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A B S T R A C T

The current crisis in loss of biodiversity requires rapid action. Know-
ledge of species’ distribution patterns across scales is of high import-
ance in determining their current status. However, species display
many different distribution patterns on multiple scales. A positive
relationship between regional (broad-scale) distribution and local
abundance (fine-scale) of species is almost a constant pattern in mac-
roecology. Nevertheless interspecific relationships typically contain
much scatter. For example, species that possess high local abundance
and narrow ranges, or species that are widespread, but locally rare.
One way to describe these spatial features of distribution patterns is
by analysing the scaling properties of occupancy (e.g., aggregation)
in combination with knowledge of the processes that are generating
the specific spatial pattern (e.g., reproduction, dispersal, and colonisa-
tion). The main goal of my research was to investigate if distribution
patterns correlate with plant life-history traits across multiple scales.
First, I compared the performance of five empirical models for their
ability to describe the scaling relationship of occupancy in two data-
sets from Molesworth Station, New Zealand. Secondly, I analysed
the association between spatial patterns and life history traits at two
spatial scales in an assemblage of 46 grassland species in Molesworth
Station. The spatial arrangement was quantified using the parameter k
from the Negative Binomial Distribution (NBD). Finally, I investigated
the same association between spatial patterns and life-history traits
across local, regional and national scales, focusing in one of the most
diverse families of plant species in New Zealand, the Veronica sect.
Hebe (Plantaginaceae). The spatial arrangement was investigated using
the mass fractal dimension. Cross-species correlations and phylogenet-
ically independent contrasts were used to investigate the relationships
between plant life-history traits and spatial patterns on both data
bases. There was no superior occupancy-area model overall for de-
scribing the scaling relationship, however the results showed that a
variety of occupancy-area models can be fit to different data sets at
diverse spatial scales using nonlinear regression. Additionally, here
I showed that it is possible to deduce and extrapolate information
on occupancy at fine scales from coarse-scale data. For the 46 plant-
assemblage in Molesworth Station, Specific leaf area (SLA) exhibits a
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positive association with aggregation in cross-species analysis, while
leaf area showed a negative association, and dispersule mass a pos-
itive correlation with degree of aggregation in phylogenetic contrast
analysis at a local-scale (20× 20 m resolution). Plant height was the
only life-history trait that was associated with degree of aggregation
at a regional-scale (100× 60 mresolution). For the Veronica sect. Hebe
dataset, leaf area showed a positive correlation with aggregation while
specific leaf area showed a negative correlation with aggregation at
a fine local-scale (2.5-60 m resolution). Inflorescence length, breeding
system and leaf area showed a negative correlation with degree of
aggregation at a regional-scale (2.5-20 km resolution). Height was
positively associated with aggregation at national-scale (20-100 km
resolution). Although life-history traits showed low predictive ability
in explaining aggregation throughout this thesis, there was a general
pattern about which processes and traits were important at different
scales. At local scales traits related to dispersal and completion such as
SLA , leaf area, dispersule mass and the presence of structures in seeds
for dispersal, were important; while at regional scales traits related to
reproduction such as breeding system, inflorescence length and traits
related to dispersal (seed mass) were significant. At national scales
only plant height was important in predicting aggregation. Here, it
was illustrated how the parameters of these scaling models capture an
important aspect of spatial pattern that can be related to other mac-
roecological relationships and the life-history traits of species. This
study shows that when several scales of analysis are considered, we
can improve our understanding about the factors that are related to
species’ distribution patterns.

R E S U M E N

La actual pérdida de biodiversidad exige actuar de manera rápida
para frenarla. El conocimiento de los patrones de distribución de las es-
pecies es de gran importancia en la determinación de su estado actual.
Sin embargo, las especies muestran muchos patrones de distribución
en diferentes escalas. La relación positiva entre la distribución regional
(a escalas gruesas) y la abundancia local (a escalas finas) de las espe-
cies, es casi un patrón constante en macroecología. Sin embargo, las
relaciones intraespecíficas contienen mucha variación entre escalas.
Por ejemplo, hay especies que tienen mayor abundancia local y dis-
tribución restringida, o especies que tienen amplia distribución pero
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que son poco abundantes a escala local. Una forma de describir estas
propiedades espaciales de los patrones de distribución es mediante
el análisis de las propiedades de escalamiento de ocurrencia de las
especies (por ejemplo, la agregación de especies), en combinación con
el conocimiento de los procesos que están generando los patrones
espaciales (por ejemplo, reproducción, dispersión y colonización). El
objetivo principal de mi investigación fue analizar si los patrones
de distribución tienen correlación con atributos funcionales de las
plantas en diferentes tamaños de escala. En primer lugar, se comparó
el desempeño de cinco modelos para determinar su capacidad para
describir la relación de escalamiento de la ocurrencia de especies en
dos bases de datos de Molesworth Station, Nueva Zelanda. En se-
gundo lugar, se analizó la asociación entre los patrones espaciales
a escala local y regional, así como los atributos funcionales en un
ensamble de 46 especies de pastizal en Molesworth Station. La dis-
tribución espacial se cuantificó usando el parámetro k del modelo
de distribución negativa binomial. Finalmente, se analizó la misma
asociación entre patrones espaciales y atributos funcionales a escalas
locales, regionales y nacionales, centrándose en una de las familias
de plantas más diversas en Nueva Zelanda, la familia Plantaginaceae
(Veronica sect. Hebe). La distribución espacial se analizó utilizando el
índice de la geometría fractal. Se utilizaron dos tipos de correlaciones
para investigar las relaciones entre atributos funcionales y patrones es-
paciales: correlaciones tomando en cuenta la filogenia y correlaciones
sin tomar en cuenta la filogenia, en ambas bases de datos. Los resulta-
dos muestran que no hubo un modelo superior de ocurrencia-área
para describir la relación de escalamiento. Sin embargo, se demostró
que los modelos de ocurrencia-área pueden ajustarse a diferentes
bases de datos utilizando regresión no lineal. Además, en esta tesis
se demostró que es posible deducir y extrapolar información de la
ocurrencia de especies a escalas finas a partir de escalas más gruesas.
Para el ensamble de 46 especies de plantas en Molesworth Station,
el área foliar específica (AFE) muestra una asociación positiva con la
agregación de especies (sin tomar en cuenta la filogenia), mientras
que el área foliar mostró una asociación negativa, y el tamaño de
los propágulos mostró una correlación positiva con los patrones de
distribución tomando en cuenta la filogenia a escala local (resolución
de 20× 20 m). La altura de las plantas fue el único atributo functional
que estuvo asociado con patrones dedistribución a escala regional
(resolución de 100× 60 m). En las especies pertenecientes al grupo
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Veronica sect. Hebe, el tamaño de hoja mostró una correlación positiva
con la agregación de especies, mientras que el área foliar específica
mostró una correlación negativa con la agregación de especies a escala
local (resolución de 2.5-60 m). El tamaño de la inflorescencia, el tipo
de sexualidad de las plantas y el tamaño de la hoja mostraron una
correlación negativa con los patrones de distribución a escala regional
(resolución de 2.5-20 km). La altura estuvo asociada positivamente
con los patrones de distribución a escala nacional (resolución de 20-
100 km). Aunque los atributos funcionales mostraron baja capacidad
predictiva para explicar los patrones de distribución, en esta tesis
se demostró cómo los parámetros de estos modelos de escalamiento
pueden capturar un aspecto importante de los patrones espaciales
que puede ser afines con otras relaciones macroecológicas y con los
atributos funcionales de las especies. Este estudio muestra que cuando
se consideran escalas de diferentes tamaños en los análisis, se puede
mejorar nuestra comprensión de los factores relacionados con los
patrones de distribución de las especies.
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“With regard to general problems of biogeography, the biota of New Zealand

has been, perhaps, the most important of any in the world.

It has figured prominently in all discussions of austral

biogeography, and all notable authorities have felt

obliged to explain its history: explain New Zealand

and the world falls into place around it’’

— Nelson 1975
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Part I

I N T R O D U C T I O N



1
G E N E R A L I N T R O D U C T I O N

1.1 spatial pattern

Since the time of Alfred Russel Wallace (b.1823- d.1913) and before,
ecologists and biogeographers have sought explanations for the way
in which plants and animals are distributed on Earth (Wallace 1876;
Guisan & Thuiller 2005). Species’ distribution is the empirical way
in which taxa are spatially arranged. When this arrangement has
a certain amount of intrinsic or extrinsic predictability, and can be
described quantitatively, we use the term spatial pattern (Dale 1999).
When ecologists collate information on species distribution in nature,
they find it is the rule rather than the exception that most systems are
not spatially homogeneous, rather they exhibit some kind of spatial
pattern (Dale et al. 2002; Perry et al. 2002). The study of spatial patterns
in nature seeks to understand the underlying biological processes such
as establishment, competition, growth and reproduction (Brown 1984;
Dale 1999; Perry et al. 2002). Spatial patterns can be thought as a
snapshot of a process or a combination of processes at one given time
(Fortin et al. 2003). One of the main questions of this thesis was: are
processes such as competition, growth and reproduction related to
spatial patterns?

1.1.1 Types of spatial point patterns

There are three broad classes of spatial patterns. First, the term random
pattern refers to individuals that are distributed completely independ-
ent of each other (Figure 1). Secondly, the terms regular, negatively
autocorrelated, inhibited, uniform and even refer to the type of non-
random pattern that might develop as a result of mutual repulsive
interactions between individuals (Perry et al. 2002; Figure 1). This
inhibited pattern could arise because of competition that eliminates
individuals that are too close together (Crawley 2007). Thirdly, the
terms aggregated, patchy, positively autocorrelated, clustered and clumped
all refer to the type of non-random pattern that might develop as a res-
ult of positive or attractive associations between individuals (Perry et
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1.2 scale 3

Figure 1: Three broad classes of spatial point patterns.

al. 2002; Figure 1). This may be caused by growth, limited dispersal or
environmental conditions where favourable and unfavourable patches
influence aggregated patterns (Dale et al. 2002; Crawley 2007). In this
study I used several indices of aggregation as a measure of spatial
patterns (see below).

1.1.2 Patterns of counts across sample units

Sample units may be naturally defined by the environment (e.g., plants
with counts of insects on them) or more arbitrarily defined by the
researcher by the use of quadrats or grid squares. If the data are in the
form of mapped point locations (as Figure 1), they can be converted
into the equivalent of grids of contiguous quadrats by setting up a
matrix in which the elements of the matrix are the number of points
in a corresponding square of the map (Figure 2). The use of smaller
and thus more numerous quadrats will lose less information in this
conversion. With data on the densities of points (e.g., species) in a grid
of contiguous quadrats, the data are used directly (see Dale 1999 for a
discussion on spatial analysis methods). One feature of the concepts
of random, regular and aggregated patterns is that the phenomena are
scale dependent. Therefore, we should not ask whether two different
point patterns are scattered or aggregated; we should ask at what
scale or scales they are scattered and aggregated. In the same way,
throughout this thesis several scales of analysis were considered. I
specifically asked, at which scale the relationships between plant
life-history traits and distribution patterns are relevant?

1.2 scale

The term scale has been used by ecologists as the size of the sample
unit (e.g., quadrat) or cell size at which a distribution is gridded (He
& Condit 2007). Many species’ distributions exhibit different spatial
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Figure 2: Three same patterns above, but as counts of individuals in gridcells.

patterns when viewed at one spatial scale compared to another; this
means that they are scale-dependent (Perry et al. 2002; Hartley &
Kunin 2003). For example, the same spatial pattern could appear
random when viewed with small quadrats, regular when investigated
with medium-size quadrats and aggregated when analysed with large
quadrats (Figure 3). Scale plays a major role in this thesis, I compared
species’ distribution patterns from local-scale (few metres) to national-
scale (hundred of kilometres).

Figure 3: Spatial patterns at different quadrat sizes

1.3 measuring aggregation

Quantifying aggregation levels of spatial patterns is essential in ecolo-
gical studies to infer the underlying mechanisms (e.g., competition,
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dispersal, reproductive behaviours, habitat heterogeneity, and disturb-
ances) of species coexistence (He et al. 2000; Zillio & He 2010). One
of the most widely used models for quantifying spatial aggregation
across sample units is reference to the negative binomial distribution.
(He & Gaston 2000; Green & Plotkin 2007). The negative binomial
distribution (NBD) can characterise patterns at one (arbitrary) scale,
whereby the grain of the pattern is set by the size of the sample unit.
More recently, fractals (Mandelbrot 1979) have been used for character-
ising spatial distributions (e.g., Cousens et al. 2004b; Fortin et al. 2005)
across a range of scales. Different forms of fractal dimension can be
calculated for both point patterns and distribution counts. Throughout
this thesis, spatial distribution, measured as the degree of aggregation,
was quantified using these two models.

1.3.1 The negative binomial

The negative binomial distribution is the statistical model distribu-
tion most frequently used to model aggregated patterns of spatial
occurrence (Holt et al. 2002; He & Gaston 2003). The NBD takes the
form

p = 1−
(

1 +
µ

k

)−k
(1.1)

where p is occupancy, k is a “clumping” parameter and µ is the mean
abundance across sampling unit. The parameter k assumes lower
values as the degree of aggregation increases. Poisson or random
distribution is equivalent to k → ∞ (Hartley 1998). The k parameter
takes the form

k =
µ2

σ2 − µ
(1.2)

where σ2 is the variance in the abundance of a species. The negative
binomial distribution predicts a relationship between µ and σ2, of the
form

σ2 = µ +
µ2

k
(1.3)
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One of the drawbacks of using the NBD is that the values of k often
exhibit an empirical dependency and are dependent on the mean
density (Holt et al. 2002).

1.3.2 The fractal dimension

There are many ways of defining or describing the concept of fractal
objects and fractal dimensions. The key properties of a fractal are: 1)
a degree of self-similarity across a range of spatial scales (or resol-
utions) of observation and; 2) they do not completely occupy or fill
the Euclidean dimensional space in which they are embedded e.g., a
wiggly line appears to occupy more “space” on a page than a straight
line, even though both lines may be of equal length and infinitely
thin. For this reason fractals are usually described as possessing a
non-integer dimension, as opposed to Euclidean objects which can
only have integer dimensions (Halley et al. 2004). A scale-invariant
pattern can be detected if the geometric measure (e.g., “space” occu-
pied) against scale of observation (e.g., resolution of pixels) follows
a power-law (or equivalently a linear relationship on log-log axes).
The exponent of the power-law (or slope of the log-log plot) has the
interpretation of a dimension D (Cousens et al. 2004), which measures
the object’s ability to fill the Euclidean space E in which it is embed-
ded (Mandelbrot 1983). There is a wide range of methods within the
fractal family differing in the information they provide, and an array
of methods for their calculations. The most appropriate method for
measuring a given type of fractal dimension will depend on the nature
of the object and the purpose of the analysis. Generally, distributions
that are point-like and highly fragmented tend to have D ≈ 0; and
distributions with continuous and even patterns tend to have D ≈ 2
(Hartley & Kunin 2003; Figure 31). In this thesis, the box-counting
dimension(Db) and the mass fractal dimension (Dm) were used. The
methods for measuring these types of fractals are explained below
following Halley et al. (2004).

1.3.2.1 Box-counting dimension

This method is well-suited to analyse presence-absence datasets. It
measures the number of “boxes” (e.g., grid cells) required to cover
an object (e.g., the species distribution pattern) as a function of scale
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(the size of the box). The box-counting dimension is usually found by
estimating the slope (b) of log N(s) plotted against log(s), whereN(s)is
the proportional occupancy observed at a particular scale and s is
the scale of analysis. Once the log-log slope (b) is calculated, we can
convert the slope (b) into a box-fractal dimension(Db) by rearranging
Equation 1.4 (Hartley & Kunin 2003) and obtaining Equation 1.4a.

b = 1−
(

Db

2

)
(1.4)

Db = 2− 2(b) (1.4a)

1.3.2.2 The mass fractal dimension

This method is more appropriate for analysing point pattern data
(Voss 1988). The method counts the number of points occupied by
an object in squares or circles of radius d of increasing size from the
centre of the domain of interest. One counts the number of occupied
points and estimates the mass m(d), Equation 1.5

m(d) =
No(d)

Nt(d)
(1.5)

where No(d) is the number of occupied points and Nt(d) is the total
number of points within an observation window of size d. The slope
of the linear behaviour of m(d) against d in a log-log plot provides the
estimate of the mass fractal dimension Dm. These computations are
repeated for various values of d. The mass fractal dimension Dm is
defined as:

m(d) = kdDm (1.6)

where k is a constant (not to be confused with k of the negative
binomial distribution).

More details on the calculation of the mass fractal dimension are
presented in Chapter 4 and a detailed computation of the mass fractal
dimension is given in Appendix E.

1.4 occupancy as a measure of abundance

Due to the high cost and the logistical difficulty of doing surveys of in-
dividual counts (abundance) for studying distribution patterns, most
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species data sets are available in the presence-absence form, without
associated abundance count (Hui & McGeoch 2007). Occupancy, which
is the number of grid cells (or sample units) in a map where a spe-
cies is found, has been frequently used as a surrogate of abundance
since it is easy to document, interpret and it generally correlates with
species abundance (Gaston et al. 2000; He & Condit 2007). The World
Conservation Union (IUCN) uses measures of occupancy to classify
species as vulnerable, endangered or critically endangered if detailed
information on numbers of individuals and extinction probabilities
are not available (World Conservation Union 2001). Nevertheless, oc-
cupancy frequently fails to capture spatial features of distribution; two
species or populations that have the same occupancy can display very
different patterns (He & Hubbell 2003; Figure 4). Thus, the question is
how to describe the spatial features of species on multiple scales using
occupancy? Occupancy-area models can describe important features
of distribution patterns across scales (e.g., aggregation). Occupancy-
area models were used in this thesis and some parameters of these
relationships were used as a measure of aggregation pattern.

Figure 4: Two hypothetical species having the same occupancy but different
distribution patterns with different levels of aggregation.
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1.5 occupancy as a measure of range size

EOO extent of occu-
pancy

Range size, sometimes defined as the extent of occupancy (EOO),
is another important concept utilised by the IUCN and others as a
measure of species status rank (Hartley & Kunin 2003). EOO is a coarse-
scale measure of geographic range, frequently defined by the area of
the minimum convex polygon (MCP) that includes all known records of
the species. The value of extent of occupancy can be highly influenced
by the presence of a single outlying population or individual (Hartley
& Kunin 2003; Figure 5). Ranges of EOO can include regions in which

MCP minimum con-
vex polygon

the species are not actually present. This may be because those areas
are entirely unsuitable, or simply uncolonised (Gaston 1991), thus EOO

has the propensity to overestimate the area occupied (Figure 5).
Occupancy can also be used as a surrogate of range of size since

Area of Occupancy (AOO) can be adjusted across a wide range of
spatial scales. Area of occupancy is more accurate in measuring range
size given that is measured by dividing the study area into a number
of contiguous sample units and then summing the area of occupied
units (Hartley & Kunin 2003). Figure 5 compares the concepts of Area
of occupancy and extent of occupancy. The problem of using AOO is

AOO area of occu-
pancy

again how to capture the spatial features of distribution of two species
having the same occupancy but different patterns (Figure 4)?
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Extent of occupancy (EOO)
defined by the the area of 
minimum convex polygon
(MCP)

Veronica haastii

Figure 5: Area of occupancy (AOO) and the extent of occupancy (EOO) of
Veronica haastii in New Zealand. The blue polygon represents the
minimum convex polygon (MCP). The area of each cell for fine-
scale is 36 km2, thus the total area occupied of Veronica haastii is
36× 16 = 576 km2, for coarse-scale each cell is 1600 km2, thus the
total is 1600× 8 = 12, 800 km2 and for the extent of occupancy
defined by the minimum convex polygon the total area is 16,875

km2. The MCP clearly overestimates range size. Area of occupancy
is presented at fine and coarse-scale being a better measure of range
of size. Data from Bayly & Kellow (2006).
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1.6 occupancy-area models : aggregation of occupancy pat-
terns

As illustrated above, area of occupancy (AOO) or similarly proportional
occupancy, may be calculated at different scales using different size
grid cells. The occupancy-area relationship is obtained by plotting
species occupancy (the proportion of grid cells in which a species is
found) against spatial scale or area (defined as the cell size at which
a distribution is gridded; Figure 6), which yields a monotonically
increasing curve whose slope is steep at first but gradually becomes
flat as scale increases (Figure 6 bottom left). Several models have been
proposed to examine the scaling properties of the occupancy-area
relationship. The purpose of these models is to obtain a straight slope
of the occupancy-area relationship leading to an invariant property of
the relationship (independent of scale, e.g., Nachman model, Figure
6 bottom right). Hypothetically, once we have described the slope
across scales of the occupancy-area relationship we could estimate
abundance from occupancy or predict distribution at fine scales from
coarse scales (Kunin 1998; He & Condit 2007; He & Gaston 2007).
Examples of the occupancy-area models that have been developed to
describe the properties of the spatial patterns across scales are: the
power-law model, the Poisson model, the NBD model, the Nachman
model and the logistic model (He & Condit 2007). Generally the
relationships are plotted in their linear form (log-log), yielding some
problems for empirical data of rare species where occupancy at small
scales is often zero if the study area has been subsampled at the finer
scales. The performance of five of these occupancy-area models was
tested in Chapter 2 in their non-linear form and with occupancies
of zero at fine-scales. The application of nonlinear regression to the
occupancy-area models can improve occupancy prediction and can
be used in surveys that have been carried out in nested quadrats or
when sample units are of a mixture of sizes, not necessarily in gridded
maps.
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Figure 6: Hypothetical distribution of 40 points (upper left). Panels show
the occurrence at five scales: 10× 10, 20× 20, 40× 40, 80× 80 and
160× 160 (grid cell size or area). Bottom left plot is the relationship
between the proportion of occupied area of each map and cell size
(the occupancy-area curve). Bottom right plot corresponds to the
same relationship but with the Nachman model, occupancy-area
curve fitted in linear form.
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1.7 life-history traits as predictors of distribution pat-
terns

The current crisis in biodiversity requires rapid action. Knowledge of
species’ distribution patterns across scales is important in determining
their current status; whether they are rare of common species, declin-
ing or expanding. It has been suggested that several plant life-history
traits might be causally related to distribution patterns (Lloyd et al.
2003). Some plant life-history traits have the advantage of being easy
to measure for a large sample of species. Life-history and ecological
traits (e.g., in plants; seed size, diaspore dispersal mechanism, mode of
reproduction) appear to be important predictors that link organismal
traits to abundance and distribution patterns (Tilman 1994; Suding et
al. 2003). Recent studies have demonstrated that life-history traits are
important predictors of species that become invasive or threatened
(Phillips et al. 2010, Bradshaw et al. 2008, Hao et al. 2009, Fynn et
al. 2009). However, the results of the different studies are far from
consistent (Moles et al. 2008). Other studies have found associations
between plant life-history traits and distribution patterns (Zhang et
al. in press, Tremlova and Munzbergova, 2007, Van der Veken et al.
2007) and have also found contradictory results. One possible reason
of these contradictory results is that these studies frequently centre
their analyses at one single scale, giving different results according to
the scale used. In this thesis, a multi-scale analysis approach was taken
in order to address this gap; I tested the relationships between some
plant life-history traits and distribution patterns at several scales.

In New Zealand, several studies have investigated the association
between plant life-history traits and distribution patterns. Lloyd et al.
(2003) found positive relationships between geographic range size and
plant life-history traits such as growth rate, dispersal capacity and
environmental tolerance; as well as negative relationships between
range size and species with more variable flowering between years in
species of Chinochloa (Poaceae). Another study that looked at attributes
in fruits of species of Acaena (Roasaceae) in relation to distribution,
found that species with barbed spines generally have the broadest
geographical range and habitat distribution within New Zealand (Lee
et al. 2001). In the same genus (Acaena) Lloyd et al. (2002) investigated
growth and reproductive traits in relation to rarity and abundance.
They found that common species or the species with larger range size
had higher relative growth rates, faster lateral expansion, produced
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inflorescences for a shorter period and held their capitula higher above
the canopy. Although these studies have looked at the associations
between plant life-history traits and distribution patterns, they mostly
focused again on AOO at one particular scale. In this thesis, I asked: are
plant life-history traits correlated with aggregation patterns? And at
which scale these relationships were relevant? Multi scale-studies have
the advantage of being better able to detect scale-specific associations
between pattern and process that may not always be apparent at a
single scale of study. They can help increase the robustness of cross-
scale predictions of occupancy and to understand the relationship
between abundance and occupancy.

1.8 implications

Regarding occupancy-area models, the potential use of predicting
properties of fine-scale distribution pattern from coarse-scale (“scaling
down”) is particularly useful for conservation purposes (Kunin 1998;
Moody-Weis et al. 2008). In this thesis, I compared and looked at
the scaling properties of several occupancy-area models. Frequently,
information on invasive or rare species is needed at a fine-scale for
identifying dangerously invasive or small populations; nevertheless,
in most cases the information is limited to coarse scale distributional
maps (Tosh et al. 2004). In conjunction, knowledge of pattern (e.g.,
range, abundance, and aggregation) in combination with knowledge
of process (e.g., reproduction, dispersal, colonisation), is essential to
predict distribution patterns across scales that may provide some
guidance in the assessment or design of effective nature preserves,
conducting efficient censuses, mitigating the effects of habitat loss,
and predicting the effects of natural and anthropogenic disturbances
(Brown 1984; Hanski & Gyllenberg 1997; Conlisk et al. 2007). Here, I
correlated distribution patterns (e.g., aggregation) with processes such
as reproduction, dispersal, colonisation. The results of this thesis may
provide a guidance of the factors that are shaping aggregation patterns
at different scales. Additionally, understanding and comparing life-
history and ecological traits between rare and common species has the
potential to provide useful biological information for the conservation
and management of rare species (Murray et al. 2002). It has been shown
that rare species tend to differ in many life-history and ecological traits
from common species (Kunin & Gaston 1993; Pocock et al. 2006).
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1.9 thesis structure

The main focus of my thesis was to identify plant life-history traits
that correlate with distribution patterns across multiple scales, and
to determine which plant life-history traits are important at which
scales. First, in Chapter 2, I examined five occupancy-area models
that may provide accurate description of distribution patterns across
multiple scales because this remains a largely unsolved problem (He
& Condit 2007). Additionally, I tested the performance of the same
models in predicting occupancy at fine-scales from coarse-scales. In
Chapter 3, I looked at the relationships between distribution patterns
and plant life-history traits in a high country or sub-alpine plant
assemblage in Molesworth Station, New Zealand. The NBD model was
used to describe distribution pattern as it allows a straight-forward
link between occupancy and local abundance (Hartley 1998). Seven
morphological and life-history traits were measured and compiled
from field and from specialised literature; they were: leaf area, SLA,
woodiness, plant height, seed weight and dispersal mode. In Chapter
4, the national distribution of Veronica sect. Hebe in New Zealand (84

spp. from the hebe and semi-whipcord hebe clades), was quantified at
two different scales and then correlated with life-history traits. Fractal
dimensions were used to describe these distribution patterns, since
it is a useful descriptor of the spatial aggregation of point-pattern
data across scales (Storch et al. 2008). Seven plant traits were used
as correlates of important processes like colonisation, dispersal and
competition. I hypothesised the following relationships:

1. Seed size (mass). It is expected that species with larger seeds will
tend to have more aggregated distributions

2. Presence or absence of seed wings. Species with presence of wings
should have more diffuse distributions than those lacking this
capacity.

3. Breeding system. Species that are cosexual and self-compatible
could form and persist in more fragmented ranges leading to
more cohesive distributions

4. Growth habit. Trees are expected to have relatively large and more
scattered ranges.
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5. Leaf area and specific leaf area (SLA). I predict that species with
small and thicker leaves (small SLA values) will tend to have
more aggregated patterns.

6. Height. It is hypothesised that taller species would lead to point-
like distributions, since taller species could increase dispersal
capacity into previously unoccupied habitats.

7. Inflorescence length. The hypothesis was that the species with
longer inflorescences would lead to point-like distributions.

Finally in Chapter 5, the summary of the thesis is presented. Future
directions and implications of the thesis in conservation, management,
surveying and monitoring are discussed. The data Chapters of this
thesis have been intentionally written as independent manuscripts.
Some repetition of general information may occur between them.

The data Chapters will intend to be submitted to following journals:

– Chapter 2. Occupancy-scale relationships: a new approach for
nested quadrats. Methods in Ecology and Evolution

– Chapter 3. Are plant abundance and distribution patterns cor-
related with ecological plant traits: a multi-scale analysis of a
grassland community. Journal of Ecology

– Chapter 4. Life-history traits related to national, regional and
local distribution patterns in the Veronica sect. Hebe (Plantagi-
naceae). Diversity and Distributions
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2
O C C U PA N C Y- A R E A R E L AT I O N S H I P S : A N E W
A P P R O A C H F O R N E S T E D Q U A D R AT S

2.1 introduction

The distribution of species in broad scale studies is commonly recorded
by occupancy because measures of abundance (number of individuals)
are too costly and logistically difficult to carry out. Occupancy is an
important criterion used for inventorying biodiversity (Gaston et al.
2000), categorising conservation status IUCN and assessing spread of
invasive species (Hamilton et al. 2005).

Occupancy is often referred to as the presence of a species in a
sample unit, grid cell, site or some other defined locality (Hui and
McGeoch, 2007, Hartley, 1998). Here, I use the term sample unit which
implies the data were derived from some form of structured survey.
The proportion of sample units that is occupied by a species is a
function of the overall abundance of the species (e.g., number of
individuals), their degree of aggregation and the size (also referred to
as the area, scale, or resolution) of the sample units (He and Gaston,
2000a). Occupancy measured at a single scale often fails to capture
significant spatial features (He and Condit, 2007), however occupancy
measured over multiple scales can reveal spatial properties such as
aggregation (He and Condit, 2007). The relationship between area of
the sample unit and occupancy has also captured ecologists’ attention
because it is a promising way to predict abundance and distribution
across multiple spatial scales (He and Condit, 2007, Kunin, 1998).

Several mathematical models have been suggested to describe the
occupancy-area relationship. Although the majority have been orig-
inally proposed in the form of occupancy-abundance models (see
Holt et al. 2002 for a review), they can be adapted in the form of
occupancy-area relationship.

In a recent paper He & Condit (2007) have tested the fit of three
models for abundance-area relationships: the Nachman, the logistic
and the power-law models. Although no model was overall superior,
they concluded that the most robust model was the Nachman model.
The occupancy-area relationship is commonly analysed in linear form
(on log-log axes) drawing data from commonly used grid maps (e.g.,
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the Barro Colorado Island 50-ha permanent forest plot) in which coarse
scale occupancy maps are produced by amalgamating the adjacent
grid cells of a spatially comprehensive fine-scale survey. The log-log
transformations of the occupancy-area relationships often distort the
experimental error since the linear regression assumes that the scatter
of points around the line follows a Gaussian distribution an that
the standard deviation is the same at every value of X (Motulsky
and Christopoulos, 2004). These assumptions are rarely true after
transforming the data.

Here, I provide a new tool for analysing the scaling properties
of occupancy where data is not transformed and can also contain
values of zeroes at fine resolutions. This study is one of the first
attempts to fit nonlinear regression to the occupancy-area relationship.
Non-linear curve fitting is often considered a better approach than
linear regression of transformed values due to a more accurate error
distribution of residuals.

Many countries have adopted different plant survey methods. For
instance, New Zealand has a series of permanent nested quadrats
along the country (Figure 8) to assess alpine grassland conservation
status, biodiversity and the impact of invasive species (e.g., Hieracium
pilosella, Rosa rubiginosa) (The National Vegetation Survey Databank,
Landcare Research). Such survey methods collect occupancy informa-
tion at multiple scales, but often the area covered by the fine-scale
sample units is only a sub-sample of the area covered by coarser-scale
sample-units. In such types of nested quadrats it becomes problematic
to fit occupancy-area models in their linear form. It is highly likely
that some species will be recorded only in the larger quadrats, and
will be completely absent from the sub-sample of small quadrats used
to estimate fine-scale occupancy. The problem arises because the loga-
rithm of zero is negative infinite. In this study I demonstrate that it
is feasible to fit nonlinear models to data derived from this type of
nested quadrat survey, thus overcoming the problem of zeroes in the
linear (log-log) regression.

The aims of this Chapter were to test the performance of five of the
most common occupancy-area models in their non linear form, and
to determine how well they predict occupancy at fine scales from the
crude data of coarse-scale occupancy. The application of these models
in vegetation surveys with nested quadrats could have the potential
of predicting occupancy at scales smaller and larger than the original
survey, thus saving time and money. Such information is needed for



2.2 methods 24

accurately categorising species status and for planning conservation
priorities.

2.2 methods

2.2.1 Study site

The models were tested using data on the distribution of sub-alpine
species in indigenous grassland at local to regional scales in Molesworth
Station, New Zealand. In 2006 and 2007, 80 nested grassland quadrats
(Molesworth I) were established by the Department of Conservation
in this area with the objective of analysing plant structure, richness
and assessing the invasiveness of exotic species (S. Husheer unpub.
data). Twenty sampling points were randomly selected. In each point
four 20× 20 m quadrat were place; each quadrat separated from each
other a distance of 150 m in north direction. Another set of 27 larger
nested quadrats (Molesworth II) were set up by B. Magana between
2007 and 2010 in the same general area (Figure 7; Table 1). Plots were
randomly placed with restrictions (within a buffer area of 3 km on
each side of the gravel road due to the inaccessibility of some remote
areas).

Molesworth station is situated in the South Island, NW of the Inland
Kaikoura Mountains in South Marlborough. It occupies a great part
of the headwater catchments of the Awatere River flowing north-east
through Marlborough, and of the Acheron River and other streams
which drain from the same side into the upper Clarence River (Moore,
1976). The average annual rainfall of Molesworth station ranges from
less than 760 mm in the East to more than 2,540 mm in the West
(Coulter, 1969). Long dry periods occur at all times of the year, but
especially in summer and autumn. The average temperature varies
from 14 °C in summer to 10 °C in winter. Air frosts occur in all months
and ground frosts are experienced on 218 nights per annum on average
(Coulter, 1969). Vegetation reflects this range of rainfall. It is common
to find gravelfield and scree communities in dry places and in places
where the rainfall is heavier, exotic grassland plants and short native
tussocks are common. The range of elevation for the quadrats set up
was from 700 to 1460 m.
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2.2.2 The negative binomial, power-law, Nachman and logistic models

There are five models commonly used for describing the occupancy–area
relationship (Table 2). These five models were first developed for differ-
ent purposes, for example: Kunin (1998) proposed a linear (power law),
scale-occupancy curve and presented the slope of the curve as a scale-
independent measure of species abundance. Nachman (1981) provided
an exponential relationship based on the change in the proportion of
empty patches, which does not make any assumptions about the form
of the underlying theoretical spatial distribution. The logistic model
was initially used for modelling the species–area relationship (Hanski
and Gyllenberg, 1997). He and Gaston (2000b) adopted the negative
binomial distribution to obtain an occupancy–abundance relationship
which can be expressed as a two-parameter occupancy-area model as
below (NBD2). This model was further improved and simplified to a
one-parameter occupancy-area model, NBD1, by He and Condit (2007).
The models have been adapted to obtain the occupancy-area curves
(Table 2), where occ is occupancy (the proportion of sample units
occupied), a is the area of a single sample unit (quadrat size), and c, z
and k are parameters. Occupancy is measured as a proportion (hence
in the range 0-1), the total area (A) of the study site is 1 and then is
removed from the original formulation of He and Gaston (2000a, b).
This causes the parameter N, in the second negative binomial model
to be proportional to the estimated number of individuals across the
total study area rather than a direct estimate, unless the areas of the
quadrats are also expressed as a proportion of the total study area. The
estimated parameters k and z are generally regarded to reflect degree
of aggregation or positive spatial autocorrelation among occupied
quadrats.
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Table 2: Occupancy-area relationship models.

MODEL
OCCUPANCY-AREA

RELATIONSHIP

PARAMETER(S)

ESTIMATED
REFERENCE

Negative
Binomial (NBD1)

occ = 1− (1 + a
k )
−k

1; k (He and Condit,
2007)

Negative
Binomial (NBD2)

occ = 1− (1 + N·a
k )−k

2; N, k (He and Gaston,
2000b)

Power-law occ = c · az
2; c, z (Kunin, 1998)

Nachman occ = 1− e−c·az
2; c, z (Nachman, 1981)

Logistic occ = c·az

1+c·az 2; c, z (Hanski and
Gyllenberg, 1997)

2.2.3 Plot design

Two data sets were used to evaluate the performance of the five models.
The data sets differ in the way the nested quadrats were arranged:
The first dataset comprises the local distribution of 229 plant species
(Molesworth I) across 80 quadrats 20× 20 m in size, containing nested
quadrats of five smaller sizes ranging from 0.25 to 100 m2 (Figure 8a).
The second dataset comprises the local to regional distribution of 48

species (Molesworth II), across 27 large quadrats 60× 100 m in size,
containing samples from sub-quadrats of three smaller sizes from 1 to
400 m2 (Figure 8b).

2.2.4 Data analysis

Occupancy-area curves of the five models were fitted for each species
from the two datasets (example of six species in Figure 9), by using
R v.2.10 software (R Development Core Team, 2011) with the nlme

package and the non-linear least squares function nls (Pinheiro et al.
2010). The R script to fit the different curves was developed by Hartley
and Magana-Rodriguez. See Appendix A for details of computation
of these five models in R. The ‘port’ optimisation method was used
and parameter values were constrained within sensible limits. For
some data sets it was necessary to try alternative start values for the
parameter estimates before the model would converge on a solution.
Four criteria were used to measure the goodness-of-fit of the models.
The first three were the residual variance (σ2), Akaike’s Information
Criterion (AIC) and the logarithm of the likelihood (NLL). The residual
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0.5 x 0.5 m
quadrat

1 x 1 m
quadrat

2 x 2 m
quadrat

5 x 5 m
quadrat

10 x 10 m
quadrat

20 x 20 m 
quadrat

(a) Molesworth I. Each quadrat had nested quadrats of six sizes.

60 x100 m 
(whole quadrat)

1 x 1 m
quadrat

5 x 5 m
quadrat

20 x 20 m
quadrat

(b) Molesworth II. Each quadrat had nested quadrats of four sizes.

Figure 8: Layout of sample quadrats used to measure subalpine plant species
structure and richness in Molesworth Station.
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variance σ2 is obtained as the minimum value of the residual sum of
squares (RRS) divided by the degrees of freedom (n− p), giving the
estimate

σ2 =
RRS(β)

n− p
(2.1)

where RRS is defined by:

RRS(β) =
n

∑
i=1

(yi − f (xi, β))2 (2.2)

where x1, ..., xn are the predictor values of the model and y1, ..., yn the
response values and a given mean function f depending on some
unknown parameters. The minimisation of RSS is often referred to as
minimising the least-squares criterion or least-squares estimation, and
the solution to the minimisation problem leads to the least-squares
parameter estimates (Ritz and Streibig, 2008). The fourth criterion was
to rank the five models from best to worst (the lowest σ2) and to report
how often a model was judged as the best model, in the top two or in
the top three across all species for Molesworth I and Molesworth II
data (229 and 48 species, respectively).

For predicting occupancy at small-scales (0.25 m2) from coarse-
scales, five (1, 4, 25, 100 and 400 m2), four (4, 25, 100 and 400 m2)
and three scales (25, 100 and 400 m2) were used for Molesworth I. In
Molesworth II data, three coarser scales (25, 400, 6000 m2) were used
to predict occupancy at the finer scale of 1 m2.

To estimate the predictive performance of the models the rela-
tionship between the observed and predicted occupancy was com-
pared with three measures; the root-mean-square error (RMSE), the
proportion of underestimation (PUE) and the correlation coefficient (r).
The RMSE measures the differences between values predicted by the
model and the values actually observed:

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(2.3)

where yi is the observed value for the ith observation and ŷi is the
predicted value.

The PUE is simply calculated from the differences between observed
and expected values (yi − ŷi). Each positive value represents an un-
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derestimation, PUE is then the proportion of observations generating
positive values. Non-biased predictors should generate a PUE of 0.5.

The correlation coefficient (r) indicates the strength of the linear
relationship between predicted and observed occupancy but by itself
cannot distinguish between a perfect predictive model and one that
under or over-predicts by a constant ratio, hence the correlation co-
efficient was used in combination with the other two measures of
predictive ability.
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Figure 9: Nonlinear occupancy-area relationship curves for six Molesworth
I species. Different colours represent different models. The right
plots show the performance of the models with species recorded to
have occupancy of zero at fine scale.
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2.3 results

2.3.1 Empirical evaluation of the models

For Molesworth I data, the logistic model gave the best average fit
(Figure 10). However the second negative binomial model (NBD2) was
more often the highest ranking model and the Nachman was most
consistently in the set of top 3 models (Table 3). In the Molesworth II
dataset the power-law relationship was most often the highest ranking
model (Table 3) and the Nachman model gave the best fit on average
(Figure 11). By every measure, the negative binomial model 1 (NBD1)
produced the worst fits overall.

2.3.2 Estimating occupancy at fine scales from the occupancy at coarse
scales

The best four models for predicting occupancy at small scales were
plotted against the observed occupancy values (Figure 12). The best
model for predicting occupancy at small scales, measured as the
lowest RMSE, PUE (unbiased model = 50%) and large r values, varied
among the number of scales used for predicting occupancy at small
scales and between the Molesworth I and Molesworth II datasets.
When analysing Molesworth I data set, the best model for predicting
occupancy using five resolutions was the logistic model, although the
difference in values of RMSE and r with the Nachman model was
minimal (Figure 12a and 12b; Table 4). When using four resolution
scales, the Nachman model was the best and when using three scales
for predicting occupancy, the lowest RMSE and the largest r came from
the power-law model (Figure 12c; Table 4). The PUE was constant across

PUE proportion of
underestimation

the number of scales used for predicting occupancy, and suggested
that the best unbiased model is the NBD2. The lowest RMSE values
were estimated when using five scales, this result indicates that the
prediction was more accurate as the number of scales increases (Figure
26a).

In the Molesworth II dataset, the Nachman model had the lowest
RMSE and the largest r followed by the power-law. The PUE suggested
the logistic model was the least biased estimator (Figure 12d, Table 4).
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Figure 10: Boxplots of σ2 and the logarithmic likelihood (NLL) showing the
goodness-of-fit of the five models fitted to each of the 229 species
distribution of Molesworth I data. Central lines in bold indicate
the median value, boxes depict the interquartile range, whiskers
depict trimmed ranges and circles are outliers. Low σ2 and large
NLL suggest good fit of the model.
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Figure 11: Boxplots of σ2 and the logarithmic likelihood (NLL) showing the
goodness-of-fit of the five models fitted to each of the 48 species
distribution of Molesworth II data. Central lines in bold indicate
the median value, boxes depict the interquartile range, whiskers
depict trimmed ranges and circles are outliers. Low σ2 and large
NLL suggest good fit of the model.
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(a) Predicted occ at 0.25 m2with 5 resolutions (b) Predicted occ at 0.25 m2 with 4 resolutions

(c) Predicted occ at 0.25 m2 with 3 resolutions (d) Predicted occ at 1 m2 with 3 resolutions

Figure 12: Estimated occupancy versus observed occupancy at 0.25 m2 scale
in plots (a), (b) and (c) in Molesworth I dataset. Plot (d) is the
estimated occupancy versus observed occupancy at 1 m2 scale in
Molesworth II dataset. Red dots represent the Nachman model,
blue triangles the logistic model, purple crosses the negative bino-
mial 2 and orange circles the power-law model. The black line is
the observed occupancy where the models should lie if accurate.
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2.4 discussion

Measures of occupancy-area relationships are important in identifying
distribution patterns across scales. The identification of distribution
patterns is considered the first steps towards understanding the pro-
cesses that are generating these distribution patterns. The use of the
novel approach suggested here to identify distribution patterns on
multiple scales, has the potential of being used in data obtained in a
series of nested quadrats or in different quadrat sizes or resolution
within a study area. The measurement of the occupancy-area curves
in these types of nested quadrats had been remained elusive so far
by the conventional linear methods. Additionally, in this Chapter I
demonstrate that predicting occupancy at fine scales from coarse scales
is achievable with the use of these five models in their nonlinear form.

In this study, it has been shown that a variety of occupancy-area
models can be fit to different data sets at diverse spatial scales using
nonlinear regression. Although there was no superior occupancy-
area model overall for describing the scaling relationship, all models

NBD negative bino-
mial model

apart from the negative binomial model 1 (NBD1) performed well
in their nonlinear form. The logistic and the Nachman model were
the most robust with the lowest σ2 on average in the Molesworth I
and Molesworth II, respectively. The Nachman model was the best
model for predicting occupancy at small-scales from coarse scales
(except when three resolutions were used in Molesworth I). These
results obtained using nonlinear regression are consistent with what
He and Condit (2007) found when comparing three of the occupancy-
area models mentioned above but using transformed data into a
linear regression. He et al. (2002) also found similar results when
comparing the same five models tested in this study plus the unified
model for predicting the occupancy-abundance relationship. They
concluded that the best models to use were the Nachman for bird
species and the logistic for tree species. In a more recent study Hui
and McGeoch (2007) also tested these five models plus a model that
improves the estimate of occupancy at coarse scales, the droopy tail
model (DTM). Their results showed that the NBD2 and the droopy tail
model performed better than the other models. In conclusion, there is
no overall superior model. The advantage of fitting these models in
nonlinear regression is that they can be fitted even if values of zero
occupancy are present at fine scales.
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One of the advantages of the NBD2 over the other models in esti-
mating occupancy is that it provides a direct estimate of abundance
N (two parameters estimated: k = aggregation, N = total abundance;
Table 2). The relationship of the occupancy-area curves can be scaled
down using a sufficiently fine scale so that each occupied cell (area
or resolution) contains a single individual. Thus, in theory, being able
to predict abundance from occupancy, although extra information on
the average size of an individual is needed (Hartley and Kunin, 2003,
He and Gaston, 2000a). Measuring abundance is important because
it helps to determine at-risk populations, guide conservation deci-
sions and further knowledge of species natural histories (Conlisk et al.
2009). It is worth mentioning that estimating number of individuals N
doesn’t always make sense for plant species with modular growth and
vegetative reproduction. Thus, the use of the other models to estimate
occupancy at fine scales is well based too. The occupancy-area models
can be applied in the opposite direction; there are some cases in which
one might want to scale-up from fine-scale data to coarse-scale data.
In forestry, for example, census at fine-scale among individual plants
could predict forest total occupancy at a particular extent which is
extremely desirable (Rastetter et al. 1992). Another example of the
application on scaling up is to predict human alteration in natural
environments. These global alterations (e.g., reduction in species oc-
cupancy) could be predicted from short-term studies made on small
plots (less than 100× 100 m) (Rastetter et al. 2003).

RMSE root-mean-
square error

Prediction of occupancy is feasible when using nonlinear fitting to
the occupancy-area models. The estimation improved when taking
into account more quadrats at different sizes (scales) for predicting
occupancy at finer-scales. A minor drawback when fitting models
in their nonlinear regression form with the nls function, is that at
least three resolutions are needed to make them work (to avoid the
situation of zero residuals), compared to the linear regression where
only two resolutions are needed to make predictions. Contrary to the
RMSE, the proportion of underestimation (PUE) remained remarkably
constant independent of the scales used for predicting occupancy
at fine scales. There was a regular underestimation by the second
negative binomial (NBD2) and an overestimation by the power-law
model. These results are consistent with Kunin et al. (2000). They
applied the NBD2 to a data set of scarce British plants and found that it
consistently underestimated fine-scale occupancy. On the other hand
Kunin (1998) found that the fractal model (i.e. the power-law model)
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tended to overestimate the area occupied at fine scale in the same
data set. Despite the weaknesses and the strengths of the models’
performance in any particular scale, this study has showed that it is
possible to deduce and extrapolate information on occupancy at fine
scales from coarse-scale data.

A considerable amount of coarse-scale information about species
distribution is available in many countries (e.g., Jalas and Suominen,
1988, Mitchell-Jones et al. 1999). Nevertheless, much of this information
is not utilised so far for categorising extinction risk following the
criteria of the IUCN (World Conservation Union, 2001). An example
is the information of plant species distribution in Britain which is
summarised as presences and absences in grids of 100 km2 squared
cells (e.g., Wigginton, 1999). The IUCN considers species as critically
endangered if they occupy < 10 km2; under this criterion none of
the plant species in Britain would qualify as critically endangered .
By generating information on occupancies at fine scales from coarser
scale we could overcome this problem. A coarse-scale map, however,
contains less information than a fine-scale map of the same area.
Nonetheless, occupancy-area curves can be used to estimate some
attributes of fine-scale distributions from coarse-scale data (Kunin,
1998).

One of the oldest and best studied scaling phenomenons in ecology
is the species area relationship (SAR); in which larger sample units
typically contain a greater number of species. Occupancy-area relation-
ships are essentially the single-species equivalent. Larger sample units
have a higher probability of containing a given species. The occupancy-
area curves can be interpreted as the probabilities of a given area that
will contain the species in question. The sum of such probabilities
across species determines the expected number of species to be found
in a given area, and thus provides the SAR (Tjørve et al. 2008). Tjørve
(2009) reviewed the many different ways in which sample units could
be arranged to generate species-area relationships (SARs) and the same
situations apply to individual species’ occupancy scaling relationships.
Some of the designs may result in the species remaining undetected
in small-size sample units, hence the non-linear methods such as the
ones applied in this Chapter are much more flexible in the range of
designs they can handle. Historically, researchers have preferred to
use data transformations to create linear models because they are
much easier to fit. Modern computing power and the wide availability
of optimisation software (e.g., Guilhaumon et al.) have removed this
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barrier to adoption. Though it must be recognised that non-linear
fitting methods sometimes suffer from problems of non-convergence.
In most cases these problems can be overcome by supplying sensible
and alternative starting values for the parameters under estimation.

Although most studies emphasise the ecological processes that
would regulate species abundance, any factors that affect aggregation
in space would be equally important in explaining occupancy patterns
(Holt et al. 2002). This Chapter illustrated how the parameters of the
occupancy-area models capture an important aspect of spatial pattern,
e.g. aggregation. The novelty of the work presented here when using
nonlinear occupancy-area relationships applied in nested quadrats,
could have the potential of predicting occupancy at scales smaller
and larger than the original survey, thus saving time and money and
facilitating more meaningful comparisons between data collected from
disparate survey methods. Such information is needed for accurately
categorising species status and for planning conservation priorities,
where different species may have been surveyed with different meth-
ods. Although this study surveyed plant species, it is possible to
apply the same nonlinear method to other taxonomic groups when
presence/absence data is available.
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3
A R E P L A N T A B U N D A N C E A N D A G G R E G AT I O N
PAT T E R N S C O R R E L AT E D W I T H E C O L O G I C A L
P L A N T T R A I T S ? A M U LT I - S C A L E A N A LY S I S O F A
N E W Z E A L A N D G R A S S L A N D C O M M U N I T Y

3.1 introduction

The distribution patterns of species have been of interest since Lin-
naeus wrote Flora Lapponica (1737) where he described the geographical
distribution of some plant species. His ideas have had a profound in-
fluence and have inspired many biogeographers and ecologists to seek
answers to the question “Why are some species widely distributed
while some are narrowly dispersed?” The distribution patterns in nat-
ural systems that result from processes like reproduction, growth and
dispersal occur in space and time. One way to study the distribution
patterns of species is by quantifying the degree of spatial aggregation
(Réjou Méchain et al., 2011). Understanding aggregation is crucial to
elucidate how species are using resources and how it is used as a
resource (Condit et al., 2000). Also, aggregation may help infer which
processes are important in shaping a particular pattern (Tilman and
Kareiva, 1997).

To understand these functional processes we need to identify the
relevant spatial scale at which they occur (Fortin & Dale 2005). Nev-
ertheless, explaining the population patterns of even a single species
is time consuming because we require an intimate knowledge of the
species’ natural history, its abiotic limitations and its full range of
biotic interactions (Pocock et al. 2006). The potential effect of these pro-
cesses on aggregation has also been suggested to be scale-dependent
(Wiens, 1989), as the spatial scale investigated changes, processes and
thus patterns, are also expected to change (Réjou Méchain et al., 2011).
For example, competition and reproduction are thought to operate at
local scales (Woodward, 1987, Van der Veken et al., 2007) while at in-
termediate scales, dispersal could affect distributions patterns (Wiens,
1989). However, at broader scales, physical factors (e.g. barriers) may
dominate or dissipate these biological effects (Wiens, 1989, Guisan
and Thuiller, 2005).

An alternative approach is to statistically examine the distributions
of a large number of species, looking for traits that are correlated with

45
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patterns of abundance or distribution (Gaston et al. 2000; Cadotte 2006).
There is growing literature that demonstrates how some plant traits
are correlated to important processes like colonisation, reproduction
and competition (Cornelissen et al. 2003; Lloyd et al. 2003; Diaz et
al. 2004; Westoby & Wright 2006; Wright et al. 2007). For example,
species with small geographic range sizes tended to be self-compatible
or asexual, had lower reproductive investment, dispersal ability and
genetic variation, narrower resource usage and smaller body size.
However, most of the studies that relate aggregation patterns with
processes focus on one single scale yielding contradictory results.
Here, I carried out a multi-scale analysis where aggregation patterns
were measured at different scales, from local-scale to regional-scale
and for all scales. Therefore my first aim was to correlate aggregation
patterns with plant traits that might help us understand distribution
patterns at different scales. I expect that life-history traits that correlate
with competition and reproduction (e.g. specific leaf area) are more
important at local-scales, while traits that correlate to dispersal (e.g.
seed mass, plant height) would be more important at regional scales.
The following hypotheses were tested and the scale at which these
traits are expected to be important is indicated.

The first aim of this Chapter was to identify what processes inher-
ent to the species measured as plant life-history traits, were impor-
tant at different scales. Processes inherent to species (e.g. dispersal,
competition) and processes independent of species (e.g. disturbance,
environmental conditions), can generate different types of distribution
patterns (Fortin & Dale 2005). Several studies have shown that pat-
terns at coarse scale are likely to be controlled by climatic regulators
(Guisan & Thuiller 2005) and patterns at fine scale are controlled by
interspecific interactions (Van der Veken et al. 2007). However, most of
the studies that relate distribution patterns with processes focus on
one single scale, yielding contradictory results. Here, I carried out a
multi-scale analysis, where the distribution patterns were measured
at different scales, form local-scale to regional-scale and for all scales.

Local-scale
Specific leaf area (SLA) and leaf area. SLA tends to correlate with

metabolic activity and plant growth. Low values of SLA (higher leaf
thickness and/or density) are more tolerant to water and nutrient
deficiency due to their thicker cuticule layers and slower leaf turnover
rates (Wright et al., 2002). Leaves with high SLA utilise low amounts
of diffuse radiation more efficiently (Sefton et al., 2002), but they are
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less stress tolerant and sensitive of being dried out (Schulze et al.,
2005). Therefore, I expect that leaves with high SLA tend to have more
aggregated patterns which could be present only at favourable sites,
while leaves with low SLA would be able to persist in more scattered
distributions in unfavourable places with lower growth rate. On the
other hand, for the leaf area plant trait, large leaves have been sug-
gested to experience greater degrees of herbivory (Moles and Westoby,
2000), which may affect their aggregation patterns. Plants with larger
leaves are expected to have more scattered distributions because large
aggregations of plants disproportionately attract and support specific
herbivores and pathogens of the plant (Janzen, 1970).

Regional-scale
Plant height. It is related to dispersal and taller species have been

found to increase dispersal capacity into previously unoccupied habi-
tats (Mathews and Bonser, 2005, Thomson et al., 2011). Thus, I expect
that taller plants tend to have more scattered distributions.

Woodiness. It is an indirect measure of longevity. Long-lived species
may have a more scattered distribution than short-lived species. This
is due to the persistence of isolated individuals outside the range
within which recruitment is currently possible (Pocock et al., 2006).
Woody plants are expected to have relatively large and more scattered
distributions.

Seed and dispersule mass. The size and number of seeds produced
are subjected to a trade-off in resource allocation in plants and have
complex interactions with the mode of dispersal (Thompson et al.,
2001). But overall, it is expected that small seeded species are better
dispersers and have relatively larger, more scattered distributions.

Dispersal mode. Plants that have mechanisms to disperse further
away might develop distributions that are less aggregated (Pocock et
al., 2006). Thus, it is expected that plants with no specialised dispersal
mechanisms have more aggregated distributions.

A problem encountered when attempting to identify the processes
generating such multi-species patterns, is that the species’ character-
istics of are not independent. Phylogenetically related species share
characteristics through their common evolutionary ancestry (Felsen-
stein, 1985). Two closely related species will therefore tend to be more
similar to each other in a range of characters, than two species chosen
at random from the entire assemblage being compared (Blackburn,
2004). Therefore I compared results from both cross-species and phy-
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logenetic independent contrast analyses. Analyses were conducted
of each plant trait individually. Also multivariate analyses were per-
formed in order to assess the importance of interactions between the
variables in affecting plant aggregation patterns.

Many indices have been used to describe spatial distribution (see
Dale 2000; Dale et al. 2002). In the present Chapter, two aggregation
indices were used. First, I used the k parameter from the NBD1 which

NBD negative bino-
mial model

is one of the most common indices to quantify aggregation (He et
al., 2002, He and Gaston, 2000) (it is calculated from the mean and
variance of individuals). Nevertheless, the traditional NBD1 has the
disadvantage of requiring count data which is hard to obtain and not
always applicable to plants that do not have unitary growth form. So,
I quantified the same parameter k but calculated from the occupancy-
area relationship from Chapter 2 (NBD2). The advantage of using
NBD2 is because it is a measure of aggregation related to the NBD1

that can be derived from presence/absence data as input (as long
as there is a multi-scale, nested component to the sampling design).
Furthermore it allows the use of data that includes zeroes (calculated
from occupancy-area relationship, see Chapter 2). The second aim was
to test the correlation between the aggregation parameter k from the
occupancy-area model (NBD2) with the aggregation parameter k from
the negative binomial 1(NBD1; e.g., count data). The occupancy-area
method (NBD2) of describing aggregation is more naturally suited to
species which do not have discrete individuals, but whose distribution
and abundance is measured by presence-absence in quadrats and
percent cover. The traditional method of calculating k from mean
and variance assumes individuals can be counted within sample
units. If the occupancy-area method is correlated, the approach could
potentially be applied in a range of species distribution information
obtained from presence/absence or from the typical atlas dot maps.

The third aim was to identify the types of distribution and rarity
displayed by the species surveyed in two scales; local-scale (20× 20 m
quadrats) and regional-scale (100× 60 m quadrats). Different types of
distribution patterns in plants have been suggested, including several
forms of rarity (Rabinowitz 1981; Rabinowitz et al. 1986). However,
there is not a straightforward way to identify the different types of
distribution patterns, including rarity. Many researchers have adopted
their own definition including the breath of geographic range, local
frequency and endemism (e.g., Gaston 1994; Quinn et al. 1996), but
there is not a universal definition of the different types of rarity and
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Figure 13: Different forms of rarity (R, LO, WS) and different trajectories
away from a situation of widespread, high-density (W). Fluctuat-
ing populations might display consistently different trajectories of
decline compared to expansion for the same number of individu-
als, LO species are much more aggregated than WS species. The
trajectories depicted are moving away from a situation of rarity
(as an invasive species might start).

distribution patterns since they are scale-dependant. Here, I identify
different types of distribution with two axes of measurement and
four types of distribution: species with small populations and in low
densities (R); species locally abundant but with narrow ranges (LO);
species that are widespread but with small populations (WS); and
species that are both regionally widespread and locally abundant
(W; Figure 13). Species R, LO and WS constitute different types of
rarity. Likewise, there are different spatial scales at which a population
can expand or decline; the two extreme trajectories being a uniform
decline in density elsewhere, versus loss of discrete populations or a
contraction of range margins. In the same manner, there are different
ways in which a new invader can expand from R towards W (arrows
in Figure 13). The second aim was to identify the types of distribution
and rarity displayed by the species surveyed in two scales; local-scale
(20× 20 m quadrats) and regional-scale (100× 60 m quadrats).
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3.2 methods

3.2.1 Study area and field survey

The field survey was performed during the summers of 2008, 2009 and
2010 in Molesworth Station which is situated north-west of the Inland
Kaikoura Mountains in South Marlborough, New Zealand (Moore
1976, Figure 14).

The average annual rainfall of Molesworth station ranges from
less than 760 mm in the East to more than 2,540 mm in the West
(Coulter 1969). Long dry periods may occur at all times of the year,
but especially in summer and autumn (Coulter 1969). The average
temperature varies from 14 °C in summer to 10 °C in winter. Air frosts
occur in all months, ground frosts are experienced on 218 nights per
annum on average (Coulter 1969). The vegetation reflects this range of
rainfall. In dry places it is common to find gravelfield and scree plant
communities. In places where the rainfall is heavier, exotic grassland
species and short native tussocks are common.

3.2.2 Distribution data and plot design

Twenty-seven 100× 60 m plots were established. Each plot was grid-
ded into fifteen 20× 20 m quadrats. The central 20× 20 m quadrat
was permanently marked with aluminium pegs, and these central
quadrats were subdivided in sixteen 5× 5 m subquadrats (Figure 15

and 16). Plots were randomly placed with restrictions (within a buffer
area of 3 km on each side of the gravel road due to the inaccessibility
of some remote areas) along three catchments within the Molesworth
Station boundaries (Figure 14).

In order to homogenise the search effort of species within every
quadrat and reduce bias, search times were set for each quadrat size.
For the 20 × 20 m quadrats the search time was of 30 minutes, and for
the each 5 × 5 m subquadrats the search time was of 10 minutes.

I focused on the most common plant species of the Molesworth area.
The species sampled represent a range of life-history traits covering a
wide range of growth forms. Some common species that occur in the
area were not included due to the difficulty of knowing its taxonomic
affinities. The total data set comprised 46 species belonging to 19

families (Appendix B). Thirty-two of the species for inclusion on the
survey were determined a priori using the species list of Husheer
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Figure 15: Plot design and arrangement of quadrats and subquadrats. The
central quadrat was permanently marked (highlighted).

(unpub data). Fourteen additional species were added to the list upon
completion of the first four plots.

3.2.3 Trait selection and measurement

Data on seven morphological and life-history traits were compiled
from various sources: a) specialised literature (e.g., New Zealand
floras), b) the database of ecological traits from Landcare Research
(ecotraits) and c) data gathered from own measurements collected in
the field (see Appendix S1 and Table 13). Measurement of traits from
field-collected specimens followed the methodological guidelines of
Cornelissen et al. (2003). Morphological measurements were made
on 5-20 leaves and seeds harvested from five individuals from each
species (Appendix S2; Table 14). Leaves and seeds were collected in
the field from February 2007 to March 2010 following the protocol of
Cornelissen et al. (2003). Leaf area, SLA, seed mass, dispersule mass

SLA specific leaf area
and height were measured in all species surveyed in the field.

Leaves were individually placed on an hp scanjet computer scanner
and a high resolution, black and white image was generated. Images
were imported into IMAGE-J (Abramoff et al. 2004) on the same day
specimens were collected. Their length, width and area were measured.
Leaves were then dried to a constant mass in a drying oven at 30°C,
and leaf mass was measured to the nearest 0.01 mg with an electronic
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(a) Coarse-scale:100× 60 m plot gridded in fifteen 20× 20 m quadrats

(b) Fine-scale: sixteen 1× 1 m subquadrats

Figure 16: Example of different plot scales used.
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balance. From these measures, two leaf traits were calculated: total leaf
area (mm2) and specific leaf area (mm2 mg-1). For measurements seed
and dispersule mass, seeds and leaves were dried in the laboratory
oven at a constant temperature of 30°C for 48 h, and collectively
weighed to the nearest 1 mg. Height of each plant was measured using
an extendible ruler.

3.2.4 Data analysis – types of rarity

AOO area of occu-
pancy

For each of the 46 species, area of occupancy was calculated as the pro-
portion of quadrats in which a species was found. AOO was calculated
at two different scales: the local-scale using all four hundred and five
20× 20 m quadrats (400 m2) and regional scale using the twenty-seven
100× 60 m plots (6000 m2) quadrats. Out of the 46 species, abundance
was measured for twenty-four of them because of their unitary growth
habit. Abundance was defined as the mean count of individuals per
plot (regional-scale) and per quadrat (local-scale).

In order to determine the different rarity categories (Figure 13, Table
5 and 6), I computed the median of occupancy and abundance. LO
species were considered as those having an occupancy lower than
the median of all species and higher abundance than the median; WS
species were those having an occupancy higher than the median and
lower abundance than the median; in R species both occupancy and
abundance were lower than the median; in W species both occupancy
and abundance were higher than the median.

Although different types of rarity can be recognised and categorised
as above, my major interest was to find out what distinguishes species
with a localised form of rarity (LO) from those that are widespread but
scattered (WS), for a given number of individuals. For this purpose I
used a continuous measure of aggregation which reflects this diagonal
axis of variation on abundance-occupancy plots (Hartley 1998).

3.2.5 Data analysis – aggregation

Aggregation was quantified for three different spatial scales; at a
local-scale, at a regional-scale and across all scales. Aggregation for
local and regional-scale was measured as the parameter k from the
NBD, since is one of the probabilistic models most frequently used to
describe spatial distribution in biological populations (He & Gaston
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2000). When individuals of a species are distributed according to a
NBD, the probability of the presence of a species in sampling area a is

p=1−
(

1 + (
µ

k
)
)−k

(3.1)

where k is a “clumping” parameter and µ is the mean abundance
across sampling unit a. From that equation we can derive k such that:

k =
µ2

σ2 − µ (3.2)

where µ is the mean abundance across the entire area including non-
occupied sites and σ2 is the variance.

For the purposes of this study, the inverse of k (1/k) was used.
Large 1/k values indicate high degree of spatial clumping in the
distribution pattern at a particular scale of analysis; values close
to zero are equivalent to random distribution and negative values
indicate a distribution that is more even than random. At the local
scale 1/k was calculated separately for each of the 27 sites, and then
the mean of 1/k was computed. For regional scale 1/k was calculated
directly using each 60× 100 m plots as a single sample unit.

Aggregation across all scales was calculated as the parameter 1/k of
the negative binomial 2 (NBD2) model of the occupancy-area relation-
ship, fitted using the non-linear method from Chapter 2. This method
allows the use of occupancy (proportional) data instead of count data:

occ = A · 1− (1 +
N · a
A · k )

−k (3.3)

where occ is occupancy (the proportion of sample units of the occu-
pied area), a is the area of a single sample unit (quadrat size), k is
a parameter generally regarded to reflect degree of aggregation or
positive spatial autocorrelation among occupied quadrats. Because
occupancy is measured as a proportion of the total available (hence in
the range 0-1) the total area of the study area is 1 and is removed from
the original formulation of He and Gaston 2000a, b. This causes the pa-
rameter N, in the negative binomial model 2 (NBD2) to be proportional
to the estimated number of individuals across the total study area
rather than a direct estimate. Proportional occupancy was measured
at four scales (resolutions): 1× 1 m subquadrats (n = 432 ), 5× 5 m
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subquadrats (n = 432 ), 20× 20 m quadrats (n = 405 ), and 100× 60
m plots (n = 27 ).

For both methods the estimated parameter k (or 1/k) was used as an
index of aggregation, but it does not imply that the species necessarily
have distributions that match a theoretical NBD.

Since the k parameter obtained from the NBD2 using occupancy-area
nonlinear regressions is a novel method for measuring aggregation
proposed in Chapter 2, the results were compared using the more
traditional method for measuring aggregation (Local and regional-
scale k from NBD1 count data, Eq. 3.1), hence the use of 1/k in all
analyses.

3.2.6 Relationships between plant traits and aggregation – cross-species
and PICs analyses

Association between plant traits and distribution patterns were anal-
ysed using cross-species correlations and phylogenetically indepen-
dent contrasts. Cross-species analyses have traditionally been used
in comparative studies to examine inter-specific correlations among
biological and ecological traits. However, because these analyses treat
species as independent data points they have been criticised (Felsen-
stein 1985). One method to overcome this problem is to use techniques
such as phylogenetically independent contrasts, which control for
the non-independence of taxa within phylogenies (Felsenstein 1985;
Harvey & Pagel 1991).

Cross-species relationships between life-history traits and degree
of aggregation (measured by the negative binomial NBD1 and NBD2

aggregation index 1/k) were analysed using simple regression analysis
for univariate models. Analysis of variance (ANOVA) was performed
to compare different groups. Data were logarithmic (ln) transformed
to conform to assumptions when necessary (Table 7).

Since some traits are correlated, the interaction between them could
affect distribution patterns (Pocock et al. 2006). Multiple regression
analyses were performed for testing this interaction in multivariate
models. The full model (all predictor variables) was considered first,
and then the Minimum Adequate Model (MAM) was fitted follow-
ing the principle of parsimony (Sober 1991). The most parsimonious
model was assessed as the one with the lowest AIC (Burnham & An-
derson 2002). All statistical analyses were conducted in R v.2.10 (R
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Development Core Team 2011) using the MASS package (Venables &
Ripley 2002).

A phylogeny was obtained using Phylomatic software (Webb &
Donoghue 2005). Phylomatic includes data from the Angiosperm
Phylogeny Group (APG) III Group 2009; Bremer et al. 2009). Unre-
solved nodes and subtrees in Phylomatic were dated according to
complementarily references (Wagstaff et al. 2002; Magallón & Sander-
son 2005; Hedges et al. 2006; Bremer 2009; Forest & Chase 2009b, a;
Magallón 2009; see Table 15 in Appendix S3 for estimated age and
nodes) and the bladj algorithm (Webb & Donoghue 2005). The phy-
logeny is given in Figure 17. Phylogenetically independent contrasts
were analysed using adephylo (Jombart et al. 2010), ape (Paradis et
al. 2004), phylobase (Hackathon et al. 2010) and picante (Kembel
et al. 2010) packages in R v.2.10 (R Development Core Team 2011). A
detailed explanation of the usage of these packages can be found in
Paradis (2006). Regressions were passed through the origin as recom-
mended by Legendre & Desdevises (2009). There were not enough
nodes to performed PIC analyses on binary data. Instructions on how
to calculate Phylogenetic independent contrast (PIC) in R are given in
Appendix C. In order to detect which divergences in the phylogenetic
tree were important and where the highest divergences in plant traits
were, the contribution index was computed in phylocom (Webb et al.
2008).

3.2.7 Comparison between the aggregation parameter 1/k from the negative
binomial 1 and the negative binomial 2

Model II regression (also known as major axis (MA) regression) was
used to quantify the relationship between the parameter 1/k from the
negative binomial 1 (e.g., count data) and 1/k from the negative bino-
mial 2 (e.g., occupancy data) for the 24 species in common. This type of
regression is recommended when the two variables are not controlled
by the researcher (Legendre & Legendre 1998). Model I regression
using least squares underestimates the slope of the linear relation-
ship between the variables when they both contain error (Legendre
& Legendre 1998). Three regressions were performed: first between
the 1/k local-scale and the 1/k regional-scale both from the negative
binomial 1; secondly, between 1/k local-scale and 1/k all scales from
the negative binomial 2; and finally between 1/k regional-scale (NBD1,
Eq. 3.1) and 1/k all scales (NBD2, Eq. 3.3).

http://www.phylodiversity.net/phylomatic
http://www.phylodiversity.net/phylomatic
http://phylocom
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Figure 17: Phylogenetic tree of the species surveyed from Molesworth Station.
Dated nodes are numbered. Estimated ages are given on Table 15.
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The relationship between the aggregation 1/k from negative bino-
mial 1 (local and regional 1/k, count data, Eq. 3.1) and the aggregation
1/k from the negative binomial 2 (NBD2, occupancy data, Eq. 3.3) was
tested for the 24 species in common.
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3.3 results

3.3.1 Types of distribution and rarity

The type of distribution and rarity is scale-dependant. Species dis-
played different types of distribution and rarity depending of the
spatial scale analysed. Species such as Veronica odora and Celmisia mon-
roi moved from type R at a local-scale to type WS at a regional-scale.

Average abundance in 20× 20 m quadrats ranged from less than
one individual per quadrat, to almost 70 individuals per quadrat from
species of the assemblage.

R, species with small
populations and in
low densities; LO,
species locally abund-
ant but with narrow
ranges; WS, species
that are widespread
but with small pop-
ulations; W, species
that are both region-
ally widespread and
locally abundant

At a local scale (20× 20 m quadrats), most species displayed rarity
type R (relatively small AOO with low densities) or were common
and widespread (W) with large AOO and high densities. Only four
species had localised (LO) or widespread but scattered (WS) rarity
forms (Figure 18 and Table 5).

At a local-scale, spatial structure, measured as 1/k from the NBD,
varied among species. Results varied from larger 1/k values meaning
highly aggregated patterns (e.g., Veronica pimeleoides, Aciphylla glauces-
cens), to lower values equivalent to dispersed and random distribution
patterns (e.g., Chionochloa pallens, Veronica decumbens, Table 5; isolines
of 1/k in Figure 18).

Average abundance in 100× 60 m plots ranged from less than one
individual per quadrat, to almost 1000 individuals per quadrat from
species of the assemblage.

At a regional-scale (100× 60 m plots) R and W types of rarity were
more common. Species such as Veronica pimeleoides and Helichrysum
parvifolium were very restricted in range but locally abundant (LO). In
contrast, Veronica decumbens and Celmisia monroi were more widespread
in range but at low densities (WS; Table 6, Figure 19).

Similar to local scale, spatial structure (1/k) varied from very ag-
gregated (e.g., Veronica pimeleoides) to more dispersed patterns (e.g.,
Gentianella corymbifera, isolines of 1/k in Figure 19).
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Table 5: Local scale summary (within 20× 20 m quadrats ). The parameter
1/k of the negative binomial distribution, assumes larger values as
the aggregation increases.

SPECIES SITES

OCCUPIED

MEAN

ABUN-

DANCE

AOO MEAN

VARIANCE

MEAN

1/k

TYPE OF

RARITY

Aciphylla aurea 203 10.12 0.52 101.48 0.49 W

Aciphylla glaucescens 9 0.44 0.02 1.09 5.45 R

astelia nervosa 12 1.17 0.03 4.69 3.23 R

Brachyglottis cassinioides 82 31.43 0.21 1399.01 2.79 W

Celmisia monroi 37 0.28 0.10 0.32 0.19 R

Chionochloa pallens 176 68.25 0.45 4106.77 0.11 W

Chionochloa rubra 108 14.36 0.28 265.99 1.91 W

Chionochloa sp1 44 66.24 0.11 827.19 2.04 LO

Discaria toumatou 107 16.25 0.28 538.40 1.54 W

Gentianella corymbifera 261 44.68 0.67 2374.19 1.04 W

Helichrysum parvifolium 41 7.59 0.11 211.77 2.23 LO

Leptospermum scoparium 13 3.33 0.03 83.77 2.60 R

Olearia nummulariifolia 83 4.78 0.21 4.78 0.54 W

Ozothamnus vauvilliersii 149 5.44 0.38 146.34 1.24 W

Pinus contorta 35 1.36 0.09 3.38 1.63 R

Rosa rubiginosa 21 1.70 0.05 7.08 3.51 R

Veronica brachysiphon 80 5.09 0.21 131.00 0.56 W

Veronica canterburiensis 69 2.13 0.21 151.02 1.97 WS

Veronica cryptomorpha 3 0.27 0.01 0.35 1.21 R

Veronica decumbens 42 0.71 0.11 6.84 0.09 R

Veronica lycopodioides 28 0.38 0.07 0.89 0.79 R

Veronica odora 35 0.95 0.09 6.56 0.28 R

Veronica pimeleoides 16 13.09 0.04 552.42 2.85 LO

Veronica pinguifolia 17 0.26 0.04 0.32 1.17 R

Veronica rakaiensis 14 0.43 0.04 0.60 -0.06 R
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Figure 18: Relationship between the mean abundance and the proportional
occupancy at local-scale (20× 20 m quadrats). Light grey lines
indicate the medians of occupancy (vertical) and local density
(horizontal) which were used as a criterion to define the different
types of rarity for the species surveyed (LO, R, WS and W, see
Figure 13 for a description). Isolines represent different values of
the parameter 1/k from the negative binomial distribution. The de-
gree of aggregation increases as the values become larger. The top
plot shows the actual rarity group and the bottom plot the species
that belong to the rarity group. List of species’ abbreviations are
given in Appendix B.
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Table 6: Regional scale summary (between plots 100× 60 m). The parameter
1/k of the negative binomial distribution, assumes larger values as
the aggregation increases.

SPECIES TOTAL IN-

DIVIDUALS

SITES

OCCUPIED

MEAN

ABUN-

DANCE

AOO VARIANCE 1/k TYPE OF

RARITY

Aciphylla aurea 3778 24 139.93 0.89 68185.61 3.46 W

Aciphylla

glaucescens

20 3 0.74 0.11 6.51 10.50 R

Astelia nervosa 35 2 1.30 0.07 22.29 12.46 R

Brachyglottis

cassinioides

4715 10 174.63 0.37 348860.90 11.42 W

Celmisia monroi 47 11 1.74 0.41 11.35 3.17 WS

Chionochloa

pallens

20474 20 758.30 0.74 2618294.00 20.07 W

Chionochloa

rubra

3015 14 111.67 0.52 209153.70 4.54 W

Chionochloa sp1 2981 3 110.41 0.11 244599.90 16.73 LO

Discaria

toumatou

3656 15 135.41 0.56 241228.70 13.18 W

Gentianella

corymbifera

14742 22 546.00 0.81 602140.50 2.02 W

Helichrysum

parvifolium

674 6 24.96 0.22 6753.73 10.82 LO

Leptospermum

scoparium

150 3 5.56 0.11 735.10 23.62 R

Olearia

nummulariifolia

931 12 34.48 0.44 19360.64 16.24 W

Ozothamnus

vauvilliersii

1386 17 51.33 0.63 17909.08 6.76 W

Pinus contorta 102 5 3.78 0.19 184.56 12.67 R

Rosa rubiginosa 102 4 3.78 0.15 171.87 11.76 R

Veronica

brachysiphon

1146 15 3.78 0.56 22532.87 12.46 W

Veronica

canterburiensis

351 11 13.00 0.41 2342.92 13.76 W

Veronica

cryptomorpha

4 1 0.15 0.04 0.59 20.25 R

Veronica

decumbens

128 12 4.74 0.44 291.58 12.74 WS

Veronica

lycopodioides

51 9 1.89 0.33 22.41 5.76 R

Veronica odora 156 11 5.78 0.41 639.10 19.01 WS

Veronica

pimeleoides

589 3 21.81 0.11 12713.54 26.63 LO

Veronica

pinguifolia

23 6 0.85 0.22 5.28 6.10 R

Veronica

rakaiensis

26 4 0.96 0.15 17.88 18.23 R
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Figure 19: Relationship between the mean abundance and the proportional
occupancy at regional scale (100× 60 m quadrats). Light grey lines
indicate the medians of occupancy (vertical) and local density (hor-
izontal) which were used as a criterion to define the different types
of rarity for the species surveyed (LO, R, WS and W, see Figure
13 for a description). Isolines represent different values of the
parameter 1/k from the negative binomial distribution. the degree
of aggregation increases as the values become larger. The top plot
shows the actual rarity group and the bottom plot the species that
belong to the rarity group. List of species’ abbreviations are given
in Appendix B.
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3.3.2 Relationships between plant traits and aggregation – cross-species
analyses

The relationship between aggregation and plant life-history trait varied
across the scales used for measuring aggregation.

Vegetative traits

At a local-scale, SLA was the only plant trait that was significantly
positively correlated with local aggregation 1/k (R2 = 0.25; n =

24 species; P = 0.01; Figure 20b, Table 7). This means that species
comprising plants with thin leaves and low density tissues tend to
have more aggregated patterns.

At a regional-scale, the average plant height of different species
exhibited a significant positive association with aggregation (R2 = 0.20;
n = 24 species; P = 0.03; Figure 21e, Table 7). Species comprising
taller plants had more aggregated patterns. In the same way, there is a
tendency for species comprising woody plants to have more regional
aggregated patters, although this was not significant (P = 0.07; Figure
21f).

Reproductive traits

When aggregation was measured across all four scales using the
occupancy-area model (1/k NBD2), dispersal mode was associated
with aggregation (n = 46 species; P = 0.04). Species that lack any
specialised system dispersal were more aggregated (Figure 22g).
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Figure 20: Scatter and boxplots of variables used as predictors of distribution
patterns (aggregation 1/k) at local scale for cross-species. In the
scatter plots each point represents one species. In the boxplots the
dark line is the median, the box encloses the interquartile range
and the whiskers show the full range, with outliers shown as
circles.
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Figure 21: Scatter and boxplots of variables used as predictors of distribution
patterns (aggregation 1/k) at regional scale for cross-species. In
the scatter plots each point represents one species. In the boxplots
the dark line is the median, the box encloses the interquartile
range and the whiskers show the full range, with outliers shown
as circle.
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Figure 22: Scatter and boxplots of variables used as predictors of distribution
patterns (aggregation 1/k) across all scales for cross-species. In the
scatter plots each point represents one species. In the boxplots the
dark line is the median, the box encloses the interquartile range
and the whiskers show the full range, with outliers shown as
circles. Significant results are indicated as * P < 0.05
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Multivariate models

Multivariate analyses with all the predictor plant traits in the model
suggested not a single significant variable at local (P = 0.19, R2 = 0.18)
and regional scale (P = 0.14, R2 = 0.22).

MAM minimum ad-
equate model

At local-scale, the best model contained the leaf area, SLA and
dispersule mass variables (P = 0.017, R2 = 0.32, Table 8). Leaf area and
SLA had an additive effect that affected local aggregation, especially
when taking into account dispersule mass. At regional scale, two traits
interacted to affect regional aggregation (P < 0.01, R2 = 0.34, Table 8);
seed mass and plant height were the traits that contributed to the best
model.

Multivariate analyses indicated that all life-history traits analysed,
except for SLA, contributed and had an additive effect in explaining
aggregation when measured across all four scales (P = 0.02, R2 = 0.20;
NBD2; Table 8).
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Table 8: Regression coefficients for multivariate analyses at local and regional
scale. DAIC is the difference in the Akaike’s information criterion
between the full model (upper) and the minimum adequate model
(lower) at each scale.

DEPENDENT
VARIABLE

PREDICTOR VARIABLE DAIC P - PREDICTOR
VARIABLE

MODEL CO-
EFFICIENTS

Local scale: mean
aggregation (1/k)
within plots,
(20× 20 m)
sample units

Leaf area, SLA,
dispersule, seed,
height, woodiness,
dispersal mode

none of the terms
were significant
(NS)

P = 0.19

R2= 0.18

Leaf area, SLA,
dispersule

6.83
Leaf area < 0.05

SLA < 0.05

Dispersule = NS

P = 0.017

R2 = 0.32

Regional scale:
aggregation (1/k)
among plots,
(100× 60 m)
sample units

Leaf area, SLA,
dispersule, seed,
height, woodiness,
dispersal mode

none of the terms
were significant
(NS)

P = 0.14

R2 = 0.22

Seed, height 6.70 Seed < 0.05

Height < 0.01

P = 0.0074

R2 = 0.34

NBD2:
aggregation (1/k)

Leaf area, SLA,
dispersule, seed,
height, woodiness,
dispersal mode

SLA = NS
Dispersule = NS
Seed = NS
Leaf area = 0.01

Height = 0.02

Woodiness =
0.002

Dis.mode = 0.003

P = 0.038

R2 = 0.18

Leaf area,
dispersule, seed,
height, woodiness,
dispersal mode

1.97 Leaf area = 0.01

Dispersule = NS
Seed = NS
Height = 0.02

Woodiness =
0.001

Dis.mode = 0.003

P = 0.020

R2 = 0.20
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3.3.3 Relationships between plant traits and aggregation – phylogenetically
independent contrast analyses

At a local-scale, the PIC analyses identified plant traits associated
with local aggregation. Divergence in leaf area exhibited a significant
negative association (R2 = 0.27; P < 0.05; Figure 23a), while the
divergence in dispersule had a significant positive relationship (R2 =

0.40; P < 0.001; Figure 23c). Species with small leaves were more
aggregated locally. Conversely, species with smaller dispersule mass
tended to have more even or random aggregation. There was also a
tendency for short plants to have more aggregated patterns, although
it was not significant (P = 0.09; Figure 23e and Table 9).

None of the plant traits was an important or significant explanatory
variable in predicting regional aggregation (Figure 24 and Table 9),
although there was a strong tendency for species comprising plants
with heavier dispersules to be aggregated (P < 0.08; Figure 23c).

Aggregation (1/k from the NBD2) measured across the four scales
was negatively related to divergences in leaf area (R2 = 0.09, P = 0.03;
Figure 25a), dispersule mass (R2 = 0.11, P = 0.02; Figure 25c) and
seed mass (R2 = 0.14, P < 0.01; Figure 25d).

The results of the phylogenetically independent contrast analyses
were dissimilar to the cross-species analyses. This suggests that the
cross-species relationships were an artefact generated by one or more
divergences deep in the tree.

The most important divergence for the leaf area trait was at the
dichotomy in the genus Aciphylla with larger leaves (contribution =
0.49). It has been suggested that large spine-like leaflets of the Aci-
phylla genus are xerophytic adaptations to dry climatic conditions
(Oliver 1956). The biggest contributing divergences for SLA were the
divergence at the base of Gaultheria and at the Ericaceae. The two
gaultherias surveyed belong to the few that occur in alpine commu-
nities (Dawson 1988). Their leaves are short, broad and and have low
SLA, probably another adaptation to alpine conditions (contribution =
0.37).

For seed mass, the highest divergence contribution was between
angiosperms (smaller seeds) and gymnosperms (larger seeds, contri-
bution = 0.34). This result is consistent with what Moles et al. (2005)
found. The ability of angiosperms to produce smaller seeds than gym-
nosperms might be associated with the reduction in the gametophyte
and early abortion (Haig & Westoby 1991).
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Figure 23: Scatter plots of variables used as predictors of distribution patterns
(aggregation 1/k) at local-scale for PIC analysis. Solid regression
lines represent significant linear relationships, and dashed lines
represent strong trends.
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Figure 24: Scatter plots of variables used as predictors of distribution patterns
(aggregation 1/k) at regional-scale for PIC analysis. Solid regres-
sion lines represent significant linear relationships, and dashed
lines represent strong trends.
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Figure 25: Scatter plots of variables used as predictors of distribution patterns
(aggregation 1/k) across all four scales for PIC analysis. Solid
regression lines represent significant linear relationships, and
dashed lines represent strong trends.
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Table 10: Important divergences in plant life-history traits that make the
largest contribution to present-day variation for the data set used

trait rank divergences node

Leaf area 1 Dichotomy in Aciphylla 13

2 Asterales versus Apiales 12

Specific leaf area 1 Dichotomy in Gaultheria 24

2 Polytomy in Ericaceae 22

Dispersule mass 1 Dichotomy in Rosaceae 7

2 Polytomy in Rosales 6

3 Eudicots versus monocots 2

Seed mass 1 Angiosperms versus gymnosperms 1

2 Polytomy in Ericaceae 22

3 Dichotomy in Rosaceae 7

Height 1 Angiosperms versus gymnosperms 1

2 Dichotomy in Rosaceae 7

The most important contribution to the divergence in dispersule
mass was at the base of the Rosaceae (contribution = 0.50) followed
by the Rosales (contribution = 0.15). At this node two species were
surveyed and had large dispersules. The naturalised Rosa rubiginosa
and the native Acaena inermis are both adapted for dispersal by birds
and domestic stock. Although, Rosa rubiginosa is dispersed internally
and Acaena inermis externally. The full table of contribution index
values is given in Appendix D.

The highest contribution in the divergence of plant height was
between the angiosperms and gymnosperms (contribution = 0.31), fol-
lowed by divergence in the Rosaceae (contribution = 1.2). Divergences
in height were in the same position as those in seed and dispersule
mass, and might be a result of the association between larger disper-
sule mass with larger growth forms.

3.3.4 Comparison between the aggregation parameter 1/k from the negative
binomial 1 and the negative binomial 2 method

The local and regional aggregation (1/k) relationship was plotted in or-
der to detect if local scale 1/k predicts regional scale 1/k; nevertheless
they were not correlated (Figure 26a and Table 11).

The aggregation parameter 1/k measured across all four scales using
the occupancy-area model from the negative binomial 2 was correlated
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Table 11: Relationship and coefficients from model II regression in Figure 26.

1/k LOCAL 1/k REGIONAL

P R2 P R2

2-tailed 1-tailed 2-tailed 1-tailed
1/k REGIONAL 0.58 0.29 0.014

1/k ALL SCALES (NBD2) 0.03 0.01 0.21 0.05 0.02 0.16

positively with 1/k local and regional scale from the negative binomial
1 (Figure 26b and 26c, Table 11). This means that aggregation mea-
sured from occupancy-area models could be an option for measuring
distribution patterns (aggregation) when data is only available in the
presence/absence format.
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Figure 26: Regressions model II for the aggregation parameter 1/k between
the negative binomial 1 and the negative binomial 2.



3.4 discussion 80

3.4 discussion

These aggregation patterns were correlated with some plant life-
history traits and the significance of these correlations varied with the
scale and the type of analyses used (Table 12).

3.4.1 Plant traits related to aggregation and to spatial scales

In general, plant traits had low predictive ability in explaining the
degree of aggregation for cross-species analyses. The only plant traits
considered that had a significant positive effect on aggregation were
SLA (at local-scale), height (at regional-scale) and dispersal mode
(across all scales). But these relationships may be spurious if generated
by an alternative mechanism associated with one or more divergences
deep in the phylogenetic tree. We cannot ignore this possibility since
results from phylogenetic independent contrast analyses were incon-
sistent with cross-species relationships. Traits that were significant in

SLA specific leaf area
cross-species analyses (SLA, height and dispersal mode) moved from
significant to non-significant in PIC analyses. And vice versa, traits that
were significant in PIC analyses were non-significant in cross-species
analyses. One possibility is that there are one or more divergences
deep in the phylogeny that underlie the present-day associations. Im-
portant divergences were identified in the phylogeny in comparison
to the overall variance in trait values across all present-day species in
the data set (the contribution index, Moles et al. 2005, Table 10).

In the cross-species analyses SLA was positively correlated with
aggregation at a local-scale. The forces that maintain the present-day
specific leaf area variation might be a result of herbivory (Moles et
al. 2011), or of abiotic conditions (Close et al. 2003). The results of
this study showed that species comprising plants with lower SLA were
more scattered. It is likely that these patterns were driven by environ-
mental factors. It is known that exposure to UV and colder conditions
(as those found in Molesworth Station) influence leaf toughness (Jor-
dan et al. 2005). These conditions may explain the scattered patterns
of species comprising plants with lower SLA which are very likely
adapted to high UV exposure and other aggressive abiotic factors, and
therefore can spread and survive in wider ranges. Whereas plants
with aggregated distribution and high SLA values, can only persist in
restricted, but favourable places in such hostile environment.
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Species comprising tall plants tend to have more scattered distri-
bution at regional-scale. Plant height is associated with competitive
vigour and plant fecundity; also some tall plants may successfully
avoid fire reaching the green parts in the canopy (Cornelissen et al.
2003). The findings of this Chapter are consistent with previous reports
from Australia and Europe (Murray et al. 2002b; Van der Veken et al.
2007) which have noted positive relationships between plant height
and range size.

PIC phylogenetic in-
dependent contrast

PIC analyses identified positive associations between dispersule
mass and aggregation at local-scale and negative associations between
dispersule and seed mass and aggregation across all scales. Seed mass
affects distribution and abundance patterns in different ways: plants
with smaller seeds produce more propagules per unit canopy area than
do plants with larger seeds; smaller seeds disperse more readily than
larger seeds; large seeds spend longer time exposed to predispersal
seed predators (Moles & Westoby 2003) and larger seeds could suffer
greater and more intensive selective predation by animals (Eriksson
& Jakobsson 1998; Guo et al. 2000). However, in a more recent study
(Moles et al. 2003) no relationship was found between either seed
mass and pre-dispersal or post-dispersal survivorship. Nevertheless,
the most obvious explanation is that lighter dispersules can travel
further distances and hence generate a more scattered distribution of
seedlings (but see Thomson et al. in press).

PIC and multivariate analyses identified negative relationships between
leaf area and aggregation. Leaf area gave the more consistent neg-
ative association. The forces that maintain the present-day leaf area
variation might be a result of herbivory (Moles et al. 2011). Species
comprising plants larger leaves were more aggregated. This may be
explained by the Janzen Connell effect (Janzen 1970), which suggests
that species that suffer high levels of herbivory and parasite attack
will suffer density-dependent mortality, this counteracts the tendency
for seedlings to be aggregated close to their parent.

3.4.2 Types of distribution patterns and rarity

Different types of rarity were recognised for the surveyed data set
and more importantly, the continuous measure of aggregation used
reflected this variation. At a regional-scale (100× 60 m), locally abun-
dant species with small populations (LO) tended to have 1/k values
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Figure 27: Boxplots of different types of distribution and rarity and aggrega-
tion 1/k from the NBD1. R, species with small populations and
in low densities; LO, species locally abundant but with narrow
ranges; WS, species that are widespread but with small popula-
tions; W, species that are both regionally widespread and locally
abundant. Box = interquartile range, containing 50% of values;
line across box = median; whiskers = highest and lowest values.

ranging from 11 to 26, while widespread but scattered species (WS)
tended to have values ranging from 3 to 19 from the NBD1. Although
there were no significant differences (P = 0.30) between the different
types of distribution at regional-scale and the aggregation parameter
1/k (NBD1), there was a tendency for LO and R to have more aggre-
gated patterns, and for WS and W to have more scattered patterns
(Figure 27). There was a discrepancy between 1/k values from the
NBD1(Table 6) and values from the NBD2 (isolines in Figure 19) for the
different types of distribution and rarity. This may be caused because
some species did not follow the negative binomial distribution. In
order to identify this discrepancy I compared the frequency between
the expected counts from the negative binomial versus the counts
observed (Figure 28). Examples of this are Aciphylla aurea (Figure 28a)
and Discaria toumatou (Figure 28b) which followed the expected NBD,
while Gentianella corymbifera (Figure 28c) followed the NBD to lesser ex-
tent. These differences between expected and observed counts yielded
different values from NBD1 and NBD2 and the types of distribution
and rarity.

This study demonstrates that even closely related species exhibit
different distribution patterns and fit in different rarity groups (e.g.,
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Figure 28: Frequency of counts between observed and expected (NBD model)
counts across sample units (regional-scale) for (a) Aciphylla aurea;
(b) Discaria toumatou; and (c) Gentianella corymbifera. Classes of
bins range from 0 to 500+ in breaks of 10 individuals per bin. See
Table 6 for the observed values of mean, variance and occupancy,
and the expected 1/k at a regional-scale for the NBD1.
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Veronica spp, Chionochloa spp; Figure 18 y 19, Table 5 and 6). This was
consistent with the findings of Lloyd et al. (2003) who analysed the
variation on distribution patterns of nine species of Chionochloa from
range-restricted to widespread distribution patterns. Another study
of Acaena species demonstrated that the distribution pattern varied
greatly within the genus (Lee et al. 2001).

Distribution pattern also varied across scales. For instance, Celmisia
monroi at a local-scale was highly restricted (R) and at a regional-scale
the AOO was higher but still in low densities (WS). These findings
suggest that several scales are needed to fully describe the distribution
of even a single species.

3.4.3 Comparison between NBD1 and NBD2 for measuring aggregation

The new method for measuring aggregation that considered occupancy
(NBD2) was comparable to the more traditional method from the
negative binomial that took count data into account (NBD1). In order
to correctly model ecological patterns and infer mechanisms of species
coexistence, there is a fundamental need to accurately describe the
spatial distributions of species (Zillio & He 2010). The NBD1 and NBD2

were used for measuring aggregation (1/k). The NBD1 model is widely
used in the literature and has been proved to work well; nevertheless
there are some cautions to bear in mind when using it. For example
when the sampling area is large the NBD is clearly inappropriate as

NBD negative bino-
mial model

the model takes into account an infinite area, this is demonstrated by
Zillio & He (2010). The NBD1 tended to erroneously detect rare species
as being random, this was the case of Veronica rakaiensis at local scale
which had a very low mean abundance and was present only in 14

subquadrats out of 405; the 1/k value of -0.06 suggested a random
pattern, however it was highly aggregated. This is due to the fact that
1/k of the NBD1 can only measure spatially implicit aggregation based
on the values of variance and mean; it is blind to the actual locations of
quadrats so cannot detect spatially explicit aggregation at the broader
scale. Interestingly, the new method for measuring aggregation from
the negative binomial 2 (NBD2) opens new possibilities for calculating
aggregation from occupancy, including occupancies of zero at small
scales, as might occur when plots are subsmapled at finer scales. In
the majority of the larger extent data sets, species distributions are
often summarised as presences and absences at a particular resolution.
This method might have the advantage of using this type of data over
the other negative binomial 1 (NBD1) that requires count data, which
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are more costly to get and not always appropriate to all plant growth
habits at fine scales. This new method for measuring aggregation could
have the potential to compare studies of the different distribution
patterns achieved by declining or expanding species and may provide
general guidelines for the management and monitoring of rare and
invasive species in the absence of longer term ecological studies.

3.4.4 Methodological issues

Over very large areas of the South Island the vegetative cover is a
product of many years of repeated burning (McGlone 1989; McGlone
& Basher 1995). Although the area of study has been under protection
during the last decade by the Department of Conservation (DoC), the
land suffered from loss of vegetation and severe erosion caused by
overgrazing by sheep and rabbits and repeated burning of tussock-
lands (Moore 1976). Hence, present-day distribution patterns reflect
the interplay of species intrinsic properties with the abiotic environ-
ment, the sympatric plant community and the prevailing disturbance
regimes. Additionally, introduced and naturalised plants have had a
profound influence on the present-day distribution of tussock grass-
lands. It is likely that a combination of factors is important for their
successful invasion (Platt et al. 1995). However, there is still a need
of more complete understanding of spatial patterns, the processes
and the interactions driving distribution patterns. Here, it was of my
interest to test if exotic and native plants display different distribution
patterns; nevertheless the number (n = 5) for exotic plant species was
low to make comparisons. Also, to detect which species are expanding
ranges it would have been ideal to measure the temporal scale. Perma-
nent quadrats were left in the study site to monitor these changes in
long-term studies. Such knowledge will develop more robust predic-
tions of all factors that would have an important influence on shaping
distribution patterns in tussock grasslands.

3.4.5 Implications and conclusions

Knowledge about spatial distribution and the mechanisms that are
causing these patterns across scales is essential for predicting the dis-
tribution of species in areas where there is no information available
(Raxworthy et al. 2003) for planning priorities in the conservation of
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the species across scales (Myers et al. 2000) and for identifying which
processes and mechanisms are more important at the different resolu-
tions. In this Chapter, I have demonstrated that plant traits do help
explain different distribution patterns at different scales. One of the
main conclusions was that leaf area was the most robust life-history
trait overall in predicting the degree of local aggregation. Leaf area
gave a consistent negative association in four of the nine analyses.
These findings suggest that leaf area should be considered when relat-
ing plant traits to distribution patterns. A Multi-scale approach helps
to generate refined hypotheses about which processes are important
at which scales. Multi-scale studies have the advantage of being better
able to detect scale-specific associations between pattern and process
that are not always apparent at a single scale of study. Furthermore,
cross-species and PIC analyses can help increase the robustness of
cross-scale predictions.
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Table 13: Summary of the plant traits included in the data set.
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Table 14: Average leaf area, specific leaf area (SLA), dispersule and seed mass
for 46 plant species (±SD). The number of individuals sampled are
shown in the parenthesis followed by the total number of leaves or
seeds sampled.

SPECIES LEAF AREA

(mm2)

SLA

(mm2mg-1)

DISPERSULE

(mg)

SEED (mg) HEIGHT (cm)

Acaena inermis 4.74 ± 1.32

(5,50)

2.83 ± 0.99

(5,50)

4.04 ± 1.13

(5,100)

2.47 ± 1.13

(5,100)

4.7 ± 1.8 (5)

Aciphylla aurea 4595.75 ±

214.01 (4,8)

0.2 ± 0.01 (4,8) 4.48 ± 0.71

(4,120)

4.48 ± 0.71

(4,120)

37 ± 4.97 (4)

Aciphylla monroi 16.32 ± 3.07

(5,10)

0.52 ± 0.05

(5,10)

0.52 ± 0.9

(5,50)

0.52 ± 0.9

(5,50)

11 ± 2.92 (5)

Acrothamnus colensoi 0.95 ± 0.21

(5,50)

0.57 ± 0.05

(5,50)

20.11 ± 4.94

(5,50)

11.27 ± 2.57

(5,50)

16.98 ± 4.83 (5)

Anthoxanthum odoratum 40.23 ± 15.56

(5,13)

1.83 ± 0.23

(5,13)

0.89 ± 0.04

(5,50)

0.89 ± 0.04

(5,50)

12.6 ± 1.82 (5)

Brachyglottis cassinioides 0.88 ± 0.19

(5,50)

1.16 ± 0.16

(5,50)

2.06 ± 0.14

(5,100)

0.88 ± 0.14

(5,100)

133 ± 16.91 (5)

Celmisia du-rietzii 56.35 ± 3.61

(4,20)

0.96 ± 0.06

(4,20)

0.02 ± 0.08

(3,60)

0.02 ± 0.08

(3,60)

11.6 ± 1.76 (2)

Celmisia incana 47.67 ± 14.84

(3,30)

0.64 ± 0.05

(3,30)

0.04 ± 0.01

(3,60)

0.04 ± 0.01

(3,60)

6.87 ± 0.57 (3)

Celmisia monroi 7.3 ± 1.04 (3,30) 0.41 ± 0.03

(3,30)

0.02 ± 0.01

(5,50)

0.02 ± 0.01

(5,50)

19.7 ± 0.78 (5)

Celmisia semicordata 829.44 ± 17.16

(4,20)

0.33 ± 0.01

(4,20)

0.03 ± 0.29

(4,80)

0.03 ± 0.29

(4,80)

45.75 ± 5.12 (4)

Celmisia spectabilis 60.36 ± 10.53

(5,50)

0.36 ± 0.05

(5,50)

0.4 ± 0.2 (5,50) 0.4 ± 0.2 (5,50) 7.02 ± 1.29 (5)

Chionochloa sp1 321.4 ± 35.09

(5,50)

1.41 ± 0.17

(5,50)

0.98 ± 0.07

(5,50)

0.98 ± 0.07

(5,50)

97.8 ± 13.34 (5)

Chionochloa australis 0.98 ± 0.18

(5,50)

0.24 ± 0.03

(5,50)

0.32 ± 0.02

(5,50)

0.32 ± 0.02

(5,50)

14.34 ± 4.16 (5)

Chionochloa pallens 128.3 ± 33.87

(5,50)

1.36 ± 0.51

(5,50)

1.65 ± 0.08

(5,50)

1.65 ± 0.08

(5,50)

90.6 ± 10.75 (2)

Chionochloa rubra 290.42 ± 9.26

(5,50)

1.35 ± 0.27

(5,50)

1.04 ± 0.08

(5,50)

1.04 ± 0.08

(5,50)

116.6 ± 8.65 (5)

Discaria toumatou 28.82 ± 1.5

(5,50)

1.14 ± 0.13

(5,50)

18.11 ± 3.56

(5,25)

3.76 ± 1.48

(5,25)

118 ± 33.77 (5)

continued on next

page...
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SPECIES LEAF AREA

(mm2)

SLA

(mm2mg-1)

DISPERSULE

(mg)

SEED (mg) HEIGHT (cm)

Dracophyllum pronum 1.53 ± 0.43

(5,50)

0.14 ± 0.03

(5,50)

0.1 ± 0.01

(5,50)

0.1 ± 0.01

(5,50)

37.5 ± 7.04 (5)

Dracophyllum

rosmarinifolium

4.33 ± 0.79

(5,50)

0.21 ± 0.03

(5,50)

0.3 ± 0.01

(5,50)

0.3 ± 0.01

(5,50)

102 ± 18.28 (5)

Dracophyllum sp1 7.32 ± 1.06

(5,50)

0.58 ± 0.03

(5,50)

2.45 ± 0.01

(2,100)

2.45 ± 0.01

(2,100)

91.8 ± 14.65 (5)

Gaultheria crassa 8.55 ± 1.82

(5,50)

0.36 ± 0.07

(5,50)

0.01 ± 0

(5,300)

0.01 ± 0

(5,300)

23.88 ± 2.01 (5)

Gaultheria depressa 31.82 ± 24.7

(5,50)

5.72 ± 4.63

(5,50)

29.19 ± 4.55

(5,50)

0.03 ± 0.01

(5,250)

5.62 ± 1.01 (5)

Gentianella corymbifera 396.3 ± 48.03

(5,25)

1.23 ± 0.2

(5,25)

0.4 ± 0.09

(5,250)

0.4 ± 0.09

(5,250)

5.46 ± 2.32 (5)

Helichrysum parvifolium 1.29 ± 0.13

(5,50)

1.65 ± 0.44

(5,50)

0.07 ± 0.01

(5,50)

0.07 ± 0.01

(5,50)

32.64 ± 6.84 (5)

Hieracium pilosella 12.86 ± 2.45

(5,25)

1.75 ± 0.12

(5,25)

0.19 ± 0.02

(5,50)

0.19 ± 0.02

(5,50)

5.4 ± 2.07 (5)

Leptospermum scoparium 4.13 ± 0.21

(5,100)

0.71 ± 0.01

(5,100)

0.12 ± 0.01

(5,130)

0.12 ± 0.01

(5,130)

158.8 ± 12.74 (5)

Leucopogon fraseri 0.53 ± 0.13

(5,50)

1.12 ± 0.61

(5,50)

13.49 ± 0.36

(5,50)

8.18 ± 0.38

(5,49)

5.86 ± 1.59 (5)

Melicytus alpinus 1.03 ± 0.14

(2,20)

0.74 ± 0.12

(2,20)

19.75 ± 3.84

(2,20)

4.61 ± 0.4

(2,20)

31 ± 1.41 (2)

Olearia nummulariifolia 12.5 ± 0.63

(5,50)

0.26 ± 0.05

(5,50)

0.79 ± 0.1

(5,100)

0.79 ± 0.1

(5,100)

69.44 ± 18.41 (5)

Ozothamnus vauvilliersii 4.8 ± 0.21 (5,50) 0.88 ± 0.1

(5,50)

0.09 ± 0.09

(4,36)

0.1 ± 0.08

(4,34)

25.72 ± 4.88 (5)

Pimelea sericeovillosa 1.08 ± 0.21

(5,50)

0.95 ± 0.12

(5,50)

2.42 ± 0.45

(5,25)

1.36 ± 0.21

(5,25)

14.02 ± 6.98 (5)

Pinus contorta 6.85 ± 0.56

(5,50)

0.37 ± 0.02

(5,50)

5 ± 1.1 (5,25) 5 ± 1.1 (5,25) 187.7 ± 10.43 (5)

Podocarpus nivalis 2.13 ± 0.4 (5,50) 0.48 ± 0.09

(5,50)

26.26 ± 12.35

(5,25)

9.12 ± 2.89

(5,25)

40.8 ± 27.26 (5)

Raoulia grandiflora 0.55 ± 0.1

(5,100)

0.97 ± 0.09

(5,100)

0.15 ± 0.02

(5,50)

0.15 ± 0.02

(5,50)

2 ± 0.71 (5)

Rosa rubiginosa 17.32 ± 1.96

(5,50)

1.95 ± 0.06

(5,50)

545.88 ±

144.44 (5,15)

14.71 ± 3.89

(5,50)

65.4 ± 15.16 (5)

Rytidosperma setifolium 1.45 ± 0.71

(5,50)

0.35 ± 0.12

(5,50)

0.2 ± 0.01

(5,50)

0.2 ± 0.01

(5,50)

16.4 ± 3.36 (5)

continued on next

page...
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SPECIES LEAF AREA

(mm2)

SLA

(mm2mg-1)

DISPERSULE

(mg)

SEED (mg) HEIGHT (cm)

Stellaria graminea 3.25 ± 0.99

(5,40)

1.63 ± 1.46

(5,40)

5 ± 0.9 (5,50) 5 ± 0.9 (5,50) 39.6 ± 5.5 (5)

Veronica brachysiphon 42.17 ± 2.75

(5,50)

0.46 ± 0.03

(5,50)

0.4 ± 0.01

(5,50)

2.4 ± 0.01

(5,50)

92.2 ± 24.35 (5)

Veronica canterburiensis 32.23 ± 1.08

(5,50)

0.54 ± 0.03

(5,50)

2 ± 0.07 (5,50) 2 ± 0.07 (5,50) 71.4 ± 14.4 (5)

Veronica cryptomorpha 55.4 ± 1.71

(5,50)

0.51 ± 0.01

(5,50)

1.8 ± 0.07

(5,50)

1.8 ± 0.07

(5,50)

43.2 ± 1.48 (5)

Veronica decumbens 49.4 ± 1.51

(5,50)

0.36 ± 0.03

(5,50)

0.19 ± 0.01

(3,97)

0.19 ± 0.01

(3,97)

40.36 ± 20.56 (5)

Veronica lycopodioides 1.51 ± 0.17

(3,30)

0.52 ± 0.06

(3,30)

0.11 ± 0.09

(5,50)

0.11 ± 0.09

(5,50)

18.67 ± 4.73 (3)

Veronica odora 22.53 ± 1.06

(5,50)

0.45 ± 0.06

(5,50)

0.15 ± 0.03

(5,50)

0.15 ± 0.03

(5,50)

78 ± 6.16 (5)

Veronica pimeleoides 3.12 ± 0.13

(5,50)

0.57 ± 0.03

(5,50)

0.02 ± 0 (2,41) 0.02 ± 0 (2,41) 21 ± 1.87 (5)

Veronica pinguifolia 10.07 ± 0.29

(5,50)

0.43 ± 0.04

(5,50)

0.16 ± 0.04

(5,117)

0.16 ± 0.04

(5,117)

26.6 ± 2.3 (5)

Veronica rakaiensis 27.79 ± 1.14

(5,50)

0.83 ± 0.06

(5,50)

0.11 ± 0.02

(4,87)

0.11 ± 0.02

(4,87)

62.38 ± 10.8 (5)

End
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Table 15: Estimated age for the 8 nodes numbered in Figure 17. References
are indicated for the estimated age.

node estimated age (mya) reference

1 325 (Soltis et al. 2002)
2 147.8 (Magallón 2009)
3 125 (Forest & Chase 2009a)
4 107 (Forest & Chase 2009b)
5 98 (Forest & Chase 2009b)
6 76 (Forest & Chase 2009b)
7 38 Phylocom (bladj)
8 54.5 Phylocom (bladj)
9 122 (Forest & Chase 2009a)
10 118 (Bremer 2009)
11 90 (Bremer 2009)
12 115 Phylocom (bladj)
13 58 Phylocom (bladj)
14 123 (Bremer 2009)
15 114 (Bremer 2009)
16 76 Phylocom (bladj)
17 39 Phylocom (bladj)
18 38 Phylocom (bladj)
19 108 (Bremer 2009)
20 3.9 (Wagstaff et al. 2002)
21 1.95 Phylocom (bladj)
22 80 Phylocom (bladj)
23 41 Phylocom (bladj)
24 41 Phylocom (bladj)
25 40 Phylocom (bladj)
26 28 (Magallón & Sanderson 2005)
27 298 (Renner 2009)
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L I F E - H I S T O RY T R A I T S R E L AT E D T O N AT I O N A L ,
R E G I O N A L A N D L O C A L D I S T R I B U T I O N
PAT T E R N S I N T H E VERONICA SECT. HEBE
(PLANTAGINACEAE)

4.1 introduction

Why are some species aggregated and localised while others are
widely distributed or highly fragmented? This is a crucial question
in ecology. To provide complete answers for even a single species in
a single location, we would ideally need, a knowledge of the degree
of aggregation, physicochemical conditions, the level of resources
available, the organism’s life cycle and the influence of competitors,
predators and parasites (Begon et al. 2006). The range of potential
processes shaping species’ distribution patterns is nearly as varied and
complex as the diversity of life (Holt et al. 2005). Processes inherent to
the species (e.g., dispersal, competition) and processes independent of
the species (e.g., disturbance, environmental conditions) can generate
different types of distribution patterns (Fortin & Dale 2005). Quan-
tifying aggregation levels of spatial patterns might be a first step in
studies that aim to relate patterns to ecological processes (He et al.
2000). From the different distribution pattern indices that have been
developed, the mass fractal dimension (Dm) was used in this study as
an index of spatial aggregation since it can be applied over a specified
range of scales and can describe major aspects of the range structure
over several scales (Hartley & Kunin 2003).

The relationship between pattern and process is of great interest in
all natural sciences, and scale is an integral part of this relationship.
Scale usually refers to the spatial or temporal dimension of a phe-
nomenon, and scaling is the transfer of information between scales
(Wu et al. 2006); or in other words, the extent to which information
at one scale can predict properties of pattern at another scale. Several
studies have shown that patterns at coarse-scale are likely to be con-
trolled by climatic regulators (Guisan & Thuiller 2005) and patterns
at fine-scale are controlled by interspecific interactions. Here, I tested
the hypothesis that different processes (inherent to the species) are
generating different species distribution patterns at particular scales
of analysis.

100
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The Veronica sect. Hebe complex offers an ideal system to be studied
due to the distinctive diversity in life-history traits across New Zealand.
The group studied here is part of Veronica sect. Hebe that was formerly
classified as Hebe and Leonohebe (Bayly & Kellow 2006). These groups
were referred to as the hebe clade and the semiwhipcord hebe clade
by Albach & Meudt (2010). The study is confined to these two clades
because of the availability of morphological data contained in Bayly
& Kellow (2006) was assembled. Additionally the phylogeny of these
species has been studied by Low (2005) using DNA sequence data and
reanalysed by Garnock-Jones (pers. comm.).

The observation of different present-day distribution patterns ex-
hibited within Veronica sect. Hebe (Species taxonomy follows Bayly &
Kellow 2006; nomenclature follows Garnock-Jones et al. 2007) at differ-
ent scales is likely to be due to the geological history of New Zealand
(Pole 1994; Lee et al. 2001; Cieraad & Lee 2006), and also influenced
by their intrinsic life-history traits. A less explored relationship is
that on-going processes like colonisation dynamics, reproduction and
dispersal may correlate with statistical properties of the distribution
patterns of these taxa that have dispersed to and diversified there. Life-
history traits can be used as a correlate to those mechanisms, given
that mechanisms such as colonisation, reproduction and competition,
are difficult to measure (Cornelissen et al. 2003).

So far, discussion of the present-day distribution of the mountain
flora in New Zealand including the Veronica complex, has been fo-
cused on the evolution, radiation and long-distance dispersal of these
groups (McGlone et al. 2001; Winkworth et al. 2005). Here, I carried
out a less explored approach investigating if intrinsic plant life-history
traits correlate with present-day distribution. For example, it is known
that the predominance of self-pollination in many populations of
plants is one mechanism that can reproductively isolate populations,
thus leading to an aggregated distribution (Raven et al. 1976). In New
Zealand, researchers have found high predominance of self-pollination
(Newstrom & Robertson 2005). On the other hand dioecy and a lack
of specialised pollinators may act to limit species radiations by pro-
moting gene flow between populations and thus leading to a more
scattered distribution (Lloyd 1985; Newstrom & Robertson 2005). In
this Chapter, I tested these and other life-history traits. I hypothesised
some relationships between life-history traits and distribution patterns,
as follows:
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1. Seed size (mass). It is expected that species with larger seeds
will tend to have shorter dispersal distances (Thomson et al. in
press) and hence, more aggregated distributions leading to lower
values of the aggregation index Dm. Also, large seeds spend

Dm The mass fractal
dimension

longer time exposed to pre-dispersal seed predators (Moles &
Westoby 2003); and larger seeds could suffer highly and intensive
selective predation by animals (Eriksson & Jakobsson 1998; Guo
et al. 2000). However, in a more recent study (Moles et al. 2003)
no relationship was found between either seed mass and pre-
dispersal or post-dispersal survivorship.

2. Presence or absence of seed wings. Species with extra investment
in dispersal structure (wind adapted) will tend to have wider
geographic range (Edwards & Westoby 1996) than will species
without specialised adaptations for dispersal. Hence, species
with presence of wings should have more diffuse distributions
than those lacking this capacity, leading to higher Dm values.

3. Breeding system. Local abundance of a species is linked to its
breeding system. Species that are cosexual and self-compatible
could form and persist in more fragmented ranges (Young &
Brown 1998) leading to lower values of Dm.

4. Growth habit. Growth habit is related to longevity (Pocock et
al. 2006). Species with increase longevity can persist more time,
thus leading to more scattered distributions (Kelly 1996; Kelly &
Woodward 1996). Trees are expected to have relatively large and
more scattered ranges.

5. Leaf area and specific leaf area (SLA). These traits could be related
to herbivory. Species with large leaves have been shown to ex-
perience greater degrees of herbivory (Moles & Westoby 2000).
SLA is related to physical toughness which is an important form
of resistance against herbivores (Hanley et al. 2007; Clissold et
al. 2009). Herbivory could lead to specific distribution patterns.
I predict that species with small and thicker leaves (small SLA

values) will tend to have more aggregated patterns as they may
be less susceptible to density-dependent herbivory (Janzen 1970).

6. Plant height. It is hypothesised that taller species would lead to
higher values of Dm (diffuse distributions), since taller species
could increase dispersal capacity into previously unoccupied
habitats (Mathews & Bonser 2005; Thomson et al. in press).
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7. Inflorescence length. The hypothesis was that the species with
longer inflorescences would lead to high values of Dm. Similar
to the hypothesis of the height of the plants, where it is expected
that longer inflorescences might disperse seeds further from
the mother plant (Lee et al. 2001), leading to more scattered
distributions.

Aggregation patterns of plant species can provide information about
the biological processes that shape these distribution patterns. In
the present Chapter, life-history traits of the hebe and semiwhipcord
hebe clades of Veronica sect. Hebe were utilised as correlates of the
mechanisms of colonisation, reproduction, competition and they were
related to the degree of spatial aggregation exhibited by the present-
day distribution across multiple scales.

In summary, I asked: a) what plant life-history traits are related with
different distribution patterns? and b) which traits are more important
at local, regional or national resolution?

The spatial pattern we observe can be the result of the interaction
between a number of factors including herbivory, competition and
other interactions with neighbouring plants (Dale 2000). In this study,
I analysed and compared the results of two approaches: the cross
species analysis and the phylogenetically informed method.

4.2 methods

Two data sets were analysed. The first data set comprised the na-
tional distribution of all 84 species of the Veronica complex present
in New Zealand, and the second data set comprised the fine-scale
distribution of 8 of these Veronica species across 27 plots in Molesworth
Station, New Zealand (Figure 14). For the Veronica species distributed
in Molesworth Station history-life traits were obtained both from Bayly
& Kellow (2006) and also from field measurements. These traits were
plant height, seed mass, inflorescence length, leaf area, SLA, presence
or absence of seed wings, growth habit and breeding system.
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4.2.1 Distributional data and study area

In order to quantify aggregation at different scales, two data sets
were analysed. To quantify aggregation at local-scale, the distribution
of eight Veronica species was obtained from surveys in Molesworth
Station, New Zealand (Figure 29). Molesworth station is situated in
the South Island, behind the Inland Kaikoura Mountains in South
Marlborough. The average annual rainfall ranges from less than 760

mm in the East to more than 2,540 mm in the West (Coulter 1969). It
is common to find gravelfield and scree communities in dry places
and in places where the rainfall is heavier, exotic grassland species
and short native tussocks are common. The range of elevation for the
quadrats was from 700 to 1460 m. Twenty-seven 100× 60 m quadrats
were established. Georeferenced position for the eight Veronica species
from Molesworth was recorded in the field using a differential Global
Positioning System (GPS) Trimble GeoXT which can yield precise
measurements (30 cm error in post processing in combination with a
base station for differential correction).

To quantify aggregation at regional and national scales, distribution
records for 84 species of hebes and semiwhipcord hebes (Veronica sect.
Hebe) distributed across New Zealand were obtained from Bayly &
Kellow (2006). They were recorded as presence/absence at a ~2.5 km
resolution (Figure 14 ).

4.2.2 Aggregation index: the mass fractal dimension Dm

Popular aggregation indices like Ripley’s K statistic (Haase 1995) or
Ω (Condit et al. 2000) have been used widely in previous studies.
However, fractal dimension D was chosen in the present chapter since
it has been proven that many distribution patterns have (as fractals
do) relevant features on a variety of different scales (Halley et al.
2004). The calculations of mass fractal dimension (Dm) and Ω are
closely related and follow many of the same steps in their calculation.
Therefore, the results of analyses based on Dm can be comparable to
the results of other studies based on Ω index. All the steps involved
in the calculation of Dm and Ω are given in Appendix E.2.

The fractal dimension can be derived from the slope (b) of an
occupancy-area curve relationship, and can be thought of as a measure
of sparseness of any set embedded in an Euclidean space. Distribu-
tions that are highly fragmented and clustered tend to have D ≈ 0;
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Figure 29: Study area and plot location in Molesworth Station. Examples of
point patterns of Veronicas recorded with the differential GPS in
three quadrats are shown in the right box: Green points depict
Veronica brachysiphon individuals; orange, V. canterburiensis; purple,
V. pinguifolia; red, V. decumbens and yellow, V. lycopodioides.
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distributions with continuous coverage patterns tend to have D ≈ 2
(Hartley & Kunin 2003; Figure 31).

Figure 31: Fractal dimensions of different point patterns. A) Regular point
pattern, D = 2, B) random point pattern, D = 1.8 C) random
clumped point pattern, D = 1.4 and D) aggregated clumped point
pattern, D = 0.9. Figure taken from Seuront (2009).

There are many ways to measure the fractal dimension depending
on the nature of the data (Halley et al. 2004). The mass fractal dimen-
sion (Dm) method was used in this study since it has been developed
to analyse point pattern data. This method averages the number of
points located within a distance of circles of radius r of any random
point in the point pattern. The method also makes an adjustment for
the amount of area available within a radius r, hence areas of sea
beyond the land boundary, or areas that were unsurveyed beyond the
plot boundary are excluded when calculating the expected density
of points. Practically, the mass fractal dimension can be estimated
using squares or circles of increasing size r starting from the centre
of the domain (Seuront 2009; Figure 32). Then, log-log axes of the
slope are calculated to obtain the mass fractal dimension. Two ranges
of resolution were used to quantify the distribution pattern, one at
the regional resolution of 2.5 to 20 km (D

2.5-20km) and another at the
national resolution of 20 to 100 km (D

20-100km). The distance classes
used ranged from 2.5 to 100 km. An example is shown in Figure 33.

For the eight species surveyed in Molesworth Station distance classes
ranged from 0.0025 km to 1 km. Two resolutions were used as well,
one at fine resolution of 2.5 to 60 m (D2.5-60m) and another at coarse
resolution of 60 to 1000 m (D60-1000m).
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Figure 32: Schematic representation of the calculation of the mass fractal
dimension Dm. The graphs indicate the average number of points
located within a radius r of each point. The map represents the
actual distribution of Veronica stricta in New Zealand. As r gets
bigger, there are more points accumulated. Further explanation of
the calculation of mass fractal dimension is provided in Figure 33.
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4.2.3 Plant life-history traits

Life-history attributes of the study species for regional and national
scales were obtained from Bayly & Kellow (2006) and included in the
DELTA (Dallwitz 2000) data set. Besides, additional field measure-
ments were taken from other life-history traits at a local-scale (Veronica
species surveyed in Molesworth Station, see methods in Chapter 3).

4.2.4 Data analysis

Cross-species relationships between life-history traits and distribu-
tion patterns (defined as mass fractal dimension Dm) were analysed
using simple regression analysis for univariate models. ANOVA were
performed to compare different groups. Data were logarithmic (ln)
transformed for normality when necessary.

MAM Minimum ad-
equate model

Since some traits are dependent, the interaction between them could
affect distribution patterns (Pocock et al. 2006). Multiple regression
analyses were performed testing for these interactions. The full model
(all predictor variables) was considered first, and then the MAM was fit-
ted following the principle of parsimony (Sober 1991). The most parsimo-
nious model was assessed to be the one with the lowest AIC (Burnham

AIC Akaike’s Inform-
ation Criterion

& Anderson 2002). Multivariate analyses were performed only in the
Veronica species at the regional and national-scale since the dataset
at local-scale contained only eight species, which gave insufficient
degrees of freedom for these tests. All statistical analyses were conduc-
ted in R v.2.10 (R Development Core Team 2011) in association with
the MASS package (Venables & Ripley 2002).

4.2.5 Phylogenetic dependence

When correlating traits among related species, species cannot be con-
sidered as independent data points due to shared inheritance of traits
(Felsenstein 1985). PIC analyses were performed to overcome this prob-
lem. I used the phylogeny of Veronica sect. Hebe given in Figure 34.
This phylogeny was derived by a Bayesian phylogenetic analysis by
Hamish Carson (P.J. Garnock-Jones pers. comm.) of combined nuclear
and cpDNA sequences obtained by Evonne Low (Low 2005). The
topology was obtained in Nexus format, and subsequent transform-
ation was made in newick format to handle the file in R v.2.10 (R
Development Core Team 2011) and Phylocom. The root node was

http://www.phylodiversity.net/phylocom/
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fixed at 3.9 million years before present (mybp) which is the age that
has been estimated for the hebe clade of Veronica (Wagstaff et al. 2002,
as Hebe); then the remainig branch lengths were estimated using the
bladj algorithm from the Phylocom software (Webb et al. 2008). Pre-
vious studies (Webb 2000) have shown that even with only a single
dated node, the resulting phylogenetic distances calculated by the
bladj algorithm can be a marked improvement upon the assumption of

PIC phylogenetic in-
dependent contrast

equal branch lengths. The resultant phylogenetic tree was analysed us-
ing PIC with the combination of adephylo (Jombart et al.), ape (Paradis
et al. 2004), phylobase (Hackathon et al. 2010) and picante (Kembel
et al.) packages in R v.2.10 (R Development Core Team 2011). Regres-
sions were passed through the origin as recommended by Legendre &
Desdevises (2009).

http://www.phylodiversity.net/phylocom/
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4.3 results

4.3.1 Distribution patterns

Distribution patterns, defined as the mass fractal dimension, ranged
from values close to 0 meaning one or more independent ‘points’ to
the distributions, to values close to 2 meaning “space-filling” and
continuous distributions (with no gaps greater than the minimum
distance being considered). This range of values was present at both
scales, with some variation among the species depending on the
resolution (Figure 35).

For the Veronica spp. surveyed at a local-scale in Molesworth Station
the values of Dm varied from low (Veronica pimeleoides) to high (Veronica
decumbens) in the 2.5 to 60 m fine local-scale, and from low (Veronica
lycopodioides) to high (Veronica pinguifolia) in the 60 to 100 m coarse
local-scale.

4.3.2 Correlations between variables

Out of 21 possible pairwise correlations between the trait variables,
there were significant correlations between six pairs, after applying
the Bonferroni correction (a < 0.002; Figure 36). There were significant
relationships between height and seed size, inflorescence length and
height, inflorescence length and leaf area, leaf area and height and
between growth habit and plant height.

4.3.3 Relationship between plant traits and aggregation

Cross-species univariate analyses

The relationship between Veronica species life-history traits and ag-
gregation patterns varied among the scale of analysis (local, regional
and national-scale).

At the fine resolution (2.5− 60 m) of the local-scale, leaf area and
SLA were related to aggregation. Leaf area was weakly positively
related to aggregation (R2 = 0.45, P = 0.06; Figure 37c) and SLA was
negatively related to Dm (R2 = 0.46, P = 0.05; Figure 37d). That is,
species with smaller and thinner leaves were associated with point-like
distributions (Figure 37; Table 16). At the coarse resolution (60− 1000
m) of the local-scale, the presence of wings on the seed was associated
with less aggregation (high Dm; P = 0.02; Figure 38f). Weakly-winged
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Figure 36: Correlations between the 7 variables tested for Veronica species at
regional and national scale. Life-history traits are presented on the
diagonal, scatter plots with the trend regression line are above the
diagonal, and a statistics summary of the correlation are below
the diagonal. All traits except the categorical were ln-transformed
prior to analysis. The categorical variables labels are as follow:
seed wings, not.w = not winged; weak.w = weakly winged; and
w = winged. Growth habit, Sb.sh = subshrub; S.l.sh = spreading
low shrub; B.sh = bushy shrub; S.tr = small tree. Breeding system,
cosex = cosexual; gyno = gynodioecious; dio = dioecious. The
number next to each point indicates the number of species with
each combination of traits.
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species had more space-filling distributions. Plant height, inflorescence
length, leaf area, SLA, seed mass, growth habit and breeding system
were not associated with aggregation at local coarse-scale (Figure 38a,
b, c, d, e, g, h; Table 16).

At a regional-scale (2.5− 20 km), of the seven plant traits tested,
inflorescence length, leaf area and breeding system were signific-
antly related to aggregation patterns (Table 17). Inflorescence length
(R2 = 0.10, P < 0.01; Figure 39c) and leaf area (R2 = 0.07, P = 0.012;
Figure 39d) showed negative correlations with mass fractal dimen-
sion. Veronica species comprising plants with bigger leaves and longer
inflorescences tended to have more point-like distribution patterns.
Breeding system showed a positive association with mass fractal di-
mension (P = 0.04, Figure 39g). Dioecious species had more continu-
ous distributions, reflected by higher Dm values. Plant height, seed
size, presence/absence of wings of seed and growth habit were not
associated with aggregation at this particular scale (Figure 39a, b, e, f;
Table 17).

At a national-scale (20 − 100 km) none of the plant traits were
significant explanatory variables in predicting distribution patterns
(Figure 40a, b, c, d, e, f, g; Table 17).

Cross-species multivariate analyses

At regional and national scales, multivariate analyses with all the
predictor plant traits in the model (full model) did not suggest single
significant life-history traits.

MAM minimum ad-
equate model

After simplifying the model following the MAM method, the best
model at regional-scale, had three plant-history traits as important
(P = 0.03, R2 = 0.10). The MAM suggested that leaf area, seed size and
breeding system contributed significantly to the multiple regression.
Leaf area was significant (P = 0.05) when taking into account seed
size and breeding system (Table 18). The MAM maintained the same
direction of the relationship as the univariate analyses. For the leaf
area the slope (b) was -0.06 and for breeding system it was -0.14.

At a national-scale, the MAM suggested a very simple model with
just an intercept (Table 18).

Can coarse-scale be predicted from fine-scale?

The regional and national-scale mass fractal dimension relationship
was plotted using regression model II (Legendre & Legendre 1998),
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Figure 37: Scatter and boxplots of variables used as predictors of aggregation
patterns (mass fractal dimension) at local-scale (fine resolution, 2.5-
60 m). In the boxplots the categorical variables were: seed wings,
not.w = not winged; weak.w = weakly winged. Growth habit,
S.l.sh = spreading low shrub; B.sh = bushy shrub. Breeding system,
cosex = cosexual; gyno = gynodioecious. Box = interquartile range,
containing 50% of values; line across box = median; whiskers =
highest and lowest values, outliers = cases with values > 1.5 box
lengths from the upper or lower edge of the box. Regression lines
only fitted when significant.
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Figure 38: Scatter and boxplots of variables used as predictors of aggregation
patterns (mass fractal dimension) at local-scale (coarse resolution,
60-1000 m). In the boxplots the categorical variables were: seed
wings, not.w = not winged; weak.w = weakly winged. Growth
habit, S.l.sh = spreading low shrub; B.sh = bushy shrub. Breeding
system, cosex = cosexual; gyno = gynodioecious. Box = interquart-
ile range, containing 50% of values; line across box = median;
whiskers = highest and lowest values, outliers = cases with val-
ues > 1.5 box lengths from the upper or lower edge of the box.
Significant results are indicated as * P < 0.05.
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Figure 39: Scatter and boxplots of variables used as predictors of aggregation
patterns (mass fractal dimension) at regional-scale 2.5-20 km. In
the boxplots the categorical variables were: seed wings, not.w =
not winged; weak.w = weakly winged; and w = winged. Growth
habit, Sb.sh = subshrub; S.l.sh = spreading low shrub; B.sh =
bushy shrub; S.tr = small tree. Breeding system, cosex = cosexual;
gyno = gynodioecious; dio = dioecious. Box = interquartile range,
containing 50% of values; line across box = median; whiskers
= highest and lowest values, outliers = cases with values > 1.5
box lengths from the upper or lower edge of the box. Significant
results are indicated as * P < 0.05. Regression lines only fitted
when significant.
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Figure 40: Scatter and boxplots of variables used as predictors of aggregation
patterns (mass fractal dimension) at national-scale 20-100 km. In
the boxplots the categorical variables were: seed wings, not.w =
not winged; weak.w = weakly winged; and w = winged. Growth
habit, Sb.sh = subshrub; S.l.sh = spreading low shrub; B.sh =
bushy shrub; S.tr = small tree. Breeding system, cosex = cosexual;
gyno = gynodioecious; dio = dioecious. Box = interquartile range,
containing 50% of values; line across box = median; whiskers =
highest and lowest values, outliers = cases with values > 1.5 box
lengths from the upper or lower edge of the box.
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Table 18: Regression coefficients for multivariate analyses at regional-scale
and national-scale. DAIC is the difference from the AIC full model
and the MAM.

dependent.var predictor.var DAIC p

Regional scale Dm
(2.5 – 20 km)

Full Model

Leaf size, seed size,
height, inflorescence
length, winging, habit,
breeding system

NS

MAM Leaf size, seed size,
breeding system

9.60 Leaf area = 0.05

Seed size = 0.11
Breeding system = 0.08

National scale Dm
(20 – 100 km)

Full Model

Leaf size, seed size,
height, inflorescence
length, winging, habit,
breeding system

NS

MAM ~ 1 6.81 NS

in order to detect if aggregation at regional-local scale can predict
national-scale Veronica species or vice versa.

Regional-scale aggregation D
2.5-20km predicted national-scale aggreg-

ation D
20-100km (R2 = 0.38, df = 82, P < 0.001, Figure 41a ).

At a local-scale, aggregation at fine resolution did not predict coarse
resolution aggregation (R2 = 0.001, df = 6, P = 0.46; Figure 41b).
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(a) Veronica spp. National Distribution (regional and
national scale).
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(b) Veronica spp. in Molesworth Station (local scale).

Figure 41: Relationship between coarse and fine-scale aggregation (regression
model II). a) Regional-scale versus national-scale (P < 0.001, R2 =
0.38). b) Local data, fine-scale versus coarse-scale (P = 0.46, R2 =
0.001).
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Table 19: Regression coefficients for univariate traits for PIC analyses at
regional-scale and national-scale. b is the direction of the slope.
Trait type codes: C, Continuous.

trait type attributes regional-scale national-scale

b R2 P b R2 P
Height C ln trans-

formed
-0.005 0.001 0.92 0.130 0.074 0.017

Seed size C ln trans-
formed

0.030 0.001 0.73 0.001 0.001 0.81

Inflorescence
length

C ln trans-
formed

-0.013 0.050 0.04 -0.043 0.007 0.47

Leaf area C ln trans-
formed

-0.090 0.050 0.04 -0.056 0.021 0.28

Phylogenetic independent contrast analyses

The phylogenetic tree of the study species (P.J. Garnock-Jones pers.
comm.) is presented as an unrooted network (Figure 34). Of the seven
life-history traits tested in this Chapter, only four were considered in
phylogenetic analyses since the adephylo package can only handle
continuous and binary data at present.

The PIC analyses at regional-scale identified negative associations
between life-history traits and aggregation patterns (Dm) (Figure 43,
Table 19). Inflorescence length (R2 = 0.05, P = 0.04; Figure 43c) and
leaf area (R2 = 0.05, P = 0.04; Figure 43d) were negatively associated
with aggregation (Dm) at regional-scales. These were consistent with
the cross-species analyses.

At a national-scale, aggregation pattern was positively related to
height (P = 0.017, R2 = 0.017; Figure 44a). Taller Veronica species had
more space-filling or random point pattern distribution. Seed size,
inflorescence length and leaf area life-history traits were not related to
aggregation patterns (Figure 44b, c, d; Table 19). These results were
consistent with the cross-species analyses at national-scale except for
the plant height life-history trait.
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Figure 42: Representation of the life-history traits at the tips of the Veronica
phylogeny. Circles of different size represent the ratio values of
the life-history traits.
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Figure 43: Scatter plots of variables used as predictors of distribution patterns
(mass fractal dimension) at regional-scale for PIC analyses.
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Figure 44: Scatter plots of variables used as predictors of distribution patterns
(mass fractal dimension) at national-scale for PIC analyses.
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4.4 discussion

Although life-history traits had low predictive ability in explaining
distribution patterns in the Veronica complex, the results in this study
showed relationships between some life-history traits and species
aggregation. The specific nature of these relationships changed with
the resolution at which aggregation (Dm) was measured (scale of
analysis: local, regional and national scale).

4.4.1 Life-history traits and aggregation

Several significant relationships between aggregation and life-history
traits were identified, for example, the positive relationship between
leaf area and point-like distributions and the negative relationship
between SLA and aggregation at local plot-scale. One possible explan-
ation is that species with smaller and thicker leaves could be better
equipped physically against predators and pathogens (Moles et al.
2011). This might result in more aggregated distributions if they were
less susceptible to the type of density-dependent mortality suggested
by Janzen and Connell (Janzen 1970; Connell 1971). At the same local-
scale, but at a coarser resolution (60 m - 1 km) the presence of wings
on the seed was associated with less aggregated distribution patterns.
This result is in agreement with previous studies that have explored
this relationship between dispersal traits and distribution patterns
(e.g., Maurer et al. 2003; Kolb & Diekmann 2005; Tremlova & Mun-
zbergova 2007). The fact that presence of wings was not associated
with the finest scale Dm (2.5 - 60 m) suggests that wings on Veronica
seeds make a less noticeable difference to distribution patterns at these
finest scales compared to distances of 60 m - 1 km.

At regional scales, other plant traits different from local and na-
tional scale, were related to aggregation patterns. The relationship
between breeding system and aggregation was in the expected direc-
tion: cosexual species had more point-like distribution. Species which
can self-fertilise, like the cosexual ones, can form and persist in more
scattered ranges as an isolated individual can potentially establish a
population after a single, long distance dispersal event (Baker’s Law,
Baker 1955; Barrett et al. 1996). Similarly, I found that species with
longer inflorescences were associated with isolated distributions; the
length of the inflorescences could be related to increasing dispersal
capacity. Lee et al. (2001) suggested that species with longer inflor-
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escences can help in dispersing seeds further away from the mother
plant to occupy new habitats, leading to more isolated distributions
(low Dm values). Alternatively, inflorescence length could be related
to the size, specificity and dispersal ability of the pollinators. Large,
more specialist pollinators may be expected to affect pollen transfer
over greater distances than small generalist pollinators. The observed
pattern suggests that traits related to reproduction and potentially
dispersal are influencing aggregation patterns at regional-scale (2.5-20

km) on the Veronica complex. These results were consistent in cross-
species and PIC analyses.

Contrary to what I hypothesised, seed mass had no relationship
to aggregation at any of the scales analysed. Seed mass has been
considered one of the most important traits related to the distance that
seeds can travel, thus influencing aggregation patterns (Venable et al.
2008). Nevertheless, recent studies have also found no relationship
between seed mass and aggregation (Pocock et al. 2006) or to dispersal
distance (Muller Landau et al. 2008; Thomson et al. in press). These
results may indicate that it is not seed mass per se, but rather other
strategies (e.g., traits related to establishment, longevity or actual
dispersal) that are influencing plant distribution patterns. The test of
these other plant life-history traits would enhance our understanding
about the traits that are shaping distribution patterns.

An important finding from this study is that the relationship of
plant life-history traits to distribution patterns (e.g., aggregation) can
completely change when moving to a different scale of analysis or
occasionally when using different methods of analysis (cross-species,
PIC, or multivariate analysis). This was the case of the relationship
between aggregation and plant height trait; in cross-species analysis
this relationship was non-significant, and changed to significant in PIC

analyses. Veronica species that comprise plants that grow taller had
more space-filling or continuous distributions. Other studies (Kelly
& Woodward 1996; Mathews & Bonser 2005) have shown that the
height of plant species can result in increasing dispersal capacity into
previously unoccupied habitats (Thomson et al. in press). Also height
is associated with woody growth (Niklas 1997), and woody plants
could persist and have long span life compared to herbs (Pocock et al.
2006).

PIC phylogenetic in-
dependent contrast

The results of relationships between distribution patterns and life-
history traits were consistent with cross-species analyses and PIC

analyses with the exception of plant height at national scale. PIC and
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cross-species analyses give different information (see Westoby et al.
1995 for a discussion). The properties of cross-species analyses are
of interest to us in their own right, not only as a source of evidence
about evolutionary history but as to the selective forces that maintain
present-day life history-traits.

Due to the strong correlation between leaf size and inflorescences
length it is difficult to assess which of these traits is the main driver
behind distribution patterns at the regional scale. Inflorescence length
was the most significant trait in the cross-species univariate analysis,
but dropped out of the multivariate minimum adequate model which
recorded significant effects of leaf size and breeding system. In the
phylogenetically informed analysis both leaf size and inflorescence
length were again highlighted as significant predictors of regional scale
distribution pattern. We may be approaching the limits of what can
be inferred from a macroecological analysis of these data, nonetheless
the results suggest areas ripe for more detailed ecological study of
seed dispersal, pollination processes and population dynamics in
New Zealand Veronica species. Results from other studies across a
wider range of taxa suggest that growth rate, dispersal capacity and
reproductive traits (Lloyd et al. 2002; Lloyd et al. 2003; Pocock et
al. 2006) may be important, although many of these studies did not
specifically include leaf properties or inflorescence length as potential
explanatory factors.

4.4.2 Scaling properties and the mass fractal dimension

I found that distribution patterns had predictable scaling properties.
Regional-scale distribution (2.5− 20 km) can predict national-scale
distribution (20− 100 km; Figure 41a). The mass fractal dimension
is useful in identifying and quantifying distribution patterns across
scales (Nikora et al. 1999), which is important for ecological model-
ling and data interpretation. Furthermore, fractal geometry has been
suggested to distinguish between expanding and contracting popu-
lations. Pocock et al. (2006) studied the distribution patterns of 391

British plants and found that species that were expanding range sizes
had relatively more cohesive distributions (high D values), and those
species that are declining were associated with scattered distributions
(low D values). The length of this study is not long enough to de-
tect temporal changes in tussock grassland plant communities; it is
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necessary to consider the temporal scale in order to find out which
species are expanding or declining. This is out of the scope of the
present Chapter but it is interesting to note that the lowest values of
the mass fractal dimension at regional and national-scale correspond
to Veronica species that are in the threatened category (Nationally
Endangered e.g., V. arganthera, V. armstrongii; or Nationally Vulnerable
e.g., V. baylyi, V. rivalis; de Lange et al. 2009; Figure 35) of the New Zea-
land Threat Classification System (Townsend et al. 2008). The actual
Threat Classification System is based on measures of abundance and
occupancy of species data. Combining the actual knowledge of species
distribution with measures of fractal dimension at different scales
could improve and help us identify species that are declining, and
also naturalised plants that could become invasive and are expanding
range sizes. The analysis of distribution patterns therefore has the
potential to inform future conservation efforts. Nevertheless, caution
is needed when applying fractals in ecology (see Halley et al. 2004 for
a discussion).

In this study, I have explored the effect of plant life-history traits
on aggregation patterns across multiple scales. In conclusion, this
study shows that when several scales of analysis are considered, we
can improve our understanding about the factors that are related to
species distribution patterns. Factors influencing distribution patterns
at fine scales may be different from those influencing them at regional
land national scales. In the case of New Zealand hebes the plant
traits relating to ecological processes did not explain national-scale
distribution patterns, but they did correlate with the degree of aggreg-
ation observed at local and regional scales. Moreover, the combination
of methods of analysis (cross-species and phylogenetic independ-
ent contrast analysis) of these relationships, should be promoted in
order to robust results from possible artefacts in the relationships
between distribution patterns and plant traits, when species phylo-
geny is not taken into account in the analysis. The combination of
these approaches investigated in this Chapter, is a promising way to
disentangle the factors that influence distribution patterns.
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5
G E N E R A L D I S C U S S I O N

5.1 thesis summary

In this thesis, I have discussed the importance of identifying and quan-
tifying patterns and processes as well as the scale at which they are
operating. In order to understand and manage ecological processes,
first we need to identify and quantify ecological patterns (Fortin and
Dale, 2005). In Chapter 2, five occupancy-area models were compared
to choose the one best able to describe distribution patterns. The
occupancy-area models have two important properties; one is that
some parameters of the model can be used as descriptors of the patchi-
ness of species across scales, the advantage of having a continuous
measure of aggregation pattern is that we can test hypotheses of what
process are generating these patterns; the other is the scaling property,
predictions of occupancy can be made at a scale that is different from
the scale at which data were acquired. For example, for predicting
patterns at fine scale from coarse scale data or vice versa (He and Con-
dit, 2007). As discussed in Chapter 2, although there was no overall
superior occupancy-area model, we can use these models to deduce
important information.

In Chapter 3, I utilised the aggregation parameters from two models:
one from the occupancy-area model NBD2 investigated in Chapter 2

and the other from the mean and variance from the NBD1. This was
done to test if those aggregation patterns were correlated with plant
life-history traits related to ecological processes such as dispersal, com-
petition and reproduction in a multi-scale approach. As scale changes,
new patterns and processes may emerge. This is why a multi-scale
approach has the advantage of detecting scale-specific associations
between pattern and process that may not always be apparent at a
single scale of study. For example, observations at fine scales may
overlook important patterns and processes operating at coarser scales;
conversely, coarse-scale observations may not have enough details
necessary to understand fine-scale dynamics (Wu et al. 2006). This was
the case of the results in Chapter 3, where cross-species analyses at
local-scale identified specific leaf area as the life-history trait positively
related to aggregation; while at regional scale the height of the plants
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was positively related to aggregation patterns. However, the relation-
ship of SLA and height could be an artefact since the phylogenetic
independent contrast (PIC) analyses showed important divergences
(big changes of values of traits in the phylogenetic tree at a particular
node) in several life-history traits (Figure 45). Also, multivariate ana-
lyses showed that the combination of plant traits can have an additive
effect in the relationship with aggregation patterns. The results of
Chapter 4 confirmed this variation in the relationship between aggreg-
ation pattern and plant life-history traits, as well as the variation in the
results when changing the scale of analysis. In this particular chapter
I focused on one subgroup of plants of the Plantaginaceae family
distributed nationally in New Zealand. Aggregation patterns were
measured as the mass fractal dimension (Dm). This method works
well with more-or-less continuous point patterns, while the method
for measuring aggregation from Chapter 3 works conceptually from
multi-scale measures of occupancy. Cross-species and PIC analyses
showed similar results. Plant life-history traits like the inflorescence
length, leaf area and breeding system were related to distribution
patterns at a regional-scale (2.5 - 20 km). Multivariate analysis also
confirmed these results, showing that leaf area, breeding system and
seed size had an additive effect on the relationship between plant traits
and aggregation. The main conclusion of this research is that traits
that are directly or indirectly related to dispersal, competition and
reproduction are likely to be influencing species distribution patterns
but the relationships can be dependent on the scale of analysis (Figure
45).

5.2 implications

Understanding species’ distribution patterns and the processes that are
generating these patterns is of high importance for planning biological
conservation priorities (Myers et al. 2000), also for assessing the effect
of expanding naturalised plants on the distribution on native plants
(e.g., Bradshaw et al. 2008), and for monitoring and predicting species’
distribution where data is not available or hard to acquire (Hurlbert
and Haskell, 2003, He et al. 2003, Lennon et al. 2000, Hwang and He,
in press). Therefore, spatial patterns at a variety of scales should be
considered in most plant ecological studies and not simply be ignored
or treated as a statistical nuisance. Here, I mention areas in which
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knowledge on distribution patterns and plant life-history traits could
improve assessment.

5.2.1 Conservation

The IUCN uses several measures in order to develop red books of
threatened species (World Conservation Union, 2001). One of these
measures is the rate of decline. The rate of decline can be obtained
from the species occupancy-area relationships at two different times.
The scale (e.g., area or resolution) at which the line shows the greatest
vertical separation (on log-log axes) will be the scale at which the
decline in percentage occupancy is the greatest (see example in Hartley
and Kunin, 2003). In this thesis, I have used occupancy-area curves
to quantify aggregation. These aggregation patterns in combination
with the possible causes that are generating them (e.g., environmental
factors, disturbance, and sets of life-history traits) could improve and
detect more rapidly species that are declining. Decline is important to
monitor since it could be a sign of a future dangerous state of small
population sizes (Caughley, 1994) .

5.2.2 Management and early identification of invasive species

Exotic plants that naturalise and become invasive can generate dra-
matic ecological changes that include reductions in native species
richness and altered ecosystem function (Hejda et al. 2009, Robson et
al. 2009, D’Antonio and Vitousek, 1992). In this thesis, I have invest-
igated if plant life-history traits correlate with distribution patterns
at multiple scales. The same approach could be used to test if species’
life-history traits correlate to the probability of becoming invasive (e.g.,
Phillips et al. 2010, Bradshaw et al. 2008). A multi-scale measurement
would provide important information on the spatial characteristics of
the species’ invasiveness as well (Veldtman et al. 2010).

5.2.3 Survey and Monitoring

An important application of the occupancy-area curves is to estimate
abundance from occupancy (He and Condit, 2007, He and Gaston,
2000a). The results from Chapter 2 suggested that the accuracy in
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predicting occupancy at fine scales was improved when more resolu-
tions were used. Surveys that need abundance data could be obtained
from coarse occupancy-area estimations. These estimations can be
conducted at a scale so fine that each occupied cell would contain only
a single individual, thus allowing the estimation of abundance from
occupancy.

5.2.4 Ecology framework

One of the main goals in ecology is to explain the distribution and
abundance of species, however this have been proved to be challenging
(Kunin et al. 2000). One of the key problems is that there are many
types of abundance or rarity as scale changes (Rabinowitz, 1981). This
was discussed in Chapter 3. Insights on explaining the distribution
and abundance of species could improve if a multi-scale approach
is taken. Processes that could explain distribution patterns should
be measured at different scales so that we can disentangle which
processes are influencing at specific scales. A multi-scale approach
was considered throughout this thesis. Although I identified some
processes that were related to distributions patterns, further work is
clearly needed to test more of these hypotheses.

5.3 future directions

The understanding of how plant species are distributed on earth and
how plant life-history traits influence plant distribution has increased
markedly in recent years (Pocock et al. 2006, Van der Veken et al. 2007,
Murray et al. 2002, Ackerly et al. 2002, Tremlova and Munzbergova,
2007). In this regard, I discuss some areas that still need more accuracy
when measured or others that need to be considered. In the following
section I make a set of suggestions that could be considered in order
to fill in the gaps left that my research did not cover:

1. Predictability: The five most common occupancy-area models
have been tested in a limited number of studies (e.g., He and
Condit, 2007). There is still some degree of under and over-
estimation of occupancy in the models. When scaling across
resolutions (e.g., area, scale) of hundred or thousands of square
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kilometres the overestimation or underestimation could be ser-
iously affected. A major challenge is to develop models that
would prove to be more accurate. One possible solution is to
combine coarse-scale (hundreds of km2) and fine-scale (hun-
dreds of m2) occupancy data (Gaston and He, 2010), although
this is not always possible (but see Hartley et al. 2004, Veldtman
et al. 2010).

2. Temporal scale: the contents of this thesis and of most occupancy-
area studies have focused mainly on a short period of time, prob-
ably because of budget constraints or because the length of a
PhD research is not long enough to detect temporal dynamics.
This study did not consider the temporal dynamics of occu-
pancy. Natural dynamics and changes in the sup-alpine plant
community can take around 20 years to be noticed (Husheer
comm. pers.). Nevertheless, permanent quadrats have been set
up in the study area for future assessment. Also, each corner
of the quadrats has been georeferenciated with a precision of
±5 cm. Future research might consider the temporal scale so
that changes in distribution patterns as a consequence of other
mechanisms such as colonisation/extinction dynamics can be
identified (e.g., Wilson et al. 2004). These mechanisms could play
a key role in determining occupancy (Gaston and He, 2010). Also
changes over a period of time in occupancy due to anthropo-
genic pressures (e.g., climate change, livestock grazing), over the
long term could be assessed.

3. Life-history traits: Although in this thesis I used eight plant
life-history traits to test the prediction of aggregation, it would
be desirable to test other traits related to vegetative expansion
and multiplication, seed bank longevity and seed production.
The building of open databases of plant life-history traits per
region or country is very much needed in order to synthesise
and gather the scattered information over many sources that are
not easy to access. Furthermore, the use of these traits over a
large number of species would increase the robustness in the
analyses that investigate the influence of those traits in species
distribution. An example of this type of data bases that are
open-access and accessible on line are the LEDA plant Traitbase
(Kleyer et al. 2008) based on the Northwest European flora and

http://www.leda-traitbase.org/LEDAportal/
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the TRY global-scale database of vascular plant traits (Kattge et
al. in press.)

4. Mechanisms: some life-history traits related to ecological mech-
anisms such as dispersal, competition and reproduction were
related to distribution patterns at specific scales. Nevertheless
other mechanisms might influence the present-day species’ dis-
tribution. Future research is needed to determine which other
mechanisms are related to distribution patterns (e.g., disturbance
regimes, micro-environmental factors, and physiological traits).

This thesis also suggested further questions, particularly the role of
invertebrates as pollinators and the role of native skinks and other an-
imals as seed dispersers. These organisms might influence the present-
day distribution pattern of sub-alpine plant assemblage.

5.4 concluding remarks

Here, I have demonstrated how processes related to dispersal, com-
petition and reproduction may influence the present-day distribution
of plant species. My main conclusions are:

– Patterns and processes are influenced by the spatial scale at
which they are measured and different processes are important
at different scales. A multi-scale approach of species’ distribution
should be promoted so that more accurate assessments can be
generated.

– Occupancy-area models captured an important aspect of spatial
patterns (e.g., aggregation).

– The aggregation pattern k from the negative binomial, calculated
from nonlinear regression using occupancy data, could replace
the k from the standard single-scale negative binomial when
count data is not available.

– Distribution patterns had predictable scaling properties. How-
ever, the range of scales at which the predictions can be made
are limited, most likely due to non-overlapping processes at finer
and coarser scales (Hartley et al. 2004, Wiens, 1989).

http://www.try-db.org/
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– Some types of rarity are more common than others. Species
with low densities and restricted range (occupancy) were more
common (R type of rarity).

– In general, plant life-history traits had relatively low predictive
ability in explaining distribution patterns.

– Leaf area was negatively related to distribution patterns, except
at a very fine scale (2 - 60 m) where this relationship changed to
positive. Leaf area was correlated in four out of the seven cases
examined.

– Life-history traits showed low predictive ability in explaining
aggregation throughout this thesis, nevertheless there was a gen-
eral pattern about which processes and traits were important
at different scales. At local scales traits related to dispersal and
competition such as SLA, leaf area, dispersule mass and the pres-
ence of structures in seeds for dispersal, were important; while
at regional scales traits related to reproduction such as breeding
system, inflorescence length and traits related to dispersal (seed
mass) were significant. At national scales only plant height was
important in predicting aggregation.
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Part IV

A P P E N D I C E S



A
F I V E O C C U PA N C Y- A R E A M O D E L S R SCRIPT

The function calc.SOR fits five different occupancy-area models (neg-
ative binomial 1 and 2, power-law, Nachman and logistic) using nls.

inputs

– Vector 1. = SU.area = "sample unit area" or a: the area of a single
sample unit.

– Vector 2. = Occ = "occupancy" or "Aa" : the number of sample
units or their combined area, at a particular size of sample unit).

– Scalar 1. = TotalArea : total area of all the sample units under
consideration (e.g., for tussock data, the area of subquadrats in
a transect).

– occ.measure = "number" or "area". Are the above two inputs
measuring the total number of (occupied) quadrats or their
combined area (default)?

– graph = TRUE or FALSE. If TRUE, plots a graph of the data points
and the fitted line to the current plotting device.

notes

– if using "proportional occupancy" set occ.measure = "area", and
Total.Area = 1

– Nachman and Logistic can only fit occupancies in the range 0-1,
hence Area.Occ/A

calc.SOR = function(SU.area, occ, graph = "TRUE", NBD.start = c

(1.05,0.05), ...) {

if(length(SU.area) != length(occ)) print("Warning,

input vectors of unequal length")

if(length(SU.area) < 2) print("Warning,

input vectors must contain data from 2 or more scales

")

input.df <- data.frame(SU.area, occ)

colnames(input.df) <- c("SU.area", "occ")

A <- rep(1, length(SU.area))

149



five occupancy-area models r script 150

if(graph == TRUE) plot(input.df, xlab = (expression(paste

("Size of quadrat", (m^2)))), ylab = "Proportion

occupied", cex = 1.3,pch=16, font.main=3,cex.main=1)

if(graph == TRUE) newdat <- seq(min(input.df[,1]), max(

input.df[,1], length = 100))

# NBD1 nls

model.fit <- a2 <- b2 <- sigma2 <- NLL2 <- NA

df2 <- c(NA, NA)

try(model.fit <- nls(occ/A ~ (1-(1+((SU.area)/(k)))^(-k))

,data=input.df, start=list(k=0.1), algorithm = "port

", lower = c(0), trace = FALSE), silent = TRUE)

try((a2 <- coef(model.fit)[1]), silent = TRUE)

try((sigma2 <- summary(model.fit)$sigma),silent = TRUE)

try((NLL2 <- logLik(model.fit)),silent = TRUE)

try((df2 <- summary(model.fit)$df[1:2]),silent = TRUE)

try((AIC <- AIC(model.fit)),silent = TRUE)

output.uNB <- c(a2, b2, sigma2, NLL2, df2[1], df2[2],

AIC)

if(graph == TRUE) try(lines(newdat, predict(model.fit,

list(SU.area = newdat)), col="#7fc97f",lwd=2), silent

= TRUE)

# NBD2 nls

model.fit <- a2 <- b2 <- sigma2 <- NLL2<- NA

df2 <- c(NA, NA)

try(model.fit <- nls(occ ~ A*(1-(1+((N*SU.area)/(A*k)))

^(-k)),data=input.df, start=list(N=NBD.start[1], k=

NBD.start[2]), algorithm = "port", lower = c(0,0),

trace = FALSE), silent = TRUE)

try((a2 <- coef(model.fit)[1]),silent = TRUE)

try((b2 <- coef(model.fit)[2]),silent = TRUE)

try((sigma2 <- summary(model.fit)$sigma),silent = TRUE)

try((NLL2 <- logLik(model.fit)),silent = TRUE)

try((df2 <- summary(model.fit)$df[1:2]),silent = TRUE)

try((AIC <- AIC(model.fit)),silent = TRUE)

output.cNB <- c(a2, b2, sigma2, NLL2, df2[1], df2[2],

AIC)

if(graph == TRUE) try(lines(newdat, predict(model.fit,

list(SU.area = newdat)), col="#beaed4",lwd=2), silent

= TRUE)

# power law nls

model.fit <- a2 <- b2 <- sigma2 <- NLL2<- NA

df2 <- c(NA, NA)

try(model.fit <- nls(occ ~ a*(SU.area^b),data=input.df,

start=list(a=1.01, b=1.01), algorithm = "port", lower

= c(-10000,0), trace = FALSE), silent = TRUE)

try((a2 <- coef(model.fit)[1]),silent = TRUE)
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try((b2 <- coef(model.fit)[2]),silent = TRUE)

try((sigma2 <- summary(model.fit)$sigma),silent = TRUE)

try((NLL2 <- logLik(model.fit)),silent = TRUE)

try((df2 <- summary(model.fit)$df[1:2]),silent = TRUE)

try((AIC <- AIC(model.fit)),silent = TRUE)

output.power.nls <- c(a2, b2, sigma2, NLL2, df2[1], df

2[2], AIC)

if(graph == TRUE) try(lines(newdat, predict(model.fit,

list(SU.area = newdat)), col="#fdc086",lwd=2), silent

= TRUE)

# Nachman nls

model.fit <- a2 <- b2 <- sigma2 <- NLL2<- NA

df2 <- c(NA, NA)

try(model.fit <- nls(occ ~ 1 - exp(-c*(SU.area^z)),data=

input.df, start=list(c=0.1, z=0.5), algorithm = "

port", lower = c(0,0), trace = FALSE), silent = TRUE)

try((a2 <- coef(model.fit)[1]),silent = TRUE)

try((b2 <- coef(model.fit)[2]),silent = TRUE)

try((sigma2 <- summary(model.fit)$sigma),silent = TRUE)

try((NLL2 <- logLik(model.fit)),silent = TRUE)

try((df2 <- summary(model.fit)$df[1:2]),silent = TRUE)

try((AIC <- AIC(model.fit)),silent = TRUE)

output.nachman <- c(a2, b2, sigma2, NLL2, df2[1], df2[2],

AIC)

if(graph == TRUE) try(lines(newdat, predict(model.fit,

list(SU.area = newdat)), col="#bd0026",lwd=2.5),

silent = TRUE)

# Logistic nls

model.fit <- a2 <- b2 <- sigma2 <- NLL2<- NA

df2 <- c(NA, NA)

try(model.fit <- nls(occ/A ~ (c*(SU.area^z))/(1+(c*(SU.

area^z))),data=input.df, start=list(c=0.1, z=0.5),

algorithm = "port", lower = c(0,0), trace = FALSE),

silent = TRUE)

try((a2 <- coef(model.fit)[1]),silent = TRUE)

try((b2 <- coef(model.fit)[2]),silent = TRUE)

try((sigma2 <- summary(model.fit)$sigma),silent = TRUE)

try((NLL2 <- logLik(model.fit)),silent = TRUE)

try((df2 <- summary(model.fit)$df[1:2]),silent = TRUE)

try((AIC <- AIC(model.fit)),silent = TRUE)

output.logistic <- c(a2, b2, sigma2, NLL2, df2[1], df

2[2],AIC)

if(graph == TRUE) try(lines(newdat, predict(model.fit,

list(SU.area = newdat)), col="#386cb0",lwd=2), silent

= TRUE)

output.m <- rbind(output.uNB, output.cNB, output.power.

nls, output.nachman, output.logistic)

output.v <- data.frame(a2, b2, sigma2, NLL2, df2[1], df

2[2],AIC)
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colnames(output.m) <- c("a", "b", "sigma", "NLL", "p", "n

-p","AIC")

rownames(output.m) <- c("NBD1", "NBD2", "power.nls", "

nachman", "logistic")

return(output.m)

}



B
P L A N T S P E C I E S S U RV E Y E D

b.1 species codes, scientific names and families

Table 20: Species list surveyed in the project. Species are sorted as follows:
mosses, gymnosperms, dicotyledonous and monocotyledinous

species code species name family

RAClan Racomitrium lanuginosum Grimmiaceae

LIBbid Libocedrus bidwillii Cupressaceae

PINcon Pinus contorta Pinaceae

PSEmen Pseudotsuga menziesii Pinaceae

PHYalp Phyllocladus alpinus Podocarpaceae

PODniv Podocarpus nivalis Podocarpaceae

ACIaur Aciphylla aurea Apiaceae

ACIgla Aciphylla glaucescens Apiaceae

ACImon Aciphylla monroi Apiaceae

BRAcass Brachyglottis cassinioides Asteraceae

CELdis Celmisia discolor Asteraceae

CELdur Celmisia du-rietzii Asteraceae

CELinc Celmisia incana Asteraceae

CELmon Celmisia monroi Asteraceae

CELsem Celmisia semicordata Asteraceae

CELspe Celmisia spectabilis Asteraceae

HELpar Helichrysum parvifolium Asteraceae

HIEpil Hieracium pilosella Asteraceae

OLEnum Olearia nummulariifolia Asteraceae

OZOvau Ozothamnus vauvilliersii Asteraceae

RAOgran Raoulia grandiflora Asteraceae

STEgrm Stellaria graminea Caryophyllaceae

CARcor Carex coriacea Cyperaceae

SCHpau Schoenus pauciflorus Cyperaceae

ACRcol Acrothamnus colensoi Ericaceae

DRApro Dracophyllum pronum Ericaceae

DRAros Dracophyllum rosmarinifolium Ericaceae

continued on next page...
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species code species name family

DRAsp Dracophyllum sp. Ericaceae

GAUcra Gaultheria crassa Ericaceae

GAUdep Gaultheria depressa Ericaceae

LEUfra Leucopogon fraseri Ericaceae

GENcor Gentianella corymbifera Gentianaceae

CARarb Carmichaelia arborea Leguminosae

LEPsco Leptospermum scoparium Myrtaceae

VERbra Veronica brachysiphon Plantaginaceae

VERcan Veronica canterburiensis Plantaginaceae

VERcry Veronica cryptomorpha Plantaginaceae

VERdec Veronica decumbens Plantaginaceae

VERlyc Veronica lycopodioides Plantaginaceae

VERodo Veronica odora Plantaginaceae

VERpim Veronica pimeleoides Plantaginaceae

VERping Veronica pinguifolia Plantaginaceae

VERrak Veronica rakaiensis Plantaginaceae

DIStou Discaria toumatou Rhamnaceae

ACAine Acaena inermis Rosaceae

ROSrub Rosa rubiginosa Rosaceae

PIMser Pimelea sericeovillosa Thymelaeaceae

MELalp Melicytus alpinus Violaceae

ASTner Astelia nervosa Asteliaceae

JUNeff Juncus effusus Juncaceae

ANTodo Anthoxanthum odoratum Poaceae

CHIaus Chionochloa australis Poaceae

CHIpal Chionochloa pallens Poaceae

CHIrub Chionochloa rubra Poaceae

CHIsp Chionochloa sp. Poaceae

DACglo Dactylis glomerata Poaceae

RYTset Rytidosperma setifolium Poaceae

End
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b.2 field guides of plant species surveyed in molesworth

station

(a) Racomitrium lanuginosum, Grimmi-
aceae

(b) Pinus contorta, Pinaceae*

(c) Pseudotsuga menziesii, Pinaceae*.
Photographer: Colin Ogle

(d) Libocedrus bidwillii, Cupressaceae.
Photographer: John Barkla

(e) Phyllocladus alpinus, Podocarpaceae (f) Podacarpus nivalis, Podocarpaceae

Figure 46: Plant species surveyed, mosses and gymnosperms. *Introduced
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(a) Astelia nervosa, Asteliaceae (b) Juncus effusus, Juncaceae*

(c) Anthoxanthum odoratum, Poaceae* (d) Chionochloa australis, Poaceae

(e) Chionochloa pallens, Poaceae (f) Chionochloa rubra, Poaceae

(g) Rytidosperma setifolium, Poaceae

Figure 47: Plant species surveyed, monocotyledinous. *Introduced
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(a) Aciphylla aurea, Api-
aceae

(b) Aciphylla glaucescens,
Apiaceae

(c) Aciphylla monroi, Api-
aceae

(d) Acrothamnus colensoi,
Ericaceae

(e) Brachyglottis cassin-
ioides, Asteraceae

(f) Celmisia du-rietzii, As-
teraceae

(g) Celmisia incana, Aster-
aceae

(h) Celmisia monroi, Aster-
aceae

(i) Celmisia semicordata, As-
teraceae

(j) Celmisia spectabilis, As-
teraceae

(k) Helichrysum parvifo-
lium, Asteraceae

(l) Hieracium pilosella, As-
teraceae*

(m) Olearia nummulariifo-
lia, Asteraceae

(n) Ozothamnus vauvillier-
sii, Asteraceae

(o) Raoulia grandiflora, As-
teraceae

(p) Stellaria graminea, Ca-
ryophyllaceae*

(q) Carex coriacea, Cyper-
aceae

(r) Schoenus pauciflorus,
Cyperaceae

(s) Dracophyllum pronum,
Ericaceae

(t) Dracophyllum sp.,
Ericaceae

(u) Dracophyllum rosmar-
inifolium, Ericaceae

Figure 48: Plant species surveyed, dicotyledonous I. *Introduced
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(a) Gaultheria crassa,
Ericaceae

(b) Gaultheria depressa,
Ericaceae

(c) Leucopogon fraseri,
Ericaceae

(d) Gentianella corymbifera,
Gentianaceae

(e) Carmichaelia arborea,
Leguminosae

(f) Leptospermum
scoparium, Myrta-
ceae

(g) Veronica canterburiensis,
Plantaginaceae

(h) Veronica cryptomorpha,
Plantaginaceae

(i) Veronica decumbens,
Plantaginaceae

(j) Veronica lycopodioides,
Plantaginaceae

(k) Veronica pimeleoides,
Plantaginaceae

(l) Veronica pinguifolia,
Plantaginaceae

(m) Veronica rakaiensis,
Plantaginaceae

(n) Discaria toumatou,
Rhamnaceae

(o) Acaena inermis, Ros-
aceae

(p) Rosa rubiginosa, Ros-
aceae*

(q) Pimelea sericeovillosa,
Thymelaeaceae

(r) Melicytus alpinus, Vi-
olaceae

Figure 49: Plant species surveyed, dicotyledonous II. *Introduced
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b.2.1 Fruits

(a) Aciphylla aurea, Apiaceae (b) Acrothamnus colensoi, Ericaceae

(c) Gaultheria depressa, Ericaceae (d) Leucopogon fraseri, Ericaceae

(e) Veronica pimeleoides, Plantaginaceae (f) Rosa rubiginosa, Rosaceae*

(g) Discaria toumatou, Rhamnaceae (h) Pimelea sericeovillosa, Thymelaeaceae

Figure 50: Fruits
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b.2.2 Seeds

(a) Phyllocladus
alpinus, Podo-
carpaceae

(b) Podacarpus nivalis,
Podocarpaceae

(c) Aciphylla aurea,
Apiaceae

(d) Brachyglottis
cassinioides,
Asteraceae

(e) Celmisia discolor,
Asteraceae

(f) Celmisia spectabilis,
Asteraceae

(g) Olearia num-
mulariifolia,
Asteraceae

(h) Ozothamnus
vauvilliersii,
Asteraceae

(i) Acrothamnus
colensoi, Ericaceae

(j) Gaultheria depressa,
Ericaceae

(k) Leucopogon fraseri,
Ericaceae

(l) Gentianella
corymbifera,
Gentianaceae

(m) Rosa rubiginosa,
Rosaceae

(n) Acaena inermis,
Rosaceae

(o) Veronica decum-
bens, Plantagin-
aceae

(p) Veronica rakaien-
sis, Plantagin-
aceae

(q) Melicytus alpinus,
Violoaceae

Figure 51: Seeds



C
I N S T R U C T I O N S F O R C A L C U L AT I N G
P H Y L O G E N E T I C I N D E P E N D E N T C O N T R A S T I N R

After formatting the set of species you are working on in newick
system, open the R software and install the adephylo, ape, phylobase
and picante packages. Require the packages in R

library(adephylo)

library(ape)

library(phylobase)

library(picante)

Once in R, copy and paste the tree in an object. Be careful to split
the phylogenetic tree in several parts or it won’t work. Also you need
to write “” in the beginning and at the end of each part of the tree

w <- NULL

w[1]<-"((((Aciphylla_aurea:114.0,(Brachyglottis_cassinioides

:76.0,(Helichrysum_selago:38.0,Ozothamnus_vauvilliersii:38.0)

:38.0,Olearia_nummulariifolia:76.0)asteraceae:38.0):9.0,(

Gentianella_corymbifera:108.0,(Veronica_brachysiphon:3.9,

Veronica_canterburiensis:3.9,Veronica_cryptomorpha:3.9,

Veronica_lycopodioides:3.9,Veronica_odora:3.9,Veronica_

rakaiensi:3.9,(Veronica_decumbens:1.95,Veronica_pimeleoides

:1.95,Veronica_pinguifolia:1.95):1.95)veronica:104.099998)

:15.0):2.0,"

w[2]<-"((Discaria_toumatou:53.5,Rosa_rubiginosa:53.5)rosales

:53.5,Leptospermum_scoparium:107.0):18.0):11.399994,(

Chionochloa_pallens:28.0,Chionochloa_rubra:28.0, Chionochloa_

sp:28.0)chionochloa:108.399994)euphyllophyte:11.4;"

This code makes a tree with class "phylo"

par(mfrow = c(1,1))

w.tree<-read.tree(text= w)

plot(w.tree, cex=1.0)

This code converts the tree into a "phylo4" class, this makes it easier
to manipulate the tree

tree.phylo4 <- as(w.tree, "phylo4")

tree.phylo4 <- as(w.tree, "phylo4")

tipLabels(tree.phylo4)
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In Excel, enter trait data and save it in .csv format. Each trait must
be in single column, and the values of the traits must be in the same
order that in the phylogenetic tree.

Species Trait 1 Trait 2

Aciphylla_aurea 0.7 0.5

Brachyglottis_cassinioides 0.3 2.3

Helichrysum_selago 0.1 1.5

... ... ...

The following code reads the traits data base

traits<-read.csv("w_tree_data.csv", sep=",", header=T)

This code adds the trait data base to the tree

tree.traits<-phylo4d(tree.phylo4,traits, missing.data="warn")

summary(tree.traits)

This code reads the Trait1 and Trait2 values. Trait1 is in column 2

and Trait2 is in column 3 from the .csv file.

Trait1<-(traits[, 2])

Trait2<-(traits[, 3])

This function collapse and resolve multichotomes in phylogenetic
trees, ape package need it for the analysis

w.tree2<-multi2di(w.tree)

Phylogenetic independent contrast analyses for Trait1 and Trait2.
The regression should pass through the origin as recommended by
Legendre & Desdevises (2009). This the reason on the “-1” in the lm

line code

Trait1.PIC <- pic(Trait1, w.tree2)

Trait2.PIC <- pic(Trait2, w.tree2)

lm1<-lm(Trait2.PIC ~ Trait1.PIC - 1)

plot(Trait2.PIC ~ Trait1.PIC)

Complete summary of the PIC analysis. The second line returns the
correlation coefficient between Tait1 and Trait2

summary(lm1)

summary(lm1)[[8]]



D
C O N T R I B U T I O N I N D E X

The contribution index (Moles et al. 2005) calculates the contribution
of each divergence in a phylogeny to the overall variance in trait values
across species.
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E
C A L C U L AT I O N S O F M A S S F R A C TA L D I M E N S I O N
(DM) IN R

e.1 importing *.shp files into r

ArcGis® 9.3 software was used to transform World Geodetic Sys-
tem (WGS84) coordinates to New Zealand map grid (NZMG) and then
converted to a shape file (Figure 30). The shape files (*.shp) were
imported to R (R Development Core Team 2011) where the maptools,
spatstat (Baddeley & Turner 2005) and the sp (Bivand et al. 2008)
packages were utilised to calculate Ripley’s K statistic (Haase 1995).
First the spatstat, maptools and sp libraries are required. Then, bring
the window or area in where your point patters are, in this case New
Zealand polygon was used as a window. Next assign this window to
the point pattern, in this example the point patter of Veronica stricta
was used and was imported from ArcGIS® 9.3 as a shape file (*.shp)

library(spatstat)

library(maptools)

require(sp)

#Brings the polygon to R

SW<-readShapePoly("nzcoast_window_Area.shp")

SW2<-as(SW, "SpatialPolygons")

W<-as(SW2, "owin")

#Assing a window (area) and units

S<-readShapePoints("Veronica_stricta.shp")

SP<-as(S, "SpatialPoints")

P<-as(SP,"ppp")

Veronica_stricta<-unique(P)

Veronica_stricta<-Veronica_stricta[W]

unitname(Veronica_stricta) <- c("metre", "metres")

plot(Veronica_stricta, main="Veronica stricta")

e.2 omega function

Departure from the Ripley’s K statistic, aggregation indices of omega
(Ω) and the mass fractal dimension (Dm ) were computed. The aggreg-
ation index Ωx1−x2 captures the relative neighbourhood density in
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ring-shaped neighbourhoods around the point pattern. To compute
Ωx1−x2 , for each point it is counted how many other points have a dis-
tance between x1 and x2 to that point. The obtained number is then set
into relation with the number of points that could be expected in that
distance to the point under the assumption that all points were distrib-
uted randomly across the study area. Ωx1−x2 values below 1 indicate
that the points are less aggregated than random, values above 1 indic-
ate that the points are more aggregated. The smallest possible Ωx1−x2

value is 0 which is obtained if no point is in the ring-neighbourhood of
any other point. The maximum Ωx1−x2 value, for given x1 and x2 para-
meters, is reached if every point is in the neighbourhood of every other
point (Condit et al. 2000). The Ωx1−x2 aggregation index is similar to
Ripley’s K statistic, with the difference that the K statistic use circles
instead of rings as neighbourhoods, it has only one parameter which
is analogous to the outer radius x2 of the Ωx1−x2 index while the inner
radius is set to 0. Also, Ripley’s K is not normalised with respect to
the size of the neighbourhood. Therefore, Ωx1−x2 allows investigations
of the aggregation on larger distances without confounding effects
of the intermediate neighbourhood. In the Chapter 4, an aggregation
index closely related to Ω was used, the mass fractal dimension (Dm ).
The mass fractal dimension can be applied over a specified range of
scales and could describe major aspects of the range structure over
several scales. A detailed explanation of the mass fractal dimension is
given in the next subsection.

The next two functions were calculated by Stephen Hartley.
The object dist.breaks is the distance classes from 2.5 to 100 km.

Red lines are derived from Ripley’s K with the trans edge correc-
tion and the blue lines are the expectation for a completely random
spatial point process. outer.dist is the outer radius of the annulus
(inner.dist is the value one row above, or for row 1 = the very first
value of dist.breaks) .

The output is four plots and a data frame: plot 1 (cum.densT) is
the cumulative number of points expected around a randomly chosen
point in the pattern between within a radius of outer.dist (assuming
a trans edge correction); plot 2 is the log-log of plot 1. CSR has a slope
of 2, and slope of the cum.dens line is the correlation or mass fractal
dimension; plot 3 (omega) equals omega as described by Condit: the
typical number of points within the annulus centred around a random
point. Outer radius of annulus = outer.dist; Plot 4 (pcf_annu) is
the pair correlation function: how much more dense the number of
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point is within an annulus, relative to a random pattern (i.e. omega
divided by the expectation for CSR , so that a value of 1 =CSR , > 1
implies clustering, < 1 implies evenness).

dist.breaks <- c(0,2500,5000,7500, 10000, 15000, 20000, 25000,

30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000)

calc.omega = function(input.list, dist.breaks, ...){

K <- Kest(input.list, r = dist.breaks)

Cum.densT <- K$trans * summary(input.list)$intensity

Cum.densP <- K$theo * summary(input.list)$intensity

plot(K$r, Cum.densT)

lines(K$r, Cum.densT, col = "red"); lines(K$r, Cum.densP,

col = "blue")

plot(K$r, Cum.densT, log = "xy", , xlab = "search radius

", ylab = "cumulative count", las = 1)

lines(K$r, Cum.densT, col = "red"); lines(K$r, Cum.densP,

col = "blue")

no.dists <- length(Cum.densT)

outer.dist <- K$r[2:no.dists]

cum.dens <- Cum.densT[2:no.dists]

cum.densP <- Cum.densP[2:no.dists]

Omega <- rep(NA, no.dists -1)

Omega <- Cum.densT[2:no.dists]-Cum.densT[1:(no.dists-1)]

OmegaP <- Cum.densP[2:no.dists]-Cum.densP[1:(no.dists-1)]

pcf_annu <- Omega/OmegaP

plot(outer.dist, Omega, las = 1)

lines(outer.dist, Omega, col = "red"); lines(outer.dist,

OmegaP, col = "blue")

plot(outer.dist, pcf_annu, las = 1)

lines(outer.dist, pcf_annu, col = "red"); lines(outer.

dist, rep(1, no.dists-1), col = "blue")

output.df <- data.frame(outer.dist, cum.dens, cum.densP,

Omega, OmegaP, pcf_annu)

return(output.df)

}

e.3 mass fractal dimension

Fit linear models to determine the slopes (mass fractal dimension) of
different segments of plot 2 of previously code . Regional-scale are the
first six distance classes (2.5-20 km) and national-scale = mass fractal
dimension from 20-100 km.

mass.frac = function(output.df, min = 0, max = 100000){

output.lm <- lm(log(cum.dens) ~ log(outer.dist), data =

output.df[output.df$outer.dist >= min & output.df$

outer.dist <= max,])

mf.output.df <- data.frame(output.lm$coeff[2], summary(

output.lm)$r.squared)

colnames(mf.output.df) <- c("mass.FD", "R.sqd")
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rownames(mf.output.df) <- paste(min, ":", max, sep = "")

return(mf.output.df)

}

par(mfrow = c(2,2), mar = c(4.1,4.1,1,1), mgp = c(2.5, 0.9, 0),

family="serif",pch=16, cex=1.2)

e.4 example

The next example invokes the omega and the mass fractal dimension
function previous explained for Veronica stricta. The object massVeronica_stricta.
100000$coeff[2] is the mass fractal dimension from 0-100000 metres

###---------- Veronica stricta -----------##

dist.breaks <- c(0, 2500,5000,7500, 10000, 15000, 20000, 25000,

30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000)

calc.omega(Veronica_stricta, dist.breaks)

output.df <- calc.omega(input.list = Veronica_stricta, dist.

breaks)

massVeronica_stricta<- lm(log(cum.dens) ~ log(outer.dist), data =

output.df)

massVeronica_stricta.100000 <- lm(log(cum.dens) ~ log(outer.dist)

, data = output.df[output.df$outer.dist < 100000.01,])

random.lm <- lm(log(cum.densP) ~ log(outer.dist), data = output.

df)

massVeronica_stricta$coeff[2]

massVeronica_stricta.100000$coeff[2]

mass.frac(output.df)

mass.frac(output.df, min = 0, max = 100000)

mass.frac(output.df, max = 20000)

random.lm$coeff[2]
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