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ABSTRACT

In order to evaluate software performance and find regressions, many
developers use automated performance tests. However, the test results often
contain a certain amount of noise that is not caused by actual performance
changes in the programs. They are instead caused by external factors like
operating system decisions or unexpected non-determinisms inside the
programs. This makes interpreting the test results hard since results that
differ from previous results cannot easily be attributed to either genuine
changes or noise.

In this thesis we use Mozilla Firefox as an example to try to find the
causes for this performance variance, develop ways to reduce the noise and
present a statistical technique that makes identifying genuine performance
changes more reliable.

Our results show that a significant amount of noise is caused by memory
randomization and other external factors, that there is variance in Firefox
internals that does not seem to be correlated with test result variance, and
that our suggested statistical forecasting technique can give more reliable
detection of genuine performance changes than the one currently in use by
Mozilla.
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1
INTRODUCTION

Anything that happens, happens.
Anything that, in happening, causes something

else to happen, causes something else to happen.
Anything that, in happening, causes it-

self to happen again, happens again.
It doesn’t necessarily do it in chronological order, though.

Mostly Harmless
Douglas Adams

Performance is an important aspect of almost every field of computer
science, be it development of efficient algorithms, compiler optimizations,
or processor speed-ups via ever smaller transistors. This is apparent even in
everyday computer usage – no one likes using sluggish programs. But the
impact of performance changes can be more far-reaching than that: it can
enable novel applications of a program that would not have been possible
without significant performance gains.

A recent example of this is the huge growth of the so-called “Web
2.0”. This collection of techniques relies heavily on JavaScript to build
applications in websites that are as easy and fast to use as local applications.
The bottleneck here is obvious: the performance of the applications depends
on how fast the browser is able to execute the JavaScript code. This has led
to a speed race in recent years, especially the last one, with each browser
vendor trying to outperform the competition.

A competition like that poses a problem for developers, though. Speed is
not the only important aspect of a browser, features like security, extensibility
and support for new web standards are at least as important. But more code
can negatively impact the speed of an application: start-up becomes slower
due to more data that needs to be loaded, the number of conditional tests
increases, and increasingly complex code can make it less than obvious if a
simple change might have a serious performance impact due to unforeseen

1



2 chapter 1. introduction

side effects.
It is therefore important to determine as soon as possible whether per-

formance changes have taken place. This is traditionally being done with
automated tests. If a regression is detected an investigation has to be made:
Is it caused by the fulfilment of a different requirement that is more impor-
tant? Then it cannot be avoided. But if it is an unexpected side effect then this
change could be reverted until a better solution without side effects is found.
There is one important catch with this technique, however: the performance
data has to be reliable. In this case that means it should reflect the actual
performance as accurately as possible without any noise. Unfortunately
this is much more difficult than it might seem. Even though computers are
deterministic at heart, there are countless factors that can make higher-level
operations non-deterministic enough to have a significant impact on these
performance measurements, making the detection of genuine changes very
challenging.

1.1 CONTRIBUTIONS

This work tries to determine what exactly those factors are that cause non-
determinism and thus variation in the performance measurements, and how
they can be reduced as much as possible, with the ultimate goal of being
able to distinguish between noise and real changes for new performance
test results. Mozilla Firefox is used as a case study since as an Open Source
project it can be studied in-depth. This will hopefully significantly improve
the value of these measurements and enable developers to concentrate on
real regressions instead of wasting time on non-existent ones.

In concrete terms, we present:

• An analysis of factors that are outside of the control, i.e. external to
the program of interest, and how it impacts the performance variance,
with suggestions on how to minimize these factors,

• an analysis of some of the internal workings of Firefox in particular
and their relationship with performance variance, and
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• a statistical technique that would allow automated test analyses to bet-
ter evaluate whether there has been a genuine change in performance
recently, i.e. one that has not been caused by noise.

1.2 OUTLINE

The rest of this thesis is organized as follows.
Chapter 2 gives an overview of the problem using an example produced

with the official Firefox test framework and presents related work.
Chapter 3 looks at external factors that can influence the performance

variance like multitasking and hard drive access.
Chapter 4 looks at what is happening inside of Firefox while a test is

running and how these internal factors might have an effect on performance
variance.

Chapter 5 presents a statistical technique that improves on the current
capability of detecting genuine performance changes that are not caused by
noise.

Finally, Chapter 6 summarizes our results and gives some suggestions
for future work.
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2
BACKGROUND

This chapter will give an overview of Mozilla Firefox and the Talos
performance test suite that Mozilla employs to detect performance

changes, namely improvements and regressions, in new code. It will also
give an example of the problem of variance in this test suite and list previous
work done in the area.

2.1 MOZILLA AND MOZILLA FIREFOX

The Mozilla Foundation1 is a global non-profit organization with its head-
quarters in the usa. Its mission is to “promote openness [. . . ] on the web”2

and make sure that it is accessible for everyone using Free and Open Source
tools3,4.

The main means of pursuing this goal is by having The Mozilla Corpo-
ration5, a subsidiary of the Mozilla Foundation, develop the Firefox web
browser and releasing it as Free Software6. Firefox is a modern web browser
that supports a wide range of web-related standards like html5, css in
various versions, JavaScript, and a lot more. The Firefox source code is kept
in a publicly accessible Mercurial7 version control repository8. For this work
version 5.0 of Firefox was used which was the current version at the time
when we started collecting the final data.

1http://www.mozilla.org/
2http://www.mozilla.org/about/mission.html
3http://www.mozilla.org/about/
4http://www.mozilla.org/about/manifesto.en.html
5http://www.mozilla.com/
6http://www.mozilla.org/MPL/license-policy.html
7http://mercurial.selenic.com/
8http://hg.mozilla.org/

5

http://www.mozilla.org/
http://www.mozilla.org/about/mission.html
http://www.mozilla.org/about/
http://www.mozilla.org/about/manifesto.en.html
http://www.mozilla.com/
http://www.mozilla.org/MPL/license-policy.html
http://mercurial.selenic.com/
http://hg.mozilla.org/
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2.2 THE TALOS TEST SUITE

The Talos test suite (named after the bronze giant from Greek legend that
protected Crete’s coasts) is a collection of 17 different tests that evaluate the
performance of various aspects of Firefox. A list of those tests is given in
Table 2.1. One thing to note here is that there are two types of results for
the individual tests: most of them measure the milliseconds it takes for a
specific action to complete, so the lower the result the better, but the tests
that are part of the dromaeo framework measure the number of times a
specific test can be run during one second, so here a higher number is better.

The purpose of this test suite is to evaluate the performance of a specific
Firefox build, meaning the result of the compilation of a specific version of
the source code. As new code is checked in into the Mercurial repository,
various actions (see below) are performed on it in order to assess the quality
of the new code. Since a complete run of the whole process takes about 4
hours or more (Stoica, 2010), a build infrastructure consisting of about 1000
machines, mostly Mac Minis (Gasparnian, 2010), is used to carry out those
actions. In a slightly simplified overview this process consists of three parts:

1. The new code is compiled on a range of different operating systems,
namely Windows, Mac OS X and Linux. This is both to ensure that
the current version actually cleanly compiles on all of these operating
systems and to have a working build for the next two parts.

2. A number of unit tests are run on the new build. This tries to ensure
that the code changes did not introduce any bugs, like for example
crashing when a certain action is performed or displaying popular
pages incorrectly.

3. The Talos test suite is run on the build. This is done both to track
improvements in performance and to detect regressions.

This process of Continuous Integration (Fowler, 2006) allows for quick
detection of problems that could otherwise lead to a lengthy search for the
cause and ensures a consistent quality throughout the project.
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Table 2.1
The various performance tests employed by Mozilla

Test name Test subject Unit

a11y Accessibility features Milliseconds

dromaeo_basics Basic JavaScript operations like array manip-
ulation and string handling

Runs/second

dromaeo_css css (Cascading Style Sheets) manipulation
with JavaScript

Runs/second

dromaeo_dom dom (Document Object Model) node manip-
ulation with JavaScript

Runs/second

dromaeo_jslib dom node manipulation using the ‘jQuery’
and ‘Prototype’ JavaScript libraries

Runs/second

dromaeo_sunspider Various JavaScript tests from the ‘SunSpi-
der’ WebKit test suite (Stachowiak, 2007),
integrated into the ‘Dromaeo’ suite

Runs/second

dromaeo_v8 Various JavaScript tests from the ‘V8’
Google Chrome test suite (Google Inc.,
2008), integrated into the ‘Dromaeo’ suite

Runs/second

tdhtml Various tests that create animations using
JavaScript dom manipulation

Milliseconds

tgfx Some graphics operations like displaying
a large amount of text, tiled images, image
transformations and various borders

Milliseconds

tp_dist A page loading test that loads a number of
popular websites and measures the speed it
takes to render them

Milliseconds

tp_dist_shutdown The time it takes to completely shut down
the browser after the page loading test

Milliseconds

tsspider The unaltered SunSpider JavaScript bench-
mark

Milliseconds

tsvg Rendering of svg images Milliseconds

tsvg_opacity Rendering of partially-transparent svg
images

Milliseconds

ts Startup time until the first page gets loaded Milliseconds

ts_shutdown Shutdown speed directly after starting up
the browser

Milliseconds

v8 The unaltered V8 JavaScript benchmark Milliseconds
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Figure 2.1: Page load speed tp_dist example sequence with data taken from
graphs.mozilla.org

Ideally this process would be run on every check-in into the repository.
However, in order to reduce the load on the machines used and to allow
for quick fixes of mistakes in a commit (like for example forgetting to add
a file) there is a short wait period before the build starts. If there is a new
check-in during that time it will be included in the next build.

The focus of this work is on part three, the Talos performance evaluation.
We will also mostly focus on variance in unchanging code and the detection
of regressions in order to limit the scope to a manageable degree (O’Callahan,
2010).

2.3 AN ILLUSTRATIVE EXAMPLE

In the following we use the term run to refer to a single execution of the
whole or part of the Talos test suite and series to refer to a sequence of runs,
usually consisting of 30 single runs (see also Section 2.5.1).

Figure 2.1 illustrates an example series of the tp_dist part of the test
suite over most of the year 2010 on one particular machine. This test loads a
number of popular web pages and calculates the mean of the time it took to
completely render them. Important to note here is that the pages are loaded

graphs.mozilla.org
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from the local hard disk, so effects like network latency do not come into
play – however, the speed and latency of the hard drive, and potentially
other external factors, can still have an effect outside the control of Firefox
itself. This will be addressed in Chapter 3.

There are a few interesting observations to be made in this graph. One
is the big drop in August, going from about 600 to a bit over 300 and then
staying there. This looks like a clear case of a genuine change in performance,
most likely due to an optimization in the code. Another observation is about
the high variance in the results during the rest of the year. There seems
to be no common trend to them, they are “all over the place”. We cannot
really tell whether those results are due to noise or real code changes. One
clear candidate for a code change happens in the middle of June, where the
result fits right into the trend that will be established later on in August.
But why is it only a single result, as opposed to the later ones? One possible
explanation is that the optimization introduced a bug and was therefore
removed again until that bug was fixed, which took until August.

So now we have a plausible explanation for one of the results. But that
still does not really tell us anything about the rest. Could we apply the same
heuristic that lets us explain the big change – seeing it “sticking out” of the
general trend – and use it in a more statistically sound way to try to explain
the other results? We can – to a certain degree.

The exact details of the best way to do this will be explained in Chapter 5,
but let us first have a very simple look at how we could put a number on
the variance of a test suite series. We will do this by running a base line
series using a standard setup without any special optimizations.

2.4 STATISTICS PRELIMINARIES

The Talos suite already employs a few techniques that are meant to mitigate
the effect of random variance on the test results. One of the most important
is that each test is run 5-20 times, depending on the test, and the results
are averaged. A statistical optimization that is already being done is that
the maximum result of these repetitions is discarded before the average is
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calculated. Since in almost all cases this is the first result, which includes
the time of the file being fetched from the hard disk, it serves as a simple
case of steady-state analysis where only the results using the cache – which
has relatively stable access times – are going to be used.

As a concrete example, the tp_dist test as used in our experiments loads
26 different pages 10 times each. Then the median of the 10 results from
each page is calculated, and finally the mean of all the different medians is
presented as the final result. This allows us to make use of the central limit
theorem (Cam, 1986), which states that our results will approximately follow
a normal distribution as long as they all come from the same distribution –
in our case this means that the source code has to remain unchanged
in between runs. But as mentioned earlier we are only concerned with
unchanging code anyway so this poses no problem for us. Interesting to
note is that Figure 2.1 shows in the so-called “rug” plot on the left that even
with changing code the test seems to largely follow a normal distribution,
with the exception of the large jump in August which essentially split the
distribution into two independent ones.

Normal distributions make it easier to apply various statistical analyses
on data, but it is not strictly required in our case. Still, checking for normality
of the distribution can give valuable insights about the nature of the variance.

Beginning with this chapter we will be using various statistical tech-
niques to evaluate our results in a statistically valid way. This usually
consists of having a null hypothesis, which is the “conservative” view that
the results are in line with our current theory and do not indicate that the
current theory might be wrong. What exactly this means for a specific test
will be explained in the relevant sections.

The other part of these techniques is the p-value. This is the probability
that the null hypothesis can not be rejected. In other words, it is the prob-
ability of getting the results we are analysing under the assumption that
the null hypothesis is true. If this probability is lower than a previously
chosen significance level then the results are said to be statistically significant.
Traditionally a significance level of 0.05 is the most common one for these
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kinds of analyses, and that is what we will be using here.

2.5 THE BASE LINE TEST

2.5.1 experimental setup

For this and all the following experiments in this thesis we used a Dell
Optiplex 780 computer with an Intel Core 2 Duo 3.0 GHz processor and
4 GB of ram running Ubuntu Linux 10.04 with Kernel 2.6.32. To start with
we ran the whole test suite 30 times back-to-back as a series using the same
executable in an idle gnome desktop without any special adjustments of our
own. Using the same executable guarantees that changes in the performance
cannot be caused by code changes and are thus solely attributable to noise.
The only adjustments that we made were two techniques used on the official
Talos machines9:

• Replace the /dev/random device, which provides true random num-
bers, with the pseudo-random number generator /dev/urandom.

• Disable cpu frequency scaling and fix the processors at their highest
frequency. This prevents variance introduced by switching between
the possible frequencies and the case where a processor decides to run
at different frequencies during repeated runs of the same test for some
reason.

The number 30 for the runs was chosen as a compromise between
different requirements. The first was that in order for the central limit
theorem to be applicable the common rule of thumb is that at least 30
samples are needed. In addition a higher number of runs would allow
us to determine whether the results would settle in some kind of steady
state where the variance is much lower than between the first few runs.
Finally, a practical requirement prevented us from choosing a significantly
higher number: since every test run took about one hour to complete

9https://wiki.mozilla.org/ReferencePlatforms/Test/FedoraLinux

https://wiki.mozilla.org/ReferencePlatforms/Test/FedoraLinux
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on our machine we had to settle on a number that would allow us to
reasonably experiment with many different parameters without having to
wait unreasonably long for the result. In addition initial tests with 50 runs
showed no meaningful difference between the numbers. Thus 30 was chosen
as a suitable compromise.

2.5.2 results

Figure 2.2 shows the results of the tp_dist page loading test, and Figure 2.3
shows the results of the a11y accessibility test – both serve as good examples
for the complete test suite results. Here we have – as expected – no drastic
outliers, but we do still have a non-trivial amount of variance. Looking at the
rug plot it seems that the tp_dist test does not follow a normal distribution,
the a11y on the other hand looks better. There are two ways to verify these
suspicions: quantile-quantile (Q-Q) plots and the Shapiro-Wilk test (Shapiro
and Wilk, 1965).

Figure 2.4 shows the Q-Q plots for our two example tests. They are
interpreted roughly in the following way: if the data points closely follow
the line the sample is said to follow a normal distribution. The a11y test
supports that, except for two outliers the points follow the line very well.
However, as already suspected, this is not true for the tp_dist test – most of
the points are quite far away from the line. It is interesting to note, though,
that there seem to be two different linear trends in the data points – one in
the points near the bottom of the graph and one near the top right, almost
as if there are two different influences guiding them.

For a technique that needs less interpretation we can use the Shapiro-
Wilk test. It analyses the sample and determines whether the null hypothesis
of the distribution being normal can be rejected or not. The resulting p-value
for the a11y test is 0.135, implying that the normality of the sample cannot
be rejected if we use the standard significance level of 0.05. For the tp_dist

test however, p is < 0.01, so we have the affirmation that the sample is most
likely not normal.

Table 2.2 shows a few properties of the results for the complete test suite.
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Table 2.2
Results of the base line test

Max diff (%)1

Test name StdDev CoV2 Absolute To mean p-value

a11y 2.23 0.69 3.38 2.08 0.135
dromaeo_basics 4.41 0.53 2.57 1.62 0.064
dromaeo_css 11.36 0.30 1.39 0.88 0.135
dromaeo_dom 1.02 0.41 1.99 1.14 0.338
dromaeo_jslib 0.53 0.30 1.19 0.60 0.661
dromaeo_sunspider 5.65 0.54 2.09 1.16 0.017
dromaeo_v8 2.02 0.86 3.03 1.77 0.006
tdhtml 0.94 0.33 1.31 0.73 0.156
tgfx 0.80 5.68 25.60 18.88 < 0.001
tp_dist 1.77 1.16 4.42 3.30 < 0.001
tp_dist_shutdown 27.09 5.14 16.51 8.72 0.080
ts 2.27 0.59 2.45 1.66 0.001
ts_shutdown 7.28 2.00 6.88 3.44 0.410
tsspider 0.11 1.15 4.04 2.57 0.014
tsvg 1.43 0.04 0.17 0.10 0.267
tsvg_opacity 0.62 0.74 3.56 2.02 0.055
v8 0.11 1.42 4.31 3.59 < 0.001
1Difference between highest and lowest values: (highest − lowest)/mean ∗ 100
2Coefficient of variation: StdDev

mean

As a typical statistical measure we included the standard deviation and
the coefficient of variation (CoV), which is simply the standard deviation
divided by the absolute value of the mean for easier comparison between
different tests. The standard deviation shows us that, indeed, the variance
for some of the tests is quite high. The general idea here is that we want to
be able to detect regressions that are as small as 0.5 % (O’Callahan, 2010),
so it should be possible to analyse the results in a way so that we can
distinguish between genuine changes and noise at this level of precision.

Our first approach in this chapter is to simply look at the maximum
difference between all of the values in our series taken as a percentage
of the mean, similar to Georges et al. (2007), Mytkowicz et al. (2009) and
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Alameldeen and Wood (2003). In other words we take the difference between
the highest and the lowest value in our series and divide it by the mean.
If a new result would increase this value, it would be assumed to not be
noise. The result of this analysis can be seen in Table 2.2. We can see that
almost none of the tests are anywhere near our desired accuracy, so using
this method would give us no useful information. But what if we use a
slightly different method? We could measure the difference from the mean
instead of between the highest and lowest value. Checking our table again
again we can see that the values in this case do look better, but they are still
too far away from being actually useful.

An additional problem with the two techniques just explained is that they
do not account for significant changes in the performance. For example, in a
situation similar to that in Figure 2.1 computing the maximum difference or
the difference from the global mean would lead to highly unreliable results
due to the big, genuine changes in June and August – since most changes,
both other genuine ones and those caused by noise should usually be far
smaller than that they will remain completely undetected. So our simple
approach is clearly not sufficient.

Chapter 5 will pursue more sophisticated methods to try to address
these concerns. However, even with better statistical methods it will be
challenging to reach our goal – the noise is simply too much. Therefore in
the next two chapters we will first have a look at the physical causes for
the noise and try to reduce the noise itself as much as possible before we
continue with our statistical analysis.

Before we go on with our analysis there is one important thing to note.
Creating an environment that is as noise-free as possible will necessarily
result in a somewhat artificial setup, one that may not reflect the envi-
ronments that Firefox is usually run in on users’ computers in an entirely
accurate way. However, trying to account for all the possible combinations of
factors that may be present on “normal” computers is essentially impossible.
This means that certain exceptional setups that could result in degraded
performance may stay undetected, but our investigation of the “clean” case
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should result in an overall improvement in the vast majority of cases.

2.6 RELATED WORK

This section will present two different approaches that have been used
in previous work to reduce nondeterminism in software testing: trying
to identify and measure the actual variance and trying to increase the
determinism in multi-threaded programs.

2.6.1 variance measurements

Mytkowicz et al. (2009) investigated what they called measurement bias: small
changes in an experimental setup that can introduce significant bias in the
result. They claimed that many researchers do not pay enough attention to
this bias and investigated its effect on a set of experiments. Specifically they
considered two different scenarios: (1) the unix environment size and (2)
the program link order. They found that both can have a measurable impact
on benchmark results, up to 8 % for the environment size and 4 % for the
link order. The cause in both cases was attributed to memory layout. The
size of the environment influenced the beginning of the stack and thus the
alignment of its content, resulting in a layout that was not optimal for the
hardware architecture in many cases. Similarly, the link order changed the
code layout in the executable which affected hardware buffers and various
other hardware aspects like branch prediction. As a partial solution to this
problem they proposed using a large benchmark suite and randomizing the
experimental setup.

A similar conclusion was reached by Gu et al. (2004). Their original goal
was to evaluate different object layouts in the Sable Java vm10 for its copy-
ing garbage collector. However, during their experiments they discovered
unexpected differences in performance that could not be explained by their
layout changes. This led them to investigate how the changes affected the
low-level code execution by using hardware performance counters. They

10http://www.sable.mcgill.ca/

http://www.sable.mcgill.ca/
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found that even the adding of code that was never executed could lead
to shifted code segments in the resulting executables which then has a
measurable impact on the instruction cache, the cycle count, and the data
cache. These differences were still not well correlated with the performance
changes, though.

The presence of variability in multi-threaded workloads both in real and
simulated systems was investigated by Alameldeen and Wood (2003). They
described two different kinds of variability: time variability, that is different
performance characteristics during different phases of a single run, and
space variability, the execution of different code paths caused for example
by the operating system scheduling threads differently during different
runs. They showed that variability can be a problem even in deterministic
simulations under certain conditions. In order to quantify their results they
introduced two new metrics: the wrong conclusion ratio, the percentage that
a wrong conclusion is drawn from an experiment pair, and the range of
variability, the difference between the maximum and minimum values of a
series of runs as a percentage of the mean, which is identical to our absolute
maximum difference metric. As a solution to the variability problem they
proposed averaging over a number of runs using some statistical techniques
to estimate the optimal sample size.

Georges et al. (2007) tried to give the performance analysis of Java pro-
grams a statistically sound base since they noted that many published papers
lack a rigorous statistical background and instead invent their own methods
for analysing results. This situation can lead to incorrect conclusions in
extreme cases, especially since managed runtime systems are notoriously
difficult to benchmark. They first gave an overview of basic statistical con-
cepts like confidence intervals, the central limit theorem, and the anova
test for comparing alternatives. These techniques were then demonstrated
on an example that measured the start-up and the steady-state performance
of various garbage collector strategies in the Java vm, which also showed
that their results occasionally differed from results in other papers that did
not use the same rigorous approach.
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Kalibera et al. (2005) investigated the dependency of benchmarks on
the initial, random state of the system. They claimed that the variation
during one run of a benchmark, even if it accounts for things like external
disruptions, does not capture the true extent of possible variance and that
benchmarks are therefore not the reproducible processes they are usually
thought to be. They tested their assumptions on a few benchmarks that
produced many samples in one run to be averaged over and ran them
several times independently, finding that the between-runs variance was
much higher than the within-runs variance. Similar to previously mentioned
papers they tested two example causes of such variance: non-determinism
in memory allocation and code compilation. Their investigation revealed
that there is some correlation between those phenomena and variance but
they admitted that listing and eliminating all possible causes would be
impossible. They, too, suggested a benchmarking setup that tries to alleviate
the problem as much as possible by running a benchmark several times
to be able to use statistical methods that take both kinds of variance into
account and so end up at a more reliable average. Note that this setup is
similar to ours as the Talos tests already produce a within-tests average that
is then used for our between-tests/runs analysis.

A slightly different issue, the effect of “coincidental artifacts” on an eval-
uation, was investigated by Tsafrir et al. (2007). They defined coincidental
artifacts as effects that influenced the outcome of a performance evaluation
but were outside the scope of the benchmark, like “unique interactions
between the system and the specific trace used”. They gave the example of
a scheduler evaluation on a specific job workload where changing the work-
load by only 0.046 % changed the result by 8 %. To alleviate this problem
they introduced their methodology of shaking the input, that is running the
benchmark several times with a different set of noise added to the workload
each time11 and then averaging over the result, and demonstrated it on
a scheduling algorithm and a set of different workloads. An important
consideration of this technique that they mentioned was that care has to be

11This is also known as fuzzing.
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taken when shaking the workload so that it does not get distorted in a way
that will lead to unreliable results, meaning that only less fragile parameters
should be modified. Their results showed that even with a relatively small
amount of shaking the reliability of their benchmark could be significantly
improved, leading to a smoother progression with fewer outliers. Note that
this technique is not really applicable for us since many of our tests evalu-
ate concrete functionality instead of a random workload and the required
repeated tests would increase our test times too much.

2.6.2 deterministic multithreading

Most of the work concerned with the determinism of multi-threaded pro-
grams until recently has only dealt with the problem of replayability, that
is a technique that records a log of one run and then offers the possibility
to replay that run on another machine for debugging purposes. This is not
useful for our purposes since we are not concerned with a single run but
with a comparison between different runs, especially since those techniques
usually do not pay attention to performance characteristics. However, in the
last few years there have been some attempts to introduce determinism to a
wider range of uses. Since threads are used for a few purposes in Firefox
(see Chapter 4 for details) this is worth looking into.

Devietti et al. (2009) presented a way to make threading deterministic
using a technique they called deterministic serialization of parallel execution.
Their technique works by introducing a token that is required for each
memory access – or each group of finite accesses they called a quantum –
and is passed on from thread to thread in a deterministic fashion. Since this
method introduces significant performance degradation due to threads hav-
ing to wait for the token they proposed some hardware changes that would
drastically reduce the overhead. In order to support this hypothesis they
implemented the changes in a hardware simulator and as a pure software
framework for comparison. Their results showed that the hardware version
had negligible performance degradation compared to a nondeterministic
system and that the software version was at least usable for debugging
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purposes.

A somewhat similar approach was used by Olszewski et al. (2009).
However, their goal was to make thread determinism usable on today’s com-
modity hardware without requiring hardware changes. In order to reduce
the performance degradation of this approach they used what they called
weak determinism which does not apply to every memory access but instead
only to lock acquisition. For this they implemented a deterministic subset of
the posix Thread (pthread) api that utilized hardware performance coun-
ters to track the locking behaviour. They then used the splash-2 benchmark
suite to evaluate their framework, finding that it only introduced a 16 %
overhead on a 4-processor system. Unfortunately, due to their changes to
the pthread library it is not possible to run any arbitrary application; only a
subset of programs work.

Bergan et al. (2010a) introduced a “compiler and runtime system” based
on the llvm compiler suite that uses a sophisticated mechanism based on an
ownership model for memory regions and a deterministic commit protocol
for committing changes to shared memory. They showed that their system
scales quite well, but it does introduce a performance loss of 1.2×–6×. In
addition it is highly dependent on small changes in either the input or the
program itself; while it guarantees that the same program run with the
same input will always execute in a deterministic fashion there are no such
guarantees for even small changes in the program.

A new operating system abstraction called a Deterministic Process Group
(dpg) was proposed by Bergan et al. (2010b). These dpgs are defined as
groups of processes that are executed completely free of internal nondeter-
minism like thread scheduling and were implemented using techniques
introduced by Devietti et al. (2009) and Bergan et al. (2010a). In addition
they described a type of program called a shim that acts as a wrapper
around a dpg and that can be used to eliminate external nondeterminism
like file access and to implement a record/replay mechanism. Similar to the
previous work they introduce some amount of performance loss (around
2.5× on average) and do not guarantee determinism after program changes.
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The authors also explicitly state that “dpgs guarantee deterministic output,
but not deterministic performance”.

Cui et al. (2010) tried to address the problem of input dependence for
deterministic execution by creating a what they called stable system based
on schedule memoization. Their idea was that many working schedules can
be reused even for different inputs since the internal workings of a program
stay the same. In order to accomplish this they developed a system that
memoizes working schedules along with their constraints on the input so
they can be recalled if new input matches the given constraints of a past
schedule. Their implementation also utilizes llvm and only considers lock
synchronization instead of full memory access synchronization similar to
Olszewski et al. (2009) for performance reasons. Depending on the use of
locks in the programs this can still lead to significant performance overhead,
though. In addition their system requires some changes to the source code
of the programs and does not guarantee deterministic performance, only
behaviour for the memoized schedules.

Considering all of the constraints of these deterministic multithreading
systems we must conclude that they are not really applicable to our situation,
at least not yet. While the current systems provide a definite benefit for tasks
like debugging the fact that performance determinism is not guaranteed
(and indeed probably impossible) due to the way these systems realize their
threading guarantees makes them unsuitable for analysing variance. This
is because in order to guarantee execution determinism the systems can
suspend threads if they are scheduled by the operating system in a different
way from the first run, and they then have to wait for the operating system
to schedule the thread that is actually supposed to be run at a certain point
in time. In this way the threads are executed in exactly the same order every
time, but the actual timing can vary wildly depending on the operating
system’s scheduling decisions. However, it will be interesting to follow the
developments in this field of research.



3
ELIMINATING EXTERNAL FACTORS

In this chapter we will deal with eliminating factors that are outside
the influence of Firefox itself. For example, since modern operating

systems allow multitasking there will usually be several programs running
concurrently at any one time – both user-level applications like file managers,
word processors and the like, and system-level services that are required for
various maintenance tasks. The operating system’s job is to manage these
programs in a way that is transparent to them, so the programs have only
very limited knowledge about how exactly their tasks are executed. Thus
depending on the other things going on in the system a program will most
likely be executed in subtly different ways each time it performs a task,
potentially leading to measurable performance differences. A description of
the most important of these system-level issues and how to eliminate their
interference follows.

3.1 OVERVIEW OF EXTERNAL FACTORS

3.1.1 multitasking

As mentioned above, modern operating systems have many programs
running at the same time. At least that is the impression that a user of those
systems gets – the reality is significantly more complicated.

Processors are strictly serial systems, that is they can only do one thing
at a time. This is clearly at odds with the requirement of running several
programs at the same time, i.e. with multitasking. The solution that modern
operating systems use is to give the appearance of the programs being exe-
cuted concurrently by switching between them very quickly in a way that is
completely transparent to the programs.

The way programs are actually executed is by running them as processes.
A process is basically a running representation of a program with its own
variables, program counter and registers. Tanenbaum (2001) gives the fol-

23
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lowing analogy about the relationship between programs and processes:
imagine the program being a cake recipe, the input being the ingredients,
and the output being the cake. Then the person baking the cake is the
processor, and the process is the whole activity of the person baking the
cake using the recipe and the ingredients. Multitasking in this analogy could
be explained as the person being interrupted by another person with an
urgent task, so that the baking has to be suspended for some time while the
other task is being attended to.

Traditionally processes are classified as either cpu-bound or Input/
Output (i/o)-bound (see for example Bovet and Cesati (2005)). cpu-bound
processes do heavy computations and thus need the cpu as often as possible,
i/o-bound processes are waiting for i/o-operations to complete most of
the time and therefore have no need of the cpu until then. The scheduler
of an operating system has the job of weighing the needs of the different
processes and schedule them in a way that is both fair to all of the processes
and that guarantees a responsive system with a minimum amount of delays.
On systems that support preemptive multitasking, which is the norm today,
processes can be switched at (almost) any time, making this task much more
flexible since the scheduler does not have to wait for a process to give up
the cpu voluntarily. Instead each process is assigned a specific time-slice
whose length depends on various parameters like the specific scheduler
implementation and the process priority, and when this slice runs out the
process is switched out for a different runnable process, that is a process
that is not waiting for i/o. On multi-processor systems this mechanism is
essentially used for each processor independently but with a common pool
of processes; see also Section 3.1.2. All of this happens transparently to the
programs; to them it looks like they are able to run continuously.

As useful as this mechanism is, it has various unavoidable drawbacks.
The most obvious one is probably that the more programs are trying to
run at the same time, the less time each of them gets to use in a given time
interval, and the more time has to be spent on switching between processes.
The fact that many programs are waiting for i/o or other specific events
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and only have to use the cpu occasionally unfortunately makes this even
worse for our case.

As a simple example let us assume that we want to measure the amount
of time that a cpu-intensive application takes to complete a specific task,
for instance a complicated calculation. To simplify the scenario we assume
that all other processes are currently in a waiting state and do not use the
cpu. To do our measurements we use a function that reports the current
time or simply look at a watch before and after the calculation, which when
subtracted from each other will give us the amount of time our application
took. Just to be sure we want to do our calculation again, expecting the
same result. But this time, halfway through our calculation, a second process
suddenly wakes up – for example a virus scanner that wants to do its daily
check, or even just something simple like a network application receiving
data from outside that it has to handle. So now our application has to be
switched out and will keep getting swapped with the other process until
either of them finishes. Due to this the result that we get from our simple
time-keeping method will most likely be different from the result of our
first run, even though the application did exactly the same thing and, by
itself, ran for the same amount of time.

This example illustrates two things: (1) care has to be taken as to what
other programs are running during tests, and (2) using “real time” (also
called wall clock time) is not the best way to measure the performance per
time interval of a specific program. Instead, a mechanism that only measures
the time the process actually ran is needed.

3.1.2 multi-processor systems

In recent years systems with more than one processor, or at least more than
one processor core, have become commonplace. This has both good and
bad effects on our testing scenario. The upside of it is that processes that
use kernel-level threads (as Firefox does) can now be split onto different
processors, with in the extreme case only one process or thread running
exclusively on one cpu. This prevents interference from other processes as
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described above. “Spreading out” a process in this way is possible since
typical multi-processor desktop systems normally use a shared-memory
architecture. This allows threads, which all share the same address space,
to run on different processors. The only thing that will not get shared in
this case is cpu-local caches – which creates a problem for us if a thread
gets moved to a different processor, requiring the data to be fetched from
the main memory again. So if the operating systems is trying to balance
processes and threads globally and thus moves threads from our Firefox
process around this could potentially lead to additional variance. For a more
detailed discussion about threads and how they are used in Firefox see
Chapter 4.

3.1.3 address-space randomization

Buffer overflows are a big issue in all non-managed programming languages.
In simplified terms a buffer overflow describes a situation where more
data is written into a buffer than fits into it, and the extraneous data
then gets written into a consecutive memory region that holds completely
different data, thereby destroying it. Apart from just destroying data this
is also a threat to the security of a system, since in some cases a carefully
crafted deliberate buffer overflow can allow an attacker to execute arbitrary
commands through this technique, for example by overwriting the return
address on the stack to jump to attacker-chosen, executable memory (Cowan
et al., 2000). This is especially dangerous nowadays where most computers
are connected to the Internet and thus easily reachable by malicious people.

However, in order for this attack to work the attacker has to know ex-
actly what is where in the address space of the program, since they have
to overwrite specific regions with data that will then get called from other
regions. Thus many modern operating systems can use (among others) a
technique called address-space randomization (Shacham et al., 2004). What this
essentially does is making the position of the memory allocated by the pro-
gram unpredictable by randomizing it, thereby preventing the exploitation
of the address space layout for this kind of attack.
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Unfortunately, for our purposes this normally very useful technique
can do more harm than good. For example, in Non-Uniform Memory Ac-
cess (numa) architectures the available memory is divided up and directly
attached to the processors, with the possibility of accessing another proces-
sor’s memory through an interconnect. This decreases the time it takes a
processor to access its own memory, but increases the time to the rest of the
memory. So depending on where the requested memory region is located
the access time can vary. In addition the randomization makes prefetching
virtually impossible, increasing page faults and cache misses1.

In addition the randomization can lead to data structures being aligned
differently in memory during different executions of the same program,
again introducing variance as observed by Mytkowicz et al. (2009) and Gu
et al. (2004).

For our tests we therefore want the memory layout to be as deterministic
as possible.

3.1.4 hard disk access

Running Firefox with the Talos test suite involves accessing the hard disk
at two important points: when loading the program and the files needed
for the tests, and when writing the results to log files. Hard disk access is
however both significantly slower than ram access and much more prone to
variance. This is mainly for two reasons: (1) hard disks have to be accessed
sequentially, which makes the actual position of data on them much more
important than for random-access memory and can lead to significant seek
times, and (2) hard drives can be put into a suspended mode that they then
have to be woken up from, which can take up to several seconds.

3.1.5 other factors

Other factors that can play a role are the unix environment size and linking
order of the program as investigated by Mytkowicz et al. (2009). In our case

1See for example Drepper (2007) for more information on this topic.
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we worked on the same executables using the same environment and so
those effects have not been studied further. In addition hardware effects that
could be caused by things like varying temperatures were assumed to be
negligible.

3.2 EXPERIMENTAL SETUP

Our experimental setup was designed to mitigate the effect of the issues
mentioned in the previous section on the performance variance. The goal
was to evaluate how much of the variance observed in the performance tests
was actually caused by those external factors as compared to internal ones.

The following list details the way the setup of our test machine was
changed for our experiments.

• Every process that was not absolutely needed was terminated. The
previous tests were run with an idle desktop, but here we rigorously
disabled everything non-vital, including network, to minimize the
impact of scheduling effects.

• Address-space randomization was disabled in the kernel.

• The Firefox process was bound to an exclusive cpu. Since we used a
dual-core system we restricted all processes to one core and reserved
the other one for Firefox so that scheduling effects were reduced even
further. It also meant that Firefox would not be swapped between
cores by the kernel.

• The test suite and the Firefox binary were copied to a ram disk and
run from there. The results and log files were also written to the
ram disk. This prevented problems with slow hard drive access as
explained in Section 3.1.4.

Using this setup we ran a test series again and compared the results with
our previous results from Section 3.3. In our first experiment we tested all
of these changes at the same time instead of each individually to see how
big the cumulative effect is.
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3.3 RESULTS

A comparison of the results of our initial tests and the external optimization
approach are shown in Table 3.1. Overall the results show a clear improve-
ment, most of the performance differences have been significantly reduced.
For example, the maximum difference for the a11y test went down from
3.38 % to 0.77 % and for tsspider it went down from 4.04 % to 2.58 %.

In order to give a better visual impression of how the results differ
Figures 3.1 and 3.2 show a violin plot (Hintze and Nelson, 1998) of their
density functions, normalized to the percentage of their means, with red
dots indicating outliers, the white bar the inter-quartile range similar to
boxplots and the green dot the median.

One thing that is immediately obvious from the plots is that there
are quite a few differences in effectiveness between the various tests. For
example, the already mentioned improvement in the a11y test can clearly
be seen, but the dromaeo tests look all very similar to their unmodified
results. In other tests like tgfx and tp_dist the modifications got rid of all
the extreme outliers. One very interesting result is that of the v8 test. The
curious shape and the result table do not really make it obvious, but after
the modifications all of the results from the test had the same value – which
is exactly what our ideal for all the tests would be. There is also another
interesting observation that we can make: our table shows us that two tests,
ts and tsvg_opacity, had a rather drastic increase in the max diff metric,
but our plot makes it clear that this is due to a few extreme outliers while
the rest of the results seem to have gotten better.

Ignoring variance for a moment it is also interesting to see whether our
modifications made any difference on the absolute values of the results, that
is whether they made the tests actually faster or slower. Figures 3.3 and
3.4 demonstrate that indeed there have been some changes, in some cases
even seemingly significant ones, for example in the tgfx and tsspider

tests. Interestingly enough some of the dromaeo tests seem to suffer a slight
degradation of performance, though.
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Figure 3.1: The first half of the tests after external optimizations, displayed as the
percentage of their mean
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3.3.1 the levene test

Now we have a nice visual representation of the differences between our two
setups. But looks can be deceiving – can we really be sure that the differences
we see are actually statistically significant, that is in more technical terms
whether the two samples from our tests come from different distributions?
This is where we can make use of the Levene test for the equality of variances
(Levene, 1960; Brown and Forsythe, 1974). This test determines whether
the null hypothesis of the variances being the same can be rejected or not –
similar to the anova test which does the same thing for means. This test is
robust against non-normality of the distributions, so even though our initial
analysis (see Sections 2.4 and 2.5.2) shows that not all of the tests necessarily
follow a normal distribution the test will still be valid.

Table 3.1 shows the resulting p-value after applying the Levene test to
all of our test results. Using the standard significance level of 0.05 again
the results confirm our initial observations: Almost all of the tests have
a very significant difference, except for most of the dromaeo tests and
the ts (startup) and tsvg_opacity tests. The dromaeo tests are especially
interesting in that most of them are a good way away from a statistically
significant difference, and even the one test that does have one is less
significant than all the other positive tests. It seems as if the framework
used in those tests is less susceptible to external influences than the other,
stand-alone tests.

3.4 ISOLATED PARAMETER TESTS

In order to determine which of our modifications had the most effect on
the tests and whether maybe some modifications have a larger impact on
their own we also created four setups where only one of our modifications
was in use: (1) disabling all unnecessary processes (plain), (2) disabling
address-space randomization (norand), (3) exclusive cpu use (exclcpu) and
(4) usage of a ram disk (ramfs).

Table 3.2 shows the results of comparing the isolated parameters to the
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Table 3.2
Levene p-values for isolated modifications, compared to the unmodified setup

Test plain norand exclcpu ramfs

a11y 0.141 0.831 0.072 0.419
dromaeo_basics 0.617 0.001 0.199 0.984
dromaeo_css 0.357 0.156 0.926 0.347
dromaeo_dom 0.226 0.112 0.921 0.316
dromaeo_jslib 0.316 0.020 0.069 0.212
dromaeo_sunspider 0.915 0.028 0.401 0.743
dromaeo_v8 0.205 0.443 0.995 0.555
tdhtml 0.626 0.983 0.168 0.248
tgfx 0.018 < 0.001 0.005 0.002
tp_dist 0.006 0.041 0.039 0.038
tp_dist_shutdown 0.316 0.213 0.031 0.697
ts 0.086 0.433 0.291 0.296
ts_shutdown 0.080 0.149 0.002 0.786
tsspider 0.315 < 0.001 0.004 0.001
tsvg 0.893 0.157 0.951 0.679
tsvg_opacity 0.127 < 0.001 0.262 0.698
v8 0.851 0.008 0.550 0.857

Statistically significant values are shaded grey.
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unmodified version using the Levene test, and Figure 3.5 a few interesting
examples of the distributions. We can see that the modification that led to
the highest number of significant differences is the deactivation of mem-
ory randomization. Especially in the v8 test it was the only modification
that had any effect at all – it was solely responsible for the test always
resulting in the same value. Equally interesting is that this modification
also causes two of the dromaeo tests to become significant that were not in
the cumulative case, dromaeo_jslib and dromaeo_sunspider. That means
that the other modifications seem to “muddle” the effect somehow. Also, in
the dromaeo_basics case the disabled memory randomization is the only
modification that got rid of all the outliers. Interesting to note is that in
the tgfx and especially the tp_dist case all of the modifications have an
influence on the outliers, especially in the latter test.

These finding about the memory randomization mirror the results of the
papers from Section 2.6.1 in that the memory layout is a major contributing
factor to variance due to aspects like alignment and prefetching, even if it
cannot explain all of it.

In order to test what factors exactly were responsible on a lower level
we had planned on using hardware performance counters, similar to Gu et al.
(2004). Unfortunately both performance counter libraries that are available
for Linux, Rabbit2 and pcl3, have not been updated in years and are not
compatible with current Kernels or even current processors. Recent Kernel
versions have support for a new hardware performance counter framework,
but so far there are only stand-alone tools available that can make use of
it. This was not useful in our case since we are only interested in the data
from the period when the actual tests run inside of the browser, not from
the whole program lifetime. With the stand-alone tools restricting the data
gathering to this period would not have been possible.

One thing to note is that even with disabled memory randomization
there can still be variance between different versions of a program if there

2http://www.scl.ameslab.gov/Projects/Rabbit/
3http://berrendorf.inf.h-brs.de/PCL/PCL.html

http://www.scl.ameslab.gov/Projects/Rabbit/
http://berrendorf.inf.h-brs.de/PCL/PCL.html
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Table 3.3
Levene p-values for comparing the cumulative modifications with isolated ones

Test plain norand isolcpu ramfs

a11y < 0.001 < 0.001 < 0.001 < 0.001
dromaeo_basics 0.017 0.156 0.001 0.027
dromaeo_css 0.020 0.545 0.174 0.027
dromaeo_dom 0.420 0.006 0.462 0.603
dromaeo_jslib 0.050 0.264 0.523 0.025
dromaeo_sunspider 0.213 0.490 0.055 0.111
dromaeo_v8 < 0.001 0.343 0.048 0.194
tdhtml < 0.001 < 0.001 0.002 < 0.001
tgfx 0.008 0.905 0.064 0.302
tp_dist 0.012 < 0.001 < 0.001 < 0.001
tp_dist_shutdown < 0.001 < 0.001 < 0.001 < 0.001
ts 0.014 0.113 0.860 0.0625
ts_shutdown 0.134 0.049 0.663 < 0.001
tsspider 0.012 1.000 0.348 0.3739
tsvg 0.003 0.077 < 0.001 0.002
tsvg_opacity 0.195 0.202 0.939 0.750
v8 0.023 NaN 0.046 0.011

Statistically significant values are shaded grey.

are slight differences in the environment or other areas as Mytkowicz et al.
(2009) observed. The effect of this would be similar as if an unchanged
program were to be run with enabled randomization. The only way to
guard against that would be to run each version of the program multiple
times with enabled randomization and then take an average of the results.
Note that this is not the same thing as the “internal” test repetitions that
are already being done as part of the tests as those are all run within
the same instance of a program and thus are not affected as much by the
randomization.

So was our norand modification the only one that actually resulted in a
significant change? Unfortunately, no. Table 3.2 shows that all of the modi-
fications have at least some significant differences, in the case of exclcpu
even in tests that have no significant difference for norand. Table 3.3 shows



40 chapter 3. eliminating external factors

a11y

99.0

99.5

100.0

100.5

101.0

101.5

102.0

nomod cumul norand

dromaeo_dom

99.0

99.5

100.0

100.5

nomod cumul norand

tdhtml

99.6

99.8

100.0

100.2

100.4

100.6

nomod cumul norand

tp_dist

99

100

101

102

103

nomod cumul norand

tp_dist_shutdown

95

100

105

nomod cumul norand

tsvg

99.95

100.00

100.05

nomod cumul norand

Figure 3.6: Comparison of the cumulative modifications with only norand
(percentage of mean)



3.5. suggestions 41

that there are still several significant differences between the isolated norand

setup and the cumulative one. The fact that the number of differences is
smaller with the norand setup than with the others indicates that it is the
largest contributor, though, even if it is not responsible for all of them.
Figure 3.6 shows a few comparisons between the unmodified setup, the
cumulative modifications and the isolated norand one.

The complete plots for all of the tests are available in Appendix B.

3.5 SUGGESTIONS

Our modified test setup was a definite improvement on the default state
without any modifications. Even though the results did not quite match
our goals, they still signified a step in the right direction. Based on that we
can safely assume that part of the originally observed variance is caused by
the external factors investigated in this chapter. This leads to the following
suggestions, taken from the way our experiments were set up:

1. Address space randomization should be disabled. Since the test ma-
chines should not be directly accessible through the internet anyway
this should pose no additional security risk. As mentioned above this
had the most significant effect on the variance, so if only one of the
changes could get implemented this should be it.

2. Test machines should run only the most essential processes while
testing. As a graphical application Firefox needs at least an X server
and a terminal that the test suite can be run from, but apart from
that only some system services should be needed. Not needed are
things like graphical login managers, servers and cron-like scheduling
programs unless those services are necessary to interact with the test
machines or the test suite.

3. In case the machines possess more than one cpu (core), the processes
should be segregated into the Firefox process and all the other pro-
cesses on the separate cpus to minimize scheduling interference.
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4. Tests should always be run from a ram disk. Since both the test suite
and the result logs are relatively small this should pose no problem as
far as ram size is concerned. The Firefox binary along with its libraries
is a bit larger, but still not really enough to create a real problem. Note
that a ram disk type should be used that will never be swapped out
to disk (on Linux the file system type ramfs is suitable for this).

Even with the significant improvements from this chapter the results do
not quite match our expectations, unfortunately: only 6 of the 17 tests have
a maximum difference of less than 0.5 %. This shows that there are other
factors to consider that we do not yet have accounted for.



4
CPU TIME, THREADS & EVENTS

After dealing with external influences in the last chapter we will
now look at factors that involve the internals of Firefox, specifically, as

the title indicates, the time the Firefox process actually runs and the threads
and events that are used by it. This involves both investigating how these
factors are handled internally and modifying the source code of Firefox and
the test suite in an attempt to reduce the variance created by them.

4.1 THE X P C O M FRAMEWORK

The xpcom (Cross Platform Component Object Model) framework is a
component object model similar to corba1 (and is in fact partly derived
from it), which has the goal of abstracting away many implementation
details to improve cross-platform compatibility. It essentially allows to
specify interfaces in a special Interface Description Language (idl) that
can then be implemented and used by a variety of languages. This is for
example used to allow JavaScript to call C++ methods and for the events
that are used for the internal work (described in more detail below). Classes
that implement one of those interfaces are called components.

4.2 C P U TIME

As already mentioned in Section 3.1.1, wall clock time is not necessarily
the best way to measure program performance since it will be influenced
by other factors of the whole system like concurrently running processes.
Therefore it would make sense to only measure the time that our program
is actually running: the cpu time. This will get rid of both the time during
which other processes are running and of the time needed for context
switches. Since we are running Firefox exclusively on one processor the
former should not be much of an issue except when Firefox and some other

1http://www.corba.org/

43

http://www.corba.org/
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process are trying to use the same shared resource, but the latter will be if
there is a different number of context switches between threads.

4.2.1 experimental setup

Our setup consisted of two parts: a custom xpcom component that could
report the cpu time using a system call and a modification to the Talos
framework that would use this component instead of the wall-clock time.

The XPCOM component Our component was essentially a wrapper around
the system call clock_gettime(). This function can report the values
of several timers; here we are specifically interested in the one named
clock_process_cputime_id, which reports the time the current
process has been running so far in nanoseconds.

The Talos modification The Talos framework normally records the current
time before starting to load a page and after the loading has finished
using the JavaScript Date.now() function which reports the number
of milliseconds since the start of the unix epoch (1970-01-01 00:00:00).
Our modification made it use our xpcom wrapper instead. Since only
the difference between the two time points is of interest the different
reference points did not matter for us.

Unfortunately only a few tests make direct use of the time that the
Talos framework gathers in this way, namely tgfx, tp_dist, tsvg, and
tsvg_opacity; most tests, especially the JavaScript tests, do their own
timing since they are not interested in the pure page loading time. However,
the results should still give an indication of whether the difference in time-
keeping leads to significant changes in principle or not.

4.2.2 results

Table 4.1 shows the results from a test series compared to the externally
optimized results from the previous chapter. The statistically significant
differences are highlighted in grey again. We can see that from the four
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tests that should be affected by our changes only one, tsvg_opacity, does
have a significant difference, and the variance actually seems to have gotten
worse.

Figure 4.1 again displays the results visually. We can clearly see that the
variance in the tsvg_opacity test got much worse, except for an outlier in
the previous results. The other results do not look much different, but they
still show that there is clearly no improvement in any of them. This indicates
that the method of time recording and the number of context switches are
not major factors in contributing to the variance in the tests.

The complete plots are available in Appendix B.3.

4.3 INTRODUCTION TO THREADS & EVENTS

The main job of a web browser is undeniably to display web pages, and do
so in an efficient way. Putting it like that makes the task sound reasonably
easy, but, unfortunately, things tend to be more complicated than they look
at first. In the case of web browsers in general, and Firefox in particular,
there are more things to consider than just the loading of a single web page.
For example, the user interface (ui) should still respond to user actions
like trying to open a menu, even if a web page is still loading at the same
time. In other cases a user might have several pages open at the same time,
some of which haven’t finished loading or are continually running some
JavaScript code, and the user then wants to interact with another page or
open a new tab. All these scenarios require that several tasks need to be
able to run in parallel, at least from a user perspective, not unlike how
multitasking operating systems work.

On the application side there are essentially two approaches to this
problem: use multiple threads or split the tasks into small, interruptible
units that can be executed out of order.
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4.3.1 threads

Threads are a popular solution in these cases. They allow asynchronous
execution and hand the responsibility of scheduling them off to the op-
erating system. In addition, they can be put onto different processors (or
processor cores), potentially increasing performance if a lot of expensive,
non-communication-heavy processing is required. However, they also have
serious drawbacks. Since threads share memory there must be a way to
regulate concurrent access to prevent race conditions. This usually involves
mechanisms such as locks, semaphores and/or monitors (Tanenbaum, 2001).
Unfortunately these mechanisms are both hard to get right, with the po-
tential of deadlocks and other hard to find bugs, and do not scale well to
more than a few cores. In addition there is usually a significant amount of
communication necessary between a web page and the ui, so separating
that into different threads would be difficult and potentially even decrease
performance.

4.3.2 events

For these reasons Mozilla for the most part went with the second ap-
proach: dividing work up into small units and executing them on just one
thread. These “work units”, called events, can range from very small, like
a simple message-passing equivalent that just sets one variable (example:
nsThreadShutdownAckEvent, which simply acknowledges that the shut-
down event has been processed), to rather complex (nsPreloadURIs, which
pre-loads pages linked to from the current page in order to decrease the
time needed to load the page if a user clicks on the link later on).

Each newly created event will get dispatched to an event queue where
it will then get picked up to get executed. That way events that are used
for rendering a web page and user interface events can be freely mixed
and allow for a responsive ui even when the browser is in the process of
loading a page, without the difficulties of threads. Another advantage of
this model is that it allows for incremental page load, meaning that a web page
is displayed incrementally as soon as an element has finished rendering
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and then reflowed (meaning, from a user perspective, that the layout gets
adjusted) once other elements have been added. This way a user does not
have to wait for the complete page to load before they can see anything.

4.3.3 threads again: the thread pools

Despite the event model described in Section 4.3.2, threads are used in
Firefox’s xpcom framework for a few things, most notably asynchronous
operations like i/o and statement execution in the SQLite databases that
are used for bookmarks and the history. These threads typically get started
early on during startup and exist throughout the entire lifetime of Firefox.

Additionally Firefox uses the concept of a thread pool. This is a pool of
anonymous threads that exists purely to execute occasional events in an
asynchronous manner without having to keep a specific thread alive for
them all the time. These thread pools (there can be more than one that are
used from different parts of the code) work in the following way:

1. An event gets put into the pool’s event queue.

2. If there are no idle threads and the current number of thread pool
threads is smaller than the maximum number allowed, a new thread
gets created.

3. If a new thread has been created, it gets added to the thread pool
thread list.

4. All thread pool threads are notified via a monitor so they can check
the event queue.

5. One of the threads picks up the event and executes it.

6. If a thread has been idle for longer than a specified timeout, or if there
are more idle threads than allowed, that thread gets shut down.

This setup allows for the easy handling of asynchronous operations
without the thread posting the event having to worry about the details.
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However, for our purposes it is less than ideal. The rather quick shutting
down of threads (due to a low default timeout) can lead to a situation
where an event that gets posted to a thread pool may in one case arrive
just before a thread is supposed to get shut down and will thus reuse this
thread. In another case, say in a different run of the same test, that event
may – due to tiny scheduling differences in the operating systems – arrive
at the thread pool shortly after the thread has been shut down, requiring
for a new thread to be created. This thread creation (and destruction), while
not as expensive as process creation, still incurs a cost that could lead to
measurable variance in the test suite. Initial tests showed that there were
indeed a different number of threads being created by the thread pools, so
this issue was certainly worth investigating.

4.4 INVESTIGATING THREAD POOL VARIANCE

4.4.1 experimental setup

In order to analyse the impact of the threading issues described above we
modified the Firefox source code to only ever create one thread per thread
pool, and increased the timeout to a value that guarantees that the thread
will be kept alive throughout the whole lifetime of the process. This had the
potential to reduce the absolute performance of some of the tests, since now
the order of events mattered more and unrelated events would have to wait
for each other. However, since we are only interested in the variance, this
was an acceptable risk. We then ran a test series again using the same setup
as explained in Chapter 3.

4.4.2 results

Table 4.2 shows the results from our thread pool modification experiment.
Unfortunately we can immediately see that only two of the tests have a
significant difference, and again the variance has actually gotten worse
instead of having improved as hoped.

The plots in Figure 4.2 illustrate this. In both tests the density has moved
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Figure 4.2: Comparison of the cpu time modifications with the thread pool modifi-
cation (percentage of mean)

from roughly around the mean to two “bulges” further away, and the inter-
quartile range of the dromaeo_dom test is about twice the size as the old
one. This is clear evidence that the variance we are looking for is not caused
by thread activity surrounding the thread pool, and the slight increase in
variance might be caused by a performance degradation due to the reduced
number of threads.

Again, the complete plots are available in Appendix B.4.

4.5 EVENT VARIANCE

As mentioned above, events are the main mechanism by which work is
done in Firefox. This leads to an interesting question: is the same work, for
example a test in our test suite, always done using the exact same events, or
can it be done in different ways? And if yes, could this be the cause for the
variance we are seeing? For this we have to take a look at what events are
executed during a test and check whether there is any correlation between
the most important event properties and the variance. In concrete terms we
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are going to look at two properties specifically: the number of events, and
their order of dispatch.

4.5.1 experimental setup

Events are classes that inherit from the xpcom interface nsIRunnable,
which declares the single method Run(). This poses a problem for us: we
do not have a way to identify the different classes of events, since there is
no public method to inspect them and run-time type information (rtti)
is not used in Firefox. We therefore need a different way of identifying
them, ideally without having to modify every single event class. The way we
solved that problem in our experiments is to generate backtrace information
at the time when an event is dispatched to an event queue, showing us
exactly where an event comes from, which is even more information than
what a normal class identification would have given us.

Since we are only interested in the events that are used during the actual
tests, we also again used our custom xpcom component and a modification
to the Talos framework to print out a special message at the moments when
the test starts and when it finishes so that we can separate the events we are
interested in from the others.

Using these modifications we again ran a test series, with the only
difference that we used only 5 distinct runs. This was due to the size of the
generated log files and the time it took to run our analysis scripts afterwards.

4.5.2 results: number of events

Figure 4.3 shows an example of what the result of an event number
analysis of our log files looks like. Each line represents a single event, with
the string at the beginning being a hash of the complete backtrace and the
numbers signifying the number of times this event occurred during each of
the five runs. An exclamation mark is printed after the hash if the number
of events differs between the runs, and at the end the sum of all the event
numbers is printed.
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1 e19fd78b2439bcbb55d5 ! 11 11 11 12 11
2 91b1112a65d131c0a537 3 3 3 3 3
3 5aee85cd567f628853de 1 1 1 1 1
4 20162c32c9092813e7b0 3 3 3 3 3
5 535510a64010a2e38bf7 1 1 1 1 1
6 becd6cc1818bf0ff8d14 6 6 6 6 6
7 c0df172143e27468f0b7 ! 0 35 0 0 35
8 a0b44c64541919647ae0 6 6 6 6 6
9 a93dc981b861c0cc9821 ! 0 0 0 1 0

10 3dd2cc7672da14088339 12 12 12 12 12
11 .
12 .
13 .
14

15 Sum: 2075 2109 2076 2095 2107

Figure 4.3: Simplified example of an event number log after analysis

Using this information we can indeed see that there is variance in the
number of events being used during the tests. What is interesting is that
there are some events that occur several times in some of the runs but not
at all in others, like for example the one in line 7 in Figure 4.3, but the
overall sum of the events differs far less, proportionally speaking. Since the
events are identified by their complete backtrace instead of just their class
we suspect that this is because those events get dispatched on a slightly
different path through the program even though they belong to the same
class.

The interesting question is now whether this event variance is in any
way related to the variance we are seeing in the test results. For this we need
to do a correlation analysis. We used the Pearson product-moment correlation
coefficient (Rodgers and Nicewander, 1988), a well-established technique
to measure the correlation between two variables. In this first analysis the
two variables are straightforward: the number of events for each run and
the corresponding test results, and the null hypothesis is that there is no
correlation between the variables.

The results of the correlation analysis are shown in Table 4.3. The coeffi-
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Table 4.3
Correlation analysis for the total number of events

Test name Coefficient Pearson p-value

a11y 0.19 0.763
dromaeo_basics −0.05 0.933
dromaeo_css 0.30 0.623
dromaeo_dom 0.16 0.793
dromaeo_jslib 0.36 0.554
dromaeo_sunspider 0.76 0.135
dromaeo_v8 0.41 0.492
tdhtml −0.16 0.800
tgfx 0.95 0.012
tp_dist 0.97 0.033
tsspider −0.18 0.824
tsvg 0.20 0.796
tsvg_opacity −0.76 0.236
v8 — —

Statistically significant values are shaded grey.

cient indicates the way in which the variables are correlated to each other:
a positive value means that as x (the number of events) increases y (the
result of the test) increases as well, with 1 indicating a perfect line through
all of the points. A negative value means that y decreases as x increases,
again with −1 indicating a perfect line through the points. Values near zero
mean that there is no correlation between the variables. As before we also
calculated the statistical significance of the analysis.

As we can see in the table only for two of the tests is there a correlation
between the test results and the number of events. The other tests are quite
far away from any statistical significance, indicating that in general the
number of events is unrelated to the test result, even though it does vary.

4.5.3 results: order of events

The second analysis we used was on the order of events. We were interested
in determining whether for example a large number of differences in the
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1 949d991aa93da7c011ae 949d991aa93da7c011ae
2 949d991aa93da7c011ae 949d991aa93da7c011ae
3 > fa11c0338f6f80ea22b2
4 > 5d6d1725bf28309d1969
5 > 52339ce63644fd59cb4b
6 211460b9bb9aa2d25270 211460b9bb9aa2d25270
7 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
8 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
9 5d6d1725bf28309d1969 <

10 52339ce63644fd59cb4b <
11 525a50883625fca6e9eb 525a50883625fca6e9eb
12 54b2cc584af6cd076f74 54b2cc584af6cd076f74
13 a036d8999956f9249846 a036d8999956f9249846
14 d91ebb7d5101277b7177 d91ebb7d5101277b7177
15 d91ebb7d5101277b7177 d91ebb7d5101277b7177
16 7aa5349ab6cdb364f723 7aa5349ab6cdb364f723
17 fa11c0338f6f80ea22b2 <
18 aeafb3e54beb9751f54f aeafb3e54beb9751f54f
19 e63578d0f3549b8de07a e63578d0f3549b8de07a

Figure 4.4: Simplified example of an event order log after analysis

event order also resulted in a big difference between the respective test
results, indicating that some event orderings are more favourable than
others. For this we took all of the combinations of the runs in our test series
and computed the difference in the order of events, similar to a standard
diff algorithm, and the difference between the test results, and again ran a
correlation analysis on these two variables.

Figure 4.4 shows an example of what such an event order diff between
two runs looks like, again with the string representing the hash of the
specific event. We can see that indeed some events appear out of order, even
though most of them are in the same order in both runs. Also, some of the
out-of-order events seem to depend on others, like the events on line 4 and
5 which show up at a different place in both runs but in the same order
relative to each other. Other events seem not to be dependent on others; the
event on line 3 appears before the just mentioned two events in the second
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Table 4.4
Correlation analysis for the order of events

Test name Coefficient Pearson p-value

a11y −0.07 0.858
dromaeo_basics 0.01 0.978
dromaeo_css −0.19 0.597
dromaeo_dom 0.06 0.860
dromaeo_jslib −0.02 0.955
dromaeo_sunspider 0.58 0.079
dromaeo_v8 0.22 0.543
tdhtml −0.09 0.813
tgfx 0.14 0.699
tp_dist 0.98 < 0.001
tsspider 0.08 0.887
tsvg 0.44 0.386
tsvg_opacity 0.71 0.113
v8 — —

Statistically significant values are shaded grey.

run but a while after them in the first.
Looking at what kinds of events routinely occur out of order, we found

that many of them share a common theme: they are dependent on external
or at least asynchronous factors. The following list gives a few examples:

• nsInputStreamReadyEvent is responsible for asynchronous i/o.

• mozilla::storage::AsyncExecuteStatements utilizes a separate
thread to execute statements in the databases that are used for storing
bookmarks and other information.

• nsTimerImpl::PostTimerEvent() provides access to various hard-
ware timers and is thus dependent on when those timers fire which is
out of the control of the Firefox process.

The results of the correlation analysis are shown in Table 4.4. Here we
only have one test with a statistically significant difference – the tp_dist



58 chapter 4. cpu time, threads & events

test, which was also one of the only two significant ones in the event
number analysis. Since this test is by far the most long-running one due to
the number of pages it loads we suspect that the length of the test has an
impact on how well the events and the test results are correlated – possibly
the connection is drowned out by unrelated factors in the other, shorter
tests.

Unfortunately, these results mean that – except possibly for the tp_dist

test – there is no direct correlation between event properties and the test
results, so it seems like the events are not directly responsible for the
variance we see in the test results.



5
FORECASTING

As the previous chapters have shown, it is not reasonably possible to
eliminate all potential variance in our performance tests. This still

leaves us with our original problem, though: how do we determine whether
a new test result signifies a genuine change in performance or is just noise.
If we cannot reduce the noise itself, is there maybe a way to determine the
type of a new value based on the previous ones, that is figure out whether
it fits into the current trend? There is, to a certain extent.

Note that there are a few differences between the series we used in the
previous chapters and the ones we will be looking at here: in this chapter
we will use data from the official Mozilla test servers that form a so-called
statistical time series (meaning they are based on different points in time
with actual changes in between, that is with different versions of Firefox,
something that our own data intentionally did not have. Not to be confused
with our own definition of series in Section 2.3) instead of our self-generated
data in order to have a mixture of noise and real performance changes to
test our models on.

5.1 T-TESTS: THE CURRENT TALOS METHOD

There are essentially three cases that a new value in our results could fall
into, and the goal is for us to be able to distinguish between them. The first
case is that there are no performance-relevant code changes and the noise is
so small that it can easily be classified as a non-significant difference from
the previous results. The second one is that there are still no relevant code
changes, but this time the noise is much larger so that it looks like there
may actually be relevant changes. The last one is that there are relevant code
changes and the difference in value we see is therefore one that will stay
while the new code is in place.

Phrasing it like that indicates one potential solution to our problem: if we

59
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check more than one new value and determine if – on average – they differ
from the previous results in a significant way, we know that there must have
been a code change that introduced a long-lasting change in performance.
Unfortunately this method has a problem of its own: we cannot immediately
determine whether a single new value is significantly different, we have to
wait for a few more in order to compute the average.

This is essentially what the method that is currently employed by Mozilla
does. In more detail, there are two parts to it:

1. Compute the means of the 30 results before the current one and of the
5 runs starting from it, that is create two moving averages.

2. Use a t-test to determine whether the difference between the means is
statistically significant.

Like with our question of how many runs to use in a test series as
described in Section 2.5.1, there is an inherent trade-off involved in deciding
how many results should be used for the means calculations. In the case
of the so-called back-window, that is the window that goes back from the
current result, a too big one would mean that larger, genuine performance
changes would distort the mean in a way that it no longer represents the
most recent performance that we are trying to compare our new results to,
and a window that is too small would put too much emphasis on short-
term noise. The number 30 that the Mozilla developers chose seems to be a
reasonable compromise between these conflicting requirements.

For the fore-window the requirements are slightly different: we still have
the problem of putting too much emphasis on noise if we choose a small
window, but more importantly we want to find a regression as soon as
possible so the code changes that are responsible for it can be reversed
without too much trouble. In addition short performance spikes could go
unnoticed if they get “lost” in a long series of normal results. Again, the
value of 5 should work reasonably well in this case.

An important thing to note with regard to the fore window is that it starts
at the value we are currently investigating, not ends. This is because we are
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interested in the first value where a regression happens. If we interpret the
performance change as a “step” like in a step-wise function then starting
from the first value after the step means that all of the values that are taken
into account for the window will share the same change and thus should
ideally lead to a mean that reflects that, pointing back at the “step” that
caused it.

Now that we have our two windows, how do we determine whether
the difference between their means is actually significant enough, that is
whether it can be attributed to genuine performance changes? This is where
the hard statistics comes in. Determining the significance of a difference in
means is a well-established field, and the method that is appropriate in our
case is the so-called t-test. A t-test is essentially a special case of an anova
analysis for finding the difference in means between two or more groups,
as the t-test only works with exactly two groups – which is what our two
windows are – and one factor of interest, that is the test result in our case. To
be more specific we use a variation of the t-test for cases with independent
samples (i.e. an unpaired test), unequal sample sizes and potentially unequal
variance called Welch’s t-test. The test statistic t is computed in the following
way:

t =
X1 − X2√

s2
1

N1
+

s2
2

N2

where Xi, s2
i and Ni are the ith sample mean, sample variance and sample

size, respectively.

This test statistic t can then be used to compute the significance level of
the difference in means as it moves away from zero the more significant the
difference is. The default t threshold that is considered to be significant in the
Talos analysis is 9. This seems to be another heuristic based on experience,
but it can hardly be justified statistically – in order to properly calculate the
significance level another value is needed: the degree of freedom. Once that
is known the significance level can be easily looked up in standard t-test
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significance tables1. However, this degree of freedom has to be computed
from the actual data, it cannot be known in advance, and it also would be
different for different tests. Using a single threshold for all of the tests is
therefore not very reliable.

5.2 FORECASTING WITH EXPONENTIAL SMOOTHING

As already mentioned in the previous section, the current method has a few
problems. For one thing, the window sizes used are rather arbitrary – they
seem to be reasonable, but there is no real statistical justification for them,
and the fact that all the values in the window are treated equally presents
problems in cases where there have been recent genuine changes. Also,
due to the need for the fore window a regression can usually not be found
immediately, only after a few more results have come in. Apart from this
unfortunate delay this can also lead to changes that go unnoticed because
they only exist for a short time, for example because a subsequent change
had the opposite effect on performance and the mean would therefore hardly
be affected. So instead of a potential performance gain the performance will
then stay the same since the regression will not get detected.

We therefore need a more statistically valid way that can ideally report
outliers immediately and that does not depend on guesses for the best
number of previous values to consider.

An obvious solution to the problem of equal weights in the window
average is to introduce weighting, that is a weighted average. In the case of
our back window we would give the highest weights to the most recent
results and gradually less to earlier ones. This would also eliminate the need
for a specific window size, since as the weights will be negligible a certain
distance away from the current value we can just include all (available)
previous values in our computation. The only issue in this case is the way
in which we assign concrete weights to the previous results.

Exponential smoothing is a popular statistical technique that employs
this idea by assigning the weights in an exponentially decreasing fashion,

1See for example http://www.statsoft.com/textbook/distribution-tables/#t.

http://www.statsoft.com/textbook/distribution-tables/#t
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modulated by a smoothing factor, and is therefore also called exponentially
weighted moving average. The simplest and most common form of this was
first suggested by Holt (1957) and is described by the following equations:

s1 = x0

st = αxt−1 + (1 − α)st−1 = st−1 + α(xt−1 − st−1), t > 1

Here st is the smoothed statistic and α with 0 < α < 1 is the smoothing
factor mentioned above. Note that the higher the smoothing factor, the less
smoothing is applied – in the case of α = 1 the resulting function would be
identical to the original one, and in the case of α = 0 it would be a constant
with the value of the first result.

The obvious question here is: what is the optimal value for α? That
depends on the concrete values of our time series. Manually determining α is
infeasible in our case, though, so we would need a way to do it automatically.
Luckily this is possible: common implementations of exponential smoothing
can use a method that tries to minimize the squared one-step prediction
error in order to determine the best value for α in each case2.

The property that is most important to us about this technique is that it
allows us to forecast future values based on the current ones. This relieves us
of the need to wait for a few new values before we can compute the proper
moving average for our fore window, and instead we can operate on a new
value immediately. Similarly we do not have to wait until we have enough
data for our back window before we can start our analysis. In theory we can
start using it with only one value, although in practice we would still need
a few values for our analysis to “settle” before the forecasts become reliable.

Normally the exponential smoothing forecast will produce a concrete
new value, which is useful for the field of economics where it is most com-
monly applied. In our case, however, we want to instead know whether a
new value that we already have can be considered an outlier. For this we

2See for example http://stat.ethz.ch/R-manual/R-patched/library/stats/
html/HoltWinters.html.

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html
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need a modification that will produce confidence intervals. Yar and Chatfield
(1990) developed a technique for that using the assumption that the underly-
ing statistical model of exponential smoothing is the arima (autoregressive
integrated moving average) model, calling the intervals prediction intervals.
The exact method of how to compute these intervals is a bit too involved to
repeat it here but it is explained in detail in their paper.

Figure 5.1a shows an example from the tp_dist test with official test
server data and the 95 % prediction interval for the next three values. We
used three here to make the interval easier to identify, but in practice only
one would be needed.

The figure also demonstrates what influence big changes in the past have
on the prediction intervals. The big jump in performance in the middle is
still reflected in the intervals at the end, although the results themselves
would by now clearly lie outside of them if they were to reoccur. Figure 5.1b
shows the same data except that the two outliers have been removed, and
we can immediately see that the prediction intervals are now much more
narrow – even several of the values from the first third would now lie
outside of them, demonstrating that they do not have much influence any
more. Therefore in the case of such apparently genuine changes that have
been reverted it might still make sense to remove the values from the ones
that are used for future predictions to avoid intervals that are unnecessarily
wide.

An important thing to note is that the official test results form an irregular
time series, that is the values were taken at irregular intervals in time –
usually when a new version was committed to the main repository, which
is of course very much random. However, prediction with exponential
smoothing only works on regular time series, where all the distances between
the values are the same. We argue that in our case we can ignore this
distinction and interpret our irregular time series as a regular one. This is
possible as our irregular series has a fundamental difference from common
ones: usually the values from an irregular series are a kind of snapshot that
are taken at certain times, but change is happening at all times whether a



5.2. forecasting with exponential smoothing 65

m
ill

is
ec

on
ds

(a
vg

)

410

420

430

440

450

460

5 10 15 20 25 30 35

(a) Jump included

m
ill

is
ec

on
ds

(a
vg

)

410

420

430

440

450

460

5 10 15 20 25 30 35

(b) Jump removed
Figure 5.1: Prediction intervals for three values
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snapshot gets taken at that time or not. But in our case the values that we
have are the only changes that occur, so the actual time that has passed in
between the values is irrelevant. There is only one catch with this theory:
since the test instances are distributed over a whole range of machines, it
is possible, and even rather likely, that between two values on one machine
there are other values on other machines. However, since potential changes
would then be detected on those other machines earlier, this catch can still
be safely ignored. This applies equally to the current t-test method and
would therefore not introduce any additional issues anyway.

In addition to this simple exponential smoothing two extensions have
been developed to handle more complex cases. Double exponential smoothing
is one such method that is better able to deal with trends in the data. Global
trends do not really exist in our performance tests, though, so utilizing this
approach would yield no immediate benefit and would introduce the need
to find a way to determine the optimal trend smoothing factor similar to the
smoothing factor we are already using. However, future work might look at
a way to use this technique on short-term trends during work periods that
focus on optimizations and other similar situations.

A further extension, triple exponential smoothing, sometimes called the
Holt-Winters method (Winters, 1960; Goodwin, 2010), was created to deal
with seasonal trends, for example cases where buying habits change pre-
dictably depending on the month. Such trends do not occur at all in our
performance tests though and this method has therefore not been investi-
gated further.

5.3 COMPARISON OF THE METHODS

We now want to compare our two methods on an example to give an
impression of how they differ in their ability to distinguish between noise
and genuine changes. For this we used a long stretch of official test data
for the tp_dist test and ran both methods on it, marking the points where
they reported a significant change.

Figure 5.2 shows the result of this comparison. The test results from
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three other machines are also depicted greyed out in the background to
easier determine which changes are genuine and which are noise, since the
genuine changes will show up in all of the machines.

Two things can be learned from the graph: first, and most importantly,
our prediction interval method detects more of the genuine changes than
the current t-test method. For example, the big jumps in August 2010 and
February 2011 go undetected by the current method since they are followed
by equally big jumps back soon after. This is a result of the need for more
than one value in the respective analysis, obscuring single extreme values in
the process. On the other hand, all of the changes that are detected by the
old method are also detected by our suggested method, thus demonstrating
that previously detectable changes would not get lost with it.

The second difference can be seen during July/August 2010: the current
method can sometimes report the same change multiple times for subse-
quent values, so additional care has to be taken to not raise more alarms
than necessary.

This example demonstrates that our proposed statistical analysis offers
various benefits over the one that is currently employed. Not only does
it give better results, it also needs only the newest value in order to run
its analysis. In addition it is also straightforward to implement, several
implementations even already exist in widespread software like R3 and
Python4.

One disadvantage of our method should be mentioned, however. If there
is a series of small regressions, each too small to be detected as an outlier,
then the performance could slowly degrade without any warnings being
given. Depending on the exact circumstances this degradation might be
able to be detected by the old method, but it would probably be better to
develop a different method that is specifically tuned for this case and use
this method in addition to ours.

3http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.
html

4http://adorio-research.org/wordpress/?p=1230

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/HoltWinters.html
http://adorio-research.org/wordpress/?p=1230


6
CONCLUSIONS

This thesis had three main goals: (1) Identifying the cause(s) of vari-
ance in performance tests on the example of Mozilla Firefox, (2) trying

to eliminate them as much as possible, and (3) investigating a statistical
technique that would allow for better distinction between real performance
changes and noise. We evaluated three different categories of approaches
with varying degrees of success to achieve these goals.

In Chapter 3 we looked at external influences like concurrently running
programs, memory randomization and hard drive access. We found that all
of them contributed to the variance to some degree, with the memory ran-
domization surprisingly being the most influential one. This indicates that
issues like memory alignment, physical layout as with numa architectures
and prefetching have more influence on program performance than might
be expected. Unfortunately we were not able to trace these assumptions
at such a low level, but they are consistent with work done by others (see
Chapter 2.6.1). We then suggested a way to minimize these influences in
official tests run by Mozilla. While the advances we achieved with our
modifications were significant, they did not reduce the variance to our ideal
level, though.

Chapter 4 dealt with the internal workings of Firefox. Here we were
focussing on three major aspects: the time the process actually runs on
the cpu, the threads that are constantly created and destroyed by the
thread pool and the event mechanism that is used in Firefox’s xpcom
framework to do its work. Regarding the process time we discovered that
there was no measurable improvement achieved by our modifications, and
that in fact some of the tests had a slightly higher variance than before.
Changing the thread pool implementation to only create one thread and
keep it alive for the lifetime of the program had a similar result: a slight
worsening in variance for some of the tests and no improvements in the
others, indicating that these threading issues are not significantly responsible
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for the variance we are seeing. Lastly we measured two event properties:
the number of events that are used during a test run and the order in which
they are used. We discovered that both of them had a certain amount of
variance, but a correlation analysis concluded that this variance was only
correlated to the test result variance in two cases for the first property
and one for the second property. Interestingly the only test for which both
properties were correlated is also the one with the longest test run time by
far, suggesting that the length of the test is responsible for this. Possibly
there are some influences that overshadow the correlation in shorter tests
but get marginalized once the test length exceeds a certain threshold. This
could be a promising starting point for future work.

Finally, in Chapter 5 we presented a statistical technique for assessing
whether a new result in a test series falls outside of the current trend
and is therefore most likely not noise. This technique was shown to have
various benefits over the currently used one, most importantly it could
report some changes that the one that is currently being used by Mozilla
missed. Additional advantages include being able to run the analysis on
new values immediately instead of having to wait for a certain number of
values that are needed for a moving average, and similarly the analysis
can start when only a few values are available for a machine unlike the 30
values that are required for the current moving average.

In summary we managed to achieve a certain degree of success for all
three of our goals. We identified various external influences and offered so-
lutions to mitigate them, and suggested a statistical technique that improves
the quality of change detection. Unfortunately we did not conclusively find
a connection between the inner workings of Firefox and the measured vari-
ance, but we did find a certain amount of internal variance. Investigating
this variance and how it relates to the performance test variance, in addition
to other possible sources of internal variance, should be a promising topic
for future work.

There is one important thing to note about performance testing in general.
The work done by Mytkowicz et al. (2009) and Kalibera et al. (2005) and
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us in Chapter 3 shows that even small changes in the environment can
have a measurable impact on the test results, and it is nearly impossible to
eliminate all potential changes. For example, running a test with memory
randomization disabled can obviously only give results that result from the
specific memory layout that happens to be chosen for the current run of the
program, but it cannot tell us anything about how favourable this layout is
in regard to the hardware issues we mentioned. So we could get a favourable
layout in one run, and an unfavourable one in the next run (for example
due to shifted code as investigated by Gu et al. (2004)), and the effect
would be that the results differ from each other even without any genuine
performance changes. The only solution to this would be to take several
samples, i.e. tests, while only changing this specific parameter – in this case
memory layout, which could be achieved by enabling randomization again –
and average over the results. Unfortunately this is not really feasible in
many continuous integration scenarios because of the additional resources
it would require, but it is something to keep in mind when evaluating test
setups and techniques.

6.1 FUTURE WORK

Looking at our results there are still various variance factors that we have
not found yet. It would be valuable to know whether there are other external
factors that can be reduced or whether they are part of the above mentioned
ones that can only be approximately solved through averaging. Additionally
the internal variance in the events is worth investigating further, especially
the question of why it almost only correlates with the longest-running test.

Another worthwhile direction would be to apply our research to other
applications, especially other browsers like Google Chrome. This was out-
side the scope of this thesis, not the least because those browsers use entirely
different – and not in all cases even publicly accessible – performance test
suites. The general principle should be the same, though, so it would be
interesting to see whether there are any differences between the amount of
and the causes of variance. At least our statistical technique is not tied to any
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specific application and should work for anything that can be represented
as a time series, regardless of how the data was produced.
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A
SCRIPTS

This is the shell script we used to prepare for the external optimization
tests. As mentioned in the text memory randomization and cpu isolation
mechanisms were enabled directly in the kernel.

1 # official optimizations
2 rm /dev/random
3 mknod /dev/random c 1 9
4 echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
5 echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
6

7 if [[ "$1" == "-o" ]]; then
8 exit
9 fi

10

11 # our optimizations start here
12 stop gdm
13 stop ssh
14 stop avahi-daemon
15 /etc/init.d/networking stop
16 pkill dhclient
17 stop network-manager
18 pkill modem-manager
19 pkill wpa_supplicant
20 stop cron
21 stop atd
22 /etc/init.d/cups stop
23 pkill pulseaudio
24 pkill irqbalance
25

26 mount /ramfs
27 chown test:test /ramfs
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B
COMPLETE PLOTS

B.1 ISOLATED MODIFICATIONS

Explanation of the abbreviations:

• nomod: No modifications except for the official ones (see Section 2.5.1).

• plain: All non-essential processes terminated.

• norand: Memory randomization disabled.

• exclcpu: Firefox runs exclusively on one processor with the rest of
the processes running on the other one.

• ramfs: Firefox and all of the test data and logs reside on a ram disk
(no hard disk access).
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Figure B.1: Isolated modifications, percentage of mean, part 1
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Figure B.2: Isolated modifications, percentage of mean, part 2
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Figure B.3: Isolated modifications, percentage of mean, part 3
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Figure B.5: Isolated modifications, absolute values, part 2
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B.2 MEMORY RANDOMIZATION COMPARISONS

Explanation of the abbreviations:

• nomod: No modifications except for the official ones (see Section 2.5.1).

• cumul: All of the changes from Chapter 3.

• norand: Memory randomization disabled.
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Figure B.7: norand comparisons, percentage of mean, part 1
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B.3 C P U TIME MODIFICATION

Explanation of the abbreviations:

• cumul: All of the changes from Chapter 3.

• cputime: The cpu time changes from Section 4.2.1.
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Figure B.15: cpu time modification, absolute values, part 1
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B.4 THREAD POOL MODIFICATION

Explanation of the abbreviations:

• cputime: The cpu time changes from Section 4.2.1.

• tp1: The thread pool modifications from Section 4.4.1.
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Figure B.17: Thread pool modification, percentage of mean, part 1
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Figure B.18: Thread pool modification, percentage of mean, part 2
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CREATIVE COMMONS LICENSE

This is the text of Creative Commons Attribution 3.0 Unported License.1

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE
TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR
“LICENSE”). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIB-
ITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE,
YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO
BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CON-
TAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

C.1 DEFINITIONS

a. “Adaptation” means a work based upon the Work, or upon the Work
and other pre-existing works, such as a translation, adaptation, derivative
work, arrangement of music or other alterations of a literary or artistic
work, or phonogram or performance and includes cinematographic adap-
tations or any other form in which the Work may be recast, transformed,
or adapted including in any form recognizably derived from the original,
except that a work that constitutes a Collection will not be considered
an Adaptation for the purpose of this License. For the avoidance of
doubt, where the Work is a musical work, performance or phonogram,
the synchronization of the Work in timed-relation with a moving image

1https://creativecommons.org/licenses/by/3.0/
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(“synching”) will be considered an Adaptation for the purpose of this
License.

b. “Collection” means a collection of literary or artistic works, such as ency-
clopedias and anthologies, or performances, phonograms or broadcasts,
or other works or subject matter other than works listed in Section 1(f) be-
low, which, by reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is included in its
entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which
together are assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above) for
the purposes of this License.

c. “Distribute” means to make available to the public the original and
copies of the Work or Adaptation, as appropriate, through sale or other
transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the
individual, individuals, entity or entities who created the Work or if
no individual or entity can be identified, the publisher; and in addition
(i) in the case of a performance the actors, singers, musicians, dancers,
and other persons who act, sing, deliver, declaim, play in, interpret or
otherwise perform literary or artistic works or expressions of folklore; (ii)
in the case of a phonogram the producer being the person or legal entity
who first fixes the sounds of a performance or other sounds; and, (iii) in
the case of broadcasts, the organization that transmits the broadcast.

f. “Work” means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the literary,
scientific and artistic domain, whatever may be the mode or form of
its expression including digital form, such as a book, pamphlet and
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other writing; a lecture, address, sermon or other work of the same
nature; a dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or without
words; a cinematographic work to which are assimilated works expressed
by a process analogous to cinematography; a work of drawing, painting,
architecture, sculpture, engraving or lithography; a photographic work
to which are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration, map, plan, sketch or
three-dimensional work relative to geography, topography, architecture
or science; a performance; a broadcast; a phonogram; a compilation
of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License
who has not previously violated the terms of this License with respect to
the Work, or who has received express permission from the Licensor to
exercise rights under this License despite a previous violation.

h. “Publicly Perform” means to perform public recitations of the Work
and to communicate to the public those public recitations, by any means
or process, including by wire or wireless means or public digital per-
formances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the pub-
lic by any means or process and the communication to the public of
the performances of the Work, including by public digital performance;
to broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. “Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of fixation
and reproducing fixations of the Work, including storage of a protected
performance or phonogram in digital form or other electronic medium.
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C.2 FAIR DEALING RIGHTS

Nothing in this License is intended to reduce, limit, or restrict any uses
free from copyright or rights arising from limitations or exceptions that are
provided for in connection with the copyright protection under copyright
law or other applicable laws.

C.3 LICENSE GRANT

Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of
the applicable copyright) license to exercise the rights in the Work as stated
below:

a. to Reproduce the Work, to incorporate the Work into one or more Collec-
tions, and to Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation,
including any translation in any medium, takes reasonable steps to
clearly label, demarcate or otherwise identify that changes were made
to the original Work. For example, a translation could be marked “The
original work was translated from English to Spanish”, or a modification
could indicate “The original work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated
in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions
in which the right to collect royalties through any statutory or com-
pulsory licensing scheme cannot be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by You of
the rights granted under this License;



c.4. restrictions 105

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or com-
pulsory licensing scheme can be waived, the Licensor waives the
exclusive right to collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect
royalties, whether individually or, in the event that the Licensor is a
member of a collecting society that administers voluntary licensing
schemes, via that society, from any exercise by You of the rights
granted under this License.

The above rights may be exercised in all media and formats whether
now known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in other
media and formats. Subject to Section 8(f), all rights not expressly granted
by Licensor are hereby reserved.

C.4 RESTRICTIONS

The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of
this License. You must include a copy of, or the Uniform Resource Iden-
tifier (URI) for, this License with every copy of the Work You Distribute
or Publicly Perform. You may not offer or impose any terms on the Work
that restrict the terms of this License or the ability of the recipient of
the Work to exercise the rights granted to that recipient under the terms
of the License. You may not sublicense the Work. You must keep intact
all notices that refer to this License and to the disclaimer of warranties
with every copy of the Work You Distribute or Publicly Perform. When
You Distribute or Publicly Perform the Work, You may not impose any
effective technological measures on the Work that restrict the ability of
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a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the
Work as incorporated in a Collection, but this does not require the Col-
lection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit as
required by Section 4(b), as requested. If You create an Adaptation, upon
notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations
or Collections, You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties (e.g.,
a sponsor institute, publishing entity, journal) for attribution (“Attribu-
tion Parties”) in Licensor’s copyright notice, terms of service or by other
reasonable means, the name of such party or parties; (ii) the title of the
Work if supplied; (iii) to the extent reasonably practicable, the URI, if any,
that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the
Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation,
a credit identifying the use of the Work in the Adaptation (e.g., “French
translation of the Work by Original Author”, or “Screenplay based on
original Work by Original Author”). The credit required by this Section 4
(b) may be implemented in any reasonable manner; provided, however,
that in the case of a Adaptation or Collection, at a minimum such credit
will appear, if a credit for all contributing authors of the Adaptation or
Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the
avoidance of doubt, You may only use the credit required by this Section
for the purpose of attribution in the manner set out above and, by exer-
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cising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the
Original Author, Licensor and/or Attribution Parties, as appropriate, of
You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any Adaptations
or Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial to
the Original Author’s honor or reputation. Licensor agrees that in those
jurisdictions (e.g. Japan), in which any exercise of the right granted in
Section 3(b) of this License (the right to make Adaptations) would be
deemed to be a distortion, mutilation, modification or other derogatory
action prejudicial to the Original Author’s honor and reputation, the
Licensor will waive or not assert, as appropriate, this Section, to the
fullest extent permitted by the applicable national law, to enable You to
reasonably exercise Your right under Section 3(b) of this License (right to
make Adaptations) but not otherwise.

C.5 REPRESENTATIONS, WARRANTIES AND DISCLAIMER

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN
WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REP-
RESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRES-
ENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
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C.6 LIMITATION ON LIABILITY

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY
FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE
OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

C.7 TERMINATION

a. This License and the rights granted hereunder will terminate automati-
cally upon any breach by You of the terms of this License. Individuals or
entities who have received Adaptations or Collections from You under
this License, however, will not have their licenses terminated provided
such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is required
to be, granted under the terms of this License), and this License will
continue in full force and effect unless terminated as stated above.

C.8 MISCELLANEOUS

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor
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offers to the recipient a license to the original Work on the same terms
and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applica-
ble law, it shall not affect the validity or enforceability of the remainder
of the terms of this License, and without further action by the parties to
this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with re-
spect to the Work licensed here. There are no understandings, agreements
or representations with respect to the Work not specified here. Licensor
shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this Li-
cense were drafted utilizing the terminology of the Berne Convention for
the Protection of Literary and Artistic Works (as amended on September
28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty
of 1996, the WIPO Performances and Phonograms Treaty of 1996 and
the Universal Copyright Convention (as revised on July 24, 1971). These
rights and subject matter take effect in the relevant jurisdiction in which
the License terms are sought to be enforced according to the correspond-
ing provisions of the implementation of those treaty provisions in the
applicable national law. If the standard suite of rights granted under
applicable copyright law includes additional rights not granted under
this License, such additional rights are deemed to be included in the
License; this License is not intended to restrict the license of any rights
under applicable law.
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Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages whatsoever,
including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing
two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work
is licensed under the CCPL, Creative Commons does not authorize the
use by either party of the trademark “Creative Commons” or any related
trademark or logo of Creative Commons without the prior written consent of
Creative Commons. Any permitted use will be in compliance with Creative
Commons’ then-current trademark usage guidelines, as may be published
on its website or otherwise made available upon request from time to time.
For the avoidance of doubt, this trademark restriction does not form part of
this License.

Creative Commons may be contacted at http://creativecommons.

org/.

http://creativecommons.org/
http://creativecommons.org/
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