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Abstract 
Dendritic cells (DCs) are potent antigen presenting cells that are crucial for the 

initiation of an immune response.  Due to this property, DCs have been used as the 

basis of cancer vaccines in immunotherapy.  In clinical trials, DCs used for 

vaccination are commonly generated by culturing monocytes from each patients’ 

blood with the growth factors GM-CSF and IL-4 (GMCSF/IL-4 DCs).  The DCs 

generated are reportedly similar to those that arise in vivo during inflammation and 

trials using these DCs have been met with some success.  A recently developed 

method of generating mouse or human DCs in vitro, involves the culture of bone 

marrow (BM) precursors with the cytokine Flt3-Ligand (Flt3L-DCs).  Flt3L-DCs 

differ substantially in phenotype from GMCSF/IL-4 DCs and more closely resemble 

steady-state DCs in vivo.  This thesis investigated the suitability of Flt3L-DCs for 

cancer immunotherapy.  

 
Murine BM cells cultured in Flt3L generated three DC subsets.  These consisted of 

plasmacytoid DCs (pDCs) that were CD11c+B220+, and conventional DCs (cDCs) 

that were CD11c+B220- and could be further subdivided into CD11bhigh and CD24high 

populations.  We observed that cDCs responded to stimulation with a variety of Toll-

like receptor (TLR) agonists, as evaluated by the up-regulation of activation markers.  

However pDCs responded to the agonist CpG at a higher extent compared to all 

other agonists used.  In addition, combining TLR agonists could further enhance the 

activation of Flt3L-DCs.  Among all combinations tested, Pam3Cys/Poly I:C was the 

most optimal at inducing the secretion of inflammatory cytokines IL-12p70 and 

TNF-α.  Furthermore, Pam3Cys/Poly I:C stimulated Flt3L-cDCs exhibited a greater 

ability at inducing CD4+ T cell proliferation and cross-presentation of soluble 

antigen to CD8+ T cells, compared to Flt3L-cDCs activated with the respective 

individual agonists. 

 
Studies have shown that GM-CSF DCs are highly reliant on glycolytic metabolism 

during activation in order to up-regulate activation markers. Therefore, we also 

characterised Flt3L-cDCs for their ability to up-regulate activation markers 

following stimulation with the agonist LPS and treatment with the glycolysis 
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inhibitor 2-Deoxy-D-glucose (2-DG).  In line with previous reports, DCs generated 

in culture with GMCSF/IL-4 were unable to up-regulate activation markers at all the 

2-DG concentrations used.  In contrast, Flt3L-cDCs appeared to have a threshold 

level where only high concentrations of 2-DG inhibited their ability to up-regulate 

activation markers.  This result indicates that steady-state and inflammatory DCs 

preferentially use different metabolic pathways upon activation. 

 
 
The ability of optimally activated Flt3L-cDCs and GMCSF/IL-4 DCs to confer 

tumour protection was also examined. While unstimulated Flt3L-cDCs or 

GMCSF/IL-4 DCs could protect mice from tumour growth, vaccination with 

activated DCs from either population was required for complete tumour protection.  

Furthermore, we found that even in optimal conditions of activation, 1x105 Flt3L-

cDCs were required for maximal tumour protection, whereas 1x104 GMCSF/IL-4 

DCs provided sufficient protection.  These findings indicate that Flt3L-cDCs can be 

used as the basis of a therapeutic cancer vaccine, but are not superior to GMCSF/IL-

4 DCs.  Further studies are required to establish conditions that can enhance the 

efficacy of Flt3L-cDCs. 
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Chapter 1:  General Introduction 2 

1.1 Tumour immunology 
 

1.1.1   Cancer immunoserveillance  
 
In the early 1900’s, Paul Ehrlich was one of the first to conceive the idea that the immune 

system can repress the growth of carcinomas (1).  However the validity of this prediction 

could not be experimentally tested at the time due to limited knowledge about the 

composition and function of the immune system (2).  Fifty years later, as the understanding 

of immunology developed, the idea of immune control over cancer resurfaced.  This was 

largely due to the discovery of tumour antigens, demonstrated by the finding that mice 

immunised with chemically induced tumours were protected against subsequent re-

challenge with the same tumour (3, 4).  These advances in tumour immunology provided 

the foundation for Burnet and Thomas to formulate cancer immunoserveillance hypothesis, 

a concept that envisaged the idea that the immune system can have a protective role in 

tumour development (5). Unfortunately, subsequent studies using nude mice with 

spontaneous mutations that rendered them immunocomprimised but not completely 

immunodeficient, failed to provide evidence for this hypothesis (5, 6).  Specifically, these 

mice neither developed increased incidence of chemically induced or spontaneous tumour 

growth compared to wild-type controls (7).  On the basis of these findings, the cancer 

immunoserveillance hypothesis was largely abandoned until the 1990’s when development 

of knockout technologies provided improved murine models of immunodeficiency (6). 

Thereafter, more recent studies in mice with defined immunodeficiencies have supported 

the concept of cancer immunoserveillance (8).  Particularly, this was seen in studies of 

Rag2 knockout mice which lacked T and B cells, resulting in a higher susceptibility to 

chemically induced and spontaneous tumour development (9, 10). 

 

Correlative data in humans have also provided compelling evidence of 

immunoserveillance.  This was seen in documented cases of human tumours that are 

infiltrated by inflammatory cells.  Infiltration of inflammatory cells can be taken as 

evidence that the host’s immune system “is not ignorant of the developing tumour but 

rather attempts to interfere with tumour progression” (11).  Indeed reports of immune 

infiltrates within the literature have correlated with improved prognosis in patients with 

colorectal and ovarian cancer (12, 13). Furthermore, individuals treated with 



Chapter 1:  General Introduction 3 

immunosuppressive drugs have a greater risk of developing certain kind of cancers, such 

as squamous cell carcinoma and lymphomas (14, 15).  Taken together, these findings 

suggest that the immune system is likely to play a role in tumour suppression.  

 
 

1.1.2   Cancer immunoediting 
 
Despite the existence of cancer immunosurveillance, immunocompetent individuals still 

develop cancer.  This clinical reality was first explained by the work of Shankaran et al, 

who demonstrated that the immune system not only controls tumour growth, but can also 

select the outgrowth tumour cells with reduced immunogenicity, capable of escaping 

immune recognition and destruction (9).  This discovery prompted development of the 

cancer immunoediting hypothesis by Dunn et al which takes into account the host-

protective (cancer immunoserveillance) and tumour-sculpting actions of the immune 

system (2, 5). 

 

Cancer immunoediting is a process that encompasses three main phases: Elimination, 

Equilibrium and Escape. The elimination process incorporates the original concept of 

cancer immunoserviellence, whereby cells of the innate (i.e. macrophages, NK cells) and 

adaptive (T and B cells) immune system work together to detect and destroy nascent 

transformed cells (16).  If elimination proceeds towards completion, than the host remains 

cancer free.  However, if tumour cells are not fully eradicated, they may enter the 

equilibrium phase whereby cells of the immune system such as B and T cells exert potent 

immune selection pressure that is enough to contain but not completely destroy the tumour 

(5, 6). This process leads to immune selection of tumour cells with reduced 

immunogenicity and are thus capable of surviving in an immunocompetent host.  The 

equilibrium phase may likely represent the longest of all three processes, occurring over a 

period of many years (17).  Experimental evidence for the equilibrium phase was provided 

by Koebel et al, who demonstrated in mice that originally failed to develop tumours after 

treatment with a low dose of a chemical carcinogen, could develop tumours after treatment 

with mAb designed to compromise the immune system (18).  Edited tumour cells 

surviving the equilibrium phase enter the escape process. The surviving tumour variants 

that have acquired the capacity to evade immunological detection through so called 
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“tumour escape mechanisms” begin to expand, thus resulting in clinically observable 

malignant disease (5).  Strategies used by tumours to evade the immune response will be 

discussed in section 1.1.4. 

 

 

1.1.3   Tumour antigens 
 
Tumour cells often express antigens that are distinct to those of normal cells, and are 

therefore called tumour antigens. They can be products of mutated cellular genes, 

aberrantly expressed normal genes or genes encoding viral proteins (6).  The first tumour 

antigen was discovered by examining T cell responses against melanoma cells (19).  The 

antigen identified was MAGE-1 (20, 21) and was crucial in the development of tumour 

immunology by providing evidence of specific interaction of the immune system with 

antigenic determinants presented by the tumour (19). Depending on their pattern of 

expression, tumour antigen can be broadly divided into two categories: Tumour-associated 

antigen (TAA) and tumour-specific antigen (TSA).  TAA consists of normal proteins that 

are aberrantly expressed on tumour cells compared to healthy cells.  TSA represents 

altered self proteins, expressed only in tumour cells and are the product of mutated genes, 

translocations, or transcription of alternative reading frames (22).  Melanomas in particular 

have been shown to express TAAs, such as TRP-2 (23) and Melan-a/MART-1 (24).  The 

expression of these antigens is found on both melanomas and well as normal melanocytes.  

An example of TSA is the BCR-ABL fusion protein found in individuals with chronic 

myeloid leukemia. BCR-ABL is the product of translocation between chromosomes 9 and 

22 (25).  The identification and characterisation of tumour antigen shows that tumour cells 

possess distinctive structures that can be recognized by the immune system.  Ultimately, 

this finding has set the stage for the development of targeted methods for the 

immunotherapy of cancer. 

 

 
1.1.4 Mechanisms of tumour escape  
 

Once established, the tumour microenvironment represents an effective barrier to immune 

cell functions.  This is because tumour cells actively down-regulate anti-tumour immune 
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responses using a variety of escape mechanisms.  

 

Tumour cells express specific antigens on the cell surface, which are associated with MHC 

molecules (26).  Accordingly, cytotoxic CD8+ T cells can recognise tumour antigens 

presented by MHC I molecules and induce tumour killing.  However, tumour cells can 

escape T cell recognition through down-regulation or loss of surface MHC I (19).  

 

Alternatively, cancer cells can produce immosuppressive cytokines such as vascular-

endothelial growth factor (VEGF), transforming growth factor-β (TGF-β) and interleukin 

10 (IL-10). VEGF is secreted by many tumours (27) and is a key factor inducing tumour 

vascularisation (28, 29).  Furthermore, VEGF has been shown to suppress activation of the 

transcription factor NF-κB in hematopoietic stem cells (HSC), thus preventing DC 

differentiation (30).  Blockade of NF-κB activation in HSCs by tumour-derived factors is 

thought to be a mechanism by which tumour cells down-regulate the ability of the immune 

system to generate an anti-tumour immune response.  TGF-β is angiogenic and secretion 

by tumour cells leads to inhibition of DC activation as well as direct inhibition of T cell 

and NK cell function (31, 32).  Similarly, IL-10 present within tumours can suppress DC 

function and skew T cell responses toward a type 2 immune response that is less effective 

against malignant cells (33) 

 

Tumour cells can also recruit immune cells that function as effectors of immune-

suppression, such as regulatory T cells (Tregs) and tumour-associated macrophages 

(TAMs).  Tregs are critical mediators of peripheral tolerance under physiological settings, 

but are often recruited to the tumour site where they suppress anti-tumour immunity.  

Tregs inhibit the function of tumour specific T cells by production of immunosuppressive 

cytokines such as IL-10 and TGF-β and by expression of inhibitory molecules such as 

CTLA-4 (34).  TAMs can promote tumour growth, by production of potent angiogenic 

cytokines such as VEGF that regulate tumour angiogenesis (35).  Although macrophages 

from healthy tissues are capable of lysing tumour cells, the cytotoxic activity of TAMs 

within the tumour microenvironment is deactivated due to production of suppressive 

cytokines by the tumour (36).  Mounting lines of evidence also implicate TAMs in the 

regulation of metastasis.  High numbers of TAMs in primary tumours have been correlated 
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with early establishment of metastases in a number of tumour types (37, 38).  Together, 

these examples demonstrate that tumour cells exhibit several molecular and cellular 

mechanisms that contribute to suppression of anti-tumour immunity. 

 

 

1.2   Cancer immunotherapy 

 

1.2.1    Potential of immunotherapy  
 

Cancer is the second leading cause of death in the industrialised world (39).  To this day, 

local therapy such as surgical excision and ablation by radiation is a mainstay for the 

treatment of primary cancer.  Although curative for a percentage of patients, over time 

many will succumb to recurrent diseases or metastasis (40).  Chemotherapy maybe used as 

a sole treatment or in conjunction with radiotherapy to enhance the therapeutic effect. 

However, chemotherapeutic agents currently used are cytotoxic and affect both normal and 

malignant cells (41).  

 

The fundamental rational for cancer immunotherapy lies within the potency and specificity 

of the immune system, which can be harnessed to eliminate tumour cells.  High selectivity 

allows the immune system to mount a powerful attack on the tumour with minimal toxicity 

to healthy tissue, thereby improving quality of life for patients (42).  In 1985, Rosenberg et 

al was the first to demonstrate that immunological manipulation could result in regression 

of established, invasive cancer in humans.  The study consisted of administrating high 

doses of the cytokine IL-2 into patients with metastatic melanoma, kidney cancer and non-

Hodgkin’s lymphoma and regression of tumours were observed in selected number of 

patients (43).  IL-2 is secreted by human T-lymphocytes and can exert a full array of 

immune regulatory effects, including the induction of lymphocyte expansion (44).  

Reportedly, cancer cells grow unimpeded by high concentrations of IL-2 in vitro, thus 

indicating that the clinical responses observed in patients administered with IL-2, were due 

stimulation of T-lymphocytes with anti-tumour activity (44).  

 

Currently, therapeutic intervention to amplify or induce the anti-tumour immune response 

can be categorised into two main types: passive immunotherapy or active immunotherapy.  
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Passive immunotherapy is based on the adoptive transfer of ex vivo activated immune 

cells, immunomodulators such as cytokines or tumour specific antibodies (45).  Active 

immunotherapy is aimed at activating the patients own immune system via the 

administration of a therapeutic vaccine (46, 47).  This strategy has the advantage, in that if 

successful, can elicit a long-lasting immunological memory that can protect against tumour 

recurrence.  Several approaches of active immunotherapy have been tested so far, the most 

promising form being the use of DCs as “nature’s adjuvant” (48).  

 

 

1.2.2   DC-based immunotherapy  
 
Therapeutic vaccines against cancer aim to induce antigen-specific T cell responses, which 

are principal effectors of anti-tumour immunity (49).  Owing to their superior ability of 

antigen presentation and induction of T cell immunity, DCs are increasingly used for 

therapeutic manipulation of the immune system (48).  The primary goal of DC-based 

vaccines is to “mend the inattention of the immune system” by vaccination with ex vivo 

generated DCs appropriately activated and loaded with tumour antigens (50). 

 

Early studies in mice first demonstrated the applicability of DC vaccination for cancer 

immunotherapy.  Because DCs are rare in vivo (0.3% of the blood leukocyte population 

(51)), much of these initial studies in animals were facilitated by techniques for generating 

large numbers of DCs in vitro.  Specifically, DCs can be generated from murine BM cell 

cultures supplemented with the cytokines GM-CSF and IL-4 (GMCSF/IL-4) to induce DC 

differentiation (52).  BM-derived DCs loaded with tumour peptides and administered as a 

cellular vaccine have been found to induce protective and therapeutic anti-tumour 

immunity in mice (53-55).  Similarly, murine DCs pulsed with unfractionated tumour 

lysates have also shown a high degree of success in preventing tumour development (56).  

Overall, vaccination with antigen-loaded DCs has proven their potency at inducing anti-

tumour immunity in mice, thus prompting the testing of DC-based vaccines in clinical 

studies. 

 

A common approach of generating DCs for clinical trials is to use CD34+ progenitor cells 

or monocytes that are isolated from the patients’ blood by leukapheresis (Figure 1.1).  
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These cells are cultured in the presence of various cytokine mixtures to induce DCs 

differentiation, treated with a maturation stimulus such as the Poly I:C and loaded with 

tumour antigens (57).  The DCs are then administered into the patient with the intention of 

inducing antigen-specific B and T cell responses (58, 59).  Vaccination studies have shown 

that DC vaccines are safe, with only minimal side effects observed (60).  Although the 

clinical benefit that is measured by regression of established tumours has been observed in 

only a fraction of the patients (48), this nonetheless provides evidence that DC vaccination 

can be successful in principal. 

 

 

 
 
Figure 1.1:  General strategy employed in DC-based vaccination.  
DC precursors (monocytes or CD34+ progenitor cells) are first obtained by leukapheresis.  Precursor cells are 

then placed in a period of in vitro cell culture with cytokines to induce DC differentiation.  The DCs thus 

generated display an immature phenotype and are induced to mature by a maturation stimulus.  DCs are 

loaded with tumour antigens before being re-injected into the patient as a therapeutic vaccine.  Adapted from 

O’Neil et al (59) and Jefford et al (61). 

 

 

 

 



Chapter 1:  General Introduction 9 

1.3   DCs and the control of immunity 
 

1.3.1    DCs are professional antigen presenting cells 
 

The initiation of a T cell response against a foreign antigen is driven by antigen uptake and 

presentation of peptide fragments by antigen-presenting cells (APCs).  DCs are potent 

APCs and are distinct from other less potent APCs such macrophages and B cells (51). B 

cells are poor at antigen uptake and mainly specialise in antibody production.  

Furthermore, B cells are inefficient at stimulating naïve CD4+ T cells (62).  Conversely, 

macrophages are highly proficient at antigen uptake, but antigen degradation often 

destroys the antigenic epitopes on the antigen that are necessary for T cell activation (63).  

The biological features that make DCs superior APCs include their capacity of antigen 

uptake with a corresponding low rate of antigen degradation, allowing for prolonged 

antigen presentation.  Furthermore, DCs are functionally plastic and are located within 

strategic areas of the body (63). It is these features that define DCs as “professional” 

APCs. 

 
Distributed as sentinels throughout the body, DCs play a critical role in the induction and 

regulation of immune responses (64).  DCs are a heterogeneous population of cells and 

there are two main subpopulations found within the steady-state: plasmacytoid DCs (pDC) 

and conventional DCs (cDC) (65).  These two subpopulations can be further subdivided 

based on phenotype, location and function within the immune system (further discussed in 

section 1.4).  In the immature state, DCs reside in the peripheral tissues, constantly 

sampling the environment for foreign antigen.  In the absence of microbial stimuli or 

inflammatory cytokines, DCs can spontaneously mature and migrate to the lymph nodes 

(LN) to present the captured antigen to T cells.  Antigen presentation by immature DCs is 

thought to be a mechanism by which peripheral tolerance to self-antigen is maintained. 

When DCs encounter microbial products, they become activated and migrate to the LN for 

antigen presentation to T cells, resulting in T cell activation and differentiation into 

effector cells (64, 66). 
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1.3.2   DC development in vivo and regulation by cytokines 
 

DCs, together with all blood cells originate from pluripotent hematopoietic stem cells 

(HSC) from the bone marrow (BM) (67, 68).  All HSC-derived cells develop either as a 

part of the lymphoid or myeloid pathway, through a multipotent, but lineage-restricted 

common lymphoid precursor (CLP) or common myeloid precursor (CMP) (69, 70) (Figure 

1.2).  Studies have now provided evidence that DC subsets can be generated through both 

the myeloid and lymphoid pathways, from CMP or CLP (71, 72).  The fact that both CMP 

and CLP can generate all DC populations suggests plasticity in developmental potentials of 

these early precursors (73).  However, the potential to develop into DCs is only found 

among the fractions of CMP and CLP subpopulations expressing the receptor Flt3 (74) 

(Figure 1.2).  Flt3 (FMS-related tyrosine kinase 3) is a member of the class III receptor 

tyrosine kinase family (75) that is expressed on early progenitor cells from the BM.   Both 

CMP and CLP precursors have been found to be heterogenous for Flt3 expression, with 

CLP expressing most of Flt3 and only minor fractions of CMPs expressing Flt3 (76).  

Expression of Flt3 fits in with the central role of the cytokine Flt3 Ligand (Flt3L) in 

steady-state DC development (68), inducing the generation of both pDCs and cDCs from 

BM precursors (Figure 1.2).  Flt3L is a type 1 transmemebrane protein that can be 

proteolytically cleaved to generate a soluble protein. Both isoforms of Flt3L are 

biologically active and can induce activation of the Flt3 receptor. Although Flt3L mRNA 

is ubiquitously expressed in hematopoietic and non-hematopoietic tissues, Flt3L protein 

has only been found in stromal fibroblasts present in the BM and in T lymphocytes (77). 

 

The cytokine GM-CSF (granulocyte macrophage colony-stimulating factor) can also 

induce the differentiation of DCs from BM precursors and monocytes (65).  Monocytes are 

phagocytic cells of the myeloid lineage that are located within several organs, such as the 

blood, BM and spleen (78).  Two principal subsets monocyte subsets have been identified 

in mice that are described as being Ly6ChighCX3CRlowCCR2+CD62L+ (Ly6Chigh) and 

Ly6ClowCX3CR1highCCR2-CD62L- (Ly6Clow) (79), and are proposed to be equivalents of 

human CD14+ and CD16+ monocytes, respectively (80).  Ly6Chigh monocytes are referred 

to as “inflammatory” monocytes because of their rapid recruitment to sites of 

experimentally induced inflammation (81) and have been shown to be predisposed to 

becoming DCs following LPS insult in vivo.    
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During infection, monocytes migrate from the blood to the peripheral tissues whereby they 

have the capacity to differentiate into a number of cell types depending on the soluble 

mediators that are present within the local environment.  In both mice and humans, 

monocytes differentiate into macrophages in response to M-CSF (macrophage colony-

stimulating factor) (78) or into cDCs in the presences of GM-CSF (65) (Figure 1.2).  GM-

CSF is produced by tissue stromal cells (82) and by activated T cells, macrophages and 

endothelial cells upon exposure to antigen or inflammatory cytokines (83).  Accordingly, 

GM-CSF levels in the serum are reportedly low and undetectable within the steady-state, 

but increases during inflammation (84).  GM-CSF regulates its biological activity through 

activation of the GM-CSF receptor (GM-CSFR) that is expressed on various cell types 

such as monocytes and CD34+ progenitor cells (83).  GM-CSFR is a member of the type I 

cytokine receptor group and is comprised of an α and β subunit (85).  The α subunit is 

responsible for cytokine ligation and is specific for GM-CSF, whereas the β subunit is 

necessary for signal transduction and is also shared with the cytokines IL-3 and IL-5 (83).  

GM-CSF differs in activity to Flt3L. While Flt3L induces both myeloid-related and 

lymphoid-related DCs in lymphoid tissues (74, 86), GM-CSF only induces the myeloid 

subtype in vivo (87).  
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Figure 1.2:  DC development from hematopoietic precursors. 
Both conventional DCs and plasmacytoid DCs can be generated from the common myeloid progenitors 

(CMPs) or common lymphoid progenitors (CLPs) expressing Flt3+.  Flt3L (red) is essential for the 

development of steady-state DCs.  In the presence of GM-CSF (blue), monocytes can differentiate into cDCs.  

Myeloid precursors are the main source of DCs in most circumstances (Thick, black curved arrow).  Adapted 

from Naik et al (68) and Wu et al (65). 

 

 

 

1.4   DC subsets 

DCs are a heterogeneous cell population and there are many distinct subsets which differ 

in location and function within the immune system (88).  The two main types of DCs 

within the immune system are cDCs and pDCs, which are further subdivided based on 

their location and expression of phenotypic markers.  These are discussed as follows.  
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1.4.1    Plasmacytoid DCs  
 
Human pDCs are indentified as CD4+CD45RA+IL-3Rα+ILT3+ILT1-CD11c-lineage- cells 

(89) and are phenotypically distinct to mouse pDCs, which are CD11cintCD45RA+B220+  

(65).  pDC activation is induced by recognition of viral RNA and DNA, recognised via 

signalling through receptors TLR7 and TLR9, respectively (90).  Following activation, 

pDCs secrete large amounts of type 1 interferons (IFN), mainly IFN-α and IFN-β (91).  

Through secretion of type 1 IFNs, pDCs inhibit viral replication and enhance the 

cytotoxicity of immune effector cells such as NK cells, CD8+ T cells and macrophages to 

eliminate infected cells (92, 93).  Once activated, pDCs can also present antigen, however, 

they do not induce T cell proliferation and effector differentation as efficiently as cDCs.  

This is thought to be because pDCs do not phagocytose, process and load antigens onto 

MHC molecules as effectively and express lower levels of MHC II and co-stimulatory 

molecules (92).  Thus, pDCs play an important role in immune responses, particularly to 

anti-viral immunity. 

 

 

1.4.2   Conventional DCs 
 
Conventional DCs can be divided into those that are migratory or lymphoid tissue-resident.  

Migratory DCs differ in their tissue of origin.  Langerhans cells (LC) are prominent cells 

within the epidermis and are the model migratory DCs (68).  LCs serves as antigen-

sampling sentinels in the peripheral tissues, then migrating to the draining LN for antigen 

presentation to T cells (68).  Phenotypically, LCs are langerin+MHC II+CD11c+CD11b+ 

EpCAMhighCD103- (94).  LCs also constitutively express the receptor CD205 (DEC205), a 

lectin that is implicated in antigen capture and processing (95).  Until recently it was 

generally assumed that the expression of langerin in the skin was strictly confined to LCs 

in the epidermis.  However, it has now become clear that a group of migratory dermal DCs 

also express langerin (96, 97).  LCs and dermal langerin+ DCs are indistinguishable based 

on the expression levels of MHC II, CD11c and langerin, but can be separated by 

expression of other markers such as CD103, which is expressed only dermal langerin+ DCs 

and not LCs (94).  Two subset of dermal langerin+ DCs have been indentified, each 

functionally distinct.  CD103+CD11b- dermal DCs are proficient at cross-presentation of 
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viral antigens to CD8+ T cells, whereas CD103-CD11b+ are better at priming CD4+ T cell 

responses (98).  Cross-presentation refers to the presentation of exogenous antigen to CD8+ 

T cells, and will be further discussed in section 1.7.3. 
 

The spleen is a rich source of lymphoid tissue-resident DCs (65).  There are three DC 

subsets, which have been identified in the spleen of mice that are distinguished by their 

expression of CD4 and CD8: CD4-CD8+ (CD8+ DCs), CD4+CD8- (CD8- DCs) and CD4-

CD8- (double negative [DN] DCs) (99).   Expression of the T cell markers CD4 and CD8 

allows for identification of these subsets, however, neither expression have been found to 

have any functional attributes (88). CD8 on splenic DCs is in the form of an αα-

homodimer rather than the αβ-heterodimer that is typical of T cells (88).  Both CD8+ and 

CD8- DCs differ in location and function within the immune system.  In contrast to CD8+ 

DCs which are found mainly in T cell areas, CD8- DCs tend to be found in the marginal 

zones and migrate to T cell areas upon maturation (100).  DC subsets also differ in 

function, with CD8+ DCs producing the largest amount of IL-12 after stimulation. 

Furthermore, CD8+ DCs have been shown to be the most efficient at cross-presentation of 

soluble antigen (101), bacteria (102) and viruses (103).  The superior cross-presenting 

ability of CD8+ DCs is not a function of increased antigen uptake (104), but is more likely 

due to differences in antigen processing. Accordingly, reduced acidification of 

phagosomes, that is essential for cross-presentation, has been shown to be particularly 

effective in CD8+ DCs (105).  In contrast to CD8+ DCs, CD8- DCs appear more efficient at 

antigen presentation on MHC II molecules to CD4+ T cells (106).  

 

In addition to differences in function, CD8+ and CD8- DCs also differ in expression of toll-

like receptors (TLR), which recognise microbial products.  DCs can express multiple 

TLRs, thus enabling them to detect a wide range of microbial derived products.  All 

murine splenic DC subsets express TLRs 1, 2, 4, 6, 8, and 9 (107).  However, TLR3, which 

binds to double-stranded RNA is only expressed on CD8+ DCs (108) and is thus 

implicated in recognition of viruses.  Conversely, CD8- DCs do not express TLRs 5 and 7, 

which recognise bacterial flagellin and single-stranded RNA, respectively (107, 109).  

Overall, distinct TLR expression profiles suggest that DCs specialise in responding to 

different types of pathogens and highlight the functional diversity of the splenic DCs.  
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1.5   Activation states of DCs 

 

1.5.1   Immature DCs 
 
In the immature state, DCs reside in the peripheral tissues constantly sampling the 

environment for foreign antigen (110).  Immature DCs are phenotypically characterised by 

low surface expression of major histocompatibility complex class II molecules (MHC II) 

(64, 66) and co-stimulatory molecules such as CD40, CD80 and CD86 (111).  Expression 

of these molecules correlates with T-cell-priming ability, thus immature DCs are weak 

stimulators of T cell-mediated immunity.  Functionally, immature DCs are very efficient at 

antigen capture and utilise a variety of pathways such as receptor-mediated endocytosis 

(66) and macropinocytosis (112) to take up different forms of antigen.  In receptor-

mediated endocytosis, immature DCs use a range of receptors such as DEC205 (CD205) 

(95), Fcγ receptors type I and II (for uptake of immune complexes or opsonised particles) 

(113) and scavenger receptors such as CD36 (114).  They are also highly phagocytic and 

can take up bacteria (115) or apoptotic and necrotic cells (116, 117).  Taken together, 

immature DCs are specialists in antigen capture, but are weak stimulators of T cell-

mediated immunity due low expression of MHC and co-stimulatory molecules. 

 

 

1.5.2   Mature tolerogenic DCs 
 
Under the steady-state, immature DCs in the peripheral tissues spontaneously migrate to 

the draining lymph nodes in the absence of pathogenic stimuli.  It is thought that disruption 

of E-cadherin adhesion between DCs and neighbouring cells induces migration of steady-

state DCs (118).  During their migration towards the draining LNs, DCs continually 

capture self-antigens from tissues (119) and become spontaneously matured.  Maturation 

corresponds with the up-regulation of MHC and co-stimulatory molecules, as well as 

homing receptors, which allows the DC to migrate to the LN (120).  However, because 

these DCs have not been exposed to an inflammatory stimulus, they lack the ability to 

secrete inflammatory cytokines such as TNF-α or IL-12 (121).  Migration to the LN results 

in antigen presentation to naïve CD4+ and CD8+ T cells, however due to their inability to 

secrete immuno-stimulatory cytokines (IL-12), these DCs regarded are as quiescent or 
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tolerogenic (118).  Tolerogenic DCs are able to induce proliferation of naïve T cells, but 

this does not result in the development of cytokine producing, effector T cells (122).  

Instead antigen presentation by tolerogenic DCs results in T cell deletion, or in T cells 

becoming unresponsive to further antigen stimulation (123-125).  Overall, this process is 

important in order to maintain peripheral tolerance and is thought to ensure the elimination 

of auto-reactive T cells that have escaped thymic deletion (126).  

 

 
1.5.3  Mature  DCs 
 
DC maturation and activation is a process which describes the DCs terminal differentiation 

from poorly immunogenic cells specialized for antigen capture into those with high 

capacity of T cell stimulation (59).  Immature DCs respond to two types of signals that 

induces their activation and maturation: recognition of pathogen associated molecule 

patterns (PAMPS) or inflammatory cytokines (127).  Various PAMPS are recognized by 

receptors, such as Toll-like receptors on DCs (128), and inflammatory cytokines such as 

TNF-α are recognised by the corresponding cytokine receptors.  Activation and maturation 

induces DCs to exert entirely different phenotypic and functional properties, compared to 

immature DCs.  DC maturation results in transiently enhanced uptake of antigen (129) that 

is followed by an almost complete down-regulation (130).  Matured DCs display enhanced 

capacity of T cell stimulation, caused by the up-regulation of MHC II and co-stimulatory 

molecules such as CD80, CD86 and CD40 (131, 132).  CD80 and CD86 are co-stimulatory 

molecules of the immunoglobulin superfamily (133) and CD40 belongs to the tumour 

necosis factor receptor superfamily.  CD86 is constitutively expressed at low levels and 

rapidly up-regulated upon DC activation, whereas CD80 expression is inducible and up-

regulation occurs more slowly.  CD80 or CD86 subsequently bind to CD28 and CD40 bind 

to CD40 ligand (CD40L) that is expressed on activated T cells, thus inducing T cell 

activation (further discussed in section 1.7).  Peripheral DCs also change expression of 

chemokine receptors, and increase expression of CCR7 and CXCR4, thus enabling their 

migration to secondary lymphoid organs for antigen presentation (134).  DC activation also 

induces secretion of inflammatory cytokines.  Depending on the type of PAMPs that 

induces activation, DCs induce production pro-inflammatory cytokines such IL-6, IL-12, 

TNFα and IL-23 (135-137).  The ability of DCs to produce cytokines such as IL-12, TNF-
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α and IL-6 is thought to be important for the induction of robust T cell responses (50).  

Within the context of DC-based immunotherapy, studies have demonstrated that DC 

maturation is crucial for the induction of effective immune responses (138).  The “golden 

standard” used to mature clinical grade DCs consists of cocktails of pro-inflammatory 

cytokines containing IL-1β, IL-6, TNF-α and prostaglandin E2 (139).  However, DCs that 

are exposed to inflammatory cytokines can induce the up-regulation of co-stimulatory 

molecules, but cannot secrete IL-12 (140).  Therefore, DCs matured with cytokine 

cocktails alone are not as effective at stimulating immune responses as DCs that encounter 

pathogens in vivo. 

 

1.6  DC activation through Toll-like receptors  
 
One critical function of DCs is their ability to recognise foreign pathogens and initiate 

immune responses.  To this end, DCs express several pattern recognition receptors (PPRs), 

such as Toll-like receptors (TLRs) that can recognise PAMPs (141).  TLRs are type 1 

transmembrane receptors with a ligand binding domain of leucine-rich repeats and a Toll-

IL-1 receptor (TIR) domain that activates down-stream signalling pathways (142). The 

binding of PAMPs to the corresponding TLR induces DC activation and an immune 

response against that particular pathogen.  Thus, agonists for TLRs can be used as natural 

adjuvants to induce DC activation in vitro. 

 

Several TLRs have been characterised to date and can be grouped into those that are on the 

cell surface or localised intracellularly.  The first group of TLRs: TLR1, 2, 4, 5 and 6 are 

all present on the cell surface (142) and are specialists in the recognition of extracellular 

bacterial or protozoan compounds.  While most TLRs function as homodimers, TLR2 

forms heterodimers with TLR1 and TLR6 (143). Accordingly, TLR2/TLR1 or 

TLR2/TLR6 recognise triacylated or diacylated lipopeptides, respectively (142).  TLR4 

binds to LPS on Gram-negative bacteria (144) and TLR5 binds to flagellin of motile 

bacteria (145).  The second group of TLRs, TLR3, 7, 8 and 9, all reside intracellularly 

within the endosomes and facilitate the recognition of viral or microbial nucleic acids 

(146).  TLR7 and 8 bind to single-stranded RNA (ssRNA) while TLR3 binds to double-
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stranded RNA (dsRNA) (146).  Conversely, TLR9 binds to unmethylated CpG motifs in 

DNA (147).   

 

Several synthetic agonists have been developed to induce DC activation in vitro.  For 

example, Pam3Cys (a synthetic lipopeptide) can be used to induce DC activation through 

TLR2 and Poly I:C (synthetic analogue of dsRNA) can activate DCs through TLR3.  

 

After recognizing their respective PAMPs, TLRs activate signalling pathways that provide 

specific immunological responses.  Different TLRs utilise different adaptors to induce the 

production of a variety of pro-inflammatory cytokines (148).  This will be further 

discussed in Chapter 3 (section 3.1.1). 

 

 

1.7  Antigen presentation to T cells 

There are two major subset of T cells within the immune system that are distinguished by 

their surface expression of CD4 or CD8.  Both CD4+ and CD8+ T cells recognise antigen 

that have been processed and presented as peptides by DCs on antigen presenting 

molecules called major histocompatability complex class I or II (MHC I or MHC II).  

CD4+
 T cells recognise peptides presented on MHC II and CD8+

 T cells recognise peptides 

presented on MHC I.  Pathways of antigen processing (commonly referred to as classical 

presentation pathways) are distinct between the two MHC molecules and are discussed as 

follows. 

 

 

1.7.1  MHC I presentation 

 
MHC I molecules are expressed on all nucleated cells.   These molecules generally present 

peptides that are only eight to ten amino acids in length, due to conserved hydrogen bonds 

that close the peptide-binding groove at both ends (149).  Classically, peptides presented 

on MHC I are derived from proteins expressed within the cell (endogenous proteins) (63). 

Therefore, proteins of viral origin (150, 151) or mutated self proteins will be processed and 

presented. To generate the appropriate peptides, proteins are first degraded by the 
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proteosome within the cytosol and then transported into the endoplasmic reticulum (ER) 

via the Transporter of antigen-processing (TAP)-1 and TAP2 molecules (152).  MHC I 

molecules are synthesised in the ER, where they are assembled with β2-microglobulin 

(153).  This MHC I-β2-microglobulin complex then binds to other chaperone proteins 

including calreticulin and tapasin (154).  The binding of the MHC I-chaperone complex to 

TAP via tapasin allows the loading of peptides onto the MHC I molecule and the 

subsequent release of the MHC I molecule from the chaperone proteins (155).  The 

peptide-loaded MHC I complex is transported to the cell surface via the Golgi cisternae 

and present their peptides to CD8+ T cells (153). 

 

 

1.7.2   MHC II presentation 

Exogenous antigen is classically presented on MHC II molecules, which are only 

expressed on APCs such as DCs, B cells and macrophages.  In contrast to MHC I, MHC II 

molecules can present longer peptides because their peptide-binding groove is open at both 

ends (149).   Within the MHC II presentation pathway, DCs take up extracellular antigens 

and deliver it to the lysosomes and late endosomes and whereby it is processed into 

peptides (156).  MHC II molecules are also synthesised within the ER (157, 158) and are 

associated with an invariant chain (li) (159, 160).  The invariant chain binds to the peptide-

binding groove, therefore stabilising the MHC II molecule and preventing binding of 

peptides or partly folded proteins (161).  The MHC II-li complex is transported to the late 

endosomal compartments, where the li chain is released through proteolytic cleavage (159, 

160), leaving a short peptide fragment CLIP (class II-associated invariant chain peptide) in 

the groove of the MHC II molecule (162).  The chaperone HLA-DM catalyses the release 

of the CLIP fragment and the loading of the peptide fragments onto the MHC II molecules 

(163, 164).  The peptide-MHC II complex is then exported to the plasma membrane and 

presented to CD4+ T cells (165). 

 
 

1.7.3   Cross-presentation 
 
The classical pathways of antigen presentation only allows presentation of endogenous 

antigen on MHC I molecules.  However, this does not explain how CD8+ T cell responses 
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can be initiated against tumour antigens or viruses that do not infect the APC.  In the 

1970’s, Bevan was the first to demonstrate that priming of CD8+ T cell responses in vivo 

could also occur after presentation of exogenous antigens by MHC I molecules (166).  

Bevan initially called this process ‘cross-priming’ and the term cross-presentation has 

since been adopted to describe this pathway of antigen presentation.  Cross-presentation 

has been observed in a variety of APCs such as macrophages (167, 168) and B cells (169), 

however DCs have been shown to be the most efficient (170). 

 

The exact mechanisms by which exogenous antigen access the MHC I presentation 

pathway have not been elucidated and three pathways have been proposed to describe the 

process of cross-presentation (171).  The vacuolar route described cross-presentation in a 

TAP-independent manner.  In this pathway, exogenous antigens do not gain access to the 

cytosol and are degraded by proteases within endosomal or lysosomal compartments and 

the resulting peptides bind to MHC class I molecules that recycle from the cell surface 

(172, 173).  The other two pathways, described cross-presentation in a TAP-dependent 

manner.  The cytosolic route uses the normal MHC I machinery to present exogenous 

antigens and requires that the antigen is diverted into the cytosol for proteosomal 

degradation, and subsequent transport into the ER via TAP (174, 175).  Within the 

phagosome-ER-fusion route, the phagosome fuses with the ER membrane, therefore 

allowing proteins required for MHC I loading as well as TAP transporters to enter the 

phagosome.  Antigen is diverted to the cytosol and then degraded locally by proteosomes 

and then the protesome-derive peptides are transported back into the phagosome via TAP, 

where it is loaded onto the MHC I molecule (176, 177). 

 

 

1.8   Induction of T cell activation by DCs 

Activated and matured DCs initiate or “prime” T cell responses in the secondary lymphoid 

organs such as the LN and the spleen (178).  T cell activation and clonal expansion is 

induced by signals provided by the interaction of peptide/MHC complexes on the surface 

of DC and the antigen-specific TCR on T cells.  However, full activation of naïve T cells is 

not only dependent upon antigen presentation but also requires co-stimulatory signals 

provided by the DC.  The co-stimulatory molecules CD80 and CD86, which are highly 
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expressed on activated DCs binds to CD28 on the T cells (179, 180).  The engagement of 

CD28 on the T cell by CD80 or CD86 drives the cell cycle progression of T cells (181), 

promotes T cell survival by enhancing the expression of anti-apoptotic protein Bcl-XL 

(182) and lowers the antigen stimulation threshold required to induce cellular division of T 

cells (183).  Activated DCs also express other co-stimulatory molecules such as CD40, 

which binds to CD40L expressed on activated T cells (184).  Engagement of CD40 and 

CD40L activates DCs, leading to IL-12 production (185) and increased expression of co-

stimulatory molecules on the DC (186).  Effectively, IL-12 production from DCs promotes 

T cell differentiation while the increased expression of co-stimulatory molecules on DCs 

enhances the level of co-stimulation available to T cells.   

 

T cell activation also results in expression of early activation markers such as CD25 and 

CD69 (187) on T cells. Signalling through CD69 leads to calcium influx, cytokine 

secretion and CD25 up-regulation, which ultimately induce T cell proliferation (188).  

Activated T cells also acquire tissue homing receptors (189), allowing their migration from 

the LN into the periphery where they carry out their effector functions.  

 

 
1.8.1   CD4+ T cell activation and effector function 

Although CD4+ T cells are effector cell in their own right, they are also called T helper 

(Th) cells because they play an important role in enhancing the function of other immune 

cell-types.  Activation of naïve CD4+ T cells induces their differentiation into at least two 

functionally distinct subsets (Th1 and Th2) (190), which is dependent upon the cytokine 

milieu at the time of activation.  Th1 cells produce high levels of their signature cytokine 

IFN-γ, and their developmental pathway is driven by the cytokine IL-12 (191).  IFN-γ have 

important roles in the immune response, such as inducing the activation and recruitment of 

other cell types (i.e. macrophages) and the priming of CD8+ T cell responses (191).  

Alternatively, Th2 cells are characterised by production of IL-4, IL-5 and IL-13 (190) and 

their differentiation is driven by a cytokine milieu rich in IL-4 (192) and IL-6 (193).  Each 

Th subset mediate distinct immunologic effector functions: Th1 cells are associated with 

responses to intracellular pathogens such as viruses, while Th2 mediate protection from 

extracellular pathogens such as helminths (194).  CD4+ T activation are critical for 
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effective anit-tumour immune responses and their specific action will be discussed in 

Chapter 4 (section 4.1.1). 

 

 
1.8.2   CD8+ T cell activation and effector function 

The main role of CD8+ T cells is to kill infected or malignant cells and DCs play a central 

role in the priming of CD8+ T cell responses (195).  Upon encounter of DCs presenting 

cognate antigen in the draining LN, antigenic stimulation via engagement of the TCR and 

peptide/MHC I complex, and co-stimulation induces CD8+ T cell activation.  CD8+ T cells 

thus undergo clonal expansion and differentiate into cytotoxic T lymphocytes (CTL).  

CTLs also express death receptor ligands and cytotoxic granules, all of which contribute to 

their ability of killing infected cells (196).  The main pathway of killing is exocytosis of 

granules containing perforin or granzymes.  Perforin is a pore-forming protein, which is 

required to enable granzymes to induce apoptosis of target cells (197).  Perforin-mediated 

immune responses have been shown to be important for mounting effective anti-tumour 

immunity (198).  The exact mechanisms of perforin function are unclear and two models 

have been proposed.  It was thought that perforin directly formed pores in the target cell 

membrane to allow entrance of granzymes into the cells, or that perforin disrupts target-

cell endosomes that contain granzymes (199).  Granzymes A and B are responsible for 

DNA fragmentation in target cells, with Granzyme B being the principal apoptotic 

molecule in CTLs (200).  Another mechanism of target cell lysis used by CTLs is via the 

death receptor pathway.  Expression of death receptors such as Fas (CD95), TNFR-1 and 

TRAIL receptor (TRAIL-R) targets cells for destruction by activated CD8+ T cells 

expressing the corresponding ligand (201).  Fas is the best characterized death receptor that 

is expressed on many cell types (202) and binds to FasL that is expressed and up-regulated 

on activated CD8+ T cells upon TCR stimulation (203).  Engagement of Fas with FasL 

allows for target cell killing by caspase-mediated apoptosis (204). 

 

Other effector functions of CTLs include secretion of the cytokines TNF-α and IFN-γ.  IL-

12 (secreted by activated DCs) stimulates CTLs to produce IFN-γ (205).   TNF-α can bind 

to its receptor, TNFR, which is present on the cell surface of target cells to induce 

programmed cell death (206).  The presence of IFN-γ has been shown to inhibit tumour 
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angiogensis (207) and can also induce expression of MHC I on infected cells, thus 

increasing their chance of recognition for cytotoxic attack (208).  

 

During the course of the immune response, activation of naïve CD8+ T cells not only 

induces their differentiation into effector CTLs, but also of memory CD8+ T cells.  

Memory T cells persist in a resting state after infection as long-lived and antigen 

experienced cells that can confer protection upon a secondary challenge (209). 

 

 

1.9 The role of GM-CSF and IL-4 in generating DCs in vitro 
 

1.9.1    GM-CSF and IL-4 are commonly used for generating monocyte-  
derived DCs in clinical trials 

 

Monocyte-derived DCs (Mo-DC), are commonly used in studies of human DC biology, 

and for cancer immunotherapy (139, 210).  Their widespread use in most vaccination 

studies is due to the relative ease with which large quantities can be obtained.  Typically, 

100-150 x106 monocytes can be collected in one leukaphresis, which has the advantage 

over selection of CD34+ progenitor cells that often requires repeated leukaphresis (50).  

The type of DC that is generated in vitro from monocyte differentiation depends on the 

cytokine cocktail that is used.  For instance, the culture of monocytes with the cytokines 

GMCSF/IL-4 generates immature DCs devoid of LCs (211).  In contrast, cytokine 

cocktails such as GMCSF/IL-15, induce monocyte differentiation into immature DCs with 

features like LCs (212).   GMCSF/IL-4 represents the most extensively utilised cytokine 

combination for generating DCs from monocytes (83, 213).  While GM-CSF appears to be 

required for monocyte survival and differentiation, IL-4 inhibits the development of 

macrophages (83).  The culture of murine BM cells with GMCSF/IL-4 has been shown to 

generate a population of immature DCs that are CD24lowCD11bhigh and often referred to as 

“myeloid” DCs because of their CD11bhigh phenotype (214).  Similarly, monocytes 

reportedly generate a relatively homogenous population of CD11c+CD11b+ CD8-MHC + 

myeloid DCs in GM-CSF cultures (78).   

 

Several studies of DC vaccination using Mo-DCs have been performed in patients with 
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melanoma (50), for which many immunologically relevant antigens have been defined 

(215).  A good overview of DC-vaccination trials using matured and antigen loaded Mo-

DCs generated in GMCSF/IL-4 cultures, was compiled by Lesterhius et al (50).  Many of 

these Mo-DCs were induced to mature by exposure to the inflammatory cytokine TNF-α 

alone or with one or more of the following cytokines: IL-1β, IL-6 or prostaglandin-E2. 

Overall, it was shown that Mo-DCs have shown some success at inducing anti-tumour 

immune responses (50), such as the expansion of tumour-specific CTLs (216) or tumour-

specific Th1 cells (217).  However, the objective clinical outcomes were variable, with 

complete, partial or mixed responses seen throughout.  Despite the extensive use of 

GMCSF/IL-4 in generating Mo-DCs, the question was raised as to whether this cytokine 

combination reflects the natural pathway of DC generation in vivo (83).  Evidence now 

suggests that Mo-DCs generated from GMCSF/IL-4 cultures are representative of DCs that 

arise in vivo during inflammation.  These findings are discussed in the following section. 

 

1.9.2   GM-CSF induces the development of inflammatory Mo-DCs 
 
Studies using knockout mice first supported the idea that GM-CSF is not required for 

maintenance of steady-state DCs.  This was shown whereby GM-CSF or GMCSFR 

knockout mice had only a small (20-24%) reduction of DCs in their spleen and thymus, 

compared to wild-type controls (218).  Further studies began to provide more correlative 

data for the role of GM-CSF in inflammatory DC development.  The first clear hint was 

derived from studies in mice following infection with the gram-positive bacteria, Listeria 

monocytogenes (78). 

 

Within a mouse model, intravenous inoculation with L. monocytogenes, results in their 

rapid clearance from the bloodstream and predominant infection within the spleen and 

liver.   L. monocytogenes subsequently proliferates in vivo for 2 or 3 days and is cleared 

upon induction of antigen-specific CD8+ T cell response (80).  In 1988, Cheers et al were 

able to show that infection with L monocytogenes, induced higher serum levels of GM-

CSF in mice (79).  Accordingly, Serbina et al later showed that a novel DC subtype 

emerges in the spleen of mice 1-2 days post infection with L. monocytogenes, which 

produce the inflammatory mediators iNOS and TNF-α.  Production of reactive nitrogen 
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intermediates by iNOS is one of the major mechanisms for killing of L. monocytogenes in 

vivo (80).  These iNOS/TNF-α producing DCs (Tip-DCs) were CD11cintCD11bhighMAC-

3+ and phenotypically distinct from splenic steady-state DCs which are 

CD11chighCD11blowMAC-3- (80).  It was also found that Tip-DCs were absent from the 

spleen of CCR2 knockout mice, which lack the chemokine receptor implicated in 

macrophage and DC migration.  Given the finding by other authors that the Ly6Chi 

monocyte subset selectively expresses CCR2, this lead on to the presumption that Ly6Chi 

monocytes were the contributing precursor for differentiation of inflammatory Tip-DCs 

during infection (78). Collectively, these findings by Serbina et al and Cheers et al 

provided the first indication of the in vivo equivalent of GM-CSF-driven monocyte 

differentiation. 

 

Subsequent experiments performed by Naik et al directly provided evidence for the role of 

GM-CSF in inducing the differentiation of Ly6Chi monocytes into Tip-DCs in vivo (219).  

Within their studies, Ly6Chi monocytes were transferred intravenously into mice under 

conditions of GM-CSF-dependent inflammation.  This was established by priming mice 

with methylated bovine serum albumin (mBSA) in complete Freund’s adjuvant (CFA), 

followed by induction of inflammation with mBSA 1 day later.  Naik et al were able to 

show that Ly6Chi monocytes developed into CD11c+MHC II-Mac-3+ DCs in the spleen 

that produced iNOS and TNF-α, thus providing formal proof of the correlation between 

GM-CSF and development of inflammatory DCs (219).   

 

In light of the above evidence, Xu et al (214) were able to show that the BM derived DCs 

generated in vitro from GMCSF/IL-4 shared characteristics of inflammatory Tip-DCs.  

Firstly, GMCSF/IL-4 DCs were found to express the markers CD11c+MHC II+MAC-3+ 

and produced TNF-α and iNOS in response to stimulation with LPS.   Moreover, it was 

shown that CD11bhighLy6Chigh monocytes isolated from murine BM developed into 

CD11c+MHC II+ DCs when cultured with GMCSF/IL-4.  These CD11c+MHC II+ DCs also 

expressed the marker MAC-3+ and secreted iNOS following LPS stimulation (214).  

Overall, these results clearly demonstrate the developmental linkage between 

inflammatory conditions and GMCSF/IL-4 DCs. 
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1.10 Flt3L is crucial for normal hematopoiesis and DC development in 
vivo  

Flt3L is a hematopoietic cytokine that binds to the receptor Flt3, which is a tyrosine kinase 

receptor highly expressed on HSCs (refer to section 1.3.2).  Hannum et al (220) and 

Lyman et al (221) were the first to clone Flt3L in 1993-1994, thus enabling investigation 

of its actions in vivo.  Studies in mice with targeted gene disruption in Flt3L have 

established the importance of this cytokine in maintaining normal hematopoiesis and DC 

development.  Specifically, McKenna et al showed that mice with genetic deletion of Flt3L 

displayed a reduction in leukocyte numbers in the peripheral blood, LN and spleen (222).  

In particular, targeted deletion of Flt3L induced about a 5-fold reduction in NK cells and a 

4 to14-fold reduction of CD8- and CD8+ cDCs in the spleen (222).  Further to the findings 

of McKenna et al, other authors have shown that treatment with Flt3 kinase inhibitors also 

leads to a 10-fold reduction of pDCs in the spleen and LN of mice (223).   Moreover, mice 

with constitutively active Flt3 signalling were prone to development of leukaemia (224).  

Together these data provide strong evidence that Flt3L is necessary for the in vivo 

generation of DCs in the steady state.   

 

 

1.11 Flt3L BM cultures generate DCs that are equivalent to steady-
state DCs in vivo 

Naik et al were the first to provide correlative data showing that the culture of murine BM 

cells with Flt3L generated three DC subsets that are close equivalents of the steady-state 

splenic pDCs, CD8+ cDC and CD8- cDC subtypes (225).  This was demonstrated by 

several experiments, firstly analysing the surface phenotype of DCs generated from Flt3L 

cultures (Flt3L-DCs) and comparing it to splenic DC subsets.  Similar to splenic DCs, 

Flt3L-DCs contained two primary subsets that consisted of CD11c+CD45RA- cDCs and 

CD11c+ CD45RA+ pDCs.  To further segregate the cDC population and correlate them to 

splenic CD8+ cDC and CD8- cDCs, the markers CD24 and SIRP-α were assessed among 

CD11c+CD45RA- cDCs because it has been shown that splenic CD8+ cDC and CD8- cDC 

selectively express CD24 and SIRP-α, respectively.  Indeed, these markers allowed the 

indentification of two cDCs subsets that were CD24highSIRP-αlowCD11blow (CD8+ cDC 

equivalents) and CD24lowSIRP-αhighCD11bhigh (CD8- cDC equivalents).  Therefore, it was 
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shown that Flt3L-DCs and splenic DCs do exhibit similarities in phenotype.  Furthermore, 

correlative data were also gathered by analysis of transcription factors, which vary in their 

expression among the splenic DC subsets:  CD8+ cDC mainly express IRF-8, CD8- cDC 

predominantly express IRF-4, whereas pDCs express both.  In line with splenic DCs, 

Flt3L-DC subsets also shared the same expression patterns of IRF’s.  In addition, Naik et 

al showed an almost identical pattern of TLR mRNA expression and cytokine secretion 

patterns between Flt3L-DC and splenic DC subsets.  Taken together, this study was able to 

demonstrate that Flt3L cultures give rise to DCs displaying phenotypic and functional 

similarities to that of steady-state splenic DCs (225).  

 

In addition to demonstrating that GMCSF/IL-4 DCs correspond to inflammatory Tip-DCs 

(see section 1.9.2), Xu et al also directly compared the phenotype and functional 

characteristics of GMCSF/IL-4 and Flt3L-DCs (214).  As previously mentioned, murine 

BM cells cultured in GMCSF/IL4 generate DCs that express the markers CD11c+MHC 

II+MAC-3+.  In agreement with Naik et al (225), the culture of murine BM cells generated 

DCs that consisted of CD11c+B220+ pDCs and CD11c+B220- cDCs, which could be 

subdivided into those that were CD24highCD11blow (CD8+equivalent) and 

CD24lowCD11bhigh (CD8- equivalent).  In contrast to GMCSF/IL-4 DCs, Flt3L-DCs did not 

express MAC-3 and were incapable of producing iNOS following LPS stimulation. 

Furthermore, unlike GMCSF/IL-4, Flt3L could not give rise to CD11c+MHC II+ DCs from 

CD11bhighLy6Chigh monocytes.  

 

In summary, Flt3L-DCs are phenotypically and functionally distinct from GMCSF/IL-4-

DCs. While GMCSF/IL-4-DCs correspond to monocyte-derived DCs that arise in vivo 

during inflammation, Flt3L-DCs represent the 3 main subsets of DCs found in lymphoid 

organs under steady-state conditions.  
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1.12 Objectives of this study 

 
The general introduction has summarised the roles of DCs within the immune system and 

their potential use in cancer immunotherapy.  As previously discussed, the majority of 

clinical applications so far have relied on the in vitro generation of DCs from blood 

monocytes with the cytokines GMCSF/IL-4.  However, compared to DCs generated with 

Flt3L, GMCSF/IL-4 DCs do not reflect the DC subsets found under the steady-state 

conditions, but instead are similar to DCs generated in vivo during inflammation.  Given 

the differences between the two culture systems, this thesis aimed to assess the suitability 

of Flt3L-DCs for cancer immunotherapy. 

 

The objectives of this study were: 

 

Aim 1:  To characterise the phenotype of Flt3L-DCs and determine their response to 

stimulation with various TLR agonists. 

 

Aim 2:  To investigate the functional properties of Flt3L-DCs. 

 

Aim 3:  To determine whether Flt3L-DCs can activate tumour-specific CD8+ T cells 

in vivo and induce tumour rejection in mice.  
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2.1 Materials 
 

2.1.1 Labware 

   Product Source 
AcrosidcTM 32mm syringe filters with 

0.2µm Supor® membrane 

Pall Life Sciences, Cornwall, U.K. 

Axygen Sterile pipette tips (1000, 200 and 

10uL)  

Axygen Scientific Inc, Union city, USA 

Axygen Micro Tubes  
BD Falcon® polystyrene sterile multiwell 

tissue culture plates: 6 well, 24 well and 

MicrotestTM U-bottom 96 well plates 

Becton Dickson (BD) Biosciences, CA, 

USA 

BD Falcon® polystyrene tissue culture 

dishes 100 x 20 mm 
 

BD Falcon® polystyrene tissue culture 

flasks: 200mL and 600mL 
 

BD Falcon® polystyrene sterile 5mL round 

bottom tubes 
 

BD Falcon® polystyrene sterile serological 

pipettes: 5mL, 10mL & 25mL 
 

BD 1mL tuberculin syringes & BD 10mL 

syringes 
 

Precision GlideTM needles: 18, 20, 25 & 

27.5 gauge (G) 

Ultra-FineTM  needle insulin syringes (29 G): 

0.3ml 

 

BD Falcon® nylon cell strainers (40 & 

70µm) 
 

Cryo’sTM  sterile cryotubes (2mL) Greiner Bio-one, Frickenhausen, Germany 
Cover Slips (22x22mm) No. 1 thickness BioLab Ltd, Auckland, NZ 

30µm MACS® pre-separation filters Miltenyi Biotech GmbH, Germany 
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Millipore® MX-plates Millipore Corporation, Billercia, MA, 

USA 

Nylone gauze (70µm) NZ Filter Specialists Ltd, Auckland, NZ 

Superfrost® Plus microscope slides BioLab Ltd, Auckland, NZ 
Shandon filter cards Thermo Corporation, USA 

TitertubeTM Microtubes 0.5mL Bio-Rad Laboratories, Hercules, CA, USA 

  
 

 

2.1.2 Reagents and materials 
 
2-Deoxy-D-Glucose (2-DG) 

2-Deoxy-D-Glucose (MW 0.164) in powdered form was purchased from Sigma (St. Louis, 

Missouri, USA) and stored at room temperature.  When used, 2-DG was dissolved in 

cIMDM and sterilised through a 0.2µm syringe filter. 

 

2 mercaptoethanol (2 ME) 

2 ME was purchased from Sigma (St. Louis, Missouri, USA) as a 55mM solution in PBS 

and stored at 4°C. 

 

Acetone 

Analytical grade acetone was purchased from Scharlau Chemi (Barcelona, Spain) and 

stored at room temperature until used.  
 

Ammonium Chloride Tris (ACT) Lysis Buffer 

ACT buffer was prepared by mixing 9 parts of 0.16 M NH4 Cl, pH 7.4 (Sigma, St. Louis, 

Missouri, USA) and 1 part 0.17 M Tris-HCl, pH 7.65 (Merck, Darmstadt, Germany) to 

give a final concentration of 0.144 M NH4 Cl and 0.017 M Tris-HCl. 

 

BioMag®  Goat anti-Rat IgG Beads 

BioMag® beads were purchased in suspension containing sodium azide and stored at 4°C 

(Bang Laboratories, Inc, USA). 
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Bovine Serum Albumin (BSA) 
 
BSA with low endotoxin levels was purchased from ICPbio Ltd. (Henderson, Auckland, 

NZ) in powder form and stored at 4°C.  BSA was weighed out at 0.5g and was added 

directly to 500mL of PBS to give a final concentration 0.1%. 

 

Brefeldin A 

Brefeldin A was purchased from eBioscience (San Diego, CA, USA) at 1000x 

concentration and stored at 4°C.  When used, Brefeldin A was diluted to a 1x concentration 

in IMDM. 

 

DNase I 

DNase I was purchased from Roche (Mannheim, Germany).  The lyophilised powder was 

dissolved to a concentration of 10 mg/mL in IMDM and stored at -20°C. 

 
Ethanol (EtOH) 

Molecular grade 100% EtOH was purchased from Carlo Erba Reagents (Milan, Italy) and 

stored at room temperature until used.  

 

Ethylendiaminetetraacetic Acid (EDTA) 

EDTA (Sigma, St. Louis, Missouri, USA) was purchased in powder form and dissolved in 

dH2O to give a stock concentration of 0.5 M and stored at room temperature until used. 

 

Foetal Bovine Serum (FBS) 

FBS was purchased from GIBCO (Invitrogen, Auckland, NZ) and was screened for 

mycoplasma and virus, which contained 27 EU/mL.  FBS was stored in 25mL aliquots at -

20°C.  After thawing, aliquots were stored at 4°C for a maximum of 2 weeks. 

 

Geneticin®  (G418) 

The antibiotic Geneticin® was purchased from GIBCO (Invitrogen, Auckland, NZ) 

and stored in aliquots at -20°C.  After thawing, aliquots were stored at 4°C up to a 

 period of 4 weeks before discarding. 
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Iscoves Modified Dulbeco’s Medium (IMDM) 

Iscoves Modified Dulbeco’s Medium supplemented with GlutaMAXTM, 25mM HEPES 

buffer and 3.024mg/L NaHCO3 was purchased from GIBCO (Invitrogen, Auckland, NZ) 

and stored at 4°C.  

 

Complete Iscoves Modified Dulbeco’s Medium (cIMDM) 

IMDM was supplemented with 100U/mL Penicillin-streptomycin (GIBCO, Invitrogen, 

Auckland, NZ), 55µM 2-ME and 5% FBS.  Complete medium was stored at 4°C for a 

maximum of 3 weeks. 

 

Magnetic Separation (MACS) beads 

Anti-CD8α, anti-CD4 and anti-biotin MACS Microbeads were purchased from Miltenyi 

Biotec GmbH (Bergisch Gladbach, Germany) and stored at 4°C until used.  

 

Methanol 

Analytical grade methanol was purchased from Scharlau Chemi (Barcelona, Spain) and 

stored at room temperature. 
 

Penicillin-Streptomycin 

Penicillin-Streptomycin was purchased in liquid form from GIBCO (Invitrogen, Auckland, 

NZ) and stored as single use aliquots at -20°C until used.  

 

Phosphate Buffered Saline (PBS) 

CaCl2 and MgCl2 free PBS was purchased from GIBCO (Invitrogen, Auckland, NZ) and 

stored at room temperature.  When in use, PBS was stored at 4°C. 

 

Sodium Azide (NaN3) 

NaN3 (Sigma, St. Louis, Missouri, USA) was purchased in powder form and dissolved in 

dH2O to a stock concentration of 5%. The solution was stored at room temperature until 

used. 
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Tritiated thymidine ([3H]-thymidine) 

6-Methyl-3H thymidine (5mCi) with a specific activity of 5mCi/mmol was purchased from 

Amersham Biosciences (Little Chalfont, UK).  The stock was diluted in IMDM to a 

working solution of 20µCi/mL and stored at 4°C. 

 

Trypsin/EDTA 

Trypsin/EDTA solution containing 0.25% Trypsin and 1mM EDTA in Hank’s Balanced 

Salt Solution was purchased from GIBCO (Invitrogen, Auckland, NZ) and aliquots were 

stored at 4°C. 

 

Tween®  20 (Tween) 

Tween was purchased from Sigma (St. Louis, Missouri, USA) and stored at room 

temperature until used. 

 

 

2.1.3 Cytokines and growth factors 

 
Granulocyte-colony stimulating factor (GM-CSF) 

Recombinant murine GM-CSF was produced using stationary phase cultures of the murine  

X63 cell line (226), modified to secrete the full-length murine GM-CSF protein.  The 

modified murine X63 cell line was kindly provided by Dr Antonius Rolink (Basel Institute 

for Immunology, Basel, Switzerland).  

 

Interleukin 4 (IL-4) 

Recombinant murine IL-4 was produced using stationary phase cultures of CHO cell lines, 

modified to secrete the full-length murine IL-4 protein.  The modified murine CHO cell 

line was kindly provided by Dr Antonius Rolink (Basel Institute for Immunology, Basel, 

Switzerland).  
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Fms-like tyrosine kinase ligand (Flt3L) 

Recombinant murine Flt3L was produced using stationary phase cultures of a Chinese 

Hamster Ovary cell line (CHO) modified to secrete murine Flt3L (227).  The modified 

CHO cell line was kindly provided by Prof Nic Nicola (WEHI, Melbourne, Australia). 

 

Cytokines were collected by growing cell lines in cIMDM in culture flasks.   The culture 

supernatants containing the cytokines were then harvested and filtered through a 0.2µm 

serum filter.  The cytokines were then titrated using BM-DC cultures (GMCSF/IL-4 and 

Flt3L respectively) to select an optimal concentration for use.  For Flt3L, the optimal 

concentration was determined by those that provided good cell recovery and a clear 

separation of phenotypes.  Flt3L were commonly used at a concentration of 2% or 4% 

throughout this thesis.  Optimal concentrations for GMCSF/IL-4 were determined by those 

that generated DCs with an immature phenotype being less than 70%. 

 

Aliquots of the cytokines described above were stored at -20°C and in use aliquots were 

stored for up to 2 weeks at 4°C. 

 

 

2.1.4 TLR agonists 

 
CpG Oligodeoxynucleotide 1668 (CpG) 

Transfection grade CpG ODN 1668 (sequence: 5’-tccatgacgttcctgatgct-3’) was purchased 

as lyophilised powder from GeneWorks (Thebatron, SA, Australia) and stored at 4°C.  To 

create a working stock, CpG was dissolved in sterile PBS to give concentration of 

3.2mg/mL and aliquots were stored at -20°C.  In use aliquots were stored at 4°C for a 

maximum of 3 weeks.  

 

Lipopolysaccharide (LPS) 

LPS from Escherichia coli, serotype 0.111:B4, was purchased as lyophilised powder from 

Sigma (St. Louis, Missouri, USA) and dissolved in sterile IMDM at a stock concentration 

of 1mg/mL and stored at 4°C.  
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Pam3Cys-SKKKK x3 HCl (Pam3Cys) 

Pam3Cys, a synthetic lipopetide based on the structure of bacterial lipoprotein was 

purchased as a lyophilised powder (EMC microcollections, GmbH, Germany) and stored at 

4°C. To create a working stock, Pam3Cys was dissolved in sterile endotoxin-free 

physiological solution to give a final concentration of 1mg/mL and aliquots were stored at 

-20°C.  In use aliquots were stored at 4°C for a maximum of 3 weeks.  

 

Polyinosinic:Polycytidylic Acid (Poly I:C) 

Low molecular weight Poly I:C, a synthetic analog of dsRNA (148), was purchased as 

lyophilised powder from InvivoGen (SAN Diego, CA, USA) and dissolved in sterile 

endotoxin-free physiological solution as provided by the supplier at a stock concentration 

of 20mg/mL.  Aliquots were stored at -20°C and in use aliquots were stored at 4°C for a 

maximum of 3 weeks.  

 

 

2.1.5 Antibodies and Fluorophores 
 
Antibodies used to minimise non-specific antibody binding 

Antigen Clone Fluorophore Source 
Anti-FcγRII/III  2.4G2 None Purified in-house 

 
 
Antibodies used for surface marker staining of DCs 
 

Antigen Clone Fluorophore Source 

B220 RA3-6B2 Pacific Blue, 
PerCP 

BD Pharmingen, CA, USA 

B220 RA3-6B2 Biotin, FITC Purified in-house 

CD11b M1/70 Biotin eBioscience, San Diego, CA, USA 

CD11b M1/70 PerCP-Cy5.5 BD Pharmingen, CA, USA 
CD11c N418 Alexa Fluor 647, 

FITC 
Purified in-house 

CD11c HL3 PE-Cy7 BD Pharmingen, CA, USA 
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CD24 M1/69 FITC Biolegend, San Diego, CA, USA 

CD24 M1/69 PE eBioscience, San Diego, CA,USA 

CD40 3/23 PE BD Pharmingen, CA, USA 

CD80 16-10A1 Biotin, PE BD Pharmingen, CA, USA 

CD86 GL1 FITC Purified in-house 

CD86 GL1 V450 BD Pharmingen, CA, USA 

MHC class II (I-
A/I-E) 

3JP Alexa Fluor 647, 
Biotin 

Purified in-house 

 

Antibodies used for pDC depletion by magnetic cell separation (MACS) 

Antigen Clone Fluorophore Source 

B220 RA3-6B2 Biotin Purified in-house 
 
 
Antibodies used for pDC depletion using BioMag®  beads 

Antigen Clone Fluorophore Source 

B220 RA3-6B2 PerCP BD Pharmingen, CA, USA 
 
 
Antibodies used for cDC flow cytometry sorting 

Antigen Clone Fluorophore Source 

B220 RA3-6B2 FITC Purified in-house 

CD11c N418 Alexa Fluor 647 Purified in-house 
 
 
Antibodies used for intracellular staining 

Antigen Clone Fluorophore Source 

IL-12p40/70 C15.6 PE BD Pharmingen, CA, USA 

Rat IgG1 κ iso-
type control 

R3-34 PE BD Pharmingen, CA, USA 

TNF-α  MP6-
XT22 

FITC eBioscience, San Diego, CA, USA 

Rat IgG1 isotype 
control 

EBRG1 FITC eBioscience, San Diego, CA, USA 
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Antibodies used for immunofluorescence staining 

Antigen Clone Fluorophore Source 

B220 6B2 Biotin Purified in-house 

CD11c N418 Alexa Fluor 647 Purified in-house 
 
The primary biotinylated antibody was further stained with a secondary antibody, 

Streptavidin Alexa Fluor 555. 

 
Streptavidin (SA)- Fluorophore Conjugates  

SA-APC, SA-FITC, SA-PE and SA-PerCP were purchased from BD Pharmingen, CA, 

USA and stored at 4°C.  SA-Alexa Fluor 555 was purchased from Invitrogen (Auckland, 

NZ) and stored in aliquots at -20°C. 

 
Cell viability dyes 

4,6-Diamindino-2-Phenylindole Dihydrochloride (DAPI) was purchased as lyophilised 

powder from Invitrogen (Auckland, NZ) and dissolved in dH2O to a concentration of 

5mg/mL.  This solution was then further diluted to a stock concentration of 200µg/mL in 

FACS buffer and stored in aliquots at 4°C.  When used, DAPI was diluted in FACS buffer 

at 1:1000 dilution and 150µL were added to cells. 

 

LIVE/DEAD® Fixable Blue Dead Cell Stain Kit, was purchased from Invitrogen 

(Auckland, NZ) and stored at -20°C.  The lyophilised dye powder was dissolved in 50µL 

DMSO per vial and stored at 4°C.  When used, the viability dye was diluted in FACS 

buffer at 1:500 dilution and 50µL were added to cells.   

 

Propidium Iodide (PI) was purchased from BD Pharmingen (San Diego, CA, USA) in 

liquid form and stored at 4°C. 
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2.1.6     Proteins and peptides 

Ovalbumin protein from chicken egg white (OVA) was purchased from Sigma-Aldrich NZ 

Ltd, Auckland, NZ. The OVA peptides SIINFEKL (OVA257-264) and 

ISQAVHAAHAEINEAGR (OVA323-339) were purchased from Mimotopes Pty Ltd 

(Clayton, VA, Australia).  Hereafter, the term ISQ will be used in referral to the 

ISQAVHAAHAEINEAGR peptides. 

 

 

2.1.7    Assay buffer compositions 

 
FACS buffer Final concentration 

Foetal bovine serum (FBS) 0.2%   

Sodium azide  0.01%    

EDTA                                                    10 mM 

All reagents were added to 1L D-PBS (made in-house) and stored at 4°C.   

 

Wuerzburger buffer  Final concentration 

Foetal bovine serum (FBS) 0.1% 

DNAse I  10 µg/ml 

EDTA  5 mM 

All reagents were added to 500mL PBS and stored at 4°C. 
 
 
Bioplex assay buffer Final concentration 
 
Bovine serum albumin (BSA) 0.1%  

Tween® 20 0.05% 

Sodium azide  0.005% 

EDTA 2.5mM 

All reagents were added to 500 mL PBS and stored at 4°C. 
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2.1.8 Kits  
 

Biotin/Avidin blocking kit     Invitrogen, NZ 

 
Bioplex bead array kit (IL-12p70, IL-10, IL-6, TNF-α,) Invitrogen, NZ 

 
Diff-Quik kit       Dade Behring,   

        Newark, USA 

BD Cytofix/CytopermTM Plus (with GolgiStop) kit  BD Bioscience,  

 
 

2.2 Tumour cell lines 
 
The B16.OVA melanoma tumour cell line was generated by Dr Edith Lord and Dr John G, 

Frelinger, University of Rochester, Rochester, NY and kindly provided by Dr Roslyn 

Kemp and Dr Dick Dutton, Trudeau Institute, NY, USA.  

 

 
2.3    Mice 

 
2.3.1  Maintenance and ethical approvals 
 
All mice were bred and maintained in the Biomedical Research Unit of the Malaghan 

Institute of Medical Research.  All experimental procedures were approved by the Victoria 

University Animal Ethics Committee and carried out in accordance with institutional 

guidelines, under the license code 2009R8M (Use of mouse tissue for multiple research 

projects within the Malaghan Institute) or 2010R1M (Tumour immunity and intratumoral 

environment).  All mice used for experiments were male or female, aged between 6–11 

weeks and sex matched within each experiment.  
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2.3.2 Mouse strains 

C57BL/6 (C57) breeding pairs were originally obtained from the Jackson Laboratories 

(Bar Harbour, ME, USA) and bred at the Malaghan Institute of Medical Research, 

Wellington, NZ, by brother X sister mating. 

 

OTI and OTII mice (228, 229) expressing transgenic T cell receptor (TCR) specific for 

ovalbumin (OVA)257-264  presented on  H2-Kb or (OVA)323-339 presented on I-Ab respectively 

were obtained from Dr Sarah Hook, School of Pharmacy, Dunedin, NZ, with the 

permission of Prof Frank Carbone, Melbourne University, Australia. 

 

OTI x B6.SJL-Ptprca and OT-II x B6.SJL-Ptprca congenic mice were bred in-house, by 

crossing OTI mice (CD45.2+) or OTII (CD45.1+) with B6 congenic mice for one 

generation. 

 

TLR4-/- mice were kindly provided by Dr Shizuo Akira, Hyogo College of Medicine, 

Japan (230). 

 

 

 
2.4 Methods 
 

2.4.1 General cell culture 
All cells were cultured in cIMDM at 37°C in 5% CO2 and 95% humidity.  

 

Tumour cell lines were cultured in cIMDM supplemented with 0.5mg/mL G418 (GIBCO, 

Auckland, NZ) in 200mL culture flasks.  To harvest the cells, 3mL of Trypsin/EDTA was 

added and incubated for 1 minute to detach the cells from the flask.  Following incubation, 

an equal volume of cIMDM was added to stop proteolysis and cells were washed three 

times in IMDM before resuspending at 1x106 cells /mL and injecting into mice. 
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2.4.2  Dendritic cell culturing and manipulation 
 

2.4.2.1  Extraction of bone marrow cells 
C57BL/6 mice were sacrificed by gas asphyxiation followed by cervical dislocation.  Hind 

legs were detached from the hip and muscle and connective tissue were removed from the 

femur and tibia and collected in IMDM.  End of the bones were snipped away and BM 

cells were flushed into a 50mL falcon tube using a 25-gauge needle and a 10mL syringe 

filled with IMDM.  Cell clumps were disrupted by vigorous pipetting and the cell 

suspension was strained through a 70µm cell strainer.  Live cells were identified using 

Trypan blue dye (GIBCO, Invitrogen, Auckland, NZ) exclusion and counted using a 

haemocytometer.  Cells were then resuspended at the appropriate concentration.  

 

2.4.2.2   Generating Flt3L-DCs 
BM cells were obtained as described in 2.4.2.1.  Following cell counting, cells were 

pelleted by centrifugation at 300 x g for 10 minutes and resuspended at 1x106 cells/mL in 

cIMDM supplemented with Flt3L at the optimised concentration (2-4%).  5mL were 

pipetted into each well of a 6-well plate and incubated for 9 days.  Cells were 

supplemented with fresh nutrients on days 3, 6 and 9 by replacing 2mL of medium from 

each well with cIMDM containing 0.05-0.10% Flt3L (231).   

 

2.4.2.3 Generating GMCSF/IL-4 DCs 
BM cells were obtained as described in 2.4.2.1.  Following cell counting, cells were 

pelleted by centrifugation at 300 x g for 10 minutes and resuspended at 2x106 cells per 5 

mL in cIMDM containing 10ng/ml GM-CSF and 20ng/ml IL-4 (232).  5mL were pipetted 

into each well of a 6-well plate and incubated for 7 days.   On days 3 and 5, approximately 

2 mL from each well was removed and fresh cIMDM supplemented with 10ng/ml GM-

CSF and 20ng/ml IL-4 was added to replenish nutrients.  
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2.4.2.4  Inducing DC activation 

Flt3L-DC activation 
 
Flt3L-DCs were stimulated with various TLR agonists on day 9 for 24 hours or on day 10 

if the period of stimulation was less.  The final concentrations of the TLR agonists used 

were: CpG (2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  The concentration of 

LPS used varied at either 100ng/mL, 250ng/mL or 500ng/mL and are indicated within 

Chapter 2 and 3.  During the time of stimulation, Flt3L-DCs were incubated at 37°C.  

Following stimulation, non-adherent cells were harvested by gentle pipetting, centrifuged 

at 300 x g for 10 minutes and resuspended at the appropriate concentration for subsequent 

use.  

 

GMCSF/IL-4 DC activation 
 
GMCSF/IL-4 DCs were stimulated with LPS alone or in combination with Pam3Cys.  

Days in which DCs received the stimulus and periods of incubation varied.  As described 

in Chapter 3, GMCSF/IL-4 DCs were stimulated for 6 hours on day 7 of cell culture with 

LPS at concentrations of 100ng/mL, 250ng/mL and 500ng/mL.  Cells were then incubated 

at 37°C for 24 hours.  In Chapter 4, GMCSF/IL-4 DCs were stimulated on day 6 of cell 

culture with a combination of LPS (100ng/mL) and Pam3Cys (100ng/mL) and cells were 

then incubated at 37°C for 24 hours.  Following stimulation non-adherent cells were 

harvested by gentle pipetting, centrifuged at 300 x g for 10 minutes and resuspended at the 

appropriate concentration for subsequent use. 
 
 

2.4.2.5  Loading Flt3L-DCs with peptides for in vitro assays 
For in vitro assays, Flt3L-DCs were loaded with peptides following stimulation with TLR 

agonists as described in 2.4.2.4.  DCs were harvested from culture and resuspended at 1x 

106 cells/mL.  SIINFEKL or ISQ peptides were added into the DC suspensions at 0.3nM or 

0.5mM respectively and incubated at 37 °C for 2 hours.  After incubation, DCs were 

washed twice in cIMDM and resuspended at the appropriate concentration in cIMDM for 

further use. 
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For in vivo experiments involving DC vaccination, the same procedure was performed as 

described above, however DCs were loaded with 10µM of SIINFEKL peptide.  Following 

a 2 hour incubation, DCs were washed three times with IMDM and resuspended at 1x106 

cells/mL in IMDM. 

 

2.4.2.6 Loading of Flt3L-DCs with OVA protein 
OVA protein loading occurred on day 8 of cell culture.  OVA protein powder was weighed 

in a tissue culture dish and dissolved in PBS to make a stock concentration of 40mg/ml.  

The protein solution was then sterilized by filtering through a 32 mm syringe filter and 

added to the DC cultures at a final concentration of 0.5mg/mL.  Cells were then left to 

incubate overnight (14-15 hours).   

 

 
2.4.2.7 Treatment of Flt3L and GMCSF/IL-4 DCs with 2-Deoxy-D-

glucose 
 
Treatment with 2-DG occurred on day 10 for Flt3L and day 7 for GMCSF/IL-4 DC 

cultures.  2-DG was weighed out and resuspended to a working concentration of 25mM in 

cIMDM and set aside to dissolve at room temperature.  The 2-DG solution was then 

sterilized by filtering through a 32 mm syringe filter and subsequently added to the DC 

cultures at final concentrations of 25mM, 12.5mM or 6.25mM.  DCs were incubated for 6 

hours and then harvested, centrifuged at 300 x g for 10 minutes and resuspended at the 

appropriate concentration for fluorescent antibody labelling (2.4.5.1).  

 

 

2.4.3  Cell purification/depletion and cell sorting 

 
2.4.3.1  Preparation of lymph node and spleen suspensions 
Lymph nodes were punctured with a needle and then pressed through a 70µm cell strainer 

with a 1ml syringe plunger and flushed simultaneously with IMDM into 50mL falcon 

tubes. The cell suspension was then centrifuged at 300 x g for 10 minutes, washed with 

Wuerzburger buffer and stored on ice until further use.  
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Spleens were cut into small pieces using a pair of scissors.   The spleens were disrupted by 

pressing with a 1ml syringe plunger through a 70µm cell strainer and flushed 

simultaneously with IMDM into 50mL falcon tubes.   Splenocyte suspensions were treated 

with ACT buffer for 5 min at 37 °C to lyse the red blood cells.  Cells were then washed 

with Wuerzburger buffer and stored on ice until further use.  

 

2.4.3.2 Purification of T cells using magnetic cell separation (MACS) 
CD4+ T cells were enriched from the lymph nodes and spleens of naïve OT-II or OT-II 

B6.SJL-Ptprca mice, while CD8+ T cells were enriched from the lymph nodes and spleens 

of naïve OT-I or OT-I B6.SJL-Ptprca mice.  Lymphocyte and splenocyte suspensions were 

prepared separately as described in 2.4.3.1.  Both cell suspensions were pooled together 

and centrifuged at 300 x g for 10 minutes and resuspended in Wuerzburger buffer.  The 

cell mixture was filtered through a 70µm cells strainer, counted and resuspended at 1x 107 

cells per 90µL of Wuerzburger buffer.   For CD4+ T cell enrichment, 10uL of anti-CD4 

MACS microbeads were added per 1x107 cells.  For CD8+ T cell enrichment, 10uL of anti-

CD8 MACS microbeads were added per 1x107 cells.  The cell mixture was then incubated 

on ice for 15 minutes with regular mixing during the incubation.  Following incubation, 

cells were washed by adding 1-2mL of Wuerzburger buffer per 1x107 cells and then 

centrifuged at 300 x g for 10 minutes to discard unbound microbeads.  The cells were then 

resuspended to 100 x 106
 cells/mL in Wuerzburger buffer, passed through a 30µm MACS 

pre-separation filter and loaded on the AutoMACS machine for positive magnetic selection 

(Miltenyi Biotec GmbH, Germany).  Lymphocytes were resuspended at 1x106 cells/mL in 

cIMDM and left on ice until further use.   Purification efficiency of CD4+ and CD8+ T cells 

was checked by flow fluorescent labelling of cells and analysed by flow cytometry 

(Appendix 1). 

 

 

2.4.3.3  Depletion of B220+ pDCs using magnetic cell separation (MACS) 
Flt3L-DCs were harvested from culture on day 9 and centrifuged at 300 x g for 10 minutes.  

Cells were counted and resuspended at 1x107 cells/mL in Wuerzburger buffer. Anti-

FcγRII/III antibody (2.4G2) was added to the cell suspension and incubated on ice for 10 
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minutes to block Fc receptors.  Biotinylated B220 antibody was added to the cell 

suspensions containing 2.4G2 and incubated for a further 15 minutes on ice.  Following 

incubation, an equal volume of Wuerzburger buffer was added to wash the cells and 

remove excess antibody. The wash step was performed twice and cells were then 

resuspended at 1x107 cells per 90µL of Wuerzburger buffer.  Streptavidin conjugated 

microbeads were added and cells were incubated on ice for 15 minutes.  After incubation, 

cells were washed twice and resuspended at 1x108 cells/mL in Wuerzburger buffer.  The 

cells were then passed through a 30µm MACS pre-separation filter and loaded on the 

AutoMACS machine for negative magnetic selection (Miltenyi Biotec GmbH, Germany).  

Efficiency of pDC depletion was checked by flow fluorescent labelling of cells and 

analysed by flow cytometry (Appendix 2). 

 

2.4.3.4 Depletion of B220+ pDCs using BioMag®  beads 

Flt3L-DCs were harvested from culture on day 9 and centrifuged at 300 x g for 10 minutes.  

Cells were counted and resuspended at 1x107 cells /mL in Wuerzburger buffer. Anti-

FcγRII/III antibody (2.4G2) was added to the cell suspension and incubated on ice for 10 

minutes to block Fc receptors.  Antibody against B220 (Rat Anti-Mouse B220 PerCP) was 

added to the cell suspensions containing 2.4G2 and incubated for a further 15 minutes on 

ice.  After incubation, cells were washed twice with Wuerzburger buffer to remove excess 

antibodies.  Cells were re-counted and resuspended at 1x107 cells/mL and BioMag® beads 

were subsequently added to the cell suspension at a ratio of 15 beads per cell.  BioMag® 

beads work by specifically binding to cells labelled with rat mAb.  The cells were then 

placed on the spinning wheel at 4°C and incubated for 30 minutes.  Following incubation, 

cells were then washed twice and placed on the DynalMag-15 magnet (Invitrogen, USA) 

to trap the beads bound to the B220+ cells on the magnet.  Cells of interest (cDCs) within 

the supernatant were collected.  

 

2.4.3.5 Fluorescence activated cell sorting (FACS) of Flt3L-DCs 
Flt3L-DCs were harvested from culture on day 9 and centrifuged at 300 x g for 10 minutes.  

Cells were counted and resuspended at 5x106 cells/mL in Wuerzburger buffer. Anti-
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FcγRII/III antibody (2.4G2) was added to the cell suspension and incubated on ice for 10 

minutes.  Fluorescently conjugated antibody against the surface markers CD11c and B220 

was added to the cell suspensions containing 2.4G2 and incubated for a further 15 minutes 

on ice.  Cells were washed twice with Wuerzburger buffer and passed through a 30µm 

MACS pre-separation filter to remove cell clumps.  Cells were then centrifuged at 300 x g 

for 10 minutes, counted and resuspended at 6x106 cells/mL in Wuerzburger buffer.  Cells 

were sorted using a FACSVantage SE DiVa (Becton Dickinson, CA, USA).  Unlabelled 

and single labelled samples for each fluorochrome were used to set the voltage and 

compensation parameters.  Cells that stained positive for the markers CD11c and negative 

B220 were collected for further use.  

 

 
2.4.4  Assays of cell function 

 
2.4.4.1 In vitro T cell proliferation assay 
In vitro T cell proliferation assays were performed for both CD8+ and CD4+ T cells.  

Flt3L-DCs were harvested from culture on day 9, depleted of B220+ pDCs and stimulated 

with TLR agonists as described in 2.4.3.3 and 2.4.2.4, respectively.   DCs were then loaded 

with SIINFEKL or ISQ peptides as described in 2.4.2.5.  During the 2 hour incubation with 

peptides, lymph nodes and spleens were harvested from OT-II and OT-I mice and made 

into cell suspensions as described in 2.4.3.1.  The lymphocyte mixtures were then enriched 

for CD4+ and CD8+ T cells as described 2.4.3.2.  Following peptide loading, DCs were 

resuspended at 0.1x106 cells/mL in cIMDM and serially titrated onto 96-well culture 

plates.  The initial starting concentration was 1x104 DCs per well and DCs were serially 

titrated at 2 fold dilutions.  DCs loaded with OVA323-33 and SIINFEKL peptide received 

CD4+ and CD8+ T cells, respectively at 1x105 cells per well.  Plates containing CD8+ T 

cells were then incubated for 48 hours at 37 °C, but those containing CD4+ T cells were 

incubated for 48-72 hours at 37 °C.  After the incubation, 1µCi [3H]-thymidine was added 

into the wells and cells were incubated for another 18 hours.  Following the incubation 

with thymidine, the cells were harvested using an automated cell harvester (Tomtec, CT, 

USA) onto Wallac Filters (Turku, Finland).  Filters were dried and sealed in sample bags 

(Wallac) with 5mL BetaScint scintillation fluid (Wallac). Thymidine incorporation was 
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measured using Wallac 1450 MicrobetaPlus Liquid Scintillation Counter (PerkinElmer 

Life Sciences and Analytical Sciences, formerly Wallac Oy) and acquired using Wallac 

1450 MicroBeta Windows Workstation ver. 2.70.004.  Thymidine incorporation was used 

as a measure of proliferation. 

 

2.4.4.2 In vitro cross-presentation assay 
Flt3L-DCs were generated from TLR4-/- BM cells as described in 2.4.2.2 and loaded with 

OVA protein as described in 2.4.2.6.  Following incubation with OVA protein, Flt3L-DCs 

were depleted of B220+ pDCs and stimulated with TLR agonists as described in 2.4.3.3 

and 2.4.2.4, respectively.  Cells were counted and resuspended at 0.1x106 cells/mL and 

titrated onto 96-well plates.  The initial starting concentration was 1x104 DCs per well and 

DCs were serially titrated at 2 fold dilutions.  CD8+ T cells that had been prepared earlier 

(2.4.3.1, 2.4.3.2) were added at 1x105 cells per well.  Cells were then incubated for 2 days 

at 37 °C.  After the incubation, 1 µCi [3H]-thymidine was added into the wells and cells 

were incubated for another 18 hours.  Cell harvesting and analysis was performed as 

described in 2.4.4.1.    

 

2.4.4.3 Detection of cytokine production from DC supernatant 
Flt3L-DCs were stimulated with TLR agonists as described in 2.4.2.4.  Cells were then 

harvested following stimulation and centrifuged at 300 x g for 10 minutes.  Supernatants 

were then transferred into new 2mL cryotubes and stored at -20°C until further analysis.  

Levels of IL-12p70, TNF-α and IL-6 were determined using a multiplex cytokine 

detection kit (Invitrogen, NZ) according to the manufacturer’s instructions.  Briefly, a 

mixture of capture beads specific for each cytokine was prepared at 0.833µL of each bead 

per allocated well in bioplex assay buffer at a volume of 22.5µL per allocated well.  25µL 

of the bead mixture was then added to each well and the plate was washed twice with 

bioplex assay buffer by adding 200µL per well and removing by vacuum manifold (Bio-

Rad, USA).  Supernantant samples were diluted at 1:2 in bioplex assay buffer and 50µL 

was added to the wells.  The plate was then incubated with agitation for 2 hours at room 

temperature and then washed twice as described above.  Biotinylated detection antibodies 
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were made up at a 1:30 dilution and 25µL was added to the plate followed by 1 hour 

incubation with agitation at room temperature.  The plate was then washed twice and 

incubated with 100µL of SA-PE for 30 minutes at room temperature.  The plate was 

washed three times as described above and samples were then resuspended in 200µL of 

bioplex assay buffer and analysed using the Bio-PlexTM system.  Cytokine concentrations 

were determined against commercial standards (Invitrogen, NZ) and calculated using the 

provided software (Bio-Plex manager software, Bio-Rad, USA). 

 

 

2.4.5    Fluorescent labelling of cells and flow cytometry 

 
2.4.5.1 Detection of surface marker expression 
Single cell suspensions were counted, washed once in FACS buffer and resuspended at 1-

2x106 cells/mL.  Cells were then transferred onto 96-well plates and centrifuged at 320 x g 

for 2 minutes to pellet the cells.  The supernatant was discarded by tipping the plate up side 

down and flicking once and the pellets were resuspended by gentle vortexing.  The cells 

were then incubated with anti-FcγRII/III (2.4G2) antibodies for 10 minutes on ice to block 

Fc receptors.  After the 10 minute incubation, fluorochrome-conjugated antibodies against 

cell surface markers were added to the 2.4G2 containing cell suspension at the appropriate 

dilutions and the cells were incubated for a further 10 minutes on ice.  Cells were then 

washed twice by adding 200µL of FACS buffer into each well, and centrifuged at 320 x g 

for 2 minutes.  The supernatant was then discarded as described above.  If a primary 

biotinylated antibody was used, the appropriate streptavidin-conjugated fluorochrome 

wasadded and incubated for 10 minutes on ice.  Cells were then washed twice in FACS 

buffer as described above and resuspended in 200µL of FACS buffer for flow cytometry 

analysis.  Where addition of a viability dye were appropriate, cells were resuspended in 

150uL of FACS buffer and 150µL diluted DAPI (2.1.5) was added 5-10 minutes before 

analysis on the flow cytometer.  Alternatively, cells were resuspended in 200uL of FACS 

buffer and 1µL of a 75µg/mL stock of PI was added 5-10 minutes before analysis.  
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 2.4.5.2 Detection of intracellular cytokines 
Flt3L-DCs were stimulated with TLR agonists as described in 2.4.2.4.  For the final 4 

hours of incubation, GolgiStopTM alone or in combination with Brefeldin A was added to 

the cells in culture to inhibit cytokine secretion.  The combination of GolgiStopTM and 

Brefeldin A was used for detection of TNF-α.  Following incubation, cells were then 

harvested and stained for live cells using Live/Dead fixable dye as described in 2.1.5.  

Cells were then washed twice in FACS buffer and labelled with antibodies against surface 

makers as described in 2.4.5.1.  Following surface labelling, cells were washed twice in 

FACS buffer and then incubated with 200µl of BD Cytofix/Cytoperm solution for 20 min 

at 4 °C.  The cells were then washed twice in 1x BD Perm/Wash buffer by adding 200µL 

per well and centrifuging at 300 x g for 10 minutes. The cells were then incubated with 

antibodies against cytokines, or the respective isotype control antibodies for 30 min on ice.  

After the 30 min incubation, the cells were washed twice in BD Perm/Wash buffer.  To 

minimize background staining, cells were allowed to sit in the Perm/Wash buffer for 10 

min before centrifugation.  After a total of three washes, the cells were resuspended in 

200–300µL FACS buffer and stored at 4 °C wrapped in tin foil.  Samples were collected 

and stained at different times, but were analysed together on the flow cytometer. 

 

2.4.5.3 Acquisition and analysis 
Antibody-labelled cells were analysed on a FACSort, FACScalibur, or LSRII SORP flow 

cytometer (Becton-Dickson, CA, USA).  Following data acquisition on the flow cytometer, 

analysis was performed using the FlowJo software (Tree Star, San Carlos, CA, USA).  

Live cells or whole fixed cells were identified on the basis of Forward Scatter (FSC) and 

Side Scatter (SSC).   In some experiments where a viability dye was applicable, live cells 

were identified by measure of PI or DAPI exclusion.  Unstained samples and samples 

stained with single fluorophores were used to calibrate the acquisition voltages and set 

compensation for spectral overlap between fluorophores.  For experiments analysing 

intracellular cytokines, the appropriate matched isotype control antibodies were used to 

control for background fluorescence. 
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2.4.6  Histology 

 
2.4.6.1 Preparation of Flt3L and GMCSF/IL-4 DCs for morphological 

analysis and immuno-fluorescence staining  
 
Flt3L and GMCSF/IL-4 DCs were generated as described in 2.4.2.2 and 2.4.2.3 and 

harvested on day 9 and 7, respectively.  DCs from both populations were centrifuged at 

300 x g for 10 minutes and resuspended at 1x105 cells/mL in PBS containing 10% FBS. 

Cell samples in a volume of 200uL were centrifuged for 8 minutes at 600rpm onto glass 

slides (LabServ, Auckland, NZ) using a Shandon Cytospin 4 cytocentrifuge (Thermo 

Scientific, Cheshire, UK).  Cells were then air dried for 1 hour. 

 

2.4.6.2 Morphological analysis of Flt3L and GMCSF/IL-4 DCs 

DCs were prepared as described in 2.4.6.1.  Cells were then fixed for five seconds in Diff-

Quik Fixative (1.8mg/mL Triarylmethane dye methyl alcohol), stained for ten seconds in 

Diff-Quik Solution I (1g/L Xanthine dye) and then stained for seven seconds in Diff-Quik 

Solution II (0.625g/L Azure A, 0.625g/L Methylene blue).  Cells were air dried for 1 hour 

and subsequently photographed by light microscopy using an Olympus BX51 microscope 

(Olympus, Auckland, NZ). 

 

2.4.6.3 Immunofluorescence staining of Flt3L-DCs 

DCs were prepared as described in 2.4.6.1.  Cells were then fixed with a fixative solution 

containing 50% methanol and 50% acetone.  After 10 minutes, cells were washed by 

rinsing the slide with PBS and non-specific binding sites were blocked by incubation with 

PBS supplemented with 10% FBS for 30 minutes at 37°C.  Cells were then washed as 

described above and internal cell biotin block was performed using a Biotin/Avidin 

blocking kit (Invitrogen, NZ) according to the manufacturer’s protocol.  Flourochrome-

conjugated CD11c Ab were made at the appropriate dilution in FACS buffer and 100uL 

was added over the cells and incubated in the dark for 1 hour at room temperature.  Cells 

were then washed as described above and stained with biotinylated B220 antibody and 

incubated in the dark for 1 hour at room temperature.  Following incubation, DCs were 
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then washed again and stained with the secondary antibody Alexa Flour 555 and incubated 

in the dark for 30 minutes. Cells were washed with PBS and excess PBS was removed by 

blotting.  Slides were further air dried in the dark for 30 minutes and a drop of ProLong 

Gold anti-fade with DAPI (Invitrogen) was applied onto the slide and mounted with a 

cover slip (Bio-lab Ltd, Auckland, NZ).  Slides were examined using an Olympus BX51 

(Olympus, Auckland, NZ) fluorescent microscope and images were visualised using a 

software as described in 2.4.6.4. 

 

2.4.6.4 Microscope image acquisition and analysis 
Microscope images of cells were acquired and optimised using AnalySIS Life Imaging 

Software (Olympus Soft Imaging Solutions GmbH, Münster, Germany).  Photoshop 

software (Adobe Systems Inc, San Jose, CA, USA) was used on microscopic images for 

analysis.  
 
 
 
2.4.7 DC vaccination or tumour challenge 

 

2.4.7.1   DC vaccination 

Flt3L-DCs and GMCSF/IL-4 DCs were generated as described in 2.4.2.2 and 2.4.2.3 

respectively.  On day 9 of cell culture, Flt3L-DCs were depleted of B220+ pDCs as 

described in 2.4.3.3.  Following depletion, Flt3L-cDCs were placed back into culture and 

stimulated with TLR agonists as described in 2.4.2.4.  GMCSF/IL-4 DCs were also 

stimulated with TLR agonists on day 6 as described in 2.4.2.4.  Both DC populations were 

then loaded with SIINFEKL peptide as described in 2.4.2.5 and resuspended in IMDM at 

1x106 cells/mL.  DCs were injected s.c. into the right flank of C57BL/6 mice at varying 

DC numbers, as indicated in Chapter 4. 

 
 

2.4.7.2 Challenge with B16.OVA melanoma cells 

Mice were injected s.c. into the left flank with 1x105 B16.OVA melanoma cells.  Tumours 

in untreated control mice were palpable from 8-10 days following tumour challenge and 
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tumour growth was then checked every 2 days.  Bisecting diameters were measured using 

Mitutoyo calipers.  To account for the thickness of the skin, 1mm was subtracted from 

each diameter measurement.  Mice were euthanized when tumour size reached 150-

200mm2. 

 

2.5 Statistical analysis 

Non-parametric tests were chosen when analysing biological data, which does not assume 

that the data are sampled from a Gaussian distribution.  Tests for normal distribution were 

not applicable with experiments presented in this thesis due to a small sample size (≤3).  

To test for statistical significance using a non-parametric test, the Kruskal-Wallis with 

Dunn’s multiple comparison tests were used in experiments for which there were two or 

more groups.  The P values tend to be higher within non-parametric tests, thus statistical 

significance was not detected throughout many of the experiments presented within this 

thesis.  All statistical analysis was carried out with the software GraphPad Prism 

(GraphPad Software Inc. San Diego, CA, USA). 

 

7.  
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3.1 Introduction 

As described in Chapter 1, the culture of precursor cells in Flt3L generates DCs that 

reproduce the heterogeneity observed in lymphoid organs, and differ substantially in 

phenotype and morphology from DCs generated with GMCSF/IL-4 (214, 231).  

Differences among the DCs that are generated using these culture methods are an 

important factor to consider, especially when implementing DCs as an immunotherapeutic 

tool.  Thus, to assess the potential applicability of Flt3L-DCs for immunotherapy against 

cancer, we established a culture method within our laboratory that allows for the in vitro 

generation of Flt3L-DCs from murine BM precursors.  This culture system is modelled 

from studies reported by other authors on Flt3L-DCs (214, 225, 231), but will allow for the 

validation of results from those studies and, in addition, will be further extended within our 

system.  Areas in which previous work will be further extended are discussed as follows. 

 

3.1.1 DC activation with TLR agonist combinations 
Most studies so far have analysed the activation of Flt3L-DCs that is induced by 

stimulation with single TLR agonists.  Results have shown that upon TLR stimulation, 

Flt3L-DCs are capable of up-regulating co-stimulatory molecules and secretion of pro-

inflammatory cytokines (214, 233, 234).  However, there is currently no published data 

exploring the effects of combined TLR ligation to enhance activation of Flt3L-DCs.  

Activation of GM-CSF DCs by selected TLR agonist combinations has been shown to 

induce pro-inflammatory cytokine secretion and expression of co-stimulatory molecules 

superior to DCs activated by one TLR agonist alone (235, 236).  Napolitani et al first 

demonstrated that combined TLR stimulation with a TLR3/4 and TLR7/9 agonist 

augmented IL-12 production by GM-CSF/IL-4 DCs.  The enhanced activation that was 

observed from combining the TLR agonists, was described as syngergistic activation 

(235).  Soon after, Wager et al showed that synergistic activation of GM-CSF DCs was due 

to the combined triggering of differential signalling pathways within the cell, specifically 

the activation of MyD88 and TRIF adapter molecules (236).  On engagement with their 

ligands, TLRs recruit specific adapter molecules that propagate downstream signalling 

(237).  The pathway that uses the adapter molecule MyD88 leads to early activation of the 
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transcription factor NF-κB and the production of inflammatory cytokines (238).  In 

contrast, the pathway that utilises the adapter molecule TRIF leads to activation of the 

transcription factor IRF3 and late activation of NF-κB, thus leading to the induction of 

both type 1 interferons and inflammatory cytokines.  With the exception of TLR3, which 

signals exclusively through TRIF, and TLR4, which can signal through TRIF and MyD88, 

all other TLRs that have been characterised to date signal through the MyD88 pathway 

(237, 239).  Therefore, stimulation of Flt3L-DCs by the combined triggering of MyD88-

dependent and independent (TRIF) signalling pathways could potentially result in 

improved DC activation.  Ultimately, this may form the basis for improved methods for 

Flt3L-DC activation.  Figure 3.1 depicts a simplified overview of the TLRs and the 

respective agonists that were used within this study to stimulate Flt3L-DCs.  

 

 
Figure  3.1: Overview of the TLR agonists used within this study and the 

corresponding signalling pathways. The TLR agonists (red) and corresponding TLRs (blue) that 

were used within this study are shown.  The curved arrow represents putative connection between MyD88-

independent (green) and MyD88-dependent (purple) pathways used by TLR3.  Adapted from Bagchi et al 

(240) 
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3.1.2  Metabolic requirements for cellular activation 

Immune cells are in constant need of energy in order to carry out housekeeping or immune 

specific functions (241).  To fuel these functions, nutrients such as glucose, amino acids 

and fatty acids are taken up and degraded into intermediates, thereby providing the cell 

with a supply of metabolic substrates that can be used to generate energy in the form of 

ATP (242).   

 

In T cells, earlier studies have brought insight into the regulation of energy metabolism 

between the resting and activated state.  In the resting state, T cells have fewer bioenergetic 

demands relative to the activated state and devote a majority of energy metabolism to 

maintain housekeeping functions (241-243). The intracellular pool of ATP that is 

generated in resting T cells is derived from metabolic processes involving glycolysis and 

oxidative phosphorylation.  During glycolysis, glucose is taken up and subsequently 

degraded to form pyruvate, which is further used as a substrate for energy metabolism via 

oxidative phosphorylation (242) (Figure 3.2A).   Furthermore, other energy sources, such 

as fatty acids and amino acids can be taken up and degraded within the mitochondria, also 

generating intermediates maintaining ATP production (242).  However, the transition from 

a resting to an activated state is an energetically demanding process. Therefore, upon 

activation, cellular metabolism is reprogrammed towards aerobic glycolysis in order to 

support cellular proliferation (243, 244).  The advantage of this metabolic switch does not 

seem apparent as glycolysis yields less energy compared to oxidative phosphorylation.  

However, ATP is produced substantially faster, allowing T cells to meet the bioenergetic 

demands of activation (242, 243).  As a result of this switch, continued ATP production 

becomes progressively more dependent on the degradation of glucose in the cytosol by 

glycolysis.  Ultimately, aerobic glycolysis drives the formation of pyruvate into lactate in 

order to regenerate the cells pool of NAD+, that is needed as an electron acceptor to 

maintain cytosolic glucose metabolism (Figure 3.2B).  

 

 



Chapter 3:  Characterisation of Flt3L-DCs and evaluation of their response to stimulation  
 with TLR agonists   

58 

 
 
Figure  3.2: Resting and activated T cells display distinct metabolic signatures.  A) 

Resting T cells derive the majority of their ATP through glycolysis and mitochondrial oxidative 

phosphorylation. Glucose is taken up by the glucose transporter 1 (GLUT1), where it is converted first to 

glucose-6-phosphate (G-6-P) by the enzyme hexokinase.  G-6-P is further processed within the glycolytic 

pathway (additional enzymatic reactions not shown), generating two molecules each of pyruvate, NADH and 

ATP, per molecule of glucose.  Pyruvate is further utilised in oxidative phosphorylation. Nutrients such as 

fatty acids and amino acids can also be taken up and degraded within the mitochondria, thus generating 

further intermediates for ATP production.  Oxidative phosphorylation generates 36 ATP in total.  B) Upon 

activation, T cells switch from oxidative phosphorylation to aerobic glycolysis.  ATP is generated much 

faster, thus sustaining the bioenergetic demands of activation (red arrows).  In aerobic glycolysis, pyruvate is 

reduced to lactate by fermentation, a reaction in which permits the regeneration of NAD+ needed to maintain 

glycolysis.  Adapted from Fox et al (242). 

 

There is now evidence suggesting that DCs undertake the same metabolic conversion after 

exposure to TLR agonists.  To determine whether TLR activation has effects on glycolytic 

metabolism, Krawczyk et al performed metabolic assays on in vitro derived GM-CSF DCs 

that were cultured in media supplemented with glucose (245).  It was observed that TLR 

stimulated DCs had decreased mitochondrial-dependent oxygen consumption, despite the 

availability of oxygen and the rate of mitochondrial β-oxidation of fatty acids was also 

suppressed. TLR stimulated GM-CSF DCs had an increase in glycolytic rate compared to 

resting controls and inhibition of glycolytic metabolism resulted in impaired ability for the 

TLR treated DCs to up-regulate activation markers (245).  Additionally, DCs subjected to 

glucose limitation for 24 hours, during the time of stimulation were unable to survive and 
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underwent apoptosis.  Unlike that of T cells, an increase in glycolytic metabolism due to 

TLR signalling does not promote DC proliferation. This implies that the increase in 

glycolysis triggered by TLRs, serves to deliver essential nutrients required for DC survival 

(245).     

 

Collectively, these findings by Krawczyk et al suggested that the initiation of glycolytic 

metabolism at the time of activation is important for full DC maturation and subsequent 

survival.  Thus, stimulated DCs, particularly GM-CSF DCs, must redirect their metabolic 

pathway from mitochondrial metabolism towards aerobic glycolysis. The type of 

metabolism that is utilised by Flt3L-DCs during activation has yet to be established. 
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3.2  Aims 

The aims of this chapter were to set up a culture system for Flt3L-DCs and to characterise 

the DCs that are generated.  Characterisation was further extended by the analysis of TLR 

induced activation and of glycolytic metabolism.  

 

Specifically, the aims were  

1. To assess Flt3L-DC cell morphology and phenotype. 

2. To determine the effect of stimulation with single and combined TLR agonists on 

the maturation of Flt3L-DCs. 

3.  To evaluate whether glycolytic metabolism is required for TLR mediated activation 

of Flt3L-DCs. 

 
 

3.3 Results 
 
 
3.3.1 Morphological characteristics of Flt3L-DCs 
 
To generate Flt3L-DCs within our system, we established a culture method as described in 

Chapter 2.  Briefly, BM cells were extracted from C57BL/6 mice and cultured with media 

containing the cytokine Flt3L for 9 days.  Nutrients were replenished every 3 days with 

fresh media containing Flt3L.  On day 9 of cell culture, Flt3L-DCs were harvested or 

treated with stimuli for further analysis.  The cytokine Flt3L was generated and used at 

optimal concentrations as described in Chapter 2 (2.1.3).   

 

According to the literature (4,7), a comparative analysis of GMCSF/IL-4 and Flt3L-DCs 

highlighted a difference not only in phenotype, but also in cellular morphology between 

these two populations.  By light microscopy, Flt3L-DCs are reported to be smaller in size 

compared to GMCSF/IL-4 DCs due to a lower amount of cytoplasm (214, 231).  Thus, 

Flt3L- DCs were assessed morphologically in order to determine if similar features were 

reproduced within our culture system.  GMCSF/IL-4 DCs were also generated (Chapter 2, 

2.4.2.1, 2.4.2.3) to allow for comparison with Flt3L-DCs.  On the final day of cell culture, 



Chapter 3:  Characterisation of Flt3L-DCs and evaluation of their response to stimulation  
 with TLR agonists   

61 

Flt3L and GMCSF/IL-4 DCs were harvested, centrifuged onto glass slides, fixed and 

stained with a Diff-Quik staining kit.  The cells were then examined under the microscope.  

On separate occasions, Flt3L and GMCSF/IL-4 DCs were also photographed directly in 

culture plates.  A difference in size between the two DC populations was difficult to 

determine by cytospins (Figure 3.3A, 3.3B).  However, by direct photography of DCs in 

culture, a difference in size between the two DC types was observed (Figure 3.3C, 3.3D).  

This result indicated that Flt3L-DCs generated using the culture method were smaller in 

size as described within the literature (6, 7). 

 

 
 

Figure 3.3:  Morphology of Flt3L-DCs  
BM cells from C57BL/6 mice were cultured in the presence of Flt3L for 9 days or GMCSF/IL-4 for 7 days.  

DCs were harvested on the final day of cell culture and centrifuged (300rpm, 8min) onto microscope slides 

(20,000 cells/slide).  Flt3L (A) and GMCSF/IL-4 (B) DCs were stained using a Diff-Quik staining set and 

analysed under a microscope. Alternatively, Flt3L (C) and GMCSF/IL-4 (D) DCs were photographed 

directly in culture plates on the final day of cell culture.  Original magnification for (A) and (B) at 50x and  

(C) and (D) at 20x.  Scale bars represent 100µm.  Results are from one of two independent experiments.  
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Morphological analysis does not easily distinguish the Flt3L-DC subsets that are generated 

in culture.  Therefore, characterisation was further extended by phenotypic analysis using 

immunofluoresence staining and flow cytometry. 
 

 

3.3.2  Phenotypic characterisation of Flt3L-DCs by immunofluorescence 
staining and flow cytometry 

 

As reported in the literature, the culture of BM cells with Flt3L gives rise to three DC 

subsets, each characterised by differential expression of surface markers.  These consist of 

pDCs, which express the marker B220 and two B220 negative cDCs subsets identified as 

CD11bhighCD24low and CD11blow CD24high (214, 225).  All three subsets commonly share 

expression of the marker CD11c, which is highly expressed in DCs and is used to 

distinguish them from other cell types .  

 

The phenotype of Flt3L-DCs was first characterised by immunofluorescence staining.  

Precursor cells derived from the BM of C57BL/6 mice were cultured in the presence of 

Flt3L for 9 days.  DCs were harvested on day 9 of cell culture, centrifuged onto 

microscope slides (20,000 cells) and stained for CD11c and B220 (Figure 3.4B, 3.4C).  

Cell nuclei were then counter-stained using DAPI (Figure 3.4A).  Examination under a 

fluorescent microscope confirmed the presence of the subset phenotypically equivalent to 

pDCs, as demonstrated by the expression of CD11c and B220 (Figure 3.4B, 3.4C).  

However, it was observed that only a small proportion of the cells stained positive for 

B220.  Noticeably, the pDC subset showed an eccentric nucleus (Figure 3.4D) and few 

dendrites when viewed by phase contrast (Figure 3.4E).  These features are in line with the 

established morphology of pDCs (246, 247). 
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Figure 3.4:  Detection of Flt3L-DC subsets by immunofluorescence staining. 
BM cells extracted from the femur and tibia of C57BL/6 mice were cultured in the presence of Flt3L for 9 

days to induce DC differentiation.  On day 9, DCs were harvested and centrifuged (300rpm, 8 minutes) at 

room temperature onto microscope slides (20,000 cells per slide).  Slides were air-dried and the cells were 

stained with the nucleic acid dye DAPI (A) and anti-CD11c-FITC mAb (B) to detect DC populations.  pDCs 

were identified using B220-bio-SA-Alexa Fluor 555 (C).  Panels D and E show the overlay of images from A 

to C and phase contrast, respectively.  DCs were photographed using a fluorescence microscope under 100x 

magnification.  Results are from one of two independent experiments that showed similar results.  Scale bars 

represent 50µm. 

 

 

To identify and characterise the other subsets that are generated from Flt3L cultures, we 

further analysed their phenotype by flow cytometry.  DCs derived from Flt3L cultures 

were harvested on day 9 and stained with mAbs for CD11c, B220, CD11b and CD24.  

Cells of interest were first identified based on analysis of cell size and internal complexity 

(FSC/SSC) (Figure 3.5).  This initial gating strategy also accounted for the exclusion of 
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dead cells, which could not be detected by a viability dye as the flow cytometer used for 

this experiment was limited to only four fluorophores per sample.  DCs were identified by 

expression of CD11c and subsequently analysed for pDC and cDC subsets. Flow 

cytometric analysis of Flt3L cultures revealed the presence of three distinct DC subsets: 

B220+ pDCs and B220- cDCs subdivided into those that are CD11bhighCD24low and 

CD11blowCD24high  cDCs (Figure 3.5). Therefore, this observation confirmed the pDC 

subset as detected by immunofluoresence staining, and is in line with published data with 

respect to phenotypic characteristics of Flt3L-DCs generated in vitro (214, 225).  

Hereafter, the two cDC subsets will be refered to CD11bhigh (CD11bhighCD24low) and 

CD24high (CD11blow CD24high) cDCs. 

 

 

Figure 3.5:  The culture of BM cells in Flt3L generates three DC subsets.  
Flt3L-DCs were generated as described in Figure 3.4.   Cells were harvested on day 9 and stained with mAbs 

for CD11c, B220, CD11b and CD24.  Cells of interest were first identified based the on analysis of FSC and 

SSC properties.  This was followed by gating of cells positive for CD11c and pDCs were identified by 

positive expression of B220.  The cDC subset was identified based on negative expression of B220 and was 

further subdivided into subsets that were CD11bhighCD24low and CD11blowCD24high.  Numbers indicate 

percentages of cells within the respective gating regions.  Results are from one of several experiments. 
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3.3.3  Flt3L-DC subsets respond to stimulation with TLR agonists  
 

DC maturation is important for the overall quality of the anti-tumour immune response 

(248).  It was therefore relevant to investigate the maturational capability of Flt3L-DCs 

and identify which TLR agonists can trigger effective maturation.  

 

DCs derived from Flt3L cultures were stimulated with various TLR agonists on day 9 and 

incubated for 24 hours.  The following day, cells were harvested and the expression of co-

stimulatory molecules on pDCs and cDCs was determined by flow cytometry.  The two 

cDC subsets could not be analysed individually, but only as a whole population, as the 

flow cytometers used for this experiment could only detect four fluorophores per sample.   

Concentrations of TLR agonists used to induce Flt3L-DC activation were selected based 

on those reported in the literature (214, 234).  Flt3L-DC subsets were identified using the 

gating strategy shown in Figure 3.5.   

 

Although we could not detect any statistical significance within our results due to a small 

sample size, we observed the following trends in our data.  Compared to the unstimulated 

control, cDCs responded to stimulation with all the TLR agonists and there were no 

considerable differences among the agonists at inducing the up-regulation of co-

stimulatory molecules and MHC II (Figure 3.6A). Furthermore, cDCs were observed to 

have a higher maturation status compared to pDCs, as evidenced by higher expression 

levels of activation markers.  In contrast to cDCs, pDCs preferentially responded to 

stimulation with CpG, as evidenced by greater up-regulation of CD80, CD86 and MHC II 

(Figure 3.6B).  However, CD40 up-regulation on pDCs was induced to the greatest extent 

by the TLR agonist Poly I:C.  LPS and Pam3Cys were the least effective agonists on pDCs 

overall.  In summary, Flt3L-DC subsets responded differentially to stimulation with TLR 

agonists. While cDC up-regulated expression of activation markers in response to all TLR 

agonists, pDCs mainly favoured CpG.  

 

As Flt3L-DCs were only stimulated with TLR agonists at concentrations selected from the 

literature, all agonists were subsequently titrated three fold higher and lower to confirm 

that concentrations initially selected were optimal (Appendix 3). The results were variable, 
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whereby some activation markers increased or decreased on cDCs and pDCs in response to 

stimulation with higher concentrations of the selected agonists.  However, overall the 

results showed that the concentration initially selected induced up-regulation of most 

activation markers.  Thus, the concentrations originally used remained the same for 

subsequent experiments.   
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Figure 3.6: Flt3L-DC subsets display a trend to activation upon TLR stimulation.  
Flt3L-DCs were generated as described in Figure 3.4.  On day 9 of cell culture, Flt3L-cDCs were stimulated 

for 24 hours with the following TLR agonists: LPS (100ng/mL), CpG (2µg/mL), Poly I:C (50µg/mL) and 

Pam3Cys (1µg/mL) or left untreated as a control.  Cells were harvested the following day and stained with 

varying combinations of mAbs for CD11c, B220, CD80, CD86, CD40 and MHC II.  Expressions of co-

stimulatory molecules were determined in cDCs (A) and pDCs (B).  Bar graph values represent mean ± S.D.  

Results are cumulated data from two independent experiments.  Statistical significance was tested using the 

Kruskal-Wallis with Dunn’s multiple comparisons test.  No significance was detected. 
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 3.3.4  Depletion of pDCs does not prevent the response of cDCs to 
stimulation with TLR agonists  

 

As shown in Figure 3.6, cDCs exhibited a higher maturation status compared to pDCs 

upon stimulation with TLR agonists.  This observation raised the question as to whether 

the maturational response was due to the interaction between cDC and pDCs.  It is possible 

that following maturation, pDCs can produce type 1 IFN that may participate in the 

activation of cDCs (234).  Therefore, we sought to determine if depletion of pDCs affects 

the maturational capacity of cDCs.  

  

Flt3L-DCs were harvested on day 9 of culture and depleted of B220+ pDCs by magnetic 

bead separation (Chapter 2, (2.4.3.4)).  cDCs were subsequently re-plated back into culture 

and stimulated with TLR agonists for 24 hours.  Flt3L-DCs not intended for depletion, but 

for use as a comparison were also harvested and treated in the same manner as the depleted 

population.  This was to account for the possibility of spontaneous activation that may 

arise due to handling of the cells.   

 

Results showed that pDC depletion does not prevent the response of cDCs to TLR 

stimulation. However, some differences were observed in the up-regulation CD80 and 

MHC II, but this was not statistically significant (Figure 3.7A).  Therefore, these results 

indicated that cDCs could maintain their maturational capacity in the absence of pDCs.  

However, given that the method, which we used to deplete pDCs only resulted in 70-76% 

depletion, it cannot be excluded that the remaining population of pDCs may still directly 

impact on cDC maturation (Appendix 4A). Therefore, to improve the purity of the cDC 

population, Flt3L cultures were positively sorted for cDCs by FACS, which resulted in 

99% purity of cDCs (Appendix 4B).  Flt3L-DCs that were not sorted for cDCs, but used 

for comparative purposes were treated in the same manner. In comparison to cDCs 

magnetically depleted of pDCs (Figure 3.7A), analysis of sorted cDCs revealed similar 

patterns of CD80 and CD86 expression among the agonist treated groups (Figure 3.7B).  

Results for CD40 and MHC II expression could not be obtained due to an antibody 

labelling error.  In summary, it does not appear that depletion of pDCs hinders the ability 

of cDCs to up-regulate co-stimulatory molecules following TLR stimulation.  
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Figure 3.7:  cDCs are capable of maturation in the absence of pDCs.  Flt3L-DCs were 

generated as described in Figure 3.4.  On day 9, Flt3L-DC cultures were depleted of pDCs by magnetic 

separation (A) or cDCs were sorted by FACS (B).  Flt3L-DCs not intended for depletion were also harvested 

on day 9 and treated in the same manner with respect to each method of depletion (A and B).  Following 

depletion or sort, cDCs were placed back into culture and stimulated for 24 hours with the following TLR 

agonists: LPS (100ng/mL), CpG (2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  The following 

day, cDCs were harvested, stained with various combinations of mAbs for CD11c, B220, CD80, CD86, 

CD40 and MHC II, and analysed by flow cytometry.  Bar graph values represent mean ± range.  (A) shows 

averages of duplicate samples from one experiment only. (B) shows data from only one experiment. 
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3.3.5 Stimulation with combined TLR agonists improves the maturation 
of Flt3L-DCs 

 

It was established that Flt3L-DCs could mature upon stimulation with TLR agonists, as 

characterised by the up-regulation of co-stimulatory molecules and MHC II (Figure 3.6).  

To extend on this finding, we next investigated the effect of combined TLR ligation on 

Flt3L-DCs, which has been reported to enhance the maturation of GM-CSF DCs (235, 

236).   

 

Flt3L-DCs were generated as described in Figure 3.4.  On day 9 of cell culture, Flt3L-DCs 

were stimulated with all the possible combinations of TLR agonists at the predetermined 

concentrations or left unstimulated as a control.  Cells were incubated for 24 hours and 

harvested the following day to determine the level of co-stimulatory molecules and MHC 

II expression on cDCs and pDCs by flow cytometry.  

 

In comparison to single TLR agonists, selected TLR agonist combinations were observed 

to further increase expression of both CD40 and CD86 on cDCs and pDCs.  In particular, 

this was predominantly seen with the combinations of LPS/Poly I:C, LPS/Pam3Cys and 

Pam3Cys/Poly I:C (Figure 3.8A and 3.8B), all of which induce the triggering of both 

MyD88-dependent and-independent signalling (Figure 3.1). It was also noteworthy that 

LPS/CpG was effective at improving CD40 up-regulation on cDCs, and both CD40 and 

CD86 on pDCs.  With respect to MHC II expression on cDCs, we did not observe any 

improvement in the up-regulation of this activation marker following stimulation with the 

various agonist combinations. In contrast, we found that the combinations of LPS/CpG, 

CpG/Poly I:C and Pam3Cys/Poly I:C increased expression of MHC II on pDCs.  However, 

the effects on MHC II up-regulation from these combinations were very weak, when 

compared to the respective individual agonists.  

 

Overall, we found that combining TLR agonists could provide a boost in the up-regulation 

of activation markers on Flt3L-DC subsets.  More specifically, combined TLR stimulation 

had its most pronounced effect on enhancing the up-regulation of CD40 and CD86 on 

cDCs and pDCs. 
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Figure 3.8:  Combined TLR stimulation enhances Flt3L-DC maturation.  Flt3L-DCs 

were generated as described in Figure 3.4.  On day 9 of cell culture, activation was induced by stimulation 

with the individual or combined TLR agonists at the following concentrations: LPS (100ng/mL), CpG 

(2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  After 24 hours of stimulation, Flt3L-DCs were 

harvested and stained with varying combinations of mAbs for CD11c, B220, CD40, CD80 and MHC II.  

Expressions of co-stimulatory molecules and MHC II were determined in cDCs (A) and pDCs (B).  Bar 

graph values represent mean ± S.D.  * = 0.01< P <0.05, as determined by the Kruskal-Wallis with Dunn’s 

multiple comparison’s test. Results show averages of triplicate samples from one out of two experiments 

with similar results.  
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Cellular viability was also determined following stimulation with TLR agonist 

combinations to determine whether receiving more than one stimulus is toxic to the cells.  

Viability of Flt3L-DCs was analysed as a whole population and it was found that treatment 

with the combined TLR agonists did not induce a significant decrease in the percentage of 

live cells in comparison to stimulation with the respective individual agonists (Figure 3.9).  

Thus, stimulation with more than one TLR agonist does not significantly impact on Flt3L-

DC viability.  
 

 

Figure 3.9:  Stimulating Flt3L-DCs with TLR agonist combinations does not reduce 

cell viability.  Flt3L-DCs were generated as described in Figure 3.4.  On day 9 of cell culture, activation 

was induced by stimulation with TLR agonists either alone or in combination with each other at the 

following concentrations: LPS (100ng/mL), CpG (2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  

After 24 hours of stimulation, Flt3L-DCs were harvested, stained with the viability dye PI, and analysed by 

flow cytometry.  Cells that were CD11c+and excluded PI were identified as live cells.  Graph values 

represent mean ± S.D.  Results show averages of triplicate samples from one out of two experiments. 

Statistical significance was tested using the Kruskal-Wallis with Dunn’s multiple comparisons test.  No 

significance was detected. 
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3.3.6 Low concentrations of 2-DG inhibit the maturation of GMCSF/IL-
4 DCs but not Flt3L-cDCs 
 

Results presented within this chapter have phenotypically characterised Flt3L-DCs before 

and following stimulation with various TLR agonists. To further extend our 

characterisation, we investigated the impact of inhibiting glucose metabolism on the 

maturation of Flt3L-DCs. Krawczyk et al demonstrated the dependence on glucose 

metabolism of LPS stimulated GM-CSF DCs by treating cells with 2-Dexoy-D-glucose (2-

DG), a glucose analogue that acts as competitive inhibitor of glucose metabolism (245).  

Under normal conditions of glycolysis, the first and rate-limiting step is the conversion of 

glucose to glucose-6-phosphate by the enzyme hexokinase (Figure 3.2) (249).  When cells 

are treated with 2-DG, this is used instead of glucose and is converted by hexokinase into 

phoshorylated 2-DG.  The phosphorylated 2-DG cannot be further metabolised and 

becomes trapped within the cell.  As a consequence, intracellular ATP is depleted (250).  

Krawczyk et al showed that stimulation in the presence of 2-DG resulted in decreased 

expression of CD40, CD86 and MHC II expression compared to 2-DG untreated controls.  

We therefore sought to confirm the findings of Krawczyk et al in our GMCSF/IL-4 culture 

condition, and to establish if the same results apply to Flt3L-DCs.  

 

Krawczyk et al have shown that activated GM-CSF DCs subjected to glucose limitation for 

24 hours, resulted in a reduction of DC survival (Section 3.1.2).  Thus, stimulating both 

Flt3L-cDCs or GMCSF/IL-4 DCs for 24 hours in the presence of 2-DG was likely to 

impact on cell survival, and activation markers would not be able to be properly examined.  

Due to this, we first determined the LPS concentration that could mature GMCSF/IL-4 and 

Flt3L-DCs after 6 hours of stimulation.  

 

BM cells were cultured in the presence of Flt3L for 9 days or with GMCSF/IL-4 for 7 

days. Due to a shorter period of cell culture, GMCSF/IL-4 DCs were set up 3 days 

following Flt3L-DC cultures, allowing for stimulation with LPS and subsequent analysis to 

occur on the same day.  Flt3L-DCs subsets were identified as shown in Figure 3.5 and 

GMCSF/IL-4 DCs were identified by expression of the marker CD11c+.  Analysis of cell 

viability in both DC populations was determined by exclusion of PI (Appendix 5).  Only 
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the cDC subset was chosen specifically for comparison with GMCSF/IL-4 DCs for this 

and subsequent experiments, as it was established that LPS was not an effective agonist at 

inducing pDC maturation (Figure 3.5).  Hereafter, the cDC subset will be described as 

Flt3L-cDCs, with respect to experiments evaluating glycolytic metabolism in Flt3L and 

GMCSF/IL-4 DCs. 

 

Given that both DC populations were only stimulated for 6 hours, we selected LPS 

concentrations that could induce maximal expression of activation markers without 

affecting cell viability.  We observed that 500ng/mL of LPS did not impact on the viability 

of GMCSF/IL-4 DCs and induced the greatest level of CD80 and CD40 expression, 

compared to all other concentrations of LPS (Figure 3.10A, 3.10C).  Therefore, 500ng/mL 

was considered an optimal concentration, and was thus selected for inducing the activation 

of GMCSF/IL-4 DCs in subsequent experiments.  Conversely, Flt3L-cDCs did not favour 

higher concentration of LPS, as we observed a reduction of MHC II expression, in a dose-

dependent manner (Figure 3.10B).  Therefore, as we observed maximal expression of 

MHC II following stimulation with 100ng/mL of LPS, and similar viability compared to 

untreated controls, we selected this concentration to stimulate Flt3L-cDCs (Figure 3.10B, 

3.10C). 
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Figure 3.10:  Treatment with LPS induces the maturation of Flt3L and GMCSF/IL-4 

DCs following a 6 hour stimulation.  BM cells were cultured with Flt3L for 9 days or GMCSF/IL-4 

for 7 days to induce DC differentiation.  Stimulation with LPS at concentrations of 100ng/mL, 250ng/mL and 

500ng/mL was performed on day 10 or 7 for Flt3L and GMCSF/IL-4 DCs respectively.  Following 6 hours 

of incubation, cells were harvested and analysed by flow cytometry to detect CD40, CD80 and MHC II 

expression in GMCSF/IL-4 (A) and Flt3L-cDCs (B).  (C) Cell viability following stimulation with selected 

LPS concentrations was assessed.  Results of one experiment only are shown. 
 

 

To determine if glycolytic metabolism is essential for the maturation of Flt3L-cDCs, both 

Flt3L and GMCSF/IL-4 DCs cultures were generated purposely to allow for stimulation 
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with LPS and treatment with 2-DG to occur on the same day.  Both DC cultures were 

treated with LPS at the predetermined concentrations (Figure 3.10), followed by treatment 

with titrated doses of 2-DG at either 6.25mM, 12.5mM or 25mM.  DCs were incubated for 

6 hours, harvested and analysed by flow cvtometry to determine the level of activation 

markers.  The highest dose of 2-DG (25mM) was equivalent to the total concentration of 

glucose in the culture media.  

 

Treatment with 2-DG in parallel to stimulation with LPS impaired the ability of 

GMCSF/IL-4 DCs to up-regulate activation markers (Figure 3.11A). Despite the 

concentration of 2-DG used, the level of activation markers remained at least 2 fold lower 

compared to LPS treated only controls (Figure 3.11C). Furthermore, LPS-stimulated 

GMCSF/IL-4 DCs treated with various concentrations of 2-DG maintained viability 

similar to those of LPS only controls.  Therefore, this indicated that inhibition of activation 

markers was not due to decreased DC survival (Figure 3.11E).  

 

Upon examination of Flt3L-cDCs, we found that expression of activation markers was 

differentially affected by treatment with 2-DG. Flt3L-cDCs stimulated with LPS and 

treated with a high concentration (25mM) of 2-DG exhibited reduced viability and 

impairment in the up-regulation of the activation markers CD40 and MHC II.  Conversely, 

Flt3L-cDCs treated with intermediate or low concentrations of 2-DG (12mM or 6.25mM) 

maintained viability, but only those treated with the lowest dose of 2-DG were able up-

regulate the activation markers CD80 and MHC II at levels comparable to the LPS only 

stimulated control (Figure 3.11B, 3.11E).  CD40 expression on LPS-stimulated Flt3L-

cDCs remained considerably low across all 3 concentrations of 2-DG used, but is 

nonetheless higher when compared to untreated controls (Figure 3.11B, 3.11D).  It was 

also observed that Flt3L-cDCs treated with 2-DG only, expressed decreased baseline 

expression of activation markers in a dose-dependent manner (Figure 3.11B).  This 

reduction in expression of activation markers also correlated with a decrease in the 

viability of Flt3L-cDCs (Figure 3.11E). In summary, both GMCSF/IL-4 DCs and Flt3L-

cDCs displayed differential responses to inhibition of glycolytic metabolism, in both the 

non-activated and activated state.  
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Figure 3.11:  Low concentrations of 2-DG have limited effects on the maturation of 

Flt3L-cDCs induced by LPS, but strongly affect the maturation of GMCSF/IL-4 DCs.  
BM cells were cultured with Flt3L for 9 days or GMCSF/IL-4 for 7 days.  LPS stimulation occurred on day 

10 for Flt3L-DCs and day 7 for GMCSF/IL-4 DCs at a final concentration of 100ng/mL and 500ng/mL, 

respectively.  The competitive glucose inhibitor 2-DG was added at 25mM, 12.25mM or 6.25mM, as 

indicated by the triangles. Following 6 hours of incubation, Flt3L-DCs were harvested and stained with 

various combinations of mAbs for CD11c, B220, CD40, CD80 and MHC II to determine expression.  

GMCSF/IL-4 DCs were stained with various combinations of mAbs for CD11c, CD40, CD80 and MHC II.  

Both DC populations were subsequently stained with the viability dye DAPI and cells were analysed by flow 

cytometry.  Maturation of and GMCSF/IL-4 DCs (A) an Flt3L-cDCs (B) was determined after stimulation 

with LPS in the presence of varying concentrations of 2-DG and with the indicated controls.  (C) and (D) 

show normalised marker expression in LPS and 2-DG treated groups, calculated as the percent of expression 

in the LPS-untreated group exposed to the same dose of 2-DG (data not shown within C and D).  (E) 

Analysis of cell viability was determined in GMCSF/IL-4 DCs and Flt3L-cDCs in the indicated groups.  Bar 

graph values represent mean ± S.D.  Results show averages of triplicate samples from one experiment only. 
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3.4 Discussion 
 

3.4.1 Phenotypic and morphological characteristics of Flt3L-DCs  

The results presented within this chapter describe the morphological and phenotypic 

characteristics of Flt3L-DCs generated within our laboratory.  It was shown that the culture 

of BM cells in the presence of Flt3L generated three distinct DC subsets (Figure 3.4, 3.5).  

The first subset consisted of pDCs and was phenotypically characterised as CD11c+ B220+.  

Flt3L also gave rise to cDCs, which were divided into two subsets that were CD11bhigh and 

CD24high.  The pDC, CD11bhigh and CD24high subsets identified within this study are similar 

to those described by Naik et al, who also characterised these subsets to be the in vivo 

counterparts of mouse splenic pDCs, CD8+ and CD8- cDCs, respectively (225).  Analysis 

of cell morphology by Diff-Quik staining did not show a clear difference in size between 

Flt3L and GMCSF/IL-4 DCs as reported by others (214, 231).  This result could possibly 

be due to the centrifugal force of spinning the DCs onto the slide, which may have 

modified the appearence of the cells.  Direct imaging of DCs in culture, however, did show 

that Flt3L-DCs were smaller in size in comparison to GMCSF/IL-4 DCs (Figure 3.3).  

Collectively, these results indicated that Flt3L-DCs generated within our cultures are in 

line with those described in published reports, with respect to the surface phenotype and 

cell morphology (214, 225, 231).  

 

Although there are similarities in phenotype, our data show a difference in the relative 

proportions of the CD11bhigh and CD24high cDCs (Figure 3.5).  The literature describes the 

CD24high subset as the larger propotion of the cDC population (7, 10).  It is shown within 

this chapter that cDCs consisted of larger percentage of CD11bhigh and a smaller 

percentage that was CD24high. The difference in percentages could be due to the 

concentration of Flt3L used within our culture method as it was observed that the 

proportion of cDC subsets generated changed with the concentration of Flt3L used.  For 

instance, 1% of Flt3L generated 35% CD24high cDCs, while 10% Flt3L generated 45% 

CD24high cDCs (Evelyn Hyde, Malaghan Institute of Medical Research, unpublished data).  

Therefore, this is an indication that the proportion of the cDC subsets generated in vitro, 

can be regulated by altering the concentration of Flt3L.  
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3.4.2 Response of Flt3L-DCs to stimulation with individual TLR 
agonists 

 

The literature has consistently shown that maturation of DCs is a critical parameter for the 

induction of immunity (64, 251).  We investigated if Flt3L-DCs could mature and acquire 

an activated phenotype, following stimulation with various individual TLR agonists.  To 

reiterate, the TLR agonists used within this study and their corresponding receptors were, 

Pam3Cys, Poly I:C, LPS and CpG, which are recognised by TLR2, 3, 4 and 9 respectively 

(Figure 3.1) (240). 

 

In this chapter, we observed certain trends in the up-regulate activation markers on Flt3L-

DCs in response to stimulation with TLR agonists.  Specifically, all TLR agonists were 

effective at inducing the maturation of cDCs, with no considerable differences seen 

between the stimuli.  However, CpG was more effective at inducing pDC maturation, 

compared to all other agonists (Figure 3.6).  One possible reason for this difference could 

be due to the expression of TLRs.  It is well established that TLR expression is not uniform 

among the DC subsets (107, 252).  Murine cDCs analysed as a whole population, have 

been shown to express all of the TLRs relevant to the agonists used within this study (233).   

Therefore, given that all receptors are present, this is likely to explain why cDCs were 

observed to respond to all TLR agonists.  However, it is important to note that the 

CD11bhigh and CD24high cDCs, have also been shown to differentially express the TLRs.  

Specifically, Naik et al showed that CD11bhigh cDCs expressed high levels of TLR4, but 

TLR3 were not expressed at levels detectable by real-time PCR.  Conversely, CD24high 

cDCs exhibited high TLR3 expression and lower expression of TLR4 (225).  Thus, a 

different result is likely to be observed if the subsets were analysed separately.   

 

In contrast to cDCs, studies have shown that murine pDCs highly express TLR9 and 

weakly express TLR2, 3 and 4 (11, 30).  A higher expression of TLR9 may explain why 

CpG was the most effective agonist at inducing pDC maturation and LPS and Pam3Cys 

the least effective.  With that said, it was interesting to find that instead of CpG, Poly I:C 

could induce greater up-regulation of CD40 on pDCs.  Potentially, this response maybe 
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due to the inflammatory cytokines that are released by cDCs, upon activation.  It has been 

reported that inflammatory cytokines can induce the up-regulation of co-stimulatory 

molecules on DCs (253, 254).  Specifically studies have shown that the inflammtory 

cytokine TNF-α can induce DC maturation (254).  Studies analysing cytokine secretion 

from cDCs (255), have not assessed secretion of TNF-α and will therefore be presented in 

Chapter 4.  Nonetheless, to assess the possibility of inflammatory cytokines mediating 

pDC activation, future experiments could involve sorting pDCs from Flt3L-DC cultures.  

The isolated pDCs could be re-cultured and stimulated with the various TLR agonists and 

expression of activation markers can be compared to pDCs stimulated in un-sorted 

cultures.  

 

Although it is unclear whether pDC activation is influenced by the presence of cDCs, it 

was shown within this chapter that pDC depletion does not affect the maturational capacity 

of cDCs (Figure 3.7A).  Therefore, our results indicate that cDCs does not completely rely 

on pDC interaction in order to mature following TLR stimulation. 

 

3.4.3 The impact of combined TLR ligation on the maturation of Flt3L-
DCs 

 

Combining TLR agonists has been shown to enhance the maturation of GM-CSF DCs, a 

response in which was defined as “synergistic activation” (235, 236).  Warger et al 

demonstrated that enhanced production of cytokines and co-stimulatory molecule 

expression were observed with GM-CSF DCs where combinations of TLR agonists 

induced the signalling of both the MyD88-dependent and independent pathways (236).   In 

this chapter, we determined if combining TLR agonists that induced both MyD88-

dependent and independent signalling, could enhance the maturation of Flt3L-DCs.  

 

With the exception of CpG/Pam3Cys, all other agonist combinations used to stimulate 

Flt3L-DCs targeted both the MyD88-dependent and-independent signalling pathways. It 

was found that in comparison to stimulation with the respective individual agonists, 
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combined TLR stimulation improved expression of either CD40, CD80 or both on cDCs 

and pDCs (Figure 3.8A, 3.8B).  However, while combined TLR ligation was found to 

enhance expression of co-stimulatory molecules on both Flt3L-DC subtypes, we did not 

observe any improvement in the up-regulation of MHC II on cDCs. Given that we 

observed high expression levels of MHC II on cDCs following stimulation with individual 

agonists, this could represent the maximum level of expression that could not be further 

enhanced by combining TLR agonists. With respect to MHC II expression on pDCs, we 

did observe that the combination of CpG/Poly I:C, LPS/CpG, and Pam3Cys/Poly I:C to 

induce a slight increase in MHC II up-regulation in comparison to stimulation with the 

individual agonists.  However, CpG alone already induced high expression of MHC II, 

thus indicating that the stimulatory effect seen in combinations containing CpG was 

mainly derived from CpG.  Therefore, it would also appear that combined TLR stimulation 

has a minor effect on MHC II up-regulation on pDCs.  

 

Collectively, these results gathered imply that combined triggering of the MyD88-

dependent and-independent pathways could improve expression of activation markers on 

Flt3L-DCs, more specifically CD40 and CD86.  However, it is noteworthy that the effects 

from combined TLR stimulation were subtle and enhanced expression by no more than 

two fold on cDCs and pDCs.  Therefore, our results would suggest that combined TLR 

ligation on Flt3L-DCs induces an additive or sub-additive effect, as opposed to a 

synergistic response.  Napolitani et al, first described the effect of combined TLR ligation 

as synergistic activation, after observing that GM-CSF/IL-4 DCs, simultaneously activated 

with a TLR3/4 and TLR7/9 agonist, induced 20 to 50 fold more production of IL-12 than 

did the addition of single agonists (235).  Thus, to further assess whether the effect of 

combined TLR ligation on Flt3L-DCs could induce a synergistic response, cytokine 

secretion will have to be assessed.  This data will be presented and further discussed in 

Chapter 4. 
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3.4.4 Regulation of DC activation by glucose metabolism 

Krawczyk et al demonstrated that GM-CSF DCs in the resting state derive a majority of 

their energy via mitochondrial β-oxidation and oxidative phosphorylation.  However, 

stimulation with TLR agonists initiates a metabolic conversion towards aerobic glycolysis. 

Particularly, Krawczyk et al showed TLR mediated activation was highly dependent upon 

glycolytic metabolism, as treatment of LPS-stimulated GM-CSF DCs with the competitive 

glycolytic inhibitor 2-DG blocked the up-regulation of activation markers (245).   

 

We observed that GMCSF/IL-4 DCs, treated with various concentrations of 2-DG alone 

maintained both viability and a baseline expression of activation markers comparable to 

unstimulated controls.  When stimulated with LPS in the presence of 2-DG, viability of 

GMCSF/IL-4 DCs was not affected, but their ability to up-regulate activation markers was 

impaired (Figure 3.11A, 3.11E).  Regardless of the concentration of 2-DG used to treat 

GMCSF/IL-4 DCs, the expression level of activation markers following LPS stimulation 

remained at least 2-fold lower, compared to GMCSF/IL-4 DCs stimulated with just LPS 

(Figure 3.11C).  In fact, these expression levels were close to those displayed by the 

untreated GMCSF/IL-4 DCs, thus highlighting a profound block in the ability of these DCs 

to up-regulate activation markers.  Overall, our data are consistent with the findings of 

Krawczyk et al.  Similar to their observations in GM-CSF DCs, we observed that the 

maturational capacity of GMCSF/IL-4 DCs, grown in our culture conditions is also highly 

reliant on glycolytic metabolism.  

 

Conversely, Flt3L-cDCs treated with a high dose of 2-DG either in the presence or absence 

of LPS showed decreased viability and reduced expression of activation markers (Figure 

3.11B, 3.11E).  At low concentrations of 2-DG, however, FLt3L-cDCs maintained 

viability and maturational capacity  (Figure 3.11B, 3.11E).  The response was similar for 

CD80, CD40 and MHC II levels, although CD40 levels were always lower than the LPS 

only stimulated control and higher than in the unstimulated Flt3L-cDCs.  

 

Collectively, it is apparent that Flt3L-cDCs in the non-activated state display a higher 

sensitivity to inhibition of glucose metabolism, compared to non-activated GMCSF/IL-4 



Chapter 3:  Characterisation of Flt3L-DCs and evaluation of their response to stimulation  
 with TLR agonists   

87 

DCs.  There are two possible interpretations of this finding.  Firstly, it may be indicative of 

the fact that energy production in Flt3L-cDCs within the resting state could be shifted 

more towards glycolytic metabolism.  Alternatively, Flt3L-cDCs may require that all 

metabolic processes generating energy occur simultaneously at high levels, in order to 

maintain survival within the resting state. Thus, mitochondrial metabolism, which is 

generally the preferred route of energy metabolism during glucose limitation (256), may 

not be enough for resting Flt3L-cDCs.  The response of Flt3L-cDCs to activation with LPS 

under glucose limitation also differs from GMCSF/IL-4 DCs.  While the latter are unable 

to up-regulate activation markers at all 2-DG concentrations used, Flt3L-cDCs appear to 

have a threshold level somewhere between the high and intermediate concentrations of 2-

DG in our experiments.  If the available glucose level is below a certain threshold, FLt3L-

cDCs appear to be not only inhibited in activation but also in viability.  In contrast, if the 

glucose level is above that minimum requirement, FL3L-cDCs are both viable and able to 

up-regulate activation markers.  This indicates that while Flt3L-cDCs are still highly 

sensitive to glucose levels during activation they do not switch to glycolytic metabolism 

for activation to the same extent as GMCSF/IL-4 DCs. 

 

In summary, glucose requirement of Flt3L-cDCs differs from GMCSF/IL-4 DCs in both 

the resting and activated state. Although it cannot be confirmed from the experiments 

described within this chapter, the data collected imply that Flt3L-cDCs are more reliant on 

glycolytic energy metabolism during the resting state and less reliant on glycoysis to fuel 

maturation.  Future experiments, which may aid in determining this factor, will be further 

discussed in Chapter 5. 

 
 

3.5   Conculsion 
 
It has been shown in this chapter that our Flt3L cultures produce DC subsets that are 

similar to those described within the literature.  Particularly, this was demonstrated in their 

morphological and phenotypic characteristics.  Flt3L-DCs were shown to activate and 

induce the up-regulation of activation markers following stimulation with TLR agonists.  

Additionally, TLR agonist combinations that induce both the MyD88-dependent and 
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independent signalling enhances their maturational response.  Finally, it was demonstrated 

that Flt3L-DCs are less sensitive to glucose inhibition following stimulation with LPS, thus 

implying that energy metabolism fuelling Flt3L-DC activation may not be entirely 

dependent on glycolytic metabolism. 
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4.1 Introduction 

4.1.1  Anti-tumour immune response requires CD4+ and CD8+ T cell 
activation 

 

Activation by TLR agonists initiates profound changes in DCs (257).  The transition from 

an immature to a mature state is characterised not only by phenotypic changes, but also by 

changes in DC function.  As discussed in Chapter 1, such changes in DC function include 

the ability to secrete inflammatory cytokines and to stimulate the proliferation and 

differentiation of CD8+ and CD4+ T cells (66, 131).  Studies have now firmly established 

the importance in the initiation of both CD8+ and CD4+ T cell responses for effective anti-

tumour immunity (258, 259).  Historically, cancer-directed therapies were focused towards 

eliciting a CD8+ CTL response, due to their ability of directly killing tumour cells (260).  

Additionally, preferential attention were given to inducing CD8+ CTL responses, because 

it was found that many tumours, particularly solid tumours, are positive for MHC I 

molecules, but not for MHC II (261, 262).  Therefore, given that antigen presentation on 

MHC II molecules is the restricting element for CD4+ T cell recognition, CD8+ CTLs were 

thought to serve as the dominant effector cells mediating tumour killing.  

 

However, in recent years, it has become evident that CD4+ T cells also play an important 

role in facilitating anti-tumour immune responses. CD4+ T cells have been shown to be 

essential in the maintenance of CD8+ T cell effector functions by secreting cytokines such 

as IL-2, promoting CD8+ T cell proliferation (262, 263).  It has also been demonstrated 

that CD4+ T cells, through the secretion of cytokines such as IL-5 and IFN-γ, induce the 

activation and recruitment of eosinophils and macrophages, aiding in tumour destruction 

by producing both superoxide and nitric oxide (264).  Conversely other studies have shown 

that IFN-γ induce macrophages to produce chemokines CXCL9/MIG and CXCL10/IP-10 

(265, 266), which exerts anti-angiogenic activity by damaging tumour vasculature, 

resulting in growth inhibition and tumour necrosis (265, 267).  Furthermore, a number of 

studies have shown a need for CD4+ T cells in the generation and maintenance of memory 

CD8+ T cells (268-270).  In conclusion, CD4+ T cells are a critical component of protective 

immunity.         
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4.1.2 The role of cytokines in anti-tumour immune responses 

Cytokines have crucial functions in the development, and regulation of immune cells, but 

can also play an important role in anti-tumour immunity.  It has been shown in studies with 

GMCSF/IL-4 DCs, that stimulation with TLR agonists induces the secretion of the pro-

inflammatory cytokines IL-12 and TNF-α and also the anti-inflammatory cytokine IL-10, 

(214).  IL-12 is a major cytokine responsible for the differentiation of CD4+ Th1 cells, 

which are potent producers of the cytokine IFN-γ.  Not only is IFN-γ shown to have anti-

tumour and anti-angiogenic activities (section 4.1.1), but it also has an enhancing effect on 

the ability of DCs to produce IL-12, acting therefore, as a positive feedback mechanism 

(271).  Furthermore, IL-12 has been shown to be indispensible for CD8+ T cell clonal 

expansion and development of effector function (272).  This is often called the third signal, 

in addition to antigen-MHC I complex recognition and (signal 1) and binding of co-

stimulatory molecules (signal 2).  TNF-α has also been shown to have a critical role in 

anti-tumour immunity, and is required for effective priming, proliferation, and recruitment 

of tumour-specific T cells (273).  Furthermore, TNF-α has been shown to increase DC 

migration to the draining LN (274).  Mature DCs can also secrete the inflammatory 

cytokine IL-6, which have been shown to play a critical role in T cell activation, by 

overcoming Treg-mediated suppression of T cell responses (275).  Although inflammatory 

cytokines are important for potentiating the immune response, there must be a fine balance 

between immunity and detrimental systemic inflammation.  Such regulation in the immune 

response can be derived from the cytokine IL-10, which has been shown to inhibit the 

production of IL-12 (276). 

 

It is critical that Flt3L-DCs possess the functional attributes described above, if they are to 

be exploited for cancer immunotherapy.  Studies have shown the ability of Flt3L-DCs to 

secrete the pro-inflammatory cytokine IL-12 (214, 233) and to activate and induce 

proliferation of both naïve CD4+ and CD8+ T cells in vitro (225, 231).   Thus, to determine 

the efficacy of Flt3L-DCs generated within our system for cancer immunotherapy, it was 

necessary to establish their functional capabilities.  Specifically, our research will not only 

validate the finding of other authors but will also provide new information with respect to 

the effects of stimulation with combined TLR agonists on Flt3L-DC function.  Moreover, 

we also evaluate production of cytokines not reported by others, such as IL-6 and TNF-α.  
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4.2 Aim 

The aim of this chapter was to investigate the functional capabilities of Flt3L-DCs.  To 

evaluate the optimum conditions of activation that may enhance Flt3L-DC function, the 

TLR agonist combinations that were used in Chapter 3 were further used within this 

chapter.  As a final point of investigation, those conditions considered optimal were 

selected for use in tumour experiments, to observe the impact of Flt3L-DCs in 

immunotherapy to delay or prevent tumour growth in mice. 

 

Specific aims within this chapter were: 

1. To evaluate cytokine production by Flt3L-DCs following stimulation with TLR 

agonists. 

2. To evaluate if cytokine production differs among the Flt3L-DC subsets. 

3. To determine whether Flt3L-DCs can induce the proliferation of naïve CD4+ and 

CD8+ T cells in vitro. 

4. To examine if Flt3L-DCs are able to cross-present to CD8+ T cells in vitro. 

5. To determine if activated Flt3L-DCs loaded with tumour antigens can delay or 

prevent tumour growth in mice.  

 
 

4.3 Results 
 
4.3.1  Activation of Flt3L-DCs with individual TLR agonists induces 

cytokine production 
 

An important functional characteristic of DCs is their ability to secrete cytokines following 

activation.  Studies have firmly established the ability of Flt3L-DCs to produce the 

inflammatory cytokine IL-12 following stimulation with TLR agonists (214, 225, 233).  In 

addition, Flt3L-DCs have also been shown to secrete the anti-inflammatory cytokine IL-10 

in some studies (233), but not in others (214).  We therefore determined the ability of 

Flt3L-DCs generated within our culture system to secrete IL-12 and IL-10 in response to 

stimulation with individual TLR agonists. 
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Flt3L-DCs were generated as described in Chapter 2 (2.4.2.2) and stimulated on day 9 with 

individual TLR agonists for 24 hours.  Following stimulation, culture supernatants were 

collected and analysed for IL-12p70 and IL-10 using a bioplex assay (Chapter 2, (2.4.4.3)). 

The bioplex assay can detect the biologically active form of IL-12, which is denoted as IL-

12p70.  IL-12 is a heterodimeric molecule composed of a p35 and p40 subunit that are 

linked by disulphide bonds to form the biologically active IL-12p70 (277). 

 

Results showed that Flt3L-DCs secreted both the heterodimeric IL-12p70 and IL-10 in 

response to stimulation with TLR agonists (Figure 4.1).  Specifically, we found that 

treatment with Poly I:C induced the highest amount of IL-12p70 secretion from Flt3L-DCs 

in comparison to those stimulated with CpG or Pam3Cys. However, those that were 

stimulated with LPS produced undetectable levels of IL-12p70, as the concentration 

secreted was below the range for measurement.  In contrast to IL-12p70, all TLR agonists 

used to stimulate Flt3L-DCs induced secretion of IL-10, with CpG having the most 

pronounced affect (Figure 4.1).  In summary, we found that Flt3L-DCs secreted both pro-

inflammatory and anti-inflammatory cytokines following TLR stimulation.  
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Figure 4.1: Flt3L-DCs activated with TLR agonists produce pro-inflammatory and 

anti-inflammatory cytokines.   BM cells derived from C57BL/6 mice were cultured in the presence 

of Flt3L for 9 days to induce DC differentiation.  Flt3L-DCs were stimulated on day 9 with TLR agonists at 

the following concentrations: LPS (100ng/mL), CpG (2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL) 

and incubated for 24 hours.  Following stimulation, DC culture supernatants were collected and analysed for 

IL-12p70 or IL-10 using a bioplex assay.  Bar graph values represent mean ± S.D. * = 0.01< P < 0.05, *** = 

P < 0.001 as determined by the Kruskal-Wallis with Dunn’s multiple comparison’s test.  Results show 

averages of duplicate samples from two independent experiments. 
 

 

4.3.2   Selected TLR agonist combinations enhance the secretion of pro-
nflammatory cytokines 

 

To further assess the influence of combined TLR ligation on Flt3L-DCs, we sought to 

determine whether activation with combined TLR agonists could enhance secretion of pro-
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inflammatory cytokines IL-12p70, TNF-α and IL-6.  Analysis for IL-10 production was 

not performed, as detection kits for this cytokine were not available at the time of 

experiment.  

 

Flt3L-DCs were generated as described in Chapter 2 (2.4.2.2) and stimulated on day 9 with 

the individual or combined TLR agonists for 24 hours.  Following stimulation, DC culture 

supernatants were collected and analysed for the cytokines indicated above using a bioplex 

assay (Chapter 2, (2.4.4.3)). 

 

The results obtained from the bioplex assay showed that in addition to secreting IL-12p70, 

Flt3L-DCs secreted both TNF-α and IL-6 in response to stimulation with individual TLR 

agonists (Figure 4.2).  Unlike in the cytokine data in Figure 4.1, Flt3L-DCs stimulated with 

LPS secreted detectable (although variable) levels of IL-12p70.  We were unsure as to the 

cause of variation in between the two experiments.  In contrast to stimulation by individual 

agonists, some TLR agonist combinations did enhance secretion of IL-12p70 (Figure 4.2).  

Specifically, these were combinations of Poly I:C with either Pam3Cys or CpG.  A slight 

increase in the production of IL-12p70 was also observed with Flt3L-DCs stimulated with 

LPS/Poly I:C.  Only the combination of Pam3Cys/Poly I:C and LPS/CpG were observed to 

induce more secretion of TNF-α and IL-6, respectively, however the response to these 

agonist combinations were heterogeneous.  

 

On the basis of this experiment and those that previously evaluated the effect of combined 

TLR ligation on the up-regulation of activation markers (Chapter 3), we selected an 

optimal agonist combination for inducing Flt3L-DC activation in subsequent experiments.  

Of all the combinations tested, Pam3Cys/Poly I:C or CpG/Poly I:C were likely candidates, 

given their ability to enhance production of IL-12p70.  However, because our cytokine 

data indicated that stimulation with Pam3Cys/Poly I:C could enhance production of TNF-

α (Figure 4.2), we proceeded to select this combination over CpG/Poly I:C.  Furthermore, 

stimulation with Pam3Cys/Poly I:C also enhanced the up-regulation of activation markers 

on Flt3L-DCs (Chapter 3, Figure 3.7), and was therefore optimal.  
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Figure 4.2: Selected TLR agonist combinations enhance the secretion of pro-

inflammatory cytokines from Flt3L-DCs.   Flt3L-DCs were generated as described in Figure 4.1 

and stimulated on day 9 with TLR agonists at the following concentrations: LPS (100ng/mL), CpG 

(2µg/mL), Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  Following 24 hours of stimulation, DC culture 

supernatants were collected for analysis of the indicated cytokines by a bioplex assay.  Bar graph values 

represent mean ± S.D.  Results are pooled data from 3 independent experiments. Statistical significance was 

tested using the Kruskal-Wallis with Dunn’s multiple comparisons test.  No significance was detected. 
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4.3.3  Flt3L-DC subsets differ in their capacity to secrete pro- 
inflammatory cytokines 

 

As shown in Figure 4.2, we observed that Flt3L-DCs secreted pro-inflammatory cytokines 

following stimulation with TLR agonists.  However, it was of interest to study whether the 

Flt3L-DC subsets, generated from our cultures differed in their capacity to produce pro-

inflammatory cytokines, and at which time point.  Thus, using a method of intracellular 

staining, production of IL-12p40 was evaluated in Flt3L-DCs following 6 hour and 24 

hour stimulation with TLR agonists.  Intracellular staining measures the expression of 

cytokines within the cells and was used in combination with cell surface marker staining to 

allow for detection of cytokine production in different DC subpopulations by flow 

cytometry.  There are currently no antibodies available to detect murine IL-12p70, thus 

intracellular detection of IL-12 was performed on the p40 subunit (IL-12p40).  
 
Flt3L-DCs were generated as described in Chapter 2 (2.4.2.2) and stimulated on day 9 with 

the agonist combination of Pam3Cys/Poly I:C or the respective individual TLR agonists 

for 6 or 24 hours.  For the last 4 hours of stimulation, cytokine secretion was inhibited by 

treatment with GolgiStop.  Following stimulation, cells were harvested and labelled with 

antibodies against cell surface makers.  Subsequently, cells were permeablised and stained 

with antibodies against the cytokines or the respective isotype control antibodies (as 

described in 2.4.5.1 and 2.4.5.2, respectively).  Cells were then analysed by flow 

cytometry.  The cDC and pDC subsets were identified by negative and positive expression 

of the marker B220, respectively.  The cDC population was then further separated into two 

subsets that were CD11bhigh and CD24high (Figure 4.3A). 

 

The CD24high and CD11bhigh cDCs were the primary subsets producing IL-12p40 following 

stimulation with the selected individual or combined TLR agonists (Figure 4.3B).   More 

specifically, we observe that production of IL-12p40 from the CD11bhigh cDCs stimulated 

with Poly I:C, was only detected 24 hours after stimulation.  Conversely, the CD24high 

cDCs stimulated with Poly I:C, exhibited decreased production of IL-12p40 at 24 hours.  

Overall, the production of IL-12p40 from the cDC subsets was higher at 6 hours, but 

production continued until the 24 hour time point.  No production of IL-12p40 was 

observed from pDCs. 
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Figure 4.3:  Production of IL-12p40 is detected in cDCs, but not in pDCs.   
Flt3L-DCs were generated as described in Figure 4.1.  Stimulation with Pam3Cys/Poly I:C or the respective 
individual agonists occurred on day 9 for 24 hours, or on day 10 for 6 hours at the following concentrations: 
Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  For the final 4 hours of stimulation, Flt3L-DCs were treated 

with GolgiStop to inhibit secretion of IL-12p40.  Following stimulation, cells were harvested, stained with 

the viability dye Live Dead Fixable Blue (LDFB) and labelled with antibodies against the cell surface 

markers CD11c, B220, CD11b, CD24.  Cells were subsequently stained with antibodies against the cytokines 

IL-12p40, or with the respective isotype control antibody, and analysed by flow cytometry.  (A) General 

gating strategy of Flt3L-DC subsets is shown.   Cells of interest were selected based on analysis of SSC and 

FSC properties.  This was then followed by gating of live cells, which were determined by those excluding 

the viability dye LDFB.  The CD11c+ population was gated, and pDCs were identified by expression of 

B220.  The cDC population was gated based on negative expression of B220 and was further subdivided into 

two subsets that were CD11bhigh and CD24high.  Numbers indicate percentages of cells within the respective 

gating regions.  (B) Detection of IL-12p40 production in Flt3L-DC subsets.  Results are from one of two 

independent experiments with similar results. 
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The kinetics of TNF-α production from Flt3L-DCs generated in vitro has not been 

reported.  Therefore we also investigated whether TNF-α production differed among the 

Flt3L-DC subsets.  Flt3L-DCs were generated as described in Chapter 2 (2.4.2.2) and 

stimulated on day 9 with the combined TLR agonists or the individual agonists for 6 or 24 

hours.  Subsequent experimental procedures used for detecting TNF-α among the DC 

subsets was performed as described for IL-12p40.  

 

Production of TNF-α was only detected within the CD24high cDCs stimulated with 

Pam3Cys and Poly I:C, at 6 hours.  Interestingly, TNF-α could not be detected within the 

same subset stimulated with the respective individual TLR agonists. (Figure 4.4A).  This 

observation does not support data shown in Figure 4.2, whereby TNF-α secretion was 

detected in Flt3L cultures stimulated with the individual TLR agonists.  Furthermore, the 

CD11bhigh cDCs and pDCs were not observed to produce TNF-α overall.  Due to this 

result, we asked whether TNF-α could not be detected due to insufficient inhibition of 

TNF-α secretion.  GolgiStop inhibits cytokine secretion by targeting the trans-Golgi 

function.  However, Brefeldin A can also be used for inhibiting cytokine secretion, and 

function by inhibiting protein transport between the ER and the Golgi (278).  Thus, we 

subsequently determined if the addition of both GolgiStop and Brefeldin A would 

influence the outcome of intracellular detection of TNF-α within Flt3L-DCs.   

 

Combining GolgiStop and Brefeldin A resulted in detection of TNF-α from the CD24high 

cDCs stimulated with the individual and combined TLR agonists at 6 hours, but not 24 

hours (Figure 4.4B).  Stimulation with the combined TLR agonists also enhanced TNF-α 

production, as evidenced by an increase in the percentage of TNF-α+ CD24high cDCs. 

TNF-α production was not detected within CD11bhigh cDCs and pDCs under any 

conditions tested.  Therefore, TNF-α is only produced by the CD24high cDCs, at an early 

time point after stimulation.   

 

Overall, these results demonstrated the differential capacity of Flt3L-DCs to secrete IL-

12p40 and TNF-α following stimulation with the selected TLR agonists.  Based on this 

observation, the following experiments presented within this chapter involve depletion of 
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B220+ pDCs from Flt3L cultures, in order to narrow the focus to cDCs, which are the 

optimal subsets producing pro-inflammatory cytokines.  The cDC subset are thus referred 

to as Flt3L-cDCs from here on.    
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Figure 4.4: TNF-α  production is only detected in CD24high cDCs.  Flt3L-DCs were 

generated as described in Figure 4.1.  Stimulation with Pam3Cys/Poly I:C or the respective individual 

agonists occurred on day 9 for 24 hours, or on day 10 for 6 hours at the following concentrations: Poly I:C 

(50µg/mL) and Pam3Cys (1µg/mL).  For the final 4 hours of stimulation, Flt3L-DCs were treated with (A) 

GolgiStop or (B) GolgiStop and Brefeldin A to inhibit secretion of TNF-α.  Following stimulation, cells were 

harvested and labelled with antibodies against cell surface markers CD11c, B220, CD11b and CD24.  Cells 

were subsequently stained with antibodies against the cytokines TNF-α or with the respective isotype control 

antibody and analysed by flow cytometry.  (A) and (B) represents one out of two independent experiments 

with similar results. 
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4.3.4   Stimulation with combined TLR agonists improves the ability of 
Flt3L-cDCs to induce CD4+ T cell proliferation  

 
To initiate immune responses, DCs need to activate naïve T cells and induce their 

proliferation (131, 279).  For effective T cell activation, DCs must be capable of antigen 

presentation, in parallel of having undergone maturation. In this chapter, we sought to 

determine the ability of Flt3L-DCs stimulated with the combined or respective single TLR 

agonists to present peptide antigen and induce the activation and proliferation of naïve 

CD4+ and CD8+ T cells in vitro.   

 

Flt3L-DCs were generated, as described in Chapter 2 (2.4.2.2), and depleted of B220+ 

pDCs on day 9 (Chapter 2, (2.4.3.3)).  Following depletion, Flt3L-cDCs were placed back 

into culture and stimulated with combined or individual TLR agonists.  DCs were 

harvested after 24 hours, loaded with either SIINFEKL (0.3nM) or ISQ (0.5mM) peptide 

and serially titrated onto 96-well culture plates.  The concentrations used for SIINFEKL or 

ISQ were selected based on previous peptide titration assays (Evelyn Hyde, Malaghan 

Institute of Medical Research, unpublished data), which indicated that these concentrations 

were sufficient to induce a clear T cell response, but not maximal proliferation which can 

limit the observation of potential differences between the TLR agonist treated groups.  

Purified naïve OTI CD8+ or OT-II CD4+ T cells recognising SIINFEKL or ISQ, 

respectively, were obtained by magnetic cell separation, as described in Chapter 2 

(2.4.3.2).  The T cells were added to the DC suspensions and incubated for 48 hours.  A 

selected proportion of the DC suspensions did not receive T cells as a DC only control.  

Following incubation, [3H]-thymidine was added for a further 18 hours and T cell 

proliferation was evaluated by measure of thymidine uptake.  

 

It was observed that Flt3L-cDCs stimulated with the individual TLR agonists induced a 

greater level of CD4+ and CD8+ T cell proliferation in comparison to unstimulated Flt3L-

cDC (Figure 4.5).  With respect to CD4+ T cell proliferation, Flt3L-cDCs stimulated with 

Poly I:C slightly out-performed those stimulated with Pam3Cys.  However, in comparison 

to Flt3L-cDCs treated with single TLR agonists, Flt3L-cDCs stimulated with the combined 

TLR agonists induced a stronger proliferation of CD4+ T cells.  In contrast, Flt3L-cDCs 

stimulated with either Pam3Cys or Poly I:C induced similar levels of CD8+ T cell 
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proliferation. Moreover, we observed no difference in the level of CD8+ T cell proliferation 

induced by Flt3L-cDCs stimulated with the combined or individual TLR agonists.  

 

In summary, we found that Flt3L-cDCs could present peptide antigen and induce the 

proliferation of CD4+ or CD8+ T cells in vitro.  Furthermore, Flt3L-cDCs stimulated with 

the combined TLR agonists induced enhanced proliferation of CD4+ T cells, but not of 

CD8+ T cells. 
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Figure 4.5: Flt3L-cDCs stimulated with combined TLR agonists acquire greater 

capabilities to induce proliferation of CD4+ but not CD8+ T cells.  Flt3L-DCs were 

generated as described in Figure 4.1.  DCs were then harvested on day 9 of cell culture and depleted of 

B220+ pDCs (Chapter 2, (2.4.3.3)).  Flt3L-cDCs were placed back into culture and stimulated with the 

combined or individual TLR agonists at the following concentrations: Poly I:C (50µg/mL) and Pam3Cys 

(1µg/mL).  Following 24 hours of stimulation, DCs were harvested, loaded with SIINFEKL (0.3nM) or ISQ  

(0.5mM) peptide and serially titrated onto 96-well culture plates.  Naïve OT-I CD8+ or OT-II CD4+ T cells 

were added to the DC suspensions at 1x105 T cells per well and were incubated for 48-72 hours.  Some DC 

wells did not receive T cells as a control (DC only).  Following incubation, 1 µCi/well [3H]-thymidine was 

added to each well and incubated for a further 18 hours.  Thymidine uptake in OT-I CD8+ or OT-II CD4+ T 

cells was then measured.  Results represent one out of two independent experiments with similar results.  

Each group is average data from triplicate samples.  Graph values represent mean ± S.D.  
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4.3.5 Flt3L-cDCs stimulated with combined TLR agonists are better at 
cross-presentation  
 

With the knowledge that Flt3L-cDCs could directly present peptide antigen to T cells and 

induce their proliferation (Figure 4.5), we subsequently sought to determine whether 

Flt3L-cDCs were capable of cross-presentation.  Unlike the OVA peptide antigens used for 

the T cell proliferation assay, the antigen used to assess cross-presentation was soluble 

OVA protein.  Thus, Flt3L-cDCs were evaluated for their ability to take up, process and 

cross-present exogenous soluble OVA to CD8+ T cells.  

 

The cross-presentation assay was performed as illustrated in Figure 4.6A. Briefly, Flt3L-

DCs were generated from BM cells of TLR4-/- mice, as described in Chapter 2 (2.4.2.2). 

BM cells from TLR4-/- mice were specifically used within this assay to exclude the effects 

of endotoxin (LPS) within the OVA protein, which can induce the activation of Flt3L-

cDCs (as established in Chapter 3, (3.3.3)).  This allowed us to directly assess the effects 

of combined or individual TLR stimulation on the cross-presentation capacity of Flt3L-

cDCs.  On day 8 of cell culture, OVA was added at 0.5mg/mL and incubated overnight 

(14-15 hours).  OVA protein was added to Flt3L-DC cultures prior to stimulation with 

TLR agonists because DCs down-regulate internalization of antigen following maturation 

(280). DCs were harvested following incubation with OVA, depleted of B220+ pDCs 

(Chapter 2, (2.4.3.3)) and Flt3L-cDCs were placed back into culture and stimulated with 

TLR agonists for 24 hours.  Following stimulation, Flt3L-cDCs were harvested and a 

selected proportion was loaded with 0.3nM of SIINFEKL peptide and serially titrated onto 

96-culture plates.  OT-I CD8+ T cells were added and incubated for 48 hours.  [3H]-

thymidine was added for a further 18 hours and T cell proliferation was evaluated by 

measure of thymidine uptake.  

 

Results obtained from the assay showed that Flt3L-cDCs were capable of cross-presenting 

soluble OVA protein to CD8+ T cells (Figure 4.6B).  We observed that unstimulated Flt3L-

cDCs displayed the capacity of cross-presentation, however with lower efficiency 

compared to Flt3L-cDCs stimulated with the individual TLR agonists.  Furthermore, 

Flt3L-cDCs stimulated with the combined TLR agonists induced the highest level of CD8+ 

T cell proliferation overall.  Taken together, this result indicated that Flt3L-cDCs 
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stimulated with combined TLR agonists have enhanced capability of cross-presentation 

when compared to Flt3L-cDCs stimulated with the individual TLR agonists.   

 

The difference in CD8+ T cell proliferation between the combined or individual TLR 

agonist treated DCs could be due to differences in the cross-presentation of soluble OVA, 

or to the level of co-stimulation delivered to the CD8+ T cells.  As established in Chapter 2, 

Flt3L-cDCs stimulated with Pam3Cys/Poly I:C showed increased levels of co-stimulatory 

molecule expression, which may have contributed to the increase in proliferation observed 

(Figure 4.6B).  Therefore, to determine whether the difference in proliferation was simply 

due to the differential level of co-stimulation, Flt3L-DCs were generated and loaded with 

OVA in the same manner as described above, however, a proportion of DCs (that were 

harvested following 24 hour stimulation with the TLR agonists) were loaded with 

SIINFEKL peptide.  The peptide is loaded directly onto MHC I and presented to CD8+ T 

cells, therefore bypassing antigen uptake and processing.   

 

It was observed that Flt3L-cDCs stimulated with the combined or individual TLR agonists 

and loaded with SIINFEKL peptide induced similar levels of CD8+ T cell proliferation 

(Figure 4.6C). Thus, this finding indicated that the difference in cross-presentation of 

Flt3L-cDCs stimulated with either the combined or individual TLR agonists were most 

likely due to differences in antigen uptake and processing. 
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Figure 4.6: Combined TLR ligation enhances the capability of Flt3L-cDCs to cross-

present OVA.  BM cells extracted from TLR4-/- mice were cultured in the presence of Flt3L to generate 

Flt3L-DCs.  On day 8, 0.5mg/mL of OVA protein was added to the Flt3L cultures and incubated overnight 

(14-15 hours).  Flt3L-DCs were then harvested and depleted of B220+ pDCs (Chapter 2, (2.4.3.3)).  Flt3L-

cDCs were placed back into culture and stimulated with the combined or individual TLR agonists at the 

following concentrations: Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  Following 24 hours of stimulation, 

Flt3L-cDCs were harvested and a proportion was loaded with 0.3nM of SIINFEKL peptide.  DCs were 

serially titrated onto 96-well culture plates and 1x105 naïve OTI CD8+ T cells were added to the DC 

suspension.  Cells were incubated for 48 hours, and 1 µCi/well of [3H]-thymidine was then added for a 

further 18 hours.  T cell proliferation was evaluated by measure of thymidine uptake.  (A) Timeline depicts 

experimental procedure of the cross-presentation assay. (B) Proliferation of CD8+ T cells induced by Flt3L-

cDCs cross-presenting OVA.  (C) Proliferation of CD8+ T cells induced by Flt3L-cDCs loaded with OVA 

protein and SIINFEKL peptide. Average proliferation of triplicate samples from one experiment is shown.  

Graph values represent mean ± S.D.  
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Herein, the results presented have demonstrated the functional capability of Flt3L-cDCs to 

secrete pro-inflammatory cytokines and induce T cell proliferation in vitro. More 

importantly, it has been shown that stimulation with Pam3Cys/Poly I:C not only enhances 

the activation status of Flt3L-cDCs, as judged by activation markers (Chapter 2), but also 

in their function.  Therefore, an optimised condition for inducing Flt3L-DC activation has 

been identified.  The further experiments outlined within this chapter will address the final 

aim of this thesis, can Flt3L-cDCs, activated with the optimised conditions, protect mice 

from tumour growth?  

 

4.3.6 Vaccination with 1x105 Flt3L-cDCs can induce tumour protection    
in mice 

 
To assess the efficacy of Flt3L-cDCs stimulated with the selected TLR agonist 

combination as immunotherapy against cancer, we first determined the number of DCs, 

required to induce protection in mice.  Particularly, GMCSF/IL-4 DCs were used as a 

mean to compare the efficacy of vaccination with Flt3L-cDCs.  Therefore, to achieve 

comparable activation status between the two DC populations, GMCSF/IL-4 DCs were 

stimulated with the agonist combination of LPS/Pam3Cys.  This combination was selected 

based on personal communications with Dianne Sika-Paotonu (Vaccine Research Group, 

Malaghan Institute of Medical Research), who has established the optimal combination to 

induce activation of GMCSF/IL-4 DCs.  

 

Experimental procedures were performed as outlined in Figure 4.7A.  Briefly, BM cells 

extracted from C57BL/6 mice were cultured in Flt3L, to first set up Flt3L-DC cultures. 

Due to a shorter period of cell culture, GMCSF/IL-4 DC cultures were set up 3 days 

following Flt3L cultures to allow for vaccination with both DC populations to occur on the 

same day.   DCs from Flt3L cultures were harvested on day 9 and depleted of B220+ pDCs.  

Following depletion, Flt3L-cDCs were placed back into culture and stimulated with 

Pam3Cys/Poly I:C.  GMCSF/IL-4 DCs were stimulated on day 6 of cell culture with 

LPS/Pam3Cys.  Following 24 hours of stimulation, DCs were harvested and loaded with 

10µM SIINFEKL peptide for 2 hours.  A proportion of Flt3L-cDCs and GMCSF/IL-4 DCs 

were not loaded with SIINFEKL as a control.  Following incubation, both DC populations 
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were washed to remove unbound peptide and DCs were titrated.  C57BL/6 mice were 

vaccinated with various numbers of Flt3L or GMCSF/IL-4 DCs, as indicated in Figure 4.6.  

All mice were tumour challenged with 1x105 B16.OVA melanoma cells 7 days following 

vaccination. 

 

As this experiment aimed to study the ability of the two different DC populations to induce 

a CD8+ T cell response and consequently tumour rejection, DCs were loaded with 

SIINFEKL peptide, the OVA epitope recognised by CD8+ T cells. While whole OVA 

protein would have the advantage of providing both a CD4+ and CD8+ T cell response, 

potential differences in protein uptake and processing between Flt3L-cDCs and 

GMCSF/IL-4 DCs would complicate interpretation of results.  Therefore, SIINFEKL 

peptide was chosen to achieve comparable antigen loading onto both DC types.  This made 

it possible to assess the efficacy of the injected DC vaccine to induce tumour protection, 

via induction of CD8+ T cell response.  

 

Compared to the tumour only control, mice that were vaccinated with varying numbers of 

Flt3L-cDCs or GMCSF/IL-4 DCs showed delayed tumour growth (Figure 4.7B and 4.7C).  

Vaccination with 1x105 Flt3L-cDCs conferred up to 80 percent protection in mice.  In 

addition, the single mouse that had developed a tumour showed a delay in tumour onset 

compared to the tumour only controls  (Figure 4.7B).  Vaccination with 1x104 or 1x103 

Flt3L-cDCs also induced some tumour protection in mice, but these doses were less 

effective compared to vaccination with 1x105 Flt3L-cDCs.  In contrast to Flt3L-cDCs, 

mice that were vaccinated with 1x105 or 1x104 GMCSF/IL-4 were completely protected 

from tumour growth (Figure 4.7C).  Mice that received activated Flt3L-cDCs not loaded 

with SIINFEKL peptide all grew tumours at a similar rate to the tumour only control 

(Figure 4.7B), while a slight delay was seen in mice vaccinated GM-CSF/IL-4 DCs not 

loaded with peptide (Figure 4.7C).  However, despite this delay observed, all mice that 

received either DC population not loaded with SIINFEKL peptide do not survive, thus 

demonstrating the specificity of the anti-tumour immune response.  In summary, 

vaccination with 1x105 Flt3L-cDCs produced the best protective effect, whereas 

vaccination with 1x105 or 1x104 GMCSF/IL-4 DCs was equally effective at inducing 

protection.   
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Figure 4.7:  Vaccination with graded numbers of Flt3L-cDCs and GMCSF/IL-4 DCs 

can induce tumour protection in mice.   BM cells extracted from C57BL/6 mice were cultured in 

the presence of Flt3L or GMCSF/IL-4.  GMCSF/IL-4 cultures were set up 3 days following Flt3L cultures to 

allow for vaccination with each DC type to occur on the same day.   On day 9 of cell culture, Flt3L-DCs 

were depleted of B220+ pDCs, (Chapter 2, (2.4.3.3)), and Flt3L-cDCs were placed back into culture and 

stimulated with Pam3Cys/Poly I:C, at the following concentrations: Poly I:C (50µg/mL) and Pam3Cys 

(1µg/mL).  GMCSF/IL-4 DCs were stimulated on day 6 of cell culture with LPS/Pam3Cys at the following 

concentrations: LPS (100n/mL) and Pam3Cys (100ng/mL).  Following 24 hours of stimulation, DCs from 

each culture system were harvested and loaded with 10µM SIINFEKL peptide.  DCs were titrated and 

varying numbers were injected s.c. into the right flank of C57BL/6 mice.  All mice were injected s.c. into the 

left flank with 1x105 B16.OVA melanoma cells, 7 days post vaccination.  A tumour was scored as positive 

when it reached 4mm2.  Tumour size was measured with Mitutoyo callipers and mice were euthanized when 

tumour size reached 150-200mm2.  (A) Timeline showing experimental procedure of tumour experiment.  

Left panel of (B) and (C) shows mean tumour size up onto the day at which the first mouse within the group 

was culled due to a large tumour (150-200mm2).  Right panel of (B) and (C) shows percentage of survival of 

mice vaccinated with varying numbers of Flt3L-cDCs and GMCSF/IL-4 DCs, respectively.  Tumour size is 

shown as mean ± S.D and data are from one of two independent experiments with similar results.  

Experiment contained 5 mice per group.  See Appendix 6 for tumour size data of individual mice.  
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4.3.7  Disruption of Flt3L-DC clusters prior to stimulation with TLR 
agonists does not influence tumour protection 

 
As mentioned in section 4.3.5, both Flt3L-cDCs and GMCSF/IL-4 DCs were stimulated 

with optimal TLR agonist combinations, to achieve comparable activation status.  

However, because Flt3L-DCs were harvested from culture on day 9 and handled for 

depletion of B220+ pDCs, there was a possibility of Flt3L-cDCs becoming activated due to 

this process.  In consequence, Flt3L-cDCs maybe more activated than GMCSF/IL-4 DCs 

following TLR stimulation, which can influence the ensuing anti-tumour immune 

response.  Therefore, we vaccinated mice with total Flt3L-DCs to compare their efficacy to 

Flt3L-cDCs. 

 

BM cells were cultured in the presence of Flt3L for 9 days to generate Flt3L-DCs.  On day 

9, a select proportion of Flt3L-DCs was harvested, depleted of B220+ pDCs (Chapter 2, 

(2.4.3.3)) and Flt3L-cDCs were placed back into culture.  Flt3L-DC cultures not intended 

for depletion of B220+ pDCs remained in culture and were stimulated at the same time as 

the depleted population with Pam3Cys/Poly I:C.  DCs were harvested, 24 hours following 

stimulation, loaded with 10µM SIINFEKL peptide and incubated for 2 hours.  Following 

incubation, DCs were washed to remove unbound peptide and 1x105 total Flt3L-DCs or 

1x105 Flt3L-cDCs were injected into C57BL/6 mice.  Mice were challenged with 1x105 

B16.OVA melanoma cells 7 days following vaccination.  

 

From our results, we found that mice were completely protected from tumour growth 

following vaccination with Flt3L-DCs that were either depleted or not depleted of B220+ 

pDCs (Figure 4.8).  Therefore, it does not appear that B220+ pDC depletion influences the 

protective ability of Flt3L-cDCs, as tumour protection was the same in both vaccination 

groups. 
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Figure 4.8: Vaccination with Flt3L-DCs or Flt3L-cDCs induces the same level of 

tumour protection.  BM cells extracted from C57BL/6 mice were cultured in the presence of Flt3L for 

9 days.  On day 9 of cell culture, a selected proportion of Flt3L-DCs were harvested and depleted of B220+ 

pDCs (Chapter 2, (2.4.3.3)).  Following depletion, Flt3L-cDCs were placed back into culture and stimulated 

with Pam3Cys/Poly I:C at the following concentrations: Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  

Flt3L-DCs that were not depleted of B220+ pDCs were stimulated simultaneously.  Following 24 hours of 

stimulation, DCs from each group were harvested and loaded with 10µM SIINFEKL peptide.  DCs were 

resuspended at the appropriate concentration and 1x105 Flt3L-cDCs or 1x105 total Flt3L-DCs were injected 

s.c. into the right flank of C57BL/6 mice. 7 days post vaccination, all mice were injected s.c. into the left 

flank with 1x105 B16.OVA melanoma cells.  A tumour was scored as positive when it reached 4mm2 and was 

measured with Mitutoyo callipers.  Mice were euthanized when tumour size reached 150-200mm2. Left panel 

shows mean tumour size up onto the day at which the first mouse within the group was culled due to a large 

tumour (150-200mm2).  Right panel shows percentage of survival of mice vaccinated with either Flt3L-cDCs 

or Flt3L-DCs. Tumour size is shown as mean ± S.D and data are from one of two independent experiments 

with similar results.  Experiment contained 5 mice per group. 

 
 
 
4.3.8  Unstimulated and stimulated Flt3L-cDCs exhibit similar levels of 

tumour protection 
 
Studies have shown that DC maturation is key to the induction of an effective anti-tumour 

immune response (248).  Therefore, we determined the relative contribution of combined 

TLR ligation on the ability of Flt3L-cDCs to protect mice from tumour growth by direct 

comparison to vaccination with unstimulated Flt3L-cDCs.  Furthermore, mice were also 
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vaccinated with GMCSF/IL-4 DCs to compare the efficacy to Flt3L-cDCs.  We choose to 

vaccinate mice with 1x105 Flt3L-cDCs, which were observed to induce maximal tumour 

protection in mice.  As it was observed that vaccination with 1x104 GMCSF/IL-4 DCs 

worked as well as vaccination with 1x105, we chose a lower dose of 1x104 GMCSF/IL-4 

DCs for vaccination (Figure 4.7C). 

 

As outlined in Figure 4.9A, Flt3L-DC cultures were set up 3 days prior to GMCSF/IL-4 

DC cultures to allow for vaccination with both DC populations to occur on the same day.   

DCs from Flt3L cultures were harvested on day 9 and depleted of B220+ pDCs (Chapter 2, 

(2.4.3.3)).  Flt3L-cDCs were placed back into culture and a selected proportion were   

stimulated with Pam3Cys and Poly I:C, for 24 hours.  A proportion of GMCSF/IL-4 DCs 

were stimulated simultaneously with LPS/Pam3Cys, for 24 hours.  Stimulated and 

unstimulated DCs from both culture systems were harvested, loaded with 10µM 

SIINFEKL peptide or not loaded as a control.  Flt3L-cDC or GMCSF/IL-4 DCs from all 

treatment groups were washed to remove unbound peptide and resuspended at the 

appropriate concentrations.  C57BL/6 mice were vaccinated with 1x105 Flt3L or 1x104 

GMCSF/IL-4 DCs, as indicated in Figure 4.9A.  All mice were tumour challenged with 

1x105 B16.OVA melanoma cells, 7 days following vaccination. 

 
 
Vaccination with 1x105 Flt3L-cDCs or 1x104 GMCSF/IL-4 DCs, stimulated with the 

optimal TLR agonist combination and loaded with SIINFEKL, induced complete 

protection from tumour growth (Figure 4.9B, 4.9C, respectively).  Therefore, with respect 

to vaccination with 1x105 Flt3L-cDCs, a slight variation in percentage of survival was seen 

within this experiment compared to those previously observed (Figure 4.7B), however, the 

same result was reproduced for GMCSF/IL-4 DCs.  We also found that unstimulated 

Flt3L-cDCs or GMCSF/IL-4 DCs, loaded with SIINFEKL, conferred up to 80 or 60 

percent tumour protection, respectively (Figure 4.9B, 4.9C, respectively).  Furthermore, 

unstimulated Flt3L-cDCs, not loaded with SIINFEKL were also able to elicit some 

protective effect, conferring up to 40 percent protection in mice.  In summary, both Flt3L-

cDCs and GMCSF/IL-4 DCs, in the unstimulated state maintain some protective ability, 

but only stimulation with TLR agonists can induce complete protection from tumour 

growth. 
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Figure 4.9:  Stimulated and unstimulated Flt3L-cDCs do not differ substantially in 

their ability to protect mice from tumour growth.  Flt3L-DC cultures were set up, followed by 

GMCSF/IL-4 DC cultures to allow for vaccination with each DC type to occur on the same day.  On day 9 of 

cell culture, Flt3L-DCs were depleted of B220+ pDCs (Chapter 2, (2.4.3.3)), placed back into culture and a 

proportion was stimulated with Pam3Cys/Poly I:C at the following concentrations: Poly I:C (50µg/mL) and 

Pam3Cys (1µg/mL).  GMCSF/IL-4 DCs were stimulated on day 6 of cell culture with LPS/Pam3Cys at the 

following concentrations: LPS (100ng/mL) and Pam3Cys (100ng/mL).  Following 24 hours of incubation, 

stimulated and unstimulated DCs from each culture were harvested, and a selected proportion from each 

group were loaded with 10µM SIINFEKL peptide and incubated for 2 hours.  Following incubation, DC 

groups loaded with SIINFEKL were washed to remove unbound peptide and 1x105 Flt3L-cDCs or 1x104 

GMCSF/IL-4 DCs were injected s.c. into the right flank of C57BL/6 mice.  7 days following vaccination, 

1x105 B16.OVA tumour cells were injected s.c. into the left flank of all mice.  Tumour growth was scored as 

positive when it reached 4mm2.  Tumour size was measured with Mitutoyo callipers and mice were 

euthanized when tumour size reached 150-200mm2.  (A) Timeline depicts experimental procedure of tumour 

experiment. Left panel of (B) and (C) shows mean tumour size up onto the day at which the first mouse 

within the group was culled due to a large tumour (150-200mm2). Right panel of (B) and (C) shows 

percentage of survival of mice vaccinated with stimulated or unstimulated Flt3L-cDCs or GMCSF/IL-4 DCs.  

Tumour size is shown as mean ± S.D and data are from one of 2 independent experiments with similar 

results.  Experiment contained 5 mice per group.  See Appendix 7 for tumour size data of individual mice.  
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4.4 Discussion 
 

4.4.1 Cytokine secretion profiles of Flt3L-DCs following stimulation 
with the individual or combined TLR agonists. 

 
The experiments presented within this chapter investigated the functional capability of 

Flt3L-DCs.  Firstly, we determined the relative ability of Flt3L-DCs to secrete both the 

inflammatory cytokine IL-12 and the anti-inflammatory IL-10, in response to stimulation 

with individual TLR agonists.  In agreement with data published by Naik et al and 

Brawand et al (225, 233), we found that Flt3L-DCs secreted both IL-12p70 and IL-10, 

following TLR ligation (Figure 4.1).  Specifically, each agonist induced a different 

response with respect to the quantity of IL-12p70 and IL-10 secretion.  Furthermore, a 

trend was observed whereby each agonist induced more secretion of one cytokine than the 

other, but never similar amounts of both.  Overall, this result is indicative of the fact that 

cytokine production from Flt3L-DCs is regulated by the type of microbial compound that 

induces activation.  Moreover, our cytokine data also indicated that not only could Flt3L-

DCs induce an inflammatory response through secretion of IL-12, but can also dampen 

inflammation via production of IL-10.  IL-12 is essential for the control of malignancy by 

virtue of its ability to stimulate both innate and adaptive immune effector cells (281), 

however, its production can be suppressed by IL-10 (282).  Thus, IL-10 production could 

be a regulatory mechanism to prevent tissue damage from excessive inflammation or 

possibly autoimmunity.  This hypothesis could be investigated in future experiments using 

intracellular staining to study the kinetics of IL-10 production, which can establish if IL-10 

is produced sometime following production of IL-12p70.  Moreover, intracellular staining 

would allow for assessment of which Flt3L-DC subset is producing the regulatory 

cytokine.  

 
  
We found that only selected combinations of TLR agonists could enhance the production 

of pro-inflammatory cytokines, compared to stimulation with the respective agonists.  

Specifically, enhanced production of IL-12p70 was only observed with combinations of 

Pam3Cys/Poly I:C or CpG/Poly I:C.  Only stimulation with Pam3Cys/Poly I:C was 

observed to enhance TNF-α production (Figure 4.2), and although there were some 

variability in this response, this observation was further supported by data derived from 
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intracellular staining (discussed in section 4.4.2).  The limited response in cytokine 

secretion following combined TLR ligation is unlike our previous finding with respect to 

analysis of activation markers.  As shown in Chapter 3, we observed that all TLR agonist 

combinations that induced signalling of both the MyD88-dependent and independent 

pathways, enhanced expression of either CD40, CD80 or both cDCs and pDCs (Chapter 3, 

Figure 3.8).  Therefore, data gathered throughout this thesis indicated that while many 

TLR agonist combinations can amplify expression of activation markers on Flt3L-DCs, 

enhanced production of pro-inflammatory cytokines is highly specific, in that only selected 

agonist combinations are capable of inducing such events.  Furthermore, we also note that 

those TLR agonist combinations that enhanced secretion of IL-12p70 from Flt3L-DCs, did 

not induce a 20 to 50 fold increase as previously demonstrated by Napolitani et al, with 

GM-CSF DCs (235).  Instead, we only observed an increase of IL-12p70 production by 

only 2 fold or less.  Given that Napolitani et al, described their result with GM-CSF DCs as 

synergistic activation, our cytokine data did not indicate a synergistic response.  Rather, 

our data would suggest that combined TLR ligation on Flt3L-DCs serves to induce an 

additive or sub-additive effect, as opposed to synergistic activation. 

 

 
4.4.2 Differential capacity of cytokine secretion from Flt3L-DC subsets 
 
Kinetics of cytokine secretion from Flt3L-DCs were assessed by intracellular staining, and 

we identified the CD24high and CD11bhigh cDCs as the primary subsets producing pro-

inflammatory cytokines. We have shown that production of TNF-α was only detected 

within the CD24high cDCs at 6 hours, following stimulation.  Furthermore, we observed 

that stimulation with Pam3Cys/Poly I:C resulted in an increase in percentage of TNF-α 

production within the CD24high cDCs.  This result supported our initial observation from 

the biolpex data, where we observed enhanced secretion of TNF-α from Flt3L-DCs 

stimulated with Pam3Cys/Poly I:C (Figure 4.2).  

 

We have also shown that IL-12p40 production by both CD24high and CD11bhigh cDCs was 

detected at both 6 hours and 24 hours after stimulation with Pam3Cys or Pam3Cys/Poly 

I:C.  However, CD11bhigh cDCs stimulated with Poly I:C did not exhibit production of IL-
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12p40 when analysed at 6 hours, but only at 24 hours.  Expression of TLR3 on CD11bhigh 

cDCs, the receptor which responds to Poly I:C, has been shown to be expressed at very 

low and undetectable levels by real-time PCR (225).  Therefore, given the minimal 

expression of TLR3, this observation could be the result of the CD11bhigh cDCs requiring 

an extended period of stimulation with Poly I:C in order to acquire sufficient signal to 

induce their activation and subsequent cytokine production.  Thus, this could explain why 

IL-12p40 production could only be detected at 24 hours.  Alternatively, this delay in 

cytokine production may be the result of Poly I:C interacting with other receptors 

expressed on CD11bhigh cDCs.  Other than TLR3, studies have shown that Poly I:C can 

also be recognised by the receptors RIG-1 and MDA-5 (283).  These are sensors of viral 

RNA and belong to a family of RIG-1-like receptors (RLRs), which are cytoplasmic 

helicases (284).  Both RIG-1 and MDA-5 have been shown to be predominantly expressed 

on CD8- cDCs (285).  Signalling through RIG-1 and MDA-5 induces recruitment of 

adaptor molecules such as IPS-1, which are distinct to those of TLR mediated signalling, 

but result in induction of the same transcription factors – namely IRFs and NF-κB – as 

TLR3 signalling (284).  Therefore, the kinetics of this signalling pathway could be 

different from TLR mediated Poly I:C recognition.  Expression of RIG-1 and MDA-5 on 

CD8- cDCs indicates that they can also be expressed on CD11bhigh cDCs, which are the 

CD8- cDCs equivalents (225).  Therefore, Poly I:C could be recognized by RIG-1 or 

MDA-5 expressed on CD11bhigh cDCs and through this different signalling cascade induce 

their activation and subsequent secretion of IL-12p40 at a later time point. 

 

pDCs were not observed to produce any IL-12p40 or TNF-α following stimulation with 

Pam3Cys/Poly I:C, or the respective individual agonists.  This is not surprising, as pDCs 

are known to express low levels of TLR2 and 3, the receptors for Pam3Cys amd Poly I:C, 

respectively.  Conversely, pDCs display high levels of TLR9 and thus primarily respond to 

activation with its corresponding ligand CpG (233).  Stimulation with CpG has also been 

shown to induce production of IL-2p40 from pDCs, but not secretion of bioactive IL-

12p70 (225).  Furthermore, pDCs reportedly can secrete TNF-α following stimulation with 

a TLR7 or TLR9 agonist (286). Taken together, these data highlight the fact that cytokine 

production in response to TLR engagement depends on TLR expression on the different 

DC subsets and the TLR agonist used to induce activation. 
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4.4.3 Enhanced proliferation of CD4+ T cells by Flt3L-cDCs stimulated 
with the combined TLR agonists 

 
The capacity for Flt3L-cDCs to present peptide antigen and induce the activation and 

proliferation of naïve CD4+ and CD8+ T cells was also investigated in this chapter.  For 

these experiments, Flt3L-cDCs were either activated with Pam3Cys/Poly I:C or the 

respective individual TLR agonists, thus effects of combined TLR ligation on T cell 

responses was also examined (section 4.3.3) 

 

Flt3L-cDCs, stimulated with the combined or individual agonist, induced the proliferation 

of both CD4+ and CD8+ T cells in vitro, thus displaying the capacity of antigen 

presentation.  Furthermore, we observed that Flt3L-cDCs stimulated with the combined 

TLR agonists, were more potent at inducing CD4+ T cell proliferation compared to those 

stimulated with the individual agonist.  Conversely, CD8+ T cell proliferation appeared 

similar regardless of stimulation with combined or individual TLR agonists (Figure 4.5).  It 

is known that activation of T cells requires at least 2 signals that is delivered by the APC.  

Antigen presentation by DCs provides the first signal necessary for T cell activation.  

However, T cells also require a second signal, delivered by the co-stimulatory molecules 

on the APC (287).  As shown in Chapter 3, stimulation with Pam3Cys/Poly I:C improved 

expression of co-stimulatory molecules on Flt3L-cDCs (Section 3.5.5, Figure 3.8).  

Therefore, delivery of more co-stimulation by Flt3L-cDCs activated with the combined 

TLR agonists, may account, at least in part, for the enhanced proliferation of CD4+ cells 

observed.  

 

A failure in observing any difference in CD8+ T cell proliferation between the agonists 

treated groups could be due to high concentration of the antigen (SIINFEKL) being used, 

which could induce a maximal proliferative response.  Therefore, it would be ideal to 

perform a future T cell proliferation assay using only a fixed number of DCs and titrating 

the antigen concentration.  Any potential differences in CD8+ T cell proliferation between 

the combined and single TLR stimulation may therefore be observed. 
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4.4.4 Enhanced cross-presentation of soluble antigen by Flt3L-cDCs 
stimulated with the combined TLR agonists 

 
DCs are capable of taking up, processing and cross-presenting exogenous antigen to CD8+ 

T cells.  Using soluble OVA as a model of exogenous antigen, we evaluated the cross-

presentation capacity of Flt3L-cDCs and the impact of combined or single TLR ligation on 

this process.  We observed that unstimulated Flt3L-cDCs were capable of cross-presenting 

soluble OVA, but with less efficiency compared to Flt3L-cDCs stimulated with the 

individual agonists (Figure 4.6B).  Moreover, Flt3L-cDCs that were stimulated with the 

combined TLR agonists exhibited the greatest capacity in cross-presentation compared to 

unstimulated Flt3L-cDCs or those stimulated with the respective individual agonists 

(Figure 4.6B).  

 

Delamarre et al showed that immature GM-CSF DCs generated in vitro, can internalise 

exogenous antigens, but were incapable of cross-presentation.  However, upon disruption 

of DC clusters (by gentle pipetting of the culture media) unsitmulated GM-CSF DCs were 

able to cross-present soluble OVA (288).  Cluster disruption is a stimulus known to induce 

DC maturation in vitro, however its mechanism is not fully understood (289).  It is thought 

that disruption of cell-cell adhesion that is mediated by E-cadherin, generates a signal that 

induces maturation (288).  Potentially, disaggregation of DC clusters may represent a 

mechanism in which unstimulated Flt3L-cDCs acquire the capability for cross-

presentation.  In our cross-presentation assay, Flt3L-DCs were harvested on day 9 for 

B220+ pDC depletion, however, it was protocol to gently pipette the culture media to 

detache loosely adherent DCs from the bottom of the wells.  Thus, it is possible that 

unstimulated Flt3L-cDCs acquired maturation signals that were sufficient to induce cross-

presentation of OVA.  Alternatively, cross-presentation by unstimulated Flt3L-cDCs could 

be an artefact of high antigen concentration within the culture, which could induce antigen 

processing and cross-presentation.  

 

We have shown that the differential capacity in cross-presentation between Flt3L-cDCs 

stimulated with the combined or single TLR agonists was not associated with differences 

in expression of co-stimulatory molecules, as presentation of SIINFEKL peptide was 

similar in all cases (Figure 4.7C).  Thus, our data suggested that stimulation with 
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Pam3Cys/Poly I:C promoted enhanced cross-presentation by acting on the intracellular 

cross-presentation mechanisms.  In a cross-presentation assay using Flt3L-DCs generated 

in vitro, de Brito et al were able to show using soluble OVA that stimulation with CpG 

significantly delayed antigen degradation compared to those of untreated Flt3L-DCs (290).  

Reportedly, delayed antigen degradation is a mechanism which favours cross-presentation 

(291).  Furthermore, de Brito et al showed that OVA accumulated at high densities in 

CpG-treated DCs.  Therefore, these are potential mechanisms that increase the efficacy of 

Flt3L-cDCs to cross-present OVA following stimulation with the individual agonists, and 

which can be enhanced by combined TLR stimulation.  

 
 

 
4.4.5 Induction of anti-tumour immune response by Flt3L-cDCs  

As a final point of investigation within this thesis, we determined the efficacy of Flt3L-

cDCs, as immunotherapy against cancer.  In a mouse tumour model using B16.OVA 

melanoma cells, we compared the anti-tumour activity of Flt3L-cDCs to GMCSF/IL-4 

DCs that were both stimulated with optimal TLR agonist combinations.   

 

In our initial experiment, we sought to determine the number of Flt3L-cDCs or 

GMCSF/IL-4 DCs that will induce maximal protection from tumour growth.  We observed 

that vaccination with just 1x104 GMCSF/IL-4 DCs was sufficient to induce complete 

tumour protection in mice, while 1x105 Flt3L-cDCs was required to produce a similar 

outcome, with 80 percent protection (Figure 4.7B, 4.7C).  Given that a lower dose of 

GMCSF/IL-4 DCs can completely protect mice from tumour growth, it is apparent these 

DCs display a higher efficacy at inducing anti-tumour immune responses, compared to 

Flt3L-cDCs.   

 

DC maturation is a critical parameter in the induction of anti-tumour immune responses.  

This has been shown within several clinical trials, whereby injection with immature Mo-

DCs into melanoma patients, did not lead to significant B and T cell responses compared 

to matured DCs (138, 292).  Thus, given the importance of DC maturation on the ensuing 

anti-tumour immune response, it was meaningful to determine the impact of stimulation 

with the combined TLR agonists on the ability of Flt3L-cDCs and GMCSF/IL-4 DCs to 
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protect mice from tumour growth.  Vaccination with matured and activated GMCS/IL-4 

DCs or Flt3L-cDCs, loaded with SIINFEKL, was required for complete tumour protection.  

However, we also observed that vaccination with 1x105 unstimulated Flt3L-cDCs or 1x104 

unstimulated GMCSF/IL-4 DCs, loaded with SIINFEKL, could induce up to 60 and 80 

percent tumour protection, respectively (Figure 4.9B, 4.9C).  This observation may be due 

to the high number of DCs chosen for vaccination. Alternatively, the unstimulated DC 

populations may already have possessed some level of maturation. Although unstimulated 

Flt3L-cDCs and GMCSF/IL-4 DCs were induced to mature with TLR agonists, it is likely 

that handling of these DCs in order to prepare them for vaccination could have induced 

some activation.  Thus, given that these DCs may not be entirely non-activated, anti-

tumour immune responses can be elicited if a considerable number of DCs is administered 

into the mice.  Therefore, future experiments could focus on vaccination with titrated 

numbers of unstimulated Flt3L-cDCs and GMCSF/IL-4 DCs to confirm if lower DC 

numbers could results in less tumour protection.  Preferably, this would be performed 

alongside stimulated Flt3L-cDCs and GMCSF/IL-4 DCs, also titrated in the same manner 

as the unstimulated DCs for a direct comparison.  

 
 

 
4.5 Conclusion 
 
Within this chapter, we have shown that TLR stimulation could induce Flt3L-DCs to 

acquire functional characteristics that are important for their application in 

immunotherapy.  Specifically, we found that stimulation with individual TLR agonists 

induced Flt3L-DCs to secrete both pro-inflammatory and anti-inflammatory cytokines.  

Production of pro-inflammatory cytokines could be further enhanced by stimulation with 

combined TLR agonists, however, this response was highly restricted to few agonists, with 

only the combination of Pam3Cys/Poly I:C enhancing secretion of the cytokines IL-12p70 

and TNF-α.  Furthermore, not only could this combination enhance cytokine production, 

but Flt3L-cDCs stimulated with Pam3Cys/Poly I:C were better than those stimulated with 

the respective individual agonists at inducing CD4+ T proliferation and cross-presentation 

of soluble antigen to CD8+ T cells.  When tested for their ability to confer tumour 

protection in mice, vaccination with 1x105 Flt3L-cDCs was required to induce maximal 
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anti-tumour immunity, while as little as 1x104 GMCSF/IL-4 DCs could completely protect 

mice from tumour growth.  Therefore, we found that Flt3L-cDCs can be used for 

immunotherapy, but even under optimal conditions of activation, they display less efficacy 

compared to GMCSF/IL-4 DCs. 
 
 



 129 

 
 
 
 
 
 
 
 
 
 
 
 

15. Chapter 5. 
General Discussion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5:  General discussion  130 

5.1  General overview of findings 
 
 
DCs are crucial for the generation of immune responses, and as such have been used as 

therapeutic cancer vaccines.  A well established, and commonly used procedure for 

generating DCs in culture from human blood monocytes involves the culture of these cells 

with the cytokines GM-CSF and IL-4 (83, 213).  However, GMCSF/IL-4 DCs do not show 

the heterogeneity in DC phenotype found within steady-state DCs, but rather share similar 

properties to DCs that arise in vivo during inflammation.   Conversely, the culture of BM 

cells in Flt3L generates DCs that are phenotypcially distinct from GMCSF/IL-4 DCs and 

more closely resemble steady-state DCs in vivo (78, 214).  Therefore, the general aim of 

this thesis was to determine the applicability of Flt3L-DCs for cancer immunotherapy.  
 
 
 
The clinical application of ex vivo generated DCs requires a detailed understanding of their 

phenotypic and functional properties for optimal immune induction.  In Chapter 3, we first 

characterised the phenotype of Flt3L-DCs before and after stimulation with TLR agonists.  

We have shown that murine BM cells cultured in Flt3L generated DCs consisting of two 

primary subsets: CD11c+ B220+ pDCs and CD11c+ B220- cDCs.  The cDCs could be 

further subdivided into two populations that are CD11bhigh and CD24high.  This is in line 

with the DC subsets reported by Naik et al (225), who also described these populations as 

the equivalents of mouse splenic steady-state DCs.  In contrast to Flt3L-DCs, GMCSF/IL-

4 DCs display a uniform CD24lowCD11bhigh phenotype (214). Furthermore, we also found 

that these different culture conditions lead to differences in morphology, as we have 

observed that Flt3L-DCs were smaller in size compared to GMCSF/IL-4 DCs.  

 

Within the context of immunotherapy, the maturation of DCs is essential in order to induce 

immunity.  Comparative studies with immature or matured DCs have shown that only 

mature DCs are superior inducers of T cell responses (292).  One way to induce DC 

activation in vitro is the use of specific TLR agonists. Our results showed that stimulation 

with TLR agonists induced Flt3L-DCs to acquire an activated phenotype, as evaluated by 

the up-regulation of activation markers such as CD80, CD40 and MHC II.  Brawand et al 

showed that DCs generated in GM-CSF cultures need to switch from oxidative 

phosphorylation to glycolytic metabolism to become activated in response to TLR 
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stimulation (245).  In light of these findings, we set forth to determine if inhibiting glucose 

metabolism by treatment with the competitive glycolysis inhibitor 2-DG impairs the 

maturational capacity of Flt3L-cDCs.  Although the results from our experiments are 

preliminary and require validation, they provide new insight into another level of 

distinction between Flt3L-cDCs and GMCSF/IL-4 DCs during TLR induced activation. 

Unlike LPS activated GMCSF/IL-4 DCs, which could not up-regulate activation markers 

in all 2-DG concentrations used, we found that Flt3L-cDCs had a threshold level, whereby 

only high concentrations of 2-DG inhibited their maturational capacity.  This suggested 

that Flt3L-cDCs do not switch to glycolytic metabolism to the same extent as GMCSF/IL-

4 DCs.  Further experiments are required in order to confirm whether or not activated 

Flt3L-cDCs are glycolytic, but our preliminary data suggests that while metabolic 

reprogramming is a critical control point for the maturation of inflammatory DCs 

following TLR stimulation, this is not the case for steady-state DCs.  

 

As steady-state DCs consist of different subpopulations, we sought to examine the effect of 

a variety of TLR agonists on both cDCs and pDCs. We observed that the cDC subset 

responded to a broad range of TLR agonists (LPS, Pam3Cys, Poly I:C and CpG), with no 

considerable differences seen between these stimuli. In contrast, pDC maturation was 

induced to the greatest extent by the agonist CpG, whereas other agonists induced a less 

pronounced response.  As previously stated, these differences in response are likely due to 

the differential expression of TLRs among the DC subsets (Chapter 3, section 3.4.2) (225, 

233).  Therefore, we were able to show that both cDCs and pDCs can be induced to 

acquire an activated phenotype following stimulation with individual agonists, but their 

maturational response is dictated by the expression of the TLR between the two subsets.  

Given the heterogeneity of Flt3L-DCs and the different repertoire of TLRs that each subset 

expresses, our findings highlight the importance of careful selection of TLR agonists that 

can induce the maturation of cDCs and pDCs.  In this respect, the agonist CpG would 

appear to be ideal, given that the corresponding receptor TLR9 is expressed on all Flt3L-

DC types (225).  Alternatively, one could use a cocktail of agonists, to induce activation of 

all three subsets.  This could have the benefit of enhancing the activation of individual DC 

subtypes, as it has been shown that the combined triggering of MyD88-dependent and 

independent (TRIF) signalling pathways can induce a synergistic effect on DCs (236).  
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While this has been shown with GM-CSF DCs (236), the possibility of synergistic 

activation has not been investigated with Flt3L-DCs.  

 

In this thesis we found that the combined activation of MyD88-dependent and independent 

pathways can improve the up-regulation of activation markers on Flt3L-DCs.  Analysis of 

the effects from combined TLR stimulation was further extended in Chapter 4, by 

determining if enhanced activation marker expression correlated with increased production 

of pro-inflammatory cytokines. While many combinations were found to increase 

expression of activation markers, only combinations of Pam3Cys/Poly I:C and CpG/Poly 

I:C induced higher secretion of IL-12p70.   In addition, Pam3Cys/Poly I:C were shown to 

enhance secretion of TNF-α, which was why this combination was deemed optimal.  

Overall, our finding implicates that the analysis of surface phenotype cannot be used as 

surrogate marker for functional properties, such as cytokine secretion. Furthermore, 

although we found that specific combinations of TLR agonists can enhance cytokine 

secretion, this was only seen in an additive manner and not synergistically.  

 

In Chapter 4, it was also found that Flt3L-cDCs that were stimulated with Pam3Cys/Poly 

I:C were better at inducing T cell proliferation compared to Flt3L-cDCs that were 

stimulated with the respective individual TLR agonists.  Specifically, this was seen in 

enhanced proliferation of CD4+ T cells by direct presentation of peptide antigen and of 

CD8+ T cells by cross-presentation. Taken together, we found that stimulation with 

combined TLR agonists can improve Flt3L-DC activation and function.  This approach can 

be used as the basis for developing effective Flt3L-DC vaccines. 

 

One of the aims of this thesis was to determine the ability of Flt3L-DCs to confer tumour 

protection in vivo. Flt3L-cDCs were either left untreated or optimally activated with 

Pam3Cys/Poly I:C and their ability to induce tumour protection was compared to 

GMCSF/IL-4 DCs, equally unstimulated or activated with LPS/Pam3Cys. Even 

unstimulated DCs were able to prevent tumour formation. However, complete tumour 

protection was only observed if optimally activated DCs were used. Under these 

conditions, GMCSF/IL-4 DCs were about 10-fold more effective than Flt3L-cDCs.  

 



Chapter 5:  General discussion  133 

In conclusion, Flt3L-DC vaccines effectively induce immune responses in vivo and 

therefore can be used as the basis of cancer immunotherapies.  However, the results from 

the tumour studies in this thesis suggest that Flt3L-cDCs are not superior to GMCSF/IL-4 

DCs if used as a prophylactic vaccine. 

 
 
5.2  Future directions 
 

As we have shown that Flt3L-cDCs can confer tumour protection in mice (Chapter 4), the 

following represents a list of suggestions for future work to establish mechanisms, which 

contribute to the ability of Flt3L-cDCs to induce anti-tumour immunity in vivo.  While 

similar experiments have been performed by other authors with Flt3L-DCs (214, 233, 

234), these future experiments will provide new information with respect to demonstrating 

the efficacy of Flt3L-DCs that have been optimally activated with Pam3Cys/Poly I:C. All 

of the following experiments should be performed alongside optimally activated 

GMCSF/IL-4 DCs for comparison. 

 

- Induction of immune responses requires migration of the administered DCs to the 

draining LN for antigen presentation to naïve T cells.  Thus, it would be ideal to 

confirm the migratory ability of Flt3L-cDCs following vaccination. For this 

experiment, Flt3L-cDCs would be stimulated with Pam3Cys/Poly I:C or the 

respective individual agonists, and subsequently labelled with a fluorescent dye 

such as CFSE. Flt3L-cDCs would then be injected into C57BL/6 mice s.c and the 

draining LN can then be extracted 24 hours post injection.  Cells from the LN can 

then be analysed by flow cytometry for expression of CFSE. 

 

- Migration of DCs to the draining LN requires expression of the chemokine 

receptors CCR7 (274, 293) and CXCR4 (294).  Thus, if Flt3L-cDCs, activated with 

Pam3Cys/Poly I:C exhibit enhanced migratory ability compared to those activated 

with the individual TLR agonists, chemokine receptor expression should be 

analysed to confirm if their superior migratory ability is due to enhanced 

expression of chemokine receptors.  One method of determining chemokine 
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receptor expression on DCs involves fluorescent antibody labelling for CCR7 and 

CXCR4, and analysis by flow cytometry.  

 

- In this thesis, Flt3L-cDCs were loaded with SIINFEKL (OVA epitope recognised 

by CD8+ T cells) prior to vaccination.  Thus, it was expected that Flt3L-cDCs 

would induce an antigen-specific CD8+ T cell response in vivo, driving anti-tumour 

immunity.  To confirm if Flt3L-cDCs are inducing CD8+ T cell activation and 

proliferation, an in vivo T cell proliferation assay could be performed.  For this 

assay, CD8+ transgenic T cells (specific for SIINFEKL) would be labelled with the 

fluorescent dye CFSE and then adoptively transferred i.v. into C57BL/6 mice.  

Flt3L-cDCs stimulated with Pam3Cys/Poly I:C or the respective individual 

agonists would be loaded with SIINFEKL are then injected into mice, 24 hours 

post T cell adoptive transfer.  Three days later, draining LN from mice could be 

excised and CFSE labelled CD8+ T cells are examined for CFSE dilution by flow 

cytometry.  In parallel to analysing the division profile of the transferred CD8+ T 

cells, expression of T cell activation markers could also be assessed. Markers that 

are known to be up-regulated on activated CD8+ T cells include CD69 (187) and 

CD44 (234). 

 

- For tumour killing to occur, CD8+ T cells that are activated by Flt3L-cDCs must 

exhibit cytotoxic activity.  The cytotoxic capacity of CD8+ T cells that have been 

primed with Flt3L-cDCs activated with the combined or individual TLR agonists 

can be assayed in vivo against splenocyte target cells (234).  

 

Further experiments are required in order to confirm if metabolism of Flt3L-cDCs is 

skewed towards aerobic glycolysis following activation, as shown with GM-CSF DCs 

(245) 

 

- A western blot could be performed with Flt3L-cDCs to see whether there would be 

an increase in expression of glucose transporters (GLUT1) following activation, 

which has been shown to be increased on activated GM-CSF DCs.  Analysis of 

glucose consumption and lactate production would also provide supporting 
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evidence for whether Flt3L-cDCs are glycolytic during activation. Furthermore, 

oxygen consumption should also be assessed, as changes in rate of consumption 

between non-activated and activated Flt3L-cDCs could also indicate a switch to 

glycolysis.  

 
 

5.3 Final conclusion 
 
The findings of this thesis show that Flt3L-DCs are phenotypically different from 

GMCSF/IL-4 DCs and do not form a homogenous population but can be divided into three 

subsets.  Flt3L-DC subsets differ in their response to various TLR agonists and their 

activation can be enhanced by using combinations of TLR agonists. Pam3Cys/Poly I:C 

induced optimal cytokine production and increased cross-presentation.  In addition, Flt3L-

DCs activated with this combination were found to confer tumour protection in vivo, albeit 

to a lesser degree than GMCSF/IL-4 DCs.  In conclusion, Flt3L-cDCs can be used for DC-

based immunotherapy, but may be less effective than GMCSF/IL-4 DCs. Further 

experiments are required to identify conditions whereby their effectiveness is maximised.  
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Appendix 1:  CD4+ and CD8+ T cells are enriched from LN and spleens of OT-II and 

OTI mice following positive selection.  Lymphocytes and splenocytes were enriched for CD4+ T 

cells (A) and CD8+ T cells (B) by magnetic cell separation as described in Chapter 2 (2.4.3.2).  Aliquots of 

pre-enriched and enriched samples were analysed for expression of CD4 and CD8 by flow cytometry.  

Numbers indicate the percentage of cells within respective gating regions. This result is representative of 

several experiments. 
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Appendix 2:  Purity of cDCs recovered following magnetic cell separation (MACS).  
Flt3L-DC cultures were harvested and depleted of B220+ pDCs as described in Chapter 2 (2.4.3.3).  Aliquot 

of non-depleted and depleted samples were analysed by flow cytometry to evaluate whether B220+ pDCs 

were depleted.  Numbers indicate the percentage of cells within respective gating regions. This result is 

representative of several experiments. 
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Appendix 3:  Titration of TLR agonists on Flt3L-DCs 
Flt3L-DCs were generated as described in Chapter 2 (2.4.2.2).  On day 9 of cell culture, Flt3L-DCs were 

stimulated with TLR agonists at varying concentrations and incubated for 24 hours.  Cells were harvested the 

following day and stained with varying combinations of mAbs for the markers CD11c, B220, CD80, CD86, 

CD40 and MHC II.  Samples were analysed by flow cytometry.  Results are from one experiment only. 
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Appendix 4:  Purity of cDCs recovered following depletion with using BioMag®  

beads or by Fluorescence Activated Cell Sorting (FACS).  Flt3L-DC cultures were harvested 

and depleted of B220+ pDCs by magnetic bead separation using BioMag® beads (A) or by fluorescent 

activated cell sorting (B), as described in Chapter 2 (2.4.3.4 and 2.4.3.5 respectively).  Non-depleted and 

depleted or sorted and pre-sorted samples were analysed by flow cytometry.  Numbers indicate percentage of 

cells within respective gating regions.  Results are from one experiment only. 
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Appendix 5:  Identification of live Flt3L or GMCSF/IL-4 DCs by PI exclusion 
Flt3L and GMCSF/IL-4 DCs were generated as described in Chapter 2 (2.4.2.2).  LPS stimulation occurred 

on day 9 for Flt3L-DCs and day 6 for GMCSF/IL-4 DCs at a final concentration of 100ng/mL and 500ng/mL 

for each DC population respectively.  Following 6 hours of incubation, Flt3L-DCs were harvested and 

stained with various combinations of mAbs for the markers CD11c, B220, CD40, CD80 and MHC II 

expression.  GMCSF/IL-4 DCs were stained with combinations of mAbs for markers CD11c, CD40, CD80 

and MHC II.  Both DC populations were subsequently stained with the viability dye PI and DCs were 

analysed by flow cytometry.  Results show gating strategy and identification of live cells in Flt3L (A) and 

GMCSF/IL-4 DCs (B).  Results are from one experiment only.  
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Appendix 6:  Tumour size of individual mice vaccinated with varying numbers of 

Flt3L-cDCs or GMCSF/IL-4 DCs. 
BM cells extracted from C57BL/6 mice were cultured in the presence of Flt3L or GMCSF/IL-4.  

GMCSF/IL-4 cultures were set up 3 days following Flt3L cultures to allow for vaccination with each DC 

type to occur on the same day.   On day 9 of cell culture, Flt3L-DCs were depleted of B220+ pDCs, (Chapter 

2, (2.4.3.3)), and Flt3L-cDCs were placed back into culture and stimulated with Pam3Cys/Poly I:C, at the 

following concentrations: Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  GMCSF/IL-4 DCs were stimulated 

on day 6 of cell culture with LPS/Pam3Cys at the following concentrations: LPS (100n/mL) and Pam3Cys 

(100ng/mL).  Following 24 hours of stimulation, DCs from each culture system were harvested and loaded 

with 10µM SIINFEKL peptide. DCs were titrated and varying numbers were injected s.c. into the right flank 

of C57BL/6 mice.  All mice were injected s.c. into the left flank with 1x105 B16.OVA melanoma cells, 7 

days post vaccination.  A tumour was scored as positive when it reached 4mm2.  Tumour size was measured 

with Mitutoyo callipers and mice were euthanized when tumour size reached 150-200mm2. (A) and (B) 

shows tumour size of each individual mouse vaccinated with varying numbers of Flt3L-cDCs or GMCSF/IL-

4 DCs, respectively. (C) shows tumour size of each mouse that received tumour only.  
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Appendix 7:  Tumour size of individual mice vaccinated with Flt3L-cDCs or 

GMCSF/IL-4 DCs, either stimulated or unstimulated 
BM cells extracted from C57BL/6 mice were cultured in the presence of Flt3L or GMCSF/IL-4.  

GMCSF/IL-4 cultures were set up 3 days following Flt3L cultures to allow for vaccination with each DC 

type to occur on the same day.   On day 9 of cell culture, Flt3L-DCs were depleted of B220+ pDCs, (Chapter 

2, (2.4.3.3)), and Flt3L-cDCs were placed back into culture and stimulated with Pam3Cys/Poly I:C, at the 

following concentrations: Poly I:C (50µg/mL) and Pam3Cys (1µg/mL).  GMCSF/IL-4 DCs were stimulated 

on day 6 of cell culture with LPS/Pam3Cys at the following concentrations: LPS (100n/mL) and Pam3Cys 

(100ng/mL).  Following 24 hours of stimulation, DCs from each culture system were harvested and loaded 

with 10µM SIINFEKL peptide. DCs were titrated and varying numbers were injected s.c. into the right flank 

of C57BL/6 mice.  All mice were injected s.c. into the left flank with 1x105 B16.OVA melanoma cells, 7 

days post vaccination.  A tumour was scored as positive when it reached 4mm2.  Tumour size was measured 

with Mitutoyo callipers and mice were euthanized when tumour size reached 150-200mm2.  (A) and (B) 

shows tumour size of each individual mouse vaccinated with Flt3L-cDCs or GMCSF/IL-4 DCs, respectively, 

either unstimulated or stimulated.  (C) shows tumour size of each mouse that received tumour only.  
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