC between Acc and Ave/Auc is substantial. The poor

AUC for Acc is due to poor minority class accuracies but high majority class

accuracies on the tasks. In fact, in the three tasks mentioned above, the minority

class accuracies are very poor by comparison. This indicates that Acc tends to

find classifiers that are biased toward the majority class with poor minority class

accuracies on these tasks, while Acc and Auc have more balanced accuracies on

both classes.

Notice that the overall accuracy for Acc is higher than the other two fitness

72 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

functions in all tasks. This shows that this performance measure can be mislead-

ing in these tasks, as it reflects high accuracy rates even for biased classification

performances. The Ped task represents a good example of how the overall

accuracy can be the misleading in these class imbalance problems. Here all three

fitness functions show very similar overall accuracy rates (86%) but Acc is highly

biased toward the majority class, whereas Ave and Auc have relatively high (and

balanced) accuracy rates on both classes. In contrast, the AUC is better able to

reflect a classifier’s ability to discriminate between examples from the two classes,

particularly for the important minority class, and associates biased performances

with poor (low) AUC values.

Advantages and Limitations of Fitness Functions Ave and Auc

While Ave evolves solutions with relatively high accuracies on both classes

(unlike Acc), Ave does not consistently show good AUC results compared to

Acc on these tasks. Table 3.3 shows that there is no significant difference in

AUC between these two fitness functions in three tasks (Ion, Spt and Yst2). This

suggests that Ave in the fitness function does not always guarantee that the

evolved classifiers will have better AUC than the standard Acc on these tasks,

particularly when the imbalance ratio is not large.

Not surprisingly, the fitness function Auc achieves the best AUC results in all

tasks. However, a major limitation of Auc in the fitness function is the increased

training times. Table 3.3 shows that Auc takes approximately 5–8 times longer

than the two other fitness functions on the smaller data sets (fewer than 1500

training examples). On largest data set, Ped, which more than 12000 training

examples, Auc takes approximately 15 times longer. This represents a substantial

increase in training time compared to the two other fitness functions.

As discussed, the increased training times for Auc is due to the additional

computational effort required to construct an ROC curve. During fitness eval-

uation, each classifier is evaluated on all fitness cases for every distinct class

threshold (to obtain the true positive and false positive rates). This additional

computational cost for Auc can be reduced by using fewer class thresholds in the

AUC calculation in the fitness function, but this also reduces the quality of the

AUC estimate. This aspect is investigated further in the next chapter.

3.5. SUMMARY 73

3.5 Summary

This chapter develops a GP approach to classification representing the evolved

GP classifiers as mathematical expressions. Particular emphasis is placed on how

to develop the classification strategy and fitness function in GP. The classification

strategy translates an output value (floating-point number) when a genetic

program is evaluated on an input instance from the data set, to a (predicted) class

label. The fitness function defines a measure to calculate the overall performance

of a solution, by comparing a solution’s predicted class label to the target (or

actual) class label for all input instances in the training set.

3.5.1 Static Classification Strategy in GP

This chapter compares the performance of the traditional (static) classification

strategy to an improved (non-static) strategy, using three different fitness func-

tions on the unbalanced data sets. Focusing on the AUC of the evolved classifiers,

the experimental GP results show that for all three fitness functions, there is no

major differences between the two strategies on these tasks. While the non-static

strategy can be better in problems with multiple (balanced) classes, this is not

the case for these binary class imbalance tasks. Rather, the results show that GP

can tweak the mathematical expressions representing the GP classifiers to “shift”

the outputs of the evolved classifiers relative to the fixed class boundaries, to a

sufficient level of accuracy compared to a non-static strategy. An advantage of the

traditional static strategy is that more uniformity is introduced in the population.

This is enforced through selection pressure where solutions whose output values

lie within the desired class boundaries are assigned with better fitness values. In

contrast, the non-static strategy defines different class boundaries for different

solutions and can lack this uniformity in the population.

This chapter shows that the traditional static classification strategy is good

enough for binary tasks with unbalanced data. For this reason, the rest of the

thesis uses this static classification strategy.

3.5.2 AUC is a Good Measure

This chapter also shows that the AUC is a good measure of performance on these

classification tasks with unbalanced data. The traditional measure, the overall

classification accuracy, is shown to be misleading on these tasks, giving the

appearance of “good looking” results even for biased classification performances.

74 CHAPTER 3. GP APPROACH FOR CLASSIFICATION

In contrast, the AUC is better able to reflect a classifier’s ability to discriminate

between examples from the two classes, particularly for the important minority

class, and associates biased performances with poor (low) AUC values.

3.5.3 Limitations of the Fitness Functions

This chapter uses empirical results on the six real-world classification tasks with

unbalanced data to highlight the main advantages and limitations of the three

current approaches in the fitness function in GP. The following summarises these

limitations to highlight what aspects need to be improved.

The standard GP fitness function Acc, which measures the overall classifi-

cation accuracy, finds genetic program classifiers with high accuracy rates on

the majority class but poor accuracy rates on the minority class. These biased

classifiers show poor AUC on the tasks, particularly when the level of class

imbalance in a data set is high. This chapter shows that this is because Acc can be

influenced by the larger number of examples in the majority class.

A common approach to address this learning bias uses the average classi-

fication accuracy of the minority and the majority classes (Ave) in the fitness

function. This fitness measure shows greater sensitivity to the smaller minority

class compared to the standard Acc. While Ave typically finds solutions with

similarly high accuracy rates on both classes, Ave does not consistently show very

good AUC on tasks. How can this widely-used measure be improved to evolve

better-performing classifiers (with higher AUC) on these unbalanced data sets?

Another common approach to address this learning bias uses the actual AUC

in the fitness function (Auc). This measure is able to find solutions with high AUC

on these tasks but incurs substantially longer training times than the two other

fitness functions, due to the computational cost of constructing an ROC curve

in fitness evaluation. Can new and faster measures to approximate the AUC in

fitness be developed to evolve solutions with good AUC, but with better (faster)

training times? How will these new measures compare to the Auc on these tasks?

The experimental results in this chapter show that the choice of fitness

function is important for evolving well-performing classifiers with good AUC

in these tasks. For this reason, the next chapter will focus on developing several

new fitness functions in GP to address the above issues, using the traditional

static (zero threshold) strategy in the GP system to translate a solution’s output

to the predicted class label.

Chapter 4

Developing New GP Fitness

Functions

This chapter is organised as follows. The first section outlines the chapter

introduction and goals. The second section outlines several existing fitness

functions (from the literature) which are used in the experiments. The third

section develops several new functions for classification with unbalanced data.

The fourth and fifth sections present the experimental results. The sixth section

analyses several evolved GP classifiers. The last section provides a summary of

this chapter.

4.1 Introduction

The previous chapter has shown that typical training criteria such as the overall

classification accuracy in the fitness function in GP can evolve biased classifiers

with strong accuracies on the larger (majority) class but poor accuracies on the

smaller (minority) class when data sets are unbalanced. This is because this

fitness function (Acc) can be influenced by the larger number of examples from

the majority class. Two common approaches which adapt the fitness function

for cost adjustment to factor in the uneven representation of class examples, Ave

and Auc, are shown to find solutions with better minority class accuracies and

AUC (than Acc) on the tasks. As the minority class typically represents the

main class-of-interest in many real-world tasks with unbalanced data, developing

new fitness functions which effectively perform cost adjustment between the two

classes to find solutions with good minority class accuracies (and good AUC), is

an important research goal.

Other common approaches to address this goal includes using fixed mis-

75

76 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

classification costs for incorrect class predictions (which are determined a priori)

[88][6], and statistical measures to approximate the AUC such as Wilcoxon-Mann-

Whitney (WMW) statistic [57]. Some approaches also develop “specialist” fitness

functions which are applied to specific classification tasks with unbalanced data,

such as network intrusion detection problems [157] or medical diagnostics [176].

See Chapter 2 for details on these and other works which adapt the fitness

function for unbalanced data.

While most of these approaches can improve the classification ability of

evolved solutions, they have three main limitations. Firstly, fixed misclassifica-

tion costs for each class must be determined a priori. These costs can be problem-

specific and require a lengthy trial-and-error process to configure [157][88][142].

Using equal costs for both classes (such as the average accuracy of the minority

and majority classes, Ave, from the previous chapter) can address this limitation.

However, as shown in the previous chapter, using Ave in the fitness function

does not consistently find solutions with good AUC (that is significantly better

than Acc) on the tasks. Secondly, using the AUC directly in the fitness function

(such as Auc from the previous chapter) can find solutions with high AUC

on the tasks, but can also incur long training times due to the computational

overhead required to calculate the AUC, particularly on large data sets. Finally,

some “specialist” fitness functions which are hand-crafted to suit a particular

classification problem (such as [157][60][176]), require a priori expert knowledge

about the problem domain. Fitness functions that are domain-independent, i.e.,

which can be applied to a range of classification tasks with unbalanced data

without any a priori knowledge about the input data, are more desirable.

In this area there is a need to develop new domain-independent performance

measures in the fitness function to find solutions with good classification ability

on both classes but which do not incur a substantial increase in the GP training

times. This chapter tries to address these issues by developing several new

fitness functions to promote classifiers with good accuracy on both classes and

penalise biased solutions in the evolutionary process. These measures aim to

evolve classifiers with high AUC but with better (faster) training times than the

traditional approach Auc. By developing new measures in the fitness function

to perform cost adjustment between the two classes (irrespective of the problem

domain), the original unbalanced input data can be “as is” in the GP approach,

requiring no a priori knowledge about the input data. This alleviates the need

for a sampling algorithm to first artificially re-balanced the input data before the

training process.

4.2. CURRENT APPROACHES IN FITNESS 77

This chapter develops several new fitness functions for classification with

unbalanced data. The AUC (of the evolved classifiers) and GP training times

of the new fitness functions are compared to other approaches from the previous

chapter, and two other machine learning algorithms (Naive Bayes and Support

Vector Machines) on the tasks.

4.1.1 Chapter goals

This chapter has two mains goals. The first goal is to develop new measures in

the fitness function to find solutions with high AUC on these tasks. These new

fitness functions aim to improve AUC performances over the traditional Ave, and

improve training times over the traditional Auc. The second goal investigates

whether an equal weighting of the minority and majority class accuracy in a

weighted-average fitness function, or a non-equal weighting where one class has

a greater cost in fitness than the other, finds solutions with better overall AUC on

the tasks.

4.2 Current Approaches in Fitness

This section summarises the GP framework defined in the previous chapter (also

used in this chapter), and presents several baseline fitness functions in GP to

evaluate the effectiveness of the new measures (developed in the next section).

These baseline fitness functions include the three approaches from the previous

chapter, Acc, Ave and Auc, and four other useful approaches from the literature,

namely, Wave, AveM , AucE and Wmw.

4.2.1 GP Framework

The same GP framework is used in these experiments as outlined in the previous

chapter. To recap, the genetic program solutions use a tree-based structure for

representation. Feature and constant terminals are used in the terminal set, and

the function set consists of the four standard arithmetic operators (+,−,% and

×) and a conditional operator (if). As the previous chapter establishes that

the standard zero-threshold (ZT) strategy performs as well as the non-static

strategy on these tasks, the ZT strategy is used to translate the real-valued

output of a solution (when evaluated on an input instance) to the target class

labels. Recall that this strategy uses the natural division between positive and

78 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

Table 4.1: Outcomes of a two-class classification problem.

Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positive (TP) False Negative (FN)

Actual Negative Class False Positive (FP) True Negative (TN)

negative numbers to represent the two class labels, i.e., an input instance will be

assigned to the majority class if the solution output is negative, otherwise it will

be assigned to the minority class.

4.2.2 Baseline GP Fitness Functions

This chapter presents several baseline fitness functions in GP. These include

the three measures discussed in the previous chapter (Acc, Ave and Auc), two

average-based measures (AveM and Wave), and two alternative approaches to

calculate the AUC is fitness (AucE and Wmw).

Fitness Functions Acc, Ave and Auc

The three fitness functions from the previous chapter are repeated below for

convenience. These include the standard GP fitness function Acc (the overall

classification accuracy), and average accuracy of the minority and majority class

Ave, and the AUC in the fitness function AUC. These fitness functions are defined

using the four outcomes for binary classification shown in Table 4.1. Note that the

same confusion matrix is also shown in the earlier chapters (Chapters 2 and 3) but

is repeated here for convenience.

Acc = TP+TN
TP+TN+FP+FN

(4.1)

Ave = 1
2

(

TP
TP+FN

+ TN
TN+FP

)

(4.2)

Auc =
∑N−1

i=1
1
2
(FPi+1 − FPi) (TPi+1 + TPi) (4.3)

Average-Based Fitness Function Wave

An alternative form of Ave uses the weighted-average of the minority and

majority class accuracy in the fitness function, as shown by Eq. (4.4). In Wave,

the weighting coefficient controls the trade-off between the minority and majority

4.2. CURRENT APPROACHES IN FITNESS 79

Table 4.2: Minority and majority class accuracies of three solutions, and the

corresponding AveM fitness values.

Solution Minority Accuracy Majority Accuracy AveM Fitness

a1 70% 70% 24.5%

a2 60% 80% 24.0%

a3 85% 55% 23.4%

class accuracy where 0 < W < 1. When W is 0.5, the accuracy of both classes is

considered as equally important in fitness (with this setting, Wave and Ave are

the same). When W > 0.5, minority class accuracy will contribute more in the

fitness function than majority class accuracy by factor W . Similarly, majority class

accuracy will contribute more when W < 0.5.

Wave = W ×
(

TP
TP+FN

)

+ (1−W)×
(

TN
TN+FP

)

(4.4)

This fitness function addresses the second goal of this chapter, and investi-

gates whether an equal weighting of the minority and majority class accuracy

(W = 0.5), or a non-equal weighting (W 6= 0.5), finds solutions with better overall

AUC on the tasks.

Average-Based Fitness Function AveM

The fitness function AveM or Eq. (4.5) is based on the geometric mean of

the minority and majority class [57][141]. Similar to Ave and Wave, the two

components in Eq. (4.5) corresponds to the minority and majority class accuracy,

respectively.

AveM = 1
2

(

TP
TP+FN

× TN
TN+FP

)

(4.5)

This fitness function has the two useful properties compared to the arithmetic

average (used in Ave and Wave). Firstly, as the geometric mean multiplies the

minority and majority class accuracies, if the accuracy on a single class is zero,

then zero is returned. Secondly, AveM can produce more fine-grained fitness

values when Ave evaluates to the same fitness value for some combinations of

the two components.

For example, consider the minority and majority class accuracies of three

solutions (a1, a2 and a3) shown in Table 4.2. Each solution has the same average

accuracy, 70%, and therefore the same fitness values according to Ave. In contrast,

AveM ranks a1 as the fittest and a3 as the least fit according to the fitness values

80 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

shown in Table 4.2. This fitness function aims to investigate how these differences

affect the AUC of evolved solutions.

AUC-Based Fitness Functions AucF and AucE

As discussed, a major limitation of using Auc or Eq. (4.3) in the fitness function is

the increased training times, due to the computational effort required to construct

an ROC curve in fitness evaluation. Each classifier must be evaluated on all

fitness cases N times to obtain N distinct TP/FP points on an ROC curve. A

useful technique to speed-up training times for Auc uses fewer TP/FP points on

the ROC curves [84]. In [84], exactly seven distinct TP/FP points are used in the

ROC curves; this number is recommended for a fast and accurate approximation

to the full AUC [84]. To simulate this in GP, seven ROC points are generated

by choosing seven distinct class thresholds spread uniformly over the range of a

given genetic program’s output values (when evaluated on all training instances).

The genetic program is then evaluated at each threshold to produce the seven

TP/FP points. Naturally, this faster approximation of the AUC will have a lower

precision than the full AUC. Recall (from the previous chapter) that in the full

AUC, every distinct value in the range of output values for a given genetic

program is taken as a separate class threshold.

This chapter compares the GP training times and AUC of the evolved

solutions using both AUC calculations in the fitness function, i.e., the full AUC

AucF , and and the faster estimation AucE (which uses exactly seven ROC points).

AUC-Based Fitness Function Wmw

An alternative technique to calculate the AUC in the fitness function uses a

statistical approximation based on the Wilcoxon-Mann-Whitney (WMW) statistic

[84][179][57], as shown in Eq. (4.6). The WMW statistic uses a series of pairwise

comparisons between the genetic program outputs (when evaluated on examples

from the two classes), effectively measuring the ordering of minority to majority

class outputs. In Eq. (4.6), Pi and Pj represent the output of a genetic program

when evaluated on an example from the minority and majority class, respectively,

and Nmin and Nmaj are the number of examples in the the minority and majority

class respectively.

The indicator function Iwmw enforces two constraints on the ordering of output

values for each class. The first constraint (Pi ≥ 0) checks whether the minority

class outputs are zero or positive. The second constraint (Pi > Pj) checks whether

4.3. NEW FITNESS FUNCTIONS 81

the minority class outputs are greater than the majority class outputs, to establish

an ordering of class outputs (using zero as the class threshold). The denominator

ensures that Wmw returns values between 0 and 1, where 1 indicates good class

separability (high AUC) and 0 indicates poor separability (low AUC).

Wmw =

∑Nmin

i=1

∑Nmaj

j=1 Iwmw(Pi, Pj)

Nmin ×Nmaj

(4.6)

where

Iwmw(Pi, Pj) =







1 Pi > 0 and Pi > Pj

0 otherwise

4.3 New Fitness Functions

Five new fitness functions for classification with unbalanced data are developed

to address the first goal of this chapter. These are split into two categories. The

first category develops three new measures, Amse, Incr and Bands, aiming to

improve the traditional measure Ave (Eq. 4.2). The second category develops two

novel separability-based measures, Corr and Dist, aiming to evolve solutions

with high AUC but with faster training times than the AUC-based functions.

4.3.1 Improving the Average-Based Measure

These three new fitness functions, Amse, Incr and Bands, all use variations of the

average accuracy of each class in fitness.

Fitness Function Amse

Eq. (4.7) or Amse is based on the mean squared error (MSE) function, a popular

machine learning measure for determining the difference between predicted and

target output patterns [34][178][177]. This fitness function is similar to Ave except

that the magnitude or genetic program output values are also factored into the

fitness functions; whereas the traditional Ave only considers the true positive and

true negative rates (magnitude of genetic program outputs ignored). The goal of

Amse is to evolve classifiers whose outputs are closely “calibrated” to the desired

or target values for each class, where solutions with smaller deviations between

the target and classifier outputs are rewarded with better fitness over solutions

with larger differences.

82 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

In Eq. (4.7), Pc,i represents the output of a genetic program classifier when

evaluated on the ith example belonging to class c, Nc is the number of examples

in class c, and K is the number of classes. The target Tc values for the majority

and minority classes are −0.5 and 0.5, respectively, as zero is the class boundary

(i.e. majority and minority class outputs should be negative and non-negative

respectively).

Amse =
1

K

K
∑

c=1

(

1−
∑Nc

i=1(sig(Pc,i)− Tc)
2

2Nc

)

(4.7)

where

sig(x) = 2
1+e−x − 1

This fitness function is different to the traditional MSE in two important ways.

Firstly, Amse uses the average error for each class to account for the unbalanced

data in these tasks, whereas many other approaches (such as [34][177]) use

the overall MSE on all training examples. Secondly, MSE is typically used in

approaches where the raw output values of the learned classifiers are bound in

a fixed range, e.g., output values range between 0 and 1. As the raw outputs of

a genetic program classifier Pc,i has no bounds (can by anything between −∞
or +∞), these raw outputs must first be bound (or scaled) for consistency in

fitness values across the population. If this is not enforced, genetic programs

which produce large output values risk inflating the difference between target

and actual values (i.e. poorer fitness), compared to other genetic programs which

have similar accuracies but which produce smaller output values. For example,

if two classifiers, S1 and S2, have the same class accuracy but S1 outputs values

in the range [−100, 100] and S2 in the range [−5, 5]; then the difference between

target outputs (Tc) and genetic program outputs will be larger for S1 by virtue of

the larger genetic program outputs alone.

For this reason, Eq. (4.7) uses a sigmoid function (sig) to scale the raw genetic

program outputs to the range [−1, 1]. This sigmoid function is applied to the

value returned from the root node of the genetic program during the fitness

evaluation, and serves only to scale the range of genetic program outputs to −1
and +1 (sign of genetic program output values unaltered). The scaling ensures

that positive output values are “spread out” between 0 and 1, and not simply “cut

off” at 1; likewise for negative output values between 0 and -1.

The denominator in Eq. (4.7) corresponds to the maximum difference between

target and actual outputs for each class, where 2 (in 2Nc) is the maximum

(absolute) difference between the smallest (−1) and largest (+1) output value

4.3. NEW FITNESS FUNCTIONS 83

allowed by the sigmoid function. This serves to normalise the MSE for each class

to values between 0 and 1. The normalised MSE for each class is then inverted

to make the fitness values returned from this function consistent with the other

fitness functions (0 worst and 1 best).

Fitness Function Incr

Eq. (4.8) extends the function Ave by assigning greater rewards to solutions whose

output values fall further away from the class boundary. Incr improves the

traditional Ave by differentiating between solutions which have the same class

accuracy, but which use different internal classification models. By counting the

average number of incremental rewards earned per class, Incr favours solutions

whose output values are further away from the class boundary.

In Eq. (4.8), Pc,i represents the output of a genetic program classifier when

evaluated on the ith example belonging to class c, Nc is the number of examples

in class c, and K is the number of classes. The term Dc,j represents the jth cluster

of genetic program output values in class c, and Mc is the number of clusters

of output values in class c. The denominator in Eq. (4.8) corresponds to the

maximum reward a solution can obtain for each class. This serves to normalise

the rewards earned in each class to values between 0 and 1. As a result, fitness

values for Incr range between 0 (worst fitness) and 1 (best fitness).

Incr =
1

K

K
∑

c=1





∑Mc

j=1

[

Izt(j,Dc,j , c) .
∑Nc

i=1 Eq(Dc,j, Pc,i)
]

1
2
Nc(Nc + 1)



 (4.8)

where

Izt(r, k, c) =







r if (k ≥ 0 and c ∈Min) or if (k < 0 and c ∈Maj)

0 otherwise

and

Eq(p, q) =







1 if p = q to 2 decimal places

0 otherwise

Eq. (4.8) uses two main components to calculate the incremental rewards

for each class; these correspond to the two indicator functions, Eq and Izt. The

indicator function Eq returns 1 if two genetic program outputs are the same or 0

otherwise. This indicator function is used to count the number of different output

values in a cluster of outputs. A cluster of outputs are different input instances

84 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

(3 points * 3 outputs) = 14

Majority

0
X
X
X

X
X

XX

Class
Minority
Class

0
X X

X
XX
X
X

Minority
ClassClass

(1 point * 3 outputs) +
(2 points * 2 outputs) +

(3 points * 1 output) = 10

(1 point * 1 output) +
(2 points * 2 outputs) +

(b)(a)

Majority

Figure 4.1: Genetic program outputs for two classifiers; X denotes the solution

outputs for seven (minority class) instances where equivalent X values are

stacked above each other. Solid circle shows correctly predicted clusters of

outputs and dotted circle shows incorrect clusters. Solution (b) is better as it earns

14 rewards while (a) only earns 10, as (b) has more outputs that lie further away

from the class boundary (0).

for a given solution that evaluate to the same floating point number (to 2 decimal

places).

The indicator function Izt returns its first argument (j) if its second argument

(Dc,j is the jth output cluster in class c) lies within the target class region, or 0

otherwise. When indicator function Izt is satisfied (i.e. j is returned and not

0), j is the incremental reward earned by cluster Dc,j . Provided that the genetic

program outputs are processed in ascending order for each class, the rewards

earned will increase as the clusters of output values lie further and further away

from the class boundary (zero).

Figure 4.1 provides an example of how the incremental reward for a particular

class is calculated using two different genetic program solutions. In Figure 4.1, X

denotes the genetic program outputs (along the horizontal axis) when evaluated

on seven minority class instances. Notice that these seven genetic program

outputs only correspond to four distinct clusters (solid and dotted circles) where

equivalent X values in the same cluster are stacked above each other in Figure

4.1. Using zero as the class boundary, both solutions (a) and (b) in Figure 4.1 have

three “correct” clusters of output values (solid circles) and one incorrect cluster

(dotted circle). As there are exactly three “correct” clusters in both (a) and (b), the

incremental rewards are calculated as follows: 1 point for each X value in the first

cluster (nearest to the zero), 2 points for each X value in the second cluster, and 3

points for each X value in the third cluster.

Using these incremental rewards, solution (a) accumulates a total of 10 points:

3 points in the first cluster (1 point for each prediction), 4 points in the second

cluster (2 points for each prediction), and 3 points in the third cluster (3 points

4.3. NEW FITNESS FUNCTIONS 85

M
aj

o
ri

ty
A

cc
u

ra
cy

(%
)

100% 0 1 2 3 4 5 6 7 8 9 10

90% 0 1 2 3 4 5 6 7 8 9 9

80% 0 1 2 3 4 5 6 7 8 8 8

70% 0 1 2 3 4 5 6 7 7 7 7

60% 0 1 2 3 4 5 6 6 6 6 6

50% 0 1 2 3 4 5 5 5 5 5 5

40% 0 1 2 3 4 4 4 4 4 4 4

30% 0 1 2 3 3 3 3 3 3 3 3

20% 0 1 2 2 2 2 2 2 2 2 2

10% 0 1 1 1 1 1 1 1 1 1 1

0% 0 0 0 0 0 0 0 0 0 0 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Minority Accuracy (%)

Figure 4.2: Regions of fitness bands (for fitness function Bands) where the

objective-space is divided into a 10×10 grid and each grid square represent the

fitness value for the minority and majority class accuracy of a solution).

for the single prediction). Similarly, solution (b) accumulates a total of 14: 1 point

in the first cluster, 4 points in the second cluster, and 9 points in the third cluster.

Solution (b) is therefore rewarded with a higher fitness than solution a (for this

particular class), as b has more predictions that are further away from the class

boundary than a.

Using the fitness function Ave, solutions (a) and (b) both have identical

accuracy rates for this class (equally fit), as six out seven instances are assigned

the correct class label. On the other hand, Incr will rank solution (b) as fitter than

(a) for this particular class.

Fitness Function Bands

The fitness function Bands maps a solution’s minority and majority class accu-

racy to a single value, similar to the average of these objectives (such as Ave

and AveM). However, good accuracy on both classes is rewarded to a greater

extent than in Ave, while poor accuracy on one class is strongly discouraged.

To achieve this, the objective-space for the minority and majority class accuracy

is divided into 100×100 grid where each square represents 1% of the objective-

space. For example, Figure 4.2 shows a simplified instance of this scenario where

the objective-space is divided into a 10×10 grid. In this figure, the minority class

accuracy lies along the horizontal axis and majority accuracy along the vertical

axis. Note that to obtain the larger 100×100 grid, each grid square in Figure 4.2 is

further divided into another 10×10 grid.

Each grid square is assigned a fitness value based on its distance to the “target”

region of the grid, that is, the top-right corner of the grid which represents 100%

86 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

Table 4.3: Minority and majority class accuracies, and corresponding fitness

values for Ave, AveM and Bands for four solutions.

Solution Minority Majority Ave AveM Bands Fitness

Accuracy Accuracy Fitness Fitness 10×10 100 ×100

a1 70% 70% 70% 24.5% 7 70

a2 60% 80% 70% 24.0% 6 60

a3 70% 80% 75% 28.0% 7 70

a4 65% 85% 75% 27.6% 6 65

accuracy on both objectives. Fitness values in the grid increase as the distances to

the target region decrease, as shown in Figure 4.2. These fitness values represent

the “goodness” of the minority and majority class accuracy for a given solution,

where the higher the fitness, the better the two accuracies. For example, if a

solution has 60% accuracy on the minority class and 80% on the majority class,

the final fitness value (using the simplified Figure 4.2) is 6. This is obtained by

looking-up the grid value in the 9th row (80% majority accuracy) and 7th column

(60% minority accuracy).

This fitness function is different to Ave and AveM as it rewards solutions

which have equally high accuracy on both classes with higher fitness values (than

Ave and AveM). In Ave and AveM , fitness values can be high only if one factor

in the average is high (the other factor can be low). For example, consider the

minority and majority class accuracies of four solutions (a1, a2, a3 an a4) as shown

in Table 4.3. The fitness values for the Bands fitness function is shown for both the

example 10×10 grid (in Figure 4.2) and the 100×100 grid (actual fitness values).

The actual fitness values for Bands in Table 4.3 rank these solutions in a

different order compared to AveM . Most noticeably, a1 has a high fitness for

Bands as both factors (minority and majority accuracy) are equally high; while

both a2 and a4 have a lower fitness as one factor (minority accuracy) is low. In

contrast, a1 has a lower fitness value than a3 and a4 for AveM as one factor in

these two solutions (majority accuracy) is high but the other is low.

4.3.2 New Separability-based Measures in Fitness

The two new fitness functions, Corr and Dist (discussed below), use separability-

based measures in fitness (similar to the AUC-based fitness functions).

4.3. NEW FITNESS FUNCTIONS 87

Fitness Function Corr

Eq. (4.9) is a novel fitness function based on the statistical measure, the correlation

ratio [71], which measures linear dispersal between two populations of data.

Assuming that the genetic program outputs (when evaluated on the examples

from the two classes) are two populations of data, the correlation ratio can be

used to measure how well these populations are separated with respect to each

other. The higher the dispersal between these two populations, the better the

separability of the genetic program outputs for the two classes. The correlation

ratio outputs values between 0 (poor separability) and 1 (good separability).

Corr = r + Izt(1, µmaj , µmin) (4.9)

where

r =

√

∑K
c=1

Nc(µc−µ̄)2
∑K

c=1

∑Nc
i=1

(Pc,i−µ̄)2

and

µc =
∑Nc

i=1
Pc,i

Nc
and µ̄ =

∑K
c=1

Ncµc
∑K

c=1
Nc

In Eq. (4.9), r computes the correlation ratio where Pc,i is the output of a

solution when evaluated on the ith example belonging to class c, Nc is the number

of examples in class c, and K is the number of classes. In this equation, µc

represents the mean of a solution’s outputs for class c only, and µ̄ represents the

mean of µc for the minority and majority classes.

The function r measures the level of separability of the output values for the

two classes. The final fitness value for Corr uses indicator function Izt (from

Eq. 4.8 in the previous section) to encourage solutions to order their outputs (for

the two classes) according to the target class boundaries. Indicator function Izt

takes, as inputs, a reward value and the means of the outputs on the majority

and minority class instances for a given solution (µmaj and µmin, respectively),

and returns the reward if the majority and minority class means are negative and

non-negative, respectively (or 0 otherwise).

As r returns values between 0 and 1, and Izt returns either 0 or 1, the final

fitness values returned by Corr will range between 0 (worst fitness) and 2 (best

fitness).

Fitness Function Dist

Eq. (4.10) models the genetic program outputs for the two classes as two

independent class distributions, and uses the distance between these two class

88 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

distributions to represent the level of class separability. Dist was originally

developed for multiple class problems with relatively balanced class distributions

[186], and has not previously been evaluated on binary class imbalance tasks. Eq.

(4.10) computes the point that is equi-distant from the means of two distributions,

measured in terms of standard deviations away from the mean (where the

standard deviations can be different for the two distributions). In the worst case

where the means and standard deviations of both class distributions are the same

(poor separability), this distance will be 0. In the ideal case, where there is no

overlap between the two class distributions (high separability), this distance will

be large (go to +∞).

In Eq. (4.10), µc and σc correspond to the mean and standard deviation of

the class distribution c, respectively, where c is either the minority (min) and

majority (maj) class. Similarly, Pc,i is the output of the classifier when evaluated

on the ith example belonging to class c and Nc is the number of examples in

class c. Dist also uses indicator function Izt (in a similar manner to Corr) to

encourage solutions to order their outputs (for the two classes) according to the

target class boundaries. In Dist, the estimated distance value for a solution is

doubled when the indicator function is true (i.e. when µmaj and µmin are negative

and non-negative, respectively).

Dist =
|µmin − µmaj|
σmin + σmaj

× (1 + Izt(1, µmin, µmaj)) (4.10)

where

µc =
∑Nc

i=1
Pc,i

Nc
and σc =

√

1
Nc

∑Nc

i=1(Pc,i − µc)2

Indicator Function Izt in Corr and Dist

Both fitness functions Corr and Dist use an indicator function Izt to reward

solutions which order their output values (on the two classes) according to

the target class boundaries, with higher fitness values. This is accomplished

by checking if the mean of the output values for each class (µc for class c) lie

within the target class region where majority class outputs should be negative

and minority class outputs should be non-negative. An alternative approach

initially considered for Corr and Dist, used Ave (Eq. 4.2) to measure how well

the output values for a solution adheres to the above class ordering of outputs.

This Ave-based approach can produce smoother fitness values which reflect the

proportion of class outputs that lie within the target class regions for a given

solution; whereas the indicator function-based approach only returns a reward

4.4. EXPERIMENTAL SETUP 89

value (such as 1) if the mean of the outputs for both classes falls within the target

class regions, or 0 otherwise.

However, preliminary experiments which compared Corr and Dist using

either Ave or indicator function Izt on the tasks, found that the Ave-based

approach produced slightly lower AUC results in the evolved solutions than

the indicator function-based approach. These preliminary results are omitted

here as they are not the main focus of this chapter but can be seen in Appendix

B (in Section B.2.1). The indicator function Izt outperforms the Ave-based

approach because Izt has the desirable property that solutions whose outputs

do not adhere to the desired class ordering are assigned poor fitness values

early in the evolution. These solutions are then phased-out out of the evolution

relatively early in the process due to selection pressure. In contrast, the Ave-based

approach adopts a “fairer” strategy which assigns moderate-level fitness values

to solutions whose outputs only partially adhere to the desired class ordering.

These solutions then remain in the population for longer.

For these reasons, the indicator function Izt is the preferred method in Corr

and Dist to ensure that majority and minority class outputs are negative and non-

negative, respectively, in the evolved solutions.

4.4 Experimental Setup

This section outlines the GP evolutionary parameters and the statistical signifi-

cance testing techniques used in the experimental results.

4.4.1 GP Evolutionary Parameters

The same evolutionary parameters from the previous chapter are also used in

these experiments. To recap, crossover, mutation and elitism rates are 60%, 35%

and 5%, respectively, and tournament selection is used with a tournament size

of 7. The maximum program depth is 8 to restrict very large programs in the

population, and the population size is 500. The evolution is allowed to run for a

maximum of 50 generations, or is terminated early if a solution with a maximum

fitness value on the training set is found.

As discussed in the previous chapter, this configuration of parameters is

recommended in the literature. To concentrate on the effects of the fitness

functions in the GP algorithm, it is important that the configuration of evolu-

tionary parameters is kept consistent. As the goal of this chapter is to compare

90 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

the different fitness functions in the evolution, fine-tuning this configuration

of evolutionary parameters for better classification performances is outside the

scope of this study.

4.4.2 Statistical Significance Testing of the AUC

Similar to the experimental results in the previous chapter, Tukey’s Honestly

Significant Difference (HSD) [166] is used to find the statistically significant

differences in AUC for the solutions evolved using the fitness functions. Tukey’s

multiple comparisons test compares the average AUC of the fittest evolved solu-

tions from each GP system (using a particular fitness function) to all others, and

outputs a confidence interval for each pairwise comparison between GP systems.

However, as these experimental results compare 11 different fitness functions, 55

confidence intervals are returned from Tukey’s multiple comparisons test when

each GP system is compared to all others, as shown below.

n = k(k−1)
2

= 11(11−1)
2

= 55

where k is the number of GP fitness functions. This means that 55 confidence

intervals (of the AUC) for the different fitness functions must be compared to one

another to find the statistically significantly better mean AUC values. A confidence

interval between two fitness functions is calculated using Eq. (4.11) below for all

fitness functions.

ȳi − ȳj ± q(α,k,M−k)√
2

SE
√

2
n

for all i, j = 1, 2, ..., k where i 6= j (4.11)

In Eq. (4.11), ȳi and ȳj are the mean AUC for two fitness functions, n is the

number of GP runs (50), k is the number of fitness functions (11), and SE is the

standard deviation of the entire sample. The constant value q is the critical value

for the studentised range statistic Q [121]. This is obtained using a look-up table1

for three variables: α, k and M . Here are α is the level of significance, k is the

number of fitness functions, and M is the total sample size (i.e. total number of

experiments for all fitness functions for a given task). As k is 11, M is 550 (50 runs

of k fitness functions), and α is 0.05 (5% level of significance), the look-up value

for q according to [121] is 4.51, as shown below.

q(α, k,M − k) = q(0.05, 11, 539) = 4.51

1The distribution of Q has been tabulated and appears in many textbooks on statistics or online

such as the online Statistical Table Entries Calculator at Vassar College [121].

4.4. EXPERIMENTAL SETUP 91

0.78 0.8 0.82 0.84 0.86 0.88

Corr

Dist

Amse

AucF

AucE

Wmw

AveM

Acc

Ave

Bands

Incr

Ion

AUC
0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

Corr
Dist

Amse
AucF
AucE
Wmw
AveM

Acc
Ave

Bands
Incr

Ion

AUC

1
1

2
2

2
2

3
3

4
4

4 1 >> 3−4
2 >> 4

(a) (b)

Figure 4.3: Confidence intervals of the AUC for the different fitness functions for

the Ion task. In (a), the interval for Acc is statistically significantly poorer than

Dist and Corr. In (b), the confidence intervals are labelled with their s-ranks

where the legend shows significantly better s-ranks.

In Eq. (4.11), q(α,k,M−k)√
2

SE
√

2
n

remains constant for all pairwise comparisons

between fitness functions. As a result, these confidence intervals can be visualised

for easier interpretability, as shown in Figure 4.3(a) for the Ion task. In Figure

4.3(a), each bar represents the 95% confidence interval of the mean AUC for

a particular fitness function, where the horizontal axis shows the AUC. Two

fitness functions are significantly different to one another only if their intervals

are disjoint, and are not significantly different to one another if their intervals

overlap.

For example, Figure 4.3(a) shows that the fitness function Acc is significantly

different to Dist and Corr (in terms of average AUC), as the interval for Acc

(highlighted in blue) does not overlap with the intervals for Dist and Corr

(highlighted in red). However, as the interval for Acc does overlap with all other

intervals (dashed), Acc is not statistically significantly different to these fitness

functions.

Figure 4.3(a) allows each interval to be easily compared to all other intervals

to determine the statistically significant AUC values for the different fitness

functions.

4.4.3 Significance Ranking using S-rank

To summarise which fitness functions have a significantly better AUC compared

to others (i.e. when each interval is compared to all others) for a given task,

92 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

an identifying number is assigned to each fitness function. This number, called

the significance rank (or s-rank), represents a group of fitness functions that are

statistically significantly different to other groups on a particular task. The fitness

function(s) with the highest average AUC is assigned the best r-rank (1) and s-

rank values will increase (s-rank gets worse) as the average AUC of the fitness

functions also gets worse, as shown in Figure 4.3(b).

In Figure 4.3(b), the fitness function intervals are shown for Ion when each

interval has been labelled with the corresponding s-rank. The legend in Figure

4.3(b) shows which s-rank values are statistically significantly better than other

s-rank values, where the symbol ≫ denotes a significantly better s-rank. For

example, “1≫ 3− 4” shows that the fitness function(s) with an s-rank of 1 (Dist

and Corr in this case) have a significantly better AUC than the fitness functions

with s-ranks 3 and 4. Likewise, “2 ≫ 4” shows that the fitness function(s) with

an s-rank of 2 have a significantly better AUC than those with an s-rank of 4.

The following procedure assigns s-rank values to the fitness functions for a

given task.

1. Sort the fitness functions in ascending order (using their average AUC

values), as shown in Figure 4.3(a). Select the fitness function (or interval)

with the highest AUC as the current interval, and initialise the s-rank to 1.

2. Find all other intervals that are significantly worse than the current interval

(i.e. other intervals that no not overlap with the current interval). For

example, if the current interval is Corr in Figure 4.3(b), the other intervals

that no not overlap with Corr are those with s-rank values of 3 and 4.

3. Find all other intervals that are not significantly different from the current

interval (i.e. other intervals that overlap with the current interval). For

example, if the current interval is Corr in Figure 4.3(b), the other intervals

that overlap with Corr are those with s-rank values of 1 and 2.

4. Using the intervals from Step (3), find those intervals that do not overlap

with all the intervals in the set from Step (2). For example, if the current

interval is Corr in Figure 4.3(b), the only interval from Step (3) that does not

overlap with all the intervals from Step (2) is Dist since all other intervals

from Step (3) (Wmw, AucE , AucF , and Amse) overlaps with at least one

interval from Step (2).

5. Assign the intervals from Step (4) with the current s-rank value (e.g. this is

1 on the first iteration), and then increment the s-rank. For example, if the

4.5. EXPERIMENTAL RESULTS 93

current interval is Corr, and Dist is selected from the previous step, Dist

is assigned an s-rank of 1. Note that if no intervals are found matching the

criteria from the previous step, then just increment the s-rank.

6. Select the next interval (from the ordered list from Step (1)) that has not yet

been assigned an s-rank. Repeat steps (2) to (6) using this interval as the

current interval, until all intervals are processed. In the example discussed

in the previous step, the new current interval to be processed will be Amse

since both Corr and Dist have already been assigned s-rank-values.

This process of visualising the confidence intervals for each fitness function

and then assigning s-rank values to each interval (using the above procedure)

is repeated for all tasks. The s-rank values, and the statistical significance

relationships between groups of fitness functions, are presented and analysed

in the next section for the tasks.

4.5 Experimental Results

This section shows the GP experimental results and consists of four main parts.

The first part examines the AUC (and s-ranks) of the different fitness functions

on each task. The second part analyses the overall AUC behaviour of the fitness

functions over all tasks. The third part presents typical ROC curves for the fitness

functions. The final part compares the GP results to Naive Bayes and Support

Vector Machines on the tasks.

4.5.1 AUC of Fitness Functions

Table 4.4 reports the average AUC (± standard deviation) and the best AUC

achieved by an evolved classifier over 50 GP runs on the test set for each task.

Also shown in this table are the average GP training times, reported in second (s)

or minutes (m). The results of Tukey’s multiple comparisons significance testing

of the AUC is shown in the “Stat. Test” column in Table 4.4, as summarised by the

new significance rank (or s-rank) measure. This corresponds to the s-rank (“SR”)

for a given fitness function, where “Beats” shows the set of other s-ranks with a

(statistically) significantly poorer AUC. For example, the first line in Table 4.4 for

Ion (for “Stat. Test”) shows that fitness function Corr achieves the (best) s-rank

of 1 in this task, and “{3− 4}” means that Corr is significantly better than fitness

functions with s-ranks 3 and 4. Both Corr and Dist have equivalent s-ranks of

94 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

Table 4.4: Full classification results of the GP fitness functions for the tasks. The

SR denotes the significance rank (s-rank) of a fitness function and beats denotes

other s-rank(s) with a (statistically) significantly poorer AUC.
Fitness AUC Stat. Test Training Fitness AUC Stat. Test Training

Func. Average Best SR Bats Times Func. Average Best SR Beats Times

Ion Spt

Corr 0.87 ± 0.04 0.94 1 {3-4} 2.4s ± 0.5 AucF 0.77 ± 0.04 0.83 1 {4-5} 12.8s ± 3.8

Dist 0.86 ± 0.05 0.95 1 {3-4} 1.4s ± 0.5 Incr 0.76 ± 0.05 0.86 1 {4-5} 4.4s ± 1.8

Amse 0.85 ± 0.05 0.94 2 {4} 2.8s ± 0.9 AucE 0.76 ± 0.04 0.86 1 {4-5} 2.8s ± 0.9

AucF 0.85 ± 0.04 0.94 2 {4} 20.0s ± 5.3 Bands 0.76 ± 0.04 0.87 1 {4-5} 2.6s ± 0.8

AucE 0.85 ± 0.05 0.93 2 {4} 3.1s ± 0.9 Amse 0.75 ± 0.04 0.84 2 {5} 2.2s ± 0.4

Wmw 0.85 ± 0.06 0.96 2 {4} 17.8s ± 4.6 Wmw 0.74 ± 0.05 0.86 3 {6} 15.3s ± 3.6

AveM 0.82 ± 0.05 0.94 3 3.0s ± 1.1 Corr 0.74 ± 0.05 0.84 3 {6} 2.3s ± 0.7

Acc 0.82 ± 0.06 0.93 3 2.7s ± 0.8 Dist 0.73 ± 0.05 0.82 4 1.2s ± 0.4

Ave 0.80 ± 0.06 0.92 4 2.8s ± 0.9 Acc 0.72 ± 0.06 0.85 5 2.3s ± 0.6

Bands 0.79 ± 0.06 0.91 4 2.9s ± 1.1 Ave 0.71 ± 0.05 0.82 5 2.6s ± 1.0

Incr 0.79 ± 0.07 0.90 4 3.5s ± 0.7 AveM 0.70 ± 0.06 0.82 6 2.4s ± 0.8

(p = 5.5× 10−21) (p = 1.5× 10−17)

Ped Yst1

Wmw 0.93 ± 0.01 0.94 1 {4-8} 49.2m ± 7.1 Wmw 0.84 ± 0.02 0.88 1 {4-7} 1.8m ± 0.4

AucF 0.92 ± 0.01 0.94 2 {5-8} 71.3m ± 9.9 AucF 0.83 ± 0.02 0.87 2 {5-7} 2.1m ± 0.6

AucE 0.92 ± 0.01 0.94 3 {6-8} 5.8m ± 1.9 Dist 0.83 ± 0.03 0.87 2 {5-7} 6.0s ± 1.6

Dist 0.90 ± 0.02 0.92 4 {7-8} 2.4m ± 1.1 Amse 0.82 ± 0.02 0.86 2 {5-7} 13.2s ± 4.7

Corr 0.89 ± 0.01 0.92 5 {7-8} 4.5m ± 2.9 AucE 0.82 ± 0.02 0.87 2 {5-7} 13.3s ± 3.3

Amse 0.88 ± 0.02 0.91 6 {8} 4.5m ± 0.9 Bands 0.82 ± 0.02 0.86 3 {6-7} 21.8s ± 10.7

Bands 0.87 ± 0.03 0.93 6 {8} 4.2m ± 4.5 Corr 0.81 ± 0.02 0.86 4 {7} 12.8s ± 3.0

Ave 0.87 ± 0.04 0.92 6 {8} 5.0m ± 3.0 AveM 0.79 ± 0.04 0.87 5 12.3s ± 4.0

AveM 0.86 ± 0.04 0.91 7 {8} 5.2m ± 1.9 Incr 0.79 ± 0.05 0.87 6 15.7s ± 4.9

Incr 0.86 ± 0.04 0.92 7 {8} 6.1m ± 2.1 Ave 0.79 ± 0.03 0.85 6 13.3s ± 4.7

Acc 0.80 ± 0.12 0.92 8 5.4m ± 1.8 Acc 0.76 ± 0.07 0.84 7 13.5s ± 5.7

(p = 1.7× 10−49) (p = 3.5× 10−34)

Yst2 Bal

Amse 0.96 ± 0.01 0.98 1 {3-6} 11.4s ± 2.9 Wmw 0.86 ± 0.08 0.98 1 {3-7} 26.9s ± 8.0

Corr 0.95 ± 0.02 0.98 1 {3-6} 10.3s ± 3.1 AucF 0.84 ± 0.09 0.98 2 {5-7} 28.1s ± 7.6

Wmw 0.95 ± 0.02 0.98 2 {5-6} 1.4m ± 0.3 AucE 0.84 ± 0.11 0.98 2 {5-7} 5.0s ± 1.3

AucF 0.95 ± 0.03 0.98 2 {5-6} 1.6m ± 0.3 AveM 0.84 ± 0.12 0.98 2 {5-7} 4.9s ± 1.4

Bands 0.95 ± 0.02 0.98 2 {5-6} 19.2s ± 6.8 Incr 0.83 ± 0.11 0.98 2 {5-7} 5.8s ± 2.2

Dist 0.94 ± 0.03 0.97 2 {5-6} 5.8s ± 2.3 Amse 0.78 ± 0.10 0.97 3 {6-7} 5.2s ± 1.4

AveM 0.93 ± 0.03 0.97 3 {6} 13.4s ± 5.1 Bands 0.77 ± 0.11 0.98 4 {7} 5.0s ± 3.8

Ave 0.93 ± 0.04 0.97 4 12.6s ± 7.9 Dist 0.77 ± 0.13 0.96 4 {7} 2.7s ± 1.3

AucE 0.92 ± 0.03 0.98 5 15.2s ± 5.3 Corr 0.75 ± 0.11 0.98 5 {7} 4.9s ± 1.9

Incr 0.92 ± 0.04 0.97 5 15.5s ± 5.0 Ave 0.71 ± 0.15 0.98 6 {7} 4.7s ± 1.5

Acc 0.91 ± 0.04 0.97 6 12.6s ± 7.9 Acc 0.55 ± 0.09 0.90 7 5.1s ± 2.0

(p = 8.5× 10−19) (p = 1.1× 10−46)

1 (in Ion) as these fitness functions are not (statistically) significantly different to

one other.

A blank entry for “Beats” means that the given fitness function is not

statistically significantly better than any other fitness function. For example, in

Table 4.4 for Ion, the fitness functions AveM and Acc both have an s-rank of 3

and these are not significantly better than any other fitness function. Each fitness

4.5. EXPERIMENTAL RESULTS 95

function in Table 4.4 is ordered from best to worst average AUC in each task, and

the higher the s-rank, the better the average AUC for a fitness function.

Table 4.4 also shows the p-values under the null hypothesis from the ANOVA

F-test of the AUC for each task. As the p-values are all substantially lower than

0.05 (5% level of significance) in each task, the null hypothesis is rejected at a 5%

level of significance.

Analysis of AUC-based Fitness Functions.

Table 4.4 shows that the two AUC-based fitness functions Wmw and AucF

achieve the best AUC results on four out of six tasks (Spt, Ped, Yst1 and Bal).

In the remaining two tasks, AucF is not (statistically) significantly different to

the fitness function that achieves the best AUC in these tasks (Corr for Ion and

Amse for Yst2). These high AUC results are not unexpected for Wmw and AucF

as both these measures use approximations of the AUC directly in fitness. These

two fitness functions incur the longest average training times on the tasks, as

expected. The functions Wmw and AucF take approximately 5-8 times longer

than the other fitness functions on these tasks.

On the other hand, AucE shows substantially faster training times than AucF

and Wmw in all tasks, while the AUC performances for AucE is not significantly

different to AucF and Wmw in five out of six tasks. The only exception is

Yst1 where AucE has a statistically significantly lower AUC than AucF and

Wmw. However, the difference in average training times between AucE and

AucF/Wmw is substantial, particularly in the largest task, Ped (which has more

than 10,000 training examples). Here AucE takes approximately 5 minutes on

average compared to 71 and 49 minutes for AucF and Wmw, respectively. This

suggests that while Wmw gives a very close approximation to the full AUC in the

fitness function (AucF), no substantial gain can be made in terms of reducing the

training time. However, AucE offers a significant reduction in training time while

still evolving solutions with high AUC.

Analysis of New Fitness Functions.

Table 4.4 shows that the AUC for the new fitness functions Dist, Amse and Corr

are as good as AucE in five out of six tasks. Each is statistically significantly

better than AucE in exactly one task (Yst2), and not significantly different to

AucE in exactly four tasks. The training times using these three fitness functions

are also faster than AucE in all tasks. This is most apparent using Dist, where

96 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

the average training time is approximately twice as fast as AucE in all tasks.

This suggests that these new fitness functions are fast and effective measures of

classifier separability, competitive to AUC-based measure AucE . Of particular

interest is Dist which scores good AUC results on the tasks, while consistently

showing the fastest training times from all the fitness functions on the tasks.

Interestingly, Table 4.4 shows that the AUC using Amse (Eq. 4.7) is signifi-

cantly better than the traditional measure Ave (Eq. 4.2) in all tasks except Ped

(where AUC is similar). This is interesting as both Amse and Ave are relatively

similar classification measures. The only difference being that Amse utilises the

magnitude of the genetic program output in fitness to “calibrate” a classifier’s

outputs to target values for each class, whereas Ave uses only the true positive

and true negative rates in fitness (magnitude ignored).

The AUC for Dist, Amse and Corr are not statistically significantly different

to each another in all tasks. However, Amse outperforms the traditional Ave more

often than Dist and Corr. Amse is significantly better than Ave in five tasks (Ped

is the only exception), whereas Dist and Corr are significantly better than Ave in

only two tasks each. These two tasks are Ion and Yst1 for Dist, and Ion and Yst2

for Corr. This suggests that Amse produces relatively good AUC performances

consistently across the six tasks; while Dist and Corr have very good results in

some tasks (such as Ion, Ped and Yst2), but poorer results in other tasks (such

as Spt and Bal). This subtle difference may be due to properties of the Dist and

Corr measures compared to Amse. Amse is based on a traditional measure in

machine learning (mean squared error) which tries to minimise the differences

between input and target patterns. On the other hand, Dist and Corr are new

separability-based measures; Corr uses the correlation ratio of class outputs (for

a given solution), and Dist uses the distance between the two class distributions.

Interestingly, the new measure Incr achieves very good performances on the

two tasks with smallest number of minority class examples, namely, Spt and Bal.

These tasks only have 24 and 27 training examples, respectively. Table 4.4 shows

that Incr has the best s-rank of 1 in Spt and 2 in Bal. This is as good as both AucF

and AucE , and significantly better than Ave, in these tasks. This suggests that the

incremental reward scheme in Incr is particularly useful for tasks with very few

minority class examples.

The new measure Bands also shows very good AUC results on the Spt task

achieving the best an s-rank of 1 (along with AucF , AucE and Incr). This

measure also achieves a significantly better AUC than the traditional Ave in

three tasks (Spt, Yst1 and Yst2). This suggests that rewarding solutions which

4.5. EXPERIMENTAL RESULTS 97

have equally high accuracies on both classes in Bands to a greater extend than

in Ave, can improve AUC performances over Ave on some tasks. Band also

shows significantly better AUC results than AveM in two tasks, Spt and Yst1 (no

significantly difference in AUC in the remaining tasks).

Analysis of Traditional Measures.

As expected, the traditional measures Acc and Ave have among the poorest

AUC results on the tasks compared to the AUC-based functions and new fitness

functions (particularly Dist, Amse and Corr). This is particularly noticeable

when the level of class imbalance in a task is high (such as Ped, Yst1, Yst2 and

Bal). Interestingly, in the Bal task, the alternative average-based measure AveM

significantly outperforms Ave, and achieves a higher average AUC than all of

the new fitness functions (only significantly better than Corr). This suggests

that AveM is particularly effective in this task (Bal has the highest level of

class imbalance of the tasks). This may be because highly biased solutions

(with 0% accuracy on one class) are given very poor selection probabilities in

the evolution, as AveM returns a fitness value of zero for all these solutions.

However, on the remaining five tasks, Ave and AveM produce very similar

AUC results, suggesting that either of these averaging functions finds similar-

performing solutions (compared to the other fitness functions).

4.5.2 Overall AUC Behaviour

To gain an overall picture of how the fitness functions perform relative to each

other over all GP runs and tasks, the fitness functions with the three best (highest)

AUC performances on a run-by-run basis are counted over all runs. As each GP

run (using a particular fitness function) is repeated 50 times for each task, the ith

run for all fitness functions (for a task) share the same initial starting seed and

initial population. This means that the fitness functions that produce the three

highest AUC performances in a particular run for a task (i.e. highest AUC, next

highest AUC and third highest AUC), can be summed over all runs and tasks (i.e.

50 runs × 6 tasks = 300 total GP runs).

Table 4.5 shows the number of top-three AUC performances on a run-by-run

basis (on the test sets) for all 300 GP runs. The percentage values correspond to

the number of first, second or third place totals for a fitness function, as a fraction

of the total number of runs (300). These percentages (columns in Table 4.5) sum to

98 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

Table 4.5: Total number and percentage of first, second and third place AUC

positions on a run-by-run basis over 50 GP runs and six tasks (300 total runs).

Fitness First Place Second Place Third Place Total Number of

Function % Number % Number % Number Top-Three Positions

Wmw 20.3 61 21.0 63 12.7 38 162

AucF 17.7 53 18.7 56 17.3 52 161

AucE 13.7 41 13.0 39 13.7 41 121

Dist 10.0 30 10.7 32 11.7 35 97

Amse 9.7 29 7.7 23 7.7 23 75

Corr 8.3 25 8.3 25 6.0 18 68

Incr 7.0 21 5.7 17 7.7 23 61

Bands 4.0 12 7.3 22 7.7 23 57

AveM 6.3 19 3.3 10 5.7 17 46

Ave 3.0 9 3.3 10 5.3 16 35

Acc 1.3 4 2.0 6 4.7 14 24

100% over all fitness functions2. For example, the first line in Table 4.5, under the

“First Place” column, shows that the solutions evolved using the fitness function

Wmw score the highest AUC in 20.3% of all runs (in 61 of 300 runs). The fitness

function that scored the next highest number of first-place AUC positions is AucF

in 17% of all runs (in 53 of 300 runs).

The fitness functions in Table 4.5 are ordered according to the total number of

top three-positions (shown in the right-most column).

Table 4.5 shows a distinctive pattern in overall AUC behaviour for the fitness

functions across the tasks. The three AUC-based functions, Wmw, AucF and

AucE , achieve the highest total number of top-three placements across all GP

experiments, as these appear at the top of Table 4.5. This confirms the analysis

from the previous section that these fitness functions typically achieved the best

AUC result on these tasks. This is not surprising as these measures, particularly

AucF and AucE , use the AUC directly in fitness. It is interesting that Wmw

achieves a greater number of first and second place AUC positions than even

AucF over all runs and tasks, as Wmw uses a different statistical-based equation

to calculate the AUC.

2The reader will notice that the total number of first place and second place rankings over all

fitness functions in Table 4.5 does not sum to exactly 300. This is due to joint first, second or third

place placements for two or more fitness functions on a given run, e.g., if two fitness functions

score equivalent AUC values that are also the highest in a given run, both are counted in the first-

place position (the fitness function with the next highest AUC is then counted in the third-place

position). This means that the corresponding percentages in these two columns are also slightly

over 100% (by at most, 1.3%).

4.5. EXPERIMENTAL RESULTS 99

The new fitness function Dist achieves the highest percentage of first, second

and third place AUC positions relative to the other new fitness functions (Amse,

Corr, Incr and Bands). This suggests that this fitness function shows the best

overall performance over all runs and tasks compared to the other new fitness

functions. Another advantage of Dist is the fast training times on the tasks (as

shown in Table 4.4). Table 4.5 shows that Amse, followed by Corr, achieve the

next best overall AUC performance ranking from all the new fitness functions;

while Incr and Bands have the fewest total number of top-three AUC positions

from the new fitness functions. This shows that Incr and Bands generally show

poorer overall AUC results than the other new fitness functions (Dist, Amse and

Corr) in these tasks.

Also not surprising, the traditional measures, AveM , Ave and Acc, show the

worst AUC performances from all the fitness functions, ranking at the bottom of

Table 4.5. As expected, the standard GP fitness function Acc is the worst-ranked

fitness function in Table 4.5. A closer analysis of these results reveals that the first,

second and third-place positions for Acc in Table 4.5 is only from the Ion and Spt

tasks, as these tasks have relatively low levels of class imbalance. AveM achieves

a higher overall ranking than Ave because AveM achieves very good AUC results

in the Bal task (as discussed in the section above).

4.5.3 Typical GP ROC Curves

To illustrate how the GP classifiers capture the trade-off between the minority

and majority accuracy, Figure 4.4 shows typical ROC curves from the evolved GP

classifiers using the fitness functions. In these figures the true positive (TP) rate

is the minority accuracy, and false positive (FP) rate is 1−the majority accuracy.

Figure 4.4 shows ROC curves for the two AUC-based fitness functions AucF and

AucE (Wmw is omitted as its AUC is very similar to AucF in these tasks); the three

“best” overall new fitness functions (Dist, Amse and Corr as these are the highest

ranked in Table 4.5); and the two traditional measures Ave and Acc. The ROC

curves in Figure 4.4 are generated using the evolved solutions from a particular

run whose AUC is similar to the average AUC performance reported in Table 4.4

(to provide an indication of a typical ROC curve). The ROC curves for the Ion,

Ped, Yst1 and Bal tasks are shown in Figure 4.4. The remaining two tasks are

omitted for space constraints.

Figure 4.4 clearly shows why the AUC for some fitness functions (such as

AucF) are better than others, while some (such as Acc) are much worse, in terms of

100 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FP

T
P

Ion

AucF
AucE
Corr
Dist
Amse
Ave
Acc

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP

T
P

Bal

AucF
AucE
Corr
Dist
Amse
Ave
Acc

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FP

T
P

Ped

AucF
AucE
Corr
Dist
Amse
Ave
Acc

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.6

0.7

0.8

0.9

FP

T
P

Yst1

AucF
AucE
Corr
Dist
Amse
Ave
Acc

Figure 4.4: Typical ROC Curves (test set) for the GP fitness functions on four tasks.

The true positive (TP) rate is the minority class accuracy, and false positive (FP)

rate is 1−the majority class accuracy. The axis scopes are different in each figure.

the trade-offs between the TP and FP rates. Interestingly, these ROC curves show

that very good FP rates can be achieved (e.g. FP ≥ 0.2) while the corresponding

TP rates also remain relatively good, e.g., between 0.6–0.7 in Bal and Yst1, and 0.8

(or higher) in Ped and Ion. In contrast, very good TP rates (e.g. TP ≥ 0.8) show

poor (high) FP rates on these four tasks. This means that high majority class

accuracies can be achieved with relatively little resistance in the corresponding

minority class accuracies, but not for the opposite case. Here high minority class

accuracies cause a more significant trade-off in majority class accuracies.

4.5.4 Naive Bayes and Support Vector Machines

This section compares the GP performances with two other popular machine

learning approaches, namely, Naive Bayes (NB) and Support Vector Machine

(SVM). Table 4.6 shows the AUC and training time using NB and SVM on the

tasks, generated using the WEKA [82] machine learning package.

4.5. EXPERIMENTAL RESULTS 101

Table 4.6: AUC and training time for a single run using Naive Bayes (NB) and

Support Vector Machines (SVM) on the tasks.

Ion Spt Ped Yst1 Yst2 Bal

Auc Time Auc Time Auc Time Auc Time Auc Time Auc Time

NB 0.91 0.02s 0.83 0.04s 0.92 20.1s 0.83 0.03s 0.95 0.02s 0.5 0.001s

SVM 0.93 0.08s 0.68 0.2s 0.93 3.8m 0.71 1.2s 0.85 1.4s 0.5 0.05s

Table 4.7: GP fitness function results on the tasks (repeat of Table 4.4). The column

SR denotes the significance rank (s-rank) of a fitness function and the column

Beats denotes other s-rank(s) with a (statistically) significantly poorer AUC.

Fitness AUC Stat. Test Training Fitness AUC Stat. Test Training

Func. Average Best SR Bats Times Func. Average Best SR Beats Times

Ion Spt

Corr 0.87 ± 0.04 0.94 1 {3-4} 2.4s ± 0.5 AucF 0.77 ± 0.04 0.83 1 {4-5} 12.8s ± 3.8

Dist 0.86 ± 0.05 0.95 1 {3-4} 1.4s ± 0.5 Incr 0.76 ± 0.05 0.86 1 {4-5} 4.4s ± 1.8

Amse 0.85 ± 0.05 0.94 2 {4} 2.8s ± 0.9 AucE 0.76 ± 0.04 0.86 1 {4-5} 2.8s ± 0.9

AucF 0.85 ± 0.04 0.94 2 {4} 20.0s ± 5.3 Bands 0.76 ± 0.04 0.87 1 {4-5} 2.6s ± 0.8

AucE 0.85 ± 0.05 0.93 2 {4} 3.1s ± 0.9 Amse 0.75 ± 0.04 0.84 2 {5} 2.2s ± 0.4

Wmw 0.85 ± 0.06 0.96 2 {4} 17.8s ± 4.6 Wmw 0.74 ± 0.05 0.86 3 {6} 15.3s ± 3.6

AveM 0.82 ± 0.05 0.94 3 3.0s ± 1.1 Corr 0.74 ± 0.05 0.84 3 {6} 2.3s ± 0.7

Acc 0.82 ± 0.06 0.93 3 2.7s ± 0.8 Dist 0.73 ± 0.05 0.82 4 1.2s ± 0.4

Ave 0.80 ± 0.06 0.92 4 2.8s ± 0.9 Acc 0.72 ± 0.06 0.85 5 2.3s ± 0.6

Bands 0.79 ± 0.06 0.91 4 2.9s ± 1.1 Ave 0.71 ± 0.05 0.82 5 2.6s ± 1.0

Incr 0.79 ± 0.07 0.90 4 3.5s ± 0.7 AveM 0.70 ± 0.06 0.82 6 2.4s ± 0.8

Ped Yst1

Wmw 0.93 ± 0.01 0.94 1 {4-8} 49.2m ± 7.1 Wmw 0.84 ± 0.02 0.88 1 {4-7} 1.8m ± 0.4

AucF 0.92 ± 0.01 0.94 2 {5-8} 71.3m ± 9.9 AucF 0.83 ± 0.02 0.87 2 {5-7} 2.1m ± 0.6

AucE 0.92 ± 0.01 0.94 3 {6-8} 5.8m ± 1.9 Dist 0.83 ± 0.03 0.87 2 {5-7} 6.0s ± 1.6

Dist 0.90 ± 0.02 0.92 4 {7-8} 2.4m ± 1.1 Amse 0.82 ± 0.02 0.86 2 {5-7} 13.2s ± 4.7

Corr 0.89 ± 0.01 0.92 5 {7-8} 4.5m ± 2.9 AucE 0.82 ± 0.02 0.87 2 {5-7} 13.3s ± 3.3

Amse 0.88 ± 0.02 0.91 6 {8} 4.5m ± 0.9 Bands 0.82 ± 0.02 0.86 3 {6-7} 21.8s ± 10.7

Bands 0.87 ± 0.03 0.93 6 {8} 4.2m ± 4.5 Corr 0.81 ± 0.02 0.86 4 {7} 12.8s ± 3.0

Ave 0.87 ± 0.04 0.92 6 {8} 5.0m ± 3.0 AveM 0.79 ± 0.04 0.87 5 12.3s ± 4.0

AveM 0.86 ± 0.04 0.91 7 {8} 5.2m ± 1.9 Incr 0.79 ± 0.05 0.87 6 15.7s ± 4.9

Incr 0.86 ± 0.04 0.92 7 {8} 6.1m ± 2.1 Ave 0.79 ± 0.03 0.85 6 13.3s ± 4.7

Acc 0.80 ± 0.12 0.92 8 5.4m ± 1.8 Acc 0.76 ± 0.07 0.84 7 13.5s ± 5.7

Yst2 Bal

Amse 0.96 ± 0.01 0.98 1 {3-6} 11.4s ± 2.9 Wmw 0.86 ± 0.08 0.98 1 {3-7} 26.9s ± 8.0

Corr 0.95 ± 0.02 0.98 1 {3-6} 10.3s ± 3.1 AucF 0.84 ± 0.09 0.98 2 {5-7} 28.1s ± 7.6

Wmw 0.95 ± 0.02 0.98 2 {5-6} 1.4m ± 0.3 AucE 0.84 ± 0.11 0.98 2 {5-7} 5.0s ± 1.3

AucF 0.95 ± 0.03 0.98 2 {5-6} 1.6m ± 0.3 AveM 0.84 ± 0.12 0.98 2 {5-7} 4.9s ± 1.4

Bands 0.95 ± 0.02 0.98 2 {5-6} 19.2s ± 6.8 Incr 0.83 ± 0.11 0.98 2 {5-7} 5.8s ± 2.2

Dist 0.94 ± 0.03 0.97 2 {5-6} 5.8s ± 2.3 Amse 0.78 ± 0.10 0.97 3 {6-7} 5.2s ± 1.4

AveM 0.93 ± 0.03 0.97 3 {6} 13.4s ± 5.1 Bands 0.77 ± 0.11 0.98 4 {7} 5.0s ± 3.8

Ave 0.93 ± 0.04 0.97 4 12.6s ± 7.9 Dist 0.77 ± 0.13 0.96 4 {7} 2.7s ± 1.3

AucE 0.92 ± 0.03 0.98 5 15.2s ± 5.3 Corr 0.75 ± 0.11 0.98 5 {7} 4.9s ± 1.9

Incr 0.92 ± 0.04 0.97 5 15.5s ± 5.0 Ave 0.71 ± 0.15 0.98 6 {7} 4.7s ± 1.5

Acc 0.91 ± 0.04 0.97 6 12.6s ± 7.9 Acc 0.55 ± 0.09 0.90 7 5.1s ± 2.0

102 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

The SVM uses a sequential minimal optimisation algorithm with an RBF

kernel and Gamma value3 of 10. For convenience, the GP results for the different

fitness functions are repeated in Table 4.7 (under Table 4.6). Note that these GP

results are identical to those shown previously in Table 4.4.

Table 4.7 shows that the best classifiers evolved by GP (over 50 experiments)

are as good as, or in most case better than, NB and SVM (in Table 4.6) for these

tasks, particular with the AUC-based and new fitness functions (Dist, Amse,

Corr) in GP. This suggests that these GP fitness functions succeeded in evolving

good classifiers with little overlap between two class distributions (or high AUC)

on the tasks compared to NB and SVM. In Bal in particular, NB and SVM show

very poor classification results compared to GP. The AUC for NB and SVM is 0.5

in Bal, indicating that these methods show highly biased classification results that

are no better than random guessing on this test set. This indicates that the high

level of class imbalance in this task represents a difficult challenge for NB and

SVM but not for GP with the new fitness functions.

Comparing the average AUC of the GP approaches with NB and SVM, all

the GP fitness functions, including Acc, achieve better AUC results than NB and

SVM on Bal. On the tasks with minority class representation between 10–20% of

all examples (Ped, Yst1 and Yst2), the GP fitness function with the highest average

AUC in Table 4.7 (Wmw in Ped and Yst1, and Amse in Yst2), shows similar

average AUC performances to NB; for these tasks, both GP and NB are better

than SVM. These results suggests that the ability to choose/develop an effective

fitness function to evolve classifiers with high AUC gives GP an advantage over

NB and SVM particularly when data sets are highly unbalanced.

Table 4.6 also shows that a single run of SVM, and particularly NB, is faster

than the average GP training times on these tasks. However, this is not a serious

concern as GP only takes a few seconds in nearly all tasks. The only exception is

Ped which is the largest data set (more than 24000 examples). Here most of the

GP methods and SVM take a few minutes.

Further Analysis in Ion and Spt Tasks

In two tasks (Ion and Spt), the GP fitness function with the highest average AUC

in Table 4.7 is slightly worse than a single run of either SVM or NB. In Ion, SVM

and NB show a better AUC than GP with Corr (on average); and in Spt, NB

has a higher AUC than GP with AucF (on average). This may be due to the

3Gamma=10 generally gave the best classification results from experiments using 0.1, 1, 10,

and 100.

4.6. RESULTS FOR WEIGHTED-AVERAGE FITNESS FUNCTION 103

complexity of this problem, rather than the relatively low level of class imbalance

in these tasks. Ion has 34 features; this is the largest number of features from

the tasks and represents a very large search-space of classifiers for GP, given

that the maximum program depth of GP classifiers is restricted to 8. Adjusting

the evolutionary parameters to allow GP to more effectively explore this search-

space, such as increasing the maximum GP program depth parameter (e.g., to 12)

or the population size (e.g. to 1000), should improve GP performances.

To test this hypothesis, i.e., whether the average AUC performance for GP can

be further improved using a maximum program depth of 12 and population size

of 1000, the experiments are repeated for Ion and Spt using these new parameters.

Only the GP fitness functions Corr and AucF for Ion and Spt, respectively, are

considered with the new evolutionary parameters as these fitness functions have

the highest average AUC on these tasks in Table 4.7.

New GP Results for Ion and Spt

For the new GP experiments, the average AUC (± standard deviation) for Corr

on Ion is 0.91 (± 0.03), and the best AUC is 0.98 (over 50 runs). Likewise, the

average AUC for AucF on Spt is 0.82 (± 0.02), and the best AUC is 0.84 (over

50 runs). This shows that on average, the AUC for GP on Ion is as good as NB,

and only slightly lower than SVM. Similarly, the best AUC achieved by GP in

Ion (over 50 runs) is substantially higher than both NB and SVM. Likewise, the

average AUC for GP on Spt is only slightly lower than NB (and much better than

SVM), but the best AUC achieved by GP (over 50 runs) is much better than both

methods.

These new GP results confirm the hypothesis discussed above that the original

not very good AUC results in Table 4.7. are more due to the complexity of these

problems than the class imbalance factor. When the search-space is increased in

GP (by updating the evolutionary parameters), performances are improved as

the new evolved classifiers are more competitive in terms of AUC compared to

NB and SVM in these two tasks.

4.6 Results for Weighted-Average Fitness Function

This section investigates whether different configurations in the weighted-

average GP fitness function Wave (Eq. 4.4) significantly affects the AUC of the

evolved solutions. In other words, we check whether different configurations

104 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

Table 4.7: Average (± standard deviation) AUC for weighted-average fitness

function Ave (Eq. 4.2) on the tasks. The SR denotes the significance rank (s-

rank) for a weight value and beats denotes other s-rank(s) with a (statistically)

significantly poorer AUC.

Weight AUC Stat. Test AUC Stat. Test AUC Stat. Test

(W) SR Beats SR beats SR Beats

Ion Spt Ped

0.2 0.83 ± 0.05 1 {2-3} 0.70 ± 0.09 3 0.80 ± 0.09 3

0.3 0.82 ± 0.05 1 {2-3} 0.73 ± 0.05 1 {4-5} 0.86 ± 0.06 1 {3}
0.4 0.82 ± 0.05 1 {2-3} 0.72 ± 0.05 2 {5} 0.86 ± 0.05 1 {3}
0.5 0.80 ± 0.06 1 {2-3} 0.71 ± 0.05 3 0.87 ± 0.04 1 {3}
0.6 0.80 ± 0.05 1 {2-3} 0.69 ± 0.06 4 0.86 ± 0.03 1 {3}
0.7 0.76 ± 0.07 2 {3} 0.69 ± 0.06 4 0.85 ± 0.05 2

0.8 0.71 ± 0.09 3 0.68 ± 0.06 5 0.82 ± 0.05 3

p =1.7×10−26 p = 0.0013 p = 1.1×10−9

Yst1 Yst2 Bal

0.2 0.76 ± 0.07 3 0.92 ± 0.05 1 0.61 ± 0.13 3

0.3 0.78 ± 0.05 2 0.92 ± 0.05 1 0.72 ± 0.14 1 {3}
0.4 0.80 ± 0.04 1 {3} 0.93 ± 0.04 1 0.72 ± 0.13 1 {3}
0.5 0.79 ± 0.03 2 0.93 ± 0.04 1 0.71 ± 0.15 1 {3}
0.6 0.78 ± 0.05 2 0.92 ± 0.04 1 0.69 ± 0.14 2

0.7 0.77 ± 0.06 3 0.93 ± 0.04 1 0.67 ± 0.14 2

0.8 0.73 ± 0.10 3 0.92 ± 0.05 1 0.67 ± 0.14 2

p =3.2×10−3 p =0.49 p =5.5×10−5

affect how well the class outputs are separated with respect to each other in the

evolved solutions. Table 4.7 shows the average AUC of the evolved GP classifiers

experimental using the seven different weighting configurations in Wave on the

tasks. The weighting configurations for W are between 0.2 and 0.8 at intervals of

0.1. Recall that in Wave, W specifies the weight for the minority class accuracy

and 1−W for the majority class accuracy.

Similar to the previous experimental results, an ANOVA F-test is first used to

statistically test the null hypothesis (i.e., no difference in AUC for the different W

values over 50 runs) at a 5% level of significance. The p-values from the F-test,

shown in Table 4.7 for each task, are lower than than 0.05 in all tasks except Yst2

(where p is 0.49). This indicates that the null hypothesis is rejected (at a 5% level

of significance) in these tasks except Yst2. In Yst2, all weighting configurations

show very similar AUC results (that are not statistically significantly different).

Tukey’s HSD test [166] is also used as the multiple comparisons test, to find

the statistically significant differences between AUC values in the tasks (except

4.6. RESULTS FOR WEIGHTED-AVERAGE FITNESS FUNCTION 105

Yst2). An s-rank is also assigned to each W value in Table 4.7 to summarise

which weighting configurations have statistically significantly better AUC values

than other configurations. In Table 4.7, the SR denotes the s-rank for a given W

configuration and Beats denotes other s-rank(s) with a (statistically) significantly

poorer AUC. For example, the first line in Table 4.7 for Ion (for “Stat. Test”) shows

that W = 0.2 achieves the best s-rank of 1, and that this AUC is significantly better

than s-ranks 2 and 3 (W values of 0.7 and 0.8, respectively).

4.6.1 Analysis of Results

According to Table 4.7, no configuration of W where W 6= 0.5 shows a statistically

significantly better AUC than an equal weighting (W = 0.5) on the tasks.

This means that no other configuration of W where W 6= 0.5 improves the

AUC sufficiently to be statistically significantly better than an equal weighting

configuration. In fact, the W configuration with the highest average AUC (on a

task-by-task basis) is still not as good as the AUC-based and new fitness functions

from Table 4.4 in any of the tasks. This suggests that the tweaking the weighting

configuration in Wave does not significantly improve the AUC in the evolved

solutions on these tasks.

As expected, “extreme” weighting configurations (such as W of 0.2 or 0.8)

generally show the worst AUC results. In four tasks (Spt, Ped, Yst1 and Bal), the

W configuration with the highest average AUC is statistically significantly better

than these two extreme W values. This is not surprising as extreme weights

in Wave favour biased solutions which have high accuracy rates on one class

alone. Only in Ion does the extreme W value of 0.2 show good AUC results,

most likely due to the relatively low level of class imbalance in Ion. Weighting

configurations slightly favouring majority class accuracy over minority class

accuracy (0.3 < W ≤ 0.5) produce slightly better AUC than the opposite case

(W > 0.5), but this difference is only statistically significant in one task (Spt).

These results show that the choice of weights in Wave will not significantly

affect the AUC in the evolved solutions unless “extreme” weights are selected.

However, it must be mentioned that while the AUC of the evolved solutions

are not statistically significantly different (except for extreme weights), the main

advantage of Wave is the frontier produced by the evolved solutions, as shown in

Figure 4.5. These figures show the performances of the evolved solutions on the

minority and majority classes (on the test set) when these solutions are evaluated

using zero as the class threshold, for three tasks (Ped, Yst2 and Bal). These

106 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

60 80 100

60

70

80

90

100
0.2

0.3
0.4

0.5
0.6

0.7

0.8

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y
Ped

75 80 85 90
86

88

90

92

94

96

98
0.2

0.3
0.4

0.5
0.6

0.7

0.8

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

Yst2

20 40 60 80

75

80

85

90

95

100
0.2

0.3

0.4

0.50.60.70.8

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

Bal

Figure 4.5: Minority and majority class accuracies (on the test sets) for weighting

coefficient W in fitness function Wave (axis scopes are different in each figure).

performances represent the average performance over 50 GP runs for the different

W configurations; and the vertical and horizontal axis in these figures correspond

to the minority and majority class accuracy, respectively. The remaining tasks are

omitted for space constraints but these show very similar frontiers to Ped and

Yst2 (in fact, the Wave frontier for these tasks are shown and discussed in more

detail in the next chapter).

However, an major limitation of Wave is that multiple GP runs are required

(each with a different W configuration in the fitness function) to produce the

frontiers shown in Figure 4.5. This can be a time consuming process, e.g., Figure

4.5 needed a total of 350 GP experiments (assuming 50 GP experiments are

used for each W configuration). Another limitation of Wave is that there is no

guarantee that the points along the frontier (i.e. for the different W values) will

be uniformly “spread out” along the two objectives, as seen for Bal in Figure 4.5.

Here W values between 0.5 and 0.8 produce a point along the frontier that is very

similar in objective-space.

4.7 Evolved GP Programs

This section examines four evolved GP classifiers using the fitness function AucE

on the Bal task. Bal is chosen since the high level of class imbalance in Bal makes

this a difficult classification problem for canonical GP, NB and SVM to solve (as

demonstrated by the biased results in Table 4.4 for canonical GP, and Table 4.6 for

NB and SVM). This particular fitness function is also chosen as it finds solutions

with good AUC performances on this task.

Note that while this analysis is not the primary goal of this thesis, it is included

to provide an overall indication on the kinds of solutions evolved by the GP

approaches. As the representation of the evolved classifiers is a major advantage

4.7. EVOLVED GP PROGRAMS 107

(if<0

(-

(- (+ 0.94 f1) (- f3 -0.89))

(*
(if<0 (* f3 0.63) (+ f3 f0) f3)

(% (- f2 f0) (if<0 f2 (% (% -0.89 -0.34) (+ f3 f1)) f0))))

(+

(* (- 0.02 0.09)

(%

(% 0.82 (+ f0 (if<0 f0 f1 0.95)))

(* (+ (% -0.94 -0.98) 0.24) (* (- -0.62 0.37) (* -0.56 -0.34)))))

(- (* f0 0.06) (if<0 f2 -0.89 f0)))

(%

(%

(- (% (if<0 (- f2 f2) (* 0.16 f1) (if<0 f2 f3 -0.99)) f2) f3)

(if<0 0.94 f2 f0))

(% (- f1 -0.18) (% f2 (- 0.02)))))

Figure 4.6: Evolved GP classifier with a high AUC (0.98) on Bal.

of GP, examining the evolved GP trees can provide useful insights into how GP

learns to solve a particular problem.

The four evolved GP classifiers analysed below are shown in Figures 4.6 –

4.9. These programs are categorised into classifiers with above average AUC

(Figures 4.6 and 4.7), and classifiers with average AUC (Figures 4.8 and 4.9).

In these figures, the four input features in Bal correspond to f0—f3 in the

evolved programs. For convenience, these programs have been indented for

easier interpretability.

4.7.1 Programs with high AUC

The first program that is analysed, shown in Figure 4.6, has an AUC of 0.98

which represents one of the best AUC performance achieved for Bal (in Table

4.4 on page 94). This program contains three distinct parts which form the

input arguments to the if function in the root node of the tree. Recall that

in the if function, if the first argument is negative, the second argument is

evaluated and the corresponding value is returned; otherwise, the third argument

is evaluated. As this program has very high AUC, the logic expressed by this

high level conditional function may be a successful strategy discovered in the

GP evolutionary process to classify the data inputs. Interestingly, 8 other GP

classifiers out of the 50 GP runs for Bal with this fitness function (AucE) share a

similar overall structure, i.e., trees with an if function at the root node (but with

potentially different subtrees). These 9 GP classifiers with this overall structure

also generally have above-average AUC performances.

108 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

(%

(if<0 \\left-side

(*
(if<0

(+ (if<0 (if<0 f1 f1 -0.54) (- -0.02 0.67) -0.11) (+ (- f0 f3) (* f2 0.27)))

0.87

(- f0 f3))

(- f3 f1))

(-

(+ -0.66 0.93)

(% 0.95

(%

(+ (* f2 0.63) (% 0.75 0.47))

(* (if<0 -0.82 -0.54 -0.61) (* -0.25 f2)))))

(-

(% 0.63 0.25)

(if<0

0.25

(- (% 0.28 0.25) (if<0 (- f2 0.82) (+ f0 -0.16) 0.44))

(% 0.27 (+ (if<0 f2 -0.25 -0.51) (- f3 f0))))))

(- \\right-side

(+ (- f1 f1) (- f1 f3))

(+

(* (- 0.25 -0.47) -0.44)

(% (- f0 f2) -0.95))))

Figure 4.7: Evolved GP classifier with an above average AUC (0.92) on Bal.

The second program, shown in Figure 4.7, has an AUC of 0.92 on Bal. This is

higher than the average AUC achieved by this fitness function over 50 GP runs

(0.84 according to Table 4.4), but lower than the AUC of the first program (Figure

4.6). Interestingly, this program also has a similar structure to the program in

Figure 4.6, except that the outer-most if function is embedded a level deeper

in the tree than in Figure 4.6. This means that the left side of the program

(as shown in Figure 4.7) uses a similar logic to the first program (e.g. the if

function), but this logic is incorporated into another function (the protected

division operator, %, in the root node). The (above average) AUC of this program

affirms the analysis discussed above that this high-level logic in the tree is a

successful strategy for good performance. Other evolved GP classifiers with

a similar overall structure, i.e., trees with a high-level if function (but with

potentially different subtrees) embedded one level deep from the root node, are

found in 15 out of the 50 GP runs. These programs also generally have good AUC

performances.

The poorer performance by this program (compared to Figure 4.6) may be

due to the additional structure above the outer-most if function, or to different

subtrees within the if function.

4.7. EVOLVED GP PROGRAMS 109

(%

(+ \\left-side

f0

(%

(+ (+ (% (- -0.01 f3) (% 0.28 0.02)) (if<0 f3 (% f3 0.39) f0)) f1)

(- f0 -0.12)))

(- \\right-side

(+ f1 0.16)

(if<0

(%

(if<0

(- (- f0 f2) f0)

(if<0 (+ -0.83 f0) 0.042 (- f3 f0))

(if<0 0.91 (+ -0.83 f0) f2))

(+ (+ -0.83 f0) (+ (* f3 -0.81) (* 0.91 0.37))))

(- f3 (* (- f0 (* f2 0.97)) (- (+ f1 f0) (- f1 0.47))))

f2)))

Figure 4.8: Evolved GP classifier with a typical AUC of 0.85 on Bal.

4.7.2 Programs with Average AUC

The third program that is analysed, shown in Figure 4.8, has an AUC of 0.85. This

is only slightly higher than the average AUC achieved by this fitness function

over 50 GP runs (0.84) but much lower than the AUC of the two previous

programs. Unlike the two previous programs, this program does not have an

overall structure with an if function in the higher levels of the tree. Instead, this

program uses a series of nested if functions embedded deep within the right

side of the tree (as shown in Figure 4.8)

The fourth program, shown in Figure 4.8, has an AUC of 0.84 which represents

the average AUC by this fitness function (over 50 GP runs). This classifier is also

the smallest program evolved over 50 GP runs using AucE . Even though this

program does not achieve a very good AUC, its small size makes further analysis

easier to try to understand how GP has learnt to solve this problem. Similar to

the above program, this program uses no high-level conditional logic operators

in the tree as the only if function is embedded deep within the tree. The small

program size may also suggest that this classifier lacked the representation for

good AUC performance compared to the larger (and more complex) programs in

Figures 4.6 and 4.7.

4.7.3 Trends

This analysis focuses on one difficult classification task, Bal, and shows that

solutions with similar AUC performances tend to have similar overall structures.

110 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

(%

(- (* (+ 0.80 f3) (% f1 f2)) f0)

(+

f3)

(-

0.11

(if<0

(+ (- f0 f1) (- (- f2 f3) (- -0.60 -0.18)))

(* (- (+ f3 f2) -0.41) (% (- -0.33 f0) (- f2 f0)))

f0)))

Figure 4.9: Smallest evolved GP classifier with an AUC of 0.84 on Bal.

One might expect that analyses of the evolved programs for other tasks (and

fitness functions) might also reveal a similar pattern, that is, the best evolved

programs share a similar overall structure but this structure is different from other

solutions. It can be expected that when these evolved programs are grouped

together based on their performances, the overall structures of programs within

each group are relatively similar to each other, but different from programs

in other groups. For example, just as Figures 4.6 and 4.7 are similar in their

performance and structures, these are different to Figures 4.8 and 4.9.

This is because solutions in different groups will have different building

blocks. For example, the high level if function in Figures 4.6 and 4.7 may consti-

tute good building blocks as these are common in well-performing solutions and

may represent a successful strategy to achieve good AUC performances.

4.8 Summary

The goal of this chapter was to develop several new fitness functions for classifi-

cation with unbalanced data to find solutions with good classification ability on

the minority and majority class (high AUC). These new fitness functions perform

cost adjustment between the two classes during the learning process, allowing the

unbalanced learning data to be used “as is” in the learning process. This means

that no prior knowledge is required about the input data, nor is any sampling

algorithm needed to first re-balance the training data before fitness evaluation.

4.8.1 AUC of Fitness Functions

The AUC performances of the evolved GP solutions and the GP training times

using the new fitness functions are compared to several existing approaches

in the fitness function for classification. Overall, the three AUC-based fitness

4.8. SUMMARY 111

functions find solutions with the best (highest) AUC on the tasks, but also incur

the longest training times. The WMW statistic in the fitness function, Wmw,

finds solutions with very similar performances to the full AUC in the fitness

function AucF , but both methods have similarly long training times. In contrast,

the reduced-precision AUC in the fitness function, AucE , offers a significant

reduction in GP training time while still ensuring that the evolved solutions have

comparatively high AUC.

A new fitness function measuring the distance between class distributions,

Dist, finds solutions that perform as well as the AUC-based measure AucE ,

but with training times that are twice as fast as AucE on the tasks. Two new

fitness functions based on the mean-squared-error for each class, Amse, and the

correlation ratio, Corr, also find solutions with similar performances to AucE ,

and with slightly better training times than AucE . Of these, Amse significantly

outperforms its counterpart, the traditional measure Ave (which uses the average

accuracy of the two classes) in nearly all tasks. A new fitness function which

incrementally rewards correct predictions further away from the class boundary

(Incr), is particular useful in tasks with very few minority class examples,

achieving AUC results that are as good as the AUC-based fitness functions (and

significantly better than the traditional Ave) in these tasks. Similarly, the new

measure Bands which promotes solutions with equally high accuracy on both

classes, performs significantly better than the traditional measures Ave and AveM

in three out of six tasks.

These GP methods also outperform Naive Bayes (NB) and Support Vector

Machines (SVM) on the tasks, particularly when the level of class imbalance in

a task is very large. In these cases, both NB and SVM show biased classification

results.

4.8.2 AUC of Wave Frontier

Varying the relative importance of the minority and majority class accuracy in

a fitness function which uses a weighted-average of these two objectives, Wave,

does not significantly improve AUC compared to an equal weighting of the two

objectives on these tasks. However, different weighting configurations in Wave

produces a frontier along the minority and majority class trade-off surface, but

generating this frontier is a lengthy process requiring multiple GP runs for the

different weighting configurations. This is because each configuration must be

specified a priori in the fitness function.

112 CHAPTER 4. DEVELOPING NEW GP FITNESS FUNCTIONS

4.8.3 Multi-Objective GP

The GP methods described in this chapter focus on the single fittest individual

found in the evolutionary search. These methods use either the ROC curve of

this individual to capture the performance trade-off between the minority and

majority class accuracy, or the frontier of solutions along this trade-off surface

produced by the fitness function Wave. An alternative approach to approximate

the trade-off between these two objectives is to use evolutionary multi-objective

optimisation (EMO) to simultaneously evolve a set of the best trade-off solutions

(Pareto front) along the objectives in a single optimisation run. An EMO approach

allows decision-makers to choose a preferred classifier a posteriori from the

evolved Pareto front without requiring the objective preference to be specified

a priori. The next chapter develops a multi-objective GP (MOGP) approach where

the accuracy of the minority and majority class is trade-off against each other for

cost-adjustment in the learning process.

Chapter 5

Multi-objective GP Approach

This chapter is organised as follows. The first section provides an introduction of

the main concepts and the chapter goals. The second section outlines the multi-

objective GP approach. The third and fourth sections present the experimental

results on the tasks. The fifth section provides a summary of this chapter.

5.1 Introduction

In classification with unbalanced data, the accuracy on the minority and majority

class is in conflict where increasing the accuracy on one class usually results

in a performance trade-off on the other. Two approaches are developed in

the previous chapter to represent this performance trade-off in the evolved GP

classifiers. The first constructs an ROC curve for an evolved GP classifier where

different class thresholds produce different true positive and true negative rates

(i.e. different minority and majority class accuracies, respectively). The second

generates a frontier of GP classifiers using a weighted-average of the minority

and majority class in the fitness function, as shown below, where the weighting

coefficient W specifies the relative importance of the objectives.

Wave = W ×Minority Accuracy + (1−W)×Majority Accuracy

However, a major limitation of Wave is that the objective preference W

must be specified a priori. Weighting coefficients are difficult to predict a priori,

particularly in real-world problems with unbalanced data. These weights can be

task-specific and require a lengthy trial and error process to configure as multiple

optimisation runs are needed with different weighting coefficients (as shown in

the previous chapter).

113

114 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

Evolutionary multi-objective optimisation (EMO) is a fast-growing area of

research which offers a promising alternative to learning with multiple conflict-

ing objectives [95][188][53][42][36][40]. Unlike canonical single-objective (“single-

predictor”) classifier learning techniques where the single fittest individual is re-

turned from the training process, in EMO a set (or Pareto front) of the best trade-off

solutions is simultaneously evolved along the objectives in a single optimisation

run. This allows decision-makers the freedom to choose a preferred classifier

(with the desired trade-off) a posteriori from the evolved Pareto front, without

requiring the objective preference to be specified a priori. EMO accomplishes this

by treating the objectives independently in the learning process using the notion

of Pareto Dominance in fitness.

EMO has shown great success in three main problem domains in classification:

model regularisation [96][26][70][92][50], ROC optimisation [162][108][65], and

ensemble learning [159][123][170][168]. The first two problem domains assume

that the class distributions in the classification tasks are balanced, while EMO

for ensemble learning typically uses sampling techniques to first re-balance

the training data during fitness evaluation when data is unbalanced. A multi-

objective GP (MOGP) approach where the accuracy of the minority and majority

class is trade-off against each other for cost adjustment in the learning algorithm

when data sets are unbalanced, has not previously been explored.

This chapter addresses this by developing a MOGP approach using the

accuracy on the minority and majority class as the two learning objectives. This is

different to the canonical single-objective/single-predictor GP from the previous

chapter (hereinafter referred to as SGP) where a single evolved genetic program

classifier is required to capture the performance trade-off between these two

objectives (using an ROC curve). In contrast, the MOGP approach delegates this

requirement to the set of genetic program classifiers evolved along the Pareto

frontier of the minority-majority class trade-off surface. As a result, the MOGP

approach does not require that the individual classifiers are highly accurate on

the two objectives, but rather that the Pareto front contains a good set of trade-off

solutions.

5.1.1 Fitness in MOGP

As mentioned above, EMO treats the objectives as separate in the learning

algorithm using Pareto Dominance in the fitness function. In Pareto Dominance,

a solution’s performance is ranked on all the objectives relative to all other

5.2. MULTI-OBJECTIVE GP APPROACH 115

solutions in the population. This ranking is important as it affects the way

selection is performed if the objectives are to be treated independently in the

evolution. Coello Coello et al. [42] categorise three main types of Pareto

Dominance measures: dominance rank, dominance count and dominance depth.

Dominance rank is the number of other individuals that a given individual is

dominated by. Dominance count is the number of other individuals that a given

individual dominates. Dominance depth sorts the individuals in the population

into fronts by depth. Each dominance measure has a different bias towards

different regions of the Pareto frontier. Dominance rank and dominance depth

(used in the well-known NSGAII [53] algorithm) tend to reward exploration at

the edges of the frontier while dominance count (used in the well-known SPEA2

[188] algorithm) tends to reward exploitation in the middle of frontier [42].

In the MOGP approach, it is not clear which Pareto Dominance measure in

the fitness function will find better-performing Pareto frontier solutions on these

classification tasks with unbalanced data. To address this, this chapter compares

two Pareto Dominance measures in the fitness function in MOGP . The first

uses dominance rank (from the NSGAII [53] algorithm), and the second uses

dominance count (from the SPEA2 [188] algorithm).

5.1.2 Chapter Goals

This chapter has two mains goals. The first is to develop a MOGP approach where

the accuracy of the minority and majority class is trade-off against each other,

with particular emphasis on how to represent the Pareto Dominance measure

in fitness. Two Pareto Dominance-based measures are compared in MOGP to

investigate which measure finds better-performing frontier solutions on these

tasks. Using the AUC to measure the individual classification ability of a Pareto

front solution, the second goal is to investigate how the AUC changes in different

regions of the frontier in objective-space, and compare the AUC of canonical SGP

and MOGP solutions.

5.2 Multi-objective GP Approach

In EMO, the evolutionary search is focused on improving the set of non-

dominated solutions until they are Pareto-optimal [42]. To achieve this in MOGP,

two major adaptations to canonical SGP are required. The first is to modify the

fitness function to use Pareto Dominance to rank the solutions in the population

116 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

on the learning objectives. This MOGP approach uses the accuracy on the

minority and majority class as the two competing learning objectives. The second

is to modify the evolutionary search algorithm to simultaneously evolve a set (or

Pareto front) of genetic program solutions along the learning objectives. These

two adaptations are discussed below.

5.2.1 MOGP Fitness

An important aspect in EMO is the notion of Pareto dominance in fitness [188][53].

This allows the solutions to be ranked according to their performance on all

the objectives relative to all other solutions in the population. This ranking is

important as it affects the way selection is performed if the objectives are to be

treated separately in the evolution. In this MOGP approach, the two objectives

are the classification accuracy of the minority and majority class. The minority

class accuracy is the number of minority class inputs that are correctly predicted

over the total number of minority class inputs (in the training set), and likewise

for the majority class inputs (i.e. majority class accuracy).

Pareto Dominance

In Pareto dominance, a solution will dominate another solution if it is at least as

good as the other solution on all the objectives and better on at least one. As

the two objectives in this MOGP approach are to be maximised, “better” means

higher. This concept can be expressed using Eq. (5.1), where the symbol ≻
represents the dominance relation between two solutions Si and Sj , and (Si)m

denotes the performance of solution Si on the mth objective.

Si ≻ Sj ←→ ∀m[(Si)m ≥ (Sj)m] ∧ ∃k[(Si)k > (Sj)k] (5.1)

In the above equation, Si ≻ Sj means than Si dominates Sj on the objectives.

Solutions are non-dominated if they are not dominated by any solution in the

population.

Two Pareto-based Dominance Measures: NSGAII and SPEA2

Two well-established Pareto dominance measures are the dominance rank [53]

and dominance count [188] of a given solution. Dominance rank is the number of

other solutions in the population that dominate a given solution (lower is better).

Dominance count is the number of other solutions that a particular solution

5.2. MULTI-OBJECTIVE GP APPROACH 117

dominates (higher is better). Each measure has a different bias towards solutions

on the Pareto frontier: dominance rank is known to reward exploration at the

edges of the frontier while dominance count tends to reward exploitation in the

middle of frontier [53]. Two well-established EMO algorithms which use these

measures include SPEA2 [188] and NSGAII [53]. SPEA2 uses both dominance

rank and dominance count, while NSGAII uses only dominance rank.

In NSGAII, the fitness value for the solution Si is its dominance rank, as shown

in Eq. (5.2). This is the number of other solutions in the population that dominate

Si. A non-dominated solution will have the best fitness of 0, while high fitness

values indicate poor-performing solutions (i.e., solutions that are dominated by

many individuals). Fitness values in NSGAII are therefore to be minimised.

NSGAII(Si) = |{j|j ∈ Pop ∧ Sj ≻ Si}| (5.2)

This fitness scheme for NSGAII is illustrated in Figure 5.1(a) for several

solutions where each point represents the performance of a solution on the two

objectives. Assuming that both objectives are to be maximised, the non-filled

points show non-dominated solutions (fitness values of 0) while the filled points

show the dominated solutions.

In SPEA2, both dominance rank and dominance count are used in fitness.

Firstly, each solution in the population is assigned a strength value D. This is the

dominance count for solution Si, i.e., the number of other solutions it dominates

in the population, as shown below.

D(Si) = |{j|j ∈ Pop ∧ Si ≻ Sj}|

Then, the fitness value for a given solution is determined by the sum of the

strengths of all its dominators, shown by Eq. (5.3). In other words, the sum

of all dominance counts (strengths) of other solutions in the population that are

dominated by Si. Similar to NSGAII, fitness here is to be minimised where non-

dominated solutions have the best fitness of 0.

SPEA2(Si) =
∑

j∈Pop,Si≻Sj

D(Sj) (5.3)

This scheme is also illustrated in Figure 5.1(b) and 5.1(c). Figure 5.1(b) shows

the strength values D(Si) for a set of solutions on the two objectives, and Figure

5.1(b) shows the final SPEA2 fitness values. Immediately noticeable in Figure

5.1(c) is that all the dominated solutions for SPEA2 have unique fitness values,

whereas some of the dominated solutions in NSGAII have identical fitness values.

118 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

f2 2
1

27
0

1
0

0

f1

3

1
1

10
2

1
4

f2

f1 f1

7
4

613
0

3
0

0

f2

(a) NSGAII Pareto Ranking (b) SPEA2 Strength Values (c) SPEA2 Pareto Ranking

Figure 5.1: Pareto-based fitness values for NSGAII and SPEA2 where filled points

are dominated solutions and non-filled points are non-dominated solutions.

This chapter compares NSGAII and SPEA2 in MOGP as these represent

two well-known algorithms from the literature which use the two main Pareto-

based dominance measures in fitness (dominance rank and dominance count) in

different ways to evolve Pareto fronts.

Secondary Fitness Measure: “Crowding” Distance

In addition to Pareto dominance, both NSGAII and SPEA2 algorithms use a

secondary measure in fitness. This corresponds to the “crowding” distance

between solutions in objective-space, to promote a good spread of solutions along

the trade-off frontier. Crowding is the Manhattan distance between solutions in

objective-space, where solutions in sparsely populated regions of objective-space

are preferred over solutions in densely populated regions. Crowding is needed in

fitness to resolve selection when the primary fitness (Pareto dominance measure)

is the same between two or more individuals. This means that if two or more

individuals have the same Pareto ranking (e.g. non-dominated solutions), the

individual with the better crowding distance is preferred in selection.

i+1

f2

f1

i−1
i

Figure 5.2: The “crowding” distance used in MOGP.

In NSGAII, the crowding distance for a given solution is defined as the

average distance to the solution’s nearest neighbours along each of the objectives

[53], as shown in Figure 5.2. The crowding distance is similar in SPEA2, except

that here the distance can be configured to a given solution’s k nearest neighbours

along each of the objectives [188].

5.2. MULTI-OBJECTIVE GP APPROACH 119

The crowding distance used in MOGP (for both Pareto Dominance measures)

is the same as NSGAII (and k = 1 in SPEA2), as shown in Figure 5.2. This ensures

that both MOGP approaches use the same crowding measure in fitness to make

a fair comparison.

5.2.2 MOGP Search Algorithm

In canonical SGP, the single fittest individual in the population is returned as

the output of the evolutionary search. In MOGP, the set of non-dominated indi-

viduals is simultaneously improved over generations, and this front is returned

as the output of the evolutionary search. To achieve this, MOGP combines

the parent and offspring populations at every generation, and selects the fittest

individuals in this merged parent-child population as the parent population for

the next generation (called the archive population). The selection process sorts

the individuals in the merged parent-child population based on their primary

fitness values (Pareto Dominance ranking according to Eq. 5.2 or Eq. 5.3),

and uses the secondary fitness (“crowding” distance) to establish an ordering

of individuals with equivalent Pareto Dominance ranks. For example, all non-

dominated solutions will have the same Dominance rank of 0. By selecting the

fittest individuals in both parent and offspring populations at every generation,

elitism is preserved in the population. This ensures that non-dominated solutions

are not lost over generations.

At every generation, the offspring population is generated using traditional

crossover and mutation operators (similar to canonical SGP).

This evolutionary search algorithm in MOGP is the same in both NSGAII and

SPEA2, except for two aspects. Firstly, the size of the archive population in SPEA2

can be different to size of the child population (at each generation). In MOGP,

the archive and child population are the same size (500) for consistency between

the two MOGP approaches. Secondly, SPEA2 uses an additional truncation

operator when the number of non-dominated individuals in the merged parent-

child population exceeds the archive population size in a given generation.

For example, given a population size P , the size of the merged parent-child

population will be 2P but only P individuals must be selected to represents the

parent population in the next generation. In this case, the truncation operator

in SPEA2 iteratively removes non-dominated individuals that are very close to

one other in objective-space; one individual is removed per iteration. In other

words, very close neighbours are removed until the number of non-dominated

120 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

individuals in the merged parent-child population is the same size as the target

population. This additional truncation operator is ignored in MOGP as the

“crowding” measure in fitness can achieve a similar effect in the selection process.

5.3 Performance of Evolved Pareto Fronts in MOGP

This section presents the experiments results for MOGP, focusing on the perfor-

mance of the evolved Pareto fronts. This section has five main parts. The first

part outlines the MOGP evolutionary parameters. The second part discusses

two MOGP evaluation techniques used in the experimental results. The three

remaining parts present the MOGP experimental results, each part relating to a

different aspect of the performance of the Pareto fronts in MOGP. All three parts

address the first goal of this chapter and investigate which of the two Pareto

Dominance-based measures in MOGP finds better-performing Pareto fronts on

the tasks.

5.3.1 MOGP Setup and Evolutionary Parameters

The same GP framework from the previous two chapters is used to represent

the genetic program solutions. This includes the same tree-based representation,

function and terminal sets, and classification strategy for the genetic programs.

Where possible, the evolutionary parameters in MOGP are kept the same as

the SGP approaches (from the previous two chapters) for consistency and for

a fair comparison between the MOGP and SGP approaches. The ramped half-

and-half method is also used in MOGP for generating programs in the initial

population and for the mutation operator [104]. Likewise, in both MOGP and

SGP approaches, the population size is 500, maximum program depth is 8 (to

restrict very large programs in the population), and the evolution is allowed to

run for a maximum of 50 generations or until a solution with optimal fitness

is found. In MOGP, a solution with optimal fitness has 100% accuracy on both

objectives (minority and majority class accuracy).

Only two evolutionary parameter settings are different in MOGP. Firstly,

NSGAII [53] and SPEA2 [188] do not use the elitism genetic operator. As

discussed above, elitism is replaced by the non-dominated sorting procedure

applied to the union of the parent and child populations at each generation. As

a result, crossover and mutation rates in MOGP are 60% and 40% to balance

exploitation and exploration in a similar manner as in SGP (where crossover,

5.3. PERFORMANCE OF EVOLVED PARETO FRONTS IN MOGP 121

mutation and elitism rates are 60%, 35% and 5%, respectively).

Secondly, NSGAII [53] and SPEA2 [188] both use tournament selection with a

tournament size of 2; whereas SGP uses a tournament size of 7 (as recommended

in the GP literature). Both NSGAII [53] and SPEA2 [188] recommend using binary

tournament selection in conjunction with the non-dominated sorting procedure.

For this reason, MOGP also uses binary tournament selection.

5.3.2 Evaluating the Performance of the MOGP Fronts

Two evaluation techniques are used to summarise different aspects of the per-

formance of the evolved Pareto fronts over the series of 50 MOGP runs. These

include the hyperarea and attainment summary surfaces of the MOGP Pareto fronts.

A brief description of these two evaluation techniques is given below.

Pareto Front Hyperarea

The hyperarea (also known as the hypervolume) is the area under the Pareto-

approximated front in objective-space [42], similar to the area under the ROC

curve (or AUC). However, while the AUC represents the performance of a

single classifier at varying classification thresholds, the hyperarea represents the

classification performance of the set of classifiers along the front. The hyperarea is

a useful “single figure” measure to represent the area of objective-space correctly

classified by the front, i.e., the convergence of a front.

The hyperarea is calculated in a similar way as the AUC, i.e., by taking the

sum of the areas of individual trapezoids fitted under each front solution in

objective-space [42]. Hyperarea values range between 0 and 1 where the higher

the value, the better the performance of the front.

Summary Attainment Surfaces

Attainment summary surfaces are used to approximate the “average” perfor-

mance of an evolved Pareto-approximated front for a particular MOGP approach

over 50 runs on a task. Recall (from Chapter 2) that attainment summary surfaces

are a useful technique in EMO to summarise the outcome of a series of MOGP

experiments where a potentially different set of non-dominated solutions can

be returned from each MOGP run [102]. Each attainment surface comprises

of evolved Pareto front solutions (from all runs) that have identical attainment

values, where the number of attainment surfaces corresponds to the number

122 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

Table 5.1: Average (± standard deviation) hyperarea of evolved Pareto-

approximated fronts, Pareto optimal (PO) front, and training times (seconds

’s’ or minutes ’m’) for the MOGP approaches over 50 runs. The (statistically)

significantly better average hyperarea is highlighted in bold, and the higher PO

front hyperarea is underlined.

NSGAII Fitness SPEA2 Fitness

Task Hyperarea Training Hyperarea Training

Average PO Front Time Average PO Front Time

Ion 0.793 ± 0.041 0.952 8.3s ± 1.3 0.848 ± 0.041 0.992 9.3s ± 2.4

Spt 0.733 ± 0.026 0.938 16.9s ± 2.1 0.732 ± 0.032 0.971 9.7s ± 2.5

Ped 0.881 ± 0.013 0.903 3.5m ± 52.6 0.902 ± 0.019 0.922 3.9m ± 1.1

Yst1 0.793 ± 0.008 0.917 23.5s ± 4.5 0.793 ± 0.009 0.931 20.8s ± 7.1

Yst2 0.942 ± 0.008 0.986 23.5s ± 4.4 0.949 ± 0.011 0.991 20.1s ± 8.1

Bal 0.749 ± 0.049 0.993 20.1s ± 2.6 0.757 ± 0.063 0.985 15.2s ± 3.9

of total MOGP runs (e.g. 50 MOGP runs produce 50 attainment surfaces). A

solution’s attainment value is the probability that the MOGP system will produce

(or evolve) another solution which performs better than or equal to the given

solution on all objectives (weakly dominates)[102]. The median attainment surface,

i.e., the set of solutions with attainment values of 0.5, corresponds to those

solutions with a 50% probability of attainment with respect to all runs. This set

represents the “average” performance of an evolved front over 50 MOGP runs.

5.3.3 MOGP Hyperarea

Table 5.1 reports the average (and standard deviation) hyperarea of the evolved

Pareto-approximated fronts on the test set, as well as the average training times

in second (s) or minutes (m), for the two MOGP approaches over 50 runs. Table

5.1 also includes the hyperarea of the Pareto-optimal (PO) front with respect to all

MOGP runs. The PO front is the set of non-dominated solutions from the union

of all Pareto-approximated fronts evolved over the 50 runs. The PO front with

the higher hyperarea is underlined in Table 5.1.

In Table 5.1, the MOGP approach with the significantly better hyperarea is

highlighted in bold for each task. The statistical significance test (of the average

hyperarea) is calculated using the common random numbers technique at a 95%

level of significance. This technique computes the 95% confidence interval of the

hyperarea differences between the two MOGP approaches, on a run-by-run basis

over 50 independent runs.

5.3. PERFORMANCE OF EVOLVED PARETO FRONTS IN MOGP 123

According to Table 5.1, SPEA2’s average is hyperarea statistically better than

NSGAII on the three tasks, and not statistically different to NSGAII on the

remaining three tasks. The hyperarea of the Pareto-optimal (PO) front is also

better in SPEA2 for all tasks except Bal (where NSGAII is better). Table 5.1 also

shows that the two MOGP approaches show similar average training times. This

suggests that the MOGP approach using SPEA2 evolves Pareto fronts are as good

as NSGAII on half the tasks, and better than NSGAII, on the other tasks.

Further Analysis

The hyperarea in MOGP and the area under the ROC curve (or AUC) in canonical

SGP represents the same learnt concept in the objective-space, i.e., both capture

the different trade-offs between the minority class accuracy and the majority

class accuracy. The hyperarea and AUC are also calculated in the same way,

by fitting trapezoids under the different trade-off points in the objective-space

and summing the areas of the individual trapezoids. Therefore, the hyperarea

in MOGP (using NSGAII and SPEA2) and the AUC in SGP (using the fitness

function from the previous chapter) can be roughly compared to provide an

overall indication of how these methods perform on the tasks. However, strictly

speaking, this is not a direct comparison between these two methods due to the

fundamental differences between SGP and MOGP. In canonical SGP, the AUC

represents the performance of a single classifier (at different decision thresholds).

In MOGP, the hyperarea represents the classification performance of a set of

classifiers (Pareto front).

According to Table 5.1, the average hyperarea for MOGP with SPEA2 is

similar to the average AUC using a “good” fitness function in SGP (i.e. with

a high s-rank) in Table 4.4 (on page 94 in the previous chapter), on those tasks

where SPEA2’s average hyperarea is significantly better than NSGAII (Ion, Ped

and Yst2). In contrast, the average hyperarea for MOGP with NSGAII on these

three tasks is similar to the average AUC using a “mid-level” fitness function

(i.e. with mid-level s-rank values in Table 4.4). In the remaining three tasks, the

average hyperarea for MOGP with both SPEA2 and NSGAII are similar to the

average AUC using a “mid-level” fitness function in SGP.

Interestingly, the hyperarea of the PO front (over 50 runs) for MOGP with

SPEA2 is better than the best AUC achieved by any SGP fitness function (over

50 runs) in nearly all tasks (expect Ped). The hyperarea of the PO front for

MOGP with NSGAII only accomplishes this in four tasks (Ion and Ped are the

two exceptions). In Ped, the PO front hyperarea for SPEA2 is similar to the best

124 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

AUC achieved by a “good” SGP fitness function; while the PO front hyperarea

for NSGAII is worse the best AUC achieved by any SGP fitness function

This suggests that in a typical run, MOGP with SPEA2 produces similar trade-

offs between the two objectives to SGP with a “good” fitness function in half

the tasks, and SGP with a “mid-level” fitness function in the remaining tasks.

However, the “best” set of trade-off solutions found by SPEA2 over all MOGP

runs (PO front) are generally better than the “best” ROC curve achieved by any

single SGP classifier over all runs. In contrast, a typical run of MOGP with

NSGAII is only as good as SGP with a “mid-level” fitness function on the tasks.

5.3.4 MOGP and Canonical SGP

This section examines the median attainment summary surface of the MOGP

approaches on the tasks. This allows us to investigate why the MOGP approach

using SPEA2 outperforms NSGAII on half the tasks, and compare the perfor-

mances of the evolved Pareto fronts to canonical SGP. The median attainment

surface for a given MOGP approach represents an approximation of the “average”

performance of an evolved Pareto front over 50 runs on a given task.

Figure 5.3 shows the median attainment surface and the Pareto-optimal front

for the two MOGP approaches (on the test set) over 50 runs for the tasks. Figure

5.3 also includes the frontier produced by canonical SGP on the tasks. This

corresponds to the performance of the fittest evolved SGP solutions on the two

classes (also on the test set), using the weighted-average of these two objectives

in the fitness function (SGP with Wave from the previous chapter). To produce

the SGP frontier, seven different weighting coefficients between 0.2 and 0.8 (at

intervals of 0.1) are used in the fitness function (in Wave). In SGP, each run using

a given weighting coefficient in the fitness function is repeated 50 times, and the

average performances are shown in Figure 5.3. This means that for each task, the

SGP frontier is generated using 350 different runs (50 runs × seven weighting

coefficients); while the MOGP frontier is generated in 50 runs.

Note that the axis scopes in Figure 5.3 are different for the tasks.

Figure 5.3 shows that the evolved Pareto fronts, particularly the MOGP

approach with SPEA2, contain an accurate set of solutions along the minority

and majority class trade-off frontier for these tasks. This highlights an important

advantage of MOGP over canonical SGP: a single run of the MOGP algorithm can

trace out good trade-off solutions leaving the final choice for the decision-maker.

In contrast, in SGP this trade-off must be determined a priori needing multiple

5.3. PERFORMANCE OF EVOLVED PARETO FRONTS IN MOGP 125

65 70 75 80 85 90 95

40

50

60

70

80

90

100
Ion

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.20.3
0.4

0.5

0.6

0.7

0.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

50 60 70 80 90 100

65

70

75

80

85

90

95

Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

75 80 85 90 95 100
70

75

80

85

90

95

Yst2

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2 0.3
0.4

0.5
0.6

0.7

0.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

20 40 60 80

50

55

60

65

70

75

80

85

90

95

Spt

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.2
0.3

0.4
0.5

0.6
0.70.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

40 50 60 70 80 90

40

50

60

70

80

90

Yst1

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0.20.3
0.4

0.5

0.6

0.7

0.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

20 40 60 80 100
30

40

50

60

70

80

90

Bal

Minority Accuracy
M

aj
or

ity
 A

cc
ur

ac
y

0.2 0.3

0.4
0.50.60.70.8

NSGAII Med. Front
NSGAII PO Front
SPEA2 Med. Front
SPEA2 PO Front
Canonical SGP

Figure 5.3: Classification performance of evolved solutions using two MOGP

approaches (NSGAII and SPEA2), and canonical SGP using fitness functions

Wave. In Ion, Ped and Yst2 (top row), the average hyperarea for SPEA2 is

statistically better than NSGAII. There is no significant difference in hyperarea

for the remaining tasks (bottom row).

SGP runs (one for each weighting coefficient) to generate a frontier.

Although a single run of the SGP method uses less time than the MOGP

approaches, the SGP method requires a much longer time to get a reasonable

Pareto front. The SGP training times (with a particular weighting coefficient)

are discussed in the previous chapter. To recap, this is approximately 2.6-2.8

seconds for Ion and Spt, 4.7 seconds for Bal, 12-13 seconds for the Yst tasks, and

5.0 minutes for Ped (on average over 50 GP runs).

A closer inspection of Figure 5.3 (particularly the median attainment surfaces

for SPEA2 and NSGAII) shows that in some tasks (such as Ion, Ped and Yst2),

SPEA2’s average front lies along the SGP frontier. In contrast, the average front

for NSGAII lies below the SGP frontier in these tasks. The explains why the

average hyperarea for SPEA2 (from Table 5.1) is statistically better than NSGAII

in these three tasks (Ion, Ped and Yst2). Similarly, the PO front for SPEA2 also

clearly dominates the PO front for NSGAII in two of these tasks (Ped and Yst2).

126 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

This suggests that on these tasks, MOGP with SPEA2 can evolve frontier solutions

in a single run that perform better than, or at least as well as, multiple runs of

canonical SGP. However, MOGP with NSGAII cannot achieve this to a sufficient

level of accuracy, as the solutions along the SGP frontier clearly dominate the

NSGAII median attainment front.

As hypothesised, the likely reason for this difference in behaviour is the

inherent bias between the two fitness schemes. The SPEA2 algorithm [188] tends

to evolve more solutions in the middle region of the frontier, pushing this front

outwards toward the zenith point (100% accuracy on both objectives). In contrast,

the NSGAII algorithm [53] tends to evolve a better “spread” of solutions along

the whole of the frontier. For these classification tasks, edge-region solutions are

less desirable than middle-region solutions, as these represent biased classifiers

(i.e. classifiers with high accuracy rates on one class alone).

The next section explores the differences in the overall behaviour of the

evolved Pareto fronts over all 50 runs for the two MOGP approaches.

5.3.5 Overall Pareto Front Behaviour

Figure 5.4 shows the performances (on the test set) of all Pareto front solutions

over 50 runs for the two MOGP approaches (for three tasks). In these figures, each

point (or circle) represents the performance of a Pareto front solution in objective-

space, where the size of each circle is proportional to the frequency that a solution

with the same performance on the two objectives is found in each of the 50 runs.

In other words, the number of times a solution with the same performance is

evolved in each of the 50 runs. The larger the circle, the larger the number of

Pareto front solutions that are evolved with the same performance on the two

objectives over 50 runs. Conversely, smaller circles mean that fewer solutions

are evolved over 50 runs which have the same performance on the two objectives.

For the purposes of this analysis, two (or more) non-dominated solutions with the

same performance on the two objectives in the same run are counted only once for

that particular run. In Figure 5.4, the vertical and horizontal axis correspond to

the majority and minority class accuracies, respectively, and the axis scopes are

different for the tasks.

The three tasks shown in Figure 5.4, Ion, Ped and Yst2, correspond to those

tasks where the average hyperarea for SPEA2 is significantly better than NSGAII

(from Table 5.1), and the median attainment surface for SPEA2 clearly dominates

NSGAII (from Figure 5.3). In these figures, the NSGAII fronts are shown in the

5.3. PERFORMANCE OF EVOLVED PARETO FRONTS IN MOGP 127

0 20 40 60 80 100
0

20

40

60

80

100
NSGAII Ion

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80 100
0

20

40

60

80

100
NSGAII Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80 100
50

60

70

80

90

100
NSGAII Yst2

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80 100
0

20

40

60

80

100
SPEA2 Ion

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80 100
0

20

40

60

80

100
SPEA2 Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80 100
50

60

70

80

90

100
SPEA2 Yst2

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

Figure 5.4: Accuracy of all Pareto front solutions evolved over 50 runs for the

MOGP approaches on three tasks (Ion, Ped and Yst2). Circle size is proportional

to frequency.

top row and the SPEA2 fronts in the bottom row.

Figure 5.4 shows that over all 50 MOGP runs, SPEA2 finds more solutions in

the middle region of the frontier; while NSGAII fitness finds a better “spread” of

solutions along the whole of the frontier. In Ion and Yst2, there are a greater

number of large-sized circles in the middle region of the frontier for SPEA2

(compared to NSGAII); while the NSGAII fronts are more “spread out” along the

objectives than SPEA2. In Ped, Figure 5.4 shows that SPEA2 has a slight “bulge”

in the middle region of the frontier compared to NSGAII. This bulge can be more

clearly seen in Figure 5.5(a) for Ped.

In the remaining three tasks (Spt, Yst1 and Bal), the overall performances of

the Pareto front solutions are relatively similar for both MOGP approaches, as

seen in Figure 5.5(b) for Spt and Yst1. This is because in these three tasks, both

MOGP approaches show very similar hyperarea values and median attainment

fronts. Note that Bal is omitted in Figure 5.5(b) for space constraints and because

the overall Pareto front behaviour for both MOGP approaches in Bal is almost

identical.

128 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

60 80 100
60

70

80

90

NSGAII Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80

40

60

80

100
NSGAII Spt

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 50 100
0

20

40

60

80

100
NSGAII Yst1

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

60 80 100
60

70

80

90

SPEA2 Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 20 40 60 80

40

60

80

100
SPEA2 Spt

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

0 50 100
0

20

40

60

80

100
SPEA2 Yst1

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

(a) (b)

Figure 5.5: Accuracy of all Pareto front solutions evolved over 50 runs (Ped task)

where circle size is proportional to frequency.

Biased Pareto front Solutions

Figure 5.4 (for Ped) and Figure 5.5(b) for the Spt and Yst1 also show that the

density of solutions is highest in the region of objective-space where majority class

accuracy is very high (e.g. 100%) and minority class accuracy is very low (e.g. 0%).

This is represented by the very large circles in the top-left corner of the figures for

these three tasks, seen in both MOGP approaches. This means that in nearly all

50 MOGP runs for these tasks, each evolved Pareto front contains some solutions

that are highly biased toward the majority class, and with very poor minority class

accuracy.

The presence of these highly biased solutions on the Pareto fronts is not a

major concern in these three tasks, as Figure 5.5 shows that other good trade-

off solutions are still found (e.g. in the middle region of the front). This is

clearly visible in each task. Rather, these solutions simply reflect the notion that

a biased non-dominated performance on the two objectives is relatively easy to

achieve in MOGP. For example, if a trivial genetic program solution is evolved

that classifies all the input instances as belonging to the majority class, then

this solution will achieve 100% majority class accuracy and 0% minority class

accuracy. This solution will be non-dominated on the two objectives unless

another solution is evolved which also achieves 100% accuracy on the majority

class, but has a greater minority class accuracy than 0% (to dominate the given

5.4. AUC ANALYSIS OF THE PARETO FRONT IN MOGP 129

solution). Until such a solution is evolved, the trivial (biased) solution will remain

as non-dominated in the population.

This effect is not seen in other tasks (such as Ion or Yst2) as solutions with

better performances on one or both of the objectives are evolved to replace these

highly biased solutions on the Pareto fronts. For example, in Ion in Figure 5.4,

solutions with very high majority class accuracy (e.g. nearly 100%) also have at

least 40% accuracy on the minority class.

5.4 AUC Analysis of the Pareto front in MOGP

This section presents the AUC results of the MOGP approaches to address the

second goal of this chapter, to investigate the AUC of the evolved Pareto front

solutions in MOGP and compare this to canonical SGP solutions.

5.4.1 Pareto front Solutions with Different Models

In order to focus on the overall patterns in the evolved Pareto fronts over all

50 runs, Figures 5.4 and 5.5 (in the previous section) ignore those Pareto front

solutions that produce the same performance on the two objectives in a given

MOGP run. However, even though two Pareto front solutions may have the same

performances on the two objectives in a given MOGP run, it does not necessarily

mean that these two solutions will have the same internal models or structures.

Solutions with different internal models/structures will not produce the same

set of output values when evaluated on all the input instances. The AUC of a

given Pareto front solution can determine whether two or more solutions have

different internal models, as the AUC calculation examines every output value

of a solution to determine how well the solution separates these output values

across different classification thresholds.

For example, Figure 5.6(a) shows the output values of two solutions, p1 and p2,

when evaluated on eight input instances from two classes. The output values are

denoted by + and − for the positive and negative class, respectively. Using zero

as the boundary between the two classes, both solutions have the same number of

correct predictions for each class, as shown in Figure 5.6(a). This corresponds to

a true positive (TP) rate of 0.75 (as 3
4

positive class inputs are correctly classified),

and a true negative (TN) rate of 0.5 (as 2
4

negative class inputs are correctly

classified).

However, these two solutions clearly have different internal models as their

130 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

0

i

+ + ++− − − −

+ + + +− − − −

+−

p1
 0

p2

region
Target

i i

+ + ++− − − −

+ + + +− − − −

+−

 0

p2

p1

region
Target

i

 0

(a) Class threshold is 0 (b) Class threshold is i

Figure 5.6: Output values denoted by + and− for the positive and negative class,

respectively, for two solutions (p1 and p2). In (a), p1 and p2 have the same accuracy

on the two classes relative to zero as the class threshold; while in (b), p1 and p2

have different accuracy rates on the two classes relative to class threshold i.

output values are different. Therefore, when the output values are evaluated

relative to another class threshold, i in Figure 5.6(b), these solutions have a

different number of correct predictions for each class. For p1, the TP rate is 1

and the TN rate is 0.25. For p2, the TP rate is 0.75 and the TN rate is 0.25. These

corresponds to different ROC points for solution p1 and p2 and thus, their AUC

will also be different.

This section compares the number of Pareto front solutions with different

internal classification models (i.e. different AUC) for the two MOGP approaches

(for a given run). Table 5.2 (left-hand column) shows the average number

of distinct points in objective-space (on the test set) produced by the MOGP

approaches over 50 runs. This corresponds to the average number of solutions on

a given Pareto front which produce different performances on the two objectives

(over 50 runs). These figures reflect the average size of an evolved Pareto front

not including those solutions that produce the same performances on the two

objectives (in a given run).

The right-hand column in Table 5.2 shows the average sizes of the full evolved

Pareto fronts over 50 runs for the MOGP approaches. These correspond to the

number of all Pareto front solutions evolved in a given run including those which

produce the same performances on the two objectives, i.e., Pareto front solutions

with different AUC values on the test set.

As expected, Table 5.2 shows that the number of solutions with different

AUC values (right-hand column) is higher than than the number distinct

points in objective-space (left-hand column) for both MOGP approaches in all

tasks. This confirms that some Pareto front solutions have different internal

5.4. AUC ANALYSIS OF THE PARETO FRONT IN MOGP 131

Table 5.2: The average number of Pareto front solutions that produce distinct

points in objective-space (test set), and the number of Pareto front solutions with

different internal models (different AUC) over 50 runs for the MOGP approaches.

Task Unique Points in Objective-space Total Pareto Front Size

NSGAII SPEA2 NSGAII SPEA2

Ion 20.08 22.80 21.22 46.54

Spt 19.36 19.22 39.14 91.60

Ped 112.96 134.74 117.30 162.80

Yst1 63.08 58.20 86.74 105.64

Yst2 21.06 29.06 26.66 87.08

Bal 18.02 14.76 29.70 62.28

models/structures even though they produce the same performance on the two

objectives for both MOGP approaches.

Interestingly, the number of solutions with different AUC values is always

higher in SPEA2 than NSGAII in all tasks, even though both MOGP approaches

use the same population size (of 500). This shows that SPEA2 contains more non-

dominated solutions (on average) with different internal models/structures in

the final generation than NSGAII in all tasks.

In fact, Table 5.2 shows that the average number of distinct points in objective-

space (left-hand column) is only larger in NSGAII (than in SPEA2) in exactly

three tasks (Spt, Yst1 and Bal). These correspond to the same three tasks where

the average hyperarea for NSGAII and SPEA2 is not statistically different to one

another (Table 5.1), and where both systems show similar median attainment

surfaces (Figure 5.3). Intuitively, it follows that the MOGP approach with more

distinct points in objective-space will also produce a better hyperarea, as more

of the objective-space is covered by these solutions. However, in these three

tasks, NSGAII only performs as well as SPEA2 (in terms of their hyperarea and

median attainment surfaces) but not better than SPEA2. This may be because

NSGAII still contains fewer non-dominated solutions with different internal

models/structures than SPEA2, as shown in Table 5.2 (right-hand column).

It should be mentioned that Pareto fronts sizes are noticeably larger in Ped

(compared to the other tasks) for both MOGP approaches. This is expected due to

the very large number of training examples in Ped (more than 12000 examples),

where slight variations in the objective performances by the evolved solutions

produce more non-dominated points in the objective-space.

132 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

(a) Ped (b) Yst1

Figure 5.7: AUC of all Pareto front solutions evolved over 50 MOGP runs for

NSGAII (top) and SPEA2 (bottom) on two tasks (Ped and Yst1). Each vertical bar

represents a Pareto front solution (on the two objectives) and the heights of the

vertical bars represent the AUC.

5.4.2 Pareto front AUC in Regions of Objective-Space

Table 5.2 shows that SPEA2 contains more non-dominated solutions with differ-

ent internal models/structures than NSGAII in all tasks, and that this may be a

factor in why SPEA2 performs better that NSGAII on some tasks (in terms of their

hyperarea and median attainment surfaces). Another contributing factor may be

the quality of solutions evolved by two MOGP approaches in terms of their AUC.

Examining the AUC of a given Pareto front solution provides an indication of the

quality of the classification model in the solution where the higher the AUC, the

better the quality of the classification model. This section compares the AUC of

the Pareto front solutions for the two MOGP approaches (NSGAII and SPEA2).

However, as a given Pareto front can contain many different genetic program

classifiers, each with their own AUC, careful consideration must be taken when

comparing which MOGP approach evolves solutions with better AUC on the

tasks in a fair and meaningful way.

5.4. AUC ANALYSIS OF THE PARETO FRONT IN MOGP 133

B

A
0.5

0.5

1

10

M
aj

or
ity

 A
cc

ur
ac

y

Minority Accuracy

C

D

Figure 5.8: The regions of objective-space.

To illustrate this point, consider Figure 5.7 which shows the AUC (on the test

set) of all evolved Pareto front solutions over 50 runs for NSGAII and SPEA2

(on the Ped and Yst1 tasks). In these figures, each vertical bar represents the

performance of a Pareto front solution (on the two objectives), where the height

of the vertical bar represents the AUC of the corresponding solution. If two or

more solutions have the same performance on the two objectives and their AUC

is different, the average AUC is shown in Figure 5.7. The top row in Figure 5.7

shows the NSGAII fronts, while the bottom row shows the SPEA2 fronts.

Figure 5.7(a) shows that for Ped task, the vertical bars are longer in the middle-

region of the frontier than the end-region for both NSGAII and SPEA2. This

means that the AUC is higher in the middle-region solutions (i.e. solutions with

high accuracy on both classes) than in the end-regions solutions (i.e. biased

solutions). This is expected as not all the frontier solutions represent solutions

with good classification ability, particularly not the highly-biased solutions on

the end-regions of the frontier. However, this observation is not very clear in

Figure 5.7(b) for the Yst1 task. Here the heights of the vertical bars (AUC of the

Pareto front solutions) for both NSGAII and SPEA2 are very similar along the

entire region of the frontier. This means that it is also not very clear from Figure

5.7(b) whether the AUC in the different regions of the frontier is better or worse

in NSGAII or SPEA2.

To try to quantify this AUC analysis of the Pareto front solutions evolved

using two MOGP approaches, the objective-space is divided into four regions, as

shown by Figure 5.8, and only the AUC of the solutions in a particular region is

compared to one another. The first two regions, A and B in Figure 5.8, correspond

to biased solutions on the two objectives. Region A represents highly-biased

solutions which have less than 25% accuracy on either class; while region B

represents solutions with between 25-50% accuracy on either class. The other two

134 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

Table 5.3: Average AUC (± standard deviation) of the Pareto front solutions in

four regions of objective-space (from Figure 5.8), and the percentage of solutions

in a given region (over all Pareto front of solutions from 50 runs) for NSGAII and

SPEA2 on the tasks. Significantly better AUC between NSGAII and SPEA2 is

highlighted in bold.
Task Region NSGAII SPEA2

Obj. Perf. AUC % Solutions AUC % Solutions

A < 25 0.56 ± 0.06 8.58% 0.56 ± 0.02 2.06%

Ion B 25–49 0.59 ± 0.09 21.96% 0.59 ± 0.08 5.80%

C 50–74 0.72 ± 0.10 53.91% 0.75 ± 0.08 41.43%

D ≥ 75 0.82 ± 0.06 15.55% 0.84 ± 0.06 50.71%

A < 25 0.65 ± 0.09 55.75% 0.68 ± 0.09 47.27%

Spt B 25–49 0.72 ± 0.07 19.83% 0.74 ± 0.06 33.41%

C 50–74 0.72 ± 0.06 21.87% 0.74 ± 0.06 16.99%

D ≥ 75 0.77 ± 0.04 2.55% 0.78 ± 0.03 2.34%

A < 25 0.65 ± 0.13 22.51% 0.65 ± 0.12 24.39%

Ped B 25–49 0.78 ± 0.10 26.00% 0.79 ± 0.10 23.045%

C 50–74 0.84 ± 0.06 33.61% 0.85 ± 0.07 29.86%

D ≥ 75 0.86 ± 0.04 17.89% 0.89 ± 0.05 22.30%

A < 25 0.68 ± 0.10 24.44% 0.70 ± 0.10 29.17%

Yst1 B 25–49 0.72 ± 0.08 22.98% 0.74 ± 0.08 31.14%

C 50–74 0.76 ± 0.04 43.16% 0.76 ± 0.04 36.48%

D ≥ 75 0.76 ± 0.03 3.41% 0.80 ± 0.04 3.20%

A < 25 0.79 ± 0.14 13.58% 0.81 ± 0.07 1.01%

Yst2 B 25–49 0.83 ± 0.13 10.73% 0.84 ± 0.12 25.40%

C 50–74 0.88 ± 0.09 32.11% 0.88 ± 0.08 36.70%

D ≥ 75 0.90 ± 0.06 43.59% 0.92 ± 0.04 36.89%

A < 25 0.56 ± 0.06 47.35% 0.55 ± 0.04 57.77%

Bal B 25–49 0.63 ± 0.07 20.67% 0.69 ± 0.06 24.05%

C 50–74 0.69 ± 0.07 29.49% 0.69 ± 0.08 16.41%

D ≥ 75 0.74 ± 0.07 2.49% 0.78 ± 0.07 1.77%

Table 5.4: Average AUC (± standard deviation) of SGP solutions using fitness

functions AucF , Corr, Dist, Amse and Ave on the tasks (over 50 runs). These

results are repeated from Table 4.4 (in Chapter 4). Fitness functions are ordered

according to their average AUC for each task (descending order).
Task Function AUC Task Function AUC Task Function AUC

Ion

Corr 0.87 ± 0.04

Spt

AucF 0.77 ± 0.04

Ped

AucF 0.92 ± 0.01

Dist 0.86 ± 0.05 Amse 0.75 ± 0.04 Dist 0.90 ± 0.02

Amse 0.85 ± 0.05 Corr 0.74 ± 0.05 Corr 0.89 ± 0.01

AucF 0.85 ± 0.04 Dist 0.73 ± 0.05 Amse 0.88 ± 0.02

Ave 0.80 ± 0.06 Ave 0.71 ± 0.05 Ave 0.87 ± 0.04

Yst1

AucF 0.83 ± 0.02

Yst2

Amse 0.96 ± 0.01

Bal

AucF 0.84 ± 0.09

Dist 0.83 ± 0.03 Corr 0.95 ± 0.02 Amse 0.78 ± 0.10

Amse 0.82 ± 0.02 AucF 0.95 ± 0.03 Dist 0.77 ± 0.13

Corr 0.81 ± 0.02 Dist 0.94 ± 0.03 Corr 0.75 ± 0.11

Ave 0.79 ± 0.03 Ave 0.93 ± 0.04 Ave 0.71 ± 0.15

5.4. AUC ANALYSIS OF THE PARETO FRONT IN MOGP 135

regions, C and D in Figure 5.8, correspond to solutions that are relatively accurate

on the objectives. Region C represents solutions with between 50-75% accuracy

on either class, while region D represent solutions with at least 75% accuracy on

both classes. Note that regions C and D are mutually exclusive.

Table 5.3 shows the average (and standard deviation) AUC on the test set

of the Pareto front solutions in these four regions of the objective-space for the

two MOGP approaches (NSGAII and SPEA2). This analysis is performed on the

union of all Pareto front solutions over 50 runs of the two MOGP approaches.

Table 5.3 also shows the proportion of Pareto front solutions in each region of the

objective-space (relative to the total number of Pareto front evolved over 50 runs)

for the two MOGP approaches. The proportion of solutions each region sums to

100% in the tasks.

The Wilcoxon rank-sum statistical test of the AUC is used to determine which

MOGP approach achieves a statistically significantly better AUC in each region,

at a 95% level of significance. The MOGP approach with a statistically signifi-

cantly better AUC is highlight in bold in Table 5.3. If neither MOGP approach is

highlighted in bold in a given region, then the Wilcoxon test shows no statistically

significant difference in AUC (i.e. null hypothesis is true). This statistical test is

chosen (and not the common random numbers statistical test previously used in

in Section 5.3.3 to test hyperarea of the two MOGP approaches), as the Wilcoxon

test allows the two samples sizes to have different lengths. In other words, the

number of Pareto front solutions in a given region can be different for NSGAII

and SPEA2. In contrast, the common random numbers method requires that the

two samples sizes are the same length.

Table 5.3 shows that a large variation in AUC performances by the Pareto

front solutions can be seen in the different regions. For both MOGP approaches,

the AUC values are higher as the objective performances increase in the tasks.

This can be seen by the low AUC values for biased Pareto front solutions (e.g.

in region A) compared to relatively accurate solutions (e.g. in regions C and D).

This affirms that the better the performance of a Pareto front solution on the two

objectives, the better the AUC — and that this is true for all the tasks. Although

this observation was suggested earlier, it was not very clear in Figure 5.7(b).

Furthermore, Table 5.3 also shows to what extent this is true for the different tasks.

AUC values for solutions in region A are substantially worse than solutions in

region D for Ion, Ped and Bal; whereas this difference in AUC between these two

regions is not as large in the remaining three tasks for both MOGP approaches.

Interestingly, the AUC for SPEA2 is as least as good as NSGAII, or (statisti-

136 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

cally) significantly better than NSGAII, in all four regions and in all tasks in Table

5.3. The AUC for solutions region D is significantly better for SPEA2 in nearly all

tasks (except Spt where both MOGP approaches show similar AUC values). This

suggests that SPEA2 not only finds more non-dominated solutions in the final

generation than NSGAII (as discussed in the previous section in Table 5.2), but

that the AUC of the solutions evolved using SPEA2 is as good as, or better than,

NSGAII in the important middle-region of the Pareto frontier (where solutions

have high AUC) in all tasks. This may be another factor in why SPEA2 evolved

better-performing fronts that NSGAII on some tasks.

5.4.3 AUC of MOGP and SGP Solutions

Another advantage to dividing the objective-space into regions is that the AUC of

the Pareto front solutions in different regions can readily be compared to the AUC

of canonical SGP solutions on the tasks. Without this separation of Pareto front

solutions based on their objective performances, a comparison between MOGP

and SGP solutions would not be very meaningful as the Pareto front solutions

represent varied range of classifiers with different AUC performances. To this

end, only Pareto front solutions with relatively good performances on the two

objectives (such as those in regions C and D in Figure 5.8) are compared to

canonical SGP solutions, to provide a better indication of the kinds of solutions

evolved in MOGP and SGP.

This analysis compares the AUC results in Table 5.3 with the AUC results

using several different fitness functions in SGP (from the previous chapter). These

SGP results are repeated in Table 5.4 for convenience (originally from Table 4.4

in Chapter 4). Table 5.4 shows the average AUC of SGP solutions using fitness

functions AucF , Corr, Dist, Amse and Ave on the tasks (over 50 runs). The fitness

functions are ordered according to their average AUC for each task (descending

order). The motivations for selecting only these five SGP fitness functions in this

comparison is made clearer in the discussion below.

When the average of the minority and the majority class accuracy is used in

the fitness function in SGP (i.e. SGP with Ave), the AUC of the evolved SGP

solutions are better than the Pareto front solutions in region C (i.e. solutions

with at least 50% accuracy on the objectives) in nearly all tasks (except Spt).

This suggests that the SPEA2 and NSGAII solutions in region C have internal

models/structures that are not as good as the SGP solutions with Ave. However,

the Pareto front solutions for SPEA2 in region D (i.e. solutions with at least 75%

5.5. SUMMARY AND DISCUSSIONS 137

accuracy on the objectives) have better AUC than SGP with Ave in nearly all

tasks (except Yst2). This suggests that good MOGP solutions for SPEA2 (in region

D) have internal models/structures that are generally better than SGP with Ave

on the tasks. This is interesting because the fitness in MOGP and SGP (with

Ave) both use the minority and the majority class accuracies of a solution (e.g.

Pareto dominance based on a solution’s accuracy on the objectives), and not a

separability-based measure (such as the AUC in fitness). In contrast, the MOGP

solutions in region D for NSGAII are only better than SGP with Ave in three tasks

(Ion, Spt and Bal); in the remaining tasks, SGP with Ave has a sightly better AUC.

However, the AUC of the SPEA2 solutions in region D are not as good as

SGP using the AUC directly in the fitness function (i.e. SGP with AucF), or SGP

with the new fitness functions (such as Dist, Amse and Corr) in all tasks (except

Spt). The better AUC by these SGP approaches suggests that the individual

SGP solutions have better class separability than the MOGP solutions and, by

implication, more complex internal models than the MOGP solutions.

This is not unexpected. Due to the nature of the MOGP approach, MOGP

solutions are not expected to have very high AUC compared to these SGP

solutions, since the full set of Pareto front solutions are used to represent the

performance trade-offs between the minority and the majority class accuracy. In

contrast, individual solutions in SGP are required to capture this performance

trade-off using an ROC curve.

5.5 Summary and Discussions

The main goal of this chapter was to develop a multi-objective GP (MOGP)

approach to classification where the accuracy of the minority and the majority

classes are traded-off against each other in the learning process, with particular

emphasis on how to develop an effective Pareto Dominance measure in the fitness

function. The second goal was to investigate the kinds of solutions evolved by

MOGP along the trade-off frontier in terms of their AUC, and compare how the

complexity of these trade-off solutions differs to the SGP solutions.

This chapter shows that the Pareto fronts evolved using MOGP contains an

accurate set of solutions along the minority and majority class trade-off frontier

for the classification tasks. A single run of the MOGP algorithm can trace out

good set of trade-off solutions, leaving the final choice for the decision-maker.

Canonical SGP requires a much longer time to get a reasonable Pareto front

using a weighted-average of these two objectives in the fitness function (Wave) as

138 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

multiple SGP runs are needed, each using a different weighting coefficient which

is specified a priori.

5.5.1 Pareto Dominance Measures in MOGP

A Pareto Dominance measure using both dominance rank and dominance count

in the fitness function in MOGP (such as the SPEA2 algorithm [188]) finds Pareto

front solutions that perform better than, or at least as well as, multiple runs of

canonical SGP. However, a Pareto Dominance measure using only dominance

rank in the fitness function in MOGP (such as the NSGAII algorithm [53]) cannot

achieve this to a sufficient level of accuracy in three out of six tasks. In these three

tasks, the Pareto fronts evolved using MOGP with SPEA2 dominate the NSGAII

fronts. This chapter shows that this is because the fitness function with SPEA2

evolves more solutions in the middle region of the frontier, pushing this front

outwards toward high accuracy rates both the minority and majority class. In

contrast, the fitness function with NSGAII tends to evolve a better “spread” of

solutions along the whole of the frontier. In these classification tasks, end-region

solutions are not very desirable as these typically represent biased classifiers

which have high accuracy on one class but poor accuracy on the other. The

evolved populations using MOGP with SPEA2 also contain more non-dominated

solutions (on average) in the final generation than NSGAII in all tasks.

5.5.2 AUC of Pareto Front Solutions in MOGP

Using the AUC to measure the classification ability of an individual Pareto front

solution, AUC values generally improve as the objective performances increase.

This means that AUC is better in the middle-region of the frontier (i.e. solutions

with high accuracy on both classes) compared to the end-regions of the frontier

(i.e. biased solutions). Examining the AUC of the evolved Pareto front solutions

in different regions of objective-space shows that MOGP with SPEA2 not only

finds more non-dominated solutions in the final generations than NSGAII, but

that these solutions for SPEA2 generally also have better AUC than NSGAII in

nearly all tasks.

MOGP solutions which have at least 50% accuracy on both classes have

similar AUC to SGP solutions found using the weighted-average fitness function

(Wave). However, these MOGP solutions have poorer AUC than SGP solutions

evolved using a good fitness function (from the previous chapter). This shows

that in SGP, solutions capture this performance trade-off individually (via an

5.5. SUMMARY AND DISCUSSIONS 139

ROC curve); whereas the MOGP approach delegates this requirement to the set

of genetic program classifiers along the Pareto frontier.

5.5.3 MOGP for Ensemble Learning

One of the key advantages of the MOGP approaches is that the evolved Pareto

fronts represent highly-accurate classifiers, each with a different performance

bias toward either the minority or majority class. The goal of this chapter has

been to present these classifiers to the end-user for the final selection. However,

as the front of non-dominated classifiers has as much information about how to

solve a particular problem as any single individual, the combined knowledge

or classification abilities of these non-dominated individual can be used co-

operatively in an ensemble, to further improve classification performances. In an

ensemble of classifiers, a simple strategy to combine together the classification

abilities of multiple individuals is to use a majority vote of these individuals. Here

each individual votes on what class label to assign to a given data instance,

and the class label with the most number of votes determines the class of that

particular instance.

However, for an ensemble of classifiers to be more accurate than any of its

individual members, the individual members must be diverse in their outputs,

i.e., make different errors on different inputs. This allows for cooperation

between individuals in the ensembles. The next chapter develops an ensemble-

based MOGP approach to classification with unbalanced data, and focuses on

adapting the fitness function in MOGP to evolve a diverse and accurate set of

Pareto front solutions which can be successfully combined into an ensemble of

classifiers.

140 CHAPTER 5. MULTI-OBJECTIVE GP APPROACH

Chapter 6

MOGP for Ensemble Learning

This chapter is organised as follows. The first section outlines the chapter

introduction and goals. The second section discusses the ensemble learning

approaches. The third section outlines the ensemble combination and selection

strategies used in the experiments. The fourth section examines the evolved

Pareto fronts in MOGP. The fifth section presents the ensemble classification

results on the tasks. The sixth section examines the ensemble “wins” on a run-

by-run basis for the tasks. The seventh section compares the MOGP ensembles

to canonical SGP, Naive Bayes and Support Vector Machines. The eighth section

analyses several evolved MOGP classifiers. The last section provides a summary

of this chapter.

6.1 Introduction

The previous chapter shows that a single run of the MOGP algorithm can simul-

taneously evolve an accurate set of genetic program classifiers along the minority

and majority class trade-off frontier for the classification tasks. The MOGP

algorithm accomplishes this by treating these two objectives independently in

the learning process using Pareto dominance in fitness. MOGP, in particular with

SPEA2 [188], evolves Pareto front solutions in a single run that perform better

than, or at least as well as, multiple runs of canonical single-objective GP (SGP)

using a weighted-average of these two objectives in the fitness function. As the

evolved Pareto front is a set of genetic program classifiers, each with a different

performance bias toward either the minority or the majority class, the final choice

(i.e. the classifier with the desired trade-off) is left for the decision-maker.

However, one of the key advantages of the MOGP approach is that the

full evolved Pareto front contains at least as much information about how to

141

142 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

solve a particular classification task as any single individual. This means that

the combined knowledge or classification abilities of these individuals can be

used co-operatively in an ensemble of classifiers to further improve classification

performances. In an ensemble of classifiers, each individual votes on the class

label, and the class label with the most number of votes is taken as the class of a

particular input instance. An ensemble of classifiers can be more accurate than its

individual members provided that the individual members are both accurate and

diverse. Diverse ensemble members should not make the same errors on the same

inputs; otherwise, the ensemble members risk misclassifying all the same inputs

together. In other words, in a good ensemble, if one individual generates an error

for a given input, i.e., votes for the incorrect class label, the other members should

not also make the same error.

This chapter develops an approach which combines the genetic program

classifiers along the Pareto front in MOGP into an ensemble, to further improve

the classification performances on the minority and the majority class on the

unbalanced tasks.

6.1.1 Diversity Between Individuals

Constructing accurate and diverse ensembles is a difficult problem. Dietterich

[54] discusses two main techniques (among others) to generate diversity among

individuals in the ensembles. The first uses bagging and boosting techniques

where the input-space is sampled into smaller subsets (called bootstrap samples)

which are used to train the individual ensemble members [159][164][137]. The sec-

ond uses the inherently stochastic and population-based nature of evolutionary

algorithms (EAs) to generate diverse individuals. Some EAs have been combined

with bagging and boosting techniques for ensemble diversity [123][118][37].

Some others use an additional penalty term in the fitness function such as

Negative Correlation Learning (NCL) [36][40][35] to encourage diversity between

individuals, or use a cooperative co-evolutionary method (such as “teaming”

in GP [29][165]) to evolve teams of weak individuals that cooperate strongly

together. Approaches which uses diversity measures in fitness, or “teaming”-

based methods are different from typical bagging and boosting techniques as

these works utilise the full training set to learn the individual ensemble members,

to promote better interaction and cooperation between individuals. In bagging,

sampling techniques are used to divide the training data into smaller subsets for

learning.

6.1. INTRODUCTION 143

This chapter focuses on how to incorporate ensemble diversity measures in

the fitness function in MOGP to promote/encourage diversity among the evolved

solutions. Two diversity measures are compared in the fitness function in MOGP,

namely, NCL [119][40][47] and pairwise failure crediting (PFC) [36].

While existing ensemble learning approaches show good results on a wide

range of classification tasks with balanced classes, some approaches have limita-

tions when data sets are unbalanced, which this MOGP approach tries to address.

When data sets are unbalanced, most existing works rely on sampling techniques

to either create balanced bootstrap samples when training bagging approaches

[123][118][124][37], or first re-balance the training data when diversity measures

(such as NCL) are used in fitness evaluation [168][169]. This means that the

quality of the individual members are dependent on the sampling algorithm

used in the learning process. This MOGP approach uses the original unbalanced

training data “as is” in the GP learning process, using Pareto dominance in fitness

in MOGP to perform cost adjustment between the minority and the majority class.

This allows us to concentrate on the evolutionary search and diversity measures

in the MOGP algorithm, and remove any dependence on a sampling algorithm

to artificially re-balance the class distributions during the learning process.

As a result, there has been little previous work which investigates how to

adapt the ensemble diversity measures in fitness to account for the skewed class

distributions in these tasks [168]. Most works calculate diversity on all examples

irrespective of class (as the classes are assumed to be balanced) [35][36][119][40],

or first re-balance the training data prior to the diversity calculation when data is

unbalanced [168]. In [168], the diversity is only calculated on the minority class

instances, and diversity on the majority class is ignored in fitness. In contrast,

no previous work using genetic program classifiers (as the base learners) in

the ensembles measures diversity separately for each class using the original

unbalanced data. To address these limitations, in this MOGP approach the

diversity on both the minority and the majority class contributes equally in fitness.

6.1.2 Ensemble Combination and Selection Strategies

Much work in this area explores good ensemble combination and selection

strategies [29][180][37] [39][76]. Ensemble combination strategies investigate how

to combine together the outputs of individual members in the final ensemble,

and ensemble selection strategies investigate how to choose which learned base

classifiers to include in the final ensemble.

144 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

This chapter uses a majority vote (or average) of the predictions of the

individual Pareto front solutions in MOGP to obtain the ensemble output, as this

represents a common ensemble combination strategy. However, as the evolved

Pareto fronts in MOGP can also contain biased solutions with high accuracy on

one class and poor accuracy on the other (as shown in the previous chapter),

these biased ensemble members can influence the final ensemble vote. This

chapter evaluates three other strategies to potentially limit the influence of biased

ensemble members on the ensemble vote. The first assigns weights (based on

the fitness of an individual) to control the relative importance of each member’s

contribution in the ensemble. A similar weighted-voting strategy has been shown

to outperform the traditional majority voting strategy on a range of classification

tasks in ensemble learning [29][180][37] [39]. The second uses a simple ensemble

selection strategy which disallows biased Pareto front solutions (with less than

50% accuracy on both classes) from voting in the ensembles, as these biased

individuals are no better than random guessing on the tasks. A similar approach

is shown to successfully prune unwanted members from the ensembles [137].

The third strategy also uses an ensemble selection strategy, based on the off-

EEL (offline evolutionary ensemble learning) [76] algorithm. This algorithm

employs a greedy search to choose which individuals in the ensembles produce

the best ensemble results. These four strategies for ensemble combination and

selection are evaluated in MOGP to investigate which strategy produces the best

classification results on the unbalanced tasks.

6.1.3 Goals

This chapter has two main goals. The first goal is to develop an ensemble learning

approach to combine Pareto front classifiers using the fitness function to promote

diversity between individuals. Two ensemble-diversity measures are developed

in the fitness function to calculate diversity separately for the minority and the

majority classes, and these are compared to an ensemble approach using no

explicit ensemble-diversity measure in fitness. The second goal is to compare

four ensemble combination and selection strategies in the MOGP ensembles, to

investigate which strategy produces better ensembles results on the tasks.

6.2. MOGP APPROACHES FOR ENSEMBLE LEARNING 145

6.2 MOGP Approaches for Ensemble Learning

This section outlines the MOGP approaches for ensemble learning. This includes

the underlying MOGP approach to evolving the base learners (genetic program

solutions), and the two adaptations to the fitness function to encourage diversity

between the base learners.

6.2.1 Underlying MOGP Approach

Recall from the previous chapter that the MOGP approach uses the accuracy on

the minority and majority classes as the two learning objectives to evolve a Pareto

front of genetic program solutions along this trade-off surface. As the previous

chapter shows that MOGP with SPEA2 [188] evolves better-performing solutions

on these tasks than MOGP with NSGAII [53], MOGP with SPEA2 is used to

represent the underlying MOGP approach to evolving the ensemble members.

This means that the evolved Pareto front returned from the MOGP search with

SPEA2 (for a given run) forms the ensemble of genetic program solutions. To

compare the effectiveness of the two ensemble-diversity measures in fitness, NCL

and PFC (which are discussed in subsequent sections), MOGP with SPEA2 is

used to represent the ensemble learning approach where no explicit ensemble-

diversity objective is used in fitness — this is called the Baseline MOGP approach.

The Baseline MOGP approach simply relies only on the stochastic way in

which new classifiers are created in the evolutionary search process (e.g., using

the genetic operators) for diversity between solutions. A similar approach which

uses only the randomness of the initial weights in a neural network-based

ensemble [137], is shown to be sufficient for diversity. This chapter extends this

idea to genetic program-based ensemble classifiers. By comparing the ensemble

performances using the Baseline MOGP approach with the two diversity-based

MOGP approaches using NCL and PFC, this chapter investigates whether the

Baseline’s approach for diversity in the evolved solutions is sufficient compared

to MOGP with NCL or PFC on the tasks.

6.2.2 Diversity in MOGP Fitness

As discussed, a key condition for an ensemble of classifiers to be more accurate

than any of its individual members is that the ensemble members must be

accurate and diverse with respect to their outputs [54]. Diverse ensemble

members should not make the same errors on the same inputs, otherwise the

146 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

ensemble will risk misclassifying all the same inputs together. One of the main

techniques to construct diverse ensembles involves injecting randomness into the

learning algorithm [54]. In the Baseline MOGP approach, the stochastic way in

which new GP solutions are created (e.g. using the genetic operators) is used

to evolve diverse classifiers. However, without an explicit diversity objective in

fitness to encourage the evolved solutions to make different errors on different

inputs, the ensemble members are not guaranteed to be diverse with respect to

their predictions. For this reason, the MOGP approach is adapted to incorporate

a diversity objective into the fitness function, aiming to reward solutions which

have better diversity with better fitness values. Two measures are investigated

to promote the evolution of diverse solutions in the population: Negative Corre-

lation Learning (NCL) and Pairwise Failure Correlation (PFC). These measures

have proven effective in evolving diverse ensembles for classification [36][168].

However, most related works which use the NCL or PFC in fitness (such as

[36][40][35][126]) calculates diversity relative to all examples in the training set

irrespective of class, as these works assume that data sets are balanced. When

data sets are unbalanced, these measures must first be adapted to calculate the

diversity for a solution separately on each class, to account for the skewed class

distributions in these tasks. Otherwise, these diversity measures also risk being

biased toward the majority class. This study adapts these measures to use the

average diversity on the minority and majority class as the final diversity estimate

in the fitness function, to treat the diversity on both classes as equally important

in fitness. As discussed above, only one other approach has also used NCL with

unbalanced data [168]. However, in [168], the NCL is only applied to minority

class instances (diversity on the majority class instances is ignored).

6.2.3 Negative Correlation Learning (NCL)

The first measure to encourage diversity among the individuals in the population

uses NCL as a correlation penalty term in the fitness function [40][36][35]. The

NCL measure is based on the principle of minimisation of mutual information

between variables [40][36][35]. In MOGP, NCL is used to measure the phenotypic

differences between the solutions in the ensemble and the rest of the population.

The NCL measure, given by Eq. (6.1), calculates the average correlation penalty

for each class, for a given solution p in the population.

NCLp =
1

2

K
∑

c=1

(

1

MNc

Nc
∑

i=1

(Gp
i − Ei)

[

M
∑

j=1,j 6=p

(Gj
i − Ei)

])

(6.1)

6.2. MOGP APPROACHES FOR ENSEMBLE LEARNING 147

where

G
p
i =

1

1 + egp
p
i

In Eq. (6.1), K is the number of classes, and Nc is the number of training

examples in class c. G
p
i is the processed output, and gp

p
i is raw output, of

genetic program p when evaluated on the ith example in class c. The processed

genetic program output is the raw program output when scaled between the

range [0, 1] using a transfer (or sigmoid) function. This is required by the NCL

calculation, otherwise genetic programs which produce large output values risk

unduly inflating the NCL penalty. The sigmoid function is applied to the value

returned from the root node of the genetic program during the fitness evaluation.

This ensures that positive raw output values are “spread out” between 0.5 and 1,

and negative raw output values are spread out between 0 and 0.5 (when the raw

output value is 0, the processed output is 0.5).

Ei is the output of the ensemble on the ith example in class c. This is the

predicted class label returned by the ensemble, i.e., 0 or 1 for the majority

or minority class, respectively, according to a majority vote of all ensemble

members. The ensemble size (the number of non-dominated solutions in the

current generation) is given by M .

As the NCL is a penalty term in fitness, the lower the NCL value for a

particular class, the better the diversity of a solution.

In typical classification tasks where the class distributions are balanced, the

NCL penalty is calculated with respect to all training examples [36][40][35][35].

However, Eq. (6.1) is adapted in this approach to calculate diversity separately

for each class, to account for the skewed class distributions in these tasks. The

average NCL penalty on the minority and majority then represents the final

diversity estimate.

The NCL penalty is incorporated into MOGP by using Eq. (6.1) as the

secondary fitness measure instead of the “crowding” distance. This means that the

NCL term is used to resolve selection (e.g. for crossover/mutation and archive

selection) when the primary fitness measure (Pareto ranking using SPEA2) is

equal between two or more individuals. NCL is used as the secondary fitness

measure because Eq. (6.1) requires the ensemble output (E) in its calculation.

This means that the primary fitness measure must be applied to the population

first to determine which solutions are non-dominated in the population (i.e. the

current Pareto front), as these solutions form the ensemble.

148 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Inputs

1 2 3 4 5

a1 0.8 0 0.7 0.5 0.2

a2 0.5 0.6 0.1 0.7 0

a3 0.1 0.7 0.6 0.1 1

E 1 1 1 1 0

(a)

Calculation Inputs

1. a3 − E -0.9 -0.3 -0.4 -0.9 0

2. a1 − E -0.2 -1 -0.3 -0.5 -0.8

a2 − E -0.5 -0.4 -0.9 -0.3 -1

(sum) -0.7 -1.4 -1.2 -0.8 -1.8

3. (1)×(2) 0.63 0.42 0.48 0.72 0

(b)

Figure 6.1: (a) The (processed) outputs for three solutions and the ensemble

output (E) on the five inputs (incorrect predictions are underlined assuming that

the target class label is 1). (b) The three steps to calculate the NCL for solution a3

where final NCL value for a3 is 0.15
(∑

step 3

M×Nc
= 2.25

3×5

)

.

Example of NCL Calculation

To illustrate how NCL is calculated between solutions, Figure 6.1(a) shows the

(processed) outputs of three genetic program solutions, a1, a2 and a3, on five

input examples from the minority class. Assuming that the target class label is

1 (minority class), processed outputs that are ≥ 0.5 are considered correct class

predictions; otherwise they are incorrect class predictions (these are underlined

in Figure 6.1(a)). Assuming that these three solutions represent the ensemble, the

ensemble output (i.e. predicted class label) is given by E in Figure 6.1(a). As

discussed earlier, the ensemble output is obtained using a majority vote of the

class labels of individual members. The ensemble output E matches the target

class label on the first four inputs, as exactly two individuals vote for the correct

class label on these four inputs. Therefore, the ensemble accuracy in Figure 6.1(a)

is 80% (four out of five inputs are correctly labeled), while each solution only

achieves an individual accuracy of 60% (three out of five inputs correct).

Figure 6.1(b) shows how the NCL for solution a3 is calculated on each input

instance. Step 1 corresponds to the first term in Eq. (6.1), i.e., Gp
i − Ei, which

compares the outputs of the given solution with the outputs of the ensemble.

Step 2 corresponds to the second term in Eq. (6.1), i.e.,
∑M

j=1,j 6=p G
j
i − Ei, which

compares the outputs of the given solution with the other ensemble member’s

outputs. In step 3, the results from the previous two steps are multiplied (for

each input), and these values are then summed over the five inputs. This final

value is then normalised (0.15) to represent the diversity for solution s3 on these

five inputs.

6.2. MOGP APPROACHES FOR ENSEMBLE LEARNING 149

6.2.4 Pairwise Failure Crediting (PFC)

The second diversity measure is PFC [36], as given by Eq. (6.2) which calculates

the PFC for solution p with respect to class c.

PFCc,p =
1

T − 1

T
∑

q=1,q 6=p

∑Nc

i=1 Diff(gppi , gp
q
i)

Err
p
c + Err

q
c

(6.2)

where

Diff(gpp, gpq) =







1 if Icls(gp
p) 6= Icls(gp

q)

0 otherwise

In Eq. (6.2), T is population size, Nc is the number of training examples in

class c, and gp
p
i is the raw output of genetic program p when evaluated on the

ith example in class c. The function Diff(·) is used to compute the Hamming

distance (HD) between the outcomes of two solutions (p and q) on class c. This

function returns 1 if the predicted class labels of two genetic program solutions

are different for a given input instance, or 0 otherwise. The predicted class label

of a solution is determined by indicator function Icls in Eq. (6.2) which simply

returns 1 (minority class) if raw output value is zero or positive, or 0 (majority

class) otherwise according to the zero-threshold strategy. In Eq. (6.2), Errpc is

the number of incorrect class predictions by a given solution p on class c. An

incorrect prediction occurs when the predicted and actual class labels for a given

input are different. Unlike NCL, Eq. (6.2) will return values between 0 and 1

where the higher the PFC value, the better the diversity, i.e., lower overlap of

common errors.

Similar to the NCL, Eq. (6.2) calculates the diversity between examples from

the two classes separately to account for the skewed class distributions in the

tasks. The average PFC on the minority and the majority classes then represents

the final diversity.

PFC has two major differences to NCL. Firstly, PFC is a population-level

diversity measure. This means that PFC measures the diversity of each solution

with respect to all other solutions in the population, whereas NCL compares

the outputs of a solution to the ensemble and the ensemble members (not other

solutions in the population that are not in the ensemble). This also means that

unlike NCL, PFC does not require the ensemble’s output (on a given input) in

the PFC equation. Secondly, PFC measures diversity based on the binary-valued

outcome of a genetic program solution in terms of 1 or 0 for a correct or incorrect

class prediction, respectively, whereas NCL uses the (processed) output values of

150 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

the solutions.

Note that the computational overhead required to compute the PFC during

fitness evaluation, where each solution is compared to all others in the population,

is T (T − 1) total comparisons between solutions (where T is the population size).

However, the total number of comparisons can be reduced by simultaneously

accumulating PFC values between any two solutions in a pairwise manner. For

example, the diversity between two solutions a1 and a2 in the population will be

the same when a1 is compared to a2 during a1’s fitness evaluation, and when a2 is

compared to a1 during a2’s fitness evaluation. By simultaneously accumulating

PFC values between solutions in a pairwise manner, 1
2
T (T − 1) comparisons are

required to compute the PFC for the entire population.

PFC in MOGP Fitness

As each solution in the population is compared to all others, the PFC aims to

make the solutions in the population uncorrelated to all other solutions. This

is different to NCL which aims to minimise the correlation between solutions

and the ensemble. As discussed above, Eq. (6.2) does not require the ensemble

output in the PFC equation. This allows the PFC measure to be used at any stage

in the fitness evaluation. In contrast, NCL requires that the non-dominated set

of solutions in the population be known prior to the NCL calculation, as these

solutions represent the ensemble and the ensemble’s output is used in the NCL

equation.

To take advantage of this flexibility, Eq. (6.2) is incorporated into the objective

performance of the evolved solutions (alongside the classification accuracy) on

the two classes, and before the Pareto ranking (using the SPEA2 algorithm) is

applied to the population. This gives equal selection preference to accurate and

diverse solutions in the population. This is shown by Eq. (6.3), where (Sp)c is the

objective performance of solution p on objective c.

(Sp)c = Y

(

1− Errpc
Nc

)

+ (1− Y)PFCc,p (6.3)

In Eq. (6.3), weight factor Y specifies the trade-off between accuracy (first

component in the equation) and diversity (second component in the equation)

where 0 < Y < 1. The MOGP approach with PFC uses a Y value of 0.5 to

treat accuracy and diversity as equally important in fitness. In both the Baseline

MOGP and MOGP with NCL, the objective performance (Sp)c uses only the

accuracy of a solution p on class c. By incorporating the accuracy and diversity

6.2. MOGP APPROACHES FOR ENSEMBLE LEARNING 151

Input

Solution 1 2 3 4 5

a1 1 0 1 1 0

a2 1 1 0 1 0

HD 0 1 1 0 0

Input

Solution 1 2 3 4 5

a1 1 0 1 1 0

a3 0 1 1 0 1

HD 1 1 0 1 1

(a) Diversity is HD(a1,a2)
erra1

+erra2

= 2
2+2 = 0.5 (b) Diversity is HD(a1,a3)

erra1
+erra3

= 4
2+2 = 1

Figure 6.2: Pairwise PFC comparisons between three solutions (a1, a2 and a3) on

five inputs (in the same class).

of solutions into the objective performances, the Pareto ranking of the solutions

(according to SPEA2) is not solely based on the accuracy of the solutions on the

two classes (as is the case for MOGP using NCL). This allows the PFC ensembles

to contain more diverse but potentially less accurate solutions.

Other Weighting Coefficients

Other weighting coefficients for Y (e.g. 0.25, 0.75 and 1) have also been explored

in Eq. (6.3) to investigate if these can improve ensemble performances compared

to an equal weighting between accuracy and diversity (Y of 0.5) on the tasks.

Preliminary results find that an equal weighting between accuracy and diversity

in PFC shows the best ensemble performances on the two classes compared to Y

values of 0.25, 0.75 and 1 on the tasks. As exploring other weighting coefficients

for Y is not one of the main goals of this chapter, these preliminary results are

omitted from this chapter but can be seen in the Appendix B (in Section B.2.2).

Example of PFC Calculation

Figure 6.2 illustrate how the PFC is computed in a pairwise manner for the same

three genetic program solutions (a1, a2 and a3) on the same five inputs (as used

in the previous example in Figure 6.1(a) for NCL). However, Figure 6.2 shows

the outcomes of the solutions on the inputs, where 1 is a correct class prediction

and 0 is an incorrect prediction. Figure 6.2(a) compares solutions a1 and a2, while

Figure 6.2(b) compares solutions a1 and a3. Although all three solutions generate

the same number of errors (two errors on the five inputs), a1 and a3 are more

diverse in their outputs (than a1 and a2) as these solutions make different errors

on the same inputs. In Figure 6.2(a), the pairwise PFC contribution between a1

and a2 is 0.5; while in Figure 6.2(b), the pairwise PFC contribution between a1

and a3 is 1 (better). Assuming that the population consists of only these three

152 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

solutions, the final PFC value for a1 is 0.75 as shown below.

PFCa1 =
1

T−1

(

HD(a1,a2)
erra1+erra2

+ HD(a1,a3)
erra1+erra3

)

= 1
2
(0.5 + 1) = 1

2
(1.5) = 0.75

6.3 Ensemble Combination and Selection

This section outlines four ensemble combination and selection strategies used in

the MOGP experiments, and the rationale for choosing these strategies in MOGP.

6.3.1 Majority Voting

A majority vote of the predictions of the individual ensembles members repre-

sents a typical strategy to combine the ensemble members [54][29]. For a given

input, the class label with the most votes from the ensemble members is taken

as the ensemble output. If a draw occurs in the voting process, then the minority

class is returned as the predicted class.

However, as the previous chapter shows that the evolved Pareto fronts can

also contain biased solutions, i.e., solutions with high accuracy on one class

and poor accuracy on the other, it can be expected that these biased ensemble

members might also influence the final ensemble vote (this is discussed in more

detail in Section 6.5.1 in the experimental results). To exclude highly-biased

ensemble members from the voting process, Pareto front solutions with less than

5% accuracy on either class are excluded from the majority voting process.

Three other strategies are also compared to potentially limit the influence of

biased ensemble members on the final ensemble vote (outlined below).

6.3.2 Fitness-Weighted Majority Voting

This strategy uses a fitness-weighted majority vote of the Pareto front solutions

where the weight (or contribution) of a given individual in the voting process is

based on the fitness of that individual on the training set. This strategy aims to

reduce the contribution of biased solutions in the voting process. Previous work

has shown that a weighted majority vote can outperform the traditional majority

vote on a range of classification tasks [29][180][37][39]. For the Baseline MOGP,

an individual’s fitness corresponds to its average accuracy on the minority and

the majority classes (on the training set), as the Baseline does not use an explicit

ensemble-diversity objective in fitness. This means that biased Pareto front

solutions which have poor accuracy on one class will contribute less in the voting

6.3. ENSEMBLE COMBINATION AND SELECTION 153

process, while Pareto front solutions with high accuracies on both classes will

contribute more.

For NCL and PFC, an individual’s fitness is the average of its accuracy and

diversity on the two classes (on the training set). For PFC, this is the average

of Eq. (6.3) for the minority and majority class as Eq. (6.3) already reflects both

the accuracy and diversity of a solution on a particular class. For NCL, this is a

combination of the diversity and accuracy on both classes, as shown below (for

solution p).

1
2

(

NCLp +
1
2
(Accmin + Accmaj)

)

where NCLp is the average diversity on the two classes according to Eq. (6.1),

and Accmin and Accmaj are accuracy on the minority and the majority classes,

respectively.

6.3.3 Accuracy-based Ensemble Selection

A simple policy to exclude biased solutions from the voting process is to raise the

threshold for minimum performance required on the objectives. This ensemble

selection strategy simply disallows biased Pareto front solutions with less than

50% accuracy on either the minority or the majority class (on the training set) from

voting in the ensemble. This means that only relatively accurate members (with

at least 50% accuracy on both classes) will participate in the ensemble voting

process. Individuals with at least 50% accuracy on both classes implies that a

solution is better than random guessing on the tasks (as discussed in [137] where

a similar strategy is used to prune the ensembles).

6.3.4 Off-EEL for Ensemble Selection

The accuracy-based ensemble selection strategy (discussed above) offers a naive

yet effective approach to choosing which individuals to use in the final ensemble

(from the set of evolved Pareto front classifiers). A more exhaustive and arguably

better ensemble selection approach is the off-EEL (offline evolutionary ensemble

learning) algorithm [76]. This strategy uses the off-EEL algorithm to find which

solutions in the ensembles produce better ensemble performances.

The off-EEL algorithm uses a greedy search to construct the ensembles from a

pool of base classifiers (i.e. evolved Pareto front of genetic program solutions).

This algorithm sorts the input set of base classifiers according to their fitness

154 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

values on the training set (similar to the fitness-weighted majority vote), from the

fittest to the least fit classifiers. Then, each classifier is removed from the (sorted)

input set and inserted into the ensemble where, at each step, the ensemble is

evaluated using a majority vote of the base classifiers in the current ensemble.

Once all the base classifiers from the input set are processed, the ensemble

with the best performance is taken as the final ensemble. Only odd numbered

ensemble sizes are considered as these constitute ensembles where no draws can

occur in the voting process.

6.4 Evaluation of Diversity Measures in MOGP

This section outlines the experimental setup and MOGP evolutionary parameters,

and presents an evaluation of the two diversity measures in the fitness function

in MOGP (in terms of hyperarea of the evolved Pareto fronts and MOGP training

times).

6.4.1 MOGP Setup and Evolutionary Parameters

The underlying approach to evolving accurate and diverse Pareto front solutions

to represent the ensemble members uses MOGP with SPEA2 [188] (from the

previous chapter). This means that the same MOGP framework is used to

represent the genetic program solutions, and the evolutionary parameters in

MOGP are also kept the same as the previous chapter. See the previous chapter

for more details.

6.4.2 MOGP Pareto Front Hyperarea

To investigate how the diversity objectives in MOGP affects the performance of

the evolved Pareto fronts (on the test sets), Table 6.1 reports the average (and

standard deviation) hyperarea of the evolved Pareto-approximated fronts, and

the hyperarea of the Pareto-optimal (PO) front for the NCL and PFC approaches

(over 50 runs). Recall from the previous chapter that the PO front is the set of non-

dominated solutions from the union of all Pareto-approximated fronts evolved

over 50 runs. For a comparison, Table 6.1 also includes the average hyperarea and

PO hyperarea of the Baseline MOGP approach, i.e., when no ensemble diversity

objective is used in fitness. Note that the Baseline MOGP results are repeated here

for convenience from Table 5.1 (in the previous chapter).

6.4. EVALUATION OF DIVERSITY MEASURES IN MOGP 155

Table 6.1: Average (± standard deviation) hyperarea of evolved Pareto-

approximated fronts, and hyperarea of the Pareto-optimal (PO) front for the three

MOGP approaches (Baseline, NCL and PFC) over 50 runs. The pairs of hyperarea

results in bold or italics denote that these two approaches achieve a statistically

significantly better hyperarea than the remaining approach (but not each other).

The highest PO front hyperarea from all three approaches is underlined.

Task Basline MOGP MOGP with NCL MOGP with PFC

Average PO Front Average PO Front Average PO Front

Ion 0.848 ± 0.041 0.992 0.849 ± 0.039 0.981 0.828 ± 0.032 0.982

Spt 0.732 ± 0.032 0.971 0.733 ± 0.031 0.964 0.719 ± 0.025 0.964

Ped 0.902 ± 0.019 0.922 0.905 ± 0.011 0.926 0.883 ± 0.010 0.921

Yst1 0.793 ± 0.009 0.931 0.795 ± 0.010 0.922 0.774 ± 0.009 0.923

Yst2 0.949 ± 0.011 0.991 0.949 ± 0.007 0.972 0.928 ± 0.011 0.989

Bal 0.757 ± 0.063 0.985 0.810 ± 0.078 1.0 0.800 ± 0.065 1.0

Tukey’s Honestly Significant Difference (HSD) [166] multiple comparisons

test is used to find the statistically significant differences in the average hyperarea

for the three MOGP approaches (over 50 runs). Recall that Tukey’s multiple

comparisons test compares the hyperarea from each system to all others (on

a run-by-run basis), and outputs a 95% confidence interval for each pairwise

comparison between systems. In four tasks (Ion, Ped, Yst1 and Yst2), the average

hyperarea for the Baseline and NCL approaches is not statistically significantly

different from one another, but both are statistically significantly better than PFC

(these are highlighted in bold in Table 6.1). In Bal, the average hyperarea for NCL

and PFC are not statistically significantly different from each other, but both are

statistically significantly better than the Baseline approach (these are italicised in

Table 6.1). In the remaining task (Spt), the average hyperarea for all three MOGP

approaches are not statistically significantly different from one another. Note that

the highest PO hyperarea achieved by a given MOGP approach over all 50 runs

is underlined in Table 6.1.

Table 6.1 shows that in four out of six tasks (in bold in Table 6.1), the PFC

approach finds non-dominated solutions with lower classification accuracy on

the two classes than both the Baseline and NCL approaches, as the average

hyperarea for PFC is the lowest. However, the frontier solutions from the PFC

approach may be less accurate but potentially more diverse in their outputs than

the Baseline and NCL solutions, due to the selection bias in fitness for PFC (this

is explored further in the next section). In Bal, the hyperarea for PFC and NCL is

significantly better than the Baseline MOGP. This suggests that the PFC and NCL

156 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Table 6.2: Average training times for the three MOGP approaches in seconds (s)

or minutes (m) over 50 runs.
Task Baseline MOGP MOGP with NCL MOGP with PFC

Ion 9.3s ± 2.4 1.4m ± 6.8 30.4s ± 2.6

Spt 9.7s ± 2.5 1.2m ± 5.3 29.5s ± 1.6

Ped 3.9m ± 1.1 90.2m ± 1.3 17.7m ± 24.8

Yst1 20.8s ± 7.1 5.6m ± 14.4 1.2m ± 4.5

Yst2 20.1s ± 8.1 5.3m ± 18.9 1.1m ± 5.9

Bal 15.2s ± 3.9 2.4m ± 8.5 45.1s ± 3.2

approaches find frontier solutions that are more accurate on the two classes, and

also potentially more diverse in their outputs, than the Baseline MOGP.

In terms of the PO hyperarea for the three MOGP approaches (Baseline, NCL

and PFC), the Baseline achieves the the highest PO hyperarea in four tasks (Ion,

Spt, Yst1 and Yst2). As discussed above, this is due to the selection bias in the

Baseline MOGP where the PO solutions for NCL and PFC are less accurate (but

potentially more diverse in their outputs) than the Baseline MOGP. In Ped, NCL

achieves the best PO hyperarea; while both NLC and PFC achieve the best PO

hyperarea in Bal. In Bal in particular, both NCL and PFC find at least one non-

dominated solution with 100% accuracy on both the minority and the majority

classes (on the test set). This solution represents the best PO hyperarea of 1

in Table 6.1 where the PO frontier consists of this one point alone (in objective-

space). It is interesting that neither the Baseline MOGP approach, nor the single-

objective GP methods using the different fitness functions (from Chapter 4), is

able to accomplish this in any task. This suggests that identifying and promoting

solutions with good accuracy and diversity on the two classes using the NCL and

PFC measures in the fitness function has the potential to achieve perfect solutions

on difficult tasks such as Bal.

In Spt, the average hyperarea for all three MOGP approaches are similar to

one another (i.e. not statistically different). Further analysis of the results for Spt

finds that this is because the Pareto fronts for the three MOGP approaches tend to

dominate each other in different regions of the objective-space. This can be seen

later in Figure 6.4 which compares the median attainment summary surface for

the PFC and Baseline MOGP approaches.

To compare the training times for the different MOGP approaches, Table

6.2 reports the average training times in seconds (s) or minutes (m) over 50

runs. Table 6.2 shows that as expected, both NCL and PFC incur longer

average training times than the Baseline approach. This is due to the additional

6.5. MOGP ENSEMBLE CLASSIFICATION RESULTS 157

computational effort required to calculate the corresponding diversity measure in

fitness evaluation. However, this increase is not a serious concern in most tasks.

PFC also shows faster average training times than NCL in the tasks. For the

largest training set, Ped (more than 24000 examples), NCL incurs substantially

longer training times than the Baseline and PFC approaches.

6.5 MOGP Ensemble Classification Results

This section presents the classification results of the MOGP approaches and

ensemble strategies on the tasks. This section has three main parts. The first

part presents the performance of the MOGP ensembles using the majority vote

and fitness-weighted majority vote strategies. The second part presents the

performance of the MOGP ensembles using the two ensemble selection strategies.

The third part analyses how the MOGP ensemble members cooperate to solve the

classification tasks.

6.5.1 Voting Accuracy for the Pareto Front Ensemble

Table 6.3 reports the average minority and majority class accuracies (with stan-

dard deviations) of the evolved ensembles using the three MOGP approaches

(Baseline, NCL and PFC) on the test sets over 50 runs. In the column called PF-

vote, the ensembles use a majority vote of the full evolved Pareto front (PF) from

a given MOGP run. Recall that in this voting process, the class label with the

most votes from the ensemble members is taken as the ensemble output. The

average number of non-dominated solutions that participate in the ensemble

voting process (ensemble sizes) are also shown in Table 6.3.

Immediately noticeable in Table 6.3 for the PF-vote strategy are the strong

majority class performances for the three MOGP approaches. In some tasks such

as Ion and Yst2, the corresponding minority class accuracies are still reasonably

good, while in the others, particularly Ped and Spt, this is very poor. This

shows that in most tasks, the evolved Pareto fronts can contain more solutions

biased toward the majority class than the opposite case, i.e., solutions with

good minority accuracy or middle-region solutions, as these biased solutions can

influence the final ensemble vote, thus biasing the final ensemble prediction.

Analysis of the ensemble performances during the evolution reveals that as

the evolution progresses over generations, more solutions with strong majority

class accuracies achieve non-dominated status than solutions with good minority

158 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Table 6.3: Average accuracy (± standard deviation) on the test set and ensembles

size for the Pareto Front ensemble using the majority vote (PF-vote) and fitness-

weighted vote (PF-Wvote) over 50 runs.

Task MOGP Size Majority Vote (PF-vote) Weighted Vote (PF-Wvote)

Minority % Majority % Minority % Majority %

Baseline 18.8 84.5 ± 6.2 83.5 ± 9.9 82.5 ± 5.8 89.1 ± 8.3

Ion NCL 12.7 85.5 ± 5.2 86.8 ± 7.3 80.9 ± 5.9 91.4 ± 5.9

PFC 28.1 84.9 ± 5.1 92.4 ± 6.4 79.6 ± 6.2 96.3 ± 3.7

Baseline 7.8 44.5 ± 5.5 88.8 ± 2.7 86.4 ± 13.7 59.9 ± 36.4

Spt NCL 9.5 48.6 ± 5.6 86.5 ± 2.9 84.1 ± 12.0 63.3 ± 32.7

PFC 27.3 44.6 ± 5.4 90.8 ± 2.3 75.9 ± 10.4 72.6 ± 22.2

Baseline 124.9 12.5 ± 27.2 87.1 ± 28.2 89.1 ± 3.6 83.3 ± 3.1

Ped NCL 52.6 71.8 ± 8.9 91.7 ± 2.7 88.0 ± 3.2 83.5 ± 3.7

PFC 71.6 82.4 ± 5.6 92.1 ± 2.4 92.5 ± 1.6 84.1 ± 3.1

Baseline 46.7 58.0 ± 4.0 87.1 ± 2.4 70.0 ± 4.2 77.3 ± 4.3

Yst1 NCL 25.8 63.6 ± 3.8 83.0 ± 3.3 70.6 ± 3.7 76.8 ± 4.4

PFC 39.7 64.6 ± 4.8 82.5 ± 4.3 71.8 ± 5.3 75.4 ± 6.5

Baseline 18.5 77.1 ± 4.6 96.2 ± 1.1 82.8 ± 3.6 95.1 ± 1.3

Yst2 NCL 16.1 77.6 ± 6.0 95.3 ± 1.7 83.6 ± 4.7 93.7 ± 1.7

PFC 27.9 81.2 ± 4.9 95.5 ± 1.5 89.6 ± 3.2 92.1 ± 1.9

Baseline 9.8 53.3 ± 21.4 94.1 ± 4.4 84.2 ± 12.5 71.4 ± 23.6

Bal NCL 8.4 59.2 ± 16.1 87.8 ± 6.6 86.9 ± 11.8 66.0 ± 29.5

PFC 20.8 51.7 ± 18.2 95.4 ± 3.5 87.3 ± 9.3 74.1 ± 17.1

accuracies or middle-region solutions. This effect can be seen, to varying degrees,

in Figure 6.3 for the Baseline and PFC approaches. These figures show the

minority and majority class performances of the MOGP ensembles on the test

sets for 50 generations (averaged over 50 runs). MOGP with NCL is omitted in

Figure 6.3 as these figures aim to show the general behaviour of the ensembles

with and without the diversity objective in fitness, and the NCL performances are

relatively similar to PFC on these tasks. The axis scopes in Figure 6.3 are different

for the tasks.

Figure 6.3 clearly shows that more solutions with stronger majority class

accuracy (than solutions with stronger minority accuracy) are included in the

ensembles over generations (for the Baseline and PFC approaches), as the

ensemble accuracy reflects which class receives the more votes by the different

members. This effect is more pronounced in those three tasks in the bottom row of

Figure 6.3 (Spt, Ped and Yst1), particularly for the Baseline MOGP. Here minority

class accuracies are declining, while majority class accuracies are improving, over

generations. By comparison, minority class accuracies do not decline as sharply

6.5. MOGP ENSEMBLE CLASSIFICATION RESULTS 159

0 10 20 30 40 50

0.7

0.75

0.8

0.85

0.9

Generation

A
cc

ur
ac

y
Ion

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Generation

A
cc

ur
ac

y

Yst2

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

A
cc

ur
ac

y

Bal

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

A
cc

ur
ac

y

Spt

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Generation

A
cc

ur
ac

y
Ped

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

0 10 20 30 40 50

0.6

0.65

0.7

0.75

0.8

0.85

Generation

A
cc

ur
ac

y

Yst1

Minority (Base)
Majority (Base)
Minority (PFC)
Majority (PFC)

Figure 6.3: MOGP ensemble performances on the minority and majority class

(test set) using PF-vote over generations for Baseline and PFC.

in the two tasks in the top row of Figure 6.3 (Ion and Yst2), even though majority

class accuracies are still improving over generations. Only in one task, Bal, do

both the minority and the majority class accuracies improve over generations.

However, in Bal, minority class accuracies are still substantially lower than

majority class accuracies. This may be due to the relatively high level of class

imbalance in Bal.

Fitness-weighted Majority Vote

As discussed above, a strategy to limit the influence of biased ensemble members

on the final ensemble vote uses a fitness-weighted majority vote of the Pareto

front solutions. Here the weight (or contribution) of a given individual in the

voting process is based on the fitness of the individual on the training set. The

ensemble results using this fitness-weighted majority vote are shown in the

column called PF-Wvote in Table 6.3. For presentation convenience, this strategy

is called PF-Wvote as the Pareto front (PF) participates in a weighted voting

(“Wvote”) approach.

According to Table 6.3, all three MOGP approaches with the PF-Wvote

strategy show more balanced class performances with better minority class

160 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

accuracies compared to the PF-vote strategy in all tasks (except Ion). This is

particularly noticeable in Spt, Ped (for the Baseline MOGP), Yst1 and Yst2. This

suggests that the PF-Wvote strategy succeeded in reducing the influence of biased

Pareto front solutions in the ensembles in these tasks. In some tasks (such as

Ped and Yst2), the higher minority class accuracies achieved by the PF-Wvote

strategy incur only a relatively small trade-off in the corresponding majority class

accuracies; while in some others (such as Spt and Bal), this trade-off is larger.

In these four tasks (Ped, Yst2, Spt and Bal), the PFC ensembles show equally

high (and more balanced) class accuracies than the Baseline and NCL ensembles,

which have high minority class accuracies but lower majority class accuracies (as

mentioned above).

Table 6.3 also shows that in two tasks, Ped and Bal, the PFC ensembles domi-

nate both the Baseline and NCL ensembles. In the four remaining tasks, all three

MOGP ensembles are non-dominated with respect to each other. Interestingly,

the Baseline MOGP ensembles show similar performances to NCL using this PF-

Wvote strategy in some tasks such as Ion, Ped, Yst1 and Yst2. This is surprising

as the Baseline MOGP uses no ensemble-diversity objective in fitness. This

suggests that in these tasks, the Baseline ensembles which use only the stochastic

processes within GP for diversity among solutions, can be competitive to the NCL

ensembles which uses an explicit diversity measure in fitness. However, further

investigation of the differences between the three MOGP approaches is needed;

this is explored later in Section 6.6.1 (which compares “wins” for the different

MOGP approaches on the tasks).

6.5.2 Ensemble Selection

In addition to the PF-Wvote strategy, two ensemble selection strategies are also

compared in MOGP to limit the influence of biased ensemble members in the

voting process, to improve ensemble performances. Table 6.4 shows the ensemble

accuracies (on the test set) and ensemble sizes using the accuracy-based selection

strategy and the off-EEL algorithm for ensemble selection over 50 runs for the

MOGP approaches. The accuracy-based selection strategy simply removes Pareto

front solutions with less than 50% accuracy on either class (on the training set)

from the ensemble. This strategy is called the RPF-vote in Table 6.4 as the

ensembles are reduced compared to the PF-vote and PF-Wvote strategies. The off-

EEL algorithm uses a more exhaustive and arguably better ensemble selection

approach than RPF-vote to choose individuals from the Pareto front for the final

6.5. MOGP ENSEMBLE CLASSIFICATION RESULTS 161

Table 6.4: Average accuracies (± standard deviation) on the test set and ensembles

sizes using RPF-vote and off-EEL [76] ensemble selection strategies (50 runs).

Task MOGP
RPF-vote Off-EEL

Size Minority % Majority % Size Minority % Majority %

Baseline 7.8 79.9 ± 7.2 87.2 ± 9.1 5.6 83.7 ± 5.8 89.2 ± 8.8

Ion NCL 10.8 82.6 ± 6.9 91.0 ± 3.2 9.9 82.2 ± 5.5 89.5 ± 8.1

PFC 22.3 81.7 ± 5.8 95.8 ± 3.8 21.2 83.9 ± 5.2 96.6 ± 2.8

Baseline 2.8 69.9 ± 11.7 70.1 ± 17.4 3.9 56.0 ± 10.1 83.6 ± 4.8

Spt NCL 4.1 71.1 ± 9.0 78.4 ± 8.7 5.2 53.9 ± 9.7 83.8 ± 4.8

PFC 12.1 62.1 ± 8.0 80.5 ± 4.8 10.7 66.3 ± 8.5 79.9 ± 6.6

Baseline 87.8 81.4 ± 14.1 79.3 ± 28.9 65.3 89.5 ± 1.5 84.6 ± 2.3

Ped NCL 43.2 87.4 ± 4.5 84.2 ± 6.1 40.4 88.8 ± 3.0 84.4 ± 2.8

PFC 40.1 91.6 ± 1.9 85.2 ± 3.0 55.2 90.6 ± 1.5 87.9 ± 1.5

Baseline 24.1 68.7 ± 3.2 77.5 ± 3.8 33.6 68.5 ± 5.5 80.4 ± 5.2

Yst1 NCL 17.0 69.0 ± 2.6 80.7 ± 1.8 13.5 64.1 ± 5.0 83.4 ± 4.0

PFC 16.5 71.0 ± 4.4 75.5 ± 5.4 29.2 70.6 ± 5.4 78.8 ± 5.5

Baseline 15.2 80.6 ± 7.8 94.8 ± 2.2 6.5 92.3 ± 2.9 90.7 ± 2.9

Yst2 NCL 13.4 89.6 ± 5.2 91.9 ± 2.9 8.6 80.4 ± 7.3 94.5 ± 2.1

PFC 20.6 89.2 ± 3.2 92.3 ± 1.8 17.2 93.1 ± 2.6 90.8 ± 2.4

Baseline 4.7 82.6 ± 13.7 59.0 ± 21.4 4.7 71.4 ± 15.9 85.6 ± 9.0

Bal NCL 4.9 61.8 ± 4.2 94.1 ± 5.9 5.5 62.1 ± 17.5 85.6 ± 7.3

PFC 10.1 83.6 ± 9.4 79.5 ± 10.3 10.9 81.4 ± 12.1 86.2 ± 9.1

Table 6.5: Average accuracies (± standard deviation) on the test set and

ensembles size using the majority vote (PF-vote) and fitness-weighted vote

(PF-Wvote) strategies (50 runs). Repeated from Table 6.3.
Task MOGP Size Majority Vote (PF-vote) Weighted Vote (PF-Wvote)

Minority % Majority % Minority % Majority %

Baseline 18.8 84.5 ± 6.2 83.5 ± 9.9 82.5 ± 5.8 89.1 ± 8.3

Ion NCL 12.7 85.5 ± 5.2 86.8 ± 7.3 80.9 ± 5.9 91.4 ± 5.9

PFC 28.1 84.9 ± 5.1 92.4 ± 6.4 79.6 ± 6.2 96.3 ± 3.7

Baseline 7.8 44.5 ± 5.5 88.8 ± 2.7 86.4 ± 13.7 59.9 ± 36.4

Spt NCL 9.5 48.6 ± 5.6 86.5 ± 2.9 84.1 ± 12.0 63.3 ± 32.7

PFC 27.3 44.6 ± 5.4 90.8 ± 2.3 75.9 ± 10.4 72.6 ± 22.2

Baseline 124.9 12.5 ± 27.2 87.1 ± 28.2 89.1 ± 3.6 83.3 ± 3.1

Ped NCL 52.6 71.8 ± 8.9 91.7 ± 2.7 88.0 ± 3.2 83.5 ± 3.7

PFC 71.6 82.4 ± 5.6 92.1 ± 2.4 92.5 ± 1.6 84.1 ± 3.1

Baseline 46.7 58.0 ± 4.0 87.1 ± 2.4 70.0 ± 4.2 77.3 ± 4.3

Yst1 NCL 25.8 63.6 ± 3.8 83.0 ± 3.3 70.6 ± 3.7 76.8 ± 4.4

PFC 39.7 64.6 ± 4.8 82.5 ± 4.3 71.8 ± 5.3 75.4 ± 6.5

Baseline 18.5 77.1 ± 4.6 96.2 ± 1.1 82.8 ± 3.6 95.1 ± 1.3

Yst2 NCL 16.1 77.6 ± 6.0 95.3 ± 1.7 83.6 ± 4.7 93.7 ± 1.7

PFC 27.9 81.2 ± 4.9 95.5 ± 1.5 89.6 ± 3.2 92.1 ± 1.9

Baseline 9.8 53.3 ± 21.4 94.1 ± 4.4 84.2 ± 12.5 71.4 ± 23.6

Bal NCL 8.4 59.2 ± 16.1 87.8 ± 6.6 86.9 ± 11.8 66.0 ± 29.5

PFC 20.8 51.7 ± 18.2 95.4 ± 3.5 87.3 ± 9.3 74.1 ± 17.1

162 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

ensemble. Off-EEL iteratively adds individuals to the ensemble and evaluates

the ensemble performance (on the training set) at each step. Once all Pareto front

solutions are processed, the ensemble with the best performance is taken as the

final ensemble.

For convenience, the PF-vote and PF-Wvote ensemble performances (from

Table 6.3 in the previous section) are repeated in Table 6.5 (below Table 6.4) to

make comparisons between these ensemble approaches easier.

Advantage of off-EEL for Ensemble Selection

Table 6.4 shows that both the RPF-vote and off-EEL strategies show relatively

balanced performances on both the minority and majority classes compared

to the PF-vote (from Table 6.5). Both strategies achieve this by only allowing

relatively accurate Pareto front solutions from voting in the ensembles. This

can be seen by the smaller ensemble sizes for RPF-vote and off-EEL in Table 6.4

(compared to Table 6.5), and suggests that both strategies are effective in limiting

the influence of biased Pareto front solutions in the ensemble voting process.

According to Table 6.4, the off-EEL ensembles either dominate, or are non-

dominated relative to, the RPF-vote results in the tasks. This is important as

it shows that the off-EEL ensembles are at least as good as, or in some cases

better than, the RPF-vote ensemble in the tasks. In some cases where the off-

EEL ensembles dominate the RPF-vote ensembles such as Ion (Baseline and PFC)

and Ped (Baseline and NCL), the off-EEL ensemble sizes are even smaller than

the RPF-vote ensembles. This suggests that the RPF-vote ensembles still contain

some individuals that do not positively contribute to the ensemble performance.

This is not unexpected as the off-EEL algorithm uses an additional search to

choose good individuals for the ensembles; whereas in the naive RPF-vote

strategy, the performance threshold to exclude individuals from the ensembles

is determined a priori.

A similar observation can be seen when the off-EEL strategy is compared to

the PF-Wvote strategy from Table 6.5. The off-EEL ensembles are at least as good

as, or better than, the PF-Wvote ensemble in all tasks.

Tables 6.4 and 6.5 also show that the PFC ensembles using both off-EEL and

PF-Wvote dominate both the Baseline and NCL ensembles in two tasks (Ped and

Bal). In three other tasks (Ion, Yst1 and Yst2), PFC also dominates the Baseline but

only using the off-EEL strategy (PFC and the Baseline are non-dominated to each

other using the PF-Wvote strategy in these three tasks). This may be because the

Baseline MOGP uses no explicit ensemble-diversity objective in fitness, and the

6.5. MOGP ENSEMBLE CLASSIFICATION RESULTS 163

PFC approach can find individuals that are more diverse in their outputs. When

individuals with good diversity are combined together in the ensembles created

using off-EEL, the PFC ensembles (with off-EEL) improve to a greater extent than

the Baseline ensembles (with off-EEL). The NCL ensembles are not able to achieve

this as NCL does not dominate the Baseline or PFC in any task using either the

off-EEL and PF-Wvote strategies. This suggests that the PFC ensembles may have

the best diversity from the three MOGP approaches (this is also explored further

in the next section which compares “wins” for the different MOGP approaches

on the tasks).

Baseline Better with Off-EEL

In the Baseline MOGP approach, the PF-Wvote results (from Table 6.5) dominate

the RPF-vote results in Table 6.4 in nearly all tasks. The only exception is Spt

where RPF-vote shows equally high class accuracies, while PF-Wvote has a

slight bias toward high minority class accuracy only. As mentioned above, the

poorer performance by the RPF-vote strategy may be due to the main limitation

of this strategy, i.e., the criterion for ensemble selection is determined a priori

(and remains fixed for all tasks). This means that these ensembles still contain

individuals that do not positively contribute in the voting process. In contrast, by

reducing the contributions of individuals with poorer fitness in the voting process

(relative to other fitter solutions) using the fitness-weighed vote in PF-Wvote, the

PF-Wvote strategy can generally outperform RPF-vote strategy on the tasks.

For the NCL and PFC approaches, the PF-Wvote and RPF-vote strategies

produce similar (non-dominating) ensemble performances in nearly all tasks (ex-

cept Bal). This suggests that both methods are similarly effective in keeping the

ensemble performances relatively well-balanced on the two classes (compared

to PF-vote). In Bal, the NCL results for PF-Wvote and RPF-vote vary in their

minority to majority class bias, e.g., the PF-Wvote is stronger on the minority

class, while the RPF-vote is stronger on the majority class. This may be due to

noise or the comparatively high level of class imbalance in Bal.

Due to these limitations for the RPF-vote strategy, the remainder of this

chapter will focus on the PF-Wvote and off-EEL strategies.

6.5.3 Cooperation of Ensemble Members

The advantage of evolving an ensemble of accurate and diverse classifiers is that

the ensemble can perform better than all of its individual members due to better

164 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

generalisation in the voting process. However, the ensemble results in Tables 6.4

and 6.5 using the different ensemble combination strategies, do not show to what

extent the diversity objectives in fitness contribute to the ensemble performances,

e.g., by encouraging better cooperation between members. To try to answer

this question, the ensemble performances are contrasted to the performances of

the individual ensemble members themselves on a run-by-run basis, with and

without the diversity objective in fitness. The median attainment surface (from

the previous chapter) is used to approximate the performance of an “average”

evolved Pareto front along the two objectives over 50 MOGP runs. In other

words, the median attainment surface is used to represent the performance, on

average, of the individual ensemble members over 50 runs of a particular MOGP

approach.

Figure 6.4 shows the median attainment surfaces for the Baseline and PFC

approaches, and their ensemble performances with off-EEL for each of the 50

runs (on a run-by-run basis) on the tasks. MOGP with NCL is omitted in Figure

6.4 as the main aim of these figures is to contrast the ensemble behaviour with and

without a good diversity objective in fitness (and not the differences between the

two diversity objectives in fitness). In fact, Tables 6.4 and 6.5 also suggests that

PFC may even achieve better diversity between individuals than NCL, as the

PFC ensembles are as good as, or better than, the NCL ensembles on these tasks

(however, this aspect is explored in more detail in the next section). Note that the

axis scopes in Figure 6.4 are different for the tasks.

Figure 6.4 shows that both the Baseline and PFC ensembles dominate their

corresponding median attainment surface in all tasks, as the ensemble perfor-

mances lie above the median attainment surface. This shows the cooperation

between solutions as the ensemble performances are better than an average set of

individual ensemble members. In some tasks (Ion, Ped, Bal and Yst2), more runs

of the PFC ensembles dominate the Baseline ensembles, even though the Baseline

median attainment surface clearly dominates the PFC median attainment surface

in these tasks. This shows that in these tasks, the PFC ensembles show better

diversity/cooperation between individuals than the Baseline ensembles, as better

diversity/cooperation leads to better ensemble performances.

In some tasks such as Yst1 and Yst2 in Figure 6.4, the PFC and Baseline

ensembles show relatively similar performances on the two classes. However,

in these two tasks, the PFC ensembles still lie “further above” their median

attainment surface than the Baseline ensembles, which lie “closer to” their

attainment surface. This suggests that while the PFC and Baseline ensembles

6.5. MOGP ENSEMBLE CLASSIFICATION RESULTS 165

60 70 80 90

60

70

80

90

100

Ion

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

80 85 90

80

85

90

Ped

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

40 60 80

60

70

80

90

Spt

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

40 60 80 100

50

60

70

80

90

100
Bal

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

80 85 90 95
75

80

85

90

95

Yst2

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

60 70 80

60

70

80

90

Yst1

Minority Accuracy

M
aj

or
ity

 A
cc

ur
ac

y

80 90
75
80
85
90
95

 Base Median Att.
PFC Median Att.
Baseline Ensembles
PFC Ensembles

Figure 6.4: MOGP ensemble accuracies (on a run-by-run basis) and median at-

tainment surface (“average” front performance) for Baseline and PFC approaches

with off-EEL for 50 runs.

performance may be similar to one another in these tasks, the PFC individuals

are more diverse (than the Baseline individuals) as the PFC ensembles show

better cooperation relative to their median attainment surface, than the Baseline

ensembles relative to their median attainment surface.

As previously discussed (in Section 6.4.2), the Baseline median attainment

surface dominates the PFC median attainment surface in most tasks (Bal and

Spt and the two exceptions), due to the selection bias in fitness for these MOGP

approaches. Solutions with high accuracy rates on the two classes (but which are

potentially less diverse) are favoured in the Baseline MOGP, while solutions that

are both accurate and diverse are favoured in MOGP with PFC. In Bal, the PFC

median attainment surface dominates the Baseline median attainment surface,

suggesting that PFC in the fitness function finds solutions that are also more

accurate on the two classes than the Baseline MOGP. This may be why one

particular run of the PFC ensembles achieves 100% on both classes in Bal (on

the test set).

In Spt, the median attainment surfaces for PFC and the Baseline dominate

each other in different regions of the objective-space.

166 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

6.6 Counting Ensemble “Wins”

This section tries to quantify the run-by-run analysis from the previous section

(e.g. Figure 6.4) to further investigate the differences between the MOGP

approaches and the ensemble voting/selection strategies. By comparing the

classification result of each MOGP approach on a run-by-run basis over the 50

runs, this section investigates which MOGP approach (Baseline, NCL or PFC) and

ensemble combination strategy (PF-Wvote or off-EEL) produces better overall

performances across all MOGP runs and tasks. These questions are difficult to

answer using only the average ensemble performances reported in Tables 6.4 and

6.5 (in the previous section). For clarity, note that in the experimental setup, a

single run of the three MOGP approaches (Baseline, NCL and PFC) all use the

same random starting seed and initial population.

A run-by-run analysis of the MOGP approaches has a two-dimensional aspect,

as both the majority and the minority class accuracies of the ensembles must

be taken into account when determining if one approach is better than another

(compared to a “single figure” measure such as the overall accuracy). The Pareto

dominance relation is used to summarise a single classification result between

any two MOGP approaches on a run-by-run basis basis. This allows us to

determine if one approach is better than the other, in terms of a “win”, “lose”

or “draw” outcome. For two MOGP approaches, gp1 and gp2, the three outcomes

for a particular run can be defined as follows.

• Win for gp1 if gp1 dominates gp2 (loss for gp2).

• Win for gp2 if gp1 is dominated by gp2 (loss for gp1).

• Draw otherwise.

These three outcomes (i.e. win, lose or draw) represent a multinomial

distribution over N independent runs. This means that the proportion of wins

for one approach (call this p1), the proportion of wins for the other approach (call

this p2), and the proportion of draws between them (call this p3), sums to 1 over

N runs. In a multinomial distribution, a 95% confidence interval of the difference

in the proportion of wins between two approaches (p1−p2) can be calculated for a

particular task. This can be used to determine if one MOGP ensemble significantly

dominates another over all runs. The 95% confidence interval of this difference

between any two MOGP approaches is calculated using Eq. (6.4), where var(pi)

is the variance of pi for the ith MOGP approach in N = 50 runs.

6.6. COUNTING ENSEMBLE “WINS” 167

(p1 − p2)± 1.96
√

var(p1 − p2) (6.4)

where

var(p1 − p2) = var(p1) + var(p2)−
−(var(p1 + p2)− var(p1)− var(p2))

= 2var(p1) + 2var(p2)− var(p1 + p2)

var(pi) =
pi(1− pi)

N

var(p1 + p2) =
(p1 + p2)(1− p1 − p2)

N

In the subsequent sections, the ensemble wins between the MOGP approaches

are used to explore two main aspects of the ensemble behaviour. The first com-

pares which of the three MOGP approaches (Baseline, NCL or PFC) statistically

dominates each other on the tasks, and which achieves more overall ensemble

wins over all runs and tasks. The second compares which ensemble combination

strategy between PF-Wvote and off-EEL statistically dominates each other on the

tasks, and which achieves more overall ensemble wins over all runs and tasks.

6.6.1 Wins for Diversity Measure in MOGP

To compare which of the three MOGP approaches (Baseline, NCL or PFC)

statistically dominates each other on the tasks, Table 6.5 shows the pairs of

ensemble wins between two MOGP approaches, where each is compared with

every other (on a run-by-run basis) for 50 runs. Each win-pair in Table 6.5

corresponds to the three pairwise comparisons between the Baseline, NCL and

PFC approaches using a particular ensemble combination strategy. Two ensemble

combination/selection strategies are examined: fitness-weighted majority vote

(PF-Wvote) and off-EEL.

For example, the first win-pair in Table 6.5 for Ion with PF-Wvote is “8,8”.

This means that when the Baseline MOGP is compared to the NCL approach on

a run-by-run basis over 50 runs, both the Baseline and NCL score 8 wins each

(i.e. each approach dominates the other exactly 8 times). In the remaining 34

runs, these approaches are non-dominated with respect to each other (i.e. 34

”draws”). Similarly, the next win-pair in Table 6.5 for Ion with PF-Wvote is “7,14”.

168 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Table 6.5: ”Win” pairs between two MOGP approaches (on a run-by-run basis)

over 50 runs for two ensemble combination strategies (PF-Wvote and off-EEL).

Total wins (and draws) is the sum of wins (and draws) over all runs and tasks (50

runs × 6 tasks). Bold results indicate a statistically significantly better ensemble

performance (95% significance level).

Task PF-Wvote Strategy Off-EEL Ensemble Selection

Baseline Baseline NCL Baseline Baseline NCL

vs NCL vs PFC vs PFC vs NCL vs PFC vs PFC

Ion 8,8 7,14 8,19 11,6 6,22 3,20

Spt 3,5 1,5 1,3 10,7 3,6 1,9

Ped 11,3 1,25 0,19 15,7 0,20 0,26

Yst1 7,8 4,2 5,7 5,3 6,3 1,3

Yst2 7 / 5 5,2 3,12 5,1 8,7 0,4

Bal 10,7 11,14 10,9 14,8 12,16 4,21

Wins 46,36 29,62 27,69 60,32 35,74 9,83

Draws 218 209 204 208 191 208

This means that when the Baseline is compared to PFC on a run-by-run basis

over 50 runs, PFC wins against (dominates) the Baseline in 14 runs, while the

Baseline wins against PFC in 7 runs. These approaches are non-dominated in the

remaining 29 runs (i.e. 29 ”draws”).

The last two rows in Table 6.5 reports the total number of wins for each pair,

and the total number of draws (non-dominated performances), summed over all

runs and tasks. The total number of wins and draws in each column in Table 6.5

sums to 300 (50 runs × 6 tasks).

The results of the 95% confidence intervals of the wins between two MOGP

approaches are also shown in Table 6.5. The statistically significantly better

ensemble performance, denoted by a higher number of wins, is highlighted

in bold. It is important to note that as three separate confidence intervals are

constructed for each of the three pairwise comparisons, the statistical relationship

only applies to a specific pair.

PFC better than NCL over all tasks

According to Table 6.5, the total number of wins (over all tasks) when NCL is

compared to PFC is higher in PFC for both ensemble combination strategies. For

the PF-Wvote strategy, PFC has 69 total wins while NCL only has 27; for the

off-EEL strategy, PFC has 83 total wins while NCL only has 9. This means that

in both ensemble combination strategies, the PFC ensembles dominate the NCL

6.6. COUNTING ENSEMBLE “WINS” 169

ensembles more often than the opposite case over all runs and tasks. The very

large difference in total wins between PFC and NCL for off-EEL is due to the PFC

ensembles achieving statistically significantly better performances than NCL in

nearly all tasks. As the PFC approach, particular with off-EEL, produces better

ensemble results than NCL in these tasks, this suggests that the PFC ensembles

may be more diverse that the NCL ensembles.

A similar conclusion can be drawn when the PFC ensembles are compared

to the Baseline MOGP for the two ensemble combination strategies. PFC

always scores more total wins (over all tasks) than the Baseline when these two

approaches are compared against each for both strategies. For the PF-Wvote

strategy, PFC has 62 total wins while the Baseline only has 29; for the off-EEL

strategy, PFC has 74 total wins while the Baseline only has 35. As discussed in

the previous section (and shown in Figure 6.4), the better PFC performances are

due to better cooperation between members than the Baseline MOGP on these

tasks.

In contrast, NCL scores fewer total wins (over all tasks) than the Baseline

MOGP for the two ensemble combination strategies. For the PF-Wvote strategy,

NCL has 36 total wins while the Baseline has 46; for the off-EEL strategy, NCL

has 32 total wins while the Baseline has 60. In fact, Table 6.5 shows that for both

PF-Wvote and off-EEL strategies, there is no statistically significant difference in

wins between the Baseline and NCL in any of the six tasks. This shows that both

NCL and Baseline ensembles achieve very similar performances on the tasks.

Further Discussions

The above results show that the PFC ensembles performed better than NCL on

these tasks, particularly for the off-EEL selection algorithm. This may be due to

two reasons. The first is the different ways NCL and PFC create “spread” (or

diversity) in the population (see [126][125] for theoretical insights into how NCL

creates spread in a population). The second is the different ways in which NCL

and PFC are used in MOGP: NCL is calculated after the population is ranked

on the objectives (using SPEA2), while PFC is calculated before Pareto ranking is

done.

Developing an approach which incorporates NCL into the objective perfor-

mance before Pareto ranking is done (similar to PFC) may improve ensemble

performances for NCL. Likewise, new diversity measures (such as the root

quartic NCL proposed in [126][125]) may also improve ensemble performances

for NCL, due to different ways in which these measures create “spread” in

170 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Table 6.6: ”Win” pairs between the two ensemble combination strategies (PF-

Wvote and off-EEL) for the MOGP approaches (on a run-by-run basis) over 50

runs. Bold results indicate a statistically significantly better ensemble perfor-

mance (95% significance level) over 50 runs.

Task PF-Wvote vs off-EEL

Baseline NCL PFC

Ion 4,9 4,15 1,25

Spt 2,2 1,1 10,3

Ped 0,3 1,3 0,5

Yst1 1,12 2,4 3,10

Yst2 0,0 1,4 1,6

Bal 3,5 6,3 3,8

Wins 10,31 15,30 18,57

Draws 259 255 225

a population. However, this is outside the scope of this work which focuses

on evaluating the use of the traditional NCL and PFC measures in the fitness

function in MOGP for diversity (and not adaptations of these measures such as

[126][125]). This will be an interesting exercise for future work.

6.6.2 Wins for Ensemble Combination Strategies in MOGP

To compare which of the two ensemble combination strategies statistically dom-

inates each other on the tasks, Table 6.6 shows the pairs of ensemble wins when

PF-Wvote is compared to off-EEL (on a run-by-run basis) over 50 runs for the

three MOGP approaches (Baseline, NCL and PFC approaches). The statistically

significantly better ensemble strategy, denoted by a higher number of wins, is

highlighted in bold. For example, the first win-pair in Table 6.6 for Ion is “4,9”.

This means that when PF-Wvote is compared to off-EEL for the Baseline MOGP,

PF-Wvote wins against (dominates) off-EEL in 4 runs, while off-EEL dominates

PF-Wvote in 9 runs. In the remaining 37 runs, these strategies are non-dominated

to each other.

The last two rows in Table 6.5 reports the total number of wins for each pair,

and the total number of draws (non-dominated performances), summed over all

50 runs and for the six tasks (300 total runs).

Table 6.6 shows that the total number of draws (over all tasks) between

these two ensemble combination strategies (for the three MOGP approaches)

is higher than the total number of draws in all columns in Table 6.5 (from the

previous section). This shows that the two ensemble combination strategies are

6.7. COMPARISON WITH SGP, NB AND SVM 171

very closely matched (in terms of performance) as both have relatively few wins

against each other on the tasks, particularly for the Baseline and NCL approaches,

which have a higher total number of draws (over all tasks) than PFC. For these

two MOGP approaches, both ensemble combination strategies are typically non-

dominated in nearly all tasks. The only exceptions are Yst1 for the Baseline, and

Ion for NCL (in these cases off-EEL significantly dominates PF-Wvote).

However, the total number of wins (over all tasks) for off-EEL is higher in all

three MOGP approaches than PF-Wvote. In PFC, off-EEL significantly dominates

PF-Wvote in three tasks (Ion, Ped and Yst1) and, as a result, PFC with off-EEL

shows more total wins (over all tasks) than PFC with PF-Wvote. As the total

wins for PFC with off-EEL is substantially larger than both the Baseline and NCL

with off-EEL, this suggests that the PFC approach is particularly successful with

off-EEL. As the previous section (in Table 6.5) suggests that the PFC ensembles

are more diverse than the Baseline and NCL ensembles on these tasks (due to

better diversity between individuals), these results imply that the more diverse

the ensembles, the more effective the off-EEL algorithm in improving ensemble

performance (compared to the PF-Wvote strategy).

6.7 Comparison with SGP, NB and SVM

This section compares the MOGP ensemble classification results to canonical

single-objective GP (SGP), Naive Bayes (NB) and Support Vector Machine (SVM)

on the tasks. An outline of the experimental setup for SGP, NB and SVM is first

presented, followed by the classification results using these methods on the tasks.

Note that this comparison is not the primary goal of this thesis, but we would

like to have an overall indication on how well these new GP approaches can

solve these classification tasks compared with the well-known/common methods

(including common GP methods) in classification.

6.7.1 Experimental Setup for SGP, NB and SVM

The classification accuracy of the fittest evolved solutions using SGP with three

different fitness functions (over 50 runs) is compared to the MOGP ensembles on

the tasks. The three SGP fitness functions correspond to Acc, Ave and Auc. Recall

from Chapter 4 that Acc uses the overall classification accuracy in fitness, Ave uses

the average classification accuracy of the minority and majority class in fitness,

and Auc uses the (full) area under the ROC curve (AUC) in fitness. These fitness

functions are chosen to represent the SGP approach for two main reasons. Firstly,

172 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

Acc represents the traditional fitness measure in classification, and Ave and Auc

are two major current approaches for cost adjustment in fitness (to account for the

unbalanced classes). Secondly, these fitness functions provide a good indication

of the range of SGP performances on the tasks, where Acc represents very poor

SGP performances while Auc represents good SGP performances. For details on

these fitness functions, please refer to Chapter 4.

It is important to reiterate that, where possible, the evolutionary parameters in

MOGP and SGP are kept the same for a fair comparison between these methods.

Both MOGP and SGP use a population size of 500 and a maximum number of

50 generations. Likewise, both methods restrict the maximum program depth of

the evolved solutions to 8. This means that the same complexity constraints are

placed on both the SGP classifiers and the MOGP Pareto front classifiers (base

classifiers in the ensembles). As discussed in the previous Chapter (in Section

5.3.1), only the tournament size and mutation (and elitism) rates are different in

MOGP and SGP. In MOGP, a tournament size of 2 is used and the mutation rate is

40% (as elitism is not used). In SGP, a tournament size of 7 is used, and mutation

and elitism rates are 35% and 5%, respectively. These parameter values were

chosen with a good reason as stated in the previous chapters.

Similar to the previous experimental results using NB and SVM (in Chapter

4), a single run for NB and SVM is generated using the WEKA package [82]. The

SVM uses a sequential minimal optimisation algorithm with an RBF kernel and

Gamma value of 10.

6.7.2 Classification Results

Table 6.7 shows the (average) minority and majority class accuracies for SGP with

the three fitness functions over 50 runs, and a single run of NB and SVM, on

the tasks. These results correspond to the accuracy rates when the SGP, NB and

SVM classifiers are evaluated using zero as the class threshold (on the test set).

For convenience, the MOGP ensemble performances using PF-Wvote (fitness-

weighted majority vote) and off-EEL [76] ensemble selection strategy (from Tables

6.3 and 6.4 in previous sections) are repeated in Table 6.8 to make comparisons

with Table 6.7 easier.

Table 6.8 show that all three MOGP ensembles using the PF-Wvote and off-

EEL strategies achieve much more balanced (and better) results than SGP using

Acc, NB and SVM in all tasks (except Ion). In those tasks with high levels of

class imbalance (such as Spt, Ped, Yst1 and Bal), these single-predictor methods

6.7. COMPARISON WITH SGP, NB AND SVM 173

Table 6.7: Average accuracies (± standard deviation) using canonical single-

objective GP (SGP) on the test set with three fitness functions (Acc, Ave and Auc)

over 50 SGP runs, and a single run of NB and SVM on the tasks.

Task SGP Acc SGP Ave (W = 0.5) SGP Auc

Minority Majority Minority Majority Minority Majority

Ion 73.8 ± 7.7 95.3 ± 3.9 76.6 ± 6.3 91.3 ± 6.1 81.1 ± 5.2 81.3 ± 6.5

Spt 47.4 ± 4.6 88.6 ± 2.5 56.7 ± 8.3 82.7 ± 3.6 70.2 ± 6.7 70.0 ± 5.8

Ped 43.3 ± 14.5 96.6 ± 1.6 87.7 ± 2.3 85.6 ± 2.8 86.2 ± 1.5 86.1 ± 1.6

Yst1 40.8 ± 4.2 94.6 ± 1.4 60.2 ± 4.6 83.1 ± 3.8 73.0 ± 1.4 72.8 ± 1.5

Yst2 64.0 ± 8.1 97.4 ± 0.6 85.9 ± 4.0 93.0 ± 2.1 86.8 ± 2.7 88.2 ± 4.1

Bal 9.0 ± 17.5 98.9 ± 1.1 85.6 ± 11.4 84.6 ± 11.7 82.8 ± 8.3 87.1 ± 11.0

Task NB SVM

Minority Majority Minority Majority

Ion 63.4 88.9 87.5 99.1

Spt 66.7 83.0 37.0 94.3

Ped 83.7 81.4 53.8 92.4

Yst1 43.4 96.4 32.8 97.4

Yst2 66.7 98.0 58.0 97.9

Bal 0.0 100.0 0.0 100.0

Table 6.8: Average accuracies (± standard deviation) on the test set using

PF-Wvote (fitness-weighted majority vote) and off-EEL [76] ensemble selection

strategy for the three MOGP approaches (50 runs). These are repeated from

Tables 6.3 and 6.4.

Task MOGP
PF-Wvote Off-EEL

Minority % Majority % Minority % Majority %

Baseline 82.5 ± 5.8 89.1 ± 8.3 83.7 ± 5.8 89.2 ± 8.8

Ion NCL 80.9 ± 5.9 91.4 ± 5.9 82.2 ± 5.5 89.5 ± 8.1

PFC 79.6 ± 6.2 96.3 ± 3.7 83.9 ± 5.2 96.6 ± 2.8

Baseline 86.4 ± 13.7 59.9 ± 36.4 56.0 ± 10.1 83.6 ± 4.8

Spt NCL 84.1 ± 12.0 63.3 ± 32.7 53.9 ± 9.7 83.8 ± 4.8

PFC 75.9 ± 10.4 72.6 ± 22.2 66.3 ± 8.5 79.9 ± 6.6

Baseline 89.1 ± 3.6 83.3 ± 3.1 89.5 ± 1.5 84.6 ± 2.3

Ped NCL 88.0 ± 3.2 83.5 ± 3.7 88.8 ± 3.0 84.4 ± 2.8

PFC 92.5 ± 1.6 84.1 ± 3.1 90.6 ± 1.5 87.9 ± 1.5

Baseline 70.0 ± 4.2 77.3 ± 4.3 68.5 ± 5.5 80.4 ± 5.2

Yst1 NCL 70.6 ± 3.7 76.8 ± 4.4 64.1 ± 5.0 83.4 ± 4.0

PFC 71.8 ± 5.3 75.4 ± 6.5 70.6 ± 5.4 78.8 ± 5.5

Baseline 82.8 ± 3.6 95.1 ± 1.3 92.3 ± 2.9 90.7 ± 2.9

Yst2 NCL 83.6 ± 4.7 93.7 ± 1.7 80.4 ± 7.3 94.5 ± 2.1

PFC 89.6 ± 3.2 92.1 ± 1.9 93.1 ± 2.6 90.8 ± 2.4

Baseline 84.2 ± 12.5 71.4 ± 23.6 71.4 ± 15.9 85.6 ± 9.0

Bal NCL 86.9 ± 11.8 66.0 ± 29.5 62.1 ± 17.5 85.6 ± 7.3

PFC 87.3 ± 9.3 74.1 ± 17.1 81.4 ± 12.1 86.2 ± 9.1

174 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

show biased classification results. In Bal in particular, none of these methods

achieve more than 10% accuracy on the minority class (Bal has highest level of

class imbalance). In Ion, SVM achieves the best results (87% and 99% on the

minority and majority class, respectively). The MOGP ensembles cannot, on

average, match the SVM results. However, closer examination of the PFC results

with off-EEL on a run-by-run basis finds that the three best PFC runs score a

better accuracy on both classes than SVM. These three runs achieve 88.9/99.1%,

88.9/100%, and 92.1/100% on the minority/majority class, respectively.

On average, the PFC ensembles with off-EEL dominate SGP using Auc in

three tasks (Ion, Ped and Yst2). In Bal, SGP with Auc and PFC (with off-

EEL) achieve very similar results (within 1% accuracy for each class). As the

model complexity of the evolved genetic program classifiers are the same in

both canonical GP and MOGP, the PFC ensembles (and, to a lesser extent, the

Baseline and NCL ensembles) are better than SGP on some of these tasks for two

main reasons. Firstly, this is due to more support for two learning objectives

(minority and majority accuracy) in MOGP. In other words, in SGP with Auc, each

classifier tried to achieve the best trade-off between the two objectives individually

(by maximising their AUC); whereas in MOGP, each classifier is one point (of

many) along the Pareto front. Secondly, combining these Pareto front classifiers

into an ensemble where individuals work together (by voting) further improves

performances, as the ensemble performs at least as well as its individual members.

When a diversity objective such as PFC is introduced in the fitness function

during evolution, the ensemble performs better than most of its individual

members, as this performance dominates the performance of the individual

members. This is due to the cooperation between the individual members, as

discussed in Section 6.5.3 (and shown in Figures 6.4).

Even in those tasks where the MOGP ensemble results are similar to, or

dominated by, SGP using Ave or Auc (such as Yst1), the MOGP ensembles still

perform better than most of its individual members. In these tasks a likely

reason for the not very good MOGP ensemble performance is the relatively

poor performance of the Pareto-approximated fronts compared to the frontier

generated by SGP using fitness function Ave. Recall (from the previous chapter)

that when the median attainment surface for MOGP with SPEA2 is compared to

the SGP frontier with Ave (in Section 5.3.4), the MOGP front is dominated by the

SGP front in some tasks (such as Ped and Bal). This shows that very high accuracy

cannot be expected from the ensemble if the individual ensemble members (i.e.

Pareto front solutions) themselves are not sufficiently accurate (e.g. relative to the

6.8. EVOLVED MOGP PROGRAMS 175

if<0

(* \\arg1

(*
(- -0.69 (- (% (+ f2 0.47)(% -0.66 f1)) f2))

(+ (+ f2 0.47) (+ (* (if<0 -0.60 f3 0.88) f2) 0.60)))

(+ (if<0 f0 f2 f0) (% -0.34 0.96)))

(* (* (- f1 0.29) (* 0.58 -0.32)) (* (- -0.96 -0.51)(% f2 0.20))) \\arg2

(% \\arg3

(+ 0.58 (if<0 (- (* -0.29 (* 0.08 f3)) (+ 0.64 0.05)) (* -0.55 (% -0.01 f1)) -0.41))

(- 0.96 (- (* f3 f2) (* f0 f1)))))

Figure 6.5: Evolved MOGP classifier with 100% accuracy on training and test set

for Bal.

SGP frontier). This highlights the importance of developing a good underlying

multi-objective algorithm to trace out an accurate and diverse set of ensemble

members across all the tasks.

6.8 Evolved MOGP Programs

This section examines four evolved MOGP classifiers on the Bal task since the

high level of class imbalance in Bal makes this a difficult classification problem

for canonical GP, NB and SVM to solve (as demonstrated by the biased results

for these methods). Four evolved MOGP classifiers are analysed below. These

correspond to the evolved MOGP program which achieved 100% accuracy on

both the training and test sets for Bal (as discussed in Section 6.4.2), and three

other programs which cooperate well together when combined in the ensemble.

6.8.1 Evolved Program with Perfect Accuracy

The evolved program which achieved 100% accuracy on both the training and

test sets for Bal (using the PFC-based MOGP approach) is shown in Figure 6.5.

Similar to the previous program analysis of SGP classifiers in Chapter 4 (in

Section 4.7), f0—f3 in this program correspond to the four input features in Bal.

For convenience, this program has been indented for easier interpretability.

Interestingly, this program shares the same overall structure as the evolved

program from Chapter 4 (shown in Figure 4.6 on page 107) which also performs

very well on Bal (very high AUC). Both programs contain three distinct parts

which form the input arguments to the outer-most if function in the root node

of the tree. The previous analysis from Chapter 4 suggests that this high-level

conditional logic operator may be a successful strategy to classify the data inputs.

176 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

This hypothesis is affirmed by the program in Figure 6.5 as this classifier has even

better performance than the program from Chapter 4 (Figure 4.6).

The program in Figure 6.5 is also smaller that the SGP program from Chapter 4

(Figure 4.6). As a result, the first argument of the (outer-most) if node in Figure

6.5 is much smaller (and simpler) than in the SGP program. These two factors

may have allowed the MOGP solution to better generalise on the training and

test sets for Bal.

6.8.2 Good Programs for the Ensemble

This analysis examines three evolved programs using the PFC-based MOGP

approach which cooperate well together when combined in the ensemble. The

first program, shown in Figure 6.6, represents a non-dominated MOGP solution

which achieves 83% and 91% accuracy on the minority and majority class,

respectively, on the test set. The second program (another non-dominated

solution from the same run), scores 90% and 80% accuracy on the minority and

majority class, respectively, and is identical to Figure 6.6 except for seven major

differences (these are underlined in Figure 6.6). These seven differences, shown

in Figure 6.7(b), are responsible for the variation in performance between the two

solutions. The overall tree structure shared by both non-dominated solutions are

shown in Figure 6.7(a), where the (red dashed) squares around a particular sub-

tree show where in the tree these seven differences occur. The symbol � in Figure

6.7(a) represents a sub-tree that is omitted. Note that Figure 6.6 is not indented

in a similar way to Figure 6.5 above, as the overall structure of this program can

already be seen in Figure 6.7(a).

Figure 6.7(a) shows that these two non-dominated solutions both use a series

of nested if functions deep within the tree, in combination with the other

functions (+,−,× and %). As these nested if functions occur in the same

positions in both trees, the variation in performance for the two solutions must

be due to other differences between these trees (such as Figure 6.7(b)).

The third non-dominated solution from the same run that is analysed is

shown in Figure 6.8. This solution achieves lower accuracies than the previous

solutions, 72% and 67% on the minority and majority class, respectively, and is

also noticeably smaller. All three MOGP program trees are “unbalanced”, i.e.,

they all have exactly one leaf node on the left side of the tree compared a larger

subtree on the right side. However, the right side of the tree in this program

is completely different from the right side of these trees in the previous two

6.8. EVOLVED MOGP PROGRAMS 177

(% 0.8 (* (% (if<0 (* (- (% 0.6 f0) (% f0 f3)) (if<0 (- 0.5 f2) f2 (- f1 -0.7))) (if<0

(if<0 (% -0.7 f3) (+ f1 f3) (+ f0 f2)) (% (% f2 0.6) (- f1 f2)) (+ (- f2 f1) (- f3 f0)))

(* (- f2 (* f0 -0.5)) (% (+ -0.6 f2) (+ -0.1 f2)))) (+ (if<0 (% (- f2 f1) (% 0.5 f0))

(- (f3 (- f3 f1)) (+ (if<0 0.2 f1 0.2) (if<0 f1 f3 f3))) (if<0 (+ (- -0.6 0.2) (* 0.2

-0.1)) (* (* f1 0.4) f0) (- (% f0 f2) -0.8)))) (- (% (if<0 (* (* -0.4 f2) (- 0.5 f2)) (*

1.0 (* -0.1 f1)) (if<0 f3 (% f0 0.1) 0.9)) (% (+ (% f0 -1.0) 0.8) (- (+ -0.7 -0.1) (* f3

f2)))) (+ (* (- (+ f1 f0) (if<0 f3 f2 f0)) (% -0.1 (- f2 -0.5))) (% f1 0.7)))))

Figure 6.6: An evolved MOGP ensemble program for Bal.

(7)... if...... ...

%

if +

 * %...if

.........

...
...

...
...

+...

 −
0.8

%

*

(2)

(5) (6)

(1)

(3)

(4)

if

1. f0

2. 0.2

3. (* (% 0.3 f1) 1.3)

4. (if<0 f0 0.9 f0)

5. 0.7

6. (if<0 f0 -0.1 f3)

7. (if<0 (% 0.5 (+ -0.7 f2)) -0.8 -1.7)

(a) (b)

Figure 6.7: (a) Overall structure of two GP trees (for Bal) where � represents a sub-

tree (omitted) and the dashed rectangles (around a given sub-tree) show where in

the overall structure the seven differences occur; and (b) sub-trees in the second

GP tree that are different from Figure 6.6.

programs (Figure 6.7(a)). Another difference between these three programs is

that Figure 6.8 only has two simple if functions deep within the tree. In fact, one

of these if conditions (if<0 0.4 f0 (- f2 f1)) does not represent a true

conditional expression since it will never branch to execute the first argument (as

0.4 is not less that 0). These factors may be why this program performs much

poorer than the previous two programs.

6.8.3 Trends

Inspection of the other evolved programs from other MOGP runs (with PFC)

reveals a similar pattern, i.e., good programs evolved by MOGP with PFC share

a similar overall structure but this structure is different in other non-dominated

solutions. A similar observation is also discussed in the previous program

analysis of SGP classifiers in Chapter 4 (Section 4.7.3). However, program

analysis in MOGP can be more difficult than in canonical SGP since multiple

programs are evolved in a single run, and there are multiple runs to consider.

178 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

(-

0.9 \\left-side

(+ \\right-side

(+

(* (* (if<0 0.4 f0 (- f2 f1)) (- f1 f2) (- f1 (% (* 0.6 f3) (- -0.7 f0)))) f0)

(- f3 (* (% (- (if<0 f2 -0.2 f1) (- f2 f0)) (- (- f0 f3) 0.03)) -0.06))))

Figure 6.8: A smaller evolved GP tree (for the Bal task).

Also similar to the previous analysis in Chapter 4, high-level if conditions (as

seen in Figure 6.5) may also represent a successful strategy to achieve very good

performances on the two classes, as this useful building block was discovered in

both canonical SGP and MOGP approaches.

This analysis also shows that different groups of programs will have different

building blocks. For example, the common nested if functions in Figure

6.7(a) may constitute good building blocks as these are common in other well-

performing solutions in the same run. Likewise, the solution shown by Figure

6.8 may use different building blocks which allow this particular program (and

other similar-performing programs) to specialise on certain parts of the input-

space. This diverse nature of evolved programs allows the ensembles to improve

system performances. However, analysing the evolved programs is not the main

goal of this thesis and a more detailed analysis is out of the scope of this thesis.

6.9 Summary

The goal of this chapter was to adapt the fitness function in MOGP to promote

diversity between individuals and combine the evolved genetic program clas-

sifiers along the Pareto front into an ensemble where members vote on class

membership. Two ensemble-diversity measures are incorporated in the fitness

function in MOGP to estimate diversity between solutions separately for the

minority and the majority classes. This accounts for the unbalanced classes;

otherwise, these diversity measures risk being biased toward the majority class.

These diversity measures include Negative Correlation Learning (NCL) and

Pairwise Failure Crediting (PFC). The ensemble performance using these two

diversity-based MOGP approaches are compared to each other, to a (Baseline)

MOGP ensemble approach which uses no explicit ensemble-diversity measure in

fitness, and to canonical SGP, NB and SVM on the tasks.

The second goal of this chapter was to evaluate and compare two ensemble

combination and selection strategies in the MOGP ensembles, to investigate

6.9. SUMMARY 179

which strategy produces the best ensemble performances on the tasks. The

important conclusions from these two research goals are outlined below.

6.9.1 Ensemble Combination and Selection

This chapter shows that when the full Pareto front of solutions forms the ensem-

ble (for a given MOGP run), the MOGP ensembles show biased classification

results toward the majority class in nearly all tasks, due to the influence of

biased individuals in the voting process. This occurs because more solutions with

stronger majority class accuracies (than minority class accuracies) achieve a non-

dominated status in the population as the evolution progresses. Two strategies

are shown to successfully reduce the influence of these biased individuals in the

ensembles, to improve ensemble performances on both classes. The first uses a

fitness-weighted majority vote of the Pareto front (PW-Wvote), and the second

uses the off-EEL (offline evolutionary ensemble learning) algorithm [76]. While

off-EEL shows the best ensemble performances on the two classes for all the tasks,

both strategies outperform a simple accuracy-based ensemble selection approach

(called RPF-vote).

6.9.2 Ensemble Diversity in MOGP Fitness

The PFC-based MOGP, particularly with off-EEL, is found to evolve better-

performing ensembles than both the NCL-based and Baseline MOGP approaches,

due to better cooperation and diversity between individuals. The increased

diversity in the PFC-based approach is due to the selection bias in fitness where

individuals with equally high accuracy and diversity rates on the two classes are

favoured; whereas in the Baseline and, to a lesser extent, the NCL approaches,

individuals with high accuracies on the two classes (but which are potentially

less diverse) are favoured in fitness. When the individuals evolved from the PFC-

based approach are combined using off-EEL, ensembles performances improve

as the more diverse the individuals, the more effective the off-EEL strategy for

improving ensemble performance (compared to the other ensemble combination

strategies).

However, the Baseline approach for evolving ensembles shows competitive

results (relative to the PFC and NCL approaches) on some tasks when combined

with the fitness-weighted majority vote strategy (PW-Wvote). This suggests that

while the Baseline MOGP uses no ensemble-diversity objective in fitness, the

stochastic way in which new classifiers are created in the evolution in GP (e.g.

180 CHAPTER 6. MOGP FOR ENSEMBLE LEARNING

using the genetic operators) can provide sufficient diversity between individuals

to achieve good ensemble performances with PF-Wvote on some tasks.

6.9.3 Comparison with SGP, SVM and NB

Interestly, the NCL and PFC approaches are both able to find one solution with

100% accuracy on both classes on the training and test sets, on the task with

the greatest level of class imbalance (Bal). The best runs of canonical SGP, NB

and SVM could not accomplish this on any task. This shows that promoting

better diversity between individuals in the population using NCL and PFC in

fitness can also help evolve better-performing genetic program solutions on some

tasks. On at least three out of six tasks, the MOGP approaches, in particular PFC,

outperforms canonical SGP, NB and SVM. This is due to two important reasons

in MOGP. Firstly, MOGP provides more support for the learning objectives

(minority and majority class accuracy) where a set of Pareto front genetic program

classifiers is evolved to capture the trade-off between the objectives. In contrast,

this is accomplished by individual genetic program classifiers in SGP (via an

ROC curve). Secondly, by combining these Pareto front classifiers into an

ensemble where individuals cooperate (by voting on class membership), good

performances can be achieved on the objectives as the ensembles perform better

than its individual members.

6.9.4 Ensemble Optimisation

Finding the best combination of individuals (from the set of Pareto front so-

lutions) to form the ensembles can be thought of as a separate combinatorial

optimisation problem. After the initial training phase to evolve the Pareto front

in MOGP, a secondary optimisation/search process can be invoked to find the

best combination of individuals which produce the best ensemble results on

the tasks. This ensemble optimisation approach is advantageous over off-EEL

as off-EEL selects individuals for the ensembles based on a linear ordering of

their fitness values, and does not consider diversity between different subsets

of individuals. The next chapter develops an new evolutionary-based approach

which treats ensemble selection as a combinatorial optimisation problem, to find

small but highly diverse subsets individuals that cooperate well together in the

ensemble. This approach evolves composite solutions where multiple Pareto

front individuals are combined into a single (composite) genetic program to

represent the (optimised) ensembles.

Chapter 7

Composite Solutions for Ensemble

Selection

This chapter is organised as follows. The first section outlines the chapter

introduction and goals. The second section discusses the GP approach to com-

posite solutions. The third section outlines the experimental setup for evolving

composite solutions. The fourth section presents the experimental results on the

tasks. The fifth section provides a summary of this chapter.

7.1 Introduction

The experimental results in the previous chapter show that combining the

evolved Pareto front classifiers into an ensemble whose members vote on the

class label can produce good generalisation on unseen instances from both the

minority and majority class on the unbalanced data sets. This is because the

ensembles perform better than its individual members on the tasks, particularly

when an ensemble diversity measure such as pairwise failure crediting (PFC)

[36] is used in the fitness function to encourage diversity between individuals.

Diversity is important as it ensures that the individual members make different

errors on the same inputs; otherwise, the ensemble members risk misclassifying

all the same inputs together. However, the previous chapter shows that when the

full set of Pareto front solutions is used in the voting process, the ensemble can be

influenced by biased Pareto front solutions and thus, exhibit strong performances

on the majority class but weak performances on the minority class. Two useful

strategies to limit the influence of biased Pareto front solutions in the ensembles

are evaluated to improve ensemble performances on both classes. These include

a fitness-weighted majority vote strategy (called PF-Wvote) and a post-training

181

182 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

ensemble selection algorithm, off-EEL (offline evolutionary ensemble learning)

[76]. Off-EEL is found to be particularly effective on the tasks, showing the best

ensemble performances on the two classes.

7.1.1 Ensemble Optimisation

These strategies try to address a difficult problem in ensemble learning, that is,

how to choose good individuals from the pool of base classifiers to form the

ensembles. As mentioned earlier, the PF-Wvote and off-EEL strategies (from the

previous chapter) use the fitness values of the individuals (on the training set)

as the criterion for ensemble selection. While these strategies represent a useful

starting point for choosing good individuals for the final ensembles, a major

limitation of fitness-based ensemble selection is that selection is based on a linear

ordering of the base classifiers by their fitness values. Recent work [29][180] has

shown that different combinations of individuals can show better diversity and

cooperation in the ensembles compared to a linear ordering of individuals. This

is because a linear ordering of individuals (by fitness) does not guarantee that a

subset of the fittest N individuals will necessarily show very good diversity (or

cooperation) relative to each other.

This chapter develops a new GP-based approach to ensemble selection which

treats ensemble selection as a combinatorial optimisation problem, to quickly

find highly diverse combinations (or subsets) of Pareto front solutions which

cooperate well together in the ensemble.

Previous work on ensemble selection from the literature typically assign a

weight value to each individual in the pool of base classifiers, where weights

over a certain threshold mean that a particular individual is included in the

final ensemble [37][180][29][39]. These approaches typically learn this weight

vector in two ways. The first is to co-evolve the base classifiers and ensemble

in parallel [29][39]. While these approaches show good results on some tasks,

some research suggests that this co-evolutionary learning approach can be prone

to noise due to the iterative and cooperative way in which the ensembles are

constructed [76][180]. For example, poor base classifiers in the early stages of the

evolution can also bias the way the ensemble is optimised in the early stages of

the evolution.

The second method invokes a secondary training phase to optimise the

ensemble weights (typically via a genetic algorithm), after the initial training

phase to learn the base classifiers [37][180]. This method is typically favoured

7.1. INTRODUCTION 183

over co-evolutionary approaches as it decouples (or separates) the ensemble

optimisation process and the initial training phase to learn the base classifiers,

allowing researchers to focus on one aspect at a time. Some approaches also

use an extra validation set for the secondary training phase [37][180]. However,

a major limitation of weight-based approaches for ensemble selection is that

fine-tuning the individual weight values can be difficult and time consuming,

particularly when the pool of base classifiers is large (i.e. there are many weights

to configure) [180]. Fine-tuning this weight vector must account for the different

relationships (or correlations) between individuals where good individuals must

be assigned high weight values, while poor-performing (or non-contributing)

individuals must also be assigned low weight values; otherwise, the weight

vector risks also including non-contributing members in the ensembles. Even

in simpler bit-string representations (where each bit specifies whether a member

is included or not in the ensemble), the (optimised) ensemble may not necessarily

be much smaller than the original ensemble, unless sparcity of the weight-vector

or bit-string is explicitly encouraged in the optimisation process [39].

7.1.2 Composite Genetic Program Solutions

To address these limitations, this chapter develops an ensemble selection ap-

proach using GP where the optimised ensemble is represented as a composite

solution of base classifiers (i.e. Pareto front solutions). A composite solution is

a single genetic program comprising of a subset of diverse Pareto front solutions

which cooperate well together in the ensemble. This genetic program repre-

sentation for combining Pareto front individuals into composite solutions has

two advantages over traditional weight-based and bit-string ensemble selection

approaches. Firstly, by limiting the sizes of the composite solutions in the

evolution to small GP trees, small but highly diverse subsets of Pareto front

individuals are selected in the (pruned) ensembles, due to selection pressure

for the limited positions within the composite solutions. Secondly, configuring

different function sets for the composite solutions allows the outputs of the

individual solutions within a composite tree to be manipulated in different ways

to control what the composite tree computes and thus, the output of the ensemble.

This chapter develops two types of composite solutions to represent the

(optimised) ensembles. The first uses composite voting solutions (CSVote) to

represent traditional voting-based ensembles. The second uses logical operates

to combine and manipulate the outputs of the individuals within the composite

184 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

solutions. These composite logical solutions (CSLogic) allow the (optimised)

ensembles more “decision making” abilities when classifying the input instances

compared to the traditional voting-based ensembles (CSVote). The performances

of the evolved composite solutions are also compared to the off-EEL algorithm

[76] for ensemble selection on the tasks.

7.1.3 Chapter Goals

The main goal of this chapter is to develop a GP approach to ensemble selection

using composite solutions to find diverse combinations (or subsets) of Pareto

front individuals that cooperate well together in the ensemble. Two sub-goals are

investigated. The first sub-goal is to compare which of the two types of composite

solutions (CSVote and CSLogic) shows better generalisation on the tasks. The

second sub-goal is to investigate whether the same training data is sufficient

to learn/evolve both the base classifiers (in MOGP) and composite solutions,

or whether an additional validation set (to evolve the composite solutions) can

improve ensemble performances on the tasks.

7.2 Composite Solutions

This section first discusses why ensemble selection should be treated as a

combinatorial optimisation problem, and then outlines the new approach using

composite solutions for ensemble selection. The latter part includes an overview

of the process for evolving a composite solution for ensemble selection, and the

structure of the composite solutions in terms of their terminal and function sets.

7.2.1 Ensemble Selection as a Combinatorial Optimisation Prob-

lem

As discussed, the major limitation of fitness-based ensemble selection approaches

is the linear way in which the ensembles are constructed using the fitness of

the base classifiers. To illustrate this point using an example, consider the off-

EEL algorithm [76] for ensemble selection (from the previous chapter). This

algorithm first sorts the Pareto front solutions according to their fitness values

on the training set, to establish an ordering of individuals based on their accuracy

and diversity on the two classes. Assuming that there are T Pareto front solutions,

this algorithm constructs T intermediate ensembles by iteratively copying each

7.2. COMPOSITE SOLUTIONS 185

individual from the ordered Pareto front into the ensemble. At each step, the

intermediate ensemble (which contains one more individual than the ensemble

from previous step) is evaluated on the training set. Once all Pareto front

solutions are processed, the ensemble with the highest accuracy is taken as the

final (optimised) ensemble.

This linear ordering of Pareto front solutions by fitness does not guarantee

that the fittest N solutions (in this ordered list) are diverse relative to each other.

In the PFC-based MOGP approach, an individual’s fitness represents its accuracy

and diversity relative to all other solutions in the population (as the PFC measure

is a population-based diversity estimate). This means that each individual’s

diversity estimate is relative to every other in the population, dominated and

non-dominated solutions alike. To establish which Pareto front solutions have

the best diversity relative to other Pareto front solutions, the PFC measure must

be re-applied to different subsets of solutions.

As the space of all possible subsets of solutions on a given Pareto front is large

(2T−1 subsets1 for a Pareto front of T solutions), finding highly diverse subsets of

individuals that cooperate very well together is a difficult combinatorial problem.

To describe this idea more clearly, let X = {p1, p2, p3, ..., pT} be a set of T non-

dominated individuals in the population, and let the function div(Y) calculate

the diversity (i.e. overlap of common errors) on the training set between only

those individuals in subset Y ⊆ X . To find the subset Y with the best diversity

on the training set (to represent the pruned ensemble), div(Y) must be evaluated

for all possible subsets of Y , e.g., {p1}, {p1, p2},{p1, p2, p3}, {p1, p2, p4}, etc. An

exhaustive search to explore all possible subsets of Y is impractical as each div(Y)

estimate uses one pass through the training set. This represents a computationally

expensive and time-consuming task, particularly for large ensembles and data

sets.

This chapter addresses this issue by developing a GP-based evolutionary

search to quickly explore different combinations of highly cooperative subsets

of Pareto front solutions to form the ensembles. This evolutionary search takes,

as input, the evolved set of Pareto front classifiers returned from a MOGP run,

and evolves a composite solution which represents an amalgamation of highly

diverse and accurate individuals.

1This number includes single-member ensembles, i.e., ensembles using a winner-takes-all

voting strategy (where the output of the ensemble corresponds to the output of the single

member). Naturally this number will be smaller if a minimum cardinality of three is assumed

for the ensembles (three members mean no draws can occur in the voting process.

186 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

p

Input is MOGP

Output is optimised ensemble

Pareto front

Ensemble

Evolve M composite
solutions using GP

(M separate GP runs)

Select ensemble
with highest class

accuracy

Construct T

using Off−EEL
intermediate ensembles

the test set
accuracy on

Report ensemble

optimisation

T1 2 3 ... ppp

Figure 7.1: Overview of the process for ensemble selection using composite

solutions and off-EEL [76] for a given set of base classifiers (evolved Pareto front

from a MOGP run).

7.2.2 Composite Trees for Ensemble Selection

An overview of the process for combining Pareto front solutions into composite

solutions for ensemble selection is shown in Figure 7.1 (for a given MOGP run).

Figure 7.1 also shows how off-EEL [76] is used for ensemble selection, to highlight

the main difference between these two approaches (as both methods are used

in the experimental results). In Figure 7.1, the composite solutions and off-EEL

take, as input, an evolved set of Pareto front classifiers from a given MOGP run.

The evolutionary search to evolve composite solutions is repeated M times, each

with a different random starting seed. This means that M separate GP runs are

executed for the same input set of Pareto front solutions (M is set to 30 in the

experiments), where each GP run returns a single evolved composite solution.

After M GP runs there will be a total of M evolved composite solutions, i.e.,

M (optimised) ensembles. The composite solution with the highest (average)

accuracy on the minority and majority class (on the training set) is taken as

the final optimised ensemble (for that particular MOGP run). The optimised

ensemble is then evaluated on the test set.

This overall process is similar for off-EEL except for two major differences.

Firstly, off-EEL constructs T intermediate ensembles where T is the number of

solutions in the given Pareto front. This means that T is variable and depends

7.2. COMPOSITE SOLUTIONS 187

M
aj

or
ity

 A
cc

Output Class Label

p2p1 p8 Ø

∧∨

∨

Ø

1 2
3

4
5

6
7

8 p6

Pareto Front

Minority Acc

p5

(a) Pareto front (b) Composite solution

Figure 7.2: Combining a subset of Pareto front solutions (from a given MOGP

run) into a single composite solution.

on the current input set (i.e. Pareto front from a given MOGP run), whereas

M for the composite solutions remains fixed in all GP experiments. Secondly,

off-EEL constructs each intermediate ensemble in a deterministic process (by

iteratively copying an individual from the Pareto front into the ensemble until all

individuals are processed). In contrast, each composite solution is evolved using

GP, which is a stochastic process.

Although the composite solutions are described in the context of the MOGP

approach in Figure 7.1, they are not restricted to genetic program classifiers

and can also be used in conjunction with any underlying ensemble learning

algorithm.

7.2.3 Structure of Composite Solutions

A tree-based structure is used to represent the composite solutions. This structure

is decomposed into the terminal and function sets.

Terminal Set

The terminal set used to represent composite solution trees is

{∅, p1, p2, ..., pT}

where the terminal symbol pi represents a link to the ith base classifier from

the set of T Pareto front solutions (from a particular MOGP run) as shown in

Figure 7.2. Figure 7.2(a) represents the evolved Pareto front (base classifiers)

returned from an MOGP run (along the minority and majority class axis),

while Figure 7.2(b) shows a composite solution which combines together many

different base classifiers. In this composite solution, the leaf-nodes link to the

corresponding base classifiers on the Pareto front. The same base classifier can

188 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

Base classifier p1 p2 p5 p6 p8

Raw output 1.6 -12.3 -0.5 0.5 1.0

Class Label 1 0 0 1 1

Figure 7.3: Raw (real-valued) output values and predicted class labels for five

Pareto front solutions pi (when evaluated on a given input). Raw outputs are

mapped to class labels using zero as the class threshold.

also be represented by different leaf-nodes in the composite solutions. In other

words, two or more distinct leaf-nodes in a composite solution can link to the

same Pareto front solution. This particular scenario is discussed in more detail in

the next section.

The terminal set symbol ∅ represents a null-valued terminal, used as a “blank”

input argument to a particular function node. Allowing null-valued terminals in

the composite solutions varies the number of base classifiers within any given

composite solution, rather than insisting that every leaf-node in a composite

solution maps to a base classifier. For example, the composite solution in

Figure 7.2 uses five base classifiers (to represent the optimised ensemble) whereas

there are exactly seven leaf-nodes; the remaining two leaf-nodes are null-valued

terminals.

The meaning of the two function nodes in Figure 7.2(b) (∧ and ∨) is discussed

in the subsequent sections.

When a composite solution is executed (i.e. evaluated on a given input

instance), the ith base classifier representing terminal node pi is first executed,

and the predicted class label of this base classifier is taken as the return value of the

terminal node. As there are exactly two classes in these data sets, binary values

0 or 1 are used to represent the two predicted class labels. As the raw output

of a base classifier (when evaluated on a given input instance) is a real number,

this number is mapped to the two class labels using zero as the class threshold,

i.e., 1 (minority class) if the base classifier’s raw output is zero or positive, or 0

(majority class) otherwise.

For example, let Figure 7.3 show the raw (real-valued) outputs when the five

base classifiers (p1, p2, p5, p6 and p8) from Figure 7.2 are evaluated on a given

input instance from the minority class. Figure 7.3 also shows the predicted class

labels for these base classifiers, which forms the leaf node values of the composite

solution in Figure 7.2 (when evaluated on this input instance).

The terminal nodes in the composite solutions use binary values (and not the

real-valued raw outputs of the base classifiers) so that the composite solutions

7.2. COMPOSITE SOLUTIONS 189

act on the predicted class labels of the base classifiers. This rationale is made

clearer in the next section when the function sets for the composite solutions are

described.

7.2.4 Functions in Composite Trees

The structure (discussed earlier) to represent the composite solutions is chosen

for two important reasons. Firstly, the leaf-nodes in the terminal set provides

a mechanism to link together multiple base classifiers into a single composite

solution. Secondly, the function set (discussed below) provides a flexible

mechanism to control how the outputs of the base classifiers are processed within

a composite solution and thus, how the final output of the composite solution is

determined. By configuring different types of function nodes, the outputs of the

base classifiers within a composite solution can be manipulated to change what

the composite solution computes.

To address the second goal of this chapter, two types of function sets are

compared to combine the outputs of the base classifiers within the composite

solutions. The first function set uses a majority-vote of each base classifier

within a given composite solution. Using this function set, the composite

voting solutions (CSVote) represent subsets of highly diverse base classifiers that

cooperate well together when combined in the ensemble voting process. As the

return types of the terminal nodes (i.e. base classifiers) in the composite solutions

are (binary) class labels, The CSVote trees output a class label.

The second function set uses logical operators in the composite solutions to

transform the composite solutions into logical expressions. By manipulating the

(binary-valued) class predictions of the base classifiers within a composite logic

solution (CSLogic), the CSLogic trees are allowed stronger “decision making”

ability when classifying the input instances (compared to the CSVote approach).

The CSLogic trees also output a class label.

The CSVote and CSLogic approaches are described below.

Composite Voting Solutions (CSVote)

To transform a composite solution into an ensemble where each member votes

on class membership, the CSVote approach uses a function set consisting of a

singleton function {vt}. This function is used in two ways. Firstly, when vt is the

root node in a CSVote tree, the function computes the majority vote of each base

classifier within the tree. Secondly, when vt corresponds to an internal (non-leaf)

190 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

vt

Output Class Label

p2p1 p8 p6 Ø

Ø

vt

vt

p5

=⇒

= vt (vt(p5, p1, p8), ∅, vt(p6, p2, ∅))
= vt(p5, p1, p8, p6, p2)

= vt(0,1,1,1,0)

= 1

(a) CSVote Tree (b) Evaluating CSVote Tree

Figure 7.4: Composite voting solution (CSVote) and evaluation of this CSVote

tree using terminal node values from Figure 7.3 (tree output is the class label 1

denoting the minority class).

node in a CSVote tree, this function serves no purpose other than to join terminal

(leaf) nodes or other vt nodes to the root node. In this case, these internal vt nodes

simply pass each of its input arguments up the tree to the root node. This function

takes exactly 3 input arguments, which can be other function nodes or terminals

nodes.

Only allowing the root to process the majority vote of all the base classifiers in

the CSVote tree treats each vote as equally important in the voting process. It is

important to note that the output of CSVote tree can be different if each internal

(non-leaf) vt node computes the majority vote of its input arguments alone. This

particular scenario is outlined in more detail in the next section (which discusses

the function set for CSLogic).

Figure 7.4(a) shows a CSVote tree comprising of the five base classifiers .

whose predicted class labels (on a given input instance) are shown in Figure

7.3. Using these terminal node values for the base classifiers, Figure 7.4(b) shows

how this CSVote tree is evaluated to obtain its output. When this CSVote tree is

executed, the (binary) class labels returned from the base classifiers are taken as

the terminal node values, and the two internal function nodes pass each of its

input arguments up to the root node of the tree. When the ∅ terminal nodes are

encountered, no value is passed up to the root node. The root node then computes

a majority vote of these five class labels, and outputs a class label of 1 (denoting

the minority class).

When two or more distinct leaf-nodes in a composite solution link to the same

base classifier, each distinct leaf-node is counted as a separate vote in the voting

process. For example, if one of the ∅ terminal nodes in Figure 7.4(a) is replaced

with the node value p2, then the predicted class label for this classifier will be

counted twice in the voting process. This is permitted to provide some base

7.2. COMPOSITE SOLUTIONS 191

<

Output Class Label

p2p1 p8 p6 Ø

vf p2 <

p5

=⇒

= vf(p5, p1, p8) ∨ p2 ∨ (p2 ∧ p6 ∧ ∅)
= vf(0, 1, 1) ∨ 0 ∨ (0 ∧ 1)

= 1 ∨ 0 ∨ 0

= 1

(a) CSLogic Tree (b) Evaluating CSLogic Tree

Figure 7.5: Composite logic solution (CSLogic) and evaluation of this CSLogic

tree using terminal node values from Figure 7.3 (tree output is the class label 1

denoting the minority class).

classifiers with a stronger influence in the voting process; selection pressure in

the evolution determines which base classifiers are assigned this privilege.

In the case of a tie when the two classes have the same number of votes, the

minority class label (i.e. 1) is chosen.

Composite Logical Solutions (CSLogic)

To transform a composite solution into a logical expression, the composite logical

solutions (CSLogic) use a function set consisting of three functions {∧,∨, vf}.
These functions take 3 input arguments. The function ∨ represents a logical

disjunction and returns 1 whenever one or more of its input arguments is 1 (0

otherwise), while the function ∧ represents a logical conjunction and returns 1

only if all of its input arguments are 1 (0 otherwise).

The function vf represents a majority vote of all its input arguments. This

function returns 1 if two or more of its input arguments are 1, or returns 0 if

two or more of its input arguments are 0. In the case of a tie (e.g. if the three

input argument are 0, 1 and the ∅ symbol, respectively), the minority class label

is returned (i.e. 1). Unlike in the CSVote trees where only the root node computes

the majority vote of all base classifiers, each internal node in this configuration

computes a new value (based on its input arguments) to pass up the tree. This

provides the internal function nodes in the CSLogic trees some “decision making”

ability when processing the inputs.

Figure 7.5(a) shows an example CSLogic tree comprising of the five base

classifiers whose outputs (on a given input instance) are shown in Figures 7.3.

Using the same terminal node values for the base classifiers from Figure 7.3,

Figure 7.5(b) shows how the corresponding logical expression is evaluated (for

this input instance) to obtain its output. Note that the ∅ symbol nodes are

192 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

ignored when the CSLogic tree is interpreted. The final class label returned by

this CSLogic tree is also 1.

7.3 Experimental Setup for Composite Solutions

This section outlines the experimental setup to evolve composite solutions. This

includes a discussion on which MOGP approach (from the previous chapter)

is used to train the base classifiers, the GP evolutionary parameters used to

evolve the composite solutions, and the two configurations used to train/test the

composite solutions.

7.3.1 Underlying MOGP Base Classifiers

The PFC-based MOGP approach (from the previous chapter) is used to generate

the pool of base classifiers (i.e. evolved Pareto front solutions). These base

classifiers are used as the input to the evolutionary process to learn the composite

solutions where the ith run to evolve a given CSVote or CSLogic tree (to represent

the pruned ensemble), uses the Pareto front returned from the ith MOGP run.

The PFC-based MOGP approach is chosen (and not the NCL-based MOGP

or the Baseline MOGP from the previous chapter), as this approach is shown to

find individuals with better diversity than the other two MOGPs. The previous

chapter shows that the evolved Pareto front solutions using the PFC-based

MOGP exhibit better cooperation between ensemble members, particularly with

off-EEL, than the other two MOGP approaches on the tasks.

It must be noted that although the composite solutions are evaluated in the

context of the PFC-based MOGP approach (i.e. MOGP used to learn the base

classifiers), the CSVote and CSLogic approaches are not restricted to genetic

program classifiers. The composite solutions approach can be used in conjunction

with any underlying learning algorithm to generate the base classifiers. However,

evaluating the CSVote and CSLogic approaches with base classifiers generated

from other learning algorithms is outside the scope of this work.

7.3.2 Evolutionary Parameters

Sizes of Composite Solution

As the goal of the CSVote and CSLogic approaches are to discover small and

highly cooperative subsets of base classifiers, a restriction is imposed on the

7.3. EXPERIMENTAL SETUP FOR COMPOSITE SOLUTIONS 193

(a) Tree depth is 2 (b) Tree depth is 3

Figure 7.6: Fully formed composite trees of depth 2 and 3.

maximum tree depth allowed in the evolution. This forces the evolution

of smaller composite solutions, i.e., trees comprising of fewer base classifiers,

compared to trees of larger depths. This reduces the risk of non-contributing base

classifiers being included in the CSVote and CSLogic trees (i.e. individuals that

do not positively contribute to the ensemble accuracy), due to more selection

pressure for the limited positions within the composite solutions.

To achieve this, this chapter compares two maximum tree depth settings of 2

and 3 for the composite solutions. The depth of a tree corresponds to the number

of edges in the longest path from the root node to a given leaf node. When the

tree depth is limited to 2, a composite solution can include, at most, nine base

classifiers as the function nodes take exactly three input arguments, as shown

in Figure 7.6(a). Likewise, when the tree depth is restricted to 3, a composite

solution can use, at most, 27 base classifiers, as shown in Figure 7.6(b). It is

important to reiterate that the CSVote and CSLogic trees of depths 2 and 3 can also

contain fewer than 9 and 27 base classifiers, respectively, due to the null-valued

terminal set symbol ∅. This symbol represents a “blank” input argument to a

given function node.

Single-member composite trees, i.e., CSVote or CSLogic trees with only one

terminal node that is not the ∅ symbol, are permitted in the evolution. A single-

member ensembles is akin to a winner-takes-all ensemble combination strategy

where the output of the ensemble corresponds to the output of a single member.

Other GP Parameters

A single GP run to evolve a single CSVote or CSLogic composite solution (for

a given MOGP Pareto front) is akin to the canonical (single-objective) GP (SGP)

approach from Chapters 3 and 4. The only major difference in these composite

solutions is that the base classifiers returned from a MOGP run are required as

input, in addition to the training set used to evaluate the fitness of the evolved

composite solutions.

194 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

Similar to the SGP configuration from Chapters 3 and 4, the ramped half

and half method is used to generate an initial population of composite trees.

Crossover, mutation and elitism rates are also 60%, 35% and 5%, respectively,

and the tournament selection size is 7.

The evolution is limited to 30 generations unless a composite solution with

100% accuracy on both classes on the training set is evolved, at which point the

evolution is stopped. A population size of 300 is used. These three parameters

(i.e. number of generations, population size and the maximum tree depth from

above) are the only parameters that are different to the SGP configuration from

Chapters 3 and 4, to ensure the training phase to evolve composite solutions is

relatively fast.

Fitness Function

The output of a composite solution (when evaluated on a given input instance) is

a class label. To evolve composite solutions with good classification accuracy on

both the minority and the majority classes, the fitness function uses the average

classification accuracy on the minority and majority class (on the training set) to

represent the fitness of a given composite solution.

7.3.3 Training Sets for Composite Solutions

To address the second sub-goal of this chapter, two configurations are used to

train and test the composite solutions on the tasks. These are outlined below.

Training Configuration 1

The main approach to train the CSVote and CSLogic composite solutions use

the same training set that is also used in MOGP to learn/evolve the ensemble

members (i.e. Pareto front solutions). Recall from the previous chapter that

in MOGP, half the examples in each class from the full (original) data sets are

randomly split into the training and the test sets. Both the training and the

test sets preserve the same class imbalance ratio as the original data set. For

convenience, these training and test sets are referred to as TRAIN50 and TEST50

in the experimental results.

Training Configuration 2

A limitation of the above training configuration is that the same training set

is used to learn/evolve both the individual base classifiers and the composite

7.4. EXPERIMENTAL RESULTS FOR COMPOSITE SOLUTIONS 195

solutions. This can potentially lead to overfitting. To avoid this, a second

configuration is also used to train the CSVote composite solutions. In this

approach, the original data sets are randomly split into three non-overlapping

subsets: a training set containing 40% of the data instances, a test set containing

40% of the data instances, and a “validation” set containing the remaining 20% of

the data instances. All three sets preserve the same class imbalance ratio as the

original data set.

In this experimental setup, the training set is kept aside to learn/evolve the

ensemble members (i.e. Pareto front solutions) in MOGP; while the “validation”

set is used to learn/evolve the CSVote composite solutions (i.e. pruned ensem-

bles). Strictly speaking, this is not a “validation” set, since a validation set is

primarily used to monitor the training process for the same algorithm rather

than in a two-stage training process. However, evolving composite solutions is a

further refinement process rather than a fully independent training process from

the original MOGP training process, and the goal is to avoid overfitting. We call

it here a “validation” set for convenience.

Similar to the previous training configuration (discussed above), the test set is

used to evaluate the ensemble on the unseen input instances.

For convenience (and to distinguish these learning sets from the previous

configuration) the training, validation and test sets in this configuration are

referred to as TRAIN40, VALIDATION20 and TEST40, respectively, in the experi-

mental results. The data sets are partitioned in this way for two reasons. Firstly,

to ensure that the ensemble members and the composite solutions are trained

using different (non-overlapping) learning instances. Secondly, to ensure that the

learning data used in the combined (two-stage) training process (TRAIN40 and

VALIDATION20) is not substantially larger than the unseen test set (TEST40).

7.4 Experimental Results for Composite Solutions

This section presents the experimental results on the tasks, and has four main

parts. The first three parts use the first training configuration to evolve the

composite solutions and compare these results to the Off-EEL algorithm [76]. The

fourth part uses the second training configuration and and focuses on how these

evolved composite solutions compare to those evolved using the first training

configuration.

196 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

Table 7.1: Ensemble accuracy (± standard deviation) on the test set, and average

ensembles size (minimum ensemble size in parenthesis), for the CSVote and

CSLogic approaches to ensemble selection (over 50 runs) when the maximum

composite solution tree depth is 2 and 3.

Max. CSVote Results CSLogic Results

Dep. Num. Minority Majority Num. Minority Majority

Ion 2 8.9 (7) 84.8 ± 4.6 95.8 ± 2.4 8.3 (6) 80.6 ± 5.7 92.4 ± 4.5

3 21.6 (9) 81.9 ± 5.3 91.9 ± 6.2 26.5 (13) 67.6 ± 30.0 70.7 ± 32.2

Spt 2 8.8 (7) 63.6 ± 6.2 81.7 ± 4.5 9.0 (9) 54.9 ± 5.9 82.9 ± 4.0

3 17.7 (7) 55.7 ± 7.3 85.7 ± 3.9 23.3 (7) 51.1 ± 31.9 81.2 ± 23.1

Ped 2 8.7 (7) 88.1 ± 2.3 90.4 ± 2.4 9.0 (9) 85.0 ± 3.0 86.9 ± 3.0

3 25.7 (9) 90.7 ± 2.2 88.1 ± 3.0 24.0 (11) 87.8 ± 2.1 88.8 ± 2.0

Yst1 2 9.0 (9) 71.3 ± 5.9 77.7 ± 6.0 8.9 (7) 64.6 ± 3.9 81.4 ± 3.1

3 17.5 (7) 67.8 ± 5.1 77.9 ± 4.8 26.9 (10) 56.5 ± 36.5 65.9 ± 34.0

Yst2 2 9.0 (9) 93.1 ± 2.4 90.7 ± 2.3 8.7 (3) 86.1 ± 4.2 93.4 ± 1.9

3 16.4 (9) 88.8 ± 7.8 90.2 ± 3.8 19.2 (4) 76.0 ± 27.9 78.7 ± 23.4

Bal 2 8.7 (1) 80.7 ± 8.3 89.4 ± 6.1 8.8 (1) 71.1 ± 14.7 91.7 ± 4.7

3 12.6 (7) 74.3 ± 13.0 86.8 ± 7.6 17.1 (9) 54.5 ± 36.4 79.4 ± 23.3

7.4.1 Ensemble Accuracy for Composite Solutions

Table 7.1 shows the ensemble performances and the ensemble sizes for the CSVote

and CSLogic approaches (over 50 runs) on the test set (TEST50) for maximum tree

depths of 2 and 3. These composite solutions are evolved using the first training

configuration (i.e. using TRAIN50). Recall that when the maximum tree depth is 2,

the CSVote and CSLogic ensembles can contain, at most, 9 base classifiers. When

the tree depth is 3, the ensembles can contain, at most, 27 MOGP base classifiers.

Table 7.1 also includes the minimum ensemble size (over 50 runs) in parenthesis

alongside the average ensemble size.

According to Table 7.1, the smaller ensembles (maximum tree depth is 2)

generally show better performances than the larger ensembles (maximum tree

depth is 3) for both the CSVote and CSLogic approaches on the tasks. The

smaller ensembles dominate the larger ensembles in four tasks for CSVote (all

except Spt and Ped), and in five tasks for CSLogic (all except Ped). This

suggests that the smaller composite solutions contain a more diverse set of base

classifiers that cooperate better together than the larger composite solutions, as

the larger composite solutions include some members that negatively affect the

generalisation ability of these ensembles on the test set.

For the CSLogic approach in particular, the larger ensembles show substan-

7.4. EXPERIMENTAL RESULTS FOR COMPOSITE SOLUTIONS 197

tially poorer minority and majority class accuracies than both the smaller CSLogic

ensembles and the CSVote ensembles in these tasks. This suggests that the logical

expressions represented by the larger CSLogic solutions may be overly sensitive

to the training data, as this approach shows poor generalisation on the test sets.

The CSVote approaches do not suffer from this problem to the same extent as the

CSLogic approaches. This suggests that the voting-based approach to combine

the predictions of the individual members in CSVote may be more robust than

the logical expressions, particularly as the ensemble sizes increase.

Further Analysis: Composite Solution Sizes

The minimum ensemble sizes (over 50 runs) are shown in Table 7.1 to verify

whether any of the evolved CSVote and CSLogic composite solutions represent

single-member ensembles. Table 7.1 shows that a single-member composite solu-

tion is found for both the CSVote and CSLogic approaches when the maximum

tree depth is 2 in one task, Bal. In the remaining tasks, the minimum ensemble

sizes are all greater than 1.

A closer examination of these results for Bal reveals that both the CSVote and

the CSLogic solutions with an ensemble size of 1 occurs in exactly one GP run,

and this is the same run for both CSVote and CSLogic. In this particular run, both

CSVote and CSLogic solutions also selected the same base classifier to represent

the single-member ensemble. This base classifier corresponds to the only Pareto

front solution to achieve 100% accuracy on the minority and the majority classes

on both the training and the test sets (in all 50 MOGP runs). This particular base

classifier was mentioned in the previous chapter (in Section 6.4.2 on page 154)

since this solution represents a perfect Pareto Optimal hyperarea of 1 for this

MOGP approach (i.e. MOGP with PFC). This demonstrates the usefulness of

the GP approach to explore different subsets of base classifiers for pruning the

ensemble in one instance.

7.4.2 Comparison with Off-EEL for Ensemble Selection

The CSVote and CSLogic approaches are also compared to off-EEL [76] to

measure their effectiveness on the tasks as all three approaches aim to optimise

which individuals to choose in the ensembles. For convenience, the off-EEL

ensemble results from the previous chapter are repeated in Table 7.2; these

correspond to the ensemble accuracies on the test sets (TEST50) using TRAIN50

in the training process in MOGP. As the smaller CSVote and CSLogic composite

198 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

Table 7.2: Ensemble accuracy (± standard deviation) on the test set and average

ensembles size using off-EEL [76], CSVote and CSLogic (maximum tree depth of

2) for ensemble selection (over 50 runs).

Tasks
off-EEL CSVote CSLogic

Size Minority Majority Size Minority Majority Size Minority Majority

Ion 21.2 83.9 ± 5.2 96.6 ± 2.8 8.9 84.8 ± 4.6 95.8 ± 2.4 8.3 80.6 ± 5.7 92.4 ± 4.5

Spt 10.7 66.3 ± 8.5 79.9 ± 6.6 8.9 84.8 ± 4.6 95.8 ± 2.4 8.3 80.6 ± 5.7 92.4 ± 4.5

Ped 55.2 90.6 ± 1.5 87.9 ± 1.5 8.7 88.1 ± 2.3 90.4 ± 2.4 9.0 85.0 ± 3.0 86.9 ± 3.0

Yst1 29.2 70.6 ± 5.4 78.8 ± 5.5 9.0 71.3 ± 5.9 77.7 ± 6.0 8.9 64.6 ± 3.9 81.4 ± 3.1

Yst2 17.2 93.1 ± 2.6 90.8 ± 2.4 9.0 93.1 ± 2.4 90.7 ± 2.3 8.7 86.1 ± 4.2 93.4 ± 1.9

Bal 10.9 81.4 ± 12.1 86.2 ± 9.1 8.7 80.7 ± 8.3 89.4 ± 6.1 8.8 71.1 ± 14.7 91.7 ± 4.7

solutions generally show better results than the larger composite solutions

on these tasks (as discussed earlier), this comparison focuses on the evolved

composite solutions with a maximum tree depth of 2 (i.e. pruned ensembles that

use, at most, 9 members). For convenience, Table 7.2 also includes these CSVote

and CSLogic results (repeated from Table 7.1 in the previous section) when the

maximum tree depth is 2.

According to Table 7.2, the CSVote approach achieves non-dominated ensem-

ble performance compared to off-EEL in all tasks. This is not surprising as

both methods use the majority vote to combine the outputs of their individual

members, and suggests that these two methods are similarly effective in finding

good individuals for the ensemble. The CSLogic approach is dominated by off-

EEL in one task (Ion), and is non-dominated relative to off-EEL in the remaining

five tasks.

Notice that the CSVote approach achieves similar (non-dominating) perfor-

mances to off-EEL using fewer individuals in the ensemble compared to off-

EEL. This demonstrates the usefulness of the secondary evolutionary search in

the CSVote approach to finding small groups of individuals that cooperate well

together. The evolutionary search to evolve CSVote solutions is reasonably fast,

taking between 0.2 and 5 seconds on the tasks (this is approximately 2–3% of the

training time to evolve a MOGP front).

Comparing Ensemble Wins

To compare which of the three ensemble selection approaches (CSVote, CSLogic

and off-EEL [76]) statistically dominates each other on the tasks, and which

achieves a higher total number of wins over all runs and tasks, Table 7.3 shows

the pairs of ensemble wins between two approaches when each is compared with

every other (on a run-by-run basis) for 50 runs. Recall (from the previous chapter)

7.4. EXPERIMENTAL RESULTS FOR COMPOSITE SOLUTIONS 199

Table 7.3: ”Win” pairs between two MOGP approaches (on a run-by-run basis)

over 50 runs for three ensemble selection strategies (CSVote, CSLogic and off-

EEL [76]). A “win” is when one approach dominates the other on a given run.

Total wins (and draws) is the sum of wins (and draws) over all runs and tasks (50

runs × 6 tasks). Bold results indicate a statistically significantly better ensemble

performance (95% significance level).

Task CSVote CSVote CSLogic

Task vs CSLogic vs off-EEL vs off-EEL

Ion 35,1 8,12 5,33

Spt 17,2 7,9 2,9

Ped 22,2 2,9 2,12

Yst1 6,1 5,4 1,11

Yst2 5,0 7,9 0,4

Bal 8,5 11,6 7,9

Total Wins 95,11 40,49 17,78

Total Draws 194 211 205

that a “win” is when one approach dominates the other, and a “draw” is when

both approaches are non-dominated, for a given run. The CSVote and CSLogic

ensembles in Table 7.3 use composite solutions with a maximum tree depth of

2 (i.e. ensemble sizes of, at most, 9 members). Table 7.3 corresponds to the

ensemble wins on the test set (TEST50) when both the composite solutions and the

base classifiers are training using TRAIN50 in MOGP. The statistically significantly

better ensemble strategy, denoted by a higher number of wins, is highlighted in

bold (at a 95% confidence level). The last two rows in Table 7.3 show the total

number of wins for each pair, and the total number of draws (non-dominated

performances), summed over all 50 runs for the six tasks (300 total runs).

Table 7.3 shows that that over all runs and tasks, the CSLogic ensembles

achieve a relatively low number of total wins when compared to both the CSVote

and off-EEL approaches. When compared to CSVote, CSLogic has 11 total wins

while CSVote has 95; when compared to off-EEL, CSLogic has 17 total wins while

off-EEL has 78. This is because both the CSVote and off-EEL achieve (statistically)

significantly better ensemble performances than CSLogic in four and five tasks,

respectively. As previously mentioned, this suggests that the voting strategy

used in CSVote (and off-EEL) to combine the outputs of the individual members

produces better results than the logical function represented by the CSLogic

solutions. This may be because the voting strategy is better able to generalise

200 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

between training and test data, or is more robust to noise in the test set.

Table 7.3 shows that when the CSVote and off-EEL approaches are compared

to each other, the total number of wins (over all tasks) is very similar for both

approaches. The off-EEL ensembles achieve a (statistically) significantly better

performances than CSVote in only one task (Ped). This shows that the secondary

evolutionary search to prune the ensembles in CSVote produces similar results

compared to the greedy search in off-EEL [76] on these tasks. However, the

computational effort required to evolve CSVote solutions is substantially higher

than the Off -EEL algorithm. A possible reason why the ensemble performances

for CSVote are not better than off-EEL is that the evolved composite solutions

may be over-trained; this possibility is explored further in the next section below.

7.4.3 Training Performances for Composite Solutions

As mentioned above, the evolved CSVote and CSLogic solutions may suffer

from overfitting as both the composite solutions and the base classifiers are

evolved using the same training set. To investigate if overfitting has occurred,

Table 7.4 shows the ensemble performances on the training set (TRAIN50) for

the three approaches (CSVote, CSLogic and off-EEL) over 50 runs. These results

for the CSVote and CSLogic approaches use, at most, 9 members in the pruned

ensembles (i.e. maximum tree depth is 2).

Table 7.4 show that both the CSVote and CSLogic approaches achieve very

high accuracies on both classes for the training sets. In some tasks (such as

Ion, Spt and Bal), this is nearly 100% accuracy on both classes. The composite

solutions, particularly CSVote, also have higher minority and majority class

accuracies than off-EEL on the training set in nearly all tasks (except Ped where

these methods are non-dominated to each other). The results in Table 7.1 (on

the test sets) for both CSVote and CSLogic are substantially poorer than some of

these training performances, in particular Ion, Spt and Bal. This suggests that the

CSVote and CSLogic approaches are over-fitted to the training set in these tasks.

On the other hand, the training performances for off-EEL are not as good as

the CSVote and CSLogic approaches in Table 7.4, and only slightly better than

the off-EEL results on the test set (from Table 7.2). This suggests that the off-EEL

ensembles suffer less overfitting (if any) compared to the CSVote and CSLogic

approaches in nearly all tasks.

In the Ped task, all three approaches (CSVote, CSLogic and off-EEL) show

relatively similar accuracies on both the training and test sets, suggesting that

7.4. EXPERIMENTAL RESULTS FOR COMPOSITE SOLUTIONS 201

Table 7.4: Ensemble performances on the training set (TRAIN50) for the ensemble

selection approaches (CSVote, CSLogic and off-EEL [76]) over 50 runs.

Off-EEL CSVote CSLogic

Minority Majority Minority Majority Minority Majority

Ion 97.0 ± 2.2 98.0 ± 1.5 99.2 ± 1.1 99.0 ± 1.0 99.6 ± 0.8 99.4 ± 0.7

Spt 92.4 ± 5.8 91.4 ± 1.8 100.0 ± 0.0 92.8 ± 0.7 99.9 ± 0.5 90.9 ± 1.2

Ped 92.6 ± 1.9 90.1 ± 2.6 91.7 ± 1.1 92.0 ± 1.5 91.2 ± 1.3 85.1 ± 1.3

Yst1 83.0 ± 3.3 84.8 ± 3.7 88.1 ± 3.1 86.3 ± 2.5 88.5 ± 2.3 87.2 ± 2.2

Yst2 91.6 ± 2.9 95.5 ± 1.4 97.4 ± 1.7 94.2 ± 1.4 97.5 ± 1.7 95.0 ± 1.3

Bal 93.8 ± 6.4 90.3 ± 5.5 99.7 ± 1.0 96.2 ± 4.4 98.7 ± 2.2 94.7 ± 3.2

no overfitting is occurring in this task. This is most likely due to the very large

number of training examples in this data set (Ped is considerably larger than the

other tasks).

However, Table 7.4 nevertheless illustrates the effectiveness of the composite

solutions for ensemble selection, as the training performances of the CSVote and

CSLogic ensembles dominate the training performance of the off-EEL ensembles.

The CSVote and CSLogic ensembles achieve near-perfect classification accuracies

on both classes during the training process. Neither the individual ensemble

members nor off-EEL can accomplish this during the training process. The

CSVote and CSLogic approaches can be particularly useful in optimisation

problems or online learning which does not need an unseen test set.

To try to address to this overfitting issue, an extra “validation” set is used in

the secondary evolutionary search to learn/evolve the composite solutions. This

in explored further in the next section.

7.4.4 “Validation” Set in Composite Solution Training

To address the second subgoal of this chapter and the overfitting issue described

above, a separate “validation” set is used to learn/evolve the CSVote composite

solutions representing the pruned ensembles. Recall (from Section 7.3.3) that

in this experimental setup, TRAIN40 is used to learn/evolve the ensemble

members (i.e. Pareto front solutions) in MOGP; while VALIDATION20 is used

to learn/evolve the CSVote composite solutions (i.e. optimised ensembles). This

experimental setup investigates whether this extra “validation” set can improve

the generalisation ability of the CSVote composite solutions on the unseen test

data (TEST40).

Table 7.5 shows the performances of the evolved CSVote trees on these three

202 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

Table 7.5: Average performances of the CSVote approach trained using VALIDA-

TION20, and evaluated on TRAIN40 and TEST40 (over 50 runs).

On VALIDATION20 On TRAIN40 On TEST40

Minority Majority Minority Majority Minority Majority

Ion 99.4 ± 1.5 99.9 ± 0.4 96.6 ± 3.0 95.2 ± 3.7 85.8 ± 4.0 95.4 ± 2.4

Spt 98.0 ± 1.2 97.3 ± 1.1 90.2 ± 7.9 90.2 ± 4.5 63.5 ± 7.9 84.3 ± 4.6

Yst1 72.8 ± 7.9 84.8 ± 7.1 82.5 ± 8.5 75.4 ± 10.1 78.7 ± 6.9 78.2 ± 7.4

Yst2 97.9 ± 2.3 89.8 ± 2.3 94.4 ± 3.9 89.4 ± 7.1 95.6 ± 1.5 91.4 ± 2.1

Bal 100.0 ± 0.0 98.5 ± 1.9 94.9 ± 5.7 93.8 ± 5.7 81.9 ± 8.6 92.9 ± 4.9

data set partitions (VALIDATION20, TRAIN40 and TEST40) for all tasks except

Ped. Ped is omitted as no serious overfitting issues are seen in this task for

the CSVote approach (as discussed in the previous section). Furthermore, this

analysis focuses on the CSVote approach (and not the CSLogic approach) since

this type of composite solution generally shows better results on the tasks (as

discusses earlier), particularly when the maximum tree depth is limited to 2.

While the CSVote trees still show very high accuracies on the “validation” sets

in Table 7.5, their performance on the training and the test sets (TRAIN40 and

TEST40, respectively) is more consistent relative to each other. In other words,

the difference in performance between TRAIN40 and TEST40 for CSVote is not

as large as the difference between TRAIN50 and TEST50 (from Tables 7.4 and 7.1,

respectively, in previous sections). In one task in particular (Yst1), the CSVote

performance on TEST40 even dominates the performance on TRAIN40. This

suggests that the CSVote ensembles show less over-fitting on the training sets.

Table 7.5 also shows that the CSVote performances on the TEST40 are slightly

better than the CSVote performances on the TEST50 (from Table 7.1) on all tasks.

However, this difference in performance is not substantial in nearly all tasks

(except Yst1). Here the CSVote performances on TEST40 dominate the CSVote

performances on TEST50 by roughly 1–3% on the minority and the majority

classes. This suggests that the use of an extra “validation” set in the CSVote

training process can slightly improve ensemble performances on both classes

compared to using the same training set to learn/evolve both the ensemble

members and the CSVote solutions.

When the CSVote performances on TEST40 are compared to the off-EEL

ensembles on TEST50 (from Table 7.2), CSVote dominates Off-EEL on the three

tasks which have the highest level of class imbalance (Yst1, Yst2 and Bal). In

two of these tasks (Yst1 and Bal), CSVote on TEST40 shows substantially better

results than off-EEL on TEST50, improving either the minority or majority class

7.4. EXPERIMENTAL RESULTS FOR COMPOSITE SOLUTIONS 203

Table 7.6: Off-EEL performances using TRAIN40 to train the base classifiers and

VALIDATION20 to select the best ensemble members, and final performance on the

unseen test sets TEST40 (over 50 runs).

On VALIDATION20 On TRAIN40 On TEST40

Minority Majority Minority Majority Minority Majority

Ion 93.3 ± 4.8 98.9 ± 1.6 91.8 ± 7.0 98.8 ± 1.7 72.7 ± 7.4 95.0 ± 4.0

Spt 86.4 ± 8.4 87.1 ± 6.8 87.3 ± 9.4 86.5 ± 4.1 55.7 ± 10.9 84.5 ± 5.3

Yst1 67.4 ± 7.9 84.7 ± 7.4 80.5 ± 7.7 81.4 ± 8.0 74.5 ± 6.3 79.8 ± 8.3

Yst2 96.1 ± 3.9 87.5 ± 3.7 96.9 ± 2.1 88.9 ± 3.4 96.2 ± 1.5 88.5 ± 2.8

Bal 93.1 ± 11.3 89.1 ± 7.9 94.8 ± 9.6 90.4 ± 6.9 76.0 ± 14.4 87.0 ± 8.3

accuracy by approx 7–8% (with no trade-off in the accuracy of the other class). For

example, in Yst1, CSVote achieves roughly 78% accuracy on both the minority and

the majority classes; while off-EEL shows 70% and 78% accuracy on the minority

and majority class, respectively. This suggests that the CSVote approach trained

with the extra “validation” set can improve ensemble performances over off-EEL

on tasks with very high levels of class imbalance.

Off-EEL using “Validation” Set

Off-EEL is also evaluated using the second training configuration — these results

are shown in Table 7.6. In this scenario, the Pareto front is sorted according to

their fitness on the training set (TRAIN40), and the Off-EEL algorithm is evaluated

using the VALIDATION20 set. This means that the best ensemble performance on

VALIDATION20 is selected as the final off-EEL ensemble (for given MOGP run).

The final ensemble is then evaluated on the training set (TRAIN40) and the test

set (TEST40) to produce the results shown in Table 7.6 (over 50 runs).

According to Table 7.6, it not clear whether the test performances for off-EEL

with “validation” (on TEST40) are better or worse than the test performances

for off-EEL without “validation” from Table 7.2 (on TEST50). Off-EEL with

“validation” is dominated by off-EEL without validation in one task (Ion), and

dominates off-EEL without validation in one other task (Yst1). In the remaining

three tasks, both methods are non-dominated to each other. This means that

while the extra “validation” set slightly improves the generalisation ability of the

CSVote ensembles on most tasks, this is not the case for off-EEL.

As off-EEL shows no major improvement on the test set using the “validation”

set on most tasks (except Yst1), this suggests that choosing the individual mem-

bers based on the ensemble’s performance on the training set can be sufficient for

good performance on the test set (compared to using the “validation” set). This

204 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

may be because unlike CSVote, off-EEL does not use a secondary training phase

to optimise the ensembles.

However, the training performances for off-EEL with “validation” in Table 7.6

(on TRAIN40) are not as good as the training performances for off-EEL without

“validation” on Table 7.2 (on TRAIN50). In three tasks, the results for TRAIN50

dominate TRAIN40 (Ion, Spt and Yst1). In the remaining two tasks, these results

are not dominated to each other. This suggests that the “validation” set does

succeed in slightly improving the generalisation of the off-EEL ensembles since

the difference between TRAIN40 and TEST40 (in Table 7.6) is not as large as the

difference between TRAIN50 and TEST50 (in Table 7.2) where some overfitting has

occurred.

Not unexpectedly, Table 7.6 also shows that off-EEL on TEST40 is dominated

by CSVote on TEST40 (in Table 7.5) in two tasks (Ion and Bal). Here the minority

and majority class accuracies for CSVote are much better than off-EEL. While

these methods are non-dominated to each other in the remaining three tasks, in

two of these tasks (Yst1 and Yst2), CSVote also shows a much better balance in the

minority and majority class accuracies than off-EEL. As mentioned earlier, this is

because the “validation” set can generally improve ensemble performances in

CSVote but not in off-EEL for these tasks.

7.5 Summary

The main goal of this chapter was to develop a new GP approach to ensemble

selection to quickly find highly-cooperative subsets of individuals from the set

of Pareto front solutions evolved in MOGP. This goal was achieved by evolving

two types of composite solutions for ensemble selection. Composite solutions

represent multiple Pareto front individuals that are amalgamated together into a

single genetic program. The first type of composite solution, CSVote, represents

individuals whose outputs are combined using the traditional majority vote

strategy in the (pruned) ensemble. The second type of composite solution,

CSLogic, manipulates the outputs of individual members using logical operators,

to allow the ensembles more “decision-making” abilities.

Two sub-goals are considered in this chapter. The first compared which type

of composite solutions (CSVote and CSLogic) shows better generalisation on the

unseen test sets. The second investigated whether an additional “validation”

set, used in the evolution of the composite solutions, improves ensemble per-

formances on the unseen test sets compared to without. These are summarised

7.5. SUMMARY 205

below.

7.5.1 Composite Voting and Logic Solutions

This chapter shows that composite solutions which represent small ensembles

(consisting of, at most, 9 individuals) outperform larger ensembles (consisting of,

at most, 27 individuals) on the tasks. This is because these smaller ensembles

comprise of highly diverse individuals that cooperate well together to predict

unseen input instances; whereas the larger ensembles contain some individuals

that negatively affect the generalisation ability of these final ensemble on the

test set. For the CSLogic approach in particular, the larger ensembles show

substantially poorer minority and majority class accuracies than the smaller

ensembles on the tasks. This suggests that the complex logical expressions

represented by the larger CSLogic solutions, may be overly sensitive to the

training data.

Comparing the CSVote and CSLogic approaches to the off-EEL algorithm [76]

for ensemble selection, off-EEL and CSVote ensembles achieve similar results;

whereas off-EEL outperforms the CSLogic approach on the tasks. This suggests

that the majority vote strategy used in both CSVote and off-EEL may be more

robust than the logical expressions in the CSLogic solutions, as it is better able

to generalise on the unseen data, particularly as the ensemble sizes increase.

Furthermore, CSVote is able to achieve similar ensemble performances to off-EEL

using fewer individuals in the ensemble, suggesting that the CSVote ensembles

have better diversity between individual members than off-EEL. Smaller ensem-

bles also reduce the computation time to obtain the ensemble output as there are

fewer individual members to evaluate on the input data.

7.5.2 Evolving Composite Solutions

The composite solutions are evolved in a secondary training phase using the

same training data also used to evolve the Pareto fronts in MOGP (i.e. half of

all input instances from the original data sets). After this secondary training

phase, the evolved composite solutions show very high accuracies on the training

set. Neither the individual members in MOGP, nor the off-EEL algorithm,

can accomplish this during the (primary) training process. This suggests that

the CSVote and CSLogic approaches can be particularly useful in optimisation

problems or online learning which does not need an unseen test set. However,

the evolved composite solutions, in particular CSVote, are only able to perform as

206 CHAPTER 7. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

well as, but not better than, off-EEL on the unseen test sets, although the number

of individuals is the CSVote ensembles is much smaller.

To try to address this overfitting issue, an extra “validation” set (containing

20% of the total input instances) is used to evolve the CSVote solutions. While

the extra “validation” set slightly improved the generalisation of the CSVote

ensembles on the unseen test set in most tasks (compared to without), this was

not the case for off-EEL, since off-EEL does not use a secondary training phase to

optimise the ensembles. On some tasks CSVote with the validation set showed

substantially better performances on both classes compared to off-EEL using the

validation set.

Chapter 8

Conclusions

The overall goal of this thesis was to develop new internal cost-adjustment

techniques in GP for binary classification with unbalanced data. The focus of

this thesis was to enhance the GP learning algorithm to use the unbalanced

input data directly in the learning process, thereby removing any dependence

on a sampling algorithm to first artificially re-balance the learning data prior

to the evolutionary learning process. This goal was achieved by developing

a number of new methods in GP to evolve genetic program classifiers with

good classification ability on both the minority and the majority classes. These

new methods were evaluated by applying GP to a range of binary benchmark

classification tasks with unbalanced data.

The rest of this chapter summarises the research objectives achieved by this

thesis and the main conclusions from the individual chapters, and provides

further discussions on more general topics covered in the whole thesis and key

areas for future work.

8.1 Achieved Objectives

This thesis has achieved the following research objectives

• The thesis proposes a GP approach to binary classification with unbalanced

data focusing on cost-adjustment within GP rather than the traditional data-

balancing techniques. This thesis shows that unlike tasks with multiple

balanced classes where some dynamic classification strategies perform

significantly better than the traditional static classification strategy, either

a static or dynamic strategy in the evolution shows no major difference in

the performance of evolved GP classifiers on these binary tasks.

207

208 CHAPTER 8. CONCLUSIONS

• This thesis proposes several new fitness functions in GP to perform cost

adjustment between the minority and the majority classes. These new

fitness functions evolve GP classifiers with high AUC, and with relatively

fast GP training times, using the unbalanced data sets directly in the

learning process without first re-balancing the data (via sampling).

• This thesis proposes a multi-objective GP (MOGP) approach which treats

the accuracies of the minority and the majority classes separately during

the learning process. The MOGP approach evolves a good set of trade-off

solutions in a single run that perform as well as, and in some cases better

than, multiple runs of canonical single-objective GP (SGP).

• This thesis proposes an ensemble-based approach to classification where

multiple MOGP classifiers vote on the predicted class label. Two fitness

functions are developed to treat the diversity on both the minority and the

majority classes as equally important in the fitness function. The evolved

ensembles outperform their individual members on the tasks due to good

cooperation between members.

• This thesis proposes a GP approach to ensemble selection to quickly find

small groups of individuals that cooperate well together in the ensemble.

The pruned ensembles use much fewer individuals to achieve performances

that are as good as an existing approach to ensemble selection, particularly

on tasks with high levels of class imbalance, thereby reducing the total time

to evaluate the ensemble.

8.2 Main Conclusions

The section discusses the main conclusions for the five research objectives (from

Chapter 1).

8.2.1 GP for AUC Optimisation

Research goals 1(a) and 1(b) propose a GP approach to binary classification with

unbalanced data focusing on the classification strategy and fitness function in GP.

In this GP approach, the fittest evolved genetic program from the evolutionary

search process represents the learned concept, and the area under an ROC curve

(AUC) measures how well a classifier performs on the minority and majority

8.2. MAIN CONCLUSIONS 209

classes. Based on Chapters 3 and 4 which address these research goals, the

following conclusions can be drawn.

Classification Strategies in GP

The classification strategy in GP specifies how the raw (real-valued) output for

a genetic program classifier is translated to a class label. While a non-static

classification strategy performs better than the traditional static classification

strategy in tasks with multiple (balanced) classes, this research finds that this

is not the case for these binary class imbalance tasks. Rather, there is no major

differences in the AUC of the evolved GP classifiers using the two strategies

on these tasks. This shows that GP can sufficiently tweak the mathematical

expressions representing the classifiers to “shift” its outputs relative to the fixed

class boundary. An advantage of the traditional static strategy is that more

uniformity is introduced in the population. Using the non-static strategy, the

evolved solutions can lack this uniformity as different class boundaries are

defined for the solutions.

Fitness Functions in GP

The fitness function in GP measures the overall performance of a solution by

comparing the solution’s predicted class label to the target (or actual) class label

for all input instances in the training set. This thesis shows that the traditional

fitness function in GP based on the overall classification accuracy (or error rate),

evolves biased classifiers with high majority class accuracies but often very poor

minority class accuracies (and thus, poor AUC) on the unbalanced tasks. Several

new fitness functions are proposed to evolve solutions with high AUC when data

sets are unbalanced, and with faster training times than using the AUC directly

in the fitness function. The three new fitness functions with the best classification

results on the tasks include the following. The first finds the distance between

the output values of a solution on the two classes by modelling these outputs as

two separate class distributions. The second uses the average mean square error

(MSE) for each class to “calibrate” a given solution’s outputs to (pre-defined)

target class values. The third uses the statistical measure, the correlation ratio,

to measure the separability between the output values of a solution on the two

classes. Two new measures are also developed to improve a well-known measure

based on the average accuracy of the two classes in the fitness function.

The GP methods are found to outperform two popular learning algorithms,

210 CHAPTER 8. CONCLUSIONS

namely, Naive Bayes (NB) and Support Vector Machines (SVM) on the tasks,

particularly when the level of class imbalance is large. Both NB and SVM show

biased classification results in this case.

8.2.2 MOGP for Evolving Pareto Fronts

Research goal 2(a) proposes a multi-objective GP approach where the accuracies

of the minority and the majority classes are traded-off against each other in the

learning process. The novelty of this approach is that a Pareto-based fitness

function is used to the treat the unbalanced classes independently (as separate

objectives) in the learning process (i.e. for cost adjustment when the unbalanced

data is used directly in training). This allows multiple trade-off solutions to be

evolved in a single optimisation run, leaving the final choice for the decision-

maker. Canonical SGP requires a much longer time to get a reasonable front as

the objective preference is specified a priori (multiple SGP runs are needed each

with a different objective preference).

Pareto Dominance Measures in MOGP

A Pareto dominance measure using both dominance rank and dominance count

in the fitness function in MOGP (SPEA2 [188]) finds Pareto-frontier solutions that

perform better than, or at least as well as, multiple runs of canonical SGP. A Pareto

dominance measure using only dominance rank (NSGAII [53]) cannot achieve

this to a sufficient level of accuracy in half of the tasks. The fitness function

using SPEA2 finds more solutions in the middle region of the frontier, pushing

this front outwards toward high accuracy rates on both classes; while the fitness

function using NSGAII finds a better “spread” of solutions along the whole of the

frontier. In MOGP, end-region solutions represent biased classifiers. The evolved

populations using SPEA2 also contain more non-dominated solutions in the final

generations than NSGAII on the tasks.

AUC of Pareto Front Solutions in MOGP

Analysis of the AUC of the evolved Pareto front solutions in different regions

of the objective-space confirms that, as expected, the AUC is better in the

middle-region of the frontier (i.e. solutions with high accuracy on both classes)

compared to the end-regions. More interestingly, SPEA2 not only finds more non-

dominated solutions in the final generations than NSGAII, but these solutions for

8.2. MAIN CONCLUSIONS 211

SPEA2 also have better AUC than NSGAII in nearly all tasks. This also explains

why the evolved Pareto fronts are better using MOGP with SPEA2 on most of

the tasks. Some Pareto front solutions are also found to have poorer individual

AUC performances than good SGP solutions. This is because individual genetic

program solutions in SGP capture the performance trade-off between the two

objectives, minority and majority class accuracy, using an ROC curve; whereas in

MOGP, this requirement is delegated to the set of genetic program solutions on

the Pareto front.

8.2.3 MOGP for Ensemble Learning

Research goal 2(b) proposes an MOGP approach to evolving ensembles of Pareto

front solutions where members vote on the class label, using the fitness function

to promote diversity between Pareto front solutions in the evolution. Unlike

traditional ensemble learning approaches (where the unbalanced data is first

re-balanced via sampling), two established diversity measures are adapted to

calculate the diversity separately for the two classes (to account for the unequal

classes), and these are incorporated into the fitness function in MOGP. These

ensemble approaches are evaluated using several ensemble combination and

selection strategies from the literature.

Ensemble Combination and Selection Strategies.

When the full evolved Pareto front is used in the ensemble (using a majority

vote strategy), the ensemble performances are biased toward the majority class

in nearly all tasks. This is due to the influence of more Pareto front solutions

with a stronger majority class bias (than minority class bias) in the voting process,

as more of these solutions achieve a non-dominated status in the population

during the evolution. Two effective strategies to choose only good Pareto front

individuals for the ensemble are shown to improve ensemble performances on

both classes. These include a fitness-weighted majority vote of the individual

members and a post-training ensemble selection approach: the offline evolution-

ary ensemble learning (off-EEL) algorithm [76]. While the off-EEL algorithm

shows the best ensemble performances on the two classes for the tasks, both

strategies outperform a naive accuracy-based ensemble selection method which

simply removes individuals with less than 50% accuracy on the objectives from

the ensemble. The off-EEL algorithm is particularly successful on the tasks as

it uses a greedy search to find which members contribute to good ensemble

212 CHAPTER 8. CONCLUSIONS

performances, where the more diverse the individual members, the better the

ensemble performances using off-EEL.

Ensemble Diversity in Fitness

MOGP using pairwise failure crediting (PFC) for diversity in fitness is found to

outperform both MOGP using negative correlation learning (NCL) and a baseline

MOGP approach (using no diversity measure in fitness), particularly when

combined with off-EEL algorithm. This is due to better cooperation between

individuals using PFC. The MOGP approaches show that the stochastic way

in which new GP classifiers are created in the evolution (e.g. using the genetic

operators), and a good fitness function to encourage diversity between members

in the population, provides sufficient diversity between individuals for good

ensemble performances.

Ensembles vs Canonical Single-Predictor Learners

Both the NCL and PFC approaches evolve at least one solution with 100%

accuracy on both the training and test set on the task with the highest level

of class imbalance (Bal). The best runs of canonical SGP, NB and SVM could

not accomplish this on any task. The MOGP ensembles, in particular with

PFC, also outperform canonical SGP, NB and SVM in half the tasks. This is

due to the additional support provided in MOGP for the two objectives as the

Pareto front captures the trade-off between the objectives; whereas in SGP, this

is accomplished by individual genetic program classifiers (via an ROC curve).

Combining these Pareto front classifiers into an ensemble where individuals

cooperate by voting further improves performances on the objectives as the

ensembles perform better than their individual members.

8.2.4 Composite Solutions for Ensemble Selection

Research goal 2(c) proposes a new GP approach to ensemble selection to ef-

ficiently find small groups of diverse Pareto front solutions for the ensemble.

To avoid “fine tuning” a large weight vector (as used in traditional methods),

the new approach evolves composite GP solutions to represent the (optimised)

ensemble by combining multiple Pareto front individuals into a single composite

solution. The new approach has two main novelties. Firstly, by imposing a size

constraint on the composite solutions, selection pressure can be used to automat-

ically find small groups of diverse members for the ensemble. Secondly, using

8.3. DISCUSSIONS 213

different function sets in the evolution provides a mechanism to manipulate the

outputs of the individual members, to control how the ensemble determines its

final classification decision.

Representing Composite Solutions

The composite voting solutions (CSVote) where individuals are combined using

the traditional majority vote strategy, are found to achieve similar ensemble

performances to the off-EEL algorithm for ensemble selection on the tasks, but

with fewer individuals in the ensemble. The smaller CSVote ensembles comprise

of more diverse individuals that cooperate well together, and also require

less computational time to obtain the ensemble output since there are fewer

individual members to evaluate. Both CSVote and off-EEL outperform composite

logical solutions (CSLogic), where the outputs of the individuals are combined

using logical operators. The majority vote strategy used in both CSVote and

off-EEL may be more robust than the logical expressions in CSLogic, as overly

complex logical expressions in the CSLogic solutions can overfit the training data.

Evolving Composite Solutions

When the composite solutions are evolved using the same training data also

used to learn the Pareto fronts in MOGP, these show near-perfect accuracy on

the training set. Neither the individual members in MOGP, nor the off-EEL

algorithm, can accomplish this during the (primary) training process. However,

these evolved composite solutions do not perform as well on the unseen test set.

One approach to address this overfitting uses an extra validation set to evolve

the CSVote solutions. While this validation set only slightly improves ensemble

performances on the test sets (compared to without), the CSVote ensembles

using the validation set show substantially better ensemble performances on both

classes than off-EEL using the validation set.

8.3 Discussions

The previous sections have provided detailed discussions on the chapter related

topics. This section provides further discussions on more general topics not

specific to a particular chapter but general to the whole thesis and the GP and

data mining/machine learning communities.

214 CHAPTER 8. CONCLUSIONS

8.3.1 No “Best” Fitness Function in GP

While this thesis provides a thorough evaluation of the AUC performances and

the training times using several different fitness functions in GP on the tasks,

no one fitness function is recommended as the “best” on the tasks since each

has different strengths and limitations. The choice of which fitness function to

use for a given task depends on the goals/requirements of the end-user. As

one might expect, longer training times for a particular fitness function typically

produced better AUC performances on the tasks, e.g., as seen for the AUC-based

fitness functions which produced the best AUC performances but also incurred

the longest training times. In contrast, the new distance-based fitness function

is much simpler to implement, and has significantly faster training times, than

the AUC-based fitness functions; this is not longer than 2.5 minutes (on average)

on even the largest data set. While the AUC for this fitness function is generally

good, they are not better than AUC-based fitness function.

8.3.2 AUC in GP

The performance the evolved GP classifiers is evaluated using the AUC. While

this is a useful measure in class imbalance scenarios, the traditional AUC measure

makes no assumptions about which ROC points are “better” than others on a

given ROC curve (in terms of their true positive and false positive rates). In

other words, in the AUC, each point on an ROC curve is as good as every other

point. This can be seen as a limitation as the AUC makes no attempt to relate

different ROC points to one another e.g., in a similar way that the analysis in

MOGP (in Chapter 5) considered solutions in the middle-region of the Pareto

front better than end-region solutions (as the latter represents biased classification

performances on the two classes). This means that it can be difficult to choose

the “best” classification threshold to represent the minority and the majority

class accuracies for a given classifier, e.g., to compare performances to other

learning approaches such as the MOGP ensembles (as seen in Section 6.7.2 in

Chapter 6). In Chapter 6, the ensemble performances, measured in terms of

their minority and the majority class accuracies, are compared to the evolved

SGP classifiers (from Chapter 4) when the classifiers are evaluated using their

“default” classification threshold (zero). These conclusions may be different using

another classification threshold to represent the minority and the majority class

accuracies of a given classifier.

However, the use of another good, inclusive measure for evaluating classifier

8.3. DISCUSSIONS 215

performance can depend on the problem domain and/or the end-goal of the

research; this is an open issue in machine learning.

8.3.3 MOGP vs Canonical GP

In binary classification, an ROC curve for a single classifier in canonical GP (SGP)

and the set of classifiers on the Pareto front in MOGP represent the same concept

in the objective-space, i.e., both capture the performance trade-offs between the

minority and the majority classes in the objective-space (as discussed in Section

5.3.3). However, MOGP and SGP accomplish this in fundamentally different

ways. In SGP, the AUC represents the performance of a single classifier (at

different decision thresholds); whereas in MOGP, the Pareto front represents a set

of classifiers (each using the same decision threshold). Due to this fundamental

difference, the MOGP approach can have four advantages over SGP.

The first is that the MOGP Pareto front can provide more trade-off options

than the ROC curves in SGP. This is because the fitness function in MOGP has a

dual purpose in the evolution: pushing the Pareto fronts outwards towards the

zenith point (using Pareto dominance), and encouraging diversity on the Pareto

front (via the “crowding” measure) to ensure that fronts are well-populated and

contain a good “spread” of solutions. In contrast, fitness functions in SGP which

aim to maximise the AUC of the evolved classifiers do not explicitly enforce this

dual aspect in the evolution. This means that high AUC in an evolved SGP

classifier does not guarantee that the ROC curve will have many different points

that are “spread out” along the curve, since high AUC can be achieved using only

a few good ROC points. However, as the diversity of the Pareto fronts in MOGP

is not explicitly compared to the ROC curves in SGP in the thesis, this aspect is

not fully explored but represents an important direction for future work.

The second advantage for MOGP is the uncomplicated way that the evolved

Pareto fronts can be used in practice. In MOGP, the end-user can readily select

a classifier from the evolved Pareto front with the desired performance trade-

off on the two classes (as all classifiers are evaluated using the same “default”

class threshold). In contrast, in SGP a classifier must be evaluated using the

corresponding class threshold that is used to bias the final classification decision,

to obtain the desired performance trade-off on the two classes.

The third advantage is that the Pareto front of solutions can be combined into

an ensemble to further improve classification performances on the two classes (as

shown in Chapter 6 of this thesis).

216 CHAPTER 8. CONCLUSIONS

The fourth advantage is that additional learning objectives can easily be in-

corporated into MOGP since these learning objectives are treated independently

in fitness (via Pareto dominance). While this can also be accomplished in SGP,

some a priori knowledge is required about how to combine the multiple objectives

together into a scalar (fitness) value, e.g., using an aggregation function such as

Eq. (2.3) discussed in Chapter 2 (on page 27 in Section 2.4.1).

For these reasons, this thesis recommends MOGP over canonical SGP.

8.3.4 Data Mining, Machine Learning and GP

This section highlights the relationships between the work in this thesis, and

data mining/machine learning and GP. Classification with unbalanced data is

emerging as a hot topic in data mining/machine learning due to the large number

of real-world domains affected by class imbalance. In this thesis we enhance

the GP learning technique to solve classification problems with unbalanced data

reasonably well. Previously, canonical GP produced biased performances on

classification tasks with unbalanced data. Using the new GP techniques in this

thesis, GP shows competitive results (on both the minority and the majority

classes) on tasks with varying levels of class imbalance and even outperforms two

popular machine learning algorithms, NB and SVM, on tasks with particularly

high levels of class imbalance. By enhancing the capabilities of the GP learning

system itself to account for the naturally-occurring class imbalance inherent in

a particular problem, machine learning practitioners are freed to focus on other

improvements (e.g., parameter tuning) to further boost classification results and

system performances (as apposed to spending time to choose/apply a good

sampling policy to artificially re-balance the learning data before the training

process).

8.4 Future Work

The section highlights key areas of future work.

8.4.1 Classification with Multiple-classes.

The scope of this research includes only binary classification tasks. While GP

can deal with binary classification tasks very well, GP for multiple-class tasks is

more difficult. In multiple-class tasks with unbalanced data, there may be one

8.4. FUTURE WORK 217

majority class but more than one minority class, one minority class but more

than one majority class, or a combination of these (i.e. multiple minority and

majority classes). Unlike other popular classification algorithms like decision

trees or neural networks, in traditional tree-based GP, careful consideration must

be taken to determine how to map a GP classifier’s numeric outputs to the set

of class labels. In other words, determining a suitable classification strategy

for multiple-class classification in non-trivial. This typically involves defining

static class boundaries on the number line for each class label a priori [183][185],

or dynamically assigning these class boundaries on a solution-by-solution basis

[120][185]. However, finding appropriate class boundary regions (to separate the

classes) can be difficult, particularly in tasks with a large number of classes.

An alternative strategy uses binary decomposition to transform a multiple-

class task with k classes into k − 1 binary tasks, where a single class is selected

and all other classes are collapsed/combined to form the other class [155][123].

A binary classifier is then trained using this split, and this process is repeated

for each class. However, aggregating these binary classifiers together in the

final step requires careful consideration. Another alternative uses different GP

representations better suited to multiple-class tasks (than tree-based GP), such as

linear GP where each class is represented by its own output register [28][58].

Assuming that a suitable multiple-class classification strategy is in place (e.g.

using one of the above strategies), the GP methods proposed by this thesis

can easily be adapted for multiple-class tasks, since these methods all work at

the fitness level in the optimisation process, by endeavouring to treat each class

separately using the fitness fitness. In SGP, the new measures in the fitness

function strive to measure the level of separability between the different classes,

irrespective of the number of classes, and aim to evolve classifiers with equally

good accuracy rates on all classes.

Similarly, the Pareto-based fitness function in MOGP also ensures that each

class in multiple-class tasks is treated independently in the evolution, since the

accuracy of each class is a seperate EMO objective. However, the performance of

some EMO algorithms may deteriorate when the number of learning objectives

increases (e.g. beyond the typical case of three of four objectives), due to large

number of potential trade-off solutions (i.e. many non-dominated solutions along

the objectives) [42][101][171]. In [101], scalability in EMO is discussed in more

detail, and several useful techniques are proposed to address this.

The information theoretic measures in the fitness function for evolving en-

sembles in MOGP (i.e. NCL and PFC) can also be easily adapted for multiple-

218 CHAPTER 8. CONCLUSIONS

class tasks, since the diversity of each class is measured separately. However, this

approach also suffers from a similar scalability constraint beyond the typical case

of three or four objectives (as discussed above).

Assuming that a suitable classification strategy is in place, the CSVote com-

posite solutions can also be easily adapted for ensemble selection with multiple

classes. This is because this method combines the predicted class labels of base

learners using the majority vote strategy, and the fitness function to evolve

composite solutions treats the classification accuracy of each class as equally

important. However, the terminal set in the CSLogic composite solutions must

first be adapted for multiple classes, in particular, the ∧ and ∨ terminal symbols

since these assume binary class labels.

Evaluating the new methods proposed in this thesis on multiple-class tasks

with unbalanced data represents an important direction for future work.

8.4.2 Canonical SGP

Performance Measures.

The AUC is a useful measure in class imbalance scenarios. The conclusions about

the GP fitness functions are relative to the AUC. However, as discussed earlier,

the AUC also has some limitations. A weighted AUC [174] measure provides

a useful starting point to address some of these limitations, as certain regions

of the ROC space (e.g. the middle region of ROC curve) can be given a greater

importance than other regions (e.g. end regions). Future work would evaluate

the fitness functions in GP (from Chapter 4) using this weighted AUC measure,

and compare how this measure ranks the different fitness functions compared to

the traditional AUC. Another limitation of the AUC is that it must be adapted for

multi-class classification [83][146]. Alternatively, a variety of other performance

measures can also be used to evaluate and compare the different GP fitness

functions (and SVM and NB) [69][34]. As mentioned earlier, the use of another

good, inclusive measure for evaluating classifier performance can depend on the

end-goal of the research and is an open issue in machine learning.

8.4.3 MOGP

Other Components in EMO Search.

This study focuses on one main aspect in the EMO learning algorithm, i.e., Pareto

dominance in the fitness function. An interesting direction for future work would

8.4. FUTURE WORK 219

be to investigate whether the performance of the evolved Pareto fronts in MOGP

can be improved using other EMO components, such as the following.

A strong Pareto dominance relation provides an alternative to the weak Pareto

dominance relation used in MOGP. In strong Pareto dominance, exactly one

solution maps to a given point in the objective-space; whereas in weak Pareto

dominance, many solutions can map to the same point in the objective-space.

The crowding measure in MOGP uses the distance to a solution’s nearest

neighbours. Other crowding measures in fitness (such as [26], [75] and [171])

can affect the selection process and the diversity of the Pareto fronts [51][113].

What difference (if any) will these crowding measures might have on the evolved

Pareto fronts in MOGP (compared to the current approach)?

In MOGP, a fixed-size archive population is used. Some EMO approaches

allow variable-sized archive populations [43] or use archive populations that are

persistent across different replications [156], to ensure that no non-dominated

individuals are lost over all generations.

Additional Learning Objectives in MOGP.

In a similar As discussed earlier, MOGP can also be used for classification

tasks with more than two unbalanced classes, as the objectives are treated

independently in the learning algorithm, provided that a suitable multiple-class

classification strategy is also used.

A useful new direction of future work includes incorporating other objectives

such as a model regularization term (e.g. program size of genetic program

solutions) into MOGP, e.g., for parsimony pressure in the evolution. Inclusion

of a a regularization terms would investigate whether smaller, less-complex

solutions have better generalisation ability on the Pareto front on these and other

tasks. However, as discussed above, the performance of some EMO algorithms

may deteriorate when the number of objectives increases beyond the three of

four objectives, due to large number of candidate (trade-off) solutions along the

objectives.

8.4.4 Ensemble Learning in GP

Ensemble Diversity.

Chapter 6 suggests that the PFC measure promotes better diversity between

individuals than NCL on the tasks. Incorporating NCL into the objective

220 CHAPTER 8. CONCLUSIONS

values before Pareto ranking is done (similar to the way PFC is calculated)

using a two-phase Pareto ranking approach (as NCL requires the output of

the non-dominated front in its calculation), or new improvements to the NCL

measure (such as the root quartic NCL [126][125]), may also improve ensemble

performances. Improving the NCL, and developing new measures for diversity,

is left for future work.

This thesis uses the ensemble performances on the test set to compare the

diversity measures in MOGP. More theoretical analysis using measures that

estimate the level of diversity in the populations during the evolution (such as

the Q-statistic or Q-value [169][168]) may also provide useful insights into how

these measures create diversity in MOGP. This would be an interesting avenue

for future work.

Composite Solutions with Real-valued Outputs.

As the evolved composite solutions (in Chapter 7) act on the class decisions of

the individual members, the ensemble output is also a class label. This restricts

the type of fitness function that can be used to evolve composite solutions.

Adapting the composite solutions to output a real-valued number (for a given

input instance) can provide a finer-grain fitness landscape and may improve

the generalisation ability of the pruned ensembles. This can be implemented by

using the “confidence” of the ensemble (on a given input) as its output where the

“confidence” is the ratio of correct to incorrect votes by the individual members

within a composite solution. High confidence values imply that more individuals

agree on the predicted class compared to low confidence values. A good fitness

function can then be developed to maximise the ensemble confidence on the

training set. Using real-valued outputs for the composite solutions also allows

a classification threshold to be introduced to bias the ensemble’s decision (on a

given input), where different classification thresholds can be used to produce an

ROC curve.

Comparison with Bagging and Boosting Approaches.

As bagging and boosting with balanced bootstrap sampling is a common ap-

proach in class imbalance, future work would compare the MOGP approach to

bagging and boosting on these (and other) tasks.

8.4. FUTURE WORK 221

8.4.5 GP in General

More Detailed Program Analysis.

Analysing several evolved genetic programs in SGP and MOGP revealed some

interesting insights into how GP learns to solve a particular problem. However,

this analysis only focused on a few evolved genetic programs on one particular

task. An interesting exercise for future work would conduct a more detailed

program analysis of the SGP and MOGP solutions, e.g., by collecting more

detailed information/statistics about the evolved programs and examining these

trends across multiple runs and tasks. However, this represents a difficult

challenge, particularly in MOGP since multiple programs are evolved in a single

run, and there are multiple runs to consider. Another interesting aspect of

program analysis for future work would be to examine the behaviour of different

subtrees within a given program using actual output values (e.g. when the

program is evaluated on the data instances). This can help to identify good

building blocks and also provide useful insights into which subtrees do not

contribute to the overall performance of the program.

Evolutionary Parameters.

Chapter 4 shows that tweaking the evolutionary parameters in GP (e.g. increas-

ing the population size and maximum program depth) to increase the search

space explored by GP can improve system performances. However, the improved

GP parameters are only evaluated on one data set. Future work would investigate

if these (and other) evolutionary parameters can also improve classification

performances on other tasks. Similarly, increasing the search space in MOGP

using different evolutionary parameters might also improve the Pareto front on

the tasks. This, in turn, might then improve ensemble performances since the

ensemble is at least as good is its individual members.

More Unbalanced Data Sets

In future work, these GP methods would be evaluated on more classification

tasks with unbalanced data.

222 CHAPTER 8. CONCLUSIONS

Bibliography

[1] Pacific-asia knowledge discovery and data mining conference, 2009.

“http://www.kdnuggets.com/datasets/competitions.html”.

[2] ABBASS, H. Pareto neuro-ensembles. In AI 2003: Advances in Artificial

Intelligence, vol. 2903 of LNCS. 2003, pp. 554–566.

[3] ABBASS, H. Pareto neuro-evolution: constructing ensemble of neural net-

works using multi-objective optimization. In IEEE Congress on Evolutionary

Computation (2003), vol. 3, pp. 2074–2080.

[4] ABBASS, H. Pareto-optimal approaches to neuro-ensemble learning. In

Multi-Objective Machine Learning, Y. Jin, Ed., vol. 16 of Studies in Computa-

tional Intelligence. 2006, pp. 407–427.

[5] ALEJO, R., GARCIA, V., SOTOCA, J. M., MOLLINEDA, R., AND SANCHEZ,

J. Improving the classification accuracy of RBF and MLP neural networks

trained with imbalanced samples. In Intelligent Data Engineering and

Automated Learning (IDEAL): 7th International Conference (September 2006),

Springer-Verlag, pp. 467–471.

[6] ALFARO-CID, E., SHARMAN, K., AND ESPARCIA-ALCAZAR, A. A genetic

programming approach for bankruptcy prediction using a highly unbal-

anced database. In Applications of Evolutionary Computing, M. Giacobini,

Ed., vol. 4448 of LNCS. Springer, 2007, pp. 169–178.

[7] ALPAYDIN, E. Introduction to Machine Learning. MIT Press, 2004.

[8] ASUNCION, A., AND NEWMAN, D. UCI Machine

Learning Repository, 2007. University of California,

Irvine, School of Information and Computer Sciences.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

223

224 BIBLIOGRAPHY

[9] BADRAN, K. M., AND ROCKETT, P. I. The roles of diversity preservation

and mutation in preventing population collapse in multiobjective genetic

programming. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation (2007), GECCO ’07, ACM, pp. 1551–1558.

[10] BANZHAF, W., NORDIN, P., KELLER, R. E., AND FRANCONE, F. D. Genetic

Programming – An Introduction; On the Automatic Evolution of Computer

Programs and its Applications. Morgan Kaufmann, 1998.

[11] BARANDELA, R., SANCHEZ, J., GARCIA, V., AND RANGEL, E. Strategies

for learning in class imbalance problems. Pattern Recognition 36, 3 (2003),

849–851.

[12] BATISTA, G., PRATI, R. C., AND MONARD, M. C. Balancing strategies

and class overlapping. In Advances in Intelligent Data Analysis VI, 6th

International Smposium on Intelligent Data Analysis, IDA 2005 (2005), A. F.

Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, Eds., vol. 3646 of

LNCS, Springer, pp. 24–35.

[13] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Differentiating between

individual class performance in genetic programming fitness for classi-

fication with unbalanced data. In Proceedings of the IEEE Congress on

Evolutionary Computation (2009), IEEE Press, pp. 2802–2809.

[14] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Genetic programming

for image classification with unbalanced data. In Proceedings of 24th

International Conference on Image and Vision Computing New Zealand (2009),

IEEE Press, pp. 316–321.

[15] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Multi-objective genetic

programming for classification with unbalanced data. In Proceedings of the

22nd Australasian Joint Conference on Artificial Intelligence (2009), vol. 5866 of

LNCS, Springer, pp. 370–380.

[16] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. A comparison of

classification strategies in genetic programming with unbalanced data. In

Proceedings of the 23rd Australasian Joint Conference on Artificial Intelligence

(2010), J. Li, Ed., vol. 6464 of LNCS, Springer, pp. 243–252.

[17] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Developing new fitness

functions in genetic programming for classification with unbalanced data.

BIBLIOGRAPHY 225

IEEE Transactions on Systems, Man, and Cybernetics – Part B 42, 2 (2011), 406

–421.

[18] BHOWAN, U., JOHNSTON, M., AND ZHANG, M. Ensemble learning and

pruning in multi-objective genetic programming for classification with

unbalanced data. In Proceedings of the 24th Australasian Joint Conference on

Artificial Intelligence (2011), D. Wang and M. Reynolds, Eds., vol. 7106 of

LNCS, Springer, pp. 192–202.

[19] BHOWAN, U., JOHNSTON, M., ZHANG, M., AND YAO, X. Evolving diverse

ensembles using genetic programming for classification with unbalanced

data. IEEE Transactions on Evolutionary Computation. (Accepted, April 2012).

[20] BHOWAN, U., ZHANG, M., AND JOHNSTON, M. AUC analysis of the

pareto-front using multi-objective GP for classification with unbalanced

data. In Proceedings of 2010 Genetic and Evolutionary Computation Conference

(2010), ACM, pp. 845–852.

[21] BHOWAN, U., ZHANG, M., AND JOHNSTON, M. Genetic programming

for classification with unbalanced data. In Proceedings of the 13th European

Conference on Genetic Programming (2010), vol. 6021 of LNCS, Springer, pp. 1–

13.

[22] BHOWAN, U., ZHANG, M., AND JOHNSTON, M. Evolving ensembles

in multi-objective genetic programming for classification with unbalanced

data. In Proceedings of Genetic and Evolutionary Computation Conference (2011),

ACM, pp. 1331–1339.

[23] BISHOP, C. M. Neural Networks for Pattern Recognition. Oxford University

Press, 1995.

[24] BISHOP, C. M. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 2006.

[25] BONABEAU, E., DORIGO, M., AND THERAULAZ, G. Swarm Intelligence:

From Natural to Artificial Systems. Oxford University Press, 1999.

[26] BOT, M. C. J., BOELELAAN, D., AND LANGDON, W. B. Improving

induction of linear classification trees with genetic programming. In Genetic

and Evolutionary Computation Conference (2000), Morgan Kaufmann, pp. 403–

410.

226 BIBLIOGRAPHY

[27] BRADLEY, A. P. The use of the area under the ROC curve in the evaluation

of machine learning algorithms. Pattern Recognition 30 (1997), 1145–1159.

[28] BRAMEIER, M., AND BANZHAF, W. A comparison of linear genetic pro-

gramming and neural networks in medical data mining. IEEE Transactions

on Evolutionary Computation 5, 1 (2001), 17 –26.

[29] BRAMEIER, M., AND BANZHAF, W. Evolving teams of predictors with

linear genetic programming. Genetic Programming and Evolvable Machines

2, 4 (2001), 381–407.

[30] BRAMEIER, M., AND BANZHAF, W. Linear Genetic Programming. Springer,

New York, 2007.

[31] BREIMAN, L. Bagging predictors. Machine Learning 24, issue 2 (1996), 123–

140.

[32] BREIMAN, L., FRIEDMAN, J., OLSHEN, R., AND STONE, C. Classification

and Regression Trees. Wadsworth and Brooks, 1984.

[33] BROWNLEE, J. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu,

2011.

[34] CARUANA, R. Data mining in metric space: An empirical analysis of

supervised learning performance criteria. In Proceedings of ROC Analysis

in AI Workshop (ECAI) (2004), ACM Press, pp. 69–78.

[35] CHANDRA, A., AND YAO, X. Divace: Diverse and accurate ensemble

learning algorithm. In Intelligent Data Engineering and Automated Learning,

vol. 3177 of LNCS. Springer, 2004, pp. 619–625.

[36] CHANDRA, A., AND YAO, X. Ensemble learning using multi-objective

evolutionary algorithms. Journal of Mathematical Modelling and Algorithms

5 (2006), 417–445.

[37] CHAWLA, N., AND SYLVESTER, J. Exploiting diversity in ensembles:

improving the performance on unbalanced datasets. In Proceedings of the 7th

International Conference on Multiple Classifier Systems (2007), MCS, Springer-

Verlag, pp. 397–406.

[38] CHAWLA, N. V., JAPKOWICZ, N., AND KOLCZ, A. Editorial: Special

issue on learning from imbalanced data sets. ACM SIGKDD Explorations

Newsletter 6 (June 2004), 1–6.

BIBLIOGRAPHY 227

[39] CHEN, H., TINO, P., AND YAO, X. Predictive ensemble pruning by expec-

tation propagation. IEEE Transactions on Knowledge and Data Engineering 21

(2009), 999–1013.

[40] CHEN, H., AND YAO, X. Multiobjective neural network ensembles

based on regularized negative correlation learning. IEEE Transactions on

Knowledge and Data Engineering 22, 12 (2010), 1738–1751.

[41] CHEN, J.-X., CHENG, T.-H., CHAN, A. L. F., AND WANG, H.-Y. An appli-

cation of classification analysis for skewed class distribution in therapeutic

drug monitoring – the case of vancomycin. In In IDEAS Workshop on Medical

Information Systems: The Digital Hospital (2004), IEEE, pp. 35–39.

[42] COELLO COELLO, C., LAMONT, G., AND VELDHUIZEN, D. Evolutionary

Algorithms for Solving Multi-Objective Problems (Genetic & Evolutionary Com-

putation Series). Springer, 2007.

[43] CORNE, D. W., JERRAM, N. R., KNOWLES, J. D., AND OATES, M. J. PESA-

II: Region-based selection in evolutionary multiobjective optimization. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2001) (2001), L. Spector, E. D. Goodman, A. Wu, W. Langdon, H. Voigt,

M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds.,

Morgan Kaufmann Publishers, pp. 283–290.

[44] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine Learning

20 (1995), 273–297.

[45] COVER, T., AND HART, P. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory 13, 1 (1967), 21–27.

[46] CURRY, R., LICHODZIJEWSKI, P., AND HEYWOOD, M. Scaling genetic

programming to large datasets using hierarchical dynamic subset selection.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37, 4

(2007), 1065–1073.

[47] DAM, H., ABBASS, H., LOKAN, C., AND YAO, X. Neural-based learning

classifier systems. IEEE Transactions on Knowledge and Data Engineering 20,

1 (2008), 26–39.

[48] DE JONG, E. D., AND POLLACK, J. B. Multi-objective methods for tree size

control. Genetic Programming and Evolvable Machines 4 (2003), 211–233.

228 BIBLIOGRAPHY

[49] DE JONG, E. D., WATSON, R. A., AND POLLACK, J. B. Reducing bloat and

promoting diversity using multi-objective methods. In In Proceedings of the

Genetic and Evolutionary Computation Conference GECCO2001 (2001), Morgan

Kaufmann, pp. 11–18.

[50] DE LA IGLESIA, B., REYNOLDS, A., AND RAYWARD-SMITH, V. J. Develop-

ments on a multi-objective metaheuristic (MOMH) algorithm for finding

interesting sets of classification rules. In Third International Conference on

Evolutionary Multi-Criterion Optimization, Mexico, C. Coello Coello, A. H.

Aguirre, and E. Zitzler, Eds., vol. 3410 of LNCS. pp. 826–840.

[51] DEB, K., AND JAIN, S. Running performance metrics for evolutionary

multi-objective optimization. In Proceedings of the 4th Asia-Pacific Conference

on Simulated Evolution and Learning (SEAL’02), Singapore. (2002), vol. 1,

pp. 13–20.

[52] DEB, K., MOHAN, M., AND MISHRA, S. Evaluating the ǫ-domination based

multi-objective evolutionary algorithm for a quick computation of pareto-

optimal solutions. Evolutionary Computation 13 (2005), 501–525.

[53] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast

elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation 6 (2000), 182–197.

[54] DIETTERICH, T. G. Ensemble methods in machine learning. In Multiple

Classifier Systems, LNCS (2000), vol. 1857, Springer-Verlag, pp. 1–15.

[55] DORIGO, M., AND GAMBARDELLA, L. M. Ant Colony System: A

cooperative learning approach to the traveling salesman problem. IEEE

Transactions on Evolutionary Computation 1, 1 (1997), 53–66.

[56] DORIGO, M., AND STTZLE, T. Ant Colony Optimization. MIT Press, 2004.

[57] DOUCETTE, J., AND HEYWOOD, M. I. GP classification under imbalanced

data sets: Active sub-sampling and AUC approximation. In Proceedings of

11th European Conference in Genetic Programming (EuroGP 08) (2008), pp. 266–

277.

[58] DOWNEY, C., ZHANG, M., AND LIU, J. Parallel linear genetic pro-

gramming for multi-class classification. Genetic Programming and Evolvable

Machines, (To appear) (2012).

BIBLIOGRAPHY 229

[59] DUDA, R. O., HART, P. E., AND STORK, D. G. Pattern Recognition, 2nd ed.

Wiley, New York, 2001.

[60] EGGERMONT, J., EIBEN, A., AND VAN HEMERT, J. Adapting the fitness

function in GP for data mining. In Genetic Programming, 2nd European

Workshop (1999), vol. 1598 of LNCS, pp. 193–202.

[61] EGGERMONT, J., EIBEN, A., AND VAN HEMERT, J. A comparison of genetic

programming variants for data classification. IDA 99, LNCS 1642 (1999),

281–290.

[62] EGGERMONT, J., KOK, J. N., AND KOSTERS, W. A. Genetic programming

for data classification: Partitioning the search space. In Proceedings of

the 2004 Symposium on Applied Computing (ACM’SAC 04) (2004), ACM,

pp. 1001–1005.

[63] EKÁRT, A., AND NÉMETH, S. Z. Selection based on the pareto nondomina-

tion criterion for controlling code growth in genetic programming. Genetic

Programming and Evolvable Machines 2 (2001), 61–73.

[64] ESPEJO, P. G., VENTURA, S., AND HERRERA, F. A survey on the

application of genetic programming to classification. IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews 40, 2 (2010),

121 –144.

[65] EVERSON, R., AND FIELDSEND, J. Multi-objective optimisation for receiver

operating characteristic analysis. In Multi-Objective Machine Learning, Y. Jin,

Ed. Springer, 2006, ch. 23, pp. 532–556.

[66] EVERSON, R. M., AND FIELDSEND, J. E. Multiobjective optimization of

safety related systems: An application to short-term conflict alert. IEEE

Transactions on Evolutionary Computation 10, 2 (2006), 187–198.

[67] FAWCETT, T., AND PROVOST, F. Adaptive fraud detection. Data Mining and

Knowledge Discovery 1 (1997), 291–316.

[68] FAYYAD, U. M., PIATETSKY-SHAPIRO, G., AND SMYTH, P. From data

mining to knowledge discovery: an overview. Advances in knowledge

discovery and data mining (1996), 1–34.

[69] FERRI, C., HERNÁNDEZ-ORALLO, J., AND MODROIU, R. An experimental

comparison of performance measures for classification. Pattern Recognition

Letters. 30, 1 (2009), 27–38.

230 BIBLIOGRAPHY

[70] FIELDSEND, J., AND EVERSEN, R. Multiobjective supervised learning. In

Multiobjective Problem Solving from Nature: From Concepts to Applications

(Natural Computing Series), J. Knowles, D. Corne, and K. Deb, Eds., 1 ed.

Springer, 2008, ch. 3, pp. 155–176.

[71] FISHER, R. A. Statistical Methods for Research Workers, 14th ed. Oliver and

Boyd, 1970.

[72] FOGEL, L. J., OWENS, A. J., AND WALSH, M. J. Artificial Intelligence through

Simulated Evolution. John Wiley, 1966.

[73] FONSECA, C., AND FLEMING, P. Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization. In Proceedings

of the 5th International Conference on Genetic Algorithms (1993), pp. 416–423.

[74] FONSECA, C., AND FLEMING, P. An overview of evolutionary algorithms

in multiobjective optimization. Tech. rep., July 1994. Dept of Automatic

Control and Systems Engineering, University of Sheffield.

[75] FRIEDRICH, T., KROEGER, T., AND NEUMANN, F. Weighted preferences

in evolutionary multi-objective optimization. In Proceedings of the 24rd

Australasian Joint Conference on Artificial Intelligence (2011), vol. 7106 of

LNCS, Springer, pp. 192–202.

[76] GAGNÉ, C., SEBAG, M., SCHOENAUER, M., AND TOMASSINI, M. Ensem-

ble learning for free with evolutionary algorithms? In Proceedings of Genetic

and Evolutionary Computation Conference (2007), ACM Press, pp. 1782–1789.

[77] GATHERCOLE, C., AND ROSS, P. Dynamic training subset selection for

supervised learning in genetic programming. In Parallel Problem Solving

from Nature (PPSN III), Y. Davidor, H.-P. Schwefel, and R. Manner, Eds.,

vol. 866 of LNCS. Springer, 1994, pp. 312–321.

[78] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[79] GOLDBERG, D. E., AND HOLLAND, J. H. Genetic algorithms and machine

learning. Machine Learning 3, 2 (1988), 95–99.

[80] GRAY, H., AND MAXWELL, R. Genetic programming for classification of

brain tumours from nuclear magnetic resonance biopsy spectra. Genetic

Programming 1996: Proceedings of the First Annual Conference (1996), 424–430.

BIBLIOGRAPHY 231

[81] GUSTAFSON, S., BURKE, E. K., AND KRASNOGOR, N. On improving ge-

netic programming for symbolic regression. In Proceedings of the 2005 IEEE

Congress on Evolutionary Computation (2005), vol. 1, IEEE Press, pp. 912–919.

[82] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,

AND WITTEN, I. H. The WEKA data mining software: An update. SIGKDD

Explorations 11 (1) (2009).

[83] HAND, D., AND TILL, R. A simple generalisation of the area under the roc

curve for multiple class classification problems. Machine Learning 45 (2001),

171–186.

[84] HANLEY, J. A., AND MCNEIL, B. J. The meaning and use of the area under

a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982), 29–

36.

[85] HERNANDEZ, S., SAEZ, D., AND MERY, D. Neuro-fuzzy method for

automated defect detection in aluminium castings. Image Analysis and

Recognition, LNCS 3212 (2004), 826–833.

[86] HOLLAND, J. Adaptation in natural and artificial systems. MIT Press, 1992.

[87] HOLLAND, J. H. Adaptation. In Progress in Theoretical Biology IV. New York

Academic Press, 1976, pp. 263–293.

[88] HOLMES, J. H. Differential negative reinforcement improves classifier

system learning rate in two-class problems with unequal base rates. In

Proceedings of the Third Annual Conference on Genetic Programming (1998),

pp. 635–644.

[89] HOWARD, D., ROBERTS, S., AND BRANKIN, R. Target detection of SAR

imagery by genetic programming. Advances in Engineering Software 30

(1999), 303–311.

[90] HUANG, J., AND LING, C. X. Constructing new and better evaluation

measures for machine learning. In Proceedings of the 20th international joint

conference on Artifical intelligence (2007), Morgan Kaufmann, pp. 859–864.

[91] HULSE, J. V., KHOSHGOFTAAR, T. M., AND NAPOLITANO, A. Experiment

perspectives in learning from imbalanced data. Proceedings of the 24th

International Conference on Machine Learning (2007), 435–492.

232 BIBLIOGRAPHY

[92] I MANSILLA, E. B., AND I GUIU, J. G. MOLeCS: Using multiobjective

evolutionary algorithms for learning. In Evolutionary Multi-Criterion Op-

timization, E. Zitzler, L. Thiele, K. Deb, C. Coello Coello, and D. Corne, Eds.,

vol. 1993 of LNCS. Springer, 2001, pp. 696–710.

[93] JAPCOWICZ, N., AND STEPHEN, S. The class imbalance problem: A

systematic study. Intelligent Data Analysis 6, 5 (2002), 429–450.

[94] JENSEN, F. V. Introduction to Bayesian Networks. Springer-Verlag New York,

1996.

[95] JIN, Y., AND SENDHOFF, B. Pareto-based multiobjective machine learning:

An overview and case studies. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews 38, 3 (2008), 397–415.

[96] JONG, E. D., AND POLLACK, J. B. Multi-objective methods for tree size

control. Genetic Programming and Evolvable Machines 4, 3 (2003), 211–233.

[97] JONG, K. A. D. Evolutionary computation - a unified approach. MIT Press,

2006.

[98] KENNEDY, J., AND EBERHART, R. C. Particle swarm optimization. In

Proceedings of IEEE International Conference on Neural Networks VI (1995),

Morgan Kaufmann, pp. 1942–1948.

[99] KENNEDY, J., AND EBERHART, R. C. Swarm Intelligence. Morgan Kaufmann,

2001.

[100] KENNETH, S., STORN, R., AND LAMPINEN, J. Differential Evolution A

Practical Approach to Global Optimization. Springer, 2005.

[101] KNOWLES, J., AND CORNE, D. Quantifying the effects of objective space

dimension in evolutionary multiobjective optimization. In Evolutionary

Multi-Criterion Optimization, vol. 4403 of Lecture Notes in Computer Science.

2007, pp. 757–771.

[102] KNOWLES, J., THIELE, L., AND ZITZLER, E. A tutorial on the performance

assessment of stochastic multiobjective optimizers. Tech. rep., February

2006. No. 214, Computer Engineering and Networks Laboratory (TIK),

Swiss Federal Institute of Technology (ETH) Zurich.

BIBLIOGRAPHY 233

[103] KNOWLES, J. D., AND CORNE, D. W. Approximating the nondominated

front using the pareto archived evolution strategy. IEEE Transactions on

Evolutionary Computation 8, 2 (2000), 149–172.

[104] KOZA, J. R. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

[105] KOZA, J. R., ANDRE, D., BENNETT III, F. H., AND KEANE, M. Genetic

Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman,

1999.

[106] KOZA, J. R., KEANE, M. A., STREETER, M. J., MYDLOWEC, W., YU,

J., AND LANZA, G. Genetic Programming IV: Routine Human-Competitive

Machine Intelligence. Kluwer Academic Publishers, 2003.

[107] KUBAT, M., AND MATWIN, S. Addressing the curse of imbalanced training

sets: one-sided selection. In Proceedings of the Fourteenth International

Conference on Machine Learning (1997), pp. 179–186.

[108] KUPINSKI, M., AND ANASTASIO, M. Multiobjective genetic optimization

of diagnostic classifiers with implications for generating receiver operating

characteristic curves. IEEE Transactions on Medical Imaging 18 (1999), 675–

685.

[109] LANGDON, W. B. Size fair and homologous tree crossovers for tree genetic

programming. Genetic Programming and Evolvable Machines 1 (2000), 95–119.

[110] LANGDON, W. B., AND BUXTON, B. Genetic programming for combining

classifers. In Proceedings of 2001 Genetic and Evolutionary Computation

Conference (2001), Morgan Kaufmann, pp. 97–96.

[111] LANGDON, W. B., AND BUXTON, B. Genetic programming for improved

receiver operating characteristics. In Multiple Classifier Systems, J. Kittler

and F. Roli, Eds., vol. 2096 of LNCS. 2001, pp. 68–77.

[112] LANGDON, W. B., AND BUXTON, B. F. Genetic programming for mining

dna chip data from cancer patients. Genetic Programming and Evolvable

Machines 5 (2004), 251–257.

[113] LAUMANNS, M., THIELE, L., DEB, K., AND ZITZLER, E. Combining

convergence and diversity in evolutionary multiobjective optimization.

Evolutionary Compututation 10, 3 (2002), 263–282.

234 BIBLIOGRAPHY

[114] LAVRA, N., AND FAWCETT, T. Editorial: Data mining lessons learned. In

Machine Learning (2004).

[115] LAW, A. M., AND KELTON, W. D. Simulation Modeling and Analysis, 3rd ed.

McGraw-Hill Higher Education, 2000.

[116] LAWRENCE, S., BURNS, I., BACK, A. D., TSOI, A. C., AND GILES, L. C.

Neural network classification and prior class probabilities. In Neural

Networks: Tricks of the Trade (1998), Springer-Verlag, pp. 299–313.

[117] LING, C., , LING, C. X., AND LI, C. Data mining for direct marketing:

Problems and solutions. In In Proceedings of the Fourth International Confer-

ence on Knowledge Discovery and Data Mining (KDD-98) (1998), AAAI Press,

pp. 73–79.

[118] LIU, X.-Y., WU, J., AND ZHOU, Z.-H. Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics 39, 2 (2009), 539–550.

[119] LIU, Y., AND YAO, X. Negatively correlated neural networks can produce

best ensembles. Australian Journal of Intelligent Information Processing

Systems 4 (1997), 176–185.

[120] LOVEARD, T., AND CIESIELSKI, V. Representing classification problems in

genetic programming. In Proceedings of the 2001 Congress on Evolutionary

Computation (2001), vol. 12, IEEE Press, pp. 1070–1077.

[121] LOWRY, R. Statistical table entries. VassarStats Website for Statistical Com-

putation, Vassar College, New York, 2012. “http://faculty.vassar.

edu/lowry/tabs.html”.

[122] MCCARTHY, K., ZABAR, B., AND WEISS, G. Does cost-sensitive learning

beat sampling for classifying rare classes. Proceedings of the 1st international

workshop on Utility-based data mining (2005), 69–77.

[123] MCINTYRE, A., AND HEYWOOD, M. Multi-objective competitive coevolu-

tion for efficient GP classifier problem decomposition. In IEEE International

Conference on Systems, Man and Cybernetics (2007), pp. 1930 –1937.

[124] MCINTYRE, A., AND HEYWOOD, M. Classification as clustering: A

pareto cooperative-competitive GP approach. Evolutionary Computation 19,

1 (2011), 137–166.

BIBLIOGRAPHY 235

[125] MCKAY, R., AND ABBASS, H. Anti-correlation: A diversity promoting

mechanisms in ensemble learning. The Australian Journal of Intelligent

Information Processing Systems 7, 3/4 (2001), 139–149.

[126] MCKAY, R., AND ABBASS, H. Anticorrelation measures in genetic program-

ming. In Australasia-Japan Workshop on Intelligent and Evolutionary Systems

(2001), pp. 45–51.

[127] MILLER, J. F. An empirical study of the efficiency of learning boolean

functions using a cartesian genetic programming approach. In Proceedings

of the 1999 Genetic and Evolutionary Computation Conference (1999), pp. 14–17.

[128] MILLER, J. F. Cartesian Genetic Programming. Springer Berlin, Heidelberg,

2011.

[129] MITCHELL, T. Machine Learning. McGraw Hill, 1997.

[130] MONARD, M. C., AND BATISTA, G. Learning with skewed class distribu-

tions. Advances in Logic, Artificial Intelligence and Robotics (2002), 173–180.

[131] MUNDER, S., AND GAVRILA, D. An experimental study on pedestrian

classification. IEEE Transactions on Pattern Analysis and Machine Intelligence

28, 11 (2006), 1863–1868.

[132] MUTTER, S., PFAHRINGER, B., AND HOLMES, G. The positive effects of

negative information: Extending one-class classification models in binary

proteomic sequence classification. In Proceedings of the 22nd Australasian

Joint Conference on Artificial Intelligence (AI 09) (2009), vol. LNAI 5866,

Springer, pp. 260–269.

[133] NESHATIAN, K., AND ZHANG, M. Pareto front feature selection: using

genetic programming to explore feature space. In Proceedings of the 11th

Annual conference on Genetic and evolutionary computation (2009), GECCO ’09,

ACM, pp. 1027–1034.

[134] NESHATIAN, K., ZHANG, M., AND ANDREAE, P. Genetic programming

for feature ranking in classification problems. In Proceedings of the 7th

International Conference on Simulated Evolution and Learning (2008), SEAL ’08,

Springer-Verlag, pp. 544–554.

[135] NIKULIN, V., MCLACHLAN, G., AND NG, S. K. Ensemble approach for the

classification of imbalanced data. In Proceedings of the 22nd Australasian Joint

236 BIBLIOGRAPHY

Conference on Artificial Intelligence (AI 09) (2009), vol. 5866 of LNAI, Springer,

pp. 260–269.

[136] O’NEILL, M., AND RYAN, C. Grammatical Evolution. Springer, 2003.

[137] OPITZ, D., AND MACLIN, R. Popular ensemble methods: An empirical

study. Journal of Artificial Intelligence Research 11 (1999), 169–198.

[138] OPITZ, D. W., AND SHAVLIK, J. W. Generating accurate and diverse

members of a neural-network ensemble. In Advances in Neural Information

Processing Systems (1996), MIT Press, pp. 535–541.

[139] ORRIOLS, A., AND BERNADO-MANSILLA, E. Class imbalance problem in

UCS classifier system: Fitness adaptation. In IEEE Congress on Evolutionary

Computation (2005), pp. 604–611.

[140] PARROT, D., LI, X., AND CIESIELSKI, V. Multi-objective techniques in

genetic programming for evolving classifiers. In Proceedings of the 2005

Congress on Evolutionary Computation (CEC2005) (September 2005), 1141–

1148.

[141] PATTERSON, G., AND ZHANG, M. Fitness functions in genetic program-

ming for classification with unbalanced data. In Proceedings of the 20th

Australasian Joint Conference on Artificial Intelligence (2007), vol. 4830 of

LNCS, pp. 769–775.

[142] PAZZANI, M., MERZ, C., MURPHY, P., ALI, K., HUME, T., AND BRUNK,

C. Reducing misclassification costs. In Proceedings of the 11th International

Conference of Machine Learning (1994), Morgan Kaufmann, pp. 217–225.

[143] PEDNAULT, E., ROSEN, B., AND APTE, C. Handling imbalanced data

sets in insurance risk modeling. In Workshops at the Seventeenth National

Conference on Artificial Intelligence, Learning from Imbalanced Data Sets (2005),

AAAI Press, pp. 58–63.

[144] POLI, R., LANGDON, W. B., AND MCPHEE, N. F. A field guide to genetic

programming. Published via http://lulu.com, 2008.

[145] PRATI, R. C., BATISTA, G., AND MONARD, M. C. Class imbalances versus

class overlapping: An analysis of a learning system behavior. In Advances

in Artificial Intelligence, Third Mexican International Conference on Artificial

Intelligence (2004), vol. 2972 of LNCS, pp. 312–321.

BIBLIOGRAPHY 237

[146] PROVOST, F., AND DOMINGOS, P. Tree induction for probability-based

rankings. Machine Learning 52, 3 (2003).

[147] QUINLAN, R. Induction of decision trees. Machine Learning 1 (1986), 81–106.

[148] QUINLAN, R. Programs for Machine Learning. Morgan Kaufmann, 1993.

[149] ROSSET, S. Model selection via the AUC. In Proceedings of the Twenty-First

International Conference on Machine Learning. (2004), ACM Press, pp. 89–97.

[150] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: A Modern Approach

(Second Edition). Prentice Hall, 2003.

[151] RYAN, C., COLLINS, J. J., AND O’NEILL, M. Grammatical evolution:

Evolving programs for an arbitrary language. In EuroGP (1998), pp. 83–96.

[152] SCHAFFER, J. D. Multiple objective optimization with vector evaluated

genetic algorithms. In Proceedings of the 1st International Conference on

Genetic Algorithms (Hillsdale, NJ, USA, 1985), pp. 93–100.

[153] SCHWEFEL, H.-P. Evolution and Optimum Seeking. Wiley, New York, 1981.

[154] SMART, W., AND ZHANG, M. Classification strategies for image classifica-

tion in genetic programming. In Proceeding of Image and Vision Computing

Conference New Zealand (2003), pp. 402–407.

[155] SMART, W., AND ZHANG, M. Using genetic programming for multiclass

classification by simultaneously solving component binary classification

problems. In Proceedings of the 8th European conference on Genetic Program-

ming (2005), vol. 3447, pp. 227–239.

[156] SMITS, G. F., AND KOTANCHEK, M. Pareto front exploitation in symbolic

regression. In Genetic Programming Theory and Practice II, U.-M. O’Reilly,

T. Yu, R. Riolo, and B. W. (Eds.), Eds., vol. 8 of Genetic Programming. 2005,

ch. 17, pp. 283–299.

[157] SONG, D., HEYWOOD, M., AND ZINCIR-HEYWOOD, A. Training genetic

programming on half a million patterns: an example from anomaly detec-

tion. IEEE Transactions on Evolutionary Computation 9, 3 (2005), 225–239.

[158] SONG, D., HEYWOOD, M. I., AND ZINCIR-HEYWOOD, A. N. A linear ge-

netic programming approach to intrusion detection. In In Proceedings of the

12th Annual Conference on Genetic and Evolutionary Computation (GECCO’03)

(2003), vol. 2724 of LNCS, pp. 2325–2336.

238 BIBLIOGRAPHY

[159] STOLFO, S. J., FAN, D. W., LEE, W., PRODROMIDIS, A. L., AND CHAN,

P. K. Credit card fraud detection using meta-learning: Issues and initial

results. In AAAI Workshop on AI Approaches to Fraud Detection and Risk

Management (1997), pp. 83–90.

[160] STORN, R., AND PRICE, K. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global

Optimization 11 (December 1997), 341–359.

[161] SUNG, K.-K. Learning and Example Selection for Object and Pattern Recogni-

tion. PhD thesis, AI Laboratory and Center for Biological and Computa-

tional Learning, MIT, 1996.

[162] SUTTORP, T., AND IGEL, C. Multi objective support vector machines. In

Multi-Objective Machine Learning, Y. Jin, Ed. Springer, 2006, ch. 9, pp. 199–

220.

[163] TACKETT, W. A., AND CHAR, K. G. Genetic programming applied to

image discrimination. In Handbook of Evolutionary Computation, T. Baeck,

D. B. Fogel, and Z. Michalewicz, Eds. Oxford University Press, 1997.

[164] TANG, Y., ZHANG, Y.-Q., CHAWLA, N., AND KRASSER, S. SVM modeling

for highly imbalanced classification. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 39, 1 (2009), 281–288.

[165] THOMASON, R., AND SOULE, T. Novel ways of improving cooperation

and performance in ensemble classifiers. In Proceedings of Genetic and

Evolutionary Computation Conference (2007), ACM, pp. 1708–1715.

[166] TUKEY, J. W. Components in regression. Biometrics 7 (1951), 33–69.

[167] VAPNIK, V. The Nature of Statistical Learning Theory. Springer, 1995.

[168] WANG, S., TANG, K., AND YAO, X. Diversity exploration and negative cor-

relation learning on imbalanced data sets. In International Joint Conference

on Neural Networks (2009), pp. 3259–3266.

[169] WANG, S., AND YAO, X. Diversity analysis on imbalanced data sets by

using ensemble models. In IEEE Symposium on Computational Intelligence

and Data Mining (2009), pp. 324–331.

BIBLIOGRAPHY 239

[170] WANG, S., AND YAO, X. Theoretical study of the relationship between

diversity and single-class measures for class imbalance learning. In

Proceedings of the IEEE International Conference on Data Mining Workshops

(2009), ICDMW, pp. 76–81.

[171] WANG, Z., TANG, K., AND YAO, X. Multi-objective approaches to optimal

testing resource allocation in modular software systems. IEEE Transactions

on Reliability 59, 3 (2010), 563–575.

[172] WEISS, G., AND PROVOST, F. The effect of class distribution on classifier

learning: An empirical study. Tech. rep., Department of Computer Science,

Rutgers University., 2001.

[173] WEISS, G. M., AND PROVOST, F. Learning when training data are costly:

The effect of class distribution on tree induction. Journal of Artificial

Intelligence Research 19 (2003), 315–354.

[174] WENG, C. G., AND POON, J. A new evaluation measure for imbalanced

datasets. In Proceedings of the Seventh Australasian Data Mining Conference

(AusDM) (2008), pp. 27–32.

[175] WHIGHAM, P. Grammatically-based genetic programming. In Proceedings

of the Workshop on Genetic Programming: From Theory to Real-World Applica-

tions (1995), Morgan Kaufmann, pp. 33–41.

[176] WINKLER, S., AFFENZELLER, M., AND WAGNER, S. Advanced genetic

programming based machine learning. Journal of Mathematical Modelling

and Algorithms 6 (3) (2007), 455–480.

[177] WINKLER, S. M., AFFENZELLER, M., AND WAGNER, S. Using enhanced

genetic programming techniques for evolving classifiers in the context of

medical diagnosis. Genetic Programming and Evolvable Machines 10 (2009),

111–140.

[178] WITTEN, I. H., AND FRANK, E. Data Mining: Practical Machine Learning

Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[179] YAN, L., DODIER, R., MOZER, M. C., AND WOLNIEWICZ, R. Optimizing

classifier performance via the Wilcoxon-Mann-Whitney statistic. In Proceed-

ings of the Twentieth International Conference on Machine Learning (ICML 03)

(2003), pp. 848–855.

240 BIBLIOGRAPHY

[180] YAO, X., AND LIU, Y. Making use of population information in evolu-

tionary artificial neural networks. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 28, 3 (1998), 417–425.

[181] ZHANG, M. A Domain Independent Approach to 2D Object Detection Based

on the Neural and Genetic Paradigms. PhD thesis, 2000. Departmentment of

Computer Science, RMIT University, Melbourne.

[182] ZHANG, M., AND BHOWAN, U. Program size and pixel statistics in

genetic programming for object detection. Evolutionary Computation in

Image Analysis and Signal Processing 3005 (2004), 377–386.

[183] ZHANG, M., CIESIELSKI, V., AND ANDREAE, P. A domain-independent

window approach to multiclass object detection using genetic program-

ming. EURASIP Journal on Advances in Signal Processing 2003, 8 (2003), 841–

859.

[184] ZHANG, M., AND LETT, M. Genetic programming for object detection:

Improving fitness functions and optimising training data. IEEE Intelligent

Informatics Bulletin 7, 1 (2006), 12–21.

[185] ZHANG, M., AND SMART, W. Multiclass object classification using genetic

programming. In Applications of Evolutionary Computing, vol. 3005 of LNCS.

Springer Berlin / Heidelberg, 2004, pp. 369–378.

[186] ZHANG, M., AND SMART, W. Using Gaussian distribution to construct

fitness functions in genetic programming for multiclass object classification.

Pattern Recognition Letters 27, 11 (2006), 1266–1274.

[187] ZHAO, H. A multi-objective genetic programming approach to developing

pareto optimal decision trees. Decision Support Systems. 43, 3 (2007), 809–

826.

[188] ZITZLER, E., LAUMANNS, M., AND THIELE, L. SPEA2: Improving the

strength pareto evolutionary algorithm for multiobjective optimization.

Tech. rep., 2001. TIK-Report 103, Department of Electrical Engineering,

Swiss Federal Institute of Technology.

Appendix A

Benchmark Classification Data Sets

The following benchmark tasks with unbalanced data have been used in the

experimental results throughout the thesis to evaluate the proposed GP methods.

These are available at the UCI Repository of Machine Learning Databases [8] and

the Intelligent Systems Lab at the University of Amsterdam [131].

Ionosphere (Ion). This data set contains 351 recorded radar signals collected

using high-frequency antennas targeting free electrons in the ionosphere. There

are 126 “good” signals (35.8%) and 225 “bad” signals (64.2%), a class imbalance

ratio of approximately 1:3. Signals were processed using an autocorrelation

function returning two attributes per pulse, giving 34 (real) features (F1–F34) [8].

Spect Heart (Spt). This data set contains 267 patient records derived

from cardiac Single Proton Emmision Computed Tomography (Spect) images.

There are 55 “abnormal” records (20.6%) and 212 “normal” records (79.4%), an

imbalance ratio of approximately 1:4. Each SPECT image was processed to extract

44 continuous features, these were further pre-processed into 22 binary features

(F1–F22) [8].

Pedestrian images (Ped). This data set contains 24,800 portable gray map

(PGM) image cut-outs that are 19×36 pixels in size. These cut-outs include 4,800

pedestrian images (19.4%) and 20,000 (80.6%) background images, an imbalance

ratio of approximately 1:4. Example pedestrian and background images are

shown in Figure A.1(a). For image features, 22 low-level pixel statistics corre-

sponding to the mean and variance of pixel values around 11 local regions within

each image cut-out are extracted. The local regions correspond to generic equally-

sized quadrants spread evenly around each image, and rectilinear regions placed

around distinguishing regions in the image. These 22 features, F1–F22, represent

the overall pixel brightness/intensity and the contrast of a given region.

241

242 APPENDIX A. BENCHMARK CLASSIFICATION DATA SETS

19

36

A

D E

G H

J

NM

L

I

P B Q C

FR S

T
K

V W
O

U

(a) (b)

Figure A.1: (a) Example pedestrian (left two) and non-pedestrian image (right

two), and (b) local image regions for extracting pixel statistical features.

The first eight pairs of mean and standard deviation pixel statistics, F1–F16,

correspond to the eight equally sized quadrants, A-B-E-D, B-C-F-E, D-E-H-G, E-

F-I-H, D-H-K-J, H-I-L-K, J-K-N-M, and K-L-O-N, in Figure A.1(b). The last three

pairs of mean and standard deviation pixel statistics, F17–F22, correspond to the

specialised rectilinear regions located around the head, body and leg regions, P-

Q-S-R, R-S-U-T, and T-U-W-V, respectively, in Figure A.1(b).

Yeast (Yst1 and Yst2). This data set contains 1482 instances of protein

localisation sites in yeast cells, with eight amino-acid sequences as numeric

features (F1–F8) [8]. The problem has nine classes, each with a different degree of

class imbalance. This data set is decomposed into many binary classification tasks

using only one “main” (minority) class and everything else as the majority class.

Two “main” classes are selected: Yst1 has 244 examples from the mit class (16%),

an imbalance ratio of 1:6. and Yst2 has 163 examples from the me3 class (11%), an

imbalance ratio of 1:9. The mit class has the most minority class instances in this

data set, while the me3 class has one of the least.

Balance Scale (Bal). This data set contains 625 records generated to model

psychological experiments in children. Each example is classified into three

classes: the balance scale tipped to the right, left, or balanced. Two of these

classes, left (46%) and right (46%), make up the vast majority of instances and are

combined into a single (majority) class called “unbalanced” (92%). The remaining

class, “balanced”, is used as the minority class with 49 examples (8%). This

corresponds to an imbalance ratio of approximately 1:12. There are four integer-

based attributes corresponding to the left and right weights, and the left and right

distances (F1–F4) [8].

Appendix B

Additional Material

B.1 Attainment Function in Attainment Surfaces

In the multi-objective GP (MOGP) approach, the outcome of a single MOGP

run is a set of evolved solutions along the Pareto-approximated front; this is

known as an approximation set. Each solution in an approximation set can be

represented by a performance vector ~x where each element in ~x corresponds

to the performance of the given Pareto front solution on each objective. As

there are two objectives in the MOGP approach (minority and majority class

accuracy), the cardinality of ~x is two. Therefore, the output of a single MOGP

run can be represented as the set X of all individual performance vectors ~x in the

approximation set, where n is the number of solutions in the approximation set,

as shown below.

X = { ~x1, ~x2, ~x3, ..., ~xn} (B.1)

As MOGP is a stochastic algorithm, a given run is repeated a number of times

to assess the overall performance of the algorithm, and each replicate uses a

different (random) starting seed. The means that a different approximation set

Xi is returned from each replicate. Attainment surfaces summarises multiple

approximation sets (returned from a series of EMO runs) as a single approxima-

tion set [102]. In attainment surfaces, each solution in the approximation sets is

assigned an attainment value using an attainment function. This attainment value

corresponds to the probability that a given solution is attained by the EMO system

with respect to all runs; attainment values range between 1 and 0. The attainment

value for a solution represents the probability that an EMO system will produce

(or evolve) another solution that is better than, or equal to, the given solution on

243

244 APPENDIX B. ADDITIONAL MATERIAL

all objectives (i.e. weakly dominates the given solution).

B.1.1 Attainment Function

An attainment function is used to calculate the attainment value (probability

of being attained) of every solution in the approximation sets (generated over

multiple runs). The attainment function uses a weak dominance Pareto relation to

determine if a given solution is attained with respect to every other solution in the

approximation sets. A solution p weakly dominates another solution q, denoted

p � q, if p is equal to or better than q on all objectives. Weak dominance can also

apply to two sets of solutions, e.g., set Y weakly dominates set Z if every solution

in set Z is weakly dominated by at least one solution in Y [102].

Formally, an attainment value for a single solution (performance vector ~y)

can be estimated from r independent runs by the attainment function as shown

below.

Att(~y) =
1

r

r
∑

i=1

I(Xi, ~y) (B.2)

Where r is the total number of approximation sets (number of runs), Xi is the

ith approximation set for a run, and I(.) is the indicator function that determines

if the solution represented by performance vector ~y is attained with respect to

approximation set Xi. Indicator function I(.) will evaluate to 1 if solution ~y is

weakly dominated by set Xi, or zero otherwise, as shown below.

I(Xi, ~y) =







1 if (Xi � {~y}). i.e., (~x1 � ~y) ∨ (~x2 � ~y) ... ∨ (~xi � ~y)

0 otherwise.

In equation B.2, I(.) corresponds to the probability that a given approximation

set Xi weakly dominates the set made up of the single performance vector ~y.

Recall that set Xi will dominate set {~y} if there exists one element in Xi that

weakly dominates ~y. Therefore indicator function I(.) will return 1 if there exists

a solution in Xi that is equal to or better than ~y on both objectives (weakly

dominates), or zero otherwise. If 1 is returned, this means that ~y is attained with

respect to approximation set Xi.

B.2. ADDITIONAL EXPERIMENTAL RESULTS 245

Table B.1: Average AUC (± standard deviation) for fitness functions Corr and

Dist using Ave-based approach for class ordering (W = 2) over 50 GP runs
Task Corr Dist

Ion 0.87 ± 0.03 0.86 ± 0.05

Spt 0.71 ± 0.07 0.73 ± 0.04

Ped 0.87 ± 0.03 0.87± 0.03

Yst1 0.78 ± 0.03 0.79 ± 0.02

Yst2 0.94 ± 0.03 0.93 ± 0.09

Bal 0.75 ± 0.10 0.76 ± 0.10

B.1.2 Attainment sets

Solutions with equivalent attainment values k are then be grouped into the corre-

sponding k%-approximation set. For example, solutions in the 50%-approximation

set (median attainment surface where k is 0.5) represent solutions that have

been attained in 50% of all runs. Solutions in the 100%-approximation set (first

attainment surface) represent solutions that have been attained in 100% of all

runs; these correspond to poor-performing solutions as they are easy to attain.

Solutions in the lowest k%-approximation set (last attainment surface) represent

solutions that have only been attained once; these represent high-performing

solutions as these are difficult to attain.

B.2 Additional Experimental Results

B.2.1 Configuration of Corr and Dist (Chapter 4)

This section shows the experimental GP results when Ave is used in combination

with the new measures Corr and Dist in the fitness function in GP, to measure

if the output values of a given genetic program solution lie within the target

class regions (i.e. majority and minority class outputs should be negative and

non-negative, respectively). Ave represents the average classification accuracy

of an genetic program solution on the minority and majority class in fitness

evaluation. Table B.1 shows the average AUC for fitness functions Corr and Dist

using Ave for the tasks (over 50 GP runs). According to Table B.1, the AUC for

both Corr and Dist with Ave is similar to, or lower than, the AUC for Corr and

Dist with indicator function Izt (from Section 4.3.2 in Chapter 4). This suggests

that the AUC for fitness functions Corr and Dist when combined with indicator

function Izt is good as, or better than, the AUC when these two fitness functions

are combined with Ave. For this reason, indicator function Izt is the preferred

method for enforcing the zero-threshold class boundary in fitness functions Corr

246 APPENDIX B. ADDITIONAL MATERIAL

Table B.2: Ensemble accuracy (± standard deviation) on the test set using Y

values of 0.25, 0.75 and 1 in the fitness function for the PFC approach (with Off -

EEL) over 50 runs.
Task Y = 0.25 Y = 0.75 Y = 1

Minority Majority Minority Majority Minority Majority

Ion 83.4 ± 4.0 95.9 ± 3.8 83.3 ± 4.0 96.1 ± 3.0 83.7 ± 3.9 94.9 ± 3.0

Spt 68.1 ± 9.2 78.9 ± 5.8 62.4 ± 8.3 82.8 ± 5.5 67.4 ± 11.2 78.8 ± 8.1

Ped 90.1 ± 1.4 86.4 ± 2.1 90.9 ± 1.7 88.2 ± 1.6 87.3 ± 3.1 89.2 ± 2.6

Yst1 68.7 ± 4.6 78.0 ± 4.7 69.9 ± 6.0 79.3 ± 6.4 68.7 ± 5.1 78.7 ± 5.1

Yst2 93.8 ± 2.9 90.1 ± 2.5 92.6 ± 2.6 90.5 ± 2.8 91.5 ± 3.5 90.4 ± 2.4

Bal 84.8 ± 7.3 84.1 ± 11.2 83.4 ± 9.2 85.8 ± 8.1 81.2 ± 9.8 83.4 ± 9.6

and Dist.

B.2.2 Weighting Coefficients in PFC Fitness (Chapter 6)

This section provides the experimental results comparing different weighting

coefficients in the fitness function for the MOGP approach with PFC. Recall that

the MOGP approach with PFC defines a trade-off between the accuracy and

diversity of a given solution in the fitness function, controlled by weighting

coefficient Y in Eq. (6.3) where 0 < Y < 1. The primary PFC approach (used

in Chapter 6) uses Y of 0.5 to treat accuracy and diversity as equally important

in fitness. These results compare whether three other weighting coefficients for

Y (0.25, 0.75 and 1) in Eq. (6.3) in the fitness function for PFC improves ensemble

performances compared to the default (primary) approach (where Y is 0.5) .

When Y < 0.5, the accuracy on the two classes is treated as more important

(than diversity) in fitness, while when Y > 0.5, the diversity is treated as more

important in fitness. These results use Off -EEL [76] as the ensemble selection

strategy as this approach shows very good ensemble performances for PFC on

the tasks (see Chapter 6) .

The first set of experimental results show the ensemble accuracies on the

minority and majority class using the weighting coefficients 0.25, 0.75 and 1 on

the tasks. The second set of experimental results analyse the ensemble “wins”

when each of these weighting coefficients is compared to the default weight (0.5)

in PFC.

Classification Accuracy of PFC Ensembles

Table B.2 shows the average minority and majority class accuracies (on the test

set) for the PFC ensembles (with Off -EEL) for the three Y configurations (0.25,

B.2. ADDITIONAL EXPERIMENTAL RESULTS 247

Table B.3: ”Win” pairs when the current PFC approach (PFC0.5) is compared to

other Y values in the fitness function (PFCY) with Off -EEL (on a run-by-run basis)

over 50 runs. Bold results indicate a statistically significantly better ensemble

performance (95% significance level) over 50 runs.
Task 0.5 vs 0 0.5 vs 0.25 0.5 vs 0.75 0.5 vs 1.0

Ion 22,6 14,14 18,11 18,4

Spt 6,3 6,9 3,6 7,3

Ped 20,0 20,2 7,12 12,2

Yst1 3,6 3,4 4,4 5,0

Yst2 7,8 6,6 11,4 12,1

Bal 16,12 9,13 15,11 13,6

Wins 74,35 58,48 58,48 67,16

Draws 191 194 194 217

0.75 and 1) over 50 MOGP runs. For convenience, a given Y configuration in PFC

is referred to as PFCY in the discussion below. According to Table B.2, these Y

configurations do not show any major difference in performance on the tasks. No

Y configuration shows substantially better classification results than the default

approach PFC0.5 (from in Table 6.4 in Chapter 6). In three tasks (Spt, Yst1 and Bal),

each Y configuration seems to have a slight performance bias toward either the

the minority and majority class. Less diversity (PFC0.25) seems to have slightly

stronger minority class accuracies (than majority class accuracies); while more

diversity (PFC0.75) seems to have slightly stronger majority class accuracies (than

minority class accuracies). In the remaining task, the PFC0.75 results dominates

PFC0.25, suggesting that more diversity in PFC can slightly improve ensemble

results (than less diversity) on these tasks.

Ensembles Wins for PFC

Table B.3 shows the pairs of ensemble wins when the default PFC approach

(PFC0.5) is compared to the four other Y configurations (0, 0.25, 0.75 and 1) on a

run-by-run basis over 50 MOGP runs. Table B.3 also includes PFC0 (i.e. Baseline

MOGP), for a more complete picture of how these Y configurations compare to

PFC0.5. This ensemble wins method of comparing two approaches (on a run-

by-run basis), provides a good overall indication of ensemble behaviours over

all runs and tasks and thus, a better idea of how the different Y configurations

compare to the default PFC approach. The statistically significantly better

ensemble strategy, denoted by a higher number of wins, is highlighted in bold

in Table B.3.

According to Table B.3, the total number of wins (over all tasks) is always

248 APPENDIX B. ADDITIONAL MATERIAL

higher in PFC0.5 than in the other PFCY approaches. PFC0.5 is clearly better

than PFC0 and PFC1, as PFC0.5 achieves more total wins than PFC0 and PFC1.

(PFC0.5 is statistically significantly better than the PFC1 ensembles in four tasks

and PFC0 in two tasks). However, this difference is not as clear when PFC0.5

is compared to PFC0.25 and PFC0.75. Even though PFC0.5 achieves more total

wins than PFC0.25 and PFC0.75, the margin of total wins for PFC0.5 is not very

large. Interestingly, PFC0.5 achieves 58 total wins over all tasks when compared

to both PFC0.25 and PFC0.75; while both these approaches achieve 48 total wins

over all tasks compared to PFC0.5. This suggests that while none of the other Y

configurations can improve ensemble performances compared to the current PFC

approach over all tasks, configurations where Y is 0.25 and 0.75 can also produce

good ensemble results on these tasks.

